
Fuchun Guo · Xinyi Huang
Moti Yung (Eds.)

 123

LN
CS

 1
14

49

14th International Conference, Inscrypt 2018
Fuzhou, China, December 14–17, 2018
Revised Selected Papers

Information Security
and Cryptology

Lecture Notes in Computer Science 11449

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Fuchun Guo • Xinyi Huang
Moti Yung (Eds.)

Information Security
and Cryptology
14th International Conference, Inscrypt 2018
Fuzhou, China, December 14–17, 2018
Revised Selected Papers

123

Editors
Fuchun Guo
University of Wollongong
Wollongong, NSW, Australia

Xinyi Huang
Fujian Normal University
Fujian, China

Moti Yung
Columbia University
New York, NY, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-14233-9 ISBN 978-3-030-14234-6 (eBook)
https://doi.org/10.1007/978-3-030-14234-6

Library of Congress Control Number: 2019932173

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-14234-6

Preface

The 14th International Conference on Information Security and Cryptology
(Inscrypt 2018) was held during December 14–17, 2018, in Fuzhou, China, with more
than 170 attendees. Inscrypt is a well-recognized annual international forum for
security researchers and cryptographers to exchange their ideas and present their
research results, and is held every year in China. This volume contains all papers
accepted by Inscrypt 2018. The program chairs also invited seven distinguished
researchers to deliver talks. The keynote speakers were Robert Deng from Singapore
Management University, Singapore; Jin Li from Guangzhou University, China; Ron
Steinfeld from Monash University, Australia; Huaxiong Wang from Nanyang
Technological University, Singapore; Yang Xiang from Swinburne University of
Technology, Australia; Moti Yung from Columbia University and Google, USA; and
Wanlei Zhou from University of Technology Sydney, Australia.

The conference received 93 submissions. Each submission was reviewed by at least
three Program Committee members or external reviewers. The Program Committees
accepted 31 full papers and 5 short papers to be included in the conference program.
The Program Committees selected two papers as the best papers. They are
“Cloud-Based Data-Sharing with White-box Access Security Using Verifiable and
CCA-Secure Re-encryption from Indistinguishability Obfuscation” by Mingwu Zhang,
Yan Jiang, and Willy Susilo, and “Two-Round PAKE Protocol over Lattices without
NIZK” by Zengpeng Li and Ding Wang. The program chairs also invited one paper
about the analysis of Chinese cryptographic standards to be included in this volume.
The proceedings therefore contain all 32 papers revised after the conference.

Inscrypt 2018 was held in cooperation with the International Association for
Cryptologic Research (IACR), and was co-organized by the Fujian Provincial Key Lab
of Network Security and Cryptology of the Fujian Normal University, and the State
Key Laboratory of Information Security (SKLOIS) of the Chinese Academy of Sci-
ence. Furthermore, Inscrypt 2018 was sponsored by the JUZIX (www.juzix.net/en/
index.jhtml).

We would like to thank all 306 authors who submitted their papers to Inscrypt 2018,
and the conference attendees for their interest and support. We thank the Program
Committee members and the external reviewers for their hard work in reviewing the
submissions. We thank the Organizing Committee and all volunteers from Fujian
Normal University for their time and effort dedicated to arranging the conference.
Finally, we thank the EasyChair system for making the entire process convenient.

January 2019 Fuchun Guo
Xinyi Huang
Moti Yung

http://www.juzix.net/en/index.jhtml
http://www.juzix.net/en/index.jhtml

Inscrypt 2018

14th International Conference
on Information Security and Cryptology

Fuzhou, China
December 14–17, 2018

Organized and sponsored by

Fujian Provincial Key Laboratory of Network Security and Cryptology
(Fujian Normal University)

State Key Laboratory of Information Security (SKLOIS)
(Chinese Academy of Sciences)
JUZIX Technology Co., Ltd.

in cooperation with

International Association for Cryptologic Research (IACR)

Honorary Chairs

Dongdai Lin Chinese Academy of Sciences, China
Yi Mu Fujian Normal University, China

General Chairs

Xiaofeng Chen Xidian University, China
Changping Wang Fujian Normal University, China
Li Xu Fujian Normal University, China

Technical Program Chairs

Fuchun Guo University of Wollongong, Australia
Xinyi Huang Fujian Normal University, China
Moti Yung Columbia University and Google, USA

Organizing Chairs

Wei Wu Fujian Normal University, China
Shangpeng Wang Fujian Normal University, China

Publicity Chairs

Rongmao Chen National University of Defense Technology, China
Zhe Liu University of Luxembourg, Luxembourg

Publication Chair

Yuexin Zhang Swinburne University of Technology, Australia

Steering Committee

Feng Bao Huawei International, Singapore
Kefei Chen Hangzhou Normal University, China
Dawu Gu Shanghai Jiao Tong University, China
Xinyi Huang Fujian Normal University, China
Hui Li Xidian University, China
Dongdai Lin Chinese Academy of Sciences, China
Peng Liu Pennsylvania State University, USA
Wen-feng Qi National Digital Switching System Engineering

and Technological Research Center, China
Meiqin Wang Shandong University, China
Xiaofeng Wang Indiana University at Bloomington, USA
Xiaoyun Wang Tsinghua University, China
Jian Weng Jinan University, China
Moti Yung Snapchat Inc. and Columbia University, USA
Fangguo Zhang Sun Yat-Sen University, China
Huanguo Zhang Wuhan University, China

Technical Program Committee

Erman Ayday Bilkent University, Turkey
Mauro Barni University of Siena, Italy
Donghoon Chang NIST, USA
Kai Chen Chinese Academy of Sciences, China
Yu Chen Chinese Academy of Sciences, China
Ilyong Chung Chosun University, South Korea
Ashok Kumar Das International Institute of Information Technology, India
Jintai Ding University of Cincinnati, USA
Debin Gao Singapore Management University, Singapore
Dawu Gu Shanghai Jiao Tong University, China
Feng Hao Newcastle University, UK
He Debiao Wuhan University, China
Vincenzo Iovino University of Luxembourg, Luxembourg
Peng Jiang Beijing Institute of Technology, China
Dae-Young Kim Daegu Catholic University, South Korea
Neeraj Kumar Deemed University, India
Jianchang Lai Nanjian Normal University, China
Yingjiu Li Singapore Management University, Singapore
Kaitai Liang University of Surrey, UK
Joseph Liu Monash University, Australia
Yang Liu Nanyang Technological University, Singapore

VIII Inscrypt 2018

Zhe Liu University of Luxembourg, Luxembourg
Florian Mendel TU Graz, Austria
Jianting Ning National University of Singapore, Singapore
Kazumasa Omote University of Tsukuba, Japan
Giuseppe Persiano Università degli Studi di Salerno, Italy
Josef Pieprzyk Queensland University of Technology, Australia
Bertram Poettering Ruhr-Universität Bochum, Germany
Kouichi Sakurai Kyushu University, Japan
Jian Shen Nanjing University of Information Science and Technology,

China
Chunhua Su The University of Aizu, Japan
Siwei Sun State Key Lab of Information Security, China
Qiang Tang Cornell University, USA
Tian Tian National Digital Switching System Engineering

and Technological Research Center, China
Ding Wang Peking University, China
Hao Wang Shandong Normal University, China
Jianfeng Wang Xidian University, China
Meiqin Wang Shandong University, China
Wenling Wu Chinese Academy of Science, China
Shouhuai Xu University of Texas at San Antonio, USA
Xun Yi RMIT University, Australia
Ting Yu Qatar Computing Research Institute, Qatar
Yu Yu Shanghai Jiao Tong University, China
Fan Zhang Zhejiang University, China
Fangguo Zhang Sun Yat-sen University, China
Rui Zhang Chinese Academy of Sciences, Chian
Yuexin Zhang Swinburne University of Technology, Australia
Xianfeng Zhao Chinese Academy of Sciences, China
Cliff Zou University of Central Florida, USA

Additional Reviewers

Agrawal, Megha
Anada, Hiroaki
Araujo, Roberto
Bag, Samiran
Bao, Zhenzhen
Bi, Jingguo
Biswas, Koushik
Bu, Kai
Chen, Chien-Ning
Chen, Haoyu
Chen, Hua
Chen, Huashan

Chen, Rongmao
Choi, Rakyong
Ding, Ning
Dobraunig, Christoph
Eichlseder, Maria
Erkin, Zekeriya
Fan, Lei
Feng, Qi
Gao, Guanjun
Ge, Chunpeng
Gong, Zheng
Guo, Chun

Inscrypt 2018 IX

Guo, Jiale
Hasan, Munawar
He, Yingzhe
Hu, Chunya
Huang, Tao
Huang, Yan
Huang, Zhengan
Jap, Dirmanto
Jianlong, Tan
Kelarev, Andrei
Kim, Kee Sung
Koide, Hiroshi
Krawczyk, Jacek
Kuchta, Veronika
Lee, Jeeun
Li, Huige
Li, Wei
Li, Wenting
Li, Xiangxue
Li, Zhen
Li, Zhi
Lin, Chao
Lin, Chengjun
Liu, Guozhen
Liu, Yunwen
Liu, Zhen
Long, Yu
Lu, Xianhui
Luo, Yiyuan
Ma, Xuecheng
Meng, Weizhi
Paulet, Russell
Poussier, Romain
Pöppelmann, Thomas
Qiu, Tian
Quaglia, Elizabeth
Ravi, Prasanna
Roy, Partha Sarathi
Santoso, Bagus

Sengupta, Binanda
Singh, Ajit Pratap
Singh, Monika
Sun, Ling
Syalim, Amril
Tang, Yongkang
Tang, Zixin
Tian, Yangguang
Wang, Daibin
Wang, Haijun
Wang, Haoyang
Wang, Huaqun
Wang, Jing
Wang, Lei
Wu, Ge
Xiang, Zejun
Xie, Shaohao
Xu, Jiayun
Xu, Ke
Xue, Haiyang
Yang, Wenzhuo
Yang, Xu
Yuan, Lun-Pin
Zhang, Hailong
Zhang, Huang
Zhang, Kai
Zhang, Lei
Zhang, Mingwu
Zhang, Peng
Zhang, Wenying
Zhang, Yinghui
Zhang, Zhenfei
Zhang, Zheng
Zhang, Zhuoran
Zhao, Shengnan
Zhao, Xinjie
Zheng, Yafei
Zhuang, Jincheng

X Inscrypt 2018

Contents

Invited Paper

Security Analysis of SM9 Key Agreement and Encryption 3
Zhaohui Cheng

Blockchain and Crypto Currency

Evaluating CryptoNote-Style Blockchains . 29
Runchao Han, Jiangshan Yu, Joseph Liu, and Peng Zhang

Goshawk: A Novel Efficient, Robust and Flexible Blockchain Protocol 49
Cencen Wan, Shuyang Tang, Yuncong Zhang, Chen Pan, Zhiqiang Liu,
Yu Long, Zhen Liu, and Yu Yu

AFCoin: A Framework for Digital Fiat Currency of Central Banks Based
on Account Model . 70

Haibo Tian, Xiaofeng Chen, Yong Ding, Xiaoyan Zhu,
and Fangguo Zhang

Anonymity Reduction Attacks to Monero. 86
Dimaz Ankaa Wijaya, Joseph Liu, Ron Steinfeld, Dongxi Liu,
and Tsz Hon Yuen

Analysis of Variance of Graph-Clique Mining for Scalable Proof of Work . . . 101
Hiroaki Anada, Tomohiro Matsushima, Chunhua Su, Weizhi Meng,
Junpei Kawamoto, Samiran Bag, and Kouichi Sakurai

Lattice-Based Cryptology

Preprocess-then-NTT Technique and Its Applications to KYBER

and NEWHOPE . 117
Shuai Zhou, Haiyang Xue, Daode Zhang, Kunpeng Wang, Xianhui Lu,
Bao Li, and Jingnan He

Two-Round PAKE Protocol over Lattices Without NIZK. 138
Zengpeng Li and Ding Wang

Symmetric Cryptology

Improved Integral Attacks on PRESENT-80 . 163
Shi Wang, Zejun Xiang, Xiangyong Zeng, and Shasha Zhang

Improved Differential Fault Analysis on Authenticated Encryption
of PAEQ-128 . 183

Ruyan Wang, Xiaohan Meng, Yang Li, and Jian Wang

Improved Indifferentiability Security Bound for the Prefix-Free
Merkle-Damgård Hash Function . 200

Kamel Ammour and Lei Wang

Applied Cryptography

Privacy-Preserving Data Outsourcing with Integrity Auditing
for Lightweight Devices in Cloud Computing . 223

Dengzhi Liu, Jian Shen, Yuling Chen, Chen Wang, Tianqi Zhou,
and Anxi Wang

Cloud-Based Data-Sharing Scheme Using Verifiable and CCA-Secure
Re-encryption from Indistinguishability Obfuscation 240

Mingwu Zhang, Yan Jiang, Hua Shen, Bingbing Li, and Willy Susilo

An Encrypted Database with Enforced Access Control
and Blockchain Validation . 260

Zhimei Sui, Shangqi Lai, Cong Zuo, Xingliang Yuan, Joseph K. Liu,
and Haifeng Qian

Using Blockchain to Control Access to Cloud Data. 274
Jiale Guo, Wenzhuo Yang, Kwok-Yan Lam, and Xun Yi

A Multi-client DSSE Scheme Supporting Range Queries 289
Randolph Loh, Cong Zuo, Joseph K. Liu, and Shi-Feng Sun

Image Authentication for Permissible Cropping. 308
Haixia Chen, Shangpeng Wang, Hongyan Zhang, and Wei Wu

Information Security

Chord: Thwarting Relay Attacks Among Near Field Communications 329
Yafei Ji, Luning Xia, Jingqiang Lin, Qiongxiao Wang, Lingguang Lei,
and Li Song

Analyzing Use of High Privileges on Android: An Empirical Case Study
of Screenshot and Screen Recording Applications . 349

Mark H. Meng, Guangdong Bai, Joseph K. Liu, Xiapu Luo,
and Yu Wang

Blockchain-Based Privacy Preserving Deep Learning. 370
Xudong Zhu, Hui Li, and Yang Yu

XII Contents

SpamTracer: Manual Fake Review Detection for O2O Commercial
Platforms by Using Geolocation Features . 384

Ruoyu Deng, Na Ruan, Ruidong Jin, Yu Lu, Weijia Jia, Chunhua Su,
and Dandan Xu

A Light-Weight and Accurate Method of Static Integer-Overflow-
to-Buffer-Overflow Vulnerability Detection . 404

Mingjie Xu, Shengnan Li, Lili Xu, Feng Li, Wei Huo, Jing Ma,
Xinhua Li, and Qingjia Huang

Asymmetric Encryption

Fully Secure Decentralized Ciphertext-Policy Attribute-Based
Encryption in Standard Model . 427

Chuangui Ma, Aijun Ge, and Jie Zhang

Outsourced Ciphertext-Policy Attribute-Based Encryption
with Equality Test . 448

Yuzhao Cui, Qiong Huang, Jianye Huang, Hongbo Li,
and Guomin Yang

Efficient Adaptively Secure Public-Key Trace and Revoke
from Subset Cover Using D�ej�a Q Framework. 468

Mriganka Mandal and Ratna Dutta

Attribute-Based Encryption with Efficient Keyword Search
and User Revocation . 490

Jingwei Wang, Xinchun Yin, Jianting Ning, and Geong Sen Poh

Public-Key Encryption with Selective Opening Security
from General Assumptions . 510

Dali Zhu, Renjun Zhang, Shuang Hu, and Gongliang Chen

Foundations

Confused yet Successful: Theoretical Comparison of Distinguishers
for Monobit Leakages in Terms of Confusion Coefficient and SNR. 533

Eloi de Chérisey, Sylvain Guilley, and Olivier Rioul

Searching BN Curves for SM9 . 554
Guiwen Luo and Xiao Chen

Distribution Properties of Binary Sequences Derived from Primitive
Sequences Modulo Square-free Odd Integers . 568

Qun-Xiong Zheng, Dongdai Lin, and Wen-Feng Qi

Contents XIII

Towards Malicious Security of Private Coin Honest Verifier Zero
Knowledge for NP via Witness Encryption. 586

Jingyue Yu

Faster Homomorphic Permutation and Optimizing Bootstrapping
in Matrix GSW-FHE . 607

Shuai Liu and Bin Hu

Short Papers

A Note on the Sidelnikov-Shestakov Attack of Niederreiter Scheme 621
Dingyi Pei and Jingang Liu

An Efficient Anonymous Authentication Scheme Based on Double
Authentication Preventing Signature for Mobile Healthcare Crowd Sensing . . . 626

Jinhui Liu, Yong Yu, Yannan Li, Yanqi Zhao, and Xiaojiang Du

Understanding User Behavior in Online Banking System 637
Yuan Wang, Liming Wang, Zhen Xu, and Wei An

Privacy-Preserving Remote User Authentication with
k-Times Untraceability . 647

Yangguang Tian, Yingjiu Li, Binanda Sengupta, Robert Huijie Deng,
Albert Ching, and Weiwei Liu

Early Detection of Remote Access Trojan by Software Network Behavior . . . 658
Masatsugu Oya and Kazumasa Omote

Author Index . 673

XIV Contents

Invited Paper

Security Analysis of SM9 Key Agreement
and Encryption

Zhaohui Cheng(B)

Olym Information Security Technology Ltd., Shenzhen, China
chengzh@myibc.net

Abstract. SM9 is a Chinese cryptography standard that defines a set of
identity-based cryptographic schemes from pairings. Although the SM9
key agreement protocol and the SM9 encryption scheme have been used
for years, there is no public available security analysis of these two
schemes. In this paper, we formally analyze the security of these two
schemes in the random oracle model.

1 Introduction

To counter the key replacement attack, in the conventional public key cryptosys-
tems, a certificate is used to prove an entity’s ownership of a claimed public key.
So such a system has to include an infrastructure to issue certificates, and an
entity has to verify peer party’s certificate before using the contained public key.
This type of system becomes complicated and difficult to manage when the num-
ber of users increases. The identity-based cryptography (IBC) offers an attrac-
tive alternative. In an IBC system, an entity treats peer party’s identity as the
party’s public key or more precisely an entity’s public key can be derived from its
identity string through a pre-defined function with a set of system parameters.
Hence, in such systems, the public key authenticity problem becomes trivial,
and certificates are no longer necessary. Since Boneh-Franklin’s pioneering work
on identity-based encryption (IBE) from pairings [5], many identity-based cryp-
tographic schemes have been proposed, and several of them have been utilized
in practice. Notably, ISO/IEC has standardized some identity-based schemes
in [14,15,18].

SM9 is a set of identity-based cryptographic schemes designed during the
period between 2006 and 2007. It includes an identity-based signature (SM9-
IBS), an identity-based key agreement (SM9-KA), and an identity-based encryp-
tion (SM9-IBE). These schemes can be implemented with an efficient bilinear
pairing on elliptic curves [16] such as the optimal Ate pairing [20] or the R-Ate
pairing [19]. In 2016, SM9 became the Chinese cryptographic public key algo-
rithm standard GM/T 0044-2016 [13], and SM9-IBS has been adopted as part of
the international standard ISO/IEC 14888-3:2018 [15]. Although SM9-KA and
SM9-IBE have been used for years, there is no public available security analysis
of these two schemes. This paper intends to fill this gap. We formally prove the
security of these two schemes in the commonly used security models.
c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 3–25, 2019.
https://doi.org/10.1007/978-3-030-14234-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_1

4 Z. Cheng

The paper is organized as follows. First, the necessary preliminaries are pre-
sented in Sect. 2. The SM9 key agreement is described and its security is analyzed
in Sect. 3. In Sect. 4, the SM9 encryption scheme is described and its security is
analyzed. Finally, we draw some conclusions.

2 Preliminaries

2.1 Pairing and Related Complexity Assumptions

Without loss of generality, a pairing is defined as a bilinear map

ê : G1 × G2 → GT ,

where G1,G2 are additive groups and GT is a multiplicative group. All three
groups have prime order r.

The map ê has the following properties:

1. Bilinearity. For all (P,Q) ∈ G1×G2 and all a, b ∈ Z, ê([a]P, [b]Q) = ê(P,Q)ab.
2. Non-degeneracy. For generator P1 ∈ G1 and P2 ∈ G2, ê(P1, P2) �= 1

To facilitate the security analysis in the following sections, here we list some
related complexity assumptions. We follow the approach in [8] to use i ∈ {1, 2}
to denote different choices of Pi ∈ Gi and an assumption with subscripts such
as BDHi,j,k identifies how the three elements are chosen from the groups for the
assumption. Symbol ∈R denotes randomly sampling from a set.

Assumption 1 (Bilinear Diffie-Hellman (BDH) [5]). For a, b, c ∈R Z
∗
r,

given (P1, P2, [a]Pi, [b]Pj, [c]Pk), for some values of i, j, k ∈ {1, 2}, computing
ê(P1, P2)abc is hard.

Assumption 2 (ψ-Bilinear Diffie-Hellman (ψ-BDH)). For a, b ∈R Z
∗
r,

given (Pi, Pj, [a]Pj, [b]Pj) for some values of i, j ∈ {1, 2} and i �= j, com-
puting ê(P1, P2)ab is hard if no group homomorphism ψ: Gj → Gi such that
ψ(Pj) = Pi is efficiently computable.

ψ-BDHi,j is called BDH-j in [11] without explicit restriction on ψ. Appar-
ently, Assumption 2 is not weaker than Assumption 1 because by calling a BDH
algorithm with (Pi, Pj , [a]Pj , [b]Pj , Pj), ê(P1, P2)ab is computed. However, it is
subtle to decide the exact relationship between these two assumptions. Depend-
ing on the difficulty to compute ψ : Gj → Gi, there are two cases.

– Case 1. For Type-1 and Type-2 pairings [12], an efficient group homomor-
phism ψ : G2 → G1 exists. However, such ψ may not satisfy ψ(P2) = P1

if P1 and P2 are chosen randomly and independently. For example, with a
Type-1 pairing and ψ as the identity map, two random generators may be
chosen as follows: P2 = [c]P1 for some random c ∈ Z

∗
r . Similar situation

could happen to the Type-2 pairing with ψ as the trace map, and groups are
constructed as follows [8]. Let E be an elliptic curve defined over a prime

Security Analysis of SM9 Key Agreement and Encryption 5

field Fp with an embedding degree ν. Set P1 = P1 and P2 = [1ν]P ′
1 + P2,

where P1,P ′
1 ∈ E(Fp) are two random generator of a cyclic group G1

with order r and P2 ∈ E(Fpν) is a generator of a cyclic group G2 with
order r. ψ(P2) = P ′

1 = [c]P1 for some c ∈ Z
∗
r . In this setting, ψ-BDH1,2

equals to BDH2,2,k. Given a BDH2,2,2 problem (P1, P
′
2, [a]P ′

2, [b]P
′
2, [c]P

′
2) with

ψ(P ′
2) = P1 (note that in the Type-2 pairing P ′

2 = [1ν]P1 + P2), we can use
a ψ-BDH1,2 algorithm to solve the problem (ψ([c]P ′

2), P
′
2, [a]P ′

2, [b]P
′
2) to get

ê(ψ([c]P ′
2), P

′
2)

ab = ê([c]P1, P
′
2)

ab = ê(P1, P
′
2)

abc. Similarly, BDH2,2,1 is solv-
able by ψ-BDH1,2.

– Case 2. For Type-2 pairings, there appears no efficiently computable homomor-
phism ψ : G1 → G2. For Type-3 pairings, there are no known efficiently com-
putable homomorphisms between G1 and G2 [12]. In both cases, there appears
no simple way to solve a ψ-BDH problem (ψ-BDH2,1 for Type-2 pairings) other
than relying on an algorithm like the one for the BDH problem.

More on the role of group homomorphism ψ on cryptographic protocols
employing asymmetric pairings can be found in [6].

Assumption 3 (τ-BDHI [4]). For a positive integer τ and α ∈R Z
∗
r, given (P1,

P2, [α]Pi, [α2]Pi, . . . , [ατ]Pi) for some value i ∈ {1, 2}, computing ê(P1, P2)1/α

is hard.

Assumption 4 (Bilinear Collision Attack Assumption (τ-BCAA1) [7]).
For a positive integer τ and α ∈R Z

∗
r, given (P1, P2, [α]Pi, h0, (h1, [α

h1+α]Pj),. . .,
(hτ , [α

hτ+α]Pj)) for some values of i, j ∈ {1, 2} where hi ∈R Z
∗
r and different from

each other for 0 ≤ i ≤ τ , computing ê(P1, P2)α/(h0+α) is hard.

Note that Assumption 4 is slight different from the one given in [7]. However,
the following Lemma 1 together with Theorem 7 in [7] shows that Assumption 4
is equivalent to the one defined in [7]. The proof of Lemma 1 is in the Appendix.

Lemma 1. If there exists a polynomial time algorithm to solve (τ -1)-BCAA1i,2,
then there exists a polynomial time algorithm for τ -BDHI2, if there exists an
efficient homomorphism ψ: G2 → G1.

Assumption 5 (Decision BIDH (DBIDH) [7]). For a, b, r ∈R Z
∗
r, differen-

tiating

(P1, P2, [a]Pi, [b]Pj , ê(P1, P2)b/a) and (P1, P2, [a]Pi, [b]Pj , ê(P1, P2)r),

for some values of i, j ∈ {1, 2}, is hard.

Assumption 6 (Gap-τ-BCAA1 [7]). For a positive integer τ and α ∈R

Z
∗
r, given (P1, P2, [α]Pi, h0, (h1, [α

h1+α]Pj), . . . , (hτ , [α
hτ+α]Pj)) for some values of

i, j ∈ {1, 2} where hi ∈R Z
∗
r and different from each other for 0 ≤ i ≤ τ , and a

DBIDH oracle which solves a given DBIDH problem, computing ê(P1, P2)α/(h0+α)

is hard.

6 Z. Cheng

The relationship among assumptions can be found in [7]. Note that one of
[a]Pi and [b]Pj may be fixed among queries to a DBIDH oracle, and such decision
oracle may be called one-sided DBIDH oracle. In this paper, we use the term
DBIDH referring to the one-sided DBIDH implicitly.

2.2 Security Model of Key Agreement

The Bellare-Rogaway key agreement model [1,3,8] is widely used to analyse key
agreement protocols. In the model, each party participating in a session of a pro-
tocol is treated as an oracle. An oracle Πs

i,j denotes the s-th instance of party i
involved with a partner party j in a session. The oracle Πs

i,j executes the pre-
scribed protocol Π and produces the output as Π(1k, i, j, SKi, PKi, PKj , trans

i,j ,
rs
i,j , x) = (m, δs

i,j , σs
i,j , j) where rs

i,j is the random flips of the oracle; x is the input
message; m is the outgoing message; SKi and PKi are the private/public key pair
of party i; δs

i,j is the decision of the oracle (accept/reject the session or no decision
yet); σs

i,j is the generated session key and PKj is the public key of the intended
partner j (see [1,3,8] for more details). After the response is generated, the conver-
sation transcript trans

i,j is updated as trans
i,j .x.m, where “a.b” denotes the result

of the concatenation of two strings, a and b. An adversary can access an oracle by
issuing some specified queries defined in the game below.

The security of a protocol is defined through a two-phase game between an
adversary A and a challenger which simulates the executions of a protocol by
providing the adversary with access to oracles. In the first phase, A is allowed
to issue the following queries to oracles in any order.

1. Send(Πs
i,j , x). Upon receiving the message x, oracle Πs

i,j executes the protocol
and responds with an outgoing message m or a decision to indicate accepting
or rejecting the session. If the oracle Πs

i,j does not exist, it will be created
as an initiator, the party who sends out the first message in the protocol, if
x = λ, or as a responder otherwise. Here, we require i �= j, namely, a party
will not run a session with itself. Such restriction is not unusual in practice.

2. Reveal(Πs
i,j). If the oracle has not accepted, it returns ⊥; otherwise, it reveals

the session key.
3. Corrupt(i). The party i responds with its private key.

Once the adversary decides that the first phase is over, it starts the second
phase by choosing a fresh oracle Πs

i,j and issuing a Test(Πs
i,j) query, where the

fresh oracle Πs
i,j and Test(Πs

i,j) query are defined as follows.

Definition 1 (fresh oracle). An oracle Πs
i,j is fresh if (1) Πs

i,j has accepted;
(2) Πs

i,j is unopened (not been issued the Reveal query); (3) party j �= i is not
corrupted (not been issued the Corrupt query); (4) there is no opened oracle
Πt

j,i , which has had a matching conversation to Πs
i,j .

The above fresh oracle is particularly defined to cover the key-compromise
impersonation resilience property since it implies that party i could have been
issued a Corrupt query.

Security Analysis of SM9 Key Agreement and Encryption 7

4. Test(Πs
i,j). Oracle Πs

i,j , which is fresh, randomly chooses b ∈ {0, 1} and
responds with the session key if b = 0, or a random sample from the distri-
bution of the session key otherwise.

After this point the adversary can continue querying the oracles except that
it cannot reveal the test oracle Πs

i,j or an oracle Πt
j,i which has a matching con-

versation to Πs
i,j if such an oracle exists, and it cannot corrupt party j. Finally

the adversary outputs a guess b′ for b. If b′ = b, we say that the adversary wins.
The adversary’s advantage is defined as

AdvA(k) = |2Pr[b′ = b] − 1|.

We use session ID to define matching conversations. Two oracles Πs
i,j and

Πt
j,i have a matching conversation to each other if both of them have the same

session ID. Here, we will use the concatenation of the messages in a session (the
transcript of an oracle) to define the session ID.

A secure authenticated key (AK) agreement protocol is defined as follows.

Definition 2. Protocol Π is a secure AK if:

1. In the presence of a benign adversary, which faithfully conveys messages, on
Πs

i,j and Πt
j,i , both oracles always accept holding the same session key, and

this key is distributed uniformly in the session key space;
2. For any polynomial time adversary A , AdvA(k) is a negligible function of

security parameter k.

If a protocol is secure regarding the above formulation, it achieves implicit
mutual key authentication and the following general security properties: the
known session key security, the key-compromise impersonation resilience and
the unknown key-share resilience [3,8].

Now we consider the forward secrecy property. Informally, the forward secrecy
of a protocol requires that the security of a session key established by a party
is not affected even if the long-term key of either the party is compromised
afterwards.

Definition 3. An AK protocol is said to be forward secure if any polynomial
time adversary wins the game with negligible advantage when it chooses as the
challenger (i.e. in place of the fresh oracle) an unopened oracle Πs

i,j which has a
matching conversation to another unopened oracle Πt

j,i and both oracles accepted
and only one of i and j can be corrupted. If both i and j can be corrupted, then
the protocol achieves perfect forward secrecy. If in the game, the master secret
key can be disclosed, then the protocol achieves master secret forward secrecy.
The corruption of long-term keys or the disclosure of the master secret key may
happen at any time of the game.

8 Z. Cheng

2.3 Security Model of Identity-Based Encryption

According to Boneh-Franklin’s formulation [5], an identity-based encryption is
specified by four algorithms:

– Setup GID(1k): Given a security parameter k, the probabilistic algorithm
outputs the master public key Mpk and the master secret key Msk.

(Mpk,Msk) ← GID(1k)

– Private-Key-Extract XID(Mpk,Msk, IDA): The probabilistic algorithm
takes as the input Mpk,Msk and the identifier string IDA ∈ {0, 1}∗ for entity
A, and outputs the private key DA associated with IDA.

DA ← XID(Mpk,Msk, IDA)

– Encrypt EID(Mpk, IDA,m): The probabilistic algorithm takes Mpk, IDA, the
message m from the message space M ID(Mpk) as the inputs, and outputs a
ciphertext C in the ciphertext space C ID(Mpk).

C ← EID(Mpk, IDA,m)

– Decrypt DID(Mpk, IDA,DA, C): The deterministic algorithm takes Mpk, IDA,
DA and C as input, and outputs the plaintext m or a failure symbol ⊥ if C
is invalid.

(m or ⊥) ← DID(Mpk, IDA,DA, C)

Boneh and Franklin [5] formalized a security notion of IBE: ID-IND-CCA2
security, by the following two-stage game defined in Table 1 between an adversary
A = (A1,A2) of the encryption algorithm and a challenger.

Table 1. IBE security formulation

ID-IND adversarial game

1. (Mpk, Msk)←GID(1
k).

2. (st, ID∗, m0, m1)←AOID
1 (Mpk).

3. b←{0, 1}.

4. C∗←EID(Mpk, ID
∗, mb).

5. b′←AOID
2 (Mpk, C

∗, st, ID∗, m0, m1).

In the games st is some state information and OID denotes oracles to which
the adversary has access. In the CCA2 attack model, the adversary has access
to two oracles:

1. Extraction. A private key extraction oracle which, on input of ID �= ID∗,
will output the corresponding value of DID.

Security Analysis of SM9 Key Agreement and Encryption 9

2. Decryption. A decryption oracle which, on input an identity ID and a cipher-
text of the adversary’s choice, will return the corresponding plaintext or ⊥.
This is subject to the restriction that in the second phase A2 is not allowed
to call this oracle with the pair (C∗, ID∗).

The adversary’s advantage in the game is defined to be

AdvID−IND−CCA2
ID−A (k) =| 2Pr[b′ = b] − 1 | .

Definition 4. An IBE algorithm is considered to be ID-IND-CCA2 secure, if
for all PPT adversaries, the advantage in the game is a negligible function of
the security parameter k.

Following up Cramer and Shoup’s formalization of hybrid encryption [10],
Bentahar et al. [2] extended the hybrid encryption to identity-based schemes.
Their main result is that an ID-IND-CCA2 secure IBE can be constructed from
an ID-IND-CCA2 secure identity-based key encapsulation mechanism (ID-KEM)
and a secure data encapsulation mechanism (DEM).

Similar to IBE, an ID-KEM scheme is specified by four algorithms as well.

– Setup GID−KEM(1k): The algorithm is the same as GID(1k).
– Private-Key-Extract XID−KEM(Mpk,Msk, IDA): The algorithm is the same

as XID(Mpk, Msk, IDA).
– KEM-Encap EID−KEM(Mpk, IDA): This probabilistic algorithm takes as input

Mpk and IDA, and outputs a key K in the key space K ID−KEM(Mpk) and the
encapsulation of the key C in the encapsulation space C ID−KEM(Mpk).

(K,C) ← EID−KEM(Mpk, IDA)

– KEM-Decap DID−KEM(Mpk, IDA,DA, C): This deterministic algorithm takes
as input Mpk, IDA,DA and C, and outputs the encapsulated key K in C or a
failure symbol ⊥ if C is an invalid encapsulation.

(K or ⊥) ← DID−KEM(Mpk, IDA,DA, C),

Consider the two-stage game in Table 2 between an adversary A = (A1,A2)
of the ID-KEM and a challenger.

In the games st is some state information and OID−KEM denotes oracles to
which the adversary has access. In the CCA2 attack model, the adversary has
access to two oracles::

1. Extraction. A private key extraction oracle which, on input of ID �= ID∗,
will output the corresponding value of DID.

2. Decapsulation. A decapsulation oracle which, on input an identity ID and
encapsulation of the adversary’s choice, will return the encapsulated key. This
is subject to the restriction that in the second phase A2 is not allowed to call
this oracle with the pair (C∗, ID∗).

10 Z. Cheng

Table 2. ID-KEM security formulation

ID-IND adversarial game

1. (Mpk, Msk)←GID−KEM(1
k).

2. (st, ID∗)←AOID−KEM

1 (Mpk).

3. (K0, C
∗)←EID−KEM(Mpk, ID

∗).

4. K1←K ID−KEM(Mpk).

5. b←{0, 1}.

6. b′←AOID−KEM

2 (Mpk, C
∗, st, ID∗, Kb).

The adversary’s advantage is defined to be

AdvID−IND−CCA2
ID−KEM−A (k) =| 2Pr[b′ = b] − 1 | .

Definition 5. An ID-KEM is considered to be ID-IND-CCA2 secure, if for all
PPT adversaries A, the advantage in the game above is a negligible function of
the security parameter k.

Apart from the above security requirement, it is required that the ID-KEM
has an extra property as follow. In an ID-KEM, for the pair (Mpk,Msk) gen-
erated by the Setup algorithm and every (IDA,DA) where IDA ∈ {0, 1}∗ and
DA is generated by the Private-Key-Extract algorithm using (Mpk,Msk, IDA),
all encapsulations created with (Mpk, IDA) decapsulate properly with (Mpk,DA)
(in other words, BadKeyPairs (Section 7.1 [10]) are negligibly few). It is easy to
see that SM9-KEM in Sect. 4 has this property.

In the hybrid encryption, a DEM uses the key generated by a KEM to encrypt
the message. As the DEM uses a different key derived by the KEM to encrypt
each message, a one-time symmetric-key encryption with proper security prop-
erties is sufficient for such purpose.

A one-time symmetric-key encryption consists of two deterministic
polynomial-time algorithms with the key, message and ciphertext spaces defined
by K SK(1k), M SK(1k) and C SK(1k) given the security parameter k:

– Encrypt ESK(K,m): The encryption algorithm takes a secret key K ∈
K SK(1k) and a message m ∈ M SK(1k) as input, and outputs the ciphertext
C ∈ C SK(1k).

C ← ESK(K,m)

– Decrypt DSK(K,C): Given a secret key K and a ciphertext C, the algorithm
outputs the plaintext m or a failure symbol ⊥.

(m or ⊥) ← DSK(K,C)

The two algorithms satisfy DSK(K,ESK(K,m)) = m for m ∈ M SK(1k) and K ∈
K SK(1k).

Security Analysis of SM9 Key Agreement and Encryption 11

The security of one-time symmetric-key encryption is defined by the Find-
Guess (FG) game in Table 3 between an adversary A = (A1,A2) of the DEM
and a challenger:

Table 3. DEM security formulation

FG adversarial game

1. (st, (m0, m1)) ← A1(1
k).

2. b ← {0, 1}.

3. K ← K SK(1
k).

4. C∗←ESK(K, mb).

5. b′←AOSK
2 (C∗, st, m0, m1).

In the game m0 and m1 are of equal length from the message space and
st is some state information. OSK is the oracle that the adversary can access
depending on the attack model. In the CCA attack model, the adversary has
access to a decryption oracle.

– A decryption oracle which, on input a ciphertext C, returns DSK(K,C) with
K chosen in Step 3 in the game.

The adversary’s advantage in the game above is defined to be

AdvFG−CCA
DEM−A (k) =| 2Pr[b′ = b] − 1 | .

Definition 6. A one-time encryption is consider to be FG-CCA secure, if for
any PPT adversary A, the advantage in the game above is a negligible function
of the security parameter k.

The FG-CCA secure one-time encryptions are easy to get, such as the one-time
pad encryption with a secure message authentication code algorithm [10,17].

A hybrid IBE construction consisting of the sequential combination of an
ID-KEM with a DEM proceeds as defined in Table 4. Here, it is assumed that
the key space output by the KEM is identical with the secret key space used by
the DEM.

Table 4. Hybrid IBE

EID(Mpk, IDA, m) DID(Mpk, IDA, DA, C)

– (K, C1)←EID−KEM(Mpk, IDA) – Parse C as 〈C1, C2〉
– C2←ESK(K, m) – K←DID−KEM(Mpk, IDA, DA, C1)

– Return C = 〈C1, C2〉 – If K =⊥, return ⊥
– m←DSK(K, C2)

– Return m

12 Z. Cheng

Similar to the result of hybrid encryption in [10], Bentahar et al. obtained
the following theorem concerning the security of hybrid IBE.

Theorem 1 [Bentahar et al. [2]]. Let A be a PPT ID-IND-CCA2 adversary
of the IBE scheme E above. There exists PPT adversaries B1 and B2, whose
running time is essentially that of A, such that

AdvID−IND−CCA2
ID−A (k) ≤ 2AdvID−IND−CCA2

ID−KEM−B1
(k) + AdvFG−CCA

DEM−B2
(k).

2.4 Notation and Supporting Functions

The following list briefly describes the notation used in the scheme descriptions
in the following sections. One may refer to ISO/IEC 18033-2 [17] for detailed
definitions.

1. BITS(m): the primitive to count bit length of a bit string m.
2. BS2IP (m): the primitive to convert a bit string m to an integer.
3. EC2OSP (C): the primitive to convert an elliptic curve point C to an octet

string.
4. FE2OSP (w): the primitive to convert a field element w to an octet string.
5. I2OSP (m,
): the primitive to convert an integer m to an octet string of

length
.

The SM9 schemes require two supporting functions. The first function is a
key derivation function (KDF) which works as KDF2 in ISO/IEC 18033-2 [17].
KDF2 (Hv, Z,
). Given a hash function Hv with v-bit output, a bit string Z
and a non-negative integer
. The second function is a hash to range function
H2RFi(Hv, Z, n) which, given a hash function Hv with v-bit output, a bit string
Z and a non-negative integer n and a non-negative integer index i, runs as
follows:

1. Set
 = 8 × �(5 × BITS(n))/32	.
2. Set Ha =KDF2(Hv, I2OSP (i, 1)‖Z,
).
3. Set h = BS2IP (Ha).
4. Output hi = (h mod (n − 1)) + 1.

3 SM9 Key Agreement and Its Security Analysis

The two-pass SM9 key agreement consists of following operations: Setup,
Private-Key-Extract, Message Exchange and Session Key Generation.

Setup GID(1k). On input security parameter k, the operation runs as follows:

1. Generate three groups G1, G2 and GT of prime order r and a bilinear pairing
map ê : G1 × G2 → GT . Pick random generator P1 ∈ G1, P2 ∈ G2.

2. Pick a random s ∈ Z
∗
r and compute Ppub = [s]P1.

3. Set g = ê(Ppub, P2).

Security Analysis of SM9 Key Agreement and Encryption 13

4. Pick a cryptographic hash function Hv and a one byte appendix hid.
5. Output the master public key Mpk = (G1,G2,GT , ê, P1, P2, Ppub, g, Hv, hid)

and the master secret key Msk = s. SM9 standard requires hid = 3.

Private-Key-Extract XID(Mpk,Msk, IDA). Given an identity string IDA ∈
{0, 1}∗ of entity A, Mpk and Msk, the operation outputs error if

s + H2RF1(Hv, IDA‖hid, r) mod r = 0,

otherwise outputs

DA = [
s

s + H2RF1(Hv, IDA‖hid, r)
]P2.

Message Exchange

A → B : RA = [xA]([H2RF1(Hv, IDB‖hid, r)]P1 + Ppub)
B → A : RB = [xB]([H2RF1(Hv, IDA‖hid, r)]P1 + Ppub), SB

A → B : SA

where random xA, xB ∈ Z
∗
r are picked by A and B respectively and SB and SA

are the optional session key confirmation parts. The method to generate such
optional values is explained later.

Session Key Generation

1. Entity A computes key values

g1 = ê(RB ,DA), g2 = ê(Ppub, P2)xA = gxA , g3 = gxA
1 .

2. Entity A computes
-bit session key

SKA = KDF2(Hv, IDA‖IDB‖EC2OSP (RA)‖EC2OSP (RB)‖

FE2OSP (g1)‖FE2OSP (g2)‖FE2OSP (g3),
).

3. Entity B computes key values

g′
1 = ê(Ppub, P2)xB = gxB , g′

2 = ê(RA,DB), g′
3 = g′

2
xB .

4. Entity B computes
-bit session key

SKB = KDF2(Hv, IDA‖IDB‖EC2OSP (RA)‖EC2OSP (RB)‖

FE2OSP (g′
1)‖FE2OSP (g′

2)‖FE2OSP (g′
3),
).

Note that entity A(B) should check that RB(RA) lies in G
∗
1 respectively.

In the following, we show that SM9-KA is a secure AK under the Gap-τ -
BCAA11,2 assumption.

14 Z. Cheng

Theorem 2. SM9-KA is a secure AK, provided that H2RF1,KDF2 are ran-
dom oracles and the Gap-τ -BCAA11,2 assumption is sound. Specifically, suppose
that there is an adversary A against the protocol with non-negligible probability
ε(k) and running time t(k), and in the attack H2RF1 has been queried q1 + 1
times, and KDF2 has been queried q2 times, and qo oracles have been created.
Then there exists an algorithm B solving the Gap-q1-BCAA11,2 problem with
advantage

AdvB(k) ≥ ε(k)
(q1 + 1) · qo

within a running time
tB ≤ t(k) + O(q2 · qo · O),

where O is the time of one access to the DBIDH1,1 oracle.

Proof: Condition 1 of Definition 2 directly follows from the protocol specifica-
tion. In the sequel we prove that the protocol satisfies Condition 2. We show that
if A exists, we can construct a probabilistic polynomial time (PPT) algorithm
B to solve a Gap-q1-BCAA11,2 problem with non-negligible probability.

Given an instance of the Gap-q1-BCAA11,2 problem (P1, P2, [x]P1, h0, (h1,
[x
h1+x]P2), . . . , (hq1 , [x

hq1+x]P2)) with a set of pairing parameter where hi ∈R

Z
∗
r for 0 ≤ i ≤ q1 and the DBIDH1,1 oracle ODBIDH , B simulates GID to gener-

ate the system parameters (G1,G2,GT , ê, P1, P2, [x]P1, ê([x]P1, P2), Hv, hid),
i.e., using x as the master secret key, which it does not know. Function H2RF1

and KDF2 are constructed from the hash function Hv and are simulated as two
random oracles controlled by B .

We slightly abuse the notation Πt
i,j to refer to the t-th party instance among

all the party instances created in the attack, instead of the t-th instance of
party i. This would not affect the soundness of the security model. We also
sightly abuse the notation in the proofs without applying element encoding in
the corresponding functions.

B randomly chooses 1 ≤ I ≤ q1 + 1 and 1 ≤ J ≤ qo, and interacts with A in
the following way:

– H2RF1(IDi): B maintains a list H2RFlist
1 of tuples (IDi, hi,Di) as explained

below. When A queries the oracle H2RF1 on IDi, B responds as follows:
• If IDi is on H2RFlist

1 in a tuple (IDi, hi,Di), then B responds with
H2RF1(IDi) = hi.

• Otherwise, if the query is on the I-th distinct ID, then B stores
(IDI , h0,⊥) into the tuple list and responds with H2RF1(IDI) = h0.

• Otherwise, B selects a random integer hi with i > 0 from the Gap-q1-
BCAA11,2 instance which has not been chosen by B and stores (IDi, hi,
[x
hi+x]P2) into the tuple list. B responds with H2RF1(IDi) = hi.

– KDF2(IDi, IDj , Ri, Rj , g1t, g2t, g3t): B maintains a list KDF2list of pairs in
the form (〈IDi, IDj , Ri, Rj , g1t, g2t, g3t〉, ζt). To respond to a query, B does
the following operations:

Security Analysis of SM9 Key Agreement and Encryption 15

• If KDF2list has a tuple indexed by 〈IDi, IDj , Ri, Rj , g1t, g2t, g3t〉, then
B responds with ζt.

• Otherwise, B goes through the list Λ built in the Reveal query
to find tuples of the form (〈IDi, IDj , Ri, Rj〉, rt, ζt, Ot) indexed by
〈IDi, IDj , Ri, Rj〉 and proceeds as follows:
∗ Set R = Rj and T = g1t if Ot = 1, otherwise R = Ri and T = g2t,

query ODBIDH with ([x]P1, P2, [h0 + x]P1, R, T).
∗ If ODBIDH returns 1 and g3t = T rt

, B removes the tuple from Λ and
inserts (〈IDi, IDj , Ri, Rj , g1t, g2t, g3t〉, ζt) into KDF2list, and finally
responds with ζt.

• Otherwise, B randomly chooses a string ζt ∈ {0, 1}� and inserts a
new tuple (〈IDi, IDj , Ri, Rj , g1t, g2t, g3t〉, ζt) into the list KDF2list. It
responds to A with ζt.

– Corrupt(IDi): B looks through list H2RFlist
1 . If IDi is not on the list,

B queries H2RF1(IDi). B checks the value of Di: if Di �= ⊥, then B responds
with Di; otherwise, B aborts the game (Event 1).

– Send(Πt
i,j , R): B maintains a list with tuples of (Πt

i,j , r
t
i,j , trant

i,j) and
responds to the query as follows:

• If t �= J , B randomly chooses rt ∈ Z
∗
r as the random flips of the oracle

and generates [rt]([H2RF1(IDj)]P1 + [x]P1) as the message.
• If t = J , B further checks the value of Dj corresponding IDj on the

list H2RFlist
1 after querying H2RF1(IDj), and then responds the query

differently as below depending on this value.
∗ If Dj �= ⊥, B aborts the game (Event 2). We note that there is only

one party’s private key is represented as ⊥ in the whole simulation.
∗ Otherwise, B randomly chooses y ∈ Z

∗
r and responds with [y]P1. Note

that Πt
i,j can be the initiator (if R = λ) or the responder (if R �= λ),

and B doesn’t know the random flips of the oracle.
– Reveal(Πt

i,j): B maintains a list Λ with tuples (〈IDi, IDj , Ri, Rj〉, rt, ζt, Ot).
B responds to the query as follows:

• If t = J or if the J-th oracle has been generated as ΠJ
a,b and IDa =

IDj , IDb = IDi and two oracles have the same session ID, then abort the
game (Event 3).

• Go through H list
1 (IDi) to find the private key Di of party i with identity

IDi.
• If Di �= ⊥, compute g1 = ê(Rj ,Di), g2 = ê([x]P1, P2)rt

, g3 = grt

1 where
Rj is the incoming message and rt is the random flips of the oracle Πt

i,j .
B responds with KDF2(IDi, IDj , Ri, Rj , g1, g2, g3) if the oracle is the
initiator, or KDF2(IDj , IDi, Rj , Ri, g2, g1, g3) otherwise.

• Otherwise, go through KDF2list to find tuples indexed by 〈IDi, IDj , Ri,
Rj , ∗, ê([x]P1, P2)rt

, ∗〉 (if Πt
i,j is the initiator) or by 〈IDj , IDi, Rj , Ri,

ê([x]P1, P2)rt

, ∗, ∗〉 (if Πt
i,j is the responder). ∗ matches any values. For

each (g1t, g2t, g3t, ζt) in the found tuples,
∗ Set R = Rj and T = g1t if Πt

i,j is the initiator, otherwise R = Ri and
T = g2t; query ODBIDH with ([x]P1, P2, [h0 + x]P1, R, T).

16 Z. Cheng

∗ If ODBIDH returns 1 and g3t = T rt

, then B responds to the query with
ζt.

• Otherwise (no match is found in the last step), randomly choose ζt ∈
{0, 1}� and insert (〈IDi, IDj , Ri, Rj〉, rt, ζt, 1) if the oracle is the initiator
or (〈IDj , IDi, Rj , Ri〉, rt, ζt, 0) into Λ. B responds with ζt.

– Test(Πt
i,j): If t �= J or (t = J but) there is an oracle Πw

j,i which, with the
same session ID with Πt

i,j , has been revealed, B aborts the game (Event 4).
Otherwise, B randomly chooses a bit string ζ ∈ {0, 1}� and gives it to A as
the response.

Once A finishes the queries and returns its guess, B goes through KDF2list

and for each T = g1t, R = Rj from the tuple indexed by IDi of the revealed
oracle, if the revealed oracle is an initiator, otherwise T = g2t, R = Ri for the
tuple indexed by IDj

– B queries ODBIDH with ([x]P1, P2, [h0 + x]P1, R, T).
– If ODBIDH returns 1, B returns T 1/y as the response to the Gap-q1-BCAA11,2

challenge.
– If no match is found, B fails (Event 5, i.e., ê([y]P1, [x

h0+x]P2) has not been
queried on KDF2).

Claim 1. If algorithm B does not abort during the simulation, then algorithm
A’s view is identical to its view in the real attack.

Proof: B’s responses to H2RF1 queries are uniformly and independently dis-
tributed in Z

∗
r as in the real attack. KDF2 is modeled as a random oracle which

requires that for each unique input, there should be only one response. We note
that the simulation B substantially makes use of the programmability of random
oracle and the access to the DBIDH oracle to guarantee that the response to the
KDF2 query is consistent with the Reveal query. The responses in other types
of query are valid as well. Hence the claim follows.

Note the agreed key value in the chosen fresh oracle Πt
i,j should include T =

ê(R,Di) where R = [y]P1 and Di is the private key of party j whose public key
is [h0]P1 + [x]P1, if the game does not abort.

Claim 2. Pr[Event 5] ≥ ε(k).

The proof is similar to Claim 2 in [9]. We skip the details.

Let Event 6 be that, in the attack, adversary B indeed chooses oracle ΠJ
i,j as

the challenger oracle where IDj has been queried on H2RF1 as the I-th distinct
identifier query. Then following the rules of the game, it’s clear that Event 1, 2,
3, 4 would not happen. So,

Pr[(Event 1 ∨ Event 2 ∨ Event 3 ∨ Event 4)] = Pr[Event 6] ≥ 1
q1 · qo

.

Security Analysis of SM9 Key Agreement and Encryption 17

Overall, we have

Pr[A wins] = Pr[Event 6 ∧ Event 5]
≥ 1

q1·qo
ε(k).

This completes the security proof. �
SM9-KA is versatile in the sense that it can be instantiated with different

choices of system parameters to satisfy different security requirements. SM9-KA
can be implemented with both symmetric pairings and asymmetric pairings [12].
If one wants to implement a system with the key escrow property for lawful
auditing, he can use a symmetric pairing and set P1 = P2 when choosing the
system parameters. With the knowledge of the master secret key s, one can
recover the session key by first computing R′

A = [1
s+H2RF1(Hv,IDB‖hid,r)]RA =

[xA]P1 and R′
B = [1

s+H2RF1(Hv,IDA‖hid,r)]RB = [xB]P1 and then computing
g1 = ê(R′

B , [s]P1), g2 = ê(R′
A, [s]P1) and g3 = ê(R′

A, R′
B)s. On the other hand, if

one wants to keep communication to the intended party complete confidential,
he needs a protocol without the key escrow property. To serve such purpose, the
following security result shows that SM9-KA can also be instantiated to achieve
the master secret forward secrecy if the ψ-BDH2,1 problem is hard.

Theorem 3. SM9-KA can be instantiated to achieve the master secret forward
secrecy, provided that KDF2 is a random oracle and the ψ-BDH2,1 assumption
is sound. Specifically, suppose that there is an adversary A with non-negligible
probability ε(k) and running time t(k) against the protocol that chooses gener-
ators P1 and P2 as the ψ-BDH2,1 problem, and in the attack KDF2 has been
queried q2 times, and qo sessions including incomplete ones have been created.
Then there exists an algorithm B solving the ψ-BDH2,1 problem with advantage

AdvB(k) ≥ ε(k)
q2 · qo

within a running time essentially same as t(k).

Proof: Given an instance of the ψ-BDH2,1 problem (P1, P2, [a]P1, [b]P1) with
a set of pairing parameter where there is no efficient group homomorphism
ψ such that ψ(P1) = P2. B simulates GID to generate the system parameters
(G1,G2,GT , ê, P1, P2, [x]P1, ê([x]P1, P2), Hv, hid), i.e., using a randomly cho-
sen x ∈ Z

∗
r as the master secret key. Function KDF2 is constructed from the

hash function Hv and is simulated as a random oracle controlled by B .

Without loss of generality, we use Πt
i,j to refer to the t-th session among all

the sessions including incomplete ones created in the attack. B randomly chooses
1 ≤ J ≤ qo, and interacts with A in the following way:

– KDF2(IDi, IDj , Ri, Rj , g1t, g2t, g3t): B maintains a list KDF2list of pairs in
the form (〈IDi, IDj , Ri, Rj , g1t, g2t, g3t〉, ζt). To respond to a query, B does
the following operations:

18 Z. Cheng

• If KDF2list has a tuple indexed by 〈IDi, IDj , Ri, Rj , g1t, g2t, g3t〉, then
B responds with ζt.

• Otherwise, B randomly chooses a string ζt ∈ {0, 1}� and inserts a
new tuple (〈IDi, IDj , Ri, Rj , g1t, g2t, g3t〉, ζt) into the list KDF2list. It
responds to A with ζt.

– Corrupt(IDi): B returns [x
H2RF1(IDi)+x]P2.

– Send(Πt
i,j , R): B maintains a list with tuples of (Πt

i,j , r
t
i,j , trant

i,j) and
responds to the query as follows:

• If t �= J , B randomly chooses rt ∈ Z
∗
r as the random flips of the oracle

and generates [rt]([H2RF1(IDj)]P1 + [x]P1) as the message.
• Otherwise (t = J . Without loss of generality, let IDI and IDR be the

identity of the initiator and responder of the session respectively),
∗ If R = λ, B uses [a]P1 as the message.
∗ Otherwise, if R �= [a]P1, B aborts (Event 1), otherwise B uses [b]P1 as

the message.
– Reveal(Πt

i,j): B responds to the query as follows:
• If t = J , then abort the game (Event 2).
• Otherwise, compute Di = [x

H2RF1(IDi)+x]P2, g1 = ê(Rj ,Di), g2 =

ê([x]P1, P2)rt

, g3 = grt

1 where Rj is the incoming message and rt is
the random flips of the oracle Πt

i,j . B responds with KDF2(IDi, IDj , Ri,
Rj , g1, g2, g3) if the oracle is the initiator, or KDF2(IDj , IDi, Rj , Ri,
g2, g1, g3) otherwise.

– Test(Πt
i,j): If t �= J , B aborts the game (Event 3). Otherwise, B randomly

chooses a string ζ ∈ {0, 1}� and gives it to A as the response.

Once A finishes the queries and returns its guess, B goes through
KDF2list to find a set L of tuples indexed by 〈IDI , IDR, [a]P1, [b]P1,
ê([b]P1, [x

H2RF1(IDI)+x]P2), ê([a]P1, [x
H2RF1(IDR)+x]P2), ∗〉. ∗ matches any values.

B randomly chooses g3t from L and returns X = g
(H2RF1(IDI)+x)(H2RF1(IDR)+x)/x
3t as

the answer to the ψ-BDH2,1 problem.
Note the agreed key value in the chosen fresh oracle Πt

i,j should include Y =
g3t = ê([b]P1, [x

H2RF1(IDI)+x]P2)rI where [rI]([H2RF1(IDR)]P1 +[x]P1) = [a]P1,
if the game does not abort. Hence, if the value has been queried with KDF2
and g3t happens with probability at least 1/q2 to be the right choice from L, X
is the correct answer to the ψ-BDH2,1 problem.

Claim 3. Let Event 4 be that Y along with identities and exchanged messages
has not been queried with KDF2. Pr[Event 4] ≥ ε(k).

The proof is similar to Claim 2 in [9]. We skip the details.

Let Event 5 be that, in the attack, adversary B indeed chose oracle ΠJ
i,j as

the challenger oracle. Then, following the rules of the game by Definition 3, it’s
clear that Event 1, 2, 3 would not happen. So,

Pr[(Event 1 ∨ Event 2 ∨ Event 3)] = Pr[Event 5] ≥ 1
qo

.

Security Analysis of SM9 Key Agreement and Encryption 19

Overall, we have

Pr[A wins] = Pr[Event 5 ∧ Event 4]
≥ 1

q2·qo
ε(k).

This completes the security proof. �

4 SM9 Encryption and Its Security Analysis

The SM9 encryption is a hybrid encryption scheme built from an ID-KEM
scheme and a DEM scheme. DEM can be one of those schemes such as DEM2 or
DEM3 standardized in ISO/IEC 18033-2 [17]. SM9-KEM scheme consists of four
operations: Setup, Private-Key-Extract, KEM-Encap and KEM-Decap
as follows:

Setup GID−KEM(1k). Same as Setup GID(1k) of SM9-KA.
Private-Key-Extract XID−KEM(Mpk,Msk, IDA). Same as Private-Key-
Extract XID(Mpk,Msk, IDA) of SM9-KA.
KEM-Encap EID−KEM(Mpk, IDA). Given an identify string IDA and the master
public key Mpk, the operation runs as follows:

1. Set h1 = H2RF1(Hv, IDA‖hid, r).
2. Set Q = [h1]P1 + Ppub.
3. Pick a random x ∈ Z

∗
r .

4. Set C1 = [x]Q.
5. Set t = gx.
6. Set K = KDF2(Hv, EC2OSP (C1)‖FE2OSP (t)‖IDA,
), where
 is the key

length of the DEM.
7. Output 〈K,C1〉.
KEM-Decap DID−KEM(Mpk, IDA,DA, C1). Given an identify string IDA, the cor-
responding private key DA, the encapsulation part C1 and the master public key
Mpk, the operation runs as follows:

1. If C1 /∈ G
∗
1, then output ⊥ and terminate.

2. Set t = ê(C1,DA).
3. Set K = KDF2(Hv, EC2OSP (C1)‖FE2OSP (t)‖IDA,
), where
 is the key

length of the DEM.
4. Output K.

Here, we only present the security analysis of SM9-KEM. The security of the
full SM9-IBE follows from Theorem 1, 4 and the security result of DEM [17].
Again, we sightly abuse the notation in the proof without applying element
encoding in the corresponding functions for succinct presentation.

20 Z. Cheng

Theorem 4. SM9-KEM is ID-IND-CCA2 secure provided that H2RF1,KDF2
are random oracles and the Gap-τ -BCAA11,2 assumption is sound. Specifically,
suppose there exists an ID-IND-CCA2 adversary A against SM9-KEM that has
advantage ε(k) and running time t(k), and suppose also that during the attack
A makes at most qD queries on the Decapsulation query, q1 + 1 queries on
H2RF1 and q2 queries on KDF2 with ID∗. Then there exists an algorithm
B solving the Gap-q1-BCAA11,2 problem with advantage

AdvB(k) ≥ ε(k)
q1 + 1

within running time
tB(k) ≤ t(k) + O(q2 · qD · O),

where O is the time of one access to the DBIDH1,1 oracle.

Proof: Given an instance of the Gap-q1-BCAA11,2 problem (P1, P2, [x]P1, h0,
(h1, [x

h1+x]P2), . . . , (hq1 , [x
hq1+x]P2)) with a set of pairing parameter where

hi ∈R Z
∗
r for 0 ≤ i ≤ q1 and the DBIDH1,1 oracle ODBIDH , B simulates GID−KEM

to generate the system parameters (G1,G2,GT , ê, P1, P2, [x]P1, ê([x]P1, P2), Hv,
hid), i.e., using x as the master secret key, which it does not know. Function
H2RF1 and KDF2 are constructed from the hash function Hv and are simu-
lated as two random oracles controlled by B .

B randomly chooses 1 ≤ I ≤ q1 + 1 and interacts with A as follows:

– H2RF1(IDi): B maintains a list H2RFlist
1 of tuples (IDi, hi,Di) as explained

below. When A queries the oracle H2RF1 on IDi, B responds as follows:
• If IDi is on H2RFlist

1 in a tuple (IDi, hi,Di), then B responds with
H2RF1(IDi) = hi.

• Otherwise, if the query is on the I-th distinct ID, then B stores
(IDI , h0,⊥) into the tuple list and responds with H2RF1(IDI) = h0.

• Otherwise, B selects a random integer hi with i > 0 from the Gap-q1-
BCAA11,2 instance which has not been chosen before and stores (IDi, hi,
[x
hi+x]P2) into the tuple list. B responds with H2RF1(IDi) = hi.

– KDF2(Ci,Xi, IDi): B maintains a list KDF2list of pairs in the form (〈Ci,
Xi, IDi〉, Ki). To respond to a query on (Ci,Xi, IDi), B does the following
operations:

• If a pair (〈Ci,Xi, IDi〉,Ki) is on the list, then B responds with Ki.
• Otherwise, B looks through list H2RFlist

1 . If IDi is not on the list,
then B queries H2RF1(IDi). Depending on the value of Di for IDi on
H2RFlist

1 , B responds differently.
∗ If Di = ⊥,

· B queries ODBIDH with ([x]P1, P2, [h0 + x]P1, Ci,Xi).
· If ODBIDH returns 1 and a tuple index by (Ci, IDi) appears on

list LD (a list maintained in the Decapsulation specified later),
B returns Ki from the tuple after putting (〈Ci,Xi, IDi〉,Ki) into
KDF2list.

Security Analysis of SM9 Key Agreement and Encryption 21

· Otherwise, B randomly chooses a string Ki ∈ {0, 1}� and inserts a
new pair (〈Ci, Xi, IDi〉,Ki) into KDF2list, and if ODBIDH returns
1, B also inserts (Ci, IDi,Ki) into LD. It responds to A with Ki.

∗Otherwise (Di �=⊥),B randomly chooses a stringKi ∈ {0, 1}� and inserts
a new pair (〈Ci, Xi, IDi〉,Ki) into the list. It responds to A with Ki.

– Extraction(IDi): B looks through list H2RFlist
1 . If IDi is not on the list,

B queries H2RF1(IDi). B checks the value of Di: if Di �= ⊥, then B responds
with Di; otherwise, B aborts the game (Event 1).

– Decapsulation(IDi, Ci): B maintains list LD of pairs in the form (Ci, IDi,Ki).
To respond to the query, B first looks through list H2RFlist

1 . If IDi is not on
the list, then B queries H2RF1(IDi). Depending on the value of Di for IDi on
H2RFlist

1 , B responds differently.
1. If Di �= ⊥, then B first computes gr = ê(Ci,Di), and then queries Ki =

KDF2(Ci, g
r, IDi). B responds with Ki.

2. Otherwise (Di = ⊥), B takes following actions:
(a) If a tuple indexed by (Ci, IDi) is on LD, return Ki from the tuple.
(b) Otherwise, B randomly chooses Ki ∈ {0, 1}� and inserts (Ci, IDi,Ki)

into the list LD. Finally B returns Ki.
– Challenge: At some point A’s first stage will terminate and it will return

a challenge identity ID∗. If A has not called H2RF1 with input ID∗ then
B does so for it. If the corresponding value of DID∗ is not equal to ⊥, then
B aborts (Event 2). B chooses a random value of y ∈ Z

∗
r and a random

value K∗ ∈ {0, 1}�, and returns (K∗, [y]P1) as the challenge. For simplicity,
if (ID∗, [y]P1) has been queried on the Decapsulation query, B tries another
random r.

– Guess: Once A outputs its guess, B answers the Gap-q1-BCAA11,2 challenge
in the following way.
1. For each tuple (〈[y]P1, Xj , ID∗〉, Kj) in KDF2list, B queries ODBIDH

with ([x]P1, P2, [h0 + x]P1, [y]P1,Xj). If ODBIDH returns 1, B outputs
X

1/y
j as the answer to the Gap-q1-BCAA11,2 problem.

2. If no tuple is found on the list, B fails (Event 3).

Claim 4. If algorithm B does not abort during the simulation, then algorithm
A’s view is identical to its view in the real attack.

Proof: B’s responses to H2RF1 queries are uniformly and independently dis-
tributed in Z

∗
r as in the real attack because of the behavior of the Setup phase

in the simulation. KDF2 is modeled as a random oracle which requires that for
each unique input, there should be only one response. We note that the sim-
ulation substantially makes use of the programmability of random oracle and
the access to the DBIDH1,1 oracle to guarantee that the response to the KDF2
query is consistent with the Decapsulation query. There are two subcases in the
simulation.

– The adversary queries on KDF2(Ci,Xi, IDi). If (Ci,Xi, IDi) has not been
queried before on KDF2, B should make sure that the response must be
consistent with the possible existing response generated in the Decapsulation

22 Z. Cheng

queries when IDi = ID∗. B exploits the access to the DBIDH1,1 oracle by

testing ê(Ci, [x
h0+x]P2)

?= Xi. If the equation holds, B returns the response to
the Decapsulation query on (IDi, Ci) if such query has been issued.

– The adversary queries the Decapsulation oracle on (ID∗, Ci). B cannot com-
pute Xi = ê(Ci, [x

h0+x]P2) (note that if the game does not abort, DID∗ =
[x
h0+x]P2). If KDF2(Ci,Xi, IDi) has not been queried, i.e., (IDi, Ci,Ki) is

not on LD, B can respond with any random string Ki. Otherwise, B uses Ki

from the tuple on LD indexed by (IDi, Ci) that is inserted by a KDF2 query.

The responses in other types of query are valid as well. Hence the claim is
founded.

We now evaluate the probability that B does not abort the game. Event 3
implies that the value ê(C∗, [x

h0+x]P2), which is the key value in the challenge
encapsulation, is not queried on KDF2 in the simulation. Since KDF2 is a
random oracle, Pr[A wins|Event 3] = 1

2 . We have

Pr[A wins] = Pr[A wins|Event 3] Pr[Event 3] + Pr[A wins|Event 3] Pr[Event 3]

≤ 1

2
(1 − Pr[Event 3]) + Pr[Event 3] =

1

2
+

1

2
Pr[Event 3].

Pr[A wins] ≥ Pr[A wins|Event 3] Pr[Event 3]

=
1

2
(1 − Pr[Event 3]) =

1

2
− 1

2
Pr[Event 3].

So, we have Pr[Event 3] ≥ ε(k). Note that Event 2 implies Event 1 because
of the rules of the game. Overall, we have

Pr[B wins] = Pr[Event 3 ∧ Event 2] ≥ ε(k)
q1 + 1

.

This completes the security analysis of SM9-KEM. �

5 Conclusion

In this paper, we have formally proved that SM9-KA is a secure AK in the
Bellare-Rogaway key agreement model under the Gap-τ -BCAA11,2 assumption
if the used hash functions are treated as random oracles. SM9-KA is versatile and
can be implemented with and without the key escrow property. We have proved
that under the ψ-BDH2,1 assumption, SM9-KA can be instantiated to achieve
the master secret forward secrecy. SM9-IBE is a hybrid encryption scheme built
from SM9-KEM and a standard DEM. We have proved that SM9-KEM is secure
under the Gap-τ -BCAA11,2 assumption in the random oracle model.

Security Analysis of SM9 Key Agreement and Encryption 23

A Proof of Lemma 1

Proof: If there is a polynomial time algorithm A to solve the (τ -1)-BCAA1i,2

problem, we can construct a polynomial time algorithm B to solve the τ -BDHI2
problem as follows. Given an instance of the τ -BDHI2 problem

(P1, P2, [x]P2, [x2]P2, . . . , [xτ]P2),

B works as follows to compute ê(P1, P2)1/x.

1. Randomly choose different h0, . . . , hτ−1 ∈ Z
∗
r . Let f(z) be the polynomial

f(z) =
τ−1∏

a=1

(z + ha) =
τ−1∑

a=0

caza.

The constant term c0 is non-zero because ha’s are different and ci is com-
putable from ha’s.

2. Set

Q2 =
τ−1∑

a=0

[caxa]P2 = [f(x)]P2,

and

[x]Q2 =
τ−1∑

a=0

[caxa+1]P2 = [xf(x)]P2.

3. Set

fb(z) =
z − h0

z + hb
f(z) =

τ−1∑

a=0

daza,

and compute

[
x − h0

x + hb
]Q2 = [

x − h0

x + hb
f(x)]P2 = [fb(x)]P2 =

τ−1∑

a=0

[daxa]P2

for 1 ≤ b ≤ τ − 1.
4. Set Q1 = ψ(Q2) and pass the following instance of the (τ -1)-BCAA1i,2 prob-

lem to A

(Q1, Q2, ψ([x−h0]Q2), h0, (h1+h0, [
x − h0

x + h1
]Q2), . . . , (hτ−1+h0, [

x − h0

x + hτ−1
]Q2))

if i = 1, or

(Q1, Q2, [x − h0]Q2, h0, (h1 + h0, [
x − h0

x + h1
]Q2), . . . , (hτ−1 + h0, [

x − h0

x + hτ−1
]Q2))

to get
T = ê(Q1, Q2)

x−h0
x = ê(Q1, Q2) · ê(Q1, Q2)−h0/x.

24 Z. Cheng

5. Note that

[
1
x

](Q2 − [c0]P2) = [
1
x

]([f(x)]P2 − [c0]P2) =
τ−1∑

a=1

[caxa−1]P2.

Set

T ′ =
τ−1∑

a=1

[caxa−1]P2 = [
f(x) − c0

x
]P2.

Then,

T0 = ê(ψ(T ′), Q2 + [c0]P2) = ê([f(x) − c0]P1, Q2 + [c0]P2)1/x

= ê(Q1, Q2)1/x · ê(P1, P2)−c20/x.

Finally, compute

ê(P1, P2)1/x = ((T/ê(Q1, Q2))−1/h0/T0)1/c20 .

�

References

1. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

2. Bentahar, K., Farshim, P., Malone-Lee, J., Smart, N.P.: Generic constructions of
identity-based and certificateless KEMs. J. Cryptol. 21, 178–199 (2008)

3. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their
security analysis. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol.
1355, pp. 30–45. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024447

4. Boneh, D., Boyen, X.: Efficient Selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 14

5. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

6. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric
pairings - the role of ψ revisited. Discret. Appl. Math. 159, 1311–1322 (2011)

7. Chen, L., Cheng, Z.: Security proof of Sakai-Kasahara’s identity-based encryption
scheme. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796,
pp. 442–459. Springer, Heidelberg (2005). https://doi.org/10.1007/11586821 29

8. Chen, L., Cheng, Z., Smart, N.: Identity-based key agreement protocols from pair-
ings. Int. J. Inf. Secur. 6, 213–241 (2007)

9. Cheng, Z., Chen, L.: On security proof of McCullagh-Barreto’s key agreement
protocol and its variants. Int. J. Secur. Netw. 2, 251–259 (2007). Special Issue on
Cryptography in Networks

https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/BFb0024447
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/11586821_29

Security Analysis of SM9 Key Agreement and Encryption 25

10. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33,
167–226 (2003)

11. Galbraith, S., Hess, F., Vercauteren, F.: Aspects of pairing inversion. IEEE Trans.
Inf. Theory 54(12), 5719–5728 (2008)

12. Galbraith, S., Paterson, K., Smart, N.P.: Pairings for cryptographers. Discret.
Appl. Math. 156, 3113–3121 (2008)

13. GM/T 0044–2016. Identity-based cryptographic algorithms SM9 (2016)
14. ISO/IEC. Information technology - Secruity techniques - Key management - Part

3: Mechanisms using asymmetric techniques. ISO/IEC 11770–3:2015
15. ISO/IEC. Information technology - Secruity techniques - Digital signatures with

appendix - Part 3: Discrete logarithm based mechanisms. ISO/IEC 14888–3:2018
16. ISO/IEC. Information technology - Security techniques - Cryptographic techniques

based on elliptic curves - Part 5: Elliptic curve generation. ISO/IEC 15946–5:2009
17. ISO/IEC. Information technology - Security techniques - Encryption algorithms -

Part 2: Asymmetric ciphers. ISO/IEC 18033–2:2006
18. ISO/IEC. Information technology - Security techniques - Encryption algorithms -

Part 5: Identity-based ciphers. ISO/IEC 18033–5:2015
19. Lee, E., Lee, H., Park, C.: Efficient and generalized pairing computation on abelian

varieties. IEEE Trans. Inf. Theory 55, 1793–1803 (2009)
20. Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(11), 455–461 (2010)

Blockchain and Crypto Currency

Evaluating CryptoNote-Style Blockchains

Runchao Han1(B), Jiangshan Yu2, Joseph Liu2, and Peng Zhang3

1 The University of Manchester, Manchester, UK
runchao.han@student.manchester.ac.uk

2 Monash University, Melbourne, Australia
{jiangshan.yu,joseph.liu}@monash.edu.au

3 Shenzhen University, Shenzhen, China
zhangp@szu.edu.cn

Abstract. To hide user identity, blockchain-based cryptocurrencies uti-
lize public key based coin addresses to represent users. However, the
user identity can still be identified by linking the coin addresses to the
IP address of a user, through network traffic analysis.

Ring Signature based protocols, such as CryptoNote and RingCT,
have been designed to anonymize the payers of a transaction, and
deployed in leading cryptocurrencies like Bytecoin and Monero. This
paper provides a comprehensive evaluation on the performance of Byte-
coin and Monero, at both the protocol level and the system level. In
particular, our evaluation includes theoretical complexity analysis of the
protocols and practical performance analysis of the Bytecoin and Monero
implementation. In addition, we also provide an analysis on the existing
Bytecoin and Monero transactions, based on the public blockchain data.
Our results identify the execution bottleneck and space overhead of gen-
erating and verifying transactions, which may encourage the design of
more efficient protocols. We also provide insights based on our analysis
on the performance of specific cryptographic algorithms, static analysis
of the ring size distribution, of the input size distribution and output
size distribution, and of the transaction size distribution.

Keywords: Cryptocurrency · Blockchain · Ring signature

1 Introduction

Cryptocurrencies have been very prevalent since the seminal Bitcoin system
[9], which targets at democratizing the currency by a decentralized P2P network
without governance. However, Bitcoin transactions are accessible for anyone with
plaintext senders, receivers and amounts. Although the senders and receivers are
cryptographically generated coin addresses, the coin addresses can still be linked
to the identity of the real owner via traffic analysis.

In particular, with Bitcoin, a transaction is signed by the transaction sender,
broadcasted to peers and verified by peers [9]. The transaction senders and
receivers are represented by the explicit addresses generated from the public keys
c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 29–48, 2019.
https://doi.org/10.1007/978-3-030-14234-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_2

30 R. Han et al.

which is irreversible and deterministic. Each transaction is signed by the sender’s
private key and verified by the public key, e.g. ECDSA in Bitcoin [9]. However,
because the Bitcoin address is uniquely determined by the corresponding public
key and both addresses and public keys are public, the individuals behind the
Bitcoin network are traceable. For example, quantitative analyses towards the
whole Bitcoin blockchain [7,12] potentially reveal most Bitcoin participants.

CryptoNote [13] has been proposed to improve the anonymity of Bitcoin. In
particular, it uses a modified version of traceable ring signatures [3], called One-
time Ring Signature, to hide both the payer and payee of a transaction. However,
CryptoNote cannot hide the amount of a transaction. Monero1 proposed Ring
Confidential Transactions [10] (RingCT), to further hide the amount by using
Pedersen Commitment [11].

This paper aims at providing an understanding on the performance of the
above two systems. We evaluate the performance both theoretically and experi-
mentally. We first informally evaluate the algorithms in terms of their security,
complexity, and parallelism. Then, we evaluate the systems through experiments.

In particular, we use Bytecoin v2.1.22 as the reference CryptoNote implemen-
tation, which is a CryptoNote-based and actively maintained cryptocurrency. It
has a market cap of more than 432 Million USD to date, and is ranked 25th
in the cryptocurrency market cap3. We use Monero v0.12.3.04 as the reference
RingCT implementation, which has a market cap of about 1.9 Billion USD, and
is ranked as the 13th in the cryptocurrency market cap5.

Our analysis includes the performance of the specific cryptographic algo-
rithms (such as time of creating/verifying a transaction with different inputs
and outputs), static analysis of the ring size distribution, of the input size dis-
tribution and output size distribution, and of the transaction size distribution.

To evaluate the most recent status of the Bytecoin blockchain and Monero
blockchain, we crawled more than 200,000 Bytecoin transactions, all Monero V6
transactions (from height 1400000 to 1539500) with the mandatory ring size 5,
and all Monero V7 transactions (with the mandatory ring size 7) up to July
28th, 2018 (from height 1539500 to 1626649). Our results give several insights
on the two blockchains. Our result shows that while providing a better privacy
guarantee, Monero transaction is more time-consuming to create and to verify a
transaction. We also observe that with Bytecoin, the average ring size is approxi-
mately 3, and the mandatory minimum ring size is 1 (no mixins) in Bytecoin. So
it might be vulnerable to “zero-mixin” attacks [4,8]. With Monero, the manda-
tory minimum ring size has been changed a few times in its earlier versions. Our
analysis shows that for Monero V6 where the mandatory minimum ring size is
5, the average used ring size is also 5. Then, when the mandatory ring size is

1 https://getmonero.org/.
2 https://github.com/amjuarez/bytecoin/tree/frozen-master.
3 https://coinmarketcap.com/currencies/bytecoin-bcn/. Data fetched on 7th August

2018.
4 https://github.com/monero-project/monero/.
5 https://coinmarketcap.com/currencies/monero/. Data fetched on 7th August 2018.

https://getmonero.org/
https://github.com/amjuarez/bytecoin/tree/frozen-master
https://coinmarketcap.com/currencies/bytecoin-bcn/
https://github.com/monero-project/monero/
https://coinmarketcap.com/currencies/monero/

Evaluating CryptoNote-Style Blockchains 31

changed to 7 in Monero V7, the mean ring size in Monero is approximately 8.
Thus, compared to transactions in Bytecoin, transactions in Monero have a much
larger ring in average. This might indicate that Monero users concern more on
privacy than Bytecoin users, so they intend to use system with better privacy
guarantee and bigger rings.

For the number of inputs and outputs of a single transaction, compared to
Monero, Bytecoin users intend to include more inputs and outputs in a single
transaction. As for averages, each Bytecoin transactions include approximately
11 inputs and 12 outputs on average, while the average inputs and outputs of a
transaction are only 2 and 3 for Monero, respectively. For the number of inputs
and outputs, Monero transactions have an upper bound (by practise rather than
by pre-defined rules) of 100 inputs and 40 outputs in a single transaction, whereas
the upper bounds in Bytecoin are about 10 times as much.

2 Primitives

Ring signature was proposed to hide the real signer in a way that given a signed
message, a third party only knows that someone in a particular group of people
created the signature, but does not know who is the signer. It provides two
anonymity properties [3]:

– Signature Unlinkability: Given two arbitrary signatures σa and σb, it is com-
putationally infeasible to check if σa and σb are signed by the same signer

– Signature Untraceability: Given an arbitrary signature σa, it is computation-
ally infeasible to determine which public key in the ring is the true signer

Ring signatures cannot be used directly to achieve anonymity of the
blockchain transactions, due to a possible double spending attack. In partic-
ular, since a third party cannot identify who is the real signer, an attacker can
spend the same coin as many times as the size of the group.

To prevent double spending attacks, the ring signature schemes applied to
cryptocurrencies must be linkable to eliminate multiple uses of the money. Both
linkable ring signature and traceable ring signature can be used to achieve these
requirements.

It should be noted that the linkability of ring signature does not imply the
transaction linkability. Instead, the transaction utilizes multiple cryptographic
techniques including the Linkable Ring Signature to achieve the transaction
unlinkability and untraceability, which will be discussed later.

One-time Ring Signature in CryptoNote. CryptoNote utilizes a modified
version of Traceable Ring Signature [3], called One-time Ring Signature. In One-
time Ring Signature, a public key Pπ and a Key Image I are derived from a
private key x. The private key x and its key image Pπ are used to prove that
the signer knows at least one pair of public and private keys, while I aims at
preventing against the creation of multiple signatures using the same key. Thus,

32 R. Han et al.

Fig. 1. Signing and verification process of the One-time Ring Signature

it prevents the double spending attack. The detailed process of One-time Ring
Signature is shown in Fig. 1.

Multilayered Linkable Spontaneous Anonymous Group (MLSAG) Sig-
nature in RingCT. RingCT is based on linkable ring signature, of which the
security model is shown in Fig. 2. RingCT defines the Multilayered Linkable
Spontaneous Anonymous Group (MLSAG) Signature which extends the Linkable
Spontaneous Anonymous Group Signature (LSAG) [5]. Each individual holds a
vector of key pairs rather than only one key pair in order to hide the transaction
amount by Pedersen Commitment, which will be discussed later. The detailed
process of MLSAG is shown in Fig. 3.

Excluding the key vector, the One-time Ring Signature security model is
essentially the same as the MLSAG Signature referred to Fig. 2.

Evaluating CryptoNote-Style Blockchains 33

Fig. 2. Linkable ring signature.

Fig. 3. Signing and verification process of the MLSAG signature.

3 Protocol-Level Comparisons

This section compares the performance-related metrics between CryptoNote and
RingCT at the protocol-level, including the core ring signature algorithm and
the approaches of achieving anonymity.

34 R. Han et al.

3.1 Algorithm Analysis

We first evaluate the the security, complexity and parallelism of the signature
schemes in the context of protocol specifications6.

Security. Both the One-time Ring Signature and the MLSAG Signature are
unforgeable, untraceable and linkable. The unforgeability is a basic requirement
for signature algorithms, and the untraceability is key to the blockchain trans-
action untraceability, while the linkability is exploited to combat the double-
spending. Due to the usage of hash functions in both signature schemes, both
security proofs are based on the Random Oracle (RO) Model [10,13]. In the
context of CryptoNote and RingCT specification, both signature schemes are
based on the elliptic curve Ed25519 [1]. Therefore, the security assumption
of both schemes is the Elliptic Curve Discrete Logarithm Problem (ECDLP).
A tabulated remark on the security is shown in Table 1.

Table 1. The security analysis on One-time Ring Signature and MLSAG Signature

Signature Proof Group Hardness Forgeable Linkable Traceable

One-time Ring Signature RO Ed25519 ECDLP ✗ ✓ ✗

MLSAG RO Ed25519 ECDLP ✗ ✓ ✗

Complexity and Parallelism. Compared to the One-time Ring Signature,
MLSAG uses key vectors in its input. We denote the ring size as n and the key
vector size as m.

The One-time Ring Signature signing includes computing vectors of Li, Ri,
ci and ri where 1 ≤ i ≤ n, so the time and space complexity are both O(n).
Meanwhile, the One-time Ring Signature verification includes the inverse com-
putation of Li and Ri, so the time and space complexity are identical to the
signing. On the other hand, MLSAG involves similar operations on m × n keys,
so the time and space complexity for signing and verifying MLSAG signatures
are all O(mn).

Computations of Li, Ri, ci and ri in the One-time Ring Signature are paral-
lelizable, as no data dependency exists. However, the MLSAG Signature scheme
can only be parallelized by vectorizing key vector operations, while operations
across n key vectors are not parallelizable due to the iterative data dependency.

As the One-time Ring Signature contains (c1, ..., cn) and (r1, .., rn), the size
of One-time Ring Signature is O(n). Meanwhile, the MLSAG signature involves
all ri,j values where 1 ≤ i ≤ n and 1 ≤ j ≤ m, the size of MLSAG signature
is O(mn). A tabulated remark on the complexity and parallelism is shown in
Table 2.

6 CryptoNote Signature specification: https://cryptonote.org/cns/cns002.txt.

https://cryptonote.org/cns/cns002.txt

Evaluating CryptoNote-Style Blockchains 35

Table 2. The complexity analysis on One-time Ring Signature and MLSAG Signature

Signature Sign Verify Signature size Parallelism

Time Space Time Space

One-time Ring Signature O(n) O(n) O(n) O(n) O(n) Across n

MLSAG O(mn) O(mn) O(mn) O(mn) O(mn) Across m

3.2 CryptoNote and RingCT Transactions

After comparing the ring signature schemes, we turn to compare the transaction
generation and verification between CryptoNote and RingCT.

The cryptocurrency system is basically a currency system, which can be
regarded as a ledger recording transactions time-wise. A conventional transaction
consists of the sender, the receiver, the amount of money and the signature
signed by the sender. Both CryptoNote and RingCT hide the sender address
and the receiver address, and RingCT further hides the amount. Similar to the
ring signature, the transaction anonymity includes the unlinkability and the
untraceability, but with different definitions. Informally,

– Transaction Unlinkability: Given two arbitrary transactions TXa and TXb,
it is impossible to prove that they were sent to the same person.

– Transaction Untraceability: Given a transaction input, the real output being
redeemed in it should be anonymous among a set of other outputs.

The transaction unlinkability is achieved by One-time Public Key, while the
transaction untraceability is achieved by the ring signature schemes above. We
start from comparing the transaction formats, then we analyse the untraceability
and unlinkability provided by different systems.

Transaction Formats. We start from analyzing the transaction formats of
CryptoNote and RingCT.

As a generalization of conventional transactions, a CryptoNote or RingCT
transaction consists of multiple inputs and multiple outputs. Basically, an input
is a spendable deposit in the payer account, while an output is an amount of
money that is transferred to the payee. The sum of inputs should equal to the
sum of outputs in a single transaction. Due to the space limitation, we refer
readers to the original paper for a detailed presentation of creating a CryptoNote
transaction and a RingCT transaction.

While the inputs and outputs are similar in CryptoNote and RingCT, the
amount of the transferred money is masked in RingCT by using Pedersen Com-
mitment, and each masked amount is with a commitment and the range proof
by using Borromean Signature [6]. Moreover, the ring used in RingCT com-
bines amounts besides public keys. Our following analysis will show that the
range proof and the ring signature mechanism in RingCT contributes the most
overhead, which is a sacrifice for a better privacy, i.e., also hiding the amount.

36 R. Han et al.

Fig. 4. One-time public key scheme

Unlinkability by One-Time Public Key. The One-time Public Key mech-
anism is the same in CryptoNote and RingCT, which is shown in Fig. 4. The
design rationale is simple: A temporary public key is generated with random
components and the receiver public key which can only be recognized by the
receiver and the corresponding temporary private key can only be recovered by
the receiver so that the money is spendable for by receiver.

Alice chooses a random r ∈ Zq and mixes r with Bob’s public key A and B
to produce the One-time Public Key P , then the corresponding transaction TX
is committed to the blockchain if verified by the term leader.

In the meantime, Bob finds TX by scanning the blockchain or by the Payment
Proof (which will be described later) secretly sent from Alice by other communi-
cation approaches. Bob tries to find out if the receiver of TX is himself or not.

To prove this, Bob recovers P again, but by his private key a rather than the
public key A which exploited the Elliptic Curve scalar multiplication homomor-
phism. Bob compares the recovered P ′ to P , and claims the money ownership if
P ′ = P .

Furthermore, Bob needs to prove this ownership to peers without revealing
his public key A and B. The One-time Public Key P has an associated private
key p which is only recoverable for Bob. As Bob exclusively knows a and b, p can
be computed without conducting the computationally infeasible Elliptic Curve
scalar divisions. With the exclusively owned One-time Private Key p, Bob can
prove the money ownership by digital signatures which is verifiable by anyone.

The One-time Public Key approach indicates that Bob should verify the One-
time Public Keys of all new transactions appended to the blockchain, which is
similar to claiming the ownership anonymously. However, as a single verification
is a fairly time-consuming cryptographic process, the claiming process introduces
huge overhead. Monero leverages the overhead by the Payment Proof (also called
Transaction Key) which is generated by Alice and unicasted to Bob with other
approaches secretly. The Payment Proof is generated from the transaction infor-
mation cryptographically, by which Bob can easily identify his transaction on
the blockchain7.

7 https://getmonero.org/resources/user-guides/prove-payment.html.

https://getmonero.org/resources/user-guides/prove-payment.html

Evaluating CryptoNote-Style Blockchains 37

Fig. 5. CryptoNote scheme.

Untraceability with Double Spending Resistance by Key Image and
One-Time Ring Signature in CryptoNote. While the unlinkability is
achieved by the One-time Public Key, the untraceability is achieved by the One-
time Ring Signature mentioned in Sect. 2. The process is shown in Fig. 5, which
essentially wraps the One-time Ring Signature in Fig. 1 and further fits the sig-
nature scheme into the transaction creation.

Firstly, Alice generates a random private key x ∈ Zq and the corresponding
public key P and Key Image I. Secondly, Alice grabs a random set of public keys
to form a ring and produce the One-time Ring Signature for the transaction TX,
in which the inputs store I as the masked sender address. After that TX along
with the signature σ(TX) is sent to Bob the verifier. Bob verifies the signature
with the routine in Fig. 1, unpacks TX to recover I, then checks if I was used
in previous signatures. If TX is valid and I is new, TX is treated as valid and
broadcasted to more peers by Bob.

The One-time Public Key and One-time Ring Signature are both modular,
so easy to fit into a single system in a mutually exclusive manner. However,
CryptoNote only masks the sender and receiver, while the amount is visible.

Hiding the Sender and the Amount by Combining MLSAG, Pedersen
Commitment and Range Proof in RingCT. The solution, RingCT, mixes
the Pedersen Commitment into the ring signature in order to mask the amounts.
However, this modification on CryptoNote introduces the Range Proof problem
which contributes to significant overhead.

The proposed RingCT scheme is shown in Fig. 6, which integrates the
MLSAG scheme in Fig. 3. Instead of “one user one public key”, each user has a
vector of m key pairs to be compatible with the number of outputs m. Each out-
put amount is replaced by the commitment value which is generated randomly
with constraints, and the commitment values are involved in the ring used by the
MLSAG Signature. In addition, the message to be signed is a series of commit
values rather than the transaction itself.

The Range Proof is utilized in order to determine the range of unmasked
amounts. As the amounts are masked and the Elliptic Curve Group is cyclic, a
recovered value may have multiple possible values. Therefore, a Range Proof with
commitments is conducted again for each output. To make the proof verifiable,

38 R. Han et al.

a simpler Ring Signature scheme called Borromean Ring Signature is utilized to
sign the commitments. However, the Range Proof takes much space in practise.
A commitment value takes at least 8 Bytes according to the Ed25519 curve
specification, which is 64 bits. For each bit a commitment value is generated in
order to form the Ring Signature. In other words, 64 commitment values and a
Ring Signature with 128 keys are responsible for only one output amount.

Evaluating Complexity and Transaction Size. We evaluated the compu-
tational complexity and the theoretical transaction size against the number of
inputs, the number of outputs and the ring size for transaction-related opera-
tions. The results are shown in Table 3.

Table 3. The computational complexity of transaction-related operations for
CryptoNote and RingCT

Generate Verify (+ Link)

Time Space Time Space

CryptoNote One-time

address

O(out) O(out) O(out) O(out)

One-time

Ring

Signature

O(n) O(n) O(n) O(n)

RingCT One-time

address

O(out) O(out) O(out) O(out)

Pedersen

Commitment

O(in+out) O(in+out)

Fake

Transaction

Generation

O(n*(in+out)) O(n*(in+out))

MLSAG O(n*out) O(n*out) O(n*out) O(n*out)

Range Proof O(out*amount) O(out*amount) O(out*amount) O(out*amount)

Computational Complexity. Obviously, an One-time Public Key is generated for
each output in a transaction, so the generation of verification of One-time Public
Key is O(out) for both CryptoNote and RingCT.

The Pedersen Commitment generation consists of finding random masked
values and masks for each inputs and outputs, so the time and space complexity
is O(in + out).

Similarly, generating (n−1) fake key vectors and commitment values involves
n − 1 One-time Public Key generations, n − 1 fake amount and Pedersen Com-
mitment generations. Therefore, the time and space complexity is n− 1 times of
O(in + out), which is O(n ∗ (in + out)).

The verifications of Pedersen Commitments, fake transaction generations,
and the MLSAG Signature are all accomplished by the MLSAG Signature veri-
fication, as those three processes are deeply coupled. Therefore, we only consider

Evaluating CryptoNote-Style Blockchains 39

Fig. 6. Hiding the receiver and the amount by MLSAG, pedersen commitment and
range proof

the computational complexity of the MLSAG Signature. As the key matrix is
n× (out+1), the MLSAG Signature generation and verification are all with the
time and space complexity O(n ∗ out) according to Sect. 3.1.

As for the Range Proof, for each output in a transaction, a Range Proof is
conducted, including the commitment and the Borromean Signature. The com-
mitment value generation for an output is with the time and space complexity
O(out ∗ amount) apparently. Based on the Borromean Signature process the
time and space complexity is the same. Therefore, for a single transaction with
out outputs, the time and space complexity for the Range Proof generation and
verification is O(out ∗ amount).

40 R. Han et al.

Transaction Size. The previous space complexity analysis implies that a RingCT
transaction takes significantly more memory space than a CryptoNote transac-
tion with the same number of inputs, outputs and the ring size. Therefore, we
focus on the space overhead in RingCT.

Ignoring the unimportant information in a transaction like the version num-
ber, the major parts include inputs, outputs and the extra data related to the
verification. Apparently, the input size increases linearly with the number of
inputs increases, which is the same as the output size. Meanwhile, the Ring
Signature and the Range Proof contribute to the most overhead in RingCT.
The following analysis assumes that the Elliptic Curve points are stored in the
compressed format of 4 Bytes8.

Firstly, the MLSAG scheme involves a n × (out + 1) key matrix, and the
Ring Signature size is directly related to the number of rings according to Fig. 3.
Meanwhile, the One-time Ring Signature only takes n signatures. We quantify
the relationship between the signature size and the number of inputs, outputs
and public keys based on Figs. 1 and 3:

size of(Ring SignatureCN) = 4 ∗ size(I, c1, ..., cn, r1, ..., rn)
= 4 ∗ (2n + 1)(Bytes)

size of(Ring SignatureRCT) = 4 ∗ [size(ring) + in + 1]
= 4 ∗ [n ∗ (in + 1) + in + 1])
= 4 ∗ (n + 1)(in + 1)(Bytes)

Secondly, the Range Proof takes much space. Although the Range Proof size
increases linearly with the number of outputs increase, the coefficient is quite big
in practical. We assume amount = 64 (which is identical with the CryptoNote
and RingCT specifications), and quantify the relationship between the Range
Proof size and the number of outputs:

size of(RangeProofRCT) = 4 ∗ out ∗ [size(signature) + size(maskedV alues)]
= 4 ∗ out ∗ [(size(ring) + 1) + amount]
= 4 ∗ out ∗ [2 ∗ amount + 1 + amount]
= 4 ∗ out ∗ [64 ∗ 2 + 1 + 64])
= 772 ∗ out(Bytes)

Table 4 concludes the results above. In conclusion, the approach of RingCT
to hide the amount is expensive on the memory space. In the cryptocurrency
context, big transactions lead to higher transaction fees9 and lower transaction
throughputs due to the block size limitation [2]. Therefore, leveraging the trans-
action size while keeping anonymous for cryptocurrencies is a crucial topic.
8 https://crypto.stackexchange.com/questions/8914/ecdsa-compressed-public-key-

point-back-to-uncompressed-public-key-point.
9 The Bitcoin transaction fee specification: https://en.bitcoin.it/wiki/Transaction

fees.

https://crypto.stackexchange.com/questions/8914/ecdsa-compressed-public-key-point-back-to-uncompressed-public-key-point
https://crypto.stackexchange.com/questions/8914/ecdsa-compressed-public-key-point-back-to-uncompressed-public-key-point
https://en.bitcoin.it/wiki/Transaction_fees
https://en.bitcoin.it/wiki/Transaction_fees

Evaluating CryptoNote-Style Blockchains 41

Table 4. The size of Ring Signatures and Range Proofs with different inputs, outputs
and ring sizes

Ring Signature Range Proof

CryptoNote (2n+1)*4 0

RingCT (out+1)(n+1)*4 772*out

4 Performance and Security Comparisons

According to Sect. 3.2, the performance of privacy-related techniques introduces
overhead. However, Sect. 3.2 only focuses on the theoretical analysis, which may
be different from the real implementation.

In this section, a detailed comparison between the CryptoNote protocol and
the RingCT protocol is conducted, including the performance evaluation and
the network status of the existing blockchain platforms based on CryptoNote
and RingCT (We chose Bytecoin10 as the CryptoNote reference implementation
and Monero11 as the RingCT reference implementation).

4.1 Experimental Methodologies

Evaluated Metrics. While the privacy is enhanced, the computational and
storage overhead is introduced based on our analysis in Sect. 3.2, which may
lead to lower transaction throughput and higher transaction fees. To evaluate
the performance of privacy-related techniques from the practical perspective, the
evaluation task is divided into two subtasks:

– Evaluating the performance of specific cryptographic processes
– Evaluating the blockchain network usage

The first subtask benchmarks the performance of privacy-related crypto-
graphic processes, including:

– Time of constructing a transaction with different inputs and outputs
– Time of verifying a transaction (signature) with different inputs and outputs
– Transaction size with different inputs and outputs

Meanwhile, the blockchain network usage evaluation focus on the actual sta-
tus of the running blockchains, which represents the true attitudes of network
participants rather than the whitepapers. The evaluated metrics include:

– Ring size of signatures
– Transaction size
– The number of transaction inputs
– The number of transaction outs

10 CryptoNote implementation in Bytecoin: https://github.com/bcndev/bytecoin/
blob/d3dd3acf0a3113c9801589c6a512ef68a6eabed2/src/crypto/crypto-ops.h.

11 RingCT implementation in Monero: https://github.com/monero-project/monero/
blob/3fde902394946281665531abd742c64bdb23be25/src/ringct/rctOps.cpp.

https://github.com/bcndev/bytecoin/blob/d3dd3acf0a3113c9801589c6a512ef68a6eabed2/src/crypto/crypto-ops.h
https://github.com/bcndev/bytecoin/blob/d3dd3acf0a3113c9801589c6a512ef68a6eabed2/src/crypto/crypto-ops.h
https://github.com/monero-project/monero/blob/3fde902394946281665531abd742c64bdb23be25/src/ringct/rctOps.cpp
https://github.com/monero-project/monero/blob/3fde902394946281665531abd742c64bdb23be25/src/ringct/rctOps.cpp

42 R. Han et al.

Experimental Data. The data sources include:

– Results of running official test cases12,13 with customized configurations.
– The transaction data which can be queried on the blockchain explorers14,15.

As for performance-related metrics, we chose 1, 2, 4, 6, 8, 16, 32, 64, 128 as the
ring size, the input number and the output number to obtain experimental results
from existing test cases.

In the meantime, more than 200,000 most recent transactions are crawled
from the Bytecoin and Monero blockchain explorers in order to conduct the
network usage analysis.

Experimental Environment

Hardware. The experiments for performance-related metrics were conducted on
a laptop with a 64-bit Intel Core i7-6700HQ processor with 8 cores running at
2.60 GHz, 24 GB RAM, one Intel SATA SSD with 210 GB, a Nvidia GeForce
GTX 960m GPU with 4 GB DRAM.

Software. We chose Bytecoin v2.1.216 as the reference CryptoNote implemen-
tation, which is a CryptoNote-based and actively maintained cryptocurrency
without modifying the CryptoNote core protocol. Meanwhile, Monero v0.12.3.017

was regarded as the reference RingCT implementation, which is the first and the
most prevalent RingCT-based cryptocurrency.

The selected blockchain platforms were compiled from the source code with
the compiler GCC 5.4.0. The operating system is Ubuntu 18.04.

4.2 Performance of Critical Cryptographic Processes

Constructing Transactions

Results. The time of constructing a transaction with different inputs and outputs
is shown in Fig. 7. Constructing a Monero transaction is more time-consuming
than constructing a Bytecoin transaction with the same inputs and outputs.
Moreover, the number of outputs is the dominant factor of constructing a Monero
transaction, while the number of inputs and the number of outputs have similar
impacts of the Bytecoin transaction construction.

12 Bytecoin test cases: https://github.com/amjuarez/bytecoin/tree/frozen-master/
tests.

13 Monero test cases: https://github.com/monero-project/monero/tree/master/tests.
14 https://xmrchain.net/block/1618540.
15 https://explorer.bytecoin.org/.
16 https://github.com/amjuarez/bytecoin/tree/frozen-master.
17 https://github.com/monero-project/monero/.

https://github.com/amjuarez/bytecoin/tree/frozen-master/tests
https://github.com/amjuarez/bytecoin/tree/frozen-master/tests
https://github.com/monero-project/monero/tree/master/tests
https://xmrchain.net/block/1618540
https://explorer.bytecoin.org/
https://github.com/amjuarez/bytecoin/tree/frozen-master
https://github.com/monero-project/monero/

Evaluating CryptoNote-Style Blockchains 43

Fig. 7. Time of constructing a transaction with different inputs and outputs

Analysis. The results are expected and consistent to our protocol-level analysis.
As for Bytecoin, the time increases linearly with the increase of inputs and

outputs. According to Sect. 3.2, the overhead introduced by the CryptoNote
protocol are mainly the One-time Ring Signature which is linearly influenced
by the ring size. The rest overhead increases linearly with the increase of the
transaction size, which is linearly correlated with the number of inputs and
outputs as well. Therefore, the constructing time increases with the number of
inputs and outputs increases.

When it comes to Monero, the time is dominated by the number of outputs.
According to Sect. 3.2, each output is attached with a Range Proof, and each
Range Proof is attached with a Borromean Ring Signature. A Range Proof
is considerably expensive, leading to a big overhead. Moreover, the size of a
MLSAG Signature is linearly correlated to the number of outputs. Therefore, the
number of outputs contributes to the most overhead so dominates the RingCT
transaction construction time.

Verifying Transactions (Signatures)

Results. The time of verifying a signature with different ring sizes are shown in
Fig. 8. Note that the signature is on an empty transaction with only one input
and one output. It is observed that verifying a signature in Bytecoin is faster than
in Monero. Also, the consumed time increases linearly with the ring size increases
for both Bytecoin and Monero. For example, with the average ring sizes (3 for
Bytecoin and 8 for Monero, which will be discussed later), the verification time
of the Bytecoin signature is approximately 1ms, while for Monero the verification
time is 20 ms.

Analysis. Because the number of inputs and outputs is fixed, the only vari-
able is the ring size. The One-time Ring Signature of CryptoNote has the time
complexity O(n), while the MLSAG Signature is O(mn). In Monero context,
m = out, and out = 1 in the test case, so m = 1 and the MLSAG Signature time
complexity here is O(n) as well. Therefore, the linear increase of the verification
time is as expected. On the other hand, the reason why the MLSAG Signature
verification time is longer than the One-time Ring Signature is because of the

44 R. Han et al.

Fig. 8. Time of verifying a transaction (signature) with different ring sizes

space overhead introduced by the iterative hashing process without parallelism
for computing c1, ..., cn+1.

4.3 Network Usage Analysis and Potential Threats

Ring Size

Results. The results are represented as histograms with marked average ring
sizes, shown in Fig. 11. The average ring size is approximately 3, and the manda-
tory minimum, ring size is 1 (no mixins) in Bytecoin.

With Bytecoin, the mandatory minimum ring size has not been changed.
However, Monero has updated the mandatory minimum ring sizes several times
in the history. Monero V6 (Helium Hydra)18, which hard-forked Monero V5 at
the block height 1400000, firstly forced RingCT transactions with the mandatory
ring size of 5. Then Monero V7 (Lithium Luna)19, which hard-forked Monero V6
at the block height 1539500, changed the mandatory ring size to 7. It is noted
that RingCT was firstly introduced in Monero V5 (Wolfram Warptangent)20,
but was not mandatory for transactions. The mandatory ring size of Monero V5
is 5 as well. Before Monero V5 the RingCT was not deployed, and the mandatory
ring size was even smaller, which is out of our topic.

We conducted ring size analysis on Monero V6 and V7, as we focus on
RingCT transactions. With the mandatory ring size of 5, the average ring size
is 5.65. After changing the mandatory ring size to 7, the average ring size turns
to 7.59. In the meantime, Monero users intend to choose bigger ring sizes than
Bytecoin users according to our statistics.

Analysis. The ring size is directly correlated with the anonymity of senders and
receivers. With more public keys mixed in a transaction, the identities of senders
and receivers will be more ambiguous. Monero chose a bigger mandatory ring size

18 https://github.com/monero-project/monero/releases/tag/v0.11.0.0.
19 https://github.com/monero-project/monero/releases/tag/v0.12.0.0.
20 https://github.com/monero-project/monero/releases/tag/v0.10.0.

https://github.com/monero-project/monero/releases/tag/v0.11.0.0
https://github.com/monero-project/monero/releases/tag/v0.12.0.0
https://github.com/monero-project/monero/releases/tag/v0.10.0

Evaluating CryptoNote-Style Blockchains 45

Fig. 9. The distribution and statistics of ring sizes

to strongly guarantee the identity ambiguity, making the Monero transactions
harder to trace. As a result, Monero users may concern more on privacy than
Bytecoin users, so intend to use bigger rings.

Inputs and Outputs

Results. Similar to the ring size statistics, the inputs and outputs distributions
are shown in Fig. 10, with marked averages. Compared to Monero, Bytecoin users
intend to include more inputs and outputs in a single transaction. In average,
each Bytecoin transactions include approximately 11 inputs and 12 outputs on
average, while the average inputs and outputs are only 2 and 3 for Monero,
respectively. Furthermore, Monero users never take more than 100 inputs or 40
outputs in a single transaction, but for Bytecoin the corresponding numbers are
approximately 1000 and 300.

Analysis. The reason that Monero users intend to take fewer inputs and outputs
than Bytecoin users is mainly because of the high transaction fees introduced by
bigger transaction sizes. According to the analysis in Sect. 3.2, hiding the output
amount sacrifices the transaction size. Moreover, this sacrifice will be greater
with more inputs or outputs. The transaction fee in Bytecoin and Monero is
directly related to the transaction size21. Hiding the amount may not be critical
for some Monero users compared to the high transaction fee. Therefore, Monero
users intend to include fewer inputs and outputs.

In fact, high transaction fee in Monero is a concerning problem since the
RingCT fork22,23. Different solutions have been emerging, which will be dis-
cussed later.

Transaction Size

Results. The size of a transaction has a direct impact on the transaction fee.
We conducted the transaction size statistics like before, shown in Fig. 11. The

21 Monero transaction fee calculator: https://www.monero.how/monero-transaction-
fee-calculator.

22 https://www.reddit.com/r/Monero/comments/7h0i5e/why is the fee so high 380/.
23 https://www.reddit.com/r/Monero/comments/74flal/why are fees so high/.

https://www.monero.how/monero-transaction-fee-calculator
https://www.monero.how/monero-transaction-fee-calculator
https://www.reddit.com/r/Monero/comments/7h0i5e/why_is_the_fee_so_high_380/
https://www.reddit.com/r/Monero/comments/74flal/why_are_fees_so_high/

46 R. Han et al.

Fig. 10. The distribution and statistics of inputs and outputs

transaction size is 3KB on average for Bytecoin, while 18KB for Monero. In
addition, Monero transactions are much bigger than Bytecoin transactions based
on the distribution.

In addition, we correlated the transaction size with the number of inputs
and outputs directly in Fig. 12. It should be noted that Fig. 12 omitted some
unusual data on the blockchains. For example, a Monero transaction contains
2495 inputs, which is a really big number regarding to the RingCT transactions.
Apparently, the transaction size of Monero is much bigger than of Bytecoin with
the same number of inputs and outputs. Moreover, the number of outputs in
Bytecoin is the dominant factor of the transaction size. As for Bytecoin, the
relation between the transaction size and the number of inputs and outputs is
fairly ambiguous.

Analysis. Based on our protocol-level analysis in Sect. 3.2 and analysis on the
ring size, inputs and outputs, the transaction size distribution is as expected:
Hiding the transaction amount introduces space overhead which greatly affects
the transaction size.

As for the relation between the transaction size and the number of inputs
and outputs for Bytecoin, the transaction size is most influenced by the ring
size rather than the number of inputs and outputs. In the meantime, due to the
MLSAG Signature combining with the Pedersen Commitment, the outputs take
the major part of a RingCT transaction, which proves the protocol-level analysis
towards transactions in Sect. 3.2.

Evaluating CryptoNote-Style Blockchains 47

Fig. 11. The distribution and statistics of transaction sizes same scale for all gifures

Fig. 12. Size of a transaction with different inputs and outputs

5 Conclusion

In this paper, we analysed the performance of two CryptoNote style blockchains,
i.e., ByteCoin and Monero, from the protocol layer and the application perspec-
tive. Our protocol-level comparisons started from formalizing the core Ring Sig-
nature schemes and the processes of hiding senders, receivers and amounts in
transactions. Then we compared the performance of the formalized anonymiza-
tion processes, including the theoretical time and space complexity and the trans-
action sizes in depth. The protocol-level comparisons indicate that RingCT hides
the amounts with significant space overhead, mainly from the MLSAG Signature
and the Range Proof.

We experimented on benchmarking the aforementioned cryptographic pro-
cesses and analyzing the real transaction data on these two blockchains. The
benchmarking results proved our protocol-level analysis that the number of out-
puts dominate the performance of transaction generations and verifications for
RingCT. Meanwhile, our network usage analysis based on the real blockchain
data showed that Monero users intend to include fewer inputs and outputs but
mix more public keys in a single transaction than Bytecoin users. The fewer
inputs and outputs of Monero is because of the high transaction fees introduced
by big transactions, implying that hiding the amounts is less concerning than

48 R. Han et al.

the transaction fees for Monero users. More mixed public keys indicate that
Monero users are actually concern more of the privacy than Bytecoin users, and
the overhead of hiding the senders and receivers is acceptable.

Acknowledgement. This work was partially supported by the National Natural Sci-
ence Foundation of China (61702342), the Science and Technology Innovation Projects
of Shenzhen (JCYJ20170302151321095).

References

1. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. J. Cryptogr. Eng. 2(2), 77–89 (2012)

2. Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn,
S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS,
vol. 9604, pp. 106–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53357-4 8

3. Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Okamoto, T., Wang, X. (eds.)
PKC 2007. LNCS, vol. 4450, pp. 181–200. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71677-8 13

4. Kumar, A., Fischer, C., Tople, S., Saxena, P.: A traceability analysis of monero’s
blockchain. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017,
Part II. LNCS, vol. 10493, pp. 153–173. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66399-9 9

5. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for Ad Hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP
2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27800-9 28

6. Maxwell, G., Poelstra, A.: Borromean Ring Signatures (2015)
7. Moser, M.: Anonymity of Bitcoin Transactions (2013)
8. Möser, M., et al.: An empirical analysis of traceability in the monero blockchain.

PoPETs 2018(3), 143–163 (2018)
9. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)

10. Noether, S., Mackenzie, A., et al.: Ring confidential transactions. Ledger 1, 1–18
(2016)

11. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

12. Ron, D., Shamir, A.: Quantitative analysis of the full Bitcoin transaction graph.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39884-1 2

13. Van Saberhagen, N.: Cryptonote v 2.0 (2013)

https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/978-3-319-66399-9_9
https://doi.org/10.1007/978-3-319-66399-9_9
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-642-39884-1_2

Goshawk: A Novel Efficient, Robust
and Flexible Blockchain Protocol

Cencen Wan1, Shuyang Tang1, Yuncong Zhang1, Chen Pan1,
Zhiqiang Liu1,2(B), Yu Long1(B), Zhen Liu1(B), and Yu Yu1(B)

1 Shanghai Jiao Tong University, Shanghai, China
{ilu zq,longyu,liuzhen}@sjtu.edu.cn, yuyu@cs.sjtu.edu.cn

2 Shanghai Viewsource Information Science and Technology Co., Ltd.,
Shanghai, China

Abstract. Proof of Work (PoW), a fundamental blockchain pro-
tocol, has been widely applied and thoroughly testified in various
decentralized cryptocurrencies, due to its intriguing merits including
trustworthy sustainability, robustness against Sybil attack, delicate
incentive-compatibility, and openness to any participant. Meanwhile,
PoW-powered blockchains still suffer from poor efficiency, potential self-
ish mining, to-be-optimized fairness and extreme inconvenience of proto-
col upgrading. Therefore, it is of great interest to design new PoW-driven
blockchain protocol to address or relieve the above issues so as to make
it more applicable and feasible. To do so, we present Goshawk, a novel
hybrid consensus protocol, in which a two-layer chain structure with two-
level PoW mining strategy and a ticket-voting mechanism are elaborately
combined. We show that this newly-proposed protocol has the merits of
high efficiency, strong robustness against “51%” attack of computation
power, as well as good flexibility for future protocol updating. As far as
we know, Goshawk is the first blockchain protocol with these three key
properties. Last but not the least, this scheme has been implemented and
deployed in the testnet of the public blockchain project Hcash(https://
github.com/HcashOrg) for months, and has demonstrated its stability
and high efficiency with such real-world test.

Keywords: Blockchain · Consensus protocol · Proof of work ·
Ticket-voting mechanism · Hybrid consensus

1 Introduction

To date, Bitcoin [27] and a variety of other cryptocurrencies have drawn
much attention from researchers and fintech industry. Their attractive inno-
vations show great promise of fundamental change in payments, economics and
politics around the world [28,38]. Recently, cryptocurrencies’ global market cap-
italizations have reached more than $250 billions [5]. The blockchain technique,
which is the underlying technique of various decentralized cryptocurrencies, is
an ingenious combination of multiple technologies such as peer-to-peer network,
c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 49–69, 2019.
https://doi.org/10.1007/978-3-030-14234-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_3&domain=pdf
https://github.com/HcashOrg
https://github.com/HcashOrg
https://doi.org/10.1007/978-3-030-14234-6_3

50 C. Wan et al.

consensus protocol over a distributed network, cryptographic schemes, and so on.
This technique provides a decentralized way to securely manage ledgers, which
is fundamental for building trust in our social and economic activities.

Proof of Work (PoW), which relies on computational puzzles (a.k.a. moder-
ately hard functions) introduced by Dwork and Naor [12], is a blockchain pro-
tocol used to maintain the consistency of distributed ledger in a decentralized
setting so as to prevent fraud and double-spending attacks. So far it has been
implemented in 250 cryptocurrencies or more such as Bitcoin, Ethereum, and
so on, serving as the underlying blockchain protocol. PoW has amazing features
including trustworthy sustainability, robustness against Sybil attack, delicate
incentive-compatibility, and openness to any participant (i.e., participants could
join and leave dynamically), though it still needs to be improved in the following
aspects:

– Efficiency. The transaction throughput of PoW-driven blockchain does not
scale well. For instance, Bitcoin supports very limited transaction throughput
(say, up to 7 transactions per second [2]), while the demand from practical
applications is much higher (MasterCard and VISA are reported to process
1200 to 56000 transactions per second).

– Fairness. PoW-based blockchains have been criticized for the potential of cen-
tralization of computation power [28]. Even a minor enhancement in fairness
is welcome, since it provides fewer incentives for miners to join forces to enjoy
the advantage of mining in a larger pool. This mitigates the centralization of
the mining power, thus improving the security property of blockchains.

– Robustness. It is known that in PoW protocol, selfish mining attack [13,15,29]
allows that adversaries deviating from the protocol may gain a disproportion-
ate share of reward, much more than they deserve. Besides, PoW protocol is
intrinsically subject to “51%” attack of computation power.

– Flexibility. In practice, it is extremely difficult to fulfill blockchain protocol
evolution. For example, modification to scale up existing protocol is a raging
debate in the Bitcoin community [6,17,18,31].

Till now, many attempts have been made to address or mitigate the issues
related to PoW protocol so as to make it more powerful. One approach is to
reduce the block interval to shorten latency. However, this approach compromises
certain stability or security of the decentralized system, which has been proven
by the practice of Ethereum [8]. Specifically, the short block interval (12s aver-
agely) adopted in Ethereum brings instability to the system. To solve this issue,
Ethereum implements the GHOST protocol [36] which maintains the main chain
at a fork by choosing the side whose sub-tree contains more work (accumulated
over all blocks in the sub-tree). GHOST improves the mining power utilization and
fairness under high contention, but has the weakness that in some cases, no single
node has enough information to determine which is the main chain. The second
approach is to enlarge the block. It improves throughput, but aggravates commu-
nication burden to the network, which in turn increases the stale block rate, and
finally damages the security of PoW-based blockchain [19]. The third approach
is to use sharding mechanism to achieve a sweet spot between PoW and classical

Goshawk: A Novel Efficient, Robust and Flexible Blockchain Protocol 51

Byzantine consensus protocol [25], which leads to throughput scaling. The key
idea in this approach is to partition the network into smaller committees, each of
which processes a disjoint set of transactions. Each committee has a reasonably
small number of members so they can run a classical Byzantine consensus proto-
col to decide their agreed set of transactions in parallel. The fourth approach is to
perform transactions off the chain, such as lightening network [32], raiden network
[1], and so on [11,21,26]. These works allow for extensive payment networks where
transactions can be performed efficiently and scalably without trusted middle-
men, especially targeting on fast micropayments. Moreover, Eyal et al. proposed
Bitcoin-NG [14], a scalable blockchain protocol, by introducing a two-layer chain
structure which consists of keyblocks and microblocks. Bitcoin-NG boosts trans-
action throughput by decoupling PoW protocol into two planes: leader election
and transaction serialization. Once a miner generates a keyblock by solving the
computational puzzle, he is elected as a potential leader and entitled to serialize
transactions into microblocks unilaterally until a new leader is chosen. Although
the above approaches provide some interesting ideas for improving PoW protocol,
they mainly focus on the efficiency issue related to PoW.

On the other hand, alternative blockchain protocols have been introduced
to replace PoW. Among them the most promising ones may be the Proof of
Stake (PoS) [23,34] and its variants such as Snow White [7], Ouroboros [22],
Ouroboros Praos [10] and Algorand [20]. PoS protocol grants the right of gener-
ating blocks to stakeholders instead of miners with computational power. Specif-
ically, in PoS protocol, rather than miners investing computational resources in
order to participate in the leader election (i.e., block generation) process, they
instead run a process that randomly selects one of them proportionally to the
stake that each possesses according to the current blockchain ledger. The ratio-
nale behind PoS is that stakeholders are motivated to maintain the consistency
and security of blockchain, since the value of their stake will shrink when these
properties are compromised. Although PoS protocol owns intriguing potential,
its practicality, applicability and robustness still need to be examined exten-
sively via a mass of public blockchains implementing PoS as their underlying
protocol before it is widely admitted. Another interesting direction is to adopt
DAG(Directed Acyclic Graph)-based framework instead of blockchain structure
to acquire high throughput by exploiting the high concurrency nature of DAG
structure [9,24,33]. However, to date, there has not been any rigorous security
guarantee for DAG-based distributed ledger technology, thus the security of this
technology needs to be investigated further.

As PoW protocol has already demonstrated its practicality – PoW-powered
blockchains currently account for more than 90% of the total market capitaliza-
tion of existing digital cryptocurrencies, and its importance in permission-less
network was also stated by Pass and Shi in [30], it is of great interest to strength
PoW further by addressing or mitigating the related issues mentioned above.
Nevertheless, it can be seen that the current state of the art in improving PoW
protocol is still far from satisfactory.

52 C. Wan et al.

1.1 Our Contribution

In this work, we propose Goshawk, the first brand-new candidate of PoW-
powered blockchain protocol with high efficiency, strong robustness, as well as
good flexibility. Goshawk is actually a hybrid consensus protocol, in which a two-
layer chain structure with two-level PoW mining strategy and a ticket-voting
mechanism are combined delicately. More specifically, we adopt the two-layer
chain structure (i.e., keyblocks/microblocks) given in Bitcoin-NG, and further
improve it by introducing two-level PoW mining strategy (i.e., keyblocks and
microblocks with two different mining difficulties, respectively). This guaran-
tees the high throughput of our scheme, while obviating the vulnerability to
the attack of microblock swamping in Bitcoin-NG. Furthermore, we borrow the
idea of the ticket-voting approach presented in DASH [3] and Decred [4], and
refine this idea by formalizing it into a more rigorous mechanism, then we com-
bine this mechanism with the above chain structure elaborately to attain strong
security and good flexibility. Security analysis of our scheme shows that it is
incentive-compatibility, and robust against selfish mining and “51%” attack of
computation power. Besides, we demonstrate that our scheme also allows good
flexibility for future protocol updating effectively. At last, this scheme has been
implemented and deployed in the testnet of the public blockchain project Hcash
for months, and has demonstrated its good stability and promising scalability
with such real-world test. This also suggests the interesting potential that our
scheme could be employed in next-generation cryptocurrencies.

1.2 Paper Organization

The remainder of the paper is organized as follows. Sect.2 presents Goshawk, a
novel hybrid consensus protocol. Then we analyze the security of this protocol
in Sect.3. Further, we introduce a two-phase upgrade process to demonstrate the
flexibility of Goshawk in Sect.4. The protocol evaluation and performance test
of Goshawk in a real-world setting are shown in Sect.5. Finally, we conclude our
work in Sect.6.

2 The Goshawk Protocol

The Goshawk protocol extends the Bitcoin-NG scheme, which significantly
improves the scalability of Bitcoin by introducing a two-layer chain structure
consisting of keyblocks and microblocks, while avoiding the microblock swamp-
ing attack in Bitcoin-NG1. Besides, Goshawk adopts ticket-voting mechanism
1 Considering the cheap and quick generation of microblocks, a leader can swamp the

system with microblocks. Specifically, in Bitcoin-NG, although a minimal interval
between two sequential microblocks could be set to avoid massive microblocks in
a single microblock chain, the malicious leader could generate tremendous amount
of microblock branches. For other parties, since each branch is self-consistent, they
have to relay all these branches. This eventually paralyzes the whole network, causing
legal transactions and blocks fail to spread.

Goshawk: A Novel Efficient, Robust and Flexible Blockchain Protocol 53

Table 1. Table of Notations

Notation Description

D The confirmations required for tickets maturity

E The maximum number of tickets per keyblock

F The price adjustment function

L System optimal size of ticket pool

N The number of tickets selected by each keyblock

P The Ticket price

P The function mapping keyblock to N tickets

R The initial key height of the ticket-voting mechanism

S Total amount of stakes

T The average keyblock generation interval

TP The ticket pool

elaborately to achieve strong security and good flexibility. Table 1 presents some
of the notations used in this section.

2.1 Two-Level Mining Mechanism

Similar to the idea of subchains [35,37], we propose a two-level mining mecha-
nism, in which we set two levels of difficulty for computation puzzle, to address
the microblock swamping attack on Bitcoin-NG. Solving the puzzle with low dif-
ficulty allows a miner to generate a microblock. While if the solution simultane-
ously meets the requirement of higher difficulty, the resulting block is a keyblock.
The ratio of mining difficulty between keyblock and microblock is set to be m.
If the average keyblock generation interval is T , then the average microblock
generation interval is t = T/m.

A fork happens when multiple blocks follow the same parent. In that case,
we say the blockchain has more than one branches. We define main chain as
the branch containing the most keyblocks. If there are more than one branches
that satisfy the condition above, a miner will select one of them randomly as the
main chain. This is called the longest keyblock chain rule. We define the height
of a block (either keyblock or microblock) as the number of blocks preceding it
and the key height of a block as the number of keyblocks preceding it, in the
same branch.

Definition 1 presents the structure of the block in our scheme.

Definition 1 (Block Structure I). We define a block, denoted by B, as the
following tuple

B = (Htip,B ,Htip,K , h, k, {tx}, n)

54 C. Wan et al.

where

– Htip,B is the hash of previous block (either keyblock or microblock);
– Htip,K is the hash of previous keyblock;
– h is the block height;
– k is the key height;
– {tx} is the transaction set contained in the block;
– n is the nonce found by the miner.

B is a valid keyblock if Hash(B) ≤ TK , where TK is the threshold of computation
puzzle for keyblock; B is a valid microblock if TK < Hash(B) ≤ TM , where TM

is the threshold for microblock.

We denote the block being mined by miner P as Btemp. Let Htemp =
Hash(Btemp). Miner P increments n starting from 0, until Htemp ≤ TM . If
Htemp ≤ TK , P broadcasts Btemp as a new keyblock Knew, otherwise P broad-
cast Btemp as a new microblock Mnew. Other participants determine whether
a received block is a keyblock or microblock depending on its hash value, and
update their main chain according to the longest keyblock chain rule. It can
be easily inferred that in our two-level mining mechanism, for miners mining
both keyblocks and microblocks, no additional computation power needs to be
consumed compared with miners only mining keyblocks.

Fork. Since mining microblock is relatively easy, microblock forks frequently.
However, once a new keyblock is created, all honest nodes will follow the chain
with the most keyblocks and such forks vanish. The new scheme will also experi-
ence keyblock forks, which happens rarer than microblocks. The duration of such
a fork may be long and the fork finally dissolved in several keyblock confirma-
tions. Though the works for microblocks contribute nothing to the selection of
branches, it is hard enough for spaming. According to the common prefix prop-
erty described in [16], we declare a block is stable if we prune all of the blocks
after it in the main chain, the probability that the resulting pruned chain will
not be mutual prefix of other honest miners’ main chain is less than a security
parameter 2−λ.

2.2 Ticket-Voting Mechanism

In our scheme, we refine the idea of ticket-voting approach given in DASH and
Decred to make it more applicable by formalizing it into a more rigorous mech-
anism. The core idea is stakeholders purchase ticket by locking their stakes to
proportionally obtain rights for a future vote. The ticket structure is presented
in Definition 2 and vote structure is presented in Definition 3.

Definition 2 (Ticket Structure). We define ticket a special transaction,
denoted by tk, as the following tuple

tk = (〈Hash(tx), i, sig〉, 〈P, pk〉)

Goshawk: A Novel Efficient, Robust and Flexible Blockchain Protocol 55

where

– 〈Hash(tx), i, sig〉 is the input of ticket;
– tx is a transaction as the source of funding for ticket purchasing;
– i is the order of output in tx. The amount of stakes in this output must larger

than P ;
– sig is the signature used to verify input;
– 〈P, pk〉 is the output of the ticket which will lock P stakes for ticket purchasing;
– P is a certain amount (called ticket price) of stakes locked for purchasing

ticket;
– pk is a public key.

Only tickets contained in keyblocks are considered valid. The number of tickets
contained in each keyblock is limited to E such that no one can spam tickets into
blockchain.

Definition 3 (Vote Structure). We define vote a special transaction, denoted
by vt, as the following tuple

vt = (〈Hash(tk), sig〉, 〈V, pk〉)

where

– 〈Hash(tk), sig〉 is the input of vote;
– tk is the ticket for voting;
– 〈V, pk〉 is the output of the vote which will refund the locked stakes;
– V is a specific amount of rewards.

Ticket Pool. A ticket is considered mature, denoted by mtk, if the keyblock
containing it gets at least D confirmations, i.e., it becomes stable. If a mature
ticket was spent on voting, we denote it by stk. We call the set of all unspent
mature tickets the ticket pool, denoted by TP, i.e, TP = {mtk} \ {stk}. Since
tickets in TP are stable, the sets of TP in different branches with the same key
height are exactly the same.

Validation Rule. A keyblock is considered valid only if a majority (more than
half) of its votes are collected by its successive keyblock. We stipulate that
miners can only mine after a validated keyblock (or a microblock preceded by
a validated keyblock) by collecting votes as a validation proof for this keyblock,
which is called the validation rule. If a keyblock is not validated by majority
votes, miners would ignore this keyblock.

The ticket-voting mechanism is divided into the following four steps.

– Participants purchase tickets which will be added to the ticket pool after D
confirmations.

– Each latest keyblock is mapped into N random tickets from TP via a function
P which is defined in Definition 4.

56 C. Wan et al.

– Owners of selected tickets issue votes, if the corresponding keyblock is valid.
– Miners collect votes and select mining strategies according to the validation

rule.

Definition 4 (Mapping Function). We define a mapping function

P(TP,Hash(K)) = {tkj}j∈[N] = argmax
tk1,··· ,tkN∈TP

{
N∑

i=1

Hash(Hash(tki) ⊕ Hash(K))

}

where K is a keyblock.

Each ticket can only be chosen once and then be removed from ticket pool
even if the owner missed the voting, in which case the ticket is considered missed.
The owner of a selected ticket will be refunded with the stake locked by this
ticket, and a voted (not missed) ticket additionally brings the owner a specific
amount of rewards.

Ticket Price Adjustment Function. Ticket price is automatically adjusted
by the function F(|TP|, P, L) which takes as input the size of TP, current ticket
price P and a parameter L. The initial ticket price is set as a system parameter. F
returns a new price P ′ which increases exponentially compared to P if |TP| > L,
while decreases when |TP| < L. Therefore, when |TP| > L, users are reluctant to
purchase tickets, while if |TP| < L users are more willing to. In this way, the size
of TP fluctuates around L, thus on average each ticket waits time (L/N +D)×T
before it is chosen.

A stakeholder with a p fraction of total stakes gains a disproportionate advan-
tage by engaging in ticket purchasing if others do not devote all their stakes
into tickets. To reduce such advantage, L should be large enough such that
L × P ≈ S/f , where S is the total amount of stakes and f is a constant greater
than 1. A stakeholder who holds β fraction of the tickets in TP has a proba-
bility of M(N,β) to reach majority in the chosen tickets of a keyblock, where

M(N,β) =
∑N

i=�N/2�+1

(
N
i

)
βi(1 − β)N−i.

On startup, PoW is the only consensus protocol because ticket pool is empty
at the beginning of the chain. The ticket-voting mechanism begin at key height
R which is selected such that R = L/E + D.

2.3 Goshawk: Hybrid Consensus Scheme

By delicately combining the improved two-layer blockchain structure with the
ticket-voting mechanism mentioned above, we construct a novel hybrid consensus
scheme, Goshawk. The new block structure is presented in Definition 5.

Definition 5 (Block Structure II). We define a block, denoted by B, as the
following tuple

B = (Htip,B ,Htip,K , h, k, {tx}, {tk}, {vt}, n)

where Htip,B, Htip,K , h, k, {tx}, n are as in Definition 1.

Goshawk: A Novel Efficient, Robust and Flexible Blockchain Protocol 57

Compared to the mining process described in Sect. 2.1, in this combined
scheme, the miner P needs to take the following additional steps.

– In addition to the transaction {tx}, Btemp also contains a set of ticket purchas-
ing transactions {tk}, which were collected and stored locally by P similar to
ordinary transactions.

– P collects at least �N/2� + 1 votes for the previous keyblock (whose hash is
Htip,K), and put this set of votes {vt} into Btemp. If P fails to collect enough
votes for Htip,K , it abandons this keyblock and continue to mine after the
previous keyblock.

– The {tk} and {vt} will be ignored if Btemp turns out to be a microblock, since
they are only valid in keyblocks.

When a newly generated keyblock Knew is broadcast, those stakeholders cho-
sen by this keyblock check this keyblock, issuing and broadcasting votes if it is
valid. Other miners collect these votes and switch to mine after Knew as soon as
the votes satisfy the majority rule. The mining process is described in Algorithm
1. The structure of Goshawk is shown in Fig. 1.

Algorithm 1. Mining process in Goshawk
1: procedure Mining
2: loop:
3: Btemp ← Htip,B‖Htip,K‖h‖k‖n‖{tx}‖{tk}‖{vt}
4: if Hash(Btemp) ≤ TK then
5: Knew ← Btemp

6: P broadcast Knew

7: else if Hash(Btemp) ≤ TM then
8: Mnew ← Btemp

9: P broadcast Mnew

10: end if
11: if P recieved Knew and ReceiveMajorityVotesOf(Knew)
12: and IsTipOfMainChain(Knew) then
13: Htip,B ← Hash(Knew)
14: Htip,K ← Hash(Knew)
15: h ← GetHeightOf(Knew) + 1
16: k ← GetKeyHeightOf(Knew) + 1
17: else if P recieved Mnew

18: and ReceiveMajorityVotesOf(GetPreviousKeyBlockOf(Mnew))
19: and IsTipOfMainChain(Mnew) then
20: Htip,B ← Hash(Mnew)
21: Htip,K ← Hash(GetPreviousKeyBlockOf(Mnew))
22: h ← GetHeightOf(Mnew) + 1
23: k ← GetKeyHeightOf(Mnew)
24: end if
25: n ← n + 1
26: goto loop.
27: end procedure

58 C. Wan et al.

Incentive Mechanism. Block reward is divided into two parts, a ratio w to
keyblock miners, the rest to the voters, therefore each voter earns (1−w)/N of the
block reward. Block rewards are spendable only after the containing keyblock is
followed by D keyblocks. To encourage keyblock miners to collect as many votes
as they can, the actual block reward a miner earned is based on how many votes
it collects. For example, if M votes are collected, (1 − w)M/N is the precise
reward. If a voter misses to vote, it also misses the reward. Microblock miners
share the transaction fees, which is split into three parts, where 60% is given to
the miner whose block (either keyblock or microblock) contains the transaction,
30% to the next block and 10% to the next keyblock.

Fig. 1. The structure of Goshawk. The tickets are denoted by dots, the transactions
are denoted by cross marks, the keyblocks are denoted by big rectangles, and the
microblocks are denoted by small rectangles. A keyblock contains transactions and add
tickets into ticket pool. Meanwhile, a keyblock pseudo-randomly selects tickets which
will be removed from ticket pool. Chosen stakeholders vote for keyblock to validate it
and votes will be contained by the next keyblock.

3 Security Analysis

Our protocol has two goals. One is the incentive compatibility. All rational par-
ticipants would operate honestly since they benefit nothing deviating from the
protocol. Another one is robustness against ”51%” attack and selfish mining
attack.

3.1 Incentive Compatibility

We show that our Goshawk scheme is incentive-compatible (i.e. each participant
benefits nothing from deviating from the protocol) under the assumption that
all participants are rational.

Goshawk: A Novel Efficient, Robust and Flexible Blockchain Protocol 59

Table 2. Table of Notations

Notation Description

a The fraction of transaction fee included in one block for the
current block owner

b The fraction of transaction fee included in one block for the next
block owner

B The block reward for a keyblock

c The fraction of transaction fee included in one block for the next
keyblock owner

F Total transaction fees included in one block

m The difficulty ratio, i.e. the ratio of difficulties of mining a
keyblock and mining a microblock

q The probability for one miner to generate the next block, and
this block is keyblock

Fig. 2. Mining Strategy in Case 1.

Strategy of Rational Participants. In this part, we show that all rational
participants obey the mining rule. That is, rational participants always mine on
the latest validated block. In another word, any participant gains no marginal
revenue by deviating from the rule above (i.e. the Nash equilibrium of Goshawk).
The latest valid block can be a keyblock or a microblock, in the following, we
will discuss the rational strategies for each case respectively. Table 2 presents
some of the notations used subsequently.

Case 1. A Keyblock as the Latest Valid Block. As shown in Fig. 2, when
the latest valid block is a keyblock, one participant may mine after the latest
keyblock (block E), or after the previous microblock (block D) to reach a higher
revenue. We compare the expected revenues with two strategies above and prove
that following the longest keyblock rule (i.e. mining after block E) is the ratio-
nal choice. In the following discussion, we use q to denote the probability of
one participant’s generating the next block and the block is keyblock, then its
probability for her to generate the next block and the block is a microblock is
(m − 1)q. Also, we assume each keyblock contains block reward B, and each
block (keyblock or microblock) contains the same amount of transaction fee F .

60 C. Wan et al.

For distinction, we denote the transaction fee in a microblock by Fpm, the fee
in a keyblock by Fpk, and the fee in the block currently being mined by Fnow.
Moreover, ΣFprev (ideally ΣFprev ≈ mF) denotes the sum of all transaction
fees included from the previous keyblock (block A in Fig. 2) to the previous
microblock (block D) (Table 3).

Table 3. Revenues Following Block E or D.

Mining a keyblock Mining a microblock

Block E (a + c) × Fpk + b × Fnow + B a × Fpk + b × Fnow

Block D c × ΣFprev + a × Fpm + b × Fnow + B a × Fpk + b × Fnow

Hence, the expected revenue following the right block (block E) is

R = q × ((a + c) × Fpk + b × Fnow + B) + (m − 1)q × (a × Fpk + b × Fnow)
= q × ((a + c) × F + b × F + B) + (m − 1)q × (a × F + b × F)
= ((1 − c) × m + c)q × F + q × B.

By deviating the rule, a miner may generate a block after block D. In this
case, we regard that the probability of its block’s conquering the existing block
is smaller than 1/2. This is simple to understand since less than half participants
switches to an alternative chain when the chain is forked into two branches. Due
to this, the expected revenue via mining after block D is

R′ <
1
2

× q × (c × ΣFprev + a × Fpm + b × Fnow + B)

+
1
2

× (m − 1)q × (a × Fpk + b × Fnow)

= 0.5mq × F × (a + b) + 0.5q × c × ΣFprev + 0.5q × B.

Obviously, ΣFprev is related to the number of microblocks between two key-
blocks. Let X be a random variable which denotes the number of microblocks
between two keyblocks. Then, X follows a geometric distribution with parameter
m. Thus, we have: P (X = k) = 1

m (1 − 1
m)k−1. For a given parameter θ, we can

get:

P1 :=
∞∑

k=θ

P (X = k) =
∞∑

k=θ

1
m

(1 − 1
m

)k−1 = (1 − 1
m

)θ×m−1

This probability P1 increases in m, and we have limm→∞ P1 = e−θ. Thus, we
get P1 < e−θ. If we set parameter θ = 5, the probability that there are 5m
microblocks between two keyblocks is under 0.62%, which is small. According to
above analysis, ΣFprev ≤ 5mF , (ideally ΣFprev ≈ mF). Thus,

R′ < 0.5mq × F × (a + b) + 0.5q × c × ΣFprev + 0.5q × B

< 0.5mq × F × (1 + 4c) + 0.5q × B.

Goshawk: A Novel Efficient, Robust and Flexible Blockchain Protocol 61

Fig. 3. Mining Strategy in Case 2.

Letting R > R′, we get 1
2 (1+4c) < 1−c and hence c < 1

6 . In our implementation,
we select a = 0.3, b = 0.6, c = 0.1. Then, the expected revenue following the right
block (block E) is

R ≈ ((1 − c) × m + c)q × F + q × B = (0.9m + 0.1)q × F + q × B.

And the expected revenue via mining after block D is

R′ < 0.5mq × F × (1 + 4c) + 0.5q × B ≈ 0.7mq × F + 0.5q × B.

Obviously R′ < R, which leads to the conclusion that the rational strategy is to
follow the right block E.

Case 2. A Microblock as the Latest Valid Block. In the second case (as
shown in Fig. 3), one miner may mine a block following C or D. However, all the
revenues received by following C can also be received by following D. Moreover,
the miner will lost transaction fees of block D, if it mines after block C and
successfully finds a keyblock. For this reason, rational participants always mine
after the latest block in this case.

3.2 Robustness

Fault-Tolerance Property. We assume a worst adversary who tries to
undermine the system by proposing an invalid block without considering its
own merits.

In this part, microblocks are not considered since they have nothing to do
with the forks of the main chain. Therefore, we directly use “block” in place of
“keyblock” when no ambiguity exists. In a purely PoW-based cryptocurrency like
Bitcoin, the probability of one participant’s undermining the system is roughly
same as the fraction of its computation power among all participants. This is the
fault-tolerance property of PoW. However, in a hybrid scenario, the description
of the fault-tolerance property is more sophisticated. To begin with, we propose
a definition.

Definition 6 (ϕ-fault-tolerance). For a binary function ϕ : [0, 1] × [0, 1] →
[0, 1], a cryptocurrency scheme achieves ϕ-fault-tolerance, if and only if for any

62 C. Wan et al.

adversary with α fraction of total computation power and β fraction of total
stake, its probability of successfully proposing an invalid block should be no greater
than ϕ(α, β).

From this definition, we can formally analyze the fault-tolerance of our newly
proposed Goshawk consensus scheme.

Theorem 1 (Fault-tolerance of Goshawk). Goshawk achieve an
αγ(β)

1−α−γ(β)+2αγ(β) -fault-tolerance, where γ(β) =
∑N

i=�N/2�+1

(
N
i

)
βi(1 − β)N−i, N

is number of tickets each block selects.

Proof. Since ϕ(α, β) is an upper-bound of adversary’s advantage, we can assume
that all malicious computation power and stakes are held by one single adversary.
By the definition of fault-tolerance, the adversary with computation power of
rate α and stake of rate β tries to mine an invalid block and proposes this block
(i.e. the malicious block is voted by most corresponding ticket voters, since honest
voters will not vote to invalid blocks, this equals to having at least half voters
controlled by this adversary). Also, the adversary does not vote on all blocks
generated by honest parties.

For simplicity, we define the following three events.

– EA: A keyblock is found by the adversary, and more than half of its corre-
sponding tickets are controlled by the adversary.

– EB : A keyblock is found by the adversary, while more than half of its corre-
sponding tickets are at hands of honest parties.

– EC : A keyblock is found by an honest participant, while more than half of
its corresponding tickets are controlled by the adversary.

From here, we can calculate the upper-bound of adversary’s chance of propos-
ing an invalid block. Obviously,

ϕ(α, β) =
∞∑

i=1

(Pr[EB ∨ EC])i−1 Pr[EA] =
∞∑

i=1

(α (1 − γ) + (1 − α) γ)i−1
αγ

=
αγ

1 − α − γ + 2αγ

where γ is the probability that most corresponding tickets regarding to one block
is held by the adversary: γ(β) =

∑N
i=�N/2�+1

(
N
i

)
βi(1 − β)N−i.

We can observe that when γ = 1, the adversary can successfully deny any
blocks not proposed by herself, and hence ϕ(β) = 1. On the contrary, when γ = 0,
any adversary block is denied by honest participants, and therefore ϕ(β) = 0.
These are satisfied in case of ϕ(α, β) = αγ(β)

1−α−γ(β)+2αγ(β) .

For any adversary with α fraction of total computation power and β fraction
of total stake, to perform a “51%” attack , it should at least attain ϕ(α, β) > 1

2 .
That is, αγ

1−α−γ+2αγ > 1
2 ⇐⇒ α > 1 − γ. Assuming that β = 20%, N = 5,

then γ ≈ 6%, and the adversary must have over 1 − γ ≈ 94% total computation
power to successfully launch a “51%” attack.

Goshawk: A Novel Efficient, Robust and Flexible Blockchain Protocol 63

Selfish Mining Resistance. In a purely PoW-based cryptocurrency system,
the selfish mining can be relatively easily performed by continuously mining
in a separated environment, and is thereby hard to notice, and hard to pre-
vent. For instance, an adversary with more than 1/3 total hash rate (instead
of 1/2) can launch the selfish mining attack. However, in Goshawk, a block has
to be validated by corresponding voters. That is to say, to secretly mining a
continuous sequence of blocks, a block is only “useful” when its correspond-
ing tickets are mostly held by itself. Formally, to prevent adversary’s launch-
ing the selfish mining attack, instead of purely PoW-based cryptocurrencies’
α < 1

3 (see explanation in [15]), we have an upper bound ϕ(α, β) < 1
3 . That is,

αγ
1−α−γ+2αγ < 1

3 ⇐⇒ α < 1−γ
1+γ . Supposing β = 20%, N = 5, then γ ≈ 6%, and

the adversary has to attain 1−γ
1+γ ≈ 89% overall computation power to launch the

selfish mining attack.

4 Flexibility of Protocol Upgrade

A hardfork change is a change to the blockchain protocol that makes previ-
ously invalid rules valid, and therefore requires all participants to upgrade. Any
alteration to blockchain which changes the blockchain structure (including block
hash), difficulty algorithm, voting rules or enlarges the scope of valid transac-
tions is a hardfork change. These hardforks are inevitable for the evolution of
blockchain, however, it is extremely difficult to implement in a distributed net-
work. For example, where to scale up existing protocol is a raging debate in
the Bitcoin community and is not well settled yet. The reason why hardfork
changes are difficult to implement is that stakeholders can not participate fairly
in the protocol upgrade events which is usually determined by a small group
of powerful parties such as core developers, wealthy participants and influen-
tial organizations. If some participants refuse to upgrade, a permanent fork will
emerge.

Inspired by DASH and Decred, we introduce a two-phase upgrade process to
grant decision-making power to each stakeholder via ticket-voting mechanism,
activating the hardfork changes if the protocol upgrade wins the voting. We
denote every W keyblock intervals by a Rule Change Interval (RCI). The two-
phase upgrade process is described in Algorithm 2.

First Phase. The first phase is to meet the upgrade requirement over the net-
work. After the hardfork code which initially disables new functions is released,
a majority of participants need to upgrade firstly. The hardfork changes are
divided into two categories: changes of mining and changes of voting. For the
first one, At least x percent of the last W keyblocks must have the latest block
version. For the second one, y percent of the votes in the last W keyblocks
must have the latest vote version. Once upgrade threshold is met, the voting is
scheduled to begin from the first keyblock of the next RCI.

64 C. Wan et al.

Second Phase. The second phase is the actual voting. There are at most
W × N votes cast during a single RCI. The final keyblock of the RCI tallies the
votes within the RCI, and determines outcomes prior to the next keyblock being
mined. Possible outcomes are as follows:

– If the number of votes fail to meet the Yes (or No) majority threshold (i.e.,
z percent of votes are Yes (or No)), the voting process keeps on for the next
RCI.

– If the number of votes reach the Yes majority threshold, the voting process
exits and the hardfork changes will activate after next RCI (the next RCI is
set aside for unupgraded users to upgrade).

– If the number of votes reach the No majority threshold, the voting process
exits and the hardfork changes will never activate.

– If the voting process never reaches the majority vote threshold in Z rounds of
RCI, the voting process expires and the hardfork changes will never activate.

With the design of the two-phase upgrade process, stakeholders fairly par-
ticipate in the protocol upgrade. Successful hardfork changes, which obtain
the majority of votes, smoothly accomplish activation and implementation, while
failed changes would naturally be buried. The upgrade for the benefit of the
majority achieves healthy evolution of the blockchain ecology.

5 Protocol Evaluation and Performance Test

Implementation. This scheme has been implemented by Hcash. The source
code of Hcash can be found in Github2. We deployed a global network (the
testnet) to test our code of Hcash. The testnet was maintained for three months,
during which we have simulated various possible attacks and a pressure test on
this network. Results show that our scheme is practical and robust within all
scenarios under our considerations.

The Testnet. The testnet was deployed and maintained from September 29th

to December 21st of 2017. The block size was set to be 2MB and keyblocks were
generated every 5 min. The difficulty of mining a microblock was 1

32 that of key-
block, i.e., TM/TK = 32 (except for the pressure test, where the block size and
TM/TK were variables). The expected volume of the ticket pool was 40960 tick-
ets. Each keyblock was voted by 5 randomly selected tickets, adding at most 20
new tickets into the ticket pool. Each ticket became mature after the generation
of 128 new keyblocks.

We deployed 9 nodes as DNSSeeds via cloud services provided by Alibaba and
Amazon3, located in Beijing, San Francisco, Shanghai, Shenzhen, Sidney, Singa-
pore, and Tokyo, respectively. In particular, 25 nodes were physically deployed
in Shanghai to constitute the network. Moreover, during the test period of three
2 https://github.com/HcashOrg/hcashd.
3 https://aws.amazon.com/, https://www.alibabacloud.com/en.

https://github.com/HcashOrg/hcashd
https://aws.amazon.com/
https://www.alibabacloud.com/en

Goshawk: A Novel Efficient, Robust and Flexible Blockchain Protocol 65

Algorithm 2. two-phase upgrade process
1: procedure Upgrade
2: isVote ← 0
3: voteBegin ← 0
4: expire ← 3
5: loop:
6: if keyHeight mod W = 0 and MeetUpgradeRequirement() then
7: voteBegin ← 1
8: end if
9: if voteBegin = 1 and isVote = 0 and TicketIsSelected() then

10: VoteForUpgrade()
11: isVote = 1
12: end if
13: if keyHeight mod W = 0 and voteBegin = 1 then
14: if VoteFailed() then return false
15: else if VotePassed() then
16: ActiveUpgradeAfterNextRCI() return false
17: else
18: if expire > 0 then
19: expire ← expire − 1
20: isVote = 0
21: else return false
22: end if
23: end if
24: end if
25: goto loop.
26: end procedure

months, hundreds of nodes were detected to join and leave the network dynami-
cally from over ten countries worldwide. In another word, the testnet had expe-
rienced complex conditions, hence its robustness has been thoroughly tested.

Malfunction of Voters. As described in our protocol, each keyblock is vali-
dated by certain voters, each corresponding to one randomly selected element
of the ticket pool. In practice, a certain fraction of selected voters might be
malfunction nodes, who fail to broadcast its vote due to either a breakdown or
malicious purposes. In this case, some keyblock may not be validated by enough
votes and hence the growth rate of the chain is reduced. To simulate this, we
randomly had certain voters withhold their votes. As a result of our simulations,
Fig. 4 shows the deceleration rate of chain growth (the resultant growth rate of
keyblocks over the rate without malfunction) varying according to different per-
centages of malfunction voters. Obviously, such a malfunction affects the chain
grow rate to only a minor extent even if 20% voters fall into a malfunction.

The Pressure Test. We launched a pressure test to measure the scalability of
Goshawk. During our test, the expected keyblock interval was constantly 5 min

66 C. Wan et al.

Fig. 4. Deceleration of Chain Growth under Different Percentage of Malfunction Voters

along with various block sizes and difficulty ratios. We deployed 28 nodes, of
whom 4 took part in the PoS via ticket purchasing and voting, 20 took part in
the PoW via mining and 4 kept producing an overloaded amount of transactions.
This test proceeded for four days, and the results are compared with Bitcoin,
Ethereum and Decred as shown in Table 4.

Table 4. Throughput Comparison where values marked by • stand for upper bounds,
◦ for lower bounds, � for measurements.

Blockchain Keyblock

Interval

Block Size Microblock

Interval

Transaction

Size

Throughtput

(TPS)

Bitcoin 10 min 1 MB • – 250 B ◦ 7 •
Ethereum 15 s – – – 25 �

Decred 5 min 0.384 MB • – 250 B ◦ 5 •
Goshawk 5 min 2 MB • 18.75 s 250 B ◦ 270 �

Goshawk 5 min 8 MB • 9.38 s 250 B ◦ 1550 �

6 Conclusion

Past experience has proven that PoW fits for various permission-less blockchains
very well as a powerful distributed agreement protocol, though it still needs
to be improved in the aspects of efficiency, fairness, robustness and flexibility.
Consequently, many attempts have been made to address or mitigate the issues
related to PoW, while the current state of art focuses on the solutions to one or
a few parts of the issues and is still far from satisfactory.

In this paper, we proposed Goshawk, the first novel PoW-driven blockchain
protocol with high efficiency, strong robustness, as well as good flexibility.
Goshawk is actually a hybrid consensus protocol, in which a two-layer chain
structure with two-level PoW mining strategy and a ticket-voting mechanism are

Goshawk: A Novel Efficient, Robust and Flexible Blockchain Protocol 67

combined delicately. More specifically, we adopted the two-layer chain structure
(i.e., keyblocks/microblocks) given in Bitcoin-NG, and further improved it by
introducing two-level PoW mining strategy (i.e., keyblocks and microblocks with
two different mining difficulties, respectively). This guarantees the high through-
put of our scheme, while obviating the vulnerability to the attack of microblock
swamping in Bitcoin-NG. Furthermore, we borrowed the idea of ticket-voting
approach presented in DASH and Decred, and refined this idea by formalizing
it into a more rigorous mechanism, then we combined this mechanism with the
above chain structure elaborately to attain strong security and good flexibility.
Security analysis of our scheme showed that it is incentive-compatibility, and
robust against selfish mining and “51%” attack of computation power. Besides,
a two-phase upgrade process was introduced to demonstrate good flexibility of
our scheme in protocol upgrading. Finally, our scheme offered good stability and
promising scalability in the real-world testnet of the public blockchain project
Hcash and suggested strong usability in next-generation cryptocurrencies.

Acknowledgement. We would like to thank the anonymous reviewers for their help-
ful feedback. The authors are supported by the National Natural Science Foundation
of China (Grant No. 61672347, 61572318, 61672339).

References

1. Raiden network. http://raiden.network/
2. Scalability. Bitcoin wiki (2015). https://en.bitcoin.it/wiki/Scalability
3. Dash official documentation. Dash Core Group Inc. (2017). https://docs.dash.org
4. Decred documentation. Decred Technology website (2017) https://docs.decred.

org/
5. Cryptocurrency market capitalizations. https://coinmarketcap.com/. Accessed

April 2018
6. Andresen, G.: Bitcoin improvement proposal, 101 (2015). https://github.com/

bitcoin/bips/blob/master/bip-0101.mediawiki
7. Bentov, I., Pass, R., Shi, E.: Snow white: provably secure proofs of stake. IACR

Cryptology ePrint Archive, 919 (2016)
8. Buerger, H.-H.: Ethereum White Paper (2016). https://github.com/ethereum/

wiki/wiki/White-Paper
9. Churyumov, A.: Byteball: a decentralized system for storage and transfer of value

(2016). https://byteball.org/Byteball.pdf
10. David, B., Peter, G., Kiayias, A., Russell, A.: Ouroboros Praos- an adaptively-

secure, semi-synchronous proof-of-stake protocol. IOHK paper (2017)
11. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin

duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21741-3 1

12. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-48071-4 10

13. Eyal, I.: The miner’s dilemma. In: Proceedings of IEEE Symposium on Security
and Privacy, volume, pp. 89–103 (2015)

http://raiden.network/
https://en.bitcoin.it/wiki/Scalability
https://docs.dash.org
https://docs.decred.org/
https://docs.decred.org/
https://coinmarketcap.com/
https://github.com/bitcoin/bips/blob/master/bip-0101.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0101.mediawiki
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://byteball.org/Byteball.pdf
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/3-540-48071-4_10

68 C. Wan et al.

14. Eyal, I., Gencer, A.E., Sirer, E.G., van Renesse, R.: Bitcoin-NG: a scalable
Blockchain protocol. In: Usenix (2015)

15. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

16. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
II. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 10

17. Garzik, J.: Bitcoin improvement proposal, 102 (2015). https://github.com/bitcoin/
bips/blob/master/bip-0102.mediawiki

18. Garzik, J.: Making decentralized economic policy (2015). http://gtf.org/garzik/
bitcoin/BIP100-blocksizechangeproposal.pdf

19. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.:
On the security and performance of proof of work Blockchains. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2016, pp. 3–16 (2016)

20. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP 2017, pp. 51–68. ACM, New York (2017)

21. Khalil, R., Gervais, A.: Revive: rebalancing off-blockchain payment networks. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2017, pp. 439–453. ACM, New York (2017)

22. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake Blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part I. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63688-7 12

23. King, S., Nadal, S.: PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake
(2012). ppcoin.org

24. Lerner, S.D.: Dagcoin: a cryptocurrency without blocks (2015). https://bitslog.
files.wordpress.com/2015/09/dagcoin-v41.pdf

25. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure
sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2016, pp. 17–30.
ACM, New York (2016)

26. Miller, A., Bentov, I., Kumaresan, R., McCorry, P.: Sprites: payment channels that
go faster than lightning. CoRR, abs/1702.05812 (2017)

27. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System, p. 9 (2008). www.
bitcoin.org

28. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin and
Cryptocurrency Technologies Introduction to the book (2016)

29. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish
mining and combining with an eclipse attack. In: Proceedings - 2016 IEEE Euro-
pean Symposium on Security and Privacy, EURO S and P 2016, pp. 305–320 (2016)

30. Pass, R., Shi, E.: Rethinking large-scale consensus. In: IEEE 30th Computer Secu-
rity Foundations Symposium (CSF), pp. 115–129, August 2017

31. Peck, M.E.: Adam back says the Bitcoin fork is a coup (2015). http://spectrum.
ieee.org/tech-talk/computing/networks/the-bitcoin-for-is-a-coup

32. Poon, J., Dryja, T.: The Bitcoin Lightning Network: Scalable Off-Chain Instant
Payments. Technical Report (draft), p. 59 (2016). https://lightning.network/
lightning-network-paper.pdf

https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://github.com/bitcoin/bips/blob/master/bip-0102.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0102.mediawiki
http://gtf.org/garzik/bitcoin/BIP100-blocksizechangeproposal.pdf
http://gtf.org/garzik/bitcoin/BIP100-blocksizechangeproposal.pdf
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
http://ppcoin.org
https://bitslog.files.wordpress.com/2015/09/dagcoin-v41.pdf
https://bitslog.files.wordpress.com/2015/09/dagcoin-v41.pdf
www.bitcoin.org
www.bitcoin.org
http://spectrum.ieee.org/tech-talk/computing/networks/the-bitcoin-for-is-a-coup
http://spectrum.ieee.org/tech-talk/computing/networks/the-bitcoin-for-is-a-coup
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf

Goshawk: A Novel Efficient, Robust and Flexible Blockchain Protocol 69

33. Popov, S.: The Tangle (2016). https://www.iotatoken.com/IOTA Whitepaper.pdf
34. QuantumMechanic: Proof of Stake Instead of Proof of Work. GitHub (2011)
35. Rizun, P.R.: Subchains: a technique to scale bitcoin and improve the user experi-

ence. Ledger 1, 38–52 (2016)
36. Sompolinsky, Y., Zohar, A.: Accelerating Bitcoin’s Transaction Processing. Fast

Money Grows on Trees, Not Chains. IACR Cryptology ePrint Archive, 881:1–31
(2013)

37. TierNolan: Decoupling transactions and pow (2013). https://bitcointalk.org/index.
php?topic=179598.0

38. Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey on decen-
tralized digital currencies. IEEE Commun. Surv. Tutor. 18(3), 2084–2123 (2016)

https://www.iotatoken.com/IOTA_Whitepaper.pdf
https://bitcointalk.org/index.php?topic=179598.0
https://bitcointalk.org/index.php?topic=179598.0

AFCoin: A Framework for Digital Fiat
Currency of Central Banks Based

on Account Model

Haibo Tian1,2(B), Xiaofeng Chen3, Yong Ding2, Xiaoyan Zhu3,
and Fangguo Zhang1

1 Guangdong Key Laboratory of Information Security, School of Data and Computer
Science, Sun Yat-Sen University, Guangzhou 510275, Guangdong,

People’s Republic of China
tianhb@mail.sysu.edu.cn

2 Guangxi Key Laboratory of Cryptography and Information Security, Guilin, China
3 Xidian University, Xi’an 710071, Shanxi, People’s Republic of China

Abstract. Currently, the technique choices of issuing digital fiat cur-
rencies include RSCoin, Corda and Quorum etc. RSCoin is specially
designed for central banks based on Bitcoin. Corda and Quorum are per-
missioned distributed ledger techniques based on Bitcoin and Ethereum,
respectively. There lacks a framework specially for central banks based
on Ethereum. We here introduce AFCoin: a framework based on the
account model and smart contract of Ethereum. AFCoin shows a possi-
ble way to issue and manage fiat currencies by central banks. It can be
deployed in an evolutionary way and enjoys good efficiency, regulation
and privacy properties.

Keywords: Digital fiat currency · Account mode · Efficiency · Privacy

1 Introduction

Digital fiat currency is a new concept. Bordo and Levin [6] define a digital
currency as an asset stored in electronic form as physical currency. Bitcoin [8]
and Ether [12] could be viewed as kinds of digital currency if they could be
viewed as assets. Meaning et al. [5] define a central bank digital currency as an
electronic, fiat liability of a central bank that can be used to settle payments
or as a store of value. RSCoin [3] could be viewed as fiat coin since it relies on
a central bank to issue coins. Yao [13] describes fiat currency as a credit and
algorithm based smart currency supported by cryptographic techniques. So a
main difference about fiat currency and non-fiat currency is the issuer of coins.
Note that the fiat currency here is not similar to the traditional e-cash concept
[15] since there are no digital coins to be really transferred between users.

As a new form of coin, digital fiat currency has attracted the attention of
many central banks. The Bank of England has published a serial of staff working

c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 70–85, 2019.
https://doi.org/10.1007/978-3-030-14234-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_4

AFCoin: A Framework for Digital Fiat Currency of Central Banks 71

papers to discuss topics about fiat currency [2]. The work of Meaning et al.
[5] is just one of their achieved paper. The RSCoin system is also inspired by
their research agenda [3]. The Bank of Canada [1] has also published a serial of
staff working papers and a Jasper project is in progressing to settle interbank
payments. The European Central Bank [14], the Sveriges Riksbank [11] and the
People’s Bank of China [13] also give research works and experimental projects
to study the digital fiat currency.

Among the experimental projects, the RSCoin [3] system is distinguished. It
uses the Bitcoin transaction formats so that the coins are embedded in unspent
transaction outputs (UTXOs). The UTXOs are divided into shards by transac-
tion identities and each shard is managed by a few mintettes. When some coins
are to be spent, a user has to find endorsements from the mintettes managed the
coins, and to register new coins to responsible mintettes, which is the essence
of their two-phase commitment consensus. The changes of managed coins are
recorded by mintettes locally and are submitted to a central bank to form a
public ledger. New coins could be poured into the system by the central bank
with a blank input. Han et al. [4] gave a user friendly RSCoin system to improve
the efficiency of user’s client.

Corda [7] system is also designed for financial services. It heavily developed
the script abilities of Bitcoin. A transaction is used as a contract of involved
participants. Notaries are trusted entities in the system to track the status of
transaction outputs. There is no global ledger but notaries may run some con-
sensus algorithm to maintain a permissioned ledger. Quorum [9] system also
maintains a permissioned ledger. Smart contracts are used to ensure that only
known parties can join the network. For private transactions, only hashes of the
transactions are maintained in the permissioned ledger. The plain transaction is
kept locally by related nodes.

It is well-known the distributed ledger technology (DLT) could be divided
into three categories according to the write rights to the ledger. The Bitcoin
and Ethereum ledgers are certainly public ledgers. Corda and Quorum could
be classified as consortium ledger. The RSCoin is in fact a private ledger as
there is only one trust point in the system. Scorer [10] explained that it may
be unnecessary to use DLT for fiat currency. We believe the private ledger just
reflects the minimal requirement of DLT in a central bank environment.

We here propose an Ethereum based RSCoin like framework. It is expected
to remove the two phase commitment consensus algorithm since the coins are in
an account and the account address is a natural delimiter to divide coins into
shards. In each shard, smart contracts are used to manipulate account states
by commercial banks. Commercial banks submit their transactions and state
information to the central bank for regulatory and compliance process. The
central bank publishes hashes of transactions in a private ledger with public
read rights.

72 H. Tian et al.

2 Common Definitions

We define shard, state, transaction, block and ledger in the system.

Shard. Each entity in the AFCoin system has an address account. As in the
Ethereum, an entity X uses the ECDSA algorithm to produce (pkX , skX). The
address account of X is addrX = pkX mod 2160.

For an address addrX , we define a function owner to denote the responsible
bank of the address. Simply, if the entity X is a commercial bank, the owner
function returns the address of the central bank. If the entity X is a user of
a commercial bank, the owner function returns the address of the commercial
bank. The size of a shard is naturally defined by the number of users of a bank.

We assume the banks have the responsibility to build a reliable information
system to manage their address accounts. For example, banks should have a hot
backup system to improve the reliability of online services. And banks should
build a server farm if the number of transactions per second is too much. Note
that hot backup and server farm technologies are off-the-shelf.

State. Given an address account of an entity, there are related states of the
address. They include the following data fields.

– Type: An address account may be a bank account (BA) or a user account
(UA).

– Balance: It is the balance of an address account.
– Nonce: It is a counter of the account to prevent replay attacks.
– Deposit: It is the deposit amount of an address account. When some digital

coins are deposited, the coins are transferred from the user’s account to the
bank’s account.

– Code Hash: If the account is a BA account, this field includes a list of hashes
referring to smart contracts in a code repository that implements the policies
of banks, such as a smart contract to compute interest of a deposit. If the
account is UA account, it is empty.

– Events: It records events useful for an entity.
– Storage: It records any byte sequence that is valuable to the system.

Initially, the Balance, Nonce, and Deposit fields are zero, and the Events and
Storage fields are empty. If the Type field is UA, the Code Hash field is empty.
If the Type field is BA, the Code Hash field is a key value pair list where the key
is an operation code and the value is a hash value pointing to a smart contract
in a code repository.

All address accounts managed by a bank and the address account of the bank
compose the state of the bank. A modified MPT structure [12] and an auxiliary
database are used to store states in a bank. The key in the MPT tree is the
address itself. The value is the hash of the state information corresponding to
the address. The hash of the state information and the information itself are
stored as another key-value pair in the local database.

AFCoin: A Framework for Digital Fiat Currency of Central Banks 73

Transaction. A transaction includes operation data and a signature who issued
the transaction.

– Operation Code: It denotes the operation that the transaction creator wants
to execute.

– Operation Parameters: They are parameters required by the operation.
– Nonce: It is the current nonce in the account of the transaction creator.
– Time Stamp: It is the local time of the transaction creator.
– Public Key: It is the public key of the transaction creator.
– Signature: It is a signature that could be verified by the public key in the

transaction

Block. The hashes of transactions and their responses are bundled to form a
block by a bank. The head of a block has the following fields.

– Previous Block Hash: It is the hash value of the previous block head.
– State Root Hash: It is the root hash of an MPT containing the hashes of state

information.
– Transaction Root Hash: It is the root hash of an MPT containing the hashes

of transactions in the block.
– Response Root Hash: It is the root hash of an MPT containing the hashes of

responses in the block.
– Time Stamp: It is the local time of block creator.
– Creator Public Key: It is the public key of the block creator.
– Creator Signature: It is a signature that could be verified by the public key

of the block creator.
– Verification Proofs: It optionally includes public key and signature pairs of

other verifiers of the block.

If a block is a genesis one, the three fields before the Time Stamp are used as a
container to include any byte sequences. The Time Stamp, Creator Public Key
and Creator Signature fields are computed as usual. The Previous Block Hash
is totally zero, and the Verification Proofs is empty.

The body of a block simply includes the hashes of transactions that makes
the state change, and the hashes of responses corresponding to the transactions.

Ledger. The ledger here is a simple distributed database managed by the central
bank. Only the central bank could write to the database. The following data are
expected to be included in the ledger.

– Blockchains: Commercial banks form their own blockchain locally and submit
their blocks, transactions, responses and related key value pairs of state infor-
mation to the central bank. After verification, a blockchain of a commercial
bank is written to the ledger. The central bank also receives transactions from
and gives responses to commercial banks. So the central bank also publishes
its own blockchain to the ledger. The Blockchains could be read by any entity.

74 H. Tian et al.

– Node List: The central bank publishes valid public keys of all commercial banks
as key value pairs where the key is a domain name of the bank and the value is
its registered public key. The Node List could be read by registered banks.

– Policy Repository: The central bank publishes valid polices in the repository
that could be read by registered banks.

– Code Repository: The central bank publishes smart contracts as key value pairs
where the key is the hash of the contract and the value is the contract code. A
commercial bank may submit their special contracts to the central bank. The
central bank checks the regulation of the contracts and publishes them in the
repository. The Code Repository could be read by registered banks.

Each commercial bank could be a node of the distributed database so that the
information in the database could be obtained locally and the commercial bank
could provide query services of the ledger.

3 The AFCoin Framework

3.1 Overview

Our system includes a central bank CB, some commercial banks CMB and a lot of
usersU as inFig. 1. Basically,CB issues fiat currency toCMB.CMB manages fiat
currency for users. The three kinds of entities run protocols to fulfil their functions
and we use double arrowhead solid line to denote their conversations. Each user
could check the public ledger from interfaces mainly provided by theCB to confirm
their address account in their bank is treated rightly and we use double arrowhead
dashed line to denote their queries and responses.

CB

CMBCMB CMB

U U U U

Fig. 1. The AFCoin framework

We assume there is a delay bounded communication network among these
entities. Considering the practises of bank communication in China, we assume
a client could establish a secure channel with a server. The client could authen-
ticate the server and transfer messages to the server with integrity and confi-
dentiality. Note that we do not require a mutual authentication channel since a

AFCoin: A Framework for Digital Fiat Currency of Central Banks 75

transaction is qualified to authenticate the owner of an account. There is usually
no need for a user with address account to transfer their username and password
to a bank.

CMB takes care of accounts of users. They receive user’s transactions and
give responses. CMB includes the hashes of transactions and responses in a
block. The block is signed by the CMB and double checked and signed by two
other CMBs. A signed block is given to the CB with its related transactions,
responses and related key value pairs of their local state. CB checks the blocks
and publishes them in the public ledger. Note the related transactions are not
included in the public ledger.

As in the real life, the CB is totally trusted by CMBs and users. It is
supposed that a CB faithfully executes its functions, including issuing currency,
withdrawing currency, auditing transactions and so on. However, since the public
ledger maintained by the CB is publicly readable, and the transactions and
blocks are usually linked, it could be audited if the CB modifies or deletes hashes
of some transactions. CMBs are trusted by users and are audited by the CB. It
is supposed that a CMB faithfully executes its functions, including depositing,
withdrawing and transferring user coins and so on. If a CMB is corrupted, the
CB or other two CMBs could audit the transactions of the CMB. Since the
two CMBs are selected randomly by the CMB, if the honest CMBs occupies 1

2
of the total CMBs, the two CMBs are both dishonest with a probability about
1
4 . With a probability about 3

4 , a dishonest CMB could be identified. Even a
CMB finds two dishonest CMBs for a block, the CB still has an opportunity
to check their transactions when a user complains a CMB. Users in the system
could only read the public ledger or issuing transactions. They are not trusted
by the whole system so their transactions are checked carefully by the CMBs.

3.2 The Central Bank

In this paper, we assume that the CB only has three main functions: making
monetary policy, issuing currency and withdrawing currency from circulation.
Suppose the CB provides currency to CMBs through loan operations. When a
loan expires, the CMB pays the currency to the CB.

A CMB has a client program CCMB as the wallet of CMB. It communicates
with a program in the CB called as SCB . The program SCB manages a global
state σCB including the address accounts of directly connected CMBs. The
CB has a TLS certificate CertCB

E . CCMB establishes a secure channel with
the central bank CB by the TLS protocol. SCB provides three functions: loan,
repayment and policy update.

– Loan: CCMB takes as input a loan credential description LCD and loan
credentials LC.

• CCMB reads the local timestamp TSCMB , forms a loan transaction TL

and sends it to SCB where

TL = (LA, (LCD,LC), NonceCMB , TSCMB , pkCMB , δCMB).

76 H. Tian et al.

• SCB receives TL and verifies the signature, timestamp and nonce. If the
verifications passed, SCB executes the LA smart contract, which matches
the LCD with its current policies and checks the validity of LC and
determines a value v according to the rules of the matched policy. If there
are no matching policies, it stops the request and decreases a reputation
value in the Storage field addressed by addrCMB in σCB . Otherwise, it
adds −v in the Balance field, new events in the Events field of addrCB ,
and adds a positive balance v, updates an increased nonce, an increased
reputation and events in the related fields addressed by addrCMB in δCB .
SCB then forms a RL transaction as

RL = (addrCMB , h(TL), (BalanceCMB , StorageCMB), TSCB , δCB)

where the third field is the updated state information of the CMB.
• CCMB receives RL and verifies the timestamp, signature, h(TL) and

addrCMB . If the verifications passed, it updates its local state informa-
tion.

– Repayment: CCMB takes as input a loan transaction TL.
• CCMB reads the local timestamp TSCMB , forms a repayment transaction

TRP and sends it to SCB where

TRP = (RP, (h(TL), v), NonceCMB , TSCMB , pkCMB , δCMB).

• SCB receives TRP and verifies the signature, nonce and timestamp. If the
verifications passed, SCB executes the RP smart contract, which finds
the TL transaction by h(TL) and checks the LCD and LC in the TL with
the current timestamp and policies to check v. If the value is suitable,
SCB reduces the balance field of addrCMB to Balance − v, increases the
reputation in the storage field of addrCMB , and adds v to the balance
field of addrCB . SCB then gives a response transaction as

RRP = (addrCMB , h(TRP), StorageCMB , TSCB , δCB).

• CCMB receives RRP and verifies the timestamp, signature, h(TRP) and
addrCMB . If the verifications passed, it updates its local state informa-
tion.

– Policy Update: We assume each policy has a description PD and detailed
items PDi. When a new policy is to be announced or a policy is updated,
the CB produces a TP transaction:

TP = (UP, (PD,PD0, ..., PDp), NonceCB , TSCB , pkCB , δCB)

where p ∈ Z is the number of items of a policy. SCB then executes the UP
smart contract to modify the Nonce field of the state information of addrCB ,
and publishes the policies in the transaction in the policy repository of the
ledger.

Besides the main functions, the CB has some auxiliary functions to make
the system smooth.

AFCoin: A Framework for Digital Fiat Currency of Central Banks 77

– Register: A CMB registers its public key pkCMB to the CB through the reg-
ister function. It may follow the registration routine in a certificate authority.
The CB only communicates with registered CMBs. The CMB gets the pub-
lic key of CB at the registration phase.

– Audit: A CMB submits its local block with auxiliary transactions, responses
and states to the CB. If the number of signatures of the block is less than
3, the CB checks each transaction and response related to the block. If all
checks passed or the number of signatures is enough, it accepts the block and
publishes it to the ledger. If necessary, the central bank could reconstruct the
state MPT of each commercial banks for regulatory and compliance process.
It could audit all users and commercial banks in the framework.

– Publish: The CB has a counter and a timeout mechanism to trigger a pub-
lish procedure. If the number of transactions has exceeded a threshold b or
the timeout counter has been reduced to 0, the CB packages the hashes of
transactions and responses in a block, and publishes a new block to the ledger.

– Code Repository: A CMB should submit their smart contracts with refer-
enced polices to the central bank. If the contracts are verified successfully by
the central bank, they are published on the ledger. Contracts of a commercial
bank could be updated by the central bank.

3.3 A Commercial Bank

Suppose a commercial bank CMB. Suppose two users of the CMB bank, Alice
and Bob. Both have installed clients CA and CB provided by the CMB, respec-
tively. A server program SCMB in the CMB tackles the requests of clients. The
CMB has a TLS Certificate CertCMB

E .
We assume there is a financial policy for a user to exchange their money in a

bank account to their address account in the form of fiat coins. This assumption
is important since it allows a gradual deployment of our framework. Any bank
with a good information system could partially deploy our framework locally.
Note that if a user has opened an address account, they need no password and
bank account to manage their money in the bank. So a fishing website of a bank
is useless. This merit of an address account may be a direct reason to attract
users opening address accounts.

Next, we focus on the conversations between the client of Alice CA and
the server program SCMB . Suppose CA has been downloaded from the official
website of the CMB. A qualified TLS certificate of the CMB is embedded
in CA. CA establishes a secure channel with the CMB by the TLS protocol.
Suppose Alice has a bank account in the CMB. There may be several different
conversations between the bank and the user as follows.

– Open Account: If CA finds no address account of Alice, it asks Alice to provide
its normal account number NAN , her password PWD and an initial value
IV to open an address account.

• CA reads the local timestamp TSA, creates a TO transaction, and sends
it to SCMB where

TO = (OA, (NAN,PWD, IV), 0, TSA, pkA, δA).

78 H. Tian et al.

• SCMB receives TO, verifies the nonce, timestamp and signature. If the
verifications passed, SCMB authenticates the user with NAN and PWD.
If the user is a normal user in the bank, SCMB verifies that the balance of
the NAN is not less than the value IV . SCMB then reduces the balance
in the NAN by subtracting IV . It returns RO to the client CA where

RO = (addrA, h(TO), IV, TSCMB , δCMB)

SCMB then runs OA smart contract with parameters (TO, RO) to update
the state information addressed by addrA as

(UA, IV, 1, 0,⊥, {(h(TO), h(RO))}, 0)

– Deposit: Alice gives CA the amount of value v and the deposit type t.
• CA reads local timestamp TSA, creates a transaction TD and sends it to

SCMB where

TD = (DP, (v, t), NonceA, TSA, pkA, δA).

• SCMB receives TD and verifies the timestamp, nonce and signature. If the
verifications passed, SCMB checks that v is less than the Balance field of
the state information addressed by addrA. If it does, SCMB returns RD

to CA where

RD = (addrA, h(TD), (Balance − v,Deposit + v), TSCMB , δCMB).

It then runs the DP smart contract with parameters (TD, RD) to update
the state information indexed by addrA to

(UA,Balance − v,Nonce + 1,Deposit + v,⊥, Events′, 0),

where Events′ = Events
⋃{(h(TD), h(RD))}. The smart contract also

updates the state information addressed by addrCMB to

(BA,Balance + v,Nonce,Deposit, CodeHash,Events′, Storage)

– Withdraw: Alice gives CA the withdraw item identified by h(RD). CA estab-
lishes a secure channel with the bank CMB by the TLS protocol.

• CA reads the local timestamp TSA, creates a transaction TW and sends
it to SCMB where

TW = (WD,h(RD), NonceA, TSA, pkA, δA).

• SCMB receives TW and verifies the timestamp, nonce and signature. If
the verifications passed, SCMB finds the deposit transaction TD by h(TD)
that is included in RD indexed by h(RD) in its local database. If the
transaction is found, SCMB makes sure that the event including h(TD)
appears only once in the Events field addressed by addrA. If so, it runs
the smart contract for WD with parameter (TW , TD). The code first

AFCoin: A Framework for Digital Fiat Currency of Central Banks 79

calculates the interest in of the TD according to the bank’s polices, and
updates the state information indexed by addrA to

(UA,Balance + v + in,Nonce + 1,Deposit − v,⊥, Events, 0).

The code also updates the state information indexed by addrCMB to

(BA,Balance − v − in,Nonce,Deposit, CodeHash,Events, Storage).

SCMB then returns the response RW to CA where

RW = (addrA, h(TW), Balance,Deposit, TSCMB , δCMB).

SCMB finally runs the WD code again with inputs (TW , TD, RW), which
updates the Events field of the state information addressed by addrA and
addrCMB as Events

⋃{(h(TW), h(TD), h(RW))}.

Remark 1. The above conversations happen between a user Alice and a bank
CMB. Alice opens an address account, deposits money to the bank and with-
draws the money with interest. It shows a great difference between a bank
account and an address account. An employee in bank could modify the bal-
ance of user’s normal account. However, only transactions with users’ signatures
could modify the balance of a user. If an employee in bank modifies the state
information manually, the neighbored root hashes of the state and the trans-
action hash root could provide a full evidence chain to audit the modification.
Besides, the bank could design a more elaborate account data structure to sup-
port more bank businesses.

To further explore our framework, we consider Alice transfers some money
to Bob. Note that Bob is also a user of the same bank.

– Transfer: Alice gets Bob’s account address addrB , for example, by scanning a
QR code. She also specifies the value v to be transferred to CA. CA establishes
a secure channel with the bank CMB by the TLS protocol.

• CA reads local timestamp TSA, creates a transaction TT and sends it to
SCMB where

TT = (TR, (v, addrB), NonceA, TSA, pkA, δA).

• SCMB receives TT and verifies the timestamp, nonce and signature. If the
verifications passed, SCMB checks that v is not greater than the Balance
field of the state information addressed by addrA, and that addrB is a
valid account in its state tree. If they do, SCMB returns RT0 and RT1 to
CA where

RT0 = (addrA, h(TT), Balance − v, TSCMB , δCMB)

and
RT1 = (addrB , h(TT), Balance + v, TSCMB , δCMB).

80 H. Tian et al.

It then runs the TR smart contract with parameters (TT , RT0 , RT1). The
code updates the state information indexed by addrA to

(UA,Balance − v,Nonce + 1,Deposit,⊥, Events′, 0)

where Events′ = Events
⋃{(h(TT), h(RT0))}. The code also updates the

state information addressed by addrB to

(UA,Balance + v,Nonce,Deposit,⊥, Events′′, 0)

where Events′′ = Events
⋃{(h(TT), h(RT1))}.

• Alice may send h(RT1) to Bob for verification of the money transfer.
Bob may also subscribe some notification service of the bank so that the
balance change event could be pushed to Bob’s client immediately.

Now we obtain a digital currency solution for a solo bank without the help of
a central bank. Users in the bank could control their money by themselves and
has a higher security guarantee. User experience is just similar to the AliPay or
WeChat Pay for money transfer.

With the help of the central bank and the money deposited by a user, a
CMB may carry out loan and credit businesses. It transfers coins to user’s
account similarly to a normal Transfer operation. A CMB must reports their
accounts to the central bank for audit. Besides the main functions, a CMB has
the following functions to make the system smooth.

– Block: A CMB has a counter for received transactions and a timeout for a
block. If the timeout is reduced to 0, or the counter has exceeded a threshold
b, a local block is created. The body of the block includes the hashes of
transactions and responses. The CMB signs the block.

– Cross Verify: A CMB gets the current node list in the ledger. Suppose the
size of the list is M . It uses the transaction root hash in the block head as a big
number trh and calculates the reminder h(trh, 0) mod M and h(trh, 1) mod
M to get two random CMBs to verify the block. Suppose the two CMBs
are CMBi and CMBj . The CMB gives CMBi and CMBj the block, the
transactions and responses of the block, the state MPT of the previous block,
the key value pairs of the modified state. They check the public ledger for the
previous block of the CMB and the code repository, check the state MPT
and related key-value pairs. It then execute the code to verify the changes
of the state and the responses in the block. If the final state is the same as
that in the block, the verification successes. CMBi and CMBj returns their
signatures for the block body.

– Block Submit: The CMB submits a fully verified block with three signatures
or an immature block with at least its own signature. In both cases, the CMB
submits the transactions, responses, changes of state MPT and related key
value pairs to the central bank.

AFCoin: A Framework for Digital Fiat Currency of Central Banks 81

3.4 Inter-Bank Transfer

Now suppose there are two commercial banks CMBA and CMBB. Both devel-
oped their fiat currency businesses for their users. Now a user Alice is in CMBA

and another user Bob is in CMBB . We consider the money transfer operation
between them.

– Transfer: Alice get Bob’s account address addrB , for example, by scanning a
QR code. She also specifies the value v to be transferred to CA. CA establishes
a secure channel with the bank CMBA by the TLS protocol.

• CA reads local timestamp TSA, creates a transaction TT and sends it to
SCMBA

where

TT = (TR, (v, addrB), NonceA, TSA, pkA, δA).

• SCMBA
receives TT and verifies the timestamp, nonce and signature. If

the verifications passed, SCMBA
checks that v is not greater than the

Balance field in the state information addressed by addrA, and addrB is
not a valid account in its local state. If so, SCMBA

finds the node CMBB

by owner(addrB), reads its local time TSCMBA
, forms a remote transfer

transaction TRT and sends it to SCMBB
where

TRT = (RTR,REF,NonceCMAA
, TSCMBA

, pkCMBA
, δCMBA

)

where REF = (hash(TT), v, addrB). SCMBA
then runs the RTR smart

contract with parameters (TT , TRT). The code updates the state informa-
tion addressed by addrA to

(UA,Balance − v,Nonce + 1,Deposit,⊥, Events′, 0)

and updates the state information addressed by addrCMBA
to

(UB,Balance,Nonce + 1,Deposit, CodeHash,Events′, Storage),

where Events′ = Events
⋃{(h(TT), h(TRT))}.

• SCMBB
receives TRT and verifies the timestamp and signature. The

NonceCMBA
in the TRT is for the central bank audit later. If the verifi-

cations passed, SCMBB
makes sure that addrB is a valid address account

in its state tree. If so, it forms a response message RTR and sends it back
to CMBA where

RTR = (addrCMBA
, h(TRT), (addrB , v), TSCMBB

, pkCMBB
, δCMBB

).

SCMBB
then runs the RTR smart contract with parameters (TRT , RTR).

The code updates the state information indexed by addrB to

(UA,Balance + v,Nonce,Deposit,⊥, Events′, 0)

and updates the state information indexed by addrCMBB
to

(UB,Balance,Nonce,Deposit, CodeHash,Events′, Storage),

where Events′ = Events
⋃{(h(TRT), h(RTR))}.

82 H. Tian et al.

• SCMBA
receives RTR and verifies the timestamp and signature. If the

verifications passed, SCMBA
creates a response message RT , and sends it

to CA where

RT = (addrA, h(TT), RES, TSCMBA
, pkCMBA

, δCMBA
)

where RES = (h(TRT), h(RTR), BalanceA). SCMBA
runs the RTR smart

contract again to update the Events fields in the state information
addressed by addrA and addrCMBA

as Events
⋃{(RTR, RT)}.

• Alice sends h(RRT) to Bob if she is required. Bob could then verify the
transfer by the Events field of his state. Note that, Bob could also sub-
scribe some service of the bank so that the balance change event could
be pushed to Bob’s client immediately.

4 Analysis

4.1 Efficiency

When a user wants to deposit, withdraw or transfer money, only one transaction
is needed. A transaction includes a signature of the user.

A commercial bank needs to produce one response for deposit and withdraw
transactions. If the operation is money transfer, the bank should produce one
response or one response and one transaction. A commercial bank also has the
requirement to loan coins from the central bank with one transaction. The rou-
tine work of a commercial bank include producing local blocks, verifying blocks
of other banks and produce signatures for the verified blocks.

The central bank needs to give responses for loan and repayment transactions.
It should produce a transaction to update the policy. The routine work of the
central bank is to verify all immature blocks and accept qualified blocks. It
may reconstruct the state of a special account with information collected from
commercial banks.

We need no special technology to implement the public ledger. Since only the
central bank has the write rights, all other entities could only read information
from the ledger. A normal distributed database is qualified for the task. If we
assume each commercial bank has a node to run the database, the information
in the public ledger could be queried locally by the banks.

4.2 Regulation

The framework supports at least three approaches for the regulatory and com-
pliant process.

– User regulation: Since the hashes of users’ transactions are packaged into
blocks by commercial banks and finally collected by the central bank to the
public ledger, a user could make sure their transactions have been treated
carefully if the hash of their transaction is included in the public ledger.

AFCoin: A Framework for Digital Fiat Currency of Central Banks 83

If not, a user could take the response of a commercial bank as an evidence
to complain a commercial bank. For any complaint, the central bank should
try to reconstruct the address account of the user for a clear judgement and
punish the faulty party.

– Peer regulation: We have designed a cross verification mechanism so that a
block could be verified by two other random commercial banks. If a com-
mercial block has three signatures, the central bank may accept the block
without further verification. However, if a block is submitted in an imma-
ture fashion, the block will be checked carefully and the block creator or the
helpful commercial banks may be punished.

– Senior regulation: The central bank could make a blind sample policy for
blocks with three signatures. It should open a complaint port for users to
complain commercial banks and do a careful check for immature blocks.

In addition, we have defined a reputation value in the Storage field. The
central bank could use this value to evaluate the regulation of a commercial
bank. A commercial bank could similarly set a reputation value for a user to
evaluate the regulation of a user.

4.3 Privacy

Generally, the public information of the system is in the public ledger. They
are simply hash values. User’s transactions and responses are available to their
commercial bank, two verifying banks, and the central bank. If a bank is cor-
rupted, the account information of the bank and the transactions verified by the
bank could be disclosed. To alleviate this point, we require a local encryption
mechanism to make sure that the history transactions, responses, and state key
value pairs are encrypted.

The identity information of user’s address account is stored in a bank. When
some payment actions happen, the bank only knows that Alice has transferred
some money to Bob if both are registered in the bank. When Alice in a bank
transfers money to Bob in another bank, the bank endorses the money transfer
and hides even the address account of Alice. Now the bank of Alice knows that
Alice wants to transfer some money to an address and knows nothing about
the identity of the address. The bank of Bob knows that Bob has new income
and knows nothing who transfers that to him. Note that the central bank does
not have the registration information. Although the central bank could verify
each transaction, it could not link a transaction to its issuer’s identity trivially.
In contrast, the Alipay or WeChat certainly know both the identities of the
sender and receiver of a money transfer operation. From this point, we believe
the privacy of our system is stronger than the current payment methods and
certainly weaker than paper cash.

84 H. Tian et al.

4.4 Reliability

In the example framework, the reliability relies on the reliability of information
system in each bank. If the information system of a bank stops, the users of the
bank cannot pay. To alleviate this problem, we propose two possible methods.

– A hardware wallet could be used to support off-line payment. When the
information system of a bank stops, there is another approach for payment.

– Some commercial banks could establish a simple consortium blockchain to
manage their shared address accounts. For example, three branches of the
same bank in different places could build a small consortium blockchain to
provide enhanced reliability.

4.5 Deployment

A commercial bank could follow the protocols in Sect. 3.3 to carry out fiat cur-
rency businesses for their users. Two commercial banks could ally to run a dis-
tributed database as a public ledger for their users. The central bank could make
policies and adopt the running distributed databases of allied commercial banks.
When all commercial banks carry out their fiat currency businesses and submit
their local blocks to the central bank, the whole system emerges.

5 Conclusion

We show a framework for central banks to issue and manage fiat currency. It
is evidently has a better privacy than the AliPay and WeChat system. It is
expected to have a better efficiency and is suitable for the current “central bank-
commercial bank” binary model. It also has a good regulation property. More
importantly, the framework may be deployed gradually by commercial banks
and the central bank.

Further, we design new transfer operations to support fair digital assets
exchange and more functions. A security model for the framework is also devel-
oping.

Acknowledgment. This work is supported by the National Key R&D Program
of China (2017YFB0802503), Supported by Guangxi Key Laboratory of Cryptog-
raphy and Information Security (No. GCIS201711), Natural Science Foundation of
China (61672550), and Fundamental Research Funds for the Central Universities (No.
17lgjc45).

References

1. Bank of Canada, S.: Staff working papers (2018). https://www.bankofcanada.ca/
research/browse/?content type[]=31. Accessed 12 Aug 2018

2. Bank of England, S.: Staff working papers (2018). https://www.bankofengland.co.
uk/news/publications. Accessed 12 Aug 2018

https://www.bankofcanada.ca/research/browse/?content_type[]=31
https://www.bankofcanada.ca/research/browse/?content_type[]=31
https://www.bankofengland.co.uk/news/publications
https://www.bankofengland.co.uk/news/publications

AFCoin: A Framework for Digital Fiat Currency of Central Banks 85

3. George, D., Sarah, M.: Centrally banked cryptocurrencies. In: Network and Dis-
tributed System Security Symposium, NDSS 2016, pp. 1–14. ACM (2016). http://
dx.doi.org/10.14722/ndss.2016.23187

4. Han, X., Liu, Y., Xu, H.: A user-friendly centrally banked cryptocurrency. In:
Liu, J.K., Samarati, P. (eds.) ISPEC 2017. LNCS, vol. 10701, pp. 25–42. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-72359-4 2

5. Meaning, J., Dyson, B., Barker, J., Clayton, E.: Broadening narrow money:
monetary policy with a central bank digital currency (2018). https://www.
bankofengland.co.uk/working-paper/2018/. Accessed 12 Aug 2018

6. Bordo, M., Levin, A.: Central bank digital currency and the future of monetary
policy (2017). https://www.hoover.org/sites/default/files/bordo-levin bullets for
hoover may2017.pdf. Accessed 12 Aug 2018

7. Mike, H.: Corda: a distributed ledger (2016). https://docs.corda.net/ static/corda-
technical-whitepaper.pdf. Accessed 12 Aug 2018

8. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf. Accessed 4 Aug 2017

9. Quorum: Welcome to the quorum wiki! (2016). https://github.com/
jpmorganchase/quorum/wiki. Accessed 12 Aug 2018

10. Scorer, S.: Central bank digital currency: DLT, or not DLT? That is the question
(2017). https://bankunderground.co.uk/2017/06/05/. Accessed 12 Aug 2018

11. Sveriges Riksbank, S.: The Riksbank’s e-krona project (2018). https://www.
riksbank.se/globalassets/media/rapporter/e-krona/2017/handlingsplan ekrona
171221 eng.pdf. Accessed 12 Aug 2018

12. Wood, D.G.: Ethereum: a secure decentralised generalised transaction ledger home-
stead (2014). http://gavwood.com/paper.pdf. Accessed 4 Aug 2017

13. Yao, Q.: A systematic framework to understand central bank digital currency. Sci.
China Inf. Sci. 61(3), 033101 (2018). https://doi.org/10.1007/s11432-017-9294-5

14. Yves, M.: Digital base money: an assessment from the ECB’s perspective
(2017). http://www.ecb.europa.eu/press/key/date/2017/html/sp170116.en.html.
Accessed 12 Aug 2018

15. Zhang, F., Zhang, F., Wang, Y.: Fair electronic cash systems with multiple banks.
In: Qing, S., Eloff, J.H.P. (eds.) SEC 2000. ITIFIP, vol. 47, pp. 461–470. Springer,
Boston, MA (2000). https://doi.org/10.1007/978-0-387-35515-3 47

http://dx.doi.org/10.14722/ndss.2016.23187
http://dx.doi.org/10.14722/ndss.2016.23187
https://doi.org/10.1007/978-3-319-72359-4_2
https://www.bankofengland.co.uk/working-paper/2018/
https://www.bankofengland.co.uk/working-paper/2018/
https://www.hoover.org/sites/default/files/bordo-levin_bullets_for_hoover_may2017.pdf
https://www.hoover.org/sites/default/files/bordo-levin_bullets_for_hoover_may2017.pdf
https://docs.corda.net/_static/corda-technical-whitepaper.pdf
https://docs.corda.net/_static/corda-technical-whitepaper.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/jpmorganchase/quorum/wiki
https://github.com/jpmorganchase/quorum/wiki
https://bankunderground.co.uk/2017/06/05/
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2017/handlingsplan_ekrona_171221_eng.pdf
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2017/handlingsplan_ekrona_171221_eng.pdf
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2017/handlingsplan_ekrona_171221_eng.pdf
http://gavwood.com/paper.pdf
https://doi.org/10.1007/s11432-017-9294-5
http://www.ecb.europa.eu/press/key/date/2017/html/sp170116.en.html
https://doi.org/10.1007/978-0-387-35515-3_47

Anonymity Reduction Attacks to Monero

Dimaz Ankaa Wijaya1(&), Joseph Liu1, Ron Steinfeld1, Dongxi Liu2,
and Tsz Hon Yuen3

1 Faculty of Information Technology, Monash University, Melbourne, Australia
{dimaz.wijaya,joseph.liu,ron.steinfeld}@monash.edu

2 Data61, CSIRO, Eveleigh, Australia
dongxi.liu@data61.csiro.au

3 Huawei, Singapore, Singapore
yuen.tsz.hon@huawei.com

Abstract. Monero is one of the most valuable cryptocurrencies in the market,
focusing on users’ privacy. The built-in features in Monero help users to
obfuscate the information of the senders and the receivers, hence achieve a
better privacy compared to other cryptocurrencies such as Bitcoin. Previous
studies discovered multiple problems within Monero systems, and based on
these findings, Monero system has been improved.
Although improvements have been made, we discovered that new attacks

targeting the anonymity reduction can still be conducted in Monero system. In
this paper we propose two attacks. The first is an extension of a known attack
called Monero Ring Attack. The second one exploits Payment ID to discover the
real output of a mixin. We then propose countermeasures to these attacks.

Keywords: Monero � Anonymity � Attack � Traceability � Ring signature

1 Introduction

Bitcoin is the first cryptocurrency deployed in 2009 by Satoshi Nakamoto [1]. It allows
every user to join or leave the payment system instantly. In accordance to the idea,
Bitcoin relies on cryptographic methods such as public key cryptography to avoid user
registration process and to provide the proof of ownership of the coins. This mecha-
nism decouples the Bitcoin transactions with the users’ real identities. Therefore,
Bitcoin was supposed to be anonymous.

The term anonymity can be determined by 2 adjacent forms: unlinkability and
untraceability [2]. Unlinkability is related to the privacy of the receiver, where dif-
ferent transactions cannot be identified to be sent to the same receiver. Untraceability,
on the other hand, is related to the sender’s privacy. A system is considered as
untraceable when it is infeasible to determine the real sender of a transaction.

The anonymity assumption in Bitcoin environment was proven to be incorrect.
Several studies have shown that information related to Bitcoin users can be revealed,
either by using clustering methods [3] or extracting additional information from
websites [4]. Quantitative analysis of Bitcoin transactions was able to determine
malicious activities conducted by the Mt.Gox hacker(s) [5]. Consequently, Bitcoin is

© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 86–100, 2019.
https://doi.org/10.1007/978-3-030-14234-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_5

now considered as pseudo-anonymous, since the users’ identities can be revealed
through some analyses.

Monero is a different type of cryptocurrency compared to Bitcoin. Monero is one of
the most valuable cryptocurrencies in the world with a total market value of US
$3.5billion1. The technology offered by Monero focuses on enhancing the anonymity
of the users. The anonymity in Monero is implemented by obfuscating the information
of the real senders and the real receivers, making it hard for observers to make a direct
relationship of the senders and the receivers. The anonymity features of Monero are
achieved by employing ring signature and stealth address in the system. The privacy-
protection mechanism was further enhanced by implementing RingCT technology,
which obfuscates the amount of coins transacted.

We define an anonymity reduction attack as an effort made by a malicious user (or an
attacker) who tries to de-anonymise other users’ transaction. This attack is done by
creating transactions and breaking the attacker’s own anonymity. An example of this
attack isMonero Ring Attack [6]. The aforementioned attack works on both non-RingCT
and RingCT environment, and does not rely on zero-mixin transactions as in [7, 8].

Contributions. We summarise our research contributions as follows.

1. We propose a mitigation strategy on a known Monero anonymity attack exploiting
the users’ freedom when creating mixins [9]. Our mitigation strategy uses a list of
hash values of existing mixins. New transactions are not allowed to use any mixins
that have existed in the system, in which their hash values are on the list. By
employing the mitigation strategy, future attacks using the same method can be
completely prevented.

2. We propose an extension of the attack in [6]. Our new scheme achieves the same
goals of the previous attack in [6] but nullifies the mitigation strategy we designed.
The new scheme provides an obfuscation method when choosing the mixins, hence
identical mixins are no longer needed.

3. We propose a solution to avoid the new attack we propose. Monero developers have
been working on a new blacklisting mechanism called “blackball” which will
blacklist all known bad outputs to mitigate an attack over key reuse2. In our
solution, we developed a new metric as a quantitative measurement towards the
suspicious level of anonymity reduction attack. The metric is useful to complement
the existing blacklisting method, either by implementing it in the Monero core
software or as a separate service.

4. We propose a novel anonymity reduction attack by utilizing an extra information
called Payment ID (PID) which is usually embedded in Monero transactions. The
scheme enables the attacker to trace the real outputs spent in the transactions. We
also suggest a possible countermeasure on the attack.

Organization. The rest of the paper is organized as follows. In Sect. 2 we present the
basic knowledge about the field of the research. Section 3 describes previous studies

1 Based on information provided by Coinmarketcap.com on 22 March 2018.
2 https://github.com/monero-project/monero/pull/3322.

Anonymity Reduction Attacks to Monero 87

https://github.com/monero-project/monero/pull/3322

related to our research. In Sect. 4 we propose a mitigation strategy of a known attack,
while in Sect. 5 we improve the known attack by removing the weaknesses and pro-
pose a stronger attack trait. Lastly, Sect. 6 presents a novel attack related to Payment ID
usage.

2 Background

2.1 CryptoNote Protocol

The CryptoNote protocol was originally proposed in 2013 [2]. The purpose of the
CryptoNote protocol is to create a privacy-preserving cryptocurrency with built-in
features that will help users to keep anonymous, although it still preserves similarities
with Bitcoin, such as transparent transaction data (inputs, outputs, and the amount of
coins transacted). The main idea of the protocol is to employ a linkable ring signature
[10, 11] to avoid the sender from being traced. The one-time public key (stealth
address) is also implemented to make sure all users create a new address for every
transaction.

By using a linkable ring signature, it is infeasible to distinguish the real output
being spent by a transaction over a set of outputs. In the linkable ring signature, the user
needs to construct a set of outputs as an input of the transaction, which are assumed to
be picked randomly over a large set of outputs available on the network. The user needs
to insert her own output to the set, which is the real output to be spent in the trans-
action. The other outputs are actually the decoys that help obfuscating the real output.

The linkable ring signature also protects the system from a double spending attack
by allowing detection if such thing happens. Each public key is associated with a secret
value; in order to spend a public key, the corresponding secret value needs to be
exposed to the blockchain. If a secret key appears more than once, it means a double
spending attempt occurs [11].

In the one-time public key mechanism, the receiver provides a set of master public
keys to the sender, which will be used by the sender to create new public keys. Hence,
the destination of the payment is created by the sender, not the receiver. When
receiving payments, the receiver scans the blockchain and applies a method to deter-
mine which payments are destined to the receiver.

2.2 Monero

Monero is a CryptoNote-based cryptocurrency. As with any other cryptocurrency
products, there are applications required to run the system, namely Monero daemon
and Monero wallet. A Monero daemon is the node keeping a full record of all trans-
actions happening in the network, while a Monero wallet does not need to store all
transactions locally. Monero wallet can be used to create new transactions by con-
necting to a Monero daemon.

When creating a new transaction, the Monero wallet first sends a request to the
Monero daemon. The purpose of the request is to get an information about potential
public keys (outputs) to be used as decoys in the ring signature construction. Using a

88 D. A. Wijaya et al.

random sampling algorithm, the wallet selects a set of global indexes from the his-
togram provided by the daemon, then the daemon will need to provide the corre-
sponding outputs. The index of the real output is also included in the request for two
reasons: as a test whether the daemon sends the correct outputs and to obfuscate the
final ring signature from a curious daemon.

Monero developers have adopted an additional protection on users’s privacy. The
Confidential Transaction (CT) is added into ring signature construction to create
RingCT [12]. Confidential transaction is a Pedersen commitment to encrypt the amount
of money sent from the sender to the receiver so that they cannot be visible to the
world; only the respective participants can decrypt the amount [13]. RingCT was
deployed in January 2017 and became mandatory since September 2017 [14].

RingCT has caused a major change on the way users create mixins. In a non-
RingCT transaction, an output can only be mixed with other outputs with the same
amount. Before RingCT is available, an output having a unique amount of coins cannot
be mixed with other outputs, hence zero-mixin transaction occurs. Zero-mixin trans-
action is a transaction containing an input that does not have any mixin. By using
RingCT, the amount of money will be hidden, thus an output can be mixed with any
outputs.

2.3 Monero Transaction

In Monero, a transaction contains at least one input and zero or more outputs. An input
contain at least one unspent output from an existing transaction confirmed in the
blockchain and the input can also include several other outputs as decoys or “mixins”.
The transaction can also produce outputs which are the fund sent by the sender to one
or more receivers. The structure of the transaction can be seen in Fig. 1.

2.4 Monero Payment ID

As with any other CryptoNote-based cryptocurrency, it is infeasible to distinguish a
specific sender among a set of senders in Monero [2]. In the Bitcoin system, creating a

Fig. 1. In Monero, an input may contain several existing outputs. Only one output in an input to
be spent, while the other outputs are decoys. [6]

Anonymity Reduction Attacks to Monero 89

new destination address for each user is practical by using a deterministic or hierar-
chical deterministic (HD) wallet as in [15]. In Monero, each wallet can only have one
Monero address (we exclude subaddress [16] in the discussion). Therefore, a metadata
called Payment ID is added into Monero transaction to help the receiver to determine
the sender of the payment.

The unencrypted Payment ID is 32 bytes data inserted into the extra field on the
transaction data, which is usually represented into 64 digits hexadecimal on the Monero
blockchain explorer [17]. A new feature named integrated address encrypts the
Payment ID into the destination address, where only the receiver can decrypt the
Payment ID. The Payment ID for the integrated address is 8 bytes long or 16 digits
hexadecimal [17]. In this paper, we will use the term UPID to refer the unencrypted
Payment ID and EPID to refer the encrypted Payment ID.

3 Related Works

3.1 Monero Zero-Mixin Problems

In general, it is obvious that a receiver of a transaction can determine that her outputs
are being used as decoys by other transactions. Therefore, it is possible that a user tries
to attack the system by creating a large number of outputs in order to reduce the
anonymity of other transactions [9]. In the attack, the attacker needs to pay a huge
amount of transaction fees. The attacker also needs to keep creating new transactions if
she wants to control a majority of the outputs available in the network [9].

Recent studies show that zero-mixin transactions have impacted the anonymity of
other transactions. A research finds that at least 87% of the mixins up to a point were
de-anonymised [7]. Another research proposes a change in the way the Monero wallet
samples the mixins by prioritizing new outputs rather than randomly picks the mixins
from all possible options [8].

3.2 Monero Ring Attack

There is a new type of attack targeting Monero anonymity called Monero Ring Attack
[6]. This attack is an improvement over the previous attack presented in [9], where an
attacker tries to dominate the available outputs in the system. In Monero Ring Attack,
several attackers can join forces to attack the system, each by crafting special trans-
actions [6].

If an attacker creates a “malicious transaction”, then other attackers can use the
result of that transaction in addition to their own results. Therefore, in summary, each
attacker will pay less transaction fees, but with bigger impact. During the attack, the
attackers do not need to trust each other or communicate with each other. All they need
to do is scanning the blockchain data and determine the malicious transactions created
by others.

The key point on this attack is using identical mixins on the malicious transactions.
Let r as the minimum number of mixins in the system; an attacker needs to have at least
r outputs or sets of r outputs. Then, the attacker constructs the inputs by using r outputs

90 D. A. Wijaya et al.

as the mixins. These constructions help any attackers to determine that all the outputs
used in the mixins have been spent. It is impossible that other transactions that include
the outputs are double spending the outputs, hence these outputs are just the decoys.

The Monero Ring Attack has 3 phases: preparation phase, setup phase, and attack
phase. In the preparation phase, the attacker prepares r outputs. In the setup phase, the
attacker constructs spending transactions using identical mixins, each mixin has
r outputs as the ring members. Then, in the attack phase, the attacker expands the
outputs (active attack) and analyse the result of the attack (passive attack).

The purpose of the attack is to trace the real outputs spent by mixins or at least
reduce the k-anonymity of the transaction mixins. The goal is achieved by creating
multiple malicious transactions such that the outputs of the attack are expected to be
used as mixins by honest transactions.

4 Mitigating Monero Ring Attack

4.1 Overview

The setup phase in Monero Ring Attack as described in [6] has a unique characteristic
where identical mixins are used multiple times. By determining this characteristic, the
attack can simply be detected. The detection is done by hashing all mixins in the
blockchain then search for any hash duplicates. If any duplicates are found, then it
indicates that the attack has occured.

4.2 Detection Method

We propose a method to detect whether the attack has occurred in the blockchain.
Scanning and blacklisting steps of detecting the attack can be summarized as follows.

1. For all mixins in the blockchain M = {m0, m1, m2, … mn}, produce a set of hash
values H = {h0, h1, h2, …, hn} by using hash function FH such that h0 = FH(m0).
A mixin m0 is a list of outputs mo0={ov, ow, ox, oy, oz, …} where v, w, x, y, z, … are
the output indexes.

2. For all mixins M, compute the corresponding ring size R = {r0, r1, r2, …, rn} such
that r0 is the ring size of mixin m0.

3. For all hash values in H, compute the number of occurrence U = {u0, u1, u2, …, un}
such that u0 is the number of occurrence of h0.

4. For each mixin mj where 0 � j � n, if rj = uj then the mixin mj is considered as
an attack. All outputs in moj needs to be included in a blacklist B.

5. For each mixin mk where 0 � k � n, check if mok contains any outputs from B. If
yes, then add mok to the blacklist B.

The blacklist B, as the result of the detection method provided above, could then be
published. All of the outputs in the blacklist B are discouraged to be used when
sampling outputs for creating mixins.

Anonymity Reduction Attacks to Monero 91

4.3 Mitigation Strategy: Forbid Mixin Duplicates

The Monero Ring Attack has a characteristic of using mixin duplicates when launching
the attack. In order to countermeasure this type of attack, Monero daemon can be
equipped by a mechanism to reject new transactions having identical mixins. Fur-
thermore, the daemon can maintain a list of mixin hash values that have been used in
the system. New transactions need to prove that the hash values of their mixins have
never existed in the blockchain. Considering that creating new mixins are easy, rejected
transactions can be resubmitted after revising the duplicated mixins.

5 Extending the Monero Ring Attack

5.1 Overview

The idea of using sets of transactions and creating identical mixins in the setup phase as
explained in Sect. 3.2 can simply be extended to obfuscate the attack. Instead of using
identical mixins, combinations of outputs can be utilised. The result of this modifi-
cation is identical as the Monero Ring Attack, but the method is harder to detect. The
hashing method cannot be applied to the new attack. Below is the comparison between
the Monero Ring Attack (MRA) and our proposed attack (Table 1).

Both attacks are useful when launched against specific targets, such as coin
exchange users, rather than targeting random Monero users. Targeting random users
requires a massive amount of money to pay the transaction fee, while targeting a
specific users will reduce the attack cost. The governments or regulators can enforce
business entities under their jurisdictions to implement this scheme in order to secretly
discover the users’ activities in Monero system.

5.2 Security Model

The security model is similar to the one proposed in [6]. It is assumed that an attacker
can access the public blockchain. The attacker might also have an access to wallet
services or trading platforms in order to launch the attack without paying transaction
fees (the transaction fees are paid by the customers). Although the attacker has an
access to the public blockchain, but the attacker does not have the capability to modify
any transactions that have been confirmed in the blockchain.

Table 1. Comparison between the existing Monero Ring Attack and our proposed attack

Parameters MRA Ours

Attacking untraceability and anonymity v v
Cooperation between attackers without trust v v
Undetected using hash table x v

92 D. A. Wijaya et al.

The goal of the attack is to define the real outputs spent by other transactions or
reduce the anonymity of the transactions created by the users. The attack enables
multiple attackers to analyse the work of other attackers and aggregate the result to
maximize their efforts.

5.3 Attack Mode

Table 2 is an example how 6 outputs O = {O1, O2, O3, O4, O5, O6} can be spent in six
inputs I = {IA, IB, IC, ID, IE, IF}, with each input has a ring size of 5. We assume the
system’s mandatory ring size is 5 as in Monero fork version 6 (software version
v0.11.0.0). The rasterized cells indicate the real outputs being spent in the input. The
attack can be obfuscated further by employing a large set of outputs O which will be
spent by a large set of inputs I. These inputs can be executed in one transaction or can
also be spent in multiple transactions.

We denote by nCr the number of possible ways of choosing a ring of size r out of a
total of n possible outputs. For example, a case where n = 80 and r = 5, we find
C = 24,040,016 possible combinations to spend 80 outputs in 80 inputs. The calcu-
lation shows that it is infeasible to determine the attack by using a trivial mechanism.

5.4 Collaborating with Other Attackers

The proposed attack can be a collaborated attack among multiple attackers. The
attackers do not need to trust each other to decide whether they have conducted the
attack. Therefore, trust is not needed on the collaboration, since all of the information
can always be validated by the attackers. The validation process is easy: if the number
of outputs and inputs match, then the attack really occurs.

In order to make the validation process faster, the attackers still need to share a part
of the information related to the attacks they conduct. The information to be shared
includes:

• A list of all outputs used in the attack.
• A list of all inputs involved in the attack.

Table 2. Spending 6 outputs in 6 inputs. The rasterized cells are the ones being spent

Outputs IA IB IC ID IE IF
O1 v v v v v
O2 v v v v v
O3 v v v v v
O4 v v v v v
O5 v v v v v
O6 v v v v v

Anonymity Reduction Attacks to Monero 93

5.5 Detecting the Attack

The strategy described in Sect. 4 is not applicable tomitigate the new attack; therefore, we
define a new method. It is assumed that the shared information mentioned in Sect. 5.4 is
kept secret among the attackers. We simulated this attack and determined two important
features that distinguish the malicious transactions and honest transactions:

• The malicious transactions repeatedly include a subset of outputs O as the mixins.
• A subset of the outputs O have a high usage value, which might be higher than the

average usage value.

Precisely determining whether this type of attack has occurred in Monero and
listing all related transactions might be infeasible due to the number of possible
combinations. Consequently, we explore the features of this attack which will be
identifiable within a set of transactions.

The diagrams in Fig. 2 shows several information regarding the average usage per
output, number of transactions, and number of mixins aggregated for every 10,000
blocks. The information is useful to distinguish between regular output usages and
suspected output usages. The sharp increase in the diagram A is suspected to be caused
by the mandatory RingCT scheme implementation, which left the users to have limited
options of outputs to be used as their mixins. At the same time, the minimum ring size
was increased to five.

0

5

10

he
ig

ht
40

00
0

80
00

0
12

00
00

16
00

00
20

00
00

24
00

00
28

00
00

32
00

00
36

00
00

40
00

00
44

00
00

48
00

00
52

00
00

56
00

00
60

00
00

64
00

00
68

00
00

72
00

00
76

00
00

80
00

00
84

00
00

88
00

00
92

00
00

A. Average Usage Per Output

0

50000

100000

150000

he
ig

ht
40

00
0

80
00

0
12

00
00

16
00

00
20

00
00

24
00

00
28

00
00

32
00

00
36

00
00

40
00

00
44

00
00

48
00

00
52

00
00

56
00

00
60

00
00

64
00

00
68

00
00

72
00

00
76

00
00

80
00

00
84

00
00

88
00

00
92

00
00

96
00

00
10

00
00

0
10

40
00

0
10

80
00

0
11

20
00

0
11

60
00

0
12

00
00

0
12

40
00

0
12

80
00

0
13

20
00

0
13

60
00

0
14

00
00

0
14

40
00

0
14

80
00

0

96
00

00
10

00
00

0
10

40
00

0
10

80
00

0
11

20
00

0
11

60
00

0
12

00
00

0
12

40
00

0
12

80
00

0
13

20
00

0
13

60
00

0
14

00
00

0
14

40
00

0
14

80
00

0

B. Number of Transactions

0

1000000

2000000

he
ig

ht
40

00
0

80
00

0
12

00
00

16
00

00
20

00
00

24
00

00
28

00
00

32
00

00
36

00
00

40
00

00
44

00
00

48
00

00
52

00
00

56
00

00
60

00
00

64
00

00
68

00
00

72
00

00
76

00
00

80
00

00
84

00
00

88
00

00
92

00
00

96
00

00
10

00
00

0
10

40
00

0
10

80
00

0
11

20
00

0
11

60
00

0
12

00
00

0
12

40
00

0
12

80
00

0
13

20
00

0
13

60
00

0
14

00
00

0
14

40
00

0
14

80
00

0

C. Number of Mixins

Fig. 2. Diagram A shows the average usage per output from the blocks. Diagram B shows
the number of transactions on the blocks. Diagram C shows the number of mixins of the
transactions on the blocks. The data is aggregated for every 10,000 blocks. The horizontal axis
shows the block height, while the vertical axis shows the value.

94 D. A. Wijaya et al.

We then evaluated the data from the Monero blockchain up to block 1,542,882
containing 24.8 million outputs, where 4.7 million outputs are from RingCT transac-
tions. Based on the finding, we divide the transactions into non-RingCT and RingCT
transactions due to their data characteristics. The diagrams are shown in Fig. 3.
The average output usage for all non-RingCT transactions is 1.96, while the average
output usage for all RingCT transactions is 3.68. Overall, the average output usage
is 2.28.

The difference between non-RingCT and RingCT transactions might also be
affected by a change in mixin sampling method. Triangular distribution is used to
replace uniform distribution to increase the data resemblance with users behaviors as
suggested by [8]. The impact of the triangular distribution towards the evaluated data is
ignored to simplify the case.

We define an output weight OW as the number of inputs where an output O is
involved as one of the mixins. We also define an input weight IW as the average value
of OW for all outputs in the input.

IWs ¼
Pr

k¼0 OWk

r
ð1Þ

We scanned the blockchain and computed the value of IW for all inputs up to block
1,545,153 (timestamped on 5 April 2018). We found a total of 45,650,192 inputs on the
blockchain. The data is then aggregated and presented on Fig. 4.

62%
19%

8%

4%

3% 2% 1% 1% 0%

A. Overall Output Usage
Count

1

2

3

4

5

6

7

8

>8

46%

29%

15%

6%
2%

1%
1%

0%

B. Non-RingCT Output
Usage Count

1

2

3

4

5

6

7

>7

18%

18%

17%
15%

13%

9%

5%

3%
1% 1% 0%

C. RingCT Output Usage
Count

1
3
4
2
5
6
7
8
9
10
>10

Fig. 3. The aggregate data of all output usages with the legends describe the number of output
usage. Diagram A shows the aggregate output usage count on Non-RingCT and RingCT
transactions. Diagram B shows the same data on Non-RingCT transactions. Diagram C shows the
data on RingCT transactions. Data less than 1% is aggregated.

Anonymity Reduction Attacks to Monero 95

We look for standout figures on the blockchain data. We have presented the
mechanism where IW is used to weight all mixins. It turns out that IW can be used as a
fingerprint where inputs that contain the same output having a high usage value can be
identified. Based on our evaluation, inputs having IW value of at least seven are
suspiciously reusing the same outputs multiple times. The total number of suspected
inputs is 1,142,383 or 2% of all inputs recorded in the blockchain.

5.6 Mitigation Strategy: Input Weighting

The current triangular distribution sampling method does not guarantee that the users
will use outputs that are not a part of anonymity reduction attack. Thus, there is an
urgent need to improve the sampling protocol.

Our research shows that Monero outputs are not as fungible as claimed in [18].
Fungibility in Monero describes that all outputs have the same value regardless who
creates the outputs. Our results show that a subset of the outputs are potentially
harming the anonymity of the transactions than other outputs. Hence, the term fungi-
bility can also be applied on the mixins, since they determine the level of anonymity
gained by the users.

To increase the anonymity andmitigate the attack, we propose the use of InputWeight
(IW) as one of the criterion when sampling the outputs during mixin creation. The higher
the IW value of an output, the higher the chance of the output being a part of an attack.

Based on our evaluation, the current IW threshold to distinguish between “normal
transactions” and “suspicious transactions” is seven. It is also possible that the
threshold is changed due to changes in the system, specifically when the number of
RingCT outputs increases or the mandatory ring size increases. The rule for deter-
mining the threshold is that the lower the threshold, the lower the risk would be.

6 Leveraging Monero UPID

6.1 Overview

The unencrypted Payment ID (UPID) poses an anonymity problem, where an observer
can easily collect the information from the public blockchain and decode the message.

8%

38%

18%

12%

11%

7%

4% 1% 1%
Aggregate Input Weight 0-1

1-2
2-3
3-4
4-5
5-6
6-7
7-8
>8

Fig. 4. Aggregated IW for all transactions (nonRingCT and RingCT). The data is grouped based
on the IW range. For example, the data marked as “1-2” means the IW is in the range of 1 to 2.

96 D. A. Wijaya et al.

A user investigated Monero payments associated to TheShadowBroker, a hacking
group that wanted to auction their secret information gained unlawfully. The investi-
gation managed to collect email addresses of TheShadowBrokers’ clients [19].

By using the similar technique, we evaluated the use of UPID in relation to the
users’ anonymity. The UPID is optional; hence, it is not commonly used if it is not
mandatory. A user uses the same UPID to be included in multiple transactions when
sending payments to the same merchant. Therefore, we assume that transactions using
the same UPID are sent by the same sender to the same receiver.

Based on the above scenario, if a user uses a UPID in a transaction and creates a
second transaction including same UPID which includes the outputs from the first
transaction to the input mixins, then it is likely that these outputs are the outputs being
spent by the latter transaction. The scheme might be possible, since the reused outputs
are the change money. The change money is not transferred to the receiver and returned
back to the sender’s address. The scenario is described in Fig. 5.

6.2 Results

We collected the transaction data from Monero blockchain and extracted the infor-
mation into a relational database. The number of transactions using Payment ID is
significant, that more than half of the transactions ever recorded in the Monero
blockchain are using Payment IDs, as shown in Fig. 6.

From the genesis block up to block 1,535,607 (timestamped on 22 March 2018),
we found 2,584,535 non-coinbase transactions (containing 23,108,911 inputs). Within
the result, there are 1,033,891 transactions (containing 12,383,714 inputs) using UPIDs
and 420,153 transactions using EPIDs.

Fig. 5. User A reusing the change money from the previous transaction in a new transaction.
Both transactions are sent to the same merchant. Note “Output 1001” of TXA from diagram A is
included in “Input 5001” in TXB.

Anonymity Reduction Attacks to Monero 97

We further investigated the transactions using UPID and managed to cluster the data
based on the UPID reuse. There are 338,318 unique UPIDs found within the 1,033,891
transactions. There are also at least 15 UPIDs used more than 1,000 times. We then
cross-referenced the transaction data to see if the outputs coming from transactions with
UPIDs are reused by other transactions having identical UPIDs. We discovered 332,987
inputs from 165,919 different transactions using identical UPIDs. The identified inputs
are 1.6% of total inputs in transactions using 32 bytes Payment ID.

We assume that the senders reusing the same UPID are sending money to the same
merchants. We also assume that a part of the outputs are the change money which are
sent back to the senders’ addresses. When the senders want to create other transactions
to the same merchants, for example to pay different purchases, then these senders can
use the coins contained in the change addresses from previous transactions. Hence, we
conclude that these outputs are being spent by the new transactions.

We investigated a number of cryptocurrency exchanges supporting Monero as one
of their tradeable assets, such as HitBTC, Binance, Bitfinex, Poloniex, and Kraken.
Based on information in Coinmarketcap.com, these cryptocurrency exchanges hold
significant Monero trading volumes among other trading platforms.

44%

22%

18%

15%

1% Transactions based on Payment ID

No PID

PID 32 bytes RCT

PID 32 bytes nonRCT

PID 8 bytes RCT

PID 8 bytes nonRCT

Fig. 6. The transaction percentages based on Payment ID

Table 3. A list of trading platforms and their Payment ID details

No. Platform Trading
Volume3

Payment
ID4

User can create a new deposit address or a
new payment ID

1 HitBTC 37.68% EPID No
2 Binance 16.67% UPID No
3 Bitfinex 13.84% UPID Yes
4 Poloniex 6.56% EPID No
5 Kraken 6.23% EPID Yes
6 Livecoin 3.82% UPID No

98 D. A. Wijaya et al.

Table 3 shows that there are three cryptocurrency exchanges using UPID, namely
Binance, Bitfinex, and Poloniex. We can determine that Binance and Livecoin users
will always have the same UPID for the same user, while Bitfinex is using the UPID
but provides a feature where the users can regenerate the addresses and UPID by
themselves.

Repeated transactions are likely to be created by the trading platforms or cryp-
tocurrency exchange users, since the main function of cryptocurrencies such as Bitcoin
nowadays are tradeable assets rather than as a payment method [20]. Repeated deposits
to the trading platforms are also possible, for example sending mining rewards directly
from a mining pool to the miners’ accounts in cryptocurrency markets.

Cryptocurrency trading platforms rely on the Payment ID to identify the customers’
deposit as it is infeasible to distinguish the correct Monero transactions belonging to
different customers. As their platforms may receive thousands of Monero deposits per
day, the Payment ID is useful to automate the identification process, which will credit
the correct customers’ accounts with the correct amount of coins they transferred.

6.3 Possible Countermeasure: Encrypted Payment ID

We have presented a case where using the same UPID can be harmful to the users’
anonymity, where an attacker is able to determine the real outputs spent by the
transactions. The UPID is still widely used by cryptocurrency trading platforms.

To mitigate the problem, the UPID should no longer be used, and the merchants are
urged modify their system to support the EPID. By using the EPID, the users’ deposits
can still be determined, hence there is no change in the merchants’ business process
that the correct accounts can be credited based on the payments received.

7 Conclusion and Future Works

In this research, we propose a mitigation strategy of an existing attack in [6]. Then, we
formulate an extension of the attack, where the improvement of the new attack makes
the previous mitigation method obsolete. By using distinguishable features we found in
the transactions, we propose a simple approach yet effective as one of the considera-
tions during the mixin sampling protocols.

We also propose a second anonymity reduction attack by exploring the use of
Payment ID. The Payment ID is a common method being used by Monero merchants to
distinguish payments from different users. We found that transactions having the same
UPID is closely linked, such that at least 1.6% of the inputs are traceable.

For future works, we plan to implement the proposed mitigation strategies in a
working system. The hardened system contains all standard anonymity features such as
traceable ring signature and one-time public key, including mitigation strategies as we
have proposed in the paper. Then, we will analyse the impact of the newly created

3 The information is taken from Coinmarketcap.com on 4 April 2018. The value of trading volume is
calculated by summarizing all trading pair volumes.

4 The information is taken from the platforms on 4 April 2018.

Anonymity Reduction Attacks to Monero 99

wallet into the anonymity of the users and to evaluate whether new attack methods can
be developed.

References

1. Nakamoto, S.: Bitcoin: A Peer-To-Peer Electronic Cash System (2008)
2. van Saberhagen, N.: Cryptonote v 2.0 (2013)
3. Meiklejohn, S., et al.: A Fistful of Bitcoins: Characterizing Payments Among Men with No

Names. USENIX; login (2013)
4. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Altshuler, Y.,

Elovici, Y., Cremers, A., Aharony, N., Pentland, A. (eds.) Security and Privacy in Social
Networks. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-4139-7_10

5. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: Sadeghi,
A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-39884-1_2

6. Wijaya, D.A., Liu, J., Steinfeld, R., Liu, D.: Monero Ring Attack: Recreating Zero Mixin
Transaction Effect. Cryptology ePrint Archive (2018)

7. Kumar, A., Fischer, C., Tople, S., Saxena, P.: A traceability analysis of monero’s
blockchain. In: IACR Cryptology ePrint Archive 2017, p. 338 (2017)

8. Miller, A., Möser, M., Lee, K., Narayanan, A.: An Empirical Analysis of Linkability in the
Monero Blockchain. arXiv preprint arXiv:1704.04299 (2017)

9. Noether, S., Noether, S., Mackenzie, A.: MRL-0001: A note on chain reactions in
traceability in cryptonote 2.0. Technical report (2014)

10. Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Okamoto, T., Wang, X. (eds.) PKC
2007. LNCS, vol. 4450, pp. 181–200. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-71677-8_13

11. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad
hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol.
3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-
9_28

12. Noether, S., Mackenzie, A.: Ring confidential transactions. Ledger 1, 1–18 (2016)
13. Maxwell, G.: Confidential Transactions (2015)
14. Getmonero. https://getmonero.org/resources/moneropedia/ringCT.html
15. Bitcoin BIP. https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
16. Noether, S., Goodell, B.: An Efficient Implementation of Monero Subaddresses (2017)
17. Getmonero. https://getmonero.org/resources/moneropedia/paymentid.html
18. Getmonero. https://getmonero.org/resources/moneropedia/fungibility.html
19. Steemit. https://steemit.com/shadowbrokers/@wh1sks/theshadowbrokers-may-have-

received-up-to-1500-monero-usd66-000-from-their-june-monthly-dump-service
20. Glaser, F., Zimmermann, K., Haferkorn, M., Weber, M.C., Siering, M.: Bitcoin - asset or

currency? Revealing users’ hidden intentions. In: Twenty Second European Conference on
Information Systems (2014)

100 D. A. Wijaya et al.

http://dx.doi.org/10.1007/978-1-4614-4139-7_10
http://dx.doi.org/10.1007/978-3-642-39884-1_2
http://dx.doi.org/10.1007/978-3-642-39884-1_2
http://arxiv.org/abs/1704.04299
http://dx.doi.org/10.1007/978-3-540-71677-8_13
http://dx.doi.org/10.1007/978-3-540-71677-8_13
http://dx.doi.org/10.1007/978-3-540-27800-9_28
http://dx.doi.org/10.1007/978-3-540-27800-9_28
https://getmonero.org/resources/moneropedia/ringCT.html
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://getmonero.org/resources/moneropedia/paymentid.html
https://getmonero.org/resources/moneropedia/fungibility.html
https://steemit.com/shadowbrokers/%40wh1sks/theshadowbrokers-may-have-received-up-to-1500-monero-usd66-000-from-their-june-monthly-dump-service
https://steemit.com/shadowbrokers/%40wh1sks/theshadowbrokers-may-have-received-up-to-1500-monero-usd66-000-from-their-june-monthly-dump-service

Analysis of Variance of Graph-Clique
Mining for Scalable Proof of Work

Hiroaki Anada1, Tomohiro Matsushima2, Chunhua Su3(B), Weizhi Meng4,
Junpei Kawamoto2, Samiran Bag5, and Kouichi Sakurai2

1 Department of Information Security, University of Nagasaki, Nagasaki, Japan
anada@sun.ac.jp

2 Department of Informatics, Graduate School and Faculty of Information Science
and Electrical Engineering, Kyushu University, Fukuoka, Japan

sakurai@inf.kyushu-u.ac.jp
3 Division of Computer Science, University of Aizu, Aizuwakamatsu, Japan

chsu@u-aizu.ac.jp
4 Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kongens Lyngby, Denmark

weme@dtu.dk
5 School of Computing Science, Newcastle University, Newcastle upon Tyne, UK

samiran.bag@ncl.ac.uk

Abstract. Recently, Bitcoin is becoming one of the most popular decen-
tralized cryptographic currency technologies, and Bitcoin mining is a pro-
cess of adding transaction records to Bitcoin’s public ledger of past trans-
actions or blockchain. To obtain a bitcoin, the mining process involves
compiling recent transactions into blocks and trying to solve a compu-
tationally difficult puzzle, e.g., proof of work puzzle. A proof of work
allows miners the ability to quantify how much work a given proof con-
tains. Basically, the required time for mining is decided in advance, but
problems will occur if the value is large for dispersion. In this paper,
we first accept that the required time between consecutive blocks fol-
lows the exponential distribution. That is, the variance is stable as long
as the expected time is fixed. Then, we focus on the graph clique min-
ing technique proposed by the literature, like Tromp (BITCOIN 2015)
and Bag-Ruj-Sakurai (Inscrypt 2015), which is based on a computa-
tional difficulty problem of searching cliques of undirected graphs, where
a clique is a subset of vertices. In particular, when the clique size is two,
graph clique mining can be used to gain Bitcoins. The previous work
also claimed that if the clique size is parameterized and increased, even
if the expected time is fixed, the variance would not be stable. However,
no qualitative or quantitative results were given to support their claim.
Motivated by this issue, in this work, we propose a simple search algo-
rithm for graph cliques mining, and perform a small scale evaluation on
Bitcoin and Graph cliques’s solo mining to investigate the variance issue.

Keywords: Blockchain · Proof of work · Graph-Clique Mining ·
Bitcoin · Mining competition

c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 101–114, 2019.
https://doi.org/10.1007/978-3-030-14234-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_6

102 H. Anada et al.

1 Introduction

Before the year of 2009, currency transactions were conducted through trusted
third parties such as banks and credit card companies, but Bitcoin [11], one
cryptographic currency released in 2009, allows a decentralized digital currency
without a central bank or single administrator. Bitcoin system guarantees the
legitimacy of a transaction without requiring a trusted agency. Transactions
are verified by network nodes through cryptography and recorded in a public
distributed ledger called a blockchain. It is regarded as an open ledger that
epitomizes a general consensus among the online participants with respect to
historicity of all validly executed transactions over the Bitcoin network. A newly
constructed block gets appended to the already existing block chain after an
approximately constant time interval (e.g., 10 min) [1,14].

A proof of work (PoW) in the context of blockchain is a piece of data that
is difficult to generate due to the cost and time-consumption, but is easy for
others to verify. To generate a proof of work can be a random process with a low
probability, which means that many efforts should be made before a valid PoW
is obtained. In particular, Bitcoin uses the Hashcash proof of work system. In
order for a block to be accepted by network participants, miners must complete
a proof of work that covers all of the data in the block. The difficulty of this
work is adjusted so as to limit the rate at which new blocks can be generated by
the network to one every 10 min. Due to the very low probability of successful
generation, this makes it unpredictable which worker computer in the network
will be able to generate the next block. In other words, under the incentive of
getting a bitcoin reward, bitcoin miners have to repeat mining competition for
each block. PoW’s computational nature allows miners to quantify how much
work a given proof contains.

In this paper, we consider the statistical time dispersion of mining competi-
tion in such PoW system. Regarding Bitcoin mining, the expected time required
for mining is decided as 10 min in advance. However, an extremely lucky miner
may finish the mining competition in a short time, i.e., much shorter than the
expected time, or an extremely unlucky miner may take a longer time while
cannot find any. The difficulty is expected to rise with the popularity of Bitcoin,
but the following three problems would occur [9,12].

1. It is known that the utility of money is concave. Thus, the time variance in
the supply of money would result in the difficulty of finance management (or
plans) and the decrease of a person’s utility.

2. Bitcoin blocks are not published at fixed time intervals, but are randomly
found in a Poisson process. As payment is not made regularly, it is technically
difficult to validate whether all systems are working properly.

3. The Bitcoin model differs from the mint model in a sense that it uses a
finality confirmation structure via mining competition. That is, a high time
dispersion may cause much stress among all mining participants.

Regard the convenience and security of a virtual currency network, it is
desirable that the time variance required for mining is small enough according

Analysis of Variance of Graph-Clique Mining for Scalable Proof of Work 103

to the above three issues. However, in Bitcoin’s PoW system, by given a hash
value, we have to find the input of a hash function where the size of the problem
space is constant irrespective of the number of trials. The time distribution
required for mining can be regarded as an exponential distribution, so that the
time dispersion depends only on the expected time required for mining. In the
context of Bitcoin, this can be considered as one of the important tasks to make
the time dispersion scalable, by properly setting it to a (desirable) small value
that is as small as possible [9,12].

In the literature, the proof-of-work algorithms proposed by Bag et al. [2] and
Tromp [15] are based on a computationally difficult problem of searching cliques
in an undirected graph, where a clique is a subset of fully connected vertices. It
is worth noting that the problem of searching for a clique of the specified number
of vertices (size) is NP complete [6]. In the previous study [2], they utilized the
problem of finding the largest clique in a big graph as a replacement for the
existing Bitcoin PoW scheme. They handled a graph having O(230) vertices and
O(248) edges, which is constructed deterministically using the set of transac-
tions executed within a certain time slot. They then proposed an enhanced algo-
rithm to solve this PoW puzzle by doing O(280) hash calculations. Their scheme
forces both computing power and memory of a miner. Taking the advantage of
the graph clique search problem, the time variance required for mining is scalable
with the size of cliques.

1.1 Our Contributions

Motivated by this challenge, in this work, we propose a simple search algorithm
for graph cliques mining, and perform a small scale evaluation on both Bitcoin
and Graph cliques’s solo mining to investigate the variance issue. Our contribu-
tions can be summarized as follows.

– Firstly, we conduct a theoretical evaluation of solo mining. Our interest is
that the graph clique mining can become a Bitcoin mining scheme when the
clique size is two. Our theoretical evaluation validates this observation.

– Secondly, we propose a easy-to-use search algorithm for mining graph cliques.
Although our algorithm is not performed the fastest as compared with the
existing search algorithms, it is much easier to implement.

– Further, we perform an evaluation to test the performance of our algorithm
in the context of Bitcoin, i.e., exploring graph cliques via solo mining and
investigating the variance issue.

1.2 The Organization of This Paper

In Sect. 2, we introduce the notation and primitives used in this paper, including
hash function, Bitcoin mining technique [11], and various mining approaches, i.e.,
solo mining and pooled mining. In Sect. 3, we conduct a theoretical analysis on
solo mining time in Bitcoin, based on the existing research [8,12]. In Sect. 4, we
analyze the existing studies on graph clique mining like [2], discuss the mining

104 H. Anada et al.

time variance compared to Bitcoin, and perform an evaluation on Bitcoin solo
mining and Graph cliques’s solo mining.

Finally, we conclude this work with future directions in Sect. 5.

2 Preliminaries

In this section, we introduce the notations used in this paper, and summarize key
requirements for cryptographic hash functions. Then, we make a brief introduc-
tion on Bitcoin mining [11], two mining ways of solo mining and pooled mining
[12], as well as mining competition.

Bitcoin is a decentralized cash system that does not depend on a centralized
server. The corresponding public key can be used to publicly verify the authen-
ticity of the transaction. The process of Bitcoin mining involves compiling recent
transactions into blocks and trying to solve a computationally difficult puzzle
[11]. Bitcoin network maintains a publicly auditable ledger called Bitcoin block
chain that is aimed at preventing double spending of Bitcoins. A Bitcoin block
is constructed by users called miners and it requires one to execute a nontrivial
amount of computation.

For an undirected graph with a finite number of vertices, a clique is a com-
plete subgraph of a graph. Clique problem involves finding two types of cliques:
maximal clique and maximum clique. The former is one that cannot be extended
to form a clique of bigger size, while the latter is a clique that has the size equal
to that of the largest clique in the same graph. Clique problem is defined as the
problem of finding the largest clique in a graph or listing all maximal cliques in
the graph. When the number of vertices is k, we say it is a clique of size k or a
k-clique. When a finite number of vertices is given, the problem of searching for
one clique of size k can be known as ‘k-clique search problem’.

Solo mining refers to the process of calculating hashes individually, in order
to find a valid block whose reward will be paid entirely to the person in ownership
of the hashing computer. Pooled mining refers to a joint effort between several
miners to work on finding blocks together, and split the rewards among the
participants in proportion to their contribution.

2.1 Cryptographic Hash Function

The cryptographic hash function is a function H that takes an input of an
arbitrary-length message and outputs a fixed length bit string, which is called
‘hash value’. It has the following three major features:

1. Pre-image resistance. When the value h is given, finding the input m such
that h = H(m) is computationally difficult.

2. Second pre-image resistance. Given an input m1, it should be difficult to find a
different input m2 such that H(m1) = H(m2). Hash functions are vulnerable
to second-preimage attacks without this property.

Analysis of Variance of Graph-Clique Mining for Scalable Proof of Work 105

3. Collision resistance. It should be difficult to find two different messages m1

and m2 such that H(m1) = H(m2). Such a pair is called a cryptographic
hash collision. To defend against birthday attacks, strong collision resistance
is desirable, which requires a hash value at least twice as long as that required
for pre-image resistance.

At the analysis in Sect. 2.3, we assume that the hash function H is a random
oracle.

2.2 Background on Bitcoin Mining

Bitcoin mining used in this paper refers to how to search for a hash value in
relation to Bitcoin transactions described in the original paper [11].

In particular, Bitcoin’s network has a timestamp server, which is responsible
for hashing the data (e.g., transaction information) to be time-stamped using the
SHA-256 algorithm and broadcasting the hash value throughout the network.
Bitcoin mining is intentionally designed to be resource-intensive and difficult, so
that the number of blocks found each day by miners remains steady. Individual
blocks must contain a proof of work to be considered valid. The mining process
requires miners to perform competitive computation in finding a solution for a
puzzle, based on the broadcasted hash value. The primary purpose of mining
is to allow Bitcoin nodes to reach a secure, tamper-resistant consensus. Bitcoin
mining is difficult because the SHA-256 hash of a block’s header must be lower
than or equal to the target in order for the block to be accepted.

To obtain a Bitcoin, miners have to search for a nonce (described later) that
satisfies a condition, and if they find the correct solution, then they have to
broadcast that nonce and the solution to the whole network. Only by doing
this, a miner can become the winner of the computational competition. In other
words, miners perform some computation on the data, and then send the timing
data to the time stamp server. This is required by the server to decide who
found the solution nonce first. It should be noted that the time consumption of
propagating nonce to the entire computer network is much shorter than the time
consumption for completing a mining process. Due to this, the required time for
propagation can be neglected.

In the mining process, we have two types of data: the data in a blockchain
include all received transactions up to now; and the data of transaction infor-
mation from the last time-stamp to the next received time-stamp. The use of
timestamp is to prove that the existence of transaction at the time when the
transaction is timestamped. To obtain a reward, a miner has to concatenate
nonce to these two values, perform a hash calculation, and search for a nonce
that can make the hash value less than or equal to a predetermined threshold.
Assume that the hash value of an agreed blockchain is B, and the data of all
the transaction histories are T . Let D denote the value determined from the
adjustment of the mining difficulty. Then the goal of mining process is to search

106 H. Anada et al.

for a nonce (a string) that can satisfy the following conditional expression (the
concatenation of the string a and b is written as a ‖ b).

H(B ‖ T ‖ nonce) < D. (1)

2.3 Mining Ways and Competition

There are two major mining ways [12]: solo mining and pooled mining. Solo
mining is a solo process where a miner completely does his task of mining oper-
ations without joining a pool. These blocks are mined and generated in a way
to the task completed by the miner’s credit. In contrast, pooled mining refers
to a scenario that most miners do the mining in pools, which is the pooling of
resources by miners, who share their processing power over a network, to split
the reward equally, according to the amount of work they contributed to the
probability of finding a valid block.

On the other hand, the mining process consists in repeatedly computing
hashes of variants of a data structure called a block header, until one is found
whose numerical value is low enough. When this happens, it allows releasing a
valid block, for which the miner is rewarded with bitcoins in an amount (known
as mining competition). To be a winner, miners have to solve the above compu-
tational problem (1), which allows them to chain together blocks of transactions.

A graph is a set of vertices V and set of edges E(⊂ V × V), which can be
determined by (V,E). In this paper, we denote the number of vertices |V | as N .
Thus, a subset C of V is a clique of size k if |C| = k and for any (v1, v2) ∈ C ×C
s.t. v1 �= v2, (v1, v2) ∈ E holds.

In our paper, we use the random graphs proposed in [4]. If we set a constant
number 0 ≤ p ≤ 1, then the probability Pr[(v1, v2) ∈ E] is p, which determines
the probability of (v1, v2) ∈ V ×V being an edge. Note that the coin tossings are
independent of each other in repeated trials (the probability of becoming“head”
is p). A random graph determined by (N, p) is written as GN,p. For all cliques
of GN,p, let Z(GN,p) be the maximum value of the clique size. According to the
previous study [7], the asymptotic behavior of Z(GN,p) can be represented as
follows.

Z(GN,p) =
2 loge N

loge(1/p)
+ O(loge n).

Furthermore, according to the work [10], given a value of k, the probability
Pr[Z(GN,p) ≥ k] can be evaluated by combinatorics. For example, we have:

Pr[Z(1010, 0.25) = 30] > 0.9997.

As mentioned earlier, it is worth noting that the problem of searching for a
clique of the specified number of vertices (size) is NP complete [6]. Based on these
facts, Bag et al. [2] advised to use the maximum clique search problem for mining
against the random graph GN,p, which can be determined from the transaction
history decisively. However, in fact, we estimate the value k of Z(GN,p) in advance

Analysis of Variance of Graph-Clique Mining for Scalable Proof of Work 107

for the random graph GN,p, and prefix k-clique search problem. In particular, we
adopt the following value for k in this work.

k :=
2 loge N

loge(1/p)
.

Then, it is important to know how to determine the number of vertices and
edges of the graph. In this work, we denote the number of vertices as N := |V |,
where N = 2n (power of 2) for benefiting bit shift. For the purpose of replacing
Bitcoin’s proof of work n = 30, N = 230 is appropriate according to the work
[2]. Another issue is how to define the sides, we assume that a set of transaction
histories that a miner wishes to capture is {Ts; s = 0, . . . , Nt − 1}, and denote
the order number of the transaction history as Nt = 2ν (the power of 2).

For the purpose of positioning it as generalization of Bitcoin mining using
graph clique, we should slightly change the way of setting sides. First of all, for
N vertices, adding an integer value vl to each vertex as follows.

vl
def= (Tl/2n−ν · 2n−ν) ‖ (l%2n−ν),

l = 0, . . . , N − 1.

As an example, if n = 4 and ν = 2, the number of vertices is N = 16 and
the number of transaction histories is Nt = 4. For {vl; l = 0, . . . , N − 1}, we
determine the edges in the adjacency matrix A = (Ai,j)0≤i,j<N as follows.

Ai,j
def=

⎧
⎪⎨

⎪⎩

0 if i = j,

1 if H(vi ‖ vj) = (0m ‖ x),
0 otherwise,

0 ≤ i ≤ j < N,

Ai,j
def= Aj,i, 0 ≤ j < i < N.

Here, 0m ‖ x represents the concatenation of m ‘zero’ strings and arbitrary
string x, and m is a parameter. According to the work [2], we set m = 12 for
n = 30. Viewing the hash function H to be a random oracle, the parameter p is
estimated as follows.

p = 2−m.

In the mining in GN,p, the miner has to find a solution for the clique search
problem. The solution denotes a submatrix of the adjacency matrix A, at which
all the components are 1. The miner sets the already agreed hash value as B,
the transactions as T := T0 ‖ · · · ‖ TNt−1, and the solution as a string clique.
Then we have the following value as the next agreed hash value that should be
included in the blockchain.

H(B ‖ T ‖ clique). (2)

As a result, the above graph clique mining process can be regarded as Bitcoin
mining, if we assume that n = 256 (means the bit length of SHA-256’s end region)
and k = 2.

108 H. Anada et al.

3 Our Analysis of Bitcoin Mining Time

In this section, we review the existing studies [3,8,12] regarding the probability
distribution of time interval, which the winner of the mining competition follows
during Bitcoin mining.

3.1 Bitcoin Solo Mining Time: Exponential Distribution

In Bitcoin solo mining, a miner’s evaluation of each nonce (Expression (1)) does
not use the evaluation results before the evaluation (i.e. memoryless trials [12]).
Hence we stand on the following assumption.

– A miner samples nonce uniformly at random every time.

According to the general theory of probability distribution, memoryless con-
tinuous probability distribution is limited to the exponential distribution [5]. In
the following discussion, we show this derivation briefly (for details, see [16],
etc.). When Δ x is sufficiently small, the probability of occurrence of an event
between time x and x + Δx, which is denoted by P (x ≤ t ≤ x + Δx), can be
obtained by the definition of the probability density function f(x):

P (x ≤ t ≤ x + Δx) = f(x)Δx. (3)

On the other hand, the same probability is described in another way by the
above assumption as

(the probability that the event does not occur until a time x) (4)
×(the probability that the event occurs between x and x + Δx) (5)

That is,

P (x ≤ t ≤ x + Δx) = (1 −
∫ x

0

f(t)dt) × λΔx, (6)

where λ denotes the average number of occurrence in the Bernoulli trials per a
unit time, which is a constant. Note here that, due to the above assumption, the
second factor λΔx does not depend on x.

Therefore, we obtain the following integral equation:

f(x) = λ − λ

∫ x

0

f(t)dt

We then differentiate these two sides and solve the differential equation. The
solution is the following function.

f(x) = λe−λx. (7)

This is an exponential function. That is, the probability density function is
limited to the probability density function of the exponential distribution (7).

Analysis of Variance of Graph-Clique Mining for Scalable Proof of Work 109

In terms of the above ground-truth, from the point at which the winner
appears in the i-th slot of Bitcoin mining competition, the time interval xi

until the next winner appears in the i + 1-th slot of Bitcoin mining competition
should follow the exponential distribution [12]. That is, if set the time interval
xi, i = 1, 2, . . . , to be handled by the random variable X, then X follows the
exponential distribution. Also, (Xi)i=1,2,... becomes a Poisson process when we
treat xi as probabilistic variable Xi [8,12]. Some studies based on actual data
like [3] indicate that the time for solo mining in Bitcoin follows the exponential
distribution.

3.2 Bitcoin Mining Time Variance

In the exponential distribution (7) of X, the expected value is Ef (X) = 1/λ
and the variance is Vf (X) = 1/λ2. Therefore, if we set the difficulty level D
(Expression (1)), then the expected value is set as 1/λ. By performing adjustment
which is the case for Bitcoin, the expected value 1/λ = 10[min], and therefore
the variance must be 1/λ2 = 100[min2] (standard deviation is therefore 1/λ =
10[min]) .

Hence, for Bitcoin mining, as long as the expected time is fixed, there
might be a problem that the variance cannot be reduced, as we mentioned in
Introduction.

3.3 Bitcoin Mining Time: Relationship with Geometric Distribution

The exponential distribution is a type of continuous probability distribution, and
the geometric distribution is type of discrete probability distribution, while these
two can become equivalent via conversion (see an example in [13]). In general,
the probability mass function f(i) of a geometric distribution can be determined
by one parameter p, 0 ≤ p ≤ 1, as below.

f(i) = (1 − p)i−1p. (8)

We denote the random variable that follows the geometric distribution as Y , and
we denote the expected value as Ef (Y) =: μ. Then, the variance is represented
as Vf (Y) = σ2 = μ2 − μ.

4 Our Experimental Analysis of Graph Clique Mining
Time

In this section, we try to analyze the probability distribution for the graph clique
mining, where the time interval at which the winner of the mining competition
should follow.

4.1 Graph Clique/ Solo Mining Time

In the case of graph clique solo mining, Expression (6) established by Bitcoin
solo mining does not hold anymore. This is because the probability multiplication
factor (5) would not be λΔx in Expression (6) anymore.

110 H. Anada et al.

4.2 Time Variance of Graph Creek Mining

In the previous study [2], they set the number of vertices to be constant (under
the parameter settings), and the graph’s edges is subjected to the clique search
and the transaction history. If an efficient algorithm is available for searching
cliques, then the problem space can become smaller. This is because the vertex
out of any clique becomes known in the process of searching the clique. Therefore,
in the graph clique search problem, the time variance required for mining is
expected to be smaller than that required for Bitcoin.

4.3 Experimental Evaluation

In this section, we begin by introducing experimental results on validating the
theoretical analysis of the Bitcoin solo mining and then discuss experimental
results regarding the graph clique solo mining.

Table 1 describes our experimental environment with a 64-bit Linux machine.
Python version 3.5 was used as the programming language for algorithm imple-
mentation. Due to the availability, we used 12 cores of CPU, but we did not
particularly leverage the parallel processing capability in the evaluation. The
size of available memory was 62.9 GB.

Table 1. Experimental environment and settings.

Programming language Python 3.5

CPU Intel Core i7-3960X

CPU3.30GHz×12

RAM 62.9GB

OS 64bit, Linux

4.4 Experiments on Bitcoin Solo Mining and Results

Algorithm for Bitcoin Solo Mining. The algorithm used to evaluate the expres-
sion (1) iteratively, that is, our iterative generation of nonce, was to use the
random function provided by Python 3.5 with the time as a seed.

For Bitcoin solo mining, the hash value B is fixed, and the data T is set to
the value of the random function (seeding time). In addition, we set the value D
specified for mining difficulty adjustment to 2228 (SHA-256 hash value, leading
28 bits is 0). The number of trials to find nonce should satisfy the expression (1)
(the number of trials is to find a solution for different T) was set to 800 times
(or trials).

In particular, Table 2 shows that the theoretical standard deviation can be
estimated from the average value as

√
μ2 − μ =

√
(538.6)2 − 538.6 = 538.1. It

is approximately equal to σ = 535.3 (root of unbiased variance), indicating that

Analysis of Variance of Graph-Clique Mining for Scalable Proof of Work 111

Table 2. Experimental results of bitcoin solo mining

Experiment number Expected value μ[sec] Standard deviation σ[sec]

Number 0 538.6 535.3

it follows the geometric distribution, as well as the exponential distribution (as
these two can be adjusted to be equal). In addition, Fig. 1 shows the approximate
shape of the exponential distribution; that is, the time consumption required by
Bitcoin solo mining.

Fig. 1. Time consumption of bitcoin solo mining

4.5 Experiments on Graph Clique Solo Mining

Algorithm of graph clique solo mining. We used a naive algorithm to explore the
clique search problem as below.

1. Compute the values attached to the vertex vl, l = 0, . . . , N − 1,
2. Initialize all the components Ai,j in adjacency matrix A = (Ai,j)0≤i,j<N with

−1.
3. Search for cliques of size k; the hash value H(vi ‖ vj) is evaluated only for

Ai,j = −1.

Experimental Result. Table 3 indicates how we set parameters for the graph
clique mining. The transaction history data Ts, s = 0, . . . , Nt − 1 were generated
by the random function (using seeding time).

In this work, we set the number of trials to find a solution (for different Ts)
to 200 times. It is worth noting that the parameter value m∗ (for Number 2 in
Table 3) is not an integer value but a value slightly smaller than 7, calculated as
(06‖x)10

2256 < 3/27. The component of the adjacency matrix is assumed to be 1 (the
vertices i and j are connected by an edge). This is because if m∗ = 7, then no
solution was found in the experiment. Table 4 details our experimental results.

112 H. Anada et al.

Table 3. Experimental parameters of graph clique solo mining

Experiment Number n N ν Nt m k

Number 1 14 16384 8 256 8 4

Number 2 14 16384 8 256 m∗ 5

Table 4. Experimental results on graph clique solo mining

Experiment number Expected value μ[sec] Standard deviation σ[sec] ratio R

Number 1 327.56 313.24 96%

Number 2 255.94 187.49 73%

4.6 Discussion on Experimental Results

For Bitcoin solo mining, the time variance required for mining is determined
by the expected value. It is comparable with the time variance of graph clique
mining. That is, for an expected value μ obtained from the graph clique mining
experimentally, if the expected value of Bitcoin mining were the same, then the
variance for Bitcoin mining can be estimated based on the probability mass
function (8) as σ2

BC := μ2 − μ. On the other hand, the value of the unbiased
variance can be obtained by the experiment for graph clique mining as σ2. The
following value R (also in Table 4) indicates the ratio.

R
def=

σ
√

μ2 − μ
. (9)

In the experiment with Number 1, the ratio R1 is computed as below.

R1 = σ1/
√

μ2
1 − μ1

= 313.24/
√

(327.56)2 − (327.56)
= 0.95722 ≈ 0.96.

For the same expected value μ1, it is found that the difference between the
standard deviation σ1 of the graph clique mining and the standard deviation of
Bitcoin mining (

√
μ2
1 − μ1) is 1 − 0.96 = 0.04 (i.e. 4%).

In the experiment with Number 2, the ratio value of R2 is computed as below.

R2 = σ2/
√

μ2
2 − μ2

= 187.49/
√

(255.94)2 − (255.94)
= 0.73399 ≈ 0.73

Similarly, for the same expected value μ2, the difference between the standard
deviation σ2 of the graph clique mining and the standard deviation of Bitcoin
mining (

√
μ2
2 − μ2) is 0.73 = 0.27 (i.e. 27%).

Analysis of Variance of Graph-Clique Mining for Scalable Proof of Work 113

5 Conclusion and Future Work

In this work, we firstly conducted a theoretical analysis on Bitcoin solo mining
and graph clique mining, and then proposed a simple search algorithm for graph
cliques mining. We accepted that the required time between consecutive blocks
follows the exponential distribution. In the evaluation, we perform a small scale
evaluation on Bitcoin and graph clique solo minings to validate the correctness
of our theoretical evaluation. We investigated the variance issue. It is found
experimentally that the the standard deviation of unbiased variance of the graph
clique mining is reduced compared with the standard deviation (dispersion) of
Bitcoin mining.

In future, we plan to conduct a more complete theoretical evaluation on
graph clique solo mining. We also plan to do experiments to study graph clique
solo mining. In addition, we plan to compare the Bitcoin pooled mining and the
graph clique-based pooled mining under various conditions.

Acknowledgement. In the first stage of this research, Hiroaki Anada, Junpei
Kawamoto and Kouichi Sakurai were supported by JSPS Kiban(B) JP15H02711.
Hiroaki Anada, Chunhua Su and Kouichi Sakurai are supported by JSPS Kiban(B)
JP18H03240. Chunhua Su is also supported by JSPS Kiban(C) JP18K11298. Samiran
Bag is supported by the ERC starting grant, no. 306994. The authors would like to
thank all anonymous reviewers for their insightful comments and suggestions.

References

1. Antonopoulos, A.M.: Mastering Bitcoin: Unlocking Digital Crypto-Currencies, 1st
edn. O’Reilly Media Inc., Sebastopol (2014)

2. Bag, S., Ruj, S., Sakurai, K.: On the application of clique problem for proof-of-
work in cryptocurrencies. In: Lin, D., Wang, X.F., Yung, M. (eds.) Inscrypt 2015.
LNCS, vol. 9589, pp. 260–279. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-38898-4 16

3. Bitcoinwiki: Confirmation. https://en.bitcoin.it/wiki/Confirmation. Accessed 15
Dec 2016

4. Erdős, P., Renyi, A.: On the evolution of random graphs. In: Publication of the
Mathematical Institute of the Hungarian Academy of Sciences, pp. 17–61 (1960)

5. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1.
Wiley, York (1968)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

7. Grimmett, G.R., McDiarmid, C.J.H.: On colouring random graphs. Math. Proc.
Cambridge Philos. Soc. 77, 313–324 (1976)

8. Kraft, D.: Difficulty control for blockchain-based consensus systems. Peer Peer
Netw. Appl. 9(2), 397–413 (2016). https://doi.org/10.1007/s12083-015-0347-x

9. Matsushima, T., Anada, H., Kawamoto, J., Bag, S., Sakurai, K.: Evaluation of
bitcoin-mining for search problem of graph cliques. In: Hinokuni Symposium on
Information 2016, Miyazaki, Japan, 2–3 March 2016, p. 4B–2 (2016)

10. Matula, D.: On the complete subgraph of random graph. In: Combinatory Math-
ematics and Its Applications, pp. 356–369 (1970)

https://doi.org/10.1007/978-3-319-38898-4_16
https://doi.org/10.1007/978-3-319-38898-4_16
https://en.bitcoin.it/wiki/Confirmation
https://doi.org/10.1007/s12083-015-0347-x

114 H. Anada et al.

11. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). http://
bitcoin.org/bitcoin.pdf

12. Rosenfeld, M.: Analysis of bitcoin pooled mining reward systems. CoRR
abs/1112.4980 (2011). http://arxiv.org/abs/1112.4980

13. Saito, R.: Deriving exponential distribution from geometric distribution. http://
chianti.ucsd.edu/∼rsaito/ENTRY1/WEB RS3/PDF/JPN/Texts/half life1 1.pdf.
Accessed 15 Dec 2016

14. Swan, M.: Blockchain: Blueprint for a New Economy, 1st edn. O’Reilly Media Inc.,
Sebastopol (2015)

15. Tromp, J.: Cuckoo cycle: a memory bound graph-theoretic proof-of-work. In:
Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol.
8976, pp. 49–62. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
48051-9 4

16. WIKIPEDIA: Memorylessness. https://en.wikipedia.org/wiki/Memorylessness.
Accessed 15 Dec 2016

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://arxiv.org/abs/1112.4980
http://chianti.ucsd.edu/~rsaito/ENTRY1/WEB_RS3/PDF/JPN/Texts/half_life1_1.pdf
http://chianti.ucsd.edu/~rsaito/ENTRY1/WEB_RS3/PDF/JPN/Texts/half_life1_1.pdf
https://doi.org/10.1007/978-3-662-48051-9_4
https://doi.org/10.1007/978-3-662-48051-9_4
https://en.wikipedia.org/wiki/Memorylessness

Lattice-Based Cryptology

Preprocess-then-NTT Technique and Its
Applications to Kyber and NewHope

Shuai Zhou1,2,3, Haiyang Xue1,2,3, Daode Zhang1,2,3(B), Kunpeng Wang1,2,3,
Xianhui Lu1,2,3, Bao Li1,2,3, and Jingnan He1,2,3

1 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

2 Data Assurances and Communications Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

3 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

{zhoushuai,zhangdaode}@iie.ac.cn

Abstract. The Number Theoretic Transform (NTT) provides efficient
algorithm for multiplying large degree polynomials. It is commonly used
in cryptographic schemes that are based on the hardness of the Ring
Learning With Errors problem (RLWE), which is a popular basis for
post-quantum key exchange, encryption and digital signature.

To apply NTT, modulus q should satisfy that q ≡ 1 mod 2n, RLWE-
based schemes have to choose an oversized modulus, which leads to
excessive bandwidth. In this work, we present “Preprocess-then-NTT
(PtNTT)” technique which weakens the limitation of modulus q, i.e.,
we only require q ≡ 1 mod n or q ≡ 1 mod n/2. Based on this tech-
nique, we provide new parameter settings for Kyber and NewHope (two
NIST candidates). In these new schemes, we can reduce public key size
and ciphertext size at a cost of very little efficiency loss.

Keywords: NTT · Preprocess-then-NTT · Kyber · NewHope ·
Ring Learning With Errors · Module Learning With Errors

1 Introduction

Fast Fourier Transform (FFT) algorithms can be applied to the efficient nega-
cyclic convolution of two integer sequences of length n. When the coefficients of
sequence (or polynomial) are specialized to come from a finite field, the FFT is
called the Number Theoretic Transform (NTT) [11] and can be used to compute
polynomial multiplication efficiently over this specific finite field. For example,
when polynomials come from Rq = Zq[x]/xn + 1, the product corresponds to
a nega-cyclic convolution of the coefficient sequences. Note that Zq denotes the
quotient ring Z/qZ of the rational integers ring Z, and n = 2n′−1 such that xn+1
is the 2n′

-th cyclotomic polynomial. In this setting, the NTT is usually computed
with a special type of FFT algorithm that can be efficiently implemented when
q is a prime satisfying that q ≡ 1 mod 2n [17], which in turn means that the
underlying finite field contains 2n-th roots of unity.
c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 117–137, 2019.
https://doi.org/10.1007/978-3-030-14234-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_7

118 S. Zhou et al.

1.1 RLWE-Based Cryptography

Lattice-based cryptography has emerged as a promising candidate for public-key
cryptography that is still secure after the likely advent of quantum computers.
The first lattice-based encryption scheme was proposed by Ajtai and Dwork
[1]. This scheme was later simplified and improved by Regev [19]. And a major
achievement of Regev was the introduction of Learning With Errors problem
(LWE), which was relatively simple to use in cryptographic constructions.

The LWE assumption is asymptotically at least as hard as some standard
worst-case lattice problems [19]. Based on the LWE problem, Lyubashevsky
et al. [18] proposed a variant of LWE over polynomial rings and showed that
the variant enjoyed a worst-case hardness guarantee. The variant was defined as
Ring-Learning With Errors problem (RLWE). The polynomial rings in RLWE
assumption are usually defined as Rq = Zq[x]/xn+1 as mentioned above. RLWE-
based schemes have been proposed for public-key encryption [18], digital signa-
tures [16] and key exchange [8]. In order to compute the multiplication of poly-
nomials efficiently, most RLWE-based schemes invoke the NTT technique [17]
which requires that q is a prime and satisfies q ≡ 1 mod 2n. As a result, these
schemes have higher efficiency than that without applying the NTT algorithm.

RLWE-based schemes also have some drawbacks. Stebila et al. [20] reported
the performance of standalone post-quantum cryptographic operations of key
exchange protocols (passively secure key encapsulation mechanisms, KEMs), as
well as standard cryptographic operations for comparison. As is shown in Table 1
[20], the key exchange scheme based on RLWE assumption (NewHope) has a
significant increase in running time, while its bandwidth is too large comparing
with ECDH nistp256. Reducing the bandwidth (even if only a few tens of bytes)
makes sense in RLWE-based post-quantum cryptographic schemes, especially in
some special scenario. For example, in the wireless sensor nodes, power is very
crucial factor and most of the power is due to the RF transceiver module. Thus,
decreasing the bandwidth by reducing the sizes of keys and ciphertexts will be
hugely beneficial in the scenario.

Table 1. Performance of standalone cryptographic operations, showing mean runtime
in milliseconds of standalone cryptographic operations, communication sizes (public
key messages) in bytes, and claimed security level in bits.

Scheme Alice 0
(ms)

Bob
(ms)

Alice1
(ms)

Communication
(bytes)

Claimed security

A → B B → A Classical Quantum

RSA 3072-bit − 0.09 4.49 387/0∗ 384 128 –
ECDH nistp256 0.37 0.70 0.33 32 32 128 –
NewHope 0.11 0.16 0.03 1824 2048 229 206

PtNTT and Its Applications to Kyber and NewHope 119

1.2 Our Contribution

Because modulus q is required to satisfy that 2n|q−1 in the NTT, RLWE-based
schemes have to choose an oversized modulus, which leads to excessive band-
width. To reduce the bandwidth of RLWE-based schemes in the case of using
NTT, we present a method to preprocess the polynomials first by using a divide-
and-conquer strategy, and then apply the NTT, which is called Preprocess-then-
NTT (PtNTT). According to the times of preprocess, our PtNTT algorithm can
be classified as 1-round PtNTT (1PtNTT) and 2-round PtNTT (2PtNTT).

Polynomial multiplication over a finite field is one of fundamental operations
required in cryptographic schemes based on the RLWE problem, and NTT is
commonly used in the RLWE-based schemes. So, our PtNTT can be applied to
a large portion of RLWE-based schemes to reduce the value of modulus q, which
will decrease the bandwidth.

1.2.1 1PtNTT and Its Application to Kyber
In 1PtNTT, we first divide the polynomial f with n coefficients into two new
low-dimensional polynomials of degree n/2 according to the parity of index, and
then apply the NTT to the two low-dimensional polynomials respectively. So, our
1PtNTT algorithm only requires that q ≡ 1 mod n instead of q ≡ 1 mod 2n in
the NTT, i.e., weakens the limitation of modulus q. There exist some advantages
and disadvantages of 1PtNTT compared with the NTT algorithm:

• Advantages. Our 1PtNTT algorithm weakens the limitation of modulus q,
i.e., we require that q ≡ 1 mod n instead of q ≡ 1 mod 2n in the NTT.

• Disadvantages. Although our 1PtNTT algorithm is very efficient, it is still
slightly less efficient than the NTT. The computational cost of 1PtNTT to
compute the product of two polynomials of degree n is about 1.17 times that
of the NTT algorithm.

Its Application to KYBER. According to the three parameter sets for Kyber1

[6] which are called Kyber512-CCA-KEM, Kyber768-CCA-KEM, Kyber1024-
CCA-KEM, we will give a series of new parameter settings. Because the modulus q
in our schemes is smaller, we call our scheme small-Kyber, i.e., small-Kyber512-
CCA-KEM, small-Kyber768-CCA-KEM, and small-Kyber1024-CCA-KEM.
Comparing with the original Kyber schemes, there are some advantages and dis-
advantages of small-Kyber:

• Advantages. Because the mudulus q is smaller in small-Kyber, we can reduce
both public key size and ciphertext size of schemes. More precisely,

– In small-Kyber512-CCA-KEM, the public key size and the ciphertext
size are 64 and 64 bytes respectively fewer than that of Kyber512-CCA-
KEM;

1 Kyber was constructed under the Module Learning With Errors (MLWE) assump-
tion, which is a module version of the RLWE assumption.

120 S. Zhou et al.

– In small-Kyber768-CCA-KEM, the public key size and the ciphertext
size are 96 and 32 bytes respectively fewer than that of Kyber768-CCA-
KEM;

– In small-Kyber1024-CCA-KEM, the public key size and the ciphertext
size are 128 and 128 bytes respectively fewer than that of Kyber1024-
CCA-KEM.

Note that small-Kyber has a similar decryption error probability and a same
security level compared with Kyber. Please see more details in Tables 4 and 5.

• Disadvantages. Although small-Kyber schemes have achieved high effi-
ciency, they are slightly slower than the original Kyber schemes. For a worst
case of three parameter sets, the cycle counts of “Key Generation”, “Encap-
sulation” and “Decapsulation” in small-Kyber1024-CCA-KEM are 1.3296,
1.2856 and 1.4138 times that in Kyber1024-CCA-KEM. However, the pur-
pose of decreasing the bandwidth is more meaningful than improving the
efficiency of Kyber schemes. In small-Kyber1024-CCA-KEM, the running
time of “Key Generation”, “Encapsulation” and “Decapsulation” are 0.118 ms,
0.149 ms and 0.188 ms. While in Kyber1024-CCA-KEM, they are 0.089 ms,
0.116 ms and 0.133 ms. Note that, all results are obtained on a 3.3 GHz CPU.
Please see more details in Table 6.

In short, we can use fewer bytes to store public keys and ciphertexts to reduce
the bandwidth of schemes at a cost of very little loss of efficiency.

1.2.2 2PtNTT and Its Application to NewHope
In the NewHope [2], there are two parameter settings for n, i.e., n = 512
and n = 1024 respectively. Even though 1PtNTT technique can weaken the
limitation of modulus q and requires that q ≡ 1 mod n, there is still no suitable
prime modulus to satisfy the weakened requirement for two values of n, 512
and 1024, simultaneously. That’s to say, we can not apply 1PtNTT technique to
NewHope schemes directly. So we propose 2PtNTT technique to address this
problem.

In 2PtNTT, we first divide the polynomial f with n coefficients into two
new low-dimensional polynomials of degree n/2 according to the parity of index,
and then divide each polynomial of degree n/2 into two polynomials of degree
n/4 according to the parity of index. After that, we apply the NTT to the four
polynomials of degree n/4 respectively. So, our 2PtNTT algorithm only requires
that q ≡ 1 mod n/2 instead of q ≡ 1 mod 2n in the NTT, i.e., further weakens
the limitation of modulus q. There exist some advantages and disadvantages of
2PtNTT compared with the NTT algorithm:

• Advantages. Our 2PtNTT algorithm weakens the limitation of modulus q,
i.e., we require that q ≡ 1 mod n/2 instead of q ≡ 1 mod 2n in the NTT.

• Disadvantages. Although our 2PtNTT algorithm is also efficient, it is still
slightly less efficient than the NTT. The computational cost of 2PtNTT to
compute the product of two polynomials of degree n is 1.25 times that of the
NTT algorithm.

PtNTT and Its Applications to Kyber and NewHope 121

Its Application to NEWHOPE. According to the two parameter settings for
NewHope [2] which are called NewHope512, NewHope1024, we will give two
new parameter settings. Because the modulus q in our schemes is smaller, we call
our scheme small-NewHope, i.e., small-NewHope and small-NewHope1024.
Comparing with the original NewHope schemes, there are some advantages
and disadvantages of small-NewHope:

• Advantages. Because the modulus q is smaller in small-NewHope, we can
reduce both public key size and ciphertext size of schemes. More precisely,

– In small-NewHope512-CPA-KEM, the public key size and the ciphertext
size are64 and 64 bytes respectively fewer than that of NewHope512-
CPA-KEM;

– In small-NewHope512-CCA-KEM, the public key size and the ciphertext
size are64 and 64 bytes respectively fewer than that of NewHope512-
CCA-KEM;

– In small-NewHope1024-CPA-KEM, the public key size and the cipher-
text size are128 and 128 bytes respectively fewer than that of NewHope-
1024-CPA-KEM.

– In small-NewHope1024-CCA-KEM, the public key size and the cipher-
text size are 128 and 128 bytes respectively fewer than that of NewHope-
1024-CCA-KEM.

Note that small-NewHope has a similar decryption error probability and
a same security level compared with NewHope. Please see more details in
Tables 7 and 8.

• Disadvantages. Although our small-NewHope schemes have achieved high
efficiency, they are slightly slower than the original NewHope schemes. For
a worst case of two parameter settings, the cycle counts of “Key Generation”,
“Encapsulation” and “Decapsulation” in small-NewHope1024-CCA-KEM are
1.4747, 1.6202 and 2.3130 times that in NewHope1024-CCA-KEM. However,
the purpose of decreasing the bandwidth is more meaningful than improving
the efficiency of NewHope schemes. In small-NewHope1024-CCA-KEM, the
running time of“Key Generation”, “Encapsulation” and “Decapsulation” are
0.082 ms, 0.133 ms and 0.049 ms. While in NewHope1024-CCA-KEM, they
are 0.056 ms, 0.082 ms and 0.021 ms. Note that, all results are obtained on a
3.3 GHz CPU. Please see more details in Table 9.

In brief, we can use fewer bytes to store public keys and ciphertexts to reduce
the bandwidth of schemes at a cost of very little loss of efficiency.

1.3 Our Technique

Because 2PtNTT is similar to 1PtNTT, in this subsection, we will only introduce
one of our main techniques, 1PtNTT. Our 1PtNTT algorithm only requires that
the modulus q satisfies that q−1 can be divided by n, i.e., n|(q−1). However, in
this case, if 2n � (q−1), we can not exploit the negative wrapped convolution [17]
and this is why we need to preprocess the polynomials. Similar to the process

122 S. Zhou et al.

of computing polynomial multiplication by using NTT, our 1PtNTT technique
contains 2 phases: 1PtNTT and 1PtNTT−1.

In 1PtNTT, we first divide the polynomial f(x) ∈ Zq[x]/(xn + 1) with n
coefficients into two low-dimension polynomials of degree n/2 according to the
parity of index, feven(y) ∈ Zq[y]/(yn/2 + 1) and fodd(y) ∈ Zq[y]/(yn/2 + 1),
where feven contains all the even-indexed coefficients of f and fodd contains all
the odd-indexed coefficients of f , and y = x2. It is easy to see that f(x) =
feven(x2)+x ·fodd(x2). As a result, we can apply the NTT to the two low-degree
polynomials. So we define 1PtNTT(f) = (NTT(feven),NTT(fodd)). In order to
recover f from its 1PtNTT transformed representation ̂f = (̂feven, ̂fodd), we
define 1PtNTT−1(̂f) = (NTT−1(̂feven),NTT−1(̂fodd)). It is very obvious that
the following equation 1PtNTT−1(1PtNTT(f)) = (feven, fodd) = f holds.

As we all know, the NTT provides an efficient algorithm for multiplying large
degree polynomials. Here comes a question how can we use 1PtNTT to compute
the product of two polynomials f and g? Let y denote x2 and let p(x) ∈ Rq

denote the product of f(x) and g(x), then

peven(y) = feven(y) · geven(y) + fodd(y) · (y · godd(y)) ∈ Zq[y]/(yn/2 + 1),

podd(y) = fodd(y) · geven(y) + feven(y) · godd(y) ∈ Zq[y]/(yn/2 + 1).

And p(x) = peven(x2) + x · podd(x2) ∈ Zq[x]/(xn + 1).
If we define −−→godd as

(−godd[n2 − 1], godd[0], godd[1], . . . , godd[n2 − 2]
)

, and a
bow-tie multiplication as

1PtNTT(f) �� 1PtNTT(g) = (NTT(feven) ◦ NTT(geven) + NTT(fodd) ◦ NTT(−−→godd),

NTT(fodd) ◦ NTT(geven) + NTT(feven) ◦ NTT(godd)),

where ◦ denotes coefficient-wise multiplication. Then the following equation
p = 1PtNTT−1(1PtNTT(f) �� 1PtNTT(g)) holds, which is very similar to
p = NTT−1(NTT(f) ◦ NTT(g)) in the NTT algorithm.

1.4 Related Work

Inspired by Kyber [6], D’Anvers et al. [12,13] also proposed a family of cryp-
tographic primitives, i.e., Saber which includes three IND-CCA secure KEMs
LightSaber-KEM, Saber-KEM and FireSaber-KEM. Saber-KEMs have similar
public key and ciphertext sizes respectively compared with our small-Kyber-
KEMs. Moreover, Saber-KEMs have better efficiency than Kyber-KEMs, so it
is easy to get a conclusion that Saber-KEMs are more efficient than our small-
Kyber-KEMs. We emphasize that, there exist two main differences between
Saber and our small-Kyber.

• In order to get rid of the constraint to modulus q caused by applying the
NTT algorithm, D’Anvers et al. [12,13] invoked the Karatsuba polynomial
multiplication method which does not require any special modulus. As a

PtNTT and Its Applications to Kyber and NewHope 123

result, all moduli in Saber schemes are powers of 2, i.e., q = 213, while all
moduli in our small-Kyber schemes are primes, i.e., q = 3329, which might
increase confidence in security. It is more popular for constructions of schemes
using prime modulus than non-prime modulus.

• Saber-KEMs rely on the hardness of the Module Learning With Rounding
(MLWR) problem, while our small-Kyber-KEMs are constructed under the
Module Learning With errors problem. As a result, Saber does not require
sampling of error polynomials, thus saving in computation time.

1.5 Outline

The remainder of the paper is organized as follows. In Sect. 2 we review the neces-
sary background. In Sect. 3 we present our Preprocess-then-NTT technique and
describe its complexity. The applications of PtNTT to Kyber and NewHope
are given in Sect. 4, followed by the implementation and performance of new
schemes. In Sect. 5, we give the conclusion.

2 Preliminaries

Polynomial Rings and Vectors. Let Z be the ring of rational integers. Let
Zq denote the quotient ring Z/qZ, for an integer q ≥ 1. We denote by R the
ring Z[x]/xn + 1 and by Rq the ring Zq[x]/xn + 1, where n = 2n′−1 such that
xn + 1 is the 2n′

-th cyclotomic polynomial. Throughout this paper, the values
of n, n′ are 256, 9, respectively. Regular font letters denote element in Rq and
bold lower-case letters represent vectors with coefficients in Rq. By default, all
vectors will be column vectors. Bold upper-case letters are matrices.

For an element a ∈ Rq, we write a =
∑n−1

i=0 aix
i, ai ∈ Zq. We also use the

same symbol a to denote the coefficient vector a = (a0, . . . , an−1). Let a ◦ b
denote pointwise or coefficient-wise multiplication of a, b ∈ Rq. For a vector a
(or matrix A), we denote by a� (or A�) its transpose.

Sets and Distributions. For a set S, we write s
$← S to denote s is chosen

uniformly at random form S. In case S is a probability distribution over R,
then x

$← S means the sampling of x ∈ R according to S. For a probabilistic
algorithm A we denote by y ← A that the output of A is assigned to y and
that A is running with randomly chosen coins. We define the centered binomial
distribution ψη for some positive integer η as follows:

(a1, . . . , aη, b1, . . . , bη)
$← {0, 1}2η and output Ση

i=1(ai − bi).

The distribution ψη is centered (its mean is 0), has variance η/2 and gives a
standard deviation of

√

η/2. The function Sam is an extendable function. If we
would like Sam to take as input x and then produce a value y that is distributed
according to distribution S, we write y ∼ S = Sam(x).

124 S. Zhou et al.

Compression and Decompression. We define a function Compressq(x, d) that
takes an element x ∈ Zq and outputs an integer in {0, 1, . . . , 2d − 1}, where
d < 	log q
. We furthermore define a function Decompressq(x, d), such that x′ =
Decompressq(Compressq(x, d), d) is an element close to x. The two functions are
defined as:

Compressq(x, d) = 	(2d/q) · x� mod 2d;

Decompressq(x, d) = 	(q/2d) · x�.

2.1 Ring LWE and Module LWE Problems

The Learning with Errors (LWE) problem was popularized by Regev [19] who
proved that, solving a random LWE instance is as hard as solving worst-case
instances of certain lattice problems under a quantum reduction. Later on,
Lyubashevsky, Peikert and Regev [18] proposed a variant of the LWE problem–
the Ring-LWE problem which relies on module lattices, and its hardness can
be related to the worst case hardness of finding short vectors in ideal lattices
[18,21]. Recently, Langlois and Stehlé [15] proposed a module version of Ring-
LWE, Module-LWE.

The Ring Learning with Errors Problem, Decisional Version. The deci-
sional version of the Ring Learning with Errors problem, dRLWEm,q,χ, with
m unknowns, m ≥ 1 samples, modulo q and error distribution χ, is defined as
follows: for a uniform random secret s ∈ Rq, and given m samples either all of
the form (a, b = a · s + e mod q) where the coefficients of e are independently
sampled following the distribution χ (i.e., ei

$← χ), or from the uniform distri-
bution (a, b) ∈ Rq × Rq, decide whether the samples come from the former or
the latter case.

In fact, we will use a variant of the above problem, where the secret s are
chosen from the same distribution as the error e. This variant was proven to be
equivalent to the original problem by Applebaum et al. in [5].

The Module Learning with Errors Problem, Decisional Version. The
decisional version of the Module Learning with Errors problem, dMLWEm,q,χ,
consists in distinguishing m samples either all of the form (a, b = a�s+ e) with
s $← χk common to all samples and e

$← χ fresh for every sample, or from the
uniform distribution (a, b) ∈ Rk

q × Rq, decide whether the samples come from
the former or the latter case.

2.2 Number-Theoretic Transform

There exist many efficient algorithms in the literature to compute the multi-
plication of two polynomials and a survey which introduces fast multiplication
algorithms can be found in [7]. In this subsection, we recall the Number The-
oretic Transform (NTT) [11] which is a specialized version of the Fast Fourier
Transform (FFT) where the roots of unity are taken from a finite ring instead
of the complex number.

PtNTT and Its Applications to Kyber and NewHope 125

Let n be a power of 2 and q be a prime satisfying that q ≡ 1 mod 2n.
Let ω be an n-th primitive root of unity in Zq, i.e., ωn ≡ 1 mod q. For an
element f ∈ Rq, the forward transformation ̂f = NTT(f) is given by ̂fi =
∑n−1

j=0 fj · ωij mod q and the inverse transformation f = NTT−1(̂f) is defined
by fi = n−1

∑n−1
j=0

̂fj ·ω−ij mod q, where i = 0, . . . , n−1. The following equation
NTT−1(NTT(f)) = f holds.

Because applying the above NTT transform provides a cyclic convolution,
computing p = f ·g mod xn+1 with two polynomials f, g would require applying
the NTT of length 2n and thus should append n zeros to each input. This
effectively doubles the length of the inputs and also requires the computation of
an explicit reduction modulo xn + 1. In order to avoid this issue, Lyubashevsky
et al. [17] introduced the negative wrapped convolution: let γ be a 2n-th primitive
root of unity such that γ =

√
ω mod q. Define ˜f = (f0, γf1, . . . , γ

n−1fn−1)
and g̃ = (g0, γg1, . . . , γ

n−1gn−1), then the negative wrapped convolution of f, g

is given by p = (1, γ, . . . , γn−1) ◦ NTT−1(NTT(˜f) ◦ NTT(g̃)). This operation
satisfies p = f · g in Rq and implicitly includes the reduction modulo xn + 1
without increasing the length of the inputs. More precisely, for a polynomial f ∈
Rq, we define its forward transformation ̂f = NTT(f) with ̂fi =

∑n−1
j=0 γjfj ·ωij

mod q and its inverse transformation f = NTT−1(̂f) with fi = n−1γ−i
∑n−1

j=0
̂fj ·

ω−ij mod q. Using NTT and NTT−1, we can compute the product f · g very
efficiently as p = NTT−1(NTT(f) ◦ NTT(g)).

The computational cost of a forward NTT transformation NTT is determined
by a function T (n) = n log n in [10]. By comparing the definitions of NTT and
NTT−1, we see that by modifying the NTT algorithm to switch the roles of f and
̂f , replace ω by ω−1, and divide each element of the result by n, we can compute
the inverse transformation NTT−1. So the computational cost of an inverse NTT
transformation NTT−1 is same as that of its forward NTT transformation NTT,
i.e., T (n) = n log n. If we use NTT to compute the multiplication of two poly-
nomials, the total computation includes two forward NTT transformations, one
point-wise multiplication of degree bounded by n and one inverse NTT trans-
formation. Obviously, the computational cost of multiplication by using NTT is
T1(n) = 3n log n + n.

3 1-Round Preprocess-then-NTT (1PtNTT)

In 1PtNTT algorithm, we only require that modulus q satisfies that q − 1 can
be divided by n, i.e., n | (q − 1). However, in this case, we can not exploit the
negative wrapped convolution [17] if 2n � (q − 1), because there does not exist
any 2n-th root of unity in Zq.

Our 1-round preprocess-then-NTT technique employs a divide-and-conquer
strategy, using the even-indexed and odd-indexed coefficients of f(x) ∈
Zq[x]/(xn + 1) separately to define two new polynomials feven(y) and fodd(y)

126 S. Zhou et al.

whose degrees are bounded by n
2 :

feven(y) = f0 + f2 · y + f4 · y2 + . . . + fn−2 · yn/2−1 ∈ Zq[y]/(yn/2 + 1),

fodd(y) = f1 + f3 · y + f5 · y2 + . . . + fn−1 · yn/2−1 ∈ Zq[y]/(yn/2 + 1).

It follows that

f(x) = feven(x2) + x · fodd(x2) ∈ Zq[x]/(xn + 1). (1)

It is easy to see that feven contains all the even-indexed coefficients of f and
fodd contains all the odd-indexed coefficients of f .

If we denote x2 by y, the two polynomials of degree n/2, feven(y) and fodd(y),
are both in Zq[y]/(yn/2+1), then we can apply the NTT to get their transformed
representations, i.e., NTT(feven) and NTT(fodd). Define

1PtNTT(f) = ̂f = (NTT(feven),NTT(fodd)) ,

1PtNTT−1(̂f) =
(

NTT−1(̂feven),NTT−1(̂fodd)
)

.

Then the following equation 1PtNTT−1(1PtNTT(f)) = (feven, fodd) = f holds.
As mentioned above, we first divide f(x) to define two new polynomials of

degree n/2 and then apply the NTT. We call our technique “1-round Preprocess-
then-NTT” (1PtNTT, for short).

3.1 How to Compute the Product of Two Polynomials f and g?

As we all know, the NTT provides an efficient algorithm for multiplying large
degree polynomials. It is commonly used in cryptographic schemes that are based
on the hardness of the RLWE problem to efficiently implement modular polyno-
mial multiplication. Here comes a question how can we use 1PtNTT to compute
the product of two polynomials f and g?

As the same way in Eq. 1, for g(x) ∈ Zq[x]/(xn + 1), we can use the coef-
ficients of g(x) separately to define two new polynomials geven(y), godd(y) ∈
Zq[y]/(yn/2 + 1) satisfying the following equation

g(x) = geven(x2) + x · godd(x2) ∈ Zq[x]/(xn + 1). (2)

Let p(x) ∈ Zq[x]/(xn + 1) denote the product of f(x) and g(x) and let

peven(y) = feven(y) · geven(y) + fodd(y) · (y · godd(y)) ∈ Zq[y]/(yn/2 + 1),

podd(y) = fodd(y) · geven(y) + feven(y) · godd(y) ∈ Zq[y]/(yn/2 + 1).

Then, according to Eqs. 1 and 2, the following equation p(x) = peven(x2) + x ·
podd(x2) ∈ Zq[x]/(xn + 1) holds.

An anticirculant vector of godd is defined by the following Toeplitz vector:

−−→godd :=
(

−godd[
n

2
− 1], godd[0], godd[1], . . . , godd[

n

2
− 2]

)

∈ Z
n/2
q ,

PtNTT and Its Applications to Kyber and NewHope 127

which denotes y · godd(y) ∈ Zq[y]/(yn/2 + 1). Using 1PtNTT and 1PtNTT−1 we
can compute the product p of two elements f, g ∈ Rq very efficiently through
the following equation 1PtNTT−1 (1PtNTT(f) �� 1PtNTT(g)), where �� denotes
bow-tie multiplication defined as following:

1PtNTT(f) �� 1PtNTT(g)
= (NTT(feven),NTT(fodd)) �� (NTT(geven),NTT(godd),NTT(−−→godd))

=
(

̂feven, ̂fodd

)

�� (ĝeven, ĝodd,NTT(−−→godd))

=
(

̂feven ◦ ĝeven + ̂fodd ◦ NTT(−−→godd), ̂fodd ◦ ĝeven + ̂feven ◦ ĝodd

)

.

3.2 Complexity of 1PtNTT and Its Comparison with NTT

In this subsection, we first analyse the theoretical complexity of 1PtNTT algo-
rithm. Then we present some implementation results for different parameters to
show the performance of 1PtNTT algorithm and its comparison with NTT.

The Complexity of 1PtNTT. As for 1PtNTT, its forward transformation
1PtNTT embeds two forward NTT transformations of two different polynomials
of degree n/2. As a result, the computational complexity of a 1PtNTT is bounded
by T2(n) = n log(n/2). In a similar way, we can also get a conclusion that the
complexity of an inverse transformation 1PtNTT−1 is T3(n) = n log(n/2). In
order to show the difference between these two algorithms, we present the ratios
of the time cost of 1PtNTT to that of NTT as follows:

ratio1ptntt/ntt =
log n − 1
log n

and ratio1ptntt−1/ntt−1 =
log n − 1
log n

.

Next, we analyse the complexity of computing two polynomials’ product
by using 1PtNTT algorithm. According to the computation rule of 1PtNTT,
there exist two forward 1PtNTT transformations (one includes two forward
NTT transformations, the other embeds three forward NTT transformations),
four point-wise multiplications of two polynomials of degree bounded by n/2,
and one inverse 1PtNTT transformation. As a result, the computational cost of
computing product of two polynomials by using 1PtNTT is

T4(n) = (2 + 3) · n

2
log

n

2
+ 2n + T3(n) =

7n
2

log
n

2
+ 2n,

which is ratio1 =
7 log n − 3
6 log n + 2

times that using NTT.

Comparison of 1PtNTT and NTT. Although 1PtNTT can use some param-
eters that are not suitable for NTT, we analyse and compare the computational
cost of 1PtNTT and NTT for the same parameters, so that we can make it easy
to demonstrate the efficiency of 1PtNTT. In our implementation, we specify the
details of the two methods for (n, q) ∈ {(256, 7681), (512, 12289), (1024, 12289)}
which are used in [2–4,6,9]. The results are reported in Table 2, and were

128 S. Zhou et al.

Table 2. Results of our C implementations of 1PtNTT on a 3.30 GHz Inter Core
i5-6600 processor with Turbo Boost and Hyperthreading disabled. Results are com-
pared with the implementation of the NTT.

Operation n=256, q=7681 n=512, q=12289 n=1024, q=12289

1PtNTT 13161 21523 47436

NTT 14056 24057 52034

Experimental-ratio 0.9363 0.8947 0.9116

Theoretical-ratio 0.8750 0.8889 0.9000

1PtNTT−1 10940 23038 50512

NTT−1 11845 25091 55075

Experimental-ratio 0.9236 0.9182 0.9171

Theoretical-ratio 0.8750 0.8889 0.9000

Multiplication by using 1PtNTT 51213 90116 197427

Multiplication by using NTT 42959 81368 180347

Experimental-ratio 1.1921 1.1075 1.0947

Theoretical-ratio 1.0600 1.0714 1.0806

obtained by running the implementation on a 3.30GHZ Inter Core i5-6600
processor with Turbo Boost and Hyperthreading disabled. We compiled our
C implementation with gcc-5.4.0 and flags -O3 -fomit-frame-pointer -
march=native. For all other routines we report the average of 10000 runs.
We denote the ratio of theoretical computational cost of PtNTT operations to
that of NTT operations by “Theoretical-ratio”. And “Experiment-ratio” repre-
sents the ratio of practical cycle counts of 1PtNTT to that of NTT.

4 2-Round Preprocess-then-NTT (2PtNTT)

In 2PtNTT algorithm, we only require that modulus q satisfies that q − 1 can
be divided by n

2 , i.e., n
2 | (q − 1). However, in this case, we can not exploit the

negative wrapped convolution [17] if 2n � (q − 1), because there does not exist
any 2n-th root of unity in Zq.

Based on the first round preprocess, we use the even-indexed and odd-indexed
coefficients of f(x) ∈ Zq[x]/(xn + 1) separately to define two new polynomials
feven(y) and fodd(y) whose degrees are bounded by n

2 . Then, by using the same
preprocess again to feven(y) and fodd(y), we can define four polynomials fee(z),
feo(z), foe(z) and foo(z) of degree-bound n

4 . In fact, fee(z) and feo(z) contains
all the coefficients fi of f satisfying that i ≡ 0 mod 4 and i ≡ 2 mod 4, respec-
tively. foe(z) and foo(z) contains all the coefficients fi of f satisfying that i ≡ 1
mod 4 and i ≡ 3 mod 4, respectively. It follows that

f(x) = fee(x4) + x · foe(x4) + x2 · feo(x4) + x3 · foo(x4) ∈ Zq[x]/(xn + 1). (3)

Note that the four polynomials of degree n/4, fee(z), feo(z), foe(z) and foo(z),
are all in Zq[z]/(zn/4 +1), then we can apply the NTT to get their transformed

PtNTT and Its Applications to Kyber and NewHope 129

representations. Define

2PtNTT(f) = ̂f = (NTT(fee),NTT(foe),NTT(feo),NTT(foo)) ,

2PtNTT−1(̂f) =
(

NTT−1(̂fee),NTT−1(̂foe),NTT−1(̂feo),NTT−1(̂foo)
)

.

Then the following equation 2PtNTT−1(2PtNTT(f)) = (fee, foe, feo, foo) = f
holds.

4.1 How to Compute the Product of Two Polynomials f and g?

2PtNTT is an extension of 1PtNTT. Therefore, the rule of 2PtNTT for polyno-
mial multiplication is similar to 1PtNTT.

As the same way in Eq. 3, for g(x) ∈ Zq[x]/(xn+1), we can use the coefficients
of g(x) separately to define four new polynomials of degree n/4, i.e., gee(z),
geo(z), goe(z), goo(z) ∈ Zq[z]/(zn/4 + 1) satisfying the following equation

g(x) = gee(x4) + x · goe(x4) + x2 · geo(x4) + x3 · goo(x4) ∈ Zq[x]/(xn + 1). (4)

Let p(x) ∈ Zq[x]/(xn +1) denote the product of f(x) and g(x). An anticirculant
vector of gee is defined by the following Toeplitz vector:

−→gee :=
(

−godd[
n

4
− 1], godd[0], godd[1], . . . , godd[

n

4
− 2]

)

∈ Z
n/4
q ,

which denotes z · godd(z) ∈ Zq[z]/(zn/4 + 1). Using 2PtNTT and 2PtNTT−1 we
can compute the product p of two elements f, g ∈ Rq very efficiently through
the following equation 2PtNTT−1 (2PtNTT(f) �� 2PtNTT(g)), where �� denotes
bow-tie multiplication defined as following:

2PtNTT(f) �� 2PtNTT(g)
= (NTT(fee),NTT(foe),NTT(feo),NTT(foo)) ��

(NTT(gee),NTT(goe),NTT(geo),NTT(goo),NTT(−→goe),NTT(−→geo),NTT(−→goo))

=
(

̂fee, ̂foe, ̂feo, ̂foo

)

�� (ĝee, ĝoe, ĝeo, ĝoo,NTT(−→goe),NTT(−→geo),NTT(−→goo))

= (̂fee ◦ ĝee + ̂foe ◦ NTT(−→goo) + ̂feo ◦ NTT(−→geo) + ̂foo ◦ NTT(−→goe),
̂fee ◦ ĝoe + ̂foe ◦ ĝee + ̂feo ◦ NTT(−→goo) + ̂foo ◦ NTT(−→geo),
̂fee ◦ ĝeo + ̂foe ◦ ĝoe + ̂feo ◦ ĝee + ̂foo ◦ NTT(−→goo),
̂fee ◦ ĝoo + ̂foe ◦ ĝeo + ̂feo ◦ ĝoe + ̂foo ◦ ĝee).

4.2 Complexity of 2PtNTT and its Comparison with NTT

In this subsection, we first analyse the theoretical complexity of 2PtNTT algo-
rithm. Then we present some implementation results for different parameters to
show the performance of 2PtNTT algorithm and its comparison with NTT.

130 S. Zhou et al.

The Complexity of 2PtNTT. According to the analysis of complexity of
1PtNTT, it is simple to get a conclusion that the computational complexity of
a 2PtNTT is bounded by T5(n) = n log(n/4) and the complexity of an inverse
transformation PtNTT−1 is T6(n) = n log(n/4). In order to show the difference
between these two algorithms, we present the ratios of the time cost of PtNTT
to that of NTT as follows:

ratio2ptntt/ntt =
log n − 2
log n

and ratio2ptntt−1/ntt−1 =
log n − 2
log n

.

According to the computation rule of 2PtNTT, there exist two forward
2PtNTT transformations (one includes 4 forward NTT transformations, the
other embeds 7 forward NTT transformations), 16 point-wise multiplications of
two polynomials of degree bounded by n/4, and one inverse 2PtNTT transfor-
mation. As a result, the time cost of computing the product of two polynomials
by using 2PtNTT is

T7(n) = (4 + 7) · n

4
log

n

4
+ 4n + T6(n) =

15n
4

log
n

4
+ 4n,

which is ratio2 =
15 log n − 14
12 log n + 4

times that using NTT.

Table 3. Results of our C implementations of 2PtNTT on a 3.30 GHz Inter Core i5-
6600 processor with Turbo Boost and Hyperthreading disabled. Results are compared
with the implementation of the NTT.

Operation n=256, q=7681 n=512, q=12289 n=1024, q=12289

2PtNTT 10072 17384 38092

NTT 13621 20294 45176

Experimental-ratio 0.7394 0.8566 0.8432

Theoretical-ratio 0.7500 0.7778 0.8000

2PtNTT−1 8728 17374 38840

NTT−1 10232 21858 47790

Experimental-ratio 0.8530 0.7949 0.8127

Theoretical-ratio 0.7500 0.7778 0.8000

Multiplication by using 2PtNTT 46356 83648 180252

Multiplication by using NTT 37046 69048 152722

Experimental-ratio 1.2513 1.2028 1.1803

Theoretical-ratio 1.0600 1.0804 1.0968

Comparison of 2PtNTT and NTT. Although 2PtNTT can use some param-
eters that are not suitable for NTT, we analyse and compare the computational
cost of 2PtNTT and NTT for the same parameters, so that we can make it easy
to demonstrate the efficiency of 2PtNTT. In our implementation, we specify the

PtNTT and Its Applications to Kyber and NewHope 131

details of the two methods for (n, q) ∈ {(256, 7681), (512, 12289), (1024, 12289)}
which are used in [2–4,6,9]. The results are reported in Table 3, and were
obtained in the same environment of experiments as 1PtNTT.

5 Application of 1PtNTT to Kyber

Recently, Avanzi et al. [6] submitted a suite of public-key encapsulation mecha-
nisms denoted as Kyber to NIST as a candidate of the standard of post-quantum
cryptography, based on the conjectured quantum hardness of the MLWE prob-
lem. The Kyber cryptosystem is based on a variant of their previously proposed
Kyber [9] scheme which is a semantically secure public-key encryption (PKE)
scheme with respect to adaptive chosen plaintext attacks (CPA).

5.1 Small-Kyber Parameter Sets

In [6], Avanzi et al. defined three parameter sets for Kyber, which they call these
schemes Kyber512, Kyber768, Kyber1024. According to their three Kyber
schemes, we will give new parameter setting. As shown in Table 4, the modulus
q in our schemes is smaller, so we call our scheme small-Kyber, i.e., small-
Kyber512, small-Kyber768, small-Kyber1024. Note that Table 4 also lists the
derived parameter δ, which is the probability that the decryption of a valid
Kyber-CPA-PKE ciphertext fails.

The parameters were obtained via the following approaching: (1) n is set to
256 because the goal is to encapsulate 256-bit symmetric keys. (2) q is set to
the smallest prime satisfying n|(q −1), which is required to enable the 1PtNTT-
based multiplication. (3) k is selected to fix the lattice dimension as a multiple
of n. (4) The remaining parameters η, du, dv, dt were chosen to balance between
security, public-key and ciphertext size and failure probability.

The failure probability δ is computed following the approach out-
lined above using the analysis script small_Kyber.py which is available
online at https://github.com/ncepuzs/Preprocess_Then_NTT/tree/master/
Small_Kyber. In addition, we also present the classical and quantum core-
SVP hardness of the different proposed parameter sets of small-Kyber with
the claimed security level in Table 4. The lower bounds of the cost of the pri-
mal and dual attack [20] were computed with the help of the Python script
small_Kyber.py. Note that small_Kyber.py is same as the Python script
Kyber.py [6] except that parameter sets are different.

5.2 Interconversion to KEM

Small-Kyber-CPA-PKE can be converted to an IND-CPA-secure key encapsu-
lation mechanism small-Kyber-CPA-KEM by using the public key encryption
scheme to convey a secret. Furthermore, we can apply the QFO⊥

m transform
in [14] to construct an IND-CCA-secure key encapsulation mechanism small-
Kyber-CCA-KEM from small-Kyber-CPA-PKE and four hash functions same

https://github.com/ncepuzs/Preprocess_Then_NTT/tree/master/Small_Kyber
https://github.com/ncepuzs/Preprocess_Then_NTT/tree/master/Small_Kyber

132 S. Zhou et al.

Table 4. Parameters of small-Kyber-CPA-PKE and Kyber-CPA-PKE and derived
high-level properties.

n k q η (du, dv , dt) δ Security
(classical,quantum)

Security level

Kyber512 256 2 7681 5 (11,3,11) 2−145 (112,102) 1

Kyber768 256 3 7681 4 (11,3,11) 2−142 (178,161) 3

Kyber1024 256 4 7681 3 (11,3,11) 2−169 (242,219) 5

Our schemes

small-Kyber512 256 2 3329 2 (10,3,10) 2−138 (111,100) 1

small-Kyber768 256 3 3329 2 (10,5,10) 2−144 (181,164) 3

small-Kyber1024 256 4 3329 1 (10,3,10) 2−192 (232,210) 5

as that in [6]. Instantiating small-Kyber-CCA-KEM by the parameter sets in
Table 4, we can provide public key, secret key, and ciphertext sizes in Table 8 for
our three KEMs that support the transmission of a 256-bit message or key.

Performance of Reference. Here, we give all the remaining details of results
of our implementations for small-Kyber-CCA-KEM in Table 6. Both implemen-
tations are fully protected against timing attack. All cycle counts are obtained
by running the implementation on a 3.30GHZ Inter Core i5-6600 processor with
Turbo Boost and Hyperthreading disabled. They are median cycle counts over
100 measurements. We compiled our C implementation with gcc-5.4.0 and flags -
O3 -fomit-frame-pointer -march=native. The implementation of our proto-
cols is available at https://github.com/ncepuzs/Preprocess_Then_NTT/tree/
master/Small_Kyber.

Table 5. Sizes of public keys, secret keys, and ciphertexts of small-Kyber and Kyber
in bytes.

Scheme |pk| (Bytes) |sk| (Bytes) |ciphertext| (Bytes)

Kyber512-CCA-KEM 736 1632 800
small-Kyber512-CCA-KEM 672 1504 736
Difference value 64 128 64

Kyber768-CCA-KEM 1088 2400 1152
small-Kyber768-CCA-KEM 992 2208 1120
Difference value 96 192 32

Kyber1024-CCA-KEM 1440 3168 1504
small-Kyber1024-CCA-KEM 1312 2912 1376
Difference value 128 256 128

https://github.com/ncepuzs/Preprocess_Then_NTT/tree/master/Small_Kyber
https://github.com/ncepuzs/Preprocess_Then_NTT/tree/master/Small_Kyber

PtNTT and Its Applications to Kyber and NewHope 133

Table 6. Cycle counts of key generation, encapsulation, and decapsulation of small-
Kyber and Kyber.

Scheme Key generation Encapsulation Decapsulation

small-Kyber512-CCA-KEM 143628 203364 285379

Kyber512-CCA-KEM 122748 175528 209074

Ratio 1.1701 1.1586 1.3650

small-Kyber768-CCA-KEM 251538 332148 427738

Kyber768-CCA-KEM 203356 274274 321248

Ratio 1.2369 1.2110 1.3315

small-Kyber1024-CCA-KEM 390326 490956 620420

Kyber1024-CCA-KEM 293562 381882 438824

Ratio 1.3296 1.2856 1.4138

6 Application of 2PtNTT to NewHope

Recently, Alkim et al. [2] submitted a suite of public-key encapsulation mech-
anisms denoted as NewHope to NIST as a candidate of the standard of post-
quantum cryptography, based on the conjectured quantum hardness of the
RLWE problem. The NewHope cryptosystem is based on a variant of their
previously proposed NewHope-Simple [4] scheme which is a semantically secure
public-key encryption scheme with respect to adaptive chosen plaintext attacks
(CPA).

6.1 Small-NewHope Parameter Sets

In [2], Alkim et al. defined two parameter sets for NewHope, which they call
these two schemes NewHope512, NewHope1024. According to their NewHope
schemes, we will give two new parameter settings. As shown in Table 7, the mod-
ulus q in our schemes is smaller, so we call our scheme small-NewHope, i.e.,
NewHope512, small-NewHope1024. Note that the table also lists the derived
parameter δ, which is the probability that the decryption of a valid small-
NewHope-CPA-PKE ciphertext fails.

The parameters were obtained via the following approaching: (1) n is set to
512 or 1024 because the goal is to encapsulate 256-bit symmetric keys. (2) q is
set to the smallest prime satisfying n

2 |(q−1) for n = 512, 1024, which is required
to enable the 2PtNTT-based multiplication. (4) The remaining parameter η was
chosen to balance between security and failure probability.

The failure probability δ is computed following the approach out-
lined above using the analysis script small_NewHope.py which is available
online at https://github.com/ncepuzs/Preprocess_Then_NTT/tree/master/
Small_NewHope. In addition, we also present the classical and quantum core-
SVP hardness of the different proposed parameter sets of small-Kyber with

https://github.com/ncepuzs/Preprocess_Then_NTT/tree/master/Small_NewHope
https://github.com/ncepuzs/Preprocess_Then_NTT/tree/master/Small_NewHope

134 S. Zhou et al.

the claimed security level in Table 7. The lower bounds of the cost of the pri-
mal and dual attack [20] were computed with the help of the Python script
small_NewHope.py. Note that small_NewHope.py is same as the Python script
scripts/PQsecurity.py [2] except that parameter sets are different.

6.2 Interconversion to KEM

Small-NewHope-CPA-PKE can be converted to an IND-CPA-secure key encap-
sulation mechanism small-NewHope-CPA-KEM by using the public key encryp-
tion scheme to convey a secret. Furthermore, we can apply the QFO⊥

m transform
in [14] to construct an IND-CCA-secure key encapsulation mechanism small-
NewHope-CCA-KEM from small-NewHope-CPA-PKE and three hash func-
tions same as that in [2]. Instantiating small-NewHope-CPA-KEM and small-
NewHope-CCA-KEM by the parameter sets in Table 7, we can provide public

Table 7. Parameters of small-NewHope-CPA-PKE and NewHope-CPA-PKE and
derived high-level properties.

n q η δ Security
(classical,quantum)

Security
level

NewHope512-CPA-PKE 512 12289 8 2−213 (112,101) 1

NewHope1024-CPA-PKE 1024 12289 8 2−216 (257,233) 5

Our schemes

small-NewHope512-CPA-PKE 512 7681 5 2−261 (112,101) 1

small-NewHope1024-CPA-PKE 1024 7681 5 2−224 (257,233) 5

Table 8. Sizes of public keys, secret keys, and ciphertexts of small-NewHope and
NewHope in bytes.

Scheme |pk| (Bytes) |sk| (Bytes) |ciphertext| (Bytes)

NewHope512-CPA-KEM 928 896 1088
small-NewHope512-CPA-KEM 864 832 1024
Difference value 64 64 64

NewHope512-CCA-KEM 928 1888 1120
small-NewHope512-CCA-KEM 864 1760 1056
Difference value 64 128 64

NewHope1024-CPA-KEM 1824 1792 2176
small-NewHope1024-CPA-KEM 1696 1664 1048
Difference value 128 128 128

NewHope1024-CCA-KEM 1824 3680 2208
small-NewHope1024-CCA-KEM 1696 3424 2080
Difference value 128 256 128

PtNTT and Its Applications to Kyber and NewHope 135

key, secret key, and ciphertext sizes in Table 8 for our four KEMs that support
the transmission of a 256-bit message or key.

Performance of Reference. Here, we give all the remaining details of results
of our implementations for small-NewHope KEMs in Table 9. Both implemen-
tations are fully protected against timing attack. All cycle counts are obtained
on the same platform as the test of Kyber with the same instructions. They are
median cycle counts over 100 measurements.The implementation of our proto-
cols is available at https://github.com/ncepuzs/Preprocess_Then_NTT/tree/
master/Small_NewHope.

Table 9. Cycle counts of key generation, encapsulation, and decapsulation of small-
NewHope and NewHope.

Scheme Key generation Encapsulation Decapsulation

small-NewHope512-CPA-KEM 114033 167178 73210

NewHope512-CPA-KEM 91292 133902 34534

Ratio 1.2491 1.2485 2.1199

small-NewHope512-CCA-KEM 132886 200420 266202

NewHope512-CCA-KEM 105178 155156 175661

Ratio 1.2634 1.2917 1.5154

small-NewHope1024-CPA-KEM 272060 439358 161848

NewHope1024-CPA-KEM 184488 271180 69974

Ratio 1.4747 1.6202 2.3130

small-NewHope1024-CCA-KEM 289157 427598 538098

NewHope1024-CCA-KEM 210072 314130 361852

Ratio 1.3765 1.3612 1.4870

7 Conclusion

We have presented Preprocess-then-NTT technique to weaken the limination for
modulus q of the NTT. We further apply PtNTT to Kyber [6] and NewHope
[2], and provide new parameter settings. Because of the usage of PtNTT, our new
schemes achieve smaller public key sizes, smaller ciphertext sizes and a similar
failure probability at a same security level. Also, it is interesting to see that the
order of savings in size of the public keys and ciphertexts are the same for both
the NewHope and Kyber schemes, which is due to the fact that only one bit
is saved per coefficient due to the reduction in modulus. The PtNTT algorithm
enables that the aforementioned improvements can be also achieved in a large
portion of existing RLWE-based schemes.

https://github.com/ncepuzs/Preprocess_Then_NTT/tree/master/Small_NewHope
https://github.com/ncepuzs/Preprocess_Then_NTT/tree/master/Small_NewHope

136 S. Zhou et al.

Acknowledgments. We thank the anonymous Inscrypt’2018 reviewers for their help-
ful comments. This work was supported by the National Basic Research Program of
China (973 project, No.2014CB340603), the National Cryptography Development Fund
MMJJ20170116 and the National Natural Science Foundation of China (No. 61572495,
No.61602473, No.61772515, No.61672030, No.61272040).

References

1. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on
Theory of Computing, pp. 284–293. ACM (1997)

2. Alkim, E., et al.: Newhope-algorithm Specifications and Supporting Documenta-
tion. https://newhopecrypto.org/

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: 25th USENIX Security Symposium, pp. 327–343 (2016)

4. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Newhope without reconcili-
ation. IACR Cryptology ePrint Archive, 2016:1157 (2016). http://eprint.iacr.org/
2016/1157

5. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8_35

6. Avanzi, R.: CRYSTALS - kyber: Algorithm Specifications and Supporting Docu-
mentation. https://pq-crystals.org/

7. Bernstein, D.J.: Fast multiplication and its applications. Algorithmic Number
Theor. 44, 325–384 (2008)

8. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Sym-
posium on Security and Privacy, SP 2015, pp. 553–570 (2015)

9. Bos, J.W., et al.: CRYSTALS - kyber: a CCA-secure module-lattice-based KEM.
IACR Cryptology ePrint Archive 2017:634 (2017)

10. Chu, E., George, A.: Inside the FFT Black Box: Serial and Parallel Fast Fourier
Transform Algorithms. CRC Press, Boca Raton (1999)

11. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
fourier series. Math. Comput. 19(90), 297–301 (1965)

12. D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6_16

13. D’Anvers, J., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber: Module-
LWR based KEM. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Round-1-Submissions

14. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2_12

15. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Cryptogr. 75(3), 565–599 (2015)

https://newhopecrypto.org/
http://eprint.iacr.org/2016/1157
http://eprint.iacr.org/2016/1157
https://doi.org/10.1007/978-3-642-03356-8_35
https://pq-crystals.org/
https://doi.org/10.1007/978-3-319-89339-6_16
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12

PtNTT and Its Applications to Kyber and NewHope 137

16. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

17. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: a modest pro-
posal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4_4

18. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

19. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1–34:40 (2009)

20. Stebila, D., Mosca, M.: Post-quantum key exchange for the internet and the open
quantum safe project. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532,
pp. 14–37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_2

21. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryp-
tion based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7_36

https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-540-71039-4_4
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-319-69453-5_2
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36

Two-Round PAKE Protocol over Lattices
Without NIZK

Zengpeng Li1 and Ding Wang2(B)

1 College of Computer Science and Technology, Qingdao University, Qingdao, China
lizengpeng@hrbeu.edu.cn

2 School of EECS, Peking University, Beijing 100871, China
wangdingg@pku.edu.cn

Abstract. Reducing the number of communication rounds of Password-
based Authenticated Key Exchange (PAKE) protocols is of great prac-
tical significance. At PKC’15, Abdalla et al. relaxed the requirements
of Gennaro-Lindell’s framework for three-round PAKE protocols, and
obtained a two-round PAKE protocol under the traditional DDH-based
smooth projective hash function (SPHF). At ASIACRYPT’17, Zhang
and Yu proposed a lattice-based two-round PAKE protocol via the
approximate SPHF. However, the language of Zhang-Yu’s SPHF depends
on simulation-sound non-interactive zero-knowledge (NIZK) proofs, for
which there is no concrete construction without random oracle under
lattice-based assumptions. To our knowledge, how to design a lattice-
based two-round PAKE protocol via an efficient SPHF scheme without
NIZK remains a challenge. In this paper, we propose the first two-round
PAKE protocol over lattices without NIZK. Our protocol is in accor-
dance with the framework of Abdalla et al. (PKC’15) while attaining
post-quantum security. We overcome the limitations of existing schemes
by relaxing previous security assumptions (i.e., both the client and the
sever need IND-CCA-secure encryption), and build two new lattice-based
SPHFs, one for IND-CCA-secure Micciancio-Peikert ciphertext (at the
client side) and the other for IND-CPA-secure Regev ciphertext (at the
server side). Particularly, our protocol attains provable security.

Keywords: Password-based Authenticated Key Exchange ·
Smooth projective hash function · Lattice-based · Provable security

1 Introduction

Password-based Authenticated Key Exchange (PAKE) protocols are perhaps the
most widely used cryptographic protocols, dating back to Bellovin and Merritt’s
PAKE protocol (named EKE) in 1992 [1]. They showed how two parties, each of
which pre-shares a human-memorized password and communicate over a public
network, can verify the authenticity of each other and establish a cryptograph-
ically robust session key to protect their ensuing data communications. Their
EKE is successful in preventing low-entropy passwords from being offline guessed
c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 138–159, 2019.
https://doi.org/10.1007/978-3-030-14234-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_8

Two-Round PAKE Protocol over Lattices Without NIZK 139

by dictionary attacks, and therefore demonstrates the feasibility of employing
password-only protocols to build secure communication channels over public net-
works, which is a key goal of cryptography. Owing to the practicality of PAKE,
Bellovin-Merritt’s seminal paper [1] has been followed by hundreds of PAKE
proposals with varied security and complexity, such as KOY [2], J-PAKE [3] and
OPAQUE [4].

In order to generalize the KOY scheme, Gennaro and Lindell [5] introduced
the smooth projective hash function (or SPHF) to instantiate the KOY scheme in
the Bellare, Pointcheval, and Rogaway (BPR) security model [6]. It is common to
abbreviate the general KOY scheme to Gennaro-Lindell framework. Since then,
considerable attention has been devoted to developing secure and efficient PAKE
protocols via SPHFs, some notable ones include [7,8].

Most of these existing PAKE protocols under the Gennaro-Lindell framework
are three-rounds and depend on an “IND-CCA2-secure” encryption scheme to
establish a high-entropy session key. How to reduce the number of rounds and
relax the security assumption(s) are two important concerns. At SAC’04, Jiang
and Gong [9] relaxed the security of Gennaro-Lindell framework by using the
combination of an IND-CPA scheme at the server side and an IND-CCA2 scheme
at the client side, and did not require the IND-CCA2 scheme at the server
side, but their protocol still needs three rounds. At PKC’15, Abdalla et al. [10]
reduced the communication rounds by relaxing the Gennaro-Lindell framework
and obtained a two-round PAKE under the traditional DDH-based SPHF. In
their protocol, the client requires an indistinguishable against plaintext checkable
attacks (or IND-PCA) scheme and the server requires an IND-CPA scheme.1

At ASIACRYPT’17, Zhang and Yu [11] proposed a lattice-based two-round
PAKE protocol via approximate SPHF. However, the language of their SPHF
relies on simulation-sound non-interactive zero-knowledge (NIZK) proofs, for
which there is no concrete construction without the random oracle under lattice-
based assumptions. In a nutshell, it still remains an open question as to:

Whether is it possible to construct a secure and efficient two-round PAKE
protocol without NIZK via the LWE-based SPHFs?

1.1 Our Results and Techniques

In this work, we answer the above question in the affirmative. At PKC’15,
Abdalla et al. [10] pointed out that, their IND-PCA-secure PKE scheme is
also IND-CCA2-secure for small message space. Inspired by this observation,
we first adopt the existing IND-CCA-secure LWE-based Micciancio and Peik-
ert scheme [12] to meet the requirements of IND-PCA-secure PKE scheme, and
then follow the SPHF design principles suggested by Katz and Vaikuntanathan
[13] and propose one lattice-based MP−SPHF for IND-CCA-secure Micciancio-
Peikert ciphertext (at the client side) and the other lattice-based Reg−SPHF for

1 Note that every IND-CCA2-secure scheme is also an IND-PCA-secure scheme.

140 Z. Li and D. Wang

IND-CPA-secure Regev ciphertext [14] (at the server side). Finally, armed with
Reg−SPHF and MP−SPHF, we construct a two-round PAKE in line with the
principles of [10]. In all, we make the following contributions:

– New two-round PAKE protocol. Zhang and Yu [11] proposed the first
lattice-based two-round PAKE protocol in the random oracle model which is
built upon the splittable PKE scheme along with the non-adaptive approxi-
mate SPHF.2 However, their construction depends on the IND-CCA1-secure
Katz-Vaikuntanathan [13] scheme and simulation soundness NIZK from lat-
tices in the random oracle model. The main drawbacks are that: the Katz-
Vaikuntanathan scheme [13] needs to invoke the Invert(·) algorithm many
times until the plaintext is recovered, and there is no concrete construc-
tion involving NIZK but without random oracle under lattice-based assump-
tions. To overcome both limitations, we introduce the Micciancio-Peikert
scheme [12] and the Regev scheme [14] to design two lattice-based SPHFs
(i.e., MP−SPHF for the client side and Reg−SPHF for the server side) as the
building blocks of our lattice-based PAKE.

– Weaker security assumptions. Though some one-round PAKE proto-
cols were proposed (e.g., [7,15]), these constructions require stronger (i.e.,
IND-CCA) assumptions for both client and server sides in the security model.
Thus, relaxing the security assumptions is another important issue [8,9].
Abdalla et al. [10] constructed a DDH-based two-round PAKE protocol by
introducing the new IND-PCA-secure cryptographic primitive to relax the
security requirement of the server side from IND-CCA to IND-PCA. In our
PAKE, IND-CCA-secure encryption is required at the client side, while IND-
CPA-secure encryption is required at the server side.

– New security formulation. When formulating the attacker A’s advan-
tage Adv, existing PAKE literature (e.g., [7–9,11,16]) invariably assume that
passwords come from a uniformly random distribution, and Adv is thus for-
mulated as Q(λ)/|D| + negl(λ) for an attacker making at most Q(λ) on-line
guesses, where λ is the system security parameter and D is the password space.
However, user-chosen passwords are not uniformly distributed, but follow the
Zipf’s law [17,18]. Thus, we use the formulation C ′ ·Q(λ)s′

+negl(λ) to more
accurately capture A’s advantage Adv, where s′∈ [0.15, 0.30] and C ′∈ [0.001,
0.1] [17,18] are constant CDF-Zipf regression parameters of D.

1.2 Related Works

We now give a brief history of PAKE and SPHF.

PAKE. We first remark that we use flow to denote the unidirectional communi-
cation between the parties, and the round can be used to denote the bidirectional
communication between the parties. If the messages are sent asynchronously,
then the round and flow are the same notation. But if the messages are sent
2 The non-adaptive approximate SPHF means the adversary can see the projective

key ph before choosing the word W .

Two-Round PAKE Protocol over Lattices Without NIZK 141

simultaneously, then each round contains two flows. Actually, if the PAKE pro-
tocols were divided according to the communication rounds, then there exist
three types of PAKE protocols. (1) Three-round (or three-flow) PAKE as first
introduced by Katz, Ostrovsky and Yung [2] was only achieved based on DDH
assumption in the standard model. After that, a series of works [5,8,9,13] were
proposed to improve the three-round PAKE protocols. (2) Two-round (or two-
flow) PAKE as first introduced by Abdalla et al. [10] was achieved by introduc-
ing a new cryptographic primitive IND-PCA-secure PKE scheme, followed by
Zhang and Yu who proposed the first two-round PAKE over lattices. (3) Katz
and Vaikuntanathan [15] proposed the general one-round (but two-flow) PAKE
framework which requires the client and the server to send messages to each
other simultaneously. Alternatively, Groce and Katz [8] extended the Jiang-Gong
scheme [9] in the universal composability (UC) framework [19,20] and proved it
secure. Afterwards, a series of PAKE in UC-model were discussed [4,21,22].

SPHF. Cramer and Shoup [23] first proposed the concept of SPHF which is
a special kind of hash proof system and defined on the NP language L over a
domain X. Concretely, there are two basic keyed functions (i.e., Hash(·) and
ProjHash(·)) in SPHFs. The participants can compute Hash(·) by taking as input
the private hashing key hk and a word W . Similarly, the one can compute the
function ProjHash(·) by taking the public projective hashing key ph, a witness w
and a word W , where the word W contains the message msg and corresponding
labeled IND-CCA ciphertext c. Notably, the output distributions of the two
functions are statistically indistinguishable for a word W over the language L.

2 Preliminaries

We denote vector x via bold lower-case letter and matrix A via bold upper-case
letter, and λ the security parameter. An m-dimension lattice can be written as
Λ = {Bs | s ∈ Z

n}, where B ∈ Z
m×n is called basis of Λ for m ≥ n�log q�.

Notably, the determinant of Λ is det(Λ) =
√

det(BTB). Meanwhile, we adopt
the typical deterministic rounding function of [13] to discard the noise elements.

Definition 1 (The Square-Signal Function, [13]). The typical determin-
istic rounding function (a.k.a., the so-called square-signal) was defined as
R(x) = �2x/q� (mod 2). The value of R(h) can be viewed as a number in
[− (q−1)

2 , · · · , (q−1)
2] and output b ∈ {0, 1}.

Definition 2 (Hamming Metric). For any two strings of equal length x, y ∈
{0, 1}v, the Hamming distance is one of several string metrics for measuring the
edit distance between two strings. We write it HD(x, y).

2.1 Lattice Background and Learning with Errors

Definition 3 ([24]). A distribution ensemble χ = χ(λ) over the integers is
called B-bounded (denoted |χ| ≤ B) if there exists: Pr

x
$←χ

[|x| ≥ B] ≤ 2−Ω̃(n).

142 Z. Li and D. Wang

Definition 4 (Decision-LWEn,q,χ,m). Assume given an independent sample
(A,b) ∈ Z

m×n
q × Z

m×1
q , where the sample is distributed according to either:

(1) As,χ for a uniform random s ∈ Z
n
q (i.e., {(A,b) : A ← Z

m×n
q , s ←

Z
n×1
q , e ← χm×1,b = A · s + e (mod q)}), or (2) the uniform distribution

(i.e., {(A,b) : A ← Z
m×n
q ,b ← Z

m×1
q }). Then, the above two distributions

are computationally indistinguishable.

Remark 1. Reductions between the LWE assumption and approximating the
shortest vector problem in lattices (for appropriate parameters) were shown in
[14,25–27], here we omit the corollary of these schemes’ results.

Lemma 1 (From [12]). The PPT algorithm Invert(·) can be used to invert the
injective trapdoor function gA(s, e) = sT · A + e (mod q), and satisfies the fol-
lowing requirements:

– The algorithm takes as input the following parameters: (1). a parity-check
matrix A ∈ Z

n×m
q along with (2). a G-trapdoor R ∈ Z

m̄×n�q , where A ·(
R
I

)
= H ·G for the invertible tag H ∈ Z

n×n
q of R. (3). an LWE instance b

satisfying b = sT · A + e (mod q).
– The algorithm outputs the secret vector s (which depends on the value of

bT · (
R
I

)
.) and the noise vector e = b − AT s.

2.2 Smooth Projective Hash Functions

Cramer and Shoup [23] first introduced the projective hash function families
at EUROCRYPT’02. SPHF acts as an important type of the projective hash
function which requires the existence of a domain X and an underlying NP
language L ⊆ X such that it is computationally hard to distinguish a random
element in L from a random element in X \L. More precisely, an SPHF contains
four PPT algorithms over L ⊆ X

SPHF = (HashKG,ProjKG,Hash,ProjHash),

which is defined as follows:

– HashKG(L) inputs an NP language L and outputs a hash key hk.
– ProjKG(hk, L,W) inputs an NP language L, a hk, and a word W ∈ L and

outputs a projective hash key ph.
– Hash(hk, L,W) inputs an NP language L, a hk, and a W ∈ L and outputs

a hash value h over {0, 1}v for some positive integer v = Ω(λ).
– ProjHash(ph, L,W,w) inputs an NP language L, a ph, a W ∈ L, and a witness

w and outputs a projective hash value p ∈ {0, 1}v.

Two-Round PAKE Protocol over Lattices Without NIZK 143

Meanwhile, the SPHFs satisfy the notions of (approximate) correctness and
smoothness:

– Approximate Correctness: We say the property of approximate correct-
ness (i.e., ε-correct) holds, if the Hamming metric between Hash(hk, L,W)
and ProjHash(hk, L,W) is larger than ε · v, then the probability of Hamming
distance is negligible, i.e.,

Pr[HD(Hash(hk, L,W),ProjHash(hk, L,W)) > ε · v] = negl(λ).

– Smoothness: We say the property of the smoothness holds, if the following
two distributions are statistical indistinguishable:

(1){(ph, h) | hk ← HashKG(L), ph = ProjKG(hk, L,W), h ← Hash(hk, L,W)}.
(2){(ph, h) | hk ← HashKG(L), ph = ProjKG(hk, L,W), h ← {0, 1}v}.

Here, we stress that we call the approximate SPHF as SPHF if ε = 0, i.e.,
ε-correct. However, obtaining the 0-correct in lattice setting is not easy, thus
our constructed Reg−SPHF and MP−SPHF are also approximated SPHFs.

2.3 The Bellare-Pointcheval-Rogaway Security Model

In this subsection, we follow the definition of Bellare, Pointcheval, and Rogaway
[6] which is the follow-up work of [28–30].

Participants, Passwords, and Initialization. For any execution of the pro-
tocol, there is an initialization phase during which public parameters are estab-
lished. We assume a fixed set U of protocol users. For every distinct U1, U2 ∈ U,
we assume that U1 and U2 share a password pwU1,U2 , (i.e., pw). Meanwhile, each
pwU1,U2 is independently sampled from the password space D(λ) according to
the Zipf’s law [17,18].

Execution of the Protocol. In reality, a protocol describes the behaviours
of the user after receiving inputs from their environment. In the formal model,
the adversary A will decide the inputs for the user, and each user is allowed to
instantiate an unlimited number of instances and can run the protocol multiple
times (possibly concurrently) with different partners. We denote instance i of
user U as Πi

U . Each instance may be used only once. The adversary is given
oracle access to these different instances; furthermore, each instance maintains
(local) state which is updated during the course of the experiment. In particular,
each instance Πi

U maintains local state that includes the following variables:

– sidi
U , session id; pidi

U , partner id; skeyi
U , session key id.

– acci
U , a boolean variable denoting acceptance at the end of the execution.

– termi
U , a boolean variable denoting termination at the end of the execution.

144 Z. Li and D. Wang

Adversarial Model. The adversary A is allowed to fully control the external
network, namely that he is able to do whatever one wants, such as he can (1)
block, inject, modify, and delete messages; (2) request any session keys adap-
tively. Formally, we model how the adversary A interacts with various instances
by the following oracles:

– Send(UC , i,M). The oracle sends the message M to instance Πi
UC

. Upon
receiving the message from the oracle Send, the instance Πi

UC
then runs

according to the protocol specification, updating state as the approach. We
remark that, the output of Πi

UC
(i.e., the message sent by the instance) is

given to A.
– Execute(UC , i, US , j). The oracle executes the protocol between instances Πi

UC

and instances Πj
US

. The outputs of the oracle is the protocol transcript, i.e.,
the ordered messages can be exchanged between the instances.

– Reveal(UC , i). The oracle allows the adversary to learn session keys from previ-
ous and concurrent executions and outputs the session key skeyi

U . Meanwhile,
erasures the improper session keys.

– Test(UC , i). The oracle allows the adversary to query it only once and outputs
a random bit b. If b = 1, then the adversary is obtained a session key skeyi

U .
If b = 0, then the adversary is obtained a uniform session key. Lastly, the
adversary guesses a random bit b′. If b = b′ then the adversary is successful.

Partnering. Let UC , US ∈ U . Instances Πi
UC

and Πj
US

are partnered if: (1)
sidi

U = sidi
UC

= NULL; and (2) pidi
UC

= UC and pidj
US

= US .

Correctness. If the instance Πi
UC

and instance Πj
US

are partnered then there
exist acci

UC
= accj

US
= TRUE and skeyi

UC
= skeyj

US
and they both obtained the

common session key.

Definition 5. For all PPT adversaries A making at most Q(λ) on-line guessing
attacks, if it holds that AdvA,Π(λ) ≤ C ′·Qs′

(λ)+negl(λ), then the PAKE protocol
Π is a secure protocol, where s′∈ [0.15, 0.30] and C ′∈ [0.001, 0.1] are constant
CDF-Zipf regression parameters depending on the password space D [17,18].

Remark 2. In most existing PAKE studies (e.g., [7–9,11]) and other kinds of
password-based protocols (e.g., two-factor authentication [31] and password
authenticated keyword search [32]), passwords are assumed to follow a uniformly
random distribution, and the real attacker’s advantage Adv is thus formulated as
Q(λ)/|D|+negl(λ), where |D| is the size of the password dictionary D, and Q(λ) is
the number of A’s active on-line password guessing attempts (which is analogous
to Qsend in [9], qsend in [33], nse in [16] and qs in [7,31,32]). Instead, we prefer the
CDF-Zipf model [17,33], and the attacker A’s advantage Adv can be formulated
as C ′ ·Qs′

(λ)+negl(λ) for the Zipf parameters C ′ and s′. Figure 1 shows that the
traditional uniform-model based formulation Q(λ)/|D| + negl(λ) always signifi-
cantly underestimates the real attacker A’s Adv (∀Q(λ) ∈ [1, |D|]). Fortunately,
the CDF-Zipf based formulation C ′·Qs′

(λ)+negl(λ) well approximates A’s advan-
tageAdv: ∀Q(λ) ∈ [1, |D|], the largest deviation between C ′·Qs′

(λ)+negl(λ) and

Two-Round PAKE Protocol over Lattices Without NIZK 145

Adv is as low as 0.617%. This CDF-Zipf based formulation is also drastically more
accurate than other occasionally used formulations like the Min-entropy model in
[10] and Becerra et al.’s obscure one (see Eq. 1 in [34]) which undesirably defeats
the advantage of the quantitativeness of provable security.

3 Reg−SPHF from the Regev Scheme

Fig. 1. Online guessing advantages Adv
of the real attacker, the uniform-modeled
attacker and our Zipf-modeled attacker (using
15.25 million 000Webhost passwords [17]).

We now describe how to follow
the Katz-Vaikuntanathan frame-
work [13] to design a SPHF for the
ciphertext of the Regev scheme [14].

It is well known that the Regev
scheme is one of the most classi-
cal IND-CPA-secure scheme under
the decisional LWE assumption.
The others are the Gentry-Peikert-
Vaikuntanathan (a.k.a., dual-Regev)
scheme [35] and the Lindell-Peikert
scheme [36]. In line with the
principles of the SPHF of Katz-
Vaikuntanathan (KV) construction
[13], we adopt Regev scheme as the
building block to design the SPHF,
for simplicity, we abbreviate it to Reg−SPHF. We remark that the other lattice-
based PKE schemes also can be used to design the SPHF which follows the
framework of Katz-Vaikuntanathan.

– hk ← Reg.HashKG(params): inputs a random vector h ← Z
n×1
q and outputs

the hashing key hk := h ∈ Z
m×1
q .

– ph ← Reg.ProjKG(params, hk = h, pk = A): inputs h and the public key of
IND-CPA-secure scheme A ∈ Z

n×m
q , then outputs the projective hashing key

ph: = preg = A · h ∈ Z
n×1
q . We stress that, in Reg−SPHF setting, we only

obtain the “approximate correctness”.
– h ← Reg.Hash(hk = h,W := (c,m)) :

1. The algorithm inputs h and the word W , where the word W contains a
ciphertext c = c ∈ Z

m×1
q and the plaintext m.

2. The hash function works as follows:

h = Hash(hk = h,W := (c,m))

= R
([

c − (�q

2
� · m)

]T

· h
)

= R
([

rT · A] · h
)

= R
(
(rT · A) · h (mod q) ∈ Zq

)
∈ {0, 1}.

3. Obtains b := h (mod 2) ∈ {0, 1}, where h is a number in [−(q −
1)/2, · · · , (q − 1)/2] and outputs b = 0 if h < 0, otherwise, outputs b = 1.

146 Z. Li and D. Wang

– p = Reg.ProjHash(ph = preg,W := (c,m);w = s)(Projection)
1. The algorithm inputs ph = preg ∈ Z

n×1
q , the word W , and the witness

s ∈ Z
n×1
q .

2. The algorithm computes

p = Reg.ProjHash(ph = preg,W := (c,m);w = r)

= R
(
rT · preg

)
= R

(
rT · (Ah) (mod q)

)
∈ {0, 1}.

3. Obtains the result of b := p (mod 2) ∈ {0, 1}, and outputs b = 0 if p < 0,
otherwise, outputs b = 1.

Below, we analyze the two important properties of Reg−SPHF.

Lemma 2. The Reg−SPHF is a smooth projective hash function for the Regev
scheme.

Below we first prove the approximate correctness. Our goal is to prove
Reg.Hash(hk = h,W := (c,m)) = Reg.ProjHash(ph = preg,W := (c,m);w = s)
with probability greater than 1/2. The correctness of Reg−SPHF means that the
relationship between the hash key hk and the word W from language L equals
the relationship between the projective hash key ph and the witness w for any
word in L. The smoothness of Reg−SPHF is that the hash value is independent
of the projective hash key ph for any word in X \ L. Moreover, in order to dis-
card the noise elements, we adopt the typical deterministic rounding function
R(x) = �2x/q� (mod 2) (a.k.a., the so-called square-signal) which was proposed
by Katz and Vaikuntanathan [13].

– Projective (or Correctness). If the result of 〈e,h〉 is small for n, m ≥
n
√

log q, then the following equation holds

R
(
Reg.Hash(hk = h,W := (c,m))

)

= R
(
Reg.ProjHash(ph = preg,W := (c,m);w = s)

)
.

Proof. In this paper, we follow the methodology of [13] and adopt the typical
deterministic rounding function R(x) = �2x/q� (mod 2) to calculate Hash(·)
and ProjHash(·) respectively. Regarding the following two equations Eqs. (3.1)
and (3.2),

(
Reg.Hash(hk = h,W := (c,m))

)

=
([

rT · A] · k
)

=
(
(rT · A) · k (mod q)

)
.

(3.1)

(
Reg.Hash(hk = h,W := (c,m))

)

=
(
rT · preg

)
=

(
rT · (Ak) (mod q)

)
.

(3.2)

Two-Round PAKE Protocol over Lattices Without NIZK 147

we can easily find that the above two equations Eqs. (3.1) and (3.2) are equal,
then we can utilize the rounding function R(·) and find that the output of
R

(
Reg.Hash(hk = h,W := (c,m))

)
and R

(
Reg.ProjHash(ph = preg,W :=

(c,m);w = s)
)

are equal. ��
– Smoothness. Below we prove the smoothness property of Reg−SPHF.

Proof. Consider the word W :=
(
c,m

)
/∈ L, that means c is not an encryption

of m, under the public key pk = A. Hence the above implies that the following
two distributions have negligible statistical distance in λ,

(1).{(ph, h) | HashKG(L) → h,ProjKG(hk, L,W) → Ah,

Hash(hk, L,W) = (rTA)h}.

(2).{(ph, h) | HashKG(L) → h,ProjKG(hk, L,W) → Ah, h ← {0, 1}}.

We note that, Hash(hk,W) = (rTA)h given ProjKG(hk, pk) = Ah. Due to r
is witness vector, thus ProjKG(hk, pk) provides no information on Hash(hk,W)
and Hash(hk,W) is uniformly distributed over {0, 1}, given ProjKG(hk, pk).

Hence, we conclude that the projective hash function is smooth. ��

4 MP−SPHF from the Miccianio-Peikert Scheme

The MP construction is IND-CCA1-secure, but the Katz-Vaikuntanathan frame-
work requires the IND-CCA2-secure scheme along with the corresponding SPHF.
Hence, we can use either strongly unforgeable one-time signature [37], or a
message authentication code (MAC) and weak form of commitment [38] to
obtain the IND-CCA2 security. Below, we first present the labeled IND-CCA1-
secure scheme. For the sake of simplicity, we omit the generic transformation to
IND-CCA2 at this stage which can be found in [37].

We first fix the label by u
= 0 and obtain the labeled MP scheme, then we use
it to develop an SPHF. Following the Katz-Vaikuntanathan (KV) construction,
below we present an SPHF based on MP scheme, we call it MP−SPHF.

– hk ← MP.HashKG(params): samples k ← Z
n×1
q and sets it as the hashing key

hk := k ∈ Z
m×1
q .

– ph ← MP.ProjKG(params, hk = k, pk = Au): inputs the k and the public key
of IND-CCA scheme Au = [Ā | h(u)G − ĀR] ∈ Z

n×m
q with the fixed label

u, then outputs the projective hashing key ph := p = Au · k ∈ Z
n×1
q .

– h ← MP.Hash(hk = k,W := (c,m)):
1. The algorithm inputs k and the word W , where W contains a ciphertext

c = (label, c ∈ Z
m×1
q) and the plaintext m.

2. The hash function works as follows:

h = MP.Hash(hk = k,W := (c,m))

= R
(
[c − (0 | encode(m))]T · k

)
= R

([
sT · Au + eT

] · k
)

= R
(
(sT · Au) · k + eT · k (mod q) ∈ Zq

)
∈ {0, 1}.

148 Z. Li and D. Wang

We stress that eT · k is the noise element eT · k and bounded by |eTk| ≤
‖eT ‖ · ‖k‖ ≤ (r

√
mn) · (αq

√
mn) < ε/2 · q/4.

3. Outputs b := h (mod 2) ∈ {0, 1}, where h is a number in [−(q −
1)/2, · · · , (q − 1)/2] and the algorithm outputs b = 0 if h < 0, other-
wise, outputs b = 1.

– p = MP.ProjHash(ph = p,W := (c,m);w = s)
1. It inputs ph = p ∈ Z

n×1
q , the word W , and the witness s ∈ Z

n×1
q .

2. The algorithm computes and outputs

p = ProjHash(ph = p,W := (c,m);w = s)

= R
(
sT · p

)
= R

(
sT · (Auk) (mod q)

)
∈ {0, 1}.

3. Obtains b := p (mod 2) ∈ {0, 1}, and outputs b = 0 if p < 0, otherwise,
outputs b = 1.

Lemma 3. The MP−SPHF is a smooth projective hash function for the MP
scheme.

Below we first prove our scheme achieves approximate correctness. Similar to the
projective property of Reg−SPHF, our goal is to prove MP.Hash(hk = k,W :=
(c,m)) = MP.ProjHash(ph = p,W := (c,m);w = s) with probability greater
than 1/2. Moreover, we still use the rounding function R(x) = �2x/q� (mod 2)
to discard the noise elements.

– Projective (or Approximate Correctness). If the result of 〈e,k〉 is small
for n, m ≥ n

√
log q, then the following equation holds

R
(
Hash(hk = k,W := (c,m))

)
= R

(
ProjHash(ph = p,W := (c,m);w = s)

)
.

Proof. In this paper, we adopt the typical deterministic rounding function
R(x) = �2x/q� (mod 2) and follow the methodology of [13] to round the outputs
of Hash(·) and ProjHash(·) respectively. Regarding the following two equations,

(
Hash(hk = k,W := (c,m))

)
=

([
sT · Au + eT

] · k
)

=
(
(sT · Au) · k + eT · k (mod q)

)
(4.1)

(
ProjHash(ph = p,W := (c,m);w = s)

)
=

(
sT · p

)

=
(
sT · (Auk) (mod q)

)
(4.2)

Two-Round PAKE Protocol over Lattices Without NIZK 149

We first consider the equation Eq. (4.1) and the Definition 1, the result of R(h)
can be viewed as a number in [− (q−1)

2 , · · · , (q−1)
2], and we can obtain the result

b ∈ {0, 1}. Moreover, the noise element eT ·k is bounded by |eTk| ≤ ‖eT ‖·‖k‖ ≤
(r

√
mn) · (αq

√
mn) < ε/2 · q/4. Hence, the result of R(eTk) is identical with 0.

Thus, there exists

b =
{

0, if R(h) < 0;
1, if R(h) > 0.

Consider the equation Eq. (4.2) and the Definition 1, we have that

b =
{

0, if R
(
sT · (Auk)

)
< 0;

1, if R
(
sT · (Auk)

)
> 0.

Obliviously, the above two results are equal since the size of the noise ‖eTk‖
is bounded by qε/8 < q/4. ��

– Smoothness. Below we prove the smoothness property of MP−SPHF.

Proof. Consider the word W :=
(
c,m

)
/∈ L, that means c is not an encryption

of m, under the public key pk = Au. Hence the above implies that the following
two distributions have negligible statistical distance in λ,

(1).{(ph, h) | HashKG(L) → k,ProjKG(hk, L,W) → Auk,

Hash(hk, L,W) = (sTAu + eT)k}.

(2).{(ph, h) | HashKG(L) → k,ProjKG(hk, L,W) → Auk,

h ← {0, 1}}.

We note that, MP.Hash(hk,W) = (sTAu +eT)k given MP.ProjKG(hk, pk) =
Auk. Due to s is witness vector, thus MP.ProjKG(hk, pk) provides no information
on MP.Hash(hk,W) and MP.Hash(hk,W) is uniformly distributed over {0, 1},
given MP.ProjKG(hk, pk).

Hence, we conclude that the projective hash function is smooth. ��

5 Two-Round PAKE Protocol over Lattices

At ASIACRYPT’17, Zhang and Yu proposed a lattice-based two-round PAKE
protocol [11] using simulation-sound NIZK in the random oracle model.
At PKC’15, Abdalla et al. [10] proposed the new cryptographic primitive
“IND-PCA-secure PKE” to design two-round PAKE protocols without NIZK.3

However, this PAKE builds on the DDH assumption and cannot prevent quantum
attacks. To our knowledge, it remains an open question to construct a two-round
PAKE protocol under the LWE setting without NIZK in the random oracle model.

3 They improved the Gennaro-Lindell framework to reduce the round number to two.

150 Z. Li and D. Wang

Fig. 2. A sketch of our two-round lattice-based PAKE protocol.

In this section, armed with the above MP−SPHF and Reg−SPHF, we follow
the framework of Abdalla-Benhamouda-Pointcheval and design a new lattice-
based two-round PAKE protocol. Here we provide a high view of our protocol:

– First round. The client runs the Miccianio-Peikert scheme with an asso-
ciated MP−SPHF, then sends the first flow message (i.e., the ciphertext of
Miccianio-Peikert scheme along with the corresponding signature and the
projective hash key of MP−SPHF) to the server.

– Second round. Upon receiving the information from the client, the server
first checks the legitimacy of the signature, then runs the Regev scheme with
an associated Reg−SPHF. Subsequently, the server returns the second flow
message (i.e., the ciphertext of the Regev scheme and the projective hash key
of Reg−SPHF) to the client.

– Local computation. After receiving the messages from the other party, both
parties perform the calculation locally on the received message and the local
message. Concretely, the client generates the common session key = (pS ·hC)
and the server generates the common session key = (pC · hS).

Figure 2 illustrates the detailed description of the two-round PAKE protocol
over lattices. Since every IND-CCA2-secure encryption is also IND-PCA-secure,
we follow the road-map of [10] and achieve the expected two-round PAKE. Impor-
tantly, we do not depend on a simulation-sound NIZK [11] and the detailed
explanation can be found in [39]. In this case, we can omit the issue of the gap
between correctness and smoothness because the proof of the resulting two-round
PAKE works exactly as in [10]. The details are provided in Appendix of [39].

Two-Round PAKE Protocol over Lattices Without NIZK 151

Moreover, as far as we know, if the label of the label-IND-CCA2 encryption
scheme is fixed in advance to some public constant, then the resulting scheme is
IND-CPA. Hence, we can follow the generic transformation of [39] to convert a
label-IND-CCA2 encryption scheme with message space {0, 1} and label space
{0, 1}λ into a IND-CCA2 encryption scheme with message space {0, 1}v (for
some v polynomial in λ) and label space {0, 1}∗ according to [37]. In a concrete
way, a strongly unforgeable one-time signature scheme (Gen,Sign,Ver) was intro-
duced to achieve the above goal. The client invokes the algorithm Sign and takes
as input the ciphertext ccca

C . Subsequently, the server will verify the signature
of the ciphertext using the algorithm Ver. For the sake of explanation, we omit
this transformation step in the above protocol.

5.1 Correctness Analysis

In this subsection, we analyze the correctness of our PAKE protocol.

Lemma 4. If the two communication parties obtained the same common session
key, then the correctness holds.

Proof. For the client side, the client C obtained the session key as follows

skeyC = p′
S · (pS · hC) · h′

C

= R
(
sT (

Au

A
)Ah

)
· R

(
sTAh

)
· R

(
rTAk

)
· R

(
rTA(

Au

A
k)

)

= R
(
sTAuh

)
· R

(
sTAh

)
· R

(
rTAk

)
· R

(
rTAuk

)

Meanwhile, for the server side, the server S obtained the session key as
follows

skeyS = p′
C · (pC · hS) · h′

S

= R
(
rT (

A
Au

)Auk
)

· R
(
rTAuk

)

· R
(
(sTAu + eT)h

)
· R

(
(sTAu + eT)(

Au

A
)h

)

= R
(
rTAk

)
· R

(
rTAuk

)
· R

(
(sTAu + eT)h

)
· R

(
(sTA + eT (

Au

A
))h

)

In order to meet the requirements of the Lemma 3 and the typical
deterministic rounding function R(x) = �2x/q� (mod 2) from [13], we con-
sider max{‖eTh‖, ‖eT (Au

A)h‖} ≤ q/4 for the bound of ‖eTh‖ ≤ mB and
‖eT (Au

A)h‖ ≤ O(mB).4 In this setting, the output of the typical determinis-

tic rounding function R
(
(sTAu + eT)h

)
= R

(
(sTAu)h

)
and the output of

R
(
(sTA + eT (Au

A))h
)

= R
(
(sTA))h

)
. Hence, we have that skeyC = skeyS . ��

4 We use big-O notation to asymptotically bound the growth of a running time to
within constant factors.

152 Z. Li and D. Wang

5.2 Security Analysis

Theorem 1. The two-round lattice-based PAKE protocol from Fig. 2 is secure
in the BPR model, under the LWE assumption.

Proof. Below we provide the sketched proof because of the space limitation.
Roughly speaking, this proof follows the schemes given in Benhamuda et al.
[5,7,40], we only check that our primitives (Reg−SPHF and MP−SPHF) fulfill
the same properties in order to be able to modularly apply the proof given in
[40].

Experiment Expt.0. This is the real attack game, the advantage was denoted
by AdvExpt.0A (λ) = ε. Then, we incrementally modify the simulate procession to
make the trivial attacks possible. In this experiment, all of the private input
values of the honest players can be used by the simulator. Following [7,15], there
exist three types of Send queries:

– Send0(C, i, S)-query. In this setting, the adversary asks the instance Πi
C to

initiate an execution with an instance of S. Then S answers the query by a
flow and returns it to C.

– Send1(S, j,msg)-query. The adversary sends the first flow message msg to the
instance Πj

S . The oracle defines his own session key and returns second flow
which answered back by the instance Πj

S .
– Send2(C, i,msg)-query. The adversary sends the second flow message msg to

the instance Πi
C . The oracle gives no answer back, but defines his own session

key, for possible later Reveal or Test queries.

We remark that, if there exists πC = πC,S , then the client C and the server S
are compatible. Actually, the definition of “compatibility” was defined by Katz
et al. [30,41] which means even if the password was changed during the execution
of the protocol, the changed password does not have an effect on the execution.

Experiment Expt.1. We first modify the way how to deal with the Execute-
queries. Concretely, in response to a query Execute(UC , i, US , j), we use the
encryption of dummy passwords π0

C and π0
C,S from Zipf distribution to replace

the ciphertext cC and cS . Apparently, the fake passwords π0
C and π0

S are not in
language L and the random elements are not used in the generation of the fake
ciphertext. This is indistinguishable from Expt.0 under the IND-CPA property
of the encryption scheme. Moreover, due to the hash key and projective key are
known by the players, hence they can compute the common session key

key = Hash(hkC ,WS := (cS , π)) · ProjHash(phS ,WC = (cC , π);wC = r)
= Hash(hkS ,WC := (cC , π)) · ProjHash(phC ,WS = (cS , π);wS = r̄)
= key

Since we could have first modified the way to compute key, which has no impact
at all from the soundness of the SPHF, the unique difference comes from the dif-
ferent ciphertexts. Actually, this is indistinguishable property of the probabilistic
encryption scheme, for each Execute-query.

Two-Round PAKE Protocol over Lattices Without NIZK 153

For future convenience, we define this experiment as Event Ev0 whose prob-
ability is computed in Expt.8. Thus we can obtain |AdvExpt.1A (λ)−AdvExpt.0A (λ)| ≤
negl(λ) by using a series of hybrid hops.

Experiment Expt.2. In this experiment, again, we modify the way of the
Execute-queries response. We sample a random value from uniform distribution,
then use it to replace the common session key. In this setting, the “password” is
not satisfied, the indistinguishability property is guaranteed by the smoothness,
i.e., |AdvExpt.2A (λ) − AdvExpt.1A (λ)| ≤ negl(λ).

Experiment Expt.3. This experiment is identical to the Expt.2 except that we
change the way how to deal with the Send1-queries. Concretely, in this experi-
ment, we use a Miccianio-Peikert decryption oracle (or alternatively knowing the
decryption key of Miccianio-Peikert scheme) to decrypt the “unused” received
message msg = (phC , cC), three cases can appear:

1. If the msg has been altered (even generated) by the simulator in the name
of the client C, then one can obtain the word W by checking whether
the ciphertext cC contains the expected password πS,C or not, along with
the label 	 = C||S||phC . Then, there exist two cases:
(a) If they are correct W ∈ L (or the expected password is encrypted) and

consistent with the receiver’s values, then one can assert that the adver-
sary A succeeds (i.e., b′ = b) and terminates the game.

(b) If they are not both correct and consistent with the receiver’s values, then
one chooses key at random.

2. If the msg is used previously (or, it is a replay of a previous flow sent by the
simulator which in the name of the client C), then, in particular, the simulator
knows the hash key and obtains the projective key, then the simulator can
compute the common session key by using the hash key and the projective key.
Namely key = Hash(hkC ,WS := (cS , π)) · ProjHash(phS ,WC = (cC , π);wC =
r), where we stress that cS is not generated by using the randomness, which
is similar to Expt.2.

For future convenience, we define the first case (1a) as Event Ev1 whose
probability is computed in Expt.6. We note that the change of the case (1a)
can only increase the advantage of A. Actually, the second change in the case
(1b) only increases the advantage of the adversary by a negligible term due
to it is indistinguishable under the adaptive-smoothness. Meanwhile, the third
change in the case (2) does not affect the way the key is computed, so finally
|AdvExpt.3A (λ) − AdvExpt.2A (λ)| ≤ negl(λ).

Experiment Expt.4. This experiment is identical to the Expt.3 except that we
change the way how to deal with the Send2-queries. Concretely, in this experi-
ment, the simulator can query a Regev decryption oracle (or alternatively know-
ing the decryption key of the Regev scheme), namely that the simulator in the
name of the server instance Πj

US
sends the second flow msg = (phS , cS) to the

client instance Πi
UC

. Three cases can appear:

154 Z. Li and D. Wang

1. If the msg has been altered (even generated) by the simulator in the name of
the server S, in order to response to first flow message msg = (phC , cC) that
sent by the client instance Πi

UC
, then one can obtain the word W by checking

whether the ciphertext cC contains the expected password πS,C or not, along
with the label 	 = C||S||phC . Then, there exist two cases:
(a) If they are correct W ∈ L (or the expected password is encrypted) and

consistent with the receiver’s values, then one can assert that the adver-
sary A succeeds (i.e., b′ = b) and terminates the simulation.

(b) If they are not both correct and consistent with the receiver’s values, then
one chooses key at random.

2. After receiving the first flow msg = (phC , cC), if the msg is used previously
(or, it is a replay of a previous flow sent by the simulator which in the name
of the client Πj

US

′
), then, Πi

UC
and Πj

US

′
are partners. In particular,

(a) If S and C are compatible, then the simulator knows the hash key and
obtains the projective key, then the simulator can compute the common
session key by using the hash key and the projective key. Namely key =
Hash(hkC ,WS := (cS , π)) · ProjHash(phS ,WC = (cC , π);wC = r), where
we stress that cS is not generated by using the randomness, which is
similar to Expt.2.

(b) Otherwise, we choose a random common session key.

For future convenience, we define the first case (1a) as Event Ev2 whose
probability is computed in Expt.8. We note that the change of the case (1a) can
only increase the advantage of A. Actually, the second change in the case (1b)
only increases the advantage of the adversary by a negligible term due to it is
indistinguishable under the adaptive-smoothness property. Meanwhile, the third
change in the case (2a) does not affect the way the key is computed, so finally
|AdvExpt.4A (λ) − AdvExpt.3A (λ)| ≤ negl(λ).

Experiment Expt.5. We change the way of the Send1-queries response. Now
two cases will appear after a “used” message msg = (phC , cC) is sent.

– If there exists an instance Πi
UC

of UC partnered with an instance Πj
US

of US ,
then set key = skeyi

C = skeyj
S .

– Otherwise, one chooses key at random.

Note that, in the first case, due to the “used” message is a reply of a previous
flow, thus the common session key remains identical. In the second case, Due
to the adaptive-smoothness [7,15], even if when hashing keys and ciphertexts
are re-used, all the hash values are random looking. Hence, the indistinguishable
holds and there exists |AdvExpt.5A (λ) − AdvExpt.4A (λ)| ≤ negl(λ).

Experiment Expt.6. We change the way the Send1-queries respond. Now two
cases will appear after a “used” message msg = (phS , cS) is send.

– If there exists an instance Πj
S of US partnered with an instance Πi

C of UC ,
then set key = skeyi

C = skeyj
S .

– Otherwise, one chooses key at random.

Two-Round PAKE Protocol over Lattices Without NIZK 155

Similar to the Expt.5, the indistinguishability holds and there exists
|AdvExpt.6A (λ) − AdvExpt.5A (λ)| ≤ negl(λ).

Experiment Expt.7. We now modify the way how to deal with the Send0-queries.
We remark that, in previous experiments, we don’t need to know the random rC

(a.k.a., witness wC = rC) which can be used to obtain the ciphertext cC . In this
experiment, instead of encrypting the correct and real passwords, one encrypts
the fake π0 which does as in Expt.1 for Execute-queries to answer the query
Send0(C, i, S). Due to it is necessary to simulate the decryption of the Send1-
queries, then the indistinguishability holds for IND-CCA-secure Miccianio-
Peikert PKE scheme. Therefore, we have |AdvExpt.7A (λ) − AdvExpt.6A (λ)| ≤ negl(λ).

Experiment Expt.8. This experiment is identical to the Expt.5 except that we
adopt the dummy private inputs for the hash key hk and the projective key ph.
Concretely, hk and ph do not depend upon the word W , the distributions of
these keys are independent of the auxiliary private inputs, hence there exists
|AdvExpt.8A (λ) − AdvExpt.7A (λ)| ≤ negl(λ). Putting them together, we can obtain

AdvExpt.8A (λ) ≥ AdvExpt.0A (λ) − negl(λ) = ε − negl(λ).

Actually, the Expt.8 is only used for declaring whether A won the event Ev
or not. So the advantage is exactly: AdvExpt.6A (λ) = Pr[Ev]. Therefore, we have

ε ≤ Pr[Ev0] + Pr[Ev1] + Pr[Ev2] + negl(λ).

As mentioned earlier, (1). the event Ev0 means that A wins the Expt.1 during
the Execute(·) queries. Pr[Ev0] = Pr[∃k0 ∈ Qs′

e (λ) : πC,S(k0) = πC(k),W ∈ L],
where k0 ∈ Qs′

e (λ) is the index of the recepient of k0-th Execute-query and
Qs′

e (λ) is the number of the Execute-queries. (2). The event Ev1 means that the
adversary has encrypted (π) that are correct (W ∈ L) and consistent with the
receiver’s values (πC,S = π). Since the random values (or witness) for the honest
players are never used during the simulation, we can assume we choose them at
the very end only to check whether event Ev1 happened:

Pr[Ev1] = Pr[∃k1 ∈ Qs′
s1(λ) : πC,S(k1) = πC(k),W ∈ L],

where k1 ∈ Qs′
s1(λ) is the index of the recepient of k1-th Send1-query and Qs′

s1(λ)
is the number of the Send1-queries. Similarly, (3). the event Ev3 means that the
adversary has encrypted (π) that are correct (W ∈ L) and consistent with the
receiver’s values (πC,S = π). Since the random values (or witness) for the honest
players are never used during the simulation, we can assume we choose them at
the very end only to check whether event Ev2 happened:

Pr[Ev2] = Pr[∃k2 ∈ Qs′
s3(λ) : πC,S(k2) = πC(k),W ∈ L],

where k2 ∈ Qs′
s2(λ) is the index of the recepient of k2-th Send1-query and Qs′

s2(λ)
is the number of the Send2-queries.

156 Z. Li and D. Wang

In other words, it first has to guess the private values, and then once it has
guessed them, it has to find a word in the language, hence, there exists

Pr[Ev1] + Pr[Ev2] + Pr[Ev3] ≤ C ′ ·
(
Qs′

e (λ) + Qs′
s1(λ) + Qs′

s2(λ)
)

× SuccL(λ),

where SuccL(λ) is the best success an adversary can get in finding a word in a
language L. Then, by combining all the inequalities, one can get

ε ≤ C ′ ·
(
Qs′

e (λ) + Qs′
s1(λ) + Qs′

s2(λ)
)

× SuccL(t) + negl(λ).

This completes the proof. ��

Table 1. A comparison of related PAKE protocols under LWE assumption.

Scheme SPHF Rounds Client&Server Framework Building
blocks

Katz-Vaikuntanathan[13] KV[13] 3 CCA & CCA KV[13] Peikert Enc[25]

Zhang-Yu[11] GL[5] 2 CCA & CCA GL[5] Peikert Enc[25]

Bonhamouda et al.[39] KV[13] 1(2-flow) CCA & CCA KV[15] Mic-Pei Enc[12]

Our scheme KV[13] 2 CCA & CPA ABP[10] Mic-Pei Enc[12]

& Regev enc[14]

KV−SPHF implies that adaptive smoothness and the ph dependents on W .
GL−SPHF implies that non-adaptive smoothness and the ph independent on W .

6 Conclusion

In this paper, we first design two types of new lattice-based SPHFs (i.e., the
IND-CCA-secure MP−SPHF at client side and the IND-PCA-secure Reg−SPHF
at server side) by following the KV−SPHF methodology. Then, we construct
the first lattice-based two-round PAKE protocol via Reg−SPHF and MP−SPHF,
avoiding using the simulation-sound NIZK in random oracle model as com-
pared to the foremost two-round PAKE protocol by Zhang and Yu at ASI-
ACRYPT’17 [11]. Besides, as shown in Table 1, our protocol builds on weaker
security assumptions than those state-of-the-art PAKE protocols [11,13,39] from
the LWE assumption.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their helpful advice and comments. This work was supported by the National Natural
Science Foundation of China (No. 61802006 and No. 61802214).

Two-Round PAKE Protocol over Lattices Without NIZK 157

References

1. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: Proceedings of the IEEE S&P 1992, pp. 72–
84 (1992)

2. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44987-6 29

3. Hao, F., Ryan, P.: J-PAKE: authenticated key exchange without PKI. In: Gavrilova,
M.L., Tan, C.J.K., Moreno, E.D. (eds.) Part II. LNCS, vol. 6480, pp. 192–206.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17697-5 10

4. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol
secure against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part III. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7 15

5. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 33

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6 11

7. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 449–475. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 25

8. Groce, A., Katz, J.: A new framework for efficient password-based authenticated
key exchange. In: Proceedings of the ACM CCS 2010, pp. 516–525 (2010)

9. Jiang, S., Gong, G.: Password based key exchange with mutual authentication.
In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 267–279.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-4 19

10. Abdalla, M., Benhamouda, F., Pointcheval, D.: Public-key encryption indistin-
guishable under plaintext-checkable attacks. In: Katz, J. (ed.) PKC 2015. LNCS,
vol. 9020, pp. 332–352. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46447-2 15

11. Zhang, J., Yu, Y.: Two-round PAKE from approximate SPH and instantiations
from lattices. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS,
vol. 10626, pp. 37–67. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6 2

12. Micciancio,D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–
718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 41

13. Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based
authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10366-7 37

14. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of ACM STOC 2005, pp. 84–93 (2005)

https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/978-3-642-17697-5_10
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/3-540-39200-9_33
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/978-3-642-40041-4_25
https://doi.org/10.1007/978-3-540-30564-4_19
https://doi.org/10.1007/978-3-662-46447-2_15
https://doi.org/10.1007/978-3-662-46447-2_15
https://doi.org/10.1007/978-3-319-70700-6_2
https://doi.org/10.1007/978-3-319-70700-6_2
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-10366-7_37
https://doi.org/10.1007/978-3-642-10366-7_37

158 Z. Li and D. Wang

15. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 18

16. Abdalla, M., Benhamouda, F., MacKenzie, P.: Security of the J-PAKE password-
authenticated key exchange protocol. In: Proceedings of IEEE S&P 2015, pp. 571–
587 (2015)

17. Wang, D., Wang, P.: On the implications of Zipf’s law in passwords. In: Askoxy-
lakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016, Part I.
LNCS, vol. 9878, pp. 111–131. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45744-4 6

18. Wang, D., Cheng, H., Wang, P., Huang, X., Jian, G.: Zipf’s law in passwords. IEEE
Trans. Inform. Foren. Secur. 12(11), 2776–2791 (2017)

19. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
337–351. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 22

20. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639 24

21. Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-based
key exchange resilient to server compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175 9

22. Dupont, P.-A., Hesse, J., Pointcheval, D., Reyzin, L., Yakoubov, S.: Fuzzy
password-authenticated key exchange. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part III. LNCS, vol. 10822, pp. 393–424. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7 13

23. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

24. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

25. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Proceedings of ACM STOC 2009, pp. 333–342 (2009)

26. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Pro-
ceedings of ACM STOC 2008, pp. 187–196 (2008)

27. Li, Z., Ma, C., Wang, D.: Leakage resilient leveled FHE on multiple bit message.
IEEE Trans. Big Data. https://doi.org/10.1109/TBDATA.2017.2726554

28. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

29. Bellare, M., Rogaway, P.: Provably secure session key distribution: the three party
case. In: Proceedings of ACM STOC 1995, pp. 57–66 (1995)

30. Katz, J., Ostrovsky, R., Yung, M.: Efficient and secure authenticated key exchange
using weak passwords. J. ACM 57(1), 3:1–3:39 (2009)

https://doi.org/10.1007/978-3-642-19571-6_18
https://doi.org/10.1007/978-3-319-45744-4_6
https://doi.org/10.1007/978-3-319-45744-4_6
https://doi.org/10.1007/3-540-46035-7_22
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/978-3-319-78372-7_13
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1109/TBDATA.2017.2726554
https://doi.org/10.1007/3-540-48329-2_21

Two-Round PAKE Protocol over Lattices Without NIZK 159

31. Jarecki, S., Krawczyk, H., Shirvanian, M., Saxena, N.: Two-factor authentication
with end-to-end password security. In: Abdalla, M., Dahab, R. (eds.) PKC 2018,
Part II. LNCS, vol. 10770, pp. 431–461. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-76581-5 15

32. Huang, K., Manulis, M., Chen, L.: Password authenticated keyword search. In:
Proceedings of PAC 2017, pp. 129–140 (2017)

33. Wang, D., Wang, P.: Two birds with one stone: two-factor authentication with
security beyond conventional bound. IEEE Trans. Depend. Secure Comput. 15(4),
708–722 (2018)

34. Becerra, J., Iovino, V., Ostrev, D., Šala, P., Škrobot, M.: Tightly-secure PAK(E).
In: Capkun, S., Chow, S.S.M. (eds.) CANS 2017. LNCS, vol. 11261, pp. 27–48.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02641-7 2

35. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of ACM STOC 2008, pp. 197–206
(2008)

36. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2 21

37. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput.
30(2), 391–437 (2000)

38. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

39. Benhamouda, F., Blazy, O., Ducas, L., Quach, W.: Hash proof systems over lat-
tices revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol.
10770, pp. 644–674. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76581-5 22

40. Abdalla, M., Ben Hamouda, F., Pointcheval, D.: Tighter reductions for forward-
secure signature schemes. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS,
vol. 7778, pp. 292–311. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36362-7 19

41. Katz, J., Ostrovsky, R., Yung, M.: Forward secrecy in password-only key exchange
protocols. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576,
pp. 29–44. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 3

https://doi.org/10.1007/978-3-319-76581-5_15
https://doi.org/10.1007/978-3-319-76581-5_15
https://doi.org/10.1007/978-3-030-02641-7_2
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-319-76581-5_22
https://doi.org/10.1007/978-3-319-76581-5_22
https://doi.org/10.1007/978-3-642-36362-7_19
https://doi.org/10.1007/978-3-642-36362-7_19
https://doi.org/10.1007/3-540-36413-7_3

Symmetric Cryptology

Improved Integral Attacks
on PRESENT-80

Shi Wang, Zejun Xiang, Xiangyong Zeng(B), and Shasha Zhang

Faculty of Mathematics and Statistics,
Hubei Key Laboratory of Applied Mathematics, Hubei University,

Wuhan 430062, China
wuhanwangs@163.com, xiangzejun@iie.ac.cn,

xiangyongzeng@aliyun.com, amushasha@163.com

Abstract. In this paper, we propose an improved integral attack against
round-reduced PRESENT-80. First, we find a new 7-round integral dis-
tinguisher by analyzing the algebraic degree of PRESENT. Then, we
propose an algebraic method to recover the master key by solving a sys-
tem of linear equations which are extracted from the last three rounds
of the cipher. Using this method, we can attack 10-round PRESENT-
80 with time complexity 227.6 and data complexity 227, and 12-round
PRESENT-80 with time complexity 266 and data complexity 264. More-
over, a key partition technique is proposed to gain one more round such
that we could attack 11-round PRESENT-80 with time complexity 258

and data complexity 248, and 13-round PRESENT-80 with time com-
plexity 274 and data complexity 264.

Keywords: PRESENT · Integral attack · Gaussian elimination

1 Introduction

Integral attack was firstly proposed by Daemen et al. to evaluate the security
of block cipher Square [3] and then formalized by Knudsen and Wagner [4]. It
mainly has two phases: integral distinguisher construction and key recovery. An
attacker firstly constructs a set of 2d plaintexts by traversing d bits and fixing
other bits to a constant value. If some bits of the state after r-round encryption
have a zero-sum property, a d-th order integral distinguisher of r rounds is thus
obtained. In the key recovery phase, the attacker partially decrypts each cipher-
text for several rounds by guessing involved subkeys and checks whether certain
bits of the XOR of all intermediate values equal 0. If this is the case, the guessed
subkey is a right candidate. Otherwise, the subkey is a wrong guess.

However, integral attack initially can only be applied to word-based block
ciphers. Until 2008, Z’aba et al. proposed a new notion called bit-Pattern [12],
which extended integral attack to bit-based block ciphers, such as Noekeon,
Serpent and PRESENT. Although integral attack does not pose a serious threat
to these block ciphers, it reveals that integral attacks may be not only suitable for
c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 163–182, 2019.
https://doi.org/10.1007/978-3-030-14234-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_9

164 S. Wang et al.

word-based block ciphers but also suitable for bit-based ones. In 2013, Wu and
Wang [10] discovered that some properties of PRESENT’s Sbox help to make
a more accurate evaluation of the algebraic degree and they found a 7-round
integral distinguisher. In 2015, Zhang et al. [15] attacked 10-round PRESENT-
80 and 11-round PRESENT-128 by using the 7-round integral distinguisher and
the Match-through-the-Sbox technique (MTTS).

At Eurocrypt 2015, Todo [7] proposed a generalized integral property named
division property. It has been pointed out that the propagation characteristic
of division property for a nonlinear function is related to its algebraic degree,
and ciphers with low-degree functions are vulnerable to this analysis. After the
proposal, new understandings of division property and new applications have
been proposed [2,5,6,8,14]. In 2016, both [9] and [11] found a 9-round integral
distinguisher by bit-based division property, and 12-round PRESENT-80 and
13-round PRESENT-128 were attacked in [9] by using this 9-round integral
distinguisher.

Our Contribution. In this paper, we propose an improved integral attack
against PRESENT-80. Firstly, we propose a technique for evaluating the alge-
braic degree of PRESENT, and thus find a new 7-round integral distinguisher.
Secondly, inspired by [10], we try to decrypt the ciphertext three rounds, and
get the algebraic normal form of each bit of the internal state in terms of the
ciphertext and the master key. Then a linear equation can be constructed for
a given integral distinguisher. Moreover, a system of linear equations can be
constructed by repeating this procedure for multiple distinguisher which only
differ in the constant part. Thus, the master key can be recovered by solving
these equations. Using this technique, we can attack 10-round PRESENT-80
with time complexity 227.6 and data complexity 227, and 12-round PRESENT-
80 with time complexity 266 and data complexity 260.

Moreover, we propose a key partition technique which divides the 4-bit Sbox
subkey into four disjoint subsets by analyzing the differential property of Sbox,
and this allows us to gain one more round such that 11-round PRESENT-80
can be attacked with time complexity 258, data complexity 248, and 13-round
PRESENT-80 can be attacked with time complexity 274, data complexity 264.
Table 1 summarizes the integral attacks on PRESENT-80.

Organization. Section 2 gives a brief review of PRESENT cipher and integral
attack. The technique of obtaining the new integral distinguisher is elaborated
in Sect. 3. In Sect. 4, we mainly describe integral attacks of 10- and 12-round
PRESENT. In Sect. 5, the 11-round PRESENT is attacked by a new partition
technique. In Sect. 6, the 13-round PRESENT is attacked by another partition.
Finally, Sect. 7 concludes the paper.

2 Preliminaries

In this section, we briefly recall some background knowledge on PRESENT
cipher and integral attack.

Improved Integral Attacks on PRESENT-80 165

Table 1. The comparison of integral attacks of PRESENT-80

Round Data Time Memory Order Ref

6 222.4 241.7 - 4 [12]

9 220.3 260 220 16 [10]

10 221.5 235 235.9 16 [15]

10 227 227.6 - 16 in Sect. 4.3

11 248 258 251 16 in Sect. 5.2

12 - 280−N , N = 1, · · · , 16 - 60 [9]

12 264 266 60 in Sect. 4.4

13 264 274 264 60 in Sect. 6.2

2.1 Description of PRESENT

PRESENT is a 31-round lightweight block cipher with block size 64 bits, and two
key lengths of 80 and 128 bits are supported [1]. PRESENT adopts SP-network
and its round function consists of addRoundKey, sBoxLayer and pLayer.

In addRoundKey layer, the 64-bit round key is XORed to the state. Then,
a 4-bit Sbox is applied 16 times in parallel in sBoxLayer. Finally, a fully wired
permutation on 64 bits is employed in pLayer.

Since we focus on PRESENT with 80 bits key in the rest of our paper, we
only briefly recall the 80-bit key schedule. Initially, the 80 bits are stored in a
key register represented as k79k78 · · · k0. In round i, the most significant 64-bit
keys are extracted as the subkey ki = k79k78 · · · k16. Then, the key register is
updated as follows.

1. [k79k78 · · · k1k0] = [k18k17 · · · k0k79 · · · k20k19];
2. [k79k78k77k76] = S[k79k78k77k76];
3. [k19k18k17k16k15] = [k19k18k17k16k15] ⊕ round counter.

In the remainder of this paper, we denote Xi the internal state which is
the input of round i before subkey XOR, and denote Y i the output after sub-
key XOR, where 0 ≤ i ≤ 31. Thus, C = Y n denotes the ciphertext for a
reduced PRESENT of n rounds. Let Xi = (xi

63, x
i
62, · · · , xi

0), where xi
j denotes

the j-th bit of Xi with 0 ≤ j ≤ 63, and Xi
[j1,j2,··· ,jk]

represents the set of bits
xi

j1
, xi

j2
, · · · , xi

jk
. Let K represent the master key and ki represent the round key

used in round i. Moreover, we denote Ki the state of the key register before
extracting ki.

2.2 Integral Attack

Integral attack is composed of two phases: integral distinguisher construction
and key recovery.

166 S. Wang et al.

Let X0 be a plaintext and E = En−r ◦ Er represent the encryption function
of n-round PRESENT, where Er is the first r rounds of E and En−r is the last
n − r rounds of E. Then the ciphertext C can be computed by

C = E(X0) = En−r(Er(X0)).

If there is a set Λ consisting of 2d plaintexts such that
⊕

X∈Λ

Er(X) = 0,

then we call the set Λ an r-round (d-th order) integral distinguisher. In the
key recovery phase, suppose that the attacker chooses a set Λ of plaintexts and
gets the corresponding ciphertexts. Then, the attacker decrypts each ciphertext
(n − r)-round by guessing the involved subkeys. If the XOR of all decrypted
texts equals 0, then the subkey is a right candidate, and the remaining key bits
can be recovered by exhaustive search.

3 Integral Distinguishers of PRESENT

This section proposes a new 7-round (16-th order) integral distinguisher based
on degree evaluation.

A Boolean function f from F
n
2 to F2 can be expressed as a polynomial in

F2[x1, · · · , xn], which is called the algebraic normal form (ANF) of f . The alge-
braic degree of f , denoted by deg(f), is the number of variables in the highest
order terms with nonzero coefficients [10].

Let X0, K be a plaintext and a master key, respectively. Then the algebraic
degree of Y i with respect to X0 can be obtained by computing the ANF of Y i.
However, with the round number increasing, the ANF of Y i contains a huge
number of monomials, thus it is infeasible to evaluate the algebraic degree of Y i

in this way. To find an upper bound on the algebraic degree of Y i with respect to
X0, we exploit a new method, in which each bit of Y i is treated as a polynomial
over the ring of integers and all bits in K are set to 1. In the iterations of round
function, monomials which have nonzero coefficients in the ANF of Y i cannot
vanish in this new polynomial (over the integer ring). Therefore, the algebraic
degree of each bit of Y i cannot exceed the maximal number of different variables
in all monomials of the new polynomial. Thus, an upper bound on the algebraic
degree of Y i can be obtained. This can be illustrated by the following example.

Example 1. Let S be the function of Sbox used in PRESENT, and x =
(x3, x2, x1, x0), y = (y3, y2, y1, y0) be the input and output of S respectively.
Then the ANF of S is listed as follows.

⎧
⎪⎪⎨

⎪⎪⎩

y3 = 1 + x0 + x1 + x3 + x1x2 + x0x1x2 + x0x1x3 + x0x2x3,
y2 = 1 + x2 + x3 + x0x1 + x0x3 + x1x3 + x0x1x3 + x0x2x3,
y1 = x1 + x3 + x1x3 + x2x3 + x0x1x2 + x0x1x3 + x0x2x3,
y0 = x0 + x2 + x3 + x1x2.

(1)

Improved Integral Attacks on PRESENT-80 167

Suppose X = (x3 + k3, x2 + k2, x1 + k1, x0 + k0) is the input of PRESENT
Sbox and Z = (z3, z2, z1, z0) = S(S(x3 + k3, x2 + k2, x1 + k1, x0 + k0)).

We regard z0 as a polynomial over the ring of integers and let k0 = k1 =
k2 = k3 = 1. Then the terms with the maximal number of different variables in
this polynomial are

(4 + 8k0k3 + 6k3 + 2k1 + 4k0k1 + 4k0 + 4k0k2)x0x1x2x3

+ (2k2 + 2k1 + 4k3 + 2)x2
0x1x2x3 + (2k0 + 1)x0x

2
1x2x3 + 2k0x0x1x

2
2x3

+ (4k0 + 3)x0x1x2x
2
3 + x2

0x
2
1x2x3 + x2

0x1x
2
2x3 + 2x2

0x1x2x
2
3.

Since k0 = k1 = k2 = k3 = 1, all coefficients of the above terms are nonzero
integers obviously, thus the maximal number of different variables in all mono-
mials is 4. However, the coefficient of the highest order term x0x1x2x3 in the
ANF of z0 is equal to 0 and the algebraic degrees of z0 is small than 4. Thus, the
algebraic degree of z0 is less than 4 which is the maximal number of different
variables in all monomials of the new polynomial over the ring of integers.

Let X0 = (0, 0, 0, x60, 0, 0, 0, x56, · · · , 0, 0, 0, x0) and K = (1, · · · , 1), where
xi (i = 0, 4, 8, · · · , 60) are variables. Then the expression of each bit of Y i (i =
1, · · · , 5) as a polynomial over the ring of integers can be obtained. By this
estimation, we have that the algebraic degree of y5

j is not exceeding 16 for 1 ≤
j ≤ 63, and the algebraic degrees of y5

0 and y5
16+y5

48 = y4
0+y4

1y
4
2+y4

1y
4
3+y4

2y
4
3+1

are not exceeding 15. Thus,
⊕

(x0,··· ,x16)∈F
16
2

y5
0 and

⊕
(x0,··· ,x16)∈F

16
2

(y5
16 + y5

48)
equal 0. That is to say, y5

0 and y5
16 + y5

48 are balanced bits.
For a fixed vector (x63, · · · , x16), define

Γ(x63,··· ,x16) = {(x63, · · · , x16, x15, · · · , x0) |xi ∈ F2 for 0 ≤ i ≤ 15}

and
A = {Γ(x63,··· ,x16) |xi ∈ F2 for 16 ≤ i ≤ 63}. (2)

Then A contains 248 elements and each element is a set consisting of 216 vectors
which traverse the 16 bits of X0

[0,··· ,15] and fix other bits to constants.
If one constructs a set belonging to A, all the intermediate values after two-

round encryption traverse the 16 bits of X2
[0,4,··· ,60], and take a constant value

on other bits. Combining this with the above analysis, a 7-round integral distin-
guisher of PRESENT can be found [10]. This can be shown in Fig. 1 with bold
lines, and it is summarized as the following proposition.

Proposition 1. Choose a set of 216 plaintexts, which traverses the 16 bits of
X0

[0,··· ,15] and fixes other bits to arbitrary constants. Then, both y7
0 and y7

16 + y7
48

are balanced.

Note that y5
0 is a balanced bit corresponding to the integral distinguisher

found in [10], and y5
16 + y5

48 is a new balanced bit found by our technique.

168 S. Wang et al.

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Y 0

Y 1

Y 2

Y 3

Y 4

Y 5

Y 6

Y 7

X0

X1

X2

X3

X4

X5

X6

X7

Fig. 1. 7-round integral distinguishers of PRESENT

Improved Integral Attacks on PRESENT-80 169

4 Integral Attack on Reduced-Round PRESENT-80

Firstly, in Subsect. 4.1, we give a general model of attacking the block cipher
PRESENT-80. The relation between the bits yn−3

0 , yn−3
16 + yn−3

48 and the key
register Kn is obtained in Subsect. 4.2. Next, we attack 10-round PRESENT-
80 by using the 16-th order integral distinguisher in Subsect. 4.3. Finally, we
attack 12-round PRESENT by using the 60-th order integral distinguisher in
Subsect. 4.4.

4.1 General Model of Integral Attack

Let C = Y n = (yn
63, · · · , yn

0) and Kn = (kn
79, · · · , kn

0) be the ciphertext and the
state of the key register after n-round encryption, respectively.

Since the key schedule is invertible, Y n can be decrypted by r rounds and
then yn−r

0 can be expressed as yn−r
0 = f−r(Y n,Kn), where f is the round

function of PRESETN. In the following, we try to represent yn−r
0 as

yn−r
0 =

m⊕

i=1

y′
ik

′
i,

where y′
i (i = 1, · · · ,m) are polynomials in Y n and k′

i (i = 1, · · · ,m) are poly-
nomials in Kn.

Given the ANF of yn−r
0 as a polynomial in Y n and Kn, by merging the terms

which just involve the same variable kn
j1

· · · kn
js

from Kn, we can represent yn−r
0

as
⊕

y′
ik

n
j1

· · · kn
js

, where y′
i is a polynomial in Y n. Next, by merging the terms

which involve the same variable y′
i, we can express yn−r

0 as
⊕m

i=1 y′
ik

′
i.

Then, the nonlinear relation between yn−r
0 and variables in Kn can be sim-

plified to the following linear relation with respect to variables k′
i:

yn−r
0 =

m⊕

i=1

y′
ik

′
i.

Example 2. Denote S the Sbox used in PRESENT. Let x = (x3, x2, x1, x0) and
y = (y3, y2, y1, y0) be the input and output of S respectively. Then the ANF of
inverse S can be computed and listed as follows.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x3 = y0 + y1 + y2 + y3 + y0y1 + y0y1y2 + y0y2y3,
x2 = 1 + y3 + y0y1 + y0y2 + y0y3 + y1y2 + y1y3 + y0y1y2+ y0y1y3+

y0y2y3,
x1 = y0 + y1 + y3 + y0y2 + y1y3 + y2y3 + y0y1y2 + y0y1y3+ y0y2y3,
x0 = 1 + y0 + y2 + y1y3.

(3)

Let Y n = (yn
63, · · · , yn

0) and Kn = (kn
79, · · · , kn

0). According to Eq. (3), we
have

yn−1
0 = y′

1 + y′
2k

′
2 + y′

3k
′
3 + k′

4,

where y′
1 = yn

0 + yn
32 + yn

16y
n
48, y′

2 = yn
16, y′

3 = yn
48 and k′

2 = kn
48, k

′
3 = kn

16,
k′
4 = kn

16k
n
48 + kn

0 + kn
32.

170 S. Wang et al.

Given an (n − r)-round integral distinguisher Λ, we have
⊕

Λ

Y n−r
0 = 0.

Since yn−r
0 =

⊕m
i=1 y′

ik
′
i, the above equation can be rewritten as

⊕

Λ

(
m⊕

i=1

y′
ik

′
i

)
= 0.

Therefore a linear equation in k′
i’s can be obtained for a given distinguisher.

Repeating the above steps for multiple copies of the distinguishers which only
differ in the constant part, we try to find more than m linear equations in k′

i’s.
Thus, we can retrieve k′

i’s by Gaussian elimination.

4.2 Expressions of Internal States

Next, the expressions of internal states with respect to the secret key Kn will
be given, where the expression of bit yn−2

0 is illustrated in detail.
Let C = Y n = (yn

63, · · · , yn
1 , yn

0), Kn = (kn
79, · · · , kn

1 , kn
0) be the ciphertext

and the state of the key register after n-round encryption, where yi, kj ∈ F2,
0 ≤ i ≤ 63, 0 ≤ j ≤ 80. In order to derive the expression of yn−2

0 , we have to
retrieve the expressions of yn−1

0 , yn−1
16 , yn−1

32 and yn−1
48 . According to Eq. (3), we

have

yn−1
0 = 1 + yn

0 + yn
32 + yn

16y
n
48 + yn

48k
n
48 + yn

16k
n
64 + kn

32k
n
64 + kn

16 + kn
48,

yn−1
16 = 1 + yn

4 + yn
36 + yn

20y
n
52 + yn

20k
n
68 + yn

52k
n
36 + kn

36k
n
68 + kn

20 + kn
52,

yn−1
32 = 1 + yn

8 + yn
40 + yn

24y
n
56 + yn

24k
n
72 + yn

56k
n
40 + kn

40k
n
72 + kn

24 + kn
56,

yn−1
48 = 1 + yn

12 + yn
44 + yn

28y
n
60 + yn

28k
n
76 + yn

60k
n
44 + kn

44k
n
76 + kn

28 + kn
60,

and

yn−2
0 = yn−1

0 + yn−1
32 + yn−1

16 yn−1
48 + yn−1

48 kn−1
32 + yn−1

16 kn−1
64 + kn−1

32 kn−1
64 +

1 + kn−1
16 + kn−1

48 .

Therefore, we have

yn−2
0 = (u4 + u2 + u3u1) + yn

24k
n
72 + yn

56k
n
40 + yn

16k
n
64 + u3t1 + yn

48k
n
32+

yn
52u1k

n
36 + u1t3 + yn

20u1k
n
68 + u3y

n
60k

n
44 + u3y

n
28k

n
76 + yn

20k
n
68t1+

yn
60t3k

n
44 + yn

52k
n
36t1 + yn

28t3k
n
76 + yn

20y
n
28k

n
68k

n
76 + yn

20y
n
60k

n
68k

n
44+

yn
52y

n
60k

n
44k

n
36 + yn

28y
n
52k

n
36k

n
76 + (t4 + t2 + t3t1),

(4)

Improved Integral Attacks on PRESENT-80 171

where ti = kn
48−4ik

n
80−4i + kn

32−4i + kn
64−4i + kn−1

16i , ui = yn−1
32−4iy

n−1
64−4i + yn−1

16−4i +
yn−1
48−4i, i = 1, 2, 3, 4. Thus the expression of yn−2

0 contains 11 variables kn
72, kn

40,
kn
64, kn

32, kn
36, t1, t3,kn

68, kn
44, kn

76, t4 + t2 + t3t1. Then, we introduce new variables
k′

i (i = 1, · · · , 20) and y′
i (i = 1, · · · , 20) to simplify the expression, where k′

1 = 1,
k′
2 = kn

72, k′
3 = kn

40, k′
4 = kn

64, k′
5 = kn

32, k′
6 = kn

36, k′
7 = t1, k′

8 = t3,k′
9 = kn

68,
k′
10 = kn

44, k′
11 = kn

76, k′
12 = kn

68t1, k′
13 = t3k

n
44, k′

14 = kn
36t1, k′

15 = t3k
n
76,

k′
16 = kn

68k
n
76, k′

17 = kn
68k

n
44, k′

18 = kn
44k

n
36, k′

19 = kn
76k

n
36, k′

20 = t4 + t2 + t3t1,
y′
1 = u4 +u2 +u3u1, y′

2 = yn
24, y′

3 = yn
56, y′

4 = yn
16, y′

5 = u3, y′
6 = yn

48, y′
7 = yn

52u1,
y′
8 = u1, y′

9 = yn
20u1, y′

10 = u3y
n
60, y′

11 = u3y
n
28, y′

12 = yn
20, y′

13 = yn
60, y′

14 = yn
52,

y′
15 = yn

28, y′
16 = yn

20y
n
28, y′

17 = yn
20y

n
60, y′

18 = yn
52y

n
60, y′

19 = yn
28y

n
52, y′

20 = 1. Thus
(4) can be rewritten as the following form

yn−2
0 =

20⊕

i=1

y′
ik

′
i.

Furthermore, by the same method we can derive the expressions of yn−2
16 , yn−2

32

and yn−2
48 , and thus yn−3

0 can be derived. Similar as the procedure to compute
yn−3
0 , the expression of yn−3

16 +yn−3
32 can also be retrieved. The details are omitted

here and the expressions of Y n−2
[0,16,32,48] is presented in Appendix A.

Proposition 2. Let C = Y n = (yn
63, · · · , yn

1 , yn
0), Kn = (kn

79, · · · , kn
1 , kn

0) be the
ciphertext and the state of the key register after n-round encryption, respectively.

– yn−3
0 can be expressed as

yn−3
0 =

436⊕

i=1

y′
ik

′
i,

where k′
1 = 1 and k′

i (i = 2, · · · , 436) are polynomials in 42 variables of Kn.
In particular, among all k′

i’s, 32 of them are monomials with degree one, and
each of these 32 k′

i is equal to one bit in Kn
[32,··· ,47,64,··· ,79].

– If Kn
[32,··· ,47,64,··· ,79] are fixed and known bits, then

yn−3
16 + yn−3

48 =
1489⊕

i=1

y′
ik

′
i,

where k′
1 = 1 and k′

i (i = 2, · · · , 1489) are polynomials in Kn
[0,··· ,31,48,··· ,63].

In particular, among all k′
i’s, 32 of them are monomials with degree one, and

each of these 32 k′
i is equal to one bit in Kn

[16,··· ,31,48,··· ,63].

4.3 Integral Attack on 10-round PRESENT-80 Using the (16-th
Order) Integral Distinguisher

In this subsection, we present an integral attack on 10-round PRESENT-80
using the 7-round distinguisher presented in Sect. 3. The key recovery pro-
cess of the attack is composed of three steps: the first step recovers 32 bits

172 S. Wang et al.

of Kn
[32,··· ,47,64,··· ,79] by utilizing the fact that y7

0 is a balanced bit, the second
step recovers Kn

[16,··· ,31,48,··· ,63] by the balancedness of y7
16+y7

48 and the key infor-
mation of Kn

[32,··· ,47,64,··· ,79] recovered in the first step, and the last step recovers
the remaining 16 bits by exhaustive search. The detailed attack procedure is
presented as follows.

1. Prepare a set Λ of 216 plaintexts, whose rightmost 16 bits take all possible
values of F16

2 , while other bits are chosen to be arbitrary constants.
2. For each X0 ∈ Λ, we acquire the corresponding ciphertext C = Y 10 =

E10(X0) and denote the set of all ciphertexts by Λc.
3. According to Propositions 1 and 2, y7

0 can be expressed as y7
0 =

⊕436
i=1 y′

ik
′
i,

where y′
i are polynomials on Y 10 and

⊕
y∈Λc

y7
0 =

⊕
y∈Λc

(⊕436
i=1 y′

ik
′
i

)
=

⊕436
i=1

(⊕
y∈Λc

y′
i

)
k′

i = 0

=
⊕435

i=1

(⊕
y∈Λc

y′
i

)
k′

i = 0.

The last equation is owing to
⊕

y∈Λc
y′
436 =

⊕
y∈Λc

1 = 0. Thus we can obtain
a linear equation of k′

i, i = 2, 3, · · · , 435 (k′
1 is a constant value which equals 1).

4. Choose another 499 different sets Λ and repeat the Step 1–3. We can get 500
linear equations.

5. Solve the linear equations by Gaussian elimination to obtain k′
i, i =

2, 3, · · · , 435, and then Kn
[32,··· ,47,64,··· ,79] can be retrieved.

6. Choose 2000 different sets Λ and repeat Step 1–5 for
⊕

y∈Λc
y7
16 + y7

48 = 0.
Then, we can establish a system of linear equations and Kn

[16,··· ,31,48,··· ,63] can
be recovered.

7. Recover the remaining 16 bits by exhaustive search.

Complexity: According to our attack method, we need 2000 different Λ sets
to mount the attack, thus 216 × 2000 plaintexts should be encrypted. So the
data complexity of our attack is 227. Note that we always construct a slightly
more linear equations than the number of variables such that the rank of the
linear equations is as large as possible. The memory complexity of this attack is
negligible.

Next, we compute the time complexity. Here, “one” time complexity is the
process that a plaintext is encrypted to a ciphertext by the encryption system,
and in the following we will estimate the time complexity of one multiplication.
In each round of PRESENT, 400 multiplications are preformed. That is to say,
the time complexity of one multiplication is about 1

4000 if the attacking system is
10-round PRESENT-80. In the attack procedure, we first choose 227 plaintexts
and get the corresponding ciphertexts. The time complexity is 227 in Step 1–2.
In order to obtain a linear equation by ciphertexts, we need to compute about
29 multiplications. So the time complexity is 500×216+9/(4000) = 222 in Step 4.
Solving the system of linear equations needs about 4343 multiplications, so the

Improved Integral Attacks on PRESENT-80 173

time complexity of this step is 4343/4000 ≈ 215. Similarly, in Step 6, the time
complexity is about 2434−N1(216 × 211 × 211/4000), where N1 is the rank of the
system of linear equations deduced in Step 4.

Then, we estimate the value of the rank N1 by the following theorem.

Theorem 1. [13] Let A = (a(i, j)m×n) be an m × n random binary matrix with
entries satisfying independently from each other, the distribution p (a(i, j) = 0) =
1
2 . Then for any integer r, 0 < r � n, the probability for A to have rank r is

p(rank(A) = r) = Cr
n2−m(n−r)

m∏

i=m−r+1

(1 − 1
2i

).

Therefore, the rank of deduced 500 linear equations takes a value of N1 =
434 with probability 0.999, the overall time complexity of this attack is about
2262434−N1 + 227 ≈ 227.6. Since the complexity is practical, we can attack 10-
round PRESENT experimentally and the details can be found in Appendix B.

Comparatively, [10] proposed a 10-round integral attack on PRESENT-80
with time complexity 235.5.

4.4 Integral Attack on 12-round PRESENT-80 Using the 60-th
Order Integral Distinguisher

A 9-round (60-th order) integral distinguisher consisting of 260 plaintexts has
been found in both [9] and [11], which fixes the rightmost 4 bits and traverses
the leftmost 60 bits. In this section we will attack 12-round PRESENT-80 by
using this 9-round integral distinguisher.

However, we can’t get enough equations in attacking 12-round PRESENT-
80 compared with the attack of 10-round PRESENT-80, since there are at most
24 = 16 different 9-round distinguishers and these can be used to construct at
most 16 linear equations. According to Proposition 2, the ANF of yn−3

0 is related
to 42 bits of Kn. Thus, we need to guess 26 key bits involved in the ANF and then
linearize this reduced ANF by introducing some new variables. And this leads
to a linear equation with about 20 new variables. The overall attack procedure
is presented as follows.

1. Prepare a set Λ of 260 plaintexts, whose leftmost 60 bits take all possible
values of F16

2 , while other bits are chosen to be arbitrary constants.
2. For each X0 ∈ Λ, encrypt X0 by 12-round to get the corresponding ciphertext,

and denote the set of all ciphertexts by Λc.
3. In order to obtain the polynomial of y9

0 , we guess the values of 26 key bits
before linearization and this leads to a linear equation with 20 new variables.
We illustrate in Appendix A the guessed variables and the resulting linear
equation.

4. Since the system of deduced linear equations contains 16 equations with 20
variables, the values of 4 variables of these 20 variables need to be guessed.
In this case, we get 16 linear equations with 16 variables. Denote N the rank

174 S. Wang et al.

of the system of linear equations, then we can get 216−N solutions. Since
these 16 variables and the guessed 4 variables are not independent, we check
each of the 216−N solutions whether it corresponds to the values of guessed 4
variables, and we keep the solution as a candidate if there is no contradiction.

5. Repeat the above two processes 226 times. We can find T (N) candidate keys.
6. We guess 38 appropriately selected bits of K12, and test whether the deduced

K12 is correct. We need to verify the secret key K12 about 238T (N) times.

The time complexity is min{16× (260+9)/4400+264 +238T(N), 280} and the
data complexity is 264, N = 1, · · · , 16, where N is the rank of the system of
linear equations obtained by linearizing the previous 16 equations.

In the following, we estimate the rank of the equations by Theorem 1 and
the value of T (N). Assume that the considered linear equations are randomly
chosen from the set of all possible linear equations, then the probability that
N = 16 is

P(N=16) = (1 − 1
220

)(1 − 1
219

) · · · (1 − 1
25

) ≈ 0.9388,

and the probability that N ≥ 15 is

P(N≥15) ≥ (1 − 1
220

)(1 − 1
219

) · · · (1 − 1
27

)(1 − 1
214

) ≈ 0.9845.

Therefore, the expectation of N is larger than 15 and T (N) = 226 ×216−N ≈
227, which means that the time complexity is about 266.

5 Integral Attack on 11-round PRESENT-80 by Key
Partition

In this section we propose a key partition technique which helps us to attack the
11-round PRESENT-80.

5.1 Differential Property of PRESENT’s Sbox

By inspecting PRESENT’s Sbox, we find that if the difference of two inputs p
and p′ of Sbox equals 0x7 or 0xF , the equation S(p + vk) + S(p′ + vk) = 0x1
always has 4 solutions. Thus, we can carefully choose four pairs of inputs (pi, p

′
i)

such that
4⋃

j=1

{vk ∈ F
4
2 |S(pi + vk) + S(p′

i + vk) = 0x1} = F
4
2.

By a thorough analysis, set P1 = {p1 = 0x0, p′
1 = 0x7}, P2 = {p2 = 0x0, p′

2 =
0xF}, P3 = {p3 = 0x1, p′

3 = 0xE}, P4 = {p4 = 0x1, p′
4 = 0x6}, and we have

{vk ∈ F
4
2 |S(p1 + vk) + S(p′

1 + vk) = 0x1} = {0x0, 0x7, 0x8, 0xF} = I1,

{vk ∈ F
4
2 |S(p2 + vk) + S(p′

2 + vk) = 0x1} = {0x2, 0x4, 0xB, 0xD} = I2,

Improved Integral Attacks on PRESENT-80 175

{vk ∈ F
4
2 |S(p3 + vk) + S(p′

3 + vk) = 0x1} = {0x3, 0x5, 0xA, 0xC} = I3,

{vk ∈ F
4
2 |S(p4 + vk) + S(p′

4 + vk) = 0x1} = {0x1, 0x6, 0x9, 0xE} = I4.

Moreover,
⋃4

i=1 Ii = F
4
2. Thus, all 16 keys are exactly divided into four dis-

joint sets I1, I2, I3 and I4. Table 2 lists the choices of the other four pairs I ′
j and

their corresponding vk.

Table 2. A partition of the key space by Pj , P
′
j

Pj P ′
j vk

{0x0, 0x7} {0x8, 0xF} {0x0, 0x7, 0x8, 0xF}
{0x0, 0xF} {0x6, 0x9} {0x2, 0x4, 0xB, 0xD}
{0x1, 0xE} {0x7, 0x8} {0x3, 0x5, 0xA, 0xC}
{0x1, 0x6} {0x9, 0xE} {0x1, 0x6, 0x9, 0xE}

Suppose that one chooses a pair of inputs (0x0, 0x7) and checks whether the
corresponding output difference is equal to 0x1. If the output difference is equal
to 0x1, vk must belong to I1. Otherwise, the key vk does not belong to I1. By
choosing different input pairs at most four times, we can determine which set of
Ii’s such that vk belongs to.

Suppose the 64-bit round key is (0x0, 0x0, · · · , 0x0, 0x0) and a set consists
of plaintexts

{(v15, v14, · · · , v1, v0) | vj ∈ P1, for 0 ≤ j ≤ 15}. (5)

Therefore, when X0 runs through the set in (5), the corresponding output X1

belongs to A (in (2)) after one round encryption. This together with Proposi-
tion 1 shows that the bits y8

0 and y8
16 + y8

48 have a zero-sum property. This is
illustrated in Fig. 2, where blue lines denote constant bits and bold lines denote
active bits.

⊕

S S S S S S S S S S S S S S S SY 0

X0

X1

Fig. 2. One round propagation for 16-th order distinguisher (Color figure online)

176 S. Wang et al.

Proposition 3. An attack can always construct 232 sets, and each of which
consists of 216 plaintexts. Moreover, there must exist a set such that all the
values within the set traverse at the rightmost 16 bits and take a constant value
on other bits after one round encryption, and thus, the bits y8

0 and y8
16+y8

48 have
a zero-sum property.

Proof. Let α = (α15, · · · , α0) denote a 16-dimensional vector, and each coordi-
nate of α ranges from 1 to 4. For a fixed vector α, we can construct a set

Λα = {(v15, v14, · · · , v1, v0) | vj ∈ Pαj
for 0 ≤ j ≤ 15}.

Moreover, Λα contains 216 elements and we can construct 232 such sets for
different α.

Denote the secret key K = (vk15 , · · · , vk0), where vkj
∈ F

4
2 for 0 ≤ j ≤ 15.

Note that by Table 2, each subkey vkj
of K belongs to a unique set Iuj

where
uj is determined by vkj

and 1 ≤ uj ≤ 4. Let α′ = (u15, · · · , u0), then the set
of elements after the first round encryption of Λα′ belongs to A. This together
with Proposition 1 gives that the bits y8

0 and y8
16+y8

48 have a zero-sum property.

Remark 1. For 0 ≤ j ≤ 15 and i = 1, 2, 3, 4, if we can determine which Ii’s that
vkj

belongs to, 216 Λs sets can be constructed such that y8
0 , y8

16 + y8
48 of each Λs

have a zero-sum property. For example, let vkj
∈ I1, 0 ≤ j ≤ 15 and denote

Λ = {(v15, v14, · · · , v1, v0) | vj ∈ P1 for 0 ≤ j ≤ 15}.

Then y8
0 , y8

16 +y8
48 of Λ have a zero-sum property. According to Table 2, for each

set
Λ′ = {(v15, v14, · · · , v1, v0) | vj ∈ Gj for 0 ≤ j ≤ 15},

y8
0 and y8

16 + y8
48 of Λ′ also have a zero-sum property, where Gj = P1 or Gj = P ′

1

for 0 ≤ j ≤ 15. Note that it is always possible to construct 216 such sets.

Thus, we first need to construct 232 sets and each consists of 216 plaintexts.
According to Proposition 3, there must be one set such that y8

0 and y8
16 + y8

48

have a zero-sum property. Then we need to guess which Ii’s that each Sbox
subkey belongs to, and this needs to guess for 232 times. Moreover, we have
to construct some extra sets for each guess such that the attack can succeed.
For example, the Step 6 of 10-round integral attack presented in Subsect. 4.3
needs 2000 such sets. In this case, the overall attack needs a data complexity of
232 × 216+11+11/4800 = 258. However, the following proposition can be used to
rapidly reduce the data complexity.

Proposition 4. Denote Λ0 a set of 248 plaintexts, where

Λ0 = {(v15, v14, · · · , v1, v0) | vj ∈ A},

and A = {x3, x2, x1, x0 |x1 = x2, x3, x2, x1, x0 ∈ F2}. Then there are 216 sub-
sets of Λ0 such that all the intermediate values within each subset traverse at
the rightmost 16 bits and take a constant value on other bits after one round
encryption. Furthermore, the bits y8

0 and y8
16 + y8

48 have a zero-sum property.

Improved Integral Attacks on PRESENT-80 177

Proof. For any fixed key K = (vk15 , · · · , vk0), if kj belongs to Iuj
, 216 sets can

be constructed as
{(v15, v14, · · · , v1, v0) | vj ∈ Guj

},

where Guj
= Puj

or Guj
= P ′

uj
. Then the bits y8

0 and y8
16 + y8

48 have a zero-sum
property. On the other hand, Pi, P

′
i ⊆ A for all i = 1, · · · , 4. Therefore, the

above constructed sets of plaintexts are subsets of Λ0.

5.2 Integral Attack on 11-round PRESENT-80 Using the 16-th
Order Integral Distinguisher

The 11-round integral attack can be obtained by appending one round before the
10-round integral attack. Denote the secret key K = (vk15 , · · · , vk0). According
to Proposition 4, we need to construct a set Λ0 of plaintexts where

Λ0 = {(v15, v14, · · · , v1, v0) | vj ∈ A}.

Thus the data complexity is 248.
Since the internal state bit y8

0 can be expressed as y8
0 =

⊕436
i=1 y′

ik
′
i, we can

compute for a given plaintext all y′
i’s by its corresponding ciphertext, and the

time complexity of this step is 248. Storing values of y′
i’s needs a memory com-

plexity of 248 × (436/64) ≈ 251.
Next, we have to guess which Ii’s that each Sbox subkey belongs to for

the first round. For each guess, we can construct 29 integral distinguishers by
carefully choosing 29 × 216 = 225 elements from Λ0 and the following steps are
the same as those of 10-round integral attack. Since there are 232 key set guesses,
we have to repeat the above process 232 times for each guess. Therefore the total
computation time complexity is 232 × 226 + 248 ≈ 258.

6 Integral Attack on 13-round PRESENT-80 by Key
Partition

6.1 Partition of the Secret Key Space

In order to attack the 13-round PRESENT-80, we give a new key partition which
divides the key space into four disjoint subsets. Similar as that presented in
Sect. 5.1, we can compute {y | y = S (vk

⊕
pi) , i = 1, · · · , 8} and check whether

the rightmost bit of all y contained in this set is a fixed constant. If this is true,
vk is stored as a candidate key.

For example, given a set of inputs

P = {0x0, 0x2, 0x5, 0x6, 0x9, 0xB, 0xC, 0xF},

when k = 0x0, 0x1, 0x8, and 0x9, it can be verified that

Λ0x0 = {S (0x0 ⊕ pi) | pi ∈ P, i = 1, · · · , 8}
=Λ0x9 = {S (0x9 ⊕ pi) | pi ∈ P, i = 1, · · · , 8}
={(y3, y2, y1, 0) | y1, y2, y3 ∈ F2}

(6)

178 S. Wang et al.

and
Λ0x1 = {S (0x1 ⊕ pi) | pi ∈ P, i = 1, · · · , 8}

=Λ0x8 = {S (0x8 ⊕ pi) | pi ∈ P, i = 1, · · · , 8}
={(y3, y2, y1, 1) | y1, y2, y3 ∈ F2}.

(7)

Thus, the keys 0x0, 0x1, 0x8 and 0x9 should be included in a same set. By
repeating the above steps several times, four sets of plaintexts can be found
whose corresponding key candidate sets form the whole space F

4
2. These sets of

the inputs and the corresponding keys vk are listed in Table 3. In this case, all
possible Sbox subkeys are divided into four disjoint sets and we denote them by

Table 3. A partition of the key space

Qj vk

{0x0, 0x2, 0x5, 0x6, 0x9, 0xB, 0xC, 0xF}, 0x0, 0x1, 0x8, 0x9

{0x0, 0x2, 0x4, 0x7, 0x9, 0xB, 0xD, 0xE}, 0x2, 0x3, 0xA, 0xB

{0x0, 0x3, 0x5, 0x7, 0x9, 0xA, 0xC, 0xE}, 0x4, 0x5, 0xC, 0xD

{0x0, 0x3, 0x4, 0x6, 0x9, 0xA, 0xD, 0xF}, 0x6, 0x7, 0xE, 0xF

I ′
1 = {0x0, 0x1, 0x8, 0x9}, I ′

2 = {0x2, 0x3, 0xA, 0xB}, I ′
3 = {0x4, 0x5, 0xC, 0xD}

and I ′
4 = {0x6, 0x7, 0xE, 0xF}. Other alternatives are listed in AppendixC.

Moreover, denote

Q1 = {0x0, 0x2, 0x5, 0x6, 0x9, 0xB, 0xC, 0xF},
Q2 = {0x0, 0x2, 0x4, 0x7, 0x9, 0xB, 0xD, 0xE},
Q3 = {0x0, 0x3, 0x5, 0x7, 0x9, 0xA, 0xC, 0xE},
Q4 = {0x0, 0x3, 0x4, 0x6, 0x9, 0xA, 0xD, 0xF},

and α = (α3, α2, α1, α0) is a 4-dimensional vector whose coordinates range from
1 to 4. Thus, we can construct a set

Λα = {(v15, · · · , v0) | vi ∈ F
4
2, 4 ≤ i ≤ 15, vi ∈ Qαi

, 0 ≤ i ≤ 3}.

When α varies, 28 such sets can be constructed. Moreover, there must exist an α′

such that all intermediate values obtained by one round encryption of Λα′ take
a constant value on the rightmost four bits. This is illustrated in Fig. 3 where
active bits, guessed bits and constant bits are denoted by black lines, yellow lines
and blue lines, respectively.

Proposition 5. An attacker can always construct 28 sets, and each consists
of 260 plaintexts. Moreover, there must exist a set such that the values of the
rightmost four bits are constants and other bits are traversed after one round
encryption, and thus, the rightmost bit of y10

0 has a zero-sum property.

Improved Integral Attacks on PRESENT-80 179

⊕

S S S S S S S S S S S S S S S SY 0

X0

X1

Fig. 3. One round propagation for 60-th order distinguisher (Color figure online)

6.2 Integral Attack on 13-round PRESENT Using the 60-th Order
Integral Distinguisher

For the attack on the 13-round PRESENT-80, we denote the secret key K =
(vk15 , · · · , vk0) and guess which I ′

i (i = 1, 2, 3, 4) in Table 3 the subkey kj ∈ F
4
2

should belong to. The following steps of the attack procedure are the same as
those in the 12-round attack. Since there are 28 key set guesses, we have to repeat
the attack procedure 28 times for each guess. Thus the overall time complexity
is 274 and data complexity is 264.

7 Conclusions

In this paper, we propose a new approach to estimate the algebraic degree of
PRESENT cipher, and we find a new 7-round integral distinguisher by this
new method. Then, we express 3-round decryption as a Boolean polynomial and
linearize this polynomial by introducing some new variables. Using this linearized
polynomial we can attack 10- and 12-round PRESENT-80 by solving a system
of linear equations with the aid of two 7-round integral distinguishers and one
9-round integral distinguisher. Further, we propose a key partition technique
which divides the 4-bit Sbox subkeys into four disjoint subsets, and this technique
helps us attack one more round based on the 10-and 12-round integral attacks
on PRESENT-80. Therefore, the 11-and 13-round PRESENT-80 are attacked,
and the attack against 13-round PRESENT-80 is the best result with respect to
integral attack for PRESETN-80.

Note that division property is a newly proposed and widely used technique to
search integral distinguishers for block ciphers, however, the new 7-round integral
distinguisher found in our paper can not be retrieved by division property. Since
division property outputs that Y 7

16 and Y 7
48 are undetermined bits, thus Y 7

16+Y 7
48

will also be a undetermined bit according to division property.

Acknowledgements. We are very grateful to the anonymous reviewers. This work
was supported by the National Natural Science Foundation of China (Grant No.
61802119).

180 S. Wang et al.

A Expressions of yn−2
0 , yn−2

16 , yn−2
32 , yn−2

48 , yn−3
0

Let Y n = (yn
63, · · · , yn

1 , yn
0), Kn = (kn

79, · · · , kn
1 , kn

0), where yn
i , bn

j ∈ F2, 0 ≤ i ≤
63, 0 ≤ j ≤ 80.

yn−2
16s = 1 + y′

4+sy
′
12+s + y′

s + y′
8+s + yn

16+sk
n
64+s + y′

4+sy
n
28+sk

n
76+s+

yn
20+sy

′
12+sk

n
68+s + yn

48+sk
n
32+s + t4+sy

′
12+s + yn

52+sy
′
12+sk

n
36+s+

y′
4+st12+s + yn

56+sk
n
40+s + yn

24+sk
n
72+s + yn

60+sy
′
4+sk

n
44+s+

yn
52+sy

n
28+sk

n
36+sk

n
76+s + yn

20+sk
n
68+st12+s + yn

52+sk
n
36+st12+s+

yn
20+sy

n
28+sk

n
68+sk

n
76+s + yn

60+st4+sk
n
44+s + yn

52+sy
n
60+sk

n
36+sk

n
44+s+

yn
28+st4+sk

n
76+s + yn

20+sy
n
60+sk

n
68+sk

n
44+s + t8+s + ts + t4+st12+s,

where s = 0, 1, 2, 3, y′
d = yn

d +yn
d+32+yn

d+16y
n
d+48+1, d = 0, · · · , 15, l = 1, · · · , 15,

and
tl = kn

16+l + kn
48+l + kn

32+lk
n
64+l,

t0 = kn
16 + kn

48 + kn
32k

n
64 + kn

76 + kn
77 + kn

79 + kn
76k

n
78 + kn

77k
n
79+

kn
78k

n
79 + kn

76k
n
77k

n
78 + kn

76k
n
77k

n
79 + kn

76k
n
78k

n
79.

Denote

T = {Kn
[2i+1],K[36,38,68,70], B2j−1 | i = 16, · · · , 23, 32, · · · , 39, j = 1, · · · , 8}.

We guess the value of each element of the set T . Then

yn−3
0 = c0 + c1k

n
32 + c2k

n
34 + c3k

n
40 + c4k

n
42 + c5k

n
44 + c6k

n
46 + c7k

n
64 + c8k

n
70+

c9k
n
72 + c10k

n
74 + c11k

n
76 + c12k

n
78 + c13K4 + c14K6 + c15K12 + c16K14+

c17K6k
n
46 + c18K6k

n
78 + c19K4k

n
44 + c20K4k

n
76,

where each ci, (i = 1, · · · , 20) is expressed by variables in Y n.

B 10-round Integral Attack on PRESETN-80

The experiment is conducted on the following platform: Intel Core i3-2350M @
2.3 GHz, 4.00G RAM, 64-bit Windows 7 system.

The chosen random master key is K = 0x93e41c6e20911b9b36bc, then
the state of the key register after 10 rounds encryption K10 equals to
0x2e74c0f2739072ad8205. The first step of the attack procedure is to recover

Improved Integral Attacks on PRESENT-80 181

32 bits K10
[79,··· ,64,47,··· ,32] of K10. We chosen 500 different Λ sets such that we

can get 500 linear equations, and the rank of these linear equations equals to
434, thus we can uniquely determine the value of K10

[79,··· ,64,47,··· ,32]. The second
step of the attack is to recover K10

[63,··· ,48,31,··· ,16] and we chosen 2000 different Λ
sets to get 2000 linear equations. The rank of these 2000 linear equations equals
to 1473 which is less than the number of variables 1489, however, we can also
uniquely retrieve the value of K10

[63,··· ,48,31,··· ,16] since these variables are fixed in
the solution space.

C Other Result of Partition of the Key Space

See Table 4.

Table 4. A partition of the key space with a set of inputs

Q′ key vk

{0x1, 0x3, 0x4, 0x7, 0x8, 0xA, 0xD, 0xE}, 0x0, 0x1, 0x8, 0x9

{0x1, 0x3, 0x5, 0x6, 0x8, 0xA, 0xC, 0xF}, 0x2, 0x3, 0xA, 0xB

{0x1, 0x2, 0x4, 0x6, 0x8, 0xB, 0xD, 0xF}, 0x4, 0x5, 0xC, 0xD

{0x1, 0x2, 0x5, 0x7, 0x8, 0xB, 0xC, 0xE}, 0x6, 0x7, 0xE, 0xF

References

1. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

2. Boura, C., Canteaut, A.: Another view of the division property. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 654–682. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53018-4 24

3. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). https://doi.
org/10.1007/BFb0052343

4. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45661-9 9

5. Sun, B., Hai, X., Zhang, W., Cheng, L., Yang, Z.: New observation on division
property. Sci. China Inf. Sci. 60(9), 98102 (2017)

6. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47989-6 20

7. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 12

https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-662-53018-4_24
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/978-3-662-47989-6_20
https://doi.org/10.1007/978-3-662-46800-5_12

182 S. Wang et al.

8. Todo, Y., Morii, M.: Bit-based division property and application to Simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5 18

9. Todo, Y., Morii, M.: Compact representation for division property. In: Foresti,
S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 19–35. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-48965-0 2

10. Wu, S., Wang, M.: Integral attacks on reduced-round PRESENT. In: Qing, S.,
Zhou, J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233, pp. 331–345. Springer, Cham
(2013). https://doi.org/10.1007/978-3-319-02726-5 24

11. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 24

12. Z’aba, M.R., Raddum, H., Henricksen, M., Dawson, E.: Bit-pattern based integral
attack. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 363–381. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4 23

13. Zeng, K., Yang, C.H., Rao, T.R.N.: On the linear consistency test (LCT) in crypt-
analysis with applications. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435,
pp. 164–174. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-
0 16

14. Zhang, H., Wu, W.: Structural evaluation for generalized feistel structures
and applications to LBlock and TWINE. In: Biryukov, A., Goyal, V. (eds.)
INDOCRYPT 2015. LNCS, vol. 9462, pp. 218–237. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26617-6 12

15. Zhang, H., Wu, W., Wang, Y.: Integral attack against bit-oriented block ciphers.
In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 102–118. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30840-1 7

https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1007/978-3-319-48965-0_2
https://doi.org/10.1007/978-3-319-02726-5_24
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/978-3-540-71039-4_23
https://doi.org/10.1007/0-387-34805-0_16
https://doi.org/10.1007/0-387-34805-0_16
https://doi.org/10.1007/978-3-319-26617-6_12
https://doi.org/10.1007/978-3-319-30840-1_7

Improved Differential Fault Analysis on
Authenticated Encryption of PAEQ-128

Ruyan Wang1, Xiaohan Meng1, Yang Li2(B), and Jian Wang1

1 College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China

2 Department of Informatics, University of Electro-Communications,
1-5-1 Chofugaota, Chofu, Tokyo, Japan

liyang@uec.ac.jp

Abstract. PAEQ is an AES-based authenticated encryption proposed
by Biryukov and Khovratovich in 2014, which stays in the CAESAR
competition until the second round. In CHES 2016, Dhiman Saha and
Dipanwita Roy Chowdhury first discussed the differential fault analysis
to PAEQ. Their work shows that the nonce used in PAEQ that is usu-
ally considered as a natural DFA countermeasure can be overcome by
carefully constructing the encryption message and injecting two faults.
This work presents a fully optimized DFA attack on PAEQ-128 with
regard to the key recovery process. We apply the information theoretical
analysis and the DFA techniques for AES into the DFA key recovery
on PAEQ-128. As a result, without changing the attack assumption, the
key recovery complexity is reduced from 250 to 224 for PAEQ-128. The
successful key recovery together with its computational complexity have
been verified with the key recovery simulations.

1 Introduction

In 1997, Biham and Shamir introduced a new type of cryptanalytic attack in [2],
as differential fault analysis (DFA). In DFA, attackers intentionally disturb the
cryptographic calculations and collect pairs of fault-free output and faulty output
under the same input. Then, the attackers construct a set of non-linear equations
for a part of cryptographic calculation using the input difference known as the
fault model and the known output difference. These sets of non-linear equations
are used to restrict the key space until the key recovery.

DFA has been applied to almost every secret key cryptosystem. DFA is espe-
cially effective in attacking symmetric-key constructions. Only a few fault injec-
tions are enough to recover the secret key effectively. For example, the DFA attacks
on AES [4,5,7] have been extensively studied for many years. For AES-128, a two
stage algorithm could recover the AES key using only 1 fault injection [11].

This work focuses on the DFA attack on an Parallelizable Authenticated
Encryption based on Quadrupled AES (PAEQ), which is an authenticated encryp-
tion (AE) primitive proposed by Biryukov and Khovratovich [3]. An ongoing

c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 183–199, 2019.
https://doi.org/10.1007/978-3-030-14234-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_10

184 R. Wang et al.

competition for AE named CAESAR (Competition for Authenticated Encryp-
tion: Security, Applicability and Robustness) [1] will identify a portfolio of authen-
ticated cipher that offers advantages over AES-GCM. PAEQ is one of the candi-
dates until the 2nd round competition.

Effectiveness of DFA on AE is an important research topic to be investi-
gated as a part of the security evaluation. Saha and Chowdhury presented the
DFA attack against PAEQ [8] in CHES 2016, which is generalized to relax the
fault injection requirement in [9]. PAEQ is considered to be resistant to DFA
attack since the nonce used in its calculation randomizes each execution. Gen-
erally, nonce is considered as a natural countermeasure against DFA attacks
since attackers cannot repeat the same encryptions for multiple times. Saha and
Chowdhury proposed a practical DFA technique in the presence of nonce. The
proposed technique uses a multiple-block plaintext and a faulty ciphertext to
execute the attack. Saha and Chowdhury proposed a practical DFA technique
in the presence of nonce. They used the fact that all parallel branches are struc-
tured similarly in the parallel mode of operation. These parallel branches provide
opportunities to apply the DFA attack bypassing the nonce countermeasure. In
their work, two random faults are injected to the parallelizable authenticated
encryption of PAEQ. The first fault is injected to create two branches whose
inputs are exactly the same. The second fault is injected to obtain a pair of
fault-free and faulty outputs.

With different key sizes, PAEQ has three versions as PAEQ-64, PAEQ-80
and PAEQ-128. According to [8] and [9], the DFA attacks on these three PAEQ
variations have different key recovery complexities. For PAEQ-64 and PAEQ-80,
the complexity i.e. the key space for exhaustive search is around 216, while for
PAEQ-128, the complexity is estimated to be around 250.

This work reviews the DFA on PAEQ to analyze the relationship between
the key size and DFA key recovery complexities. We result in an improved DFA
key recovery on PAEQ-128 so that the complexity is reduced from 250 to 224.
We are able to run the key recovery simulations to verify the correctness of the
proposed key recovery procedures. This paper explains the details to achieve this
improvement.

– We first apply an information theoretical analysis inspired from [10] to analyze
the existing attack. We find a possibility to improve DFA on PAEQ-128 since
the existing attacks don’t fully exploit the information from the injected fault.

– We propose to add an additional key recovery operation named 2ndInBound.
In 2ndInBound operation, we apply a technique called group-and-combine to
reduce its computational complexity. Theoretically, the time complexity of
the entire DFA key recovery is reduced from 250 to 224 for PAEQ-128.

– We conduct the DFA attack simulations and successfully verify the theoreti-
cally estimated results.

Improved Differential Fault Analysis on Authenticated Encryption 185

The rest of this paper is organized as follows: In Sect. 2, we briefly explain
the relations between AES and PAEQ. In Sect. 3, we describe the existing DFA
attacks on AES and PAEQ. In Sect. 4, our improvement of DFA on PAEQ-128
is described in details. Section 5 shows the simulation results of our DFA attack.
Section 6 concludes this paper.

2 AES and PAEQ

This section briefly reviews AES and PAEQ. Note that PAEQ uses AES round
operations in the internal permutation.

2.1 AES

Advanced Encryption Standard (AES) [6] is structured as a substitution-
permutation network. AES state is 128-bit that is usually presented as a 4 × 4
array of bytes. AES encryption consists of 4 operations as SubBytes (SB),
ShiftRows (SR), MixColumns (MC) and AddRoundKey (AK). SB substitute each
byte into a new value. SR shifts the byte positions. MC operates on the columns
of the AES state and AK performs XOR operation between round key and AES
state.

2.2 PAEQ

PAEQ was proposed by Biryukov and Khovratovich in ISC 2014 [3]. PAEQ is
designed based on Quadrupled AES and follows a generic mode of operation
named PPAE (Parallelizable Permutation-based Authentication Encryption).

The Structure of PPAE. The structure and internal permutation of PAEQ is
summarized as follows. PAEQ in PPAE mode consists of the encryption part and
the authentication part as shown in Fig. 1. The top half is the encryption part
while the bottom half is the authentication process that generates a tag. The
core part of the encryption is the internal permutation, which is called AESQ.

In the encryption process, the plaintext is divided into several blocks and
encrypted independently. The plaintext blocks are XORed with the outputs of
corresponding branches after AESQ. Thus, the ciphertext can be obtained in
the form of several blocks. Since the output of AESQ is truncated for generating
the tag, the DFA attackers have to deal with unknown bytes in the processed
information.

AESQ. The internal permutation AESQ plays an important role in the encryp-
tion of PAEQ. Internal state of the PAEQ is defined as a 4-tuple of sub-
states, each substate is same with an AES state. A state is denoted by s, while
each substate is represented by sm, where m denotes the substate index and
m ∈ {1, 2, 3, 4}. The elements of sm are denoted by smi,j . A column of sm is
denoted as sm∗,j while a row is denoted as smi,∗.

186 R. Wang et al.

Fig. 1. PPAE mode of operation [8]

For the input of each substate, the first part is a 16-bit domain separator. The
second part is the counter value, whose size differs for different key lengths and
nonce lengths. The third part is the nonce and the last part is the master key.
Different variants of PAEQ have different key length and nonce length, which
are denoted as k and r, respectively.

AESQ is considered to be 20 AES round functions and 10 shuffle oper-
ations, which is shown in Fig. 2. After every two round functions, there is a
shuffle operation that shifts different columns in four substates as shown in
Table 1. In this paper, the rth round function is denoted as Rr. Each round
function consists of four operations as SubBytes, ShiftRows, MixColumns and
AddRoundConstants. Some bytes of the output of AESQ are truncated.

Table 1. Shuffle operation [8]

s1 s2

Before s1∗,0 s1∗,1 s1∗,2 s1∗,3 s2∗,0 s2∗,1 s2∗,2 s2∗,3
After s1∗,3 s4∗,3 s3∗,2 s2∗,2 s1∗,1 s4∗,1 s3∗,0 s2∗,0

s3 s4

Before s3∗,0 s3∗,1 s3∗,2 s3∗,3 s4∗,0 s4∗,1 s4∗,2 s4∗,3
After s1∗,2 s4∗,2 s3∗,3 s2∗,3 s1∗,0 s4∗,0 s3∗,1 s2∗,1

Improved Differential Fault Analysis on Authenticated Encryption 187

Fig. 2. The internal permutation of PAEQ

3 DFA on PAEQ

In this section, we review the DFA on PAEQ that was proposed in [8].
Usually, DFA attacks require a pair of faulty-free ciphertext and faulty cipher-

text with repeated plaintext. When referring to nonce-based encryption such as
PAEQ, since the nonce is different in every execution, it actually provides a
built-in countermeasure against DFA. To overcome the nonce barrier for DFA
attack, the proposal in [8] only requires 1 PAEQ encryption.

The idea is to take advantage of the similarities between different branches
of PAEQ encryption. The attackers need to inject two faults. The first fault is
to make sure that two branches share the same input. The second fault is to
introduce a difference into the calculation, which is similar to the fault injected
in the existing DFA attacks. This approach successfully overcomes the nonce
barrier for DFA against PAEQ.

Specifically, the DFA attack procedure can be summarized as follows:

1. Inject two faults and find a branch pair (i, j) where their inputs to AESQ are
the same.

2. Use the differential of fault-free and faulty outputs to restrict the space of
intermediate values, in which all diagonal guesses of the second fault are used
to restrict the state vector. The calculation can be further divided into the
InBound phase and the OutBound phase.

3. Verify every candidate of the state vector and retrieve the master key. This
step can be considered as an exhaustive search over all the remaining key
candidates.

The following section explains the entire DFA attack by breaking it down into
4 phases as fault injection, InBound phase, OutBound phase and key recovery.

188 R. Wang et al.

3.1 Fault Injection

For DFA on PAEQ, two injected faults are called equalizer and
differentiator respectively.

The purpose of equalizer is to create two branches that have identical
inputs. In [8], the attackers need to prepare a message that has 255 blocks.
Therefore, there are 255 parallel branches. The only different part among par-
allel branches is the counter value that ranges from 1 to 255. The first fault,
equalizer, is injected in the last byte of the counter value of any branch j.
After the fault injection, there are two branches share the same input after the
fault injection.

This fault model is generalized in [9], in which equalizer can be injected in
the last t-byte of the counter value under the premise that the plaintext is in
size of 28t-block. We refer to [9] for more details.

The second fault, differentiator, is injected in any byte of the input of
R17 of AESQ in the same branch of equalizer. Differentiator enables the
exploration of the difference of internal states and the characteristics of fault
diffusion to restrict candidates of internal state.

After two fault injections, there are two branches that share the same inputs,
one of which is faulty-free branch i and the other is faulty branch j. The faulty
branch j can be determined with the information of fault-free branch i and the
output of branch i. At this moment, a pair (i, j) can be uniquely identified.

When the second fault is injected at the input of R17, the fault diffusion
process is shown in Fig. 3. The single-byte fault is propagated to every bytes
of AESQ state after 3 rounds of calculation. Different from DFA on AES,
some bytes of the AESQ output are not available to the attackers. Hereafter,
the attackers use InBound phase and OutBound phase to exploit the difference
byte relations and restrict the number of candidates of internal state.

3.2 InBound Phase

In the InBound phase, the attackers first use a method named FINDQ to determine
the branch pair (i, j) so that branches i and j have the same input. Then, the
differential state between these two branches is calculated reversely to SB19.
The unknown bytes in the differential state will be solved with byte relations
after R19. After that, all the possible byte inter-relations of differential state
before R19 are guessed. Noted that there are four possible byte inter-relations
according to four different diagonal positions corresponding to different faulty
byte position. Several differential equations are solved with the results from both
directions.

The procedures of InBound phase is illustrated in Fig. 4. The InBound phase
generates four column vectors. Each column vector corresponds to one substate.

Improved Differential Fault Analysis on Authenticated Encryption 189

3.3 OutBound Phase

The column vectors obtained from InBound phase and the output of fault-free
branch are used as the input to this phase. Each time for OutBound phase, one
substate of the output of fault-free branch and one column from the column
vector corresponding to that substate are chosen as the input, for example, one
substate candidate for s1 and one column candidate corresponding to s1. On one
hand, the substate is inverted to R19 after MC19. On the other hand, the column
corresponding to that substate is restored to the substate to R19 after SR19.
Afterwards, linear equations need to be solved based on MixColumns operation
for these two substates. One substate vector is obtained after OutBound phase
for each time. Four substate vectors are obtained by repeating OutBound phase
for four times.

Fig. 3. Diffusion of an internal-difference in the first substate in 4 rounds of AESQ [8]

190 R. Wang et al.

Fig. 4. The InBound phase [8]

The specific procedure of OutBound phase is shown in Fig. 5. After the
OutBound phase, candidate states after R20 are generated with the cross product
of four substate vectors. That is to say, the final candidates include all combina-
tions of (s1 candidates) || (s2 candidates) || (s3 candidates) || (s4 candidates).

3.4 Key Recovery

With the candidates of the states after R20, the master key can be retrieved
by an exhaustive search for all candidates. One can invert the candidate to the
input of AESQ and compare with the domain separator, counter and nonce. If
the comparison is consistent, the retrieved key is the correct master key.

4 Improved DFA Attack on PAEQ-128

According to [8] and [9], the key space for the final key recovery for 3 variates
of PAEQ are shown in Table 2.

The inconsistency among the attack results of 3 PAEQ variates already
implies possible improvement. Note that for AES-128 under 1-byte random fault
model, after exploiting the information provided by the differential, the key space
can be restricted to 28. The structure of PAEQ is very close to that of AES, while
the attack result is largely different.

The improvement of DFA on PAEQ-128 is inspired by the information the-
oretical analysis of DFA attacks [10]. As described in [10], the optimal DFA
attacks should be able to exploit fully the leaked information to retrieve the
secret key with a practical level of complexity. We’d like to analyze the limits
of the DFA attack from an information theoretical approach to find the possi-
ble room of improvement. After that, we apply DFA techniques to achieve the
improvement within a practical level of complexity.

Improved Differential Fault Analysis on Authenticated Encryption 191

Fig. 5. The OutBound phase [8]

Table 2. The attack complexities for three PAEQ variates in [8] and [9]

PAEQ PAEQ-64 PAEQ-80 PAEQ-128

Key space 216.14 216.14 250(estd.)

4.1 Information Theoretical Analysis

We take the information theoretical approach to check whether or not the DFA
attack can be improved theoretically for PAEQ-128. In [10], the authors intro-
duce a method to estimate the leaked information for the fault model. Then,
the estimated leaked information can be used to evaluate whether an attack has
taken advantage of all the information provided by the fault.

We apply their concept to roughly estimate the attack efficiency for DFA on
PAEQ-128. Basically, we assume that the key space after fully exploiting the
injected fault should similar to the entropy of injected fault and public data. For
the described attack on PAEQ-128, the entropy of the fault is roughly 14-bit
since the value (8-bit) and the position of the injected fault (6-bit) is unknown.

192 R. Wang et al.

However, some of the information of the fault injection position can be recovered
during the key recovery. As mentioned in [8], the fault injection position can be
summarized into 4 types. Thus, the entropy for the fault can be estimated to be
around 10-bit, i.e. 8 + 2 = 10.

For PAEQ-128, the partial output is also unknown to the attackers. However,
most of the unknown output bytes can be calculated during the key recovery
according to the difference information at R20 input. Eventually, The unknown
bits of the public data is mainly the 2 bytes (16-bit) in the first substate. This
estimation also fits previous key recovery result.

As a summary, a very rough estimation of the entropy for the injected fault
and public data is 26-bit. In another word, after exploiting the available infor-
mation, the key space for exhaustive key search should be around 226. However,
the previous DFA key recovery of PAEQ-128 stopped at 250 for the exhaustive
key search. The information theoretical analysis implies that the existing attack
does not fully exploit the leaked information and the complexity of DFA attack
of PAEQ-128 has a possibility to be improved.

4.2 2nd InBound Phase

In the previous attack, the OutBound phase exploits the candidates from InBound
phase to solve unknown bytes and to obtain candidate substates. When four
column vectors have been achieved from InBound phase, the OutBound phase
takes these candidates into calculations in order to get specific substates of the
fault-free branch. In other words, the OutBound phase exploits the candidates
from InBound phase to solve those unknown bytes in a substate. After OutBound
phase, we add a new key recovery phase named 2ndInBound phase to further
restrict the key space after InBound and OutBound phases.

2ndInBound phase uses the proportion of the non-zero difference column to
further restrict the candidate states. For four substate vectors, each candidate
substate from them is inverted to the beginning of R18 and the difference relation
is checked.

4.3 Group and Combine

In the previous DFA attack of PAEQ, it is suggested to generate state vectors
with the cross-product of four substate vectors. For the 2ndInBound phase, if
we follow this straightforward method and check every possible key candidate,
the process takes 250 calculations. In this section, we propose a technique called
group-and-combine to reduce the key recovery complexity.

It can be observed that the combination of four candidate substates from
four substate vectors does not always make sense. Due to the shuffle operation,
there exists a connection between the candidates of s1, s2, s3 and s4. As a result,
the candidate states generated in the way of cross-product include some invalid
ones. The group-and-combine operation is to eliminate invalid candidate states,
which further reduces the amount of candidate states.

Improved Differential Fault Analysis on Authenticated Encryption 193

In the 2ndInBound phase, we achieve four substate vectors and each substate
corresponds to one non-zero difference byte retrieved. As for the group part,
four substate vectors are divided into (256 × 4) groups, each substate vector has
256 groups. The non-zero byte value retrieved corresponds to the group index.
For example, all the candidate substates for the difference byte 0x01 belong to
group-01 and all the candidate substates for the difference byte 0x05 belong to
group-05. The numbers of candidate substates of these groups differ from each
other and some groups may be empty.

For the combine step, we utilize the correct proportion to combine (256 × 4)
groups of candidate substates. In s1 before R17, there are four possible diagonals
for the injected fault and each diagonal has four positions, each position corre-
sponds to one kind of difference byte-relation after R17. For example, if the fault
position is the twelfth byte (the 1st row and the 4th column) of s1, which belongs
to diagonal 3 then the non-zero difference column of s1 is the fourth column and
the proportion is {2, 1, 1, 3} after R17. The difference relations of the other three
positions of the same diagonal are {3, 2, 1, 1} in the first column; {1, 3, 2, 1} in the
second column; {1, 1, 3, 2} in the third column. We traverse each possible difference
byte value from 0x01 to 0xff and select four candidates respectively from four sub-
state vectors according to the proportion to combine the matched candidates. For
difference value “0x02” and proportion {2, 1, 1, 3}, we choose one substate from
group-06 of s1 vector, one substate from group-04 of s2 vector, one substate from
group-02 of s3 vector and one substate from group-02 of s4 vector to combine. The
operation for other three relations is similar to it. The operation guarantees that
four substates of each candidate state after combination are matched, and the final
candidate states do not include invalid ones.

Fig. 6. The 2ndInBound phase

194 R. Wang et al.

When the combination is performed, we multiply the numbers of candidate
substates from four substate vectors. Then the complexity of exhaustive search
can be calculated by accumulating the number of valid candidate substates.

The complete procedures of 2ndInBound phase is shown in Fig. 6.

Example of Improved Key Recovery. Here a detailed example is given for
better understanding how our techniques work.

Assume that one single-byte fault is injected in the twelfth byte of s1 before
R17. After the InBound phase, four column vectors are obtained, and each
column vector corresponds to one substate. After the OutBound phase, four
substate vectors are obtained that are independent of each other, the outputs
from InBound phase are used in this phase.

Then, the 2ndInBound phase comes. First, for each candidate substate from
the substate vector of s1, it is inverted to the beginning of R20 to get the cor-
responding substate for faulty branch. Second, the substates for two branches
are inverted to the beginning of R19. Third, the candidate substate for fault-free
branch and that for faulty branch are retrieved to the first column in s1 and
s′1 after R18. At last, two columns for two branches are retrieved respectively
to the 0th, 5th, 10th, 15th byte in s1 and s′1 before R18, and XOR operation is
performed on the four bytes for both branches. In four difference bytes, only the
difference of two 15th bytes is non-zero, so this candidate substate for fault-free
branch is grouped relying on the value of the non-zero difference byte.

Here is where the group-and-combine operation works. Assume that the
non-zero difference value is 0x03, then this candidate substate belongs to group-
03. The above process will be performed for all candidate substates from four
substate vectors. When all the candidate substates have been grouped, it is time
to combine four substate vectors. We start traversing difference value from value
1. Since the correct proportion of the difference column is {2, 1, 1, 3}, we need to
pick out all candidates in group-03 from the first substate vector, all candidates
in group-02 from the second substate vector, all candidates in group-01 from the
third substate vector and all candidates in group-01 from the fourth substate
vector. All combinations of these four groups are matched since they satisfy
the difference byte relation. The combination operation is not finished until all
possible difference values from 1 to 255 have been traversed. In the end, all
candidate states are generated whose substates always match each other.

5 Complete Attack and Simulations

The complete attack mainly contains three parts: InBound phase, OutBound
phase and 2ndInBound phase. The experiments in [8] consist of the first two
parts, the third part is an additional step we proposed. The output of InBound
phase are the candidates for four columns of four substates at the beginning of
R18. The output of OutBound phase are the candidates for four substates for
fault-free branch after R20. The output of 2ndInBound phase are candidates for
states that are composed by four substates for fault-free branch after R20.

Improved Differential Fault Analysis on Authenticated Encryption 195

Before the InBound phase, a process called FINDQ is used to find the pair (i, j)
after two fault injections. Then, the diagonal position of differentiator fault is
guessed and four diagonal positions are considered. For each guess of a diagonal,
the InBound, OutBound and 2ndInBound phases are performed successively. Each
phase needs the results from the previous phase. After guessing all possible
positions, the final candidate states are obtained, which are combinations of
four substates. Figure 7 shows the procedure of all phases in our attack and
Algorithm 1 shows the complete attack.

Next the complexity analysis and simulation experiments are introduced.

5.1 Complexity Analysis

Attack in [8]. The complexity analysis of the attack proposed in [8] will be
reviewed. As claimed in [8], the process of AESQ−1 is the most expensive oper-
ation in their complete attack. Therefore the times of performing AESQ−1,
which equals to the size of state vector, is considered to be the complexity of the
attack. Saha and Chowdhury provided the classification of substates for fault-
free branch after R20 based on the number of unknown bytes, which is shown
in Fig. 8 in [8]. In a Type-1 substate, there is no unknown byte. There are three
completely known columns both in a Type-2 substate and a Type-3 substate.
A Type-3 substate has one unknown column while a Type-2 substate only has
two unknown bytes. A Type-4 substate has one completely unknown columns
and two unknown bytes. The complexity analysis is related to these four types
of substates. They focused on Type-3 substates and described other substates in
terms of Type-3 substates, which can be seen in Table 2 in that paper. In that
table, the size of Type-3 is denoted as q and their experiments prove that q is

Fig. 7. The procedure of all phases

196 R. Wang et al.

Algorithm 1. The complete attack
Input: P : one known plaintext with 255 complete blocks; C : one known ciphertext

with 255 complete blocks; i : index of faulty-branch;
Output: K : the Master Key;

1: (i, j) ← FINDQ(P,C, i);
2: for each d ← diagonal do

3: Four Column Vectors
INBOUND←−−−−−−− (Pi ⊕ Ci, Pj ⊕ Cj , d);

4: Four Substate Vectors
OUTBOUND←−−−−−−−− (Pj ⊕ Cj ,Column Vectors);

5: State Vector
2ndInBound←−−−−−−−− Four Substate Vectors;

6: end for
7: for all e ∈ State Vector do
8: (Dx‖jx‖Nx‖K) ← AESQ−1(f(e));
9: if (Dx‖jx‖Nx) = (D0‖j‖N) then

10: return K
11: end if
12: end for

around 28. The theoretical complexity for PAEQ-64, PAEQ-80 and PAEQ-128 in
[8] are 216, 216 and 250. The theoretical complexity for PAEQ-64 and PAEQ-80
were confirmed by the experimental results while that for PAEQ-128 was only
estimated.

Our Attack. Considering our improvement, the process of AESQ−1 is still
the most expensive operation in the attack. Therefore, we also use the size of
state vectors to estimate the complexity. According to their classification of
substates, s1, s2 and s3 are Type-3 substates while s4 belongs to Type-4. After
the group-and-combine operation, the expected amount of s1 candidates, s2

candidates and s3 candidates are 1, 1 and 1 respectively. Since s4 belongs to
Type-4, the amount of candidates is 216 times than Type-3 substates, which is
216. There are 255 (28) possible values for the difference byte, so the size of state
vectors is 1 × 1 × 1 × 216 × 28, which is 224. Thus, the complexity of our attack
is estimated to be 224.

5.2 Experiments

The experiments are carried out on Intel CoreTM i5-6500 processor running at
3.4 GHz with 4GB RAM.

In total, we performed the simulations of the complete attack for 30 times.
The plaintext, the master key and nonce are randomly generated for each time.
In the experiments, four kinds of diagonal, four positions of one diagonal, the
amount of candidate substates and the final number of candidate states are
recorded. As an example, we show the results of one experiment in Table 3.
The first column represents the diagonal that the fault belongs to we assumed.
The values below si mean the substate vector size of si after R20. |k| represents
the key search space in the attack, which is the amount of final candidates.

Improved Differential Fault Analysis on Authenticated Encryption 197

Figure 8 shows the number of Type-3 substates obtained by experiments,
Fig. 9 shows the number of Type-4 substates and the amount of final candidate
states is given in Fig. 10. As shown in Fig. 8, the amount of Type-3 substates
is confirmed to be around 28, which is consistent with that in the previous
attack for the Type-3 substates. In Fig. 9, the experimental results show that
the amount of Type-4 substates is around 224, which is also consistent with the
value in [8]. By simulations, the experimental complexity of our attack is turned
out to be around 224, which is greatly improved compared with 250. Figure 10
displays the distribution of all intervals in detail.

Fig. 8. Number of Type-3 substates after R20

Fig. 9. Number of Type-4 substates after R20

198 R. Wang et al.

Fig. 10. Number of key candidates after 2ndInBound

Table 3. Experimental results after the complete attack

Diagonal s1 s2 s3 s4 |k|
0 27.9 27.9 27.9 224.7 0

1 28.5 28.6 28.6 223.9 0

2 27.9 27.9 27.9 223.9 0

3 28.6 27.9 27.9 224.5 223.5

The positions of the fault injected in experiments are chosen randomly, thus
it can be observed from the table that some candidate states are generated by
the hypotheses of diagonal 3, some are generated by the hypotheses of diagonal
0, 1 or 2. Only the correct hypotheses can generate key candidates, so each time
only one diagonal yields candidates while the other diagonals generate none as
they are not consistent with the fault injection. From the experimental results,
it is clear that our improvement reduces the size of key space and computational
complexity.

6 Conclusions

In this paper, an improved DFA attack on PAEQ-128 is introduced. In [8],
the computational complexity of DFA attack on PAEQ-128 is estimated as 250

and the simulations of DFA key recovery. This paper applies the information
theoretical analysis and finds a space to improve the DFA attack on PAEQ-128
using two techniques. The first technique further exploits the information from
the fault induced by adding the 2ndInBound phase. The second replaces the
cross-product of four substate vectors with the group-and-combine operation,
which enables an efficient reduction of the size of key space. Using 30 simulations,

Improved Differential Fault Analysis on Authenticated Encryption 199

we verified that the complexity of the DFA attack can be reduced from 250 to
around 224, in which the experimental results are consistent with the theoretical
analysis.

Acknowledgement. This work was supported by National Natural Science Founda-
tion of China 61602239, Jiangsu Province Natural Science Foundation BK20160808
and JSPS KAKENHI Grant Number JP18H06460.

References

1. Caesar: Competition for authenticated encryption: security, applicability, and
robustness. http://competitions.cr.yp.to/caesar.html

2. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052259

3. Biryukov, A., Khovratovich, D.: PAEQ: parallelizable permutation-based authen-
ticated encryption. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.)
ISC 2014. LNCS, vol. 8783, pp. 72–89. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-13257-0 5

4. Dusart, P., Letourneux, G., Vivolo, O.: Differential fault analysis on A.E.S. In:
Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 293–306.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45203-4 23

5. Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES
2004. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005). https://doi.org/10.
1007/11506447 4

6. National Institute of Standards and Technology: Advanced Encryption Standard.
NIST FIPS PUB 197 (2001)

7. Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN struc-
tures, with application to the AES and Khazad. In: Walter, C.D., Koç, Ç.K., Paar,
C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45238-6 7

8. Saha, D., Chowdhury, D.R.: EnCounter: on breaking the nonce barrier in differ-
ential fault analysis with a case-study on PAEQ. In: Gierlichs, B., Poschmann, A.
(eds.) CHES 2016. LNCS, vol. 9813. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53140-2 28

9. Saha, D., Chowdhury, D.R.: Internal differential fault analysis of parallelizable
ciphers in the counter-mode. J. Crypt. Eng. 1–15 (2017)

10. Sakiyama, K., Li, Y., Iwamoto, M., Ohta, K.: Information-theoretic approach to
optimal differential fault analysis. IEEE Trans. Inf. Forensics Secur. 7(1), 109–120
(2012)

11. Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced
encryption standard using a single fault. Community Ment. Health J. 49(6), 658–
667 (2011)

http://competitions.cr.yp.to/caesar.html
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/978-3-319-13257-0_5
https://doi.org/10.1007/978-3-319-13257-0_5
https://doi.org/10.1007/978-3-540-45203-4_23
https://doi.org/10.1007/11506447_4
https://doi.org/10.1007/11506447_4
https://doi.org/10.1007/978-3-540-45238-6_7
https://doi.org/10.1007/978-3-662-53140-2_28
https://doi.org/10.1007/978-3-662-53140-2_28

Improved Indifferentiability Security
Bound for the Prefix-Free

Merkle-Damg̊ard Hash Function

Kamel Ammour1(B) and Lei Wang1,2

1 School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

kammour@sjtu.edu.cn, wanglei@cs.sjtu.edu.cn
2 Westone Cryptologic Research Center, Beijing 100070, China

Abstract. The indifferentiability framework has been tailored to eval-
uate the security of cryptographic hash functions such that an iter-
ative hash function must be indifferentiable from a random oracle in
order to behave as a random oracle in cryptosystems. It was found that
popular (strengthened) Merkle-Damg̊ard transformation cannot satisfy
the notion of indifferentiability from a random oracle due to a length-
extension attack. Thus, a series of Merkle-Damg̊ard variants have been
proposed. This paper mainly revisits one of them, Prefix-Free Merkle-
Damg̊ard (PF-MDHF), which is to use a prefix-free message padding.
Our main contribution is to provide a tighter security bound for prefix-
free Merkle-Damg̊ard with respect to the indifferentiability from a ran-
dom oracle. More precisely, our bound is O((�2q + �q2)/2n), while in
previous papers the bound is O(�2q2/2n), where � is the maximum block
length of queries, and q is the maximum number of queries.

Keywords: Merkle-Damg̊ard · Random Oracle · Indifferentiability ·
Prefix free

1 Introduction

Many practical cryptographic hash function such as SHA-2 [2] is based on the
(strengthened) Merkle-Damg̊ard hash mode [13,25]. This mode has been widely
used in cryptography since 1990’s. It consists of two parts: (a) a basic cryp-
tographic primitive F that has a finite domain and range and (b) an iterative
mode of operation HF that uses F in an iterative manner in order to handle mes-
sages string of arbitrary length. This hash mode preserves the collision resistance
property of F ; i.e., if F is collision resistant then HF is also collision resistant
too. However, the limitations of the Merkle-Damg̊ard hash functions have been
revealed by several attacks, such that Joux’s multicollisions attack [18], Kelsey-
Shneier second preimage attack [20], length extension attack [12] and the herding
attack [19]. It is important to note that all these attacks focus on the iteration
mode of the hash function and assume the cryptographic primitive is ideal.
c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 200–219, 2019.
https://doi.org/10.1007/978-3-030-14234-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_11

Improved Indifferentiability Security Bound 201

Based on these observations, the cryptographic community has made sev-
eral improvements to the aforementioned hash mode in order to strengthen
it and to yield more secure variants. The first improvement proposed on the
literature consists on adding a post processing to the Merkle-Damg̊ard hash
mode to avoid length extension attacks. Examples include Prefix-free encoding
Merkle-Damg̊ard hash function (PF-MDHF), Chop-MD hash function, NMAC
and HMAC [12], HAIFA [8], MDP [17], EMD [5]. Afterwards, the output size
of F was increased in order to avoid Joux’s multicollisions attacks (Sponge [6],
Grostl [16], Parazoa [3]). Another variants make a multiple call to F with the
same message block [22].

Another line of research suggests to develop new security framework that may
include, in addition to known attacks, attacks not yet known [27]. Indifferentia-
bility, introduced by Maurer et al. [24] in 2004, was one among these security
frameworks. In 2005, Coron et al. [12] applied indifferentiability framework on
the hash mode of operation. Roughly speaking, indifferentiability measures the
similarity degree between a hash function and a Random Oracle (RO) under the
assumption that the underlying compression function is ideal (like ideal cipher,
ideal permutation or RO). Indeed, the indifferentiability of a hash function from
RO provides resistance to several attacks such that (Multi-) collision, (second)
preimage and length extension attacks, etc., as long as the complexity does not
exceed the indifferentiability bound. Accordingly, the indifferentiability notion
has become a requirement to recognize a hash mode as a standard [26,28]. How-
ever, it is worth noting that indifferentiability has certain limitations as shown
in [15,29], without the effect of diminishing the guarantee that offers against
several generic attacks.

Relevant work. To enhance the security of Merkle-Damg̊ard hash function
against the length extension attack, Coron et al. [12] have proposed to process the
message M by a prefix free padding before calling the Merkle-Damg̊ard mode.
Prefix free encoding Merkle-Damg̊ard hash function (PF-MDHF) is the name
of this construction. PF-MDHF is indifferentiable from RO when the underly-
ing cryptographic primitive F is viewed as a Fix-Input-Length-Random Oracle

(FIL-RO). They provide an upper bound of indifferentiability which is O(
�2q2

2n
)

where � is the maximum length of the message M queried by the adversary, q is
the number of queries made by the adversary and n is the hash output size. Fol-
lowing that, several works have investigated the indifferentiability of PF-MDHF.
Chang et al. have presented a formal proof of indifferentiability for PF-MDHF

[9] and improved its bound to O(
�2q2

2n−1
). However Luo et al. [23] pointed out that

the given indifferentiability bound (of PF-MDHF) in [9] should be revised since
a problem in the maximum advantage of the distinguisher has been highlighted.

In [11], Chang et al. proposed a new bound of indifferentiability which is

O(
σ(σ + 1)

2n+1
) where σ is the total block length of q queries and q is up to 2n/2.

202 K. Ammour and L. Wang

So far in the literature, we observe all indifferentiability proofs is based on
the assumption that all the internal values of Merkle-Damg̊ard are distinct [12]
in order to ensure that every call to the underlying primitive F is new. This
strong assumption guarantees the adversary defeat.

Our Contribution. Our contributions are two folds. Firstly, we propose a fix
to the problem raised by Luo et al. in [23] regarding the computation of the
distinguisher’s advantage in the indifferentiability of the PF-MDHF from RO
proposed by Chang et al. in [9]. Indeed, Chang et al. [9] defined the distin-
guisher’s advantage bounded by 2 × max(Pr(BE1, BE2)) where Pr(BE1) (resp.
Pr(BE2)) is the occurrence probability of bad events when the distinguisher
interacts with the system (RO,S) (reps. (PF-MDHF, F)). Along with mathe-
matical simplifications, we arrive at an advantage of indifferentaibility bounded
by 3 × max(Pr(BE1), Pr(BE2)) (refer to Sect. 3 for more details).

Secondly, we improve the indifferentiability security bound of PF-MDHF to

O(
�2q + �q2

2n
) which is the main contribution of our work. In addition, we argue

that our novel proof technique can be of independent interest since it can poten-
tially be used to improve the security analyses of HMAC, NMAC and Chop-MD
[12]. We used a well known game-playing argument to show the indifferentia-
bility of PF-MDHF and improve the indifferentiability security bound. Recall
that the use of a random oracle in PF-MDHF allows the adversary to use only
forward queries. The main problem in such type of analysis is to construct an
efficient simulator able to withstand adversary.

The computation of the indifferentiability security bound in our approach is
different from what has been done so far. In fact, we think that the assumption
about distinction of all intermediate values of a hash function (which are no more
than successive query-response to the FIL-RO) is too generous and includes
more cases than the adversary can effectively exploit to differentiate between
the two system’s (RO,S) and (PF-MDHF, FIL-RO). A new set (i.e., three) of
carefully chosen bad events is defined, which include all the cases that adversary
can exploit to differentiate the two systems. This approach allowed us to clearly
define the adversay’s view which is restricted only to the answers provided by
FIL-RO and the output values of PF-MDHF.

Our indifferentiability security bound guarantees the absence of generic
attacks on PF-MDHF (using a n-bit FIL-RO) with work less than 2n/2. When
the digest-size is n bits, the hash mode is resistant to all generic attacks up to
(approximately) 2n/2 computations of the underlying fixed input length Random
Oracle (FIL-RO). This bound is the best known for PF-MDHF.

Organization. The rest of the paper is organized as follows: In Sect. 2, we intro-
duce some notations and definitions used in. In Sect. 3, we propose a correction
to the adversary’s advantage to differentiate PF-MDHF from RO as defined in
[9] which allowed us to re-write the proposed theorem. Section 4 describes our
main theorem and the improved indifferentiability bound of PF-MDHF. The
security games for PF-MDHF and some observations on the indifferentiability
bound is provided in Sect. 5. Finally, we conclude in Sect. 6.

Improved Indifferentiability Security Bound 203

2 Preliminaries

We let n denote the output bit length of the PF-MDHF. For concatenation of
fixed length strings a and b, we use a||b, or just ab if the meaning is clear. We
write AB ⇒ b to denote an algorithm A with oracle access to B outputting b.
In pseudo-code descriptions, left arrow (←) is used to denote the assignment
operation.

Random Oracle. Define a Fixed-Input-Length Random Oracle (FIL-RO) f
such that f : {0, 1}m �→ {0, 1}n chooses the value of f(x) randomly from {0, 1}n

for each x ∈ {0, 1}m. More precisely, suppose a subset of the input-output
relations of f is known: f(x1) = y1, f(x2) = y2, . . . , f(xt) = yt. Denote it by
f(X) = Y for the simplicity, where X = x1, x2, . . . , xt, and Y = y1, y2, . . . ,t. For

any x ∈ {0, 1}m/X, Pr[f(x) = y|f(X) = Y] =
1
2n

for any y ∈ {0, 1}n. In this
paper, a random oracle RO is referred to as the one with arbitrary-length inputs,
whose domain is usually denoted as {0, 1}∗. Let F is the set of all functions f
with the same domain and range. The compression function CF can be equally
regarded as a function f uniformly and randomly selected from F .

Padding. a padding rule Pad is any injective function such that Pad{0, 1}∗ �→
({0, 1}b)+. Pad is said prefix free padding if for any M1 �= M2, Pad(M1) is not
prefix of Pad(M2).

Merkle-Damg̊ard Hash Functions. Merkle-Damg̊ard (MD) mode [13] used
to be most popular domain extension algorithm for hash functions, e.g. SHA
[1], RIPEMD [14], which use a padding function Pad in order to make the
message be a multiple blocks long [21], then splits the padded messages into
blocks m1||m2||...||m�, and finally hashes one block by one block sequentially.
MDCF (M) = CF(...CF(CF(IV,m1),m2)...,m�) where IV is a public constant
usually called Initial Value.

PF-MDHF. Define Prefix Free Merkle-Damg̊ard hash function, PF-MDHF,
as PFMDCF

Pad(M) = MDCF (Pad(M)) where Pad is a prefix free padding. For
simplicity we will use PF-MDHF(M) instead of PFMDCF

Pad(M). (See Fig. 1).

Algorithm 1. Function PF-MDHF(M)
let y0 is a Fixed Initial Value IV .
Pad(M) = (m1, m2,m�)
for i=1 to �
yi ← CF(yi−1, mi)
return y�

204 K. Ammour and L. Wang

M

P
a
d

0||m1 0||m2 ··· 1||m�

CF
h0 = IV

CF
h1

· ·· CF
h�−1 h

Fig. 1. Prefix free encoding Merkle-Damg̊ard hash function.

Indifferentiability. As defined in [12,24], the indifferentiability is that
an algorithm H with access to an ideal primitive CF is said to be
(tA, tS , q, ε)−indifferentiable from an ideal primitive RO if there is a simula-
tor S such that for any distinguisher A it holds that:

Adv(A) = |Pr[AH,CF = 1] − Pr[ARO,S = 1]| ≤ ε,

where A runs in time at most tA and makes at most q queries. S has oracle
access to RO and runs in time at most tS . See Fig. 2.

Suppose that an algorithm H based on another ideal primitive CF (e.g. a
FIL-RO) is indifferentiable from an ideal primitive RO. Then any cryptographic
system C based on RO is as secure as C based on HCF (i.e., RO replaces HCF

in C) [24]. Refer to [24] for more details.
In this paper, CF is defined as FIL-RO, H is the PF-MDHF. RO has the

same domain and range with H. The role of the simulator S is to simulate CF .
A interacts with (O1,O2), where O1 can be H or RO and O2 can be CF or S.
The goal of the distinguisher is to distinguish after queries to (O1,O2) which
scenario it is.

H CF RO S

A

Fig. 2. Indifferentiability framework of MD hash function

Improved Indifferentiability Security Bound 205

View. Denote a distinguisher or an attacker as A who has an access to two
oracles O1 and O2 and makes successive queries. We assume that all queries
are distinct and it makes almost qi queries to Oi. Let rj defines the jth query-
response relation made by A to Oi, that is, if the jth query made by A to O1

with a long message Mj , and got hj as the response then rj = (IV, Pad(Mj), hj),
else if the jth query made by A to O2 with a message block mj and xj , and
got yj as the response then rj = (xj ,mj , yj). From the first i query-response
relations r1, r2, ..., ri, A derives more relations using the following rules:

1. If (x1,M1, x2), (x2,M2, x3) ∈ R2, A derives (x1,M1||M2, x3);
2. If (x1,M1||M2, x3), (x1,M1, x2) ∈ R2 then A derives (x2,M2, x3).

Denote all the relations that A knows, namely the knowledge or the view V of A,
after the first i queries-responses as Ri. Note Ri consists of both previous query-
responses r1, r2, ..., ri and the derived relations. Denote IV and all the hash
chaining values in Ri as Hi := {a : (a, b, c) ∈ Ri} ∪ {c : (a, b, c) ∈ Ri} ∪ {IV }.
Following the folklore, we separate the queries into trivial and non-trivial queries.

For a query qi made to O1, where qi is an arbitrary long message, it is
called trivial if there is a relation (a, b, c) ∈ Ri−1 such that (a, b) is equal to
(IV, Pad(qi)), and non-trivial otherwise. For a query qi made to O2, where qi is
a fixed-length pair (x, y), it is called trivial if there is a relation (a, b, c) ∈ Ri−1

such that (a, b) is equal to (x, y), and non-trivial otherwise.

PF-MDHF Indifferentiability. Coron et al. proved that PF-MDHF is (tA,
tS , q, ε)-indifferentiable from RO, in the random oracle model for the com-

pression function, for any tA, with tS = O(�q2) and ε =
�2q2

2n
where � is the

maximum length of a query made by A. In [9], Chang et al. improved indiffer-
entiable security bound for PF-MDHF. More precisely, PF-MDHF is (tA, tS , q,

ε)-indifferentiable from RO, for any tA, with tS = O(�q) and ε =
�2q2

2n−1
where �

is the maximum length of a query made by A.
To study the indifferentiability security of the PF-MDHF, Coron et al. follow

the usual game playing techniques [4,30]. It consists in the use of several games
starting from (H, CF) (or (RO,S)) in order to arrive to (RO,S) (or (H, CF)
respectively) with as little as possible difference between games. There is two
crucial steps in the game playing techniques: (a) construction of an efficient
simulator S able to emulate the compression function CF on the one hand and
to remain consistent with RO’s answers on the other hand. In Sect. 5, we describe
our simulator S. (b) determining equivalences between successive pairs of games.
We begin by providing a formal definition of this notion. A game is a probabilistic
algorithm that takes an adversary-generated query as input and return an output
after updating the current state.

Let (xi, yi) denote the i-th query and response pair from the game G. The
view of the game G after j queries (with respect to the adversary A), is the
sequence (x1, y1), . . . , (xj , yj). Denote the views of the games G1 and G2 after

206 K. Ammour and L. Wang

i queries by V i
1 and V i

2 . The games G1 and G2 are said to be equivalent (with
respect to the adversary A) if and only if V i

1 ˜V i
2 for all i ≥ 0. Equivalence

between the games G1 and G2 is denoted by G1 ≡ G2.

3 Revising Indifferentiability Security Bound
of PF-MDHF Given in [9]

Following the problem highlighted by Luo et al. [23] on the A’s advantage indif-
ferentiability of PF-MDHF provided by Chang et al.’s [9], we revise the indiffer-
entiability security bound.

Before starting, we need to define an event denoted BadEvent.

Definition of BadEvent. We say that a BadEvent (BE) occurs for the i-th
query-response relation ri = (a, b, c), where a is IV in the case that qi is made
to O1, if qi is non-trivial and c ∈ Ri−1 ∪ {a} ∪ {IV }. Thus, there are BE1 and
BE2 when A interacts with (H,CF) and (RO,S) respectively.

AdvA =| Pr[AH,CF = 1] − Pr[ARO,S = 1] |
=| Pr[AH,CF = 1|BE1] × Pr[BE1] + Pr[AH,CF = 1|¬BE1] × Pr[¬BE1]

− Pr[ARO,S = 1|BE2] × Pr[BE2] − Pr[ARO,S = 1|¬BE2] × Pr[¬BE2] |

=| Pr[AH,CF = 1|BE1] × Pr[BE1] + Pr[AH,CF = 1|¬BE1] × Pr[¬BE1]

− Pr[ARO,S = 1|BE2] × Pr[BE2] − Pr[ARO,S = 1|¬BE2] × Pr[¬BE2]

+ Pr[ARO,S = 1|BE2] × Pr[BE1] − Pr[ARO,S = 1|BE2] × Pr[BE1] |

≤ Pr[BE1]× | Pr[AH,CF = 1|BE1] − Pr[ARO,S = 1|BE2] |
+ Pr[ARO,S = 1|BE2]× | Pr[BE1] − Pr[BE2] |
+ Pr[AH,CF = 1|¬BE1] × Pr[¬BE1] − Pr[ARO,S = 1|¬BE2] × Pr[¬BE2].

As BadEvent is defined carefully such that (H, CF) and (RO,S) are iden-
tically distributed conditioned on the past view of A and BE does not occur
then

Pr[AH,CF = 1|¬BE1] = Pr[ARO,S = 1|¬BE2]

So,

AdvA ⇐⇒ Pr[BE1]× | Pr[AH,CF = 1|BE1] − Pr[ARO,S = 1|BE2] |
+ Pr[ARO,S = 1|BE2]× | Pr[BE1] − Pr[BE2] |
+ Pr[AH,CF = 1|¬BE1]× | Pr[¬BE1] − Pr[¬BE2] |

Improved Indifferentiability Security Bound 207

As | Pr[BE1] − Pr[BE2] |=| Pr[¬BE1] − Pr[¬BE2] |
then

AdvA ⇐⇒ Pr[BE1]× | Pr[AH,CF = 1|BE1] − Pr[ARO,S = 1|BE2] |
+ | Pr[BE1] − Pr[BE2] | × | Pr[ARO,S = 1|BE2]

+ Pr[AH,CF = 1|¬BE1]

If Pr[BE1], Pr[BE2] ≤ max{Pr[BE1], P r[BE2]}, where max is some negli-
gible function then

AdvA ≤ max × | Pr[AH,CF = 1|BE1] − Pr[ARO,S = 1|BE2] |
+ max × | Pr[ARO,S = 1|BE2] + Pr[AH,CF = 1|¬BE1] |

As Pr[AH,CF = 1|BE1] ≤ 1 and

| Pr[ARO,S = 1|BE2] + Pr[AH,CF = 1|¬BE1] |≤ 2 then

AdvA ≤ 3max{BE1, BE2}

Thus the advantage of A is bounded by the probability of the maximum BE
holds.

From Lemma 2 of [9] where Pr[BE1] = O(
�q2

2n
) and Pr[BE2] = O(

q2

2n
), we

propose this theorem.

Theorem 1. In the random oracle model, PF-MDHF is (tA, tS , q, ε)-
indifferentiable from a random oracle, for any tA with tS = �O(q) and ε =
O(�2q2)/(2n) where � is the maximum length of queries.

4 Main Theorem

All the indifferentiability analysis proof for PF-MDHF [7,9,10,12] was done
under the assumption that all intermediate hash values h1

1, h
1
2, . . . h

q
l−1, h

q
l are

distinct except common prefix. Bad event (BE) is defined if any collision founded.
Indeed, indifferentiability is measured by computing the advantage of A in dis-
tinguishing the two games (RO,S) and (PF-MDHF, CF). Typically, it is based
on the BE probability computation (collision of one output of S with any pre-
vious value in the A’s view). This condition ensures randomness such that for
every call of CF (respect. to S) we have a new output. All the known proof use
this condition to avoid any BE problem or collision and guarantee that A can
never succeed in distinguishing between the system (H, CF) and (RO,S).

Nevertheless, this calculation method, leads us to ask whether the obtained
bound is tight.

Indeed, we think that this condition is too large and does not reflect the
reality. It permits to think that if we have a collision between the internal values,
A can distinguish between H and RO which is not really true.

208 K. Ammour and L. Wang

In fact, we studied the indistinguishability between (PF-MDHF, CF) and
(RO,S) and we observed two cases.

First case: a concrete distinguisher can be found if we have a collision hi
s = hj

s

in the internal values of H(Mi) with H(Mj) of two different messages Mi and Mj

(of the same length �). To illustrate our remark we give an example. Let Mi=
mi

1m2m3, Mj= mj
1m2m3 two different messages of the same suffix (m2m3).

Let hi
1 = hj

1. As Mi and Mj share the same suffix (m2m3), it is obvious that
H(Mi) = H(Mj) while the RO(Mi) = RO(Mj) with probability 1/2n. Then, A
can distinguish between H and RO and wins the game.

Second case: we did not find any concrete distinguisher if the output of two
messages Mi and Mj (of different length even if they share the same suffix) are
different even if we have a collision hi

s = hj
t in the internal values of H(Mi) with

H(Mj) for some s �= t.
On the basis of this observation, we propose to restrict the conditions that

make the two systems (RO,S) and (H, CF) indistinguishable to:

– In the same message M i, all the intermediate hash values {IV, hi
1, h

i
2, . . . , h

i
�}

are distinct.
– At the same position i from the end of all messages M j where 1 ≤ j ≤ q, all

the intermediate hash values h1
i , h

2
i , . . . , h

q
i of different messages are distinct.

– There is no collision between a S’s response for an A’s queries with an internal
hash values of PF-MDHF.

Given these conditions and using game playing technique we propose the
following theorem whose detailed proof is presented in the next section:

Theorem 2. The PF-MDHF based on FIL-RO is indifferentiable from a ran-

dom oracle RO for any tA and tS ≤ q(q + 1)
2

with ε ≤ �2q + �q2

2n
where q is the

A’s total queries and � is the maximum length of message queried to PF-MDHF
or RO.

Execution Time of S. As defined in S (see Table 8: Game G7(RO,S)), its
answers for a new query with a random value until it found the possibility of
combination of the current query with the previous entries in the table TA in
order to be consistent with the queries to RO. Since the number of entries in

TA is at most q, the running time of the simulator is ts ≤ q(q + 1)
2n

.

5 Proof of Theorem 2

In this section, we give a formal indifferentiability proof of PF-MDHF based on
a hybrid argument starting with (PF-MDHF, CF) going to (RO, S) through a
sequence of mutually indifferentiable hybrid games. The pseudo-code for all the
games are given in Appendix A.

Improved Indifferentiability Security Bound 209

PF-MDHF, PFMD1, PFMD2, PFMD3 and RO are mapping from
{0, 1}∗ �→ {0, 1}n. CF and CF i, for 1 ≤ i ≤ 5, are FIL-RO from {0, 1}n →
{0, 1}n. S is mapping from {0, 1}n → {0, 1}n.

Game(PF-MDHF, CF). This game shows the communication of A with PF-
MDHF and CF .

G1(PFMD1, CF1). We denote by IH a subroutine that emulates the iteration
process of the PF-MDHF. This game exactly emulates PF-MDHF and CF . It
is identical to Game (PF-MDHF, CF) except that FIL-RO CF is chosen in a
“lazy” manner. Namely, it keeps the history of all queries to CF in table TCF .
Initially, the table is empty. Upon receiving a query from A to CF1, this later
first checks in its table TCF for an entry corresponding to the query and if found,
it returns that entry to A consistently. Otherwise it returns a random value for
the query. In addition, CF1 is used by a subroutine, denoted IH, that emulates
the iteration process of PF-MDHF to answer the queries of A to PF-MDHF.
Now, we can see that G1 is a syntactic representation of G(PF-MDHF, CF).
Thus, p1 = p0.

G2(PFMD1, CF2). This game is identical to G1 except we differentiate queries
received by CF2 following the senders (A or IH). The A (resp. IH)’s queries and
its response is saved in table TA (resp. TIH). However, it has no effect on the
random selection of the values returned to A. Thus, p2 = p1.

G3(PFMD1, CF3). In this game, some restrictions are applied on the values
returned to A. For a query to CF3, the returned values should be restricted such
that they never satisfy certain specific failure conditions. If the response of CF3

satisfies one of these conditions, then it fails explicitly instead of sending this
response.

The failure conditions describe some dependencies that could arise among
the CF3’s responses which could be exploited by the distinguisher. CF3 provides
a response yj

i ∈ {0, 1}n similar to the original CF2, for a query (yj
i−1,m

j
i), and

it checks for the following conditions:

– Bad Event1 BE1: There are a non trivial query-response (yj
i−1,m

j
i , y

j
i) such

that yj
i is an intermediate hash value of a valid padding message Pad(M).

– Bad Event2 BE2: In the same valid padding message Pad(M), it exists two
internal values yj

i and yj
i′ such that yj

i = yj
i′ .

– Bad Event3 BE3: For two valid padding messages Pad(M1) and Pad(M2) of
length � and �′ respectively, there exists a value i such that there is a collision
between two internal values y�−i and y′

�′−i.

CF3 explicitly fails if the returned response yj
i matches one of the previous

BadEvent.
Let us briefly describe how A can exploit each of these conditions to its

advantage. If BadEvent1 holds the distinguisher could possibly force a sequence
query to CF3 of a valid padding Pad(M) where it does not know the first message
block (for example) to be different with PFMD1(M). Hence CF3 cannot be
consistent with PFMD1.

210 K. Ammour and L. Wang

If BadEvent2 holds then the distinguisher could possibly force two different
PFMD1 query sequences to end in the same block, where one input is the suffix
of the other one in the case of IV collision or the two inputs share a common
suffix in the other cases. Hence the simulator can be consistent with at most one
of these two PFMD1 inputs.

If Bad Event3 holds, then the distinguisher can again force two query
sequences to end in the same block. However, in this case the two PFMD1

inputs have a common suffix and the simulator can be consistent with at most
one of these inputs.

It is obvious that G3 and G2 are identical until a bad event is set to true in G3.
This is denoted by BEi ← true for i=1, 2 or 3. Hence, the maximum advantage
of A in distinguishing G3 from G2 is at most the maximum probability of the
occurrence of bad events. Thus:

Pr[AG3 ⇒ 1] − Pr[AG2 ⇒ 1] ≤ Pr[AG3 ⇒ (BE1 ← true ∪ BE2 ← true ∪
BE3 ← true)]. The probability that the bad events (explained below) BE1, BE2

or BE3 are set to true in G3 is denoted as PrBE1
G3

, PrBE2
G3

and PrBE3
G3

respectively.
Thus:

Pr[AG3 ⇒ (BE1 ← true ∪ BE2 ← true ∪ BE3 ← true)] ≤ PrBE1
G3

+ PrBE2
G3

+
PrBE3

G3
.

Now we bound each of the bad events as follows:

Pr(BEG3
1). In this case, if we take a query-response (yj

i−1,m
j
i , y

j
i) of CF3, we

identify two possibilities where yj
i is an intermediate hash value of a valid

Pad(M).

a. (yj
i−1,m

j
i , y

j
i) is not in a chained query.

By not a chained query, we mean a query where yj
i−1 is not in the view of A

before this query. The probability of this query-response collide with the internal
values of hash function PFMD1 is equal to the probability of yj

i−1 or yj
i is in

the internal values H1 of PFMD1.

Pr[yj
i−1 ∈ H1] =

�qPFMD1

2n
qCF . Where qCF is the number of queries that

a distinguisher A sent to CF3 and qPFMD1 is the number of queries that a
distinguisher A sent to PFMD1 of length � blocks.

It is same for the probability of yj
i .

Pr[(yj
i−1 ∈ H or yj

i ∈ H]= 2
�qCF
2n

qPFMD1 .

b. (yj
i−1,m

j
i , y

j
i) is a chained query.

By a chained query, we mean that A knows (IV,mj
1, y

j
1), (yj

1,m
j
2, y

j
2), ..., (yj

i−2,

mj
i−1, y

j
i−1).

The probability of yj
i is in the internal values H1 of PFMD1 but

mj
1||mj

2|| . . . ||mj
i−1||mj

i is not prefix of any queried Pad(M) to PFMD1 is equal to

Pr[yj
i−1 ∈ H1 or yj

i ∈ H1]= 2
�qCF
2n

qPFMD1

Improved Indifferentiability Security Bound 211

Then, Pr[BE1] = 4
�qCF
2n

qPFMD1

Pr[BE1] < 4
�q2

2n
with q = qCF + qPFMD1 .

Pr(BEG3
2). In this case, there are two intermediate hash values hi and hj in the

same Pad(M) such that hi = hj .
Pr[BEG3

2] = 1 - Pr[�BEG3
2)] where Pr[�BEG3

2)] is the probability where
all the intermediate chaining values of a message Pad(M) in PFMD1 are dis-
tinct. The probability to distinct each intermediate value inside a message M is
(2n − (i − 1))

2n
. If M has length �, so

Pr(�BE2) =
∏�

i=1

(2n − (i − 1))
2n

.

Pr(BE2) = 1 − Pr(�BE2) = 1 −
∏�

i=1

(2n − (i − 1))
2n

≤ q
∑�

i=1

(i − 1)
2n

=
(�)(�)

2n

In total, there are at most qPFMD1 queries, so the Pr(BE2) =
�2

2n
qPFMD1 .

Hence, Pr(BE2) < O(�2q/2n)

Pr(BEG3
3). We restrict ourselves to the fact that if we take two distinct messages

M and M ′ of different length � and �′ respectively (with �′ < �), it should have
distinct chaining value located at the same distance to their final outputs. If
we make qPFMD1 queries of messages to PFMD1, so we have q2PFMD1

possible
pairs of messages of length (�, �′). The probability to have collision between the

intermediate hash values in each couple of message M and M ′ is
� + �′

2n
. As we

have q2PFMD1
possible pairs, the probability to have collision in the intermediate

hash values of all the couples is
� + �′

2n
q2PFMD1

.

Pr[BE3] =
q2PFMD1

(� + �′)
2n

<
q2PFMD1

(� + �)
2n

Pr[BE3] < 2
q2�

2n

Thus

|Pr[AG3 ⇒ 1] − Pr[AG2 ⇒ 1]| ≤ Pr BE1
G3

+ Pr BE2
G3

+ Pr BE3
G3

≤ O(
q2� + q�2

2n
)

212 K. Ammour and L. Wang

In addition, CF3 uses two important subroutines to detect Bad Event in its
interaction with A and IH.

Get Int Val. The function get Int Val(yj
i−1,m

j
i) for a query (yj

i−1,m
j
i) returns

all the intermediates hash values generated from IV to yj
i−1using message

blocks mj
1,m

j
2, . . . m

j
i−1. For example, the function get Int Val(y3,m3) returns

the set {IV, y1, y2, y3 } such that CF3(IV,m1) = y1, CF3(y1,m2) = y2 and
CF3(y2,m3) = y3.

Get Val Same Pos. The function Get Val Same Pos(yj
i−1) for an internal hash

value (yj
i−1) returns the set {yk

�−i+1} of all intermediates hash values of the other
messages padding k such that k�= j which are at the same position from the end
of the message padding (� − i + 1).

G4(PFMD2, CF4). In this Game, IH does not directly communicate with CF3

but we change IH such that the FIL-ROs CF3 is simulated in IH. It is clear
that G3 are identical to G4 until a bad event BE1 is set in G3 or CF4 returns
a value to A in G4 such that it matches BE1 of G3. These two events are
identical in terms of their probability of occurrence because the distribution of
the responses of CF3 and CF4 is identical. Let G4 denote the event that A
outputs 1 in game G4, so that Pr[G4] = Pr[APFMD2,CF4 ⇒ 1]. Then we can
deduce that |Pr[G4] − Pr[G3]| ≤ Pr[BE1 in game 3] + Pr[BE1 should have
detected in game 4]

|Pr[G4] − Pr[G3]| ≤ O(
�2q

2n
)

G5(PFMD2, CF5). G5 is similar to G4 except for a new query to CF5

which searches for a message that connects IV to yj
i−1 of the current query

(yj
i−1,m

j
i , y

j
i). If it finds such path, CF5 queries IH1 with message blocks found

in that path concatenated to the current message. The difference between G4

and G5 arises only when BE2 or BE3 is set to true in G5 for a query from
CF5 to IH1. Let G5 denote the event that A outputs 1 in game G5, so that
Pr[G5] = Pr[APFMD2,CF5 ⇒ 1]. Then we can deduce that

|Pr[G5] − Pr[G4]| ≤ Pr[BE2 + BE3 in game 5]

|Pr[G5] − Pr[G4]| ≤ O(
�2q

2n
)

In addition to the above functions used before, we define a new function
(Get Msg) used by CF5.

The function Get-Msg(yj
i) for a chaining value yi

j ∈ {0, 1}n returns a
sequence of message blocks that connects the chaining value yj

i to IV. In the
case of the non existence of a path the function returns false. If the function
finds several paths (that can be tracked from IV to yj

i which requires a collision
in the output of CF5) Get-Msg(yj

i) returns Error.

G6(PFMD3, CF5). In game G6, IH2 replaces IH1 and returns a random
value for any new query. In G5, IH1(IV, Pad(M)) is the PF-MDHF iteration.
The returned values from PFMD in G6 and G5 are determined by the IH

Improved Indifferentiability Security Bound 213

subroutine. For a new query (IV,Pad(M)) to PFMD, both games return ran-
dom values. In G5, PFMD answers such queries by invoking CF3 � times (since
Pad(M) consists of � message blocks mi (for i = 1, . . . , �) and checking for BE2

and BE3 where as in G6 the value is selected randomly from {0, 1}n. Hence, in
G6 we avoid BE2 and BE3.

Let G6 denote the event that A outputs 1 in game G6, so that Pr[G6] =
Pr[APFMD3,CF5 ⇒ 1]. Then we can deduce that, |Pr[G6] − Pr[G5]| ≤ Pr[BE2 +
BE3 in game 5]

|Pr[G6] − Pr[G5]| ≤ O(
�2q

2n
)

G7(RO,S). G7 is the ‘ideal’ game that simulates RO and S. In this game, we
modify PFMD3 such that it does not send its query to IH2 any more. PFMD4

responds to any new query randomly. However, A does not observe any changes
to the returned values. So the advantage of A in G7 and G6 is identical and p7
= p6. In this game, PFMD4 is exactly the same as RO, and CF5 is precisely
equivalent to S, our proposed simulator.

By combining Games 0 to 7 we complete the proof. Recall that G0 emulates
(PFMD, CF) and G7 (RO,S). We conclude that:

Advindif
RO,S(A) = |Pr[APFMD,CF] − Pr[ARO,S]|

≤ O(
�2q + �q2

2n
) �

6 Conclusion

This paper revisits previous indifferentiability security bound of prefix free
Merkle-Damg̊ard hash function. All previous works have fixed the security bound

to
�2q2

2n
where � is the maximum length of a query and q is the number of queries

made by a distinguisher. Our indifferentiability security bound is
�2q + �q2

2n
. To

our knowledge, this is the best bound known so far.

Acknowledgments. Kamel Ammour and Lei Wang are supported by National
Natural Science Foundation of China (61602302, 61472250, 61672347), Natural Sci-
ence Foundation of Shanghai (16ZR1416400), Shanghai Excellent Academic Leader
Funds (16XD1401300), 13th five-year National Development Fund of Cryptography
(MMJJ20170114).

A Formal description of the games

A formal description of the games used in the indifferentiability analysis in Sect. 5
is given in the following (Tables 1, 2, 3, 4, 5, 6, 7, 8).

214 K. Ammour and L. Wang

Table 1. Game(PFMD,CF)

On query (IV, M j) to PFMD On query (yj
i−1, M

j
i) to CF

1. Pad(M j)← (mj
1, m

j
2, . . . , m

j
�) // Pad is

a prefix free padding.
1. yj

i ← CF(yj
i−1, M

j
i)

2. yj
0 = IV 2. Return (yj

�)
3. for i=1; i ≤ �

yj
i ← CF(yj

i−1, m
j
i)

4. Return (yj
�)

Table 2. Game G1(PFMD1,CF1)

On query (IV, M j) to PFMD1 On query (yj
i−1, m

j
i) to CF1

1.(mj
1, m

j
2, . . . , m

j
�) ← Pad(M j) // Pad is

a prefix free padding.
1. yj

i ← {0, 1}n

2. Return IH(IV,mj
1||mj

2|| . . . ||mj
�) 2.if (yj

i−1, m
j
i) ∈ TCF

On query to IH(IV, mj
1||mj

2|| . . . ||mj
�) yj

i ← TCF
1. yj

0 = IV Return (yj
i)

2. for i=1; i ≤ � 3. CF(yj
i−1, m

j
i) ← yj

i

yj
i ← CF1(yj

i−1, m
j
i) 4. TCF = TCF ∪ {yi−1, mi, yi}

3. Return (yj
�) 5. return(yj

i)

Table 3. Game G2(PFMD1,CF2)

On query (IV, M j) to PFMD1 On query (yj
i−1, m

j
i , k) to CF2

1.(mj
1, m

j
2, . . . , m

j
�) ← Pad(M j) // Pad is

a prefix free padding.
//k =0 : A queries CF2 and k �= 0: IH
queries CF2 with a message of � length.

2. Return IH(IV,mj
1||mj

2|| . . . ||mj
�) 1. if (k=0) then

yj
i ← {0, 1}n

if (yj
i−1, m

j
i) ∈ TA

yj
i ← TA[yj

i−1, m
j
i]

Return (yj
i).

TA = TA ∪ {yj
i−1, m

j
i , y

j
i }

Return (yj
i)

2. if (k �= 0) then
yj

i ← {0, 1}n

On query to IH(IV, mj
1||mj

2|| . . . ||mj
�) if (yj

i−1, m
j
i) ∈ TIH

1. yj
0 = IV yj

i ← TIH [yj
i−1, m

j
i]

2. for i=1; i ≤ � Return (yj
i).

yj
i ← CF2(yj

i−1, m
j
i) TIH = TIH ∪ {yj

i−1, m
j
i , y

j
i }

3. Return (yj
�) Return (yj

i)

Improved Indifferentiability Security Bound 215

Table 4. Game G3(PFMD1,CF3)

On query (IV, M j) to PFMD1 On query (yj
i−1, m

j
i , k) to CF3

1.(mj
1, m

j
2, . . . , m

j
�) ← Pad(M j) // Pad is

a prefix free padding.
//k =0 : A queries CF2 and k �= 0: IH
queries CF3 with a message of � length.

2. Return IH(IV,mj
1||mj

2|| . . . ||mj
�) 1. if (k=0) then

a. yj
i ← {0, 1}n

b. if (yj
i−1, m

j
i) ∈ TA

yj
i ← TA[yj

i−1, m
j
i]

Return (yj
i).

c. TA = TA ∪ {yj
i−1, m

j
i , y

j
i }

d. if (yj
i−1, m

j
i , y

j
i) ∈ TIH

BE1 ← True

yj
i ← {0, 1}n\TIH

Return (yj
i)

2. if (k �= 0) then
a. yj

i ← {0, 1}n

b. if (yj
i−1, m

j
i) ∈ TIH

yj
i ← TIH [yj

i−1, m
j
i]

Return (yj
i).

c. TIH = TIH ∪ {yj
i−1, m

j
i , y

j
i }

d. ligne= getIntV al(yj
i−1, m

j
i)

On query to IH(IV, mj
1||mj

2|| . . . ||mj
�) e. col =getV alSamPos(yj

i−1).
1. yj

0 = IV f. if(yj
i) ∈ ligne ∨ cologne

2. for i=1; i ≤ � BE2 ← true ∨ BE3 ← true

yj
i ← CF3(yj

i−1, m
j
i) yj

i ← {0, 1}n\ligne ∪ col

3. Return (yj
�) Return (yj

i)

Table 5. Game G4(PFMD2, CF4)

On query (IV, M j) to PFMD1 On query (yj
i−1, m

j
i) to CF3

1.(mj
1, m

j
2, . . . , m

j
�) ← Pad(M j) // Pad is

a prefix free padding.
//We have only A query to CF4.

2. Return IH1(IV,mj
1||mj

2|| . . . ||mj
�) 1. yj

i ← {0, 1}n

2. if (yj
i−1, m

j
i) ∈ TA

On query to IH1(IV, mj
1||mj

2|| . . . ||mj
�) yj

i ← TA[yj
i−1, m

j
i]

1. yj
0 = IV Return (yj

i).
2. for i=1; i ≤ � 3. TA = TA ∪ {yj

i−1, m
j
i , y

j
i }

yj
i ← {0, 1}n 4. Return (yj

i)
if (yj

i−1, m
j
i) ∈ TIH

yj
i ← TIH [yj

i−1, m
j
i]

Return (yj
i).

ligne= getIntV al(yj
i−1, m

j
i)

col =getV alSamPos(yj
i−1).

if(yj
i) ∈ ligne ∨ col

BE2 ← true ∨ BE3 ← true

yj
i ← {0, 1}n\ligne ∪ col.

TIH = TIH ∪ {yj
i−1, m

j
i , y

j
i }

Return (yj
i)

216 K. Ammour and L. Wang

Table 6. Game G5(PFMD2,CF5)

On query (IV, M j) to PFMD2 On query (yj
i−1, m

j
i) to CF5

1.(mj
1, m

j
2, . . . , m

j
�) ← Pad(M j) // Pad is

a prefix free padding.
//We have only A query to CF5.

2. Return IH1(IV,mj
1||mj

2|| . . . ||mj
�) 1. yj

i ← {0, 1}n

2. if (yj
i−1, m

j
i) ∈ TA

yj
i ← TA[yj

i−1, m
j
i]

On query to IH1(IV, mj
1||mj

2|| . . . ||mj
�) Return (yj

i).
1. yj

0 = IV 3. M = Get Msg(yj
i−1))

2. for i=1; i ≤ � if |M| = 1 ∧ M ′||mj
i = Pad(M)

yj
i ← {0, 1}n yj

i ← IH1(IV, Pad(M))
if (yj

i−1, m
j
i) ∈ TIH 3. TA = TA ∪ {yj

i−1, m
j
i , y

j
i }

yj
i ← TIH [yj

i−1, m
j
i] 4. Return (yj

i)
Return (yj

i).
ligne= getIntV al(yj

i−1, m
j
i)

col =getV alSamPos(yj
i−1).

if(yj
i) ∈ ligne ∨ col

BE2 ← true ∨ BE3 ← true

yj
i ← {0, 1}n\ligne ∪ col.

TIH = TIH ∪ {yj
i−1, m

j
i , y

j
i }

Return (yj
i)

Table 7. Game G6(PFMD3,CF5)

On query (IV, M j) to PFMD3 On query (yj
i−1, m

j
i) to CF5

1.(mj
1, m

j
2, . . . , m

j
�) ← Pad(M j) // Pad is

a prefix free padding.
//We have only A query to CF5.

2. Return IH2(IV,mj
1||mj

2|| . . . ||mj
�) 1. yj

i ← {0, 1}n

2. if (yj
i−1, m

j
i) ∈ TA

yj
i ← TA[yj

i−1, m
j
i]

Return (yj
i).

3. M = Get Msg(yj
i−1))

On query to IH2(IV, mj
1||mj

2|| . . . ||mj
�) if |M| = 1 ∧ M ′||mj

i = Pad(M)
if IH2(IV, mj

1||mj
2|| . . . ||mj

�) = ⊥ yj
i ← IH2(IV, Pad(M))

IH2(IV, mj
1||mj

2|| . . . ||mj
�) ← {0, 1}n 3. TA = TA ∪ {yj

i−1, m
j
i , y

j
i }

Return IH2(IV, mj
1||mj

2|| . . . ||mj
�) 4. Return (yj

i)

Improved Indifferentiability Security Bound 217

Table 8. Game G7(RO,S)

On query (IV, M j) to RO On query (yj
i−1, m

j
i) to S

1. if RO(IV, mj
1||mj

2|| . . . ||mj
�) = ⊥ 1. yj

i ← {0, 1}n

RO(IV, mj
1||mj

2|| . . . ||mj
�) ← {0, 1}n 2. if (yj

i−1, m
j
i) ∈ TA

Return RO(IV, mj
1||mj

2|| . . . ||mj
�) yj

i ← TA[yj
i−1, m

j
i]

Return (yj
i).

3. M = Get Msg(yj
i−1))

if |M| = 1 ∧ M ′||mj
i = Pad(M)

yj
i ← RO(IV, Pad(M))

3. TA = TA ∪ {yj
i−1, m

j
i , y

j
i }

4. Return (yj
i)

References

1. FIPS PUB 180–2, secure hash standard (SHS). U.S.Department of Com-
merce/National Institute of Standards and Technology (2002)

2. FIPS PUB 180–3, secure hash standard (SHS). U.S.Department of Com-
merce/National Institute of Standards and Technology (2008)

3. Andreeva, E., Mennink, B., Preneel, B.: The parazoa family: generalizing the
sponge hash functions. Int. J. Inf. Sec. 11(3), 149–165 (2012)

4. Bagheri, N., Gauravaram, P., Knudsen, L.R., Zenner, E.: The suffix-free-prefix-free
hash function construction and its indifferentiability security analysis. Int. J. Inf.
Sec. 11(6), 419–434 (2012)

5. Bellare, M., Ristenpart, T.: Multi-property-preserving hash domain extension and
the EMD transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006). https://doi.org/10.1007/
11935230 20

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability
of the sponge construction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 181–197. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78967-3 11

7. Bhattacharyya, R., Mandal, A., Nandi, M.: Indifferentiability characterization of
hash functions and optimal bounds of popular domain extensions. In: Roy, B.,
Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 199–218. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10628-6 14

8. Biham, E., Dunkelman, O.: A framework for iterative hash functions - HAIFA.
IACR Cryptology ePrint Archive 2007/278 (2007)

9. Chang, D., Lee, S., Nandi, M., Yung, M.: Indifferentiable security analysis of
popular hash functions with prefix-free padding. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 283–298. Springer, Heidelberg (2006).
https://doi.org/10.1007/11935230 19

10. Chang, D., Nandi, M.: Improved indifferentiability security analysis of chopMD
hash function. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 429–443.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4 27

https://doi.org/10.1007/11935230_20
https://doi.org/10.1007/11935230_20
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-642-10628-6_14
https://doi.org/10.1007/11935230_19
https://doi.org/10.1007/978-3-540-71039-4_27

218 K. Ammour and L. Wang

11. Chang, D., Sung, J., Hong, S., Lee, S.: Indifferentiable security analysis of
choppfMD, chopMD, a chopMDP, chopWPH, chopNI, chopEMD, chopCS, and
chopESh hash domain extensions. IACR Cryptology ePrint Archive 2008/407
(2008)

12. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: how
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 26

13. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 39

14. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: a strengthened version of
RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-60865-6 44

15. Fleischmann, E., Gorski, M., Lucks, S.: Some observations on indifferentiability.
In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 117–134.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14081-5 8

16. Gauravaram, P., et al.: A sha-3 candidate. In: Handschuh, H., Lucks, S., Preneel,
B., Rogaway, P. (eds.) Symmetric Cryptography, number 09031 in Dagstuhl Sem-
inar Proceedings, Dagstuhl, Germany. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany (2009)

17. Hirose, S., Park, J.H., Yun, A.: A simple variant of the Merkle-Damg̊ard scheme
with a permutation. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol.
4833, pp. 113–129. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-76900-2 7

18. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 19

19. Kelsey, J., Kohno, T.: Herding hash functions and the Nostradamus attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 12

20. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 28

21. Lai, X., Massey, J.L.: Hash functions based on block ciphers. In: Rueppel, R.A.
(ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-47555-9 5

22. Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005).
https://doi.org/10.1007/11593447 26

23. Luo, Y., Lai, X., Gong, Z.: Indifferentiability of domain extension modes for hash
functions. In: Chen, L., Yung, M., Zhu, L. (eds.) INTRUST 2011. LNCS, vol.
7222, pp. 138–155. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32298-3 10

24. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24638-1 2

25. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, New York (1990). https://doi.org/
10.1007/0-387-34805-0 40

https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/3-540-60865-6_44
https://doi.org/10.1007/978-3-642-14081-5_8
https://doi.org/10.1007/978-3-540-76900-2_7
https://doi.org/10.1007/978-3-540-76900-2_7
https://doi.org/10.1007/978-3-540-28628-8_19
https://doi.org/10.1007/11761679_12
https://doi.org/10.1007/11426639_28
https://doi.org/10.1007/3-540-47555-9_5
https://doi.org/10.1007/11593447_26
https://doi.org/10.1007/978-3-642-32298-3_10
https://doi.org/10.1007/978-3-642-32298-3_10
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/0-387-34805-0_40

Improved Indifferentiability Security Bound 219

26. Moody, D., Paul, S., Smith-Tone, D.: Improved indifferentiability security bound
for the JH mode. Des. Codes Crypt. 79(2), 237–259 (2016)

27. Moody, D., Paul, S., Smith-Tone, D.: Indifferentiability security of the fast wide
pipe hash: breaking the birthday barrier. J. Math. Cryptol. 10(2), 101–133 (2016)

28. Naito, Y.: Indifferentiability of double-block-length hash function without feed-
forward operations. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol.
10343, pp. 38–57. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
59870-3 3

29. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: limitations
of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 27

30. Smith-Tone, D., Tone, C.: A measure of dependence for cryptographic primitives
relative to ideal functions. Rocky Mt. J. Math. 45(4), 1283–1309 (2015)

https://doi.org/10.1007/978-3-319-59870-3_3
https://doi.org/10.1007/978-3-319-59870-3_3
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-642-20465-4_27

Applied Cryptography

Privacy-Preserving Data Outsourcing
with Integrity Auditing for Lightweight

Devices in Cloud Computing

Dengzhi Liu1, Jian Shen1,2(B), Yuling Chen2, Chen Wang1, Tianqi Zhou1,
and Anxi Wang1

1 Jiangsu Engineering Center of Network Monitoring,
Nanjing University of Information Science and Technology, Nanjing, China

liudzdh@126.com, s shenjian@126.com, wangchennuist@126.com,

tq zhou@126.com, anxi wang@126.com
2 Guizhou Provincial Key Laboratory of Public Big Data, Guiyang, China

61997525@qq.com

Abstract. The cloud can provide unlimited storage space to users via
the Internet. Unlike locally data storing, users will lose the direct control
of the data after outsourcing it to the cloud. Moreover, the cloud is an
untrusted entity. It is possible that the cloud may try to extract, dis-
card and destroy users’ data due to benefits. Hence, the data security in
cloud computing needs to be well guaranteed. In this paper, we propose
a privacy-preserving data outsourcing scheme with integrity auditing for
lightweight devices in cloud computing. On the one hand, the blind sig-
nature is used in the proposed scheme to delegate the generation of users’
data signatures to the TPA. On the other hand, based on the property
of the BLS signature, the blinded signatures received from the TPA can
be verified by the user and the data integrity stored in the cloud can be
audited by the TPA. In addition, the proposed scheme supports batch
operation. Security analysis shows that the proposed scheme achieves the
properties of correctness, privacy-preserving and non-forgeability. Per-
formance analysis indicates that the proposed scheme can be performed
with high efficiency.

Keywords: Cloud computing · Data outsourcing · Integrity auditing ·
Batch operation

1 Introduction

In recent years, with the developments of the high-speed network construction
and the emerging electronic communication technology, the technology of cloud
computing has developed very rapidly [29]. As we all know, cloud computing is
developed from distributed computing [15,16]. The distributed cloud servers
are connected each other via the wired or wireless network. The cloud ser-
vice provider (CSP) is responsible for managing and maintaining cloud servers,
c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 223–239, 2019.
https://doi.org/10.1007/978-3-030-14234-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_12

224 D. Liu et al.

and users need to pay for their cloud usage as a manner of pay-per-use [14,18].
Currently, there are many cloud service providers around the world, such as Ama-
zon, Microsoft, IBM and China’s Alibaba, Tencent and Baidu. The cloud can
provide various services to users. For users, especially for resource-constrained
users with mobile devices, they can access the cloud to enjoy the unlimited
storage and computing resource via the Internet [5,7,21].

The cloud is curious-but-honest to users’ data [31]. That is to say, the cloud
may abide by security protocols, but will still try to obtain users’ data for profit
reasons [22]. Some researchers have proposed many schemes to enhance the data
security in the cloud system. To avoid the leakage of the data to the cloud,
the data must be encrypted before outsourcing. Due to the feature of cloud
computing, some traditional security assurance methods cannot be directly used
[12,25,35]. On the one hand, to improve the efficiency of the data usage in cloud
computing, the cloud data search schemes are proposed by some researchers,
which allows users to search the data in the cloud using keywords [2,23,27].
The searched data will be sorted according to the relevance of keywords. On
the other hand, to enable the cloud to securely provide data services to users,
some researchers proposed data sharing schemes based on the key agreement
protocol and digital signatures [13,20]. In addition, to protect the data in the
cloud, the cloud data access control schemes are proposed by researchers [24,33].
Note that the attribute-based encryption is widely used in the design of the cloud
data access control schemes, which can satisfy the requirement of the cloud data
access for mass users in cloud computing.

To save the storage space, it is a possible that the cloud may discard or
modify the infrequently used data [11]. Hence, the cloud should allow users to
check the integrity of the data at any time. In 2007, Ateniese et al. proposed
a PDP (provable data possession) scheme that allows users to check whether
the remote server possesses the data [1]. In the same year, Juels et al. proposed
a POR (proof of retrievability) scheme that can let users check the possession
and the retrievability of the data stored in the remote server [9]. However, PDP
and POR are not suitable for cloud computing due to the high computational
overhead at the user side. In 2010, Wang et al. first proposed a cloud storage
auditing for cloud computing with the assist of a third party auditor (TPA) [28].
The auditing tasks in Wang et al.’s scheme are delegated to the TPA, which
greatly improves the efficiency and the fairness of the auditing. Subsequently,
many researchers have devoted themselves to the research of the cloud auditing
and proposed many outstanding cloud auditing protocols with the assist of the
TPA [19,26,30,32].

1.1 Related Works

The cloud data auditing is developed from the studies of PDP [1,17] and POR
[8,9]. PDP allows the local user to check whether the remote server stores the
data without retrieving all the data from the server. In PDP, if the user wants to
check the stored data, he/she needs to send a request to the remote server. Then,
the server can compute a storage proof for the user according to the checking

Privacy-Preserving Data Outsourcing with Integrity Auditing 225

request. In 2007, Juels et al. proposed a POR that can not only supports data
possession checking, but also verify whether the stored data can be retrieved to
the local side.

In PDP and POR, the data storage is checked by the user, which brings
much computational burden to the user side. In order to reduce the user side’s
computational overhead and improve the fairness of the data integrity checking,
some researchers resorted to the TPA to design the data integrity checking.
Wang et al. in [26] proposed a privacy-preserving public auditing protocol based
on the technologies of homomorphic authenticator and random masking. The
TPA is used to audit the stored data in the cloud on behalf of users in Wang et
al.’s protocol. Moreover, the TPA cannot learn any information of users’ data
in the process of data auditing. In 2011, Wang et al. proposed a public auditing
protocol that supports data dynamics for cloud computing. The Merkle Hash
Tree is used to design the auditing protocol with data dynamics in [30]. Note
that the auditing protocols in studies [26,30] can support the multiple users’
data auditing. In [32], Yang et al. extend the data auditing protocol to support
multiple cloud servers auditing and multiple users auditing.

However, in the previous auditing schemes, the user side needs to generate
the signature for the data, which is not suitable for the resource-constrained
lightweight device.

1.2 Contributions

In this paper, we propose a privacy-preserving data outsourcing scheme with
integrity auditing for lightweight devices in cloud computing. The contributions
of the proposed scheme are listed as follows:

– We resort to the property of the blind signature to delegate the computa-
tion tasks of the signature generation to the TPA. Moreover, the proposed
scheme can prevent the TPA from learning the original data block during the
signature generation.

– The BLS signature is utilized in this scheme for verification. On the one hand,
the user can verify the correctness of the received blinded signature from the
TPA. On the other hand, the TPA can audit the stored data in the cloud on
behalf of the user.

– The proposed scheme supports batch verification for the user’s multiple
blinded signatures and batch auditing for multiple users’ stored data. In addi-
tion, the proposed scheme supports public verification and public auditing.
That is to say, the public key can be used to verify the blinded signature and
audit the stored data without using the secret key.

226 D. Liu et al.

1.3 Organization

The rest of this paper is organized as follows. Section 2 presents the preliminaries
of the proposed scheme. Section 3 describes the system model and the design
goals. Section 4 introduces the proposed scheme in detail. Section 5 analyzes the
security and the performance of the proposed scheme. Finally, this paper is
concluded in Sect. 6.

2 Preliminaries

In this section, the preliminaries of this paper are introduced. First, the bilinear
pairing is presented. Then, the technologies of the blind signature and the BLS
signature are briefly described.

2.1 Bilinear Pairing

Let G1, G2 and GT be multiplicative groups of large prime order q. The bilinear
pairing can be denoted as ê: G1×G2→GT . Suppose that A∈ G1, B∈ G2, x, y ∈
Z

∗
q. G1 and G2 are the generator of G1 and G2, respectively. For any A1, A2∈ G1,

we have ê(A1·A2, B)= ê(A1, B)·ê(A2, B). The properties of the bilinear pairing
are listed as follows:

– Bilinear: ê(Ax, By)= ê(A, B)xy.
– Non-degenerate: ê(G1, G2) �= 1.
– Computable: ê(A, B) can be efficiently computed by an algorithm.

2.2 Blind Signature

The blind signature was firstly proposed by Chaum in 1982 [3]. In the blind sig-
nature, the signer can sign the user’s data without knowing the original content
of the data. Moreover, the signer cannot match the content with the result of
the signature.

– Data Blinding: The data owner blinds the data using his/her public key.
Then, the data owner sends the blinded data to the signer.

– Blinded Signature Generation: The signer computes a signature on the
blinded data based on his/her secret key. Then, the blinded signature is
returned to the data owner.

– Verification: Upon receiving the blinded signature from the signer, the data
owner can verify the correctness of the blinded signature using the public key.

– Recovery: If the blinded signature cannot pass the above verification, the
protocol outputs ‘Fails’; otherwise, the data owner may recover the original
signature from the blinded signature using his/her secret key.

Privacy-Preserving Data Outsourcing with Integrity Auditing 227

2.3 BLS Signature

The BLS signature was proposed by Boneh, Lynn and Shacham in 2001 [6]. The
BLS signature can verify the signature using the public key. The process of the
BLS signature is shown as follows:

(1) KeyGen: We define G and GT are groups with prime order q and G1×G1 →
GT . Suppose that P is the generator of G. H is a hash function, and H:{0,
1}∗→G. Randomly choose r from Z

∗
q as the secret key. Then, the public

key can be computed as pk=Pr.
(2) Sign: Suppose that a message is m∈ {0, 1}∗. The signer computes the hash

value of the message as h=H(m). Then, the signer computes the signature
of the hash value as δ=hr.

(3) Verify: The verifier can use the public key pk to verify the correctness of
the signature δ via checking equation ê(P, δ) ?=ê(pk, h). If the equation can
hold, the verifier can determine that the signature of the message is correct.

3 Problem Statement

In this section, the system model and the design goals of the proposed scheme
are introduced.

3.1 The System Model

The system of the proposed scheme consists of three entities: Users, TPA and
Cloud. The system model is shown as Fig. 1. The detailed introduction of the
entities is shown as follows:

– Users: In the proposed scheme, users are the lightweight devices. For ease
of description, in this paper, we use ‘users’ and ‘user’ to denote multiple
lightweight devices and single lightweight device, respectively. Compared to
the TPA and the cloud, the user has lower computation capability and storage
resource. The user can enjoy cloud services via the Internet, such as unlimited
storage, entertainment services and data sharing. Of course, the cloud usage is
not free. The user needs to pay for the cloud usage as a manner of pay-per-use.

– TPA: The TPA is a fully-trusted third party auditor, which can audit the
stored data in the cloud on behalf of users. In this paper, the TPA can also
generate signatures for users according to the blinded data from users.

– Cloud: The cloud consists of many distributed servers. The cloud is untrusted
and is managed by the CSP. Moreover, the cloud may discard the infrequently
used data to save cloud storage space. In the proposed scheme, the cloud can
generate storage proofs for the TPA according to the auditing challenges.

228 D. Liu et al.

3.2 Design Goals

The following design goals should be achieved in the proposed scheme.

– Signatures Generation Delegation: The signature generation of the user’s data
blocks can be delegated to the TPA.

– Signatures Public Verification: The received blinded signatures can be verified
by the user using the public key.

– Public Auditing: The integrity of user’s data stored in the cloud can be
audited by the TPA using the public key.

– Batch Operation: The proposed scheme can support batch operation. On the
one hand, one user’s multiple blinded signatures can be verified by the user
simultaneously. On the other hand, multiple users’ stored data in the cloud
can be audited by the TPA at the same time.

Fig. 1. The system model

4 The Proposed Scheme

In this section, the proposed scheme is presented. The main process of the pro-
posed scheme can be seen in Fig. 2. The detailed description of the proposed
scheme is shown in the following:

(1) Security Parameters Generation
One security parameter λ is used as the input of the system. The outputs are
{G1, G2, GT , ê, q, H, P}, which are used for the construction of proposed
scheme execution. Note that G1, G2 and GT are multiplicative groups of
large prime order q and the bilinear map ê is G1×G2→GT . H is a one-
way hash function, which can map a string to a point on G1. P is the
generator of group G2. Assume that the data file of the user is F={bi}1≤i≤n.

Privacy-Preserving Data Outsourcing with Integrity Auditing 229

Fig. 2. The process of the proposed scheme

The corresponding data indexes are {I i,· · ·,I n}. The user chooses a random
signing key pair (spk, ssk) and computes t=name || SSigssk(name), where
name is the data file’s identifier and SSigssk(name) is the signature of name.
The TPA randomly chooses x from Z

∗
q as the secret key. The public key of

the TPA can be computed as pkT=Px. The user randomly selects r from G1

and y from Z
∗
q , where r is to blind the original data block and y is the secret

key of the user. Then, the user computes his/her public key as pkU=Py.
(2) Blinded Signature Generation

To reduce the computational overhead of the signature generation at the
user side, the TPA is utilized to generate signatures for users. The correct-
ness of signatures in the cloud system is important to users and the CSP,
which affects users’ judgement of data integrity in the cloud. Hence, the data
blocks of users should be signed by the TPA without leaking the original
content. In the proposed scheme, the blind signature is resorted to generate
the signatures for the user. Suppose that the user wants to sign his/her data
block bi. First, the user utilizes his/her public key to blind the data block
as b∗

i = pkU · (H(name||Ii) · rbi) = H(name||Ii) · rbi · Py. Then, the blinded
data block of b∗

i is sent to the TPA for the blind signature generation. Upon
receiving the blinded data block from the user, the TPA uses its secret key x
to compute the blinded signature as δ∗

i = (b∗
i)

x = (H(name||Ii) · rbi · Py)x.
Finally, the blinded signature of δ∗

i is sent to the user. Note that the trans-
mission channel between the user and the TPA is secure.

230 D. Liu et al.

(3) Original Signature Recovery
When the user receives the blinded signature from the TPA, he/she uses
the TPA’s public key pkU to check the correctness of the received blinded
signature. The correctness of the signature verification is shown as Eq. 1. If
the right-hand is equal to the left-hand side of Eq. 1, it can be determined
that the received blinded signature has been correctly generated according
to the blinded data block by the TPA.

ê(δ∗
i ,P) ?= ê(b∗

i , pkT) (1)

If Eq. 1 is hold, the user may utilize the correct blinded signature to recov-
ery the original signature employing the TPA’s public key and the user’s
secret key. The original signature can be computed as δi = pkT

−y · δ∗
i =

(Px)−y · (H(name||Ii) · rbi · Py)x = (H(name||Ii) · rbi)x. Suppose that the
signature set of the user’s data blocks is σ = {δi}1≤i≤n. Finally, {F , σ, t}
are outsourced to the cloud in a secure channel.

(4) Data Integrity Auditing
In this phase, the user can delegate the TPA to audit the integrity of the
stored data in the cloud. First, the TPA needs to retrieve the data file tag
t and use spk to verify the correctness of t. If t cannot pass the verification,
the data integrity auditing cannot be executed and the TPA outputs ⊥.
Otherwise, the TPA extracts data file identifier name from t. When the
TPA receives the data integrity auditing request from the user, it chooses a
random subset S = {si}1≤i≤p with p elements for the auditing. Moreover, the
TPA randomly chooses value vi for each element si. The auditing challenge
can be generated as Chall = {i, vi}. Then, Chall is sent to the cloud for
the auditing proofs generation. Upon receiving chall from the TPA, the
corresponding data blocks storage proof and the tag proof can be computed

as pD=
sp
∑

i=1

(vi · bi) and pt =
sp
∏

i=1

δi
vi , respectively. Then, proofs pD and pt are

sent to the TPA for the integrity auditing. The TPA can determine whether
the corresponding data blocks are stored completely in the cloud by checking
the correctness of Eq. 2.

ê(
sp
∏

i=1

(H(name||Ii)vi , pkT) · ê(rpD , pkT) ?= ê(pt,P) (2)

(5) Batch Operation
• Batch Signatures Verification. Suppose that one user delegate the TPA

to sign k data blocks, where 1 ≤ k ≤ n. The aggregated signature of k

data blocks can be computed as δagg=
k
∏

i=1

δ∗
i . The user can check whether

Eq. 3 can hold. If the left-hand side of Eq. 3 equals to the right-hand side,
it can be determined that the user’s k blinded signatures are correct.

ê(
k

∏

i=1

δ∗
i ,P) ?=

k
∏

i=1

ê(b∗
i , pkT) (3)

Privacy-Preserving Data Outsourcing with Integrity Auditing 231

• Batch Integrity Auditing. Suppose that m users enjoy the cloud stor-
age services and every user j’s data file consists of n data blocks, where
1 ≤ j ≤ m. The detailed description of security keys generation and
parameters generation is omitted here. Upon receiving the audit challenge
from the TPA, the corresponding data blocks’ storage proof and the tag

proof of user j can be computed as pj,D=
sp
∑

i=1

(vi · bj,i) and pj,t =
sp
∏

i=1

δj,i
vi

by the cloud. If Eq. 4 is hold, it can be determined that the request users’
data blocks in the cloud are stored completely.

m
∏

j=1

(ê(
sp
∏

i=1

H(name||Ij,i)vi , pkT) · ê(rjpj,D , pkT)) ?=
m
∏

j=1

ê(pj,t,P) (4)

5 Evaluation

The security analysis and the performance analysis are introduced in this section.
In the security analysis, the properties of correctness, privacy-preserving, non-
forgeability, public signatures verification and public integrity auditing of the
proposed scheme are proved. In the performance analysis, the comparison and
the simulation of our scheme and previous schemes are presented.

5.1 Security Analysis

Theorem 1. The proposed scheme can be proved to be correct.

Proof. Suppose that all security parameters are generated and computed cor-
rectly. The transmission channel in the system is secure. If Eqs. 1–4 can be proved
to be correct, it can be determined that the proposed scheme is correct. Equa-
tion 1 demonstrates the correctness of the blinded signature verification. The
detailed elaboration of Eq. 1 is shown as follows:

ê(δ∗
i ,P)

= ê((H(name||Ii) · rbi · P y)x,P)
= ê((H(name||Ii) · rbi · P y),Px)
= ê(b∗

i , pkT)

232 D. Liu et al.

Equation 2 can determine the correctness of the integrity auditing, which is
demonstrated as follows:

ê(
sp
∏

i=1

(H(name||Ii))vi , pkT) · ê(rpD , pkT)

= ê(
sp
∏

i=1

(H(name||Ii))vi , pkT) · ê(r

sp∑

i=1
vi·bi

, pkT)

= ê(
sp
∏

i=1

(H(name||Ii))vi , pkT) · ê(
sp
∏

i=1

(rbi)vi
, pkT)

= ê(
sp
∏

i=1

(H(name||Ii) · rbi)vi
,Px)

= ê(
sp
∏

i=1

((H(name||Ii) · rbi)x)
vi

,P)

= ê(
sp
∏

i=1

δi
vi ,Pc)

= ê(pt,P)

Equations 3 and 4 can verify the correctness of batch operation of this scheme.
Equation 3 proves the correctness of the batch signatures verification. The elab-
oration of Eq. 3 is shown as follows:

ê(
k
∏

i=1

δ∗
i ,P)

= ê(
k
∏

i=1

(H(name||Ii) · rbi · Py)x,P)

= ê(
k
∏

i=1

(H(name||Ii) · rbi · Py),Px)

=
k
∏

i=1

ê(b∗
i , pkT)

Equation 4 reveals the correctness of the batch auditing, which can be proved
as follows:

m
∏

j=1

(ê(
sp
∏

i=1

(H(name||Ij,i))vi , pkT) · ê(rjpj,D , pkT))

=
m
∏

j=1

(ê(
sp
∏

i=1

(H(name||Ij,i))vi , pkT) · ê(rj

sp∑

i=1
vi·bj,i

, pkT))

=
m
∏

j=1

(ê(
sp
∏

i=1

(H(name||Ij,i))vi , pkT) · ê(
sp
∏

i=1

rj
vi·bj,i , pkT))

=
m
∏

j=1

ê(
sp
∏

i=1

(H(name||Ij,i) · rj
bj,i)vi

,Px)

=
m
∏

j=1

ê(
sp
∏

i=1

(((H(name||Ij,i) · rj
bj,i)x)

vi
,P))

=
m
∏

j=1

ê(
sp
∏

i=1

δj,i
vi ,P)

=
m
∏

j=1

ê(pj,t,P) �

Privacy-Preserving Data Outsourcing with Integrity Auditing 233

Theorem 2. The proposed scheme can provide properties of privacy-preserving
and non-forgeability.

Proof. (a) Privacy-preserving : Privacy-preserving requires that the user’s iden-
tity information and the data content should be well protected [10]. In the pro-
posed scheme, the data file’s identifier name and identity Ii of the user are
concealed by the hash function as H(name||Ii). The original data of the user
is blinded by the secret value r. Moreover, the blinded data and identity infor-
mation are encrypted by the user’s public key pkU in the signature. That is to
say, the TPA and the cloud cannot learn any information about the original
data content and user’s identity. Hence, the proposed scheme can provide the
property of privacy-preserving. (b) Non-forgeability : The signature of the data
block is generated by the TPA referring to the property of the blind signature.
As the description in [34], the blind signature can be proven to be unforgeable
under the hardness assumption of CDHP. The proof of the non-forgeability is
omitted here. �

Theorem 3. The proposed scheme supports public verification for the blinded
signature and public auditing for the data integrity.

Proof. In the signature recovery phase, the user can verify the correctness of the
received blinded signature using the TPA’s public key pkT . Note that the orig-
inal data content and privacy information in the blinded data block b∗

i and the
corresponding blinded signature δ∗

i are concealed. That is to say, the signature
verification can be executed by anyone else who possesses b∗

i and δ∗
i in the sys-

tem. In the data integrity auditing, the data can be audited by the third party
TPA using the public key pkT . As the definitions of the public verification [4]
and the public auditing [26,30], it can be determined that the proposed scheme
supports public verification for the blinded signature and public auditing for the
data integrity. �

5.2 Performance Analysis

(1) Comparison Analysis
The computational cost of the proposed scheme is compared with that of the
similar schemes [26,30]. For ease of expression, we use PPA and EPA to denote
references [26] and [30], respectively. In order to reveal the difference in the effi-
ciency, the computational cost at the user side and the server side are compared
respectively. Compared to PPA and EPA, our scheme has a blinded signature
verification. To make the comparison more fair, the cost of the blinded signature
verification is ignored in the comparison. The comparison result can be seen in
Table 1. Note that the symbols of TH., TE., TMul., TP., TAdd. and TC. are used
to denote the time required to perform the operations of hash function, expo-
nentiation, multiplication, pairing, addition and concatenation. Because the user
needs to generate blinded data blocks, our scheme has much computational cost
at the user side compared to that of PPA. Compared to EPA, our scheme has
additional cost of multiplication, but the cost of hash function, exponentiation

234 D. Liu et al.

and concatenation in our scheme is less than that of EPA. From the compari-
son result at the server side, we can find that the computational cost of PPA,
EPA and our scheme is (n+1)TH. + (2n+4)TE. + (2n+3)TMul. + 1TAdd. +
3TP., (n+2)TH. + (2n+4)TE. + (3n+1)TMul. + nTAdd. + 2TP. and nTH.

+ (2n+1)TE. + 2nTMul. + nTAdd. + 3TP., respectively. Although the TAdd.

parameter is larger than that of PPA and the TP. parameter in our scheme is 1
more than that of EPA, PPA and EPA has higher computational cost of hash
function, exponentiation and concatenation. That is to say, the server side of
our scheme has less computational cost compared to that of PPA and EPA.

(2) Simulation Analysis
The similar schemes [26,30] and our scheme are simulated on a computer config-
ured with 8 GB RAM and Intel Xeon E5-2650 v2 at 2.60 GHZ. The computer is
installed with the Linux system and constructed based on GMP (GNU Multiple
Precision Arithmetic) and PBC (Pairing Based Cryptography).

Table 1. Computational cost comparison

Scheme User side Server side

PPA [26] 1TH.+2TE.+2TC.+1TMul.(n+1)TH.+(2n+4)TE.+(2n+3)TMul.+1TAdd.+3TP.

EPA [30] 2TH.+4TE.+5TC.+1TMul.(n+2)TH.+(2n+4)TE.+(3n+1)TMul.+nTAdd.+2TP.

Our Scheme1TH.+3TE.+1TC.+3TMul.nTH.+(2n+1)TE.+2nTMul.+nTAdd.+3TP.
∗n: The number of the data blocks.
∗TH.: The time required to perform the hash function.
∗TE.: The time required to perform the exponentiation.
∗TC.: The time required to perform the concatenation.
∗TMul.: The time required to perform the multiplication.
∗TAdd.: The time required to perform the addition.
∗TP.: The time required to perform the pairing map.

We simulate the time cost of the signature generation at the user side. In the
proposed scheme, the signature generation tasks are delegated to the TPA. The
operation of the data blocks blinding can be seen as the offline data pre-process,
which can be finished before the data signing. That is to say, the data blocks
can be blinded by other trusted devices or data source devices with high com-
puting capability. Hence, it can be considered that the signature generation cost
of our scheme only consists of public key computational cost and original signa-
ture recovery cost. The signature generation of our scheme and the two similar
schemes are simulated 20 times. The simulation result can be seen in Fig. 3. The
x-axis and the y-axis denote the number of the trail and the computational time,
respectively. From the simulation result, we can find that the computational time
of signature generation in our scheme is about 0.06 s. The signature generation
needs to take about 0.15 s and 0.18 s in PPA and EPA, respectively. Hence, it
can be determined that the signature generation of our scheme is more efficient
than that of PPA and EPA.

Privacy-Preserving Data Outsourcing with Integrity Auditing 235

Fig. 3. Simulation of the signature generation at the user side

Figures 4 and 5 show the simulation of the computation at the user side
and the server side. Note that the x-axis and the y-axis in Figs. 4 and 5 denote
computing counts and computational time. From Fig. 4, we find that the growth
rate of our scheme is lower than that of EPA but is higher than that of PPA. The
main reason is described above in the comparison analysis. Although our scheme
has much time at the user side compared to that of PPA, the computational time
of our scheme is still within an acceptable level. Figure 5 shows the simulation
result of the computation at the server side. From the simulation result in Fig. 5,

Fig. 4. Simulation of the computation at the user side

236 D. Liu et al.

we find that the computational time of the server side in our scheme increases
slowly compared to that in PPA and EPA. Moreover, the computational time
of the server side in PPA and EPA is always more than that in our scheme.
Therefore, our scheme cost less computational time at the server side than PPA
and EPA.

Fig. 5. Simulation of the computation at the server side

6 Conclusion

In this paper, we propose a privacy-preserving data outsourcing scheme with
integrity auditing for lightweight devices in cloud computing. The signature
generation can be securely delegated to the TPA due to the usage of the blind
signature. Moreover, we utilize the property of the BLS signature to verify the
blinded signatures received from the TPA and audit the stored data integrity
in the cloud. In addition, the proposed scheme supports batch operation, which
implies that one user’s multiple blinded signatures can be verified by the user
simultaneously and multiple users’ data integrity can be audited by the TPA at
the same time. Security analysis shows that the proposed scheme can be proved
to be correct and can provide security properties of privacy-preserving and non-
forgeability. In he performance analysis, our scheme is compared with the two
similar schemes PPA [26] and EPA [30]. The comparison results and the sim-
ulation results show that our scheme is more efficient. With the ideal security
and efficiency, it can be determined that our scheme can be well used in cloud
storage services with lightweight devices.

Privacy-Preserving Data Outsourcing with Integrity Auditing 237

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China under Grant No. U1836115, No. 61672295, and No. 61672290, the
Natural Science Foundation of Jiangsu Province under Grant No. BK20181408, the
Foundation of Guizhou Provincial Key Laboratory of Public Big Data under Grant No.
2018BDKFJJ003, Guangxi Key Laboratory of Cryptography and Information Security
under Grant No. GCIS201715, the State Key Laboratory of Information Security under
Grant No. 2017-MS-10, the CICAEET fund, and the PAPD fund.

References

1. Ateniese, G., et al.: Provable data possession at untrusted stores. In: ACM Con-
ference on Computer and Communications Security, pp. 598–609 (2007)

2. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword
ranked search over encrypted cloud data. IEEE Trans. Parallel Distributed Syst.
25(1), 222–233 (2013)

3. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston
(1983). https://doi.org/10.1007/978-1-4757-0602-4 18

4. Chen, X., Li, J., Huang, X., Ma, J., Lou, W.: New publicly verifiable databases
with efficient updates. IEEE Trans. Dependable Secure Comput. 12(5), 546–556
(2015)

5. Chen, X., Li, J., Weng, J., Ma, J., Lou, W.: Verifiable computation over large
database with incremental updates. IEEE Trans. Comput. 65(10), 3184–3195
(2016)

6. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45682-1 30

7. Dikaiakos, M.D., Katsaros, D., Mehra, P., Pallis, G., Vakali, A.: Cloud comput-
ing: distributed internet computing for it and scientific research. IEEE Internet
Comput. 13(5), 10–13 (2009)

8. Dodis, Y., Vadhan, S., Wichs, D.: Proofs of retrievability via hardness amplifica-
tion. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 8

9. Juels, A., Kaliski, B.S.: PORs: proofs of retrievability for large files. In: ACM
Conference on Computer and Communications Security, pp. 584–597 (2007)

10. Lins, S., Schneider, S., Sunyaev, A.: Trust is good, control is better: creating secure
clouds by continuous auditing. IEEE Trans. Cloud Comput. 6, 890–903 (2016)

11. Lins, S., Grochol, P., Schneider, S., Sunyaev, A.: Dynamic certification of cloud
services: trust, but verify!. IEEE Secur. Priv. Mag. 14(2), 66–71 (2016)

12. Liu, D., Shen, J., Wang, A., Wang, C.: Lightweight and practical node clustering
authentication protocol for hierarchical wireless sensor networks. Int. J. Sens. Netw.
27(2), 95–102 (2018)

13. Liu, X., Zhang, Y., Wang, B., Yan, J.: Mona: secure multi-owner data sharing
for dynamic groups in the cloud. IEEE Trans. Parallel Distributed Syst. 24(6),
1182–1191 (2013)

14. Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A.: Cloud computing-
the business perspective. Decis. Support Syst. 51(1), 176–189 (2011)

15. Mell, P., Grance, T.: The NIST definition of cloud computing. Commun. ACM
53(6), 50 (2011)

https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-642-00457-5_8

238 D. Liu et al.

16. Moritoh, Y., Imai, Y., Inomo, H., Shiraki, W.: A cloud service on distributed
multiple servers for cooperative learning and emergency communication. Commun.
Comput. Inf. Sci. 188, 377–390 (2011)

17. Sebe, F., Domingo-ferrer, J., Martnez-ballest, A., Deswarte, Y., Quisquater, J.J.:
Efficient remote data possession checking in critical information infrastructures.
IEEE Trans. Knowl. Data Eng. 20(8), 1034–1038 (2008)

18. Shen, J., Liu, D., Bhuiyan, M.Z.A., Shen, J., Sun, X., Castiglione, A.: Secure
verifiable database supporting efficient dynamic operations in cloud computing.
IEEE Trans. Emerg. Top. Comput. (2017). https://doi.org/10.1109/TETC.2017.
2776402

19. Shen, J., Liu, D., Lai, C.F., Ren, Y., Wang, J., Sun, X.: A secure identity-based
dynamic group data sharing scheme for cloud computing. J. Internet Technol.
18(4), 833–842 (2017)

20. Shen, J., Wang, C., Wang, A., Ji, S., Zhang, Y.: A searchable and verifiable
data protection scheme for scholarly big data. IEEE Trans. Emerg. Top. Com-
put. (2018). https://doi.org/10.1109/TETC.2018.2830368

21. Shen, J., Zhou, T., He, D., Zhang, Y., Sun, X., Xiang, Y.: Block design-based key
agreement for group data sharing in cloud computing. IEEE Trans. Dependable
Secure Comput. 1, 1 (2017)

22. Shi, J., Li, H., Zhou, L.: The technical security issues in cloud computing. Int. J.
Inf. Commun. Technol. 5(3–4), 109–116 (2013)

23. Sun, W., et al.: Verifiable privacy-preserving multi-keyword text search in the
cloud supporting similarity-based ranking. IEEE Trans. Parallel Distributed Syst.
25(11), 3025–3035 (2014)

24. Wan, Z., Liu, J., Deng, R.H.: HASBE: a hierarchical attribute-based solution for
flexible and scalable access control in cloud computing. IEEE Trans. Inf. Forensics
Secur. 7(2), 743–754 (2012)

25. Wang, C., Shen, J., Lai, C.F., Huang, R., Wei, F.: Neighborhood trustworthiness
based vehicle-to-vehicle authentication scheme for vehicular ad hoc networks. In:
Practice and Experience, Concurrency and Computation (2018)

26. Wang, C., Chow, S.S.M., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public
auditing for secure cloud storage. IEEE Trans. Comput. 62(2), 362–375 (2013)

27. Wang, C., Ren, K., Yu, S., Urs, K.M.R.: Achieving usable and privacy-assured
similarity search over outsourced cloud data. In: Proceedings of International Con-
ference on Computer Communication, pp. 451–459 (2012)

28. Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for
storage security in cloud computing. In: Proceedings of International Conference
on Computer Communications, pp. 1–9 (2010)

29. Wang, L., et al.: Cloud computing: a perspective study. New Gener. Comput.
28(2), 137–146 (2010)

30. Wang, Q., Wang, C., Ren, K., Lou, W., Li, J.: Enabling public auditability and data
dynamics for storage security in cloud computing. IEEE Trans. Parallel Distributed
Syst. 22(5), 847–859 (2011)

31. Yang, J., Chen, Z.: Cloud computing research and security issues. In: Proceed-
ings of the International Conference on Computational Intelligence and Software
Engineering, pp. 1–3 (2010)

32. Yang, K., Jia, X.: An efficient and secure dynamic auditing protocol for data stor-
age in cloud computing. IEEE Trans. Parallel Distributed Syst. 24(9), 1717–1726
(2013)

https://doi.org/10.1109/TETC.2017.2776402
https://doi.org/10.1109/TETC.2017.2776402
https://doi.org/10.1109/TETC.2018.2830368

Privacy-Preserving Data Outsourcing with Integrity Auditing 239

33. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained
data access control in cloud computing. In: Proceedings of International Conference
on Computer Communication, pp. 1–9 (2010)

34. Zhang, F., Kim, K.: Efficient ID-based blind signature and proxy signature from
bilinear pairings. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol.
2727, pp. 312–323. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
45067-X 27

35. Zhou, T., Shen, J., Li, X., Wang, C., Shen, J.: Quantum cryptography for the
future internet and the security analysis. Secur. Commun. Netw. (2018). https://
doi.org/10.1155/2018/8214619

https://doi.org/10.1007/3-540-45067-X_27
https://doi.org/10.1007/3-540-45067-X_27
https://doi.org/10.1155/2018/8214619
https://doi.org/10.1155/2018/8214619

Cloud-Based Data-Sharing Scheme Using
Verifiable and CCA-Secure Re-encryption

from Indistinguishability Obfuscation

Mingwu Zhang1,2(B), Yan Jiang3, Hua Shen1, Bingbing Li1, and Willy Susilo4

1 School of Computers, Hubei University of Technology, Wuhan, China
csmwzhang@gmail.com

2 Hubei Key Laboratory of Intelligent Geo-Information Processing,

China University of Geosciences, Wuhan, China
3 College of Computer Science and Technology,

Nanjing University of Aeronautics and Astronautics, Nanjing, China
4 Institute of Cybersecurity and Cryptology,

School of Computing and Information Technology, University of Wollongong,

Wollongong, Australia

Abstract. A cloud-based re-encryption scheme allows a semi-trusted
cloud proxy to convert a ciphertext under delegator’s public-key into
a ciphertext of delegatee’s. However, for an untrusted cloud proxy, as
the re-encryption program was outsourced on the cloud, the cloud can
debug the program and might have illegal activities in practice, such as
monitoring the program executing, returning an incorrect re-encryption
ciphertext, or colluding with the participants to obtain the sensitive infor-
mation. In this work, we propose a construction of cloud-based verifiable
re-encryption by incorporating new cryptographic primitives of indistin-
guishability obfuscation and puncturable pseudorandom functions, which
can achieve the master-secret security even if the proxy colludes with the
delegatee. Furthermore, our scheme can provide the white-box security in
re-encryption procedure to implement the sensitive-data protection in the
presence of white-box access, and it resists on chosen-ciphertext attacks
in both the first-level encryption and the second-level encryption. The
decryption is very efficient since it only requires several symmetric PRF
operations, which can be deployed and applied in the light-weight secu-
rity device such as Mobile Phones (MPs), Wireless Body Area Networks
(WBANs) and nodes in Internet-of-Things (IoTs).

Keywords: Data sharing · E-mail forwarding · White-box access ·
Re-encryption · Indistinguishability obfuscation · Puncturable PRF

This work is supported by the National Natural Science Foundation of China
(61672010, 61702168), the open research project of The Hubei Key Laboratory of
Intelligent Geo-Information Processing (KLIGIP-2017A11), and the fund of Hubei Key
Laboratory of Transportation Internet of Things (WHUTIOT-2017B001).

c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 240–259, 2019.
https://doi.org/10.1007/978-3-030-14234-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_13

Cloud-Based Data-Sharing from Indistinguishability Obfuscation 241

1 Introduction

Proxy re-encryption (PRE), initially introduced by Blaze et al. [4], allows a
semi-trusted proxy to convert a ciphertext under the delegator’s public-key into
a ciphertext of the delegatee, without observing the underlying plaintext and
the secret key of either delegator or delegatee. In traditional PRE schemes, a
proxy is modeled as a semi-trusted server, who should execute the functionality
of re-encryption honestly. However, it may not be suitable for some applications,
e.g., secure cloud-based data sharing.

Data-Sharing Cloud

A-B

BobAlice

ReEnc(2)

rk

Fig. 1. Scenario of data-sharing

Consider encrypted data sharing as an example which is depicted in Fig. 1.
User Alice’s data is encrypted and uploaded onto cloud server. If Alice’s friend,
Bob, requests Alice’s data from cloud server, the data cannot be read by Bob
correctly since it was indeed encrypted by Alice’s public key. In order to allow
Bob to decrypt and read the encrypted data, a salutary approach is to specify
a re-encryption key rkA→B , which is generated by Alice and sent onto cloud
server. Then, cloud server can convert Alice’s encrypted data into re-encrypted
data of Bob using rkA→B . However, since cloud server might be conscious and
malicious, it may return fake data, or produce re-encrypted data but not what
user Bob needs. Hence, it is mandatory to check and verify the correctness of a re-
encrypted ciphertext. Besides the attempt to obtain users’ sensitive information.
cloud server may also execute the data-sharing program in a white-box access
model such that it can debug the program, set the breakpoints, and monitor the
memories or variables during the executing.

Our contribution and techniques. In this work, we explore a verifiable
cloud-based proxy re-encryption that employs the primitives of indistinguisha-
bility obfuscation iO and puncturable pseudorandom functions. Our scheme can
be used in the secure and sensitive data-sharing in cloud system while keeping

242 M. Zhang et al.

the confidentiality of the sensitive information. Besides the security of general
proxy re-encryption, our contribution is benefit as follows:

– The scheme reinforces the master secret-key security so that the adversary
(i.e., a dishonest cloud server) cannot obtain the master secret-key of the
sender even if the cloud proxy colludes with the delegatee.

– The proposed scheme obtains the white-box access security for the cloud proxy.
As the re-encryption program was executed in the cloud, to obtain more sen-
sitive data in the program, the cloud can debug the re-encryption program
step-by-step, trace into the program, and monitor the memory and regis-
ter. We employ theprogram obfuscation technique to prevent the cloud from
watching and stealing the sensitive data embedded in the program.

– In order to avoid the cloud server providing a fake re-encryption transforma-
tion, we present a functionality of verifiability of the re-encryption to ensure
the consistency and correctness of the re-encryption procedure while keeping
the underlying sensitive information security (i.e., secret keys and plaintexts).

– Our scheme gives a strong CCA security (i.e., resist on active attacks on
ciphertexts) to guarantee for two levels of encryptions. That is, the (original)
second-level encryption and the (transformed) first-level encryption are all
secure against adaptively chosen-ciphertext attacks.

Actually, program obfuscation can make an (outsourced) computer program
unintelligible while preserving its functionality, which provides an effective mech-
anism to securely and perfectly hide the sensitive data in outsourced program
even the program executer has access the program in a white-box manner, such
as debugging the program, tracing into the variables or setting the breakpoints.

We are now ready to describe our construction that employs the indistin-
guishability obfuscation. The setup algorithm at firsts picks up the puncturable
keys (k1, k2). Next, it creates the public key as an obfuscation version of a pro-
gram to perfectly hide the keys (k1, k2). Then the encryption algorithm can
call this obfuscated program to encrypt a cleartext as follows: Compute u =
F1(k1, (m, r)) where r was a randomness, run the obfuscated program on input
r and u, and output the ciphertext ct as (α = H(m, r, u), β = F2(k2, α)⊕(m, r)),
where F1 and F2 are puncturable pseudorandom functions.

To avoid the cloud obtaining the clear re-encryption key rkr→j , the re-
encryption key rki→j will be created as an obfuscated program, which will
take as input a second-level ciphertext cti = (α, β) and outputs a transformed
first-level ciphertext ctj . The program first computes (m, r) = β ⊕ F2(k2, α),
u = F1(k1, (m, r)) and then checks whether α = H(m, r, u).

To invalidate the re-encryption key query from the adversary, we hardwire the
punctured PRF key to generate a randomness r′ for the re-encryption ciphertext
and then puncture the key using the challenge ciphertext. Due to the security
of puncturable PRF, we can invalidate the re-encryption key from the challenge
user to another. In order to verify the original ciphertext and the re-encryption
ciphertext that holds the same message m, we compute u′ = F1(k1, (m, r′)) and
run the obfuscated encryption circuit on r′ and u′, and output the re-encryption
ciphertext ̂ct as (α′ = H(m, r′, u′), β′ = Fj(kj,2, α

′), u′).

Cloud-Based Data-Sharing from Indistinguishability Obfuscation 243

The security proof of our scheme is proceeded by a sequence of indistinguish-
able games. At first, we use puncturable PRF keys (k1, k2) to create the obfus-
cated program PEnc and QREnc. Next, we employ the punctured programming
techniques to replace those normal evaluations of programs with hardwired and
randomly sampled value. In the final game, any p.p.t adversary A has negligible
advantage in guessing the underlying cleartext.

Related works. Blaze et al. [4] proposed the first bi-directional PRE scheme
based on ElGamal PKE scheme. Subsequently, Ateniese et al. [2], Canetti and
Hohenberger [7], Libert and Vergnud [24], and Chow et al. [9] proposed different
PRE schemes with various properties. Avoid employing the pairings, Shao and
Cao proposed a PRE scheme without pairing. However, Zhang et al. [8] pointed
out that it is not secure in the Libert and Vergnaud security model.

Hohenberger et al. [19] introduced a mechanism in how to securely obfuscate
the re-encryption functionality. Hanaoka et al. [18] and Isshiki et al. [21] pre-
sented the construction of chosen-ciphertext secure uni-directional PRE scheme,
respectively. Kirshanova [22] proposed a lattice-based PRE scheme. However,
none of those schemes consider the verifiability of re-encryption procedure.

Verifiable PRE proposed by Ohata et al. [26] is constructed by employing
re-encryption verification. Using this approach, the delegator splits his secret
key into tsk1 and tsk2 by a re-splittable threshold public key encryption [18].
Next, it computes ψ = Enc(pkj , tsk1), and sends ψ to user j. Then, the proxy
re-encrypts the original ciphertext ci by using the re-encryption key rki→j(imply
tsk2). That is, it computes u2 = Dec(tsk2, ci) and sets the re-encrypted cipher-
text as ĉj = Enc(̂pkj , u2||ci). The delegatee computes u2||ci = Dec(̂dkj , ĉj)
and u1 = Dec(dkj , ψ), and outputs m ← TCom(c, u1, u2). To achieve the re-
encryption verifiability, by augmenting the dedicated re-encryption algorithm.
On input (pki, skj , c, ĉ), it executes the first-level decryption algorithm to recover
the “embedded” second-level ciphetext c′, and checks whether c = c′.

Liu et al. [25] indicated that the Ohata et al.’s scheme can not resist against
collusion attack and they also proposed a new scheme to achieve CPA security
based on iO. More precisely, their approach is built on the key encapsulated
mechanism. That is, an encryption of a message m using symmetric key kSE

and an encryption of kSE using the public key pk1, where kSE is the output of a
key extractor. Zhang et al. [28] presented a flexible and controllable obfuscated
multi-hop re-encryption in (somewhat inefficient) multilinear groups.

Paper organization. The rest of this paper is organized as follows. Section 2
reviews some preliminaries including mathematical notations, indistinguishabil-
ity obfuscation and puncturable pseudo random functions. In Sect. 3, we propose
the model and security definition for verifiable PRE. In Sect. 4, we present our
concrete construction and give the security analysis. We provide the practical
deployment of secure data-sharing in Sect. 5 and draw the conclusion in Sect. 6.

244 M. Zhang et al.

2 Preliminaries

Throughout of this paper, we use λ to denote the security parameter, and let
p.p.t denote a probabilistic polynomial-time algorithm (Turing Machine). For an
integer n, we write [n] to denote the set {1, 2, · · · , n}.

A negligible function μ(n) is a function that for all positive polynomial p
there exists a positive integer N s.t. for all n > N, μ(n) < 1/p(n). Let A be
an algorithm, and x be the input of A, the evaluation of the Turing machine
running the algorithm A on the input tape with the encodings of x is denoted
by y ← A(x) where the result y is the output of A. An algorithm A is said to
have oracle access to machine O if A can write an input for O on a special tape,
and tell the oracle to execute on that input and then write its output to the
tape, which is denoted by AO.

For any polynomial-size distinguisher D, the advantage δ = |Pr[D(Expt
(1λ, 0)) = 1] − Pr[D(Expt(1λ, 1))]| is bounded by δ, we write as Expt(1λ, 0) ≈δ

Expt(1λ, 1). If δ is negligible in parameter λ, we call two distributions (experi-
ments) indistinguishable.

We now recall the notion of indistinguishability obfuscation (iO) and punc-
turable pseudorandom function and their security requirements.

Definition 1 (Indistinguishability Obfuscation (iO)). A uniform p.p.t
algorithm iO is called an indistinguishability obfuscator for a circuit class
{Cλ}λ∈N if the following conditions are satisfied:

– Correctness: For all security parameters λ ∈ N, for all C ∈ {Cλ} and all
inputs x ∈ {0, 1}poly(λ), it holds that,

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1 (1)

– Indistinguishability: For any p.p.t algorithm Samp and distinguisher D,
there exists a negligible function μ(·) such that the following holds, i.e., if

Pr[∀x,C0(x) = C1(x) : (C0, C1, aux) ← Samp(1λ)] > 1 − μ(·) (2)

we have,
∣

∣

∣ Pr
[D(aux, iO(λ,C0)) = 1 : (C0, C1, aux) ← Samp(1λ)

]

− Pr
[D(aux, iO(λ,C1)) = 1 : (C0, C1, aux) ← Samp(1λ)

]

∣

∣

∣ ≤ μ(λ) (3)

where aux is the auxiliary information output by the algorithms in the system.

Definition 2 (Puncturable Pseudorandom Function). A puncturable fam-
ily of PRFs F consisting of three Turing Machines (KeyF ,PuncF ,EvalF), and
a pairs of computing functions n(·) and m(·), satisfies the following properties:

– Functionality preserved under puncturing point: For every p.p.t algo-
rithm A that takes as input 1λ and outputs a set S ⊆ {0, 1}n(λ), for all x /∈ S,
we have,

Pr
[

Eval(k, x) = Eval(kS , x) : k ← KeyF (1λ), kS = PuncF (k, S)
]

= 1 (4)

Cloud-Based Data-Sharing from Indistinguishability Obfuscation 245

– Pseudorandom at punctured points: For every p.p.t adversary (A1,A2)
such that A1 takes as input 1λ and outputs a set S ⊆ {0, 1}n(λ). For all
k ← KeyF (1λ), kS = PuncF (k, S), and x ∈ S, we have,

∣

∣

∣ Pr
[A2(kS , x,Eval(k, x))

]

= 1 − Pr
[A2(kS , x, Um(λ)

]

= 1
∣

∣

∣ ≤ μ(λ) (5)

where Um(λ) denotes the uniform distribution over m(λ) bits.

Remark 1. In order to simplify notation, in this paper, we write F (k, S) to stand
for EvalF (k, x) and k(S) for PuncF (k, S), respectively.

Puncturable PRFs can easily be constructed from GGM’s PRFs [12] which
are based on one-way functions. The following lemma states that the statistical
injective PPRF can be constructed.

Lemma 1 [27]. If one-way functions exist, then for all efficiently computable
functions �(λ), m(λ) and e(λ) such that �(λ) ≥ 2m(λ) + e(λ), there exists a
statistically injective puncturable PRF family with failure probability 1/2e(λ) that
maps �(λ) bits to m(λ) bits.

3 Models and Definitions

3.1 Algorithms and Definitions of VPRE

Our syntax for verifiable proxy re-encryption (VPRE) roughly follows in the line
of [26] except that we generate an additional verifiable key in the encryption pro-
cess for the verifiability of re-encryption ciphertext. A single-hop unidirectional
VPRE comprises of the following six algorithms whose flowchart is described in
Fig. 2:

– KGen(1λ) → (pk, sk): Key generation algorithm is a polynomial algorithm
that takes the security parameter λ, and outputs public keys pk and secret
keys sk.

– Enc(pki,m) → (ct, vk): Original encryption algorithm takes the public key
pki, a message m and a randomness r and outputs an original second-level
ciphertext cti, and a verifiable key vk.

– RKey(ski, pkj) → rki→j : Re-key generation algorithm takes the secret key of
user i, i.e., ski, and the public key pkj of user j, and outputs a re-key rki→j .

– REnc(rki→j , cti) → ̂ctj : Re-encryption algorithm takes the re-key rki→j and
a second-level ciphertext cti, and outputs a first-level ciphertext ̂ctj .

– Dec2(ski, cti) → m|⊥: Second-level decryption algorithm takes a secret key
ski, and an original second-level ciphertext cti, and
outputs a message m or the special symbol ⊥.

– Dec1(skj , ̂ctj) → m|⊥: First-level decryption algorithm takes a secret key skj

and a first-level ciphertext ̂ctj , and outputs a message m or ⊥, which indicates
that the cti is invalid.

246 M. Zhang et al.

Bob

(pkj,skj) KeyGen(pki,ski) KeyGen

Cloud server

pkj

rki j =ReKeyGen(ski,pkj)

cti=Enc (pki, m)

ctj=ReEnc (rki j, cti) m=Dec (skj, ctj)

m=Dec (ski, cti)

rki
j

cti

rkj k

ctj

ctk

rkj
k

(1) (1)(2)

(3)

(3)

(4)
(4)

(5) (6)

(7)

(8)

(9)

Alice

Fig. 2. Workflow of cloud-based verifiable proxy re-encryption

Let M be the message space. A VPRE scheme is consistent and correct if
for all messages m ∈ M and any key pairs (pki, ski), (pkj , skj) ← KGen(1λ), the
following conditions hold:

1. The second-level decryption correctness:

Pr
[

Dec2(ski,Enc(pki,m)) �= m
] ≤ μ(λ) (6)

2. The first-level decryption consistency:

Pr
[

Dec1
(

skj , REnc(RKey(ski, pkj), Enc(pki,m))
) �= m

]

≤ μ(λ)

3.2 CCA Security

We adopt the chosen-ciphertext attack (CCA) security of VPRE scheme that is
defined as follows.

Definition 3 (CCA Security for Second-level Ciphertext). A uni-
directional VPRE scheme is said to be CCA secure at second level if the probability
is negligibly close to 1/2 for any p.p.t adversary A which is shown as follows

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

b′ = b :

(pk∗, sk∗) ← KGen(1λ), {(pkc, skc) ← KGen(1λ)},
{(pkh, skh) ← KGen(1λ)}, {rkc→∗ ← RKey(skc, pk∗)},
{rk∗→h ← RKey(sk∗, pkh)}, {rkh→∗ ← RKey(skh, pk∗)},
{rkh→c ← RKey(skh, pkc)}, {rkc→h ← RKey(skc, pkh)},
{rkh→h′ ← RKey(skh, pkh′)}, {rkc→c′ ← RKey(skc, pkc′)},

(m0,m1, aux) ← AODec1 ,ODec2 ,OREnc

(

pk∗, {pkc, skc},

{pkh}, {rkc→∗}, {rkh→∗}, {rk∗→h},

{rkc→h}, {rkh→c}, {rkh→h′}, {rkc→c′}
)

,

b
R←− {0, 1}, ct∗ = Enc(pk∗,mb),

b′ ← AODec1 ,ODec2 ,OREnc(ct∗, aux)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≤ μ(λ)

Cloud-Based Data-Sharing from Indistinguishability Obfuscation 247

In this case, aux is a state information held by A and (pk∗, sk∗) is the chal-
lenge user’s key pair generated by the challenger. For honest users, keys are
indicated by h or h′ and we indicate corrupt users by c or c′. The adversary is
given all re-encryption keys except for those that could re-encrypt the ciphertext
from the challenge one to the corrupt one. In the security experiment, A is said
to have advantage ε if this probability is at least 1/2 + ε.

In the above CCA security experiments, Oracles ODec1 ,ODec2 ,OREnc work as
follows:

– Re-encryption Oracle OREnc: for a re-encryption query (pki, pkj , cti), the
oracle responds follows: If (pki, cti) = (pk∗, ct∗i) and pkj /∈ pkh, then the
oracle returns the special symbol ⊥ to A. Otherwise, the oracle answers with
REnc(RKey(ski, pkj), cti).

– First-level Decryption Oracle ODec1 : For a first-level decryption query
(pki, ̂cti), the oracle responds as follows: If A has required a re-encryption
query (pk∗, pki, ct

∗
i) and obtained ̂cti before, then the oracle searches the

tuple in the record table and returns the tuple to A. If the adversary A has
requested a re-encryption key query (pk∗, pki) previously and Dec1(ski, ̂cti) ∈
{m0,m1}, then the oracle ansers with “test” to A. Otherwise, the oracle
answers with Dec1(ski, ̂cti).

– Second-level Decryption Oracle ODec2 : For a second-level decryption
query (pki, cti), the oracle responds with Dec2(ski, cti), except for the chal-
lenge ciphertext. i.e., if (pki, cti) = (pk∗, ct∗i), then the oracle answers with a
symbol ⊥.

In the security of first-level ciphertexts for uni-directional VPRE schemes, A
is allowed to have access to all the re-encryption keys in the definition. Since
all first-level ciphertexts cannot be re-encrypted, there is indeed no reason to
keep adversary from obtaining all honest to corrupt re-encryption keys. The
re-encryption oracle becomes futile because of all the re-encryption keys are
available to adversary A.

Definition 4 (CCA Security for First-level Ciphertext). A single-hop
unidirectional VPRE scheme is said to be CCA secure at first-level if the proba-
bility is negligible for any p.p.t adversary A, where the challenge user’s key pair
(sk∗, pk∗) and the challenge ciphertext ̂ct∗ are generated by the challenger, which
is shown as follows

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b
′
= b :

(pk∗, sk∗) ← KGen(1λ), {(pkc, skc) ← KGen(1λ)},

{(pkh, skh) ← KGen(1λ)}, {rkc→∗ ← RKey(skc, pk∗)},

{rk∗→h ← RKey(sk∗, pkh)}, {rkh→∗ ← RKey(skh, pk∗)},

{rkh→c ← RKey(skh, pkc)}, {rkc→h ← RKey(skc, pkh)},

{rkh→h′ ← RKey(skh, pkh′)}, {rkc→c′ ← RKey(skc, pkc′)},

(m0, m1, skA, pkA) ← AODec1
,ODec2

(
pk∗, {pkc, skc}, {pkh, skh},

{rkc→∗}, {rkh→∗}, {rk∗→h}, {rkc→h}, {rkh→c}, {rkh→h′ }, {rkc→c′ }
)

,

b
R←− {0, 1},

ct = Enc(pkA, mb), ĉt∗ = REnc(RKey(skA, pk∗), ct),

b′ ← AODec1
,ODec2 (ĉt∗)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ μ(λ)

248 M. Zhang et al.

Ohata et al. [26] introduces a new functionality for proxy re-encryption with
verifiability of re-encryption procedure. Ateniese et al. [2] defines the property
for unidirectional PRE schemes, i.e., master secret key security. We give the
security requirements of verifiable PRE with master-key security as follows:

Definition 5 (CCA-VPRE Security). A VPRE scheme is said to be CCA-
secure verifiable VPRE against master-key exposure if both the first-level encryp-
tion and the-second level encryption are CCA secure.

1. Master secret security. Master secret security captures the inability to
obtain the master secret key even if the cloud proxy and the delegatee col-
lude. More formally, the following probability should be negligible in security
parameter λ,

Pr

⎡

⎢

⎢

⎢

⎢

⎣

χ = sk∗ :

(pk∗, sk∗) ← KGen(1λ),
{(pkc, skc) ← KGen(1λ)},
{rkc→∗ ← RKey(skc, pk∗)},
{rk∗→c ← RKey(sk∗, pkc)},
χ ← A({pkc, skc}, {rkc→∗}, {rk∗→c}

)

⎤

⎥

⎥

⎥

⎥

⎦

≤ μ(λ)

2. Re-encryption verifiability. Re-encryption verifiability ensues that,
(a) If the adversary who obtains a re-encryption key rki→j and is given an

original (second-level) ciphertext cti, it can produce only a re-encrypted
ciphertext ̂ctj that can decrypt the same message as the decryption result
of cti.

(b) If the adversary does not have the re-encryption key rki→j, then it cannot
create a valid re-encryption ciphertext ̂ctj at all.

Concretely, for any p.p.t adversary A, the following probability is negligible.

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m′ �= m∗ ∧ m′ �= ⊥ :

(pk∗, sk∗) ← KGen(1λ), {(pkc, skc) ← KGen(1λ)},
{(pkh, skh) ← KGen(1λ)}, {rkc→∗ ← RKey(skc, pk∗)},
{rk∗→h ← RKey(sk∗, pkh)}, {rkh→∗ ← RKey(skh, pk∗)},
{rkh→c ← RKey(skh, pkc)}, {rkc→h ← RKey(skc, pkh)},
{rkh→h′ ← RKey(skh, pkh′)}, {rkc→c′ ← RKey(skc, pkc′)},

m ← AODec1 ,OREnc

(
pk∗, {pkc, skc}, {pkh}, {rkc→∗}, {rkh→∗},

{rk∗→h}, {rkc→h}, {rkh→c}, {rkh→h′}, {rkc→c′}
)
,

ct∗ = Enc(pk∗, m∗),
m′ ← AODec1 ,ODec2 (ĉt∗, pkRj

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ μ(λ)

4 Proposed Construction

4.1 Main Idea

We now describe the main idea of our scheme. The functionality of re-encryption
is easily realized that if it is allowed to decrypt the ciphertext and to re-encrypt

Cloud-Based Data-Sharing from Indistinguishability Obfuscation 249

the underlying cleartext by the cloud proxy. However, we should guarantee that
the cloud proxy cannot gain any sensitive data during performing the transfor-
mation. That is, “decrypt-then-encrypt” procedure guarantees that be not able
to expose the secret key of the delegator, or the embedded cleartext.

Let the length of a message be �. Let F1 be a puncturable PRF that takes
input of (� + λ)-bit and outputs �δ-bit, and F2 be a puncturable PRF that
takes input of �α-bit and outputs (� + λ)-bit. Let H be a collision-resistant
cryptographic hash function that takes input of (� + λ + �δ)-bit and outputs the
size of �α-bit.

In our scheme, to protect the secret key of delegator from exposing from
the re-encryption key, we set the re-encryption key as the obfuscated program
by the use of indistinguishability obfuscation iO. To achieve the re-encryption
verifiability, we design the VPRE scheme by employing Sahai and Waters’ short
signature scheme [27]. Before executing the obfuscated circuit PEnc, it at first
evaluates the signature u = F1(k1, (m, r)) on message m and randomness r.

In the re-encryption circuit, we need to re-randomize the signature and ran-
domness for user j. To complete the security proof, we add the puncturable
PRF key k3 in the re-encryption circuit and generate the updated randomness
for re-encryption by using k3.

Encrypt-Circuit

Constant: puncturable PRF keys k2.
Input: message m ∈ {0, 1}�,

randomness r ∈ {0, 1}λ,
signature u ∈ {0, 1}�δ .

Procedure:
1. Compute α = H(u, m, r).
2. Compute β = F2(k2, α) ⊕ (m, r).
3. Output ct = (α, β).

Fig. 3. Program of Encrypt-Circuit

Verify-key

Constants: puncturable PRF key k1.
Input: message m ∈ {0, 1}�,

randomness r ∈ {0, 1}λ,
signature u ∈ {0, 1}�δ .

Procedure:
Check f(u) = f(F1(k1, (m, r))). Output “accept” if true, “reject” otherwise.

Fig. 4. Program of Verify-key

250 M. Zhang et al.

ReEnc-Circuit

Constants: puncturable PRF keys ki,1, ki,2: second-level secret key of user i,
k3: puncturable PRF key,
iO(PEnc

j): public key of user j.
Input: cti = (αi, βi): second-level ciphertext
Procedure:
1. Compute (m, r) = F2(ki,2, αi) ⊕ βi.
2. Compute u = F1(ki,1, (m, r)).
3. If αi �= H(u, m, r), outputs ⊥ and aborts. Otherwise, continue to the next

steps.
4. Compute r′ = F3(k3, cti).
5. Compute u′ = F1(ki,1, (m, r′)).
6. Evaluate iO(PEnc

j , λ)(m, r′, u′).
7. Output ctj = (α′, β′, u′)

Fig. 5. Program of Re-encryption Circuit

4.2 Our Construction

The concrete construction of VPRE = (KGen,Enc,RKey,REnc,Dec1,Dec2) is
described as follows:

– KGen(1λ): The key generation algorithm at first chooses a puncturable key
k1 ← KeyF1

(1λ) and k2 ← KeyF2
(1λ). Next, it creates an obfuscation of

program Encrypt-Circuit as

PEnc ← iO(1λ, Encrypt-Circuit : [k2]) (7)

The circuit Encrypt-Circuit is formally defined in Fig. 3. This obfuscated
program, PEnc, servers as the public key, pk = PEnc, and the corresponding
secret key is sk = (k1, k2).

– Enc(pk = PEnc,m ∈ {0, 1}�, r ∈ {0, 1}λ): The encryption algorithm at
first computes u = F1(k1, (m, r)). Next it produces an obfuscated program
Γ vk, which is defined in Fig. 4. It at random chooses r ∈ {0, 1}λ, and
then runs the obfuscated program PEnc on inputs r, m and u to obtain:
(α, β) ← PEnc(m, r, u). The output of second-level ciphertext is ct = (α, β).

– RKey(ski = (ki,1, ki,2), pkj = PEnc
j): Let ski = (ki,1, ki,2) be the delegator’s

secret key, and pkj = PEnc
j be the public key of delegatee j. The re-key gener-

ation algorithm at random chooses a puncturable PRF key k3 ← KeyF3
(1λ),

and then produces an obfuscated program QREnc by obfuscating

QREnc ← iO(

1λ, ReEnc-Circuit : [k1, k2, k3, iO(PEnc
j)]

)

(8)

which is described in Fig. 5. The re-encryption key is set as rki→j = QREnc.
– REnc(rki→j = QREnc, cti = (αi, βi)): The re-encryption algorithm takes as

inputs cti of a second-level ciphertext of user i and a re-encryption key rki→j

which is an obfuscated program QREnc
i→j . It then runs the circuit QREnc

i→j (cti) and
outputs a first-level ciphertext ctj = (α′, β′, u′).

Cloud-Based Data-Sharing from Indistinguishability Obfuscation 251

– Dec2(ski = (ki,1, ki,2), cti = (αi, βi)): The second-level decryption algorithm
takes as inputs a secret key sk and a ciphertext cti. At first it computes
(m, r) = F2(ki,2, αi) ⊕ βi. Next, it computes u = F1(ki,1, (m, r)) and then
checks the equation αi = H(u,m, r). If the equation does not hold, it outputs
⊥ and stops. Otherwise, it outputs m.

– Dec1(skj , ̂ctj): The first-level decryption algorithm takes as inputs a secret key
skj and a first-level ciphertext ̂ctj . At first it computes (m, r) = F2(kj,2, α

′)⊕
β′, and checks if vk(m, r, u′) = 1 and α = H(m, r, u′) = 1. Finally, it outputs
a message m if the equations hold or symbol ⊥ otherwise.

Correctness. At first, we ensure the correctness of decryption of the original
(second level) ciphertext. Actually, the second-level ciphertext has the form:
ct = (α, β) = (H(m, r, u), F2(k2, α) ⊕ (m, r)), and the secret key is (k1, k2).
When we decrypt the ciphertext, we calculate (m, r) = F2(k2, α) ⊕ β and u =
F1(k1, (m, r)). If the check α = H(m, r, u) holds, the result of decryption is valid.

Furthermore, we ensure the consistency of decryption of the (transformed)
first-level ciphertext. The transformed (first-level) re-encrypted ciphertext has
the form: ̂ct = (α′, β′, u′) = (H(m, r′, u′), F2(kj,2, α

′ ⊕ (m, r′)), Fi,1(ki,1, (m, r′)),
and the secret key has the form: skj = (kj,1, kj,2). When decrypting a re-
encrypted first-level ciphertext, we will compute (m, r′) = F2(kj,2, α

′) ⊕ β′. If
the check vk(m, r′, u′) = 1 and α = H(m, r′, u′) hold, the result of this decryp-
tion outputs the message m which satisfies the consistency of the second-level
ciphertext.

4.3 Proof of Security

We use a series of games to prove the security of our scheme. In the sequence
of games, the first game is defined as the original experiment of second-level
CCA security. Then we show that any p.p.t adversary’s advantage in each game
must be negligibly close to the previous game and the adversary has negligible
advantage in the final game. We have the following theorem.

Theorem 1. Suppose that the indistinguishability obfuscation scheme is a
secure iO, F1 and F2 are secure puncturable PRFs, f(·) is a cryptographically
secure one-way function and H is modeled as a collision-resistant hash function,
the proposed VPRE scheme is CCA secure for the second-level encryption.

Proof. We give the proof that is based on a series of games as follows.

Expt0: The first game Expt0 is set as the original second-level CCA security
game instantiated in our construction, which works as follows.

1. The adversary A selectively gives the challenger the messages m∗.
2. The challenger C at random selects keys k1 ← KeyF1

(1λ), k2 ←
KeyF2

(1λ), k3 ← KeyF3
(1λ) and also picks a random coin b ∈ {0, 1}.

3. C computes u∗ = F1(k1, (m∗, r∗)).
4. The challenger C creates PEnc ← iO(1λ, Encrypt-Circuit : [k1]) and sends

PEnc to the adversary A.

252 M. Zhang et al.

5. Phase-1 queries and response as follows in an adaptive manner:
(a) The challenger C generates the re-encryption key rki→j by calling QREnc ←

iO(1λ, ReEnc-Circuit : [k1, k2, k3, iO(PEnc
j)]) and returns QREnc to A.

(b) A asks the query for ciphertext ct to oracle OREnc.
(c) A requests the query for ciphertext ̂ct to oracle ODec2 and re-encryption

ciphertext ct to oracle ODec1 .
6. The challenger C runs ct∗ ← iO(1λ, Encrypt-Circuit: [k1])(m∗, r∗, u∗), and

returns ct∗ to the adversary.
7. Phase-2 queries are the same as in Phase-1, except that, for the adversary A,

the following additional restrictions are satisfied:
(a) Cannot request a re-encryption query to tuple (pki∗ , pkj , ct

∗) s.t. pkj ∈
pkc.

(b) Cannot request a decryption query to (pkk, ctk) so that ctk is the result
of a re-encryption query (pki∗ , pkk, ct∗).

(c) Cannot request the decryption query to tuple (pki∗ , ct∗)
8. The adversary A outputs a bit b′ and wins the game if b′ = b.

Expt1: The challenger C sets α∗ = H(m∗, r∗, u∗) and ˜ct∗ = F2(k2, α∗) ⊕
(m∗, r∗). It creates the obfuscated program of PEnc∗

as the obfuscation version
of Encrypt-circuit∗ defined in Fig. 6. By the iO security, no adversary can
distinguish Expt1 and Expt0.

Encrypt-Circuit∗

Constants: puncturable PRF keys k2{α∗}, α∗ and ˜ct∗.
Input: message m ∈ {0, 1}�,

randomness r ∈ {0, 1}λ,
signature u ∈ {0, 1}�δ .

Procedure:

1. If α∗ = H(m, r, u), output ˜ct∗.
2. Else compute α = H(u, m, r).
3. Compute β = F2(k2, α) ⊕ (m, r).
4. Output ct = (α, β).

Fig. 6. Program of Encrypt-Circuit∗

Expt2: C computes z∗ = f(F1(k1, (m∗, r∗))) and sets vk as the obfuscation of
program Verify-key∗ defined in Fig. 7. It is easily to see that no adversary can
distinguish Expt2 and Expt1 by the security of indistinguishability obfuscation.

Expt3: The challenger sets z∗ = f(y) for randomly selected y from {0, 1}�δ .
By the security of puncturable PRF, no adversary can distinguish Expt3 and
Expt2.

Cloud-Based Data-Sharing from Indistinguishability Obfuscation 253

Verify-key∗

Constants: puncturable PRF key k1{m∗, r∗},
m∗ ∈ {0, 1}�,
r∗ ∈ {0, 1}λ,
z∗.

Input: message m ∈ {0, 1}�,
randomness r ∈ {0, 1}λ,
signature u ∈ {0, 1}�δ .

Procedure:

1. If (m, r) = (m∗, r∗),
Then, check whether f(u) = z∗.
Output “accept” if the equation holds,
and output “reject” otherwise.

2. Else, check if f(u) = f(F1(k1, (m, r))).
Output “accept” if the equation holds, and output “reject” otherwise.

Fig. 7. Program of Verify-key∗

Expt4: The challenger C at first computes the output when ct∗ are input to
the re-encryption circuit QREnc∗

∗→j defined in Fig. 8. Here, it hardwires the output
̂ct∗ (i.e., re-encrypted ciphertext) to QREnc∗

. Next, it computes punctured keys
k∗

i,1{m∗, r∗}, k∗
i,2{α∗} and k3{ct∗}. By the security of indistinguishability obfus-

cation iO and the collision-resistance of hash function, it is easily to show that
no adversary can distinguish Expt4 and Expt3.

Expt5: The challenger replaces the second component of the hardwired
ciphertext to a random one. By the pseudorandom security in punctured points
of puncturable PRF, no adversary can distinguish Expt5 and Expt4.

Expt6: The challenger answers the re-encryption query (pki, pkj , cti) such
that pki = pk∗. It does as follows:

1. If the input ciphertext is ct∗, then output ̂ct∗.
2. Compute (m, r) = F2(k∗

i,2{α∗}, αi) ⊕ βi.
3. Compute u = F1(k∗

i,1{m∗, r∗}, (m, r)).
4. Check whether αi �= H(u,m, r). If not, output ⊥ and abort.
5. Compute r′ = F3(k3{ct∗}, cti) and u′ = F1(k∗

i,1{m∗, r∗}, (m, r′))
6. Compute iO(PEnc

j , λ)(m, r′, u′) and send the result to the adversary.

By the collision-resistant security of hash function, there does not exist any
adversary in distinguishing Expt6 and Expt5.

Expt7: The challenger C answers the first-level decryption query (pki, ̂cti) as
follows.

1. Compute (m, r′) = F2(ki,2, αi) ⊕ βi.
2. Check whether vk(m, r′, u′) and αi �= H(m, r′, u′). Output ⊥ if fail.
3. Output m as the answer.

254 M. Zhang et al.

ReEnc-Circuit∗

Constants: punctuable PRF keys k∗
i,1{m∗, r∗}, k∗

i,2{α∗}(secret key of user i),
k3{ct∗} (puncturable PRF key),
iO(P Enc

j)(public key of user j),
ciphertext ̂ct∗.

Input: cti.
Procedure:

1. If the input ciphertext is ct∗, then it outputs ̂ct∗.
2. Compute (m, r) = F2(k∗

i,2{α∗}, αi) ⊕ βi.
3. Compute u = F1(k∗

i,1{m∗, r∗}, (m, r)).
4. Check whether αi �= H(u, m, r) holds. If not, output ⊥ and abort.
5. Compute r′ = F3(k3{ct∗}, cti) and u′ = F1(k∗

i,1{m∗, r∗}, (m, r′))
6. Compute iO(PEnc

j , λ)(m, r′, u′).
7. Output ctj = (α′, β′, u′)

Fig. 8. Program of REnc-Circuit∗

By the security of one-way function and collision-resistance of hash function,
there does not exist any adversary in distinguishing Expt7 and Expt6.

Expt8: The challenger C answers the second-level decryption query (pki, ct)
such that pki = pk∗ as follows:

1. Compute (m, r) = F2(ki,2, αi) ⊕ βi.
2. Compute u = F1(ki,1, (m, r)).
3. Check whether αi �= H(u,m, r) holds. If not, outputs ⊥.
4. Return m as the answer.

By the collision-resistance of hash function, it is easily to show that no adver-
sary can distinguish Expt8 and Expt7.

Expt9: Replace F1(k1, (m∗, r∗)) with a randomly and uniformly selected
value. By the security of puncturable PRF, no adversary can distinguish Expt9
from Expt8.

Expt10: The challenger C sets α∗ = t∗ for randomly selected t∗ ← {0, 1}�α .
By the security of puncturable PRF, no adversary can distinguish Expt10 and
Expt9.

Expt11: The challenger C at random chooses x∗ ← {0, 1}�+λ and sets (t∗, x∗)
as the challenge ciphertext.

Notice that, in Expt11, the challenge ciphertext ct∗ = (t∗, x∗) where t∗ and
x∗ are distributed uniformly, and thus, the adversary A has a negligible advan-
tage in the second-level CCA-VPRE game. Therefore, the advantage of the
adversary in Expt0 is negligible in actual attack experiment. This completes
the proof of Theorem1.

Cloud-Based Data-Sharing from Indistinguishability Obfuscation 255

Theorem 2. If the obfuscation scheme is a secure indistinguishably obfuscator,
F1 and F2 are secure punctured PRFs, f(·) is a cryptographically secure one-
way function and H is a collision-resistant hash function, the proposed VPRE
scheme is CCA secure for the first-level encryption.

Proof. We also use a series of games that are proved to be indistinguishable as
follows.

Expt0: Expt0 is described as the first-level CCA experiment of VPRE scheme.
Expt1: This game is the same as Expt0, except that the re-encrypted cipher-

text is set as (α′, β′, u′ = W) for randomly selected W ∈ {0, 1}�δ . By the security
of puncturable PRF, it is easily to see that no adversary can distinguish Expt1
and Expt0.

Expt2: This game is the same as Expt1, except that the re-encrypted cipher-
text is set as (α′ = U, β′,W) for randomly selected U ∈ {0, 1}�α . By the security
of puncturable PRF and collision-resistance of hash function, no adversary can
distinguish Expt2 and Expt1.

Expt3: This game is the same as Expt1, except that the re-encrypted cipher-
text is set as (U, β′ = V,W) for randomly chosen V ∈ {0, 1}�+λ. By the security
of puncturable PRF, it is easily to show that no adversary is able to distinguish
Expt3 and Expt2.

By a series of hybrid arguments, it declares that a p.p.t adversary’s advan-
tage in the original security Expt0 can be at most negligibly greater than its
advantage in Expt3. We note that the advantage of the adversary in Expt3 is
negligible in security parameter λ, since it provides no information on the coin
b and thus completes the proof of Theorem 2.

Theorem 3. Suppose that iO is a secure indistinguishability obfuscator in Def-
inition 1, then the proposed scheme is master secret-key secure.

Proof. Suppose that, in the VPRE scheme, the master secret-key ski is revealed
when the malicious cloud colludes with the delegatee j, then we can construct
an iO distinguisher B = (B1,B2) to distinguish the obfuscated circuits in the
circuit family. The deployment of B works as follows:

At first, B1 constructs a re-encryption key QREnc as in Fig. 5. We denote this
circuit as C0. Next, B1 constructs a re-encryption key QREnc∗

as in Fig. 8. We
denote this circuit as C1. Note that the functionality of these two circuits C0

and C1 are completely the same. B1 outputs (C0, C1) and aborts.
B2 is given iO(1λ, C∗) from the challenger C. That is, this iO(1λ, C∗) is either

iO(1λ, C0) or iO(1λ, C1). When the re-encryption key queried from the challenge
user to j by the adversaryA, B2 returns the iO(1λ, C∗) to A and receives a secret
key sk. If sk = sk∗, B2 decides that iO(1λ, C∗) is C0. Otherwise, B2 decicdes that
iO(1λ, C∗) is C1. Obviously, a p.p.t adversary can distinguish between C0 and
C1 which will lead the constructed algorithm B to break the indistinguishability
security of iO. As we employ the secure iO, we conclude that the propose VPRE
scheme satisfies the master secret-key security.

256 M. Zhang et al.

Theorem 4. Suppose that f(·) is a secure one-way function and iO is a secure
indistinguishability obfuscator, then the proposed VPRE scheme is verifiably
secure of re-encryption.

Proof. If there exists an adversary A who can against the verifiable security of
re-encryption, we can construct an algorithm B to break the security of one-way
function f .

At first, algorithm B sets a verify key circuit defined in Fig. 4. Next, B runs
PEnc to obtain a challenge ciphertext ct∗ = (α∗, β∗), and sends the tuple (ct∗, vk)
to adversary A. Later, A outputs ̂ct = (α′, β′, σ). By the definition of B that
has computed σ such that f(σ) = y. We say that A will win if and only if (1)
m′ �= m, (2) m′ �= ⊥ and, (3) vk(m, r′, σ) = 1. If the one-way function f is
cryptographically secure, it is easily to show that no p.p.t adversary A in the
above equations with non-negligible advantage.

5 Deployment in Secure Data-Sharing in Cloud

In this section, we present a practical deployment of secure data-sharing that
empolys our scheme as the basic primitive.

Assume that user A wants to share his sensitive sports data or holiday photos
in his smart watch to his friend circle shown in Fig. 9. In order to keep the privacy
of the data, user A needs to encrypt the sensitive data with his own public-key
pkA and then stores ctA on the clouds [29]. When he is going to share the
encrypted data, he can generate a re-encryption key for the friend group, e.g.,
rkA→G1 , and requests the cloud server to perform the re-encryption program
to create the re-encrypted ciphertext so that all the members in the group can
obtain the clear sport data or photos by decrypting the re-encrypted ciphertexts.

Group 2

Group 1

User A

Data-sharing Cloud
ct

Fig. 9. Scenario of secure data-sharing in clouds

Cloud-Based Data-Sharing from Indistinguishability Obfuscation 257

It is easy to see that, using our proposed VPRE as primitive in cloud-based
data-sharing environments, it has the following benefits:

1. Data sharing and storing security. The sensitive data are encrypted and
shared in a secure manner in which the cloud server can perform the sharing
program without obtaining any shared clear-data. Actually, the original data
are encrypted by the sharer, i.e., using the public key of user A in Fig. 9, and
the encrypted data are stored on the cloud.

2. Sensitive-data protection in the transformation in the presence of white-box
access. If A wants to share his data, he can creates a re-encryption key to the
cloud and allows the cloud to perform the data-sharing transformation (i.e.,
re-encryption program) on inputs the re-encryption key and the encrypted
data. We ensure that, even the cloud executes the re-encryption program in
white-box manner (i.e., debug the program, monitor the memory and register
and set the breakpoints etc.), the cloud server cannot gain any embedded
sensitive information such as cleartext data and secret key.

3. Sharer privacy preservation. Even the cloud colludes with terminal users, i.e.,
user in Group 1 and Group 2 in Fig. 9, it cannot obtain the sharer’s secret
key, which is guaranteed by the master secret-key security of our scheme.

4. Data-sharing for group users. We can facilitate a group of users and set a
group key, and use this group public-key to create the re-encryption key. Any
user in the group can decrypt the re-encrypted ciphertext and it will improve
the data-sharing efficiency.

5. Reasonable allocate the operation. In our deployment, the time-consuming
operations are computed by the cloud, and the operations of terminal user
in Group 1 or Group 2 is very fast as it only needs several symmetric PRF
operations. We can effectively deploy the data-sharing to light-weight nodes
such as Wireless Sensor Networks, Wireless Body Area Network and Internet-
of-Things etc.

6 Conclusion

In this paper, we presented a cloud-based data-sharing scheme that is based
on a cloud-based re-encryption scheme by using the cryptographic primitives of
indistinguishability obfuscation and puncturable pseudorandom functions. Our
scheme provides several helpful properties such as white-box security in the
secure data-sharing (re-encryption), CCA security of both first-level cipertext
and second-ciphertext, re-encryption verifiability of master secret-key security,
and reasonable allocation of the operations. Moreover, the proposed scheme is
efficient in decryption since it only needs several symmetric PRF operations,
which is fruitful to deploy the scheme in light-weight nodes such as WSNs,
WBANs and IoTs.

258 M. Zhang et al.

References

1. Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation
and functional encryption. In: 56th FOCS 2015, pp. 191–209 (2015)

2. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

3. Bishop, A., Kowalczyk, L., Malkin, T., Pastro, V., Raykova, M., Shi, K.: A sim-
ple obfuscation scheme for pattern-matching with wildcards. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 731–752. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 25

4. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

5. Boneh, D., Gupta, D., Mironov, I., Sahai, A.: Hosting services on an untrusted
cloud. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
404–436. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 14

6. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-
0 15

7. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Proceedings of the 14th ACM Conference on Computer and Communications Secu-
rity, pp. 185–194. ACM (2007)

8. Chen, M.R., Zhang, X., Li, X.: Comments on Shao-Cao’s unidirectional proxy
re-encryption scheme from PKC 2009. J. Inf. ci. Eng. 27(3), 1153–1158 (2011)

9. Chow, S.S.M., Weng, J., Yang, Y., Deng, R.H.: Efficient unidirectional proxy re-
encryption. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS,
vol. 6055, pp. 316–332. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-12678-9 19

10. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: 48th ACM STOC 2016, pp. 1115–1127
(2016)

11. Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. In: FOCS 2015, pp. 151–
170 (2015)

12. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

13. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encrytion for all circuits. In: FOCS
2013, pp. 40–49. IEEE (2013)

14. Gaurav, P., Purushothama, B.R.: Proxy visible re-encryption scheme with appli-
cation to e-mail forwarding. In: Proceedings of the 10th International Conference
on Security of Information and Networks (SIN 2017), pp. 212–217 (2017)

15. Gaurav, P., Purushothama, B.R.: On efficient access control mechanisms in hierar-
chy using unidirectional and transitive proxy re-encryption schemes. In: Proceed-
ings of the 14th International Joint Conference on e-Business and Telecommuni-
cations (ICETE 2017), pp. 519–524 (2017)

https://doi.org/10.1007/978-3-319-96878-0_25
https://doi.org/10.1007/BFb0054122
https://doi.org/10.1007/978-3-662-46803-6_14
https://doi.org/10.1007/978-3-662-46803-6_14
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-12678-9_19
https://doi.org/10.1007/978-3-642-12678-9_19

Cloud-Based Data-Sharing from Indistinguishability Obfuscation 259

16. Komargodski, I., Yogev, E.: Another step towards realizing random oracles: non-
malleable point obfuscation. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10820, pp. 259–279. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78381-9 10

17. Kitagawa, F., Nishimaki, R., Tanaka, K.: Obfustopia built on secret-key functional
encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 603–648. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 20

18. Hanaoka, G., et al.: Generic construction of chosen ciphertext secure proxy re-
encryption. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 349–364.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27954-6 22

19. Hohenberger, S., Rothblum, G.N., Shelat, Vaikuntanathan, V.: Securely obfuscat-
ing re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 233–252.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 13

20. Hohenberger, S., Koppula, V., Waters, B.: Adaptively secure puncturable pseudo-
random functions in the standard model. In: Iwata, T., Cheon, J.H. (eds.) ASI-
ACRYPT 2015. LNCS, vol. 9452, pp. 79–102. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48797-6 4

21. Isshiki, T., Nguyen, M.H., Tanaka, K.: Proxy re-encryption in a stronger security
model extended from CT-RSA2012. In: Dawson, E. (ed.) CT-RSA 2013. LNCS,
vol. 7779, pp. 277–292. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36095-4 18

22. Kirshanova, E.: Proxy re-encryption from lattices. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 77–94. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-54631-0 5

23. Lai, J., Huang, Z., Au, M.H., Mao, X.: Constant-size CCA-secure multi-hop uni-
directional proxy re-encryption from indistinguishability obfuscation. In: Susilo,
W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 805–812. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93638-3 49

24. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78440-1 21

25. Liu, M., Wu, Y., Chang, J., Xue, R., Guo, W.: Verifiable proxy re-encryption from
indistinguishability obfuscation. In: Qing, S., Okamoto, E., Kim, K., Liu, D. (eds.)
ICICS 2015. LNCS, vol. 9543, pp. 363–378. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29814-6 31

26. Ohata, S., Kawai, Y., Matsuda, T., Hanaoka, G., Matsuura, K.: Re-encryption
verifiability: how to detect malicious activities of a proxy in proxy re-encryption.
In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 410–428. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16715-2 22

27. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC 2014, pp. 475–484. ACM (2014)

28. Zhang, M., Jiang, Y., Mu, Y., Susilo, W.: Obfuscating re-encryption algorithm
with flexible and controllable multi-hop on untrusted outsourcing server. IEEE
Access 5(1), 26419–26434 (2017)

29. Zhang, M., Yao, Y., Li, B., Tang, C.: Accountable mobile e-commerce scheme in
intelligent cloud system transactions. J. Ambient Intell. Humaniz. Comput. 9(6),
1889–1899 (2018)

https://doi.org/10.1007/978-3-319-78381-9_10
https://doi.org/10.1007/978-3-319-78381-9_10
https://doi.org/10.1007/978-3-319-78375-8_20
https://doi.org/10.1007/978-3-319-78375-8_20
https://doi.org/10.1007/978-3-642-27954-6_22
https://doi.org/10.1007/978-3-540-70936-7_13
https://doi.org/10.1007/978-3-662-48797-6_4
https://doi.org/10.1007/978-3-662-48797-6_4
https://doi.org/10.1007/978-3-642-36095-4_18
https://doi.org/10.1007/978-3-642-36095-4_18
https://doi.org/10.1007/978-3-642-54631-0_5
https://doi.org/10.1007/978-3-642-54631-0_5
https://doi.org/10.1007/978-3-319-93638-3_49
https://doi.org/10.1007/978-3-540-78440-1_21
https://doi.org/10.1007/978-3-319-29814-6_31
https://doi.org/10.1007/978-3-319-29814-6_31
https://doi.org/10.1007/978-3-319-16715-2_22

An Encrypted Database with Enforced
Access Control and Blockchain Validation

Zhimei Sui1,2(B), Shangqi Lai2(B), Cong Zuo2(B), Xingliang Yuan2(B),
Joseph K. Liu2(B), and Haifeng Qian1(B)

1 East China Normal University, Shanghai, China
zhimeisui@gmail.com, hfqian@cs.ecnu.edu.cn

2 Monash University, Clayton, Melbourne, Australia
{shangqi.lai,cong.zuo1,xingliang.yuan,joseph.liu}@monash.edu

Abstract. Data privacy and integrity is top of mind for modern data
applications. To tackle with the above issue, we propose an encrypted
database system with access control capabilities and blockchain valida-
tion in this paper. Compared to the existing encrypted database system,
our design proposes a proxy-free architecture, which avoids the need for
a trusted proxy for access control. In order to protect the integrity of
user data, our system leverages the blockchain technology to realize a
tampering protection mechanism. The mechanism ensures that modifi-
cation logging is compulsory and public-available but hardened. Users
can validate and easily detect the tampered data. Finally, we implement
a prototype system and conduct evaluations on each component of the
proposed system.

Keywords: Encrypted database · Data privacy · Blockchain ·
Access control

1 Introduction

Outsourced data storage provides a convenient way to help its users manage
and access their data. However, with weekly data security scandals [10], individ-
uals are becoming more and more aware and concerned about the privacy and
integrity of their data.

This illustrates the needs to

– Encrypt data in an outsourced database because compromises can still occur
in this database with standard security mechanisms such as data access control
and database trace logging.

– Provide a data validation mechanism to avoid the tampering on the outsourced
data because the cloud provider can fully control the outsourced data and
intentionally modify it for some malicious purposes.

In this work, we propose a decentralized and encrypted database with
enforced access control and blockchain validation to protect both the privacy
and integrity of data in outsourced database.
c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 260–273, 2019.
https://doi.org/10.1007/978-3-030-14234-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_14

An Encrypted Database with Enforced Access Control 261

To protect the data privacy, our system follows the paradigm of encrypted
database [11,21,24] to encrypt the data in database before outsourcing it. We
then design a search algorithm to support SQL-like queries over the encrypted
database. In addition, our system implements fine-grained access control over
columns by Attribute-based Encryption (ABE). Each user is associated with
specific attributes and the user can only access the column if its attributes
match with the access policy. Compared to the existing SQL-enabled encrypted
database system like CryptDB [21], our system leverages a proxy-free architec-
ture: the users in our system can communicate with the remote database directly.
The proxy-free architecture eliminates the intermediate server to avoid the pos-
sible service interruption in the event of proxy failure. Also, it makes the system
more suitable for cloud-based scenarios as it allows geologically distributed users
to access the cloud database without connecting to a fixed proxy in advance.

In order to resolve the integrity concerns on the encrypted database, we
combine our encrypted database system with the blockchain technology. More
specifically, all modifications and the corresponding logs are recorded in the
blockchain. Due to the public-availability and unchangeable properties of the
blockchain, our system ensures that all authorized modifications are trackable
to the users. Besides, any unauthorized change leads to record inconsistency
between database and blockchain which helps the users to detect the tampering
behavior on their data.

Our Contributions. In this paper, we focus on the encrypted database and
the confidentiality of its data. Our contributions are listed as follows:

– We propose a distributed encrypted database with Advanced Encryption
Standard (AES). It ensures the confidentiality of data while being efficient in
encryption.

– Our system implements the access control by Attribute-based Encryption
(ABE). Specifically, we employ CP-ABE [26] where a given ciphertext can
only be decrypted by a user with corresponding attributes.

– Our system provides a method to validate data via the blockchain technology,
such that it is easy for users to validate the results from queries made to
the database. Noted that most of the blockchain protocols are compatible
with our system. In our implementation, we employ BigchainDB [16] as the
underlying blockchain protocol.

– We construct an attack model and use it to analyse the security of our system.
We have also identified potential threats to our system from the analysis.

– We implement our system on MySQL [19] and evaluate its performance and
we compare the results with a plaintext implementation.

1.1 Related Work

Encrypted Database and Search Methods. Database encryption [4,5,22]
schemes are used to transform data stored in a database into “ciphertext” that
is incomprehensible without being decrypted firstly. The purpose of database
encryption is to protect the data stored in a database from being accessed by

262 Z. Sui et al.

individuals with “malicious” intentions. There are multiple techniques and tech-
nologies available for the encrypted database. For example, CryptDB [21] is
an encrypted database with encrypted query processing. It protects the con-
fidentiality of data from the remote database management system. Searchable
encryption [12,23,25,27] is a search protocol for ciphertext, which is proposed
to improve the availability of encrypted database. The latest searchable encryp-
tion scheme is able to support conjunctive queries [12,25] and range queries [27].
In addition, the dynamic update on searchable encryption database [23,27] and
search result verification [25] are also being studied in prior work. Note that the
above schemes require keys to be generated by a centralized source.

Blockchain. Blockchain, is well-known as Bitcoin [20], has influence in almost
every aspect of our society from the economy, health care to industries and
transportation [7,14,17,20]. The blockchain part of our system is related to some
existing works [1,2,15,28]. These works use the blockchain with various methods
to achieve privacy in database. IBM’s blockchain Everledger [15] locates each
device with a specific SSL certificate, which is used in the blockchain to protect
against tampering. However, a centralized organization is still needed in the
above system. Damiano et al. propose a database system which implements the
access control with attributes on the blockchain [28], but their work only focuses
on how to realise a decentralized access control in the system. Another works [1,2]
solve the search problem in the blockchain. In specific, private keyword search
is devised by a blockchain-based secure data storage in [2], and it is further
extended to support private search in distributed network via the blockchain
technology [1].

1.2 Organization

We start by introducing some standard notations in Sect. 2. Then, we formalise
the system framework and the corresponding attack model in Sect. 3. In Sect. 4,
we give a brief overview of our proposed system and its security analysis. Next,
we present our implementation in Sect. 5 . Finally, we give the conclusion and
discuss our future work in Sect. 6.

2 Preliminaries

In this paper, λ is the security parameter and [n] denotes a set of integers
{1, · · · , n}. To store the encrypted data of a table TB which has r rows and
c columns as illustrated in Table 1, we need a dictionary DX and a new table
ETB, which is the same size as TB’s. Dictionary DX is used to store the column
identifier IDj (j ∈ [c]) of TB and the ABE ciphertext CTj pairs, where CTj is the
encryption of the private key keyj used in symmetric key encryption (SKE). For
a data value datai,j (the i-th row and j-th column, i ∈ [r] and j ∈ [c]) in TB, we
use a SKE with keyj

1 to encrypt it and store the SKE ciphertext Ci,j in the i-th
row and j-th column of ETB.
1 For every column, we use a new private key keyj to encrypt the data.

An Encrypted Database with Enforced Access Control 263

Table 1. An example of TB

Student ID Name Age Sex Grade · · ·
00001 Alice 18 Female 80 · · ·
00002 Bob 17 Male 78 · · ·
00003 Charlie 18 Male 88 · · ·
00004 Dave 19 Male 79 · · ·

2.1 Ciphertext-Policy Attribute Based Encryption (CP-ABE)

Ciphertext-Policy Attributed-based encryption (CP-ABE) [26] consists the fol-
lowing algorithms:

– (pp,msk) ← ASetup(1λ,U): This algorithm takes as input the security
parameter λ and attribute universe U. It outputs the public parameter pp
and a master secret key msk.

– uskS ← AKGen(pp,msk,S): This algorithm takes as input the public param-
eter pp, the master secret key msk and a user attribute set S, where S ⊆ U.
It outputs a user secret key uskS.

– CT ← AEnc(pp,m, policy): This algorithm takes as input the public parameter
pp, the message m and a policy policy. It outputs a ciphertext CT.

– (m or ⊥) ← ADec(pp, uskS, CT): This algorithm takes as input the public
parameter pp, the user secret key uskS and the ciphertext CT. It outputs the
message m if S satisfy the underlying policy policy. Otherwise, it outputs ⊥.

2.2 Symmetric Key Encryption (SKE)

Symmetric Key Encryption (SKE) [6,18] consists the following algorithms:

– key ← SSetup(1λ): This algorithm takes as input the security parameter λ.
It outputs a private key key.

– C ← SEnc(key, data): This algorithm takes as input the private key key and
the data data. It outputs the ciphertext C.

– data ← SDec(key, C): This algorithm takes as input the private key key and
the ciphertext C. It outputs the data data.

In this paper, we use the deterministic SKE (e.g. AES [18] in CBC mode with
same IV). The client can send an encrypted data to the server, the server can
search the ciphertext where the underlying data and private key are the same
by comparing every ciphertext in ETB.

264 Z. Sui et al.

2.3 Notations

The list of notations used is given in Table 2.

Table 2. Notations (used in our constructions)

TB A table (e.g. Table 1)

ETB An encrypted form of TB

DX A dictionary

r The number of rows of TB

c The number of columns of TB

IDi i-th row identifier

IDj j-th column identifier

K The private keys of SKE which are used to encrypt the columns of TB

Policy A set of policies

Row All satisfied rows of a user query

H A hash function

rowi The i-th row of ETB

3 Framework and Attack Model

In this section, we formalize the system model and attack model considered in
this paper.

3.1 Our Framework

Figure 1 shows the architecture of our encrypted database supporting enforced
access control and blockchain validation. There are four main entities in our
framework: Data Owners (DOs), Cloud, Blockchain and Users.

– Data Owner (DO): DO is responsible for encrypting his/her data (TB) and
sending the encrypted data to the cloud. In addition, he also needs to generate
the user secret keys which enable users to search for certain encrypted data.
Specifically, DO firstly generates c SKE private keys and uses them to encrypt
every column of TB separately. Furthermore, DO publishes the hash values of
rows to the blockchain. Then, DO generates the public parameter pp and
master secret key msk of CP-ABE. After that, DO uses the pp and a specify
policy to encrypt the private keys. Finally, DO stores the column identifier
and CP-ABE ciphertext pairs in the dictionary.

An Encrypted Database with Enforced Access Control 265

– Cloud: Cloud stores the database cluster for DO. Upon receiving a search
query from a user, Cloud retrieves the satisfied rows of ETB by com-
paring the SKE ciphertext in the search query with the one in ETB2.
Then, Cloud validates the hash values of these rows with the hash values
in the blockchain. Finally, Cloud returns the rows which has the same hash
values in the blockchain to the user.

– Blockchain: Blockchain is used to store the hash values of the rows and
database operations which can prevent data from tampering. In addition, each
DO is supposed to commit the hash values of all updated data and operation
log to Blockchain. After a user get the results from Cloud, these blockchain
records provide a validation mechanism: if there is a value on the blockchain,
which is the same as the hash values of search results, the user will accept the
search results.

– User: If a user wants to issue search queries, he firstly needs to get his user
secret key from the DO which corresponds to his/her attribute set. Then, he
can use this key to get the SKE private keys from the dictionary entries where
the attribute set satisfies the policy of the corresponding CP-ABE ciphertexts.
After that, he can use SKE and these private keys to encrypt data and send
the SKE ciphertext to the server.

Fig. 1. Architecture of our framework

3.2 Attack Model

In this paper, we consider the following attack models:

– Access Control: The adversary cannot search the columns which he/she is
not authorized to search. In other words, a user cannot decrypt a ciphertext
without permission in our model, as the access control protocol asks for the
correct attributes.

2 Since SKE is deterministic, the SKE ciphertexts are the same if the underlying data
is identical.

266 Z. Sui et al.

– Tamper Protection: A malicious node cannot modify the history of
blockchain without being known. It is possible for a node to change a
blockchain history locally, however, these tampered records will not be
accepted by the majority of this system.

– SPOF Protection: Single point of failure (SPOF) cannot bring an obvious
problem to the blockchain network. When a malicious or innocent node failed
in the network, users still can get the response from the other active nodes.

4 Construction

4.1 Overview

Blockchain technology allows decentralization which can ease the reliance on
traditional centralized system. In this section, we propose a scheme that realizes
a decentralized encrypted database. Furthermore, it also supports decentralized
access control and blockchain validation. This enables data owners to encrypt
their data locally and share the encrypted data with a specific group of users.

Our construction contains the following properties: (1) a decentralized
encrypted database, (2) the access control over the encrypted database and (3)
the validation of the encrypted data. In particular, our construction encrypts
the database with SKE and uploads the ciphertext to Cloud. The storage of the
encrypted data can be built on any database platform, e.g. SQL [3] or NoSQL3.

In order to achieve access control, we introduce the CP-ABE scheme. Also,
we use the Blockchain technology to maintain data integrity and provide data
validation.

Now we are ready to illustrate encrypted database with enforced access con-
trol and blockchain validation in Algorithm 1. In more detail, we also give a
description of this algorithm expressing what occurs between User, Data Owner
(DO) and Cloud. It consists of following operations:

– (pp,msk,K, DX, ETB) ← Setup(1λ,U, TB,Policy): In setup phase, DO gener-
ates all the keys that are used in the system and the encrypted database. On
input the security parameter 1λ, the attribute universe U, a table TB and a
set of policies Policy, DO generates (pp,msk,K, DX, ETB), where pp and msk
are the public parameter and master secret key of a CP-ABE, respectively. K
are private keys of SKE. DX is a dictionary which stores the column identifier
and the encrypted private key pairs. ETB is the encryption of table TB which
stores the encrypted data and is sent to Cloud. Note that, for each DO, this
algorithm is only executed once.

– uskS ← UKGen(pp,msk,S): In user secret key generation phase, the user
sends a request with his attribute set S to DO. Then, DO takes the input as
the public parameter pp, master secret key mask and the user attribute set S
and outputs the user secret key uskS and sends it to the user. Once the user
receives his/her user secret key, he/she then has the permission to decrypt
the specific ciphertext owned by the DO.

3 The NoSQL database has a wide variety of data models, including key-value, docu-
ment, columnar and graph formats.

An Encrypted Database with Enforced Access Control 267

– Row ← Search(uskS, IDj , data, DX, ETB): In the search phrase, this protocol
is executed between a user and Cloud. Cloud is used to store the encrypted
database for DO. The user uses his/her user secret key to get the column
key keyj . Then, he/she uses keyj to encrypt the data value data′ and issues
a search query with the encrypted data to Cloud. If the data value data′ is
equal to the data value data stored on Cloud, then the corresponding cipher-
texts C are equal. Because they are encrypted by using deterministic SKE.
After that, Cloud retrieves the satisfied rows and sends them to the user.
Finally, the user can validate the rows in validation phase.

– state ← Val(IDi, rowi): In the validation phrase, the user connects with
several nodes who store the records of blockchain. This algorithm is used
to validate whether the retrieved data is valid or not. On input the row
identifier IDi and the row rowi, it compares the input hash values and the
hash values that stored on the blockchain and outputs “true” if the rowi

has a corresponding hash value on the blockchain or “false” otherwise. If the
algorithm outputs “true”, the data is accepted by the user. Otherwise, the
data is tampered by Cloud.

4.2 Security Discussion

Theorem 1. Our encrypted database with enforced access control and
blockchain validation can achieve Access Control.

Under the CP-ABE scheme, DO only allows a user to decrypt a ciphertext
with the specified user secret keys. If the attribute set of a user secret key does
not satisfy the policy that is embedded in the ciphertext, the user cannot decrypt
the ciphertext. Thus, the user cannot get the private key of SKE to issue search
queries. Hence, Access Control of the encrypted database is achieved.

Theorem 2. Our encrypted database with enforced access control and
blockchain validation can achieve Tamper Protection.

Blockchain provides the data integrity and unchangeable protocol to support
the tamper protection. DO needs to commit all hash values of the database oper-
ation log to the blockchain, and each user achieves the validation by trusting the
record on blockchain, which is assumed to be proven safe. Therefore, anyone in
this system is not able to change the blockchain records that have been accepted
by the majority.

Theorem 3. Our encrypted database with enforced access control and
blockchain validation can achieve SPOF Protection.

Blockchain network is a peer-to-peer network, where nodes in the network
are equal peer nodes acting as both a “client” and a “server”. User usually sends
the request to several nodes in the meantime, and the availability of the system
is not affected by the failure of a single node or a minority of nodes.

268 Z. Sui et al.

Algorithm 1. Blockchain Access Control

Setup(1λ,U, TB,Policy)

Input Security parameter 1λ, attribute
universe U, a Table TB and a set of poli-
cies Policy
Output (pp, msk,K, DX, ETB)

1: (pp, msk) ← ASetup(1λ,U)
2: DX ← empty dictionary
3: K ← empty array
4: for j ∈ [c] do
5: keyj ← SSetup(1λ)
6: K[j] ← keyj

7: CTj ← AEnc(pp, keyj , policy) �
policy ∈ Policy

8: DX[IDj] ← CTj

9: end for
10: ETB ← empty table
11: for i ∈ [r], j ∈ [c] do
12: Ci,j ← SEnc(K[j], datai,j)
13: ETBi,j ← Ci,j

14: end for
15: for i ∈ [r] do
16: hrowi ← H(rowi) � rowi is i-th

row of ETB and H is a hash function.
17: Put hrowi with row identifier IDi

to the blockchain.
18: end for
19: return (pp, msk,K, DX, ETB)

UKGen(pp, msk,S)
Input Public parameter pp, master secret
key msk, and attribute set S
Output User secret key uskS

1: uskS ← AKGen(pp,msk,S)

2: return uskS

Val(IDi, rowi)
Input Row identifier IDi, rowi

Output A state state

1: state ← False
2: hrowi ← H(rowi)
3: Get hrow with the row identifier IDi

from the blockchain
4: if hrowi == hrow then
5: state = True
6: end if
7: return state

Search(uskS, IDj , data, DX, ETB)
Client:
Input uskS, IDj , data, DX
Output The encrypted data C

1: CTj ← DX[IDj]
2: keyj ← ADec(pp, uskS, CTj)
3: C ← SEnc(keyj , data)
4: Send C to the server.

Server:
Input C, ETB
Output Satisfied rows Row

5: Row ← empty set
6: for i ∈ c do
7: Get Ci,j from ETB

8: if C == Ci,j then
9: Get (IDi, rowi) from ETB

10: Row ← Row ∪ (IDi, rowi)
11: end if
12: end for
13: Send Row to the user.

5 Experimentation

In this section, we evaluate the performance of three building blocks of our pro-
posed system: the latency when inserting data and querying on MySQL, the
transaction latency of blockchain and the performance of ABE. In Blockchain
tests, we build a blockchain platform based on BigchainDB, which inherits its
throughput, high capacity, low latency, and a full featured efficient NoSQL
query [8,9] language. Our system runs on a MacBook Pro with 3.1 GHz Intel
Core i5 processor, 8 GB 2133 MHz LPDDR3 memory, macintosh HD of Disk,
where MySQL 8.0.11 server and BigchainDB 1.3.0 proxy and clients are installed,
using Java as the main programming language.

An Encrypted Database with Enforced Access Control 269

Performance of MySQL. We used two datasets of different sizes, contain-
ing 1,000 and 100,000 rows respectively. Firstly, the smaller dataset is input
to the system to run 1 epoch, which means 1,000 times for each insert and
query operation test with plaintext and SKE ciphertext on MySQL separately.
The results are shown in Figs. 2 and 3. To get rid of the influence of data pre-
processing, the top 10 results of each text type are dropped. In Fig. 2, the lines
represent latency per insert on MySQL for ciphertext and plaintext, respectively,
where the solid line represents plaintext and the dashed line represents cipher-
text. We can see that more than 90% of the ciphertext insert operations finished
within 0.002 s, while almost 100% of the plaintext insert operations cost less than
0.002 s. Figure 3 shows the query latency on MySQL of AES-based ciphertext
and plaintext. It is easy to see that all query operations of plaintext complete
within 0.01 s and ciphertext query operation need more than 0.02 s. The extra
latency of ciphertext operations compared with the operations in plaintext in
both charts are caused by the encryption/decryption time. Furthermore, we run
100,000 insert and query operations on another dataset with 100,000 rows in the
same manner as the former one. Figures 4 and 5 show the latency of insert and
query operations, respectively. It can be seen that most latency of insert opera-
tion in Fig. 4 is 0.001 s, and it is about a 50% decrease compared to the results of
the smaller dataset. In Fig. 5, as we can see, the results show that most latency
timings are similar to the small dataset for both the plaintext and ciphertext.

0 0.002 0.004 0.006 0.008 0.01 0.012

Per insert point latency (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

of
 o

cc
ur

re
nc

e

the Results Comparision of Insert

Plaintext Insert Line
AES Insert Line

Fig. 2. Insert comparison test with 1,000
datasets

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Per query point latency (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

of
 o

cc
ur

re
nc

e

the Results Comparision of Query

Plaintext Query Line
AES Query Line

Fig. 3. Query comparison test with 1,000
datasets

The Latency of BigchainDB. Figures 6 and 7 show the transaction creation
and query latency on BigchainDB. Similar to the tests above, we run transaction
creation and query operations for 100 times and choose the 80 middle results
for each operation to for out graphs. The latency of each transaction creation
operation is shown in Fig. 6. We can see that 90% of the operations could be
performed within 0.02 s. It shows that our system achieves higher efficiency com-
pared to the most of the Blockchain-based projects. Figure 7 show the latency
for query operations. We can see a completed query operation always costs more

270 Z. Sui et al.

1 2 3 4 5 6 7 8 9 10

Per insert point latency (s) 10-4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

of
 o

cc
ur

re
nc

e

chart

Plaintext
AES

Fig. 4. Insert comparison test with
100,000 datasets

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Per insert point latency (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

of
 o

cc
ur

re
nc

e

chart

Plaintext
AES

Fig. 5. Query comparison test with
100,000 datasets

than 8 s, which is due to the fact that the entire chain will be scanned for each
query request. BigchainDB has low latency in transaction creation and query
compared to the majority of the current Blockchain projects [13,20]. Further-
more, BigchainDB has no PoW consensus, and we build the server and client
locally. So there is no network latency.

0 0.02 0.04 0.06 0.08 0.1 0.12

Per query point latency (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

of
 o

cc
ur

re
nc

e

chart

Fig. 6. Per transaction creation latency
on BigchainDB

8 8.5 9 9.5 10 10.5 11 11.5

Per query point latency (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

of
 o

cc
ur

re
nc

e

chart

Fig. 7. Per transaction query latency
on BigchainDB

The Performance of CP-ABE. We use the JPBC with the Type A elliptic
curve. Table 3 shows the performance of CP-ABE algorithm [26] for attributes
of different sizes. In this table, the notations U stands for the attribute numbers.
We set U to 4, 8, 16, 32, 64 and run the algorithm 10 times and get the average
running time for each phase.

An Encrypted Database with Enforced Access Control 271

Table 3. The running time of CP-ABE algorithm (ms)

Attributes number Setup time KeyGen time Encrypt time Decrypt time

U = 4 34.9 63.4 133.0 52.5

U = 8 38.9 103.6 255.8 102.2

U = 16 52.3 189.1 502.2 192.9

U = 32 76.2 350.6 1012.3 379.8

U = 64 124.4 685.1 2036.9 782.4

6 Conclusion

In this paper, we review the encrypted database, blockchain technology, symmet-
ric encryption and attribute-based encryption. Then, we propose a distributed
database with enforced access control and blockchain validation. Finally, we
implement a prototype system and evaluate the performance of our system in
each part.

Our scheme shows that the personal data can be stored and protected by
their data owner, which means a person can deal with their data without involv-
ing third parties in the trend of data collecting and analyzing. Finally, we discuss
several possible threats from different attacks which are proven secure. Further-
more, we want to implement this scheme with smart contracts to make it possible
for dynamic data access control, which means the data owner can share the old
data with a new member without the need to update their database.

Acknowledgments. The authors are grateful to the Inscrypt 2018 anonymous
reviewers for their helpful comments. This work is supported by the National Nat-
ural Science Foundation of China (No. 61571191), the “Dawn” Program of Shanghai
Municipal Education Commission (No. 16SG21) and the Monash-HKPU-Collinstar
Blockchain Research Lab.

References

1. Cai, C., Yuan, X., Wang, C.: Hardening distributed and encrypted keyword search
via Blockchain. In: IEEE PAC 2017, pp. 119–128 (2017)

2. Cai, C., Yuan, X., Wang, C.: Towards trustworthy and private keyword search in
encrypted decentralized storage. In: IEEE ICC 2017, pp. 1–7 (2017)

3. Date, C.J., Darwen, H.: A guide to the SQL Standard: A User’s Guide to The
Standard Relational Language SQL. Addison-Wesley, Boston (1989)

4. Davida, G.I., Wells, D.L., Kam, J.B.: A database encryption system with subkeys.
ACM Trans. Database Syst. 6(2), 312–328 (1981)

5. Davida, G.I., Wells, D.L., Kam, J.B.: Database Encryption and Decryption Circuit
and Method Using Subkeys. U.S. Patent 4,375,579 (1983)

6. Delfs, H., Knebl, H.: Symmetric-key encryption. Introduction to Cryptography, pp.
11–31 (2007)

272 Z. Sui et al.

7. Friedlmaier, M., Tumasjan, A., Welpe, I.: Disrupting industries With Blockchain:
the industry. Venture Capital Funding, and Regional Distribution of Blockchain
Ventures (2016). Accessed 16 Jan 2017

8. Han, J., Haihong, E., Le, G., Du, J.: Survey on NoSQL Database. In: IEEE ICPCA
2011, pp. 363–366 (2011)

9. Hecht, R., Jablonski, S.: NoSQL evaluation: a use case oriented survey. In: IEEE
ICCSC 2011, pp. 336–341 (2011)

10. Information is Beautiful: World’s Biggest Data Breaches (2018). http://www.
informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

11. Kamara, S., Lauter, K.: Cryptographic cloud storage. In: Sion, R., Curtmola, R.,
Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) FC 2010. LNCS,
vol. 6054, pp. 136–149. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14992-4 13

12. Lai, S., et al.: Result pattern hiding searchable encryption for conjunctive queries.
In: ACM CCS 2018, pp. 745–762 (2018)

13. Lee, C.: Litecoin (2011). https://litecoin.org
14. Lei, A., Cruickshank, H., Cao, Y., Asuquo, P., Ogah, C.P.A., Sun, Z.: Blockchain-

based dynamic key management for heterogeneous intelligent transportation sys-
tems. IEEE Internet Things J. 4(6), 1832–1843 (2017)

15. Lomas, N.: Everledger is Using Blockchain to Combat Fraud, Starting with Dia-
monds (2015). https://techcrunch.com/2015/06/29/everledger

16. McConaghy, T., et al.: BigchainDB: A Scalable Blockchain Database
(2016). https://mycourses.aalto.fi/pluginfile.php/378362/mod resource/content/
1/bigchaindb-whitepaper.pdf

17. Mettler, M.: Blockchain technology in healthcare: the revolution starts here. In:
IEEE HealthCom 2016, pp. 1–3 (2016)

18. Miller, F.P., Vandome, A.F., McBrewster, J.: Advanced Encryption Standard.
Alpha Press, Orlando (2009)

19. MySQL, A.: MySQL Database Server (2004). http://www.mysql.com
20. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). https://

bitcoin.org/bitcoin.pdf
21. Popa, R.A., Redfield, C., Zeldovich, N., Balakrishnan, H.: CryptDB: protecting

confidentiality with encrypted query processing. In: ACM SOSP 2011, pp. 85–100
(2011)

22. Shmueli, E., Vaisenberg, R., Elovici, Y., Glezer, C.: Database encryption: an
overview of contemporary challenges and design considerations. ACM SIGMOD
Record 38(3), 29–34 (2010)

23. Sun, S.F., et al.: Practical backward-secure searchable encryption from symmetric
puncturable encryption. In: ACM CCS 2018, pp. 763–780 (2018)

24. Wang, C., Chow, S.S., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public
auditing for secure cloud storage. IEEE Trans. Comput. 62(2), 362–375 (2013)

25. Wang, J., Chen, X., Sun, S.-F., Liu, J.K., Au, M.H., Zhan, Z.-H.: Towards efficient
verifiable conjunctive keyword search for large encrypted database. In: Lopez, J.,
Zhou, J., Soriano, M. (eds.) ESORICS 2018, Part II. LNCS, vol. 11099, pp. 83–100.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98989-1 5

26. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
https://doi.org/10.1007/978-3-642-14992-4_13
https://doi.org/10.1007/978-3-642-14992-4_13
https://litecoin.org
https://techcrunch.com/2015/06/29/everledger
https://mycourses.aalto.fi/pluginfile.php/378362/mod_resource/content/1/bigchaindb-whitepaper.pdf
https://mycourses.aalto.fi/pluginfile.php/378362/mod_resource/content/1/bigchaindb-whitepaper.pdf
http://www.mysql.com
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-319-98989-1_5
https://doi.org/10.1007/978-3-642-19379-8_4

An Encrypted Database with Enforced Access Control 273

27. Zuo, C., Sun, S.-F., Liu, J.K., Shao, J., Pieprzyk, J.: Dynamic searchable symmetric
encryption schemes supporting range queries with forward (and backward) security.
In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018, Part II. LNCS, vol.
11099, pp. 228–246. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98989-1 12

28. Zyskind, G., Nathan, O., et al.: Decentralizing privacy: using Blockchain to Protect
Personal Data. In: IEEE SPW 2015, pp. 180–184 (2015)

https://doi.org/10.1007/978-3-319-98989-1_12
https://doi.org/10.1007/978-3-319-98989-1_12

Using Blockchain to Control Access
to Cloud Data

Jiale Guo1, Wenzhuo Yang1, Kwok-Yan Lam1(B), and Xun Yi2

1 Nanyang Technological University, Singapore, Singapore
kwokyan.lam@ntu.edu.sg

2 RMIT University, Melbourne, Australia
xun.yi@rmit.edu.au

Abstract. As cloud storage becomes more common, data security is an
increasing concern. In this paper, we propose a new approach to control
access to the user’s data stored in the cloud with the state-of-the-arts
decentralized blockchain technology. In general, an access control solu-
tion for cloud data involves three components: authentication, authoriza-
tion and auditing. It is expensive for the cloud server to ensure authenti-
cation, authorization and auditing for access control of the user’s data in
cloud computing environment. In addition, it is hard to prevent the mali-
cious cloud server from access to the user’s data and disclose the user’s
privacy. Our approach distributes the access control tasks for authenti-
cation, authorization and auditing to a network of nodes like bitcoin. In
particular, we keep the auditing records in the transparent blockchain.
In addition, we employ the Shamir secret sharing scheme to manage the
encryption key for cloud users.

Keywords: Access control · Blockchain · Cloud computing ·
Shamir secret sharing

1 Introduction

Companies have been increasing their use of services like Google Drive for some
time, and lots of individual users also store files on Dropbox, Box, Amazon Drive,
Microsoft OneDrive and the like. They are no doubt concerned about keeping
their information private. Millions more users might store data online if they
were more certain of its security.

A complete access control solution for cloud data involves three components
[9]: authentication, authorization and auditing. Authentication refers to unique
identifying information from each data user, generally in the form of a user-
name and password. System administrators monitor and add or delete authorized
users from the system. Authorization refers to the process of adding or deny-
ing individual user access to a computer network and its resources. Users may
be given different authorization levels that limit their access to the cloud data.
Authorization determination may be based on geographical location restrictions,
c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 274–288, 2019.
https://doi.org/10.1007/978-3-030-14234-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_15

Using Blockchain to Control Access to Cloud Data 275

date or time-of-day restrictions, frequency of logins or multiple logins by single
individuals or entities. Other associated types of authorization service include
route assignments, IP address filtering, bandwidth traffic management and
encryption. Auditing refers to the record-keeping and tracking of user activi-
ties on a computer network. For a given time period this may include, but is not
limited to, real-time auditing of time spent accessing the cloud data, the net-
work services employed or accessed, capacity and trend analysis, network cost
allocations, billing data, login data for user authentication and authorization,
and the data or data amount accessed or transferred.

Data stored in the cloud is usually in an encrypted form that would need
to be decrypted before anyone could read the information. Commercial cloud
storage systems encrypt each user’s data with a specific encryption key. The
decryption key can be stored either by the service itself, or by individual users.
Most services keep the key themselves, letting their systems see and process user
data, such as indexing data for future searches. These services also access the
key when a user logs in with a password, unlocking the data so the person can
use it. However, it is not secure enough. Just like regular keys, if someone else
has them, they might be stolen or misused without the data owner knowing.
And some services might have flaws in their security practices that leave users’
data vulnerable.

A few less popular cloud services, including Mega [5] and SpiderOak [11],
require users to upload and download files through service-specific client appli-
cations that include encryption functions. That extra step lets users keep the
encryption keys themselves. These services are not perfect - there is still a
possibility that their own apps might be compromised or hacked, allowing an
intruder to read your files either before they are encrypted for uploading or after
being downloaded and decrypted. An encrypted cloud service provider could
even embed functions in its specific app that could leave data vulnerable.

To maximize cloud storage security, it is best to combine the features of these
various approaches. Before uploading data to the cloud, first encrypt it using your
own encryption software. Then upload the encrypted file to the cloud. To get
access to the file again, log in to the service, download it and decrypt it yourself.
However, this prevents users from taking advantage of many cloud services, like
sharing documents with other cloud users.

For people who do not want to learn how to program their own tools, there
are two basic choices: Find a cloud storage service with trustworthy upload and
download software that is open-source and has been validated by independent
security researchers. Or use trusted open-source encryption software to encrypt
your data before uploading it to the cloud.

In current cloud data storage systems, there are the following common data
security and performance issues:

– A single point failure: Cloud data storage is a centralized solution. Authen-
tication, authorization and auditing are managed by the cloud server. If the
cloud server is compromised by an attacker, the privacy of user data will be
disclosed.

276 J. Guo et al.

– Data ownership: Data users do not own their data once uploading it to the
cloud. The cloud server has full access to the data of users. Malicious cloud
server may even disclose the user data to the third party.

– Data transparency and auditability: Data users do not have transparency
over what data is being collected about him and how they are accessed.

– Cost: It is expensive for the cloud server to comply with all data security
requirements and keep all security audit.

To address these issues, in recent years, some efforts [6,7,14] started using a
disruptive technology for the access control, namely blockchain. The blockchain
is a public, decentralized, Byzantine fault-tolerant and immutable ledger, where
registers are appended in a chronological order [12]. It was already employed in a
plenty of areas [13], like cryptocurrencies, transportation systems, management
of medical records, decentralization of the Web, predictions and applications
platforms. The main advantages of the blockchain are no downtime, no censor-
ship, no fraud and no third-party interference.

FairAccess [6,7] is an access control framework based on blockchain. In this
framework, the blockchain is used todistribute access tokens using smart contracts.
However, their proposal has some issues, like the support to token-based authoriza-
tions only, necessity of contact with the owner of the resource for each new access or
each token expiration, the high time cost involved in getting an access permission
and the lack of integration of the access control with a proper relationship network
that has a big importance in a collaborative and integrated IoT.

Zyskind et al. [14] proposed a protocol that turns a blockchain into an auto-
mated access-control manager that does not require trust in a third party. Unlike
Bitcoin, transactions in their system are not strictly financial - they are used to
carry instructions, such as storing, querying and sharing data. Their framework
focuses on ensuring that users own and control their personal data. As such, the
system recognizes the users as the owners of the data and the services as guests
with delegated permissions. Each user has complete transparency over what data
is being collected about her and how they are accessed. One major concern with
mobile applications is that users are required to grant a set of permissions upon
sign-up. These permissions are granted indefinitely and the only way to alter the
agreement is by opting-out. Instead, in their framework, at any given time the
user may alter the set of permissions and revoke access to previously collected
data.

Our Contributions
In this paper, we propose a new approach to control access to the user’s data
stored in the cloud with the state-of-the-arts decentralized blockchain technology.
Our approach distributes the access control tasks for authentication, authoriza-
tion and auditing to a network of nodes like Bitcoin. In particular, we keep the
auditing records in the transparent blockchain.

Our work is mainly motivated by [14]. Like [14], our access control approach
is also built on blockchain. Unlike [14], we have different algorithms for policy
and access transaction generation and verification. In addition, we employ the
Shamir secret sharing scheme [10] to manage the encryption keys for cloud users.

Using Blockchain to Control Access to Cloud Data 277

The rest of the paper is arranged as follows. We introduce our models in
Sects. 2 and 3, describe our protocols in Sect. 4 and cloud data access control in
Sect. 5. The security and performance analysis is carried out in Sect. 6. Conclu-
sions are drawn in the last section.

2 System Model

2.1 Overview

Our system can be modeled with four main parts as shown in Fig. 1. Cloud
data storage server - an encrypted database storing the data from the users;
Cloud security servers (SS) - multiple servers keeping the encryption key pieces
in a distributed way; User group - including data owner (O) and data user (U),
data owner sends the encrypted data and encryption key pieces to the cloud
data storage and security severs, respectively. Data user can download the data
from the cloud, but only when they get the permission to have encryption key,
the corresponding data can be decrypted. Blockchain - recording data usage
transactions, verifying the data access control policy and maintaining the audit
information of the system. In the following sections, we introduce the function
of each part in details.

Fig. 1. Overview of our system model

278 J. Guo et al.

2.2 Cloud Data Storage Server

The cloud data storage server is an encrypted database storing the data from the
users. Every data owner can store their data into the cloud. Because the cloud
itself can not be trusted and everyone in the system can download the data from
the cloud, data will be encrypted before uploading to the cloud.

2.3 Cloud Security Servers

Besides the cloud data storage server, our system has multiple servers, called
Security Servers (SS). The key for the encrypted data is distributed and kept in
the multiple security servers. Each cloud security server checks the blockchain to
judge whether the user satisfies the access control policy to get the key when the
user requests for the key. If the user are verified successfully, each cloud security
server will send a key piece to the user.

2.4 User Group

As we have introduced, there are two kinds of users in our system. One type of
users is data owner (O), who can upload and update his data in the cloud data
storage server. Data owner sends access control policies (ACP) for his data to
the blockchain and signs for the access control transaction Taccess. Another type
of users is data user (U), who can download the encrypted data from the cloud
and send request to the cloud security servers for the decryption key. They also
need to send the data access transaction Tdata to the blockchain.

2.5 Blockchain

The final part is the blockchain network. There are several nodes in the network
whose role is similar to miners in bitcoin. They maintain the blockchain ledger
that verify transactions and package all of the valid transactions into blocks. We
design two kinds of transactions: the access transaction Taccess used for access
control management and the data transaction Tdata used for storing or retrieving
data. The blockchain ledger can be seen as distributed database. Cloud data
storage server and cloud security server are not blockchain nodes, but they can
query blockchain database and assist with data storage and retrieval according
to transactions in blockchain.

3 Security Model

We propose a new approach to control access to secure user’s data stored in the
cloud. As we have illustrated, the access control tasks mainly include authen-
tication, authorization and auditing. Accordingly, our security model mainly
considers how to prevent three following potential attacks.

Using Blockchain to Control Access to Cloud Data 279

The first potential attack to our system is the impersonation attack. The
impersonation attack is that an adversary pretends to be one of the legitimate
parties in the system with the goal of obtaining information or access to some
cloud data. In our system, the impersonation attack may refer that an adversary
pretends to be the legal user and wants to get identity authenticated, then he
can have an access to the data owner’s data. According to our system model,
only when the user meets three conditions, including identity verified, encrypted
data downloaded, decryption key obtained, the user can really get the data he
wants.

The second potential attack is the collusion attack. The collusion attack is
that a cooperation or conspiracy of two or more malicious parties deceive others
to obtain an objective forbidden by the system. In our system model, no matter
whether the user or the cloud data storage server wants to get the data, he need
to get the decryption key from the multiple cloud security servers, each of them
is required to check the access control policies and the identity of the user. We
assume that some cloud security servers are trusted not to collude with malicious
servers.

The third potential attack is the modification attack where the attacker who
wants to get authentication and authorization may want to modify the identity
information and access control policies in the system. Because all these infor-
mation are coded in the blocks of a blockchain, the attacker needs to change
the information in the blocks or replace blocks. The blocks are linked by hash
pointers. We assume that hash function used in the blockchain has two prop-
erties: one way and collision resistant, which means that it is computationally
infeasible to find either a data object that maps to a pre-specified hash result
(the one-way property) or two data objects that map to the same hash result
(the collision-resistant property).

The security requirement for our system is that our system must be secure
against all the above three potential attacks.

4 Protocols for Using Blockchain to Control Access
to Cloud Data

In this section, we follow our model to design some protocols for using
blockchain to control access to cloud data. Basically, there are three protocols
as follows: blockchain identity initialization protocol, access control transaction
or data transaction generation protocol and the protocol for miners dealing with
transactions. To simplify the model, we assume a single data owner (o) provides
access to m guests (u1, u2, · · · , um) respectively. Besides, suppose there are n
security servers in the system that each server maintains a piece of encryption
key for providers.

To be compatible with the existing blockchain for Bitcoin, we use Ellip-
tic Curve Digital Signature Algorithm (ECDSA) with secp256k1 curve [3].
We denote the generator, signature and verification functions as 3-tuple
(Gsig,Ssig,Vsig). And function H represents the cryptographic hash function
-SHA-256 [8].

280 J. Guo et al.

4.1 Protocol for Pseudo-identity Generation

Due to the nature of discentralization, a pseudo-identity mechanism is utilized in
permissionless blockchain. For example, a bitcoin address comprising a hashed
public key represents user’s identity. Similarly, for each access control group,
both data owners and users should initialize a public key as their access control
identity at first. Protocol 1 illustrates the identity generation procedure for data
owner (o) and users (Ui, i ∈ 1, 2, · · · ,m).

Algorithm 1. Pseudo-Identity Generation
Require: seedi(i = o, 1, 2, · · · , m)
Ensure: pko

sig, sk
o
sig, pki

sig, sk
i
sig(i = 1, 2, · · · , m)

1: (pko
sig, sk

o
sig) ← Gsig(seedo)

2: for i = 1 to m do
3: (pki

sig, sk
i
sig) ← Gsig(seedi)

4: end for
5: return pko

sig, sk
o
sig, pki

sig, sk
i
sig, (i = o, 1, 2, · · · , m)

Meanwhile, the owner needs to generate an encryption key sko
enc before grant-

ing access to other users, as the requirement of data protection. Then t out
n Shamir secret sharing scheme is employed here, data owner divide his/her
encryption key into n parts, and shares each server si with one part. A user can
reconstruct the secret key only if he/she has any t of the parts.

4.2 Protocols for Access Control Transaction

Access Control Transaction Format. To realize the access control for cloud
data, the data owner should first register legal user identities along with the
access control policies and the number of data accesses into blockchain ledger
through access control transaction Taccess shown in Fig. 2. The information is
recorded as transaction outputs of Taccess. The generation of access transaction
is restricted to the data owner.

Fig. 2. The access transaction format

Using Blockchain to Control Access to Cloud Data 281

The txid is computed by double hashing of the transaction. It can be seen
as a hash pointer used to uniquely identify a particular transaction. Besides,
the timestamp is also applied to avoid the replay attack. In bitcoin transaction
format, there are some other information such as version and lock time. To
simplify our protocol, we ignore those fields.

Before setting data access policies, the data owner should pay for this specific
service to the blockchain. It can be a bitcoin transaction. Therefore, a outputprev
is included in this TXinput for this payment. The outputiprev consists of two
fields: a hash pointer and an index (the hash pointer points to the previous
transaction and the index refers to the specific output for this payment. More-
over, the data owner also should attach his scriptSig including his signature on
the whole transaction and the corresponding public key. It can also prove the
authentication and integrity of the transaction.

In transaction output, access control policy POLICYui
states specific

approved documents and levels of access rights to a data user ui. For exam-
ple, POLICYui

={read} means that user i could read the cloud data. Then
POLICYui

will be linked to user i’s address in blockchain when miners include
this transaction into a block. The first output address should be the owner’s
address stating the ownership and privilege of the data. In one access control
transaction, data owner can grant several permissions to different authorized
users, as shown in Fig. 2. In addition, ni stands for the number of times that the
user ui can get access to the data owner’s data.

Access Control Transaction Generation. The generation of access control
transaction is restricted to the data owner and can be described as Algorithm 2.

Algorithm 2. Access Control Transaction Generation
Require: pko

sig, sk
o
sig, {pkui

sig, POLICYui , ni}(i = 1, 2, · · · ,
m), timestamp

Ensure: Taccess

1: Let TXoutput = {pko
sig, POLICYo, no}

2: for i = 1 to m do
3: TXoutput = TXoutput ‖ {pkui

sig, POLICYui , ni}
4: end for
5: Let M = {timestamp, outputprev, TXoutput}
6: Let Sigature = Ssig(sk

o
sig, M)

7: Let TXinput = {outputprev, Signature, pko
sig}

8: Let TXcontent = {timestamp, TXinput, TXoutput}
9: Compute the transaction ID txid = H

(
H(TXcontent)

)

10: Let Taccess = txid ‖ TXcontent
11: return Taccess

282 J. Guo et al.

Access Control Transaction Verification. When blockchain nodes receive
an access transaction, they should firstly verify the signature of the massage to
authenticate the data owner’s identity and make sure that the message is not
tampered as described in Algorithm 2.

Afterwards, the miners would organize it into a blockchain block followed
by involving it into the blockchain. Later, users can use data access transaction
Tdata to get access to the cloud data permitted by access control policies.

Algorithm 3. Access Control Transaction Verification
Require: Taccess

Ensure: s
1: s ← 0
2: {txid, timestamp, TXinput, TXoutput} = Taccess

3: {Sig, pko} = TXinput,
4: if Vsig(pko

sig, Sig, TXinput ‖ TXoutput) = 1 then
5: s ← 1
6: end if
7: return s

4.3 Protocol for Data Access Transaction

After the access control transaction is included in the blockchain, data user who
meets the access control policies can get access to the cloud data by submitting
a data access transaction to the blockchain network.

Data Access Transaction Format. A data access transaction Tdata is sub-
mitted to the blockchain network when the data owner or a data user wants to
upload or download data in the cloud. Figure 3 shows its format. The transaction
input refers to the previous transaction output, and includes the signature on
the whole transaction to provide authentication and integrity.

Fig. 3. The data transaction format

Using Blockchain to Control Access to Cloud Data 283

Like the access control transaction, the data access transaction contains the
identifier and timestamp. The most important thing is that the user should refer
to the related previous transaction output as a part of the transaction input, which
could be an output of the access control transaction setting access control policies
or the last data access transaction he generated. TXinput contains the signature
on the whole transaction as well to provide authentication and integrity.

The transaction output represents the access identity, policy and the rest
times user can access for the user’s next access. The access identity and pol-
icy must remain the same to the user’s input which corresponding to what the
owner granted. Unless the user is permitted to share access times with others,
he can provide other identities as output addresses. Assume that the data user
is currently allowed to get access the cloud data for � times. TXinput contains
two fields: One field is to return 1 access back to the data owner, and another
field is to reduce the number of his data access by 1. The data user must input
correct � according to the number in his/her last unspent data transaction out-
put. Otherwise, this transaction will be denied by blockchain miners to avoid
double-spending access numbers.

As all the historical accesses are recorded into the blockchain, the data owner
has a transparent and comprehensive picture of his data access history.

Data Access Transaction Generation. Data access transaction is generated
by a data user uk. The generation of a data access transaction can be described
in Algorithm 4.

Algorithm 4. Data Access Transaction Generation
Require: pko

sig, pkk
sig, sk

k
sig, POLICYk, �, timestamp

Ensure: Tdata

1: Let TXoutput = {pko
sig, POLICYk, l}

2: Let TXoutput = TXoutput‖{pkk
sig, POLICYk, � − 1}

3: Let M = {timestamp, outputprev, TXoutput}
4: Let Sigature = Ssig(sk

k
sig, M)

5: Let TXinput = {outputprev, Signature, pkk
sig}

6: Let TXcontent = {timestamp, TXinput, TXoutput}
7: Compute the transaction ID txid = H

(
H(TXcontent)

)

8: Let Tdata = txid ‖ TXcontent
9: return Tdata

Data Access Transaction Verification. Like access control transaction veri-
fication, the miners need to check the signature of data transaction. Apart from
identity authentication, they should make sure that the operations POLICYk

originator proposed is indeed allowed in the access policy and the information
in transaction output like rest access time are correct before recording it into
blockchain. The verification can be described in Algorithm 5.

284 J. Guo et al.

Algorithm 5. Data Access Transaction Verification
Require: Tdata

Ensure: s
1: s ← 0
2: {txid, timestamp, TXinput, TXoutput} = Tdata

3: {txidprevious, Sig, pkk
sig} = TXinput

4: {pk0
sig, POLICYk, 1}‖{pkk

sig, POLICYk, l − 1} = TXoutput

5: {pkk′
sig, POLICYk′ , �′} ← Parse(BC[txidprevious])

6: if pkk′
sig = pkk

sig and Vsig(pkk
sig, Sig, TXinput ‖ TXoutput) = 1 then

7: if POLICYk = POLICYk′ and l′ = l + 1 then
8: s ← 1
9: end if
10: end if
11: return s

Meanwhile, the cloud storage server and security servers, should follow the
blockchain to perform the data access control. Once data transactions are sub-
mitted into blockchain, they should prepare to address upload or download
requests from different users. It means the cloud storage server manages the
encrypted data from the owner, and have responsibility to send the required
parts to authenticated users. Besides, each of the cloud security servers should
send their piece of decryption key to the authenticated users. These messages
could be off-chain network messages in reality.

5 Cloud Data Access Control

Data upload and download are two important processes for the cloud data access
control in our system. Now we describe how the data owner uploads the data to
cloud and how the data user downloads the data from the cloud in details.

5.1 Data Upload

Before data upload, the data owner randomly chooses a 128-bit encryption key
sko

enc, and then uses the Advanced Encryption Standard (AES) algorithm [2] to
encrypt the data. After being encrypted by AES-128, the encrypted data is sent
to the cloud data storage server along with txid of the access control transaction
Taccess and his signature on the encrypted data.

Based on txid, the cloud data storage server searches for the Taccess in the
blockchain and extract the public key pko

sig of the data owner and verify the
signature of the data owner. If the signature is valid, the cloud data storage
server saves the encrypted data together with txido in the cloud.

In addition, the data owner splits the decryption key sko
enc (the encryption

key is the same as the decryption key) into n pieces according to the (t, n)
Shamir’s secret sharing scheme [10] as follows.

Using Blockchain to Control Access to Cloud Data 285

The data owner randomly chooses a polynomial

f(x) = a0 + a1x + a2x
2 + a3x

3 + · · · + at−1x
t−1 (1)

over a finite fields GF (p) where p > 2128, at−1 �= 0, and a0 denotes the decryption
key, i.e., a0 = sko

enc. Next, the data owner constructs n different points on f(x)
by setting x = 1, . . . , n and computing y = f(x). Then, the data owner sends the
point (i, f(i)) along with txido, p to the the i-th security server with the Secure
Socket Layer (SSL) protocol [4]. The security server keeps txido, p, (i, f(i)) in its
database.

5.2 Data Download

When a data user wants to get the access to the encrypted data, he must submit
a data access transaction Tdata to blockchain network for identity and access
control policy verification at first. Once the transaction is recorded in blockchain
ledger, the data user can request the encrypted data and decryption key pieces
as follows.

The data user sends txido of the access control transaction Taccess and txid
of the data access transaction Tdata with his signature on txido‖txid to the cloud
data storage server. The server searches for Tdata from the blockchain according
to txid to extract the public key pkui

sig of the data user from the transaction
Tdata, and verifies the signature of the data user. If it is authenticated, the
server searches for the encrypted data according to txido in its database and
sends the encrypted data to the data user.

Next, the data user sends txido and txid with his signature on txido‖txid to
any t out of the n security servers. Without loss of generalization, we assume that
the t security servers are the first t security servers, where each server searches
for Tdata from the blockchain according to txid to extract the public key pkui

sig of
the data user from the transaction Tdata, and verifies the signature of the data
user. If it is authenticated, the i-th security server searches for (txido, p, (i, f(i)))
according to txido in its database and sends p, (i, f(i)) to the data user through
a secure channel established between the data user and the server according
to pkui

sig.
After receiving p, (xi, f(xi)) (i = 1, 2, · · · , t) from t security servers, the data

user computes the decryption key

sko
enc = f(0) =

t∑

j=1

f(xj)
t∏

i=1
i�=j

xi

xi − xj
(mod p) (2)

Finally the data user decrypts the encrypted cloud data with the decryption
key sko

enc to obtain the cloud data.

286 J. Guo et al.

6 Security and Performance Analysis

In this section, we analyze the security and performance of our approach for
using blockchain to control access to cloud data.

6.1 Security Analysis

In our security model described in Sect. 3, we have listed three potential attacks
- the impersonation attack, the collusion attack and the modification attack - to
our system. Now we describe how our system is secure against the three attacks,
respectively, as follows:

At first, let us consider the impersonation attack to our system. The attacker
attempts to impersonate a legal user to get access to the data owner’s data. To
access to the data owner’s data, the attacker must meet the access control policies
for the legal user specified by the data owner. He has to generate a signature of
the legal user on an data access transaction and the signature must be verified
with the public key corresponding to the access control policies by the network
of nodes in the blockchain. The attacker does not have the corresponding private
key of the legal user to generate the signature. Therefore, the attacker cannot
generate a data access transaction accepted by the network of nodes and thus
he cannot impersonate any legal user to get access to the data owner’s data in
cloud.

Next, let us consider the collusion attack to our system. The attack attempts
to collude with some cloud security servers to obtain the decryption key of the
data owner. Our system makes use of the t out of n Shamir secret sharing scheme
to distribute the decryption key of the data owner to n cloud security servers. If
the attack colludes with less than t cloud security servers, he cannot obtain the
decryption key of the data owner. Therefore, the data owner’s data in the cloud
is secure if there are less than t security server collude.

At last, let us consider the modification attack. The attacker who wants
to spoof identity, modify access control policies or change other information in
the system must change the content coded in the blocks of the blockchain. As
we assume that the hash function used in the blockchain has the one-way and
collision-resistant properties. This makes it impossible to modify the blocks in
the blockchain. Once the input of the hush function has been changed, even a
little, the output must be completely different from the original one. The data
owner specifies the data access control policies to the blockchain. The nodes
in the blockchain verify the identity of the users by their signatures and check
the data access operations. All the transactions are unchangeable in blockchain
history. Therefore, our system is secure against the modification attack.

Besides, our blockchain can resist double-spending attack. The data owner
define the access policies and number of access times for data users in blockchain.
The data user is not allowed to use ta single access time twice. Because in the new
transaction input, the generator must provide legal public key and corresponding
signature to unlock the last unspent data transaction output in blockchain ledger
which indicates the access policy and the rest number of access times. Like the

Using Blockchain to Control Access to Cloud Data 287

way bitcoin miners verify a UTXO in bitcoin blockchain, in our system the
miners will maintain an unspent data access transaction output set that can be
redeemed by new transactions. Before committing a transaction into blockchain,
miners will verify the signature, access policy, the number of access times and
output information to ensure the correctness and validity of this transaction.
Therefore, our system is secure against the double-spending attack.

6.2 Performance Analysis

For our system, we have proposed protocols for pseudo-identity generation,
access control transaction generation and verification, data access transaction
generation and verification. Now we analyze their performance as follows.

In the pseudo-identity generation protocol, each user needs to generate a pair
of public and private keys for ECDSA signature generation and verification. It
requires to compute one point multiplication over elliptic curve.

In the access control transaction generation protocol, the data owner needs
to generate an ECDSA signature on access control policies. It also requires to
compute a point multiplication over elliptic curve.

In the access control transaction verification protocol, the node of blockchain
network needs to verify the ECDSA signature on access control policies. It
requires to compute two point multiplication over elliptic curve.

Like the access control transaction generation and verification protocols, the
data access transaction generation and verification protocols require the data
user to compute one point multiplication and the node of blockchain network to
compute two point multiplications.

According to [1], the generation of ECDSA signature over GF (p) (where
p ≈ 2256) takes about 0.56 ms and the verification of ECDSA signature takes
about 2.02 ms.

7 Conclusion

In this paper, we propose a new approach to control the access to the cloud data
with blockchain. Our approach distributes the access control tasks for authen-
tication, authorization and auditing to a network of nodes like bitcoin. In par-
ticular, we keep the auditing records in the transparent blockchain. In addition,
we employ the Shamir secret sharing scheme to manage the encryption key for
cloud users.

The security analysis has shown that our solution is able to prevent the
impersonation attack, the collusion attack and the modification attack. The per-
formance analysis also shown that our solution is efficient because the generation
and verification of a transaction need to compute a couple of point multiplication
over elliptic curve only.

288 J. Guo et al.

References

1. Crypto++ 6.0.0 Benchmarks. https://www.cryptopp.com/benchmarks.html
2. Daemen, J., Rijmen, V.: Rijndael, the advanced encryption standard. Dr. Dobb’s

J. 26(3), 137–139 (2001)
3. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-

rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)
4. Freier, A., Karlton, P., Kocher, P.: The secure sockets layer (SSL) protocol version

3.0, No. RFC 6101 (2011). https://tools.ietf.org/html/rfc6101
5. Mega Homepage. https://mega.nz
6. Ouaddah, A., Abou Elkalam, A., Ait Ouahman, A.: FairAccess: a new Blockchain-

based access control framework for the Internet of Things. Secur. Commun. Netw.
9(18), 5943–5964 (2016)

7. Ouaddah, A., Elkalam, A.A., Ouahman, A.A.: Towards a novel privacy-preserving
access control model based on blockchain technology in IoT. In: Rocha, Á., Serrhini,
M., Felgueiras, C. (eds.) Europe and MENA Cooperation Advances in Information
and Communication Technologies. Advances in Intelligent Systems and Comput-
ing, vol. 520, pp. 523–533. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-46568-5 53

8. National Institute of Standards and Technology (NIST). FIPS 180–2: Secure Hash
Standard (SHS), Current version of the Secure Hash Standard (SHA-1, SHA-224,
SHA-256, SHA-384, and SHA-512) (2004)

9. Sandhu, R.S., Samarati, P.: Access control: principle and practice. IEEE Commun.
Mag. 32(9), 40–48 (1994)

10. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
11. Spideroak Homepage. https://spideroak.com
12. Swan, M.: Blockchain: Blueprint for a New Economy. O’Reilly Media Inc.,

Sebastopol (2015)
13. Zheng, Z., Xie, S., Dai, H.N., Wang, H.: Blockchain challenges and opportuni-

ties: A survey. Work Pap. (2016). http://inpluslab.sysu.edu.cn/?les/blockchain/
blockchain.pdf

14. Zyskind, G., Nathan, O.: Decentralizing privacy: using blockchain to protect per-
sonal data. In: Security and Privacy Workshops (SPW), 2015 IEEE, pp. 180–184.
IEEE (2015)

https://www.cryptopp.com/benchmarks.html
https://tools.ietf.org/html/rfc6101
https://mega.nz
https://doi.org/10.1007/978-3-319-46568-5_53
https://doi.org/10.1007/978-3-319-46568-5_53
https://spideroak.com
http://inpluslab.sysu.edu.cn/?les/blockchain/blockchain.pdf
http://inpluslab.sysu.edu.cn/?les/blockchain/blockchain.pdf

A Multi-client DSSE Scheme Supporting
Range Queries

Randolph Loh1(&), Cong Zuo1,2(&), Joseph K. Liu1(&),
and Shi-Feng Sun1,2(&)

1 Faculty of Information Technology, Monash University, Clayton 3168,
Australia

rgloh1@student.monash.edu, {cong.zuo1,joseph.liu,

shifeng.sun}@monash.edu
2 Data61, CSIRO, Melbourne/Sydney, Australia

Abstract. We consider the need for security while providing services that are
comparable to that of traditional applications to fully exploit cloud services to its
fullest potential. While Dynamic Searchable Symmetric Encryption (DSSE)
supports such needs, we want to be able to protect against file-injection attacks.
Hence, we require forward privacy and a scheme which allows for a wide range
of searching capabilities. We propose an extension, based on the RSA problem,
to a DSSE scheme that supports range queries allowing the scheme to also
support multiple clients. Furthermore, we describe how we can further manage
clients using Attribute-Based Encryption (ABE) such that clients cannot decrypt
ciphertexts that fall outside of their access rights.

Keywords: Multi-client � Range queries � RSA �
Dynamic Searchable Symmetric Encryption

1 Introduction

Cloud services aid various types of users for their various needs at a much cheaper cost.
This compared to that of conventional systems where users must manually set-up and
maintain such systems. The cost and convenience of being able to access these services
when and wherever contributed to the large reliance on cloud services. This is espe-
cially true for data storage facilities where users opt to save what may be private
information in the cloud because of its perks. This led to the need for additional
security features s.t only authorized parties are allowed access to the stored informa-
tion. Namely to encrypt the data before storing it on the cloud. This requires an efficient
method to retrieve information when needed. Hence the introduction of Searchable
Encryption (SE) where a user can efficiently retrieve a specific piece of information
from the encryption data.

As defined by Kamara and Lauter [1], SE schemes hide search indices which are
only retrieved by a legitimate user who can produce a token through a proposed query
or keyword. Although this can result in information such as search patterns given a
query and its results being accessible by a potential adversary, that is the extent of it.
We can classify SE schemes into two main types, used for different purposes.

© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 289–307, 2019.
https://doi.org/10.1007/978-3-030-14234-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_16

Searchable Symmetric Encryption (SSE) which assumes a single data owner/client,
uses the same key to encrypt and decrypt data. Asymmetric Searchable Encryption
(ASE) which assumes a data owner and a separate client, uses a pair of keys to encrypt
and decrypt data.

In this paper we assume the case of a single data owner with multiple clients or
users, hence the need for the ability to allow other clients or users to perform searches
over the encrypted data. This was introduced as an extension of SSE by Curtmola et al.
[2], the multi-user searchable encryption scheme (MSSE) which makes use of broad-
cast encryption schemes. Moving forward with the advancements of SSE schemes,
support for conjunctive searches and other querying capabilities have been imple-
mented on top of past schemes which were mainly single-keyword search schemes.
Just as multi-user or multi-client schemes such as the Multi-Client SSE scheme
(MC-SSE), as referred to by Jarecki et al. [3], that extends an SSE scheme capable of
Boolean queries, the Oblivious Cross-Tags protocol (OXT) by Cash et al. [4], to
support multiple clients.

Our Contributions. We contribute by further extending the DSSE scheme by Zuo
et al. [5] to a scheme that supports multiple clients by leveraging on the RSA problem.
Thus, creating a multi-client forward secure DSSE scheme that supports range queries.
Our extension only requires the data owner to generate a client key during the initial
setup phase like the non-interactive multi-client SSE scheme of Sun et al. [6]. Meaning
clients will not need to the probe the data owner for search token every time they wish
to perform a query.

We also note the use of Attribute-Based Encryption (ABE) can further control a
user’s access rights. A user may be able to perform queries for a file and retrieve its
encrypted ciphertext. However, if the user does not satisfy a predetermined policy, the
user will not be able to decrypt the ciphertext to retrieve the file.

1.1 Related Works

The first SSE scheme introduced by Song et al. [7] was a scheme that supported
searches over encrypted data using a single keyword. As previously mentioned the
scheme assumes a single data owner who also acts as the client. Revisiting the topic,
there have been numerous improvements made to SSE schemes. Such as multi-user
capabilities of a scheme and adaptive and non-adaptive security the which was formally
defined by Curtmola et al. in [2].

The OXT protocol of Cash et al. [4] was a base for many schemes [3, 6, 8–14]
which seek to leverage some of its properties, the support for Boolean queries and its
scalability in supporting large databases. These include additions for dynamic capa-
bilities [8, 13] and extending searches to include range and sub-string queries [10]. As
well as applying the protocol in a multi-client setting [3, 6, 9, 11–13].

A desirable strong property of DSSE schemes is forward privacy, which seeks to
limit information leaked from update operations as stated by Stefanov et al. [15]. Bost’s
Ro/o1 scheme is a forward private SSE scheme which seeks performance efficiency
[16]. Zuo et al. further extended Ro/o1, which originally performs single keyword
searches, to support range queries [5]. Bost et al. also proved forward security against
malicious servers [17].

290 R. Loh et al.

MSSE or MC-SSE schemes can be split into interactive and not interactive
schemes. Interactive schemes require the data-owner to take part in the generation of
search tokens, as in the scheme proposed by Jarecki et al. where the data-owner is
required to check if the queries performed by a client complies with a predetermined
policy [3]. Non-interactive schemes only require the data-owner to perform a function
of sorts one time initially, this can be the distribution of search keys between a group of
clients through key sharing like the scheme proposed by Kasra K. et al. [12] or the
distribution of keys based on a client’s given permission as by Sun et al. [6].

1.2 Organization

The remaining sections of this paper are organized as follows. Section 2 forms a base
through limited information and definitions. We present our construction in Sect. 3
with details for the base of our construction explaining the scheme in [5]. We provide
our security analysis in Sect. 4. We propose a possible improvement to our con-
struction in Sect. 5. Finally concluding in Sect. 6.

2 Preliminaries

This section provides information on the notations used in our construction. It also
includes a brief description of the assumption to the problems and definitions which our
construction is based on.

2.1 Notation

We present here the notations used in this paper as described in the following Table 1.

Table 1. Notations.

Notation Description

1k A security parameter

indi File index of the ith file
Wi A set of keywords corresponding to the ith file

DB ¼ indi;Wið Þdi¼1 A database of file indices and keyword-set pairs

ABT An assigned binary tree
BT A binary tree
CBT A complete binary tree
d Depth of a binary tree
e Encrypted file index
F A pseudorandom function (PRF)
K A key randomly sample from the security parameter and used in PRF F
Kn Result of PRF F for a node n
m Maximum range of values starting from 0 to m� 1.

A set of values of co-domain to a set of value in group D

(continued)

A Multi-client DSSE Scheme Supporting Range Queries 291

2.2 Hardness Assumption

Our construction relies on the hardness of the Decisional Diffie-Hellman
(DDH) problem and the RSA problem for its security. We follow the definitions in
[6] as follows.

Definition 1 (DDH Problem). For a cyclic group of prime order p, G, the DDH
problem can differentiate, for a group of elements g in the cycle group G g 2 Gð Þ, a set
of values g; ga; gb; gab

� �� �
from g; ga; gb; gz

� �� �
where a; b; z belong to Zp a; b;ð

z 2 ZpÞ. The advantage for any probabilistic polynomial time (PPT) distinguisher D is
defined as

AdvDDHD;G kð Þ ¼ Pr D g; ga; gb; gab
� � ¼ 1

� �� Pr D g; ga; gb; gz
� � ¼ 1

� ��� ��
s.t the DDH assumption holds for any PPT distinguisher D of advantage AdvDDHD;G kð Þ to
be negligible in k.

Definition 2 (Strong RSA Problem). For large primes numbers p and q of k-bits,
p ¼ 2qþ 1 and q ¼ 2pþ 1 for some primes p; q. Let N be the product of p and q
N ¼ p � qð Þ. Of a random element in Z

�
n, g, when values N; gð Þ are entered into an

algorithm as inputs the resulting outputs are z; eð Þ s.t ze ¼ gmod N, the RSA problem is
resolved.

Table 1. (continued)

Notation Description

norg; nnew An original node norg and a new node nnew
N A map which is used to store a search token and counter value pair of a

node
NSet A set of nodes, containing all nodes from the root node to the specified

leaf node
PBT A perfect binary tree
R A set of value in a group for trapdoor permutation operations
RSet A minimum set of nodes needed to conduct a search
STc Current search token for a node
T A map which is used to store the encrypted database EDB
TPK;TSKð Þ Trapdoor permutation keypair where TPK is the public key and TSK is

the secret key.
UTc Current update token for a node
v A value s.t 0� v\m
VBT A virtual binary tree
r Current state of the EDB
A B Set value of B to A

a $ A Uniformly sample a random element a from A

A a½ � Retrieve value at a from A
a; b½ � Defining a range of values starting from a to b

292 R. Loh et al.

2.3 Pseudorandom Functions

We follow the definition in [6] for a pseudorandom function (PRF), PRF F maps inputs
K;Xð Þ to an output Y s.t F : 0; 1f gk�X ! Y . Of all adversaries A with advantage
defined as

AdvPRFF;A kð Þ ¼ Pr AF K;�ð Þ 1k
� �h i

� Pr Af �ð Þð1kÞ
h i��� ���

where the advantage AdvPRFF;A kð Þ is negligible in k where K is randomly sampled from

0; 1f gk K $ 0; 1f gk
	

and f a random function from X to Y .

2.4 Trapdoor Permutation

We follow the trapdoor permutation (TDP) P as defined in [5] that for a set group R a
permutation occurs s.t (1) for any value in the set group R, computing P is relatively
easy with the public key, and (2) for any value belonging to the co-domain ,
performing inverse P�1 is relatively easy only if a matching secret key is known. The
set of algorithms are as follows.

• TPK;TSKð Þ TKeyGen 1k
� �

: For a security parameter 1k as input, output a pair of
cryptographic keys, public key TPK and secret key TSK.

• y P TPK; xð Þ: For public key TPK and value x as input, output y. Where x is a
value that belongs to R and y a value that belongs to .

• x P�1 TSK; yð Þ: For secret key TSK and value y as input, output x. Where x is a
value that belongs to R and y a value that belongs to .

2.5 Searchable Symmetric Encryption

We define a database (DB) to be made of index/keyword pairs s.t DB ¼ indi;ðð WiÞdi¼1Þ,
where indi is the index of a file while Wi is the keyword of indi at i. We also note W as
the set of unique keywords s.t (W ¼ [d

i¼1WiÞ and Wj j the total number of said key-
words. For D as the number of documents in DB, N to be the number of
document/keyword pairs s.t N ¼PD

i¼1 Wij j
� �

. Additionally, we also note DB wð Þ to be
a set of documents that corresponds to the keyword w where w is from set W w 2 Wð Þ.

We follow the definition of a dynamic searchable symmetric encryption (DSSE)
scheme as in [16] where for a DSSE scheme D consists of three algorithms: Setup,
Search, Update; (D ¼ Setup; Search;Update) defined as follows.

• EDB;K; rð Þ Setup DB; 1k
� �

: For a database DB and security parameter 1k as
input, output a corresponding encrypted database EDB, a key K and a client state r.

• Eð Þ Search EDB;K; r; qð Þ: For an encrypted database EDB, key K, client state r
and query q as input, output E s.t E is the set of encrypted indices of DB wð Þ and e to
be the encrypted index of each document in E (e 2 E).

A Multi-client DSSE Scheme Supporting Range Queries 293

• EDB
0
; r0

� � Update EDB;K; r; op; inð Þ: For an encrypted database EDB, key K,
client state r, operation op and input in as input, output an updated encrypted
database EDB

0
and updated client state r0. Where op can be an addition or deletion

of an index (op ¼ addjdelÞ and in which is parsed index/keywords pair ind;wð Þ s.t
w is a set of keywords that corresponds to the specified ind.

2.6 Security Definition

We follow the definition as provided by Bost in [16]. Where forward privacy (a strong
property of the SSE leakage function of DSSE schemes) is concern with hiding the
relationship between changes made to a document and keywords that were previously
queried. Bost gave a formal definition as follows.

Definition 3 (Forward Privacy). A L-adaptively-secure DSSE scheme D supports
forward privacy if the update leakage function LUpdt reflects the below equation

LUpdt op; inð Þ ¼ L0 op; indi; lið Þf gð Þ

where the set of modified documents indi; lið Þf g accompanies li number of modified
keywords for the updated document indi.

Following from which the definition by Zuo et al. in [5] extends Definition 3
through the use of games DSSERealDA 1k

� �
and DSSEIdealDA;S 1k

� �
. Where

DSSERealDA 1k
� �

is equal to the DSSE scheme D and DSSEIdealDA;S 1k
� �

simulated
using information leaked from D. We denote the leakage function as
L ¼ LStp;LSrch;LUpdt� �

, describing information leaked to adversary A. For a pair of
games that are indistinguishable, we say that A will not gain other information except
that which can be deduced from L. We describe the games as follows.

• DSSERealDA 1k
� �

: For a DB chosen by A, generate a corresponding EDB through
the real setup algorithm Setup DB; 1k

� �
. A can then perform searches or update

operations repeatedly. The game returns operation results to A. A will eventually
output a bit.

• DSSEIdealDA;S 1k
� �

: For a DB chosen by A, generate a corresponding EDB through

a simulated setup algorithm S LStp DB; 1k
� �� �

. Then using L, simulate search results

S LSrch qð Þ� �
and update results S LUpdt op; inð Þ� �

can then perform searches or
update operations repeatedly. The game returns operation results to A. A will
eventually output a bit.

Definition 4 (L-adaptively-secure). A DSSE scheme D is L-adaptively-secure if, for
every PPT adversary A, there exists an efficient simulator S s.t

Pr DSSERealDA 1k
� �� �� Pr DSSEIdealDA;S 1k

� � ¼ 1
h i��� ���� negl 1k

� �

is negligible for the security parameter 1k.

294 R. Loh et al.

2.7 Binary Tree

We describe the construction of a binary tree (BT) in [5], a BT may consist of a number
of nodes and every node can have at most 2 child nodes and may or may not have a
parent node. Each child node is connected to its parent via an edge. The root node, the
highest node in a BT, does not have a parent. In this paper, we denote nodes in a BT as
follows. The highest node as root, its children as root.left and root.right. The parent of
these nodes is the node root can also be written as root.left.parent and root.right.parent
respectively (s.t root = root.left.parent = root.right.parent). Finally, we call nodes at
the lowest depth of the BT as leaf nodes.

We call a BT with a depth of d (must not be less than 0), which has the maximum
possible number of children nodes from the root node of depth 0 to d � 1 but may not
have the maximum possible number of leaf nodes at depth d in the BT filled, a
complete binary tree (CBT). Whereas a BT with a depth of d, which has the maximum
possible number of children nodes from the root node of depth 0 to d � 1 and has the
maximum possible number of leaf nodes at depth d in the BT filled, is a special CBT
we call a perfect binary tree (PBT). We call a CBT that has been assigned values an
assigned binary tree (ABT) and a copy of a CBT that has not been assigned values a
virtual binary tree (VBT). Note that values are assigned to from the left most leaf node
to the right most leaf node.

2.8 Binary Database

We describe the construction of a binary database (BDB) as in [5]. In a BT, every node
in the BT can be represented as a keyword/file indices pair. For BT with a depth of d,
each node that does not belong to d will also be associated to file indices of its children.
As such, for a range query [0, 3] that consists the following values (0, 1, 2, 3) only a
node at depth d � 2 is required to return all file indices that falls within that range.
Additionally, for a range query [0, 2] that consists of the following values (0, 1, 2) two
nodes are needed to satisfy this query (Fig. 1 and Table 2).

Fig. 1. Binary Tree architecture. (Binary tree of depth 3)

A Multi-client DSSE Scheme Supporting Range Queries 295

2.9 Binary Tree Construction

The construction method of a BT in [5], we call T, is made of five algorithms which are
used to support the BDB. These are: TCon, TAssign, TAssignSub, TGetNodes,
TUpdate; (T = TCon, TAssign, TAssignSub, TGetNodes, TUpdate) defined as follows.

• CBT TCon mð Þ: For an integer m as input, output a complete binary tree CBT s.t
CBT has a depth of logmd e and all leaf nodes are associated with m consecutive
integers.

• ABT TAssign CBTð Þ: For a complete binary tree CBT as input, output an
assigned binary tree ABT s.t nodes within the ABT are labelled appropriately with
an integer value and are then assigned keywords.

• ABT TAssignSub CBT; cð Þ: For a complete binary tree CBT and counter c as
input, output an assigned binary tree ABT s.t the operates as a recursive function,
assigning integer values to nodes incrementally, starting from 0.

• NSet TGetNodes ABT; nð Þ: For an assigned binary tree ABT and an integer m as
input, output a set of nodes NSet s.t all nodes from node n to the root node is
identified and placed in the set.

• CBT
0 TUpdate add; v;CBTð Þ: For an operation add, an integer v and a complete

binary tree CBT as input, output an updated complete binary tree CBT
0
. To simplify

the operation, we consider integer v to be one value larger than the maximum range
of values in the CBT. Note TUpdate can be ran as many times as the difference in
the value of v and maximum range of values in the CBT if it is many times larger.

We wish to mention that the update operation TUpdate changes its behavior
depending on integer v to respond to situations specified in [5] as follows.

• CBT ¼ ?: When the input CBT is not existing, integer v is set to 0 and is associated
with a newly created node denoted as nn. This new node, now the updated com-
pleted database CBT

0
, is returned from the operation.

• CBT ¼ PBT or has a depth of 0: When the input CBT is a PBT or has a depth of 0
(only consisting of a single node), a virtual binary tree (VBT) needs to be created
expanding the BT to accommodate more values. The CBT and VBT are merged
under a newly created root node. Integer v is then associated with the left most node
of the VBT and its parent nodes are set to real. Where in Fig. 2 (a) for v ¼ 4, a VBT

Table 2. Binary database distribution of values.

Nodes Values File indices

n0 0 f0
n1 0; 1 f0; f1; f2; f3
n2 1 f1; f2; f3
n3 0; 1; 2; 3 f0; f1; f2; f3; f4
n4 2
n5 2; 3 f4
n6 3 f4

296 R. Loh et al.

with nodes n8�14 is created and merged under the new root node n7, node n8 has
been assigned the value 4 and its parents are set to real, denoted with solid lines.

• Otherwise, the integer v is then associated with the left most virtual node of the
existing CBT and its parent nodes are set as real. Where in Fig. 2 (b) for v ¼ 5,
the left most node of the existing CBT node n9 has been assigned the value 5 and its
parents are set to real, denoted with solid lines.

3 Multi-client DSSE with Range Queries

In general, for a DB defined in Sect. 2.5, when a user searches for a file using a
keyword will return all file indices corresponding to that keyword. In range queries, it
is noted that a given file can only be associated with a single keyword. Additionally, a
set of values can be used to represent keywords where for m as the maximum number
of values in the set, a query can be of range 1 to m written as [0, m� 1]. This results in
the query returning all file indices for each value of the specified range, which is not
efficient. Hence the solution proposed by Zuo et al. in [5], employed a binary tree
(BT) and binary database (BDB), Sects. 2.7 and 2.8 respectively.

We provide a short description of the basic construction in the following section,
please refer to the original work for more details [5]. We present our construction in
Sect. 3.2. Our construction makes use of the RSA problem to extend the original
scheme while preserving the base scheme’s original capabilities into a multi-client
DSSE scheme.

3.1 Basic Construction

We look into the DSSE for range queries as in [5] which is an enhancement based on
the combination of the schemes in [10, 16]. The Ro/o1 scheme proposed by Bost in
[16] is a forward secure searchable encryption scheme while Faber et al. in [10]
describe a method to conduct range queries.

Fig. 2. Update operation example [5]. The binary tree updates (a) for v ¼ 4 and (b) for v ¼ 5.

A Multi-client DSSE Scheme Supporting Range Queries 297

The DSSE scheme, construction A, proposed by Zuo et al. applies the BT described
in Sect. 3.1 to the Ro/o1 scheme. It resulted in a DSSE scheme that is forward-secure
and supports range queries. The scheme, we call CA, consists of three main
algorithms/protocols: Setup, Search, Update; (CA ¼ Setup; Search;Update) defined as
follows.

• TPK;TSK;T;N;m;Kð Þ Setup 1k
� �

: For a security parameter 1k as input, output
a pair of TDP keys TPK;TSKð Þ, maps T;Nð Þ, integer m and a key K. Where the
TDP keys, the public key (TPK) is given to the server and the secret key (TSK) is
held by the client. Map T, which is the EDB, maps the encrypted file indices
denoted as e to a corresponding update token (UT). Map N maps a search
token/counter pair ST ; cð Þ to its corresponding node n. The integer m is maximum
number of values in the range. Key K is the key for a PRF function denoted as F.

• IND Search a; b½ �; r;T;m;Kð Þ: For a set of values a; b½ �, state r, map T, integer
m and key K as input, output a set of indices IND. Where a; b½ � defines the range of
file indices to be retrieved and m defines the maximum value in the range s.t
0� a� b�m. We denote the current state of the EDB as r and MinNodes() as an
operation to find the minimum set of nodes (RSet) needed for a given range. For
each node n in RSet a corresponding tuple of parameters comprising of the output
of PRF F as Kn, search token of the current node denoted as STc and counter
c Kn; STc cð Þ is sent to the server. The server then searches map T to retrieve a
corresponding file index ind and returns it to the client for each tuple of parameters
it received s.t IND is a collection of ind (ind returned individually).

• T0 Update add; v; ind; r;T;m;Kð Þ: For an operation add, an integer v, a file
index ind, current EDB state r, map T, integer m and key K as input, output map T0

s.t T0 is an updated version of map T. Where the operation add signifies an addition
of file index ind to a node associated to the value of integer v for a range of values
with a maximum of m values.

We wish to mention that the update operation Update changes its behavior
depending on integer v to respond to situations specified in [5] as follows.

• v ¼ m: When v is equal to m, the client needs to perform a transformation of sorts to
the BT to accommodate a new node for the operation. Where (1) the new node
which can be a virtual node and all nodes in the path from the root node to
the virtual node to be assigned is now set to real (we denote this set of nodes as the
NSet) or (2) a VBT is created to merge with the existing BT thereby expanding it, as
described in Sect. 2.9 followed by (1). If a new root node (rootN) is created when
expanding a BT the contents of the previous BT, the original root (rootO), needs to
be added to the new expanded BT.

• v\m: When v is smaller than m, the client simply performs the operation on an
existing node in the BT. The operation affects all nodes from the root node to the
node associated with the value of v.

298 R. Loh et al.

• v[m: When v is larger than m, the update operation is repeated for as many times
as the difference in the value of v and m as described in Sect. 2.9. For simplicity,
integer v is assumed to be one value larger than m.

3.2 Multi-client DSSE with Range Queries

Here we extend the CA scheme to support multiple clients. We call this extension, MC-
CA, Algorithm 1. We present the MC-CA scheme as a collection of the algorithms/
protocols: Setup, Search, Update, ClientKeyGen; (MC-CA ¼ Setup; Search;Update;
ClientKeyGen). Where changes have been made to the CA scheme to support multiple
clients with an additional ClientKeyGen algorithm which generates a key for a
potential client reader. These changes are shown as red text in Algorithm 1. The
algorithms are described as follows.

Original Algorithms

• TPK;TSK;T;N;m;Kð Þ Setup 1k
� �

: For a security parameter 1k as input, output
a pair of trapdoor permutation (TDP) keys TPK;TSKð Þ, maps T;Nð Þ, integer m and
a key K. This algorithm remains unchanged from the CA scheme.

• IND Search a; b½ �; r;T;m;K;Kcð Þ: For a set of values a; b½ �, state r, map T,
integer m, keys K and Kc as input, output a set of indices IND. Where for each node
n in the RSet, the corresponding parameter Kn which is the result of PRF F is
computed differently with the addition of key Kc, discussed later in this section. The
remainder of the algorithm remains unchanged from the CA scheme.

• T0 Update add; v; ind; r;T;m;Kð Þ: For an operation add, an integer v, a file
index ind, current EDB state r, map T, integer m and key K as input, output map T0

s.t T0 is an updated version of map T. Where for each node n in the NSet, the
corresponding parameter Kn which is the result of PRF F is computed differently,
discussed later in this section. The remainder of the algorithm remains unchanged
from the CA scheme.

New Algorithm

• ClientKeyGen r;m;Kð Þ: For a state r, integer m and key K as input, results in the
state r, integer m, keys K and Kc being sent to the client. Where the current state of
the EDB is denoted as r; m, defines the maximum value in the range, key K and Kc

input parameters for PRF F. Key Kc is computed as

Kc ¼ g
1

P j
i¼1nimod N

for a set of nodes, we call KSet s.t KSet ¼ n1; n2; . . .; nj
� �

, contains the nodes that a
client is permitted to perform queries over. Its product is applied in the above equation.
The data owner sends to the client r;m;K;Kcð Þ as parameters needed to perform
searches.

A Multi-client DSSE Scheme Supporting Range Queries 299

Algorithm 1. Multi-client Extension MC-ΓA

Setup (1)
Data Owner:
Inputs: Security parameter 1
Outputs: (TPK, TSK, T, N, m,)

1:
$

← {0,1}
2: (TPK, TSK) ← TKeyGen(1)
3: Initialize T as an empty map indexed
by update token and N as an empty
map indexed by
4: 0
5: Return (TPK, TSK, T, N, m,)
ClientKeyGen (, ,)
Data owner:
Inputs: , ,

1:
1

Π =1

2: Send to client (, , ,)
Search ([,], , T, m, ,)
Client:
Inputs: [,], , m, ,
Outputs: (, ,)
1: CBT ← TCon()
2: ABT ← TAssign(CBT)
3: RSet ← MinNodes([,])
4: For each node in RSet do
5: (, Π \{ })
6: (,) []
7: If (,) ≠ ⊥ then
8: Sent to server (, ,)
9: End if
10: End for
Server:
Inputs: (, ,), T
Outputs:
1: For = 0 do
2: 1(,)
3: []
4: 2(,)
5: Return to client

6: 1 ← (TPK,)
7: End for
Update (, , , , T, m,)
Data Owner:
Inputs: , , , , m,
Outputs: (+1 , e)
1: CBT ← TCon()
2: If = then
3: CBT ← TUpdate(, ,)
4: + 1
5: If CBT added a new root node then
6: (,) []
7: [] ← (,)
8: End if
9: Get the leaf node of value
10: ABT ← TAssign(CBT)
11: NSet ← TGetNodes(, ABT)
12: For every node in NSet

13: ,
1

14: (,) []
15: If (,) = ⊥ then
16: 0 ← ℳ
17: 1
18: Else
19: +1

−1(TSK,)
20: End if
21: [] ← (, + 1)
22: +1 1(, +1)
23: 2(,)
24: Send to the Server (,)
25: End for
26: Else if < then
27: Repeat steps 9 - 25
28: End if
Server:
Inputs: (,),
Outputs: ′

1: []

300 R. Loh et al.

We bring to your attention the changes made in the generation of the PRF F output
parameter Kn. Where for a given node n we define Kn as

Kn ¼ F K; g
1
nmod N

	

s.t through modular exponentiation, Kc will return the g
1
nmod N as follows

g
1
nmod N ¼ K

Pn2Ann nf gn
c mod N ¼ g

1

P j
i¼1ni

� �Pn2Ann nf gn
mod N

where Pn2Ann nf gn is the product of all nodes which are not included in the query of the
client. For a client passing Kc to the PRF F results in producing the same Kn for a give
node n. We note that we require the values of n to be a prime number as in [6].

4 Security Analysis

In this section, we present the security analysis of our scheme. We consider the
information leakage of a basic SSE scheme (common leakage) and the security of a
DSSE scheme (adaptive security). We also examine if a client can solve the RSA
problem efficiently s.t solving the RSA problem results a client capable of forging
search requests.

4.1 Common Leakage

We consider information leakage to be between the server and a separate entity (data
owner or client). The base algorithm reflects the information leakage to the server, as in
[5] which are derived from [16], as follows.

• Search pattern sp wð Þ, several searches have been performed using keyword w.
• History Hist wð Þ, the history of operations performed on keyword w, including all

updates made to the database based on keyword wDB wð Þ.
• Contain pattern cp wð Þ, the relationship between search queries prior to keyword w.
• Time Time wð Þ, the number of updates made to the database based on keyword

wDB wð Þ and when it occurred.

Where range queries are of concern, because of how the BDB is constructed as
explained in Sect. 2.8, information can be leaked while inheriting leakage of other
keywords. This means a query for keyword w0 that falls in the range of keyword w will
results in file indices of w0 to be a subset of the file indices of w s.t cpðw) contains
cpðw0Þ.

4.2 Adaptive Security

Appropriately the security of our scheme can be derived from [5]. Proving its security
in the Random Oracle Model (ROM), while we allow slight modifications in the proof.
We describe the sketch here, please refer to the appendix for the full proof.

A Multi-client DSSE Scheme Supporting Range Queries 301

Theorem 1 (Adaptive security of MC - CA).

For;LMC-CA ¼ LSrch
MC-CA

;LUpdt
MC-CA

	

s:tLSrch

MC-CA
nð Þ ¼ sp nð Þ;Hist nð Þ; cp nð Þð Þ;

L
Updt
MC-CA

add; n; indð Þ ¼ ?

Then MC-CA is LMC-CA-adaptively-secure.

Proof (sketch). Where information leakage is the same as in [5]. The server is unable to
gain information about a keyword/file index pair that corresponds to the keyword a
client previously queried without knowledge of the secret key used in the TDP func-
tion. Even though the server performs single keyword searches and updates a
keyword/file index pair individually.

4.3 Malicious Clients

We describe here the security of MC-CA against malicious clients. Where no client can
forge a search request for a given query that was previously made to the server.

Theorem 2 (Security against malicious clients). We say MC-CA is secure against
malicious clients, that is a search request is unforgeable against adaptive attacks,
assuming the Strong RSA Problem holds.

Proof. For some non-authorized keyword n, no client can generate a valid search
request s.t g1=n mod N can only be computed with knowledge of values g and N. For an
adversary A who generates a valid search request for some non-authorized keyword n,
indicates A can find for g1=nmod N the values of g and N. We can then construct an
efficient algorithm b to solve the Strong RSA Problem with a non-negligible proba-
bility as in [6].

Choose at random a strong RSA instance N; hj
� �

where hj Z
�
n. Algorithm b runs

the Setup algorithm and extracts key K for A. Following which A creates a list of
nodes n ¼ n1; . . .; nj

� �
where each n is a keyword for a query and sends them to b

requesting to generate Kc. b computes g s.t g ¼ h
P j

i¼1ni
j mod N and hj ¼ g1=P

j
i¼1ni mod N,

sets Kc ¼ hj and returns Kc to A. A then forms guess s for some non-authorized
keyword n0 62 n for b to verify its correctness s.t s ¼ g1=n

0
mod N and sn

0 ¼ gmod N. If
it is correct, b then solves the strong RSA instance.

For each keyword mapped to a unique prime number, the greatest common divider
(gcd) of a given pair of keywords will result as gcd P j

i¼1ni; n
0� � ¼ 1. Using the

extended Euclidean algorithm, for the following equation a P j
i¼1ni

� �þ b n0ð Þ ¼ 1, we

can calculate integers a, b. Resulting in the value of h1=n0j s.t h1=n
0

j ¼ g1=n
0� �a�hbj ¼

h
P j

i¼1ni=n
0

j

	
a
�hbj mod N. Solving the strong RSA instance n0; h1=n

0
j

	

.

302 R. Loh et al.

Concluding that a client is only able to create a valid search request at best with
negligible probability.

5 Fine-Grained Access Control

We present a possible addition to the MC-CA scheme. In [6], Sun et al. further
implemented fine-grain access control through the use of ABE. This was introduced by
Sahai and Waters [18], ABE uses a set of descriptive attributes to allow a secondary
party to be able to decrypt a given ciphertext that was encrypted by a primary party that
holds a close to similar identity, or as defined by a given policy.

The variant which was employed was Ciphertext-Policy Attribute-Based Encryp-
tion (CP-ABE) [19, 20], where by predefining a set of rules governing the access to the
data, a decryption key can be generated in such a way that it complies with said rules.
That is a ciphertext can be decrypted when the key used for decryption satisfy the
access policies.

We can simply apply CP-ABE during the phase when file indices are stored and
retrieved from the map s.t the data owner encrypts the file indices with reference to a
predefined policy and clients can decrypt the encrypted file indices if they satisfy the
requirements.

6 Conclusion

In this paper, we provided an extension to a scheme in [5] which was based on the RSA
problem as did Sun et al. in [6]. Allowing the scheme to support multiple clients while
keeping its forward privacy property with support for range queries. This extension
does not need to generate search tokens for clients at every request, while most multi-
client schemes do, reducing communication overhead. We also note that in our con-
struction we can limit the search confining a client’s query to a specific range (search
space). Our extension, however, does not cater to the scenario where we want to revoke
the authorization of a currently authorized client. Examples of revocation may include
limiting the number of searches a client may be allowing to perform, imposing a rule s.t
the client’s key is only valid for a defined period of time. These are areas to venture
further into in the future.

Appendix
Proof of Theorem 1. For a one-way trapdoor permutation P, a PRF F, random oracle
hash functions H1 and H2 that outputs l and k bits respectively.

For;LMC-CA ¼ LSrch
MC-CA

;L
Updt
MC-CA

	

s:tLSrch

MC-CA
nð Þ ¼ sp nð Þ;Hist nð Þ; cp nð Þð Þ;

L
Updt
MC-CA

add; n; indð Þ ¼ ?

A Multi-client DSSE Scheme Supporting Range Queries 303

where n is a set of queried keywords s.t n 2 n. Then MC-CA is LMC-CA -adaptively-
secure.

Proof. Inherited from [5], we create a set of games, DSSERealMC-CA
A 1k

� �
and

DSSEIdealMC-CA
A;S 1k

� �
:

Game G0. G0 is precisely portrays the real-world game DSSERealMC-CA
A 1k

� �
:

Pr DSSERealMC-CA
A 1k

� � ¼ 1
� � ¼ Pr G0 ¼ 1½ �

Game G1. In G1, a random key is select for an input of new keyword n, instead of
generating Kn through F, removing the need to generate a client key, as such in
Algorithm 2. The key is then stored in a table for later use. If an adversary A can
differentiate games G0 and G1, we can then make a reduction table to distinguish
between F and a true random function. More formally, an efficient adversary B1 is
made present s.t

Pr G0 ¼ 1½ � � Pr G1 ¼ 1½ � �AdvPRFF;B1
1k
� �

Game G2, G3. We replace hash functions H1 and H2 with random strings in G2 and
G3 respectively. These games are as described in more detail in [5]. Where differen-
tiating these games is depends on the hardness of the P, we conclude present an
efficient adversary B2 s.t

Pr G1 ¼ 1½ � � Pr G3 ¼ 1½ � � 2N � AdvOneWay
P;B2

1k
� �

where N is the number of times H1 and H2 ran.
Game G4. In G4, for the random generated encrypted strings of H1 and H2 that are

stored, later reused in the search protocol for H1 and H2. Results in G4 to behave
exactly like games G2 and G3 s.t

Pr G4 ¼ 1½ � ¼ Pr G2;3 ¼ 1
� �

Simulator S. With respect to information leakage “contain pattern” (cp), an update
token UT can be specifically reused to determine inclusive relationships between
keywords. Consequently, the same can be done with “search pattern” (sp) “history”
(Hist) to simulate the Search and Update operations. In Algorithm 3, we map range
queries to a set of specified keywords n s.t

Pr G4 ¼ 1½ � ¼ Pr DSSEIdealMC-CA
A;S 1k

� � ¼ 1
h i

304 R. Loh et al.

Finally,

Pr DSSERealMC-CA
A 1k

� �� �� Pr DSSEIdealMC-CA
A;S 1k

� � ¼ 1
h i

�AdvPRFF;B1
1k
� �þ 2N � AdvOneWay

P;B2
1k
� �

completing the proof.

A Multi-client DSSE Scheme Supporting Range Queries 305

References

1. Kamara, S., Lauter, K.: Cryptographic cloud storage. In: Sion, R., Curtmola, R., Dietrich, S.,
Kiayias, A., Miret, Josep M., Sako, K., Sebé, F. (eds.) FC 2010. LNCS, vol. 6054, pp. 136–
149. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14992-4_13

2. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption:
improved definitions and efficient constructions. J. Comput. Secur. 19(5), 895–934 (2011)

3. Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M., Steiner, M.: Outsourced symmetric private
information retrieval. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security 2013, pp. 875–888. ACM (2013)

4. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-scalable
searchable symmetric encryption with support for boolean queries. In: Canetti, R., Garay,
Juan A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4_20

306 R. Loh et al.

http://dx.doi.org/10.1007/978-3-642-14992-4_13
http://dx.doi.org/10.1007/978-3-642-40041-4_20

5. Zuo, C., Sun, S., Liu, J.K., Shao, J., Pieprzyk, J.: Dynamic searchable symmetric encryption
schemes supporting range queries with forward (and backward) security. IACR Cryptology
ePrint Archive, vol. 2018, p. 628 (2018)

6. Sun, S.-F., Liu, Joseph K., Sakzad, A., Steinfeld, R., Yuen, T.H.: An efficient non-interactive
multi-client searchable encryption with support for boolean queries. In: Askoxylakis, I.,
Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 154–
172. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45744-4_8

7. Dawn Xiaoding, S., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of 2000 IEEE Symposium on Security and Privacy. S&P 2000, pp. 44–
55 (2000)

8. Cash, D., et al.: Dynamic Searchable Encryption in Very-Large Databases: Data Structures
and Implementation. Citeseer (2014)

9. Deng, Z., Li, K., Li, K., Zhou, J.: A multi-user searchable encryption scheme with keyword
authorization in a cloud storage. Future Gener. Comput. Syst. 72, 208–218 (2017)

10. Faber, S., Jarecki, S., Krawczyk, H., Nguyen, Q., Rosu, M.-C., Steiner, M.: Rich queries on
encrypted data: beyond exact matches. IACR Cryptology ePrint Archive, vol. 2015, p. 927
(2015)

11. Jiang, H., Li, X., Xu, Q.: An improvement to a multi-client searchable encryption scheme for
boolean queries (in English). J. Med. Syst. 40(12), 1–11 (2016)

12. Kasra Kermanshahi, S., Liu, Joseph K., Steinfeld, R.: Multi-user cloud-based secure
keyword search. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342, pp. 227–
247. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60055-0_12

13. Sun, L., Xu, C., Zhang, Y.: A dynamic and non-interactive boolean searchable symmetric
encryption in multi-client setting. J. Inf. Secur. Appl. 40, 145–155 (2018)

14. Zuo, C., Macindoe, J., Yang, S., Steinfeld, R., Liu, J.K.: Trusted boolean search on cloud
using searchable symmetric encryption. In: 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 113–
120 (2016)

15. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption with small
leakage. In: NDSS, vol. 71, pp. 72–75 (2014)

16. Bost, R.:
P

ouo1: forward secure searchable encryption. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pp. 1143–1154.
ACM (2016)

17. Bost, R., Fouque, P.-A., Pointcheval, D.: Verifiable dynamic symmetric searchable
encryption: optimality and forward security. IACR Cryptology ePrint Archive, vol. 2016,
p. 62 (2016)

18. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/
11426639_27

19. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: 2007
IEEE Symposium on Security and Privacy (SP 2007), pp. 321–334 (2007)

20. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and
provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-19379-8_4

A Multi-client DSSE Scheme Supporting Range Queries 307

http://dx.doi.org/10.1007/978-3-319-45744-4_8
http://dx.doi.org/10.1007/978-3-319-60055-0_12
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/978-3-642-19379-8_4
http://dx.doi.org/10.1007/978-3-642-19379-8_4

Image Authentication for Permissible
Cropping

Haixia Chen1,2, Shangpeng Wang2,3, Hongyan Zhang1,2, and Wei Wu2,3(B)

1 Concord University College Fujian Normal University, Fuzhou, China
2 Fujian Provincial Key Lab of Network Security and Cryptology, Fuzhou, China

weiwu@fjnu.edu.cn
3 College of Mathematics and Informatics, Fujian Normal University, Fuzhou, China

Abstract. In a digital society, it is not easy to achieve a balance between
privacy and authentication. Privacy requires some modifications of the
original image and signed data, but image authentication needs to ensure
its integrity as much as possible. The most common method of privacy
protecting is deleting some sensitive data in the original data. In this
paper, we propose a practical scheme of image authentication for per-
missible cropping operation, using a textbook RSA signature scheme and
a message commitment scheme. The security of our scheme is implied by
the security of underlying cryptographic primitives. Experimental results
show that the proposed scheme is practical and can be embedded in some
on-line systems.

Keywords: Image authentication · Textbook RSA signature ·
Commitment · Image cropping

1 Introduction

Nowadays, computers and network are the most two necessary components of
a digital society. Being integrated with mobile phones and portable computers,
digital camera is so ubiquitous that images have become prevalent medias. For
example, when a traffic incident happens, the videos captured by a surveillance
system are important evidence for the police. Other digital images, such as scan-
ning copies of certificates, screen capture for chatting records in social networks
and electronic bills for E-bank transactions, also contain significant information
and play important roles in our everyday life.

With the rapid development of the Internet, people have been used to shar-
ing their personal data with others by E-mails or on-line systems. However, the
opening network also increases the possibility of tampering with original mes-
sages. It is crucial to verify the integrity of images which are sent from thousands
of miles away.

Supported by Fujian Provincial Department of Education Project (JA15635), National
Natural Science Foundation of China (61822202, 61872089).

c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 308–325, 2019.
https://doi.org/10.1007/978-3-030-14234-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_17

Image Authentication for Permissible Cropping 309

The most two useful security technologies for image authentication are water-
marking [1,7,8,12,15,17–19] and digital signatures [2–6,9–11,13,14,16]. The for-
mer embeds a piece of information called watermarks, which are often invisible,
to the original image by transforming the image, and the extraction of the water-
marks is an inverse transformation. The advantages of watermarking are invisi-
bility and robustness. When an image is embedded with a watermark, invisibility
ensures that it looks almost the same as the original one and the utility of the
image would not be affected. With the property of robustness, watermarks can
also been extracted correctly even the loaded image suffers from some attacks
such as noising and geometric transformation. But it is difficult for watermarks
to provide non-reputation and unforgeablity, since watermarks can be embedded
again to other unauthorized images.

Compared with watermarks, digital signatures take more computation cost
but provide a higher level of protection, such as unforgeability and non-
repudiation. An ordinary signature scheme uses a private key to sign the image
and a matching public key to verify the image-signature pair. An ordinary signa-
ture scheme must be existentially unforgeable against adaptive chosen message
attacks [4]. Without the private key, it is computationally difficult to forge a
valid signature of a new message. Therefore, digital signatures are becoming
more and more popular in image authentication with the rapid development
of computers hardware. But image authentication using an ordinary signature
scheme has a disadvantage: slight modifications on the image will invalidate the
original image. But in image processing, modification such as geometric transfor-
mation and compress are often needed and sometime necessary (e.g., for privacy
protection).

Privacy and authenticity are often contradictory. The image recipient would
like to verify the integrity and the source of the image. When this image is
used again, deletion and masking are the two often operations to hide sensitive
parts. These modifications would cause significant difficulties to image authen-
tication. A promising method to alleviate the conflict of these two requirements
is redactable signature [13]. In a redactable signature scheme, the signer define
a redact policy which includes a subset of the indices that should be retained or
removed, and a legitimate redactor revises the message by deleting or masking
some sensitive information and outputs a revised signature without the private
key. Anyone with the public key can verify the image-signature pair. In this
paper, we will present an authenticated image cropping scheme from redactable
signatures.

1.1 Our Contributions

It is a common method to protect privacy by deleting some sensitive information
in signed messages. To protect the privacy of images, we need to remove some
sensitive pixels from the original image by cropping. Authenticated image crop-
ping must take into account two security issues. First, image consists of pixels
and each pixel has its position. Identical pixels at different positions would lead
to different images. As a result, image cropping should not affect the remained

310 H. Chen et al.

data. Second, to preserve the content of images, deletions can not be defined too
meticulously, and an area is more practical than a subset of pixels. In fact, our
intention is to provide user with the maximum flexibility when cropping image,
as long as the integrity of the remained image is guaranteed.

In this paper, we give a formal definition of permissible image cropping based
on rectangular areas in images. After that, we use a redactable signature scheme
to design an image authentication scheme, called Image Signature for Permissible
Cropping (ISPC). ISPC is particularly suitable for image authentication when
the signed image can only be partly disclosed after having been signed. In an
ISPC scheme (Fig. 1), instead of sending a full image and its signature to Cindy
(receiver and verifier), Alice (the signer of an image) allows Bob (the owner of
the image or a legitimate user) to crop the image and outputs a revised signature
to Cindy who has a public key to verify the signature. A revised image is valid
if it is cut by Bob with permissible cropping operation defined by Alice.

Fig. 1. The framework of authenticated image cropping

The rest of the paper is organized as follows. We describe some related
works in Sect. 2. In Sect. 3, we present the preliminaries required by this paper.
Section 4 presents formal definitions of ISPC and its security models. In Sect. 5
we describe our ISPC scheme and give its security analysis. Some experiment
data is given in Sect. 6 and we conclude this paper in Sect. 7.

2 Related Works

2.1 Image Authentication

As we have mentioned in Sect. 1, watermarking and digital signatures are the
most two popular image authentication methods. Watermarking embeds invisi-
ble information in the image to copyright protection and image content authen-
tication. Fragile watermarks [7,8,15,17] are used to detect tampering due to
its sensitive response to manipulation in images. The scheme proposed in [8] is

Image Authentication for Permissible Cropping 311

a novel multipurpose watermarking scheme, in which both robust and fragile
watermarks are embedded for the purpose for copyright protection and content
authentication. Another scheme is proposed in [17] to detect any modification
on image and indicate the specific locations that have been modified. Fragile
watermarking is useful to detect tampering, but it is so sensitive that any trans-
formation including denoising, compression and other rational manipulations
would hamper the extraction of watermarks.

Semi-fragile watermarking is introduced to tolerate rational manipulation in
image authentication [1,12,18,19]. The method in [18] proposed a modification-
detect method by measuring the errors between the watermarked image and
the manipulated image, to distinguish tampering and rational manipulation.
The method in [1] is based on a modified DWT quantization-based algorithm,
which embeds a random watermark bit sequence into the DWT domain. This
method employs an expanded-bit multiscale quantization-based technique to
adjust watermarked location. Zhuvikin et al. [19] use image finite differences,
such as the Haar wavelet transform coefficients, to embed watermarks and resist
compress transformation.

Recent years have seen increasing attention on image authentication from
cryptographic tools, such as digital signatures. An effective technique for image
authentication was proposed to prevent malicious manipulations and allow
JPEG lossy compression [5]. The scheme is based on the invariance of the rela-
tionships among discrete cosine transform (DCT) coefficients at the same posi-
tion in separate blocks of an image.

Another method in [7] uses a content based digital signature for image
authentication scheme and signs the feathers extracted from images. A threshold
value is defined to allow modifications on the signed image, and the verification
would succeed if the difference between the modified image and its original one
is less than the pre-defined threshold. This scheme can partly reduce the con-
flicts between image processing and authentication, but cannot provide a strong
security protection. Given a valid signature σ of an image I, an adversary can
create a new valid image-signature pair (I ′, σ) as long as the difference between
I and I ′ satisfies the threshold.

In 2016, Naveh and Tromer [9] proposed a common model by taking into
account the security and manipulation of images. After permissible transfor-
mations with a certified image, cryptographic proofs are added to the image,
with which a subsequent verifier can verify image integrity. In their approach,
additional data which they called “photoproofs” is attached to the signed image
and the subsequent verifier with these proofs can verify the signature success-
fully. It is not easy to instantiate the model because “photoproofs” are difficult
to construct without the private key, and new proofs must be attached to the
image even if the same kind of transformation is executed again. In addition,
without defining constraint conditions in the initial stage, the original signer is
hard to control the subsequent editions of the original image effectively. This
would cause serious security issues in many applications.

312 H. Chen et al.

All aforementioned schemes are sensitive to image cropping. Kim et al. [6]
proposed a privacy-aware and secure signature scheme by utilizing a chameleon
hash to reconstruct the image after deleting some objects in a signed image. This
scheme can be used to delete objects from a signed image, but its effectiveness is
questionable since it needs to compute hash value for each data block and sign
separately. Furthermore, the scheme in [6] is not flexible since the image must
be divided into several blocks and sign separately.

Another disadvantage in existing schemes is that images are treated as dis-
crete data. In fact, an image consists of pixels which are related with each other
and these continuous elements together compose a meaningful image. The posi-
tions of pixels are useful for image processing. It is more meaningful to process
a block than a pixel, especially for image cropping due to privacy protection. In
the remainder of this paper, we will give some useful definition of block cropping
in image processing.

3 Preliminaries

In this section, we will present some preliminaries required by this paper, includ-
ing formal definition of permissible image cropping and the cryptographic tools
used in our scheme.

3.1 Image and Rectangular Areas

A digital image consists of pixels. We denote an image by a unique integer matrix
M ∈ {0, 1, ..., 255}m×n, where m and n are integers and m × n is the size of the
image. Each matrix element mij represents the value of a pixel, where i is the
column number and j is the row number. In order to define a pixel more clearly,
we will denote a pixel mij by an integer pair (i, j) in this paper.

In order to describe more areas of an image, we denote a rectangular area
in an image by an ordered pair (x1, y1, x2, y2). Here (x1, y1) is the top left pixel
and (x2, y2) is the low right pixel of the area, which are called corner pixels.
Given the corner pixels a rectangular area in an image can be uniquely located.
Therefore, we will use an integer pair with four integers to denote a rectangular
area Ri, i.e., Ri = (x1i, y1i, x2i, y2i) and i is the index of the area. We also define
some additional notations about rectangular areas in an image as follows (Fig. 2).

Fig. 2. A rectangular area in an image

Image Authentication for Permissible Cropping 313

Definition 1 (A Pixel in a Rectangular Area ∈R). Given a pixel p = (x, y) and
a rectangular area Ri = (x1i, y1i, x2i, y2i), we say p ∈R Ri if

x1i ≤ x ≤ x2i and y1i ≤ y ≤ y2i.

Here, we call that the pixel p is included in a rectangular area Ri.

Definition 2 (Rectangular Area Relation ⊆R). For any pair of rectangular areas
in an image Ri = (x1i, y1i, x2i, y2i) and Rj = (x1j , y1j , x2j , y2j), we say Ri ⊆R Rj

if
x1j ≤ x1i ≤ x2i ≤ x2j and y1j ≤ y1i ≤ y2i ≤ y2j .

The above two definitions help us clarify the relationship between pixels and
rectangular areas. We will assume that a digital image is divided into several
overlapping rectangular areas, and we denote by Ri the ith rectangular area.
According to the above definition, a rectangular areas Ri can be defined as Ri =
(x1i, y1i, x2i, y2i). Therefore, an image is represented in a form which encodes
an ordering of the rectangular areas. We use [n] to denote the set of integers
1, 2, ..., n, num to denote the number of rectangular areas, and < Ri >i∈ [num]
to denote an image (Fig. 3).

There are scenarios that the owner of an image would like someone else to
modify the image. For example, when transmitted in the network, it would be
necessary to remove insignificant areas (for bandwidth saving) or sensitive areas
(for privacy protection). But the image owner wants to ensure that certain areas
of the image are unchanged. This calls for the need of an image authentica-
tion method with permissible cropping. We will define a detect method for a
permissible cropping in an image as follows:

Definition 3 (Permissible Cropping Detect PCrop). Input a m × n image M ,
a subset R which includes all the rectangular areas retained in an image, and
a rectangular area MC , we denote a detect function for permissible cropping by
PCrop(M,R,MC) as follows:

if for all i Ri ⊆R MC

PCrop(M,R,MC) = true
else

PCrop(M,R,MC) = false

Here, Ri is the ith area defined in a retained subset R, and R is usually
defined by the owner or signer of the image to produce a cropping policy, which
is also an additional input of the signing algorithm. MC is the area retained after
cropping operation. If PCrop returns true, we say that the area MC is cut by a
permissible cropping.

314 H. Chen et al.

Fig. 3. An example of permissible cropping

3.2 Cryptographic tools

“RSA Signatures”: We describe the textbook RSA signature scheme here.
Although the scheme is insecure, it is still useful when combined with other
schemes in many applications. The textbook RSA signature scheme [4] consists
of three algorithms: RSA = (KeyGen,Sign,Vrfy):

– Gen: on input 1n to obtain (N, e, d), satisfying ed = 1 mod φ(N). The public
key is (N, e), the private key is (N, d).

– Sign: on input a private key sk = (N, d) and a message m ∈ Z∗
N , compute

the signature σ = md (mod N).
– Vrfy: on input a public key pk = (N, e), a signature σ ∈ Z∗

N and a message
m ∈ Z∗

N , output 1 if and only if m = σe (mod N).

Commitment Schemes. In modern cryptography, a commitment scheme
allows one party to ‘commit’ to a message m by sending a commitment value
com, while obtaining the following seemingly contradictory properties [4,14]:

– Hiding: the commitment reveals nothing about m.
– Binding: it is infeasible for the committer to output a commitment com that

it can later “open” as two different messages m, m′.

Formally, a commitment scheme is defined by a randomized algorithm Gen
that outputs public parameters params and an algorithm Com that takes
params and a message m ∈ {1, n}n and outputs a commitment com; we will
make the randomness used by Com explicit, and denote it by r. A sender
commits to m by choosing uniform r, computing com := Com(params,m; r),
and sending it to a receiver. The Sender can later decommit com and reveal
m by sending m, r to the receiver; the receiver verifies this by checking that
Com(params,m; r) ?= com.

Image Authentication for Permissible Cropping 315

4 Image Signature Schemes for Permissible Cropping
(ISPC)

As discussed in Sect. 2, we will design a signature scheme for image authenti-
cation. Our scheme allows permissible cropping defined by the signer. We shall
define the syntax of image signature for permissible cropping and its security
requirements.

4.1 Definition of an Image Signature for Permissible Cropping

A digital image signature scheme for permissible cropping ISPC consists of the
following four algorithms: ISPC = (KeyGen, CropSign, CropExt, CropVrfy).

– KeyGen: The Key Generation Algorithm KeyGen that takes a security param-
eter λ as a input, returns a key pair (pk, sk) as the public key and private
key. That is: (pk, sk) ← KeyGen(1λ).

– CropSign: The Signing Algorithm CropSign that takes as input the private
key sk, an image M and a subset R of rectangular areas which should be
retained in the image, and outputs a permissible cropping signature σF . That
is: σF ← CropSign(sk,M,R).

– CropExt: The Signature Cropping Algorithm CropExt that takes a public key
pk, an image M , a permissible cropping signature σF , and a remained rect-
angular area RC when cropping the image, outputs a cropped signature σC .
That is: σC ← CropExt(pk,M, σF , RC).

– CropVrfy: The Signature Verification Algorithm CropVrfy that takes the public
key pk, a cropped signature σC , and cropped subimage M ′, outputs a bit
b ∈ {0, 1}. That is b ← Vrfy(pk, σC ,M ′) (Fig. 4).

Fig. 4. An overview of ISPC

4.2 Security Properties of ISPC

This section defines the security properties of an ISPC scheme must possess,
including unforgeability and privacy.

316 H. Chen et al.

Unforgeability: The unforgeability of our ISPC is analogous to the “existential
unforgeability” in [3,14], with an additional requirement of reaction control [2,
16]. In our scheme, the signer has a full control of image areas should be retained.
Any removal of these areas is considered as ‘unauthentic cropping’, and it must be
infeasible to produce a valid signature after unauthentic cropping. This explains
why we include a subset R as an additional input to the signing algorithm.

IAPC – Unforgeability Requirement: It is infeasible for an attacker, having
access to an ISPC signing oracle CropSign(sk, ., .), with a fixed public key pk
generated by a signer, to produce an image M∗ with a valid signature σ, where
M∗ is not the image which have been signed by signer or M∗ is obtained by
‘unauthentic’ cropping operation.

Let ISPC = (KeyGen, CropSign, CropExt, CropVrfy) be an image signature
scheme for permissible cropping. The unforgeability of ISPC is defined by the
following experiment:

Experiment ISPCUPExpA(R, λ,M)
(pk, sk) ← KeyGen(1λ)
σ∗

F ← A(pk|CropSign(sk, ., .)
σ∗

C ← A(pk|CropExt(pk, σF , ., .))
b ← CropVrfy(pk,M∗, σ∗

C)
if b=1, M∗ /∈ Ω and PCrop(M,R,M∗) = false

then return 1
else return 0

Here Ω is the set of all queries that A asked its oracle, and M∗ is the subimage
which has been cut from the original image.

Definition 4. A scheme ISPC= (KeyGen, CropSign, CropExt, CropVrfy) is exis-
tentially unforgeable under adaptive chosen-message attacks, if for all probabilis-
tic polynomial-time adversaries A, there is a negligible function negl such that:

Pr[ISPCUPExpA(R, λ,M) = 1] ≤ negl(λ).

Privacy: A signature for cropped image usually has a privacy security require-
ment. Indeed, the reason for the user to delete some parts of the signed image
just because these parts may contain some sensitive information which the user
does not want to disclose [3,14]. It is of great importance that the reserved
parts of the image and the signature should not leak any information of those
been removed. Our definition of ISPC − Privacy-Requirement is based on
an undistinguishable experiment defined as follows.

ISPC − PrivacyRequirement. It is infeasible for an attacker to obtain any
information about the removed areas in the original image from the signature σ
of a cropped image M ′.

Firstly, the attacker A executes the Choose algorithm and obtains a pair of
images M0 and M1, which are identical in the rectangular area R but differ in

Image Authentication for Permissible Cropping 317

other areas. Then, the attacker chooses a random bit b ∈ {0, 1}. Let M∗ = Mb

be the input of the sign oracle and σ∗
C be the cropped signature given to the

attacker. At last, the attacker executes the guess algorithm Guess to decide which
image has been signed and outputs a bit b∗. If b∗ = b, the attacker succeeds.

Let ISPC = (KeyGen, CropSign, CropExt, CropVrfy) be an image signature
scheme for permissible cropping, and Choose and Guess be two algorithms of
attacker A:

Experiment ISPCPRExpA(R, λ,M)
(pk, sk) ← KeyGen(1λ)
(M0,M1) ← A(pk|Choose(R));

b
$← {0, 1}

σ∗
F ← A(pk|CropSig(sk,Mb, R))

(M∗
C , σ∗

C) ← A(pk|CropExt(pk, σ∗
F , .,Mb))

b∗ ← A(pk|Guess(σ∗
C ,M0,M1, R)

if b = b∗

then return 1
else return 0

Definition 5. For a scheme ISPC= (KeyGen, CropSign, CropExt, CropVrfy),
we define its privacy requirement as an attacker A’s success in experiment
ISPCPRExp with negligible advantage. There is a negligible function negl such
that:

Pr[ISPCPRExpA(R, λ,M) = 1] − 1
2

≤ negl(λ).

5 Construction

5.1 Algorithm

Our design is motivated by the content extraction signature scheme in [14],
taking into account the features of image.

Let ISPC= (KeyGen, CropSign, CropExt, CropVrfy) be a image signature
scheme for permissible cropping. We build our scheme as follows:

– KeyGen: On input λ, compute (pk, sk) ← Gen(1λ), the private key (N, d) for
the signer and the public key (N, e) for the verifier.

Algorithm Gen(1λ)
(p, q) ← GetPrime(1λ)
N ← p × q
φ(N) ← (p − 1) × (q − 1)
e ← Z∗

N and gcd(e, φ(N)) = 1
d ← e−1 mod φ(N)
pk ← (N, e)
sk ← (N, d)

318 H. Chen et al.

– CropSign: Given an image M , we denote a subset R of rectangular areas which
should be retained in M . On input R and the private key (N, d), output a
signature σF .

Algorithm CropSign((N, d),M,R)
for i=1 to m and j = 1 to n

cij ← Com(mij , rij)
h ← H(c00||c01||...||cij ||...||cmn, R)
σR ← hd mod N
σF ← (R, σR, < rij >(mij)∈RM)
return σF

Here rij is the randomness value for mij , Com is a committing function, cij is
the commitment of pixel mij and R is the subset of rectangular areas defined
by signer, implying the contents that should not be modified by users. H is
a hash function with inputs of the concatenation of all commitments, and R
and σR is a RSA signature. σF is a collection of the RSA signature σR, subset
R and commitments of all pixels.

– CropExt: On input an image M , a rectangular area RC to be removed, a
public key (N, e) and an image signature σF , output a cropped signature σE

and a cropped image M ′ denoted by m′
ij .

Algorithm CropExt(pk,M, σF , RC)
Parse σF ← (R, σC , < cij >mij∈M)
for all mij /∈R RC

cij ← Com(mij , rij)
σE ← (σC , < cij >mij∈RM\RC

, < rij >mij∈RRC
)

return σE

Here, Rc is a rectangular area, and also is a subimage which has been cut
from the original according to subset R. σE is a collection of original signature
σC , a subset of commitments < cij > of pixels located in R and a subset of
randomness < rij > of pixels not in R (Fig. 5).

– CropVrfy: On input a cropped image M ′, a public key pk and a cropped
signature σE , output a bit b ∈ {0, 1}.

Image Authentication for Permissible Cropping 319

Algorithm CropVrfy(pk,M ′, σE)
Parse σE ← (σC , < cij >mij∈RM\RC

, < rij >mij∈RRC
)

for all mij ∈R M ′

cij ← Com(mij , rij)
h ← H(c00||c01||...||cij ||...||cmn, R)
if σe

C = h mod N and PCrop(M,R,M ′) = true
b ← 1

else
b ← 0

Fig. 5. The randomness for a rectangular area

5.2 Algorithm Analysis

Correctness: The correctness of ISPC is due to the correctness of an RSA signa-
ture for concatenation of all commitments. If the original image is cropped under
the permissible policy, every pixel of R is included in the retained subimage M ′.
and no pixel which without commitment is deleted, so all the pixels’ commit-
ments can be collected to reconstruct the concatenation of all commitments, the
hash value h can be computed correctly as an input of a RSA signature, because
of the correctness of RSA signatures, we take it for grant that an ISPC scheme
is correct.

Computation: In our scheme, the computation cost consists of two major oper-
ations: commitment generation and signature production. As we all know, it is
efficient to compute commitments using collision-resistant hash function. On
the other side, our scheme takes only one signing operation on the whole image,
instead of signing every image pixel. As a result, our scheme is efficient for prac-
tical use.

320 H. Chen et al.

Fig. 6. Test for image ‘traffic.jpg’

Unforgeablity: The unforgeablity of the scheme comes from the binding prop-
erty of the commitment scheme, unforgeablity of the ordinary signature scheme
and security of the one-way hash function. Because the commitments in retained
areas are removed, the verifier should use corresponding randomness to recom-
pute the commitments of these pixels and verify the signature correctly. Because
of the binding property of the commitment scheme, it is infeasible for an attacker
to ‘open’ these commitments with new pixels. Also, the hiding property of the
commitment ensures that subimages in signed image cannot be modified without
affecting the commitments, hence implying unforgeablity.

Privacy: The privacy of ISPC requires that given the cropping signature, it must
be infeasible to obtain any information of the removed sub-image. Because of
hiding property of a commitment scheme, it is infeasible for an attacker to get
any information of the message m if r is not given. The hiding property of the
commitment scheme ensures that without the randomness r, no attacker can
obtain any information of the removed message.

6 Experiments

We use OpenCV and Crypto++ libraries to evaluate of CropSign. In our exper-
iments, firstly we use SHA-3 algorithm to create digests of test images and
compute commitments. After that, we use a textbook RSA to sign the digests of
images. The hash function MD5 can compress a message with arbitrary length
to a much shorter message with fixed length.

Firstly, we use a 700 × 405 image to simulate the signature application.
In this image, the original number of pixels is 283500, so we compute a 128-
bit commitment of each pixel. We also define a rectangular area R, and the
concatenation of all commitments and R are inputs of MD5. The size of original
message is 2268000 bits, we use MD5 compress the original image to 128-bit.
The key size for a RSA signature is 2048 bits. We test two kinds of cropping and
got two verification results (Fig. 6).

Image Authentication for Permissible Cropping 321

Fig. 7. Test images (1)

Fig. 8. Test images (2)

322 H. Chen et al.

Fig. 9. Test images (3)

Fig. 10. Time-consuming compared with PASS

Image Authentication for Permissible Cropping 323

Table 1. Test Images

No. Image name Resolution Size (byte)

1 aerial 512 × 512 258K

2 airfield 512 × 512 258K

3 airfild2 1024 × 1024 1026K

4 airplaneU2 1024 × 1024 258K

5 baboon 500 × 480 703K

6 barbara 720 × 576 1216K

7 boats 720 × 576 407K

8 BoatsColor 787 × 576 1330K

9 bridge 512 × 512 258K

10 cablecar 512 × 480 721K

11 cornfield 512 × 548 721K

12 dollar 512 × 512 258K

13 finger 256 × 256 66K

14 fingerprint 256 × 256 66K

15 flower 512 × 480 721K

16 flowers 500 × 362 531K

17 fruits 512 × 480 721K

18 girl 720 × 576 1216K

19 goldhill 720 × 576 1216K

20 lenna 512 × 512 769K

21 man 1024 × 1024 1026K

22 monarch 768 × 512 1153K

23 pens 512 × 480 721K

24 pepper 512 × 512 769K

25 sailboat 512 × 512 769K

26 soccer 512 × 480 721K

27 yacht 512 × 480 721K

Our experiment shows that the proposed scheme is practical for on-line sys-
tems. To further evaluate the efficiency of our scheme, we also choose 27 standard
sample pictures (Figs. 7, 8 and 9) to carry our experiments in a PC (CPU: Intel
Core I5 5200U; Memory: 8 GB (1333 MHz)). Table 1 summarizes the information
of these pictures. The simulation results are given in Table 2. We also compare
our scheme with [6] it terms of time-consuming and results are shown in Fig. 10.

324 H. Chen et al.

Table 2. Time-consuming of some test Images

No. Size of R Length of input Signing time in a PC

1 100× 100 6291456 bits 11 ms

2 75× 43 6291456 bits 13 ms

3 55× 47 25165824 bits 17 ms

4 100× 100 25165824 bits 8 ms

5 88× 75 19405824 bits 6 ms

6 49× 49 475693056 bits 5 ms

7 155× 125 475693056 bits 33 ms

8 77× 49 10879488 bits 20 ms

9 125× 49 6291456 bits 17 ms

10 40× 55 5898240 bits 8 ms

7 Conclusions

In this paper, we proposed a scheme of image authentication for permissible
cropping operation, using the textbook digital signature scheme combined with
a message commitment scheme. The security of the scheme is implied by the
security of RSA signatures and commitment schemes. This is a practical scheme
and can be used in on-line systems for image authentication. Compared with
other schemes, our scheme allows legitimate users, following specified cropping
rules, to remove sensitive data from a signed image but the integrity of the
remained image can be verified. Experimental results show that the proposed
scheme is efficient. A disadvantage of our scheme is that the number of com-
mitments is large and adds significant cost to computation and transmission.
Another disadvantage is that our scheme can only support cropping operation
of images. Our future work is to design more practical schemes to support more
kinds of permissible transformations in image authentication.

Acknowledgement. The authors would like to thank anonymous reviewers for their
helpful comments.

References

1. Al-Otum, H.M.: Semi-fragile watermarking for grayscale image authentication and
tamper detection based on an adjusted expanded-bit multiscale quantization-based
technique. J. Vis. Commun. Image Represent. 25(5), 1064–1081 (2014)

2. Chabanne, H., Hugel, R., Keuffer, J.: Verifiable document redacting. In: Foley, S.N.,
Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017, Part I. LNCS, vol. 10492, pp.
334–351. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66402-6 20

3. Chang, E., Lim, C.L., Xu, J.: Short redactable signatures using random trees.
IACR Cryptology ePrint Archive 2009, vol. 25 (2009)

https://doi.org/10.1007/978-3-319-66402-6_20

Image Authentication for Permissible Cropping 325

4. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC Press,
Boca Raton (2014)

5. Kee, E., Johnson, M.K., Farid, H.: Digital image authentication from JPEG head-
ers. IEEE Trans. Inf. Forensics Secur. 6(3–2), 1066–1075 (2011)

6. Kim, J., Lee, S., Yoon, J., Ko, H., Kim, S., Oh, H.: PASS: privacy aware secure
signature scheme for surveillance systems. In: 14th IEEE International Conference
on Advanced Video and Signal Based Surveillance, AVSS 2017, Lecce, Italy, 29
August–1 September 2017, pp. 1–6 (2017)

7. Liu, X., Lin, C., Yuan, S.: Blind dual watermarking for color images’ authentication
and copyright protection. IEEE Trans. Circuits Syst. Video Technol. 28(5), 1047–
1055 (2018)

8. Lu, C., Liao, H.M.: Multipurpose watermarking for image authentication and pro-
tection. IEEE Trans. Image Process. 10(10), 1579–1592 (2001)

9. Naveh, A., Tromer, E.: Photoproof: cryptographic image authentication for any
set of permissible transformations. In: IEEE Symposium on Security and Privacy,
SP 2016, San Jose, CA, USA, 22–26 May 2016, pp. 255–271 (2016)

10. Okawa, M.: Offline signature verification with VLAD using fused KAZE features
from foreground and background signature images. In: 14th IAPR International
Conference on Document Analysis and Recognition, ICDAR 2017, Kyoto, Japan,
9–15 November 2017, pp. 1198–1203 (2017)

11. Ozdil, O., Esin, Y.E., Demirel, B.: Forming representative signature for vegetation
detection in hyperspectral images. In: 25th Signal Processing and Communications
Applications Conference, SIU 2017, Antalya, Turkey, 15–18 May 2017, pp. 1–4
(2017)

12. Rehman, O., Zivic, N.: A robust watermarking technique for image content authen-
tication. In: Communication Papers of the 2017 Federated Conference on Com-
puter Science and Information Systems, FedCSIS 2017, Prague, Czech Republic,
3–6 September 2017, pp. 223–226 (2017)

13. Schneider, M., Chang, S.: A robust content based digital signature for image
authentication. In: Proceedings 1996 International Conference on Image Process-
ing, Lausanne, Switzerland, 16–19 September 1996, pp. 227–230 (1996)

14. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. IACR Cryptology
ePrint Archive 2002, vol. 16 (2002)

15. Wang, C., Zhang, H., Zhou, X.: Review on self-embedding fragile watermarking
for image authentication and self-recovery. JIPS 14(2), 510–522 (2018)

16. Wang, H., Ma, J.: A classification method of multispectral images which is based
on fuzzy SVM. In: International Conference on Computer Science and Software
Engineering, CSSE 2008, Volume 1: Artificial Intelligence, Wuhan, China, 12–14
December 2008, pp. 815–818 (2008)

17. Wong, P.W., Memon, N.D.: Secret and public key image watermarking schemes
for image authentication and ownership verification. IEEE Trans. Image Process.
10(10), 1593–1601 (2001)

18. Yu, X., Wang, C., Zhou, X.: Review on semi-fragile watermarking algorithms for
content authentication of digital images. Future Internet 9(4), 56 (2017)

19. Zhuvikin, A., Korzhik, V.I., Morales-Luna, G.: Semi-fragile image authentication
based on CFD and 3-bit quantization. CoRR abs/1608.02291 (2016)

Information Security

Chord: Thwarting Relay Attacks Among
Near Field Communications

Yafei Ji1,2, Luning Xia1,2(B), Jingqiang Lin1,2, Qiongxiao Wang1,2,
Lingguang Lei1,2, and Li Song1,2

1 State Key Laboratory of Information Security, Institute of Information Engineering
of Chinese Academy of Sciences, Beijing, China

{jiyafei,xialuning,linjingqiang,wangqiongxiao,
leilingguang,songli}@iie.ac.cn

2 Data Assurance and Communication Security Research Center, Chinese Academy
of Sciences, Beijing, China

Abstract. Near field communication (NFC) is an emerging and promis-
ing technology envisioned to support a large gamut of applications such
as payment and ticketing applications. Unfortunately, there emerges a
variety of vulnerabilities that could leave an unwitting user vulnerable to
attacks along with the increase of NFC applications. One such potential
devastating attack is relay attack, in which adversaries establish a trans-
parently transferring channel between two distant NFC-enabled devices,
thus break the assumption that NFC can only work within a rather near
distance. In this paper, we propose Chord, an effective method for detect-
ing relay attack. Via measuring the strength of received signal, i.e, the
Received Signal Strength Indication (RSSI) during a time span, the two
devices are expected to get the same “trace” of RSSI’s variation because
of physical proximity. Therefore, the relay attack can be revealed if the
peers get a different “trace” from each other, which implies that they
do not communicate directly via NFC link. The results of our imple-
mentation show that our proposal works as intended, and exhibits an
improvement of security with reasonable performance impact.

Keywords: Near field communication · Relay attack · RSSI

1 Introduction

Near field communication (NFC) [1] is a contactless radio communication tech-
nology to establish short-range ad-hoc connections between devices. It is built
upon its predecessor Radio Frequency Identification (RFID) [3] and standardized
by ISO/IEC 18092 [2]. The radio interface operates at 13.56 MHz with a com-
munication range up to 10 cm, depending on the physical implementation of the
two communicating devices. One of the advantages of NFC over other wireless
technologies is simplicity: transactions are initialized automatically after touch-
ing a reader, another NFC device or an NFC compliant transponder. Due to
its simplicity, companies are exploring novel ways to leverage the technology in
c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 329–348, 2019.
https://doi.org/10.1007/978-3-030-14234-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_18

330 Y. Ji et al.

new and enhanced services such as e-ticketing, mobile payments and access con-
trol system [19]. In addition, the integration of NFC technology into smartphones
offers many reliable applications. For example, Android 4.4 released in Oct. 2013,
Google introduced a new platform, Google Wallet, for NFC-based transactions
and it is supported on most NFC-equipped mobile devices powered by Android
4.4. In Sept. 2014, Apple also announced to support NFC-powered transactions
as part of its Apple Pay program. For another example, NFC-enabled handsets
can be deployed to transfer information between NFC-devices by tapping, device
discovery [21] for other wireless technologies (e.g., Bluetooth and Wi-Fi), smart
posters (e.g., for acquiring coupons), e-identity (e.g., car or home key), among
others.

With increasing application comes increasing concern on privacy and security.
Although the distance limit of communication confers security advantages, NFC
systems are susceptible to attacks and security remains an open issue [4–6]. In
particular, NFC is vulnerable to relay attack [7] (which RFID is also vulnerable
to), where an adversary directly relays communications between two distant
victim NFC devices, an NFC reader and an NFC token, to maliciously force
an NFC link. During the relay attack, the adversary uses a proxy-token and
proxy-reader to relay the communication between the victim reader and the
victim token over a greater distance than intended. Therefore, the victim reader
is tricked to believe that the real token is in close proximity although it is not. A
plain scenario of relay attack is to compromise the door access control system. An
employee leaves his office for lunch with his NFC-enabled badge still around his
neck and stands in line for his order. Unfortunately, the one standing right before
him in the queue is a sophisticated attacker who has put a proxy-reader inside
his backpack. At the same time, a conspiring attacker taps the proxy-token over
the door reader at the entrance of the employees’ office and relays the challenge
message from the door reader to the proxy-reader, which activates the employees’
badge to receive the right response and then relays the response message back
to the proxy-token. The door reader will naturally accept the proxy-token as a
legitimate token, and thus the conspiring attacker can circumvent the entrance
guard system.

To the best of our knowledge, almost none of the extant cryptographic authen-
tication protocols are immune to such kind of attacks. The reason is obvious: all
data can be relayed, although it is encrypted. The adversary needs to know nei-
ther any clue about the secret key nor the details about the protocol. He can com-
mit the attack successfully just by relaying the messages transparently. Therefore,
countermeasures in application layer like cryptographic approaches are invalid to
defend against relay attack. Towards thwarting relay attack, several attempts have
been made by researchers to reduce the occurrence probability of such attacks in
recent years. The main approaches to resist relay attacks include enforcing tim-
ing constrains [8], distance-bounding protocol [9,22–25], GPS [26], and noise [10].
Nevertheless, effective counteracting relay attack is still a challenging task due to
various technical and marketing reasons. In this paper we present Chord, a method
for detecting and thwarting relay attack. The conception of Chord is to employ

Chord: Thwarting Relay Attacks Among Near Field Communications 331

an unrelayable factor in the authentication process between the two NFC-enabled
devices. We make use of Received Signal Strength Indication (RSSI), which is a
physical quantity deriveddirectly fromthe radio frequency signal between the com-
munication peers. Prior to transmitting messages the two communicating devices
measure the strength of their received signals respectively while the relative posi-
tion from one device to another is varied continuously. In terms of the electro-
magnetic field theory, varied relative position in non-uniform magnetic field cor-
responds to varied strength of received signal. Thus the two devices can figure
out their own variation traces of RSSI respectively. When the peers communicate
directly via a NFC link, i.e. there is no relay attack; the two variation traces should
be identical or highly similar with each other. Otherwise, the two are completely
irrelevant. By comparing the variation traces measured during the authenticat-
ing process, the victim devices of relay attack are expected to be conscious of the
existence of the malicious relay channel. Given that the variation trace of RSSI is
subject to both sides of NFC link, the adversary can hardly fabricate a trace that
can be accepted by both victim peers. Therefore, communication is likely to be
aborted due to the failed authentication.

The rest of this paper is organized as follows. In Sect. 2, we first review
the related background and preliminaries. On the basis of this knowledge, we
describe the full details of Chord in Sect. 3. Evaluation and discussions are pre-
sented in Sect. 4. The related works about relay attack against NFC are discussed
in Sect. 5. Finally, we give the concluding remarks in Sect. 6.

2 Background and Preliminaries

In this section, we present a brief overview of NFC and relay attack. Also, the
Received Signal Strength Indicator (RSSI) and spatial distribution of magnetic
field are discussed in detail.

2.1 Near Field Communication

Near field communication (NFC) is a relatively new and increasingly popular
communication technology, first standardized as ISO/IEC 18092 [2], and later
earned a further international accredited standard ISO/IEC 21481 [27]. It oper-
ates at 13.56 MHz at transfer rate from 106 kilobits per second up to 424 kilobits
per second [2]. NFC is designed to be a short range communications link, up to
approximately 10 cm for normal operation. A NFC-enabled device can act as
“contactless reader”, “contactless card”, or just be one peer in a peer-to-peer
communication. NFC-enabled devices are compatible with existing contactless
systems adhering to ISO 14443 [31], ISO 15693 [32] and FeliCa [33].

The NFC standards define two communication modes: passive mode and
active mode. The characteristics of the two communication modes are compared
in Table 1. The difference between two modes is reflected in the generation of
RF field. In active mode, both devices generate their own RF field when they
want to transmit message to the other peer, while in passive mode only one

332 Y. Ji et al.

Table 1. Characteristics of the two communication modes in NFC

Mode Communication range Transfer speed RF generator

Passive Up to 10 cm 106,212,424 kbps Only initiator

Active Up to 10 cm 106,212,424 kbps Alternative (initiator or target)

device generates the RF field to power the other device and support a half-
duplex communication between them. In an NFC link, the two NFC devices
are referred as the initiator and the target respectively. The device who starts
the data exchange is called Initiator while the other device is called Target. In
active mode, the Initiator and the Target use their own generated RF field to
communicate with each other. First the Initiator generates an RF carrier, which
is used to send data to the target subsequently. The Initiator switches the carrier
off when acknowledgment from the target is received. The Target then switches
on its own carrier and transmits a response to the Initiator. In passive mode, the
Initiator is the only device that generates RF signal, the target device responds
by modulating the existing field which the initiator devices listens out for, and
then processes therefore transferring data.

There has three basic operation modes for NFC devices: reader/writer mode,
peer-to-peer mode, and card emulation mode. Table 2 shows the basic function
corresponding to every operation mode.

Table 2. Basic function corresponding to operation mode

Operation mode Function

Reader/write Read/write tags

Peer-to-Peer Exchange small chunks of data

Car emulation Act as passive contactless card

In reader/writer mode NFC-enabled device is able to read or write NFC
tags specified by the NFC Forum, e.g., smart posters or tags with embedded
text, URLs or signatures. Peer-to-peer mode, with respect to RF technology, is
an operating mode specific to NFC and allows two NFC devices to exchange
small chunks of data with each other. For example, you can use peer-to-peer
mode to set parameters for Bluetooth connections, Wi-Fi connections or virtual
business cards. For the last mode, the card emulation mode, the NFC device
acts as a normal passive contactless card which can be accessed via a typical
ISO14443A RFID reader. This allows NFC devices to integrate with existing
RFID infrastructure without making any modification to the legacy system.

Chord: Thwarting Relay Attacks Among Near Field Communications 333

2.2 Relay Attack

Relay attack is not a novel concept in the field of information security. The
attack was first described by Conway [28]. He explained how a player who didn’t
know the rules of Chess could simultaneously play against two grand masters
by challenging both of them to a postal game. The player forwards the move
originating from one grand to the other, and therefore each grand master thinks
that they are playing against each other. The attack employed to security pro-
tocol was first discussed in [29], and it has subsequently been referred to as
a ‘wormhole attack’ [30] or a ‘relay attack’ [23]. Some practical implementa-
tions of relay attacks against contactless system have been published in recent
years. Though some of them depend on custom-built hardware [34,35], more
recent implementations only require NFC-enabled mobile phones, which makes
the attack working far more easily [26][38].

Someone would consider relay attack as a kind of man-in-the-middle (MITM)
attack, but they are completely different. MITM attacks occur when an attacker
attempts to intercept communications between two parties without their knowl-
edge. In MITM attacks two parties are tricked into thinking they are commu-
nicating securely with each other, while the attacker actually sits in between
them, communicating with both. The attacker catches messages sent by one
party and then sets up a new communication with the other party. Then he
catches the response of the second party and sends his own response to the
first device. By doing this, the attacker becomes “the man in the middle.” Both
parties are unaware of the attacker’s presence. Acting as a proxy, the attacker
can both review and manipulate the contents of the messages he is relaying
between the two parties. However, the attackers in relay attack just works as
proxies. Any information transmitted by one legitimate party is just be relayed
to another legitimate party without any changes. The attackers care about nei-
ther the semantic of the data nor the secret key. As long as a relay channel is
established successfully, the attack works.

In order to execute a successful relay attack, an adversary needs two proxy
devices which act as a proxy initiator and a proxy target, respectively. The two
proxy devices are connected via a suitable communication channel (Internet,
Bluetooth, etc.) to relay information over a far greater distance than 10 cm.
The basic diagram for relay attack is shown in Fig. 1. The device A and B are
legitimate while the device C and D are employed by the adversary as the proxy
devices.

Fig. 1. Schematic diagram of basic relay attack setup

334 Y. Ji et al.

According to the expected situation, device A and B will be put close enough
(not more than 10 cm) and messages are transmitted via wireless radio between
them. While in a situation of relay attack, device A and device B are located
faraway from each other. It seems impossible to establish a NFC link between
them, but the adversary makes it possible by deploying proxy device C and proxy
device D, and the channel between C and D, to relay the messages between A
and B. From the perspective of B, it sends the challenge successfully to A and
receives the correct response from A. From the perspective of A, it believes that
it has received a challenge from B and then sends the response back. Both A
and B can’t be aware of the existence of the proxy devices and the relay channel.
Each of them is deceived to believe that the opposite side is just around itself.
Thus the legitimate devices will do as the adversary want, e.g., open the door.

The above reveals that almost all the authentication protocols of the appli-
cation layer of NFC are lack of the ability of resisting relay attack. The reason
is rather clear: all the proofs about the identity of another peer, e.g., digital
signatures, are received via the communication channel between them, which is
subject to be relayed. To defense against relay attack, the legitimate device has
to apply a kind of information that it can figure out itself instead of receiving
from the other peer. Thus the primary task is to explore the NFC communication
and try to find such kind of information. An obvious fact is that, we may only
find such kind of information in physical layer because all data in other layers has
to be transmitted through the communication channel. According to the elec-
tromagnetic theory, the radio signal strength received by a receiver varies with
position and orientation towards radio source. This variation is influenced by the
sender and receiver simultaneously, which implies that it cannot be determined
only by one peer. In a relay attack, the adversary will establish two NFC links,
i.e. two radio links on both sides of the relay channel, coupling the legitimate tag
with the proxy reader and the legitimate reader with the proxy tag respectively.
The two NFC links have their own RF characteristics that are independent with
each other. The main idea of our method is that one legitimate device measures
radio signal strength and transmit it to the opposite side with source authen-
ticity and integrity guarantee. The other legitimate device measures the radio
strength also and compares it with the received one to determine whether they
match. Mismatch will be detected if relay attack exists because the two values
are actually come from two independent radio links and irrelevant with each
other. The adversary is unable to modify the value because of the authenticity
and integrity guarantee. Following this way, the relay attack can be detected and
resisted effectively.

2.3 Received Signal Strength Indicator

The Received Signal Strength Indicator (RSSI) is used to indicate the strength
level of received signal. In this paper, RSSI is measured by TRF7970A from
Texas Instruments. The RSSI blocks of measuring system are connected to RF
input pins, and the peak value of induced voltage is latched after the end of
each received packet. The RSSI values are reset with every transmission by the

Chord: Thwarting Relay Attacks Among Near Field Communications 335

reader. This guarantees an updated RSSI measurement for each new response.
The nominal relationship between input RF voltage and RSSI value is shown in
Fig. 2.

Fig. 2. Schematic diagram of basic relay attack setup

The RSSI has 7 steps with a typical increment of about 4 dB. The operating
range is between 600 mVpp and 4.2 Vpp with a typical step size of about 600 mV.
The level of the RF signal received at the antenna is measured and stored in
register.

2.4 Spatial Distribution of Magnetic Field

Because our proposed protocol is based on the strength of received signal and
the signal is transmitted via inductive electromagnetic coupling, we first describe
the space distribution of magnetic field. On the basis of magnetic field we present
our protocol in detail.

Spatial Distribution of Magnetic Field. In terms of electromagnetic field theory, a
loop wire carrying electric current produces magnetic field with closed field lines
surrounding the wire which is shown in Fig. 3. A conventional way to depict the
pattern of the magnetic is to draw magnetic lines such that each line is parallel
to the magnetic field

−→
B . The direction of magnetic field at the center of the loop

is perpendicular to the plane which can be determined by the “right hand rule”.
The strength of magnetic field is indicated by the density of magnetic lines and
calculated from Biot-Savart Law. As shown in Fig. 3 the spatial distribution of
magnetic field is not uniform and magnetic strength is varied at different point.
From the above analysis towards magnetic field, it is supposed that during the
communication of two NFC enabled devices, each device can receive varied signal

336 Y. Ji et al.

Fig. 3. Schematic diagram for time-varying magnetic field generated by time-varying
electronic field.

strength if relative distance between two devices is changed. In order to check
the supposition, we implement an experiment to measure the spatial distribution
of magnetic field, the schematic diagram of the experiment is shown in Fig. 4.

Fig. 4. Schematic diagram of the experiment for measuring RSSI. Device b is moved
along x and y directions, respectively

Device a and b are both NFC enabled devices. In the experiment device a
is hold still while the device b is moved along x and y direction, respectively.
Device b continuously transmit messages to device a while moving, and measures
the strength of received signal by Received Signal Strength Indication (RSSI).
Figure 4 shows the results of the spatial distribution of RSSI along the two
directions.

In the experiment we use relative RSSI strength by normalizing the measured
RSSI to facilitate comparison of the RSSI variation in two directions. The two
NFC devices is first placed face to face while device b is moved along x contin-
uously. It can be found from Fig. 5(a) that RSSI in general decreases gradually
along x direction while remaining stable in a small range. To measure the varia-
tion in y direction, we set the distance on x to a fixed value (10 mm). Figure 5(b)
shows the variation of RSSI along y direction. The results of Fig. 5(a) and (b)
indicates that the relative distance between the two communicating devices can
impose a vital effect on signal strength.

Chord: Thwarting Relay Attacks Among Near Field Communications 337

Fig. 5. Spatial distribution of RSSI within different relative distance from radio source
device a. (a) Two NFC devices are placed face to face while device b is moved along x
continuously; (b) Moved along y direction continuously while distance on x direction
is set to a fixed value 10 mm.

3 Chord

The idea of Chord is to add a RSSI Test procedure into the process of a NFC link.
The RSSI is locally measured by both peers respectively. One peer transmits the
RSSI value it measured to the other during the communication. Once the other
peer calculates a mismatch result, the link will be terminated. If we imagine
the radio signal as a chord that links the two peers, we expect the two peers to
experience a same or similar rhythm when the chord is vibrating. This is the
origin of the name “Chord”. The detail of Chord is described in the following
four parts: threat model and security assumption, basic idea, Chord method and
security analysis.

3.1 Threat Model and Security Assumptions

The main security goal of Chord is to detect whether the NFC communi-
cation is under relay attack. Designed for resource-constrained NFC devices,
Chord involves no computationally-expensive or time-consuming processing
(e.g., public-key cryptographic computations). In Chord, the two legitimate
devices are assumed to pre-share a secret session key. For the purpose of con-
fidentiality, all of the transmitted messages including the protocol should be
encrypted by pre-shared secret key. Only when both of the devices pass the
authentication can messages be transmitted via NFC.

In Chord, the two legitimate devices are picked up by the owner. However,
he cannot determine the device he intends to communicate is a legitimate one.
We do not consider physical attacks, exploits of software vulnerabilities on both
NFC devices, as well as attacks on the underlying cryptography. The detail steps
of Chord are publicly known. As the commonly available customer hardware

338 Y. Ji et al.

of NFC devices, we assume adversaries armed with off-the-shelf NFC-enabled
devices and can setup relay channel at will. The adversaries have full control of
the proxy devices and could eavesdrop and relay messages between real devices.
In particular, the adversaries can also measure the strength of received sig-
nal. However, since the protocol is based on the strength of received signal, it
is assumed that adversary cannot manipulate the power of RF transmission.
Moreover, it is also assumed that the adversaries do not know the secret key
pre-shared by legitimate devices.

3.2 Basic Idea

The basic idea is to obtain attribution that can hardly be relayed by adversaries.
In the experiment we measure the strength of received signal with Received
Signal Strength Indication (RSSI) to work as major parameter for the protocol.
The two legitimate devices record a variation “trace” of RSSI, respectively. When
there is no relay attack, the two variation tracks should be identical or highly
similar with each other. Otherwise, the two tracks are completely irrelevant.
Since the variation “trace” is subject to both sides of NFC link, the adversary
can hardly fabricate a track that can be accepted by both victim peers. By
comparing the variation track, the victim devices are expected to aware of the
existence of relay attack.

3.3 Chord Method

Signal strength measured by device can be affected by many factors such as trans-
mit power, environment disturbance, relative distance and so on. However, trans-
mit power of an off-the-shelf device is basically constant and can hardly be modu-
lated by users at will. On the other hand, the communication range of NFC devices
is 10 cm and therefore environment disturbance is presumed trivial. In this work,
we only consider the influence of relative distance on signal strength. In the exper-
iment, we use received signal strength indicator (RSSI) to roughly determine the
relative movement. Figure 6 shows the diagram of the proposed method.

Fig. 6. The two devices are waved randomly by users.

Relative distance between the device A and B is varied randomly while
the two devices communicate continuously. In the communication, device A
first sends command “SENSE-REQ” and waits response from device B. After
receiving the response “SENSE-RES”, device A record one RSSI of device B.

Chord: Thwarting Relay Attacks Among Near Field Communications 339

In the same way, the device B then record one RSSI of device A. Both of the two
devices repeat the procedure for several times and therefore a set of RSSI are
recorded by the two devices respectively. Given that the two devices may have
different precision on measuring RSSI, we cannot compare the RSSI measured
by the two devices directly. However, since the rule revealed by a set of RSSI rep-
resents movements between two devices, so the two sets of RSSI should identical
or highly similar. Based on the above analysis, we calculate cross correlation
between the two sets of RSSI measured. The authentication method using cross
correlation between measured RSSI is detailed in Fig. 7.

Fig. 7. Detail of proposed authentication protocol.

The RSSI measured by legitimate device A and B can be represented by
RA (e.g., RA1, RA2, RA3) and RB (e.g., RB1, RB2, RB3) respectively. The
two legitimate devices exchange the measured RSSI which should be encrypted
by pre-shared secret key with their counterpart. AES can be chosen as encryp-
tion algorithm to encrypt all messages. After receiving the encrypted RSSI from
another part, the two legitimate devices first decrypt ciphertext and then com-
pute cross correlation between RA and RB. Cross correlation is a standard
method of estimating the degree to which two series are correlated. Cross corre-
lation coefficient is defined as follow:

correl(x, y) =
Σ(x − x̄)(y − ȳ)√

Σ(x − x̄)2Σ(y − ȳ)2
(1)

Where x̄ and ȳ are the average of x and y. If the correlation between RA
and RB is poor, the two legitimate devices can confirm that the communication
is under attack, otherwise, the two parties in communication are recognized as
legitimate devices.

3.4 Security Analysis

The main characteristic of the protocol is that the two legitimate devices mea-
sure the strength of received signal successively whereby detecting whether the
communication is under attack. The two legitimate devices compute cross corre-
lation between measured RSSI to determine whether the communication is under

340 Y. Ji et al.

attack. Since the adversary can hardly fabricate tracks that have good correla-
tion with both victim peers, therefore, communication is likely to be aborted
due to the failed authentication.

4 Evaluation and Discussion

Data acquisition and comparison of RSSI “trace” have significant influence on
the practicability of Chord. In this section, we first establish a NFC link by
using two NFC development board and acquire two RSSI “trace” by employing
the method in Sect. 3.3, we also calculate the cross correlation coefficient of
the two “trace”. Then, we acquire RSSI “trace” and calculate cross correlation
coefficient again when a relay attack is implemented by using two off-the-shelf
phones. Finally, some discussions are made on parameters of the Chord.

4.1 Experiment Setup

We implement the protocol by NFC development boards TRF7970A from Texas
Instruments, which is shown in Fig. 8.

Fig. 8. TRF7970A development board from Texas Instruments.

The TRF7970A is an integrated analog front end and data-framing device
for a 13.56-MHz RFID/Near Field Communication system. Built-in program-
ming options make it suitable for a wide range of applications for proximity and
vicinity identification systems. It can perform in one of three modes: RFID/NFC
Reader, NFC Peer, or in Card Emulation mode. Built-in user-configurable pro-
gramming options make it suitable for a wide range of applications.

The microcontroller of the development board is MSP430F2370. The Texas
Instruments MSP430 family of ultralow-power microcontrollers consists of sev-
eral devices featuring different sets of peripherals targeted for various applica-
tions. The architecture, combined with five low-power modes is optimized to
achieve extended battery life in portable measurement applications. The devices
feature a powerful 16-bit RISC CPU, 16-bit registers, clock module with internal
frequencies up to 16 MHz, and constant generators that contribute to maximum
code efficiency.

Chord: Thwarting Relay Attacks Among Near Field Communications 341

In the communication, device A first sends command “SENSE-REQ” and
waiting response from device B. After receiving the response “SENSE-RES”,
device A record one RSSI of device B. In the same way, the device B then record
one RSSI of device A. Both of the two devices repeat the procedure for several
times and therefore a set of RSSI are recorded by the two devices respectively.

4.2 Experiment Results

According to the Chord, device A should first sends command “SENSE-REQ”
and waits for response “SENSE-RES” from device B and record the RSSI; then
device B sends command “SENSE-REQ” and record RSSI of response from
device A. It can be found that there is a time slot t1 between the measurement
of RSSI by the two devices. The time slot t1 begins when the device B sends
command “SENSE-REQ” and ends when it receives response from device A.
Since the two device are moved continuously while device B waiting for response,
relative distance between the two devices is varied constantly. The shorter the
time slot t1, the more similarity between the two RSSI measured by both devices.
In the experiment, we try our best to optimize code and finally the time slot is
set as 11.9 ms. On the other hand, Chord also needs both of the two devices to
measure RSSI for several rounds in the same way. In each round, both of the two
devices measure one “point” of the RSSI “trace”. The shorter the time interval
t2 between each round, the more “points” can be measured in the same time.
In the experiment, we set the t2 as zero millisecond in order to measure more
points. Finally, we should determine the number of points N in the “trace”. The
more are the points, more reliable are the results. However, more time is needed
if we measured more points.

Fig. 9. Relationship between variance and the number of measured points.

To determine an appropriate number of points, we measure 4 points, 8 points,
12 points, 16 points, 20 points, 24 points, 28 points, 32 points one by one. We
repeat the experiment for one hundred times on each point (e.g., measure 4
point for 100 times). After acquiring the points, we calculate cross correlation

342 Y. Ji et al.

and compare variance of the cross coefficient of every point. Figure 9 shows the
relationship between variance and the number of measured points. It can be
found from Fig. 9 that the variance decreases dramatically from 4 to 16 which
means the data becomes more and more reliable. However, the variance floats
in a small range after 16, which indicates that the data is in steady state and is
highly reliable. Thus, considering the data reliability and the time for measuring
RSSI, we determine 16 as the optimum point.

In the following, we will test the performance of the chord with 16 point on
thwarting relay attack. First we use the chord in normal communication without
attack, and then it is implemented in communication with relay attack.

Fig. 10. Genuine accept rate in communication without relay attack.

Figure 10 shows the experiment results without relay attacks. When the cross
correlation coefficient is in the range of 0 to 0.8, the genuine accept ratio decreases
slowly with the degree of cross correlation increasing. However, when the degree
of cross correlation is larger than 0.8, the genuine accept ratio decreases sharply.
From the above results, one can see that experiments, with the degree of cross
correlation larger than 0.8, accounts for more than 90% of the total experiments
results are highly cross correlation. It also can be seen that with the degree
of cross correlation smaller than 0.8, accounts for less than 10% of the total
experiment results, indicating that the accuracy of the experiment results are
highly accurate, and the probability of different measurement results between
the two instruments is smaller. Figure 11 shows the experiment results with relay
attacks, and the genuine accept ratio decreases straightly with the degree of cross
correlation increasing.

Figure 12 shows the false accept ratio and false reject ratio as a function of
degree of cross correlation with red dot line and black dot line respectively. In this
experiment, the false accept ratio can indicate the probability that instruments
cannot detect the attack when under attack in the communication process, and
the false reject ratio can indicate the probability that instruments detect the
attack without attack in the communication process. One can see that with

Chord: Thwarting Relay Attacks Among Near Field Communications 343

Fig. 11. False accept rate in communication with relay attack.

degree of cross correlation increasing, the false accept ratio decreases while the
false reject ratio increases, and they cross at the degree of cross correlation 0.85.
This cross point is called equal false ratio, and the corresponding degree of cross
correlation is 0.85, and the false ratio is 14%. At this point, the false accept
ratio and false reject ratio achieve a balance. If the threshold value of the degree
of cross correlation is set at 0.85 to judge the concurrency of the attack, the
probability to detect the attack under this protocol is 86% and the probability
of false result is 14%.

Fig. 12. Relationship between false accept rate and false reject rate. (Color figure
online)

To evaluate the efficiency of the proposed protocol, we record the duration for
measuring RSSI. Table 3 shows the time and number of times to measurement
the RSSI value.

One can see that the measurement time positively linearly depends on the
number of times to measurement the RSSI value. When the number of measure-
ment times is less than 64, the duration is less than 1 s. And when measurement

344 Y. Ji et al.

Table 3. Duration needed for RSSI measurement

Measurement times 2 4 8 16 32 64

Duration (unit: s) 0.05 0.1 0.19 0.38 0.76 1.53

times is larger than 64, the measurement time is more than 1 s. In this condition,
if the encoding and decoding time is also considered, the measurement time will
be further prolonged. We set the reference measurement times of RSSI at 16
considering both the practical utility and reliability, and the user can also set
their own number of measurement times based on the specific conditions.

4.3 Analysis

In this part, we further analyze and discuss the experiment results. From the
protocol, it is known that whether the communication between the legal instru-
ments is attacked by relay can be judged in terms of the range of cross corre-
lation between the two measured RSSI values. If the range of cross correlation
is larger than the fixed threshold value, the communication is considered to be
not attacked, and vice versa. However, when two attack instruments attack the
communication, and these two attack instruments are motionless relative to the
two legal ones, the RSSI value will be measured to constant, and then the range
of cross correlation will be 1. In this condition, if it is judged in terms of the fixed
threshold value, the wrong result will appear. Thus, we introduce some more new
judge mechanism to judge the whether the measured RSSI values are varied. If
the RSSI values are constant, this communication is judged to be invalid, and
the user will be requested to be authenticated again; if the user authenticate for
many consecutive times, the communication instruments will be locked to guar-
antee the data security. In addition, to confirm the experiment results are valid
to general instruments not specific one, we also performed hundreds of experi-
ments on instruments of different models and different batches. The probability
of condition, that the range of RSSI cross correlation between two instruments
is larger than 0.8, exceeds 90%, which indicates that the experiments results are
valid to all instruments regardless of batches and models, not to specific ones.

5 Related Work

Relay attack may cause serious security threat, however, it is not always consid-
ered to be a major risk (like eavesdropping). According to [7], some comprehen-
sive industrial and government guidelines as well as academic survey publications
[3,5] do not take relay attack into consideration. One reason may be that security
experts tend to treat this attack as a mixture of conventional man-in-the-middle
and skimming attacks. Unfortunately, relay attack is not easy to defend against
since it can effectively circumvent any application layer security.

Chord: Thwarting Relay Attacks Among Near Field Communications 345

With the popularity of smart phone, NFC-enabled devices are used as plat-
form for relay attack. For example, it has been proposed that NFC-enabled
mobile phones could be used as a generic relay attack platform without any
additional hardware, but this has not been successfully demonstrated in prac-
tice. Lishoy Francis et al. present a practice implementation of a NFC-enabled
relay attack, requiring only suitable mobile software applications [14]. The imple-
mentation reduces the complexity for relay attacks and therefore has potential
security implications for current contactless system. They also discuss several
potential countermeasures capable of mitigating relay attack in a mobile envi-
ronment such as timing, distance bounding, application restriction and location
verification. With the emergency of the Google Wallet, an existing mobile con-
tactless payment system, a software-based relay attack is successfully mounted
on it [15]. Thomas Korak et al. [16] use smart phones and custom-made proxy
device to implement relay attack. During the “three phone in the middle” attack
one NFC phone is used to act as access point for two other phones, and therefore
the communication distance is successfully extended to more than 110 m. Fur-
thermore, a custom-made proxy device is used to perform active relay attack,
and it can overcome many relay attack restrictions compared to NFC-enabled
devices, such as cloning of the victim’s ID, direct request for Waiting Time
Extensions or modifications in the low-level RFID protocols. The custom-made
proxy is highly flexible and more sophisticated attacks than using NFC-enabled
smart phones.

Recent years, many researchers have made various efforts to detect and pre-
vent relay attacks. The main approach against relay attack is the distance-
bounding protocol [8,9][39,40] that determine an upper bound for the physical
between two communicating parties based on the Round-Trip-Time (RTT). This
method is based on an accurate time measurement towards challenge-response
pairs. However, to achieve accurate distance bound the protocol needs to be
run over a special communication channel since conventional channels introduce
timing uncertainty that can obscure the delay introduced by relay attack. There
are also some studies that focus on using additional verification procedures. For
example, Reid [10] proposed a general paradigm based on multichannel protocols
and discusses several instantiations (e.g., accelerometers and polarized photons);
Drimer [11] used an appropriately piece of paper from verifier to exchange secret
message; Brands [12] employed a simple interface with a button for relay attack
prevention; Hancke [13] presented the first solution based on the chaos suppres-
sion theory and exploits the chaotic characteristics of a dynamic Lorenz con-
troller to distinguish a legitimate RFID reader from a proxy reader; Stajano [17]
addressed relay attack through ambient condition measurements and proposes
an elliptic curve-based mutual authentication protocol that refer to the surface
temperature of the prover measured by prover and verifier. Nevertheless, all of
these countermeasures complicate the transaction process for the user which in
certain applications is not feasible.

346 Y. Ji et al.

Countermeasures mentioned above require special equipment (e.g., distance-
bounding protocol), complicate transaction process (e.g., require interaction with
user), or need sophisticated computation (e.g., implement ECC). These observa-
tions motivate us to propose a solution that easy to implement and doesn’t require
large amount computation.

6 Conclusion

In this work, we investigate the relay attack and propose Chord, an authenti-
cation protocol based on RSSI for detecting relay attack. The original idea of
Chord is to employ an unrelayable factor in the authentication process between
the two NFC-enabled devices. The principle of this protocol is that prior to the
start of the authenticating process, the two communicating devices measure the
strength of their received signals respectively while the relative position from
one device to another is varied continuously. According to the measured RSSI,
the two devices can deduce a moving “trace” respectively. By comparing the
variation traces during authentication process, the victim devices of relay attack
are expected to be conscious of the existence of the malicious relay channel. Our
experiment indicates that this protocol is easy to implement and exhibits an
improvement of security with reasonable performance impact.

Acknowledgement. This work was supported by the National Key Research and
Development Program of China (No. 2017YFB0802100).

References

1. Coskun, V., Ozdenizci, B., Ok, K.: A survey on near field communication (NFC)
technology. Wirel. Pers. Commun. 71, 2259–2294 (2013)

2. Roberts, C.M.: Radio frequency identification (RFID). Comput. Secur. 25, 18–26
(2006)

3. ISO/IEC 18092:2013, Near Field Communication Interface and Protocol (NFCIP-
1), March 2013

4. Madlmayr, G., Langer, J., Kantner, C., Scharinger, J.: NFC devices: security and
privacy. In: Proceedings of the 3rd International Conference on Availability, Reli-
ability and Security (ARES 2008), pp. 642–647 (2008)

5. Still not a wallet, NFC has a second life as a safe, simple pairing
tool. http://gigaom.com/2013/08/08/still-nota-wallet-nfc-has-a-second-life-as-a-
safe-simplepairing-tool/

6. Mulliner, C.: Vulnerability analysis and attacks on NFC-enabled mobile phones.
In: International Conference on Availability, Reliability and Security (2009)

7. Ernst Haselsteiner, K.B.: Security in near field communication (NFC) strengths
and weaknesses. In: Workshop on RFID Security (RFIDSec 2006), July 2006

8. Nelson, D., Qiao, M., Carpenter, A.: Security of the near field communication
protocol: an overview. J. Comput. Sci. Coll. 29, 94–104 (2013)

9. Hancke, G.P., Mayes, K.E., Markantonakis, K.: Confidence in smart token prox-
imity: relay attacks revisited. Comput. Secur. 28, 615–627 (2009)

http://gigaom.com/2013/08/08/still-nota-wallet-nfc-has-a-second-life-as-a-safe-simplepairing-tool/
http://gigaom.com/2013/08/08/still-nota-wallet-nfc-has-a-second-life-as-a-safe-simplepairing-tool/

Chord: Thwarting Relay Attacks Among Near Field Communications 347

10. Reid, J., Nieto, J.M.G., Tang, T., Senadji, B.: Detecting relay attacks with timing-
based protocols. In: Proceedings of the 2nd ACM Symposium on Information,
Computer and Communication Security (ASIACCS 2007), pp, 204–213, March
2007

11. Drimer, S., Murdoch, S.J.: Keep your enemies close: distance bounding against
smartcard relay attacks. In: Proceedings of the 16th USENIX Security Symposium
(USENIX Sec2007), pp. 87–1C102, August 2007

12. Brands, S., Chaum, D.: Distance-bounding protocols. In: Helleseth, T. (ed.) EURO-
CRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-48285-7 30

13. Hancke, G.P., Kuhn, M.G.: An RFID distance bounding protocol. In: Proceedings
of the International Conference of Security and Privacy for Emerging Areas in
Communication Networks(SecureComm), Athens, Greece, pp. 67–73 (2005)

14. Munilla, J., Peinado, A.: Distance bounding protocols for RFID enhanced by using
void-challenges and analysis in noisy channels. Wirel. Commun. Mob. Comput.
8(9), 1227–1232 (2008)

15. Kim, C.H., Avoine, G.: RFID distance bounding protocol with mixed challenges to
prevent relay attacks. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009.
LNCS, vol. 5888, pp. 119–133. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10433-6 9

16. Francis, L., Hancke, G., Mayes, K., Markantonakis, K.: Practical NFC peer-to-peer
relay attack using mobile phones. In: Ors Yalcin, S.B. (ed.) RFIDSec 2010. LNCS,
vol. 6370, pp. 35–49. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-16822-2 4

17. Stajano, F., Wong, F.-L., Christianson, B.: Multichannel protocols to prevent relay
attacks. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 4–19. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14577-3 4

18. ISO: Near Field Communication Interface and Protocol-2 (NFCIP-2), ISO/EIC
21481:2012 (2013)

19. ISO/IEC 14443: Identification cards Contactless integrated circuit cards Proximity
cards. http://www.iso.org/. Accessed 31 Mar 2010

20. ISO/IEC 15693: Identification cards - Contactless integrated circuit cards - Vicinity
cards. http://www.iso.org/. Accessed 31 Mar 2010

21. FeliCa: http://www.sony.net/Products/felica/. Accessed 31 Mar 2010
22. Conway, J.H.: On Numbers and Games. Academic Press, London (1976)
23. Desmedt, Y., Goutier, C., Bengio, S.: Special uses and abuses of the fiat-shamir

passport protocol (extended abstract). In: Pomerance, C. (ed.) CRYPTO 1987.
LNCS, vol. 293, pp. 21–39. Springer, Heidelberg (1988). https://doi.org/10.1007/
3-540-48184-2 3

24. Hu, Y.C., Perrig, A., Johnson, D.B.: Wormhole attacks in wireless networks. IEEE
J. Sel. Areas Commun. (JSAC) pp. 370–380 (2006)

25. Hancke, G.P.: Practical attacks on proximity identification systems (short paper).
In: Proceedings of IEEE Symposium on Security and Privacy, pp. 328–333, May
2006

26. Francillon, A., Danev, B., Capkun, S.: Relay attacks on passive keyless entry and
start systems in modern cars. In: Proceedings of Network and Distributed System
Security Symposium (NDSS) (2011)

27. Libnfc: Public Platform Independent Near Field Communication (NFC) Library.
http://nfc-tools.org/index.php?title=Libnfc:nfc-relay

28. RFID IO Tools: http://www.rfidiot.org/

https://doi.org/10.1007/3-540-48285-7_30
https://doi.org/10.1007/3-540-48285-7_30
https://doi.org/10.1007/978-3-642-10433-6_9
https://doi.org/10.1007/978-3-642-10433-6_9
https://doi.org/10.1007/978-3-642-16822-2_4
https://doi.org/10.1007/978-3-642-16822-2_4
https://doi.org/10.1007/978-3-642-14577-3_4
http://www.iso.org/
http://www.iso.org/
http://www.sony.net/Products/felica/
https://doi.org/10.1007/3-540-48184-2_3
https://doi.org/10.1007/3-540-48184-2_3
http://nfc-tools.org/index.php?title=Libnfc:nfc-relay
http://www.rfidiot.org/

348 Y. Ji et al.

29. Weiss, M.: Performing Relay Attacks on ISO 14443 Contactless Smart Cards
using NFC Mobile Equipment. Master Thesis, Technischen Universitat Munchen,
Munich, Germany (2010)

30. Francis, L., Hancke, G., Mayesc, K.: A practical generic relay attack on contactless
transactions by using NFC mobile phones. Int. J. RFID Secur. Crypt. (IJRFIDSC)
2(1–4), 92–106 (2013)

31. Roland, M., Langer, J., Scharinger, J.: Applying relay attacks to Google Wallet.
In: Proceedings of the 5th International Workshop on Near Field Communication
(NFC 2013), 6 p., February 2013

32. Korak, T., Hutter, M.: On the power of active relay attacks using custom-made
proxies. In: Proceedings of the 8th Annual IEEE International Conference on RFID
(IEEE RFID 2014), pp. 126–133, April 2014

33. Cagalj, M., Perkovic, T., Bugaric, M., Li, S.: Fortune cookies and smartphones:
weakly unrelayable channels to counter relay attacks. Pervasive Mob. Comput. 20,
64–81 (2015)

34. Kang, S., Kim, J., Hong, M.: Button-based method for the prevention of nearfield
communication relay attacks. Int. J. Commun. Syst. 28, 1628–1638 (2014)

35. Malek, B., Miri, A.: Chaotic masking for securing RFID systems against relay
attacks. Secur. Commun. Netw. 6, 1496–1508 (2013)

36. Urien, P., Piamuthu, S.: Elliptic curve-based RFID/NFC authentication with tem-
perature sensor input for relay attacks. Decis. Support Syst. 59, 28–36 (2014)

Analyzing Use of High Privileges
on Android: An Empirical Case Study
of Screenshot and Screen Recording

Applications

Mark H. Meng1(B), Guangdong Bai2, Joseph K. Liu3, Xiapu Luo4,
and Yu Wang5

1 Institute for Infocomm Research, Agency for Science,
Technology and Research (A*STAR), Singapore, Singapore

menghs@i2r.a-star.edu.sg
2 Griffith University, Brisbane, Australia

g.bai@griffith.edu.au
3 Monash University, Melbourne, Australia

joseph.liu@monash.edu
4 Hong Kong Polytechnic University, Hong Kong, Hong Kong S.A.R.

csxluo@comp.polyu.edu.hk
5 Guangzhou University, Guangzhou, China

yuwang@gzhu.edu.cn

Abstract. The number of Android smartphone and tablet users has
experienced a rapid growth in the past few years and it raises users’
awareness on privacy and security issues of their mobile devices. There
are lots of users rooting their Android devices for some useful functions,
which are not originally provided to developers and users, such as taking
screenshot and screen recording. However, after observing the danger of
rooting devices, the developers begin to look for non-root alternatives to
implement those functions. Android Debug Bridge (ADB) workaround
is one of the best known non-root alternatives to help app gain a higher
privilege on Android. It used to be considered as a secure practice until
some cases of ADB privilege leakage have been found. In this paper,
we propose an approach to identify the potential privilege leakage in
Android apps that using ADB workaround. We apply our approach to
analyze three real-world apps that are downloaded from Google Play
Store. We then present a general methodology to conduct exploitation
on those apps using ADB workaround. Based on our study, we suggest
some mitigation techniques to help developers create their apps that
not only satisfy users’ needs but also protect users’ privacy from similar
attacks in future.

Keywords: Android security · Application analysis ·
Privilege escalation · ADB workaround · Exploit

This work was supported by NSFC Project 61802080.

c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 349–369, 2019.
https://doi.org/10.1007/978-3-030-14234-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_19&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_19

350 M. H. Meng et al.

1 Introduction

The rise of mobile devices has greatly enriched people’s lives in this digital era.
As the dominator of current mobile device market, Android has reserved over
77.3% of the global smartphone market share by July of 2018 [20].

At the moment of this paper being drafted, the global number of monthly
active Android devices has exceeded 2 billion [16]. The over-reliance on mobile
devices makes people save all the data regardless of personal or business purpose
onto their smartphones or tablets, which may lead their privacy under exposure
if no proper protection has been enforced.

Android is well-known by its rich functionality and customization, but there
are still some features that could not be implemented merely using the offi-
cial application programming interfaces (APIs). Google creates a collection of
permission labels to define the privilege of apps running on Android operating
system (OS). Some actions like reading the content displaying on the screen, in
another word taking screenshot and screen recording, are marked as signature
level permissions, hence are not allowed to be realized by common third party
apps. However, as long as the requirement of users exists, the developers would
never stop to push the boundary. For that reason, developers are all motivated
and successfully come up with two approaches to solve the permission dilemma,
namely “rooting the phone” and “ADB workaround”.

Rooting the devices could enable users to gain the administration privileges
to do anything they want such as removing pre-installed apps, unlocking more
functionalities, or changing the theme of UI. According to a statistic done by
Lucic [14], there are over 27.44% users indicating that they have rooted their
smartphones to remove redundant and useless pre-installed applications. There
are several security issues behind the “rooting” because it circumvents the per-
mission mechanism on Android system. The good news says there is an increasing
number of people who have realized the risk of rooting their devices, and have
started seeking non-root approaches. Gaining a higher privilege through Android
Debug Bridge (ADB) is one of the best known and widely used workarounds.
Users can connect their devices to a PC via either USB or wireless network,
launch the ADB and then invoke a service with system level privilege running
in the background. After that, an application could communicate with that ser-
vice, send command to it, and thereby trigger it to work for the application with
system privilege. In this manner, that app can do the job even without APIs pro-
vided by Android. There are plenty of apps on Google Play Store adopting this
ADB workaround to satisfy users’ specific needs, including, but not be limited
to, performing backup and restoration, taking screenshot, recording screen, etc.
Those apps that use ADB workaround to achieve high privilege are very popular
in recent years while Google has not yet granted corresponding permissions to
developers.

The security concern of ADB workaround has been raised up after some
exploitation being successfully conducted. In this work, we design an approach
to discover the vulnerabilities of ADB workaround. We apply this approach to
three real-world apps downloaded from Google Play Store, analyze them and

Analyzing Use of High Privileges on Android 351

eventually identify the potential privilege leakage on each of three apps. In addi-
tion, we conduct an exploitation on one of these three apps named “No Root
Screenshot It” and successfully prove the existence of vulnerabilities that we
have recently found. Based on the outcome of our exploitation, we find that all
the apps found by us that uses ADB workaround to achieve privilege escalation
are vulnerable to the attack through the socket channel. Once the attacker finds
a way to install the malicious application on the target device, the user privacy
stored on the device will be in great risk of being stolen or leaked. Last but not
the least, we provide some advices to the developers to mitigate security risk
and thereby achieve users’ requirement and meanwhile protect users’ data and
privacy.

Therefore, this paper marks the following contributions:

• We discuss the potential vulnerability of ADB workaround usage on Android
devices by conducting our empirical case study.

• We propose a general approach to perform exploitation to any application
using ADB workaround to achieve privilege escalation.

• We carry out our exploitation on a real application downloaded from Google
Play Store and we prove that the ADB workaround brings with a significant
security loophole.

• We emphasize that the security consideration during the application design
and implementation is crucial to the preservation of users’ privacy and hence
we provide our mitigating suggestions to the developer community.

This paper is organized as follows. In the next section, we briefly introduce
the security mechanism of Android, the concept of ADB workaround and related
works. In Sect. 3, we present the dataset we have collected and then we explain
our approach to conduct case study. We also summarize a methodology to per-
form exploitation and we test our exploit app on actual Android devices in that
section. Section 4 is made up of our investigation based on 3 experiments of
Android applications. We also present our corresponding observation in each
experiment. Moreover, we provide our suggested mitigation in Sect. 5. Finally,
we wrap up this paper in Sect. 6 with our concluding remarks.

2 Background

2.1 Privilege and Permission on Android

Privilege is a security attribute required for certain operations. In Unix-like OS,
the process privileges are assigned in the principle of file system ownership. Its
privilege mechanism is organized in shape of a flat tree where users’ privilege is
presented as the leaves and the superuser is described as the root [17]. Android,
as a mobile operating system built based on Unix, takes advantages of the user-
based privilege mechanism to identify, isolate and protect the resources used by
applications. Every app is assigned with a unique user identification (UID), runs
within the application sandbox where it only has limited permissions to access
resources from the OS or other apps [4].

352 M. H. Meng et al.

From the perspective of application, Android adopts the concept of
ownership-based permission system from the underlying Linux kernel and devel-
ops its own access control mechanism, which is also known as the discretionary
access control (DAC) [5]. On Android platform, permissions are classified into
several protection levels. Most of the Android developers are made available
to the normal level permissions and the dangerous level permissions in their
development. The normal level permissions, such as Internet, vibration, NFC
or setting alarm, are considered as having no great risk to the user’s privacy or
security. It will not prompt users for consent if the usage of those permissions
is properly declared in manifest during the development. The dangerous level
permissions indicate that the application needs access to private data or control
over the device that may potentially have a negative impact to user. Unlike the
normal level, all the operations classified in dangerous level will not be executed
until obtaining user consent. In addition to aforementioned two permission lev-
els, there are two more protection levels namely signature level and signature
or system level defining risky permissions. The former is only granted to the
application signed by the same encryption key with the one it declared the per-
mission in advance. Furthermore, some signature level permissions are not made
available for third party developers and they can only be granted to a trusted
party like Android development group, as Table 1 shows. The latter could only
be granted to the apps that are embedded in Android system image or signed
by vendors of the system image [8]. The grant of these two permission levels
is not to be approved by users, instead, it is conducted by signature validation
mechanism of Android system during installation [19]. Many functions that users
require but not provided as public APIs by Android OS, like backing up, taking
screenshot and screen recording, belong to the signature level permission.

It is noteworthy that the DAC is only effective with the premise that all the
apps are executed by an unprivileged user. Similar to other Unix-like operating
systems, Android also has a number of privileged users defined in its Linux kernel,
such as root, system, and radio. The root, for instance, is the most supreme user
in Android and has full access to all apps’ data. The Android OS does not
prevent the root user or any app executed with root privilege from accessing
and even modifying the resources of system or other apps [9].

2.2 Privilege Escalation

In order to implement the functions like backup, taking screenshot or screen
recording, developers have to find a way to escalate the privilege of their apps till
the signature level or even higher. There are two privilege escalation approaches
on Android, namely rooting and non-root workarounds.

Rooting
Rooting is the process of allowing users of Android devices to attain privileged
control. Once an Android device is rooted, users can take advantage of the
root privilege and arbitrarily access the system resource. Furthermore, users can
assign specific privilege to any app installed on the rooted devices, and thereby

Analyzing Use of High Privileges on Android 353

enjoy massive personalized functionality to maximize the usage of their Android
devices [3]. Due to those benefits, there are plenty of users rooting their Android
devices even Google officially discourage to do so [6,12].

Android rooting is described as a double-edged sword in the paper of [22]. It
offers users with more permission and freedom to use their devices, and mean-
while, it also exposes all the data and program to the adversary and bring severe
security vulnerabilities [15,18].

Table 1. Some examples of signature level permissions that are not granted to the
third party developers by API level 19

Permission API Level Description

BROADCAST SMS 2 Broadcast an SMS receipt notification

CALL PRIVILEGED 1 Initiate a call without user confirmation

CAPTURE AUDIO OUTPUT 19 Capture audio output stream

CAPTURE VIDEO OUTPUT 19 Capture video output stream

DELETE PACKAGE 1 Uninstall package

DIAGNOSTIC 1 Read and write the diagnostic resources

DUMP 1 Retrieve state dump from system services

INSTALL PACKAGES 1 Install packages

MODIFY PHONE STATE 1 Modify phone state (e.g. power on, mmi, etc)

MOUNT UNMOUNT FILESYSTEMS 1 Mount/unmount file systems or removable storage

READ FRAME BUFFER 1 Access to the frame buffer data (e.g. screenshot)

READ LOGS 1 Read system log files

REBOOT 1 Reboot the system

SET TIME 8 Set system time

WRITE APN SETTINGS 1 Overwrite APN setting

Non-root Alternative
Rooting an Android device is a risky practice because it may void the war-
ranty, brick the device and bring with numerous security vulnerabilities. Not all
Android users are willing to root their device for the exchange of additional free-
dom and customization. Therefore, developers start to seek non-root alternatives
to escalate privilege. There is an alternative approach called ADB workaround
to attain high level privilege without rooting the device, and it becomes popular
whilst the growth of users’ concern to their device security.

Take the programmatic screenshot as an example. An app needs to have a sig-
nature level permission from the system to take screenshot, which is impossible
for normal developers to obtain through normal level permission request in user
interface. However, there are still two workarounds even without the permission
given from Android development team: (1) taking screenshot on rooted devices;
or (2) making use of a process with higher privilege to indirectly escalate the
privilege of the app. The latter approach does not require the holistic change to
the Android devices like “rooting”. In another word, it has better security and
reliability [13].

ADB is a development tool provided by Google to allow developers to debug
their apps through shell commands from their PCs. A process requiring signature

354 M. H. Meng et al.

level permissions, such as taking screenshot, is not allowed to be implemented
in app by third party developers, but could be started from an ADB shell win-
dow. That is the reason why ADB workaround could achieve a higher privilege.
By using ADB workaround, developers could implement all methods requiring
signature level permissions, pack all of them into an executive binary that could
be started on ADB and run them in the background of Android OS as a service.
As long as the service is not killed (e.g. power-off, restart), the unprivileged app
could communicate with the privileged proxy to achieve the functionality which
are not able to be done solely by itself.

2.3 Access the Screen Display on Android Devices

It is a very common demand for users to take a screenshot to save and share what
is happening on her mobile device. Android only officially provides screenshot
function to users and developers since its version 4.0. The most common way for
user to capture the screen content is pressing a key combination of power key
and volume down key. However, in those earlier versions before 4.0, Android OS
neither offers users a function to take screenshot, nor provides public APIs to
developer to produce third party apps to do so [10]. For those reasons, there is
only one way to enable user taking screenshot on their Android device, which is
privilege escalating.

Android system uses Linux OS as its kernel, and therefore it shares same
approach to take screenshot with traditional Linux OS. In Linux system, the
display output stream is managed by a software library named “framebuffer”.
By accessing the framebuffer library, an application or a process can obtain the
display data of whole screen. In early history of Android system until 3.0, reading
data from the framebuffer is the only approach to take screenshot. The frame-
buffer approach is concise and traditional but faces some challenges. First of all,
the Linux applies very strict access control to the framebuffer library, which is
borrowed by Android OS as well. There are only 2 user groups, root and graphic,
being able to access data from the framebuffer on Android platform. Moreover,
nowadays Android apps become complex and sometimes using multiple frame-
buffers to form an overlaid display. Reading framebuffer is very likely no longer
capable to obtain the entire screen display.

Starting from version 4.0. Google introduces an interface specially for
taking screenshot called SurfaceFliger, together with a permission called
READ FRAME BUFFER to invoke that interface. Nonetheless, Android remains its
strict access control policy to the new API. Only the apps running with system
or graphics user group are eligible to use such API to take screenshot – which is
impossible for normal third party apps to achieve.

The developer community can always find a solution although there are num-
ber of restrictions to achieve screenshot. “ddms” is the most popular approach
which adopts the idea of ADB workaround to eliminate the privilege restriction
of screenshot taking within a third party app. ddms refers to the Dalvik Debug
Monitor Server, which is a debugging tool brought with Android SDK and is
also integrated into the official Android development software called Android

Analyzing Use of High Privileges on Android 355

Studio. By accessing the ddms, user can make use of a third party process to
send commands to the framebuffer service through the ADB channel. Unlike
the third party app itself, an ADB session is given the shell user permission, at
which all processes launched in an active ADB session are eligible to be assigned
with privileges of graphic user group. Hence the ddms approach could achieve
the screenshot functionality without needs to gain a higher privilege [7].

2.4 Related Work

There are some previous studies unveiling the security risk of ADB workaround
despite it is considered much safer than device rooting. Security concern of ADB
workaround mainly comes from the difference between roles of proxy and appli-
cation on Android OS. In this project, these risks could be summarized into two
types:

(1) whether other apps could obtain control to the opening proxy by sending
commands; and

(2) whether the communication between app and proxy is properly protected if
the scenario of (1) is possible to happen.

The description of the first kind of security concern could be found in the paper
written by Lin et al. [13]. The communication channel between the application
and its ADB proxy relies on network sockets without any protection enforced. For
that reason, once an ADB proxy has been activated, any application has the priv-
ilege to communicate with it and even request service from it at any time without
restrictions. This vulnerability gives attackers a chance to analyze the protocol
of such communication and build a malicious application to request service from
ADB proxy exactly as same as what genuine application does.

Some developers have realized the fact that the communication channel
between the application and ADB proxy may be risky, and therefore imple-
mented some authentication routines to strengthen security. However in the
paper of Bai et al., it was proved that such authentication was ineffective as
long as the reverse engineering and analysis being feasible on given application.
What developer can do to secure the communication is only applying some basic
authentication since there is no way to enforce strong protection onto the socket
network. That authentication is usually very weak in front of analysis [1]. Some
application like “Helium”, a backup/restore application mentioned in the paper
written by Bai, et al., has been found using protection during the communication
between application and ADB proxy. ADB proxy requests a password that sent
out from a specific process to provide service. Unfortunately, vulnerability was
found in the protocol of password distribution. The password generated each
time when ADB proxy being activated, and it is independent of app’s life cycle.
In this way, the proxy has to find a place that readable by apps executed with
user group privilege, save the password into a file and waiting for app to read
from it. This life cycle inconsistency makes adversary possible to find the current
using password and thereby exploit the Android device by carrying out a replay
attack to the ADB proxy.

356 M. H. Meng et al.

3 Approach

The Android app using ADB workaround is usually a combination of a normal
application with restricted permissions, and a proxy started by ADB which has
signature level permissions. In Android, most of apps communicate with proxies
through the socket channel, which has no strong protection and generic access
control. A malicious app could easily obtain the control of proxy if it knows
the protocol of communication between app and itself. The security concern
arises if the proxy interface is not well protected against the third party access.
Some apps implement password authentication into the protocol to strengthen
protection to the proxy. However, due to the inconsistency of app and proxy’s
life cycles, there usually be a mechanism to temporarily save the password. By
this means, a malicious app could still have chance to obtain the password if
proper analysis has been done. Therefore, an ineffective or insecure mechanism
of password authentication constitutes another potential security concern.

In this work, we raise our hypothesis that all the apps using ADB workaround
to attain a higher privilege are vulnerable to the attack. To prove that hypothe-
sis, we collect a number of Android apps from Google Play Store. By filtering out
those apps that do not adopt ADB workaround, we conduct a series of analysis
in Sect. 3.2 to find out their mechanisms to achieve privilege escalation. Static
analysis is the first step of application assessment, which will be conducted on
both the proxy activation program running on the PC and the app itself. Static
analysis helps us locate the involved classes for the proxy communication and
thereby gain the knowledge of the overall procedure. Dynamic analysis, on the
other hand, is capable of elaborating the runtime behavior of the target app and
exposing the potential error and vulnerability. Dynamic analysis, such as hook-
ing, is a good complement of the static analysis for our app assessment especially
in case of strong obfuscation has been enforced. The protocol between the proxy
and the app is supposed to be completely discovered after the static analysis and
dynamic analysis. For the purpose to conduct exploitation and thereby prove our
hypothesis, we may also need to conduct authentication analysis to bypass the
limited security mechanism applied in the target app. With all the key informa-
tion gathered, we shall proceed to exploitation design, which will be introduced
in Sect. 3.3.

3.1 Data Set

We collect a batch of 13 screenshot apps and 2 screen recording apps from
Google Play Store, with the criteria that the app must be compatible with earlier
Android versions that do not have official support of screenshot functions. We
install those apps on a Nexus 7 device installed with Android 4.4, followed by
reading their official user instructions and observing the functionality of each of
them. Those 15 apps, as shown in Table 2, covers all well-known approaches to
take screenshots or screen recording on Android devices. There are 4 apps using
ADB workaround approach to enable users to take screenshots or recording
without needs to root their devices in advance. 6 other screenshot apps achieve

Analyzing Use of High Privileges on Android 357

screenshot by asking user to press key combination (e.g. power key and volume
down key). Those apps essentially do not contain screenshot implementation,
instead they detect the device configuration and then display the screenshot
instruction if either the corresponding manufacture has official built-in function,
or the Android system version installed is 4.0 or later [11], to help users to
achieve screenshot functionality – in another word, those 6 apps are more like
an assistant to guide users to take and manage screenshot pictures. Moreover,
there are 5 more apps explicitly declaring that they are not working on devices
without being rooted. In this paper, we only focus our study on those apps that
using ADB workaround.

Table 2. List of screenshot and screen recording apps found on Google Play Store

App name and identity package name Root required App typea Unrooted approach Size

1 Screen capture - Sigourney

com.mobilescreen.capture

No S Hardkey 5.2M

2 Screenshot easy com.icecoldapps.screenshoteasy No S Hardkey 5.2M

3 Screenshot ultimate

com.icecoldapps.screenshotultimate

No S ADB 3.2M

4 Screenshot capture com.tools.screenshot No S Hardkey 3.1M

5 NoRoot screenshot lite

com.mobikasa.screenshot.lite

Yes S N.A.b 545 k

6 Screenshot and draw

com.conditiondelta.screenshotanddraw.trial

Yes S N.A. 1.1M

7 Screenshot com.enlightment.screenshot No S Hardkey 2.4M

8 Screenshot com.geekslab.screenshot No S Hardkey 1.2M

9 Screenshot com.icondice.screenshot No S Hardkeyc 4.86M

10 Screenshot com.geeksoft.screenshot Yes S N.A. 2.3M

11 Screenshot ER demo fahrbot.apps.screen.demo Yes S N.A. 3.2M

12 No root screenshot It

com.edwardkim.android.screenshotitfullnoroot

No S ADB 838 k

13 Screenshot It

com.edwardkim.android.screenshotitfull

Yes S N.A. 840 k

14 FREE screen recorder NO ROOT

uk.org.invisibility.recordablefree

No R ADB 7.5M

15 Mobizen screen recorder – record, capture, Edit

3.1.0 com.rsupport.mvagent

No R ADB 19.9M

a‘S’ stands for screenshot app and ‘R’ stands for screen recording apps.
bN.A. indicates that application only work on rooted devices.
cOnly compatible with devices made by some fixed manufactures

3.2 Application Assessment

Executing the application on an Android device by following the user instruc-
tion is obviously not sufficient for the purpose of application assessment. A com-
plete application assessment is composed of static analysis and dynamic analysis.
Figure 1 illustrates some common approaches to conduct application assessment
onAndroid platform.The static analysis is to find a rough picture of the functional-
ity of an Android application by analyzing source code, binary or other supporting
materials such as the manifest file. While the dynamic analysis makes use of the
findings from static analysis, and consequently unveils the runtime behavior of the

358 M. H. Meng et al.

target application [2]. In this work, our approach to analyze the app and find the
vulnerabilities of ADB workaround is initiated based on two potential concerns
that we have mentioned above. We summarized our approach into four step:

Analysis approaches

Dynamic analysis

Hooking method
invocation

Runtime logs
analysis

Static analysis

Decompilation

Disassembly
inspection

smali/Java code
analysis

Script analysis

Fig. 1. Approach of app analysis

(1) Analysis on the proxy activation. This analysis could be done on
reading proxy activation script if exists. The script is usually a batch file or bash
script, which depends on the OS environment, i.e. the Windows or Linux, to
be run with. Some apps do not provide script file to the user for Windows OS,
for instead, a desktop application with graphic user interface (GUI) is provided
to achieve better user experience. In this circumstance, the Linux version of
activation package is recommended to be download because the script file is more
widely used on Linux OS. A script file could disclose some details of the protocol
of communication between app and proxy, such as the name of service proxy,
the native executive file of proxy if any, and how the service being activated.
Besides the analysis onto the script file, the name, process ID and permission
group of service proxy running in the background could also be found by typing
command “adb shell ps” in ADB through USB to the device. Moreover, the
port opened for the communication between service proxy and app could be
found in similar way by typing ADB command “adb shell netstat” to retrieve
all active network usage on the device. However, in this step, the pairing of
process and specific port listening may not be able to be observed if multiple
proxies had been activated.

(2) Analysis on the apk file. Reverse engineering, such as apk decompi-
lation, is involved in this step. Once the service proxy and port number have
been identified, the next step is to discover the implementation of the commu-
nication between proxy and app in apk file. The apk file could be unpackaged
and then decompiled into smali/Java source code by using tools like Apktool
or dex2jar. The smali/Java code has supreme readability which may help us to
look through different classes to locate the code of protocol’s implementation. In
fact, the decompilation analysis may not always to be proved as a smooth and
easy process because a large amount of developers obfuscate their code before
releasing the apk files to the app store [21]. There are a number of Android obfus-
cation tools available on the Internet that facilitate developers to obfuscate their
apps to preserve copyright and intellectual property [23]. In this situation, the

Analyzing Use of High Privileges on Android 359

disassembly will be helpful and a supplement to the smali/Java code reading.
Reading assembly code could help us recognize the constant strings and numbers
defined within same class.

(3) Dynamic analysis. Only reading the script and source code may not be
sufficient to sketch out the entire protocol between proxy and app. The objective
of dynamic analysis is to find both control flow and data flow occurred when the
app interacts with service proxy. Reading logs through logcat is a simple but
effective way to gain a brief understanding to the protocol. However, hooking by
Xposed framework will be one of the best solutions to complete the analysis when
the source code has been enforced with strict obfuscation or an authentication
has been applied onto the socket channel between app and proxy server. Hooking
method could be enforced onto the key methods in the class that takes respon-
sibility to the communication between app and proxy, then sniff and extract the
arguments passed in and return value through the system logs. According to the
case studies in this work, the methods to be hooked are mostly used to handle
the action trigger (e.g. takeScreenshot) and socket channel I/O (e.g. write).
Hooking on the prior method(s) by printing logs could show us the control flow
of the protocol, and hooking on the latter method(s) by extracting arguments’
value could help us understand the data flow between service proxy and app
itself. By now with both control flow and data flow confirmed, the communica-
tion protocol has been unveiled.

(4) Authentication analysis. There is very likely an authentication process
if any series of numbers or a random string to be found in the data flow of the
protocol. In that case, it is encouraged to clarify if the password is a constant
string or dynamically generated. For the dynamically generated password, the
password issuing should be solely performed by either the proxy or the app itself.
The password is generally stored at somewhere that both the app and proxy have
permission to read.

Once these four steps listed above have been fully understood and conducted,
attackers are theoretically able to exploit an app that uses ADB workaround in
a programmatic manner. We will perform an empirical case study of 3 apps that
uses ADB workaround and we will present our findings in next section.

3.3 Exploitation

Theoretically, the user privacy displayed on device could be unperceivably com-
promised at arbitrary time if there is a malicious app installed on that device
where the proxy of original app running in the background. In this subsection,
we present our methodology to conduct the exploitation. Furthermore, we also
select one of those 3 apps that are mentioned in the case study as the target to
carry out a real exploitation, and we depict the implementation details as well
as the exploitation outcome.

Based on our analysis on the apps collected for this work, we find all the
apps that uses ADB workaround are vulnerable by attacking through socket
channel and thereby obtain screenshot or screen recording of victim’s device.
Moreover, we find there is a large group of Android apps using socket channel

360 M. H. Meng et al.

Android Device

shell group
user group

PC

Proxy

Attacker

1

2

3

A2

A3

4

A4

App Installation

ADB Channel

Socket Channel

IO Control

Normal Actions

Attack Actions

Legend

A1

Fig. 2. Process to conduct ADB workaround exploitation

communication aided by ADB workaround to achieve privilege escalation. For
those reasons, we summarize the exploitation methodology into a set of technical
processes and we extend our focus scope to all apps that use ADB workaround
to achieve privileged functionality.

As shown in Fig. 2, the exploitation is achieved by replay attack initiated by a
malicious app, which follows the same protocol as the original app but without
compliance with users’ control over their devices. It could carry out theft of
user’s privacy at any time as long as the proxy is running in the background.
Generally a successful exploitation is constituted by 4 key steps, which are:

(A1) the attacker finds a way to install the exploitation app on the victim’s
device, where the benign app has also been installed on.

(A2) the malicious app identifies the proxy and then conduct a replay attack;
(A3) the malicious app gains access to the specific file directory where the

output media files locate; and
(A4) the malicious app finds a way to transmit the stolen data to the attacker.

In this paper, we introduce our exploitation conducted to the app II and then
we present the outcome of exploitation.

We implemented an app named “exploitNoRootScreenshotIt” simulating the
malicious exploitation of the app named“No Root Screenshot It” (app II in
following case study) for the demonstration purpose.1 In that exploitation app,
there are in total 4 messages being organized into 2 batches and sent out to the
localhost on port 6003 through the socket channel. The first 2 messages are used
for the configuration purpose. Once the acknowledgment of first batch messages
has been received from the proxy, which is “screenshotService” running in the
background, the last 2 messages are sent out as screenshot taking commands.

1 The source code of our exploitation could be downloaded from http://mark-h-meng.
github.io/attachments/analysing-use-of-high-privileges/source code folder.zip.

http://mark-h-meng.github.io/attachments/analysing-use-of-high-privileges/source_code_folder.zip
http://mark-h-meng.github.io/attachments/analysing-use-of-high-privileges/source_code_folder.zip

Analyzing Use of High Privileges on Android 361

The screenshot obtained is converted to a bmp file under the sub-directory
named “temp”2. The access permission of that folder was set as read-only to
the user group. Therefore, once the screenshot has been taken by the proxy, the
exploitation app could access to the newly captured screenshot located in the
“temp” folder and make a copy to the target location such as folder under exter-
nal storage “/sdcard/hack screenshots/”. The screenshot image is renamed
according to the capture time to avoid being overwritten and facilitate main-
tenance at the same time. As the result, our exploit app has been successfully
tested on 2 devices in our lab (a Nexus 7 with Android 4.4 installed, and a
Xiaomi Rednote 3G with Android 4.2 installed). This exploitation could even
been further designed and programmed to take screenshot automatically with
specific frequency without any notice of user, hence the user’s privacy could be
consequently exposed to the attacker.

4 Empirical Case Study

In this section, we perform our case studies on 3 apps that use ADB workaround
to achieve screenshot function. Firstly, we analysis the app titled as Screenshot
Ultimate developed by “icecoldapps” and we note it as app I. Then we study
the app named No Root Screenshot It developed by “edwardkim”, which is rep-
resented by app II. After that, we conduct our analysis on the third app called
FREE screen recorder NO ROOT, which is produced by “Invisibility Ltd” and
noted as app III.

4.1 App I – Screenshot Ultimate

“Screenshot Ultimate” is a typical screenshot app that does not require a rooted
device. It supports screenshot taking through ADB workaround. However, that
usage is veiled since too obvious instruction may lead to a ban from Google. The
ADB workaround is mentioned in a paragraph of “Help” instruction, and the
URL to download the script and other necessary files are given in another place
and could only be found on the screen display within the app. The developer
has provided detailed step-by-step instruction and troubleshooting notes.

Analysis on the Proxy Activation
The native executable file, named “screenshotultimatenative1”, and scripts
for both Linux and Windows OS could be downloaded as a zipped file from
the URL given in the help instruction. After reading through the script file, we
found the execution of script pushed that native executable to the file directory of
the application in the device, then configured another native executable named
absel located in the application file directory to user executable mode, and
finally launched both native execution files to make them run in the background.
We summarize the flow of service activation and show it in Fig. 3. With the

2 The full directory path is /data/data/com.edwardkim.android.screenshotitfullnoro
ot/temp.

362 M. H. Meng et al.

Start

Connect PC & device through ADB

Push screenshotultimatenative1
to the app folder on device

Change mode absel which locates
in app folder on device

Kill both processes if they are running in
background

Start both processes

End

Fig. 3. Proxy activation of app I Fig. 4. Process of taking screenshot on app I

process name of service running in the background, we can analyze the apk
file and unveil the protocol of screenshot taking process between app and that
service.

Analysis on the apk File
The reverse engineering tool “dex2jar” is used to decompile the apk file to the jar
format. Then further Java decompilation has been done by “JD-GUI”. Unfor-
tunately, the class organization of the source code obtained from the decompi-
lation of “Screenshot Ultimate” is not quite readable because the obfuscation
is believed to be applied. Some core methods which control the logic flow of
screenshot taking are missing. Clues could only be found by analyzing package
structure, libraries imported and source code from the remaining classes.

Obfuscation cannot perfectly hide everything in the decompiled source code.
After carefully reading through the source code of “Screenshot Ultimate”, we find
some clues to shape the mechanism of screenshot taking. For example, there is
an address in Android OS partition, which is in form of a string variable with the
value as “/system/bin/fbread”, appearing more than once in the obfuscated
classes. Its occurrence suggests that this app is very likely taking screenshot
by reading image data from framebuffer, which is commonly expressed as short
writing “fb” in Android development. Reading framebuffer to take screenshot
is usually achieved by a library called Android screenshot library (known as
“ASL”)3. We downloaded the ASL from Android open source repository and
compared the checksum value with the native executive that we downloaded
from the URL given by the app developer. The comparison result reveals that 2
executive files are exactly equivalent, which proves our hypothesis that the app
I makes use of ASL to read framebuffer and thereby capture the screen display.

The ASL enables Android developer to write screenshot app without root
requirement. Once the user follows the instruction and executed the native exec-
utive file by running the given scripts, proxy with shell permission could help user

3 Android screenshot library is available at https://code.google.com/archive/p/
android-screenshot-library/downloads.

https://code.google.com/archive/p/android-screenshot-library/downloads
https://code.google.com/archive/p/android-screenshot-library/downloads

Analyzing Use of High Privileges on Android 363

take screenshot which the application has no privilege to do so. Take “Screen-
shot Ultimate” as example, user could just click the “Screenshot” button at the
moment that user wants to take screenshot of his/her device, then the app send
the screenshot command to the proxy running in background via socket chan-
nel, following by the proxy as a process named “screenshotultimatenative1”
reading the current hardware framebuffer, converting to the image format and
saving to the specific location. Furthermore, we find the command that the app
I sends to the background service through socket channel. The message is a
constant string with a value as “SCREEN”. The communication is carried out by
a plaintext messaging mechanism through a fixed port number, which is obvi-
ously not secure at all. In the end, we sketch out the protocol of communication
between app and proxy and place it into a bigger scale of the entire life cycle of
the app I. We present the process diagram of app I in Fig. 4.

4.2 App II – “No Root Screentshot It”

Unlike the “Screenshot Ultimate”, the app II “No Root Screenshot It” has addi-
tional security feature and protection enforcement being implemented during the
development. The obfuscation has been conducted onto both service activator
and apk file. Meanwhile, the communication channel between app and proxy has
also been protected by using some identification trick like a password.

Analysis on the Proxy Activation

Instead of simply running a batch script, the service activation of app II is per-
formed by executing a .Net application named “Screenshot It Enabler”. There-
fore the decompilation of .Net application is involved in the static analysis of
app II. Moreover, the script file was not found in the enabler’s package, which
means it has been packaged into the apk and the purpose of the enabler is just
to run the “shell” command to execute it. A .Net decompilation tool named
“JetBrains dotPeek”4 has been used to conduct the reverse engineering of the
activation tool. Even though the enabler application has been obfuscated, some
variables and C# code logics could still be recovered after the decompilation.
The scripts to enable the proxy has been unveiled by observing the C# code from
the decompilation result. We noticed there is a string “screenshot” that occurs
in the decompiled C# code as one of the argument while launching ADB service.
For that reason, we believe that there is a script file named “screenshot” being
executed during the service activation. Then the script file’s location could be
easily found by browsing the file manager on a rooted phone, or by decompiling
the apk file and searching the file name (Fig. 5).

Analysis on the apk File
After clarifying the ADB communication to activate the proxy, the following step
focuses on discovering the communication between app and the proxy, thereby
obtain the commands to control proxy to take screenshot at any occasion. On
the apk side, the obfuscation has been applied very strongly onto both class
4 DotPeek is available on https://www.jetbrains.com/decompiler/.

https://www.jetbrains.com/decompiler/

364 M. H. Meng et al.

Start

Connect PC & device through ADB

Kill screenshot process if it is
running in background

Start screenshot which locates
in app folder on device

End

Fig. 5. Proxy activation of app II Fig. 6. Process of taking screenshot on app II

names and variable names, which makes it difficult to observe the entire protocol
by just reading the decompiled Java code. It is cleared that the class named
ScreenshotService is in charge of the communication with the proxy but the
code is not as readable as the app I. What worse is that there is magic number,
89234820, being found and referenced multiple times by reading through the
assembly code of ScreenshotService class. There is a great possibility that the
app has (1) multiple communication session with proxy to take a screenshot;
and/or (2) an authentication trick to indicate the app’s identity, which might be
the reason of the existence of the magic number 89234820.

Dynamic Analysis
Unlike what we have done in case study of app I, only static analysis is not
adequate to find the protocol that used for communication between the app II
“No Root Screentshot It” and its proxy. In order to unveil what kind of command
that the app sends to the proxy to take screenshot and how they interact with
each other, a dynamic analysis technique called “hooking” is adopted in this
project. Hooking system APIs on Android could be enabled by using a framework
known as Xposed on a rooted device. By reading the decompiled code during the
static analysis, the communication between the proxy and app has been found
carry out through the socket channel. Therefore, the monitoring of the socket
channel during the communication between the proxy and app could be done by
writing a module based on Xposed framework which hooks all the socket channel
related packet data IO functions in specific source codes.

After implementing and deploying our Xposed module named “hookNoRoot-
ScreenshotIt”, all the necessary data has been logged and printed out during
the IO operation of the socket channel. The control flow of the app and proxy
communication is finally unveiled and shown in Fig. 6.

Analyzing Use of High Privileges on Android 365

4.3 App III – “FREE Screen Recorder NO ROOT”

In addition to those 2 screenshot apps, a screen recording app “FREE screen
recorder NO ROOT” has also been investigated in this paper. According to the
description on Google Play Store, this app could enable users to record their
screen regardless of which app or activity is on the top of stack, and then export
the recorded video in MP4 format. The entire process doesn’t request users to
root their devices.

Analysis on the Proxy Activation
Similar with those two screenshot apps we have analyzed previously, this app
also needs user to complete the proxy activation before the app unlocking the
record function. The activation process is launched by an exe file on Windows
OS, and an executable jar file on Linux OS. Missing of activation script doesn’t
mean the identification of proxy is impossible. Actually, with the help of ADB,
we could still find the details proxy(s) activated, including the process name,
PID and the port(s) listening. Here, two ADB commands, “ps” and “netstat”,
have been used to retrieve the list of running processes and active ports on the
Android device. By this means the proxy and the ports number could be found.
There are two services namely “videoserv” and “inputserv” running on the
background to enable users to record their screen. One of them uses port 7938,
and the other one uses port 7940 to communicate with app. However, we are
still yet to completely discover the protocol without knowing the identification
of the process which actively engages with those two ports. For that reason, the
decompilation is needed for the further analysis.

Analysis on the apk File
Firstly, the apk file has been extracted out of the device, and then been decom-
piled into smali code. The clues that recently found, two port numbers 7938
and 7940, could be searched within the source code to locate the key classes we
will analyze on. As the searching result of keyword 7938 shown below, we found
the variable name which bearing that port number, namely “video port”. Sim-
ilarly, the port 7940 has been found in variable name “input port” recorded
in same xml file. Next, we continued searching the occurrence of two variables
“video port” and “audio port”. After filtering from the search result, we pre-
liminarily confirmed that the code reflecting the control flow and data flow was
located in class “RecordService” and “Projection” separately. Take the com-
munication between video server and app as example, the core function in charge
of the communication flow is supposed to be “videoWrite”, which located in line
1038 in the smali code of RecordService. This videoWrite method has been
called many time once after the occurrence of the constant string with all letter
being capitalized, which is suspected to be the command sending to the server.
Moreover, by browsing through the smali code, a method named “openSocket”
has been called within the class RecordService, which helps us to confirm that
the protocol we are going to discover is performed through the socket channel.

366 M. H. Meng et al.

Dynamic Analysis and Authentication Analysis
Similar with the analysis of app II, we used hooking to sketch out the complete
control flow and data flow of the protocol. The target function to be hooked has
been confirmed during the previous analysis, which is “videoWrite” located in
class named “RecordService”. In order to find as many details about the proto-
col as possible, some other methods located in the same class of “videoWrite”
have also been hooked. With the information obtained from the output logs
of methods’ hooking, the protocol of the communication between video server
and app to start screen recording has been found. A sixteen-digit-long string
ce2757a06d455af2 grabbed our attentions because it was presumed to be the
authentication code, or password for short, according to the location of its occur-
rence. Nevertheless, it has not yet been confirmed to be a string constant or a
dynamic changing string so far. In order to clarify the nature of that password,
a series of experiments has been conducted (Fig. 7).

Firstly, we closed the app after taking a screen recording video clips, then
re-opened it and took another screen recording. Hooking logs shown in logcat
console showed that the password didn’t change. In that means, the password
is independent of the app’s life-cycle. We have repeated the above steps for
many times and all the results proved that our assumption is correct. Next, we
killed all proxies related to this app and launch the service activation again. As
a result, we noticed that the password has changed. Thus the password could
be confirmed to be dynamically generated after each time that the proxy being
re-activated. Since the password is proved to be generated by proxy, there must
be a place that the proxy stored the code at somewhere that the app with user
privilege could access and read. After searching, we finally located the password
in a log file named videoserv.log under the directory data/local/tmp, and

Fig. 7. The sequence diagram of screen video recording on app III

Analyzing Use of High Privileges on Android 367

luckily find the first occurrence of the current password was always after the
word “AUTH” in the log file. With those information, An attacker could all along
hold the current password by writing a simple program on the target device to
read the log file and then extract the string at given location.

5 Mitigation

In order to find a solution to the concerns we raised in Sect. 2.4, we summa-
rize some suggestions for the Android development throughout the study and
research in this project. The Android developers are strongly advised to raise
security awareness and take some security practices into account when imple-
menting the functionality based on ADB workaround, including:

1. Identity verification for the application. One possible solution for this
issue may be writing a handshake process in the proxy implementation, to
make both the app and the proxy exchange their authentication. And the
ADB proxy will execute the command only after a successful validation. Thus
the proxy service can only accept the command sent from the exactly same
app. Once the app is removed and re-installed, regardless of genuine app or
malicious app, another handshake validation should be required thereby to
ensure the ADB proxy would not be misused.

2. Password protection for socket channel communication. Another pos-
sible solution is to implement a stronger password mechanism. For the purpose
to prevent from the replay attack, the password could be dynamically gener-
ated at first and then updated after a specific time period. Besides that, an
out-of-bounds password mechanism could be another option as the password
is randomly generated and issued by the activation program. To synchronize
the password between the proxy and the app, the activation program can
display its password on the PC screen and ask user to manually type in the
benign app. Thus no other application could attain the password and thereby
leaves no chance to attackers to carry out exploitation.

6 Conclusion

In this paper, we analyze the approach to find privacy loophole and security
vulnerabilities of ADB workaround on Android platform. By conducting inves-
tigation on 3 different apps, we find that most of apps using ADB workaround
have risk of being exploited. We propose a methodology to conduct exploita-
tion to all similar apps that use ADB workaround through the socket channel.
We also implement an exploit application on Android, which successfully proves
our findings and verifies our proposed methodology. In the end, we provide our
recommendation to app developers to mitigate security risks and produce their
apps with higher privacy-preserving capability.

368 M. H. Meng et al.

References

1. Bai, G., et al.: All your sessions are belong to us: investigating authenticator leakage
through backup channels on android. In: Proceedings of the 20th International
Conference on Engineering of Complex Computer Systems (ICECCS) (2015)

2. Batyuk, L., Herpich, M., Camtepe, S.A., Raddatz, K., Schmidt, A., Albayrak,
S.: Using static analysis for automatic assessment and mitigation of unwanted
and malicious activities within android applications. In: 2011 6th International
Conference on Malicious and Unwanted Software, pp. 66–72, October 2011

3. Bishop, M.: Unix security: threats and solutions (1996)
4. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R., Shastry, B.:

Towards taming privilege-escalation attacks on android. In: NDSS. vol. 17, p. 19.
Citeseer (2012)

5. Chen, H., Li, N., Enck, W., Aafer, Y., Zhang, X.: Analysis of seandroid policies:
combining MAC and DAC in android. In: Proceedings of the 33rd Annual Com-
puter Security Applications Conference, pp. 553–565. ACM (2017)

6. Chris, H.: The case against root: why android devices don’t come rooted
(2012). https://www.howtogeek.com/132115/the-case-against-root-why-android-
devices-dont-come-rooted/

7. Ferrill, P.: Navigating the android SDK. In: Pro Android Python with SL4A, pp.
57–82. Apress (2011)

8. Google: <permission>, Android Developers (2018). http://developer.android.
com/guide/topics/manifest/permission-element.html. Accessed 18 Mar 2016

9. Google: System and kernel security (2018). https://source.android.com/security/
overview/kernel-security.html. Accessed 18 Mar 2016

10. Gordon, W.: How to take a screenshot on android, April 2013. https://
www.lifehacker.com.au/2013/04/how-to-take-a-screenshot-on-android/. Accessed
12 July 2018

11. Hoffman, C.: How-to geek: how to take screenshots on android devices since
4.0, June 2012. http://www.howtogeek.com/121133/how-to-take-screenshots-on-
android-devices-since-4.0. Accessed 20 Mar 2016

12. Kristijan, L.: Over 27.44% users root their phone(s) in order to remove built-in
apps, are you one of them? (2014). https://www.androidheadlines.com/2014/11/
50-users-root-phones-order-remove-built-apps-one.html

13. Lin, C.C., Li, H., Zhou, X.Y., Wang, X.: Screenmilker: how to milk your android
screen for secrets. In: NDSS (2014)

14. Lucic, K.: Over 27.44% users root their phone(s) in order to remove built-in apps,
are you one of them? November 2014. https://www.androidheadlines.com/2014/
11/50-users-root-phones-order-remove-built-apps-one.html. Accessed 14 Mar 2016

15. Meng, H., Thing, V.L.L., Cheng, Y., Dai, Z., Zhang, L.: A survey of android
exploits in the wild. Comput. Secur. 76, 71–91 (2018)

16. Popper, B.: Google announces over 2 billion monthly active devices
on Android (2017). https://www.theverge.com/2017/5/17/15654454/android-
reaches-2-billion-monthly-active-users. Accessed 01 July 2018

17. Provos, N., Friedl, M., Honeyman, P.: Preventing privilege escalation. In: USENIX
Security, vol. 3 (2003)

18. Ravenscraft, E.: Rooted vs. unrooted android: your best arguments, July
2014. http://lifehacker.com/rooted-vs-unrooted-android-your-best-arguments-
1599101019. Accessed 18 Mar 2016

https://www.howtogeek.com/132115/the-case-against-root-why-android-devices-dont-come-rooted/
https://www.howtogeek.com/132115/the-case-against-root-why-android-devices-dont-come-rooted/
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
https://source.android.com/security/overview/kernel-security.html
https://source.android.com/security/overview/kernel-security.html
https://www.lifehacker.com.au/2013/04/how-to-take-a-screenshot-on-android/
https://www.lifehacker.com.au/2013/04/how-to-take-a-screenshot-on-android/
http://www.howtogeek.com/121133/how-to-take-screenshots-on-android-devices-since-4.0
http://www.howtogeek.com/121133/how-to-take-screenshots-on-android-devices-since-4.0
https://www.androidheadlines.com/2014/11/50-users-root-phones-order-remove-built-apps-one.html
https://www.androidheadlines.com/2014/11/50-users-root-phones-order-remove-built-apps-one.html
https://www.androidheadlines.com/2014/11/50-users-root-phones-order-remove-built-apps-one.html
https://www.androidheadlines.com/2014/11/50-users-root-phones-order-remove-built-apps-one.html
https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users
https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users
http://lifehacker.com/rooted-vs-unrooted-android-your-best-arguments-1599101019
http://lifehacker.com/rooted-vs-unrooted-android-your-best-arguments-1599101019

Analyzing Use of High Privileges on Android 369

19. Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., Glezer, C.: Google
android: a comprehensive security assessment. IEEE Secur. Priv. 8(2), 35–44 (2010)

20. StatCounter: Mobile operating system market share worldwide (2018). http://gs.
statcounter.com/os-market-share/mobile/worldwide. Accessed 14 Aug 2018

21. Wang, Y., Rountev, A.: Who changed you?: obfuscator identification for android.
In: Proceedings of the 4th International Conference on Mobile Software Engineer-
ing and Systems, pp. 154–164. IEEE Press (2017)

22. Zhang, H., She, D., Qian, Z.: Android root and its providers: a double-edged sword.
In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 1093–1104. ACM (2015)

23. Zhang, L., Meng, H., Thing, V.L.L.: Progressive control flow obfuscation for
android applications. Region 10 Conference, TENCON 2018 IEEE (2018)

http://gs.statcounter.com/os-market-share/mobile/worldwide
http://gs.statcounter.com/os-market-share/mobile/worldwide

Blockchain-Based Privacy Preserving
Deep Learning

Xudong Zhu1(B), Hui Li2, and Yang Yu1

1 Xi’an University of Architecture Technology, Xi’an 710055, Shaanxi, China
zhudongxu@vip.sina.com

2 Xidian University, Xi’an 710126, Shaanxi, China

Abstract. Smart mobile devices have access to huge amounts of data
appropriate to deep learning models, which in turn can significantly
improve the end-user experience on mobile devices. But massive data
collection required for machine learning introduce obvious privacy issues.
To this end, the notion of federated learning (FL) was proposed, which
leaves the training data distributed on the mobile devices, and learns
a shared model by aggregating locally-computed updates. However, in
many applications one or more Byzantine devices may suffice to let cur-
rent coordination learning mechanisms fail with unpredictable or disas-
trous outcomes. In this paper, we provide a proof-of-concept for manag-
ing security issues in federated learning systems via blockchain technol-
ogy. Our approach uses decentralized programs executed via blockchain
technology to establish secure learning coordination mechanisms and to
identify and exclude Byzantine members. We studied the performance
of our blockchain-based approach in a collective deep-learning scenario
both in the presence and absence of Byzantine devices and compared our
results to those obtained with an existing collective decision approach.
The results show a clear advantage of the blockchain approach when
Byzantine devices are part of the members.

Keywords: Smart mobile device · Federated learning ·
Byzantine devices · Blockchain technology

1 Introduction

More and more smart mobile devices, such as mobile phones and tablet com-
puters, have become the main computing equipment for most people [1]. The
powerful sensors (such as cameras, accelerometers, and GPS) on these mobile
devices which are frequently carried produce and have access to an unprece-
dented amount of data, much of it private in nature. Models learned on such
data can greatly improve usability by powering more smart applications, but the
private nature of the data means there are risks and responsibilities to storing
it in a centralized location.

Supported by Natural Science Fund of Shaanxi Province #K05074.

c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 370–383, 2019.
https://doi.org/10.1007/978-3-030-14234-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_20&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_20

Blockchain-Based Privacy Preserving Deep Learning 371

To address the challenges of the private data inclusion in deep learning,
McMahan et al. [2] proposed federated learning, a learning technique that allows
users to collectively reap the benefits of shared models trained from this rich
data, without the need to centrally store it. Each participating device has a local
training dataset which is never uploaded to the server. And each participating
device computes an update to the current global model maintained by the server,
and only this update is communicated. A principal advantage of this approach
is the decoupling of model training from the need for direct access to the raw
training data. FL can significantly reduce privacy and security risks by limiting
the attack surface to only the device, rather than the device and the cloud.

But federated learning network is often claimed to be highly fault-tolerant,
in some cases one or more Byzantine devices – devices that show arbitrarily
faulty or malicious behavior – may suffice to let current coordination learning
mechanisms fail. In real-world, devices in federated learning network will face
situations in which some of the devices become Byzantine devices. Robustness
to Byzantine devices will therefore become of paramount importance. Until now
federated learning research has left unaddressed the problem of how to manage
the security issues generated by the presence of Byzantine devices: (i) tampered
devices or failing sensors: the messages sent from these devices can contain
wrong or deceptive information; (ii) attacked or noisy communication channels:
messages can be manipulated or destroyed while propagating through the peer-
to-peer network; (iii) loss of availability : information stored on a device’s hard
drive might be deleted; the device might be captured or destroyed.

In this paper, we argue that blockchain technology might be used to provide
solutions to the aforementioned security issues. In particular, we show that it
allows a federated learning network to achieve consensus in a collective learning
problem even in the presence of Byzantine devices. While blockchain technol-
ogy was originally developed as a peer-to-peer financial system in the context
of the cryptocurrency Bitcoin [3], recently there have been proposals for using
blockchain technology as a distributed computing platform where arbitrary pro-
grams (blockchain-based smart contracts) can be run. The best known example
of such a platform is Ethereum [4,5]. Blockchain-based smart contracts allow
decentralized systems with mutually distrusting nodes to agree on the outcome
of the programs. We provide the first proof-of-concept for using blockchain tech-
nology in federated learning applications. We do so by laying the foundation of
a secure general framework for addressing collective learning problems.

Our approach is based on the federated learning scenario of McMahan et al.
[2]. Via blockchain technology, we add a security layer on top of the classical
approach that allows for taking care of the presence of Byzantine devices. Our
blockchain approach also allows for logging events in a tamper-proof way: these
logs can then be used, if necessary, to analyze the behavior of the devices in
the network without incurring the risk that some malicious device has modified
them. In addition, it provides a new way to understand how we debug and
how we can approach data forensics in decentralized systems such as federated
learning network. We use the simulator to vary the number of Byzantine devices

372 X. Zhu et al.

and compare the performance – in terms of consensus time and probability of a
correct outcome – of McMahan et al.’s [2] strategies and our blockchain-based
variants both in the presence and in the absence of Byzantine devices.

The remainder of this paper is structured as follows. Section 2 reviews related
work. Section 3 presents our proposed blockchain-based privacy-preserving deep
learning framework. Section 4 evaluates the performance of the approaches
through experiments in simulation. Section 4.5 discusses advantages and dis-
advantages of our blockchain approaches. Section 5 presents our conclusions and
provides directions for future work.

2 Related Work

2.1 Privacy in Deep Learning

Deep learning aims to extract complex features from high-dimensional data and
use them to build a model that relates inputs to outputs (e.g., classes). Deep
learning architectures are usually constructed as multi-layer networks so that
more abstract features are computed as nonlinear functions of lower-level fea-
tures. Deep learning has been shown to outperform traditional techniques for
speech recognition [8,9], image recognition [10,11] and face detection [12].

The existing literature on privacy protection in machine learning mostly tar-
gets conventional machine learning algorithms, as opposed to deep learning, and
addresses three objectives: (i) privacy of the data used for learning a model
or as input to an existing model, (ii) privacy of the model, and (iii) privacy of
the model’s output.

(1) Techniques based on Secure Multi-party Computation (SMC) can help
protect intermediate steps of the computation, such as decision trees [13],
linear regression functions [14], association rules [15], Naive Bayes classifiers
[16], and k-means clustering [17], when multiple parties perform collabo-
rative machine learning on their proprietary inputs. But SMC techniques
impose non-trivial performance overheads and their application to privacy-
preserving deep learning remains an open problem.

(2) Techniques based on differential privacy have been proposed to guarantee
the confidentiality of personal data while training a differentially-private
model [18–25]. Most of these techniques for differentially-private machine
learning are usually based on adding noise during the training, which leads
to a challenging trade-off between accuracy and privacy.

(3) Techniques based on privacy-preserving distributed learning have been
proposed to learn information from data owned by different entities without
disclosing either the data or the entities in the data. Shokri and Shmatikov
[26] and McMahan et al. [2] propose solutions where multiple parties jointly
learn a neural-network model for a given objective by sharing their learning
parameters, but without sharing their input datasets. A different approach

Blockchain-Based Privacy Preserving Deep Learning 373

is proposed by Hamm et al. [27] and Papernot et al. [28], where privacy-
preserving models are learned locally from disjoint datasets, and then com-
bined on a privacy-preserving fashion. However, the privacy guarantees of
some of these solutions have recently been called into question [29].

Unlike previously proposed techniques, our system achieves all three privacy
objectives in the context of collaborative neural-network training: it protects
privacy of the training data, enables participants to control the learning objective
and how much to reveal about their individual models, and lets them apply the
jointly learned model to their own inputs without revealing the inputs or the
outputs. This solution brings most of the data processing to where the data
resides and not the other way around, exactly as the edge computing paradigm
calls for [30]. Recent work have demonstrated the feasibility of running complex
deep learning inferences on local devices such as smartphones [31]. While in
these works models are previously trained in an offline manner, our experiments
proved that both the inference and the local retraining can be performed locally
on a low-power device in a timely manner.

2.2 Blockchain

Blockchain is a peer-to-peer distributed ledger technology that was initially used
in the financial industry [3]. The blockchain, a chronological ledger of transac-
tions that ensures the integrity of the information included, can be used to
capture and log both queries and its correspondent answers. Blockchain 2.0
introduces the concept of smart contracts [32], which is no longer limited to
transactions between currencies, and there will be more extensive instruction
embedded in the blockchain. The smart contract does not need mutual trust,
as it is not only defined by the code, but executed by the code. Besides, it’s
completely automatic and cannot be intervened.

(1) Blockchain storage model, with non-tampering feature and traceability,
ensures the privacy and credibility of the data.

(2) The smart contract that automatically execute the default instruction and
the complete de-centric model guarantee the security of data sharing.

(3) Establish a reliable big datadistribution systemwithout trusting thirdparties.

The properties of blockchain make it a promising tool in many privacy informat-
ics applications [33]: from building decentralized backbones for data exchange
and interoperability, protocols enforced by immutable ledgers that keep track
of data usage [35], and data provenance [36,37], to maintain user’s privacy and
security through the persistence of consent statements in blockchain [38]. More-
over, the blockchain technology offers practical means to safely and securely
store and track the use of personal data as well as the parameters of the deep
learning models. This increases the users’ trust in the system and provides a
rich source of information that can be used to better design future services. Our
proposed framework deploys blockchain technology where anyone can read and
validate transaction entries, but only authorized entities are able to create or
write transaction to the blockchain.

374 X. Zhu et al.

3 Proposed Architecture

As shown in Fig. 1, our system design three major parts, namely, mobile devices
(i.e. participants), hub, and blockchain network. The data producers collect the
massive data through the smart contract to store in the blockchain, for the use of
data sharing. The smart contract code runs on the contract layer of blockchain,
which provides the authority to control the system.

Fig. 1. High-level architecture of our deep learning system for activity recognition.

3.1 Participants

1© Inference. We assume that each participant (Ri) relies on the deep learning
models (DLMs), Mi, when conducting a inference. Specifically, Ri checkouts Mi

from its local hub and uses it to conduct the inference. During this, Ri stores
the information captured by its sensors, producing the inference data (IDi). IDi

allow Ri to update/improve the existing Mi. Specifically, a supervised machine
learning approach is adopted: IDi are used as input to Mi, while the class scores
Oi (e.g. human activities) as the target output. Then, the fine-tunning of the
DLM parameters Wi to the newly acquired data IDi is accomplished using the
standard back-propagation technique and by selecting an optimizer. With these
new parameters, the participant is expected to increase its competences and
adaptability to target inference.

Blockchain-Based Privacy Preserving Deep Learning 375

Algorithm 1. Inference (based on CNN forward and backward propagation.)
Require: M-dimensional data, IDi = [I1, · · · , In]T

Ensure: The class scores, Oi = [O1, · · · , Oc]
1: Download θ × |w(i)| parameters from local hub.
2: for l := 1 → #HiddenLayers do
3: for i := 1 → #RowunitinLayerl do
4: for j := 1 → #ColumnunitinLayerl do
5: Find the layer activations by,
6: Ol

ij = ϕ(al
ijw

l
ij) + blij

7: Compute next layer inputs
8: end for
9: end for

10: end for
11: Keep the final output as Ol

12: Calculate error at the output layer.
13: for l := 1 → #HiddenLayers do
14: Find error partial derivation.
15: Find error at the previous layer.
16: end for
17: Calculate the gradient of the error.

3.2 Hubs

2© Re-training. After the inference, the data (ID) and class score (O) are
used together to improve the inference by re-training their DLMs (Ms). This
can be done on the data-processing servers of the local hub. To this end, differ-
ent learning strategies can be adopted. For instance, the participants (Rs) can
create, store, and update Ms after each inference, or after a sufficient amount
of ID has been collected. The design of specific learning strategies depends on
the inference type. Then, these new Ms are committed and stored in the local
repository, similar to the version control systems, of the local hub. Once created
and stored, it is assumed that these new Ms cannot be used to recreate the raw
ID of R. Therefore, all personal data remain safe as they do not leave the hub.
Furthermore, they are deleted after all Ms are updated.

The stored Ms are further deployed locally and assigned a cumulative score
S based on the O derived by validation of this model within new local inferences.
As a result, a new candidate model (MC) along with its performance score (S)
is then created and locked on the local hub. To allow knowledge sharing – one
of the key ingredients of the framework – this new MC is then evaluated by the
participant peers operating at other sites, i.e., different hubs within a network.
To this end, the local hub publishes the changes (e.g., the difference between the
previous version of Mj and MC). Finally, the hub announces the update to the
entire network. The goal of this is to assure a fair validation of the MC before
it can be adopted as the new version of the Ms for target inference.

376 X. Zhu et al.

Algorithm 2. Re-training (based on Distributed selective SGD)
Require: Choose initial parameters w(i) and learning rate α.
1: repeat
2: Get θ × |w(i)| parameters from the blockchain and replace the corresponding

local parameters.
3: Run stochastic gradient descent (SGD) on the local dataset and update the

local parameters w(i).
4: Compute gradient vector �w(i) which is the vector of changes in all local param-

eters due to SGD.
5: Store �w(i) to the blockchain, where S is the set of indices of at most θu×|w(i)|

gradients
6: until an approximate minimum is obtained

3.3 Parameter Blockchain

3© Updates. I. Publish. First, the source participant (R(s)) ‘advertises’ the
new candidate model (Ms

C) by announcing the DLM updates to the entire net-
work. Then, the destination participants (R(d,i)), where i = 1 · · ·N denotes the
target hubs, are notified by their local hub that there is an update available in
the network. This can be achieved by the subscription pipeline they have with
their local hub. In case the updates are available, the participants can retrieve
and apply them to their working directory. Once Ms

(C) is adopted from the source
hub, R(d,i) starts its evaluation, quantified in terms of the scores (S(R(d,i),M

s
(C))

).
Additionally, in order to leverage the new local data, the destination hubs can
also return the model updates to the source hub (obtained in a similar fashion as
when creating the MC). These, in turn can be used to construct the new model
at the source hub (Fig. 2).

II. Validate. During the next stage, R(s) is to consolidate the feedback informa-
tion from the destination hubs. This can be achieved using time-constraints (i.e.,
waiting for a pre-defined period of time to receive the feedback), and/or when
a target consensus is achieved. If the score for the MC is higher than for the
currently accepted model (Ms), i.e., S(i,Ms

C) > S(i,Ms), Rs creates a new model
M(s+1), which is then published to all connected hubs, and committed to their
participants’ local repositories. In this way, the new baseline model for future
inferences is endorsed by the network. This process can be implemented via
modern control version systems in order to store and share the resulting model
configurations (e.g., the DLM topology, hyper-parameters, etc.) obtained after
new inferences. This is an important feature of our framework since it allows
the participants to rollback to the last consensual version of Ms+1, in case a
consensus did not take place within the network. Moreover, since the partici-
pants keep the list of all changes in their local repository, there is a promising
research approach in analyzing the metadata available in the updates applied to
the repository.

Blockchain-Based Privacy Preserving Deep Learning 377

Fig. 2. A BlockChain-based deep learning network.

III. Consensus. In order to notarize and log the creation of the new models and
their consensus processes within the network,R(s) is required to send a transaction
to a blockchain including information such as the timestamp of the global update
broadcast, a hash string that encapsulates the information about the model update
(e.g., differences in the weights, hyper-parameters, etc.), and an encrypted data
field signed by R(s) containing information such as the public IDs of the partic-
ipants that took part in the consensus process and their correspondent feedback
scores. This transaction on the blockchain is necessary to allow participants within
the network to prove/validate how models were created, who participated in their
consensus process, and when did those transaction take place. It is also important
to highlight that the hash string included in this transaction is useful to check and
confirm that the models acquired by participants are indeed the version agreed
upon by the network, and not a corrupted version from a third-party agent. In
addition, the encrypted data field signed by R(s) contain sufficient information to
allow the users to confirm their participation in the consensus process and check
that R(s) was not biased at the moment of promoting M(j). This information is
readable by any participant in the network, since they know the public identifier
(i.e., public key) of R(s). By contrast, the peers connected to the blockchain but
not members of the private clinical network do not have the means to decrypt this
information or identify the nodes involved in the consensus process. This is because
all required public/private keys remain within the boundaries of the clinical pri-
vate network. Finally, note that the whole consensus reaching process could have
been implemented directly on the blockchain via ‘smart contracts’ in order to pre-
vent intruders from ‘attacking’ the network; yet, we assume here that the network
access is protected.

378 X. Zhu et al.

4 Evaluation

4.1 Datasets and Learning Objectives

As Fig. 3, we consider a scenario where smartphone users want to train a motion-
based activity classifier without revealing their data to others. To test the algo-
rithms, we use the WISDM Human Activity Recognition dataset, which is a
collection of accelerometer data on an Android phone by 35 subjects perform-
ing 6 activities (walking, jogging, walking upstairs, walking downstairs, sitting
and standing). These subjects carried an Android phone in their front pants
leg pocket while were asked to perform each one of these activities for specific
periods of time. Various time domain variables were extracted from the signal,
and we consider the statistical measures obtained for every 10 s of accelerometer
samples as the d = 43 dimensional features in our models. Our final sample con-
tains 5, 418 accelerometer traces from 35 users, with on average 150.504 traces
per user and standard deviation of 44.73.

Fig. 3. (A) Modern smartphone accelerometers are tri-axial. (B–D) Accelerometer
graphs for three dynamic activities.

4.2 Computing Framework

We use Torch7 and Torch7 nn packages. This popular deep-learning library has
been used and extended by major Internet companies such as Facebook.

4.3 Neural Network Architectures

We used a Multi-Layer Perceptron as the supervised learning algorithm for recog-
nising activity using accelerometer traces. A Multi-Layer Perceptron or MLP is
a type of feed-forward Artificial Neural Network that consists of two layers,
input and output, and one or more hidden layers between these two layers.

Blockchain-Based Privacy Preserving Deep Learning 379

The input layer is passive and merely receives the data, while both hidden and
output layers actively process the data. The output layer also produces the
results. Figure 4 shows a graphical representation of a MLP with a single hidden
layer. Each node in a layer is connected to all the nodes in the previous layer.
Training this structure is equivalent to finding proper weights and bias for all the
connections between consecutive layers such that a desired output is generated
for a corresponding input.

Fig. 4. The architecture of the two-layer feed-forward network.

4.4 Experimental Setup

We set up a Multilayer Perceptron with 2 layers for activity recognition, including
1 hidden layer with 128 nodes and 1 logistic regression layer, resulting in 6, 406
parameters to be determined during training. We construct the input layer using
the statistical measures of users’ accelerometer traces. Because of the sensitivity
learning stages to feature scaling we normalise all statistical measures to have
zero mean and unit standard deviation. In the output layer each unit corresponds
to an activity inference class, such that unit states can be interpreted as posterior
probabilities.

All training procedures were implemented in python using the Theano deep
learning library. The training and testing were performed with 5-fold cross val-
idation, using early stopping as well as l2-regularisation to prevent overfitting.
Each neuron’s weight in the shared and local models was initialised randomly

380 X. Zhu et al.

from N(0, 1)/
√

2.0/n, where n is the number of its inputs, and biases were all
initialised to zero. Parameters in the personal model were initialised to the val-
ues obtained in the shared model. Finally, we used grid search to determine
the optimal values of the hyper-parameters, setting the learning rate to 0.05
for the shared model and to 0.001 for the local and personal models, and the
l2-regularisation strength to 1e−5 for all the models. The training epochs were
set to 1000 in all models, while the batch size was set equal to the size of the
training sets in the shared model, and to 1 (online learning) in the local and
personal ones. The reasons behind this are the small size of the dataset, and
the availability of the training samples in a real scenario (samples for the shared
model can be assumed to be all available for training, whereas samples in the
local and personal models become available for training as time goes by).

We repeated the experiment for each participant, using 5-fold cross-validation
and different number of samples to train the local and personal models. In each
simulation of every user, we incremented in 1 the number of samples used for
training, and also incremented in 1 the samples used for validation until reaching
60% of samples for training and 20% for validation, respectively.

4.5 Results

Results show that the effect of training or retraining a model with few samples
from the individual under test produces worse predictions than using samples
from other individuals (shared model). That is, while the model is adapting to
the new scenario, the performance of the prediction slightly drops. However,
when more samples (20 on average or more) are used to retrain this shared
model, the accuracy of the prediction exceeds the accuracy obtained with the
shared model itself. Specifically, the accuracy increases with increments in the
number of samples used for retraining the model. That is, the more local samples
considered to retrain the model, the more local it becomes for the considered
individual. However, although the improvement on the accuracy with the incre-
ment of the number of samples is also shared with the local model, more samples
per individual are required for training a model from scratch (local model) in
order to obtain the same accuracy than when starting from a shared model. We
also observe that, after on average 163 samples, the local model performs better
than the personal model. This means that the user would need to perform and
label, on average, 163 activities in order to get a local model that outperforms
her personal one. However, this is not significant, since there is one unique user
in the dataset with that number of samples or higher available for training. In
summary,

(i) retraining a shared model locally using 20 or more samples from the user
increases the accuracy with respect to that obtained with the shared model,
and

(ii) to obtain the same accuracy when training a model from scratch using only
local samples, more than 150 training samples are required on average.

Blockchain-Based Privacy Preserving Deep Learning 381

5 Conclusions and Future Work

Creating and training of deep learning models have been a computationally-
hungry process. So the adoption of these models in embedded devices has been
a challenging task, especially for low-cost mobile devices. Federated learning, one
decentralized approach, learns a shared model by aggregating locally-computed
updates, and leaves the training data distributed on the mobile devices. The fed-
erated learning network interconnecting the participants’ devices is not public.
Thus, it requires a permission of one or several parties to join and start con-
tributing to the deep learning process. We understand that some form of trust
is required in the institutions that deal with a sensitive task.

In this paper we proposed the first deep learning approach for tackling the
privacy issues in the use of personal data by mobile devices. We illustrated
this framework using activity recognition as an example which is conducted
simultaneously in multiple mobile devices. While the approach proposed here
offers the main principles for secure data and models sharing between multiple
mobile devices. To this end, we aim to collect the data from several parties in
order to test the framework in a data-exchange scenario. Then, we aim to run in
real time on private network to enable efficient and real-time learning of models.
For this, existing deep learning approaches will need to be adapted so that they
can efficiently be integrated with the blockchain technologies. Also, These are
topics of our ongoing research.

References

1. Poushter, J.: Smartphone ownership and internet usage continues to climb in
emerging economies. Pew Research Center Report (2016)

2. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., et al.: Communication-
efficient learning of deep networks from decentralized data (2016). arXiv preprint:
arXiv:1602.05629

3. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

4. Buterin, V.: A next-generation smart contract and decentralized application plat-
form. Ethereum project white paper (2014). https://github.com/ethereum/wiki/
wiki/White-Paper

5. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum project yellow paper (2014). http://gavwood.com/paper.pdf

6. Hannun, A., Case, C., Casper, J., et al.: DeepSpeech: scaling up end-to-end speech
recognition (2014). arXiv:1412.5567

7. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on ImageNet classification (2015). arXiv:1502.01852

8. Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent
neural networks. In: ICASSP (2013)

9. Hinton, G., Deng, L., Yu, D., Dahl, G., et al.: Deep neural networks for acoustic
modeling in speech recognition: the shared views of four research groups. IEEE
Signal Process. Mag. 29(6), 82–97 (2012)

10. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep con-
volutional neural networks. In: NIPS (2012)

http://arxiv.org/abs/1602.05629
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://gavwood.com/paper.pdf
http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1502.01852

382 X. Zhu et al.

11. Simard, P., Steinkraus, D., Platt, J.: Best practices for convolutional neural net-
works applied to visual document analysis. In: Document Analysis and Recognition
(2013)

12. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-
level performance in face verification. In: CVPR (2014)

13. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44598-6 3

14. Du, W., Han, Y., Chen, S.: Privacy-preserving multivariate statistical analysis:
linear regression and classification. In: SDM, vol. 4, pp. 222–233 (2004)

15. Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically
partitioned data. In: KDD (2002)

16. Vaidya, J., Kantarcoğlu, M., Clifton, C.: Privacy-preserving Naive Bayes classifi-
cation. VLDB 17(4), 879–898 (2008)

17. Jagannathan, G., Wright, R.: Privacy-preserving distributed k-means clustering
over arbitrarily partitioned data. In: KDD (2005)

18. Dwork, C., Rothblum, G., Vadhan, S.: Boosting and differential privacy. In: FOCS
(2010)

19. Chaudhuri, K., Sarwate, A., Sinha, K.: A near-optimal algorithm for differentially-
private principal components. JMLR 14(1), 2905–2943 (2013)

20. Chaudhuri, K., Monteleoni, C.: Privacy-preserving logistic regression. In: NIPS
(2009)

21. Zhang, J., Zhang, Z., Xiao, X., Yang, Y., Winslett, M.: Functional mechanism:
regression analysis under differential privacy. VLDB 5(11), 1364–1375 (2012)

22. Rubinstein, B., Bartlett, P., Huang, L., Taft, N.: Learning in a large function space:
privacy-preserving mechanisms for SVM learning. J. Priv. Confidentiality 4(1),
4 (2012)

23. Sarwate, A., Chaudhuri, K.: Signal processing and machine learning with differen-
tial privacy: algorithms and challenges for continuous data. IEEE Signal Process.
Mag. 30(5), 86–94 (2013)

24. Chaudhuri, K., Monteleoni, C., Sarwate, A.: Differentially private empirical risk
minimization. JMLR 12, 1069–1109 (2011)

25. Wainwright, M., Jordan, M., Duchi, J.: Privacy aware learning. In: NIPS (2012)
26. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of

the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pp. 1310–1321. ACM (2015)

27. Hamm, J., Cao, P., Belkin, M.: Learning privately from multiparty data. In: Pro-
ceedings of the 33rd International Conference on Machine Learning, pp. 555–563
(2016)

28. Papernot, N., Abadi, M., Erlingsson, U., Goodfellow, I., Talwar, K.: Semi-
supervised knowledge transfer for deep learning from private training data. In: Pro-
ceedings of the 5th International Conference on Learning Representations (2017)

29. Hitaj, B., Ateniese, G., Pérez-Cruz, F.: Deep models under the GAN: information
leakage from collaborative deep learning. CoRR, vol. abs/1702.07464 (2017)

30. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Internet Things J. 3(5), 637–646 (2016)

31. Georgiev, P., Lane, N.D., Rachuri, K.K., Mascolo, C.: DSP.Ear: leveraging co-
processor support for continuous audio sensing on smartphones. In: Proceedings
of the 12th ACM Conference on Embedded Network Sensor Systems, pp. 295–309.
ACM (2014)

https://doi.org/10.1007/3-540-44598-6_3
https://doi.org/10.1007/3-540-44598-6_3

Blockchain-Based Privacy Preserving Deep Learning 383

32. Peters, G.W., Panayi, E.: Understanding modern banking ledgers through
blockchain technologies: future of transaction processing and smart contracts on
the internet of money. In: Tasca, P., Aste, T., Pelizzon, L., Perony, N. (eds.) Bank-
ing Beyond Banks and Money. NEW, pp. 239–278. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-42448-4 13

33. Kuo, T.T., Kim, H.-E., Ohno-Machado, L.: Blockchain distributed ledger tech-
nologies for biomedical and health care applications. J. Am. Med. Inform. Assoc.
24(6), 1211–1220 (2017)

34. Kuo, T.T., Ohno-Machado, L.: ModelChain: decentralized privacy-preserving
healthcare predictive modeling framework on private blockchain networks (2018).
arXiv preprint: arXiv:1802.01746

35. Topol, E.J.: Money back guarantees for non-reproducible results? BMJ 353, i2770
(2016)

36. Baxendale, G.: Can blockchain revolutionise EPRs? ITNOW 58(1), 38–39 (2016)
37. Taylor, P.: Applying blockchain technology to medicine traceability (2016)
38. Brodersen, C., Kalis, B., Leong, C., et al.: Applying blockchain technology to

medicine traceability (2016)

https://doi.org/10.1007/978-3-319-42448-4_13
https://doi.org/10.1007/978-3-319-42448-4_13
http://arxiv.org/abs/1802.01746

SpamTracer: Manual Fake Review
Detection for O2O Commercial Platforms

by Using Geolocation Features

Ruoyu Deng1, Na Ruan1(B), Ruidong Jin1, Yu Lu1, Weijia Jia1, Chunhua Su2,
and Dandan Xu3

1 Department of CSE, Shanghai Jiao Tong University, Shanghai, China
{dengruoyu,naruan,tracyking,luyu97,jiawj}@sjtu.edu.cn
2 Division of CS, University of Aizu, Aizuwakamatsu, Japan

suchunhua@gmail.com
3 China Unicom Research Institute, Beijing, China

xudd18@chinaunicom.cn

Abstract. Nowadays, O2O commercial platforms are playing a crucial
role in our daily purchases. However, some people are trying to manipu-
late the online market maliciously by opinion spamming, a kind of web
fraud behavior like writing fake reviews, due to fame and profits, which
will harm online purchasing environment and should be detected and
eliminated. Moreover, manual fake reviewers are more deceptive com-
pared with old web spambots. Although several efficient methods were
proposed in the fake review detection field, the manual fake reviewers
are also evolving rapidly. They imitate to be benign users to control
the velocity of review fraud actions, and deceive the detection system.
Our investigation presented that geolocation factor is potential and can
well reflect the distinctions between fake reviewers and benign users. In
this research, we analyzed the geolocations of shops in reviews, found
the distinct distribution features of those in fake reviewers and benign
users, and proposed a SpamTracer model that can identify fake review-
ers and benign users by exploiting an improved HMM (Hidden Markov
Model). Our experiment demonstrated that SpamTracer could achieve
71% accuracy and 76% recall in the unbalanced dataset, outperforming
some excellent classical approaches in the aspect of stability. Further-
more, SpamTracer can help to analyze the regularities of review fraud
actions. Those regularities reflect the time and location in which online
shops are likely to hire fake reviewers to increase their turnover. We also
found that a small group of fake reviewers tend to work with plural shops
located in a small business zone.

Keywords: O2O commercial platform ·
Manual fake review detection · Geolocation · Hidden Markov Model

c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 384–403, 2019.
https://doi.org/10.1007/978-3-030-14234-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_21&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_21

SpamTracer: Manual Spamming Review Detection 385

1 Introduction

With the explosive growth of electronic commerce and social media, O2O (Online
To Offline) commerce has become a heated topic in public. O2O refers to the use
of online enticement to drive offline sales, and feedbacks from offline consumption
can promote the online dissemination of products [18]. As the feedback part in
O2O, reviews of experienced users can provide significant reference values for
consumers and help them to make decisions. Opinions in reviews are essential to
the evaluation and business volume of a target product in current O2O platforms
such as Amazon1, Booking2, and Yelp3. Positive reviews can bring profits and
fame, while negative ones are harmful to products. Due to the pursuit of interest,
deceptive reviews and fake reviewers appeared. Moreover, the continuous and
rapid evolution of social media makes fake reviewers themselves evolve rapidly
and pose a significant challenge to the community [3]. It has been a common
practice that shops tend to hire fake reviewers to promote themselves secretly.
Those kinds of activities are called opinion spam [9].

Prior researchers have been working on manual fake review detection for sev-
eral years [21]. At the early stage, methods of opinion spam were elementary and
easy to identify.Researchers proposedmanyapproaches based on text analysis [20].
Besides, simple machine learning methods could also be used to classify the suspect
reviewsbyanalyzing features of reviews and reviewers [15].Meanwhile, commercial
platforms realized the hazard of opinion spam and built their own filtering systems
to find deceptive and inferior quality reviews. Those systems helped purify the dis-
ordered review environment, but they also prompted fake reviewers to enrich their
poor review contents. Even some skilled fake reviewers were able to deceive the
detecting system [24]. As the elapse of time, fake reviewers were becoming more
and more cautious and tended to disguise as normal users, and those laggard tra-
ditional approaches wouldn’t work efficiently anymore. The spotlight on manual
fake review detection was gradually shifting from text contents to features and pat-
terns. Some features were proved useful in manual fake review detection like time
[10], ranking pattern [5], topics [16] and activity volume [6]. These new approaches
did provide several new ideas in opinion spam detection.

We exploit a creative SpamTracer method to do manual fake review detec-
tion by exploiting the geolocation features. Geolocation is potential in manual
fake review detection task. Fake reviewers and benign users may have similar
geolocation records. However, fake reviewers don’t pay much attention to the
position order during review fraud actions. Their strange actions appear to be
inconsistent with general behaviors of benign users. The different action concepts
between fake reviewers and benign users will cause distinctions in the statis-
tics and the frequency distribution of geolocation features. After computing on
a partly labeled reviews and reviewers dataset, we found that both reviewers
and benign users have double peak distributions regarding the geolocation
features. Our method can fit the geolocation features well. Some prior works have

1 www.amazon.com.
2 www.booking.com.
3 www.yelp.com.

https://www.amazon.com
https://www.booking.com
https://www.yelp.com

386 R. Deng et al.

discussed the practice of geolocation features in manual fake review detection
tasks. Zhang et al. [25] used geolocation features in OSNs (Online Social Net-
works) to detect fake reviewers, and Gong et al. [7] used LSTM model and
check-in information in LBSNs (Location-Based Social Networks) for malicious
account detection. Their works enlighten us that location information can reflect
some review fraud features.

Apart from detecting fake reviewers, we also discussed the feasibility of dis-
covering the time and location regularities of hiring fake reviewers. There exist
some rules in online shop’s tendency of hiring fake reviewers regarding time and
location. For example, online shops tend to hire fake reviewers in the beginning
period to accumulate popularities and obtain a higher rank in searching results,
etc. We can draw some conclusions that explain some important regularities
based on a large scale dataset expanded by SpamTracer.

In summary, our work makes the following special contributions:
1. We exploit geolocation features to do manual fake review detection in O2O

commercial platforms. We extracted the geolocation features of shops, and
arrange those from the reviews written by the same person in time order.

2. We built a special SpamTracer model to describe the distribution of geoloca-
tion features of fake reviewers and benign users. It’s creative that SpamTracer
receives geolocation features sequences and gives prediction results.

3. We proposed three significant propositions regarding time and location of
review fraud regularities. Our experiment confirmed those propositions and
gave reasonable explanations.

The remainder of this paper is organized as follows. In Sect. 2, we introduce
the preliminary works. In Sect. 3, we present the detailed design and construction
of SpamTracer model. The dataset, experiment, and evaluation are demonstrated
in Sect. 4. Finally, we conclude our research in Sect. 5.

2 Preliminaries

2.1 Terminology

To describe our work precisely, we first introduce some definitions as following.

Definition 1. Shop: A shop is an officially registered online shop and holds a
unique webpage usually. A shop’s webpage contains the detailed description of
the shop and a large number of reviews of this particular shop.

Definition 2. User: A user is an officially registered account and holds a per-
sonal webpage. A user’s webpage contains detailed personal profile and reviews
that the user has posted.

Remark 1. In this paper, we categorize all users into two types: benign users
and fake reviewers. Benign users are those who post honest reviews, and
fake reviewers are those who post fake reviews to promote the target shops.

Definition 3. Fake review: Fake reviews are reviews posted by fake reviewers.
They post fake reviews without offline experiences. Fake reviews contain fabri-
cated text and imaginary stories, are crafted to mislead normal consumers.

SpamTracer: Manual Spamming Review Detection 387

2.2 Classification Algorithms in Manual Fake Review Detection

Spamming behaviors are categorized into several different types like web spam
[21], e-mail spam [2], telecommunication spam [23], and opinion spam [9], etc.
Manual fake review detection problem belongs to opinion spam. It can be
regarded as a binary classification problem. The critical problem is the selec-
tion of approaches and models. According to prior researches, there are several
main approaches to detect manual fake reviews.

Texture-Based Approaches. In 2008, when opinion spamming was firstly
proposed by Jindal [9], researchers were focusing on the classification and sum-
marization of opinions by using Natural Language Processing (NLP) approaches
and data mining techniques. From 2011, researchers tried to improve the meth-
ods of text analysis. Ott et al. [17] built an Support Vector Machine (SVM)
classifier using text features including unigrams and bigrams. Shojaee et al. [20]
focused on the lexical and syntactic features to identify fake reviews, and Chen
et al. [4] proposed a semantic analysis approach that calculates the similarity
between two texts by finding their common content words. Traditional texture-
based approaches are simple, and they can not reach a high efficiency when
manual fake reviewers began to enrich their fake review contents.

Feature-Based Approaches. From 2014, with the rapid development of
machine learning, more and more machine learning algorithms are applied on the
fake review detection field. Li et al. [12] proposed a PU-Learning (Positive Unla-
beled Learning) model that can improve the performance of Dianping4’s filtering
system by cooperating with Dianping. Kumar et al. [11] proposed an improved
SVM model named DMMH-SVM (Dual-Margin Multi-Class Hypersphere Sup-
port Vector Machine) to solve web spamming problem. Chino et al. [6] trained a
log-logistic distribution model consisting of time interval and activity volume of
one’s each review to fit users’ behavior, and calculated the dispersion of reviews
written by different users to identify those who are isolated from the majority. Li
et al. [13] proposed an LHMM (Labeled Hidden Markov Model) combined with
time interval features to do fake review detection in a sizeable Dianping dataset
and gave an excellent result. Feature-based approach is a powerful weapon in
fake review detection, but the features need to continually evolve since the fake
reviewers are also evolving themselves simultaneously.

Graph-Based Approaches. From 2016, some researchers chose graph mod-
els to find the relations among the products, users, and reviews. A detailed
graph model can even capture the deceptive reviewer clusters. Agrawal et al. [1]
showed an unsupervised author-reporter model for fake review detection based
on Hyper-Induced Topic Search (HITS) algorithm. Hooi et al. [8] proposed a
camouflage-resistant algorithm FRAUDAR to detect fake reviews in bipartite

4 www.dianping.com.

http://www.dianping.com

388 R. Deng et al.

graph of users and products they review. Chen et al. [5] proposed a novel app-
roach to identify attackers of collusive promotion groups in the app store by
exploiting the unusual ranking changes of apps to identify promoted apps. They
measured the pairwise similarity of app’s ranking changing patterns to cluster
targeted app and finally identified the collusive group members. Zheng et al. [26]
proposed an ELSIEDET system to detect elite sybil attacks and sybil campaigns.
Feature-based approaches mainly focus on feature selection, while graph-based
approaches attach more importance to patterns and links.

2.3 Hidden Markov Model

HMM (Hidden Markov Model) is a classic probabilistic graphical model that
uses the graph to represent relations among variables. HMM has two states:
observation state and hidden state. Hidden states form a sequence, and every
hidden state emits one observation state. In the beginning, HMM has an initial
state probability to determine which hidden state will be the first. Every time
a new state comes after, hidden states may transform to other states by follow-
ing a certain transition probability, and the hidden state has a certain emission
probability of emitting different kinds of observation states. HMM obeys two
significant assumptions. One is that each hidden state only relies on the for-
mer one. It guarantees the rationality of transition probability. Another is that
each observation state exclusively relies on the corresponding hidden state. It
ensures the rationality of emission probability. The two assumptions have been
widely acknowledged in practice. In conclusion, an HMM can be represented by
three parameters: initial state probability, transition probability, and emission
probability under the guarantee of two reasonable assumptions above.

There exist some prior works that apply HMM to manual fake review detec-
tion task. Malmgren et al. [14] proposed a basic double-chain HMM and used
an efficient inference algorithm to estimate the model parameters from observed
data. Washha et al. [22] also proved the qualification of using HMM in manual
fake review detection work. Li et al. [13] proposed an LHMM (Labeled Hidden
Markov Model) combined with time interval features to detect fake reviews in a
sizeable Dianping dataset and gave an excellent result.

3 Manual Fake Review Detection Model

3.1 Symbols and Definitions

Table 1 gives a complete list of the symbols used throughout this chapter.

3.2 Structure Overview

In this section, we are going to introduce SpamTracer model used for detecting
manual fake reviews. Our detection process is shown in Fig. 1. First, extracting
the geolocation features from the dataset. Then, arranging the feature sequence

SpamTracer: Manual Spamming Review Detection 389

Table 1. Symbols and definitions

Symbol Interpretation

xi ith location in review sequence of a reviewer

C Center point

Distance(A, B) The interval distance between two locations A and B

γxi Distance between xi and C

f(x; μ, σ) Gaussian distribution function with parameters μ, σ

N(μ, σ2) Gaussian distribution with parameters μ, σ

L Label variable

λ = {A, B, π} Hidden Markov Model

A Transition probability of HMM

B Emission probability of HMM

π Initial state probability of HMM

Xi The ith observation state

X1:T The observation states from Xi to XT

P Probability

Yi The ith hidden state

Y1:T The hidden states from Yi to YT

aj,k The element in the matrix of transition probability A

bj() The distribution of emission probability

in time series. Next, inputing the feature sequence into SpamTracer. Finally, we
get prediction results from SpamTracer. SpamTracer makes predictions based
on the calculation of possibilities. The prediction results given by SpamTracer
are responsible for classifying data samples into fake reviewers or benign users.

Fig. 1. The structure of manual fake review detection process.

All the symbols and definitions in this chapter are listed in Sect. 3.1. Then the
rationality of the selection of geolocation features will be discussed in Sect. 3.3.
The methods of modeling geolocation features will be detailedly introduced in
Sect. 3.4. Finally, a discovery of review fraud action regularities will be discussed
in Sect. 3.5.

390 R. Deng et al.

3.3 Selecting Geolocation Features

Posting reviews is a random process. It means that the posting events are con-
tinuously and independently occurring at a constant average rate. Under such
process, the related features will follow a particular distribution. As for the fea-
ture selection, there were several mature feature distributions discovered by prior
work like time intervals and activity volume, etc. However, geolocation features
were seldom used in manual fake review detection. The related statistics and
the frequency distribution of the location-related feature in fake reviewers and
benign users can be calculated and analyzed respectively, and the manual fake
review detection problem can be solved by finding the distinctions between them.
We use a useful location-related feature, Radius, to measure the disorder degree
of users’ movement tracks. First, we introduce the definitions of review location,
center point and radius:

Definition 4. Review location: Review locations are geolocation points of
shops that appear in users’ reviews. It notes the location where the user pur-
chased offline.

Definition 5. Center point: A center point is the geometric center of the
shops in a user’ reviews. Determine a user’s center contains two steps:

(1) Find the city that the user lives in by the number of reviews.
(2) Find the geometric center of shops that the user has posted reviews in the

city he lives in.

Definition 6. Radius: Radius is the distance between each review location and
the center point.

Figure 2 shows an example of the definition of radius feature. Most of the
review locations are located in New York, so the center point is also located
in New York. The lines connecting the center point and each review location
represent the interval distances between them, which are the radius for these
review locations.

Fig. 2. Definition of radius feature on Google Map.

SpamTracer: Manual Spamming Review Detection 391

Fig. 3. Frequency distributions of radius.

Table 2. Statistics of radius

Average value Standard deviation

Fake reviewers 310.0604 678.4959

Benign users 568.5133 999.4281

The statistics and the histograms of the radius calculated on a labeled dataset
are shown in Table 2 and Fig. 3. The average value and standard deviation show
the differences between two reviewer types. The histograms demonstrate that
the peaks and slopes are much distinct between fake reviewers and benign users.
The frequency distributions can be regarded as the overlap of several Gaussian
distributions with different parameters under the log scale x-axis. The double
peak distribution pattern is quite reasonable. In general, the range of human
activity can be divided into two modes: home range and far range. Benign users
tend to purchase near home, and sometimes go far places. It leads to the result
that their radius features have the characteristic of double peaks. Although fake
reviewers also have two active ranges, they usually take a detour during review
fraud action since fake reviewers don’t pay much attention to the location order
of fake reviews. The location order of fake reviews written by the same fake
reviewer is inconsistent with general behaviors of those belonging to benign
users. This is the reason why both fake reviewers and benign users have identical
double peak patterns and different peak points and slopes.

The problem can be solved by building a model that can handle with radius
sequences. As mentioned above, the distributions of the radius can be seen as
the overlap of Gaussian distributions with different parameters. Supposing that
xi, i = 1, . . . , T is the location in one’s review sequence arranged in time order,

392 R. Deng et al.

the geometrical center C of his most active area can be calculated, then γxi
=

Distance(xi, C) can be used to denote the interval distance between xi and C,
and γxi

can be drawn from the Gaussian distribution shown in (1).

f(x;μ, σ) =
1√
2πσ

exp (− (x − μ)2

2σ2
) γx ∼ N(μ, σ2) (1)

3.4 Modeling Geolocation Features

In this section, we introduce a method of modeling geolocation features and
features used to do manual fake review detection work. It’s more efficient to deal
with data sequences rather than individual data samples because sequences can
optimize the differences of action patterns and augment the performance. We
proposed a supervised model SpamTracer improved from the classic HMM so
that it can deal with the geolocation sequences extracted from the dataset.

Fig. 4. Representation of SpamTracer.

As illustrated in Fig. 4, SpamTracer contains two HMM subchains and a label
variable connecting two chains. Label variable is denoted by L ∈ {0, 1}, where
0 stands for benign users and 1 stands for fake reviewers. Two subchains λ0 =
{A0, B0, π0} and λ1 = {A1, B1, π1} represent benign class and fake class, and
are trained by two kinds of data samples respectively. When a feature sequence
comes, two subchains will calculate the possibility that generates this sequence.
The value of the possibility is a score that measures the fitness between the
feature sequence and the class of subchain.

Supposing there is a feature sequence X1:T with unknown label L, the model
will calculate its scores under λ0 and λ1 respectively, then choose the label by
the model that gives a higher score. X1:T also serves as the observation sequences
of the subchains. It’s rational that the more probable label L takes is the one
that generates the observation sequence better.

Our target is comparing the possibility of different label L ∈ {0, 1} under a
certain X1:T , as expression (2). According to Bayesian theorem, the calculation of

SpamTracer: Manual Spamming Review Detection 393

P (L = l|X1:T) can be converted to the calculation of P (X1:T |λl) under different
λ. First, denominator P (X1:T) is independent of L. Thus it is a constant value
and won’t affect the comparison result, and then it can be dropped. Next, it’s
easy to get the value of P (L = l) by counting the number of each kind of samples
in the dataset. Therefore the problem is the calculation of P (X1:T |λl). It’s equal
to the calculation of P (X1:T) under different subchains. The detailed calculation
process will be introduced next.

̂L = max
l

P (L = l|X1:T)

= max
l

P (X1:T |λl) · P (L = l)
P (X1:T)

, l ∈ {0, 1}
(2)

Supposing that xi, i = 1, ..., T is the location in one’s review sequence
arranged in time order, then γxi

represents the radius feature of each review
xi. In the subchains of SpamTracer, Xi = γxi

serves as the continuous observa-
tion variables, and it follows different Gaussian distributions depending on the
hidden state. Considering that a hidden state variable Yi has two possible values
{0, 1}. Hidden variable Yi denotes the mode of the point xi, and the set of {0, 1}
represents home range mode and far range mode respectively.

The initial state probability π is given as π = {πj} = {P (Yi = j)}, j ∈ {0, 1}.
According to the first significant assumption that Yi only depends on Yi−1 and
is independent of previous hidden states, the transition probability A is given
as A = {ajk}, where aj,k = P (Yi = k|Yi−1 = j), j, k ∈ {0, 1}. The observation
value Xi is available directly from the dataset. It is emitted by one of the two
Gaussian distributions corresponding to the hidden state Yi ∈ {0, 1}. Xi can be
demonstrated by (3), where μ and σ are parameters of the Gaussian distribution.

Xi = γxi
∼

{

N(μ0, σ
2
0) Yi = 0

N(μ1, σ
2
1) Yi = 1

(3)

Combined with expression (1), the emission probability B = {bj(Xi)} can
be calculated as expression (4).

bj(Xi) = bj(γxi
) = P (γxi

|Yi = j) = f(γxi
;μj , σj) j ∈ {0, 1} (4)

Now the calculation of λ = {A,B, π} in the subchains has been stated,
as well as how they fit the distribution of radius γxi

. Supposing X1:T denotes
the observation variable sequence from x1 to xT , and Y1:T denotes the hidden
variable sequence from x1 to xT . Expression (5) formulate the joint probability
of X1:T and Y1:T . The calculation of P (X1:T , Y1:T) means the calculation of the
probability that both X1:T and Y1:T appear at the 1 ∼ T places in order. The
time complexity is O(T).

394 R. Deng et al.

P (X1:T , Y1:T)
=P (Y1,X1, Y2,X2, ..., YT ,XT)

=P (Y1)
T

∏

i=1

P (Xi|Yi)
T

∏

i=2

P (Yi|Yi−1)

=πY1

T
∏

i=1

bi(Xi)
T

∏

i=2

aYiYi−1

(5)

However, the corresponding Y1:T is unknown when given a certain X1:T in
SpamTracer. Therefore, all the possible hidden states need to be taken into
consideration. SpamTracer needs to calculate 2T different possibilities of the
sequence Y1:T . In this situation, the probability P (X1:T) can be calculated as
expression (6):

P (X1:T)

=
∑

Y1:T

P (X1:T , Y1:T)

=
∑

Y1:T

P (Y1)
T

∏

i=1

P (Xi|Yi)
T

∏

i=2

P (Yi|Yi−1)

(6)

If directly calculating P (X1:T) by following the approach above, the time
complexity will be O(T · 2T). Such high complexity is almost uncomputable.
In this case, a dynamic algorithm named Forward-backward algorithm [19] was
proposed to solve the estimating problem by reducing the time complexity to
linear time.

As a result, the calculation of P (X1:T) under different subchains is proved
practicable. SpamTracer is theoretically qualified as a supervised model and can
make predictions. The prediction result given by SpamTracer can be regarded
as a score measuring the fitness of data samples and different classes.

3.5 Application of Fake Review Detection Model

In this section, we discuss the review fraud regularities exploration from the
dataset with the assistance of SpamTracer. Several empirical conclusions are
spreading in public about how to identify fake reviewers. For example, fake
reviews hold a large part in the beginning period of most online shops, and there
are some periods when fake reviews regularly burst, etc. Besides, fake reviewers
tend to look for restaurants competing with others in the same business zone to
persuade them to use their review fraud services. As an owner of a restaurant in
a hot business zone, it’s easy for him to be forced to hire fake reviewers when he
finds that rivals around here are all working with fake reviewers. Fake reviews
can be recognized better if their action regularities are revealed. Contraposing to
those hypotheses, SpamTracer, and the dataset can tell whether those empirical
rules are rumors or truths.

SpamTracer: Manual Spamming Review Detection 395

The expansion of labeled data is essential in the review fraud regularities
exploration. A more substantial amount of labeled data can lead to much more
reliable results. After dataset expansion, all the reviews are labeled, and all
the fake reviews are clearly exposed to us. Our research mainly concerns three
relations among fake reviewers, time and geolocation:

Date Period and Fake Reviewers. We consider the relation between the
number of daily fake reviews and the date period, and the regular period of fake
review burst. First, SpamTracer identifies the unlabeled reviews in the dataset.
Then SpamTracer collects all the fake reviews and their posting time. Fake
reviews are categorized by weekdays and months, and a line chart is drawn
to explore the regular burst periods.

Shop Opening Days and Fake Reviewers. We mainly consider the relation
between the number of daily fake reviews and shop opening days, and try to
validate the proposition that there are more fake reviewers and reviews in the
beginning period of shops. Maybe new shops tend to hire some fake reviewers in
the beginning days to help them obtain more population and rise rapidly in the
rank. The expansion dataset can show us precisely in which stage restaurants are
likely to hire fake reviewers. First, the SpamTracer model identifies the unlabeled
reviews in the dataset. Then the fake reviews are assembled by the shops they
belong to. Since the dataset contains the shops information, the opening date
of shops is available, and the interval days between the shop opening day and
review posting day can be calculated. Finally, a histogram chart is drawn to find
the distribution of fake reviews posting day.

Shared Fake Reviewers and Interval Distances. First, we introduce the
definition of shared fake reviewers:

Definition 7. Shared fake reviewers: shared fake reviewers are the fake
reviewers who simultaneously work with plural shops in a small business zone.

The existence of shared fake reviewers accelerates the competition in small
business zones. Fake reviewers try to force shop owners to use their service by
cooperating with their competitors. We plan to count the number of shared
fake reviewers and the interval distance between two shops where shared fake
reviewers appear. The relation between them can be discovered by drawing a
distribution chart.

A simple Algorithm 1 is proposed to calculate the shared fake reviewers of
each pair of shops. A review number threshold is set to simplify the computation
cost. Only those shops hold a certain degree of review numbers can be included in
our calculation. First, the algorithm filters shops with fewer reviews, assembling
reviewers by shops, and runs the classification model to get their labels (line
1–6). After all the useful shops are prepared, the algorithm travels all the shop
pairs and calculates the interval distance and the number of shared fake reviewers

396 R. Deng et al.

Algorithm 1. Calculate the interval distance and amount of shared fake
reviewers between two shops
Input: Set of shops M , set of reviewers R, Threshold of shop review number δ;
Output: Pairs of distances and amount of shared fake reviewers H(d, n)

1 for ∀m ∈ M do
2 if m.numberOfReviews < δ then continue;
3 Rm = {r ∈ R|m.reviewer = r};
4 Run SpamTracer on Rm to get the class of every reviewer stored as r.status;
5 Add m into set M ′, M ′ is a set stores all the useful shops;

6 end
7 for i = 1, ..., length(M ′) do
8 for j = 1, ..., i do
9 d = Distance(M ′[i].reviewer, M ′[j].reviewer);

10 n = 0;
11 List = M ′[i].reviewer + M ′[j].reviewer;
12 Sort List by the name of reviewers;
13 for k = 1, ..., length(List) − 1 do
14 if List[k].name = List[k+1].name && List[k].status = fake &&

List[k].shop != List[k+1].shop then n = n + 1;

15 end
16 Add (d, n) into set H;

17 end

18 end

(line 7–18). The time complexity is O(klog(k)n2) where k is the average number
of reviews in every shop, and n is the number of useful shops. k can be regarded
as a constant value, so the time complexity is O(n2).

In conclusion, the three propositions are validated with the assistant of
dataset expanded by SpamTracer. Some charts demonstrating the links among
fake reviewers, time and space will be displayed in the experiment chapter.

4 Experiments

4.1 Dataset Description

Our experiment is based on a Yelp dataset used by KC et al. [10]. It is a partly
labeled dataset, contains location information, and its reviews are arranged on
each reviewer rather than shops. For the labeled part, each review is labeled as
fake or benign by Yelp’s filtering system. The dataset information is shown in
Table 3. It contains 3,142 labeled users, all of whose reviews are labeled, out of
total 16,941 users and 107,264 labeled reviews out of total 760,212 reviews. As for
the label reviews, there are 20,267 fake reviews out of 107,624 labeled reviews.
A clear boundary is necessary to classify two kinds of users. We referred to
Nilizadeh’s work [16], calculated the filter rate (i.e., the percentage of filtered
reviews out of one’s all reviews) of each user, and set a boundary filter rate to

SpamTracer: Manual Spamming Review Detection 397

cluster two kinds of users. The dataset holds a special characteristic that the
filter rate of each user is distributed either in the range of 0–20% or the range
of 90%-100%. To separate fake reviewers and benign users, we set a filtering
standard that we regard users whose filter rates are higher than 90% as a fake
reviewer and lower than 20% as a benign user. Under this standard, there are
1,299 fake reviewers out of 3,124 labeled users. Also, users holding few reviews
need to be excluded from the dataset to decrease the unexpected errors. There
are 1,796 labeled users and total 11,917 users left if we set the review number
threshold as 5.

Table 3. Dataset information

Labeled Total

Reviews 107624 760212

Users 3142 16941

Fake reviews 20267 N/A

Fake reviewers 1299 N/A

Users after filtering 1796 11917

We rely on the Yelp filtering system for the label work. Yelp filtering sys-
tem creates the ground-truth dataset and can automatically filter some typical
inferior quality and fake reviews. These officially labeled reviews are qualified as
the ground-truth dataset. Some prior works used manually labeled data for fake
review detection task. However, manual work is not only tedious but also much
too subjective. Manual labels are difficult to lead to excellent results.

4.2 Model Evaluation

In this section, the experiment implementation and evaluation of SpamTracer
will be presented. The geolocation features are calculated by latitudes and lon-
gitudes of every review shop. They are translated from Arcgis Map addresses by
a python package named geocoder. Parameters of SpamTracer are trained from
the training dataset, and the evaluation is based on the testing dataset. Train-
ing dataset and testing dataset are disjointed parts in labeled data. The ratio
of fake reviewers and benign users in labeled data is unbalanced, which is about
1:3. The number of fake reviewers in real O2O platforms is also a minority. And
classifiers are required to hold the resistance to the interference from the unbal-
anced dataset. Many traditional classification algorithms can’t perform well in
such situation while SpamTracer can tolerate the impact of large misleading data
and recognize the minority fake reviewers exactly.

SpamTracer needs to be compared with other existing excellent approaches
to show its advantages in performance. Impartially, some traditional supervised
classifiers are selected as the comparison group since SpamTracer is supervised.

398 R. Deng et al.

The comparison group contains four typical classification algorithms: NB (Naive
Bayes), AdaBoost Classifier, SVM (Support Vector Machine) and MLP (Multi-
layer Perceptron). Those comparison models receive several account character-
istics (i.e., friends number, reviews number, etc.) from dataset and output the
prediction of fake reviewers or benign user. Besides, our experiment uses a 10-fold
CV (Cross Validation) to guarantee the evaluation result. All involved models
and their results are presented below:

(1) SpamTracer: SpamTracer that receives radius sequences and outputs the
prediction.

(2) NB: A Naive Bayes Classifier.
(3) AdaBoost: An AdaBoost Classifier.
(4) SVM-rbf : A Support Vector Machine with Radial Basis Function serving

as the kernel function.
(5) MLP-relu: A Multi-layer Perceptron with Rectified Linear Unit serving as

the activation function.

Fig. 5. Precise, Recall, Accuracy, and F1-score of models. SpamTracer performs most
stable in all four measures, while other methods fluctuate severely in all four measures.

The evaluation of models is based on four standard performance measures:
Accuracy, Precision, Recall, and F1-score. Figure 5 illustrates the four perfor-
mance measures of all the five models, and shows that SpamTracer performs
most stable in all four measures. NB holds the highest Recall but performs
poorest in other three measures. AdaBoost and SVM-rbf perform almost the
same as SpamTracer, but they still fluctuate much, and they fall much behind
SpamTracer in Recall. MLP-relu holds an excellent Precise and Accuracy while
it also holds the worst Recall and F1-score. In summary, SpamTracer is the most
stable one in our experiment. Table 4 presents the numerical values of Fig. 5.

SpamTracer: Manual Spamming Review Detection 399

Table 4. Precise, Recall, Accuracy, and F1-score data of models

Precise Recall Accuracy F1-score

SpamTracer 0.6917 0.7657 0.7122 0.7268

NB 0.3332 0.9365 0.4962 0.4916

AdaBoost 0.6945 0.6430 0.8336 0.6677

SVM-rbf 0.7484 0.5482 0.8346 0.6328

MLP-relu 0.6443 0.4694 0.7946 0.5431

As for the restriction of the performance of SpamTracer, we have some ideas.
First, the length of sequences is vital to the performance. The chain structure
of SpamTracer determines that the longer data sequences are, the better per-
formance will be. Besides, the scale of dataset also puts a limitation on their
performance.

In conclusion, SpamTracer holds excellent stability and performs above the
average in all four measures under an unbalanced dataset. Interfered by the
unbalanced dataset environment, those classical approaches can’t find a com-
promise among those measures. If we need a stable and precise review filter in
O2O platforms, they will not be a good choice since they are likely to miscal-
culate many normal users or let off many fake reviewers. It’s undeniable that
SpamTracer will be a better choice for manual fake review detection task.

4.3 Regularities of Review Fraud Action

In this section, we are going to state some regularities of review fraud action
obtained by applying SpamTracer to the expanded dataset mentioned in
Sect. 3.5. After expanding, there are 694,020 reviews, 228,859 shops and 4,269
fake reviewers out of 11,058 reviewers. All the data samples are labeled. Those
reviews mainly covered the period from 2008 to 2011. We mainly concentrate on
three relations: fake reviewers and date period, fake reviewers and shop opening
days, as well as shared fake reviewers and the interval distance between two
shops. Next, we will expound our discoveries and present some figures that can
support them.

Date Period. Fake reviewers tend to burst in summer days of a year and
on weekends of a week. The dataset collected the posting date of each fake
review and group them by months and weekdays. Figure 6(a) and (b) illustrate
the month and weekday distribution of fake reviewer bursts from 2008 to 2011.
Figure 6(a) illustrates that as the elapse of time, fake reviewers tend to make a
burst during summer days. According to the data offered by NTTO (National
Travel & Tourism Office)5, most of the overseas tourists visiting the USA came in
the 3rd quarter (July, August, and September) from 2008 to 2011. The tourism

5 https://travel.trade.gov/research/monthly/arrivals/index.asp.

https://travel.trade.gov/research/monthly/arrivals/index.asp

400 R. Deng et al.

(a) Month and fake reviewers burst (b) Week and fake reviewers burst

(c) Average fake reviewers and
opening days

(d) Shops and ratios of fake reviews

(e) Shared fake reviewers and dis-
tance

(f) Average ratio of shared fake re-
viewers and distance

Fig. 6. Regularities of review fraud action. Figure (a)(b) reflect the date period and
fake reviewers, figure (c)(d) reflect the shop opening days and fake reviewers, and figure
(e)(f) reflect the interval distance and shared fake reviewers.

data reflects a phenomenon that summer is a busy season for traveling. Excessive
tourist flows stimulate shop owners to hire more fake reviewers to gain popularity
and income. Besides, Fig. 6(b) illustrates that fake reviewers tend to write fake
reviews on Sunday and Monday. Moreover, both two graphs state a common
practice that the amount of fake reviewers is increasing year by year. There were
67,705 fake reviews in 2008 while those grew to 140,722 in 2011. It also reflects
that review fraud action is gradually developing in recent years.

Shop Opening Days. Fake reviewers most appear in the early stage of shop
opening days. Since shops possessing few reviews and shop opening days will
interfere final result, we set a filter threshold that only those who have been
opening for more than one year and holding more than five reviews are taken into

SpamTracer: Manual Spamming Review Detection 401

consideration. There are 21,000 shops left after filtering. Figure 6(c) illustrates
the final results offered by the dataset and describes the review fraud tendency.
X-axis stands for shop opening days, and y-axis stands for the average number
of daily fake reviewers in each shop. It shows that more fake reviewers appear
in the early shop opening days, and gradually decrease as the elapse of opening
days. Besides, we also draw a Fig. 6(d) illustrating the number of online shops
categorized by the ratio of fake reviews they hold. Figure 6(d) demonstrates that
fake reviewers appear in large part of shops. Even there exist some shops whose
half of reviews are posted by fake reviewers. It validates a common practice:
shops tend to hire fake reviewers to promote themselves secretly.

Interval Distance. We discovered a regularity that the amount of shared fake
reviewers is inversely proportional to the interval distance between two shops.
However, shared fake reviewers only hold a limited percentage of review fraud
actions. We set the threshold of shop review number as 2 in our algorithm, and
the number of remaining shops after filtering is 102,478. The amount and average
ratio of shared fake reviewers are demonstrated in Fig. 6(e) and (f) respectively.
Figure 6(e) shows that there does exist share fake reviewers. However, Fig. 6(f)
tells that the average ratio of shared fake reviewers is extraordinarily low. It
starts from almost 0.06% when the interval distance is nearly 0 and is stabilized
at 0.006% with the increase of distance. Two graphs lead to a conclusion that
there does exist a phenomenon that some fake reviewers are working with plural
shops located in a small business zone, but it’s not the main trend of review
fraud actions.

5 Conclusion

In this paper, we conducted a research about exploiting geolocation to detect
fake reviewers in O2O commercial platforms. We improved a novel detection
model, SpamTracer, based on Hidden Markov Model to detect fake reviewers
by exploiting the unique distinctions of location features between fake reviewers
and benign users. Our evaluation is based on a large scale Yelp dataset and
demonstrates that our approach can take manual fake review detection task with
excellent accuracy and stability. Also, we discovered some significant regularities
in review fraud actions regarding time and location. Fake reviewers tend to
launch review fraud actions in the summer season of a year, on weekends of a
week, and in the beginning stage of shop opening days. We also found that there
existed a negative correlation between the number of shared fake reviewers and
the interval distance between two shops.

Acknowledgments. This work is supported by: Chinese National Research Fund
(NSFC) No. 61702330, Chinese National Research Fund (NSFC) Key Project
No. 61532013, National China 973 Project No. 2015CB352401, JSPS Kiban(C)
JP18K11298 and JSPS Kiban(B) JP18H0324.

402 R. Deng et al.

References

1. Agrawal, M., Leela Velusamy, R.: Unsupervised spam detection in hyves using
SALSA. In: Das, S., Pal, T., Kar, S., Satapathy, S.C., Mandal, J.K. (eds.) Pro-
ceedings of the 4th International Conference on Frontiers in Intelligent Computing:
Theory and Applications (FICTA) 2015. AISC, vol. 404, pp. 517–526. Springer,
New Delhi (2016). https://doi.org/10.1007/978-81-322-2695-6 43

2. Castillo, C., Donato, D., Gionis, A., Murdock, V., Silvestri, F.: Know your neigh-
bors: web spam detection using the web topology. In: Proceedings of the 30th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, Amsterdam, The Netherlands, pp. 423–430 (2007)

3. Chakraborty, M., Pal, S., Pramanik, R., Chowdary, C.R.: Recent developments in
social spam detection and combating techniques: a survey. Inf. Process. Manage.
52, 1053–1073 (2016)

4. Chen, C., Wu, K., Srinivasan, V., Zhang, X.: Battling the internet water army:
detection of hidden paid posters. In: 2013 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining, Niagara Falls, Canada, pp.
116–120 (2013)

5. Chen, H., He, D., Zhu, S., Yang, J.: Toward detecting collusive ranking manipu-
lation attackers in mobile app markets. In: Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, Abu Dhabi, UAE, pp.
58–70 (2017)

6. Chino, D.Y.T., Costa, A.F., Traina, A.J.M., Faloutsos, C.: VolTime: unsuper-
vised anomaly detection on users’ online activity volume. In: Proceedings of the
2017 SIAM International Conference on Data Mining, Houston, USA, pp. 108–116
(2017)

7. Gong, Q., et al.: Deepscan: exploiting deep learning for malicious account detection
in location-based social networks. In: IEEE Communications Magazine, Feature
Topic on Mobile Big Data for Urban Analytics, vol. 56 (2018)

8. Hooi, B., Song, H.A., Beutel, A., Shah, N., Shin, K., Faloutsos, C.: Fraudar: bound-
ing graph fraud in the face of camouflage. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San
Francisco, USA, pp. 895–904 (2016)

9. Jindal, N., Liu, B.: Opinion spam and analysis. In: Proceedings of the 2008 Interna-
tional Conference on Web Search and Data Mining, New York, USA, pp. 219–230
(2008)

10. KC, S., Mukherjee, A.: On the temporal dynamics of opinion spamming: case
studies on yelp. In: Proceedings of the 25th International Conference on World
Wide Web, pp. 369–379. Republic and Canton of Geneva, Switzerland (2016)

11. Kumar, S., Gao, X., Welch, I., Mansoori, M.: A machine learning based web spam
filtering approach. In: IEEE 30th International Conference on Advanced Infor-
mation Networking and Applications, Crans-Montana, Switzerland, pp. 973–980
(2016)

12. Li, H., Chen, Z., Liu, B., Wei, X., Shao, J.: Spotting fake reviews via collective
positive-unlabeled learning. In: 2014 IEEE International Conference on Data Min-
ing, Shenzhen, China, pp. 899–904 (2014)

13. Li, H., et al.: Bimodal distribution and co-bursting in review spam detection. In:
Proceedings of the 26th International Conference on World Wide Web, pp. 1063–
1072. Republic and Canton of Geneva, Switzerland (2017)

https://doi.org/10.1007/978-81-322-2695-6_43

SpamTracer: Manual Spamming Review Detection 403

14. Malmgren, R.D., Hofman, J.M., Amaral, L.A., Watts, D.J.: Characterizing indi-
vidual communication patterns. In: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2009,
New York, USA, pp. 607–616 (2009)

15. Mukherjee, A., Liu, B., Glance, N.: Spotting fake reviewer groups in consumer
reviews. In: Proceedings of the 21st International Conference on World Wide Web,
Lyon, France, pp. 191–200 (2012)

16. Nilizadeh, S., et al.: Poised: spotting twitter spam off the beaten paths. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, Dallas, USA, pp. 1159–1174 (2017)

17. Ott, M., Choi, Y., Cardie, C., Hancock, J.T.: Finding deceptive opinion spam
by any stretch of the imagination. In: Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies,
Stroudsburg, USA, vol. 1, pp. 309–319 (2011)

18. Phang, C.W., Tan, C.H., Sutanto, J., Magagna, F., Lu, X.: Leveraging O2O com-
merce for product promotion: an empirical investigation in mainland China. IEEE
Trans. Eng. Manage. 61, 623–632 (2014)

19. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in
speech recognition. Proc. IEEE 77, 257–286 (1989)

20. Shojaee, S., Murad, M.A.A., Azman, A.B., Sharef, N.M., Nadali, S.: Detecting
deceptive reviews using lexical and syntactic features. In: 13th International Con-
ference on Intellient Systems Design and Applications, Malaysia, pp. 53–58 (2013)

21. Spirin, N., Han, J.: Survey on web spam detection: principles and algorithms.
SIGKDD Explor. Newslett. 13, 50–64 (2012)

22. Washha, M., Qaroush, A., Mezghani, M., Sedes, F.: A topic-based hidden markov
model for real-time spam tweets filtering. Procedia Comput. Sci. 112, 833–843
(2017)

23. Yao, W., Ruan, N., Yu, F., Jia, W., Zhu, H.: Privacy-preserving fraud detection via
cooperative mobile carriers with improved accuracy. In: 2017 14th Annual IEEE
International Conference on Sensing. Communication, and Networking, San Diego,
USA, pp. 1–9 (2017)

24. Yao, Y., Viswanath, B., Cryan, J., Zheng, H., Zhao, B.Y.: Automated crowdturfing
attacks and defenses in online review systems. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, Dallas, USA, pp.
1143–1158 (2017)

25. Zhang, X., Zheng, H., Li, X., Du, S., Zhu, H.: You are where you have been: sybil
detection via geo-location analysis in OSNs. In: 2014 IEEE Global Communications
Conference, Austin, USA, pp. 698–703 (2014)

26. Zheng, H., et al.: Smoke screener or straight shooter: detecting elite sybil attacks in
user-review social networks. In: The 2018 Network and Distributed System Security
Symposium, San Diego, USA (2018)

A Light-Weight and Accurate Method of Static
Integer-Overflow-to-Buffer-Overflow

Vulnerability Detection

Mingjie Xu1,2, Shengnan Li3, Lili Xu1(&), Feng Li1, Wei Huo1,2,
Jing Ma4, Xinhua Li1, and Qingjia Huang1

1 Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, China

{xumingjie,xulili,lifeng,huowei,lixinhua,

huangqingjia}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China
3 National Computer Network Emergency Response Technical

Team/Coordination Center of China, Beijing, China
lisn@cert.org.cn

4 Science and Technology on Information Assurance Laboratory, Beijing, China
xxbzsys@163.com

Abstract. The Integer-Overflow-to-Buffer-Overflow (IO2BO) vulnerability is
an underrated source of security threats. Despite many works have been done to
mitigate integer overflow, existing tools either report large number of false
positives or introduce unacceptable time consumption. To address this problem,
in this paper we present a new static analysis framework. It first utilizes inter-
procedural dataflow analysis and taint analysis to accurately identify potential
IO2BO vulnerabilities. Then it uses a light-weight method to further filter out
false positives. Specifically, it generates constraints representing the conditions
under which a potential IO2BO vulnerability can be triggered, and feeds the
constraints to SMT solver to decide their satisfiability. We have implemented a
prototype system LAID based on LLVM, and evaluated it on 228 programs of
the NIST’s SAMATE Juliet test suite and 6 known IO2BO vulnerabilities in real
world. The experiment results show that our system can effectively and effi-
ciently detect all known IO2BO vulnerabilities.

Keywords: Integer-Overflow-to-Buffer-Overflow (IO2BO) vulnerability �
Inter-procedural dataflow analysis � Taint analysis � Path satisfiability

1 Introduction

Integer overflow is one of the most common types of software vulnerabilities.
According to the Common Vulnerability and Exploit (CVE) [1], integer overflow has
become the second most critical type of coding errors, second only to buffer overflows
[2]. If the malformed value generated by integer overflow is used for determining how
much memory to allocate, it will cause a buffer overflow, which is known as the Integer

© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 404–423, 2019.
https://doi.org/10.1007/978-3-030-14234-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_22&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_22

Overflow to Buffer Overflow vulnerability (IO2BO [3]). According to [4], it is difficult
to distinguish integer overflow vulnerabilities from benign overflows, but in the context
of IO2BO, the involved integer overflow cannot be benign and it must be a real
vulnerability.

In recent years, IO2BO is being widely exploited by attackers to cause severe
damages to computer systems, such as [5, 6, 22]. According to statistics, from February
2016 to February 2017, the National Vulnerability Database (NVD [7]) has recorded 53
IO2BO vulnerabilities, which makes up nearly one third of integer overflow vulnera-
bilities (165 in total) and heap overflow vulnerabilities (182 in total) recorded by NVD
in the same period.

As IO2BO vulnerabilities have become a dominant kind of integer overflow vul-
nerabilities in practice, a variety of solutions have been proposed for IO2BO detection.
The solutions can be categorized into approaches based on static analysis (e.g. [17, 21])
and those depended on dynamic testing (e.g. [4, 18, 29, 30]). Dynamic testing
approaches are commonly used during software deployment, but their efficiency highly
relies on the completeness of the test inputs. Static analysis approaches do not require
the availability of test inputs and usually take all possible paths of the programs into
consideration, which makes them more populate in practice. However, the key limi-
tation of static analysis approaches is that the reported integer overflow vulnerabilities
contain too many false positives due to the lack of execution information. To solve this
problem, tools such as PREfix + Z3 [23] and IntScope [21] employ symbolic execution
[24] to generate path constraints and prune infeasible paths in order to alleviate false
positives. However, these tools may suffer from path explosion when applied to large
programs. Another state-of-the-art tool, KINT [17], also collects path constraints to
prune false positive but it only generates intra-procedural path constraints for each
reported integer overflow program point. It also ignores implicit data dependencies
imported by memory operations or complex data structures. Our experiments in Sect. 5
shows that the false negatives reported by KINT remain high when detecting IO2BO
vulnerabilities.

In this paper, we present a static analysis framework utilizing an improved taint
analysis (compared with KINT) and a lightweight approach for path constraint gen-
eration and solving to detect IO2BO vulnerabilities. Specifically, first, we use taint
analysis to identify potential IO2BO vulnerabilities. We add the support for implicit
data flow and complex data structures, which improves the accuracy of detection. Then
we apply an inter-procedural path-satisfiability analysis to filter out false positives. The
analysis generates conditions under which an IO2BO vulnerability can be triggered in
practice and then performs constraints solving by feeding the generated conditions into
a solver. If the conditions of a potential IO2BO vulnerability cannot be satisfied, the
potential IO2BO vulnerability will be filtered out as a false positive. Compared with
symbolic execution that needs to model the runtime environment, this approach has
less space and time consumption.

A Light-Weight and Accurate Method of Static Integer-Overflow-to-Buffer-Overflow 405

We implement our framework, LAID (short for a Light-weight and Accurate
method of static IO2BO vulnerability Detection), based on LLVM [8, 9] and evaluate
its effectiveness and efficiency on 228 programs of the NIST’s SAMATE Juliet test
suite [27] and 6 real-world open-source applications each of which involves known
IO2BO vulnerabilities. Our experimental results show that LAID is capable of
detecting IO2BO vulnerabilities in the real-world applications with low false positives
and false negative rates.

In summary, this paper makes the following contributions:

– We propose an accurate method to identify IO2BO vulnerabilities, which combines
inter-procedural dataflow analysis and taint analysis. This method supports implicit
data flow introduced by memory operations (load and store) and dataflow propa-
gation on complex data structures, which improves the accuracy of program
analysis.

– We propose a light-weight method for constraints generation and solving, which is
used to verify if potential IO2BO vulnerabilities can be triggered in the program’s
execution. This method reduces high false positive rates that static analysis solu-
tions typically suffer from.

– We implement the prototype of the framework and apply it to 228 programs of the
NIST’s SAMATE Juliet test suite and 6 real-world applications with known IO2BO
vulnerabilities. The experiment result shows that our framework can catch all
harmful IO2BOs in the SAMATE suite with no false positive, and for real-world
applications, it can significantly reduce the number of false positives and detect
more known vulnerabilities than KINT.

The rest of this paper is organized as follows. Our system overview is shown in
Sect. 2. In Sect. 3, we describe how to use taint analysis to identify potential IO2BO
vulnerabilities. In Sect. 4, we describe how to use constraint solving to filter out
potential IO2BO vulnerabilities that cannot be triggered. Section 5 shows the experi-
ment results. Related work and conclusion are discussed in Sects. 6 and 7, respectively.

2 System Overview

In this section, we describe the architecture of our system as illustrated in Fig. 1. It
takes LLVM intermediate representation (IR) as input, which is obtained by compiling
C source code using Clang, and performs a two-stage analysis to detect IO2BO vul-
nerabilities in these IRs. At the end of analysis, it outputs the detected IO2BOs along
with their locations. The first stage performs taint analysis with sensitive taint sources
and sinks given by our built-in annotations as well as user annotations, and identifies
potentially vulnerable integer operations by comparing them to the pattern of IO2BO
vulnerabilities; the second stage performs constraint generation and solving for each
potential IO2BO vulnerability, if the constraint of a potential IO2BO vulnerability
cannot be satisfied, the vulnerability will be filtered out, which helps reduce false
positives.

406 M. Xu et al.

Next we use a real IO2BO vulnerability existed in Jbig2dec (a JBIG2 decoder
library) showed in Fig. 2 as an example to explain how our system works. The IO2BO
vulnerability (CVE-2016-9601) occurs in function jbig2_image_new at line 56
(highlighted in the red color) of jbig_image.c. The addition operation at line 56
overflows and results in a memory allocation less than expected.

Fig. 1. The structure of our framework

//jbig_image.c
34. Jbig2Image *
35. jbig2_image_new(Jbig2Ctx *ctx, int width, int height)
36. { /*width and height are from user space*/
37. Jbig2Image *image;
38. int stride;
39. int64_t check;
41. image = jbig2_new(ctx, Jbig2Image, 1);
...
47. stride = ((width - 1) >> 3) + 1;
49. check = ((int64_t) stride) * ((int64_t) height);
50. if (check != (int)check) {
...
54. }
56. image->data = jbig2_new(ctx, uint8_t, (int)check + 1);

/* integer addition overflow */
...
69. }

//jbig2_halftone.c
119. static Jbig2PatternDict *
120. jbig2_decode_pattern_dict(Jbig2Ctx *ctx, Jbig2Segment *segment,
121. const Jbig2PatternDictParams *params, const byte *data, const

size_t size, Jbig2ArithCx *GB_stats)
122. {
123. Jbig2Image *image = NULL;
...
129. image = jbig2_image_new(ctx, params->HDPW * (params->GRAYMAX +

1), params->HDPH);
...
175. }

Fig. 2. A real-world IO2BO vulnerability in Jbig2dec

A Light-Weight and Accurate Method of Static Integer-Overflow-to-Buffer-Overflow 407

Taint Analysis. Find and annotate the taint source (untrusted input) occurred in
Jbig2dec, such as the parameters of main function and the pointer to file returned by
fopen function. Perform taint tracking to determine which values can be influenced by
untrusted inputs, and which values may be used in memory allocation operations, such
as function jbig2_new in this case.

Vulnerability Identification. After the taint analysis, the parameter width, param-
eter height and variable check in function jbig2_image_new are found all
influenced by untrusted inputs. The result of the addition operation check + 1 at line
56 is used for determining how much memory to allocate by calling jbig2_new
function, so this line is identified as a potential IO2BO vulnerability.

Vulnerability Filter. We perform constraint generation and solving for this potential
IO2BO vulnerability to verify whether it can be triggered in program’s execution. The
constraint can be divided into overflow condition and path constraint:

Overflow Condition. If the involved integer operation overflows, the condition (int)
check + 1 > INT_MAX should be satisfied.

Path Constraint. We generate the path constraints from the caller of jbig2_im-
age_new to the integer overflow point. Usually one function has more than one caller.
As long as the path from one caller is satisfiable, we consider the IO2BO vulnerability as
feasible. We take one of jbig2_image_new’s callers: function jbig2_de-
code_pattern_dict as an example, which is shown in the lower part of Fig. 2. The
control flow condition from its function entry to the callsite of jbig2_image_new
(highlighted in the blue color) is always true. Furthermore, in jbig2_image_new, if
the program executes to overflow point, it should satisfy the branch condition at line 50,
i.e., check == (int)check.

So the complete constraint is

ð intð Þcheckþ 1[INT MAXÞ
^

true
^

check ¼¼ intð Þcheckð Þ

The SMT solver is invoked to decide whether or not the above constraint can be
satisfied, if not, we treat the potential vulnerability as a false positive and hence filter it
out, otherwise we report it as an IO2BO vulnerability.

3 Identify Potential IO2BO Vulnerabilities

The input of this module is the LLVM intermediate representation (IR) translated using
clang from source code. First we annotate taint source and taint sink on LLVM IR.
Second, we do taint propagation in a manner similar to classic dataflow analysis. We
add the support for implicit dataflow caused by the load or store operation on the same
memory address, and implement field-sensitive taint propagation for complex data
structures, that is, the taint information can be propagated on specific fields of a Struct
data type, which improves the accuracy of taint analysis.

If any operand of an arithmetic operation is tainted (thus untrusted) and the result is
used in a memory allocation function, there exists a potential IO2BO vulnerability.

408 M. Xu et al.

After the taint propagation, some candidate IO2BO vulnerabilities are generated and
we collect them for further filtering.

3.1 Taint Source Initialization

Taint source represents the untrusted input of the program, which can be files, network
data, input messages of mouse and keyboard. Generally, it is necessary to provide
untrusted input source information according to the specific program under analysis. In
the experiments, we annotate the parameters of the main function, the file pointer
returned by the fopen function, the pointer to the buffer used in fread function, etc. as
the taint source.

3.2 Taint Propagation

Given the information of taint source, taint propagation is performed according to the
algorithm shown in Fig. 3. Since our implementation is based on LLVM IR, the
algorithm mainly describes the strategies of taint propagation for several typical
instructions in IR. Given the LLVM bytecode of program P, the algorithm starts with
the provided taint source, propagates the tainted data and records the instructions
influenced by dirty data. Finally it annotates all tainted instructions by adding metadata
information on LLVM IR for corresponding instructions and outputs the modified
LLVM bytecode as P’.

In Algorithm 1, we first generate a system-wide call graph for program P. To
increase the precision of the analysis, we use the method of function type analysis to

Algorithm 1 TaintPropagation (Program P, Program P’)
1: Compute a call graph CG of P, mapping a callsite to all potential callees;
2: Let be the set of tainted instructions in P;
3: annotateTaintSource();
4: bool changed = true;
5: while (changed) do
6: changed = false;
7: for each instruction in each function of each module in P:
8: if it is a memory instruction:
9: changed | = memory_propapgation();

10: else if it is a function call instruction:
11: Obtain the callee according to the constructed CG;
12: changed | =call_propapgation();
13: else:
14: changed | = other_propapgation(
15: end if
16: end for
17: end while
18: P’ = P by adding to each instruction in a new metadata indicating that this instruction is

tainted;

Fig. 3. Taint propagation algorithm.

A Light-Weight and Accurate Method of Static Integer-Overflow-to-Buffer-Overflow 409

resolve the called functions that a function pointer may point to. We use the symbol Δ
to denote the set of instructions tainted by untrusty input, which is initialized to the taint
source annotated by users. The main algorithm consists of a while loop, taint propa-
gation rule is applied to each instruction in P iteratively and newly tainted instructions
are added to Δ. Once there is no newly tainted instruction in an iteration, i.e., the flag
variable changed is false, the process will terminate.

For different kinds of instructions, different taint propagation rules are applied. We
divide the instructions into three categories: memory related instructions, function call
instructions and other instructions, corresponding to the memory_propapgation,
call_propapgation and other_propapgation sub-processes respectively in Algorithm 1.

The taint propagation strategies for these three categories of instructions are
described in Table 1 below, specifying the taint status for data derived from tainted or
untainted operands. Since taint can be represented with a bit, propositional logic is
usually used to express the propagation policy, T1

W
T2 indicates that the result is

tainted if T1 or T2 is tainted.

The meaning of the taint propagation strategies in Table 1 are described in detail
below:

Memory Instructions. The memory instructions include store, load instruction and
the closely related getelementptr instruction which computes positions in a Struct data
type.

Store and Load Operation. For store instruction: store val, ptr, the val operand is the
value to be stored and the ptr operand specifies the address at which to store val. The
rule T(ptr) = T(val) says that if the val operand is tainted, the ptr operand is set to be

Table 1. The strategies of taint propagation for different kinds of instructions

Instruction type Intermediate representation Strategy T

Memory instructions store val, ptr T(ptr) = T(val)
val = load ptr T(val) = T(ptr)
resptr =
getelementptr [struct].[ptr].
[idx]

(1) T(resptr) = T(ptr)
W

T
(ptr + idx)
(2) T(ptr + idx) = T(resptr)

Function Call
Instructions

retval = call fun(arg)
//Definition of fun function:
define fun(arg_fun)
{… ret retval_fun}

(1) T(arg_fun) = T(arg)
(2) T(retval) = T(retval_fun)

//special library function call,
e.g.:
retval = call fopen(pathname,
mode)

T(retval) = T(pathname)

Other instructions res = OP op1, op2, …, opn T(res) =
T(op1)

W
T(op2) _ � � � _ T(opn)

410 M. Xu et al.

tainted. For load instruction: val = load ptr, the rule T(val) = T(ptr) means that if the
ptr operand that specifies the memory address from which to load is tainted, the val
operand is set to be tainted.

Getelementptr Operation. Getelementptr instruction: resptr = getelementptr [struct].
[ptr].[idx], is used to get the address of the idx-th sub-element of the struct type pointer
variable ptr. The first rule T(resptr) = T(ptr)

W
T(ptr + idx) means that if the ptr

operand is tainted or the address of the idx-th sub-element is tainted, the resptr is set to
be tainted.

In fact, the getelementptr instruction performs address calculation only and does not
access memory. Notice that the result of getelementptr instruction is usually used in
load and store instructions. In order to realize a field-sensitive taint propagation for
complex data structures, namely, to propagate taint data on specific fields of a Struct
type, we need to record the taint status of the specific sub-element obtained through the
getelementptr instruction. Essentially, the second rule T(ptr + idx) = T(resptr) implies
that if the address resptr obtained by the getelementptr instruction has been used to
store dirty data, the corresponding sub-element’s address ptr + idx is also set to be
tainted.

We illustrate intuitively how the taint propagation strategy for memory-related
instructions works using the toy sample code below.

Example 1. The following code is a snippet of LLVM IR omitting type information
for the sake of readability. It first uses getelementptr instruction to get the address of
variable bar of struct TEST pointer x, namely, a1. Tainted data is then stored into a1.
The address of variable bar in Struct TEST pointer x is calculated again as a2. The
value b1 is read from address a2 and used in malloc for determining how much
memory to allocate (Fig. 4).

1: a1 = getelementptr [TEST].[x].[2]
2: store taint_data, a1
3: a2 = getelementptr [TEST].[x].[2]
4: b1 = load a2
5: call = call malloc(b1)
//variable x is a pointer to Struct TEST, the definition of TEST is as follow.
struct TEST
{

unsigned int foo1;
unsigned int foo2;
unsigned long bar;

}

Fig. 4. Sample code for memory operation

A Light-Weight and Accurate Method of Static Integer-Overflow-to-Buffer-Overflow 411

The variable taint_data is initialized to be tainted, by applying the aforementioned
taint propagation strategy, the taint propagation process is as follows (Table 2):

The result of the taint propagation shows that the operand b1 is tainted. Since the
tainted b1 is used in memory allocation function malloc, we conclude that there exists a
security risk.

Function Call Instructions. Call instruction represents a simple function call. We
divided the function calls into programmer-defined function calls and special library
function calls.

Programmer-defined Function. The form is retval = call fun(arg), where the defini-
tion of fun is: define fun(arg_fun) {… ret retval_fun}. The first rule T(arg_fun) = T
(arg) implies that if the actual parameter of called function is tainted, the formal
parameter of called function is set to be tainted. Similarly, the second rule T(retval) = T
(retval_fun) indicates that if the return value of called funtion is tainted, the result of
function call instruction is tainted.

Special Library Function. Thanks to the special effects of some library functions, we
can directly determine the taint status of their return values or certain actual parameters.
Take function fopen as an example, retval = call fopen(pathname, mode), parameter
pathname indicates the file to be opened, parameter mode indicates the file access mode
and retval is a pointer to the opened file. If pathname is tainted, retval is set to be tainted.

Other Instructions. The form is res = OP op1, op2, …, opn, such as add, sub and
mul instructions in LLVM IR. The rule T(res) = T(op1)

W
T(op2) _ � � � _ T(opn) says

that if any operand of the instruction is tainted, the return value is set to be tainted.

3.3 Vulnerability Identification

After annotating taint source and taint propagation, all values influenced by taint source
will be marked as tainted. We identify the instructions that satisfy the following 3
conditions as potential IO2BO vulnerabilities:

1. The instruction is an integer arithmetic operation;
2. The instruction is influenced by taint source;
3. The result of the instruction is used in memory allocation function such as malloc

for determining how much memory to allocate.

Table 2. An example of detailed taint propagation process

Step Line No. in IR Taint propagation Applied rule

Initialization – T(taint_data) = true Initialization
The first loop 2 T(a1) = T(taint_data) Store rule
The second loop 1 T(x- > bar) = T(a1) Getelementptr rule 2

3 T(a2) = T(x-> bar) Getelementptr rule 1
4 T(b1) = T(a2) Load rule

412 M. Xu et al.

Example 2. Figure 5 shows a snippet of code of LLVM IR omitting type information
and type conversion for the sake of readability. It first uses alloca to allocate 16 bytes
memory for variable buf. A file f0 is opened and the first 16 bytes of the file is stored
into the memory pointed by buf. Lastly, the content of the second byte in buf is
multiplied by 4 and the result is used in malloc for determining how much memory to
allocate.

Assuming that the opened file is provided by user, the return value f0 is thus
tainted, and the argument buf used in fread function is also set to be tainted. The
variable conv obtains the contents pointed by the second byte of the buf, so conv is set
to be tainted. All tainted variables are denoted in blue in Fig. 5.

The variable mul is the result of multiplying conv by 4, and it is used in malloc, i.e.,
the variable mul is affected by taint source and is eventually used in memory allocation.

According to the above identification principles, the instruction mul = mul conv, 4
at line 6 (highlighted in red) will be marked as a potential IO2BO vulnerability and
used for further filtering.

4 Vulnerability Filter

After the taint analysis, the candidate IO2BO vulnerabilities are generated. However
the taint analysis is path-insensitive, thus there may be many infeasible paths which
bring false positives.

To eliminate the false positives, we examine whether the overflow conditions under
which an integer overflow may occur, and the path constraints that associated with the
paths from caller functions’ entry points, going through overflow points and reaching
the corresponding sinks could both be satisfied. Given a candidate IO2BO vulnera-
bility, the tactic validates if it is genuine as follows:

1. The overflow condition is calculated for the overflow point according to Table 3.
2. The path constraint encodes the conditions on both the paths from caller functions’

entry points to the overflow point, and the paths from the overflow point to the
corresponding sinks, also known as forward vulnerable paths.

3. A whole constraint formula, denoted by P, is obtained by integrating the overflow
condition and the path constraint with a logical conjunction.

4. The SMT solver is invoked to solve whether or not P can be satisfied. If not, then
the vulnerability is a false positive and hence filtered out.

1: buf = alloca [16 x i8]
2: f0 = call fopen(filename, mode)
3: call0 = call fread(buf, 1, 16, f0)
4: arrayidx = getelementptr [16 x i8].[buf].[1]
5: conv = load arrayidx
6: mul = mul conv, 4 # This line is marked as a candidate IO2BO vulnerability
7: call = call malloc(mul)

Fig. 5. Sample code for illustrating potential IO2BO vulnerabilities identification (Color figure
online)

A Light-Weight and Accurate Method of Static Integer-Overflow-to-Buffer-Overflow 413

4.1 Overflow Condition

An N-bit signed integer is in the bounds �2N�1 to 2N�1 � 1 and an N-bit unsigned
integer is in the bounds 0 to 2N � 1. Table 3 lists the requirements of producing an out-
of-bounds result for each integer operation. The second column indicates the operands
are unsigned or signed and the third column indicates the bit-width of the operands.
Taking division operation as an example, the divisor should be non-zero and the signed
division �2N�1=� 1 is not in bounds, because the expected mathematical result 2N �
1 is out of the bounds of N-bit signed integers.

4.2 Path Constraint

We refer to the function where the integer overflow locates as the defective function and
refer to the function that calls the defective function as the caller function. When
generating path constraint, we collect the conditions on paths starting from the entry
point of the caller function, passing through the overflow point and reaching the memory
allocation operation in the defective function where the overflowed integer is used.

We do not consider the conditions on paths originating from the entry point of the
whole program under test. In Sect. 5 we will illustrate by experiments that, when
considering the whole path constraints for real-world programs, the time consumption
of constraints solving increases but the effectiveness of false positives filter is not
improved significantly. This basically shows the fact that for heavy-weight programs,
the conditions really affecting the existence of an integer overflow are usually imposed
within the defective function and its caller function. We believe that for light-weight
programs, considering whole path constraints can impact more on the filter. We leave it
as future work to design a strategy to strike a balance between performance and low
false positive rate.

The path constraint is divided into two parts for construction, intra-procedural path
constraint and one-level inter-procedural path constraint.

Table 3. Overflow condition for integer operations

Integer operation Sign Width Overflow condition

xþ y <S, S> <N, N> xþ y 62 �2N�1;�2N�1½ �
<U, U> <N, N> xþ y 62 0; 2N � 1½ �

x� y <S, S> <N, N> x� y 62 �2N�1;�2N�1½ �
<U, U> <N, N> x� y 62 0; 2N � 1½ �

x� y <S, S> <N, N> x� y 62 �2N�1;�2N�1½ �
<U, U> <N, N> x� y 62 0; 2N � 1½ �

x / y <S, S> <N, N> y ¼ 0ð Þ _ x ¼ �2N�1 ^ y ¼ �1ð Þ
<U, U> <N, N> y ¼ 0

x � y; x � y <S, S> <N, N> y 62 0;N � 1½ �
<U, U> <N, N>

414 M. Xu et al.

1. First, we generate the conditions on paths within the defective function, namely, the
paths starting from the defective function’s entry point, passing through the risky
integer operation and reaching the corresponding sinks. We denote this constraint
by IntraPC.

2. Then we generate the conditions on paths within the caller function, namely, the
paths starting from the caller’s entry point to the callsite of the defective function.
We denote this constraint by InterPC.

3. We denote by ParamPassing the equality relations between the actual parameters in
the caller function and the formal parameters in the defective function.

4. Thus, the complete path constraint is composed of:

IntraPC
^

InterPC
^

ParamPassing:

These constraints IntraPC and InterPC arise from two sources: assignments to
variables involved in the integer operation and conditional branches along the execu-
tion path. We denote by PC start; endð Þ the constraint on paths from basic block(BB)
start to BB end, which is calculated as follows:

PC start; endð Þ ¼ True; if start ¼ endW
p2Pred endð Þ PC start; pð Þ ^ br ^ asð Þ; otherwise

�

where p is a predecessor BB of end, br is the branch condition from p to BB end, and
as are the assignments to variables along the path from p to end. We denote by dEntry
the entry BB of the defective function, by io the BB where the integer overflow point
locates and by mem the BB where the risky memory operation locates, then
IntraPC ¼ PC dEntry; ioð ÞVPC io;memð Þ. Analogously, we denote by cEntry the entry
BB of the caller function and by cs the BB where the callsite of the defective function
locates, then InterPC ¼ PC cEntry; csð Þ.

Struct test
{

unsigned long x;
char ch;

};
int foo(Struct *t)
{

unsigned long n = t->x;
if (n > 1<<30)

return ERROR;
void *p = malloc(n * 8);
/* integer multiplication overflow */
...

}
void bar()
{

Struct test *s = /* from user space */;
If (s->x >= 0 && s->x <=100)

foo(s);
}

Fig. 6. Sample code for illustrating how filter module works

A Light-Weight and Accurate Method of Static Integer-Overflow-to-Buffer-Overflow 415

Next we use the code snippet shown in Fig. 6 to explain how the vulnerability filter
module works.

Example 3. According to the principles presented in Sect. 3, the variable n in function
foo is influenced by user input, and the result of n * 8 is used in malloc, so the line
highlighted in red is identified as a potential IO2BO vulnerability.

In this example, the function foo is the defective function and the function bar is the
caller function. The overflow condition for the argument used in malloc is n > MAX/8.
In foo, the malloc operation will be executed under the condition (intra-procedural path
constraint) that (n <= 1 < <30 ^ n = t-> x). In bar, the callsite to foo will be executed
under the condition (the one-level inter-procedural path constraint) (s-> x > = 0 ^ s-
> x <=100). The actual parameter s passed to foo function is equal to the formal
parameter t in foo function prototype. Thus, the parameter passing condition is s-
> x = t-> x. The complete path constraint is a conjunction of the previous three parts.

The whole constraint P is a conjunction of the complete path constraint and the
overflow condition. Lastly, P is fed into the solver to see if it is satisfiable. In this case,
it is impossible to satisfy n > MAX/8 and n\ ¼ 100 at the same time, so the candidate
vulnerability is a false positive and hence filtered out (Table 4).

5 Evaluation

We implement our framework as a prototype tool LAID based on LLVM passes. The
vulnerability identification module consists of three passes: annotation pass, taint pass
and check pass. The annotation pass is used to recognize the taint source occurred in
the program to be tested. After the taint pass performing taint tracking to determine
which values can be influenced by untrusted sources, the check pass will identify the
potential vulnerabilities according to the IO2BO pattern. The vulnerability filter
module consists of two passes: intrasat pass and intersat pass. The intrasat pass
generates the overflow condition and the intersat pass generates the path constraint.
A conjunction of the overflow condition and the path constraint is fed into the SMT
solver Boolector, which provides APIs for conveniently constructing efficient overflow
detection conditions.

Table 4. The condition of the code snippet in Fig. 6

Condition Content of Condition

Overflow condition n > MAX/8
Path
constraint

Intra-procedural path
constraint (IntraPC)

n <= 1 < <30 ^ n = t-> x

One-level inter-procedural
path constraint (InterPC)

s-> x > = 0 ^ s-> x <=100

Parameter passing
condition (ParamPassing)

s-> x = t-> x

The whole constraint P (n > MAX/8) ^ (n <= 1 < <30 ^ n = t-> x) ^
(s-> x > = 0 ^ s-> x <=100) ^ (s-> x = t-> x)

416 M. Xu et al.

We have tested LAID on 228 programs in the NIST’s SAMATE Juliet test suite
version 1.2 and 6 real-world open-source applications. The evaluation was performed
on Ubuntu14.04 virtual machine with 1 GB memory and 1 process of an Intel Core i5
3.0 GHz host machine.

5.1 Experiments on Juliet Test Suite

SAMATE [27] has a suite of test bench programs in C, C++ and Java to demonstrate
common security problems and presents security errors in design, source code, binaries,
etc. For C/C++ code, the SAMATE’s Juliet test suite version 1.2 provides 61,387 test
programs for 118 different CWEs. Specially, CWE 680 describes the integer overflow
to buffer overflow vulnerabilities. We choose all C programs (228 programs) in CWE
680 as our experimental subjects. Each program has a good function and a bad
function. The good function demonstrates normal behavior and the bad function
demonstrates a vulnerability.

We applied LAID on all these 228 programs and had detected vulnerabilities in 152
programs. For the remaining 76 programs, the values involved in the overflowed
integer expressions are either constants or those generated by random functions, and
therefore are beyond the scope of IO2BO conditions mentioned in Sect. 3.3. In other
words, LAID had successfully reported all harmful IO2BOs in the 228 programs with
no false positive.

5.2 Experiments on Real IO2BOs

In order to evaluate LAID in real IO2BOs, 6 real-world open-source applications are
chosen, each of which contains a known IO2BO CVE. Their information is listed in
Table 5. Columns 1–4 describe the CVE number, the vulnerable software, version and
LOC(lines of code), respectively. Columns IO_op and MEM show the type of the
overflowed integer operation and the name of the risky sink, respectively.

Effectiveness of Vulnerability Identification. We first evaluate the effect of vulner-
ability identification. Usually in large software, developers will encapsulate memory
allocation operations. Therefore, we do not only annotate malloc, calloc, realloc, etc. as
the sinks of taint analysis, but also annotate corresponding wrapped memory allocation

Table 5. Information of applications used in evaluation

CVE Number Programs Version LOC IO_op MEM

CVE-2005-1141 [11] gocr 0.40 21608 �s malloc
CVE-2011-4517 [12] jasper 1.900.1 28279 �u jas_malloc
CVE-2014-9112 [13] cpio 2.9 30309 þ u xmalloc
CVE-2016-6328 [15] libexif 0.6.21 10828 �u exif_mem_alloc
CVE-2016-9601 [14] jbig2dec 0.13 10750 þ s jbig2_new
CVE-2017-16868 [16] swftools 0.9.2 211618 �s malloc

A Light-Weight and Accurate Method of Static Integer-Overflow-to-Buffer-Overflow 417

functions in the testcases as sinks, such as “jas_malloc”, “exif_mem_alloc” and
“jbig2_new”.

Table 6 shows, for each benchmark program, the number of total integer arithmetic
operations in the program (column 2) and the number of integer arithmetic operations
identified as potential IO2BO sites (column3). Column 4 shows the checking ratio, i.e.,
(the number of integer arithmetic operations identified as potential IO2BO sites)/(the
total number of integer arithmetic operations). Results show that, the percentage of
integer operations that need to be checked is reduced to very small, on average 2.28%,
by vulnerability identification module.

Effectiveness of Vulnerability Filter. In this section, we evaluate the effect of filter
module. The experimental results are given in Table 7. Column 1 lists the names of the
benchmarks. Column 2 shows the number of potential IO2BO vulnerabilities obtained
after performing vulnerability identification. Columns 3 to 5 show the number of
remaining potential IO2BO sites after doing vulnerability filter of one-level inter-
procedural path constraints, the filter ratio and its time usage in seconds. The filter
module successfully filters out a significant portion of potential IO2BO vulnerabilities
that cannot be triggered, on average, 49.2% of integer operations are filtered out.
Particularly, for swftools, more than two-thirds of the suspicious points are filtered out.

As mentioned in Sect. 4.2, we compare the performance of filter strategies between
one-level inter-procedural path constraints and whole program path constraints. Col-
umns 6 to 8 in Table 7 show the number of remaining potential IO2BO sites after
doing vulnerability filter of whole program path constraints, the filter ratio and its time
usage in seconds. The last two columns of Table 7 show the performance comparison
in terms of the reduction ratio in the number of filtered sites, as well as the ratio of the
increased time overhead. As shown in the table, the filter module considering whole
program path constraints improves the filter effect by 8.8% on average, however, it
costs on average 4.1X more time on path constraints generation and solving than the
filter module considering one-level inter-procedural path constraints. Particularly, in
the cases of libexif, jbig2dec and swftools, no suspicious point is further filtered out.
Thus, LAID decides to generate one-level inter-procedural path constraints only.

Table 6. Performance of Vulnerability Identification

Application #Total-int-ops #IO2BO-sites Ratio

gocr 4583 23 0.5%
jasper 2482 84 3.4%
cpio 655 17 2.6%
libexif 597 19 3.18%
jbig2dec 778 10 1.29%
swftools 8253 233 2.70%
Average – – 2.28%

418 M. Xu et al.

Comparison with KINT. KINT is a well-known static tool that utilizes taint analysis
and constraint solving to locate and filter integer overflow. Contrary to our work, KINT
attempts to denote all integer errors in a program and does not make a clear distinction
between classic errors and IO2BO errors that constitute vulnerabilities.

To compare with KINT fairly, we annotate the same taint source and taint sink for
KINT and set the same time threshold for SMT solver. Among the integer overflows
reported by KINT, only those involving data from an untrusted input (source) and
being used in a sensitive context (sink) are counted.

Table 8 summarizes the results of comparison. Column “Detected” shows whether
a tool reports the IO2BO vulnerabilities, notation “

p
” means the corresponding vul-

nerability is detected while notation “�” means not. Column “Time1” and “Time2” in
LAID are the time usages in seconds for taint analysis and for constraint generation and
solving, respectively. Column “Whole time” in KINT is the time usage of the whole
process.

The comparison experiment shows that LAID successfully detected all the 6
IO2BO vulnerabilities under examination while KINT detected none. The reason lies in
that KINT’s support for implicit data streams (such as memory-related operations
load/store) and complex data structures during the process of taint propagation is not

Table 7. Performance of Vulnerability Filter

Application Vuln.
Identif.

Vuln.Filter with one-level
inter-procedural path constraint

Vuln.Filter with whole program path
constraint

Performance
Comparison

Number of
remaining
IO2BO sites

Filter
ratio

Time
(sec)

Number of
remaining
IO2BO sites

Filter
ratio

Time
(sec)

Filter
improvement

Overhead in
time

gocr 23 10 56.5% 11.8 7 69.6% 23.3 13.1% 2X

jasper 84 51 39.3% 8.4 37 56.0% 25.3 16.7% 3X

cpio 17 13 23.5% 1.1 9 47.1% 1.7 23.6% 1.5X

libexif 19 8 57.9% 2.2 8 57.9% 9.8 0 4.5X

jbig2dec 10 5 50.0% 1428 5 50.0% 1725.2 0 1.2X

swftools 233 75 67.8% 1466 75 67.8% 18369.2 0 12.5X

Average – – 49.2% – – 58.0% – 8.8% 4.1X

Table 8. Statistics of comparison experiment

Application LAID KINT
Detected? Time1(sec)

(Vuln.Identif.)
Time2(sec)
(Vuln.Filter)

Detected? Whole
time(sec)

Gocr
p

2.1 11.8 � 3012.2
Jasper

p
2.9 8.4 � 768.8

Cpio
p

1.1 1.1 � 18.5
Libexif

p
0.6 2.2 � 6.3

jbig2dec
p

0.5 1428 � 190.3
Swftools

p
11.4 1466 � 25823.9

A Light-Weight and Accurate Method of Static Integer-Overflow-to-Buffer-Overflow 419

accurate enough. In this way, although some of these 6 real vulnerabilities are reported
by KINT, none of them are marked as simultaneously influenced by taint source and
used in taint sink. The result also shows that our system is generally faster than KINT.

6 Related Work

Source Code Analysis. There has been a number of tools proposed to detect integer
overflow at the source code level. These approaches can be classified into two
broad groups: instrumenting the source code with runtime integer overflow check
(e.g. [4, 18, 25]) and using static analysis to detect integer overflow (e.g. [17]).

RICH [25] is a compiler-based tool that instruments programs to capture runtime
overflows. It protects against many kinds of integer errors, including signedness error,
integer overflow/underflow or truncation error. However, benign and unexpected
overflows are not distinguished.

IOC [18] performs a compiler-time transformation operating on the Abstract Syntax
Tree (AST) to add integer overflow check. Then a runtime library is linked into the
compiler’s output and handles integer overflows as they occur.

IntPatch [4] is built on top of LLVM and detects vulnerabilities utilizing the type
inference on LLVM IR. If a variable involved in an arithmetic operation has an
untrusted source and the respective sink may overflow, IntPatch will insert a check
statement after that vulnerable arithmetic operation to catch vulnerability at runtime.
However, IntPatch would produce false positives if sanitization routines are added by
developers. Similar to IntPatch, IntTracker [28] instruments integer arithmetic opera-
tions to monitor overflows at runtime while integrates an efficient overflow tracking
technique to bypass the false positives caused by sanitization routines troubling
IntPatch.

Using tools that instrument the source code with runtime overflow check to find
integer overflows requires carefully chosen inputs to trigger them. Because integer
errors typically involve corner cases, these tools tend to have low coverage.

KINT [17] performs three different analyses including function-level analysis,
range analysis and taint analysis on LLVM IR to detect all integer errors in a program.
To avoid path explosion, KINT performs constraint solving at the level of individual
functions and statically generates a single path constraint for each integer operation.
Despite substantial effort, KINT reports a large number of false positives. Compared
with our system, KINT attempts to find all integer errors in a program not just IO2BO
vulnerabilities. KINT only considers if the overflow point can be triggered within a
function and its analysis for implicit data flow and complex data structures is not
accurate enough.

Binary Analysis. Many tools have been proposed to detect overflow in binaries.
Followings are some representative works.

IntFinder [20] recovers type information from binaries and creates the suspect
integer bug set, then uses its implemented dynamic detection tool that combined with
taint analysis to rule out false positives. IntScope [21] performs a path sensitive data
flow analysis on its own IR by leveraging symbolic execution and taint analysis to

420 M. Xu et al.

identify the vulnerable point of integer overflow. To deal with false positives, it relies
on a dynamic vulnerability test case generation tool to generate test cases which are
likely to cause integer overflows. Both IntFinder and IntScope use static analysis to find
suspicious integer overflow vulnerabilities, then dynamically check each suspicious
vulnerability. However, this mechanism suffer from low efficiency because of high
positives of static analysis and large time consumption of dynamically checking.

INDIO [26] is a static analysis based framework to detect and validate integer
overflow vulnerabilities in Windows binaries. INDIO integrates the techniques of
pattern-matching, vulnerability ranking, and selective symbolic execution to detect
integer overflow in x86 binaries. At the end of its analysis, INDIO outputs the detected
integer overflow vulnerabilities, as well as example inputs to the binaries that expose
these vulnerabilities.

[30] chooses suitable instructions to generate constraint dynamically with taint
analysis and loop analysis by launching target program. If the constraint expression is
satisfiable, an overflow vulnerability is reported. RICB [29] decompiles binaries to
assembly language, locates the overflow points and checks run-time integer overflow
via buffer overflow. Since RICB and [30] are dynamic analysis tools with runtime
check, the effectiveness depends on the set of inputs used to execute the program.

IO2BO can be considered as a special kind of heap overflow, HOTracer [31]
proposes a new offline dynamic analysis solution to discover heap vulnerabilities. It
selects useful testcases for programs to generate execution traces. Then it reasons about
the path conditions and vulnerability conditions built by tracking heap objects’ spatial
and taint attributes during execution traces to generate a PoC to find heap
vulnerabilities.

7 Conclusions

In this paper, we present a framework that utilizes static analysis techniques to detect
IO2BO vulnerabilities in source code, while significantly reduces the number of false
positives being reported. It applies taint analysis to accurately and quickly identify
potential IO2BO vulnerabilities and uses light-weight constraint generation and solving
to verify if an IO2BO vulnerability can be triggered in the program’s execution.

A prototype tool named LAID is implemented based on LLVM. The results of our
evaluation demonstrate that our tool can work on real-world IO2BO vulnerabilities and
achieve a better performance compared with the state-of-the-art tool KINT.

In this paper we focus on IO2BO vulnerabilities, as integer overflows in the context
of IO2BO can not be bengin [4] and tend to be more exploitable. Note that our
framework can be generalized to detect other types of vulnerabilities, by accordingly
modifying the vulnerability condition. For example, for buffer overflow vulnerabilities,
the original data’s possible length must be bigger than the targeted buffer’s real
capacity, which constructs the buffer overflow condition.

As of future work, with the analysis results of LAID, we plan to combine symbolic
execution and fuzzing to verify the authenticity of the suspicious IO2BO vulnerabilities
and construct a PoC (Proof of Concept) that can trigger the corresponding IO2BO

A Light-Weight and Accurate Method of Static Integer-Overflow-to-Buffer-Overflow 421

vulnerability. This would improve the practicality of our tool and form a complete tool
chain that integrates identification, filtering and verification for finding vulnerabilities.

Acknowledgments. We are grateful to the anonymous reviewers for their insightful comments
and suggestions. This research was supported in part by the National Natural Science Foundation
of China (Grant No. 61802394, Grant NO. 61602470), Foundation of Science and Technology
on Information Assurance Laboratory (No. KJ-17-110), Key Research and Development
Program of Beijing Municipal Science & Technology Commission, Research on intelligent
vulnerability analysis and penetration testing technology (Grant No. D181100000618004),
Strategic Priority Research Program of the CAS (XDC02000000), Program of Key Laboratory of
Network Assessment Technology, the Chinese Academy of Sciences and Program of Beijing
Key Laboratory of Network Security and Protection Technology.

References

1. Common vulnerabilities and exposures (CVE). http://cve.mitre.org/
2. Christey, S., Martin, R.A.: Vulnerability Type Distributions in CVE, May 2007. http://cve.

mitre.org/docs/vuln-trends/vuln-trends.pdf
3. CWE-680: IO2BO vulnerabilities. http://cwe.mitre.org/data/definitions/680.html
4. Zhang, C., Wang, T., Wei, T., Chen, Y., Zou, W.: IntPatch: automatically fix integer-

overflow-to-buffer-overflow vulnerability at compile-time. In: Gritzalis, D., Preneel, B.,
Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 71–86. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15497-3_5

5. Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-control-data attacks are realistic
threats. In: Proceedings of the 14th Conference on USENIX Security Symposium, p. 12
(2005)

6. Sotirov, A.: Heap feng shui in javascript. In: Proceedings of Blackhat Europe (2007)
7. National vulnerability database. http://nvd.nist.gov/
8. Lattner, C.: LLVM: An Infrastructure for Multi-Stage Optimization. Master’s thesis,

Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL, December
2002

9. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analysis &
transformation. In: Proceedings of the 2004 International Symposium on Code Generation
and Optimization (CGO 2004), Palo Alto, California, March 2004

10. Clang C language family frontend for LLVM. http://clang.llvm.org/
11. CVE-2005-1141. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1141
12. CVE-2011-4517. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4517
13. CVE-2014-9112. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-9112
14. CVE-2016-9601. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9601
15. CVE-2016-6328. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6328
16. CVE-2017-16868. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16868
17. Wang, X., Chen, H., Jia, Z., Zeldovich, N., Kaashoek, M.F.: Improving integer security for

systems with KINT. In: Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, pp. 163–177 (2012)

18. Dietz, W., Li, P., Regehr, J., Adve, V.: Understanding integer overflow in C/C ++. In:
Proceedings of the 34th International Conference on Software Engineering, ICSE 2012,
pp. 760–770. IEEE Press, Zurich (2012)

422 M. Xu et al.

http://cve.mitre.org/
http://cve.mitre.org/docs/vuln-trends/vuln-trends.pdf
http://cve.mitre.org/docs/vuln-trends/vuln-trends.pdf
http://cwe.mitre.org/data/definitions/680.html
http://dx.doi.org/10.1007/978-3-642-15497-3_5
http://nvd.nist.gov/
http://clang.llvm.org/
https://cve.mitre.org/cgi-bin/cvename.cgi%3fname%3dCVE-2005-1141
https://cve.mitre.org/cgi-bin/cvename.cgi%3fname%3dCVE-2011-4517
https://cve.mitre.org/cgi-bin/cvename.cgi%3fname%3dCVE-2014-9112
https://cve.mitre.org/cgi-bin/cvename.cgi%3fname%3dCVE-2016-9601
https://cve.mitre.org/cgi-bin/cvename.cgi%3fname%3dCVE-2016-6328
http://cve.mitre.org/cgi-bin/cvename.cgi%3fname%3dCVE-2017-16868

19. Pomonis, M., Petsios, T., Jee, K., Polychronakis, M., Keromytis, A.D.: IntFlow: improving
the accuracy of arithmetic error detection using information flow tracking. In: Proceedings of
the 30th Annual Computer Security Applications Conference, ACSAC 2014, pp. 416–425.
ACM, New Orleans (2014)

20. Chen, P., et al.: IntFinder: automatically detecting integer bugs in x86 binary program. In:
Qing, S., Mitchell, C.J., Wang, G. (eds.) ICICS 2009. LNCS, vol. 5927, pp. 336–345.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11145-7_26

21. Wang, T., Wei, T., Lin, Z., Zou, W.: IntScope: automatically detecting integer overflow
vulnerability in x86 binary using symbolic execution. In: Proceedings of the Network and
Distributed System Security Symposium (2009)

22. Vreugdenhil, P.: Pwn2Own 2010 Windows 7 Internet Explorer 8 exploit (2010). http://
vreugdenhilresearch.nl/Pwn2Own-2010-Windows7-InternetExplorer8.pdf

23. Moy, Y., Bjørner, N., Sielaff, D.: Modular bug-finding for integer overflows in the large:
sound, efficient, bit-precise static analysis. Technical report MSR-TR-2009-57, Microsoft
Research (2009)

24. Brummayer, R.: Efficient SMT Solving for Bit-Vectors and the Extensional Theory of
Arrays. Ph.D thesis, Johannes Kepler University, Linz, Austria, November 2009

25. Brumley, D., Chiueh, T.c, Johnson, R., Lin, H., Song, D.: Rich: automatically protecting
against integer-based vulnerabilities. In: Proceedings of the 14th Annual Network and
Distributed System Security Symposium, NDSS 2007 (2007)

26. Zhang, Y., et al.: Improving accuracy of static integer overflow detection in binary. In: Bos,
H., Monrose, F., Blanc, G. (eds.) RAID 2015. LNCS, vol. 9404, pp. 247–269. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-26362-5_12

27. National Institute of Standard and Technology (NIST). SAMATE-software assurance
metrics and tool evaluation. http://samate.nist.gov/SARD/testsuite.php

28. Sun, H., Zhang, X., Su, C., Zeng, Q.: Efficient dynamic tracking technique for detecting
integer-overflow-to-buffer-overflow vulnerability. In Proceedings of the 10th ACM Sym-
posium on Information, Computer and Communications Security, pp. 483–494. ACM
(2015)

29. Wang, Y., Gu, D., Xu, J., Wen, M., Deng, L.: RICB: integer overflow vulnerability dynamic
analysis via buffer overflow. In: Lai, X., Gu, D., Jin, B., Wang, Y., Li, H. (eds.) e-Forensics
2010. LNICST, vol. 56, pp. 99–109. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-23602-0_9

30. Chen, K., Feng, D., Su, P.: Dynamic overflow vulnerability detection method based on finite
CSP. Chin. J. Comput. 35(5), 898–909 (2012). (in Chinese)

31. Jia, X., Zhang, C., Su, P., Yang, Y., Huang, H., Feng, D.: Towards efficient heap overflow
discovery. In: Proceedings of the 26th USENIX Conference on Security Symposium (2017)

A Light-Weight and Accurate Method of Static Integer-Overflow-to-Buffer-Overflow 423

http://dx.doi.org/10.1007/978-3-642-11145-7_26
http://vreugdenhilresearch.nl/Pwn2Own-2010-Windows7-InternetExplorer8.pdf
http://vreugdenhilresearch.nl/Pwn2Own-2010-Windows7-InternetExplorer8.pdf
http://dx.doi.org/10.1007/978-3-319-26362-5_12
http://samate.nist.gov/SARD/testsuite.php
http://dx.doi.org/10.1007/978-3-642-23602-0_9
http://dx.doi.org/10.1007/978-3-642-23602-0_9

Asymmetric Encryption

Fully Secure Decentralized
Ciphertext-Policy Attribute-Based
Encryption in Standard Model

Chuangui Ma1, Aijun Ge2,3(B), and Jie Zhang3

1 Army Aviation Institute, Beijing, China
2 Key Laboratory of Cryptologic Technology and Information Security,

Ministry of Education, Shandong University, Jinan, China
geaijun@163.com

3 State Key Laboratory of Mathematical Engineering and Advanced Computing,
Zhengzhou, China

Abstract. In this paper, we introduce a new multi-authority ciphertext
policy attribute-based encryption (MA-CP-ABE) system. In our system,
there are multiple central authorities (CAs) and attribute authorities
(AAs). The CAs will not need to coordinate or even be aware of each
other, and so do the AAs. In particular, we present two constructions
that will be proved secure in the standard model. Our first scheme is fully
secure under static assumptions in composite-order bilinear group, and
can work for any monotone access structure. The second one achieves
constant size ciphertexts for AND-gate policy in prime-order group. The
security can be proved under the decisional linear (DLIN) assumption.

Keywords: Attribute based encryption · Ciphertext-policy ·
Multi-authority · Standard model

1 Introduction

Attribute-based encryption (ABE), which was introduced by Sahai and Waters
[19], is a powerful encryption technique used in cloud computing, internet of
things (IoT), and social networks. In an ABE system, sender can encrypt a
message for multiple receivers by their attributes, rather designating recipient
in advance like traditional cryptosystems. Goyal et al. [9] divided ABE sys-
tem into two categories: key policy attribute-based encryption (KP-ABE) and
ciphertext policy attribute-based encryption (CP-ABE). Take CP-ABE as an
example, user’s private key is associated with his attributes and ciphertext spec-
ifies an access policy defined over attributes. A user can decrypt if and only if
his attributes satisfy the access policy.

Supported by the National Natural Science Foundation of China (No. 61379150, No.
61502529 and No. 61502533).

c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 427–447, 2019.
https://doi.org/10.1007/978-3-030-14234-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_23&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_23

428 C. Ma et al.

Due to its great power of expression and flexibility, ABE is poured attention
into and researched widely in recent years. A considerable amount of research
[1,5–8,11,17,21] has been done during the last decade. However, most of the
ABE systems have only a single authority to manage attributes, which have
some limitations on flexibility and scalability for practical use. It mainly displays
in the following aspects.

– Flexibility: All attributes are managed by the single authority. This may not
be desirable in some applications that someone wants to share information in
light of a policy over attributes managed by different organizations.

– Scalability: Key generation relied on a single authority becomes a bottleneck
in the system, especially when a host of users exist in the system. At worst,
the entire system cannot work when the authority goes down.

Aiming at the above problems, a multi-authority ABE (MA-ABE) system
with one central authority (CA) and multiple attribute authorities (AAs) was
given in [3] by Chase. Subsequently, Chase and Chow [4] remove the CA by using
a distributes pseudo random function. Both of [3,4] can only support AND-
gates policy. A MA-ABE that supports threshold policy was provided by Lin
et al. [14]. CA is not required for their system. However, the authorities are
fixed and they must interact during setup. The MA-ABE proposed in [3,4,14]
look only at the KP-ABE setting. Müler, Katzenbeisser and Eckert [16] proposed
the first multi-authority CP-ABE (MA-CP-ABE) supports policies written in
disjunctive normal form (DNF) with one CA and multiple AAs. The system
can be only proven secure in generic group model. In addition, all these above
systems can only defend selective attacks, i.e., the attacker must commit to a
target access structure before setup phase. Lewko and Waters [13] first obtained
a fully secure MA-CP-ABE by using dual system encryption technique [12,20].
Their system can support any monotone access structures and no need for CA.
They proved security under static assumptions in the random oracle model. Liu
et al. [15] proposed a MA-CP-ABE where there are multiple CAs and AAs. In
their system, they used a (n, n) threshold policy to distribute the master secret
to prevent the authority decrypts ciphertexts independently. The system can
be proven fully secure in the standard model. Scheme [13,15] are built on the
composite order group, which resulted in low efficiency of the systems [10]. An
improvement design was carried out in prime order bilinear group in [18].

Although a lot of effort is being spent on MA-ABE, most of these works
only concerned on improving flexibility but ignored scalability. The system in
[15] has multiple CAs, nevertheless, all of the CAs must work together to issue
an identity-related key to the user and key generation is still a bottleneck in
the system. The scheme presented in [13] is decentralized, i.e. the authorities
in system are equal and need not even be aware of each other. They used a
hash function to tie keys in different authorities together. The hash function,
which is modeled as a random oracle, is crucial in security proof. However,

Fully Secure Decentralized CP-ABE in Standard Model 429

the provable secure scheme in the random oracle machine can only be seen as
a heuristic argument, will not guarantee the security in realization. It is worth
to construct a fully secure MA-CP-ABE has the advantages of flexibility and
scalability combined in the standard model. The challenge to design MA-ABE
is to counteract collusion attacks. Prior ABE systems with a single authority
achieved collusion resistance by binding a common random number to different
components of a user’s secret key. Unfortunately, we cannot use this technique
in MA-ABE since the key components may come from different authorities.
To cross this barrier, we introduce a MA-ABE system with multiple CAs and
AAs. Different from prior ABE systems, the master keys of CAs in our system
do not participate in the encryption. CAs are only responsible for providing
eligible users with a random value. The random number is tied to the user’s
global identifier and attribute set by using a existentially unforgeable signature
scheme. The collusion between any users is bound to fail since they share different
random values. A user can register and get his identity-related key at any CA.
AA manages a different domain of attributes and generates keys related to the
attributes for users. Different authorities can work independently or even needs
not to know each other.

Our Contribution. In this paper, we introduce decentralized MA-CP-ABE
systems with multiple CAs and AAs. Specifically, we propose two kinds of decen-
tralized MA-CP-ABE schemes. Our first scheme is built on the composite-order
bilinear group. It can support any monotone access structure and achieve full
security under static assumptions. Our second scheme achieves short cipher-
texts for an AND-gate policy in the prime-order bilinear group. It is fully secure
under the standard DLIN assumption and decryption algorithm only needs con-
stant number of pairing operations. In order to compress the size of ciphertexts,
we utilize the compression technique in [5]. By pooling all the attributes in an
AND-gate policy together, we can encrypt the message with the “aggregated”
attribute. Hence, the size of ciphertexts achieves a constant value, regardless of
the number of underlying attributes. Both of our schemes are proven secure in
the standard model. Our systems realize the load balancing among CAs and
improves the performance to a certain extent. A comparison in terms of effi-
ciency and security between current MA-CP-ABE systems and our work is given
in Table 1.

Organization. The definition of MA-CP-ABE and its security model are pre-
sented in Sect. 2. In the next section, we put forward our first scheme, and proof
its security in Sect. A. We give our second scheme in Sect. 4 and proof its security
in Sect. B. Finally, we conclude the paper in Sect. 5.

430 C. Ma et al.

Table 1. Comparing among existing MA-CP-ABE schemes. l is the number of
attributes in the access policy, LSSS denotes linear secret sharing scheme. We note
that any monotone access structure can be realized by a linear secret sharing scheme

Size of
ciphertext

Pairing of
decryption

Access
structure

Assumption Fully
secure

Decentralized
CA

Standard
model

[16] O(l) O(1) DNF - × × ×
[13] O(l) O(l) LSSS Static � � ×
[15] O(l) O(l) LSSS Static � × �
[18] O(l) O(l) LSSS DLIN � � ×
[5] O(1) O(1) AND n-BDHE � � ×
Ours O(1) O(1) AND DLIN � � �

O(l) O(l) LSSS Static � � �

2 Definition and Security Model

2.1 Definition

An MA-CP-ABE consists of three types entities: the central authorities (CAs),
attribute authorities (AAs) and users. We let Ui denote the attribute set man-
aged by AAi, U =

⋃
Ui denote the universe of attributes. For i �= j, we assume

that Ui

⋂
Uj = Φ. An MA-CP-ABE system consists of the following seven algo-

rithms:

GlobalSetup(1λ) → GPK. This algorithm takes as input a security parameter λ
and outputs the global public parameters GPK.

CASetup(GPK) → CPKj ,CSKj . This algorithm is run by CAj . It takes as input
global parameters GPK and outputs public parameters CPKj and master key
CSKj .

AASetup(GPK, Uj) → APKj ,ASKj . This algorithm is run by AAj . It takes as
input global parameters GPK and its attribute domain Uj , outputs public
parameters APKj and master key ASKj .

CKeyGen(GPK,CSKj , GID, S) → SKGID,S . This algorithm is run by CAj . It
takes as input global parameters GPK, CAj ’s master key CSKj , user’s global
identifier GID and a attribute set S, and returns an identity key SKGID,S .

AKeyGen(GPK,CPKj ,ASKk,SKGID,S , atti) → SKGID,i. This algorithm is run
by AAk. It takes as input GPK,CPKj ,ASKk,SKGID,S and an attribute atti
belonging to AAk, and returns an attribute key SKGID,i.

Enc(GPK, {APKj}, Y,m) → CTY . This algorithm takes as input GPK, {APKj},
an access policy Y and a message m ∈ M, and outputs a ciphertext CTY .

Dec(CTY ,SKGID,S , {SKGID,i}atti∈S) → m. This algorithm takes as input
SKGID,S ,{SKGID,i}atti∈S and CTY . If S satisfies the access policy Y , it out-
puts a message m; otherwise, it outputs ⊥.

Fully Secure Decentralized CP-ABE in Standard Model 431

2.2 Security Model

We define security for MA-CP-ABE by the following game run between a chal-
lenger B and an adversary A. A can only corrupt AAs statically, but can make
key queries adaptively. Without loss of generality, we assume that A corrupts
all AAs but AA1.

Setup: The challenger B executes GlobalSetup,CASetup,AASetup algorithm. It
gives the GPK, {CPKj} and {APKj} to the adversary A. For corrupt author-
ities, B also gives the corresponding {ASKj} to A.

Key Query Phase 1: In this phase, A can make two kinds of queries.
– CKeyGen Query:A makes identity key query by submitting (GID,S) to

B. B returns SKGID,S to A.
– AKeyGen Query: A makes attribute key query by submitting (SKGID,S,atti)

to B, where atti belonging to AA1 ∩S. B returns SKGID,i or ⊥ to A depend
on SKGID,S .

Challenge: A submits two equal-length messages m0, m1, and an access policy
Y with the following constraint. We let V denote the the subset of attributes
controlled by corrupt AAs. For each identity GID, VGID denotes the subset
of attributes atti for which A has queried. For each GID, we require that
V ∪ VGID cannot satisfy Y . B randomly chooses β ∈ {0, 1} and encrypts mβ

under Y . It sends the ciphertext to A.
Key Query Phase 2: A continually queries B as in phase 1 in the same constraint.
Guess: A outputs a guess β′ for β.

The adversary’s advantage is defined to be |Pr[β′ = β] − 1/2|.
Definition 1. An MA-CP-ABE scheme is secure if for all probabilistic
polynomial-time (PPT) adversaries, the advantage is negligible in the above secu-
rity game.

3 Scheme I: MA-CP-ABE in Composite-Order Bilinear
Group

3.1 Composite-Order Bilinear Group

Composite-Order Bilinear Group. The composite-order group was first
introduced in [2]. Group generator G takes a security parameter λ as input
and outputs (N = p1p2p3, G,GT , e), where G and GT are cyclic groups of order
N , p1, p2, p3 are distinct primes, e : G × G → GT is an admissible bilinear map.

We let Gp1 , Gp2 and Gp3 denote the subgroups of order p1, p2 and p3 in G
respectively. An important point to realize here is that the map e holds the
orthogonality property of Gp1 , Gp2 , Gp3 . That is to say, let gi ∈ Gi (i = 1, 2, 3),
then e(gi, gj) is the identity element in GT when i �= j.

432 C. Ma et al.

Cryptographic Assumptions. Our construction relies on the following
assumptions which are given in [13].

−AdvAssu1
A (λ) = |Pr[A(D,T1) = 1] − Pr[A(D,T2) = 1]|
where D = (N,G,GT , e; g1), T1 ← G,T2 ← Gp1 , g1 ← Gp1 .

−AdvAssu2
A (λ) = |Pr[A(D,T1) = 1] − Pr[A(D,T2) = 1]|
where D = (N,G,GT , e; g1, g3,X1X2), T1 ← Gp1 , T2 ← Gp1p2 ,

and g1,X1 ← Gp1 ,X2 ← Gp2 , g3 ← Gp3 .

−AdvAssu3
A (λ) = |Pr[A(D,T1) = 1] − Pr[A(D,T2) = 1]|
where D = (N,G,GT , e; g1,X1X3, Y2Y3), T1 ← Gp1p2 , T2 ← Gp1p3 ,

and g1,X1 ← Gp1 , Y2 ← Gp2 ,X3, Y3 ← Gp3 .

−AdvAssu4
A (λ) = |Pr[A(D,T1) = 1] − Pr[A(D,T2) = 1]|
where D = (N,G,GT , e; ga

1 , gb
1g

b
3, g

c
1, g

ac
1 gd

3), T1 = e(g1, g1)abc, T2 ← GT ,

and g1 ← Gp1 , g2 ← Gp2 , g3 ← Gp3 , a, b, c, d ← ZN .

Assumption 1 (resp. 2, 3, 4) asserts that for any PPT adversary A, the advantage
AdvAssu1

A (λ) (resp. 2, 3, 4) is negligible in λ.

3.2 Construction

GlobalSetup(1λ) : A bilinear group G of order N = p1p2p3 and a existentially
unforgeable signature scheme Σsign = (KeyGen,Sign,Verify) are chosen. Output
global public parameters.

GPK := {N,G,GT , e, g1, Σsign}

CASetup(GPK): The j’th central authority gets a pair of keys (Signkeyj,Verifykeyj)
by running KeyGen in Σsign. It outputs

CSKj = Signkeyj and CPKj = Verifykeyj .

AASetup(GPK,Uj) : For each attribute atti ∈ Uj , the attribute authority sam-
ples αi, ti ∈ ZN , and outputs

ASKk = {αi, ti}atti∈Uj

APKk = {e(g1, g1)αi , gti
1 }atti∈Uj

.

CKeyGen(GPK,CSKj , GID, S) : The user submits his global identity GID and
attribute set S to CAj . CAj randomly chooses r ← ZN and computes

SKGID,S = {GID,S, gr
1, j,Sign(Signkeyj , GID||S||gr

1||j)}

Fully Secure Decentralized CP-ABE in Standard Model 433

AKeyGen(GPK,CPK,ASKj , SKGID,S , atti): The user submits SKGID,S

and attribute atti to AAj . AAj checks the signature under the corresponding
verify key. If the signature is valid and atti belongs to S, then AAk computes

SKGID,i = gαi
1 (gr

1)
ti

Enc(GPK, {APKj},m, (M, ρ)): The encryption algorithm takes as input
GPK, {APKj}, a message m, an n × l access matrix M with ρ maps each row
of M to an attribute. We restrict that ρ is an injection in this paper. It chooses
random vectors v = (s, v2, . . . , vl) and w = (0, w2, . . . , wl). We let λx = Mx · v
and wx = Mx · w. For each row Mx of M, it chooses random number sx ∈ ZN ,
then sets

C0 = m · e(g1, g1)s, C1,x = e(g1, g1)λxe(g1, g1)αρ(x)sx ,

C2,x = gsx
1 , C3,x = g

sxtρ(x)
1 gwx

1 .

Dec(CT, SKGID,S , {SKGID,i}atti∈S): If S satisfies the access policy, then finds
ωx such that

∑
ρ(x)∈S ωxMx = (1, 0, . . . , 0). The decryptor computes

e(g1, g1)λx · e(g1, g1)αρ(x)sx · e(gsxtρ(x)
1 gwx

1 , gr
1)

e(gαρ(x)
1 g

rtρ(x)
1 , gsx

1)
= e(g1, g1)λxe(g1, g1)rwx .

∏

ρ(x)∈S

(e(g1, g1)λxe(g1, g1)rwx)ωx = e(g1, g1)s.

Then the message can be recovered:

m = C0/e(g1, g1)s.

Theorem 1. Our MA-CP-ABE scheme is fully secure based on assumptions
1, 2, 3 and 4 if the signature scheme Σsign is existentially unforgeable under
adaptive chosen message attacks.

4 Scheme II: MA-CP-ABE in Prime-Order Bilinear
Group

4.1 Revisiting Dual System Groups

Prime-Order Bilinear Group. The prime-order group generator G takes a
security parameter λ as input and outputs (p,G1, G2, GT , g1, g2, e), where G1, G2

and GT are cyclic groups of prime order p, g1, g2, gT are generators of G1, G2, GT

respectively, e : G1 × G2 → GT is an admissible bilinear map.

434 C. Ma et al.

Dk is a matrix distribution that outputs matrices (A,a�) ∈ Z
(k+1)×k
p ×Z

k+1
p .

Moreover, A�a⊥ = 0 and a⊥ �= 0, e(gA1 , gB2) := e(g1, g2)A
�B, A,B are either vec-

tors or matrices. In particular, we focus on the following distribution:

A :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a1

a2

. . .
ak

1 1 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
(k+1)×k
p and a⊥ :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a−1
1

a−1
2
...

a−1
k

−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
k+1
p .

Dual System Groups [6]. The dual system groups consists of six randomized
algorithms defined as follows:
SampP(1λ, 1n):

– run (p,G1, G2, GT , g1, g2, e) ← G(1λ), where G(1λ) is an asymmetric prime
order group generator;

– define (G, H, GT , e) := (Gk+1
1 , Gk+1

2 , GT , e);
– sample (A,a⊥), (B, b⊥) ← Dk, W1, . . . ,Wn ←R Z

(k+1)×(k+1)
p ;

– set h∗ := ga
⊥

2 .

Output

pp :=

(

(p, G, H, GT , e) , gA1 , g
W�

1A
1 , . . . , g

W�
nA

1

gB2 , gW1B
2 , . . . , gWnB

2

)

SampGT([p]T): Pick s ← Z
k
p and output gs

�p
T ∈ GT .

SampG(pp): Pick s ← Z
k
p and output

(
gAs
1 , g

W�
1As

1 , . . . , g
W�

nAs
1

)
∈ (Gk+1

1)n+1.

SampH(pp): Pick r ← Z
k
p and output

(
gBr
2 , gW1Br

2 , . . . , gWnBr
2

)
∈ (Gk+1

2)n+1.

ŜampG(pp,sp): Pick ŝ←Z
∗
p and output

(
gb

⊥ŝ
1 ,g

W�
1 b

⊥ŝ
1 ,. . .,g

W�
nb⊥ŝ

1

)
∈(Gk+1

1)n+1.

ŜampH(pp,sp): Pick r̂←Z
∗
p and output

(
ga

⊥r̂
2 ,gW1a

⊥r̂
2 ,. . .,gWna⊥r̂

2

)
∈(Gk+1

2)n+1.

The first four algorithms are used in the real system, and the remaining two
algorithms are only used in the proof of security.

Assumption 1 (k-Lin1: the k-linear assumption in G1). For any PPT
adversary A, the advantage of A is negligible in λ:

Advk−Lin
A := |Pr [A((p,G1, G2, GT , g1, g2, e); [A]1, [As]1) = 1]

−Pr [A((p,G1, G2, GT , g1, g2, e); [A]1, [z]1) = 1] |

where (p,G1, G2, GT , g1, g2, e) ← G(1λ); (A,a⊥) ← Dk; s ←R Z
k
p;z ←R Z

k+1
p .

1 We note that 1-Lin is DDH, and 2-Lin is DLIN.

Fully Secure Decentralized CP-ABE in Standard Model 435

We will use the following lemma from [6] in the security analysis of our
scheme.

Lemma 1 (left subgroup indistinguishability from k-Lin). For any PPT
adversary A, there exists an adversary B such that:

AdvLS
A (λ) ≤ Advk−Lin

B + 2/p

whereAdvLS
A (λ) :=

∣
∣
∣Pr[A(pp, g) = 1] − Pr[A(pp, g · ĝ) = 1]

∣
∣
∣

(pp, sp) ← SampP(1λ, 1n); g ← SampP(pp); ĝ ← ŜampG(pp, sp).

Lemma 2 (right subgroup indistinguishability from k-Lin). For any PPT
adversary A, there exists an adversary B such that:

AdvRS
A (λ) ≤ Advk−Lin

B + 2/p

whereAdvRS
A (λ) :=

∣
∣
∣
∣Pr[A(pp, h∗, g · ĝ, h) = 1]−Pr[A(pp, h∗, g · ĝ, h · ĥ) = 1]

∣
∣
∣
∣

(pp, sp) ← SampP(1λ, 1n); g ← SampP(pp); ĝ ← ŜampG(pp, sp);

h∗ = ga
⊥

2 ,h ← SampH(pp); ĥ ← ŜampH(pp, sp).

Lemma 3 (parameter hiding). The following two distributions are identical:

{pp, h∗, ĝ, ĥ } and {pp, h∗, ĝ · ĝ′, ĥ · ĥ′ }

where (pp, sp) ← SampP(1λ, 1n), h∗ = ga
⊥

2 ;

ĝ = (ĝ0, . . .) ← ŜampG(pp, sp); ĥ = (ĥ0, . . .) ← ŜampH(pp, sp);

ĝ′ = (1, ĝû1
0 , . . . , ĝûn

0); ĥ
′
= (1, ĥû1

0 , . . . , ĥûn
0); û1, . . . , ûn ← Zp.

4.2 Construction

GlobalSetup(1λ): Sample (A,a⊥), (B, b⊥) ← Dk, where k = 2. An existentially
unforgeable signature scheme Σsign = (KeyGen,Sign,Verify) is chosen. Output
global public parameters

GPK := {p,Gk+1
1 , Gk+1

2 , GT , e; gA1 , gB2 , Σsign}

CASetup(GPK): The j’th central authority gets a pair of keys (Signkeyj ,
Verifykeyj) by running KeyGen in Σsign. It outputs

CSKj = Signkeyj and CPKj = Verifykeyj

ASKk = {ki,Wi}atti∈Uj

APKk = {e(g1, g2)k
�
i A, gWiA

1 }atti∈Uj
.

436 C. Ma et al.

CKeyGen(GPK,CSKj , GID, S): The user submits his global identity GID and
attribute set S to CAj . CAj randomly chooses r ← Z

k
p and computes

SKGID,S = {GID,S, gBr
2 , j,Sign(Signkey,GID||S||gBr

2 ||j)}
AKeyGen(GPK,CPK,ASKj , SKGID,S , atti): The user submits SKGID,S and
attribute atti to AAj . AAj checks the signature under the corresponding verify
key. If the signature is valid and atti belongs to S, then AAj computes

SKGID,i = gki+WiBr
2

Enc(GPK, {APKj},m, Y): The encryption algorithm takes GPK, {APKj}, a
message m, an AND-gates on multi-valued attributes Y =

∧
atti∈Ω atti as input.

It samples s ← Z
k
p and sets

C0 = m ·
∏

atti∈Ω

e(g1, g2)k
�
i As , C1 =

∏

atti∈Ω

g
W�

i As
1 , C2 = gAs

1 .

Output CTY = {C0, C1, C2}.
Dec(CTY , SKGID,S , {SKGID,i}atti∈S): Given CTY = {C0, C1, C2}, if Ω ⊆ S,
then compute

M = C0 · e(C1, g
Br
2)

e(C2,
∏

atti∈Ω

SKGID,i)
.

Theorem 2. Our MA-CP-ABE scheme is fully secure based on the left and
right subgroup indistinguishability if the signature scheme Σsign is existentially
unforgeable under adaptive chosen message attacks.

5 Conclusion

In this paper, we present two decentralized MA-CP-ABE systems. The first
scheme is expressive, can support any monotone access structures. Then, we
construct the second scheme in prime-order groups, which achieves short cipher-
texts and constant pairing costs for an AND-gate policy, to further increase
efficiency. Both schemes can lighten the pressure of CA and can be proved fully
secure in the standard model. In future, it would be desirable to design fully
secure decentralized MA-CP-ABE systems in the standard model with flexible
access structures in prime-order groups.

A Proof of Security for Scheme I

We first define the semi-functional ciphertexts and semi-functional keys as follows.

Semi-functional Ciphertexts. We let C ′
0, C

′
1,x, C ′

2,x, C ′
3,x denote the normal

ciphertexts. We define VG = {Mx|ρ(x) belongs to good authorities}, VC =
{Mx|ρ(x) belongs to corrupted authorities}. We choose random values yi, zi ∈ ZN

Fully Secure Decentralized CP-ABE in Standard Model 437

for each attributeatti, two randomvectorsu2,u3 ∈ Z
l
N , and set δx = Mx·u2, σx =

Mx · u3. For each row Mx ∈ VG, we choose γx, ψx ∈ ZN randomly. We define the
semi-functional ciphertexts as follows: C0 = C ′

0,

C1,x = C ′
1,x, C2,x = C ′

2,xgγx

2 gψx

3 , C3,x = C ′
3,xg

δx+γxyρ(x)
2 g

σx+ψxzρ(x)
3 ,Mx ∈ VG

C1,x = C ′
1,x, C2,x = C ′

2,x, C3,x = C ′
3,xgδx

2 gσx
3 ,Mx ∈ VC

Semi-functional Keys. There are two types of semi-functional keys. They are
defined as follows. Pick random value c ∈ ZN , then set

Type 1 : SKGID,S = {GID,S, gr
1g

c
2, j,Sign(Signkey,GID||S||gr

1g
c
2||j)}

SKGID,i = gαi
1 grti

1 gcyi

2

Type 2 : SKGID,S = {GID,S, gr
1g

c
3, j,Sign(Signkey,GID||S||gr

1g
c
3||j)}

SKGID,i = gαi
1 grti

1 gczi
3

Game Sequence. We let AdvGameX

A denote the advantage of A in GameX .

– Game0: the real security game.
– Game1: the challenge ciphertext becomes semi-functional.
– Game2,η,1 for η = 1,. . . ,q : the first η-1 queried identities, the received keys

become semi-functional of type 2, and the received key for the η’th queried
identity becomes semi-functional of type 1.

– Game2,η,2 for η = 0,. . . ,q : the first η queried identities, the received keys
become semi-functional of type 2. We let Game2,0,2 denote Game1.

– Game3: generate a semi-functional ciphertext of a random message m′ ∈ GT

as the challenge ciphertext.

Theorem 1 is accomplished in the following lemmas.

Lemma 4 (from Game0 to Game1). For any PPT adversary A, there exists
an adversary B such that

∣
∣
∣AdvGame0

A (λ) − AdvGame1
A (λ)

∣
∣
∣ ≤ AdvAssu1

B (λ).

Proof. The adversary B gets input (N, g1, T), where T is from Gp1 or G, B
proceeds as follows.

Setup: Pick αi, ti ∈ ZN , a UF-CMA secure signature scheme Σsign =
(KeyGen, Sign,Verify). Output GPK = {N,G,GT , e, g1, Σsign}, CPKj =
Verifykeyj , APKj = {e(g1, g1)αi , gti

1 }atti∈Uj
. In addition, {αi, ti|atti ∈ U\U1}

are given to the adversary A.
KeyQueries: B answers A by executing CKeyGen, AKeyGen algorithm for CKeyGen
Query and AKeyGen Query, respectively.

438 C. Ma et al.

Challenge: Upon receiving challenge m0,m1 and (M, ρ), B picks a random bit β ∈
{0, 1}. B chooses two random vectors v = (s, v2, . . . , vl) and w′ = (0, w2, . . . , wl).
We let λx = Mx · v and w′

x = Mx · w′. For Mx ∈ VG, B chooses random num-
ber s′

x ∈ ZN . For Mx ∈ VC , B chooses random number sx ∈ ZN . Then set
C0 = mβ · e(g1, g1)s. For Mx ∈ VC , C1,x = e(g1, g1)λxe(g1, g1)αρ(x)sx , C2,x =
gsx
1 , C3,x = g

sxtρ(x)
1 Tw′

x ; For Mx ∈ VG, C1,x = e(g1, g1)λxe(g1, T)αρ(x)s
′
x , C2,x =

T s′
x , C3,x = T s′

xtρ(x)Tw′
x .

If T ∈ Gp1 , suppose that T = ga
1 where a is a random value. We have a

well distributed normal ciphertext with sx = as′
x (for rows in VG), wx = aw′

x =
Mx · aw.

If T ∈ G, suppose that T = ga
1gb

2g
c
3 where a, b, c are random values. We have

wx = aw′
x = Mx ·aw mod p1, δx = bw′

x = Mx ·bw′ mod p2, σx = cw′
x = Mx ·cw′

mod p3. For rows in VG, sx = as′
x mod p1, γx = bs′

x mod p2, ψx = cs′
x mod p3,

yρ(x) = tρ(x) mod p2, zρ(x) = tρ(x) mod p3.
Since s′

x, tρ(x) are chosen randomly in ZN , by Chinese Remainder Theorem,
γx, ψx, yρ(x), zρ(x) are randomly distributed. In addition, δx and σx are also well
distributed except that the shares of them are 0. We now argue that this looks
no difference with shares of a random value to the adversary.

We let R denote the space spanned by rows in VC . We note that the vector
(1, 0, . . . , 0) does not belong to R. Then there is some vector u meet the condition
that u is orthogonal to R but not orthogonal to (1, 0, . . . , 0). We fix a basis
including the vector u, and write bw′ = w′′ + fu mod p2, where f ∈ Zp2 and
w′′ is in the span of the basis elements exclude vector u. Since u is not orthogonal
to (1, 0, . . . , 0), the first entry of bw′ mod p2 has a relationship with f . As u
is orthogonal to R, the only places fu appears are in equations of the form:
δx + γxzρ(x). Recall that ρ is injective, each of these equations increase a new
unknown zρ(x) that appears nowhere else as long as γx �= 0 mod p2, and so no
information about f is leaked to A. Thus the shares δx are properly distributed
in A’s view. Similarly, we can prove that σx are also properly distributed in
A’s view. Observe that, B perfectly simulates Game0 when T ∈ Gp1 , and Game1
when T ∈ G. Hence, B can determine the distribution of T by using A.

Lemma 5 (from Game2,η−1,2 to Game2,η,1). For any PPT adversary A,

there exists an adversary B such that
∣
∣
∣Adv

Game2,η−1,2

A (λ)−Adv
Game2,η,1

A (λ)
∣
∣
∣ ≤

AdvAssu2
B (λ).

Proof. The adversary B gets input (N, g1, g3,X1X2, T), where T is from Gp1 or
Gp1p2 , B proceeds as follows.
Setup: Pick αi, ti ∈ ZN , a UF-CMA secure signature scheme Σsign =
(KeyGen, Sign,Verify). Output GPK = {N,G,GT , e, g1, Σsign}, CPKj =
Verifykeyj , APKj = {e(g1, g1)αi , gti

1 }atti∈Uj
In addition, {αi, ti|atti ∈ U\U1} are

given to the adversary A.
Key Queries : We let GIDθ denote the θ’th identity queried by A.

Fully Secure Decentralized CP-ABE in Standard Model 439

– CKeyGen Query: When A queries an identity key of GIDθ along with attribute
set Sθ, B chooses random values rθ, cθ ∈ ZN and outputs

SKGIDθ,Sθ
=

⎧
⎨

⎩

{GIDθ, Sθ, g
rθ
1 gcθ

3 , k,Sign(Signkey, ∗)} θ < η
{GIDθ, Sθ, T

rθ , k,Sign(Signkey, ∗)} θ = η
{GIDθ, Sθ, g

rθ
1 , k,Sign(Signkey, ∗)} θ > η

– AKeyGen Query: When A queries an attribute key of atti of GIDθ, B first
verifies the signature. If true, then outputs

SKGIDθ,i =

⎧
⎨

⎩

gαi
1 grθti

1 gcθti
3 θ < η

gαi
1 T rθti θ = η

gαi
1 grθti

1 θ > η

Challenge: Upon receiving challenge m0,m1 and (M, ρ), B picks a random
bit β ∈ {0, 1}. B chooses three random vectors v = (s, v2, . . . , vl), w′ =
(0, w2, . . . , wl) and u3. We let λx = Mx · v, w′

x = Mx · w′ and σx = Mx · u3.
For Mx ∈ VG, B chooses random number s′

x, ψx ∈ ZN . For Mx ∈ VC , B
chooses random number sx ∈ ZN . Then set C0 = mβ · e(g1, g1)s. For Mx ∈VC ,

C1,x = e(g1, g1)λxe(g1, g1)αρ(x)sx , C2,x = gsx
1 , C3,x = g

sxtρ(x)
1 (X1X2)w′

xgσx
3 . For

Mx ∈ VG, C1,x = e(g1, g1)λxe(g1,X1X2)αρ(x)s
′
x , C2,x = (X1X2)s′

xgψx

3 , C3,x =
(X1X2)s′

xtρ(x)(X1X2)w′
xg

ψxtρ(x)+σx

3 .
Suppose that X1X2 = ga

1gb
2 where a, b are random values. We have wx =

aw′
x = Mx · aw mod p1, δx = bw′

x = Mx · bw′ mod p2. For rows in VG, sx = as′
x

mod p1, γx = bs′
x mod p2, yρ(x) = tρ(x) mod p2, zρ(x) = tρ(x) mod p3.

Since s′
x, tρ(x), ψx are chosen randomly in ZN , by Chinese Remainder Theo-

rem, γx, ψx, yρ(x), zρ(x) are randomly distributed. σx is properly distributed since
u3 is a random vector. However, δx’s are shares of 0. We now argue that this
looks no difference with shares of a random value to the adversary.

We let R denote the space spanned by rows in VC and the rows whose
attributes ρ(x) are queried by A with identity GIDj . We note that the vec-
tor (1, 0, . . . , 0) does not belong to R. Then there is some vector u meet the
condition that u is orthogonal to R but not orthogonal to (1, 0, . . . , 0). We fix a
basis including the vector u, and write bw′ = w′′ + fu mod p2, where f ∈ Zp2

and w′′ is in the span of the basis elements exclude vector u. Since u is not
orthogonal to (1, 0, . . . , 0), the first entry of bw′ mod p2 has a relationship with
f . As u is orthogonal to R, the only places fu appears are in equations of the
form: δx + γxzρ(x). Recall that ρ is injective, each of these equations increase a
new unknown zρ(x) that appears nowhere else as long as γx �= 0 mod p2, and so no
information about f is leaked to A. Thus the shares δx are properly distributed
in A’s view. Observe that, B perfectly simulates Game2,η−1,2 when T ∈ Gp1 , and
Game2,η,1 when T ∈ Gp1p2 . Hence, B can determine the distribution of T by
using adversary A.

Lemma 6 (from Game2,η,1 to Game2,η,2). For any PPT adversary A,

there exists an adversary B such that
∣
∣
∣Adv

Game2,η,1

A (λ) − Adv
Game2,η,2

A (λ)
∣
∣
∣ ≤

AdvAssu3
B (λ).

440 C. Ma et al.

Proof. The adversary B gets input (N, g1,X1X3, Y2Y3, T), where T is from Gp1p2

or Gp1p3 , B proceeds as follows.
Setup: Pick αi, ti ∈ ZN , a UF-CMA secure signature scheme Σsign =
(KeyGen, Sign,Verify). Output GPK = {N,G,GT , e, g1, Σsign}, CPKk =
Verifykeyk, APKk = {e(g1, g1)αi , gti

1 }atti∈Uk
In addition, {αi, ti|atti ∈ U\U1}

are given to the adversary A.
Key Queries : We let GIDθ denote the θ’th identity queried by A.

– CKeyGen Query: When A queries an identity key of GIDθ along with attribute
set Sθ, B chooses a random value rθ ∈ ZN and outputs

SKGIDθ,Sθ
=

⎧
⎨

⎩

{GIDθ, Sθ, (X1X3)rθ , k,Sign(Signkey, ∗)} θ < η
{GIDθ, Sθ, T

rθ , k,Sign(Signkey, ∗)} θ = η
{GIDθ, Sθ, g

rθ
1 , k,Sign(Signkey, ∗)} θ > η

– AKeyGen Query: When A queries an attribute key of atti of GIDθ, B first
verifies the signature. If true, then outputs

SKGIDθ,i =

⎧
⎨

⎩

gαi
1 (X1X3)rθti θ < η

gαi
1 T rθti θ = η

gαi
1 grθti

1 θ > η

Challenge: Upon receiving challenge m0,m1 and (M, ρ), B picks a random bit β ∈
{0, 1}. B chooses three random vectors v = (s, v2, . . . , vl), w = (0, w2, . . . , wl)
and u = (u1, . . . , ul). We let λx = Mx · v, wx = Mx · w and δ′

x = Mx · u.
For each row Mx, B chooses random number sx ∈ ZN . Then set C0 = mβ ·
e(g1, g1)s. For Mx ∈ VC , C1,x = e(g1, g1)λxe(g1, g1)αρ(x)sx , C2,x = gsx

1 , C3,x =
g

sxtρ(x)
1 gwx

1 (Y2Y3)δ′
x . For Mx ∈ VG, C1,x = e(g1, g1)λxe(g1, g1)αρ(x)sx , C2,x =

gsx
1 (Y2Y3)sx , C3,x = g

sxtρ(x)
1 gwx

1 (Y2Y3)sxtρ(x)+δ′
x .

Suppose that Y2Y3 = gb
2g

c
3 where b, c are random values. We have δx = bδ′

x =
Mx · bu mod p2, σx = cδ′

x = Mx · cu mod p3, γx = bsx mod p2, ψx = csx mod
p3, yρ(x) = tρ(x) mod p2, zρ(x) = tρ(x) mod p3.

Since sx, tρ(x), ψx are chosen randomly in ZN , γx, ψx, yρ(x), zρ(x) are randomly
distributed. We note that δx, σx are also properly distributed since u is a random
vector. Observe that, B perfectly simulates Game2,η,1 when T ∈ Gp1p2 , and
Game2,η,2 when T ∈ Gp1p3 . Hence, B can determine the distribution of T by
using adversary A.

Lemma 7 (from Game2,q,2 to Game3). For any PPT adversary A, there exists

an adversary B such that
∣
∣
∣Adv

Game2,q,3

A (λ) − AdvGame3
A (λ)

∣
∣
∣ ≤ AdvAssu4

B (λ).

Proof. The adversary B gets input (N, g1, g2, g3, g
a
1 , gb

1g
b
3, g

c
1, g

ac
1 gd

3 , T), where
T = e(g, g)abc or T is a random element in GT , B proceeds as follows.
Setup: We assume that A corrupts all AAs but AA1, for each attribute atti
belonging AA1, B picks α′

i, t
′
i ∈ ZN , and implicitly sets αi = α′

i + ab, ti = t′i + a.
For each attribute atti belonging to a corrupted authority, B picks αi, ti ∈ ZN . B
also chooses a UF-CMA secure signature scheme Σsign = (KeyGen,Sign,Verify)

Fully Secure Decentralized CP-ABE in Standard Model 441

and outputs GPK = {N,G,GT , e, g1, Σsign}, CPKj = Verifykeyj ,

APKj =

{
{e(ga

1 , gb
1g

b
3)e(g1, g1)

α′
i , ga

1g
t′
i
1 }atti∈Uj

j = 1
{e(g1, g1)αi , gti

1 }atti∈Uj
j �= 1

In addition, {αi, ti|atti ∈ U\U1} are given to the adversary A.
CKeyGen Query : When A queries an identity key of GID along with attribute
set S, B chooses random values f, h ∈ ZN and outputs
SKGID,S = {GID,S, (gb

1g
b
3)

−1gf
1 gh

3 , k,Sign(Signkey, ∗)}
AKeyGen Query : When A queries an attribute key of atti of GID, B first verifies
the signature. If true, then outputs

SKGID,i = g
α′

i+ft′
i

1 (ga
1)f (gb

1g
b
3)

−t′
ig

ht′
i

3 = gα
1 g

(f−b)ti

1 g
(h−b)t′

i
3

Challenge: Upon receiving challenge m0,m1 and (M, ρ), B picks a random
bit β ∈ {0, 1}. B chooses random vectors v1 = (1, v1,2, . . . , v1,l) satisfies the
condition that v1 is orthogonal to the rows in VC , v2 = (0, v2,2, . . . , v2,l),
w = (0, w2, . . . , wl) and u = (u1, . . . , ul). We let v = abcv1 + v2, λx = Mx · v,
wx = Mx · w and δx = Mx · u. Then set C0 = mβ · T .
For Mx ∈ VC , B chooses random values sx ∈ ZN and sets
C1,x = e(g1, g1)Mx·v2e(g1, g1)αρ(x)sx , C2,x = gsx

1 , C3,x = g
sxtρ(x)
1 gwx

1 (g2g3)δx .
For Mx ∈ VG, B chooses random values s′

x, γx ∈ ZN and implicitly sets
sx = −cMx · v1 + s′

x, then outputs
C1,x = e(g1, gc

1)
−α′

ρ(x)Mx·v1e(ga
1 , gb

1g
b
3)

s′
xe(g1, g1)Mx·v2+α′

ρ(x)s
′
x ,

C2,x = (gc
1)

−Mx·v1+s′
x(g2g3)γx ,

C3,x = gwx
1 (gc

1)
−t′

ρ(x)Mx·v1(ga
1)s′

xg
t′
ρ(x)s

′
x

1 (gac
1 gd

3)
−Mx·v1(g2g3)γxt′

ρ(x)+δx .
If T = e(g1, g1)abc, then this is a well distributed semi-functional ciphertext

of mβ with s = abc. If T is a random element in GT , then this is a semi-functional
ciphertext of a random message. Observe that, B perfectly simulates Game2,q,2

when T = e(g1, g1)abc, and Game3 when T is a random element in GT . Hence,
B can determine the distribution of T by using adversary A.

B Proof of Security for Scheme II

We first define two auxiliary algorithms and then the semi-functional distribu-
tions via these auxiliary algorithms.

Auxiliary algorithms
Ênc(pp,m, Y ; gki

2 , t): On input t := (T0, T1, . . . , Tn) ∈ G
n+1, output

C0 = m ·
∏

atti∈Ω

e(T0, g
ki
2), C1 =

∏

atti∈Ω

Ti, C2 = T0

̂CKeyGen(pp, CSK,GID, S; t): On input t := (T0, . . . , Tn) ∈ H
n+1, output

SKGID,S = {GID,S, T0,Sign(Signkey,GID||S||T0)}

442 C. Ma et al.

̂AKeyGen(pp, CPK, gki
2 , SKGID,S , atti; t): On input t :=(T0, . . . , Tn)∈H

n+1, out-
put SKGID,i = gki

2 · Ti

Auxiliary distributions
Normal ciphertext : Ênc(pp,m, Y ; gki

2 , g), where g ← SampG(pp).
Semi-functional ciphertext : Ênc(pp,m, Y ; gki

2 , g · ĝ), where g ← SampG(pp),

ĝ ← ŜampG(pp, sp).
Normal secret key :

SKGID,S = ̂CKeyGen(pp, CSK,GID, S;h),

SKGID,i = ̂AKeyGen(pp, CPK, gki
2 , SKGID,S , atti;h),

where h ← SampH(pp).
Pseudo-normal secret key :

SKGID,S = ̂CKeyGen(pp, CSK,GID, S; h · ĥ),

SKGID,i = ̂AKeyGen(pp, CPK, gki
2 , SKGID,S , atti; h · ĥ),

where h ← SampH(pp), ĥ ← ŜampH(pp, sp).
Pseudo-semi-functional secret key :

SKGID,S = ̂CKeyGen(pp, CSK,GID, S;h · ĥ),

SKGID,i = ̂AKeyGen(pp, CPK, gki
2 · (h∗)αi , SKGID,S , atti;h · ĥ),

where h ← SampH(pp), ĥ ← ŜampH(pp, sp), αi ← Zp.
Semi-functional secret key :

SKGID,S = ̂CKeyGen(pp, CSK,GID, S; h),

SKGID,i = ̂AKeyGen(pp, CPK, gki
2 · (h∗)αi , SKGID,S , atti; h),

where h ← SampH(pp), αi ← Zp.

Game Sequence. We let AdvGameX

A denote the advantage of A in GameX .

– Game0: the real security game.
– Game1: the challenge ciphertext becomes semi-functional.
– Game2,η,1 for η = 1,. . . ,q : the first η-1 queried identities, the received keys

become semi-functional, and the received key for the η’th queried identity
becomes pseudo-normal.

– Game2,η,2 for η = 1,. . . ,q : the first η-1 queried identities, the received keys
become semi-functional, and the received key for the η’th queried identity
becomes pseudo-semi-functional.

– Game2,η,3 for η = 0,. . . ,q : the first η queried identities, the received keys
become semi-functional. We let Game2,0,3 denote Game1.

Fully Secure Decentralized CP-ABE in Standard Model 443

– Game3: generate a semi-functional ciphertext of a random message m′ ∈ GT

as the challenge ciphertext.

Theorem 2 is accomplished in the following lemmas.

Lemma 8 (from Game0 to Game1). For any PPT adversary A, there exists
an adversary B such that

∣
∣
∣AdvGame0

A (λ) − AdvGame1
A (λ)

∣
∣
∣ ≤ AdvLS

B (λ).

Proof. The adversary B gets input (pp, t), where t is g or g · ĝ with g ←
SampG(pp) and ĝ ← ŜampG(pp, sp), B proceeds as follows:
Setup: Pick ki ← H, a UF-CMA secure signature scheme Σsign = (KeyGen,
Sign,Verify), and for those attributes belong to corrupted authorities, pick Wi ←
Z
(k+1)×(k+1)
p . Output GPK = {p,Gk+1

1 , Gk+1
2 , GT , e; gA1 , gB2 , Σsign}, CPKj =

V erifykeyj , APKj = {e(g1, g2)k
�
i A, gWiA

1 }atti∈Uj
In addition, {ki,Wi|atti ∈

U\U1} are given to the adversary A.
Key Queries : In this phase, A queries on two occasions

– CKeyGen Query : When A queries an identity key of GID along with attribute
set S, B sample h ← SampH(pp) and stores (GID,S,h) so that it can respond
consistently. Then, B outputs SKGID,S = ̂CKeyGen(pp, CSK,GID, S;h)

– AKeyGen Query : When A queries an attribute key of atti of GID, B first
verifies the signature. Then outputs
SKGID,i = ̂AKeyGen(pp, CPK, gki

2 , SKGID,S , atti;h)

Challenge: Upon receiving challenge (Y ∗,M0,M1), pick a random bit β ∈ {0, 1}
and output CTY ∗ = Ênc(pp,Mβ , Y ∗; gki

2 , t).
Observe that, B perfectly simulates Game0 when t = g, and Game1 when t = g·ĝ.
Hence, B can determine the distribution of t by using adversary A.

Lemma 9 (from Game2,η−1,3 to Game2,η,1). For any PPT adversary A, there

exists an adversary B such that
∣
∣
∣Adv

Game2,η−1,3

A (λ) − Adv
Game2,η,1

A (λ)
∣
∣
∣ ≤ AdvRS

B (λ).

Proof. Given (pp, h∗, g · ĝ, t), where t is either h or h · ĥ with h ← SampH(pp)
and ĥ ← ŜampH(pp, sp), B proceeds as follows.
Setup: Pick ki ← H, a UF-CMA secure signature scheme Σsign = (KeyGen,
Sign,Verify), and for those attributes belong to corrupted authorities, pick
Wi ← Z

(k+1)×(k+1)
p . Output GPK = {p,Gk+1

1 , Gk+1
2 , GT , e; gA1 , gB2 , Σsign},

CPKj = V erifykeyj , APKj = {e(g1, g2)k
�
i A, gWiA

1 }atti∈Uj
. In addition,

{ki,Wi|atti ∈ U/U1} are given to the adversary A.
Key Queries : We let GIDθ denote the θ’th identity queried by A.

– CKeyGen Query : When A queries an identity key of GIDθ along with
attribute set Sθ, B samples hθ ← SampH(pp) and outputs

SKGIDθ,Sθ
=

{
̂CKeyGen(pp, CSK,GIDθ, Sθ;hθ) θ �= η
̂CKeyGen(pp, CSK,GIDθ, Sθ; t) θ = η

444 C. Ma et al.

– AKeyGen Query : When A queries an attribute key of atti of GIDθ, B first
verifies the signature. If true, then outputs

SKGIDj ,i =

⎧
⎪⎨

⎪⎩

̂AKeyGen(pp, CPK, gki
2 · (h∗)αi , SKGIDθ,Sθ

, atti;hθ) θ < η
̂AKeyGen(pp, CPK, gki

2 , SKGIDθ,Sθ
, atti; t) θ = η

̂AKeyGen(pp, CPK, gki
2 , SKGIDθ,Sθ

, atti;hθ) θ > η

Challenge : Upon receiving challenge (Y ∗,m0,m1), pick a random bit β ∈ {0, 1}
and output CTY ∗ = Ênc(pp,mβ , Y ∗;ki, g · ĝ).

Observe that, B perfectly simulates Game2,η,3 when t = h, and Game2,η,1

when t = h · ĥ. Hence, B can determine the distribution of t by using adversary
A.

Lemma 10 (from Game2,η,1 to Game2,η,2). For η = 1, . . . , q, we have
∣
∣
∣Adv

Game2,η,1

A (λ) − Adv
Game2,η,2

A (λ)
∣
∣
∣ = 0.

Proof. Setup : A specifies a set of corrupt authorities. For each attribute atti
belongs to a corrupted authority, B picks Wi ← Z

(k+1)×(k+1)
p . Given (pp,ki,

(h∗)αi), and a UF-CMA secure signature scheme Σsign = (KeyGen,Sign,Verify),
we can output GPK = {p,Gk+1

1 , Gk+1
2 , GT , e; gA1 , gB2 , Σsign}, CPKj =

V erifykeyj , APKj = {e(g1, g2)k
�
i A, gWiA

1 }atti∈Uj
, {ki,Wi|atti ∈ U/U1} are

given to A.
Key Queries : We let GIDθ denote the θ’th identity queried by A. When A queries
an identity key of GIDθ along with attribute set Sθ, B samples hθ ← SampH(pp).
For θ < η, B answers the queries SKGIDθ,Sθ

= ̂CKeyGen(pp, CSK,GIDθ,

Sθ;hθ), SKGIDθ,i = ̂AKeyGen(pp, CPK, gki
2 · (h∗)αi , SKGIDθ,Sθ

, atti;hθ).
For θ > η, B answers the queries SKGIDθ,Sθ

= ̂CKeyGen(pp, CSK,GIDθ,
Sθ;hθ),
SKGIDθ,i = ̂AKeyGen(pp, CPK, gki

2 , SKGIDθ,Sθ
, atti;hθ).

For θ = η, B answers the key queries by using

SKGIDθ,Sθ
= ̂CKeyGen(pp, CSK,GIDθ, Sθ;h · ĥ)

SKGIDθ,i = ̂AKeyGen(pp, CPK, gki
2 , SKGIDθ,Sθ

, atti;h · ĥ)

or SKGIDθ,i = ̂AKeyGen(pp, CPK, gki
2 · (h∗)αi , SKGIDθ,Sθ

, atti;h · ĥ)

Challenge : Upon receiving challenge (Y ∗,m0,m1), pick a random bit β ∈{0, 1}
and output

CTY ∗ = Ênc(pp,mβ , Y ∗; gki
2 , g · ĝ)

Fully Secure Decentralized CP-ABE in Standard Model 445

By linearity, we rewrite the η’th key and the challenge ciphertext as follows:

̂Enc(pp,mβ , Y
∗; gk i

2 , g · ĝ) = ̂Enc(pp,mβ , Y
∗; gk i

2 , g) · ̂Enc(pp, 1, Y ∗; gk i
2 , ĝ)

̂AKeyGen(pp, CPK, gk i
2 , SKGIDη,Sη , atti;h · ĥ)

= ̂AKeyGen(pp,CPK,gk i
2 ,SKGIDη,Sη ,atti;h)· ̂AKeyGen(pp,CPK,1,SKGIDη,Sη,atti;ĥ)

̂AKeyGen(pp,CPK, gk i
2 · (h∗)αi , SKGIDη,Sη , atti;h)

= ̂AKeyGen(pp,CPK,gk i
2 ,SKGIDη,Sη,atti;h)· ̂AKeyGen(pp,CPK,(h∗)αi,SKGIDη,Sη,atti;ĥ)

By parameter-hiding, we may replace (pp, h∗, ĝ, ĥ) with (pp, h∗, ĝ · ĝ′, ĥ · ĥ′
).

We expand Ênc and ̂AKeyGen as follows:

Ênc(pp, 1, Y ∗; gki
2 , ĝ ·ĝ′)={C0=

∏

atti∈Ω

e(ĝ0,gki
2), C1= ĝ

∑
atti∈Ω ûi

0 ·
∏

atti∈Ω

ĝi,C2= ĝ0}

̂AKeyGen(pp, CPK, 1, SKGIDη,Sη
, atti; ĥ·ĥ′

)= ĥi · ĥûi
0

̂AKeyGen(pp, CPK, (h∗)αi , SKGIDη,Sη
, atti; ĥ · ĥ′

) = (h∗)αi ĥi · ĥûi
0 = ĥi · ĥ

α′
i+ûi

0

As the attribute in Sη ∪ V cannot satisfies Y ∗, there must exists some other
attributes appeared in C1 except the attribute appeared in Sη. That is to say,
{ûi|atti ∈ U1} are hidden from A, and α′

i are perfectly hided by ûi. The lemma
then follows readily.

Lemma 11 (from Game2,η,2 to Game2,η,3). For any PPT adversary A, there

exists an adversary B such that
∣
∣
∣Adv

Game2,η,2

A (λ) − Adv
Game2,η,3

A (λ)
∣
∣
∣ ≤ AdvRS

B (λ).

Proof. The proof is analogous to Lemma9.

Lemma 12 (from Game2,q,3 to Game3). For any PPT adversary A, there

exists an adversary B such that
∣
∣
∣Adv

Game2,q,3

A (λ) − AdvGame3
A (λ)

∣
∣
∣ = 0.

Proof. Setup: For each atti ∈ U1, B picks k̂i ←R H, αi ←R Zp, and set gki
2 =

gk̂i
2 ·(h∗)−αi . For other attributes, B picks ki ←R H. A UF-CMA secure signature

scheme Σsign = (KeyGen,Sign,Verify) is chosen. Output
GPK = {p,Gk+1

1 , Gk+1
2 , GT , e; gA1 , gB2 , Σsign}, CPKj = V erifykeyj , APKj =

{e(g1, g2)k
�
i A, gWiA

1 }atti∈Uj
. In addition, {ki,Wi|atti ∈ U/U1} are given to the

adversary A.
Key Queries : For the j’th query, output SKGID,S = ̂CKeyGen(CSK,GID, S;h).
When A queries an attribute key of atti of GID, B first verifies the signature.
If true, then outputs SKGID,i = ̂AKeyGen(pp, CPK, gk̂i

2 , SKGID,S , atti;h).

446 C. Ma et al.

Challenge : Upon receiving challenge (Y ∗,m0,m1), pick a random bit β ∈
{0, 1} and output C0 = mβ · ∏

atti∈Ω

e(gAs+b⊥ŝ
1 , gki

2), C1 =
∏

atti∈Ω

g
W�

i (As+b⊥ŝ)
1 ,

C2 = gAs+b⊥ŝ
1 We note that U1 ∩ Ω �= Φ, there must exist at least one attribute

in U1. Then we have

C0 = mβ ·
∏

atti∈Ω/U1

e(gAs+b⊥ŝ
1 , gki

2) ·
∏

atti∈U1

e(gAs+b⊥ŝ
1 , gki

2)

= mβ ·
∏

atti∈Ω/U1

e(gAs+b⊥ŝ
1 ,gki

2)·
∏

atti∈U1

e(gAs+b⊥ŝ
1 , gk̂i

2)·
∏

atti∈U1

e(gb
⊥ŝ
1 ,ga

⊥
2)−αi .

Recall that (pp, k̂i, g · ĝ) are all statistically independent of αi ← Zp, then
∏

atti∈U1

e(gb
⊥ŝ
1 , ga

⊥
2)−αi distributes uniformly in GT . This means that the distri-

bution of challenge ciphertext and a semi-functional encryption of a random
message are identical. Hence,

∣
∣
∣Adv

Game2,q,3

A (λ) − AdvGame3
A (λ)

∣
∣
∣ = 0.

References

1. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy (SP 2007), pp. 321–334.
IEEE Press, Oakland (2007)

2. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30576-7 18

3. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-70936-7 28

4. Chase, M., Chow, S.S.: Improving privacy and security in multi-authority attribute-
based encryption. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security, CCS 2009, pp. 121–130. ACM, New York (2009)

5. Chen, C., Zhang, Z., Feng, D.: Efficient ciphertext policy attribute-based encryp-
tion with constant-size ciphertext and constant computation-cost. In: Boyen, X.,
Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 84–101. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24316-5 8

6. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 20

7. Cheung, L., Newport, C.: Provably secure ciphertext policy ABE. In: Proceedings
of the 14th ACM Conference on Computer and Communications Security, CCS
2007, pp. 456–465. ACM, New York (2007)

8. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 579–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
70583-3 47

https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1007/978-3-540-70936-7_28
https://doi.org/10.1007/978-3-540-70936-7_28
https://doi.org/10.1007/978-3-642-24316-5_8
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-540-70583-3_47
https://doi.org/10.1007/978-3-540-70583-3_47

Fully Secure Decentralized CP-ABE in Standard Model 447

9. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, CCS 2006, pp. 89–98. ACM,
New York (2006)

10. Guillevic, A.: Comparing the pairing efficiency over composite-order and prime-
order elliptic curves. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini,
R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 357–372. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38980-1 22

11. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner product
encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

12. Lewko, A., Waters, B.: New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 27

13. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 31

14. Lin, H., Cao, Z., Liang, X., Shao, J.: Secure threshold multi authority attribute
based encryption without a central authority. In: Chowdhury, D.R., Rijmen,
V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 426–436. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89754-5 33

15. Liu, Z., Cao, Z., Huang, Q., Wong, D.S., Yuen, T.H.: Fully secure multi-authority
ciphertext-policy attribute-based encryption without random oracles. In: Atluri,
V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 278–297. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23822-2 16

16. Müller, S., Katzenbeisser, S., Eckert, C.: Distributed attribute-based encryption.
In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 20–36. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00730-9 2

17. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14623-7 11

18. Okamoto, T., Takashima, K.: Decentralized attribute-based signatures. In:
Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 125–142.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7 9

19. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

20. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

21. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

https://doi.org/10.1007/978-3-642-38980-1_22
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1007/978-3-540-89754-5_33
https://doi.org/10.1007/978-3-642-23822-2_16
https://doi.org/10.1007/978-3-642-00730-9_2
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-36362-7_9
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-19379-8_4

Outsourced Ciphertext-Policy
Attribute-Based Encryption

with Equality Test

Yuzhao Cui1, Qiong Huang1(B), Jianye Huang1, Hongbo Li1,
and Guomin Yang2

1 College of Mathematics and Informatics, South China Agricultural University,
Guangzhou 510642, China
qhuang@scau.edu.cn

2 School of Computing and Information Technology, University of Wollongong,

Wollongong, NSW 2522, Australia

Abstract. In the cloud era people get used to store their data to the
cloud server, and would use encryption technique to protect their sensi-
tive data from leakage. However, encrypted data management is a chal-
lenging problem, for example, encrypted data classification. Besides, how
to effectively control the access to the encrypted data is also an impor-
tant problem. Ciphertext-policy attribute-based encryption with equality
test (CP-ABEET) is an efficient solution to the aforementioned prob-
lems, which enjoys the advantage of attribute-based encryption, and in
the meanwhile supports the test of whether two different ciphertexts
contain the same message without the need of decryption. However,
the existing CP-ABEET schemes suffer from high computation costs.
In this paper, we study how to outsource the heavy computation in
CP-ABEET scheme to a third-party server. We introduce the notion of
CP-ABEET supporting outsourced decryption (OCP-ABEET), which
saves a lot of local computation loads of CP-ABEET. We propose a
concrete construction of OCP-ABEET, and prove its security based on
a reasonable number-theoretic assumption in the random oracle model.
Compared with the existing CP-ABEET schemes, our scheme is more
computationally efficient.

Keywords: Attribute-based encryption · Authorization ·
Classification · Equality test · Outsourced decryption

This work was supported by Guangdong Natural Science Funds for Distinguished
Young Scholar (No. 2014A030306021), Pearl River Nova Program of Guangzhou (No.
201610010037), the National Natural Science Foundation of China (Nos. 61872152,
61472146), and Guangdong Program for Special Support of Top-notch Young Profes-
sionals (No. 2015TQ01X796).

c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 448–467, 2019.
https://doi.org/10.1007/978-3-030-14234-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_24&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_24

Outsourced CP-ABEET 449

1 Introduction

Along with the rapid development of cloud computing, cloud storage has become
a main way for company or individual to store large amounts of data. However,
while bringing convenience, cloud storage has caused data privacy threat at
the same time because of the openness of public clouds. In order to protect
data security and user privacy in cloud storage, people are used to store their
privacy data in encrypted form. But people’s various need on their data could
not be satisfied due to the fact encryption hides information. For example, people
cannot directly search on their data in cloud using a traditional search method. A
naive method is to download all the encrypted files from the cloud, decrypt them
and then use traditional methods to search over the plaintext files. Although in
this way the data can be searched, but it is cumbersome and requires a large
computation and storage cost, as well as a high requirement on the bandwidth,
which is impractical. In this situation, searchable encryption [4,22] rises to solve
this problem.

As a variant of public key encryption with keyword search, Yang et al. [23]
introduced the notion of public key encryption with equality test (PKEET), which
allows users to efficiently check whether two ciphertexts encrypted under (pos-
sibly) different public keys contain the same plaintext. This special property
makes it suitable for implementing label classification. Attribute-based encryp-
tion (ABE), originally introduced by Sahai et al. [16], is a good technique for
access control. Ciphertext-policy ABE (CP-ABE) is a variant of ABE, in which
each ciphertext is associated with an access policy, and each user is associated
with a set of attributes. A user can decrypt ciphertexts whose access policy
can be satisfied by the attributes of the user. Ciphertext-policy attribute-based
encryption with equality test (CP-ABEET), introduced by Wang et al. [18], is
a combination of PKEET and CP-ABE, which can be used to solve the prob-
lem of encrypted data classification, and in the meanwhile, implement flexible
access control policy for the encrypted data stored in the cloud server. Recently,
Cui et al. [5] formally defined the notion of Controlled Classification of Encrypted
Data and proposed a more secure and concise CP-ABEET scheme.

When a company outsources the storage of a large amount of encrypted data
to the cloud, data management becomes a complex problem. It is necessary to
label the data and classify them into different categories. There is a need for a
mechanism to efficiently divide the encrypted data into groups according to data
labels. On the other hand, access control of (encrypted) data in a company is
also a key issue. Each employee in the company has different attributes. Different
employees are provided different privileges to access different part of these data.
User privileges are usually authorized according to their attributes. CP-ABEET
can effectively handle these problems.

However, CP-ABEET has a drawback inherited from ABE, i.e. the compu-
tation cost is heavy. We consider a new scenario described as follows. Controlled
classification of encrypted data has a high computation cost in terms of decryp-
tion and equality test. When a small-scale company or organization has the
same need for controlled classification of encrypted data, the high computation

450 Y. Cui et al.

cost may influence their work efficiency. In this case, a third-party server who
has a large computation power can help them deal with this problem. Before
the equality test and decryption, the data manager(s) can send the ciphertexts
to the third-party server with a specific transformation key associated with the
corresponding attribute set. The third-party server will partially decrypt the
ciphertexts via a transformation process and send back the partially decrypted
ciphertexts to the data manager(s). Then the data manager(s) can decrypt the
ciphertexts using its secret key or send it to the data classifier for equality test.
By using the outsourcing technique, the local computation cost can be reduced
significantly without revealing any information about the plaintexts to the third-
party server.

Fig. 1. System architecture of OCP-ABEET

We propose to outsource the decryption process to improve the efficiency of
CP-ABEET. Outsourced Decryption of ABE was firstly introduced by Green
et al. [8] and it can reduce the computation overhead of ABE to a great extent.
In this paper, we propose a concrete CP-ABEET scheme with equality test and
outsourced decryption, which is based on the CP-ABEET scheme in [5].

Figure 1 shows the system architecture of OCP-ABEET. The local server
undertakes data storage and a small amount of calculations while the third-
party server has a powerful computation capability. Meanwhile, the local server
also plays the role of data classifier. First of all, attribute distribution is under
control of the regulatory agency of the company. There are some data man-
agers in the company, and each of them is in charge of the management and
maintenance of different part of the company’s data. Authorization privileges
for data classification are represented by attribute sets. Employees of the com-
pany, including the data managers, receive their attribute related secret keys
from the regulatory agency. Data users upload their encrypted files to the local
server and each of them has a label encrypted by OCP-ABEET. Only the man-
ager whose attribute set can satisfy the access policy embedded in the encrypted
label has rights to operate on its ciphertext. The data classifier server obtains

Outsourced CP-ABEET 451

trapdoors from different data managers before classifying the data. The way in
which data managers obtain the trapdoors is similar with that in secret key gen-
eration phase. Given the trapdoors, the local server could ask the third-party
server for transforming the ciphertexts to partially decrypted ciphertexts. Then
it can operate the equality test function of OCP-ABEET on them quickly. If two
pieces of data are attached with the same label, they will be put into the same
category. On the other hand, data managers are able to decrypt the encrypted
label under the control of access policy. Upon receiving the partially decrypted
ciphertexts from the third-party server, the data manager can recover the orig-
inal data using their attribute related secret key. In our scheme, different users
have different transformation keys generated according to their attribute sets,
and these keys are sent to the third-party server for transforming different cipher-
texts. The majority of computational cost of decryption is then transferred to
the third-party server due to the transformation. The third-party server sends
back partially decrypted ciphertexts to the local server. After that, the receiver
can quickly finish the final step of decryption and the local server can perform
the equality test for classification efficiently. It is ensured that the transform
keys do not help the third-party server to learn information about the messages.

(Our Contributions). Although concrete CP-ABEET schemes have already
been proposed by Wang et al. [18] and Huang et al. [5], they all require a large
computation cost on the server, which makes it not quite suitable for small-scale
company or organization with low computation capacity.

In this paper, we formally define the notion of outsourced ciphertext-
policy attribute-based encryption with equality test (OCP-ABEET), propose
an efficient construction of OCP-ABEET supporting outsourced decryption,
and prove in the random oracle model that our scheme achieves one-wayness
if the adversary is given test trapdoors, and achieves indistinguishability if the
adversary is not given the corresponding trapdoors. Compared with previous
CP-ABE-ET schemes, our scheme is more computationally efficient in terms
of Extract, Decrypt and Test algorithms. Besides, our scheme is CCA-type
secure, while Wang et al.’s scheme [18] is only CPA-type secure. The price of
our scheme is that we need a stronger number-theoretic assumption. Readers
can refer to Table 1 (p. 18) for a detailed comparison between our scheme and
some related schemes, e.g. [13,18,24].

Paper Organization. In Sect. 2 we review some related works. Then in Sect. 3
we introduce the preliminaries which are necessary for our construction. In Sect. 4
we give the definition of OCP-ABEET and its security models in this paper. The
security analysis of our scheme is provided in Sect. 6. We give the comparison of
our scheme with some related schemes in Sect. 7. Finally, the paper is concluded
in Sect. 8.

452 Y. Cui et al.

2 Related Works

The notion of public key encryption with equality test (PKEET) was firstly
introduced by Yang et al. [23] as a new kind of searchable encryption. In
PKEET, users are allowed to check whether two ciphertexts contain the same
message without decryption. In Yang et al.’s scheme, any entity can perform
the equality test on the ciphertexts. There may exists an authorization require-
ment to accurately control who can perform the equality test on their cipher-
texts. Based on this observation, Tang et al. [17] proposed the fine-grained
authorization policy PKEET (FG-PKEET) to realize the accurate authoriza-
tion where only two authorized users can perform the equality test. Besides,
Ma et al. [15] presented a public key encryption with delegated equality test
(PKE-DET) where only the delegated party can do the test. To make the autho-
rization more flexible, Ma et al. [14] proposed a flexible PKEET which can sup-
port four types of authorization.

Considering the advantage of identity-based encryption (IBE), Ma et al. [13]
firstly presented the notion of identity-based encryption with outsourced equality
test in cloud computing (IBEET) which simplifies the certificate management of
PKEET and supports a single type of authorization. A user in IBEET can com-
pute a trapdoor using the identity-related secret key and sends it to cloud server
for equality test, and the user’s trapdoor delegates out the capability of equality
test on its ciphertexts. Equality test can be well used in encrypted database
systems, where the server hosts the encrypted database and users can do the
equality test between a target ciphertext in the database and a queried cipher-
text. If there is an honest-but-curious’ database server, it may illegally benefit
from the brute force attacks because that the ciphertexts can be generated pub-
licly. To solve this problem, Wu et al. [21] presented an IBEET scheme secure
against insider attacks. In 2018, Wu et al. [20] proposed an efficient IBEET
scheme by reducing the use of time-consuming HashToPoint functions. In their
scheme, they restrict that only the particular keyword can be tested to improve
the security level.

Generally, IBEET is a combination of PKEET and IBE. As an extension
from IBE, attribute based encryption (ABE) has the advantage of more flexible
authorization, which can be applied on PKEET. The notion of Attribute-Based
Encryption was first proposed by Sahai and Water et al. [16] in 2005. In 2006,
Goyal et al. [7] first presented a Key-Policy ABE scheme. In KP-ABE schemes
[1,7,9], access structures are embedded in private keys while attribute sets are
embedded in ciphertexts. In 2007, Bethencourt and Sahai et al. [3] first presented
the Ciphertext-Policy ABE scheme. In CP-ABE scheme [3,6,19], private keys are
embedded with attribute sets while ciphertexts are embedded with access struc-
tures. A user can decrypt the ciphertext only if its attribute set can satisfy the
access structure within the ciphrtext. Waters et al. [19] proposed a new method-
ology for realizing CP-ABE under concrete and non-interactive cryptographic
assumptions in the standard model.

To the best of our knowledge, there are not many works focusing on
attribute based encryption with equality test (ABEET). The first attribute-base

Outsourced CP-ABEET 453

encryption with equality test (ABEET) was proposed by Zhu et al. [24]. Their
key-policy attribute based encryption with equality test (KP-ABEwET) which
combines the key-policy ABE with PKEET, provides a more flexible autho-
rization than previous work. Then, Wang et al. [18] proposed a ciphertext-
policy attribute based encryption with delegated equality test that combines
the ciphertext-policy ABE with PKEET. There exists some deficiencies in both
of their schemes that the schemes have high computation complexity. Further-
more, security of their schemes are of CPA type. In [5], Cui et al. proposed
a more efficient ciphertext-policy attribute based encryption with equality test
(CP-ABEET) which has a more concise construction. And their CP-ABEET
schemes achieves the OW-SAS-CCA and IND-SAS-CCA security in random ora-
cle model.

Outsourced Decryption. ABE shows its power in access control, however, it
suffers from the problem of low efficiency, i.e. ciphertext size and decryption cost
grow with the complexity of access policy. Green et al. [8] gave a new method
of efficiently and securely outsourcing the decryption of ABE ciphertexts to a
third-party server, which reduces the overhead of local users significantly. Since
Green et al.’s work, researchers have done a lot to improve the security and
efficiency of ABE. For example, Li et al. [11] proposed an outsourced ABE
scheme not only supporting outsourced decryption but also enabling delegating
key generation. It reduces the local computation by outsourcing the task of
generating partial private keys to a key generation service provider. Besides, their
scheme realizes the checkability on outsourced results against a selfish third-party
server. There are also some related work to realize the verifiability of outsourcing
decryption [10,12]. To further improve the computation performance and reduce
communication overhead, Li et al. [12] proposed a new verifiable outsourcing
scheme with constant-size ciphertexts. However, as far as we know, there is a
lack of an efficient ABEET scheme which supports outsourced decryption. How
to achieve a secure ABEET scheme supporting outsourced decryption is still an
open problem.

3 Preliminaries

3.1 Access Structure

Definition 1 (Access Structure). Let {P1, P2, · · · , Pn} be a set of parties. A
collection A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C, it holds that if B ∈ A and
B ⊆ C then C ∈ A. An access structure (respectively, monotone access struc-
ture) is a collection (respectively, monotone collection) A of non-empty subsets
of {P1, P2, · · · , Pn}, i.e., A ∈ 2{P1,P2,··· ,Pn} \ {∅}. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets.

In our context, the role of the parties is taken by the attributes. Thus, the
access structure A will contain the authorized sets of attributes. We restrict our
attention to monotone access structures.

454 Y. Cui et al.

Definition 2 (Linear Secret Sharing Scheme, LSSS [2]). A secret sharing
scheme Π over a set of parties P is called linear (over Zp) if

1. the shares for each party form a vector over Zp; and
2. there exists a matrix M with � rows and n columns called the share generating

matrix for Π. For all i = 1, · · · , �, the i-th row of M , we let the function ρ
defined the party labeling row i as ρ(i). When we consider the column vector
v = (s, r2, · · · , rn), where s ∈ Zp is the secret to be shared and r2, · · · , rn ∈
Zp are randomly chosen, then Mv is the vector of � shares of the secret s
according to Π. The share (Mv)i belongs to party ρ(i).

Beimel [2] showed that every linear secret sharing scheme according to the
above definition enjoys the linear reconstruction property, defined as follows:
Suppose that Π is an LSSS for the access structure A. Let S ∈ A be any
authorized set, and let I ⊂ {1, · · · , �} be defined as I = {i : ρ(i) ∈ S}. Then,
there exist constants {ωi ∈ Zp}i∈I such that, if λi’s are valid shares of a secret
s according to Π, then

∑
i∈I ωiλi = s. Furthermore, it is shown in [2] that

these constants {ωi} can be found in time polynomial in the size of the share
generating matrix M .

By convention, the vector (1, 0, · · · , 0) is the target vector in LSSS, which is
in the span of any satisfying set of rows I of M . For any unauthorized set of
rows I, the target vector would not be in its span. Besides, there will exist a
vector w which satisfies w · (1, 0, · · · , 0) = −1 and w · Mi = 0 for all i ∈ I.

3.2 Bilinear Pairing

Let G and GT be two multiplicative cyclic groups of prime order p. Let g be a
generator of G and e be a bilinear map, e : G×G → GT . The bilinear pairing ê
has the following properties:

– Bilinearity: for all u, v ∈ G and a, b ∈ Zp, we have ê(ua, vb) = ê(u, v)ab.
– Non-degeneracy: ê(g, g) is not the identity of group GT .
– Computability: There exists a polynomial time algorithm which computes

ê(u, v) for any u, v ∈ G.

3.3 Decisional Parallel Bilinear Diffie-Hellman Exponent
Assumption

Decisional q-parallel Bilinear Diffie-Hellman Exponent problem (BDHE) is
defined as follows. Choose a group G of prime order p according to the secu-
rity parameter. Randomly choose the elements a, s, b1, · · · , bq ∈ Zp and let g be
a generator of G. Given

y :=
(
g, gs, ga, · · · , g(a

q), , g(a
q+2), · · · , g(a

2q),

∀1≤j≤q gs·bj , ga/bj , · · · , g(a
q/bj), g(a

q+2/bj), · · · , g(a
2q/bj),

∀1≤j,k≤q,k �=j g(a·s·bk/bj), · · · , g(a
q·s·bk/bj)

)
,

Outsourced CP-ABEET 455

it is hard for the adversary to distinguish T = ê(g, g)aq+1s ∈ GT from a random
element of GT . An algorithm B that outputs z ∈ {0, 1} has advantage ε in solving
the decisional q-parallel BDHE problem if

|Pr[B(y, T = ê(g, g)aq+1s) = 0] − Pr[B(y, T = R) = 0]| ≥ ε.

Definition 3 (Decisional q-parallel BDHE Assumption). The decisional
q-parallel BDHE assumption holds if there is no PPT algorithm that can solve
the decisional q-parallel BDHE problem with a non-negligible advantage.

4 Outsourced Ciphertext-Policy Attribute-Based
Encryption with Equality Test

4.1 Definition

Definition 4 (OCP-ABEET). An outsourced ciphertext-policy attribute-
based encryption with equality test (OCP-ABEET) scheme is defined by the fol-
lowing six (probabilistic) polynomial-time (PPT) algorithms:

– Setup takes as input the security parameter 1k and maximal number U of
attributes in the system, and returns a system public key Mpk and a master
secret key Msk. Denote it by (Mpk,Msk) ← Setup(1k, U).

– Encrypt takes as input the master public key Mpk, an access structure
(M,ρ) and a message m, and returns a ciphertext Ct. Denote it by Ct ←
Encrypt(Mpk, (M,ρ),m).1

– KeyGen takes as input the master secret key Msk and a set S of attributes,
and returns the secret key SkS which contains a transformation key TkS

and a decryption key DkS w.r.t. S. Denote it by SkS := (TkS ,DkS) ←
KeyGen(Msk, S).

– Trapdoor takes as input the master secret key Msk and a set S of attributes,
and returns a trapdoor TdS w.r.t. S. Denote it by TdS ← Trapdoor(Msk, S).

– Transform takes as input a ciphertext Ct and the transformation key TkS,
and returns the partially decrypted ciphertext PCt. Denote it by PCt ←
Transform(Ct,TkS).

– Test takes as input a ciphertext CtA and a trapdoor TdA of user A, and a
ciphertext CtB and a trapdoor TdB of user B, and returns 1 if CtA and CtB
contain the same plaintext, and 0 otherwise. Denote it by 1/0 ← Test(CtA,
TdA,CtB ,TdB).

– Decrypt takes as input the master public key Mpk, a ciphertext Ct and a
secret key SkS, and returns a plaintext m or a special symbol ⊥ indicat-
ing decryption failure. If the ciphertext has not been partially decrypted, it
will firstly run the algorithm Transform(Ct,TkS) to transform and then use
decryption key dkS to decrypt the partially decrypted ciphertext. Otherwise, it

1 Here we do not consider to hide the access structure used in encryption. Therefore,
we assume that the access structure is included as part of the ciphertext.

456 Y. Cui et al.

will directly decrypt the ciphertext. Denote it by m/⊥ ← Decrypt(Mpk,Ct,
SkS). The decryption would return ⊥ if the attributes associated with SkS do
not satisfy the access structure contained in Ct.

Correctness could be defined naturally. Here we omit it for simplicity. Below
we introduce the security models of OCP-ABEET.

4.2 Security Models

We consider two security properties of OCP-ABEET. We require that the adver-
sary could not recover the message if it is not given the trapdoor, and that
the adversary cannot distinguish a given ciphertext is the encryption of which
message if it does not have the trapdoor. Formally, we define the two security
properties via the following games, in which C is the challenger and A is the
adversary.

One-wayness Game:

– Init. The adversary A submits a challenge access structure (M∗, ρ∗).
– Setup. The challenger C generates a master key pair (Mpk,Msk), and gives

Mpk to A.
– Query Phase 1. A is allowed to issue queries to the following oracles for

polynomially many times.
• OExtract: Given an attribute set S, it returns the corresponding secret

key SkS .
• OTrapdoor: Given an attribute set S, it returns the corresponding trap-

door TdS .
• ODecrypt: Given an attribute set S and a ciphertext Ct, it returns the

corresponding decryption output.
– Challenge Phase. The challenger randomly chooses a message m, computes

the challenge ciphertext Ct∗ ← Encrypt(Mpk, (M∗, ρ∗),m), and returns Ct∗

to the adversary.
– Query Phase 2. A continues to issues queries as in Query Phase 1.
– Guess. Finally, A outputs a message m′, and wins the game if m′ = m∗ and

the following conditions hold:
1. A did not query the OExtract oracle for the secret key of an attribute

set satisfying (M∗, ρ∗);
2. A did not query the ODecrypt oracle on input (S,Ct∗) for any attribute

set S satisfying (M∗, ρ∗).

The advantage of A in the game above, AdvOW-SAS-CCA
A (k), is defined to be the

probability that it wins the game.

Definition 5 (OW-SAS-CCA Security). An OCP-ABEET scheme is said
to be one-way against selective access structure and chosen ciphertext
attacks (OW-SAS-CCA secure) if for any PPT adversary A, its advantage
AdvOW-SAS-CCA

A (k) is negligible.

Outsourced CP-ABEET 457

Indistinguishability Game:

– Init. The adversary A submits a challenge access structure (M∗, ρ∗).
– Setup. The challenger C generates a master key pair (Mpk,Msk), and gives
Mpk to the adversary A.

– Query Phase 1. Same as Query Phase 1 of One-wayness Game.
– Challenge Phase. A submits two equal-length messages m0,m1. C flips a

random coin β ∈ {0, 1}, computes the challenge ciphertext Ct∗ ← Encrypt
(Mpk, (M∗, ρ∗),mβ) and returns Ct∗ to A.

– Query Phase 2. Same as Query Phase 1.
– Guess. A outputs a bit β′ ∈ {0, 1}, and wins the game if β′ = β, and

1. A did not query the OExtract oracle on input an attribute set S satisfying
(M∗, ρ∗);

2. A did not query the OTrapdoor oracle on input S nor query ODecrypt
on input (S,Ct∗) such that S satisfies (M∗, ρ∗).

The advantage of A in the game above, AdvIND-SAS-CCA
A (k), is defined to the gap

between Pr[β′ = β] and 1/2.

Definition 6 (IND-SAS-CCA Security). An OCP-ABEET scheme is said
to be indistinguishable against selective access structure and chosen cipher-
text attacks (IND-SAS-CCA secure) if for any PPT adversary A, its advantage
AdvIND-SAS-CCA

A (k) is negligible.

5 Our OCP-ABEET Scheme

In this section, we propose the concrete construction of our OCP-ABEET
scheme.

– Setup(1k, U). Given the security parameter and the maximal number U of
attributes in the system, the algorithm generates a bilinear pairing parame-
ters (G,GT , e, g, p) as described in Sect. 3. It also chooses U random group
elements h1, · · · , hU ∈ G that are associated with the U attributes in the sys-
tem, chooses random exponents α, α′, a ∈ Zp, and chooses two cryptographic
hash functions: H1 : GT → G1 and H2 : {0, 1}∗ → {0, 1}l1+l2 where l1 and l2
are security parameters specifying representation length of a G1 element and
that of a Zp element, respectively. The master public key is defined to be

Mpk = (g, ê(g, g)α, ê(g, g)α′
, ga, h1, · · · , hU),

and the master private key is Msk = (gα, gα′
).

– Encrypt(Mpk, (M,ρ),m). Given Mpk, an access structure (M,ρ) and a mes-
sage m, where M is an �×n matrix and ρ associates rows of M to attributes,
the algorithm chooses a random vector υ = (s, y2, · · · , yn) ∈ Z

n
p , and calcu-

lates λi = υ · Mi for i = 1 to �, where Mi is the vector corresponding to the
i-th row of M . It also chooses at random u, r1, · · · , r� ∈ Zp, and computes

C = mu · H1(ê(g, g)αs), C ′ = gs, C ′′ = gu,

∀1 ≤ i ≤ �, Ci = gaλi · h−ri

ρ(i), Di = gri ,

C∗ = (m‖u) ⊕ H2((ê(g, g)α′s, C, C ′, C ′′,E),

458 Y. Cui et al.

where E = (C1,D1, · · · , C�,D�). The algorithm returns Ct = (C,C ′, C ′′, C1,
D1, · · · , C�,D�, C

∗).
– KeyGen(Msk, S). Given Msk and a set S of attributes, the algorithm chooses

at random z, z′ ∈ Zp, and sets the decryption key DkS = (z, z′). It then
chooses at random t, t′ ∈ Zp, and sets t̂ = t/z and t̂′ = t′/z′, and calculates

the transformation key TkS = (T̂kS , T̂k
′
S) where

T̂kS : K̂ = gα/zgat̂, L̂ = gt̂, {K̂x = ht̂
x}x∈S ,

T̂k
′
S : K̂ ′ = gα′/z′

gat̂′
, L̂′ = gt̂′

, {K̂ ′
x = ht̂′

x }x∈S .

It returns the secret key SkS = (TkS ,DkS) = ((T̂kS , T̂k
′
S), (z, z′)).

– Trapdoor(Msk, S). Given Msk and a set S of attributes, the algorithm
chooses at random z, t̂ ∈ Zp, computes and returns the trapdoor

TdS =
(
z, K̂ = gα/z · gat̂, L̂ = gt̂, {K̂x = ht̂

x}x∈S

)
.

Notice that TdS is actually part of the secret key w.r.t. the attribute set S, i.e.
TdS = (z, T̂kS). However, there is no requirement that the random elements
z, t used in the trapdoor generation should be the same as those in the key
generation.
Both the attribute authority who holds the master secret key and the data
manager who holds a secret key w.r.t its attributes can generate trapdoors.
The former runs the Trapdoor algorithm to generate a trapdoor using fresh
randomness, while the latter simply outputs (z, T̂kS) as the trapdoor, which
are parts of its secret key.

– Transform(Ct,TkS). Given a ciphertext Ct and the transformation key TkS ,
the algorithm works as follows. Suppose that S satisfies the access structure
(M,ρ) in Ct. Let I be the set I = {i : ρ(i) ∈ S}. Define the set {wi ∈ Zp}i∈I

such that if {λi} are valid shares of the secret value s according to M , it holds
that

∑
i∈I wi · λi = s. The algorithm computes

Xsub =ê(C ′, K̂)/(
∏

i∈I

(ê(Ci, L̂)ê(Di, K̂ρ(i)))wi)

=ê(g, g)αs/z ê(g, g)ast̂/(
∏

i∈I

ê(g, g)t̂aλiwi)

=ê(g, g)αs/z,

X ′
sub =ê(C ′, K̂ ′)/(

∏

i∈I

(ê(Ci, L̂
′)ê(Di, K̂

′
ρ(i)))

wi)

=ê(g, g)α′s/z′
ê(g, g)ast̂′

/(
∏

i∈I

ê(g, g)t̂′aλiwi)

=ê(g, g)α′s/z′
,

and returns PCt = (Xsub,X
′
sub).

Outsourced CP-ABEET 459

– Test(CtA,TdSA
,CtB ,TdSB

). Given ciphertexts CtA, CtB and trapdoors
TdSA

, TdSB
, the algorithm works as follows. Suppose that SA and SB sat-

isfy the access structures (MA, ρA) of CtA and (MB , ρB) of CtB , respectively.
Let IA be the set IA = {i : ρA(i) ∈ SA}. Define the set {wA,i ∈ Zp}i∈IA

such that if {λA,i} are valid shares of secret sA according to MA, we
have

∑
i∈IA

wA,i · λA,i = sA. Define IB and {wB,i ∈ Zp}i∈IB
similarly.

Parse CtA as CtA = (CA, C ′
A, C ′′

A, CA,1,DA,1, · · · , CA,�,DA,�, C
∗
A) and CtB

as CtB = (CB , C ′
B , C ′′

B , CB,1,DB,1, · · · , CB,�,DB,�, C
∗
B). The algorithm runs

Transform (CtA,TksA
) and Transform(CtB ,TksB

) to get the partially
decrypted ciphertexts (XsubA

,X ′
subA

) and (XsubB
,X ′

subB
). It computes

XA =
CA

H1((XsubA
)zA)

and XB =
CB

H1((XsubB
)zB)

,

and outputs 1 if the following equation

ê(C ′′
A,XB) = ê(C ′′

B ,XA)

holds, and 0 otherwise.
Remark. Notice that the major computation of Test algorithm could also
be outsourced to the third-party server. Namely, the data classifier could ask
the third-party server to transform Ct to PCt = (Xsub,X

′
sub). Then it could

do the test quickly by conducting some simple computation.
– Decrypt(SkS ,Ct). Given a ciphertext Ct and a secret key SkS , the algorithm

parses Ct as Ct = (C,C ′, C ′′, C1, D1, · · · , C�,D�, C
∗), runs Transform(Ct,

TkS) to get its partially decrypted ciphertext (Xsub,X
′
sub), and computes

m‖u ← C∗ ⊕ H2

(
(X ′

sub)
z′

, C, C ′, C ′′,E)

where E = (C1,D1, · · · , C�,D�). It outputs m if

C ′′ = gu and C = mu · H1((Xsub)z)

hold, and 0 otherwise.

The correctness of our scheme could be verified in a straight-forward way.
Here we omit it for the sake of page limit.

6 Security Analysis

Below we analyze the security of our OCP-ABEET scheme under the security
models given in Sect. 4.2.

Theorem 1. Our OCP-ABEET scheme is OW-SAS-CCA secure if the deci-
sional q-parallel BDHE assumption holds.

460 Y. Cui et al.

Proof. Suppose that there exists an adversary A that has non-negligible advan-
tage ε in the one-wayness game against our CP-ABEET scheme, we use it to
build an algorithm B to solve the decisional q-parallel BDHE problem. B is
given a q-parallel BDHE challenge (y, T) (see Definition 3 for the definition of
y). Define a bit b, which is 0 if T = ê(g, g)aq+1s, and is 1 if T is a random element
of GT . B tries to guess the bit b, and works as below.

1. Init. A chooses a challenge access structure (M∗, ρ∗) and sends it to B.
2. Setup. B randomly chooses α1, α2 ∈ Zp, and implicitly sets α = α1 + aq by

letting ê(g, g)α = ê(g, g)α1 · ê(g, gaq

) and α′ = α2 +aq+1 by letting ê(g, g)α′
=

ê(g, g)α2 · ê(ga, gaq

). It then chooses a random value zx for each attribute
x ∈ {1, · · · , U}. Denote by X the set {i : ρ(i) = x}. B programs group
elements hx as

hx = gzx

∏

i∈X

gaM∗
i,1/bi · ga2M∗

i,2/bi · · · ganM∗
i,n/bi .

It gives Mpk = (g, ê(g, g)α, ê(g, g)α′
, ga, h1, · · · , hU) to the adversary.

3. Query Phase 1. B maintains two hash tables HT1,HT2 which are initially
empty, and simulates the oracles as below. If not specified, we assume that
the attribute sets submitted by A to the oracles do not satisfy the challenge
access structure, and that A does not repeat its queries to the same oracle.

– H1 Oracle. Given an element Q ∈ GT , B randomly chooses a value h1 ∈
G1, stores (Q,h1) into HT1, and returns h1 to A.

– H2 Oracle. Given Q = (Q,C,C ′, C ′′, C1,D1, · · · , C�,D�) as input, B
chooses a random h2 ∈ {0, 1}l1+l2 , and stores (Q, h2) into HT2. B returns
h2 to A.

– OExtract. Given an attribute set S, B firstly computes T̂k
′
S . B selects at

random r, z′ ∈ Zp and finds a vector w = (w1 = −1, w2, · · · , wn) ∈ Z
n
p

such that w · M∗
i = 0 for all i ∈ I = {i : ρ(i) ∈ S}. It implicitly sets the

value t̂′ as

t̂′ = r/z′ + w1a
q/z′ + w2a

q−1/z′ + · · · + wnaq−n+1/z′

by computing

L̂′ = gr/z′ ∏

i=1,··· ,n

(gaq+1−i

)wi/z′
= gt̂′

.

Then it calculates the value of K̂ ′ as

K̂ ′ = gα′/z′
gat̂′

= g(α2+aq+1)/z′
gat̂′

= gα2/z′ · gar/z′ ∏

i=2,··· ,n

(gaq+2−i

)wi/z′
.

Notice that the term g−aq+1/z′
of component gat̂′

which cannot be simu-
lated, will cancel out with the term gaq+1/z′

of gα′/z′
.

Outsourced CP-ABEET 461

For any x ∈ S, if there is no i such that ρ(i) = x, B computes
K̂ ′

x = ht̂′
x = (gzx)t̂′

= (gt̂′
)zx = L̂′zx . Otherwise, B computes K̂ ′

x as

K̂ ′
x = L̂′zx

∏

i∈X

∏

j=1,··· ,n

⎛

⎜
⎜
⎝g(a

j/bi)r ·
∏

k=1,··· ,n
k �=j

(gaq+1+j−k/bi)wk

⎞

⎟
⎟
⎠

M∗
i,j/z′

,

where X = {i : ρ(i) = x}. Note that the terms gaq+1/bi will all cancel out
due to that w · M∗

i = 0.
So far B has computed T̂k

′
S = (K̂ ′, L̂′, {K̂ ′

x}x∈S). It then computes T̂kS

as follows. B randomly chooses new elements t̂, z ∈ Zp. B computes the
component K̂ as

K̂ = gα/z · gt̂ = g(α1+aq)/z · gt̂ = gα1/zgaq · gt̂

B then computes L̂ = gt̂ and {K̂x = hx
t̂}x∈S . It returns the secret key

SkS = ((T̂kS , T̂k
′
S), (z, z′)).

– OTrapdoor. Given an attribute set S, B computes TdS = (z, T̂kS) in the
same way as above if S does not satisfy (M∗, ρ∗). Otherwise, B randomly
chooses z, t̂ and computes TdS = (z, T̂kS) as the trapdoor using the
method described in the simulation of OExtract oracle.

– ODecrypt. Given an attribute set S and a ciphertext Ct = (C,C ′, C ′′, C1,
D1, · · · , C�,D�, C

∗), B distinguishes the following two cases.
(a) Case 1: S does not satisfy (M∗, ρ∗). B computes the corresponding

secret key SkS as in dealing with an Extract query, uses SkS to decrypt
Ct by following the decryption algorithm, and returns the decryption
result.

(b) Case 2: S satisfies (M∗, ρ∗). B firstly computes the trapdoor TdS =
(z, T̂kS) as above, and calls the Transform algorithm to compute

Xsub =
ê(C ′, K̂)

∏
i∈I(ê(Ci, L̂) · ê(Di, K̂ρ(i)))wi

.

It searches table HT1 for a tuple ((Xsub)z, h1), and outputs ⊥ if not
found; otherwise, it searches table HT2 to see if there exits a tuple
(((X ′

sub)
z′

, C, C ′, C ′′, C1,D1, · · · , C�,D�), h2). If not found, B outputs
⊥; otherwise, for each tuple found in HT2, B computes m‖u = C∗⊕h2,
and outputs m if the following equations hold:

C ′′ = gu, C = mu · H1((Xsub)z).

If no tuple satisfies the equations above, B outputs ⊥.
4. Challenge. B selects at random a message m∗ and u ∈ Zp, and computes

Ĉ = (m∗)u · H1(ê(gs, gα)), Ĉ ′ = gs, Ĉ ′′ = gu.

462 Y. Cui et al.

It then chooses at random y′
2, · · · , y′

n ∈ Zp and shares the secret s using the
vector v = (s, sa + y′

2, sa
2 + y′

3, · · · , san−1 + y′
n). Denote by Ai the set of all

k’s such that k �= i and ρ(k) = ρ(i). B chooses at random r′
1, · · · , r′

�, and
computes

Ĉi = h
r′

i

ρ(i)(
∏

j=2,··· ,n

(ga)M∗
i,jy′

j) · (gbi·s)−zρ(i) · (
∏

k∈Ai

∏

j=1,··· ,n

(gaj ·s·(bi/bk))M∗
k,j),

D̂i = g−r′
ig−sbi , and

Ĉ∗ = (m∗‖u) ⊕ H2

(
T · ê(gs, gα2), Ĉ, Ĉ ′, Ĉ ′′, Ĉ1, D̂1, · · · , Ĉ�, D̂�

)
.

B returns the challenge ciphertext Ct∗ = (Ĉ, Ĉ ′, Ĉ ′′, Ĉ1, D̂1, · · · , Ĉ�, D̂�, Ĉ∗)
to the adversary.

5. Query Phase 2. B simulates the oracles in the same way as in Query Phase
1, with the additional restriction that the adversary is not allowed to issue a
decryption query on input (S,Ct∗) for any S satisfying (M∗, ρ∗).

6. Guess. A outputs a message m′. B then outputs b′ = 0 if m′ = m∗, meaning
that T = ê(g, g)aq+1s, and b′ = 1 otherwise, meaning that T is randomly
selected from GT .

Now we analyze the probability that B successfully guess the value of b. If
T = ê(g, g)aq+1s, the simulation provided by B is perfect, and the view of A is the
same as that in a real attack. We have that Pr[b′ = 0|b = 0] = AdvOW-SAS-CCA

A (k).
On the other hand, if T is randomly selected from GT , Ct∗ hides the message
perfectly, and the probability that A outputs m′ = m∗ is thus negligible, e.g.
Pr[b′ = 0|b = 1] = negl(k). Therefore, we have

Pr[b′ = b] = Pr[b′ = 0 ∧ b = 0] + Pr[b′ = 1 ∧ b = 1]

=
1
2
(Pr[b′ = 0|b = 0] + Pr[b′ = 1|b = 1])

=
1
2
(Pr[b′ = 0|b = 0] + 1 − Pr[b′ = 0|b = 1])

=
1
2
(AdvOW-SAS-CCA

A (k) + (1 − negl(k)))

=
1
2

+
1
2
AdvOW-SAS-CCA

A (k) − 1
2
negl(k).

If A breaks the OW-SAS-CCA security of our OCP-ABEET scheme with non-
negligible advantage, B solves the decisional q-parallel BDHE problem with prob-
ability non-negligibly larger than 1

2 , contradicting the decisional q-parallel BDHE
assumption. ��
Theorem 2. Our OCP-ABEET scheme is IND-SAS-CCA secure if the deci-
sional q-parallel BDHE assumption holds.

Proof. Let A be an adversary which breaks IND-SAS-CCA security of our
scheme with advantage AdvIND-SAS-CCA

A (k). We use it to build an algorithm B
to solve the decisional q-parallel BDHE problem. B takes a problem challenge
(y, T) as input. Again, let b = 0 denote that T = ê(g, g)aq+1s, and b = 1 denote
that T is randomly selected from GT . B works as follows.

Outsourced CP-ABEET 463

1. Init. A chooses a challenge access structure (M∗, ρ∗) and sends it to B.
2. Setup. B randomly chooses α1, α2 ∈ Zp, and implicitly sets α = α1 + aq+1

by letting ê(g, g)α = ê(g, g)α1 · ê(ga, gaq

) and α′ = α2 + aq+1 by letting
ê(g, g)α′

= ê(g, g)α2 · ê(ga, gaq

). For each attribute x ∈ {1, · · · , U} it chooses
a random value zx, and computes hx as

hx = gzx

∏

i∈X

gaM∗
i,1/bi · ga2M∗

i,2/bi · · · ganM∗
i,n/bi ,

where X = {i : ρ(i) = x}. It then gives Mpk = (g, ê(g, g)α, ga, h1, · · · , hU) to
the adversary.

3. Query Phase 1. B simulates H1, H2 and OTrapdoor oracles in the same way
as in the proof of Theorem 1, with an additional restriction that the attribute
sets submitted by A to OTrapdoor should not satisfy the challenge access
structure. The OExtract, ODecrypt oracle are simulated by B as follows.

– OExtract. Given an attribute set S, B computes T̂k
′
S as the same with

that in the proof of Theorem 1. And it computes T̂kS as follows.
B selects at random r, z ∈ Zp and finds a vector w = (w1 =
−1, w2, · · · , wn) ∈ Z

n
p such that w · M∗

i = 0 for all i ∈ I = {i : ρ(i) ∈ S}.
It implicitly sets the value t̂ as

t̂ = r/z + w1a
q/z + w2a

q−1/z + · · · + wnaq−n+1/z

by computing
L̂ = gr/z

∏

i=1,··· ,n

(gaq+1−i

)wi/z = gt̂.

Then it calculates the value of K̂ as

K̂ = gα/zgat̂ = g(α1+aq+1)/zgat̂ = gα1/z · gar/z
∏

i=2,··· ,n

(gaq+2−i

)wi/z.

Notice that the term g−aq+1/z of component gat̂ which cannot be simu-
lated, will cancel out with the term gaq+1/z of gα/z.
It returns the secret key SkS = ((T̂kS , T̂k

′
S), (z, z′)).

– ODecrypt. Given an attribute set S and a ciphertext Ct = (C,C ′, C ′′, C1,
D1, · · · , C�,D�, C

∗), B distinguishes the following two cases.
(a) Case 1: S does not satisfy (M∗, ρ∗). B acts in the same way as in the

proof of Theorem 1.
(b) Case 2: S satisfies (M∗, ρ∗). B traverses table HT2 to check if there

is a tuple (((X ′
sub)

z′
, C, C ′, C ′′, C1, D1, · · · , C�,D�), h2). If not found,

B returns ⊥; otherwise, for each tuple found in HT2, B computes

m‖u = C∗ ⊕ h2.

If C ′′ = gu holds, B calculates h1 = C/mu, and searches table HT1 for
a tuple ((Xsub)z, h1). If found, B returns m. Finally, if for all tuples

464 Y. Cui et al.

found in HT2, B did not return a message to A, it returns ⊥. Notice
that there is a case in which (Xsub)z is not the correct one used in the
generation of the queried ciphertext. However, due to the randomness
of the oracle H1, the probability that the adversary does not query
H1 with a correct (Xsub)z value in the generation of a well-formed
ciphertext, is negligible.

4. Challenge. A submits two equal-length messages m∗
0,m

∗
1. B selects random

a bit β ∈ {0, 1} and u ∈ Zp, and computes

Ĉ = (m∗)u · H1(T · ê(gs, gα1)), Ĉ ′ = gs, Ĉ ′′ = gu.

It then randomly selects y′
2, · · · , y′

n and shares the secret s using the vector
v = (s, sa + y′

2, sa
2 + y′

3, · · · , san−1 + y′
n). Let Ai be the set of all k’s with

k �= i and ρ(k) = ρ(i). B selects at random r′
1, · · · , r′

� ∈ Zp, and computes

Ĉi = h
r′

i

ρ(i)(
∏

j=2,··· ,n

(ga)M∗
i,jy′

j) · (gbi·s)−zρ(i) · (
∏

k∈Ai

∏

j=1,··· ,n

(gaj ·s·(bi/bk))M∗
k,j),

D̂i = g−r′
ig−sbi , and

Ĉ∗ = (m∗‖u) ⊕ H2(T · ê(gs, gα2), Ĉ, Ĉ ′, Ĉ ′′, Ĉ1, D̂1, · · · , Ĉ�, D̂�).

B returns Ct∗ = (Ĉ, Ĉ ′, Ĉ ′′, Ĉ1, D̂1, · · · , Ĉ�, D̂�, Ĉ∗) to the adversary.
5. Query Phase 2. B simulates the oracles in the same way as that in the

proof of Theorem 1, with an additional restriction that A should not submit
an attribute set satisfying (M∗, ρ∗) to the OTrapdoor oracle.

6. Guess. A outputs a bit β′ ∈ {0, 1}. B then outputs b′ = 0 if β′ = β, meaning
T = ê(g, g)aq+1s; otherwise, it outputs b′ = 1, meaning T is randomly selected
from GT .

If T = ê(g, g)aq+1s, the simulation provided by B is perfect, and the view
of A is the same as that of a real attack. We have that Pr[b′ = 0|b = 0] =
1
2 +AdvIND-SAS-CCA

A (k). If T is randomly selected from GT , Ct∗ hides the message
perfectly, and the probability that A correctly guesses the bit β is only 1

2 . Thus,
B correctly guesses the bit b with probability 1

2 as well, e.g. Pr[b′ = 0|b = 1] = 1
2 .

Therefore, we have:

Pr[b′ = b] = Pr[b′ = 0 ∧ b = 0] + Pr[b′ = 1 ∧ b = 1]

=
1
2
(Pr[b′ = 0|b = 0] + Pr[b′ = 1|b = 1])

=
1
2
(Pr[b′ = 0|b = 0] + 1 − Pr[b′ = 0|b = 1])

=
1
2

(
1
2

+ AdvIND-SAS-CCA
A (k) +

1
2

)

=
1
2

+
1
2
AdvIND-SAS-CCA

A (k).

If A breaks the IND-SAS-CCA security with non-negligible advantage, B
solves the decisional q-parallel BDHE problem with probability non-negligibly
larger than 1

2 as well, contradicting the decisional q-parallel BDHE assumption.
��

Outsourced CP-ABEET 465

7 Comparison

To demonstrate the advantage of our OCP-ABEET scheme, we compare it with
some related schemes [5,18,24] in Table 1, in terms of computational complexity,
functional properties, assumptions, security level and etc. In the comparison
we consider the dominant computation in Extract, Encrypt, Decrypt and
Test algorithms, e.g. bilinear pairing evaluation, exponentiation operation and
etc. The second to the fifth rows of Table 1 show the computational costs of
Extract, Encrypt, Decrypt and Test algorithms. The ciphertext size and
secret key size are compared in the sixth and seventh rows. The eighth and ninth
rows indicate whether the scheme is attribute based and whether it supports
outsourced decryption. The tenth row shows the authorization type the scheme
supports. The last two rows give the underlying assumptions and security levels.

Table 1. Performance comparison with related schemes

KP-ABEwET [24] CP-ABE-ET [18] CP-ABEET [5] OCP-ABEET

Extract 2AuE (4 + 6Au + 12A2
u)E (4 + 2Au)E (6 + 2Au)E

Encrypt (2Au + 3)E (2NU + 11)E (3� + 5)E + 2P (3� + 5)E + 2P

Decrypt (2Au + 2)E

+ 2AuP

(8Au + 6)E

+ 12P

(2Au + 2)E

+ (4Au + 2)P

4E

Test 2AuE + 2AuP (8Au + 4)E + 14P AuE + (2Au + 3)P 2E + 2P

Ctsize (4+ 2Au)|G|+2|Zp|8|G| + |Zp| (4 + 2�)|G| + |Zp| (4 + 2�)|G| + |Zp|
Sksize 2Au|G| (4 + 6Au)|G| (4 + 2Au)|G| (4+ 2Au)|G|+2|Zp|
Attibute-based Yes Yes Yes Yes

Outsourced-decryptionNo No No Yes

Authorization Flexible Flexible Flexible Flexible

Assumption tDBDH DLIN q-parallel BDHE q-parallel BDHE

Security OW-CCA & T-CCAIND-ID-CPA OW-SAS-CCA &

IND-SAS-CCA

OW-SAS-CCA &

IND-SAS-CCA

1. T-CCA [24]: testability against chosen-ciphertext attack of authorization under the chosen sets of

attributes.

2. NU is the amount of attributes in Wang et al.’s system [18].

3. We use Au to denote the number of attributes used in Extract, Encrypt, Decrypt and Test algo-

rithms, and use |G| and |Zp| to denote the element size of G and Zp, respectively. In CP-ABEET and

OCP-ABEET schemes, � is the number of rows of the access matrix M .

4. Both the IND-ID-CPA model in [18] and OW-SAS-CCA and IND-SAS-CCA models in CP-ABEET and

OCP-ABEET schemes consider the selective access structure security, in which the adversary submits its

challenge access structure before seeing the public parameters.

Table 1 shows that our OCP-ABEET scheme provides almost the best secu-
rity guarantee and efficiency among all the ABE schemes supporting equality
test. As our OCP-ABEET scheme is based on the CP-ABEET scheme [5], it has
almost the same computation and communication efficiency with [5], as well as
the security level. However, as our OCP-ABEET supports outsourced decryp-
tion, the local decryption efficiency is much higher than that in [5].

466 Y. Cui et al.

8 Conclusion

We introduced the notion of outsourced ciphertext-policy attribute-based
encryption supporting equality test, which aims to improve the computational
efficiency in local decryption, with the aid of a third-party server to process most
of the decryption computation. We proposed a construction of OCP-ABEET
based on Huang et al.’s CP-ABEET scheme, and proved it to be secure based
on a decisional q-parallel BDHE assumption. The scheme enjoys a pretty high
efficiency in local decryption.

Security of our scheme resorts to the random oracle model, which is only
heuristic. In the future, we consider to construct a concrete OCP-ABEET scheme
with provable security in the standard model.

References

1. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8 6

2. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Israel Institute of Technology, June 1996

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, Oakland, pp. 321–334. IEEE
Computer Society, May 2007

4. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 30

5. Cui, Y., Huang, Q., Huang, J., Li, H., Yang, G.: Ciphertext-policy attribute-based
encrypted data equality test and classification. Cryptology ePrint Archive, Report
2018/1058 (2018). https://eprint.iacr.org/2018/1058

6. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 579–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 47

7. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, Alexandria, pp. 89–98. ACM, October 2006

8. Green, M., Hohenberger, S., Waters, B., et al.: Outsourcing the decryption of ABE
ciphertexts. In: Proceedings of USENIX Security Symposium, San Francisco, pp.
34–34. USENIX Association, August 2011

9. Han, J., Susilo, W., Mu, Y., Yan, J.: Privacy-preserving decentralized key-policy
attribute-based encryption. IEEE Trans. Parallel Distrib. Syst. 23(11), 2150–2162
(2012)

10. Lai, J., Deng, R.H., Guan, C., Weng, J.: Attribute-based encryption with verifiable
outsourced decryption. IEEE Trans. Inf. Forensics Secur. 8(8), 1343–1354 (2013)

11. Li, J., Huang, X., Li, J., Chen, X., Xiang, Y.: Securely outsourcing attribute-based
encryption with checkability. IEEE Trans. Parallel Distrib. Syst. 25(8), 2201–2210
(2014)

https://doi.org/10.1007/978-3-642-19379-8_6
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://eprint.iacr.org/2018/1058
https://doi.org/10.1007/978-3-540-70583-3_47

Outsourced CP-ABEET 467

12. Li, J., Sha, F., Zhang, Y., Huang, X., Shen, J.: Verifiable outsourced decryption
of attribute-based encryption with constant ciphertext length. In: Security and
Communication Networks 2017 (2017)

13. Ma, S.: Identity-based encryption with outsourced equality test in cloud comput-
ing. Inf. Sci. 328(C), 389–402 (2016)

14. Ma, S., Huang, Q., Zhang, M., Yang, B.: Efficient public key encryption with
equality test supporting flexible authorization. IEEE Trans. Inf. Forensics Secur.
10(3), 458–470 (2015)

15. Ma, S., Zhang, M., Huang, Q., Yang, B.: Public key encryption with delegated
equality test in a multi-user setting. Comput. J. 58(4), 986–1002 (2015)

16. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

17. Tang, Q.: Towards public key encryption scheme supporting equality test with fine-
grained authorization. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS,
vol. 6812, pp. 389–406. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22497-3 25

18. Wang, Q., Peng, L., Xiong, H., Sun, J., Qin, Z.: Ciphertext-policy attribute-based
encryption with delegated equality test in cloud computing. IEEE Access 6, 760–
771 (2018)

19. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

20. Wu, L., Zhang, Y., Choo, K.K.R., He, D.: Efficient identity-based encryption
scheme with equality test in smart city. IEEE Trans. Sustain. Comput. 3(1), 44–55
(2018)

21. Wu, T., Ma, S., Mu, Y., Zeng, S.: ID-based encryption with equality test against
insider attack. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342,
pp. 168–183. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60055-0 9

22. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of IEEE Symposium on Security and Privacy, pp. 44–55.
IEEE (2000)

23. Yang, G., Tan, C.H., Huang, Q., Wong, D.S.: Probabilistic public key encryption
with equality test. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 119–
131. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11925-5 9

24. Zhu, H., Wang, L., Ahmad, H., Niu, X.: Key-policy attribute-based encryption
with equality test in cloud computing. IEEE Access 5, 20428–20439 (2017)

https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-22497-3_25
https://doi.org/10.1007/978-3-642-22497-3_25
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-319-60055-0_9
https://doi.org/10.1007/978-3-642-11925-5_9

Efficient Adaptively Secure Public-Key
Trace and Revoke from Subset Cover

Using Déjà Q Framework

Mriganka Mandal(B) and Ratna Dutta

Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur 721302, India

{mriganka mandal,ratna}@maths.iitkgp.ac.in

Abstract. We provide an efficient and secure construction for the trace
and revoke from subset cover (TRSC) systems in the public-key setting,
having ciphertext size proportional to the number of revoked users and
public parameter of constant size. The system is obtained by tweaking
the identity based encryption scheme of Wee (TCC 2016) under the
subset cover framework. Existing TRSC constructions are inefficient with
respect to the size of the parameters and derive their security from the
q-type assumptions in the random oracle model. Our construction is the
first adaptively secure TRSC system to achieve such parameters without
using any random oracles. In addition, we are able to eliminate the q-
type assumptions by integrating the Déjà Q framework of Chase and
Meiklejohn (EUROCRYPT 2014) and its extension by Wee (TCC 2016)
in our construction and analyze its security under the hardness of static
subgroup decision problems over bilinear group setting. Moreover, this
is the first proposal to feature optimally short private keys, even in the
standard security model without any security breach.

Keywords: Broadcast encryption · Déjà Q framework ·
Subset cover framework · Information hiding and watermarking ·
Intrusion detection and revocation

1 Introduction

Broadcast Encryption. With the rapid development of the broad applica-
tions of e-commerce such as digital distribution, streaming media, electronic
data interchange, automated data collection systems etc., the use of the Internet
gathered momentum to each aspect of humans’ life and has gradually become
an indispensable part of it. Accordingly, the issues regarding unauthorized dis-
tributions and use of digital content have become a greater concern in recent
years. Broadcast encryption, introduced by Fiat and Naor [7], is one of the major
cryptographic primitive that provides enhanced confidentiality to mitigate these
issues. Generally, a broadcast encryption scheme requires a broadcaster to effi-
ciently broadcast an encrypted message to a set of receivers through a public
c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 468–489, 2019.
https://doi.org/10.1007/978-3-030-14234-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_25&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_25

Trace and Revoke Without Random Oracles from Déjà Q Framework 469

channel. A group manager assigns a private key in an off-line setup phase to
each user in the system through a secure communication channel. The encrypted
message along with the users pre-assigned private keys enable legitimate users
to recover the original message. In contrast, the illegitimate users are unable to
decrypt the encrypted content even if they collude.

Trace and Revoke System. Trace and revoke systems [3,12,14] are devised to
aid a tracer to find traitors using a tracing algorithm and revoke them. Traitor
tracing, introduced by Chor et al. [5], empowers a content broadcaster to iden-
tify conspiracy of defrauders who collude to create a pirate decoder. A pirate
decoder contains an arbitrarily complex obfuscated malicious program capa-
ble of decrypting the encrypted digital content. The traitors might alter their
private keys in such a way that the altered keys cannot be linked with their
original private keys. They can resell or publish their altered private keys on the
Internet. The tracing algorithm interacts with the pirate decoder as a black-box
oracle and outputs with overwhelming probability identity of at least one traitor
in the coalition forming the malicious program. Trace and revoke systems fall
into two categories: public-key traceable systems [3,12] and secret-key traceable
systems [2,5,11]. Public-key tracing require only the public parameter utilizing
which anyone can run the tracing algorithm. On the other hand, in secret-key
tracing only the group manager is able to execute the tracing algorithm and
uses a secret tracing key to identify rogue users. Trace and revoke systems are
useful ingredients in constructing collusion resistant broadcast encryption with
intrusion detection and revocation. It is a powerful cryptographic primitive and
can be designed by exploiting the collusion resistance property of the traditional
broadcast encryption system and integrating the watermarking functionality of
a trace and revoke system.

A public-key trace and revoke system may be constructed by employing a
public-key broadcast encryption and a public-key tracing scheme. However, the
resulting scheme may not provide security against collusion attack [3] and may
not exhibit the revocation capability. Besides, the size of private keys and public
keys are critical issue for resource constrained devices with low computational
power and internal storage. There are many secret-key traceable schemes that
are suitable for such devices. However, to the best of our knowledge, there is no
efficient public-key traceable scheme as far that can be used for such devices.
Designing a public-key trace and revoke system for resource constrained devices
while achieving security in the standard model under standard cryptographic
assumptions is a challenging task.

Related Work. In 2001, Naor et al. [14] introduced the concept of subset
cover framework and proposed two trace and revoke schemes in symmetric-key
setting which are secure in the random oracle model (ROM). One of these designs
uses complete subtree (CS) method while the other employs subset difference
(SubDif) technique. The first public-key trace and revoke scheme was constructed
by Dodis et al. [6] integrating SubDif mechanism in the hierarchical identity
based encryption scheme of Boneh et al. [1]. The construction is secure in the
ROM under the q-Simplified Multi-Exponent Bilinear Diffie-Hellman (SMEBDH)

470 M. Mandal and R. Dutta

assumption which is a non-standard q-type security assumption. Kiayias et al.
[11] proposed t-collusion resistant tracing scheme where a collusion of at most
t-users can construct a pirate decoder. The scheme has ciphertext size linear to t.
The first fully collusion resistant broadcast encryption with tracing functionality
was proposed by Boneh et al. [2,3] using composite order bilinear group with
sublinear size parameters. Later, Garg et al. [8] developed a similar variant in
prime order bilinear group setting.

The trace and revoke systems can be classified into two categories − trace
and revoke from private linear broadcast encryption (PLBE) [2,3,8,13] and trace
and revoke from subset cover (TRSC) [6,12,14]. In PLBE system, the size of
ciphertext, users private keys and public parameter depend on the total number
of users. Consequently, these systems support small number of users having large
storage capacity. On the contrary, the ciphertext size in the TRSC system is linear
to the size of the revoked users and are suitable where a small number of users
get revoked. All the existing trace and revoke schemes based on PLBE follows
the tracing approach of Kiyias et al. [11] whereas the TRSC systems adopt the
tracing technique of Naor et al. [14]. Recently, Lee et al. [12] designed a trace and
revoke scheme in public-key setting from the identity based encryption scheme
of Boneh et al. [1] using the SubDif technique. The scheme is secure under the
q-SMEBDH assumption in the ROM. In contrast to complete subtree technique
based construction of [14], Lee et al. [12] reduced the number of ciphertext
components from O(r log (N/r)) to O(r), and also the size of users’ private key
from O(log2 N) to O(log1.5 N), where N the total number of users in the system
and r is the number of revoked users.

Our Contribution. Our primary focus in this work is to build a secure and
efficient TRSC system suitable for resource constrained devices. Designing an
efficient fully collusion resistance and public-key TRSC system with optimal
parameter size while achieving security in the standard model is a challenging
task. We explore the applicability of Déjà Q framework, introduced by Chase
et al. [4], in the trace and revoke setting and design a public-key TRSC system
without non-standard q-type assumptions. The Déjà Q framework was intro-
duced to eliminate various q-type complexity assumptions and their generaliza-
tions over composite order bilinear groups and achieve security under standard
assumptions. The technique was further developed by Wee [15] to design identity
based encryption schemes as well as the broadcast encryption schemes with opti-
mal parameter sizes without relying on q-type assumptions. Utilizing this tech-
nique for more advanced cryptographic primitives with security under standard
assumptions while achieving compact parameter sizes is an interesting research
problem. We integrate the subset difference technique of [14] to the identity
based encryption scheme of Wee [15] and design a fully collusion resistant and
publicly traceable TRSC system secure under standard assumption without using
the random oracle model. More precisely, our TRSC construction achieves the
following interesting features.

• As exhibited in Table 1, our TRSC scheme significantly reduces the communi-
cation bandwidth (|CT|) compared to the TRSC systems [6,14] as well as the

Trace and Revoke Without Random Oracles from Déjà Q Framework 471

Table 1. Comparison summary of communication, storage and computation cost

Tracing via. Scheme Communication Storage Computation cost

|CT| |SK| |PP| DT

PLBE [2] O(
√

N) O(1) O(
√

N) 3PR + 3PD + 2EX

[3] O(
√

N) O(
√

N) O(
√

N) 4PR + 4PD + 2EX

[8] O(
√

N) O(
√

N) O(
√

N) 4PR + 4PD + 3EX

[13] 2 in G� , 3η, log (N) 1 in G� poly(log N, η) 2PR + (N)PD + (N + 1)EX

TRSC [14]-I O(r log N
r) O(log2 N) O(η) (log log N)IN + 1PR

[14]-II O(r) O(log2 N) O(η) (log log N)IN + 1PR

[6] O(r) O(log2.5 N) O(log N) 2PR

[12] O(r) O(log1.5 N) O(η) 3PR + 3PD + 2EX

Ours O(r) O(log1.5 N) O(1) 3PR + 2PD + 1EX

PR = pairing operation, PD = product, EX = exponentiation, IN = inversion, PLBE = private

linear broadcast encryption, TRSC = trace and revoke from subset cover framework, CS = complete

subtree, SubDif = subset difference, |PP| = public parameter size, |SK| = user secret key size, |CT| =

ciphertext size, DT = decryption time, G� = multilinear intermediate group, poly = polynomial,

N = total number of users in the system and, r = size of revoked set, η = security parameter.

PLBE systems [2,3,8,13] based on PLBE. We achieve similar ciphertext size,
secret-key size, public parameter size and decryption cost as that of the TRSC
construction of [12]. However, the construction in [12] is secure under the
q-SMEBDH assumption in ROM. Although the decryption cost in our scheme
is more than those in [6,14], the constructions in [14] are in secret-key setting
while that in [6] is in public-key setting, but is secure under non-standard
q-type assumptions in the ROM. More interestingly, our TRSC scheme sig-
nificantly reduces the size of the public parameter and the users’ secret key
over the TRSC of [6,14]. Our scheme outperforms the existing PLBE systems
[2,3,8,13] in terms of communication bandwidth (|CT|) and public parame-
ter size (|PP|) (where r << N) as well as decryption time. Even though the
secret key size (|SK|) of [2] is constant while that in our TRSC is O(log1.5(N),
the PLBE of [2] is in secret-key setting. Note that the currently known PLBE
construction [13] is based on multilinear maps and indistinguishability obfus-
cation whose practicality or even ability to instantiate with existing primitives
is questionable. Besides, the construction is secure under the non-standard
multilinear q-Decisional Hybrid Diffie-Hellman Exponent assumption.

• As shown in Table 2, the security of the TRSC systems [6,12,14] are in ROM
where all the parties are given a black-box access to a truly random function.
From the practical point of view, there does not exist such random looking
functions and consequently, the proofs in ROM can be treated as heuristic
arguments. At a technical level, hash functions are considered as random
oracle which is a theoretical black-box that responds random reply to every
query. However, there is a debate on the acceptance of a security proof in
ROM as many security model which are secure in ROM may not be secure
in standard security model. To circumvent the ROM, we utilize the identity
based Déjà Q framework of [15] along with the single revocation encryption

472 M. Mandal and R. Dutta

Table 2. Comparative summary of traceability, security and other functionality

Tracing via. Scheme Traceability Security ROM CovTech

SM SA

PLBE [2] Secret Selective CPA D3DH, DHSD, BSD No −
[3] Public Adaptive CPA D3DH, DHSD, BSD No −
[8] Public Adaptive CPA D3DH, XDH No −
[13] Public Adaptive CCA q-DHDHE No −

TRSC [14]-I Secret Selective CPA BDH Yes CS

[14]-II Secret Selective CPA BDH Yes SubDif

[6] Public Adaptive CCA q-SMEBDH Yes SubDif

[12] Public Adaptive CPA q-SMEBDH Yes SubDif

Ours Public Adaptive CPA SD No SubDif

SM = security model, SA = security assumption, ROM = random oracle model, CovTech
= covering technique, CPA = chosen plaintext attack, CCA = chosen ciphertext attack,
CS = complete subtree, SubDif = subset difference, D3DH = Decision 3-party Diffie-Hellman,
DHSD = Diffie-Hellman Subgroup Decision, BSD = Bilinear Subgroup Decision, XDH =
External Diffie-Hellman, q-SMEBDH = Simplified Multi-Exponent Bilinear Diffie-Hellman,
BDH = Bilinear Diffie-Hellman, q-DHDHE = Decisional Hybrid Diffie-Hellman Exponent,
SD = Subgroup Decision.

technique of [12] and utilizing the left-over hash lemma, achieving the first
fully collusion resistant and public-key TRSC scheme adaptively secure under
the subgroup decision (SD) assumption in standard security model without
using any random oracle.

• Note that the PLBE tracing schemes [2,3,8] are secure under standard security
assumptions. Consequently, there is no need to employ Déjà Q framework.
On the other hand, the PLBE construction [13] is secure under the non-
standard q-DHDHE assumption over prime order multilinear group setting
and the currently known public-key TRSC schemes [6,12] are secure under
the hardness of the non-standard q-SMEBDH assumption. To exploit the Déjà
Q framework over [6,12,13], we need to impose random elements of another
prime order group to each component of the ciphertext, public parameter and
the user secret key. In that case, the construction will be shifted to composite
order group setting and the size of the parameters will become very large.
However, converting a general q-type security assumption into a standard
security assumption without increasing the parameter size is a difficult task
even if the underlying group is in composite order. In our public-key TRSC
construction, we skilfully merge the single revocation encryption technique of
[12] and the identity based encryption scheme of [15] over composite order
bilinear group setting and then utilize left-over hash lemma so that the q-type
complexity assumption can be removed using the Déjà Q framework of [4]
without sacrificing the parameter sizes.

Trace and Revoke Without Random Oracles from Déjà Q Framework 473

2 Preliminaries

Notation. For an algorithm RandA, y ← RandA(z) represents output by RandA
on input z. The concatenation of two strings s, t ∈ {0, 1}∗ is denoted by s||t.

2.1 Full Binary Tree and Related Surveillance [14]

Full Binary Tree. A full binary tree (FBT) is a tree data structure where each
node except the leaf nodes has exactly two children. We consider a FBT with
N = 2κ leaf nodes. Note that the total number of nodes in FBT is 2N −1 and vi

denotes the i-th node in FBT for 1 ≤ i ≤ 2N − 1. We assume that the root (RT)
of FBT at level-0 with depth 0, all the N leaves at level-κ with depth κ and any
other internal node vi at level-di with depth di which is the length of the unique
path from RT to vi. For any node vi ∈ FBT, we define Si as the set of all leaf
nodes in the subtree rooted at vi. Further, for any two nodes vi, vj ∈ FBT with
vj is the descendant of vi, we denote Si,j as the set of all leaf nodes which are
descendant of vi but not vj , that is, Si,j = Si \Sj . In FBT, xi = 0 corresponds to
left branch and xi = 1 corresponds to right branch of any node vi ∈ FBT except
the leaf nodes. Then any node vi with depth di can be assigned by a fixed and
unique identity bit string stri = x0x1 . . . xi obtained by reading all the labels of
branches in the path from RT to vi. For any two nodes vi, vj ∈ FBT, we denote
the least common ancestor v ∈ FBT of vi and vj by v = LCA(vi, vj).

Identifier Function. We define the identifier function f ID as follows.

• f ID(vi) = stri for a node vi ∈ FBT.
• f ID(Si) = f ID(vi) = stri, where Si and stri are defined above.
• f ID(Si,j) =

(
f ID(Si), f ID(Sj)

)
=

(
f ID(vi), f ID(vj)

)
= (stri, strj), where Si,j is

the set of all leaf nodes which are descendant of vi but not vj .

Steiner Tree. Let R be a subset of leaf nodes belonging to the FBT. Then,
the minimal subtree of the FBT that connects nodes in R and the root (RT) is
called a Steiner tree ST (R) introduced by R and RT.

Inputs: Si,j , FBT
Output: Disjoint subsets Si1,j1 and Si2,j2 such that Si,j = (Si1,j1 ∪ Si2,j2).

1. From Si,j , extract the node vi and find the location of vi in the FBT.
2. Assume vL be the left child and vR be the right child of the node vi such that vj

is the descendant of vL.
3. Construct the subsets SL,j and Si,L.
4. Return Si1,j1 = SL,j and Si2,j2 = Si,L.

Fig. 1. The bifurcation algorithm SDBifur

474 M. Mandal and R. Dutta

Bifurcation Property. Bifurcation property [14] under the context of subset
cover framework is a deterministic algorithm SDBifur that takes as input any
subset Si,j of leaf nodes of a FBT and outputs two roughly equal and disjoint
subsets Si1,j1 and Si2,j2 as shown in Fig. 1 such that Si,j = (Si1,j1 ∪ Si2,j2).

2.2 Bilinear Groups and Complexity Assumptions

On input the security parameter η of the system, a group generator G outputs a
description bilgr = (G,GT , n, e) with G and GT two multiplicative cyclic groups
of same composite order n = p1p2p3 where p1, p2, p3 are the distinct primes
with each pi > 2η. We denote gi and g as the random generators for Gpi

and G
respectively. The bilinear map e : G × G → GT amuses the following properties.

• Bilinearity : ∀u, v ∈ G and ∀a, b ∈ Zn, e(ua, vb) = e(u, v)ab.
• Nondegeneracy : ∃ g such that e(g, g) has order n, that is, e(g, g) is a generator

of GT .
Further, we say that G, GT are bilinear groups if the bilinear map e as well as
the group operations in G and GT are computable in deterministic polynomial
time. In addition, we denote G∗

pi
as Gpi

� {1}.

Subgroup Decision 1 (SD1) Problem [15]. The SD1 problem is to guess
μ ∈ {0, 1} given χμ = (bilgr, g1, g3, Tμ) generated by the generator GSD1

μ , which
is shown in Fig. 2.

– Run the group generator G(η) to generate description bilgr = (G, GT , n, e), where
n = p1p2p3, G and GT be two multiplicative cyclic groups of same composite order
n with G = Gp1Gp2Gp3 and e : G × G → GT .

– Pick randomly g1 and g3 from G∗
p1 and G∗

p3 respectively.
– Selects B1 ∈R Gp1 , B1B2 ∈R Gp1Gp2 and set T0 = B1 ∈R Gp1 , T1 = B1B2 ∈R

Gp1Gp2 .
– Return χμ = (bilgr, g1, g3, Tμ).

Fig. 2. SD1 problem instance generator GSD1
µ

The advantage of a probabilistic polynomial time (PPT) algorithm A1 in
solving the SD1 problem is defined as

AdvSD1
A1

(η) = |Pr[A1(η, χ0) → 1] − Pr[A1(η, χ1) → 1]|.

Definition 1 (SD1 Assumption). The SD1 assumption is that AdvSD1
A1

(η) is
at most negligible for all PPT algorithms A1.

Subgroup Decision 2 (SD2) Problem [15]. The SD2 problem is to guess
μ ∈ {0, 1} given χμ = (bilgr, g1, g3, g1,2, g2,3, Tμ) generated by the generator
GSD2

μ , which is shown in Fig. 3.

Trace and Revoke Without Random Oracles from Déjà Q Framework 475

– Run the group generator G(η) to generate description bilgr = (G, GT , n, e), where
n = p1p2p3, G and GT be two multiplicative cyclic groups of same composite order
n with G = Gp1Gp2Gp3 and e : G × G → GT .

– Pick randomly g1 and g3 from G∗
p1 and G∗

p3 respectively, and randomly select g1,2

and g2,3 from Gp1Gp2 and Gp2Gp3 respectively.
– Select R1R3 ∈R Gp1Gp3 , R1R2R3 ∈R Gp1Gp2Gp3 and set T0 = R1R3 ∈R Gp1Gp3 ,

T1 = R1R2R3 ∈R Gp1Gp2Gp3 .
– Return χμ = (bilgr, g1, g3, g1,2, g2,3, Tμ).

Fig. 3. SD2 problem instance generator GSD2
µ

The advantage of a PPT algorithm A2 in solving the SD2 problem is
defined as

AdvSD2
A2

(η) = |Pr[A2(η, χ0) → 1] − Pr[A2(η, χ1) → 1]|.

Definition 2 (SD2 Assumption). The SD2 assumption is that AdvSD2
A2

(η) is
at most negligible for all PPT algorithms A2.

2.3 Left-Over Hash Lemma

Definition 3 (Min-Entropy). Let X be a random variable over some finite
set �. The min-entropy H∞ of the random variable X is defined as H∞(X) =
− log (maxx∈�Pr[X = x]).

Definition 4 (Pairwise Independent Hash Families). Let �1, �2 ⊂ {0, 1}∗

be finite sets. A family H of hash functions H : �1 → �2 is called pairwise
independent if for any s1, s2 ∈ �1 with s1
= s2, there exists z1, z2 ∈ �2 such
that

Pr
H∈RH

[(H(s1) = z1) ∧ (H(s2) = z2)] =
1

(|�2|)2

where |�2| denotes the cardinality of the set �2.

Lemma 1 (Left-Over Hash Lemma [10]). Let X be a random variable
over some finite set � and let κ ∈ N. Let H : � → {0, 1}κ be sampled from
a pairwise independent hash family H uniformly and independently of X. If
κ = H∞(X) − 2 log 1

ε − O(1), then Δ((H(X),H), (Uκ ,H)) ≤ ε
2 , where Uκ

is the uniform random variable over {0, 1}κ and Δ(V,W) = 1
2

∑

∂∈D

|Pr[V =

∂] − Pr[W = ∂]| is a statistical distance between any two random variables V
and W over some set D.

2.4 Overview of the Déjà Q Framework

The Déjà Q framework, introduced by Chase et al. [4], is an extension of the
dual system technique that eliminates various q-type complexity assumption for

476 M. Mandal and R. Dutta

deriving security of bilinear-map-based cryptographic constructions. Recently,
Wee [15] has mitigated several shortcomings of [4] to make the framework com-
petent for governing the advanced encryption systems such as broadcast encryp-
tion, where certain secret exponents shared in between ciphertext and user’s
decryption keys, i.e., on both arguments of the pairing.

Lemma 2 (Core Lemma of the Déjà Q Framework [4,15]). Fix a prime
p and define Fq

r1,...,rq,x1,...,xq
: Zp → Zp to be

Fq
r1,...,rq,x1,...,xq

(Lev1) =
q∑

i=1

ri

xi + Lev1

Then, for any (possibly unbounded) adversary A that makes at most q queries,
we have
∣
∣
∣
∣ Pr
r1,...,rq,x1,...,xq∈RZp

[
AFq

r1,...,rq,x1,...,xq
(·)(1q) = 1

]
− Pr

[
ARF(·)(1q) = 1

]
∣
∣
∣
∣ ≤ O

(q2

p

)

where RF : Zp → Zp is a truly random function.

3 Our TRSC Construction

To maintain the page restriction, the generic description of our TRSC con-
struction, which will be presented in the full version of the paper, has been
omitted. However, following the works of [12], the communication model of our
TRSC construction involves a group manager (GM), a broadcaster, several users
and a tracer. Our scheme TRSC = (TRSC.Setup, TRSC.KeyGen, TRSC.Encrypt,
TRSC.Decrypt, TRSC.TraceD) is described as follows.

• (trscmpk, trscmsk) ← TRSC.Setup(η, κ): The group manager (GM) on input
the length κ of the user identities along with the security parameter η proceeds
as follows.

Inputs: pathu = (RT = v0, v1, . . . , vκ = vu), u
Output: Unique private set prvtu for the user u

prvtu ← ∅;
for (i

′
= 0 to κ − 1) do

for (j
′
= i

′
+ 1 to κ) do

prvtu ← prvtu ∪ Si
′
,j

′ ; // Description of Si
′
,j

′ is given in section 2.1.
end do

end do

return prvtu;

Fig. 4. Unique private set generation algorithm SDKGen

Trace and Revoke Without Random Oracles from Déjà Q Framework 477

(i) It first constructs a full binary tree (FBT) of depth κ with N = 2κ users
assigned in the leaf nodes. Consequently, the total number of nodes in
FBT is 2N − 1. For each node vi ∈ FBT, a fixed and unique identity bit
string stri = x1 . . . xi is obtained by reading all the labels of branches in
the path pathvi

= (v0, v1, . . . , vi) from the root (RT) = v0 to the node vi.
It sets up an identifier function f ID as described in Sect. 2.1.

(ii) It executes the bilinear group generator G(η) to generate the description
of a bilinear group bilgr = (G,GT , n, e) as shown in Sect. 2.2. Let gi be a
random generator of Gpi

for i = 1, 2, 3.
(iii) It also chooses an exponent x ∈R Zn, three group elements τ, β, 	 ∈R

Gp1 and a cryptographically secure hash function H : GT →
{0, 1}η. It sets the master public key as trscmpk = (FBT, bilgr =
(G,GT , n, e), f ID, g1, g

x
1 , β, 	,H,Δ = e(g1, τ)) and the master secret key

as trscmsk = (x, τ, g3).
Finally, it publishes trscmpk and keeps trscmsk secret to itself.

• trpku ← TRSC.KeyGen(u, trscmpk, trscmsk): On input any user index
u ∈ [N], the master public key trscmpk = (FBT, bilgr =
(G,GT , n, e), f ID, g1, g

x
1 , β, 	,H,Δ = e(g1, τ)) and the master secret key

trscmsk = (x, τ, g3), the GM accomplishes following steps.
(i) It identifies the unique path pathu = (RT = v0, v1, . . . , vκ = vu) from root

RT to leaf vκ where user u ∈ [N] is designated. The GM assigns a unique
private set prvtu to the user u by running the program SDKGen shown in
Fig. 4.

(ii) It chooses a random exponent r ∈ Zn and generates three random ele-
ments Γ1, Γ2, Γ3 ∈ Gp3 using generator g3 of Gp3 extracted from trscmsk.

Inputs: Si
′
,j

′ ∈ prvtu, r ∈R Zn, Γ1, Γ2, Γ3 ∈R Gp3 , trscmpk = (FBT, bilgr, f ID, g1,
gx
1 , β, �, H, Δ = e(g1, τ)), trscmsk = (x, τ, g3)
Output: Private key KS

i
′
,j

′ corresponding to the subset Si
′
,j

′

1. Let, in the full binary tree FBT, dj
′ be the depth of the node vj

′ ∈ pathu = (RT =
v0, v1, . . . , vκ = vu) with the binary representation bin(dj

′);

2. Compute: (stri′ , strj′) ← f ID(Si
′
,j

′), where stri′ , strj′ ∈ {0, 1}∗ and the function
f ID is extracted from trscmpk;

3. Let, Lev
(i

′
)

1 ∈ Z
∗
n be the integer representation of the string (stri′ ||bin(dj

′)) ∈

{0, 1}∗ and Lev
(j

′
)

2 ∈ Z
∗
n be the integer representation of the string strj′ ∈ {0, 1}∗;

4. Compute:

K
(i

′
,j

′
)

0 = (τ)
1

x+Lev
(i′)
1 (β)

r

x+Lev
(i′)
1 Γ1, K

(i
′
,j

′
)

1 = βLev
(j

′
)

2 �
)r

Γ2, K
(i

′
,j

′
)

2 = g−r
1 Γ3;

5. Return: KS
i
′
,j

′ = K
(i

′
,j

′
)

0 , K
(i

′
,j

′
)

1 , K
(i

′
,j

′
)

2

)
;

Fig. 5. The tracing private key generation program TRSCKGen

478 M. Mandal and R. Dutta

For each subset Si′ ,j′ ∈ prvtu, it runs the program TRSCKGen of Fig. 5 and
generates a private key KS

i
′
,j

′ for the subset Si′ ,j′ .
Finally, the GM sends trpku = (prvtu, {KS

i
′
,j

′ : Si′ ,j′ ∈ prvtu}) as the tracing
private key to user u through a secure communication channel between the
GM and the user u.

• (CTR) ← TRSC.Encrypt(R,M, trscmpk): On input a revoked set of users
R ⊆ [N], a message M ∈ {0, 1}η and the master public key trscmpk =
(FBT, bilgr, f ID, g1, g

x
1 , β, 	,H,Δ = e(g1, τ)), the encryptor executes the fol-

lowing steps.
(i) Using the root RT of the FBT and the revoked user nodes in R, it assem-

bles the Steiner tree ST (R) which is the minimal subtree of the FBT that
connects all the nodes in R and the root RT of the FBT. It runs the dis-
joint cover finding algorithm SDCover of Fig. 6 to construct a disjoint cover
(disjoint partition) dcvrR of the non-revoked users belonging to [N] \ R.

Inputs: ST (R), FBT
Output: Disjoint cover dcvrR = {Si,j} of the non-revoked users in [N] \ R

dcvrR ← ∅;
while (|ST (R)| �= 1) do
(i) if (ST (R) has more than one leaf nodes) then

Extract two leaf nodes vi and vj in ST (R) such that the subtree
rooted at the least common ancestor v = LCA(vi, vj) does not contain
any leaf node of ST (R) other than vi and vj . Let, the left child vL of
v is the ancestor of vi, and the right child vR of v is the ancestor of
vj . As v = LCA(vi, vj), vL is not an ancestor of vj and vR is not an
ancestor of vi;
end if

else if (ST (R) has exactly one leaf node vk) then
Set: vi = vj = vk, LCA(vi, vj) = v = RT root of ST (R) and vL =
vR = v;
end else if

(ii) if (vL �= vi) then
dcvrR = dcvrR ∪ {SL,i};
end if

(iii) if (vR �= vj) then
dcvrR = dcvrR ∪ {SR,j};
end if

(iv) Remove the subtree rooted at v from ST (R) and make v a leaf node of ST (R);
end do

return dcvrR =
{
Si,j : ∀ (i �= i

′
)∧(j �= j

′
), Si,j∩Si

′
,j

′ = ∅ and [N]\R =
⋃

∀i,j Si,j

}
;

Fig. 6. Disjoint cover finding algorithm SDCover

Trace and Revoke Without Random Oracles from Déjà Q Framework 479

(ii) The encryptor chooses a random exponent s ∈ Zn. For each subset Si,j ∈
dcvrR, it runs the ciphertext generation program TRSCCTGen of Fig. 7 and
generates the ciphertext ciphrSi,j

corresponding to the subset Si,j .

Inputs: Si,j ∈ dcvrR, s ∈R Zn, M ∈ {0, 1}η, trscmpk = (FBT, bilgr, f ID, g1, g
x
1 , β, �,

H, Δ = e(g1, τ))
Output: The ciphertext ciphrSi,j

corresponding to the set Si,j

1. Let, dj be the depth of the node vj with the binary representation bin(dj) in the
full binary tree FBT;

2. Compute: (stri, strj) ← f ID(Si,j), where stri, strj ∈ {0, 1}∗ and the function f ID is
extracted from trscmpk;

3. Let, Lev(i)1 ∈ Z
∗
n be the integer representation of the string (stri||bin(dj)) ∈ {0, 1}∗

and Lev
(j)
2 ∈ Z

∗
n be the binary representation of the string strj ∈ {0, 1}∗;

4. Compute:

C
(i,j)
0 = g1

s
(

x+Lev
(i)
1

)
, C

(i,j)
1 = g1

s, C
(i,j)
2 = βLev

(j)
2 �

)s, and C
(i,j)
3 = M ⊕ H (Δs);

5. Return: ciphrSi,j
= C

(i,j)
0 , C

(i,j)
1 , C

(i,j)
2 , C

(i,j)
3

)
;

Fig. 7. The ciphertext generation program TRSCCTGen

Finally, the encryptor publishes CTR = (dcvrR, {ciphrSi,j
: Si,j ∈ dcvrR}) as

the ciphertext corresponding to the revoked set R of users and the message
M ∈ {0, 1}η.

• (M ∨ ⊥) ← TRSC.Decrypt(CTR, trpku, trscmpk): A user u ∈ [N] uses its trac-
ing private key trpku to recover the correct message M ∈ {0, 1}η from the
ciphertext CTR, corresponding to the revoked set of users R, utilizing the
master public key trscmpk. It runs the decryption program TRSCDec of Fig. 8
and outputs either the correct message M or a designated symbol ⊥ indicat-
ing decryption failure.
To be more specific, we require to ensure that if the decryptor u does not
belong to the revoked set of users R, then the condition 2.(b) of the program
TRSCDec of Fig. 8 satisfies. As dcvrR is the disjoint cover of the non-revoked
users and u /∈ R, accordingly there exists exactly one subset Si,j ∈ dcvrR such
that the leaf node vu corresponding to the user u belongs to Si,j . However,
the subset Si,j can be represented utilizing only two nodes vi and vj , where
the node vu is descendant of vi and vj is not an ancestor of vu. On the other
hand, any subset Si′ ,j′ ∈ prvtu can be represented utilizing two nodes vi′ and
vj′ , where both the nodes lie on the path from the root RT of the FBT to
the leaf node vu. Consequently, vi′ and vj′ of any subset Si′ ,j′ ∈ prvtu are
the ancestor of vu. Therefore, in step 2.(a) of Fig. 8, the program will detect
two subsets Si,j ∈ dcvrR and Si′ ,j′ ∈ prvtu such that vi = vi′ , dj = dj′ and
vj
= vj′ , where dj and dj′ are the depth of vj and vj′ respectively.

480 M. Mandal and R. Dutta

Inputs: CTR, u ∈ [N], trpku, trscmpk = (FBT, bilgr, f ID, g1, g
x
1 , β, �, H, Δ = e(g1, τ))

Output: Either M or ⊥

1. If u ∈ R, return ⊥ and stop;
2. Otherwise, execute the following steps;

(a) Extract dcvrR from CTR and prvtu from trpku;

(b) Find two subsets Si,j ∈ dcvrR and Si
′
,j

′ ∈ prvtu such that i = i
′
, dj = dj

′ and

j �= j
′
, where dj and dj

′ are the depth of vj and vj
′ respectively;

(c) Compute strj ← f ID(vj), strj′ ← f ID(vj
′) and set Lev(j)2 = strj , Lev2(j

′
) = strj′ ;

(d) Extract the ciphertext ciphrSi,j
= C

(i,j)
0 , C

(i,j)
1 , C

(i,j)
2 , C

(i,j)
3

)
from CTR cor-

responding to the subset Si,j ;

(e) Extract the key KS
i
′
,j

′ = K
(i

′
,j

′
)

0 , K
(i

′
,j

′
)

1 , K
(i

′
,j

′
)

2

)
from prvtu corresponding

to the subset Si
′
,j

′ ;
(f) Compute:

A = e(C
(i,j)
0 ,K

(i
′
,j

′
)

0)

[
e(C

(i,j)
1 ,K

(i′ ,j′)
1)·e(C(i,j)

2 ,K
(i′ ,j′)
2)

] 1

Lev
(j′)
2 −Lev

(j)
2

and M = C
(i,j)
3 ⊕ H(A);

(g) Return: M ;

Fig. 8. The decryption program TRSCDec

• T
TTS ← TRSC.TraceD(R, ε, trscmpk): Taking as input a revoked set R of

users, a parameter ε and the master public key trscmpk, the tracer inter-
acts polynomially many times with a pirate decoder box D by running the
publicly executable algorithm TRSC.TraceD. The pirate decoder D is viewed
as a probabilistic circuit that consists of some rogue users’ secret keys. The
tracer considers black-box tracing where D cannot be reversed engineered
and the rogue users’ secret key inside D cannot be revealed directly. With
the knowledge from these interactions, the tracer finally outputs a set of users
T
TTS ⊆ [N]. Following Naor et al. [14], the overall tracing procedure of our

TRSC scheme works as follows.

(i) At the beginning of the interactions, the tracer initializes the traitor set
T
TTS to the empty set.

(ii) The tracer constructs the Steiner tree ST (R∪T
TTS) by utilizing the current

collection T
TTS and obtains a disjoint partition of the non-revoked users

set [N] \
(
R ∪ T

TTS
)

by running the disjoint cover finding algorithm as in
Fig. 6 to generate P = {Sik,jk}t

k=1 ← SDCover(R ∪ T
TTS,FBT).

(iii) To identity at least one traitor from the subset belonging to the disjoint
partition P = {Sik,jk}t

k=1, the tracer iteratively performs the following
steps.

Trace and Revoke Without Random Oracles from Déjà Q Framework 481

Inputs: k ∈ [0, t], P = {Sik,jk}t
k=1

Output: flagk

1. The tracer chooses a random message R ∈ {0, 1}η, a random exponent s ∈ Zn,
computes

ciphrSil
,jl

=

{
TRSCCTGen(Sil,jl , s, R) for 0 ≤ l ≤ k

TRSCCTGen(Sil,jl , s, M) for k + 1 ≤ l ≤ t

and sets
CT

(k)

R∪TTTS = P ∪
{
ciphrSil

,jl
| 0 ≤ l ≤ t

}
;

2. The tracer submits CT(k)

R∪TTTS to the pirate decoder D which in turn outputs M
′ ∈

{0, 1}η to the tracer;
3. Then, tracer sets

flagk =

{
success if M = M

′

failure otherwise

Fig. 9. Tracing experiment TrExpk for k = 0, 1, . . . , t.

– The tracer runs the experiment TrExpk of Fig. 9 for k = 0, 1, . . . , t. Let
pk = Pr[flagk = success] be the success probability in the above experiment
TrExpk for k = 0, . . . , t. Clearly, TrExp0 has the success probability p0 = p
which is greater than the threshold value 0.5 (say), whereas in the experiment
TrExpt the success probability is pt = 0 and hence the difference between the
success probability in the experiment TrExpt and in the experiment TrExp0

is |pt − p0| = p. Using the triangular inequality, we can assume that there
must exists at least one m ∈ {0, . . . , t} such that |pm − pm−1| ≥ p

t . Let
the advantage of breaking the security of indistinguishability of our TRSC
scheme is ε = AdvInd−TRSC

A (η) =
∣
∣Pr[b

′
= b] − 1

2

∣
∣, which is negligible. If

|pm − pm−1| ≥ p
t ≥ ε, then the collection Sim,jm must contain at least one

traitor user as explained below.

From the D’s point of view CT
(m−1)

R∪TTTS = P ∪
{
ciphrSil

,jl
| 0 ≤ l ≤ t

}
where

ciphrSil
,jl

=

{
TRSCCTGen(Sil,jl , s, R) for 0 ≤ l ≤ m − 1
TRSCCTGen(Sil,jl , s,M) for m ≤ l ≤ t

that contains m − 1 noisy encryption of the random message R is different
from CT

(m)

R∪TTTS = P ∪
{
ciphrSil

,jl
| 0 ≤ l ≤ t

}
where

ciphrSil
,jl =

{
TRSCCTGen(Sil,jl , s, R) for 0 ≤ l ≤ m

TRSCCTGen(Sil,jl , s,M) for m + 1 ≤ l ≤ t

that contains m noisy encryption of the random message R only if the decoder
D is able to distinguish between ciphrSim,jm

= TRSCCTGen(Sim,jm , s,M) and

482 M. Mandal and R. Dutta

ciphrSim,jm
= TRSCCTGen(Sim,jm , s, R). This is infeasible under the security

of indistinguishability of TRSC scheme. As |pm − pm−1| ≥ ε, it must be the
case that D contains the secret key KSim,jm

=
(
K

(im,jm)
0 ,K

(im,jm)
1 ,K

(im,jm)
2

)

corresponding to the collection Sim,jm .
– If the aforementioned procedure cannot find such subset Sim,jm that contains

at least one traitor users’ identity, then the tracer stops all the iterations and
outputs the set T

TTS as the set of all traitors.
– If the collection Sim,jm contains more than two users, then employ the bifurca-

tion algorithm
(
Sim1 ,jm1

∪ Sim2 ,jm2

)
← SDBifur(Sim,jm) as explained in Fig. 1.

It removes Sim,jm from the disjoint partition P and adds Sim1 ,jm1
, Sim2 ,jm2

to P. Then, go to step (iii).
– If the collection Sim,jm contains only one user uf , then the tracer stops the

current iteration and sets T
TTS = T

TTS ∪ {uf}. Then, go to step (ii).
(iv) Finally, the tracer outputs the set T

TTS as the set of all traitor user.

Correctness. The correctness of our TRSC scheme requires to verify the two
condition 2.(f) of the decryption program TRSCDec of Fig. 8. Observe that in
condition 2.(b) of the program TRSCDec of Fig. 8, the decryptor u encounters
vi = vi′ , dj = dj′ and vj
= vj′ . Accordingly, it can derive (stri, strj) ← f ID(vi, vj)

and (stri′ , strj′) ← f ID(vi′ , vj′). Then, u can set Lev
(i)
1 ∈ Z

∗
n as the integer

representation of the string (stri||bin(dj)) ∈ {0, 1}∗, Lev(j)
2 = strj , Lev

(i
′
)

1 ∈ Z
∗
n

as the integer representation of the string (stri′ ||bin(dj′)) ∈ {0, 1}∗ and Lev
(j

′
)

2 =

strj′ . Since vi = vi′ and dj = dj′ , thus Lev
(i)
1 = Lev

(i
′
)

1 . However, Lev
(j)
2
=

Lev
(j

′
)

2 as vj
= vj′ . Finally, the correctness of the condition 2.(f) of the program
TRSCDec of Fig. 8 can be verified as follows.

C
(i,j)
3 ⊕ H(e(C(i,j)

0 ,K
(i

′
,j

′
)

0)
/[

e(C(i,j)
1 ,K

(i
′
,j

′
)

1) · e(C(i,j)
2 ,K

(i
′
,j

′
)

2)
] 1

Lev
(j′)
2 −Lev

(j)
2

= M ⊕ H
(
e(g1, τ)s

)
⊕ H

(
e
(
g1, τ

)s · e
(
g1, β

)rs

[
e
(
g1, β

)rs
(
Lev

(j′)
2 −Lev

(j)
2

)
] 1

Lev
(j′)
2 −Lev

(j)
2

)

= M

Remark 1. The covering algorithm SDCover of Fig. 6 is only defined for r ≥ 1.
One simple way to handle the case r = 0 is to use a dummy user that is always
revoked. One important observation regarding the unique private set generation
and the disjoint covering algorithm is formally stated by the following lemma.

Lemma 3 ([14]). Let N be the number of leaf nodes in a full binary tree and r
be the size of a revoked set of users. Then the algorithm SDKGen of Fig. 4 outputs
a unique private set of size O(log2 N) and the algorithm SDCover of Fig. 6 outputs
a disjoint partition of size at most 2r − 1.

Note that the SDKGen algorithm in a cryptosystem generally can be replaced by
the LSubDif based key generation algorithm of Halevy and Shamir [9] since the
LSubDif scheme is a special case of subset difference (SubDif) scheme.

Trace and Revoke Without Random Oracles from Déjà Q Framework 483

Lemma 4 ([9]). Let N be the number of leaf nodes in a full binary tree and r
be the size of a revoked set. In the LSubDif scheme, the size of a private set is
O(log1.5 N) and the size of a covering set is at most 4r − 2.

4 Security

Theorem 1 (Security of Indistinguishability). Adopting the SubDif tech-
nique, our TRSC scheme, presented in Sect. 3, achieves adaptive CPA-security
under the subgroup decision (SD) assumptions mentioned in Sect. 2.2.

Proof. We assume that there exists a PPT adversary A that makes at most
polynomial number of queries (say q) against our TRSC. In order to prove the
theorem, we proceed via. a series of hybrid games. The first hybrid corresponds
to the real indistinguishability security game of our TRSC, while the final hybrid
corresponds to one in which the adversary has no advantage. To accomplish the
aforementioned goal, we transform the challenge ciphertext from an encryption
on a message M∗

0 to an encryption on a message M∗
1 in such a way that each

hybrid game indistinguishable from the previous hybrid game. We use Advd to
denote the advantage of A in Game d.

Sequence of Hybrid Games

Game 0. This game corresponds to the real indistinguishability security game
of our TRSC. Due to the page restriction, the original security game will be pre-
sented in the full version of the paper.

Game 1. This game is identical to Game 0 with the only exception that we
change the challenge ciphertext CT

(b)
R∗ = (dcvrR∗ , {ciphrSi,j

: Si,j ∈ dcvrR∗})

← TRSC.Encrypt (R∗, M∗
b , trscmpk). For each ciphrSi,j

= (C(i,j)
0 , C

(i,j)
1 , C

(i,j)
2 ,

C
(i,j)
3), we change the distribution of C

(i,j)
0 , C

(i,j)
1 , C

(i,j)
2 , C

(i,j)
3 from C

(i,j)
0 ,

C
(i,j)
1 , C

(i,j)
2 , C

(i,j)
3 ∈ Gp1 to C

(i,j)
0 , C

(i,j)
1 , C

(i,j)
2 , C

(i,j)
3 ∈ Gp1Gp2 . We choose

four random exponents θ1, z1, z2, l ∈ Zn and change each component of ciphrSi,j

as follows.

C̃
(i,j)
0 = C

(i,j)
0 · g

l
(

θ1+Lev
(i)
1

)

2 , C̃
(i,j)
1 = C

(i,j)
1 · gl

2,

C̃
(i,j)
2 = C

(i,j)
2 · g

l
(

z1Lev
(j)
2 +z2

)

2 , C̃
(i,j)
3 = C

(i,j)
3

Note that θ1, z1, z2, l are randomly chosen once and fixed to be used in other types
of private keys. We now construct a PPT adversary A1 for which Adv0 −Adv1 ≤
AdvSD1

A1
(η). The adversary A1 that solves the SD1 problem using A is given χμ =

(bilgr, g1, g3, Tμ), where either T0 = B1 ∈ Gp1 or T1 = B1B2 ∈ Gp1Gp2 . Then,
A1 simulates the entire Game 1 with the TRSC adversary A as follows.

– Runs TRSC.Setup(η, κ) algorithm honestly by choosing random exponents
x̂, û, ĥ, ŵ ∈ Zn and setting trscmsk = (x̂, τ = gŵ

1 , g3) and trscmpk = (FBT,
bilgr, f ID, g1, g

x̂
1 , β = gû

1 , 	 = gĥ
1 ,H,Δ = e(g1, Tμ)).

484 M. Mandal and R. Dutta

– To response private key queries in the KeyQuery phase, A1 perfectly answers
all the secret key queries since it knows trscmsk = (x̂, τ = gŵ

1 , g3).
– The adversary A submits a challenge revoked set of users R∗ and two equal

size messages M∗
0 ,M∗

1 ∈R M. For each subset Si,j ∈ dcvrR∗ , sets ciphrSi,j

components by implicitly setting gs
1 to be the Gp1 part of Tμ as follows.

C̃
(i,j)
0 = T

(
x̂+Lev

(i)
1

)

μ , C̃
(i,j)
1 = Tμ, C̃

(i,j)
2 = T

(
ûLev

(j)
2 +ĥ

)

μ , C̃
(i,j)
3 = H(Δŵ)⊕M∗

μ

Observe that if Tμ = B1, this is the original ciphertext of Game 0. If Tμ =
B1B2, this is the modified ciphertext created at Game 1.

– Finally, A outputs a guess μ
′
. If μ = μ

′
, then A1 outputs 1. Otherwise, it

outputs 0.

Game 2. This game is identical to Game 1 with the only exception that we
change the distribution of trpku for a user secret key query of u ∈ [N] in the
KeyQuery phase. For each subset Si′ ,j′ ∈ prvtu, we change the distribution of

KS
i
′
,j

′ . Let us assume that K̂
(i

′
,j

′
)

0 = τ
1

x+Lev1
(i′) β

r

x+Lev1
(i′) . Following the Déjà

Q framework of [4,15], we impose a random Gp2 - component in the secret

key component K
(i

′
,j

′
)

0 = K̂
(i

′
,j

′
)

0 Γ1 as follows.

K̂
(i

′
,j

′
)

0 Γ1
SD1−−→ K̂

(i
′
,j

′
)

0 g

r1

x+Lev1
(i′)

2 Γ1
CRT−−→ K̂

(i
′
,j

′
)

0 g

r1

x1+Lev1
(i′)

2 Γ1

SD1−−→ K̂
(i

′
,j

′
)

0 g

r2

x+Lev1
(i′)

2 g

r1

x1+Lev1
(i′)

2 Γ1
CRT−−→ K̂

(i
′
,j

′
)

0 g

2∑
i=1

ri

xi+Lev1
(i′)

2 Γ1

−−→ . . .
CRT−−→ K̂

(i
′
,j

′
)

0 g

q+1∑
i=1

ri

xi+Lev1
(i′)

2 Γ1

where r1, . . . , rq+1, x1, . . . , xq+1 ∈R Zn, and q is the maximum number of
key queries made by the adversary A in the KeyQuery phase. Observe that
in the first transition, we employ the Subgroup Decision (SD) 1 assump-
tion, which asserts that random elements of Gp1 and those of Gp1Gp2 are
computationally indistinguishable, and indistinguishably switched to the sec-
ond transition. In the second transition, we employ the Chinese Reminder
Theorem (CRT), it follows that if x mod p1 and x mod p2 are independently
random values, then we can replace x mod p2 with x1 mod p2 for a randomly
chosen x1 ∈ Zn, as long as the public parameter, challenge ciphertext and
the master secret key reveal no information about x mod p2. Performing this
two-step transition q times, the framework modifies the secret key component

to K̃
(i

′
,j

′
)

0 = τ
1

x+Lev1
(i′) β

r

x+Lev1
(i′) g

q+1∑
i=1

ri

xi+Lev1
(i′)

2 Γ1.

Sequence of SubGames of Game 2

[SubGame 2 − d − 0] and [SubGame 2 − d − 1], (d = 1, . . . , q + 1): For d =
1, 2, . . . , q + 1, we construct a sequence of sub-games SubGame 2 − d − 0 and

Trace and Revoke Without Random Oracles from Déjà Q Framework 485

SubGame 2 − d − 1 as follows.

– In SubGame 2 − d − 0, K̃
(i

′
,j

′
)

0 is given by

K̃
(i

′
,j

′
)

0 = τ
1

x+Lev1
(i′) β

r

x+Lev1
(i′) g

{
rd

x+Lev1
(i′)

+
d−1∑
i=1

ri

xi+Lev1
(i′)

}

2 Γ1

– In SubGame 2 − d − 1, K̃
(i

′
,j

′
)

0 is given by

K̃
(i

′
,j

′
)

0 = τ
1

x+Lev1
(i′) β

r

x+Lev1
(i′) g

d∑
i=1

ri

xi+Lev1
(i′)

2 Γ1

Observe that Game 1 is equivalent to SubGame 2 − 0 − 1 and consequently,
Adv1 = Adv2−0−1. Similarly, it readily follows that Game 2 is equivalent to
SubGame 2 − (q + 1) − 1 and consequently, Adv2 = Adv2−(q+1)−1. Moreover,
SubGame 2−d−0 and SubGame 2−d−1 are indistinguishable which is follows
from the fact that x mod p2 is completely hidden given master secret key and
the challenge ciphertext, and hence we may replace x mod p2 with xd mod p2.
Consequently, Adv2−d−0 = Adv2−d−1. We choose a random exponents γ1 ∈ Zn

and change the distribution of K
(i

′
,j

′
)

1 and K
(i

′
,j

′
)

2 as follow.

K̃
(i

′
,j

′
)

1 = K
(i

′
,j

′
)

1 · g
γ1(z1Lev

(j
′
)

2 +z2)
2 , K̃

(i
′
,j

′
)

2 = K
(i

′
,j

′
)

2 · g−γ1
2

We now construct another PPT adversary A2 for which Adv2−(d−1)−1 −
Adv2−d−0 ≤ AdvSD2

A2
(η). The adversary A2 that solves the SD2 assump-

tion using the TRSC adversary A is given a challenge tuple χμ =
(bilgr, g1, g3, g1,2, g2,3, Tμ), where either T0 = R1R3 ∈R Gp1Gp2 or T1 =
R1R2R3 ∈ Gp1Gp2Gp3 . Then, A2 simulates the entire experiment of Game 2
with the adversary A as follows.

– Runs TRSC.Setup(η, κ) algorithm honestly by choosing random exponents
x

′
, u

′
, h

′
, w

′
, t1 ∈ Zn and setting B1B2 = gt1

1,2, trscmsk = (x
′
, τ = gw

′

1 , g3) and

trscmpk = (FBT, bilgr, f ID, g1, g
x

′

1 , β = gu
′

1 , 	 = gh
′

1 ,H,Δ = e(g1, B1B2)).
– To response private key queries in the KeyQuery phase, A1 chooses l1 ∈R Zn,

Y0, Y1, Y2 ∈R Gp3 and sets

K̃
(i

′
,j

′
)

0 = T

1

x
′+Lev

(i′)
1

μ β

l1

x
′+Lev

(i′)
1 g

d−1∑
i=1

ri

x
′
i
+Lev1

(i′)
2,3 · Y0,

K̃
(i

′
,j

′
)

1 = T

(
u

′
Lev2

(j
′
)+h

′
)

l1

μ · Y1, K̃
(i

′
,j

′
)

2 = T−l1
μ · Y2

– The adversary A submits a challenge revoked set of users R∗ and two
equal size message M∗

0 ,M∗
1 ∈R M. For each subset Si,j ∈ dcvrR∗ , sets

ciphrSi,j
components as C̃

(i,j)
0 = (B1B2)(x

′
+Lev

(i)
1), C̃

(i,j)
1 = B1B2, C̃

(i,j)
2

= (B1B2)(u
′
Lev

(j)
2 +h

′
) and C̃

(i,j)
3 =H(Δw

′
) ⊕ M∗

μ.

486 M. Mandal and R. Dutta

– Finally, A outputs a guess μ
′
. If μ = μ

′
, then A2 outputs 1. Otherwise, it

outputs 0.

Observe that if T0 = R1R3 ∈R Gp1Gp3 , then this is exactly SubGame 2 − (d −
1)−1, and if T1 = R1R2R3 ∈ Gp1Gp2Gp3 , then this is exactly SubGame 2−d−0.
It follows readily that Adv1 − Adv2 ≤ (q + 1) · AdvSD2

A2
(η).

Game 3. This game is identical to the previous game with the only exception

that we replace
q+1∑

i=1

ri

xi+Lev1(i′) in K̃
(i

′
,j

′
)

0 with RF(Lev(i
′
)

1) where RF : Z
∗
n → Zp2

is a truly random function. Indeed, K̃
(i

′
,j

′
)

0 can now be written as K̃
(i

′
,j

′
)

0 =

τ
1

x+Lev1
(i′) β

r

x+Lev1
(i′) g

RF(Lev
(i

′
)

1)
2 Γ1, which have independently random Gp2 compo-

nents. It follows from the core lemma of Déjà Q framework (Lemma 2) stated
in Sect. 2.4 that Adv2 − Adv3 ≤ O

(
q2

p2

)
.

Game 4. This game is exactly same as the previous game except that we replace
H(Δs) = H (e(g1, τ)s) in C̃

(i,j)
3 with a random element Φ ∈ {0, 1}η. Observe the

following quantity from which H(Δs) is derived.

� = e(C̃(i,j)
0 , K̃

(i
′
,j

′
)

0)

/ [
e(C̃(i,j)

1 , K̃
(i

′
,j

′
)

1) · e(C̃(i,j)
2 , K̃

(i
′
,j

′
)

2)
] 1

Lev
(j′)
2 −Lev

(j)
2

= H(Δs) · e(g
l
(

θ1+Lev
(i)
1

)

2 , g
RF(Lev

(i
′
)

1)
2)

[

e(gl
2 , g

γ1(z1Lev
(j′)
2 +z2)

2) · e(g
l
(

z1Lev
(j)
2 +z2

)

2 , g−γ1
2)

] 1

Lev
(j′)
2 −Lev

(j)
2

= H(Δs) · RV

Clearly, the above quantity has H∞(�) = log p2 = Θ(η) bits of min-entropy

coming from RF(Lev(i
′
)

1) since Lev
(j

′
)

2
= Lev
(j)
2 . This holds as long as the Gp2

components of RV are not the identity elements of the group, which happens
with probability 1 − 1

p2
. Hence, with overwhelming probability the relation η =

H∞(�) − 2 log 1
ε − O(1) is satisfied by ε = 2−Ω(η). Further, note that H : GT →

{0, 1}η is sampled from a pairwise independent hash family H uniformly and
independently of �. Thus, by the left-over hash lemma (Lemma 1) stated in
the Sect. 2.3, it follows that the statistical distance Δ((H(�),H), (Uη,H)) ≤ ε

2 ,
Uη is the uniform random variable over {0, 1}η. Thus, in other words, H(Δs)
generated in Game 4 is nearly uniformly distributed over {0, 1}η.

Therefore, the view of the adversary A is statistically independent of the
challenge bit b ∈ {0, 1} since the distribution of the challenge ciphertext is uni-
formly random over Gp1Gp2 , as well as, the users’ secret keys are also uniformly
random over Gp1Gp2Gp3 . Hence, the challenger C can change each components
of the challenge ciphertext from an encryption on M∗

0 to an encryption on M∗
1 .

Trace and Revoke Without Random Oracles from Déjà Q Framework 487

Moreover, A cannot distinguish the changes with more than a non-negligible
probability since the number of hybrid game is just polynomial. Hence, the
advantage in Game 4 is given by Adv4 = 0.

Theorem 2 (Security of Traceability). Suppose that our TRSC, presented
in Sect. 3, is indistinguishable under a chosen plaintext attack. Then, our publicly
traceable TRSC.TraceD algorithm outputs identity of all the traitors, i.e., fully
collusion resistant.

Proof. In the beginning, C provides A the total number of users N , security
parameter η of the system and another parameter ε. We proceed via. following
steps.

Setup. Taking as input the security parameter η and the length of each user
identity κ, C executes the TRSC.Setup(η, κ) algorithm honestly to get the master
public key trscmpk and the master secret key trscmsk. Afterward, C publishes
trscmpk and keeps trscmsk secret to itself.

KeyQuery. The adversary A is allowed to submit polynomially many secret
key queries for users u1, . . . , uq ∈ [N] to the challenger C. For each user ui

with 1 ≤ i ≤ q, C executes the key generation algorithm TRSC.KeyGen (ui,
trscmpk, trscmsk) to generate the private key trpkui

. The challenger C first runs
the program SDKGen of Fig. 4 to determine a unique private set prvtui

for the
user ui. Afterward, C runs the tracing private key generation program TRSCKGen

of Fig. 5 and outputs the private key trpkui
. Let E be the total set of users whose

private keys were obtained by A, i.e., E = {u1, u2, . . . , uq} ⊆ [N].

Challenge. Towards the end, A outputs a revoked set RD of users and a pirate
decoder box D formed by a set of traitor users.

TraceD. Taking as input the revoked set of users RD from A, the challenger C
executes the tracing algorithm TRSC.TraceD(RD, ε, trscmpk) to get a rogue user’s
set T

TTS. Let us assume that D can decrypt the ciphertext CTRD , corresponding
to the revoked set of users RD and a random message M ∈ M, with more than ε
probability. So that D is a ε-useful decoder. According to the following Lemmas 5
and 6, we can prove that the traitor set T

TTS outputted by our tracing algorithm
TRSC.TraceD is non-empty and also T

TTS ⊆ E \ RD. This completes our proof.

Lemma 5. Assuming the indistinguishability security of our TRSC scheme, pre-
sented in Theorem 1, our tracing algorithm TRSC.TraceD outputs the identity of
at least one traitor, i.e., T

TTS is non-empty.

Lemma 6. Assume that the output of our tracing algorithm TRSC.TraceD, pre-
sented in Sect. 3, is non-empty, i.e., T

TTS
= ∅. Then, T
TTS ⊆ E \ RD.

Due to the page limit, the proof of the Lemmas 5 and 6 will be given in the full
version of the paper.

488 M. Mandal and R. Dutta

5 Conclusion

In this work, we have designed an adaptively secure public-key TRSC scheme
from SubDif technique without ROM. Integrating the Déjà Q framework, we
eliminate q-type assumptions and analyze the security in the standard-security
model under the hardness of subgroup decision problem. Moreover, our construc-
tion outperforms the existing similar works by reducing the parameter sizes.

References

1. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

2. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 34

3. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke
system. In: ACM-CCS 2006, pp. 211–220. ACM (2006)

4. Chase, M., Meiklejohn, S.: Déjà Q: using dual systems to revisit q-type assump-
tions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 622–639. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5 34

5. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48658-5 25

6. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In:
Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-44993-5 5

7. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48329-2 40

8. Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building efficient fully
collusion-resilient traitor tracing and revocation schemes. In: ACM-CCS 2010, pp.
121–130. ACM (2010)

9. Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9 4

10. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way
functions. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory
of Computing, pp. 12–24. ACM (1989)

11. Kiayias, A., Yung, M.: On crafty pirates and foxy tracers. In: Sander, T. (ed.)
DRM 2001. LNCS, vol. 2320, pp. 22–39. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-47870-1 3

12. Lee, K., Koo, W.K., Lee, D.H., Park, J.H.: Public-key revocation and tracing
schemes with subset difference methods revisited. In: Kuty�lowski, M., Vaidya, J.
(eds.) ESORICS 2014, Part II. LNCS, vol. 8713, pp. 1–18. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11212-1 1

https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/11761679_34
https://doi.org/10.1007/11761679_34
https://doi.org/10.1007/978-3-642-55220-5_34
https://doi.org/10.1007/978-3-642-55220-5_34
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/978-3-540-44993-5_5
https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/3-540-45708-9_4
https://doi.org/10.1007/3-540-45708-9_4
https://doi.org/10.1007/3-540-47870-1_3
https://doi.org/10.1007/3-540-47870-1_3
https://doi.org/10.1007/978-3-319-11212-1_1

Trace and Revoke Without Random Oracles from Déjà Q Framework 489

13. Mandal, M., Dutta, R.: Cost-effective private linear key agreement with adap-
tive CCA security from prime order multilinear maps and tracing traitors. In:
SECRYPT 2018, pp. 356–363. SciTePress (2018)

14. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 3

15. Wee, H.: Déjà Q: Encore! un petit IBE. In: Kushilevitz, E., Malkin, T. (eds.) TCC
2016, Part II. LNCS, vol. 9563, pp. 237–258. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49099-0 9

https://doi.org/10.1007/3-540-44647-8_3
https://doi.org/10.1007/978-3-662-49099-0_9
https://doi.org/10.1007/978-3-662-49099-0_9

Attribute-Based Encryption with Efficient
Keyword Search and User Revocation

Jingwei Wang1, Xinchun Yin1,2(B), Jianting Ning3, and Geong Sen Poh3

1 School of Information Engineering, Yangzhou University, Yangzhou 225100, China
M160437@yzu.edu.cn

2 Yangzhou University Guangling College, Yangzhou 225100, China
xcyin@yzu.edu.cn

3 Department of Computer Science,
National University of Singapore, Singapore, Singapore

{ningjt,pohgs}@comp.nus.edu.sg

Abstract. Ciphertext policy attribute-based encryption (CP-ABE) is
a promising cryptographic technology and a key component that enable
secure data sharing in a cloud environment through fine-grained access
control. Since it was introduced, many interesting schemes have been
proposed. However, in addition to managing data sharing through access
control, a comprehensive scheme should also cater for user revocation and
ciphertext queries. This is because in a cloud environment new users
may join while existing users may leave the system. At the same time,
given the potentially large amount of data stored in a cloud storage,
user should be able to retrieve the required files efficiently in a privacy-
preserving manner. To address the above issue, in this paper, we propose
a practical searchable CP-ABE scheme supporting user revocation. In
contrast to existing schemes that provide only single keyword query, our
efficient search function provides conjunctive search, which allows user
to locate a ciphertext related to a set of keywords. The computation
overhead of our user revocation is at least on par with existing schemes.
Besides, the security analysis indicates that the proposed scheme is secure
under the decisional Bilinear Diffie-Hellman assumption. We also provide
extensive experimental results to confirm the efficiency and feasibility of
our proposed construction.

Keywords: Attribute-based encryption · Keyword search ·
User revocation · Access control · Cloud storage

1 Introduction

Data sharing has been regarded as one of the most promising applications of
cloud computing in current research community as well as for commercial usage.
A great number of companies and individuals nowadays prefer to outsource or
upload their data to the cloud to enjoy the benefits provided by cloud server [29].
However, there still exist potential risks that threaten users’ security. The key
c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 490–509, 2019.
https://doi.org/10.1007/978-3-030-14234-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_26&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_26

ABE with Efficient Keyword Search and User Revocation 491

concern is data privacy when sensitive data outsourced to the third-party cloud
server provider [4,21]. This is because once the data is stored in the cloud storage,
generally the user loses control of the data if no security measure prepared. The
data may be leaked due to unintentional human error or the cloud storage being
compromised. As a result numerous mechanisms, including proposals based on
attribute-based encryption, have been proposed by researchers to prevent data
leakage and make sure only legitimate users can access these data [10,14,18,31].

Attribute-based encryption (ABE), which was first proposed by Sahai and
Water in [23], can be considered as a promising solution to the problem described
above. ABE mainly consists of ciphertext-policy ABE (CP-ABE) [2] and key-
policy ABE (KP-ABE) [6]. In CP-ABE, ciphertext is associated with an access
structure and user’s secret key is associated with an attribute set. Only when
the attribute set related to user’s secret key satisfies the access structure hidden
in the ciphertext can the user perform decryption. This is in contrast to KP-
ABE, where the secret key is associated with an access structure. As a reliable
method to preserve privacy of data stored in the cloud, the access structure of
CP-ABE is defined by data owner (DO), which makes CP-ABE more suitable
in the context of cloud data sharing [16].

1.1 Our Motivation

Although CP-ABE fits the cloud environment well in addressing the issue of
data privacy, there still exist some challenges that prevent its wide adoption in
commercial applications. Consider a company that creates a project consisting
of a group of employees, where the related file, encrypted under an access policy,
are stored in the cloud server. Employees responsible for this project are assigned
with several attributes (e.g., “group G”, “project P”). Only employees with these
attributes can access the data of the project. However, when one of the employees
resign from the company or he moves to another group, how can we revoke his
access ability? Besides, a company may have lots of projects in the cloud server.
How can the staff retrieve files efficiently and safely?

One of the main solutions is to construct a user revocation mechanism for the
system [33]. After revocation, the revoked users will not be able to decrypt the
ciphertext anymore even if his attribute set satisfies the access structure. Col-
lusion resistance mechanism should also be provided to prevent collusion attack
launched by revoked users at the same time [9]. Besides, searching for the exact
ciphertext in the cloud is not easy, especially when the number of ciphertext in
the cloud server is large. Most of the existing ABE scheme assumed that the sys-
tem is able to locate the correct ciphertext for data user (DU) automatically. We
design and construct an efficient ciphertext search function to help data users
search quickly with some keywords in the cloud server. In fact, it only needs
twice bilinear pairing computation.

492 J. Wang et al.

1.2 Our Contributions

Inspired by [25], we propose a practical ciphertext-policy attribute based encryp-
tion system, which focus on the problem of user revocation and ciphertext search.
The contributions of our work are as follows:

1. Effective ciphertext search. We propose ciphertext (encrypted) search
that cost only twice bilinear pairing computation. Specifically, when data
owner (DO) upload the ciphertext to the cloud server, a set of related
encrypted keywords will be attached to the ciphertext. If a data user wishes
to access some of the encrypted data in the system, he should generate and
send a trapdoor of the related keywords to cloud server provider (CSP). On
receiving the trapdoor, CSP first checks whether this data user is authorized
to access the ciphertext. Only if the data user has sufficient attributes can
he access the data. Then CSP compares the trapdoor with the encrypted
keywords in the ciphertext by a short bilinear pairing computation.

2. User revocation. We propose a new mechanism, in which the notion of
version control is used to realize the function of user revocation. In our system,
ciphertext and secret key are managed by a parameter called “ver”. When a
data user is removed from the system, trusted authority will randomly select
a new “ver” so that cloud server provider and the remaining data users can
update ciphertext alone with secret key by themselves. As a result, cloud
server provider do not have to manage the revocation list. If the “ver” in the
access request is not the same with the one in the system, then the request
will not be performed.

3. Collusion resistance. The proposed system is resistant to collusion attack
launched by revoked data users and the remaining data users in the system.
Specifically, the secret key of each data user in the system is generated accord-
ing to “ver” and the identity information both, so that the secret keys will
be different even if the attribute set of two users are the same.

We further prove security of our system under the decisional Bilinear Diffie-
Hellman assumption. Besides, we simulate the experiment and compare the per-
formance of our system with existing works.

1.3 Related Work

ABE provides fine-grained access control to ciphertext stored in the cloud. This
means data owners only need to outsource their data to third-party cloud server
providers without worrying about data management. By doing so, the cloud
server providers can assist the data owner to communicate with data users.
However, the separation of data and the data owner brings new problems. When
the information to be shared is sensitive, data owner may have concern on data
leakage. To protect their data, many schemes have been proposed to secure data
against unauthorized access [11,20]. For example, Ning et al. [17] proposed a
solution to trace the malicious users who leaks their decryption keys to keep
their data from leakage. On the other hand, cloud providers’ resource is not

ABE with Efficient Keyword Search and User Revocation 493

infinite, they need to make full use of their platform to provide reliable server
with minimal cost. Schemes focus on outsourcing computing such as [13,15] can
greatly relief the expense of data user in the system.

The conventional solution to search over encrypted data is to download all
the ciphertext in the cloud and retrieve the required data, which is inefficient
and infeasible [12]. Practical schemes were then proposed. Since first introduced
by Song et al. in [24], searchable encryption schemes [26,32] have been adopted
by many researchers. Xiong et al. [30] provided a searchable CP-ABE in the
cloud. In their scheme, homomorphic encryption is used to realize the search
function. They encrypt the message under homomorphic encryption and the
key of homomorphic encryption is encrypted by CP-ABE. But the computing
expense is relatively high, which brings no benefit to its application. Su et al. [25]
proposed a practical searchable CP-ABE scheme, which minimized computation
of search phrase. However, their scheme only focuses on the problem of keyword
search. We rich our scheme with the function of user revocation. Padhya et al.
[22] proposed a searchable CP-ABE, which hides ciphertext policy. Wang et al.
[27] proposed a method to achieve fast keyword search on ciphertext. However,
both of their computation costs in the search algorithm require at least three
times of bilinear pairing operation, which is more than that of ours. [5] proposed
a scheme supporting fuzzy keyword search, so that data users can get all the
related ciphertext with his keywords, but it cost a lot more in search phase than
our’s scheme.

User revocation is another concern for data sharing in the cloud. It is a
common phenomenon to revoke a user from accessing sensitive data when he is
no longer a member of the system. This means the ciphertext should be updated
so that the revoked user cannot use his old secret key to decrypt the updated
ciphertext anymore. In recent years, many CP-ABE scheme supporting user
revocation have been proposed in the literature. Cui et al. [4] addressed this
problem through disabling the search capability of revoked user. When a user
should be revoked, the administrator in the system only has to update a secret
value stored on the cloud server. Their scheme is efficient, but it is not clear how
they classify the revoked users and non-revoked users. Padhya et al. [22] realized
user revocation by adding a user revocation list to the ciphertext in the phase
of encryption. But it only fits the situation when the number of system user is
small. It will be complex to manage a revocation list in the cloud environment.
Besides, employ an accountable authority to audit malicious operation in the
system is also a smart solution to prevent the malicious attacks [19].

1.4 Organization

In Sect. 2, we state the preliminaries, including bilinear pairings, linear secret-
sharing schemes, access structure, access tree and the computational assumption.
Section 3 outlines the system model, definition and security model. In Sect. 4, an
attribute-based encryption with efficient keyword search and user revocation is
proposed. In Sect. 5, a security analysis about our scheme is given. We test the pro-
posed scheme with an experiment in Sect. 6. Finally, Sect. 7 concludes this paper.

494 J. Wang et al.

2 Preliminary

2.1 Bilinear Pairings

Let G and GT be cyclic groups with prime order p and g is the generator of G.
A bilinear map e [8] has the following properties:

1. Bilinearity: For any u, v ∈ G and a, b ∈ Zp, e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: There exists u, v ∈ G such that e(u, v) �= 1.
3. Computability: For all u, v ∈ G, there is an efficient computation e(u, v).

2.2 Linear Secret-Sharing Schemes (LSSS)

Let p be a prime and U be the attribute universe. A secret-sharing scheme
∏

with domain of secrets Zp realizing access structures on U is linear over Zp if:

1. The shares of a secret p ∈ Zp for each attribute form a vector over Zp.
2. For each access structure A on U, there exists a matrix M ∈ Z

l×n
p , called the

share-generating matrix, and a function ρ, that labels the rows of M with
attributes from U (details can be found in [1]), which satisfy the following
rules:
During the generation of the shares, we consider the column vector v =
(s, r2, r3, . . . , rn)⊥, where s ∈ Zp is the secret to be shared and r2, . . . , rn ∈ Zp

are randomly chosen. Then the vector of l shares of the secret s according to∏
is equal to Mv ∈ Z

l×1
p . The share (Mv)j where j “belongs” to attribute

ρ(j).
Generally speaking, access structure A will be represented by the pair (M, ρ).

2.3 Access Structure

Let {A1, A2, . . . , An} be a group of attributes. For ∀B,C, if B ∈ A and B ⊆ C,
then C ∈ A, we say that A ⊆ 2{A1,A2,...,An} is monotone. An access structure
contains a set A of non-empty subsets of {A1, A2, . . . , An}. Elements in A are
named the authorized elements, and the other elements are referred to as unau-
thorized elements.

2.4 Access Tree

Let T represents an access tree and x be a node of T . Every non-leaf node x of
T denotes a threshold gate, which is stated by the number of its children numx

and its threshold lx, where lx ∈ [1, numx]. The threshold gate means an OR gate
when lx = 1. It means an AND gate when lx = numx. Each leaf node x of T is
stated by an attribute and a threshold lx = 1.

ABE with Efficient Keyword Search and User Revocation 495

In the access tree, some functions are defined to facilitate working with T .
We depict the parent for the node x of the tree by parent(x). The attribute asso-
ciate with the leaf node x of the tree is represented by function att(x). We use
1 to numx to define the order of every node in the access tree T . The function
index(x) denotes a number associated with the node x, where the index values
are uniquely assigned to nodes of the access policy for a given ciphertext in an
arbitrary manner.

Satisfying an Access Tree: Let T be an access tree with root R, and Tx

represents the subtree rooted at the node x in T . Namely, T can be replaced
by TR. Tx(S) = 1 is used to denote the situation that attribute set S satisfies
Tx. Tx(S) is evaluated recursively as follows: if x is a non-leaf node, we compute
Tx′(S) for all children x′ in node x. Tx(S) outputs 1 if and only if at least
lx children return 1. If x is a leaf node, then Tx(S) outputs 1 if and only if
att(x) ∈ S.

2.5 The Decisional Bilinear Diffie-Hellman Assumption

A challenger selects a group G with prime order p according to the security
parameter. Let g be a generator of G and a, b, s ∈ Zp be selected at random.
If the challenger gives an adversary (g, ga, gb, gs), it must be difficult for the
adversary to distinguish a valid tuple e(g, g)abs ∈ GT from a random element
R ∈ GT . An algorithm B that outputs ϑ ∈ {0, 1} has advantage ε in solving
DBDH in G if:

|Pr[B(g, ga, gb, gs, Z = e(g, g)abs) = 0] − Pr[B(g, ga, gb, gs, Z = R) = 0]| � ε.

Definition 1. The DBDH assumption holds if all poly-time algorithms have at
most a negligible advantage in solving DHDH problem.

3 An Attribute-Based Encryption System with Efficient
Keyword Search

3.1 System Model

As illustrated in Fig. 1, in the proposed scheme, there exists four types of entities:
a trusted authority (TA), a cloud server provider (CSP), data user (DU) and
data owner (DO).

TA: It is the only trusted entity in the system. It is responsible for not just
generating system parameters, but also attribute authorizing and secret key
issuing for the new enrolled users.

496 J. Wang et al.

Fig. 1. System model of attribute-based encryption with efficient keyword search and
user revocation

CSP: t is the manager of cloud server in the system. It provides the service
of data storage, keyword search and ciphertext update. It is also a semi-trusted
entity in the system, which means it will collect users’ information as much as
possible.

DU: Data user is a kind of user in the system. They would like to access the
encrypted data in the cloud server. According to attribute-based encryption
scheme, a data user is able to access the encrypted data, if and only if his
attribute set satisfies the access tree defined by data owner.

DO: Data owner is another kind of user in the system. They would like to share
their data in the cloud to some qualified people. Before they upload their data to
the cloud server provider, data owners usually encrypt their data with an access
policy defined by themselves. Besides, some encrypted keywords related to the
data will also be attached to the ciphertext for the easement of searching.

3.2 Definition

Attribute-based encryption with efficient keyword search and user revocation is
defined as follow:

– Setup(1λ, L) → (PK,MSK): This is an initialization algorithm. On input
a security parameter λ and an attribute universe L = {a1, a2, . . . , am}, the
algorithm outputs the public key PK and the master key MSK.

– KeyGen(MSK,UID, S) → SK0: This is a secret key generation algorithm.
On input MSK, user identity UID and an attribute set S that depicts the
key, the algorithm outputs a secret key SK.

ABE with Efficient Keyword Search and User Revocation 497

– The encryption phrase consists of two parts. Firstly, data owner randomly
selects a symmetric key ck to encrypt the data by employing a symmetric
encryption algorithm, the encrypted data is denoted by Eck(M). Secondly,
data owner encrypts ck with the following algorithms:
Encryption(PK, ck, T) → CT : This is a encryption algorithm. On input the
PK, symmetric key ck and an access tree T , the algorithm outputs ciphertext
CT which will be delivered to cloud server provider.

– Update(PK, vver) → (vver+1, Re − Keyver→ver+1): This is an update algo-
rithm. On input PK, and current version number vver, the algorithm outputs
vver+1 and re-encryption key Re − Keyver→ver+1. Moreover, CSP sends a
UPver to users who still in the system so that they can update their secret
key.

– User update(SKver, UPver) → SKver+1: This is an user update algorithm.
Once DU receives the UPver from TA then he can update his secret key. The
algorithm takes the old secret key SKver and update parameters UPver as
input, and outputs new secret key SKver+1.

– Re-Encryption(CTver, Re − Keyver→ver+1) → CTver+1: This is a re-
encryption algorithm. On input the old version ciphertext CTver and
Re − Keyver→ver+1, the algorithm outputs the updated ciphertext CTver+1.
Besides, in order to facilitate the ciphertext search, DO encrypts several key-
words and attaches them to the ciphertext.

– KW Encryption(PK,KW) → CTW : This is a keyword encryption algo-
rithm. On input PK and a set of keywords selected by data owner, the algo-
rithm outputs the encrypted keywords CTW .

– Trapdoor(SKver, SKW) → trapdoor: This is a trapdoor generation algo-
rithm. On input data user’s secret key SKver and the keywords SKW that
need to be search, the algorithm (run by data user) outputs the encrypted
keywords trapdoor.

– Search(CTW , trapdoor) → CTver: This is a search algorithm. On input the
CTW and trapdoor, the algorithm outputs the matched ciphertext CTver.

– Decryption(CTver, SKver, PK) → ck: This is a decryption algorithm. On
input CTver, SKver and PK, the algorithm outputs the symmetric key ck.
Then data owner can further decrypt the Eck(m) by ck.

3.3 Chosen Plaintext Attack (CPA) Security

The proposed attribute-based encryption with efficient keyword search and user
revocation is chosen-plaintext attack secure, which can be defined by the security
game below.

– Init: A probabilistic polynomial time (PPT) adversary A submits the chal-
lenge access policy T ∗ and version number ver∗ to the challenger B.

– Setup: B runs the Setup() algorithm to generate public key PK. B ran-
domly selects v0 as version secret key. Then B runs the Update() algo-
rithm to update the version secret key from 0 to ver∗ and generate the
corresponding UPver+1, ver ∈ [0, ver − 1]. Finally, B sends the PK and
{UPver+1}0�ver�ver∗−1 to A.

498 J. Wang et al.

– Phrase 1: Adversary A selects a UID and adaptively submits the attribute
set S to B to query the secret key SK0 about S. The restriction is that
all queried attribute sets should not satisfy T ∗. Then, the adversary A can
update SK0 to SKver∗ according to the {UPver+1}0�ver�ver∗−1.

– Challenge: The adversary A submits the equal length message M0 and M1

to challenger B. After receiving the message, B randomly chooses c from
{0, 1} and runs Encryption() to generate the ciphertext CTb. Certainly, B
should run the Re−Encryption() algorithm to get the version of ver∗ of the
challenger ciphertext CTc.

– Phrase 2: A launches queries as phrase 1 and B answers as phrase 1.
– Guess: When the query phrase is over, A outputs its guess c

′ ∈ {0, 1}. A
wins the game if c

′
= c with the advantage of AdvA = |Pr[c = c

′
] − 1/2|.

Definition 2. An attribute-based encryption with effective keyword search and
user revocation scheme is CPA-secure if there exist no polynomial time adver-
saries can win this security game with a non-negligible advantage.

3.4 Chosen-Keyword Attack (CKA) Security

The proposed attribute-based encryption with efficient keyword search and user
revocation is chosen-keyword attack secure, which can be defined by the security
game below.

– Init: A probabilistic polynomial time adversary A submits t keywords
{W1,W2, . . . ,Wt} and to the challenger B.

– Setup: B runs the Setup() algorithm to generate public key PK. B randomly
selects v0 as version secret key. Then B sends the PK to A.

– Phrase 1: Adversary A selects a set of keywords SKW and submits it to
B to query the Trapdoor about SKW . The restriction is that all queried
keywords should not contain W1.

– Challenge: B randomly selects c from {0, 1} and runs KW Encryption()
algorithm to generate the encrypted keywords CTc.

– Phrase 2: A launches queries as phrase 1 and B answers as phrase 1.
– Guess: When the query phrase is over, A outputs its guess c

′ ∈ {0, 1}. And
A wins the game if c

′
= c with the advantage of AdvA = |Pr[c = c

′
] − 1/2|.

Definition 3. An attribute-based encryption with effective keyword search and
user revocation scheme is CKA-secure if there exist no polynomial time adver-
saries can win this security game with a non-negligible advantage.

4 Attribute-Based Encryption with Efficient Keyword
Search and User Revocation

For simplicity, we suppose that there are m attributes denoted by L =
{a0, a1, . . . , am} in the system. Let e : G × G → GT be a bilinear map, and
G be a bilinear group with prime order p and generator g. Let H : (0, 1)∗ → G

ABE with Efficient Keyword Search and User Revocation 499

be a security hash function, which maps any attribute to a random member of G.
For any i ∈ Zp, the Lagrange coefficient is Δi,L(x) = Πl∈L,l �=i

x−l
i−l . The detailed

construction are as follows:

– Setup(1λ, L) → (PK,MSK): The algorithm runs by TA. Its inputs are
a security parameter λ and the universe attribute set L. This algorithm
randomly selects a generator g ∈ G and α, β, γ ∈ Z∗

p . Then, TA calcu-
lates gα, e(g, g)β and gγ . For each attribute j ∈ L, TA chooses a random
vj ∈ Z∗

p and calculates Aj = H(j)vj . TA publishes the public key as PK =
{G, g, gα, e(g, g)β , gγ , Aj} and keeps the master key as MSK = {α, β, vj} to
its own.

– KeyGen(MSK,UID, S) → SK0: When a new user wants to join in the
system, he should submit his attribute set S = {a1, a2, . . . , an} to TA so that
he can get the secret key to decrypt and search. In our scheme, we use ver
to present the currently version number. When user revocation occurs, the
secret key will be updated to a new version. Specifically, TA randomly selects
v0, t, r1 ∈ Z∗

p . Then TA computes D = (g×H(UID)α)vvert, for ∀j ∈ S : Dj =
H(UID)vvert × H(j)vjt, and D

′
j = H(j)αt, so that SK = D,∀j ∈ S : Dj ,D

′
j .

Then it sends the secret key as t, SK to DU secretly. After that, TA computes
Ŝa = gr1 and Ŝb = (gγH(j)

∑
j∈S vj)r1 as the key to search for DU. Finally,

TA computes {UID,H(UID)r} in case that DU need to update his secret
key.

– The encryption algorithm consists of two steps.
Symmetric encryption: As symmetric encryption is more efficient than
asymmetric encryption, we decide to encrypt the data M by a symmetric
algorithm first. Let the symmetric key be ck, and the symmetric ciphertext
be Eck(M).
Encryption(PK, ck, T) → CT : DO defines an access tree T and encrypts ck
by running the encryption algorithm to output the CT

′
. Specifically, for each

node x in the access tree T , the DO first selects a random polynomial qx with
degree dx = kx − 1, where kx is the threshold value in the node x. Beginning
from the root node R, these polynomials are selected in a top-down manner.
The DO randomly chooses dR other points of qR to completely define them
after selecting a random number s ∈ Z∗

p , and setting qR(0) = s. For any
other node x, it sets qx(0) = qparent(x)(index(x)) and selects dx other points
to completely define them. Let the set of leaf nodes in the access tree T be
Y and the ciphertext CT

′
is as follows:

CT
′
=

{
T , C̃ = ck · e(g, g)s(β+vver), C = gs, C

′
= gαs,

∀y ∈ Y : Cy = gαqy(0), C
′
y = gqy(0)vatt(y)

}

– Update(PK, vver) → {vver+1, Re − Keyver→ver+1}: Considering the situa-
tion of user revocation, TA performs the update algorithm to generate the new
version secret key vver+1, and the re-encryption key Re − Keyver→ver+1 so
that the updated ciphertext would not be accessed by revoked user. Besides,
for every DU in the system, TA produces a secret key update component

500 J. Wang et al.

according their identity. So that they can update their secret key after the re-
encryption. TA selects a vver+1 as the new version secret key. Then TA com-
putes Re−Keyver→ver+1 = g(vver+1−vver)/α. For each user in the system, TA
generates a secret key update component by computing H(UID)vver+1−vver

and (g × H(UID)α)vver+1−vver . TA sends the Re − Keyver→ver+1 to CSP
to perform the re-encryption algorithm, and distributes the UPver+1 =
{UID,H(UID)vver+1−vver , (g × H(UID)α)vver+1−vver} to corresponding DU
to update their secret key.

– User update(SKver, UPver) → SKver+1: Upon receiving the UPver from
TA, DU computes D = D × (g × H(UID)α)t(vver+1−vver) = (g ×
H(UID)α)tvver+1 . ∀j ∈ S : Dj = Dj × H(UID)t(vver+1−vver) =
H(UID)vver+1t × H(j)vjt. Then the updated secret key is as follow:

SK = {(f × H(UID)α)vver+1t,∀j ∈ S : H(UID)vver+1t,H(j)αt}

– Re-Encryption(CTver, Re−Keyver→ver+1) → CTver+1: CSP is responsible
for not only keeping the encrypted data, but also updating them when user
revocation happens. The computing process is as follow:

C̃ = C̃ × Re − Keyver→ver+1

= ck · e(g, g)s(β+vver+1)

So that the revoked user will not be able to access again.
– KW Encryption(PK,KW) → CTW : Let KW = {kw1, kw2, . . . , kwk}

denote the keywords related to the data. DO have to attach the encrypted
keywords to the ciphertext formed in Encryption algorithm. Then DO ran-
domly chooses a u ∈ Z∗

p and prepares an attribute set S
′

that contains all
the attributes in the access tree. DO computes Ĉa = g

u
H(kw1||kw2||...||kwk) , Ĉb =

(gγ
∏

j∈S′ Aj)u and CTkw = {Ĉa, Ĉb}. Finally, DO sends the complete cipher-
text CT = {Eck(M), CT

′
, CTkw} to the CSP.

– Trapdoor(SKver, SKW) → trapdoor: When DU wants to search the data
in the CSP, he first generates a trapdoor about the keywords he wants
to search. Let SKW = {skw1, skw2, . . . , skwk} denotes the keywords DU
chooses. DU randomly selects x ∈ Z∗

p . Then DU computes Tb = Ŝx
b ,

Ta = Ŝa

x
H(skw1||skw2||...||skwk) . Finally, DU sends the trapdoor = {Ta, Tb} to

CSP to search the data he needs.
– Search: Once the trapdoor is received, CSP conducts the search algorithm

to check if the authorization of the user’s keywords satisfies the keywords in
the ciphertext. By computing e(Ĉa, Tb) and e(Ĉb, Ta), the ciphertext wanted
will be send to DU later if the equation holds.

– Decryption(CTver, SKver, PK) → ck: When DU gets the wanted cipher-
text, he can decryption the data by the symmetric key ck encrypted in the
CT

′
. The detailed process is as follow: The decryption procedure is defined

as a recursive algorithm DecryptNode(CT
′

, SK, x), where x is a node in
the access tree T . If x is a leaf node. Let j = att(x). If j /∈ S, then

ABE with Efficient Keyword Search and User Revocation 501

DecryptNode(CT
′
, SK, x) = null. But if j ∈ S, then:

DecryptNode(ct
′
, SK, x) =

e(Dj , Cy)
e(D′

j , C
′
y)

=
e(H(UID)vvert × H(j)vjt, gαqx(0))

e(H(j)αt, gqx(0)vatt(x))

=
e(H(UID), g)αtvverqx(0)e(H(j), g)αtvjqx(0)

e(H(j), g)αtvjqx(0)

= e(H(UID), g)αtvverqx(0)

If x is a non-leaf node, the recursive algorithm DecryptNode(CT
′
, SK, x)

is defined as: for all nodes z that are children of x, it performs Fz =
DecryptNode(CT

′
, Sk, z). Let Sx be an arbitrary Kx sized child nodes set

{z}, then Fz �= null. If not, Fz is calculated as:

Fz =
∏

Z∈Sx

F
Δ

j,S
′
x(0)

Z

=
∏

Z∈Sx

(e(H(UID), g)αtvverqz(0))
Δ

j,S
′
x(0)

=
∏

Z∈Sx

(e(H(UID), g)αtvverqparent(z)(index(z)))
Δ

j,S
′
x(0)

=
∏

Z∈Sx

(e(H(UID), g)αtvverqx(j))
Δ

j,S
′
x(0)

= e(H(UID), g)αtvverqx(0)

where j = index(z) and S
′
x = {index(x) : z ∈ Sx}

If DU’s attribute set S satisfies the access tree T , the decryption algorithm
can be called from the root node R of T . And the result is as follow:

FR = DecryptNoode(CT
′
, SK,R)

= e(H(UID), g)αtvverqR(0)

= e(H(UID), g)αtvvers

Compute D
′
= D1/tgβ = gβgvverH(UID)αvver ,

F
′
R = F

1/t
R = e(H(UID), g)αvvers. Then Compute:

C̃ · F
′
R

e(D′ , C)
=

ck · e(g, g)s(β+vver)e(H(UID), g)αvvers

e(gβgvverH(UID)αvver , gs)

=
ck · e(g, g)s(β+vver)e(H(UID), g)αvvers

e(g, g)s(β+vver)e(H(UID), g)αvvers

= ck

Eck(M) can be decrypted with ck by applying the symmetric decryption
algorithm.

502 J. Wang et al.

5 Security Analysis

5.1 Chosen Plaintext Attack Security

Theorem 1. If there is a PPT adversary A that can break the scheme with
non-negligible advantage ε > 0, then there exists a PPT algorithm B that can
distinguish a DBDH tuple from a random tuple with the advantage of ε/2.

Proof. We can construct an algorithm B that breaks DBDH assumption with
the advantage ε/2. Namely, B can decide if Z = e(g, g)θ according the tuple
〈g, ga, gb, gc, Z = e(g, g)θ〉. Let G,GT be bilinear groups of prime order p with
generator g and e : G × G → GT . B randomly select a, b, s ∈ Z∗

p and an random
element E ∈ GT .

– Init: A submits a challenge access tree T ∗ and version number ver∗ to the
challenger B.

– Setup: B randomly selects α, β, γ, v0 where β = β
′
+ ab, then B calculates

gα, gγ and e(g, g)β = e(g, g)β
′
+ab. For each attribute j ∈ L, TA chooses a

random vj ∈ Z∗
p and calculates Aj = H(j)vj . Finally, B sends the public key

PK = {G0, g, gα, e(g, g)β , gγ , Aj} to A.
– Phase 1: In this phrase, A can launch two types of query: secret key query

and update query. In secret key query, A submits an UID and an attribute
set S ∈ L which do not satisfy the access tree to get the secret key SK from
B. When B receives the query, it randomly selects t, r1 ∈ Z∗

p and computes
D = (g × H(UID)α)v0t,Dj = H(UID)v0t × H(j)vjt,D

′
j = H(j)αt for ∀j ∈ S.

B sends the secret key SK = {D,∀j ∈ S : Dj ,D
′
j} to A. In order to update

SK to the version of ver∗, A needs to perform the update query. Then B
sends the {UPver+1}0≤ver≤ver∗−1 to A, so that A can compute D = D ×
(g × H(UID)α)t(vver+1−vver) and ∀j ∈ S : Dj × H(UID)t(vver+1−vver) =
H(UID)vver+1t × H(j)vjt. And the final SK = {(g × H(UID)α)vver∗ t,∀j ∈
S : H(UID)vver∗ t × H(j)vjt,H(j)αt}.

– Challenge: A submits two equal length message M0 and M1 to challenger
B. After receiving the message, B randomly chooses c from {0, 1} and runs
Encryption() to generate the ciphertext CTc. If c = 0, then Z = E. Otherwise,
B computes C̃ = Mc ·e(g, g)s(β+vver) = Mc ·e(g, g)s(β

′
+vver), C = gs, C

′
= gαs

then B performs as follow. For each node x in the access tree T ∗, B first selects
a random polynomial qx with degree dx = kx − 1, where kx is the thresh-
old value in the node x. Beginning from the root node R, these polynomials
are select in a top-down manner. B randomly chooses dR other points of qR to
completely define them, and then set qR(0) = s. For any other node x, it sets
qx(0) = qparent(x)index(x), then selects dx other points to completely define
them. Let the set of leaf nodes in the access tree T ∗ be Y .

– Phase 2: A launches queries as phrase 1 and B answers as phrase 1 too.
– Guess: A outputs its guess c

′ ∈ {0, 1}. If c
′

= c, then B outputs 0, which
means that Z = e(g, g)abs; otherwise, B outputs 1 means that Z = E.
If Z = e(g, g)abs, CT ∗ is a legal ciphertext and A′s advantage is ε. Thus:

Pr[B(g, ga, gb, Z = e(g, g)abs) = 0] = 1/2 + ε.

ABE with Efficient Keyword Search and User Revocation 503

If Z = E, then the CT
′
is invalid and:

Pr[B(g, ga, gb, Z = E = 0] = 1/2.

At last, the advantage of A is:

1
2
Pr

[
B

(
g, ga, gb, Z =e(g, g)abs

)
=0

]
+

1
2
Pr

[
B

(
g, ga, gb, Z = E

)
= 0

]
− 1

2
=

ε

2
.

5.2 Chosen-Keyword Attack Security

Theorem 2. If there is a PPT adversary A that can break the scheme with
non-negligible advantage ε > 0, then there exists a PPT algorithm B that can
distinguish a DBDH tuple from a random tuple with the advantage of ε/2.

Proof. We can construct an algorithm B that breaks DBDH assumption with
the advantage ε/2. Namely, B can decide if Z = e(g, g)θ according the tuple
〈g, ga, gb, gc, Z = e(g, g)θ〉. Let G,GT be bilinear groups of prime order p with
generator g and e : G × G → GT . B randomly selects u, v ∈ Z∗

p and two random
element h1, h2 ∈ G.

– Init: A probabilistic polynomial time adversary A submits t keywords
{W1,W2, . . . ,Wt} to the challenger B.

– Setup: B randomly selects α, β, γ, then B calculates gα, gγ and e(g, g)β . For
each attribute j ∈ L, TAchooses a random vj ∈ Z∗

p and calculatesAj = H(j)vj .
Finally, B sends the public key PK = {G0, g, gα, e(g, g)β , gγ , Aj} to A.

– Phrase 1: Adversary A submits a set of keywords SKW , where {W1,W2} /∈
SKW , to B to get the Trapdoor. On receiving the query, B computes Ta =
g

v
H(skw1||skw2||...||skwk) , Tb = (gγH(j)

∑
j∈S vj)v. Finally, B sends the trapdoor =

{Ta, Tb} to Adversary A.
– Challenge: B randomly selects c from {0, 1} and runs KW Encryption()

algorithm to generate the encrypted keywords CTc. If c = 0, B randomly
selects h1, h2 ∈ G and let Ĉa = h1, Ĉb = h2. Otherwise, it prepares an
attribute set S

′
that contains all the attributes in the access tree. B com-

putes Ĉa = g
u

H(kw1||kw2||...||kwk) , Ĉb = (gγ
∏

j∈S′ Aj)u. Finally, B sends the

encryption keywords CTc = {Ĉa, Ĉb} to the A.
– Phrase 2: A launches queries as phrase 1 and B answers as phrase 1.
– Guess: A outputs its guess c

′ ∈ {0, 1}. If c
′

= c, then B outputs 1,
which means that Ĉa = g

u
H(kw1||kw2||...||kwk) , Ĉb = (gγ

∏
j∈S′ Aj)u. Let v =

bc, u
H(kw1||kw2||...||kwk)

= a and Z = e(Ĉa, Tb). Otherwise, B outputs 0 means

that Ĉa = h1, Ĉb = h2, Z = e(h1, Tb).
If Ĉa = g

u
H(kw1||kw2||...||kwk) , Ĉb = (gγ

∏
j∈S′ Aj)u, CTc is a legal encrypted

keyword and A′s advantage is ε. Thus:

Pr[B(g, Ĉb, Ta, Z) = 0] = 1/2 + ε.

504 J. Wang et al.

If Ĉa = h1, Ĉb = h2, then the CTb is invalid and:

Pr[B(g, Ĉb, Ta, Z) = 0] = 1/2.

At last, the advantage of A is:

1
2
Pr

[
B

(
g, Ĉb, Ta, Z

)
= 0

]
+

1
2
Pr

[
B

(
g, Ĉb, Ta, Z

)
= 0

]
− 1

2
=

ε

2
.

And A wins the game if c
′

= c with the advantage of AdvA = |Pr[b =
b

′
] − 1/2|.

5.3 Collusion Resistance

In the phase of secret key generation, trusted authority generates the secret key
with the parament of user’s identity UID. So that the secret key of two user will
not be the same even if their attributes are the same, which means data user in
the system cannot use the secret key belong to others. Besides, the “ver” is used
to manage the user revocation. When user revocation occurs, the “ver” will be
update to “ver+1”, which means the ciphertext alone with the secret keys will
all be update. So that the revoked user’s secret key won’t be able to be used
again.

5.4 Trapdoor Unlinkability

As the CSP is a semi-trusted entity in the system, it will be always curious about
DU’s information. If a DU wants to conceal the nature of his search, the trapdoor
must be encrypted. When DU needs to generate the trapdoor in our scheme, a
random number x will be chose to obfuscate the keywords. As a result, CSP will
not be able to distinguish the keywords in the trapdoor, even the keywords in
the trapdoor are the same with the other one. Thus, the trapdoor in our scheme
is unlinkability.

6 Performance Evaluation

6.1 Theoretical Analysis

We analyze the efficiency of the proposed scheme, and compare it with [4,25,28].
We note that there exist some novel schemes which addressed the problem of
user revocation and ciphertext search like [7,28]. In [7], the authors achieve the
revocation with the help of a revocation list. Besides, their scheme is designed
based on the multi-authority, which differ from the scheme in this paper. We
assume that the hash computation is not included in the calculation.

The storage cost analysis is shown in Table 1. As we can see, the size of
public key, secret key and ciphertext in our scheme is less than that in scheme
[4]. In Table 2, the efficiency of encryption and search in our scheme is more
superior compare to that in scheme [4]. Compare to the scheme in [25], the size

ABE with Efficient Keyword Search and User Revocation 505

Table 1. Storage cost analysis.

Our scheme Scheme in [25] Scheme in [4] Scheme in [28]

PK size (l+ 3)LG + LGT
(l+ 6)LG + LGT

(3 + 2l)LG (n+ 4)LG + Z∗
p

MSK size (l+ 2)LZ∗
p

lLZ∗
p
+ LG (l+ 1)LZ∗

p
4lLG + 3Z∗

p

SK size (2k + 1)LG 2LG (k + 1)LG (7k + n+ 1)LG

CT size (2t+ 2)LG + LGT
2LG + LGT

(2t+ 3)LG + LGT
(2t+ 2)LG + LGT

l stands for the number of all attributes in the scheme. n stands for the number of maximum
number of revoked user set in the revocation list. k stands for the number of attributes in
user’s secret key. t stands for the number of attributes in ciphertext. LG, LGi

stands for the
length of an element in G and Gi. LZ∗

p
stands for the length of an element in Z∗

p .

of secret key and ciphertext is larger in our scheme. The reason is that the access
structure in [25] is AND gate, and we use the tree structure. But we implement
the function of user revocation which was not provided in [25]. In [28], the size
of master secret key and secret key is much larger than that in our scheme. In
the search phrase, the computing cost grows linearly with the size of keywords
in the trapdoor, which will incur poor performance in efficient. Considering both
the functions of revocation and ciphertext search are achieved, we believe our’s
scheme is more efficient and practical.

Table 2. Computing cost analysis.

Our scheme Scheme in [25] Scheme in [4] Scheme in [28]

Encryption (2t+ 2)G+GT (t+ 2)G+GT (2t+ 6)G+GT (2t+ n+ 1)G+GT

Decryption 2G+ (2k + 2)Ce GT + 2Ce × 2kCe + kGT

Re–Encryption 2G+GT + Ce × × ×
Search 2Ce 2Ce 3Ce (2w + 3)Ce + 2wG

t stands for the number of attributes in ciphertext. w stands for the number of keywords in
the trapdoor. k stands for the number of attributes in user’s secret key. G,GT stands for the
exponentiation operation in G and Gi. Ce stands for the bilinear pairing operation.

6.2 Experiment Analysis

In this section, we evaluate the performance of the proposed scheme presented
in Sect. 4. The experiment is performed on the Windows 7 system with an intel
core i5-3210M CPU 2.50 GHz and 12 GB memory. We use JDK1.8 and java
pairing-based cryptography 2.0.0 (JPBC) [3] to implement our scheme.

We analyze the performance of our scheme by comparing it with Cui’s scheme
[4] for the reason that this is the closest work to compare in terms of keyword
encryption algorithm, trapdoor generation algorithm and search algorithm. As
the cost of computing is closely related to the complexity of the access policy, we
generate all the access policy in the form of n of (S1, S2, . . . , Sn), where Si is an
attribute and n denotes the number of attributes in the policy. As depicted in
Fig. 2(a) and (b), we examine the time cost of keyword encryption and trapdoor

506 J. Wang et al.

generation. In the process of keywords encryption, instead of dealing with every
one of the keyword, we sum all the keywords together. As a result, the encrypted
keyword is constant in size and the expense is small. To relief the time cost
of trapdoor generation, we generate parts of the trapdoor in the secret key
generation algorithm, so that we only need to do a little exponential operation.
In addition, as we said before, the search operation is efficient in our scheme. We
can see the time cost in Fig. 2(c) is very small, we only need twice bilinear pairing
operation to finish the search operation while scheme [4] need three times. The
time cost of the system initialization algorithm, secret key generation algorithm,
encryption algorithm and decryption algorithm are depicted in Fig. 2(d), (e), (f)
and (g). As the number of attributes grows, the time cost grows linearly.

Fig. 2. Experimental results

7 Conclusion

In this paper, an attribute-based encryption with efficient keyword search and
user revocation is proposed. Our scheme is practical and comprehensive. In addi-
tion to fine-grained access control through ABE scheme, our scheme also provides
the function of user revocation and efficient keyword search. Specifically, it only
takes twice bilinear mapping operation to get the search result in the search
phrase. Our security analysis implied that the proposed scheme is secure under
DBDH assumption. The efficiency analysis and experience demonstrate that the
overhead of our scheme is acceptable.

ABE with Efficient Keyword Search and User Revocation 507

Acknowledgements. We are grateful to the anonymous reviewers for their invalu-
able suggestions. This work was supported in part by the National Natural Sci-
ence Foundation of China (61472343,61702237), the Natural Science Foundation of
Jiangsu Province, China (BK20150241), National Research Foundation, Prime Minis-
ter’s Office, Singapore, under its Corporate Laboratory@University Scheme, National
University of Singapore, and Singapore Telecommunications Ltd.

References

1. Beimel, A.: Secure schemes for secret sharing and key distribution. Int. J. Pure
Appl. Math. (1996)

2. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, SP 2007, pp. 321–334. IEEE
(2007)

3. De Caro, A., Iovino, V.: JPBC: Java pairing based cryptography. In: Computers
and Communications, pp. 850–855 (2011)

4. Cui, J., Zhou, H., Zhong, H., Yan, X.: Akser: attribute-based keyword search with
efficient revocation in cloud computing. Inf. Sci. 423, 343–352 (2018)

5. Ge, X., Jia, Y., Chengyu, H., Zhang, H., Hao, R.: Enabling efficient verifiable
fuzzy keyword search over encrypted data in cloud computing. IEEE Access 6,
45725–45739 (2018)

6. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98. ACM (2006)

7. Imine, Y., Lounis, A., Bouabdallah, A.: Revocable attribute-based access control
in mutli-autority systems. J. Netw. Comput. Appl. 122, 61–76 (2018)

8. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 12

9. Li, J., Yao, W., Zhang, Y., Qian, H., Han, J.: Flexible and fine-grained attribute-
based data storage in cloud computing. IEEE Trans. Serv. Comput. 10(5), 785–796
(2017)

10. Li, J., Huang, Q., Chen, X., Chow, S.S.M., Wong, D.S., Xie, D.: Multi-authority
ciphertext-policy attribute-based encryption with accountability. In: ACM Sym-
posium on Information, Computer and Communications Security, ASIACCS 2011,
Hong Kong, China, March, pp. 386–390 (2011)

11. Li, W., Xue, K., Xue, Y., Hong, J.: Tmacs: a robust and verifiable threshold multi-
authority access control system in public cloud storage. IEEE Trans. Parallel Dis-
trib. Syst. 27(5), 1484–1496 (2016)

12. Liang, K., Susilo, W.: Searchable attribute-based mechanism with efficient data
sharing for secure cloud storage. IEEE Trans. Inf. Forensics Secur. 10(9), 1981–
1992 (2017)

13. Lin, S., Zhang, R., Ma, H., Wang, M.: Revisiting attribute-based encryption with
verifiable outsourced decryption. IEEE Trans. Inf. Forensics Secur. 10(10), 2119–
2130 (2017)

https://doi.org/10.1007/978-3-642-32009-5_12

508 J. Wang et al.

14. Ning, J., Cao, Z., Dong, X., Gong, J., Chen, J.: Traceable CP-ABE with short
ciphertexts: how to catch people selling decryption devices on eBay efficiently. In:
Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016,
Part II. LNCS, vol. 9879, pp. 551–569. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-45741-3 28

15. Ning, J., Cao, Z., Dong, X., Liang, K., Ma, H., Wei, L.: Auditable σ -time out-
sourced attribute-based encryption for access control in cloud computing. IEEE
Trans. Inf. Forensics Secur. 13(1), 94–105 (2017)

16. Ning, J., Cao, Z., Dong, X., Liang, K., Wei, L., Choo, K.-K.R.: Cryptcloud+: secure
and expressive data access control for cloud storage. IEEE Trans. Serv. Comput.
(2018)

17. Ning, J., Cao, Z., Dong, X., Wei, L.: White-box traceable CP-ABE for cloud storage
service: how to catch people leaking their access credentials effectively. IEEE Trans.
Dependable Secur. Comput. 15(5), 883–897 (2016)

18. Ning, J., Cao, Z., Dong, X., Wei, L., Lin, X.: Large universe ciphertext-policy
attribute-based encryption with white-box traceability. In: Kuty�lowski, M., Vaidya,
J. (eds.) ESORICS 2014, Part II. LNCS, vol. 8713, pp. 55–72. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11212-1 4

19. Ning, J., Dong, X., Cao, Z., Wei, L.: Accountable authority ciphertext-policy
attribute-based encryption with white-box traceability and public auditing in the
cloud. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015, Part II.
LNCS, vol. 9327, pp. 270–289. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24177-7 14

20. Ning, J., Dong, X., Cao, Z., Wei, L., Lin, X.: White-box traceable ciphertext-
policy attribute-based encryption supporting flexible attributes. IEEE Trans. Inf.
Forensics Secur. 10(6), 1274–1288 (2015)

21. Ning, J., Jia, X., Liang, K., Zhang, F., Chang, E.-C.: Passive attacks against search-
able encryption. IEEE Trans. Inf. Forensics Secur. 14(3), 789–802 (2019)

22. Padhya, M., Jinwala, D.: A novel approach for searchable CP-ABE with hidden
ciphertext-policy. In: Prakash, A., Shyamasundar, R. (eds.) ICISS 2014. LNCS,
vol. 8880, pp. 167–184. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13841-1 10

23. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

24. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy, S&P 2000, Proceedings, pp.
44–55. IEEE (2000)

25. Su, H., Zhu, Z., Sun, L., Pan, N.: Practical searchable CP-ABE in cloud storage. In:
2nd IEEE International Conference on Computer and Communications (ICCC),
pp. 180–185. IEEE (2016)

26. Sun, W., Yu, S., Lou, W., Hou, Y.T., Li, H.: Protecting your right: attribute-based
keyword search with fine-grained owner-enforced search authorization in the cloud.
In: IEEE Proceedings on INFOCOM 2014, pp. 226–234. IEEE (2014)

27. Wang, H., Dong, X., Cao, Z.: Multi-value-independent ciphertext-policy attribute
based encryption with fast keyword search. IEEE Trans. Serv. Comput. (2017)

28. Wang, S., Zhang, X., Zhang, Y.: Efficiently multi-user searchable encryption
scheme with attribute revocation and grant for cloud storage. Plos One 11(11),
e0167157 (2016)

https://doi.org/10.1007/978-3-319-45741-3_28
https://doi.org/10.1007/978-3-319-45741-3_28
https://doi.org/10.1007/978-3-319-11212-1_4
https://doi.org/10.1007/978-3-319-24177-7_14
https://doi.org/10.1007/978-3-319-24177-7_14
https://doi.org/10.1007/978-3-319-13841-1_10
https://doi.org/10.1007/978-3-319-13841-1_10
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27

ABE with Efficient Keyword Search and User Revocation 509

29. Wang, S., Zhou, J., Liu, J.K., Yu, J., Chen, J., Xie, W.: An efficient file hierarchy
attribute-based encryption scheme in cloud computing. IEEE Trans. Inf. Forensics
Secur. 11(6), 1265–1277 (2016)

30. Xiong, A.-P., Gan, Q.-X., He, X.-X., Zhao, Q.: A searchable encryption of CP-ABE
scheme in cloud storage. In: 10th International Computer Conference on Wavelet
Active Media Technology and Information Processing (ICCWAMTIP 2013), pp.
345–349. IEEE (2013)

31. Yang, Y., Liu, J.K., Liang, K., Choo, K.-K.R., Zhou, J.: Extended proxy-assisted
approach: achieving revocable fine-grained encryption of cloud data. In: Pernul,
G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015, Part II. LNCS, vol. 9327, pp.
146–166. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24177-7 8

32. Yang, Y., Li, H., Liu, W., Yao, H., Wen, M.: Secure dynamic searchable symmet-
ric encryption with constant document update cost. In: Global Communications
Conference (GLOBECOM), IEEE 2014 , pp. 775–780. IEEE (2014)

33. Zhang, P., Chen, Z., Liang, K., Wang, S., Wang, T.: A cloud-based access control
scheme with user revocation and attribute update. In: Liu, J.K.K., Steinfeld, R.
(eds.) ACISP 2016, Part I. LNCS, vol. 9722, pp. 525–540. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-40253-6 32

https://doi.org/10.1007/978-3-319-24177-7_8
https://doi.org/10.1007/978-3-319-40253-6_32

Public-Key Encryption with Selective
Opening Security from General

Assumptions

Dali Zhu1,2, Renjun Zhang1,2(B), Shuang Hu3,4, and Gongliang Chen3

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{zhudali,zhangrenjun}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

3 SKLIATIS, Shanghai Jiao Tong University, Shanghai, China
{hushuang,chengl}@sjtu.edu.cn

4 Virginia Commonwealth University, Richmond, VA, USA

Abstract. In a selective opening (SO) attack, the attacker can corrupt
a subset of senders (or receivers) to open some of the ciphertexts and
try to learn information on the plaintexts of unopened ciphertexts. It
is important and practical to consider SO attack in encryption scheme.
In this paper we study public key encryption (PKE) schemes with SO
security. Specifically:

– First, we define a new cryptographic primitive called tweaked lossy
encryption, and we prove that it has simulation-based security
against sender selective opening chosen plaintext attacks (denoted
by SIM-SSO-CPA).

– Second, we provide a general construction of tweaked lossy encryp-
tion scheme from extractable Σ-protocol; and we propose two instan-
tiations of tweaked lossy encryption, based on dual-mode commit-
ments and Twin-Cramer-Shoup scheme respectively.

– Finally, we propose a general scheme satisfying indistinguishability-
based security against receiver selective opening chosen plaintext
attacks (denoted by IND-RSO-CPA), and we give a construction of
the scheme from explainable hash proof systems (denoted by EHPS),
and we provide the security analysis.

Our results provide a new insight about the relations among PKE
schemes with SO security, extractable Σ-protocol and explainable hash
proof systems.

Keywords: Selective opening security · Lossy encryption ·
Extractable Σ-protocol · Explainable hash proof systems

This work was supported in by the National Key Research and Development Pro-
gram of China-the Key Technologies for High Security Mobile Terminals (Grant No.
2017YFB0801903).

c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 510–530, 2019.
https://doi.org/10.1007/978-3-030-14234-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_27&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_27

Public-Key Encryption with Selective Opening Security 511

1 Introduction

Sender Selective Opening Security. Sender selective opening (SSO) attacks
are considered in public key encryption (PKE) schemes where an adversary may
corrupt some of the senders to selectively open some of the ciphertexts. Specifi-
cally, an adversary may get a collection of some arbitrary challenge ciphertexts
c = (c1, . . . , cN) of size N , and each ciphertext ci = Encpk(mi; ri) is obtained by
encrypting the message mi with a fresh randomness ri under a public key pk.
The adversary may adaptively chooses a subset I ⊆ [N] of ciphertexts to open,
thus learning the messages {mi}i∈I and the corresponding randomness {ri}i∈I ,
and then the adversary tries to break into the unopened ciphertexts {ci}i∈[N]\I

and obtain additional information on the corresponding plaintexts. The SSO
security of PKE schemes requires that the privacy of the unopened ciphertexts
is perserved.

Several formal analysis [2,4,6,15,26,27] indicated that SSO security defini-
tion is essentially stronger than traditional security definitions due to two added
features. One is to enable partial revelation of the randomness, which allows
the adversary to check the relation between ciphertexts and the corresponding
messages. The other is that the adversary is allowed to open a selected subset
of ciphertexts, which gives it more power to learn information on the plaintexts
of unopened ciphertexts.

Bellare et al. [3] proposed two types of SSO security: indistinguishability-
based selective opening (IND-SSO) security and simulation-based selective open-
ing (SIM-SSO) security. IND-SSO security means that no adversary can distin-
guish between opened messages and unopened messages. It requires the distri-
bution on the messages to be efficiently conditionally resamplable. SIM-SSO
security is a stronger notion than IND-SSO security. In particular, SIM-SSO
security requires that, a simulator that sees only the opened messages can simu-
late the output of any real adversary; and it has no restrictions on the message
distribution. Unfortunately, SIM-SSO security is much harder to achieve than
IND-SSO security [2], since for many natural encryption schemes, there exist no
such simulator satisfying the definitions given in [3,13].

Relations among IND-SSO, SIM-SSO and standard security definitions have
been discussed in many literatures such as in [2,4,15,19,26,27]. Encryption
schemes with IND-SSO security against chosen plaintext attack (IND-SSO-CPA)
and SIM-SSO security against chosen plaintext attack (SIM-SSO-CPA) were first
given in [3], based on lossy encryption [37,38]. In particular, Bellare et al. proved
that lossy encryption implies IND-SSO-CPA security, and lossy encryption with
efficient opening implies SIM-SSO-CPA security [3]. Later, Hemenway et al. [20]
proposed a general construction of lossy encryption from hash proof system
(HPS). Following this research, Hofheinz et al. [25] showed that lossy encryption
with efficient weak opening algorithm implies SIM-SSO-CPA security. Note that
most of those constructions are based on non-interactive cryptographic prim-
itives; however, the all-but-many encryption (ABME) scheme [16] is built on
interactive cryptographic primitives - extractable Σ-protocol, which provides a
new and meaningful insight to design SSO secure encryption and related schemes.

512 D. Zhu et al.

Selective Opening Security for the Receiver. Selective opening security
for the receiver (RSO) is less studied than SSO security. In the RSO setting,
one sender and n receivers hold public and secret keys that are generated inde-
pendently. The attacker is allowed to learn the messages together with secret
keys of a subset of the receivers by corrupting them. Security is requires that
the privacy of the uncorrupted receivers is perserved.

There are also indistinguishability-based selective opening for receiver (IND-
RSO) security and simulation-based selective opening for receiver (SIM-RSO)
security [19]. Some formal arguments show that RSO secure scheme can be
constructed from non-committing encryption (NCER) schemes [7,11,36], while
there are a few constructions from standard assumptions. In [19], Hazay et al.
introduced a tweaked variant of NCER which implies IND-RSO security against
chosen plaintext attack (IND-RSO-CPA), and shows that tweaked NCER can
be constructed from some standard primitives.

Related Work. Deniable encryption [6] and NCER [7] can also be used to
construct SSO secure encryption scheme [14,34]. In the indistinguishability-
based chosen-ciphertext (IND-SSO-CCA) and simulation-based chosen cipher-
text (SIM-SSO-CCA) scenarios, handling additional decryption queries makes
it even more difficult to construct schemes with IND-SSO and SIM-SSO secu-
rity. Several IND-SO-CCA secure schemes have been constructed by lossy trap-
door functions [38], such as all-but-N lossy trapdoor functions [20], and all-but-
many lossy trapdoor functions [5,24,32]. And existing SIM-SSO-CCA secure
constructions follow dedicated approaches [14,24,29,34]. Heuer et al. [23] showed
that if a PKE scheme consists of a key encapsulation mechanism (KEM) and
a blockcipher-based data encapsulation mechanism (DEM), and the DEM is
simulatable, then the PKE scheme is SIM-SO-CCA secure. For sender security,
Heuer et al. [21,22] showed that some practical schemes, such as RSA-OAEP
and DHIES, are SIM-SSO-CCA secure in the random oracle model. For receiver
security, IND-RSO-CCA and SIM-RSO-CCA secure constructions were proposed
in [18,28,30,31].

1.1 Our Contribution

First, we define a new cryptographic primitive called tweaked lossy encryption,
and we show that it is SIM-SSO-CPA secure. We remark that our construction
is inspired by that of ABME given by Fujisaki [16], and by that of dual-mode
commitments in [33], and by that of simulatable DEMs in [23], and by that of
instance-dependent cryptographic primitives in [12,35].

Second, we provide a general construction of tweaked lossy encryption based
on extractable Σ-protocol. Furthermore, we give two instantiations of the scheme
based on two ways of constructing extractable Σ-protocol, namely dual-mode
commitments and Twin-Cramer-Shoup scheme. These instantiations are non-
trivial, specifically, the property of efficient weak opening in lossy encryption is
usually restricted to specific algebraic structures that are hard to obtain, so we

Public-Key Encryption with Selective Opening Security 513

need to limit the length of the plaintext to logarithmic length. While in a setting
where extractable Σ-protocols are executed in parallel, there may be multiple
random challenges; and each of them can be associated with a plaintext, therefore
it is possible to encrypt longer plaintexts by dividing them into multiple short
plaintexts and encrypting each short plaintext in parallel.

Third, we provide an IND-RSO-CPA secure scheme from explainable hash
proof systems (denoted by EHPS). In [19], Hazay et al. proved that secure
tweaked NCER implies IND-RSO-CPA secure PKE, and HPS implies tweaked
NCER. Compared with the construction in [19], our tweaked NCER scheme
changes the opening algorithm in several ways: for the opening algorithm in [19],
an unbounded algorithm can find an appropriate secret key by searching exhaus-
tively without a trapdoor. In our opening algorithm, EHPS provide the trapdoor
information, thus the secret key can be obtained in probabilistic polynomial time.
Abdalla et al. [1] have shown that such EHPS can be constructed.

Organization. The rest of our paper is organized as follows: In Sect. 2 we
present some basic notions and tools used; In Sect. 3 we define a new cryp-
tographic primitive called tweaked lossy encryption and show that it is SIM-
SSO-CPA secure; In Sect. 4 we describe a generic construction of tweaked lossy
encryption scheme from extractable Σ-protocol; In Sect. 5, we give two instanti-
ations of tweaked lossy encryption; In Sect. 6, we give a construction of tweaked
NCER from EHPS, and prove that it is IND-RSO-CPA secure.

2 Preliminaries

Notation. We use N to denote the set of natural numbers, and Z the set of
integers. For n ∈ N, [n] denotes the set {1, . . . , n}. The length of a string x is
denoted by |x|. We abbreviate probabilistic polynomial-time and deterministic
polynomial-time as PPT and DPT respectively. Let x ← S denote the process of
picking up x uniformly at random from a finite set S, or the process of sampling
x according to a distribution S. Given a security parameter λ, a function negl(λ)
is negligible for a sufficiently large λ.

Public Key Encryption. A PKE scheme consists of three PPT algorithms.
The key generation algorithm Gen(1λ) takes a security parameter λ as input,
and outputs a public/secret key pair (pk, sk) where pk is a public key and sk is
the secret key. The encryption algorithm Enc(pk,m; r) takes the public key pk,
a message m ∈ M and randomness r ∈ R as inputs, and outputs a ciphertext
c, denoted as c = Enc(pk,m; r). The decryption algorithm Dec(sk, c) takes the
secret key sk, a ciphertext c as inputs, and outputs either a message m denoted
as m = Dec(sk, c) or a special “⊥” indicating invalid ciphertext c. We say that a
PKE scheme satisfies correctness, if Dec(sk, c) = m with all but negligible prob-
ability for all (pk, sk) produced by Gen(1λ) and all c produced by Enc(pk,m; r).

514 D. Zhu et al.

Selective Opening Security. There are several different ways of formaliz-
ing SSO security. Following the approach of [4], we consider the definition of
SIM-SSO-CPA security, which requires that the output of the adversary can be
simulated by an efficient simulator without seeing neither the ciphertext nor the
public key. To model adaptive corruptions, the definition provides an opening
oracle O for the adversary and the simulator.

Definition 1 (SIM-SSO-CPA Security [3,4]). A PKE scheme PKE =
(Gen,Enc, Dec) is SIM-SSO-CPA secure iff for every polynomially bounded
n = n(1λ) > 0, and every stateful PPT adversary A, there exists a stateful
PPT simulator S such that

Advsim−sso−cpa
PKE,A,S (1λ) = |Pr[Expreal

PKE,A(1λ) = 1] − Pr[Expideal
S (1λ) = 1]|

is negligible. The experiments Expreal
PKE,A,Rel and Expideal

S,Rel are defined as follow-
ing (Fig. 1):

Experiment. Expreal
PKE,A(1λ):

(pk, sk) Gen(1λ)
dist A(pk)
(Mi)i∈[n] dist
(Ri)i∈[n] (REnc)n

(Ci)i∈[n] = Enc(pk, Mi;Ri)i∈[n]

O = (Mi, Ri)i∈[n]

outA AO(·)(select, (Ci)i∈[n])
I = O(get queries)
return ((Mi)i∈[n], dist, I, outA)

Experiment. Expideal
S (1λ):

dist S(1λ)
(Mi)i∈[n] dist
outS SO(·)(select)
I = O(get queries)
return ((Mi)i∈[n], dist, I, outS)

Fig. 1. The REAL-SIM-SSO-CPA and IDEAL-SIM-SSO-CPA experiments

Interactive Proof System. Let L be a NP language and R a binary relation.
An interactive proof system [17] (P, V) for L is a pair of interactive machines,
where the prover P is able to convince the verifier V of true statements x ∈ L,
which is defined by a binary relation R such that (x,w) ∈ R; while nobody
can fool V into believing false statements x /∈ L. An interactive proof system is
zero knowledge [17] if for every interactive machine V ∗, there exists an expected
probabilistic polynomial-time simulator M∗ that can simulate the entire interac-
tion transcript between P and V without accessing P ’s certificate information.
Σ-protocols are special cases of three-round honest verifier zero-knowledge
proofs.

Public-Key Encryption with Selective Opening Security 515

Definition 2 (Σ-protocol [10]). A three-round public-coin protocol Σ = (P1,
P2, V) is a Σ-protocol for a relation R, if it satisfies the following properties:

– Completeness: if honest P and V are given common input x and private input
w for P , where (x,w) ∈ R, then V will always accept the transcripts.

– Special soundness: there exists a PPT algorithm that takes x and a pair of
accepting transcripts (a, e, z) and (a, e′, z′) for x as input, where e �= e′, then
it can efficiently compute w such that (x,w) ∈ R.

– Special honest verifier zero knowledge: there exists a PPT simulator upon
input x ∈ L and the challenge e ∈ {0, 1}n, then outputs an accepting tran-
script of the form (a, e, z). Moreover, the distribution of the simulator’s output
is computationally indistinguishable from that of a real execution between P
and V on input x.

Extractable Σ-protocol. The notion of extractable Σ-protocol was pro-
posed in [16]. The following definition essentially repeats the definition of
extractable Σ-protocol from [16], expect minor changes to fit our require-
ment. Let L = {Lpk}pk be a NP language composed of a series of sets Lpk

indexed by pk ∈ PK, where PK is the space of pk. Let Rpk = {(x,w)} be
a polynomial-time binary relation related to Lpk. An extractable Σ-protocol
Σext = (Pcom

Σ ,Pans
Σ ,Vvrfy

Σ , simPcom
Σ ,Ext) is defined as follows: PPT algorithm

Pcom
Σ on input (x,w) ∈ Rpk and a random coins ra, then outputs a commitment

a = Pcom
Σ (x,w; ra). DPT algorithm Pans

Σ takes as input (x,w, ra, e) and out-
puts z = Pans

Σ (x,w, ra, e), where e is a challenge. DPT algorithm Vvrfy
Σ verifies

(x, a, e, z) and decide whether to accept or reject it. PPT algorithm simPcom
Σ

takes as input (x, e) and outputs (a, e, z) = simPcom
Σ (x, e; rz). Similarly, rz is

the random coins, and we additionally require that rz = z, and this property
can be satisfied by many sigma protocols. DPT algorithm Ext takes as input
(sk, x, a) and outputs e or a special symbol ⊥ indicating failure, where sk is a
secret key corresponding to pk. A protocol ΣExt is said to be an extractable
Σ-protocol on L = {Lpk}pk for relation Rpk, if for all pk, there is a set Lco

pk such
that Lpk ∩ Lco

pk = ∅, and the following properties hold:

– Completeness: if P and V follow the protocol for common input x and private
input w for P , then for every (x,w) ∈ Rpk and every ra and e, the equation
Vvrfy

Σ (x, Pcom
Σ (x,w; ra), e, Pans

Σ (x,w, ra, e)) = 1 is always true.
– Special soundness: for every x /∈ L and every a, there exists exactly one e

such that Vvrfy
Σ (x, a, e, z) = 1.

– Extractability: we say that (pk, skext) ∈ Rext if there is e′ = Ext(skext, x, a)
which satisfies Vvrfy

Σ (x, a, e′, z) = 1 for all x ∈ Lco
pk and all a, so that the

equation Vvrfy
Σ (x, a, e, z) = 1 holds for an existing pair (e, z). If for all

pk ∈ PK, there is a skext that satisfies the relation (pk, skext) ∈ Rext,
we say that Σext has the property of extractability on {Lco

pk}pk. Com-
bined with special soundness, for all x ∈ Lco

pk, all e and all z, we can get
e = Ext(sk, x, simPcom

Σ (x, e; z)1), where simPcom
Σ (x, e; z)1 is the first output

of simPcom
Σ (x, e; z).

516 D. Zhu et al.

– Enhanced Honest-Verifier Statistical Zero-Knowledge (eHVSZK): for every
(pk, skext) ∈ Rext, every (x,w) ∈ Rpk, and every challenge e, the following
two ensembles are statistically indistinguishable:

{simPcom
Σ (x, e; rz)} ≈s {(Pcom

Σ (x,w; ra), e,Pans
Σ (x,w, ra, e))}

3 Selective Opening Security from Tweaked Lossy
Encryption

In this section, we define a new cryptographic primitive called tweaked lossy
encryption (tLPKE), then we show that tLPKE is SIM-SSO-CPA secure. We
can think of tLPKE as a lightweight ABME [16].

Definition 3 (Tweaked Lossy Encryption). A tweaked lossy encryption
scheme with message space M is a tuple of PPT algorithms such that:

Gen(1λ): take the security parameter λ as input and output (pk, sk) where pk is
the real public key and sk is the corresponding secret key.

LGen(1λ): take the security parameter λ as input and output a key pair (pk, sk)
where pk is the lossy public key and sk is the lossy secret key.

Enc(pk,m; r): take a real or lossy public key pk, a message m ∈ M, and a random
coin r ∈ REnc as inputs, output a ciphertext c.

Dec(sk, c): take a ciphertext c and a secret key sk as inputs, output either a
message m ∈ M or a special symbol “⊥” indicating decryption failure.

Sim = (Fake,Open): is a pair of PPT and DPT algorithms such that
– Fake(pk, r′): take a lossy public key pk and a random coin r′ ← REnc as

inputs, output a fake ciphertext e∗ and an auxiliary parameter ε.
– Open(ε,m): take an auxiliary parameter ε and a message m ∈ M as

inputs, output a random coin r ∈ REnc.

Furthermore, tLPKE satisfies the following properties:

– Correctness: for all (pk, sk) ← Gen(1λ), message m ∈ M, c ← Enc(pk,m; r),
it must satisfy Dec(sk, c) = m.

– Key indistinguishability: for any PPT distinguisher D, there exists a negligible
function μ(·) such that

Advind-lossy-key
tLPKE,D =

∣
∣
∣
∣

Pr[D(pk, 1λ) = 1|(pk, sk) ← Gen(1λ)]−
Pr[D(pk, 1λ) = 1|(pk, sk) ← LGen(1λ)]

∣
∣
∣
∣
≤ μ(λ)

– Simulatability: define the following variables:
• distEnc(pk,m) denotes the random variable (c, r), where r ← REnc,

c = Enc(pk,m; r) and pk is the lossy public key.
• distSim(pk,m) denotes the random variable (e∗, r), where (e∗, ε) ←

Fake(pk, r′) and pk is the lossy public key; r′ ← REnc; r ← Open(ε,m).
Therefore the following ensembles are statistically indistinguishable:

{distEnc(pk,m)} ≈s {distSim(pk,m)}

Public-Key Encryption with Selective Opening Security 517

Remarks. The recent work of Heuer et al. [23] defined a simulatability property
that holds for DEM. Intuitively, the encapsulation algorithm could generate a
ciphertext without seeing the corresponding message. Formally, they divided the
encapsulation process into two parts in sequential order, Fake and Make. Firstly,
Fake algorithm outputs a ciphertext c before seeing the message m; Then, Make
algorithm takes as input the message m and tries to find a possible permutation
instance, under which m would be encapsulated to the ciphertext c. Our ideas
are similar to those of Heuer et al., the main difference is that we use Open
algorithm to replace the Make algorithm. Their Make algorithm exhaustively
searches for the appropriate permutation, and may be inefficient. Our Open
algorithm introduces auxiliary parameters, including the lossy secret key and
some random coins, which makes the Open algorithm running in probabilistic
polynomial time.

Theorem 1. The tweaked lossy encryption scheme is SIM-SSO-CPA secure.

Proof (Sketch). The proof of Theorem 1 is similar to the proof of lossy encryption
with efficient opening implies SIM-SSO-CPA security in [3], so we will only sketch
it here. Consider the following sequence of games:

Game0: the REAL-SIM-SSO-CPA game.
Game1: the same as Game0 except that the adversary is given a lossy public

key and lossy ciphertexts. Game1 and Game0 are indistinguishable by the
property of key indistinguishability.

Game2,0: the same as Game1 except that for the first ciphertext we replace
Enc(pk,m1; r1) with Fake(pk, r′

1). In the corrupt procedure, instead of open-
ing the first ciphertext by revealing the actual coins if 1 ∈ [I], Game2,0 runs
Open(ε,M[1]) algorithm on the actual message and returns r1, which is the
random coins used to generate the first ciphertext. If 1 /∈ [I], Game2,0 reveals
the actual coins and returns the output. The view of adversary in this game is
statistically close to that in the Game0, since the variables {distEnc(pk,m)}
and {distSim(pk,m)} are statistically indistinguishable.

Game2,j : in the j-th hybrid game, we use Fake(·) algorithm instead of Enc(·)
algorithm to generate the first j ciphertexts. In the corrupt procedure,
Game2,j runs the Open(ε,M[k]) algorithm on the actual messages and
returns rk if k ∈ [I] and k ≤ j; Otherwise, Game2,j reveals the actual coins
and returns the output.

Game2,n: in the last hybrid, all ciphertexts are generated using the Fake(·) algo-
rithm. In the corrupt procedure, Game2,n runs the Open(ε,M) algorithm on
the actual messages and returns the output.

Game3: the same as Game2,n except that the sampling of M is moved before the
Open(ε,M) algorithm and after the Fake(·) algorithm. The Fake(·) algorithm
no longer requires a message vector, therefore it does not change the view of
the adversary.

Now we can construct a simulator S that runs the adversary A as its subroutine,
just as A behaves in Game3. Specially, S chooses a lossy key pair and gives A

518 D. Zhu et al.

the lossy public key and n fake ciphertexts under lossy public key. In case of
corruption, when A makes a query with a set I, S forwards the same set I to its
own challenge oracle. After receiving the messages MI , S then uses the efficient
algorithm Open(ε,M) to open the fake ciphertexts to the messages MI . Finally,
after A outputs a string out, the simulator S will output the same value. Since
both A and Open(ε,M) are efficient, the simulator S is also efficient. Because the
neighboring games are either statistically indistinguishable or computationally
indistinguishable, the theorem holds.

4 Tweaked Lossy Encryption Scheme from
Extractable Σ-protocol

In this section, we build a tweaked lossy encryption scheme from extractable
Σ-protocol that is defined on a membership-hard language L with efficient
sampling [33].

4.1 Membership-Hard Languages with Efficient Sampling

Let L be a language. Let SL be a sampling algorithm that takes a bit b as input.
If b = 0, SL outputs an instance in the language L together with a corresponding
witness w. If b = 1, SL outputs an instance not in the language L. It is required
that no PPT distinguisher can tell which bit SL received. Let Sx

L denote the
instance of the output of the sampling algorithm SL, we now recall the formal
definition of the membership-hard languages with efficient sampling.

Definition 4 ([33]). We say that a language L satisfies membership-hard with
efficient sampling, if there exists a PPT sampling algorithm SL such for any
PPT distinguisher D, the advantage Advx

D(n) defined below is negligible:

Advx
D(n) = |Pr[D(Sx

L(0, 1n), 1n) = 1] − Pr[D(SL(1, 1n), 1n) = 1]|

4.2 Our Scheme

Our scheme is inspired by the general framework for constructing ABME in [16],
and is also inspired by the general construction of dual-mode commitment in [33].
The detailed construction of scheme (Gen, LGen, Enc, Dec, Sim.Fake, Sim.Open)
as in Definition 3 is as following (denote by Construction 1):

Gen(1λ): run the sampling algorithm SL(1, 1λ) to get x, while x /∈ L, where
L is a membership-hard language. Let Σext =(Pcom

Σ , Pans
Σ , Vvrfy

Σ , simPcom
Σ ,

Ext) be an extractable Σ-protocol defined on L, where Ext is a deterministic
extraction algorithm, and let skext be the secret key of Ext. The real public
key is pk = x and the real secret key is sk = skext.

LGen(1λ): run the sampling algorithm SL(0, 1λ) to obtain (x,w), with w being
the witness for x ∈ L. The lossy public key is pk = x and the lossy secret key
is sk = w.

Public-Key Encryption with Selective Opening Security 519

Enc(pk,m; r): to encrypt a message m ∈ {0, 1}n, run simPcom
Σ (x,m; r) algorithm

and output (a,m, r), denoted as (a,m, r) = simPcom
Σ (x,m; r). The ciphertext

is c = a.
Dec(skext, x, c): take the secret key skext, the public key x and the ciphertext c

as inputs, output m = Ext(skext, x, c).
Sim.Fake(pk,w; ra): take the lossy public key pk, witness w and a random coins

ra as inputs, output (e∗, ε) such that e∗ = Pcom
Σ (x,w; ra) and ε = (pk,w, ra).

Sim.Open(ε,m): take ε and m as inputs, and output r = Pans
Σ (x,w, ra,m).

4.3 Security Analysis

We then prove that the scheme in Construction 1 is a tweaked lossy encryption
scheme.

Theorem 2. The scheme in Construction 1 is a tweaked lossy encryption
scheme if L is a membership-hard language with efficient opening, and Σext =
(Σ,Ext) is an extractable Σ-protocol for L.

Proof. Correctness. If x /∈ L, according to the special soundness property of
Σ-protocol, for every a, there exists a unique m such that (a,m, r) is an
accepting transcription on x, therefore m can be decrypted correctly using
secret key skext.

Key indistinguishability. The real public key is an instance not in language
L, while the lossy public key is an instance in language L. Since L is a
membership-hard language, the real public key and the lossy public key are
computationally indistinguishable.

Simulatability. While x ∈ L, Sim holds the witness for x ∈ L and can run the
real Σ-protocol: First, the prover runs the Sim.Fake algorithm Pcom

Σ (x,w; ra)
where ra ← REnc and outputs a commitment a = Pcom

Σ (x,w; ra), then sends
the commitment a to the verifier; Second, the verifier sends a challenge m
after receiving the commitment a; Finally, the prover runs the Sim.Open
Pans

Σ (x,w, ra,m) algorithm and outputs r = Pans
Σ (x,w, ra,m), where r is the

random coins used in the encryption algorithm, then sends r to the verifier.
Since x ∈ L, according to the eHVSZK property of extractable Σ-protocol,
the following two distributions are statistically indistinguishable:

{simPcom
Σ (x,m; r)} ≈s {(Pcom

Σ (x,w; ra),m,Pans
Σ (x,w, ra,m))}

where (a,m, r) = simPcom
Σ (x,m; r), thus the simulatability property follows

readily.

5 Instantiations

In this section, we present two instantiations of tLPKE scheme from extractable
Σ-protocol, based on dual-mode commitments [33] and Twin-Cramer-Shoup
scheme [8,9] respectively.

520 D. Zhu et al.

5.1 Instantiation of tLPKE from Dual-Mode Commitments

Let g be a generator of a group G of prime order q, and we assume that G is
efficiently samplable. Let u = gx and v = hx with h = gr where x, r ← Z

∗
q . We

define the language L as:

L = {(u, v)|∃ x : u = gx, v = hx}.

We then construct an instantiation of the tLPKE as follows, and we denote it
as Instantiation 1.

– Gen(1λ): given a security parameter λ, run G(1λ) to obtain a tuple (G, q, g).
Choose r, x1, x2 ← Z

∗
q , and compute h = gr, u = gx1 , v = hx2 . Output the

public key pk = (G, q, g, h, u, v) and the secret key sk = r.
– LGen(1λ): given a security parameter λ, run G(1λ) to obtain a tuple (G, q, g).

Choose r, x ← Z
∗
q , and compute h = gr, u = gx, v = hx. Output the lossy

public key pk = (G, q, g, h, u, v) and the lossy secret key sk = x.
– Enc(pk,m; z): to encrypt a message m ∈ {0, 1}k where k = O(log λ), choose

z ← Z
∗
q , and compute a = gz · um, b = hz · vm. Output the ciphertext as

c = (a, b).
– Dec(sk, c): take as input the real secret key sk = r and the ciphertext c =

(a, b), search for m ∈ {0, 1}k such that

ar

b
=

(
ur

v

)m

and output m.
– Sim.Fake(pk,w): choose w ∈ Z

∗
q uniformly at random, and compute a = gw,

b = hw. Output the fake ciphertext e∗ = (a, b) and the auxiliary parameter
ε = (x,w).

– Sim.Open: take as input the auxiliary parameter ε = (x,w), the message m
and the ciphertext (a, b), and output the random coins z = w − mx.

We can see that when using the real public key, the Enc algorithm runs a sim-
ulation algorithm of the extractable Σ-protocol on L; however, when using the
lossy public key, the Enc runs a real extractable Σ-protocol on L with witness
x. We now give a detailed analysis.

Theorem 3. The Instantiation 1 is a tweaked lossy encryption scheme if
DDH assumption holds.

Proof. Correctness. In the decryption mode, where (u, v) /∈ L. Since a =
gz+x1m and b = grz+rx2m, implying that:

(
log a
log b

)

=
(

1 x1

r rx2

)(
z
m

)

Since x1 �= x2, the determinant of
(

1 x1

r rx2

)

is nonzero, and
(

z
m

)

is uniquely

determined, such that

ar

b
=

(
ur

v

)m

Public-Key Encryption with Selective Opening Security 521

Therefore the decryption algorithm can search m ∈ {0, 1}k within O(2k) steps
where k = O(log λ).

Key Indistinguishability. The real public keys and the lossy public keys are
computationally indistinguishable under the DDH assumption.

Simulatability. Consider an extractable Σ-protocol scenario, where the prover
knows x such that u = gx, v = hx and (u, v) ∈ L. The messages of the
protocol include (a, b), the challenge m and the random coins z which is the
response to the challenge m. And ((a, b),m, z) forms an accepting transcript
of the protocol’s execution for challenge m, where m ∈ {0, 1}λ, a = gz+mx and
b = grz+rmx = ar. Since r, z, x are random elements of Z∗

q , a and b are also
random elements of G, and the ciphertext (a, b) contains no information of
the plaintext. Now consider the algorithm Sim.Fake and Sim.Open. Sim.Fake
picks w ∈ Z

∗
q uniformly at random, and let a = gw, b = hw. Sim.Open takes as

input the auxiliary parameter ε = (x,w), the message m and the ciphertext
(a, b), and it outputs z = w − mx. Because z, w, x are in linear relations,
the distribution of z is identical to that of w and x, therefore z is a random
element in Z

∗
q . According to the above analysis, we have

{(gz+mx, grz+rmx),m, z} ≈s {(gw, hw),m, z}.

Thus, the simulatability property holds.

5.2 Instantiation of tLPKE from Twin-Cramer-Shoup Scheme

The instantiation in Sect. 5.2 is inspired by the similar instantiation of ABME
from Twin-Cramer-Shoup in [16]. Let g be a generator of a group G of prime
order q, and assume G is efficiently samplable and the DDH assumption holds
on G. Choose x ← Z

∗
q uniformly at random, and set X = gx. Choose ξ ← G,

v0 ← Z
∗
q uniformly at random, then compute d0 = gv0 , e0 = ξ−1Xv0 . Compute

d = gv, e = ξXv, where v ← Z
∗
q . Set λ = O(log k). Then we define the language

Lcs under pk = (g,X, d0, d0d, e0e):

Lcs = {(d, e)|∃(ṽ, v) : d0d = gṽ, e0e = X ṽ,where ṽ = v0 + v}.

We then build another instantiation of the tLPKE scheme as follows (denote by
Instantiation 2):

– Gen(1λ): choose x ← Z
∗
q uniformly at random, and set X = gx. Choose

ξ ← G, v1 ← Z
∗
q and v2 ← Z

∗
q uniformly at random, then compute d0 = gv1

and e0 = ξ−1Xv2 . Let d = gv, e = ξXv, where v ← Z
∗
q , let λ = O(log k), and

finally output a pair of real keys (pk, sk), where pk = (g,X, d0, d0d, e0e) and
sk = x.

– LGen(1λ): choose x ← Z
∗
q , ξ ← G, v0 ← Z

�
q and v ← Z

∗
q uniformly at random,

and set X = gx, d0 = gv0 , e0 = ξ−1Xv0 and d = gv, e = ξXv respectively.
Let λ = O(log k), and finally output a pair of lossy keys (pk, sk), where
pk = (g,X, d0, d0d, e0e) and sk = (v0, v).

522 D. Zhu et al.

– Enc(pk,m;z): to encrypt a message m ∈ {0, 1}n, divide m into (m1, . . . ,ml),
where l = n/λ; and for all 1 ≤ i ≤ l, mi ∈ {0, 1}λ, choose z ← Z

∗
q uniformly

at random, where z = (z1, . . . , zl), then compute:

A =
(

g d0d
X e0e

)(
z1 . . . zl

m1 . . . ml

)

And finally output the ciphertext c = A.
– Dec(sk, c): let A = (a1, . . . ,al), where ai = (a1,i, a2,i)T . For every i ∈ [l],

search for appropriate mi ∈ {0, 1}λ such that:

(a1,i)x

a2,i
=

(
(d0d)x

e0e

)mi

, if e0e �= (d0d)x.

If such mi can not be found, then output the decryption failure symbol “⊥”;
Otherwise output m = (m1, . . . ,ml) ∈ {0, 1}n.

– Sim.Fake(pk;w): first divide m into (m1, . . . ,mi), where i ∈ [l], then pick up
wi ∈ Z

∗
q uniformly at random, and compute a1,i = gwi , a2,i = Xwi . Output

the fake ciphertext c = (a1,i, a2,i) and ε = (v0, v,w) for i ∈ [l].
– Sim.Open(ε,m): take as input the auxiliary parameter ε = (x,w), the mes-

sage (m1, . . . ,mi) and the ciphertext c = (a1,i, a2,i) where i ∈ [l], output z
where zi = wi − mi · ṽ and ṽ = v0 + v.
We then prove that the Instantiation 2 is a tweaked lossy encryption
scheme.

Proof. Correctness. When (d, e) /∈ Lcs, the encryption algorithm uses the real
public key pk to encrypt message and the resulting ciphertext is

A =
(

gz1(d0d)m1 . . . gzi(d0d)mi . . . gzl(d0d)ml

Xz1(e0e)m1 . . . Xzi(e0e)mi . . . Xzl(e0e)ml

)

Note that rank(A) = 2. Let ai = (a1,i, a2,i)T denotes the i-th column
of the matrix A, then a1,i = gzi+(v1+v)mi , and a2,i = Xzi+(v2+v)mi =
(gx)zi+(v2+v)mi . We can see that e0e �= (d0d)x, and therefore mi can be
recovered through the following equation:

(a1,i)x

a2,i
=

(
(d0d)x

e0e

)mi

Therefore the decryption algorithm can output m = (m1, . . . ,ml) ∈ {0, 1}n

correctly.
Key indistinguishability. The lossy public key is pk = (g, gx, gv0+v, gx(v0+v)),

and the real public key is pk = (g, gx, gv0+v1 , gx(v0+v2)). Therefore, the lossy
public key and the real public key are computationally indistinguishable under
the DDH assumption.

Simulatability. When (d, e) ∈ Lcs, the encryption algorithm runs a real
extractable Σ-protocol, where the common input is (d0d, e0e) and the prover
wants to prove that logg d0d = logX e0e. The vector ai = (a1,i, a2,i)T is the

Public-Key Encryption with Selective Opening Security 523

first message of the protocol, (m1, . . . ,ml) is the parallel challenge, and zi
corresponds to the response to each challenge mi. Therefore (A,m,z) is an
accepting proof of the parallel execution of the extractable Σ-protocols, where
m = (m1, . . . ,ml) is the challenge, and mi ∈ {0, 1}λ, and i ∈ [l].
Specifically, (a1,i, a2,i)T = (gzi+miṽ,Xzi+miṽ)T , where X = gx, ṽ = v0 + v,
and zi, v0, v ← Z

∗
q . Since rank(A) = 1, the ciphertexts will be uni-

formly distributed over G. Now, the Sim.Fake algorithm first divides m into
(m1, . . . ,mi), where i ∈ [l], then it chooses wi ∈ Z

∗
q uniformly at random

and sets a1,i = gwi , a2,i = Xwi . The Sim.Open algorithm takes as input
ε = (v0, v,w), and finally outputs zi = wi − mi · ṽ, where ṽ = v0 + v. We can
see that zi is a random element of Z∗

q . According to the above analysis, we
have:

{(gzi+miṽ,Xzi+miṽ)T ,mi, zi}i∈[l] ≈s {(gwi ,Xwi)T ,mi, zi}i∈[l]

Thus, the variables distEnc(pk,m) and distSim(pk,m) are statistically indis-
tinguishable and the simulatability property holds.

6 Selective Opening Security for the Receiver

Following the work in [3,4,19], we recall the definition of IND-RSO-CPA, which
is restricted to efficiently conditionally resamplable distributions.

Definition 5 (Efficiently Conditionally Resamplable [3,4]). Let dist be a
joint distribution over Mn, where M is the message space. We say that dist
is efficiently conditionally resamplable if there is a PPT algorithm ReSampdist,
such that for any I ⊂ [n] and any mI :=(mi)i∈I , ReSampdist(mI) outputs m′

I ,
and m′

I is sampled from the distribution dist, conditioned on m′
i = mi for all

i ∈ I.

Experiment. ExpIND-RSO-CPA
PKE,A (1λ):

b {0, 1}
(pk, sk) := (pki, ski)i∈n Gen(1λ)
(dist,ReSampdist) A(pk)
M0 dist
C∗ Enc(pk,M0)
I A(C∗)
M1 ReSampdist(M0I)
b′ A(skI ,Mb)
Return 1 if b′ = b and 0 otherwise.

Fig. 2. The IND-RSO-CPA experiment

524 D. Zhu et al.

Definition 6 (IND-RSO-CPA Security [19]). A PKE scheme PKE = (Gen,
Enc, Dec) is IND-RSO-CPA secure if for any polynomially bounded n = n(1λ) >
0, and any stateful PPT adversary A, such that

AdvIND−RSO−CPA
PKE,A (1λ) = Pr[ExpIND−RSO−CPA

PKE,A (1λ) = 1] − 1
2

is negligible. The experiment ExpIND−RSO−CPA
PKE,A (1λ) is defined as in Fig. 2.

6.1 Tweaked NCER for Receivers

In [19], Hazay et al. proved that secure tweaked NCER implies IND-RSO-CPA
secure PKE. The following definition essentially repeats the definition of tweaked
NCER from [19] with small changes: the tGen algorithm outputs a trapdoor
for solving hard problem instances, and the tOpen algorithm may receive the
trapdoor as an additional input.

A tweaked NCER scheme tPKE is a tuple of algorithms (tGen, tEnc, tEnc∗,
tDec, tOpen), where (tGen, tEnc, tDec) form a PKE. The fake encryption algo-
rithm tEnc∗ takes the secret key sk, the public key pk and a message m as
inputs, and it outputs a ciphertext c∗ ← tEnc∗(pk, sk,m). The opening algo-
rithm tOpen takes as input the secret key sk, the trapdoor τ , the public key
pk, fake ciphertext c∗ where c∗ ← tEnc∗(pk, sk,m′) for some m′ ∈ M and a
message m, and it outputs sk∗ such that m = tDec(sk∗, c∗). For correctness,
we want m = tDec(sk, c) hold for all m ∈ M, all (pk, sk) ← tGen(1λ) and all
c ← tEnc(pk,m). For security, we require that real ciphertexts and fake cipher-
texts are indistinguishable, and a fake ciphertext can be decrypted to a concrete
predetermined plaintext (Fig. 3).

Experiment. Expind-tciphertPKE (A):

b {0, 1}
(pk, sk) tGen(1λ)
(m, state) A(pk)
c0 tEnc(pk, m)
c1 tEnc∗(pk, sk, m)
b′ A(sk, cb, state)
if b = b′, outputs 1, else outputs 0

Experiment. Expind-tncertPKE (A):

b {0, 1}
(pk, sk0, τ) tGen(1λ)
(m, state) A(pk)
c0 tEnc∗(pk, sk0, m)
m′ M
c1 tEnc∗(pk, sk0, m

′)
sk1 tOpen(τ, sk, c1, m)
b′ A(skb, cb, state)
if b = b′, outputs 1, else outputs 0

Fig. 3. Tweaked NCER

Public-Key Encryption with Selective Opening Security 525

Definition 7 (Tweaked NCER [19]). We say that a tweaked NCER scheme
tPKE is secure if it satisfies the following two conditions:

– for any PPT adversary A,Advind-tcipher
tPKE,A :=|Pr[Expind-tcipher

tPKE (A) = 1] − 1
2 |

is negligible.
– for any unbounded adversary A,Advind-tncer

tPKE,A :=|Pr[Expind-tncer
tPKE (A) = 1] −

1
2 | is negligible.

Despite the fact that we use the trapdoor to help the tOpen algorithm output
the secret key, the following lemma still follows from the corresponding proof
in [19] with respect to the definition of tweaked NCER.

Lemma 1 ([19]). If there exists an {ind-tcipher, ind-tncer} secure tweaked
NCER, then there exists a PKE that is IND-RSO-CPA secure.

6.2 Explainable Hash Proof Systems

Hash Proof Systems (HPS) or Smooth Projective Hash Functions (SPHFs) refer
to a family of hash functions (Hash,ProjHash) defined on a language L ⊆ X,
and are indexed by a pair of associated keys (hk, hp), where hk is the hashing
key and the secret key, and hp is the projection key and the public key. The
projective property of SPHFs stipulates that, for a word x ∈ L, the hash value
can be computed using either a hashing key hk or a projection key hp with a
witness w for x ∈ L. In contrast, the smoothness property of SPHFs stipulates
that for a word x /∈ L, the hash value should be completely undetermined.

Explainable Hash Proof Systems (EHPS) proposed by Abdalla et al. [1] are
SPHFs with an additional property that: given the trapdoor, we can first gener-
ate a random-looking projection key hp, and finally output a valid hashing key
hk corresponding to the projection key hp and any hash value H. The follow-
ing definition of EHPS essentially repeats the definition from [1], except minor
changes to fit our requirement. Formally, EHPS are a tuple of algorithms defined
as follows:

– Setup(1λ): take the security parameter λ as input and output a common
reference string (CRS) crs together with a trapdoor τ .

– HashKG(crs): take the CRS crs as input and output a hashing key hk.
– ProjKG(hk, crs): take the hashing key hk and the CRS crs as inputs, generate

the projection key hp.
– Hash(hk, crs, x): take the hashing key hk, the CRS crs and any word x ∈ X

as inputs, output the hash value H.
– ProjHash(hp, crs, x, w): take a word x ∈ L, the projection key hp, and the

witness w as inputs, output the hash value H.
– SimKG(crs, τ, x): take as input crs, τ and a word x /∈ L, output a projection

key hp and an explainability key expk. For our purpose, we additionally
require the hashing key hk to be part of the explainability key expk. We note
that the first construction in [1] satisfy this property.

526 D. Zhu et al.

– Explain(hp, crs, x,H, expk): take as input the projection key hp, the CRS crs,
the word x /∈ L, the hash value H and the explainability key expk, output
the corresponding hashing key hk.

For any (crs, τ) ← Setup(1λ), EHPS should satisfy the following properties:

– Explainability correctness: we require that hp = ProjKG(hk, crs) and H =
Hash(hk, crs, x) hold for any hash value H and any x /∈ L, if (hp, expk) ←
SimKG(crs, τ, x) and hk ← Explain(hp, crs, x,H, expk).

– Indistinguishability: for any x /∈ L, the following two distributions are statis-
tically indistinguishable:

{(hk, hp)|H ← Π; (hp, expk) ← SimKG(crs, τ, x);hk ← Explain(hp, crs, x, H, expk)}
≈s {(hk, hp)|hk ← HashKG(crs);hp ← ProjKG(hk, crs)}.

6.3 IND-RSO-CPA Secure PKE from EHPS

Hazay et al. [19] demonstrated that HPS implies tweaked NCER, and we show
that tweaked NCER can also be constructed from EHPS and it has multiple
advantages. The tweaked NCER scheme we constructed is a tuple of five algo-
rithms (tGen, tEnc, tEnc∗, tDec, tOpen) as follows:

– tGen: take the security parameter λ as input, output the global parameter
crs and the trapdoor τ . Invoke HashKG and ProjKG algorithms to obtain
hk ← HashKG(crs) and hp ← ProjKG(hk, crs) respectively, finally output
the public key hp and secret key hk.

– tEnc: take the public key hp and the plaintext m as inputs, choose a random
x ∈ L together with the witness w; compute e = ProjHash(hp, x, w)⊕m, and
output the ciphertext (x, e).

– tDec: take the secret key hk and the ciphertext (x, e) as inputs, output the
plaintext m = e ⊕ Hash(hk, x).

– tEnc∗: take the secret key hk and the plaintext m as inputs, choose a random
x∗ ∈ X \ L; compute e∗ = Hash(hk, x∗) ⊕ m, and output the fake ciphertext
(x∗, e∗).

– tOpen: take as input the trapdoor τ , the secret key hk and the public key
hp, fake ciphertext (x∗, e∗) and plaintext m; let expk = (τ, hk) and let H =
e∗ ⊕ m, then invoke the Explain(hp, crs, x∗,H, expk) algorithm, and finally
output a secret key hk∗.

The ciphertexts generated by tEnc algorithm are real ciphertexts, while those
generated by tEnc∗ algorithm are fake ciphertexts. Furthermore, the decryption
of a fake ciphertext e∗ is the plaintext m. Our scheme also satisfies the following
properties:

– Completeness: it can be guaranteed by the projective property of EHPS.
– Security: according to the indistinguishability property of EHPS, the real

and the fake ciphertexts are indistinguishable. In addition, the smoothness
property of EHPS guarantees that Hash(hk, x∗) is randomly distributed, for
x∗ ∈ X \ L. Hence, according to the explainability property, for a given m,
there exists a hk∗ corresponding to hp such that Hash(hk∗, x∗) = e∗ ⊕ m.

Public-Key Encryption with Selective Opening Security 527

Compared with the construction of Hazay et al. [19], our construction mainly
change the tOpen algorithm. Specifically, the tOpen algorithm in Hazay et al.’s
[19] scheme allows an unbounded algorithm to find the right hk∗ by searching
exhaustively, while our tOpen algorithm is more likely to obtain hk∗ efficiently
by referring to the work in [1]. Abdalla et al. [1] proposed two schemes for con-
structing Explain(·) in the tOpen algorithm. The first one is running in O(2v)
time, where v is the bit length of the hash value. If v is a polynomial in loga-
rithmic space, then the Explain(·) algorithm is running in polynomial time. The
second one is more efficient, where the Explain(·) algorithm runs in constant
time but can only be constructed in a specific framework. We note that if we
can construct a Explain(·) algorithm that runs in probabilistic polynomial time,
then it is possible to construct a NCER scheme and thereby a SIM-RSO-CPA
secure PKE scheme.

Remarks. The SimKG algorithm of EHPS is implicitly used in the construction
of our tweaked NCER scheme. According to the explainability correctness of
EHPS, the SimKG algorithm will generate the same public key hp as the output
of ProjKG algorithm, and the explainability key expk is consisted of a trapdoor
τ and a secret key hk corresponding to the public key hp.

7 Conclusion

In this paper, we study PKE of security against SO attacks, which is an impor-
tant topic in PKE schemes. In particular, first, we define a new cryptographic
primitive called tweaked lossy encryption, mainly inspired by ABME, dual-mode
commitments, simulatable DEMs, and instance-dependent cryptographic prim-
itives; and we further show that tweaked lossy encryption satisfies the SIM-
SSO-CPA security. Second, we provide a generic construction of tweaked lossy
encryption from extractable Σ-protocol; in addition, we propose two instantia-
tions of the scheme based on dual-mode commitments and Twin-Cramer-Shoup
scheme respectively; and we offer solid proofs of the two instantiations satisfying
our definition of tweaked lossy encryption. Finally, we further propose a generic
scheme with IND-RSO-CPA security based on EHPS. Our work in this paper
provides an insightful view about designing PKE schemes with SO security using
cryptographic primitives, such as extractable Σ-protocol and EHPS.

Acknowledgments. The authors thank China Scholarship Council for supporting
Shuang Hu’s (CSC Student No. 201706230130) work, and she is a visiting student
at Virginia Commonwealth University from 2017 to 2019. The authors would like to
also thank Dingding Jia for helpful discussions and advice, as well as the anonymous
reviewers for their invaluable comments and suggestions.

528 D. Zhu et al.

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Removing erasures with explain-
able hash proof systems. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 151–
174. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8 7

2. Bellare, M., Dowsley, R., Waters, B., Yilek, S.: Standard security does not imply
security against selective-opening. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 645–662. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29011-4 38

3. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9 1

4. Böhl, F., Hofheinz, D., Kraschewski, D.: On definitions of selective opening security.
In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp.
522–539. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-
8 31

5. Boyen, X., Li, Q.: All-but-many lossy trapdoor functions from lattices and appli-
cations. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp.
298–331. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 11

6. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0052229

7. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: Miller, G.L. (ed.) Twenty-Eighth Annual ACM Symposium on
the Theory of Computing. STOC 1996, pp. 639–648. ACM (1996)

8. Cash, D., Kiltz, E., Shoup, V.: The twin diffie-hellman problem and applications.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 8

9. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

10. Damg̊ard, I., Groth, J.: Non-interactive and reusable non-malleable commitment
schemes. In: Larmore, L.L., Goemans, M.X. (eds.) Proceedings of the 35th Annual
ACM Symposium on Theory of Computing 2003, pp. 426–437. ACM (2003)

11. Damg̊ard, I., Nielsen, J.B.: Improved non-committing encryption schemes based
on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 432–450. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-44598-6 27

12. Deng, Y., Lin, D.: Instance-dependent verifiable random functions and their appli-
cation to simultaneous resettability. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS,
vol. 4515, pp. 148–168. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-72540-4 9

13. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. In: 40th
Annual Symposium on Foundations of Computer Science. FOCS 1999, pp. 523–
534 (1999)

14. Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption schemes secure against
chosen-ciphertext selective opening attacks. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 381–402. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 20

https://doi.org/10.1007/978-3-662-54365-8_7
https://doi.org/10.1007/978-3-642-29011-4_38
https://doi.org/10.1007/978-3-642-29011-4_38
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-30057-8_31
https://doi.org/10.1007/978-3-642-30057-8_31
https://doi.org/10.1007/978-3-319-63697-9_11
https://doi.org/10.1007/BFb0052229
https://doi.org/10.1007/978-3-540-78967-3_8
https://doi.org/10.1007/3-540-44598-6_27
https://doi.org/10.1007/3-540-44598-6_27
https://doi.org/10.1007/978-3-540-72540-4_9
https://doi.org/10.1007/978-3-540-72540-4_9
https://doi.org/10.1007/978-3-642-13190-5_20
https://doi.org/10.1007/978-3-642-13190-5_20

Public-Key Encryption with Selective Opening Security 529

15. Fuchsbauer, G., Heuer, F., Kiltz, E., Pietrzak, K.: Standard security does imply
security against selective opening for markov distributions. In: Kushilevitz, E.,
Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 282–305. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49096-9 12

16. Fujisaki, E.: All-but-many encryption. A new framework for fully-equipped UC
commitments. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 426–447. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45608-8 23

17. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: Proceedings of the Seventeenth Annual ACM Symposium on
Theory of Computing. STOC 1985, pp. 291–304. ACM, New York (1985)

18. Hara, K., Kitagawa, F., Matsuda, T., Hanaoka, G., Tanaka, K.: Simulation-based
receiver selective opening CCA secure PKE from standard computational assump-
tions. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp.
140–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 8

19. Hazay, C., Patra, A., Warinschi, B.: Selective opening security for receivers. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 443–469.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 19

20. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: con-
structions from general assumptions and efficient selective opening chosen cipher-
text security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 70–88. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 4

21. Heuer, F., Jager, T., Kiltz, E., Schäge, S.: On the selective opening security of
practical public-key encryption schemes. In: Katz, J. (ed.) PKC 2015. LNCS, vol.
9020, pp. 27–51. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46447-2 2

22. Heuer, F., Jager, T., Schäge, S., Kiltz, E.: Selective opening security of practical
public-key encryption schemes. IET Inf. Secur. 10(6), 304–318 (2016)

23. Heuer, F., Poettering, B.: Selective opening security from simulatable data encap-
sulation. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10032, pp. 248–277. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53890-6 9

24. Hofheinz, D.: All-but-many lossy trapdoor functions. In: Pointcheval, D., Johans-
son, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 209–227. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-29011-4 14

25. Hofheinz, D., Jager, T., Rupp, A.: Public-key encryption with simulation-based
selective-opening security and compact ciphertexts. In: Hirt, M., Smith, A. (eds.)
TCC 2016. LNCS, vol. 9986, pp. 146–168. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53644-5 6

26. Hofheinz, D., Rao, V., Wichs, D.: Standard security does not imply indistinguisha-
bility under selective opening. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS,
vol. 9986, pp. 121–145. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53644-5 5

27. Hofheinz, D., Rupp, A.: Standard versus selective opening security: separation and
equivalence results. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 591–615.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 25

28. Huang, Z., Lai, J., Chen, W., Au, M.H., Peng, Z., Li, J.: Simulation-based selec-
tive opening security for receivers under chosen-ciphertext attacks. Des. Codes
Cryptogr. 1–27 (2018)

https://doi.org/10.1007/978-3-662-49096-9_12
https://doi.org/10.1007/978-3-662-45608-8_23
https://doi.org/10.1007/978-3-662-45608-8_23
https://doi.org/10.1007/978-3-319-98113-0_8
https://doi.org/10.1007/978-3-662-48797-6_19
https://doi.org/10.1007/978-3-642-25385-0_4
https://doi.org/10.1007/978-3-642-25385-0_4
https://doi.org/10.1007/978-3-662-46447-2_2
https://doi.org/10.1007/978-3-662-46447-2_2
https://doi.org/10.1007/978-3-662-53890-6_9
https://doi.org/10.1007/978-3-662-53890-6_9
https://doi.org/10.1007/978-3-642-29011-4_14
https://doi.org/10.1007/978-3-662-53644-5_6
https://doi.org/10.1007/978-3-662-53644-5_6
https://doi.org/10.1007/978-3-662-53644-5_5
https://doi.org/10.1007/978-3-662-53644-5_5
https://doi.org/10.1007/978-3-642-54242-8_25

530 D. Zhu et al.

29. Huang, Z., Liu, S., Qin, B.: Sender-equivocable encryption schemes secure against
chosen-ciphertext attacks revisited. In: Kurosawa, K., Hanaoka, G. (eds.) PKC
2013. LNCS, vol. 7778, pp. 369–385. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36362-7 23

30. Jia, D., Lu, X., Li, B.: Receiver selective opening security from indistinguishability
obfuscation. In: Dunkelman, O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS,
vol. 10095, pp. 393–410. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-49890-4 22

31. Jia, D., Lu, X., Li, B.: Constructions secure against receiver selective opening
and chosen ciphertext attacks. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol.
10159, pp. 417–431. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
52153-4 24

32. Libert, B., Sakzad, A., Stehlé, D., Steinfeld, R.: All-but-many lossy trapdoor func-
tions and selective opening chosen-ciphertext security from LWE. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 332–364. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63697-9 12

33. Lindell, Y.: An efficient transform from sigma protocols to NIZK with a CRS
and non-programmable random oracle. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9014, pp. 93–109. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46494-6 5

34. Liu, S., Paterson, K.G.: Simulation-based selective opening CCA security for PKE
from key encapsulation mechanisms. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020,
pp. 3–26. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-
2 1

35. Micciancio, D., Ong, S.J., Sahai, A., Vadhan, S.: Concurrent zero knowledge with-
out complexity assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol.
3876, pp. 1–20. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 1

36. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45708-9 8

37. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 31

38. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Pro-
ceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 187–
196 (2008)

https://doi.org/10.1007/978-3-642-36362-7_23
https://doi.org/10.1007/978-3-642-36362-7_23
https://doi.org/10.1007/978-3-319-49890-4_22
https://doi.org/10.1007/978-3-319-49890-4_22
https://doi.org/10.1007/978-3-319-52153-4_24
https://doi.org/10.1007/978-3-319-52153-4_24
https://doi.org/10.1007/978-3-319-63697-9_12
https://doi.org/10.1007/978-3-662-46494-6_5
https://doi.org/10.1007/978-3-662-46494-6_5
https://doi.org/10.1007/978-3-662-46447-2_1
https://doi.org/10.1007/978-3-662-46447-2_1
https://doi.org/10.1007/11681878_1
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31

Foundations

Confused yet Successful:

Theoretical Comparison of Distinguishers for Monobit
Leakages in Terms of Confusion Coefficient and SNR

Eloi de Chérisey1(B), Sylvain Guilley1,2, and Olivier Rioul1

1 Télécom ParisTech, Paris, France
{eloi.decherisey,sylvain.guilley,olivier.rioul}@telecom-paristech.fr

2 Secure-IC S.A.S., Rennes, France

Abstract. Many side-channel distinguishers (such as DPA/DoM, CPA,
Euclidean Distance, KSA, MIA, etc.) have been devised and studied to
extract keys from cryptographic devices. Each has pros and cons and
find applications in various contexts. These distinguishers have been
described theoretically in order to determine which distinguisher is best
for a given context, enabling an unambiguous characterization in terms
of success rate or number of traces required to extract the secret key.

In this paper, we show that in the case of monobit leakages, the the-
oretical expression of all distinguishers depend only on two parameters:
the confusion coefficient and the signal-to-noise ratio. We provide closed-
form expressions and leverage them to compare the distinguishers in
terms of convergence speed for distinguishing between key candidates.
This study contrasts with previous works where only the asymptotic
behavior was determined—when the number of traces tends to infinity,
or when the signal-to-noise ratio tends to zero.

Keywords: Side-channel distinguisher ·
Differential Power Analysis (DPA) · Difference of Means (DoM) ·
Correlation Power Analysis (CPA) ·
Mutual Information Analysis (MIA) ·
Kolmogorov-Smirnov Analysis (KSA) · Confusion coefficient ·
Signal-to-noise ratio · Success rate · Success exponent

1 Introduction

Today’s ciphering algorithms such as AES are considered resistant to cryptanal-
ysis. This means that the best possible way to extract a 128-bit key is about
as complex as an exhaustive search over the 2128 possibilities. With our current
computational power, this is not achievable within a reasonable amount of time.

However, it is possible to use plaintexts, ciphertexts, along with additional
side information in order to recover the secret key of a device. Indeed, the secret
key may leak via side-channels, such as the time to compute the algorithm, the
power consumption of the device during the computation of the algorithm, or
the electro-magnetic radiations of the chip.
c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 533–553, 2019.
https://doi.org/10.1007/978-3-030-14234-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_28&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_28

534 E. de Chérisey et al.

In order to secure chips from side-channel attacks, designers have to under-
stand how these work and what could be the future security breaches in the
cryptographic algorithm as well as in the hardware implementation. A prelim-
inary step is to identify how the secret keys leak and deduce leakage models.
Then, mathematical functions—called distinguishers—take the leakage as argu-
ment and return an estimation of the secret key. Such distinguishers come in
many flavours1 and have different figures of merit in different contexts. A given
context not only involves the cryptographic algorithm and the device through
the leakage model, but also the side-channel acquisition setup through the mea-
surement characterized by its signal-to-noise ratio (SNR). This is illustrated in
Fig. 1 borrowed from Heuser et al. [12] (with our annotations in red).

Leakage model SNR

device acquisition
platform

crypto
algo

Fig. 1. Illustration of the two parts of the side-channel analysis context (in red). (Color
figure online)

In practice one may encounter monobit leakages. This means that the output
of the leakage model can only take two values. In this case, as we shall see, the
mathematical computations turn to be simpler and information theoretic tools
can be used to precisely describe the link between the leakage model and the real-
world leaking traces. From another perspective, considering monobit leakages can
also be seen as an “abstraction” trick meant to intentionally ignore the complex
effect of the way the device leaks, thereby keeping only the contribution from
the cryptographic algorithm in the leakage model.

A related question is how the choice of the substitution box in the cryp-
tographic algorithm may “help” the attacker. The standard AES substitution
box was designed to be very secure against linear and differential cryptanaly-
sis [6]. On the contrary, under side-channel analysis, the substitution box may
be helpful for the attacker, especially for monobit leakages as shown below.
1 We cover in this paper the following distinguishers: Difference of Means (DoM) [13],

Correlation Power Analysis (CPA) [3], Euclidean distance [12, §3], Kolmogorov-
Smirnov Analysis (KSA) [22], and Mutual Information Analysis (MIA) [9].

Confused yet Successful 535

Related Work. Distinguishers were often studied empirically, yet such an app-
roach does not allow for generalizations to other contexts and measurement
campaigns. A theoretical approach consists in analyzing the formal expressions
of the distinguishers as mathematical functions. Fei et al. [8] have shown that
distinguishers such as DoM and CPA can be expressed in terms of a confusion
coefficient. They gave the impetus to extend this formal analysis to other types of
distinguishers. In 2014, Heuser et al. [11] relate KSA to the confusion coefficient,
and also noticed that the confusion coefficient can be related to the resistance
of a substitution box against differential cryptanalysis.

Whitnall and Oswald [21] have proposed the relative distinguishing margin
metric to compare distinguishers. However, it has been shown [18] that this met-
ric may not be relevant in all contexts. Another way to compare distinguishers is
to contrast how their success rate (SR) in key recovery depends on the number
q of side-channel traces. Works such as [8,14] provide mathematically models
for the SR. But the comparison between different distinguishers has never been
actually carried out based on such frameworks. Instead, we shall leverage on the
so-called success exponent (SE) [10] which allows to compare the SR of various
distinguishers based on only one exponent parameter.

Our Contributions. In this paper, we consolidate the knowledge about side-
channel attacks exploiting monobit leakages. We provide a rigorous proof that
any distinguisher acting on monobit leakages depends only on two parameters:
the confusion coefficient and the noise variance. Some distinguishers, namely
DoM, CPA and KSA, have already been expressed as a function of those two
parameters [8,11]. In this article, we derive this expression for MIA and we obtain
a simple analytic function when the non zero values of the confusion coefficient
are near 1/2, which is the case of leakages occurring at cryptographically strong
substitution boxes [4].

We derive the success exponent of these distinguishers in terms of the confu-
sion coefficient and the standard deviation of the noise. Success exponents allow
to characterize the efficiency (in terms of number of traces) of distinguishers to
recover the key. Our closed-form expressions of the success exponent enable the
comparison of distinguishers based only on these two parameters. The flow chart
of Fig. 2 situates our contributions in relation to the current state of the art.

Organization. The remainder of this paper is organized as follows. In Sect. 2,
we recall the main definitions. In Sect. 3, we consider all distinguishers in one
mathematical framework and we show that they are only functions of two param-
eters. In Sect. 4, we compare the distinguishers in terms of the success exponent.
Section 5 concludes. Appendices provide proofs for technical lemmas.

Notations. Throughout this paper, we use calligraphic letters to denote sets and
lower-case letters for elements in this set (e.g. x ∈ X). Capital letters denote
random variables. For example, X is a random variable taking values in X and
x ∈ X is a realization of X. The probability that X is x is noted P(X = x) or
simply P(x) when there is no ambiguity. The expectation of a random variable is

536 E. de Chérisey et al.

Distinguishers:

DoM [13],
CPA [3],
Euclidean
distance
[12, §3],

KSA [22], and
MIA [9]

How to
study?

Empirical
simulations

[21]

Theoretical
formal-
ization

Asymptotic
or

Concrete

q → ∞
and/or

SNR → 0
[16]

Which
results?

Finite
q and

SNR. See
Table 1

Accurate
equation of
q �→ SR(q)
[19,7,14]

Compare
SR using
SE. See
Table 2

Fig. 2. The state of the art in relation to our contributions (in yellow boxes—see also
Tables 1 and 2 below). (Color figure online)

noted E[X] and its variance Var(X). The differential entropy h(X) of a random
variable X following distribution p(x) is defined as

h(X) = −
∫
R

p(x) log2 p(x) dx. (1)

The mutual information between two random variables X and Y is defined as

I(X;Y) = h(X) − h(X|Y) = E

[
log2

P(X,Y)
P(X)P(Y)

]
. (2)

2 Modelization and Definitions

2.1 The Leakage Model

In order to compare the different distinguishers for monobit leakages, we need a
leakage model upon which our computations will be based. A plaintext t meets
the secret key k∗ through a leakage function f(t, k∗). The resulting variable y(k∗)
is called the sensitive variable. The dependence in the plaintext t will be omitted
to make equations easier to read when there is no ambiguity.

The attacker measures a noisy version of y(k∗) called trace and denoted by x.
When the key is unknown, the attacker computes a sensitive variable with a key
hypothesis k, that is, y(k) = f(t, k). Thus our model takes the form{

y(k) = f(t, k)
x = y(k∗) + n

(3)

where n is an independent measurement noise.

Confused yet Successful 537

As we consider monobit leakages, we suppose that y(k) can take only two val-
ues. In practice, t (resp. k) are subsets of the full plaintext (resp. key). Typically,
in the case of AES where attacks can be conducted using a divide-and-conquer
approach on a per substitution box basis, t and k are 8-bit works (i.e., bytes).

The above leakage model can also be written using random variables. Let T
the random variable for the plaintext, Y (k) for the sensitive variable, X for the
measurement, and N for the Gaussian noise. We have:

{
Y (k) = f(T, k)

X = Y (k∗) + N.
(4)

In a view to simplify further mathematical computations, we suppose that the
leakage random variable is reduced, that is, centered (E[Y (k)] = 0 for all k) and
of unit variance (E[Y (k)2] = 1 for all k). The noise is also assumed Gaussian of
zero mean and its standard deviation is noted σ > 0. Moreover, we assume that
for any key hypothesis the sensitive variable is balanced, that is, P(y(k)) = 1

2 .
Since Y (k) is a binary random variable, we necessarily have that Y (k) ∈ {±1}
in our model, and consequently the signal-to-noise ratio equals SNR = 1/σ2.

Last, we suppose that the attacker has at his disposal a number of q traces
x1, . . . , xq obtained from leaking sensitive variables y1(k∗), . . . , yq(k∗) under
additive noise n1, . . . , nq.

2.2 The Confusion Coefficient

In the side-channel context, the confusion coefficient was defined by Fei et al.
as the probability that two sensitive variables arising from two different key
hypotheses are different [8, Section 3.1]. Mathematically, the confusion coefficient
is written as

κ(k, k∗) = P(Y (k) �= Y (k∗)). (5)

As the secret key k∗ is constant and understood from the context, we can write
κ(k, k∗) = κ(k). Notice that in practical situations, the EIS (Equal Images under
different Subkeys [20, Def. 2]) assumption holds, therefore κ is actually a function
of the key bitwise XOR difference k ⊕ k∗.

Figure 3 illustrates the confusion coefficient for a monobit leakage Y (k) =
SubBytes(T ⊕k) mod 2, where SubBytes is the AES substitution box (application
F
8
2 → F

8
2) and ⊕ is the bitwise exclusive or. We notice that except for k = k∗ (here

taken = 178 = 0xb2), the confusion coefficient for the AES SubBytes is close to
1/2. This results from the fact the AES SubBytes has been designed to be resistant
against differential cryptanalysis. Specifically, Heuser et al. [11, Proposition 6]
noticed that a “good” substitution box leads to confusion coefficients near 1/2.

The original definition of the confusion coefficient [8] considers only monobit
leakages. An extension for any type of leakage was proposed in [10] where κ(k)
is defined by

κ(k) = E

[(Y (k∗) − Y (k)
2

)2
]
. (6)

538 E. de Chérisey et al.

Fig. 3. Confusion coefficient for the AES SubBytes Least Significant Bit (LSB)

Equation (5) can be easily recovered from this more general expression by noting
that when Y (k) and Y (k∗) ∈ {±1},

(Y (k∗)−Y (k)
2

)2 is 0 or 1 according to whether
Y (k) = Y (k∗) or Y (k) �= Y (k∗).

2.3 Distinguishers

Distinguishers aim at recovering the secret key k∗ from the traces and the model.
For every key k, the attacker computes the associated distinguisher. The key
hypothesis that gives the highest value of the distinguisher is the estimated key.
The attack is successful if the estimated key is equal to the secret key.

For every key hypothesis k, a distinguisher is noted D̂(k) and the estimated
key is k̂ = arg maxk D̂(k). Five classical distinguishers are:

– Difference of Means (DoM) [8], also known as the Differential Power Analysis
(DPA) [13] where the attacker computes

D̂(k) =

∑
i|yi(k)=+1 xi∑

i|yi(k)=+1

−
∑

i|yi(k)=−1 xi∑
i|yi(k)=−1

. (7)

– Correlation Power Analysis (CPA) [3] where the attacker computes the abso-
lute value of the Pearson coefficient

D̂(k) =
∣∣∣∣
1
q

∑q
i=1 xiyi(k) − 1

q

∑q
i=1 xi · 1

q

∑q
i=1 yi(k)√

Var(X)Var(Yi(k))

∣∣∣∣. (8)

Confused yet Successful 539

Notice that Var(Yi(k)) do not depend on the index i, since repeated measure-
ments are i.i.d.

– Euclidean distance, which corresponds to the Maximum Likelihood (ML)
attack under the Gaussian noise hypothesis, where the attacker actually com-
putes the negative Euclidean distance between the model and the trace

D̂(k) = −1
q

q∑
i=1

(xi − yi(k))2. (9)

Maximizing the value of the distinguisher amounts to minimizing the
Euclidean distance. According to [12], as the noise is Gaussian and addi-
tive, the Euclidean distance is the optimal distinguishing rule (ML rule) that
maximizes the success probability.

– Kolmogorov-Smirnov Analysis (KSA) [22] where the traces are used to build an
estimation of the cumulative density function F̂ (x), and the distinguisher is

D̂(k) = −EY (k)

[‖F̂ (x|Y (k)) − F̂ (x)‖∞
]

(10)

where the infinite norm is defined as ‖F̂ (x)‖∞ = supx |F̂ (x)|. Maximizing the
value of the distinguisher amounts to minimizing the expected infinite norm.

– Mutual Information Analysis (MIA) [9] where the attacker computes the
mutual information between the traces and each model. The traces are used
to build an estimation of the joint distribution of X and Y (k), denoted by
p̂(X,Y (k)), and with this estimation, we calculate the mutual information

D̂(k) =
∑

x,y(k)

p̂(x, y(k)) log2
p̂(x, y(k))

p̂(x) · p̂(y(k))
. (11)

Given the available data, the attacker computes the distinguisher as a func-
tion of x1, . . . , xq and y1(k), . . . , yq(k). To emphasize the dependence on the data,
we may write D̂(k) = D̂(X1, . . . , Xq, Y1(k), . . . , Yq(k)). As these traces are real-
izations of random variables, we may also consider D̂(k) as a random variable
which is a function of X1, . . . , Xq and Y1(k), . . . , Yq(k), with expectation E[D̂(k)]
and a variance Var(D̂(k)).

When the number of queries q tends to infinity, we assume that the distin-
guisher converges in the mean-squared sense:

Definition 1 (Theoretical Distinguisher [10]). The theoretical value of the
distinguisher is defined as the limit in the mean square sense when q → ∞ of
the distinguisher. The notation for the theoretical distinguisher is D(k), which
is therefore implicitly defined as:

E[(D̂(k) − D(k))2] −→ 0 as q → ∞. (12)

540 E. de Chérisey et al.

Put differently, D̂(k) can be seen as an estimator of D(k). It is easily seen that as
q → +∞ the distinguishers presented previously have the following theoretical
distinguishers:

– For DoM, the theoretical distinguisher is

D(k) = E[XY (k)]. (13)

– For CPA, the theoretical distinguisher is

D(k) =

∣∣E[XY (k)] − E[X]E[Y (k)]
∣∣

1 + σ2
. (14)

– For Euclidean distance (ML) distinguisher, we have:

D(k) = −E
[
(X − Y (k))2

]
. (15)

– For KSA, we have:

D(k) = EY (k)

[‖F (x|Y (k)) − F (x)‖∞
]
. (16)

– For MIA, it is the mutual information

D(k) = I(X;Y (k)). (17)

3 Theoretical Expressions for Distinguishers

In this section, we show that all distinguishers for monobit leakages are functions
of only two parameters: the confusion coefficient κ(k) and the SNR = 1/σ2.
This is confirmed by the closed-form expressions for classical distinguishers. In
particular we derive the one corresponding to MIA.

3.1 A Communication Channel Between Y (k) and Y (k∗)

To understand the link between any sensitive variable Y (k) and the leaking sensi-
tive variable Y (k∗), consider the following information-theoretic communication
channel between these two variables described in Fig. 4. This communication
channel is simply a theoretical construction that helps explain the link between
Y (k) and Y (k∗), which are both binary and equiprobable random variables tak-
ing their values in {±1}. The parameters p and p′ are the transition probabilities
defined as p = P(Y (k∗) = +1|Y (k) = −1) and p′ = P(Y (k∗) = −1|Y (k) = +1).

Lemma 1. The communication channel defined in Fig. 4 is a binary symmetric
channel (BSC) with transition probability equal to the confusion coefficient κ(k).

Confused yet Successful 541

−1
1 − p

−1

+1
1 − p′

+1

p

p′
Y (k) Y (k∗)

Fig. 4. Abstract communication channel between Y (k) and Y (k∗)

Proof. To prove that the channel is symmetric, we show that both transition
probabilities coincide: p = p′. In fact, from Fig. 4, 1

2 = P(Y (k∗) = 1) =
pP(Y (k) = −1) + (1 − p′)P(Y (k) = 1) = 1

2 (p + 1 − p′) hence p = p′. Now
the confusion coefficient κ(k) = P(Y (k) �= Y (k∗)) can be expanded as

κ(k) = 1
2

(
P(Y (k) �= Y (k∗)|Y (k) = 1) + P(Y (k) �= Y (k∗)|Y (k) = −1)

)
(18)

= 1
2

(
P(Y (k∗) = −1|Y (k) = 1) + P(Y (k∗) = 1|Y (k) = −1)

)
(19)

= 1
2

(
p + p′) = p = p′. (20)

This proves that the BSC has transition probability equal to κ(k). �	
According to a well-known information theoretic result [5, p. 187], the

Shannon’s capacity in bits per bit of this channel is

C = 1 − H2(κ(k)), (21)

where H2(x) is the binary entropy function defined by

H2(x) = x log2
(1

x

)
+ (1 − x) log2

(1
1 − x

)
. (22)

This is represented in Fig. 5 as a function of κ(k). Interestingly, the value κ(k) =
1/2 corresponds to null capacity while the capacity is evidently 1 bit per bit for
κ(k∗) = 0, since in this case the above communication channel reduces to the
identity.

3.2 A General Result

We can now explain why all distinguishers for monobit leakages depend only on
the two parameters κ(k) and SNR = σ−2.

Theorem 1. Any theoretical distinguisher D(k) for a binary leakage y can be
expressed as a function of κ(k) and σ.

542 E. de Chérisey et al.

Fig. 5. Representation of the channel capacity according to κ(k)

Proof. Any theoretical distinguisher is defined in terms of the joint probability
distribution of X and Y (k), noted p(x, y(k)). Now for any x ∈ R and y(k) = ±1,

p(x, y(k)) = P(y(k)) p(x | y(k)) (23)

=
1
2
p(y(k∗) + n | y(k)) (24)

=
1
2

∑
y(k∗)

p(y(k∗) + n | y(k), y(k∗)) P(y(k∗) | y(k)) (25)

where P(y(k∗) | y(k)) is the transition probability of the channel defined in Fig. 4.
There are two possibilities. Either y(k) = y(k∗), and in this case P(y(k∗)|y(k)) =
1 − κ(k), or y(k) �= y(k∗) and in this case P(y(k∗)|y(k)) = κ(k). The sum over
y(k∗) has two terms and both cases are represented. Moreover, the Gaussian
noise is independent from every other random variable. Therefore, we have two
possibilities for the joint probability:

p(x, y(k)) =

⎧⎨
⎩

1
2

(
φ(1+n

σ)κ(k) + φ(−1+n
σ)(1 − κ(k))

)
1
2

(
φ(−1+n

σ)κ(k) + φ(1+n
σ)(1 − κ(k))

) (26)

where φ(x) is the probability density function of a standard normal random
variable. As the noise is centered and Gaussian, the only parameter that charac-
terizes φ is its standard deviation σ. Therefore, a joint distribution of a monobit
leakage is fully characterized by σ and κ(k). �	

This proves that the knowledge of the confusion coefficient and the noise
power are essential to predict the performances of the side-channel attacks for
monobit leakages.

Confused yet Successful 543

3.3 Classical Distinguishers as Functions of κ(k) and σ2

To highlight the result of Sect. 3.2, we compute the classical distinguishers
according to the confusion coefficient and the noise power. As we mentioned
in the introduction, some of them have already been expressed according to
these variables: we recall these results in Table 1 with references to the articles
where the expression of the distinguisher in terms of κ(k) is proven.

Table 1. Summary of classical distinguishers. Among all the classical theoretical dis-
tinguishers, we notice that the expression of the theoretical value of DoM with κ(k)
does not depend on σ.

Distinguisher Original paper Theoretical expression with κ(k) Reference

DoM [13] D(k) = 2(1/2 − κ(k)) [15]

CPA [3] D(k) = 2 |1/2−κ(k)|√
1+σ2

[15]

Euclidean distance [12, §3] Lemma 2 This paper

KSA [22] D(k) = erf
(

1
2σ2

)
|1/2 − κ(k)| [11]

MIA [9] Lemma 3 This paper

The new results are given by the following lemmas.

Lemma 2. For monobit leakages, the Euclidean distance distinguisher can be
expressed as:

D(k) = 4(1/2 − κ(k)) − (σ2 + 2). (27)

Proof. We have D(k) = −E
[
(X − Y (k))2

]
= −E

[
(Y (k∗) − Y (k) + N)2

]
=

−E
[
(Y (k∗) − Y (k))2

] − σ2 since the noise is independent from Y (k∗) − Y (k).
Then by (6), D(k) = −4κ(k)−σ2 = 4(1/2−κ(k))−2−σ2 where we have stressed
the dependence in 1/2 − κ(k) as in Table 1. �	
Lemma 3. For monobit leakages, when κ(k) ≈ 1/2 for k �= k∗, the MIA distin-
guisher can be expressed at first order as:

D(k) = 2 log2(e)(κ(k) − 1/2)2g(σ) (28)

where
g(σ) =

1
2
E

[
tanh2

(Z

σ
+

1
σ2

)
+ tanh2

(Z

σ
− 1

σ2

)]
(29)

and Z ∼ N (0, 1). The function g satisfies

lim
σ→0

g(σ) = 1 and lim
σ→∞ σ2 × g(σ) = 1. (30)

Proof. See Appendix A. �	

544 E. de Chérisey et al.

Figure 6 plots the shape of g(σ) which tends to 1 when σ → 0 and is equivalent
to 1

σ2 when σ → ∞.
When k = k∗ the MIA distinguisher also has a simple expression since it

reduces to the known expression of the channel capacity for channels with binary
input and additive Gaussian noise [2, p. 274]:

D(k∗) =
1
σ2

−
∫
R

e− 1
2y2

2π
log2 cosh(

1
σ2

− y

σ2
)dy. (31)

Fig. 6. Representation of g(σ)

Remark 1. With respect to their theoretical distinguishers, DoM is in bijection
with the Euclidean distance, and CPA is in bijection with KSA. Indeed, the
Euclidean distance is D(k) = 4(1/2 − κ(k)) − 2 − σ2 and σ is independent from
the choice of the key. Therefore, there is a bijection between 4(1/2−κ(k))−2−σ2

and 2(1/2−κ(k)) which is the theoretical value of DoM. Regarding CPA and KSA,
both distinguishers are functions of |1/2 − κ(k)|.

We also notice that MIA is in bijection with CPA (and therefore KSA).
Indeed, according to the value of MIA with κ(k), the distinguisher is a function of
(1/2−κ(k))2 which is in bijection with |1/2−κ(k)| =

√
(1/2 − κ(k))2. This means

that for monobit leakages, any attack that works with one of these distinguishers
will also work with another, and vice versa.

4 Comparing Distinguishers with the Success Exponent

In the previous section, we have computed the theoretical values of the classical
distinguishers in terms of κ(k) and σ. Now, we wish to compare their success rate.
As we mentioned Sect. 2.3, the attacker computes the estimated distinguisher

Confused yet Successful 545

D̂(k) to recover the secret key. This is the main reason why all distinguishers do
not perform equally in key recovery; indeed, they do not converge at the same
speed towards their theoretical value.

In order to compare them, we have computed their success exponent, a metric
proposed by Guilley et al. in [10] that evaluates how fast the success rate of a
distinguisher converges to 100%. With a Gaussian assumption, they prove that
the success rate can be modeled as

SR = 1 − exp(−q × SE), (32)

where q is the number of traces and SE ∈ R
+ is the so-called success exponent.

Therefore, the greater the success exponent is, the faster the convergence of the
success rate.

Table 2. Success exponents for the classical distinguishers. The numerical values of SE
are obtained for AES SubBytes least significant bit leakage model and noise of standard
deviation σ = 4. Notice that in the monobit case, Euclidean distance and DoM have
strictly the same success rate because −(X − Y (k))2 = −X2 + 2XY (k) − 1, and X2 is
independent of the choice of the key.

Distinguisher Closed form SE with
κ(k) and σ

Reference Numerical value
for AES SubBytes

DoM
1

2
min
k �=k∗

κ(k)

1 + σ2 − κ(k)
[10, Proposition 4] 3.39 × 10−3

CPA Lemma 4 This paper 3.39 × 10−3

Euclidean distance
1

2
min
k �=k∗

κ(k)

1 + σ2 − κ(k)
[10, Proposition 5] 3.39 × 10−3

KSA Lemma 5 This paper 1.08 × 10−3

MIA Lemma 6 [10, Proposition 6] 8.52 × 10−5

We present the theoretical values of the success exponent for the different
distinguishers in Table 2. As a direct consequence of Theorem 1, all of these
success exponents are function of κ(k) and σ. Therefore, if the attacker only
knows the type of substitution box that is used and the SNR of the leakage, he
can predict how fast he recovers the secret key.

Lemma 4 (Success exponent of CPA). The success exponent of CPA2 is:

SE =
1
2

min
k �=k∗

1 − 2|1/2 − κ(k)|
1 + 2σ2 + 2|1/2 − κ(k)| . (33)

Proof. See Appendix B. �	
2 In [10], CPA is treated as a distinguisher, but without the absolute values. Those

remove false positives which occur in monobit leakages when there are anti-
correlations. Our value of the success exponent is, therefore, different from theirs.

546 E. de Chérisey et al.

Lemma 5 (Success exponent of KSA). Assuming that the distributions are
estimated with the kernel method using Heaviside step function, the success expo-
nent of KSA is

SE =
1
2

min
k �=k∗

erf
(

1√
2σ

)2(1/2 − |1/2 − κ(k)|)
2 − erf

(
1√
2σ

)2(1/2 − |1/2 − κ(k)|)
. (34)

Proof. See Appendix C. �	
Lemma 6 (Success exponent of MIA). When σ � 1, the success exponent
for an MIA computed with histograms is

SE =
4 log2(e)2

σ4
min
k �=k∗

κ(k)2(1 − κ(k))2. (35)

Proof. See Appendix D. �	
In order to validate our theoretical results, we have simulated attacks within

the monobit model presented in Sect. 2. The success rates of these attacks are
presented in Fig. 7. In this figure, we notice that, as expected, the Euclidean
distance (ML) is the best distinguisher, closely followed by CPA. Both have
similar same success rate. The small difference is due to the use the the absolute
values in the distinguishing function of CPA (see discussion in Remark 9 of [12]).
The KSA is requiring a bit less than the double of traces, compared to Euclidean
distance, DoM and CPA. The MIA performs really bad compared to the other
distinguishers. Error bars represent the inaccuracy while estimating the SR (here,
we ran 100 simulations).

Fig. 7. Success rate for classical distinguishers (σ = 4)

Confused yet Successful 547

These simulations are therefore in complete coherence with the theoretical
results of Table 2. Indeed, the order of the distinguishers is the same w.r.t. the
success rate and w.r.t. the success exponent. In addition, according to the def-
inition of the success exponent SE in (32), the number of traces q to reach a
given success rate (e.g., SR = 80%) is proportional to the inverse of SE. This
quantitative law is satisfied in the simulation of Fig. 7.

5 Conclusion

In this paper, we have mathematically proven that only two parameters, the
confusion coefficient and the SNR, determine the side-channel distinguishing
efficiency for monobit leakages. Both of them are easy to compute because the
confusion coefficient can be calculated with the knowledge of the operating sub-
stitution box and the SNR can be measured offline.

Our work is useful to predict how fast a distinguisher will succeed to recover
the secret key. Long and painful simulations can be advantageously replaced by
the computation of the success exponent using closed-form expressions.

This paper also consolidates the state of the art about the classical distin-
guishers, especially for MIA and KSA. We have derived the success exponent
for these two distinguishers as a function of the confusion coefficient and the
standard deviation of the noise.

A Proof of Lemma 3

The MIA distinguisher is expressed as

D(k) = I(Y (k∗) + N ;Y (k)) = h(Y (k∗) + N) − h(Y (k∗) + N | Y (k)). (36)

From Sect. 3.1, Y (k∗) knowing Y (k) is a binary random variable with probability
κ(k). As N is Gaussian independent from Y (k), the pdf of Y (k∗) + N knowing
Y (k) is a Gaussian mixture that can take two forms:

pκ(k)(x) =

⎧⎨
⎩

1√
2πσ

[κ(k)e− (x−1)2

2σ2 + (1 − κ(k))e− (x+1)2

2σ2]
1√
2πσ

[κ(k)e− (x+1)2

2σ2 + (1 − κ(k))e− (x−1)2

2σ2]
, (37)

By symmetry, their entropy h(Y (k∗) + N | Y (k)) will be the same and we can
take any of these pdfs. Letting φ be the standard normal density, we can write

pκ(k)(x) = p1/2(x) − 2(1/2 − κ(k))φ(x)e− 1
σ2 sinh(

x

σ2
) (38)

= p1/2(x)(1 − 2(1/2 − κ(k)) tanh(
x

2σ2
). (39)

where

p1/2(x) =
1

2
√

2πσ
[e− (x−1)2

2σ2 + e− (x+1)2

2σ2] =
1
σ

e− 1
2σ2 φ(

x

σ
) cosh(

x

σ2
). (40)

548 E. de Chérisey et al.

For notational convenience define ε = 2(1/2 − κ(k)), p = p1/2(x), and t =
tanh(x). Then

I(X;Y (k)) = h(Y (k∗) + N) − h(Y (k∗) + N | Y (k)) (41)

= −
∫

p log2 p +
∫

(p(1 − εt)) log2(p(1 − εt)) (42)

= −
∫

εpt log2 p +
∫

p log2(1 − εt) −
∫

pεt log2(1 − εt). (43)

The first term vanishes since p is even and t odd. We apply a Taylor expansion:

I(X;Y (k)) =
∫

p[−εt− ε2t2

2
− ε3t3

3
+O(ε4)]−

∫
εpt[−εt− ε2t2

2
− ε3t3

3
+O(ε4)].

(44)
The odd terms of the expansion are null as t is odd and p even. We therefore
obtain:

I(X;Y (k)) =
∫

p[−ε2t2

2
+O(ε4)]−

∫
[−ε2pt2+O(ε4)] =

∫
ε2pt2

2
+O(ε4). (45)

Thus, finally,
D(k) = 2 log2(e)(1/2 − κ(k))2g(σ), (46)

where
g(σ) =

1
σ

e− 1
2σ2

∫
R

φ(
x

σ
) cosh(

x

σ2
) tanh2(

x

σ2
)dx. (47)

There are several ways to express g(σ). For example, we have:

g(σ) = e− 1
2σ2

∫
R

φ(x) cosh(
x

σ
) tanh2(

x

σ
)dx. (48)

This expression can be reduced to:

g(σ) =
1
2
EX

[
tanh2(

X

σ
+

1
σ2

) + tanh2(
X

σ
− 1

σ2
)
]

, (49)

where X ∼ N (0, 1). By the dominated convergence theorem (tanh2(X
σ + 1

σ2) is
always smaller than 1) when σ → 0, we obtain g(0) = 1 and when σ → ∞ we
obtain the equivalent 1

σ2 .

B Proof of Lemma 4

The success exponent is defined by

SE =
E[D̂(k∗) − D̂(k)]2

2Var(D̂(k∗) − D̂(k))
. (50)

Confused yet Successful 549

where in our case

D̂(k) =
1

q
√

1 + σ2

∣∣∣
q∑

i=1

XiYi(k)
∣∣∣. (51)

First for large q we can consider that E[|∑i XiYi(k)|] = |E[
∑

i XiYi(k)]|.

E[D̂(k)] = |E[XY (k)]| =
2 × |1/2 − κ(k)|√

1 + σ2
(52)

hence

E[D̂(k∗) − D̂(k)] =
1 − 2 × |1/2 − κ(k)|√

1 + σ2
. (53)

Secondly we have

Var(D̂(k∗) − D̂(k)) =
1

q2(1 + σ2)
Var

(∣∣∣
q∑

i=1

XiYi(k∗)
∣∣∣ −

∣∣∣
q∑

i=1

XiYi(k)
∣∣∣
)
. (54)

To remove the absolute values, we distinguish two cases whether the sum is
positive or negative. We consider that q is large enough to have strictly positive
or negative values.

Var(D̂(k∗) − D̂(k)) =
1

q2(1 + σ2)
Var

(q∑
i=1

XiYi(k∗) ∓
q∑

i=1

XiYi(k)
)

(55)

=
1

q2(1 + σ2)
Var

(q∑
i=1

Xi

(
Yi(k∗) ∓ Yi(k)

))
(56)

=
1

q(1 + σ2)
Var

(
X

(
Y (k∗) ∓ Y (k)

))
(57)

=
1

q(1 + σ2)
Var

(
(Y (k∗) + N)

(
Y (k∗) ∓ Y (k)

))
(58)

=
1

q(1 + σ2)
Var

(∓Y (k∗)Y (k) + N(Y (k∗) ∓ Y (k))
)
. (59)

The variance term is the difference of the two following quantities

E

[
(∓Y (k∗)Y (k) + N(Y (k∗) ∓ Y (k)))2

]
= 1 + 2σ2(1 − 2|1/2 − κ(k)|) (60)

E

[
∓Y (k∗)Y (k) + N(Y (k∗) ∓ Y (k))

]2
=

(
2(1/2 − κ(k))

)2

. (61)

Combining all the above expressions we obtain (33).

C Proof of Lemma 5

To prove the success rate of KSA, we first need an estimator for the cumulative
density function. We take as kernel a function Φ as simple as possible i.e. the
Heaviside function Φ(x) = 0 if x < 0 and Φ(x) = 1 if x ≥ 0.

550 E. de Chérisey et al.

With this function and for x ∈ R, we can estimate F (x|Y (k) = 1) − F (x) by
the following estimator:

F̃ (x|Y (k) = 1) − F̃ (x) =

∑
i|Yi(k)=1 Φ(x − Xi)∑

i|Yi(k)=1 1
−

∑
i Φ(x − Xi)

q
. (62)

We suppose that q is large enough to consider that
∑

i|Yi(k)=1 1 = q
2 (by the law

of large numbers). Therefore we have:

F̃ (x|Y (k) = 1) − F̃ (x) =

∑
i|Yi(k)=1 Φ(x − Xi)

q
− 2

∑
i Φ(x − Xi)

q
. (63)

We notice that
∑

i|Yi(k)=1 Φ(x − Xi) = 1
2

∑
i(Yi(k) + 1)Φ(x − Xi). Therefore

F̃ (x|Y (k) = 1) − F̃ (x) =
1
q

q∑
i=1

Yi(k)Φ(x − Xi). (64)

This estimator is a sum of i.i.d. random variables. We can therefore apply the
central limit theorem.

E[F̃ (x|Y (k) = 1) − F̃ (x)] = E[Y (k)Φ(x − Xi)] (65)
= E[Y (k)Φ(x − Y (k∗) − N)] (66)

=
1
2
(κ(k) − 0.5)

(
erf

(1 − x

σ
√

2
) + erf

(1 + x

σ
√

2

))
. (67)

The maximum of the absolute value is for x = 0 and we obtain:

‖E[F̃ (x|Y (k) = 1) − F̃ (x)]‖∞ = |0.5 − κ(k)|erf
(1

σ
√

2

)
. (68)

We notice that ‖E[F̃ (x|Y (k) = 1) − F̃ (x)]‖∞ = ‖E[F̃ (x|Y (k) = −1) − F̃ (x)]‖∞.
To calculate the variance, we consider that x = 0 as it is the value that maximizes
the expectation of the distinguisher.

Var(D̂(k∗) − D̂(k)) = Var
(1

q

(q∑
i=1

Φ(x − Xi)(Yi(k∗) − Yi(k))
))

(69)

The computation of this variance gives:

Var(D̂(k∗)−D̂(k)) = 2(0.5−|0.5−κ(k)|)−erf
(1

σ
√

2

)2

(0.5−|0.5−κ(k)|)2. (70)

Overall, the success exponent is:

SE =
1
2

min
k �=k∗

erf
(

1√
2σ

)2(1/2 − |1/2 − κ(k)|)
2 − erf

(
1√
2σ

)2(1/2 − |1/2 − κ(k)|)
. (71)

Confused yet Successful 551

D Proof of Lemma 6

For MIA, we refer to [10, Section 5.3] for the theoretical justifications. In order
to obtain a simple closed-form expression of the success exponent, we sup-
pose that σ � 1 and that the probability density functions are all Gaussian.
This means that X|Y (k) is a Gaussian random variable of standard deviation√

4κ(k)(1 − κ(k)) + σ2. Moreover, we will keep only the first order approxima-
tion in SNR = σ−2 of the SE.

h(X|Y (k)) − h(X|Y (k∗) =
1

2
log2(2πe · (4κ(k)(1 − κ(k)) + σ2) − 1

2
log2(2πe · σ2) (72)

=
1

2
log2

4κ(k)(1 − κ(k)) + σ2

σ2
(73)

≈ log2(e)4κ(k)(1 − κ(k))

2σ2
(74)

The Fisher information of a Gaussian random variable of standard deviation ζ
is equal to 1

ζ2 . Therefore the Fisher information of X knowing Y = y(k) is:

F (X|Y (k) = y(k)) =
1

4κ(k)(1 − κ(k)) + σ2
. (75)

As this value does not depend on the value of Y (k), we have:

F (X|Y (k)) =
1

4κ(k)(1 − κ(k)) + σ2
(76)

J(X|Y (k)) − J(X|Y (k∗)) =
1

4κ(k)(1 − κ(k)) + σ2
− 1

σ2
(77)

≈ −κ(k)(1 − κ(k))
σ4

. (78)

Last, we have to calculate Var(− log2 p(X|Y (k) = y(k))). Let ζ2 = σ2+4κ(k)(1−
κ(k)) and C the normalization constant. We have:

Var(− log2 p(X|Y (k) = y(k))) = Var
(
− log2

(
C exp

(
−1/2

(X − μ)2

ζ2

)))
(79)

= Var
(
− log2(C) + 1/2

(X − μ)2

ζ2

)
(80)

=
1
4
Var

((X − μ)2

ζ2

)
=

1
4ζ4

Var(X2) (81)

=
1

4(σ2 + 4κ(k)(1 − κ(k)))2
2(1 + σ2)2 ≈ 1

2
. (82)

Overall, the success exponent defined in [10, Proposition 6] can be simplified in
the case of monobit leakage as:

SE ≈ min
k �=k∗

4
log2(e)2κ(k)2(1 − κ(k))2

σ4
. (83)

552 E. de Chérisey et al.

References

1. Batina, L., Robshaw, M. (eds.): CHES 2014. LNCS, vol. 8731. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44709-3

2. Blahut, R.E.: Principles and Practice of Information Theory. Addison-Wesley
Longman Publishing Co. Inc., Boston (1987)

3. Brier, É., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

4. Carlet, C., Heuser, A., Picek, S.: Trade-offs for S-boxes: cryptographic properties
and side-channel resilience. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS
2017. LNCS, vol. 10355, pp. 393–414. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-61204-1 20

5. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley-
Interscience, New York (2006). ISBN-10: 0471241954, ISBN-13: 978-0471241959

6. Daemen, J., Rijmen, V.: Rijndael for AES. In: AES Candidate Conference, pp.
343–348 (2000)

7. Fei, Y., Ding, A.A., Lao, J., Zhang, L.: A statistics-based success rate model for
DPA and CPA. J. Cryptographic Eng. 5(4), 227–243 (2015). https://doi.org/10.
1007/s13389-015-0107-0

8. Fei, Y., Luo, Q., Ding, A.A.: A statistical model for DPA with novel algorithmic
confusion analysis. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol.
7428, pp. 233–250. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33027-8 14

9. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3 27

10. Guilley, S., Heuser, A., Rioul, O.: A key to success. In: Biryukov, A., Goyal, V.
(eds.) INDOCRYPT 2015. LNCS, vol. 9462, pp. 270–290. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26617-6 15

11. Heuser, A., Rioul, O., Guilley, S.: A theoretical study of Kolmogorov-Smirnov
distinguishers – side-channel analysis vs. differential cryptanalysis. In: Prouff [17],
pp. 9–28. https://doi.org/10.1007/978-3-319-10175-0 2

12. Heuser, A., Rioul, O., Guilley, S.: Good is not good enough - deriving optimal
distinguishers from communication theory. In: Batina and Robshaw [1], pp. 55–74.
https://doi.org/10.1007/978-3-662-44709-3 4

13. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

14. Lomné, V., Prouff, E., Rivain, M., Roche, T., Thillard, A.: How to estimate the
success rate of higher-order side-channel attacks. In: Batina and Robshaw [1], pp.
35–54. https://doi.org/10.1007/978-3-662-44709-3 3

15. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks. Revealing the
Secrets of Smart Cards. Springer, Boston (2007). https://doi.org/10.1007/978-0-
387-38162-6

16. Mangard, S., Oswald, E., Standaert, F.: One for all - all for one: unifying standard
differential power analysis attacks. IET Inf. Secur. 5(2), 100–110 (2011). https://
doi.org/10.1049/iet-ifs.2010.0096

17. Prouff, E. (ed.): COSADE 2014. LNCS, vol. 8622. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10175-0

https://doi.org/10.1007/978-3-662-44709-3
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-319-61204-1_20
https://doi.org/10.1007/978-3-319-61204-1_20
https://doi.org/10.1007/s13389-015-0107-0
https://doi.org/10.1007/s13389-015-0107-0
https://doi.org/10.1007/978-3-642-33027-8_14
https://doi.org/10.1007/978-3-642-33027-8_14
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/978-3-319-26617-6_15
https://doi.org/10.1007/978-3-319-10175-0_2
https://doi.org/10.1007/978-3-662-44709-3_4
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-662-44709-3_3
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1049/iet-ifs.2010.0096
https://doi.org/10.1049/iet-ifs.2010.0096
https://doi.org/10.1007/978-3-319-10175-0
https://doi.org/10.1007/978-3-319-10175-0

Confused yet Successful 553

18. Reparaz, O., Gierlichs, B., Verbauwhede, I.: A note on the use of margins to com-
pare distinguishers. In: Prouff [17], pp. 1–8. https://doi.org/10.1007/978-3-319-
10175-0 1

19. Rivain, M.: On the exact success rate of side channel analysis in the Gaussian
model. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp.
165–183. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-
4 11

20. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 3

21. Whitnall, C., Oswald, E.: A fair evaluation framework for comparing side-channel
distinguishers. J. Cryptographic Eng. 1(2), 145–160 (2011)

22. Whitnall, C., Oswald, E., Mather, L.: An exploration of the Kolmogorov-Smirnov
test as a competitor to mutual information analysis. In: Prouff, E. (ed.) CARDIS
2011. LNCS, vol. 7079, pp. 234–251. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-27257-8 15

https://doi.org/10.1007/978-3-319-10175-0_1
https://doi.org/10.1007/978-3-319-10175-0_1
https://doi.org/10.1007/978-3-642-04159-4_11
https://doi.org/10.1007/978-3-642-04159-4_11
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-642-27257-8_15
https://doi.org/10.1007/978-3-642-27257-8_15

Searching BN Curves for SM9

Guiwen Luo1,2(B) and Xiao Chen1,2

1 State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China

{luoguiwen,chenxiao}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100049, China

Abstract. In 2016, State Cryptography Administration of China pub-
lished Identity-based cryptographic algorithm SM9. A 256-bit BN curve
recommended to construct system parameters in SM9 documents once
was convinced to provide 128-bit security level. With the development of
number field sieve, the complexity of discrete logarithm problem (DLP)
in a finite field reduces, so does the security level of SM9 whose security is
based on the difficulty of solving the DLPs. It’s urgent to construct SM9
system parameters with higher security level. In this paper, we analyze
the requirements of secure elliptic curves, search BN curves at length
of 384-bit and 380–382-bit that show the best computation efficiency.
Then we choose a 384-bit BN curve to construct the system parameters,
making preparation for upgrading the original 256-bit SM9.

Keywords: SM9 · Identity-based cryptographic algorithm ·
System parameters · BN curve · R-ate pairing

1 Introduction

SM9 is an identity-based cryptosystem [1–5] based on bilinear pairing which
makes connections between the cyclic subgroups of elliptic curves and the cyclic
multiplication subgroup of finite field. SM9 chooses a BN curve to construct
its system parameters and R-ate Pairing to implement all the cryptographic
algorithms.

From the perspective of mathematics, SM9 is also a pairing-based cryptosys-
tem whose security is based on the difficulty of DLPs on elliptic curves and finite
field. Original SM9 has recommended 256-bit system parameters in order to pro-
vide 128-bit security level at the time. In 2016, there was a big improvement on
number field sieve (NFS) algorithm [18], bringing down the difficulty of DLP
in finite field. A variant of ordinary NFS named special ExTNFS is suitable for
extension field Fqn with prime q given by a polynomial of parameter t, such
as the cases of BN curves. This leads to a result that the 256-bit BN curve in
original SM9 could theoretically just provide the security level of around 100-bit
[6]. It’s urgent to construct system parameters of SM9 with higher security level
to make preparation for upgrade.
c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 554–567, 2019.
https://doi.org/10.1007/978-3-030-14234-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_29&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_29

Searching BN Curves for SM9 555

Several recent works have been done to revise the key size of corresponding
security level. Menezes et al. [20], Barbulescu et al. [6], and Scott et al. [28] pro-
posed new key size estimations for pairing-based cryptography. Pairing-friendly
elliptic curves, among which the most popular ones are BN curves [9], are com-
monly utilized to construct system parameters for pairing-based cryptosystem.
A general survey about different families of pairing-friendly elliptic curves and
their constructions is introduced in [14].

In this article, conditions that secure curves need to satisfy are analyzed and
why those conditions are necessary is explained. An exhaustive search over Ham-
ming weight of curve parameter is made, obtaining the best secure BN curves
at length of 384-bit and 382-bit respectively. Then we compare and combine
state-of-the-art algorithms to evaluate the R-ate pairing computation efficiency,
which is the core part of SM9. Finally, the 384-bit BN curve is chosen to con-
struct SM9 system parameters. In a word, we’ve done all the essential work to
upgrade 256-bit SM9 to a higher security level.

2 Preliminaries

2.1 BN Curves

BN curves are a very important family of pairing-friendly elliptic curves broadly
used in pairing-based cryptography. A BN curve is represented by integer triplet
(t, q, n) with the relationship

q = q(t) = 36t4 + 36t3 + 24t2 + 6t + 1,

n = n(t) = 36t4 + 36t3 + 18t2 + 6t + 1, (1)

where both q and n are prime integers. A 256-bit BN curve means the binary
length of q and n is 256-bit. The curve equation can be written as

E : y2 = x3 + b, b ∈ Fq. (2)

The embedding degree of BN curve is k = 12, making it appropriate for
pairing-based cryptography. Another important property of BN curves is that a
twisted curve with degree 6 exists [24]. The twist is represented by the equation

E′ : y2 = x3 + b/β, (3)

where β ∈ Fq2 \ ((Fq2)2 ∪ (Fq2)3). It helps us to represent the second R-ate
pairing argument point in a quadratic extension field to achieve higher pairing
computation efficiency. The corresponding isomorphism ψ ∈ hom(E′, E) is

ψ : E′ → E, (x′, y′) �→ (β1/3x′, β1/2y′). (4)

556 G. Luo and X. Chen

2.2 Bilinear Pairing

Let (G1,+), (G2,+) and (GT , ·) be three cyclic groups with the same order of
prime integer n. Let P1 and P2 be the generators of G1 and G2 respectively.
Suppose there exists a homomorphism ψ such that ψ(P2) = P1.

A bilinear pairing is a map

e : G1 × G2 → GT

with bilinearity, non-degeneracy and computability.
Different kinds of bilinear pairings, including Weil Pairing, Tate Pairing, Ate

Pairing and R-ate Pairing, are suitable for SM9. Original 256-bit SM9 [5] chooses
R-ate Pairing as the recommended one.

Define G1 = ker(φq−[1]) = E(Fq) and G2 = E[n]∩ker(φq−[q]) ⊆ E(Fp12)[n],
where φq is the Frobenius endomorphism and GT is a subgroup of Fq12 with a
prime order n. Suppose the straight line acrossing points U and V on a BN curve
is λx + δy + τ = 0, let function gU,V (Q) be

gU,V (Q) = λxQ + δyQ + τ, where Q = (xQ, yQ).

If U = V , let gU,V be the tangent line acrossing U ; if one of U and V is infinity O,
let gU,V be the vertical line acrossing the other point. Then R-ate pairing on a BN
curve can be computed as Algorithm 1 [1], which contains three key steps—the
Miller loop (Line 1–10), adjustment step (Line 11–16) and final exponentiation
(Line 17).

2.3 Algorithm Attacks on SM9

The security of SM9 is determined by the difficulty of discrete logarithm prob-
lem (DLP) in G1, G2, GT . There are two different kinds of DLPs, one is the
DLP in elliptic curves, the other is the DLP in finite field, i.e. GT . The cost
of DLPs is required to be big enough to meet the corresponding security level.
This subsection introduces the most effective algorithm attacks on SM9. Those
attacks are suitable for pairing-based cryptography, too.

The effective attack algorithm in curve side G1, G2 is Pollard’s rho algorithm
[14,25]. Since we employ BN curves in SM9, q(t) and n(t) have the same bit
length, that we denote as l1. Security evaluation on G1 and G2 is simple, l1 ≥ 2l2
is sufficient for the requirement of l2-bit security level.

Searching BN Curves for SM9 557

Algorithm 1. Computing R-ate pairing on BN Curves

Input:P ∈ G1, Q ∈ G2, a = |6t + 2|.
Output:R-ate pairing f .

1: Let a =
∑L−1

i=0 ai2
i, aL−1 = 1, ai ∈ {−1, 0, 1}.

2: T ← Q, f ← 1.

3: for i = L − 2 to 0 do

4: f ← f2 · gT,T (P), T ← [2]T ;

5: if ai = 1 then

6: f ← f · gT,Q(P), T ← T + Q.

7: elseif ai = −1 then

8: f ← f · gT,−Q(P), T ← T − Q.

9: endif

10: endfor

11: if t < 0 then

12: T ← −T, f ← fq6 .

13: endif

14: Q1 ← φq(Q), Q2 ← φq2(Q).

15: f ← f · gT,Q1(P), T ← T + Q1.

16: f ← f · gT,−Q2(P).

17: f ← f (q12−1)/n.

18: return f .

Another attack in curve side is advised by Cheon [11,12]. Cheon shows that
the strong Diffie-Hellman (SDH) problem with auxiliary inputs can be solved
faster than ordinary DLP. Suppose attacker can repeat signatures for k times
and collect the corresponding public keys, if n − 1 contains a divisor d ≤
min{k + 1, n1/2}, or n + 1 contains a divisor d ≤ min{(k + 1)/2, n1/3}, then
the secret key can be found in O(

√
n/d), in other words security level could be

reduced by O(
√

d). This implies that the security level of SDH problem could
be lower than we expect if system parameters are randomly chosen. It is recom-
mended to select a secure curve with a prime order n such that both n + 1 and
n − 1 have no small divisor.

The best attack algorithm in finite field side is the number field sieve (NFS)
algorithm. A variant of NFS, named special extended tower-NFS [7,18] (Special
ExTNFS), is dedicated to extension field Fqn with prime q given by a polynomial
of parameter t, such as the case of BN curves. Since this area is developing, we
can’t give a clear and precise security evaluation in finite field side. Theoretical
improvements on special ExTNFS have been done but real-life implementations
are not available. In particular the relation collection step is a tough work and is
not implemented at present. But we should still take those theoretical improve-
ments seriously when evaluating the security level.

558 G. Luo and X. Chen

3 Conditions of SM9 Secure Curves

System parameters are carefully selected to ensure that SM9 system runs
securely. They includes the elliptic curve parameters, the curve identifier, the
order of cyclic group and it’s cofactor, etc. The most important one is the ellip-
tic curve which meets all the security requirements of SM9. Such elliptic curves
are called secure curves. Since the supersingular curves are proved to be insecure,
we focus on ordinary curves. Part 1 of SM9 documents states three conditions
that a secure curve needs to meet:

Condition 1. Ordinary curve whose base field is Fq, where q is a prime
number greater than 2191. The embedding degree k = 2i ·3j , where i > 0, j >= 0.

Condition 2. n − 1 contains a prime factor greater than 2190.
Condition 3. n + 1 contains a prime factor greater than 2120.
The Condition 2 and Condition 3 are specified to reduce the impact

caused by Cheon Attack. It’s more appropriate to modify those two conditions
as containing small prime factors as few as possible.

The 256-bit BN curve, presented in the SM9 documents, once was considered
that the GT provided security level higher than 128-bit, and that the weakness
of the system was G1 and G2, whose security levels are no more than 128-bit by
Pollard’s rho algorithm. It was necessary to reduce the impact on G1 and G2

caused by Cheon Attack at the time. With the development of special ExTNFS,
it’s now commonly accepted that curve side is stronger than finite field side,
so the urgency of those two conditions has gone, they can be the last to be
considered. Furthermore, n−1 and n+1 always contain small prime factor such
as 2, and in real life Cheon Attack is limited by the amount of public keys the
attacker can collect and by the total number of system identities.

Other conditions that need to be considered are
Condition 4. 2q − n is a prime number.
This condition guarantees subgroup security [8]. The 256-bit BN in SM9

doesn’t take it into consideration, so membership test is required every time. For
a BN curve, the order of E(Fq) is a prime number, it naturally protects against
the subgroup attacks that exploit small prime divisors of the cofactor. However,
this is not the case of E′(Fq2) since its order equals n(2q − n). The subgroup
attack under this circumstance can be prevented by using membership tests,
which may be expensive. If we want to avoid these tests, the curve parameter t
should be chosen such that both n and 2q − n are prime numbers.

Condition 5. the Hamming weight of BN curve parameter t should be as
small as possible.

It obviously helps Miller loop for R-ate pairing computation, and it’s also
beneficial to final exponentiation.

Condition 6. t = 2 or 10 modulo 12.
This condition guarantees the tower extension of Fq to be the same as SM9-

Part5, which means the reduction modulo polynomials of field extension are
irreducible polynomials xi + 2, i = 2, 4, 6, 12 ∈ Fq[x]. Under such a condition
we can partly reutilize software implementation of Fq12 in the original 256-bit
SM9 to reduce the expenditure of updating SM9. Actually we’ve also considered
another tower extension case with irreducible polynomials x2 + 1 ∈ Fq[x] and

Searching BN Curves for SM9 559

x6 − (1 +
√−1) ∈ Fq2 [x]. This extension case is a little faster than the former

one if the Hamming weight of their curve parameter ts are equal, but no t with
Hamming weight no more than 6 meets the case.

4 Searching BN Curves for SM9

The curve parameter t completely decides a BN curve. We represent t in non-
adjacent form (NAF), restrict q(t) and n(t) in Eq. (1) as 384-bit prime numbers,
then exhaustively search on t with increase of Hamming weight. When Hamming
weight is no more than 5, there is no such t that meets all the conditions listed
in Sect. 3. When Hamming weight is 6, there are 5 ts (listed in Table 1) meet all
the conditions.

Table 1. ts that make (t, q(t), n(t)) satisfy all the conditions listed in Sect. 3. pn+1

denotes the biggest prime factor of n + 1. pn−1 denotes the biggest prime factor of
n − 1.

NAF t Length of q
and n

WH(6t + 2) Len(pn+1) Len(pn−1)

−295 + 293 + 261 + 257 − 231 + 2 384 10 173 283

−295 + 293 − 263 − 235 − 232 − 2 384 9 167 287

−295 + 293 + 280 − 271 − 258 − 2 384 10 158 250

295 − 293 + 285 + 231 − 23 + 2 384 8 127 234

−295 + 293 − 291 − 267 − 265 + 2 384 7 144 195

Although we aim to search 384-bit BN curves, but in practice the case when
BN curves are 380–382-bit is also attractive. The binary length of such parame-
ters aren’t precisely the multiple of word size. It shows unique advantages when
computing R-ate pairing on processors of 32-bit or 64-bit. We can employ residue
number systems (RNS) [19] and lazy reduction techniques to improve the compu-
tation efficiency. Lazy reduction is well suited for expressions like AB±CD ∈ Fq.
According to normal steps, 2 module reductions are required, while lazy reduc-
tion performs only 1 module reduction. RNS and lazy reduction can be employed
effectively only when the size of q is chosen to be a little bit smaller than an
exact multiple of the word size of the processor architecture. When Hamming
weight is no more than 4, no such t meets all the conditions listed in Sect. 3.
When t’s Hamming weight is 5, there are 2 ts (listed in Table 2) meet all the
conditions.

Since the R-ate pairing computation efficiency is determined by the length
of q, the Hamming weight of t and 6t + 2, we can make further selection among
those security curves. We denote the most efficient 384-bit BN security curve as
t384, and the 382-bit one as t382, then

t384 = −295 + 293 − 291 − 267 − 265 + 2,

t382 = −294 − 281 − 211 − 23 + 2. (5)

560 G. Luo and X. Chen

Table 2. ts that make (t, q(t), n(t)) satisfy all the conditions listed in Sect. 3. pn+1

denotes the biggest prime factor of n + 1. pn−1 denotes the biggest prime factor of
n − 1.

NAF t Length of q
and n

WH(6t + 2) Len(pn+1) Len(pn−1)

−294 − 281 − 211 − 23 + 2 382 8 180 203

−294 − 289 − 262 − 25 − 2 382 10 172 215

5 R-ate Pairing Computation

In this section, we suppose the basic arithmetic operations (addition, subtrac-
tion, multiplication and inversion) in Fq have been implemented, which means
our analysis is independent of the underlying hardware architecture. Those basic
arithmetics usually employ schoolbook method or Karatsuba method [19] and
the Montgomery reduction [21] or the Barrett reduction [10]. Another way to
implement Fq is to use residue number system [19] and lazy reduction [26].
Whatever the algorithms are employed in Fq, it doesn’t influence our efficiency
comparison when computing R-ate pairings using different curve parameter t.
We set the notations for Fqi (i = 1, 2, 4, 6, 12) arithmetics as follows: Ai denotes
an addition and A′

i denotes a doubling, Mi denotes a multiplication, sMi denote
a sparse multiplication (which is employed in Miller loop), Si denotes a squaring
and Ii denotes an inversion. We take the pairing computation down to the basic
arithmetics in Fq to show the efficiency of pairing computation based on curve
parameter t384 and t382 in Eq. (5).

5.1 Complexities of Arithmetics in Tower Extension Field

The well-known strategy to improve performance in Fq12 is to represent Fq12

using tower extension trick, it’s faster than directly represent Fq12 as

Fq12 = Fq[w]/(w12 + 2).

The most efficient tower extension from Fq to Fq12 is 2-3-2 extension [13]. We
assume that additions are not negligible and A1 ≤ 0.33M1, under this assump-
tion multiplications in all extension level (i.e. in Fqk , k = 2, 6, 12) are imple-
mented by Karatsuba arithmetic, and the squaring in the degree 3 extension
(Fq6/Fq2) is implemented by Chung-Hasan method.

Since our curve parameter t = 2 or 10 modulo 12, we can use the same tower
extension as the original 256-bit SM9. The tower extension of Fq is as below:

Fq2 = Fq[u]/(u2 − α), α = −2,

Fq6 = Fq2 [v]/(v3 − u), u2 = α,

Fq12 = Fq6 [w]/(w2 − v), v3 = u.

Searching BN Curves for SM9 561

Table 3. Complexities of arithmetics in tower extension fields

Operation Number of operations

I2 I1 + 2M1 + 2S1 + A1 + A′
1

M2 3M1 + 5A1 + A′
1

S2 (Complex method) 2M1 + 3A1 + 2A′
1

I6 I1 + 35M1 + 2S1 + 65A1 + 20A′
1

M6 18M1 + 60A1 + 8A′
1

S6 12M1 + 35A1 + 12A′
1

I12 I1 + 95M1 + 2S1 + 261A1 + 61A′
1

M12 54M1 + 210A1 + 25A′
1

sM12 39M1 + 115A1 + 16A′
1

S12 36M1 + 129A1 + 37A′
1

S12 (Karabina’s squaring) 12M1 + 50A1 + 23A′
1

S12 (Simult. decompression of k elt.) I1 + (21k − 7)M1 + 2S1 + (47k − 14)A1

+(21k − 2)A′
1

S12 (Granger and Scott’s method) 18M1 + 75A1 + 34A′
1

We count the operations of tower extensions based on Fq in Table 3. Note
that the cyclotomic squaring in Fq12 , which is utilized in the final exponentia-
tion, is assumed to be implemented by Karabina’s compress method [17] and
Montgomery’s simultaneous inversion trick [22]. Another cyclotomic squaring
algorithm is Granger and Scott’s method [16], which in most case is slower than
Karabina’s method unless the Fq2 inversion is very time consuming.

5.2 Complexities of R-ate Pairing Computation

R-ate pairing computation efficiency is determined by the length of q, the Ham-
ming weight of t and 6t+2. We utilize projective coordinates for adding and dou-
bling points along with line computation in Miller loop. Scott et al.’s method [27]
is taken to implement the final exponentiation step. Although Fuentes-Castaneda
et al. [15] provide another method which can save 3M12+1S12, but their method
demands the redefinition of R-ate pairing to its fixed power. We count the num-
ber of operations for R-ate pairing corresponding to t384 and t382, the result is
presented in Table 4. It seems that pairing computation corresponding to t382 is
just slightly faster than that corresponding to t384, but in practice when utilizing
RNS and lazy reduction, the advantage could be greater.

6 Matching Security Level

The security of SM9 is determined by the difficulty of discrete logarithm problem
in G1, G2 (curve side) and GT (finite field side).

562 G. Luo and X. Chen

Table 4. Complexities of R-ate pairing computation corresponding to t384 and t382.

Operation t384 t382

Doubling+LineEval. 24M1 + 59A1 + 16A′
1 24M1 + 59A1 + 16A′

1

Addition+LineEval. 44M1 + 80A1 + 16A′
1 44M1 + 80A1 + 16A′

1

Miller loop 10101M1 +30561A1 +6885A′
1 10184M1 +30756A1 +6917A′

1

Adjustment steps 170M1 + 390A1 + 64A′
1 170M1 + 390A1 + 64A′

1

Final exponentiation 4I1 + 5644M1 + 8S1

+ 21915A1 + 7874A′
1

4I1 + 5383M1 + 8S1

+ 20994A1 + 7667A′
1

R-ate pairing 4I1 + 15915M1 + 8S1

+ 52866A1 + 14823A′
1

4I1 + 15737M1 + 8S1

+ 52140A1 + 14648A′
1

We analyze the BN curve corresponding to t384 first. The curve order n is a
384-bit prime number, so its security level is no more than 192-bit by Pollard’s
rho algorithm. Then we consider Cheon attack, since

n + 1 = 2 · 5 · 7 · 11 · 131 · 42992652371 · 28839188139379
46545034377697 · 431117439410068410343361991367 · d1,

where d1 is a 144-bit prime number,

n − 1 = 22 · 3 · 61 · 547271 · 29406309859180669069321 ·
93832952987412088626031291 · d2,

where d2 is a 195-bit prime number. We take d = max{2 · 5 · 7 · 11 · 131 ·
42992652371, 22 · 3 · 61 · 547271}, according to Cheon attack, the security level
can be reduced by 26-bit (the length of

√
d). Note that this reduction is just

theoretical since in real life the attacker can’t collect so enormous amount of
public keys to conduct such an attack. Combine all together, the curve side can
provide around 166-bit security level.

As for the finite field side, Freeman et al. [14] has made a well-known specula-
tion about the exact sizes of q and qk (where k denotes the embedding degree of
the curve) required to match corresponding security level in 2010. They believed
that one could achieve 128-bit security level by choosing a 256-bit prime number
q and a proper embedding degree k such that the binary length of qk was fell in
the range 3000–5000, that was what the original SM9 had done. With the size
of qk 3072, it was convinced to provide 128-bit security level at the time.

But with the development of the special ExTNFS, security on the finite field
side decreases, thus the security evaluation of pairing-based cryptography need
to be reconsidered. The problem is complicated by the fact that the Special
ExTNFS is developing, although theoretical improvements have been done but
real-life implementations are missing. Barbulescu et al. proposed a new key size
estimation for pairing-based cryptography [6], and Michael Scott followed their
analysis to give his estimation on the security requirement for key size [28].
Although those estimation are rough and theoretical, it provide the new trend

Searching BN Curves for SM9 563

of security reduction in finite field side. According to [6,23,28], since we choose
the BN curve corresponding to t384 whose embedding degree k = 12, special
ExTNFS makes the security level be (130 − δ)-bit, where δ is not precisely
known. δ is usually about a dozen, so the 384-bit BN curve can theoretically
provide around 118-bit security level. Note that a 384-bit BN curve might not
be able to meet the 128-bit security level [23].

As the analysis shows, at present the weakness is on the finite field side.
There are more than 62-bit security level margin for Cheon attack in the curve
side, thus it’s unnecessary to consider Cheon attack.

To sum up, BN curve corresponding to t384 theoretically provides around
118-bit security level. Follow the same analysis, BN curve corresponding to t382
provides security level which is 1-bit lower than that of t384 (Table 5).

Table 5. Security level provided by BN curves corresponding to t384 and t382.

Curve parameter Pollard
rho

Cheon G1, G2

security level
GT security
level

Security level

t384 192-bit 26-bit 166-bit (130 − δ)-bit (130 − δ)-bit

t382 191-bit 51-bit 140-bit (129 − δ)-bit (129 − δ)-bit

7 Constructing SM9 System Parameters with the 384-Bit
BN Curve

When updating SM9 to a higher security level, two curves with different length
are available—one is the 384-bit BN curve corresponding to t384, another is the
382-bit BN curve corresponding to t382. The 382-bit BN curve corresponding to
t382 shows better R-ate pairing computation efficiency by taking advantages of
RNS and lazy reduction in the context of sacrificing 1-bit security level. The issue
of which one should be adopted when updating SM9 needs further discussion. We
prefer to select the 384-bit one, here are our general opinions. As a specialized
standard, it is more appropriate for SM9 to choose system parameters with the
length of the multiple of word length. Furthermore, R-ate pairing computation is
fast enough to achieve good performance when implementing SM9 with the 384-
bit BN curve on software level. In addition to that, RNS and lazy reduction can
also apply to the 384-bit BN curve by employing an extra word or by utilizing
word length longer than the standard (for example, 36-bit) when implementing
SM9 on hardware level, narrowing the efficiency gap to the 382-bit curve.

We choose the BN curve corresponding to t384 to construct SM9 system
parameters, detailed definitions are contained in Appendix A.

8 Conclusion

In this paper, we analyze the conditions that the secure curves in SM9 system
parameters need to meet, search 384-bit and 380–382-bit BN curves that satisfy

564 G. Luo and X. Chen

all the conditions and study state-of-the-art algorithms to compute R-ate pair-
ing. Then we select two BN curves, corresponding to curve parameters t384 and
t382 in Eq. (5), to analyze their R-ate pairing computation complexity and secu-
rity level. Those two BN curves show best computation efficiency at the length
of 384-bit and 382-bit respectively among security curves. Finally, we construct
SM9 parameters with the 384-bit BN curve corresponding to t384, finishing the
core work of updating SM9. While the original 256-bit system parameters pre-
sented in SM9-Part5 provide around 100-bit security level, new system parame-
ters proposed by this paper provide around 118-bit security level. Our methods
are also suitable for constructing and analyzing BN curves at other binary length
for SM9.

Acknowledgment. We’d like to thank Ning Ma, Baofeng Wu and Yalan Ma for
discussions and proofreading. We also thank the anonymous reviewers for their helpful
comments. This work is supported by the National Defense Science and Technology
Innovation Foundation (No. Y7H0041102).

A Definitions of 384-bit SM9 System Parameters

We choose the BN curve with

t = −295 + 293 − 291 − 267 − 265 + 2,

to construct 384-bit SM9 system, in this case

n + 1 = 2 · 5 · 7 · 11 · 131 · 42992652371 · 28839188139379
46545034377697 · 431117439410068410343361991367 · d1,

where d1 is a 144-bit prime number,

n − 1 = 22 · 3 · 61 · 547271 · 29406309859180669069321 ·
93832952987412088626031291 · d2,

where d2 is a 195-bit prime number.
Parameters are represented in hexadecimal. We use column vector to express

element in extension field, with higher dimension above and lower dimension
below. The tower extension is the same as Subsect. 5.1.

Elliptic Curve Equation: y2 = x3 + b.
Parameter of Curve t: -68000009FFFFFFFFFFFFFFFE
Trace tr(t) = 6t2 + 1 :

FD800030C0000257FFFFFFF63FFFFF100000000000000019

Characteristic of Ground Field q(t) = 36t4 + 36t3 + 24t2 + 6t + 1 :

FB0640608C400DECD800E46E46DD77FBD1FF65C07FFB0F16
3400230 A0001AF3FFFFFFD530FFFBE2400000000000003CD

Searching BN Curves for SM9 565

Equation Parameter b : 02
Order of BN Curve E(Fq) n(t) = 36t4 + 36t3 + 18t2 + 6t + 1 :

FB0640608C400DECD800E46E46DD77FBD1FF65C07FFB0F15
368022 D94001ACE7FFFFFD5CCFFFBF1400000000000003B5

Cofactor cf : 1
Embedding Degree k : 12
Twisted Curve (E′/Fq2 : y2 = x3 + b/β) Parameter β :

√−2
Curve ID cid : 0x12
Generator of Group G1 P1 = (xP1 , yP1) :
Coordinate xP1 :

5DE44C2E23720EBADC3046A8579979ACCF7C98875AE0EE84
76408737 A19B77F54C6DC206EF3D4466B71500FEE1E4E456

Coordinate yP1 :

6AD86724D049835A067B8AC1AD42EF44FCBAD8FF9CA0EACC
2FCABB12B666492A69BAE4F0E6A87C650FBEAE0C0B579BF7

Generator of Group G2 P2 = (xP2 , yP2) :
Coordinate xP2 :

(B7CCB40627A621E2B9989403EA065CE58442FC3B14845D1A
370A8CB90980D3A6F379173E5E73249BE25AE7EDD15B39DB ,
6CB21309922169AE2BD22EC4D5FC10FEB7470CDA26750225
57CDA6F9D611A0257C3E2867D0342D75C46F22BCB0856010)

Coordinate yP2 :

(3 F8F3F72E49333C779890EDE7B9EADC4DCCF21D516A65CAD
AAAE1209906C9D43B5E8DC93D11435A3C1C3A161A3A386D1 ,
F4AB6C1084256BCF6C5CFBD13393F2859F83221CA28F8F9

4004089 F28C607D4B7B09172BB9625589035B90E1F0BDB13)

Example for R-ate Pairing Computation,
Computing element in GT g = e(P1, P2) :

(7 E1ACC6B5FE0ACD125BDA145891B2B2A8AAB29A307442AC1
630B2FFC2120441ABBA17DDC90EC63A901095F1F1287D9BD ,
49565100 D9EF20B734E8863D312F70BED296F243DA1004FB
9BF3918B55DC0088954BABDD13A9ECEB574FB3B197B81B0E ,
D5D15ECF0A2ED474AA71979EB7FCF37EDE3EC9FEEE162197
AECF428BBACC708FAC790B5A2297AEE0F9463623AF578247 ,
1E73503EC80E80F69A439D8035D494A978DC589A4A86D969
E0E34BA0B154659A4F060A454BB5FE9E236900F467E00D3F ,
D7C08D9EA24D7001C9EFD9B15B37B435328A65BC2B42C5F3
3E37176BB6492176E845226676E6C51AF461B9249248AC0D ,
C0EB0A339CF12C0797FFFE43A04089CFD07B64DA9453D4B4
E4BE9EADAC5B00B69C88745CFF5C2279A4C0EE58B9F9E694 ,

566 G. Luo and X. Chen

53FDD05837CEC5FB2DEB7E07D922F37E932D44D7B3ECE754
0A131EBA0A2B6353107C39F18311EF0AACC069A97D4BCBAB ,
6625857 CF616CE14187D3D60B6222CE5784C2C962E166CE4
B81BED44403371ED92EDCE13772EA9595CE18DE1D20C23FF ,
D2FF77AC1C4B0F4E97DE64986F80C4C19DBBBD3A2476561

773A522634E5A829260D8CF61FA6C85FF23742307710BD04 ,
993C7C074833ADC865D7F9240032148062E59BADB267D16A
3A6BC5B861B80608CB32EAF0F9B83908358A6983CB0A20E2 ,
EA2CA95D06C5DC9253842FC913F2FFD63CD7EFF5413181A6
B5283799CDCA461CD56192A13AA3D8BF2D31366490B99796 ,
4F6819DF53B329E0A4897EB5D11D2EC302492E7A4B55F395
14AF0C0A3CBE4B8103BF59C137999AB5AB555B1C69FF7985)

References

1. GM/T 0044.1-2016 Identity-based cryptographic algorithms SM9-Part 1: General
2. GM/T 0044.2-2016 Identity-based cryptographic algorithms SM9-Part 2: Digital

signature algorithm
3. GM/T 0044.3-2016 Identity-based cryptographic algorithms SM9-Part 3: Key

exchange protocol
4. GM/T 0044.4-2016 Identity-based cryptographic algorithms SM9-Part 4: Key

encapsulation mechanism and public key encryption algorithm
5. GM/T 0044.5-2016 Identity-based cryptographic algorithms SM9-Part 5: Param-

eter definition
6. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J. Cryp-

tol. 1, 1–39 (2017)
7. Barbulescu, R., Gaudry, P., Kleinjung, T.: The tower number field sieve. In: Iwata,

T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 31–55. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3 2

8. Barreto, P.S.L.M., Costello, C., Misoczki, R., Naehrig, M., Pereira, G.C.C.F.,
Zanon, G.: Subgroup security in pairing-based cryptography. In: Lauter, K.,
Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 245–
265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8 14

9. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383 22

10. Barrett, P.: Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) CRYPTO
1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7 24

11. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg
(2006). https://doi.org/10.1007/11761679 1

12. Cheon, J.H.: Discrete logarithm problems with auxiliary inputs. J. Cryptol. 23(3),
457–476 (2009)

13. Duquesne, S., Mrabet, N.E., Haloui, S., Rondepierre, F.: Choosing and generating
parameters for pairing implementation on bn curves. Appl. Algebra Eng. Commun.
Comput. 1, 1–35 (2017)

https://doi.org/10.1007/978-3-662-48800-3_2
https://doi.org/10.1007/978-3-319-22174-8_14
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/11761679_1

Searching BN Curves for SM9 567

14. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. Cryptol. 23(2), 224–280 (2010)

15. Fuentes-Castañeda, L., Knapp, E., Rodŕıguez-Henŕıquez, F.: Faster hashing to G2.
In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 412–430. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28496-0 25

16. Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth
degree extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 209–223. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13013-7 13

17. Karabina, K.: Squaring in cyclotomic subgroups. Math. Comput. 82(281), 542
(2013)

18. Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complexity for
the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 543–571. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 20

19. Knuth, D.E.: The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms, 3rd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1997)

20. Menezes, A., Sarkar, P., Singh, S.: Challenges with assessing the impact of NFS
advances on the security of pairing-based cryptography. In: Phan, R.C.-W., Yung,
M. (eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 83–108. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61273-7 5

21. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44(170), 519–521 (1985)

22. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

23. Mrabet, N.E., Joye, M.: Guide to Pairing Based Cryptography. Taylor and Francis
Group, LLC (2017)

24. Naehrig, M.: Constructive and computational aspects of cryptographic pairings.
Dissertation for the Doctoral Degree. Duitsland, Technische Universiteit Eindhoven
(2009)

25. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Math. Com-
put. 32(143), 918–924 (1978)

26. Scott, M.: Implementing cryptographic pairings. In: Proceedings of the First Inter-
national Conference on Pairing-Based Cryptography, Pairing 2007, pp. 177–196.
Springer, Heidelberg (2007)

27. Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.:
On the final exponentiation for calculating pairings on ordinary elliptic curves. In:
Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03298-1 6

28. Scott, M., Guillevic, A.: A new family of pairing-friendly elliptic curves. Cryptology
ePrint Archive, Report 2018/193 (2018). https://eprint.iacr.org/2018/193

https://doi.org/10.1007/978-3-642-28496-0_25
https://doi.org/10.1007/978-3-642-13013-7_13
https://doi.org/10.1007/978-3-642-13013-7_13
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-319-61273-7_5
https://doi.org/10.1007/978-3-642-03298-1_6
https://eprint.iacr.org/2018/193

Distribution Properties of Binary
Sequences Derived from Primitive
Sequences Modulo Square-free

Odd Integers

Qun-Xiong Zheng1,2,3(B), Dongdai Lin1, and Wen-Feng Qi2,3

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

qunxiong zheng@163.com, ddlin@iie.ac.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

wenfeng.qi@263.net
3 National Digital Switching System Engineering and Technological Research Center,

Zhengzhou 450001, China

Abstract. Recently, a class of nonlinear sequences, modular reductions
of primitive sequences over integer residue rings, was proposed and has
attracted much attention. In particular, modulo 2 reductions of primitive
sequences over Z/(231−1) were used in the ZUC algorithm. In this paper,
we study the distribution properties of modulo 2 reductions of primitive
sequences over Z/(M), where M is a square-free odd integer. Let a be
a primitive sequence of order n over Z/(M) with period T and [a]mod 2

the modulo 2 reduction of a. With the estimate of exponential sums
over Z/(M), the proportion fs of occurrences of s within a segment of
[a]mod 2 of length μT is estimated, where s ∈ {0, 1} and 0 < μ ≤ 1.
Based on this estimate, it is further shown that for given M and μ, fs

tends to M+1−2s
2M

as n → ∞. This result implies that there exists a small
imbalance between 0 and 1 in [a]mod 2, which should be taken into full
consideration in the design of stream ciphers based on [a]mod 2.

Keywords: Integer residue ring · Primitive sequence ·
Modular reduction · 0, 1 distribution · ZUC algorithm

1 Introduction

For an integer m ≥ 2, let Z/(m) denote the integer residue ring modulo m. The
set {0, 1, . . . ,m − 1} is always chosen as the complete set of representatives for

This work was supported by NSF of China (Nos. 61872383, 61402524, 61872359 and
61602510). The work of Qun-Xiong Zheng was also supported by Young Elite Scien-
tists Sponsorship Program by CAST (2016QNRC001) and by National Postdoctoral
Program for Innovative Talents (BX201600188) and by China Postdoctoral Science
Foundation funded project (2017M611035).

c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 568–585, 2019.
https://doi.org/10.1007/978-3-030-14234-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_30&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_30

Distribution Properties of Binary Sequences 569

the elements of the ring Z/(m). Thus a sequence a over Z/(m) is usually seen
as an integer sequence over {0, 1, . . . ,m − 1}. Moreover, for an integer a and a
positive integer b ≥ 2, let us denote the least nonnegative residue of a modulo
b by [a]mod b, and similarly, for a sequence a = (a(t))t≥0 over Z/(m), denote
[a]mod b = ([a(t)]mod b)t≥0.

Let p be a prime number and e a positive integer. During the past two
decades, the maximal period linear recurring sequences over Z/(pe), called primi-
tive sequences over Z/(pe), have been paid much attention. An enormous amount
of effort is directed toward the study of finding useful mappings to derive good
pseudorandom sequences from primitive sequences over Z/(pe), which are called
compression mappings in literature, and proving that they are injective. Gener-
ally there are two kinds of compression mappings: one is based on e-variable func-
tions over Z/(p) [10,15–17,20,21]; the other is based on the modular arithmetic
[13,22]. Besides, the pseudorandom properties of these compression sequences
are also extensively studied, such as periodicity [7,13], linear complexity [3,6,15]
and distribution properties [2,8,12,23].

Recently research interests on primitive sequences over Z/(pe) are further
extended to primitive sequences over Z/(M) [4,9,24–27], where M is a square-
free odd integer. One of important reasons for this is that the period of a prim-
itive sequence a of order n over Z/(pe) is undesirable if e ≥ 2. Recall that
the period per(a) of a primitive sequence a of order n over Z/(pe) is equal to
pe−1 · (pn − 1) ≈ pe+n−1 [18]. It can be seen that for a fixed prime power pe with
e ≥ 2, the period per(a) increases slowly and far less than pe·n as n increases.
Therefore, to meet the requirement of long period in practical applications, n
should be chosen large enough, which will be high resource consumption in hard-
ware and software implementation. For example, to generate a sequence with
period not less than 264 over Z/(28), Z/(216) and Z/(232), the number of bit-
registers required must be larger than 456, 784 and 1056, respectively. However
for many choices of M , primitive sequences over Z/(M) have no such periodic
weakness. For cryptographic applications, the moduli of the form 2e − 1 have
attracted much attention since the operation “mod 2e − 1” can be efficiently
implemented both in hardware and software, and this offers new possibilities for
advancement in the solution of applying linear recurring sequences over integer
residue rings. For instance, primitive sequences over Z/(231 − 1) are used to
design the ZUC algorithm, a stream cipher that is the core of the standardised
3GPP confidentiality algorithm 128-EEA3 and the 3GPP integrity algorithm
128-EIA3, see [28].

By applying the operation mod 2 to primitive sequences over Z/(M), one can
easily obtain a class of binary sequences, called modulo 2 reductions of primi-
tive sequences over Z/(M). It is thought that the operation mod 2 destroys the
original linear recurrence relation of primitive sequences over Z/(M) and the
obtained binary sequences should have many desirable cryptographic properties
if the modulus M and the order n are carefully chosen. One of the most interest-
ing properties is the so-called “modulo 2 distinctness”. Some progress has been
made on the modulo 2 distinctness, see, for example, [9,26]. From the viewpoint

570 Q.-X. Zheng et al.

of cryptographic applications, it is naturally interested in the pseudorandom
properties of modulo 2 reductions of primitive sequences over Z/(M). However,
so far few result was obtained. In [25], to study the modulo 2 distinctness of prim-
itive sequences over Z/(M), two distribution properties of primitive sequences
over Z/(M) are investigated. One is to determine whether there is an integer
t ≥ 0 such that a(t) = s for a given element s ∈ Z/(M) and a given primitive
sequence a of order n over Z/(M). The other is to determine whether there is an
integer t ≥ 0 such that a(t) is an even number for a given primitive sequence a
of order 1 over Z/(M). In [9], Hu and Wang studied whether there is an integer
t ≥ 0 such that a(t) = a and b(t) = b, for two given elements a, b ∈ Z/(M) and
two given primitive sequences a, b generated by a same primitive polynomial over
Z/(M).

In this paper, we study the distribution properties of the binary sequence
[a]mod 2, where a is a primitive sequence of order n over Z/(M) with period
T . With the estimate of exponential sums over Z/(M), the proportion fs of
occurrences of s within a segment of [a]mod 2 of length μT is estimated, where
s ∈ {0, 1} and 0 < μ ≤ 1. Based on this estimate, it is further shown that for
given M and μ, fs tends to (M + 1 − 2s) /2M as n → ∞. Generally speaking,
if n is not too small (for example, n ≥ 3 for M = 232 − 1), then the value of fs

is very close to that of (M + 1 − 2s) /2M . This implies that there always exists
a small imbalance (about 1/M) between 0 and 1 in [a]mod 2. In order to provide
a good resistance against the distinguishing attacks, such imbalance should be
taken into full consideration in the design of stream ciphers based on [a]mod 2.
Fortunately, by introducing a moderate amount of exclusive or operations, the
imbalance of 0, 1 will be reduced to a small enough extent.

The rest of this paper is organized as follows. Section 2 presents some nec-
essary preliminaries. Section 3 gives the main results of this paper. Finally, con-
clusions are drawn in Sect. 4.

2 Preliminaries

2.1 Primitive Polynomials and Primitive Sequences over Integer
Residue Rings

Let m be an integer greater than 1. If a sequence a = (a(t))t≥0 over Z/(m)
satisfies

a(t) = [cn−1a(t − 1) + · · · + c1a(t − n + 1) + c0a(t − n)]modm (1)

for all integers t ≥ n, where n is a positive integer and c0, c1, . . . , cn−1 ∈ Z/(m)
are constant coefficients, then a is called a linear recurring sequence of order n
over Z/(m) generated by f(x) = xn − cn−1x

n−1 − · · · − c0 (or a is a sequence of
order n over Z/(m) in short). For convenience, the set of sequences generated
by f(x) over Z/(m) is generally denoted by G (f (x) ,m). Particular interests
for cryptography are the maximal period linear recurring sequences also called
primitive sequences over Z/(m), which are generated by primitive polynomials

Distribution Properties of Binary Sequences 571

over Z/(m). Next we introduce the definitions of primitive polynomials and
primitive sequences over Z/(m).

Let f (x) be a monic polynomial of degree n over Z/(m). If gcd(f (0) ,m) = 1,
then there exists a positive integer T such that xT − 1 is divisible by f(x) in
Z/(m)[x]. The minimum of such T is called the period of f (x) over Z/(m) and
denoted by per (f (x) ,m). For the case that m is a prime power, say m = pe,
it is known that per (f (x) , pe) ≤ pe−1(pn − 1), see [18]. If per (f (x) , pe) =
pe−1(pn −1), then f (x) is called a primitive polynomial of degree n over Z/(pe).
A sequence a over Z/(pe) is called a primitive sequence of order n if a is generated
by a primitive polynomial of degree n over Z/(pe) and [a]mod p is not an all-zero
sequence. A primitive sequence a of order n over Z/(pe) is (strictly) periodic
and the period per(a) is equal to pe−1(pn − 1), see [18]. For the case of a general
integer m, assume m = pe1

1 pe2
2 · · · per

r is the canonical factorization of m. A monic
polynomial f (x) of degree n over Z/(m) is called a primitive polynomial if for
every k ∈ {1, 2, . . . , r}, f (x) is a primitive polynomial of degree n over Z/(pek

k).
A sequence a over Z/(m) is called a primitive sequence of order n if a is generated
by a primitive polynomial of degree n over Z/(m) and [a]mod pk

is not an all-zero
sequence for every k ∈ {1, 2, . . . , r}, that is, [a]mod p

ek
k

is a primitive sequence of
order n over Z/(pek

k). It can be seen that the period of a primitive polynomial
of degree n over Z/(m) and that of a primitive sequence of order n over Z/(m)
are both equal to

lcm
(
pe1−1
1 (pn

1 − 1) , pe2−1
2 (pn

2 − 1) , . . . , per−1
r (pn

r − 1)
)
.

For convenience, the set of primitive sequences generated by a primitive polyno-
mial f(x) over Z/(m) is generally denoted by G′(f(x),m).

2.2 Exponential Sums over Integer Residue Rings

Let m be a positive integer greater than 1, and let em (·) be the canonical additive
character over Z/(m) given by em(a) = e2πia/m, where a is an integer. For an
integer c, it is well-known that

m−1∑

a=0

em (ca) =
{

m, if m | c;
0, otherwise.

The following Lemma 1 is cited from [5, Theorem 1].

Lemma 1. ([5, Theorem 1]) Let D ≥ 1, m ≥ 2 and g = gcd(m,D). Then we
have

m−1∑

a=1

∣
∣
∣
∣
sin πaD/m

sinπa/m

∣
∣
∣
∣ <

4
π2

m ln m + 0.38m + 0.608 + 0.116
g2

m
,

where ln(m) is the natural logarithm of m.

The following Lemma 2 is an improvement of a well-known result of Korobov
[14, Theorem 13].

572 Q.-X. Zheng et al.

Lemma 2. Let a be a primitive sequence of order n over Z/(m) with period T .
Then for any integer h we have

∣
∣
∣
∣
∣

T−1∑

t=0

em (a (t)) eT (ht)

∣
∣
∣
∣
∣
≤ m

n
2 . (2)

In particular, ∣
∣
∣
∣
∣

T−1∑

t=0

em (a (t))

∣
∣
∣
∣
∣
≤ m

n
2 .

Moreover, we have
∣
∣
∣
∣
∣

k+L−1∑

t=k

em (a (t))

∣
∣
∣
∣
∣
≤ m

n
2

(
4 ln T

π2
+ 0.409 +

L + 1
T

)
(3)

for any integer k ≥ 0 and 0 < L < T .

Proof. Since the inequality (2) has been proved in [14, Theorem 13], we only
prove the inequality (3). We start from the identity

k+L−1∑

t=k

em (a (t)) =

k+T−1∑

t=k

em (a (t))

L−1∑

j=0

1

T

T−1∑

h=0

eT (h (t − k − j)) for k ≥ 0 and 0 < L < T ,

which is valid since the sum over j is 1 for k ≤ t ≤ k + L − 1 and 0 for
k + L ≤ t ≤ k + T − 1. Rearranging terms, we get

k+L−1∑

t=k

em (a (t)) =
1
T

T−1∑

h=0

(
k+T−1∑

t=k

em (a (t)) eT (ht)

)⎛

⎝
L−1∑

j=0

eT (−h (k + j))

⎞

⎠ ,

and so we obtain
∣
∣
∣
∣
∣

k+L−1∑

t=k

em (a (t))

∣
∣
∣
∣
∣
≤ 1

T

T−1∑

h=0

∣
∣
∣
∣
∣

k+T−1∑

t=k

em (a (t)) eT (ht)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

L−1∑

j=0

eT (−h (k + j))

∣
∣
∣
∣
∣
∣

=
1
T

T−1∑

h=0

∣
∣
∣
∣
∣

T−1∑

t=0

em (a (t)) eT (ht)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

L−1∑

j=0

eT (−hj)

∣
∣
∣
∣
∣
∣
.

Then by the inequality (2) we get
∣
∣
∣
∣
∣

k+L−1∑

t=k

em (a (t))

∣
∣
∣
∣
∣
≤ m

n
2

T

T−1∑

h=0

∣
∣
∣
∣
∣
∣

L−1∑

j=0

eT (−hj)

∣
∣
∣
∣
∣
∣

=
m

n
2

T

T−1∑

h=0

∣
∣
∣
∣
∣
∣

L−1∑

j=0

eT (hj)

∣
∣
∣
∣
∣
∣

≤ m
n
2

T

T−1∑

h=1

∣
∣
∣
∣
∣
∣

L−1∑

j=0

eT (hj)

∣
∣
∣
∣
∣
∣
+

L · m
n
2

T
. (4)

Distribution Properties of Binary Sequences 573

We note that
T−1∑

h=1

∣
∣
∣
∣
∣
∣

L−1∑

j=0

eT (hj)

∣
∣
∣
∣
∣
∣
=

T−1∑

h=1

∣
∣
∣
∣
eT (hL) − 1
eT (h) − 1

∣
∣
∣
∣

=
T−1∑

h=1

∣
∣
∣
∣
cos(2πhL/T) + i sin(2πhL/T) − 1

cos(2πh/T) + i sin(2πh/T) − 1

∣
∣
∣
∣

=
T−1∑

h=1

∣
∣
∣
∣
−2 sin2(πhL/T) + 2i sin(πhL/T) cos(πhL/T)

−2 sin2(πh/T) + 2i sin(πh/T) cos(πh/T)

∣
∣
∣
∣

=
T−1∑

h=1

∣
∣
∣
∣
sin(πhL/T)
sin(πh/T)

∣
∣
∣
∣ ,

and so an application of Lemma 3 yields

T−1∑

h=1

∣
∣
∣
∣
∣
∣

L−1∑

j=0

eT (hj)

∣
∣
∣
∣
∣
∣
<

4
π2

T ln T + 0.38T + 0.608 + 0.116
g2

T

<
4
π2

T ln T + 0.409T + 1, (5)

where the last inequality follows from the fact that g = gcd(L, T) < T/2. Com-
bining the inequalities (4) and (5), we get the desired result.

3 Main Results

Throughout the rest of this paper, we always assume that M > 1 is a given square-
free odd integer and M = p1p2 · · · pr is the canonical factorization of M . Let d > 1
be a divisor of M . Suppose d = pi1 · · · pik

with 1 ≤ i1 < · · · < ik ≤ r. Let us
denote by λn(d) the period of primitive sequences of order n over Z/(d), that is,

λn(d) = lcm(pn
i1 − 1, . . . , pn

ik
− 1).

The main results of this paper are stated in the following Theorems 1 and 2.

Theorem 1. Let a be a primitive sequence of order n over Z/(M) with period
T = λn (M), and let b = [a]mod 2. For s ∈ {0, 1}, denote by N

(
bT , s

)
the number

of t, 0 ≤ t ≤ T − 1, with b (t) = s. Then we have

N
(
bT , s

)

T
=

1
2

+ (−1)s · Mn−1 − 1
2Mn − 2

(6)

if M is an odd prime number; and
∣
∣
∣
∣
∣
∣

N
(
bT , s

)

T
− M + 1 − 2s

2M

∣
∣
∣
∣
∣
∣
<

1
M

∑

d|M
d>1

dn/2

λn (d)
·
(

d ln d

π
+ 0.538d

)
(7)

if M has at least two different prime divisors.

574 Q.-X. Zheng et al.

Theorem 2. Let a be a primitive sequence of order n over Z/(M) with period
T = λn (M). Let b = [a]mod 2 and bL = (b (k) , b (k + 1) , . . . , b (k + L − 1)) a
segment of b with length L = μT , where 0 ≤ k ≤ T − 1 and 0 < μ < 1. For
s ∈ {0, 1}, denote by N

(
bL, s

)
the number of t, 0 ≤ t ≤ L−1, with b (k + t) = s.

Then we have
∣
∣
∣
∣
∣
∣

N
(
bL, s

)

L
− M + 1 − 2s

2M

∣
∣
∣
∣
∣
∣
<

1
M

∑

d|M
d>1

d
n
2

λn (d)
C (d, L) ,

where

C (d, L) =
(

λn (d)
L

(
4
π2

ln λn (d) + 0.409
)

+
L + 1

L

)(
d ln d

π
+ 0.538d

)
.

The rest of this section is divided into three subsections. Subsects. 3.1 and
3.2 are mainly devoted to the proof of Theorem1 and the proof of Theorem2,
respectively. Finally, as an example, an application of Theorems 1 and 2 to the
modulo 2 reductions of primitive sequences over Z/(232 − 1) is given in Sub-
sect. 3.3.

3.1 The Proof of Theorem 1

We first collect two well-known results on trigonometric functions in Lemma 3.
The first result can be found in [19] and the second result can be found in [11,
p. 447].

Lemma 3. Let tan x = sinx/ cos x, sec x = 1/ cos x and csc x = 1/ sin x be
the tangent function, the secant function and the cosecant function, respectively.
Then we have:

(1)
∫

sec xdx = ln |sec x + tan x| + C, where C is the constant of integration;
(2) csc(π/m) ≤ m/3 if m ≥ 6.

Lemma 4. For an odd integer m > 1, we have

m−1∑

h=1

∣
∣
∣
∣sec

hπ

m

∣
∣
∣
∣ <

2
π

m ln m + 1.076m.

Proof. It can be directly verified that the lemma holds for m = 3 or 5. Therefore,
we assume that m ≥ 7. Since it is clear that

sec
hπ

m
= − sec

(m − h) · π

m
> 0 for 1 ≤ h ≤ m − 1

2
,

we obtain
m−1∑

h=1

∣
∣
∣
∣sec

hπ

m

∣
∣
∣
∣ = 2

m−1
2∑

h=1

sec
hπ

m
. (8)

Distribution Properties of Binary Sequences 575

Note that the convexity of the function secx implies that

∫ u+ θ
2

u− θ
2

sec xdx > θ · sec u for
θ

2
< u <

π

2
− θ

2
.

Thus by taking θ = π
m we get

m−3
2∑

h=1

sec
hπ

m
<

m

π

m−3
2∑

h=1

∫ hπ
m + π

2m

hπ
m − π

2m

sec xdx

=
m

π

∫ (m−2)·π
2m

π
2m

sec xdx

<
m

π

∫ (m−2)·π
2m

0

sec xdx

=
m

π
· ln

(
sec

(m − 2) · π

2m
+ tan

(m − 2) · π

2m

)

=
m

π
·
(

ln
(

sec
(m − 2) · π

2m

)
+ ln

(
1 + sin

(m − 2) · π

2m

))

<
m

π
·
(
ln

(
csc

π

m

)
+ ln 2

)
. (9)

By combining (8) and (9), we obtain

m−1∑

h=1

∣
∣
∣
∣sec

hπ

m

∣
∣
∣
∣ <

2m

π
·
(
ln

(
csc

π

m

)
+ ln 2

)
+ 2 sec

(m − 1) π

2m

=
2m

π
·
(
ln

(
csc

π

m

)
+ ln 2

)
+ 2 csc

π

2m
. (10)

By applying csc(π/m) ≤ m/3 to the right-hand side of (10) we get

m−1∑

h=1

∣
∣
∣
∣sec

hπ

m

∣
∣
∣
∣ <

2
π

m ln m +
2m

π
(ln 2 − ln 3) +

4
3
m <

2
π

m ln m + 1.076m.

This completes the proof.

Now we start to prove Theorem 1.

Proof (Proof of Theorem 1). If M is an odd prime number, then (6) immediately
follows from the theory of m-sequences over finite fields (see, for example, [11]).
Next we will prove the equality (7). Note that

∣
∣
∣
∣
∣
∣

N
(
bT , 0

)

T
− M + 1

2M

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
1 −

N
(
bT , 1

)

T
− M + 1

2M

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

N
(
bT , 1

)

T
− M − 1

2M

∣
∣
∣
∣
∣
∣
,

576 Q.-X. Zheng et al.

and so it suffices to show (7) holds for the case that s = 0, that is,
∣
∣
∣
∣
∣
∣

N
(
bT , 0

)

T
− M + 1

2M

∣
∣
∣
∣
∣
∣
<

1
M

∑

d|M
d>1

dn/2

λn (d)
·
(

d ln d

π
+ 0.538d

)
. (11)

Since

N
(
bT , 0

)
=

T−1∑

t=0

M−1
2∑

x=0

(
1
M

M−1∑

h=0

eM (h (a (t) − 2x))

)

=
1
M

M−1∑

h=0

⎛

⎝
T−1∑

t=0

eM (ha (t)) ·
M−1

2∑

x=0

eM (−2hx)

⎞

⎠

=
T · (M + 1)

2M
+

1
M

M−1∑

h=1

⎛

⎝
T−1∑

t=0

eM (ha (t)) ·
M−1

2∑

x=0

eM (−2hx)

⎞

⎠ ,

we get
∣
∣
∣
∣
∣
∣

N
(
bT , 0

)

T
− M + 1

2M

∣
∣
∣
∣
∣
∣
≤ 1

MT

M−1∑

h=1

∣
∣
∣
∣
∣

T−1∑

t=0

eM (ha (t))

∣
∣
∣
∣
∣
·
∣
∣
∣
∣
∣
∣

M−1
2∑

x=0

eM (−2hx)

∣
∣
∣
∣
∣
∣
. (12)

We note that

M−1
2∑

x=0

eM (−2hx) =

(
e− 4hπi

M

)M+1
2 − 1

e− 4hπi
M − 1

=
e− 2hπi

M − 1

e− 4hπi
M − 1

=
1

e− 2hπi
M + 1

=
1

cos 2hπ
M − i sin 2hπ

M + 1

=
1

2 cos2 hπ
M − 2i sin hπ

M cos hπ
M

=
1
2

· sec hπ
M

e− hπi
M

. (13)

Distribution Properties of Binary Sequences 577

Applying (13) to (12) we obtain
∣
∣
∣
∣
∣
∣

N
(
bT , 0

)

T
− M + 1

2M

∣
∣
∣
∣
∣
∣
≤ 1

2MT

M−1∑

h=1

∣
∣
∣
∣
∣

T−1∑

t=0

eM (ha (t))

∣
∣
∣
∣
∣
·
∣
∣
∣
∣sec

hπ

M

∣
∣
∣
∣

=
1

2MT

∑

d|M
d>1

∑

1≤h≤M−1
gcd(h,M)=M/d

∣
∣
∣
∣
∣

T−1∑

t=0

eM (ha (t))

∣
∣
∣
∣
∣
·
∣
∣
∣
∣sec

hπ

M

∣
∣
∣
∣

=
1

2MT

∑

d|M
d>1

∑

1≤h≤d−1
gcd(h,d)=1

∣
∣
∣
∣
∣

T−1∑

t=0

ed (ha (t))

∣
∣
∣
∣
∣
·
∣
∣
∣
∣sec

hπ

d

∣
∣
∣
∣ . (14)

Note that given a divisor d > 1 of M , [ha]mod d is a primitive sequence over
Z/(d) with period λn (d) for every integer h coprime with d, and so it follows
from Lemma 2 that

∣
∣
∣
∣
∣

T−1∑

t=0

ed (ha (t))

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

T

λn (d)
·

λn(d)−1∑

t=0

ed (ha (t))

∣
∣
∣
∣
∣
∣
≤ T · dn/2

λn (d)
. (15)

Combining (14) and (15) yields
∣
∣
∣
∣
∣
∣

N
(
bT , 0

)

T
− M + 1

2M

∣
∣
∣
∣
∣
∣
≤ 1

2MT

∑

d|M
d>1

∑

1≤h≤d−1
gcd(h,d)=1

T · dn/2

λn (d)
·
∣
∣
∣
∣sec

hπ

d

∣
∣
∣
∣

=
1

2M

∑

d|M
d>1

dn/2

λn (d)
·

∑

1≤h≤d−1
gcd(h,d)=1

∣
∣
∣
∣sec

hπ

d

∣
∣
∣
∣

≤ 1
2M

∑

d|M
d>1

dn/2

λn (d)
·

d−1∑

h=1

∣
∣
∣
∣sec

hπ

d

∣
∣
∣
∣ , (16)

and so (11) follows from (16) and Lemma 4.

Generally speaking, if n is sufficiently large, then the right-hand side of (6)
is sufficiently small, and so the value of N

(
bT , s

)
/T is very close to that of

(M + 1 − 2s) /2M (for more details, see Table 1). In fact, we can give a more
theoretical result on the asymptotic property of N

(
bT , s

)
/T as n → ∞.

Corollary 1. Let a be a primitive sequence of order n over Z/(M) with period
T = λn (M), and let b = [a]mod 2. Then for s ∈ {0, 1} we have

lim
n→∞

N
(
bT , s

)

T
=

M + 1 − 2s

2M
.

578 Q.-X. Zheng et al.

To prove Corollary 1, we first introduce a result of Bugeaud, Corvaja and
Zannier [1].

Lemma 5. ([1, Theorem 1]) If a < b are two integers greater than 1 which
are multiplicatively independent (that is, the only integer solution (x, y) of the
equation axby = 1 is (x, y) = (0, 0)), then for any given real number ε > 0, there
exists an integer Nε such that

gcd (an − 1, bn − 1) < anε for all integers n > Nε.

Remark 1. Note that a and b are multiplicatively independent if gcd (a, b) = 1.

Proof (Proof of Corollary 1). Since Corollary 1 is obvious true for the case that
M is an odd prime number, we assume that M = p1p2 · · · pr is the canonical
factorization of M with r ≥ 2 and 3 ≤ p1 < p2 < · · · < pr. Note that the
inequality

d ln d

π
+ 0.538d ≤ M ln M

π
+ 0.538M

holds for any divisor d of M , and so by Theorem 1 we get
∣
∣
∣
∣
∣
N

(
vT , s

)

T
− M + 1 − 2s

2M

∣
∣
∣
∣
∣
<

(
M ln M

π
+ 0.538M

)
·
∑

d|M
d>1

dn/2

λn (d)
.

Therefore to prove Corollary 1, it suffices to show that

lim
n→∞

∑

d|M
d>1

dn/2

λn (d)
= 0,

that is

lim
n→∞

r∑

k=1

∑

1≤i1<···<ik≤r

∏k
j=1 p

n/2
ij

lcm
(
pn

i1
− 1, pn

i2
− 1, . . . , pn

ik
− 1

) = 0. (17)

Given a real number ε > 0. For any 1 ≤ u < v ≤ r, it follows from Lemma 5
and Remark 1 that there exists an integer N

(u,v)
ε such that

gcd (pn
u − 1, pn

v − 1) < pnε
u for all integers n > N (u,v)

ε .

Set

Nε = max{
⌈

ln pu

ln p1
· N (u,v)

ε

⌉
| 1 ≤ u < v ≤ r},

where �a	 denotes the smallest integer greater than or equal to a. Then it is
clear that

gcd (pn
u − 1, pn

v − 1) < pnε
1 , 1 ≤ u < v ≤ r and n > Nε. (18)

Distribution Properties of Binary Sequences 579

Let 2 ≤ k ≤ r and 1 ≤ i1 < · · · < ik ≤ r. It follows from (18) that if n > Nε,
then

lcm
(
pn

i1 − 1, pn
i2 − 1, . . . , pn

ik
− 1

) ≥
∏k

j=1(p
n
ij

− 1)
∏

1≤j<l≤k gcd(pn
ij

− 1, pn
il

− 1)

> p
−k2nε/2
1 ·

∏k

j=1
(pn

ij
− 1)

≥ p
−r2nε/2
1 ·

∏k

j=1
(pn

ij
− 1).

Consequently, we have
∏k

j=1 p
n/2
ij

lcm
(
pn

i1
− 1, pn

i2
− 1, . . . , pn

ik
− 1

) ≤ p
r2nε/2
1 ·

∏k

j=1

p
n/2
ij

pn
ij

− 1

< p
r2nε/2
1 ·

∏k

j=1
p
1−n/2
ij

≤ p
r2nε/2
1 · M ·

∏k

j=1
p

−n/2
ij

. (19)

Note that k ≥ 2 and pij
≥ p1 for 1 ≤ j ≤ k, and so (19) yields

∏k
j=1 p

n/2
ij

lcm
(
pn

i1
− 1, pn

i2
− 1, . . . , pn

ik
− 1

) < p
r2nε/2
1 · M · p

−nk/2
1

≤ p
r2nε/2
1 · M · p−n

1

= M · p
− n

2 ·(2−r2ε)
1 .

Hence it can be seen that
r∑

k=1

∑

1≤i1<···<ik≤r

∏k
j=1 p

n/2
ij

lcm
(
pn

i1
− 1, pn

i2
− 1, . . . , pn

ik
− 1

)

=
r∑

i=1

p
n/2
i

pn
i − 1

+
r∑

k=2

∑

1≤i1<···<ik≤r

∏k
j=1 p

n/2
ij

lcm
(
pn

i1
− 1, pn

i2
− 1, . . . , pn

ik
− 1

)

<
r

p
n/2
1 − 1

+ 2r · M · p
− n

2 ·(2−r2ε)
1 .

Then choosing ε < r−2, we get

0 ≤
r∑

k=1

∑

1≤i1<···<ik≤r

∏k
j=1 p

n/2
ij

lcm
(
pn

i1
− 1, pn

i2
− 1, . . . , pn

ik
− 1

) <
r

p
n/2
1 − 1

+2r·M ·p−n/2
1 .

(20)
Since r, M and p1 are all fixed integers with p1 ≥ 3, we get

lim
n→∞

r

p
n/2
1 − 1

+ 2r · M · p
−n/2
1 = 0,

and so (17) follows from (20).

580 Q.-X. Zheng et al.

3.2 The Proof of Theorem 2

Proof (Proof of Theorem 2). Since
∣
∣
∣
∣
∣
∣

N
(
bL, 0

)

L
− M + 1

2M

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

N
(
bL, 1

)

L
− M − 1

2M

∣
∣
∣
∣
∣
∣
,

it suffices to show that
∣
∣
∣
∣
∣
∣

N
(
bL, 0

)

L
− M + 1

2M

∣
∣
∣
∣
∣
∣
<

1
M

∑

d|M
d>1

d
n
2

λn (d)
C (d, L) . (21)

First, it is clear that

N
(
bL, 0

)
=

k+L−1∑

t=k

M−1
2∑

x=0

(
1
M

M−1∑

h=0

eM (h (a (t) − 2x))

)

=
1
M

M−1∑

h=0

⎛

⎝
k+L−1∑

t=k

eM (ha (t)) ·
M−1

2∑

x=0

eM (−2hx)

⎞

⎠

=
L · (M + 1)

2M
+

1
M

M−1∑

h=1

⎛

⎝
k+L−1∑

t=k

eM (ha (t)) ·
M−1

2∑

x=0

eM (−2hx)

⎞

⎠ .

Then proceed as in the proof of Theorem 1, we can get
∣
∣
∣
∣
∣
∣

N
(
bT , 0

)

L
− M + 1

2M

∣
∣
∣
∣
∣
∣
≤ 1

2ML

∑

d|M
d>1

∑

1≤h≤d−1
gcd(h,d)=1

∣
∣
∣
∣
∣

k+L−1∑

t=k

ed (ha (t))

∣
∣
∣
∣
∣
·
∣
∣
∣
∣sec

hπ

d

∣
∣
∣
∣ . (22)

Note that given a divisor d > 1 of M , [ha]mod d is a primitive sequence over
Z/(d) with period λn (d) for every integer h coprime with d, and so by Lemma 2
we have

∣
∣
∣
∣
∣

k+L−1∑

t=k

ed (ha (t))

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

k+[L]mod λn(d)−1
∑

t=k

ed (ha (t)) +

⌊
L

λn (d)

⌋

·
λn(d)−1

∑

t=0

ed (ha (t))

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

k+[L]mod λn(d)−1
∑

t=k

ed (ha (t))

∣
∣
∣
∣
∣
∣

+

⌊
L

λn (d)

⌋

·
∣
∣
∣
∣
∣
∣

λn(d)−1
∑

t=0

ed (ha (t))

∣
∣
∣
∣
∣
∣

≤ d
n
2

(

4 lnλn (d)

π2
+ 0.409 +

[L]mod λn(d) + 1

λn (d)

)

+

⌊
L

λn (d)

⌋

· d
n
2

= d
n
2

(
4 lnλn (d)

π2
+ 0.409 +

L + 1

λn (d)

)

, (23)

Distribution Properties of Binary Sequences 581

where
a� denotes the largest integer smaller than or equal to a. Combining (22)
and (23) we get

∣
∣
∣
∣
∣
∣

N
(
bT , 0

)

L
− M + 1

2M

∣
∣
∣
∣
∣
∣

≤ 1
2M

∑

d|M
d>1

∑

1≤h≤d−1
gcd(h,d)=1

d
n
2

λn (d)

(
λn (d)

L

(
4
π2

ln λn (d) + 0.409
)

+
L + 1

L

)
·
∣
∣
∣
∣sec

hπ

d

∣
∣
∣
∣

≤ 1
2M

∑

d|M
d>1

d
n
2

λn (d)

(
λn (d)

L

(
4
π2

ln λn (d) + 0.409
)

+
L + 1

L

)
·

d−1∑

h=1

∣
∣
∣
∣sec

hπ

d

∣
∣
∣
∣ . (24)

and so (21) follows from (24) and Lemma 4.

Similar to Corollary 1, we can give the asymptotic property of
N(bL,s)

L as
n → ∞.

Corollary 2. Let a be a primitive sequence of order n over Z/(M) with period
T = λn (M). Let b = [a]mod 2 and bL = (b (k) , b (k + 1) , . . . , b (k + L − 1)) a
segment of b with length L = μT , where 0 ≤ k ≤ T − 1 and 0 < μ < 1. Then for
s ∈ {0, 1} we have

lim
n→∞

N
(
bL, s

)

L
=

M + 1 − 2s

2M
.

Proof. Since

λn (d)
L

(
4
π2

ln λn (d) + 0.409
)

+
L + 1

L
<

λn (M)
L

(
4
π2

ln Mn + 0.409
)

+ 2

=
1
μ

(
4
π2

n ln M + 0.409
)

+ 2

<

(
4 ln M

μπ2
+

3
μ

)
· n

and
d ln d

π
+ 0.538d ≤ M ln M

π
+ 0.538M

hold for any divisor d of M with d > 1, it follows from Theorem2 that
∣
∣
∣
∣
∣
∣

N
(
bL, s

)

L
− M + 1 − 2s

2M

∣
∣
∣
∣
∣
∣
< Dμ (M)

∑

d|M
d>1

nd
n
2

λn (d)
,

where

Dμ (M) =
(

4 ln M

μπ2
+

3
μ

)
·
(

M ln M

π
+ 0.538M

)

582 Q.-X. Zheng et al.

is a constant only depended on M and μ. Therefore to prove Corollary 2, it
suffices to show that

lim
n→∞

∑

d|M
d>1

nd
n
2

λn (d)
= 0,

that is

lim
n→∞

r∑

k=1

∑

1≤i1<···<ik≤r

n
∏k

j=1 p
n/2
ij

lcm
(
pn

i1
− 1, pn

i2
− 1, . . . , pn

ik
− 1

) = 0. (25)

Proceed as in the proof of Corollary 1 (but substitute
∏k

j=1 p
n/2
ij

by n
∏k

j=1 p
n/2
ij

),
finally we can get

0 ≤
r∑

k=1

∑

1≤i1<···<ik≤r

n
∏k

j=1 p
n/2
ij

lcm
(

pn
i1

− 1, pn
i2

− 1, . . . , pn
ik

− 1
) <

rn

p
n/2
1 − 1

+ 2rM · np
−n/2
1 .

(26)
Since r, M and p1 are all fixed integers with p1 ≥ 3, we get

lim
n→∞

rn

p
n/2
1 − 1

+ 2rM · np
−n/2
1 = 0,

and so (25) follows from (26).

3.3 An Example: Element Distribution of Modulo 2 Reductions
of Primitive Sequences over Z/(232 − 1)

Let a be a primitive sequence of order n over Z/(232 − 1) with period T =
λn

(
232 − 1

)
. Let b = [a]mod 2 and bL = (b (k) , b (k + 1) , . . . , b (k + L − 1)) a

segment of b with length L = μT , where 0 ≤ k < T and 0 < μ ≤ 1. Then it
follows from Theorems 1 and 2 that

∣
∣
∣
∣
∣
∣

N
(
bL, s

)

L
− 231 − s

232 − 1

∣
∣
∣
∣
∣
∣
< Λn (μ) , (27)

where

Λn (μ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
232−1

∑

d|232−1
d>1

dn/2

λn(d)B (d) , if μ = 1;

1
232−1

∑

d|232−1
d>1

dn/2

λn(d)C (d, μT) , if 0 < μ < 1,

with
B (d) =

d ln d

π
+ 0.538d

and

C (d, μT) =
(

λn (d)
L

(
4
π2

ln λn (d) + 0.409
))

· B (d) .

Distribution Properties of Binary Sequences 583

The values of Λn (μ) are calculated and listed in Table 1 for 1 ≤ n ≤ 10 and
μ ∈ {1, 1/2, 1/4, 1/8}. It can be seen from Table 1 that the estimate of (27) is
nontrivial if (1) μ = 1 and n ≥ 2; or (2) 0 < μ < 1 and n ≥ 3. Moreover for any
μ ∈ {1, 1/2, 1/4, 1/8}, the value of Λn (μ) is very close to 0 if n ≥ 3, which is
consistent with the results of Corollarys 1 and 2.

Table 1. The values of Λn (μ) for 1 ≤ n ≤ 10 and μ ∈ {1, 1/2, 1/4, 1/8}

n Λn (1) Λn (1/2) Λn (1/4) Λn (1/8)

1 9.867 5.580 × 102 1.106 × 103 2.202 × 103

2 2.035 × 10−1 2.640 × 10 5.260 × 10 1.050 × 102

3 5.877 × 10−9 2.825 × 10−7 5.591 × 10−7 1.112 × 10−6

4 1.534 × 10−7 2.317 × 10−5 4.618 × 10−5 9.220 × 10−5

5 2.125 × 10−10 2.125 × 10−10 2.125 × 10−10 2.125 × 10−10

6 5.850 × 10−9 1.326 × 10−7 2.600 × 10−7 5.140 × 10−7

7 1.875 × 10−11 1.875 × 10−11 1.875 × 10−11 1.875 × 10−11

8 1.384 × 10−11 1.384 × 10−11 1.384 × 10−11 1.384 × 10−11

9 5.368 × 10−12 5.368 × 10−12 5.368 × 10−12 5.368 × 10−12

10 3.891 × 10−12 3.891 × 10−12 3.891 × 10−12 3.891 × 10−12

4 Conclusions

In this paper, the distribution properties of modulo 2 reductions of primitive
sequences modulo square-free odd integers are studied. Let M be a square-free
odd integer, n a positive integer, and a a primitive sequence of order n over
Z/(M) with period T . For s ∈ {0, 1} and 0 < μ ≤ 1, denote by fs the proportion
of occurrences of s within a segment of the binary sequence [a]mod 2, the modulo
2 reduction of a, of length μT . Then it is shown that the difference of fs from the
average value M+1−2s

2M tends to 0 as n → ∞. Note that M+1
2M differs from M−1

2M by
1
M . This implies that there exists a small imbalance between 0 and 1 occurring
in the binary sequence [a]mod 2, and the bias of f0 and f1 is about 1

M . To provide
a good resistance against the distinguishing attacks, such imbalance should be
taken into full consideration in the design of stream ciphers based on [a]mod 2. A
simple method is to introduce the exclusive or operation. A bitwise exclusive or
of several phase-shifts of [a]mod 2 will has smaller bias than [a]mod 2. Therefore,
by introducing a moderate amount of exclusive or operations, the imbalance of
0, 1 will be reduced to a small enough extent. In the future we will be interested
in other pseudorandom properties of [a]mod 2, such as the linear complexity of
[a]mod 2.

584 Q.-X. Zheng et al.

References

1. Bugeaud, Y., Corvaja, P., Zannier, U.: An upper bound for the G.C.D. of an − 1
and bn − 1. Math. Z. 243, 79–84 (2003)

2. Bylkov, D.N., Kamlovskii, O.V.: Occurrence indices of elements in linear recurrence
sequences over primary residue rings. Probl. Inf. Transm. 44, 161–168 (2008)

3. Chan, A.H., Games, R.A.: On the linear span of binary sequences obtained from
finite geometries. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
405–417. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 29

4. Chen, H.J., Qi, W.F.: On the distinctness of maximal length sequences over Z/(pq)
modulo 2. Finite Fields Appl. 15(1), 23–39 (2009)

5. Cochrane, T.: On a trigonometric inequality of Vinogradov. J. Number Theory
27(1), 9–16 (1987)

6. Dai, Z.D., Beth, T., Gollmann, D.: Lower bounds for the linear complexity of
sequences over residue rings. In: Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS,
vol. 473, pp. 189–195. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-
46877-3 16

7. Dai, Z.D.: Binary sequences derived from ML-sequences over rings I: periods and
minimal polynomials. J. Cryptol. 5(3), 193–207 (1992)

8. Fan, S.Q., Han, W.B.: Random properties of the highest level sequences of primitive
sequences over Z/(2e). IEEE Trans. Inf. Theory 49(6), 1553–1557 (2003)

9. Hu, Z., Wang, L.: Injectivity of compressing maps on the set of primitive sequences
modulo square-free odd integers. Cryptogr. Commun. 7(4), 347–361 (2015)

10. Huang, M.Q., Dai, Z.D.: Projective maps of linear recurring sequences with maxi-
mal p-adic periods. Fibonacci Q. 30(2), 139–143 (1992)

11. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and Its
Applications, vol. 20. Cambridge University Press, Cambridge (1997)

12. Kamlovskii, O.V.: Frequency characteristics of linear recurrences over Galois rings.
Matematicheskii Sbornik 200, 31–52 (2009)

13. Klapper, A., Goresky, M.: Feedback shift registers, 2-adic span, and combiners
with memory. J. Crypt. 10(2), 111–147 (1997)

14. Korobov, N.M.: Exponential Sums and Their Applications. Kluwer, Dordrecht
(1992)

15. Kuzmin, A.S., Nechaev, A.A.: Linear recurring sequences over Galois ring. Russ.
Math. Surv. 48(1), 171–172 (1993)

16. Qi, W.F., Yang, J.H., Zhou, J.J.: ML-sequences over rings Z/(2e): I. Constructions
of nondegenerative ML-sequences II. Injectivness of compression mappings of new
classes. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 315–
326. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49649-1 25

17. Tian, T., Qi, W.F.: Injectivity of compressing maps on primitive sequences over
Z/(pe). IEEE Trans. Inf. Theory 53(8), 2966–2970 (2007)

18. Ward, M.: The arithmetical theory of linear recurring series. Trans. Am. Math.
Soc. 35(3), 600–628 (1933)

19. Wikipedia, Trigonometric functions, Wikipedia website (2018). https://en.
wikipedia.org/wiki/Trigonometric functions#Calculus

20. Zhu, X.Y., Qi, W.F.: Compression mappings on primitive sequences over Z/(pe).
IEEE Trans. Inf. Theory 50(10), 2442–2448 (2004)

21. Zhu, X.Y., Qi, W.F.: Further result of compressing maps on primitive sequences
modulo odd prime powers. IEEE Trans. Inf. Theory 53(8), 2985–2990 (2007)

https://doi.org/10.1007/3-540-47721-7_29
https://doi.org/10.1007/3-540-46877-3_16
https://doi.org/10.1007/3-540-46877-3_16
https://doi.org/10.1007/3-540-49649-1_25
https://en.wikipedia.org/wiki/Trigonometric_functions#Calculus
https://en.wikipedia.org/wiki/Trigonometric_functions#Calculus

Distribution Properties of Binary Sequences 585

22. Zhu, X.Y., Qi, W.F.: On the distinctness of modular reduction of maximal length
modulo odd prime numbers. Math. Comput. 77(263), 1623–1637 (2008)

23. Zheng, Q.X., Qi, W.F.: Distribution properties of compressing sequences derived
from primitive sequences over Z/(pe). IEEE Trans. Inf. Theory 56(1), 555–563
(2010)

24. Zheng, Q.X., Qi, W.F.: A new result on the distinctness of primitive sequences
over Z/(pq) modulo 2. Finite Fields Appl. 17(3), 254–274 (2011)

25. Zheng, Q.X., Qi, W.F., Tian, T.: On the distinctness of binary sequences derived
from primitive sequences modulo square-free odd integers. IEEE Trans. Inf. Theory
59(1), 680–690 (2013)

26. Zheng, Q.X., Qi, W.F.: Further results on the distinctness of binary sequences
derived from primitive sequences modulo square-free odd integers. IEEE Trans.
Inf. Theory 59(6), 4013–4019 (2013)

27. Zheng, Q.X., Qi, W.F., Tian, T.: On the distinctness of modular reduction of
primitive sequences over Z/(232 − 1). Des. Codes Crypt. 70(3), 359–368 (2014)

28. ETSI/SAGE Specification: Specification of the 3GPP Confidentiality and Integrity
Algorithms 128-EEA3 & 128-EIA3. Document 4: Design and Evaluation Report;
Version: 2.0; Date: 9th Sep. 2011. Tech. rep., ETSI 2011. http://www.gsmworld.
com/our-work/programmes-and-initiatives/fraud-and-security/gsm security
algorithms.htm

http://www.gsmworld.com/our-work/programmes-and-initiatives/fraud-and-security/gsm_security_algorithms.htm
http://www.gsmworld.com/our-work/programmes-and-initiatives/fraud-and-security/gsm_security_algorithms.htm
http://www.gsmworld.com/our-work/programmes-and-initiatives/fraud-and-security/gsm_security_algorithms.htm

Towards Malicious Security of Private
Coin Honest Verifier Zero Knowledge

for NP via Witness Encryption

Jingyue Yu1,2,3(B)

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
3 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100093, China
yujingyue@iie.ac.cn

Abstract. We develop a new method for transforming private coin
HVZK protocols into witness indistinguishable, and zero knowledge pro-
tocols, via witness encryption. This causes at most one additional round.
Previously, the general way of transforming a private coin HVZK proto-
col into zero knowledge is to employ a standard commitment technique,
which causes two more rounds. Following this method, we present two-
round witness indistinguishable proofs for specific languages, such as
OR-DDH, OR-QR, OR-LWE, based on the associated lossy encryption
and witness encryption. We apply this witness encryption idea to the
HVZK protocol in [Jawurek et al. CCS13] and present a three-round zero
knowledge protocol with super-polynomial simulation (or zero knowledge
in FOT -hybrid model) for NP, assuming the existence of Yao’s garble
circuit and two-message oblivious transfer protocol (or ideal oblivious
transfer). In addition, our three-round zero knowledge protocol works
for generic languages, avoiding expensive Karp reductions.

Keywords: Zero knowledge · Witness indistinguishability ·
Honest verifier zero knowledge · Witness encryption

1 Introduction

The notion of zero knowledge was introduced by [18] to guarantee the privacy
of the prover. Zero knowledge (ZK) requires that the proof reveals nothing but
the validity of the statement even to a malicious verifier, and it has been widely
used in the designing of numerous cryptographic protocols.

For many practical applications of zero knowledge, such as coin-tossing and
non-malleable protocols, they actually don’t have to satisfy the simulation-based
security but only require a weaker indistinguishable security. However, the round
complexity of those protocols is determined by the round complexity of zero
knowledge.
c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 586–606, 2019.
https://doi.org/10.1007/978-3-030-14234-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_31&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_31

Towards Malicious Security of Private Coin Honest Verifier Zero Knowledge 587

Witness indistinguishability (WI) and witness hiding (WH) [12] are two
different relaxed notions of zero knowledge. Roughly, we say a protocol is wit-
ness indistinguishable if the statement has two independent witnesses, then the
malicious verifier cannot distinguish which witness the prover is using. Witness
hiding proofs guarantee that a malicious verifier cannot obtain any witness of
the statement being proved from interacting with an honest prover.

Goldreich and Krawcyzk [16] showed that three-round zero knowledge argu-
ments with black-box simulation do not exist for non-trivial languages. Bitansky
and Paneth [6] used Yao’s garbled circuit and two-message OT protocol [25] to
construct a three-round witness hiding protocol and a three-round weak zero
knowledge protocol, while their constructions also rely on point obfuscation.

Recently, Jain et al. [21] constructed a three-round distributional weak
zero knowledge for NP, based on Σ-protocol, assuming the existence of two-
message OT protocols with security against malicious receiver and semi-honest
receiver [19,25]. They used a distinguisher-dependent (black-box) simulation to
bypass lower bounds on black-box simulation [16]. This is a big break. Unfor-
tunately, their constructions of three-round weak zero knowledge are not closed
under sequential repetition.

Jawurek et al. [22] constructed a five-round efficient zero knowledge protocol
using garbled circuits. To reduce the round-complexity of zero knowledge protocols
using garbled circuits, Ganesh et al. [13] used a conditional verification to obtain
a three-round zero knowledge protocol in the random oracle model (ROM).

Dwork and Naor [11] introduced zaps, which are two-round public coin wit-
ness indistinguishable protocols, and they gave a construction based on non-
interactive zero knowledge proofs. Later, Bitansky and Paneth [7] realized zaps
and non-interactive witness indistinguishability from indistinguishable obfusca-
tion, which also use non-interactive zero knowledge as a tool. Recently, several
works [3,21] follow the approach of [1,23] to reduce rounds in interactive pro-
tocols, expect that they used oblivious transfer (OT) protocols, instead of PIR
schemes. In particular, they compressed a Σ-protocol into a two-round witness
indistinguishable argument, using sub-exponential OT protocols.

Honest verifier zero knowledge (HVZK) is another relaxed notation of zero
knowledge, in which the verifier follows the protocol honestly but tries to learn
something about the prover’s privacy from interaction with an honest prover.
HVZK is a clear weaker notion of zero knowledge. For public coin HVZK proto-
cols, such as the classic Blum protocol [8], Σ-protocol [9], they are three-round
witness indistinguishable/witness hiding protocols w.r.t. hard distribution with
two (or more) witnesses [12], and witness hiding w.r.t. hard distribution with
unique witness which are indistinguishable from hard distributions with two (or
more) witnesses [10]. Additionally, they can be transformed into zero knowledge
by letting the verifier commit to his challenge bits (in the HVZK protocol) ahead
of time. The resulting protocol is a four-round zero knowledge protocol.

Compared to public coin HVZK protocols, private coin HVZK protocols
(with constant soundness error) can be achieved within two rounds, such as
HVZK protocols for graph non-isomorphism (GNI), HVZK protocols from lossy

588 J. Yu

encryption [5]. Note that the private coin HVZK protocols for NP might be not
secure against a malicious verifier. The general way of transforming a private
coin HVZK protocol into zero knowledge is to employ a standard commitment
technique1: Rather than directly sending the prover message to the verifier, the
prover makes a commitment to the prover message. Then the verifier reveals his
randomness, demonstrating to the prover that he follows the protocol correctly,
and only then the prover opens his commitment to the verifier. This causes two
additional rounds.

1.1 Our Results

In this work, we start with a two-round private coin HVZK protocol for NP with
constant soundness error from witness encryption. We show this HVZK protocol
is not witness indistinguishable but witness hiding. Observe that witness hiding
might not be closure under sequential/parallel repetitions of this protocol. For
HVZK protocols with negligible soundness error from witness encryption, the
prover’s privacy against a malicious verifier is not clear.

Rather than using a commitment technique, we construct 3-round witness
indistinguishable protocols for NP using a “witness encryption” technique. Fur-
thermore, using this kind of “witness encryption” idea, we present the following
two constructions:

– Two-round witness indistinguishable proof for OR-Composition of specific
languages possessed of lossy encryption, such as OR-DDH, OR-QR, OR-LWE,
from witness encryption.

– Three-round zero knowledge with super-polynomial simulation (or zero
knowledge in FOT model) for generic languages, based on the existence of
Yao’s garbled circuit and two-message oblivious transfer protocol (or ideal
oblivious transfer).

Next, we give an overview of our main results.

HVZK from Witness Encryption. Recall that a witness encryption
scheme [15] is defined for an NP language L with corresponding witness rela-
tion RL. It consists of two algorithms (Enc,Dec): The encryption algorithm Enc
takes a statement x ∈ L and a message m as inputs and outputs a ciphertext ct.
A user who owns w ∈ RL(x) can decrypt ct using the decryption algorithm Dec.
Additionally, the two efficient algorithms need to satisfy the following two prop-
erties: Correctness requires that if (x,w) ∈ RL, then Decw(Encx(m; r)) = m;
Security requires that for any x /∈ L, Encx(m; r) is semantic secure.

Now consider a two-round honest verifier zero knowledge protocol for an NP
language L. The prover convinces the verifier of that x ∈ L by using witness
encryption. In the first round, the verifier encrypts a random bit under the

1 For a private coin HVZK protocols for coNP, such as two-round HVZK protocols
for graph non-isomorphism (GNI), the general way of transforming them into zero
knowledge is through cut and choose protocols.

Towards Malicious Security of Private Coin Honest Verifier Zero Knowledge 589

statement x, and sends the corresponding ciphertext ct to the prover. In the
second round, the prover uses its witness w ∈ RL(x) to decrypt the ciphertext
and sends the decryption bit to the verifier. The verifier accepts iff the received
bit is equal to the bit chosen by itself.

It’s not hard to see that the above two-round protocol is an honest veri-
fier zero knowledge/witness hiding argument with constant soundness error. We
observe that this protocol is not witness indistinguishability, since for a mal-
formed ciphertext, the decryption results using different witnesses may be not
the same.

To illustrate this consider a witness encryption scheme for an OR-composition
of PRG language Lor = L ∨ L. For an instance x := x0||x1 ∈ Lor with two
independent witnesses w0, w1 ∈ RLor

(x), where w0 ∈ RL(x0) and w1 ∈ RL(x1),
a malicious verifier can efficiently find some x′ ∈ L such that w0 ∈ RLor

(x′) and
w1 /∈ RLor

(x′), by setting x′ = x0||x′
1, where x0 ∈ L but x′

1
R←− {0, 1}n. Then

ciphertexts ct = Encx′(m; r) under x′ uses w0 and w1 as secret key to decrypt
and the decryption results might be not the same. This WI attack follows the
input-distribution-switching technique [10].

Fixing It Using a Witness Encryption Scheme. Note that in the above
protocol, the cheating prover can fool the verifier with constant probability. For
the rest discussion, we consider the protocol that the verifier sends a ciphertext
ct = Encx(m; r) for a random string m ∈ {0, 1}n, to achieve a negligible sound-
ness error. In turn the prover responds with m′ = Decw(ct). The above witness
indistinguishable attack still works.

Previously, this problem can be resolved by empolying a standard commit-
ment technique (Com,Open): After receiving a ciphertext ct, the prover sends
a commitment com = Com(m′), rather than sending m′ = Decw(ct); and it
expects to receive back m, r such that ct = Encx(m; r). Then the prover sends
the opening of com to the verifier. The resulting protocol is a four-round zero
knowledge argument.

In this work, we use a witness encryption scheme to ensure that a malicious ver-
ifier obtains the corresponding decryption only when the ciphertext ct is honestly
generated. We first consider the following candidate two-round protocol: After
receiving ct from the verifier, the prover sends c̃t = Enc(x,ct)(m′) to the verifier,
where m′ = 0n if Decw(ct) = ⊥, otherwise m′ = Decw(ct); and (x, ct) ∈ L̃. Let
L̃ = {(x, ct) : ∃m, r s.t. ct = Encx(m; r)} be an NP language consisting of all
instance and legal witness encryption ciphertext pairs.

For witness indistinguishability, we consider the following two cases. In case
(x, ct) ∈ L̃, we have for all ciphertext ct under x, Decw0(ct) = Decw1(ct), by the
correctness of witness encryption. In case (x, ct) /∈ L̃, by the security of witness
encryption, we have that {Enc(x,ct)(m; r̃)} c≈ {Enc(x,ct)(0n; r̃)}. Thus, no matter
which is the case here, the distributions {〈P (w0), V ∗〉 (x)} and {〈P (w1), V ∗〉 (x)}
are indistinguishable.

At first, it seems the resulting two-round protocol is sound, since for x /∈ L,
a cheating prover cannot recover m from ct. Thus the soundness would follow
by the security of witness encryption. However, this is flawed. After receiving

590 J. Yu

the challenged ciphertext ct, the reduction algorithm R passes ct to P ∗ and
receives back c̃t. It expects to decrypt c̃t and then breaks the security of ct =
Encx/∈L(m; r), while a PPT reduction algorithm cannot decrypt c̃t without m, r.

Three-Round WI Arguments for NP from Witness Encryption. To
achieve soundness, we rely on the Feige-Shamir trapdoor paradigm, the prover
adds some “trapdoor” to ensure that the reduction algorithm can decrypt c̃t
using this trapdoor. Inspired by [6], we let the prover first send f(k) where
k

R←− {0, 1}n and f is an injective one way function. Then the verifier computes
a ciphertext ct = Encx(m) for a random string m

R←− {0, 1}n under the state-
ment x. The prover decrypts ct using witness and obtains m′, then it sends
ct′ = enck(m′) and c̃t = Enc(x,ct)(k) to the verifier, where enc is a private
key encryption algorithm. The verifier uses (m, r) as witness to decrypt c̃t and
obtains k, then decrypts ct′ and checks whether the decryption result is equal
to m or not. For more details see Sect. 3.2.

Two-Round WI Proofs for Specific Languages from Lossy Encryption
and Witness Encryption. If we require the witness encryption scheme for L is
statistically secure (i.e. for any x /∈ L, Encx(m; r) is statistically hiding m), then
the candidate two-round WI protocol is sound. If there exists an (unbounded)
cheating prover can fool the verifier with non-negligible probability, then there
exists an (unbounded) reduction algorithm breaking the statistically secure of
witness encryption. In particular, lossy encryption [4,20] can be seen as a statis-
tical witness encryption for specific languages known as in SZK [5,15], such as
DDH, Quadratic Residuosity (QR), LWE. Since WI is only meaningful for lan-
guages with two (or more) witnesses, we present a general two-round WI proof
for OR-composition of languages possessed of lossy encryption in Sect. 4.

Three-Round Zero Knowledge Protocols for NP from Two-Message
Secure Function Evaluation. Jawurek et al. [22] proposed an efficient zero
knowledge protocols for generic languages based on Yao’s garbled circuits and
two-message OT protocols [24,26]. In a nutshell, P and V first execute a 2PC [17]
to jointly compute a function fL

x (w, y), which on input (w, y) outputs ŷ = y if
w ∈ RL(x), otherwise ŷ = ⊥: The prover sends OT1(w) to V , and V plays the
role of garbled circuit constructor to construct garbled circuit Ĉ for realizing
fL

x,y(w) = fL
x (w, y) and computes OT2(labi,0, labi,1). The prover can evaluate

the circuit and retrieve ŷ. For privacy of the prover, the prover don’t directly
reveal ŷ to V . They used a commitment technique to achieve zero knowledge: P
sends a commitment of ŷ to V , and until V sending a valid opening (all input
labels) of the garbled circuit, he reveals ŷ to V .

We use the witness encryption idea to ensure the prover’s privacy. At a
high level, P and V jointly run another 2PC to ensure that V learns ŷ only
if it honestly constructs the garbled circuit Ĉ for fL

x . In this sub-protocol, P
plays the role of garbled circuit constructor to construct a garbled circuit D̂

for functionality f L̂
Ĉ

which on input a legal opening of Ĉ outputs ŷ, otherwise
⊥, where L̂ is defined for all legal garbled circuits for fL

x . This protocol is also
flawed and it can be fix to be sound using the Feige-Shamir trapdoor paradigm

Towards Malicious Security of Private Coin Honest Verifier Zero Knowledge 591

as before. In Sect. 5, we present a three-round zero knowledge from two-message
secure function evaluation, which in turn relies on the existence of Yao’s garbled
circuit and two-message OT protocol.

Ganesh et al. [13] used a conditional verification technique to obtain a three-
round zero knowledge protocol in the random oracle model (ROM). Although
the efficiency of our construction is slightly less than theirs, our protocol is under
standard assumptions instead of random oracle. In the table below, we compared
our protocol with the existing zero knowledge protocols using garbled circuits.
Note that our three-round protocol can be adaptively secure, when plugged in
with RE-OTs (Table 1).

Table 1. Comparison with other ZKGC protocols

Protocols Rounds Assumptions Proof size

[JKO13] 5 OT + GC O(n · |C|)
[GKPS18] 3 OT + ROM O(n · |C|)
This paper 3 OT + GC O(n · |C|) + O(n · |D|)

Furthermore, our constructions of zero knowledge can also avoid expensive
Karp reductions to NP-Complete languages for proving generic statements,
such as “I know w s.t. x = SHA-256(w)”. Note that if the underlying two-
message OT protocol is instantiated by weak OT [3], then the resulting three-
round protocol is zero knowledge with super-polynomial simulation. If the under-
lying two-message OT protocol is instantiated by an ideal OT protocol like [22],
then the resulting protocol is zero knowledge in FOT-hybrid model.

1.2 Related Work

Bitansky and Paneth [7] used the terminology of witness encryption to construct
a non-interactive witness indistinguishable protocol, however in their construc-
tion, the witness encryption scheme can be only implemented by indistinguish-
able obfuscation. For our purpose, all potential constructions of witness encryp-
tion schemes [14,15] are fit in our protocols.

Our constructions of two-round WI proofs for specific languages are based
on lossy encryption and witness encryption without using non-interactive zero
knowledge. Zaps, two-round public coin WI protocols for NP are constructed
using NIZK as a tool [7,11]. Recent works [3,21] transform Σ-protocol into
two-round WI argument by using OT protocol against quasi-polynomial time
receivers.

592 J. Yu

2 Preliminaries

2.1 Basic Notations

Throughout the paper, n denotes the security parameter. A function negl(n) is
said to be negligible if for any polynomial poly(n) there exists an N such that for
all n ≥ N , negl(n) ≤ 1

poly(n) . We will abbreviate probabilistic polynomial-time
with PPT.

For a positive integer κ, [κ] denotes {1, 2, . . . , κ}. For a set S, we write x
R←− S

to denote that x is chosen uniformly at random from S. For a distribution D
over a finite set S ⊆ {0, 1}∗, we denote by x ← D the process that the sample
x ∈ S is drawn according to the distribution D.

2.2 Interactive Protocols

An interactive proof system 〈P, V 〉 for an NP language L with its associated
relation RL consists of a pair of interactive Turing machines P and V . The
prover P wants to convince the verifier V of some statement x ∈ L. We denote
by 〈P (w), V (z)〉(x) the transcript of an execution of 〈P, V 〉 on common input x,
P ’s private input w and V ’s auxiliary input z.

Definition 1 (Proof System). An interactive argument 〈P, V 〉 is an argument
system with soundness error s for an NP language L, if it satisfies:

• Completeness. For any (x,w) ∈ RL,

Pr[〈P (w), V 〉(x) = 1] ≥ 1 − negl(n)

• Soundness. For any (unbounded) malicious P ∗, any x /∈ L,

Pr[〈P ∗, V 〉(x) = 1] ≤ s(n)

where s is called soundness error.

An interactive argument is defined similarly to an interactive proof except that
soundness is only required to be hold for PPT cheating provers.

Definition 2 (Witness Indistinguishability). Let L be an NP language
defined by RL. An interactive protocol 〈P, V 〉 is said to be witness indistinguish-
able for relation RL if for every PPT V ∗, every auxiliary input z ∈ {0, 1}∗ and
every sequence {(x,w,w′)}x∈L, where (x,w), (x,w′) ∈ RL, the following two
distribution ensembles are computationally indistinguishable:

{〈P (w), V ∗(z)〉(x)}x∈L,z∈{0,1}∗
c≈ {〈P (w′), V ∗(z)〉(x)}x∈L,z∈{0,1}∗

Definition 3 (Hard Distribution). Let L be an NP language defined by RL.
Let D = {Dn = (Xn,Wn)}n∈N be an efficiently samplable distribution ensemble
on RL. We say D is hard for RL if for any PPT machine M

Pr[M(Xn) ∈ RL(Xn)] ≤ negl(n)

Towards Malicious Security of Private Coin Honest Verifier Zero Knowledge 593

Definition 4 (Witness Hiding). Let L be an NP language defined by RL. We
say 〈P, V 〉 is witness hiding for a hard distribution D, if for any PPT machine V ∗

Pr[〈P (Wn), V ∗〉 (Xn) ∈ RL(Xn)] ≤ negl(n)

Definition 5 (Honest Verifier Zero Knowledge). An interactive protocol
〈P, V 〉 is said to be honest verifier zero knowledge for an NP language L, if there
exists a PPT simulator Sim for any honest verifier V , when given any x ∈ L
simulates the transcript 〈P (w), V (z)〉(x). That is, for any (x,w) ∈ RL,

〈P (w), V (z)〉(x)
c≈ Sim(x)

Definition 6 (Zero Knowledge). An interactive protocol 〈P, V 〉 is said to be
zero knowledge for an NP language L, if for any x ∈ L, there exists a PPT
simulator Sim, for any PPT malicious verifier V ∗,

〈P (w), V ∗〉(x)
c≈ SimV ∗

(x)

2.3 Witness Encryption

Recall the definition of witness encryption from [15].

Definition 7 (Witness Encryption). A witness encryption scheme for an
NP language L (with corresponding witness relation RL) consists of the following
two algorithms:

– ct ← Encx(m; r): The encryption algorithm Enc takes as input a string x ∈ X
and a message {0, 1}n, and outputs a ciphertext ct. For notational simplicity,
we sometimes write Encx(m) for Encx(m; r).

– m/⊥ ← Decw(ct): On inputs w and the ciphertext ct, the decryption algorithm
Dec outputs m or ⊥.

The two algorithms (Enc,Dec) satisfy the following properties:

• Correctness. For any message m ∈ {0, 1}n, for any x ∈ L, and w ∈ RL(x),
we have

Pr[Decw(Encx(m; r)) = m] = 1

• Security. For any x /∈ L, for any PPT adversary A, we have

|Pr[A(Encx(m; r))] − Pr[A(Encx(m′; r′))] = 1| = negl(n)

where (m,m′) ← A(x).

There have been several constructions of witness encryption (WE) for NP
languages over the past few years. Garg et al. [15] gave us the first candidate con-
struction of witness encryption, based on the NP-complete EXACT COVER
problem and approximate multilinear maps (MLMs). Garg et al. [14] showed
that indistinguishability obfuscation implies witness encryption.

594 J. Yu

2.4 Lossy Encryption

Lossy encryption can be seen as statistical witness encryption schemes for specific
languages known to be in SZK [5,15]. Review the definition of lossy encryption
from [4,20].

Definition 8 (Lossy Encryption). A lossy encryption scheme is a tuple effi-
cient algorithm (LE.Gen, LE.Enc, LE.Dec) such that

– LE.Gen(1n, inj) outputs injective keys (pk, sk).
– LE.Gen(1n, loss) outputs lossy keys (pk, sk).

Additionally, the algorithms satisfy the followings:

1. Correctness on injective keys. For all m ∈ {0, 1}n,

Pr[(pk, sk) ← LE.Gen(1n, inj); r
R←− {0, 1}poly(n) : LE.Dec(sk, LE.Enc(pk,m; r)) = m] = 1

2. Indistinguishability of keys. In lossy mode, public keys are computa-
tionally indistinguishable from those in the injective mode. Specifically, if
proj : (pk, sk) → pk is the projection map, then

{proj(LE.Gen(1n, inj))} ≈c {proj(LE.Gen(1n, loss))}
3. Lossiness of lossy keys. For (pk, sk) ← LE.Gen(1n, loss), for all m0,m1 ∈

{0, 1}n,
{LE.Enc(pk,m0;R)} s≈ {LE.Enc(pk,m1;R)}

4. Openability. If (pk, sk) ← LE.Gen(1n, loss) and r
R←− {0, 1}poly(n), then for all

m0,m1 ∈ {0, 1}n, there exists r′ ∈ {0, 1}poly(n) such that LE.Enc(pk,m0; r) =
LE.Enc(pk,m1; r′) with overwhelming probability. That is, there is an
(unbounded) algorithm LE.open that can open a lossy ciphertext to any plain-
text with overwhelming probability.

2.5 Two-Message Secure Function Evaluation

We consider a two-message secure function evaluation protocol (SFE)
(P1(x1), P2(x2)): P1 with private input x1 and P2 with private input x2 jointly
compute function f(x1, x2) and only P1 receives the output. We require malicious
(indistinguishable) security against P ∗

1 and P ∗
2 .

• Indistinguishable Security for Function Evaluator P1. For any x0
1, x

1
1 ∈

{0, 1}poly(n), the distributions of the first messages (sent to P2) generated using
x0
1 and x1

1 respectively are computationally indistinguishable.
• Indistinguishable Security for Function Constructor P2. For any PPT

malicious P ∗
1 , there exists an extractor Ext (not necessarily efficient) such that:

Pr[Exp0 → 1] − Pr[Exp1 → 1] ≤ negl(n)

where Expb is defined as follows, for b ∈ {0, 1}.

Towards Malicious Security of Private Coin Honest Verifier Zero Knowledge 595

1. P ∗
1 outputs the first message msg1.

2. The extractor Ext takes msg1 as input and outputs x∗
1.

3. Let x0
2 and x1

2 be two inputs such that f(x∗
1, x

0
2) = f(x∗

1, x
1
2). On inputs

xb
2 and msg1, P2 obtains msg2 and sends it to P ∗

1 .
4. Based on msg2, P ∗

1 outputs a bit b′.

Garbled Circuits. Recall the definition of garbling scheme for circuits [22,
27]. A garbling scheme for circuits consists of three PPT algorithms
(Garble,Eval,Ver).

– (Ĉ,K = {labω,b}ω∈inp(C),b∈{0,1}) ← Garble(1n, C).
The circuit garbling algorithm Garble takes as input a security parame-
ter 1n, a circuit C, and outputs a garbled circuit C̃ with labels K =
{labω,b}ω∈inp(C),b∈{0,1} for the input wires of C.

– y ← Eval(Ĉ, {labω,xω
}ω∈inp(C)).

Given a garbled circuit Ĉ and a sequence of input labels {labω,xω
}ω∈inp(C),

the evaluation algorithm outputs a string y.
– 0/1 ← Ver(f, Ĉ, {labω,b}ω∈inp(C),b∈{0,1}).

Given a garbled circuit Ĉ and both input labels of input wires
{labω,b}ω∈inp(C),b∈{0,1}, there exists a deterministic algorithm Ver that can
recover the underlying circuit C ′ of garbled circuit Ĉ and compares it with
the original functionality f . If Ĉ realize the functionality of f , the verification
algorithm Ver outputs 1; otherwise, it outputs 0.

The three algorithms (Garble,Eval,Ver) satisfy correctness, soundness and
verifiability. The details refer to the corresponding definitions in [22]. We give
the definitions in the full version.

Oblivious Transfer. Oblivious transfer is a protocol between two parties—
a sender S with a pair of inputs (m0,m1) and a receiver R with a choice
bit b ∈ {0, 1}. At the end of this protocol, the receiver R obtains mb and
nothing about m1−b, while the sender S learns nothing about b. Formally, let
π = 〈S,R〉 denote the protocol that computes the oblivious transfer functional-
ity, fOT((m0,m1), b) = (⊥,mb).

We recall the notion of two-message oblivious transfer [2,19] below. A two-
message OT protocol π = 〈S,R〉 is defined by the following three algo-
rithms (OT1,OT2,OT3), and the three algorithms satisfy correctness, game-
based receiver security and sender security [2,19].

– (ot1, st) ← OT1(1n, b): The receiver R runs the algorithm OT1 on inputs 1n

and the receiver’s choice bit b ∈ {0, 1} and obtains ot1 and the corresponding
state st. We write OT1(b) for simplifying notation.

– ot2 ← OT2(ot1,m0,m1): After receiving ot1 from R, the sender S runs
OT2(ot1,m0,m1) to obtain ot2, where m0,m1 are the inputs of the sender.

– mb ← OT3(ot2, st): The receiver R can obtain mb by evaluating OT3(ot2, st).

596 J. Yu

Instantiating the Two-Message Secure Function Evaluation. We can
implement 2-message secure function evaluation (P1(x1), P2(x2)) that achieves
security against malicious PPT P ∗

1 and malicious PPT P ∗
2 [2], using Yao’s gar-

bled circuit and 2-message OT [19,24–26]. Informally, in the first round, P1 plays
the role of OT receiver with choice bits x1 and sends the corresponding ot1 to
P2. In the second round, P2 constructs a garbled circuit F̂ for the circuit F
(that realizes f(x1, x2)) and transfers the corresponding input labels to P1 by
acting as the OT sender. At the end of this protocol, P1 obtains F̂ and � = |x1|
labels corresponding to the input wires to F ; then P1 computes the circuit as the
function evaluator, obtaining ŷ. Formally, two-message secure funtion evaluation
(P1(x1), P2(x2)) is defined as follows.

– Inputs: P1 has x1 and P2 has x2.
– The Protocol (P1(x1), P2(x2)):

1. P1 runs the OT-receiver program OT1(x1,i) → (ot1,i, sti), for i ∈ [�], and
sends {ot1,i}i∈[�] to P2.

2. P2 constructs a circuit F with x2 hardwired in it, and computes f(x1, x2)
on input x1. P2 generates the garbled circuit for F with x2 hardwired in
it: (F̂ , {lab0i , lab1i }i∈[�]) ← Garble(F), where � = |x1|; Then P2 executes
OT protocol using the input labels (lab0i , lab1i) as sender messages: for
i ∈ [�], ot2,i ← OT2(ot1,i, lab0i , lab1i); P2 sends F̂ and ot2 = {ot2,i}i∈[�] to
P1.

3. Following the above, P1 can recover {lab
x1,i

i }i∈[�] by runningOT3(sti, ot2,i),
for i ∈ [�]. P1 then computes the circuit Eval(F̂ , {lab

x1,i

i }i∈[�]) to obtain
f(x1, x2).

The details of the security proof against malicious PPT P ∗
1 and P ∗

2 refer
to [2].

3 A Conditional Verification Technique via Witness
Encryption

3.1 Warm-Up: Honest Verifier Zero Knowledge from Witness
Encryption

In this subsection, we start by presenting an honest verifier zero knowledge from
witness encryption, with constant soundness error. Inspired by honest verifier
zero knowledge using lossy encryption [5], we consider the following protocol
(see Fig. 1 for details) for an NP language L: given a statement x, the verifier
V sends to the prover P an encryption of a random bit b under x as public key.
P uses the corresponding witness w of x to decrypt the ciphertext and sends the
decryption result to V .

Theorem 1. Let (Enc,Dec) be a witness encryption scheme for all NP lan-
guages. The protocol in Fig. 1 is an honest verifier zero knowledge with 1

2 sound-
ness error.

Towards Malicious Security of Private Coin Honest Verifier Zero Knowledge 597

Fig. 1. Two-round HVZK for NP from witness encryption

Proof (sketch). The completeness/soundness of this protocol follow the correct-
ness/security of witness encryption respectively. We prove that the above proto-
col is honest verifier zero knowledge by presenting a PPT simulator which can
successfully guess the encrypted bit b with probability 1

2 . ��
Remark 1. Note that this protocol in Fig. 1 is only honest-verifier zero knowl-
edge, since a cheating verifier can obtain extra knowledge by sending a random
chosen ciphertext. This can be fixed to a 4-round zero knowledge argument by
a standard commitment technique (Com,Open): Instead of sending b′ directly,
the prover sends com = Com(b′; rp) to the verifier, and expects to receive back
b, r such that ct = Encx(b; r). Then the prover opens the commitment com by
sending b′, rp.

Claim. This protocol in Fig. 1 is not witness indistinguishable.

Proof. Here we show the protocol in Fig. 1 is not witness indistinguishable by
presenting an attack. It’s possible that there exists a PPT V ∗ that can distinguish
{〈P (w0), V ∗(z)〉(x)} from {〈P (w1), V ∗(z)〉(x)}, for some sequence {(x,w0, w1)},
where (x,w0) ∈ RL and (x,w1) ∈ RL. Specifically, we define {X1

n,W 1
n} to

be a distribution ensemble over RL′ with unique witnesses and {X2
n,W 2

n} to
be a distribution ensemble over RL with multiple witnesses. We require that
{X1

n,W 1
n} c≈ {X2

n,W 2
n}. More details refer to [10].

Consider L be some OR-NP Language L = T ∨ T ′, where T ⊂ XT and
T ′ ⊂ XT ′ are arbitrary NP languages. For x ∈ L, x := x0||x1, where x0 ∈ T
and x1 ∈ T ′. In this sense, we consider w0 ∈ RT (x0), and w1 ∈ RT ′(x1) as the
two corresponding witnesses of x ∈ L. The malicious V ∗ could efficiently find
some x′ ∈ L′ such that x′ ∈ X1

n with the corresponding witness w0 ∈ RL′(x′),
but w1 /∈ RL′(x′), by setting x′ := x0||x′

1, where x0 ∈ T and x′
1 is sampled from

XT ′/T ′ instead of T ′. Thus we have the desired ciphertext ct = Encx′(m; r) such
that Decw0(ct) �= Decw1(ct). ��
Claim. This protocol in Fig. 1 is witness hiding.

Proof. Assume towards contradiction, there exists a PPT adversary V ∗ and a
hard distribution D = {(Xn,Wn)}n∈N on RL, such that

Pr
(x,w)←(Xn.Wn)

[(P (w), V ∗)(x) ∈ RL(x)] ≥ ε =
1

poly(n)

598 J. Yu

We construct a PPT adversary RV ∗
that breaks the hard distribution of D.

Given x ← Xn as the statement, R receives ct from V ∗ and selects a random
bit b′ R←− {0, 1}, then provides b′ to V ∗. Note that V ∗ receives an accepting
decryption result, it will output a valid witness with probability ε. Thus, after
receiving b′ R←− {0, 1}, V ∗ outputs a witness of x with probability 1

2ε. This breaks
the hard distribution D = {(Xn,Wn)}n∈N. ��
Remark 2. The soundness of the protocol in Fig. 1 can be reduced to negligi-
ble by sequential/parallel execution ω(n) times. However, the protocol in Fig. 1
may be not witness hiding under sequential/parallel execution. Consider a wit-
ness encryption scheme [7] implemented using indistinguishable obfuscation [14]:
Encx(b) consists of an obfuscation Ẽ ← io(Eb

x), where the circuit Eb
x with

b ∈ {0, 1} and x hardwired in it, takes w ∈ RL(x) as input, and outputs b, other-
wise ⊥. The malicious verifier can generate a ciphertext Ẽ ← io(Efi

x) where Efi
x

is a circuit which on input w and outputs the i-th bit of w. Then the malicious
verifier can recover the entire witness w bit by bit from the decryption results.

3.2 Three-Round Witness Indistinguishable Arguments
from Witness Encryption

To prevent the above attacks, we require that the verifier can obtain the decryp-
tion results, only when the sending ciphertexts are honestly encrypted m under
the statement x. For those malformed ciphertexts, the verifier cannot obtain the
decryption.

In this subsection, we present a new construction of the witness indistin-
guishable protocol using witness encryption. In particular, we use an additional
witness encryption to ensure that V ∗ gets the corresponding decryption only
when the ciphertext is honestly generated by V ∗.

Protocol 3.2. Three-Round WI Arguments from Witness Encryption

– Ingredients: Let (Enc,Dec) be a witness encryption scheme. f : {0, 1}n →
{0, 1}n is an injective one way function. (enc, dec) is a private key encryption
scheme for any uniform key.

– Common input: x.
– Private input of the prover P : w ∈ RL(x).
– Interaction:

1. P chooses k
R←− {0, 1}n and then sends c = f(k) to the verifier.

2. V selects y
R←− {0, 1}n as the plaintext, and sends ct = Encx(y; r) to the

prover.
3. After receiving ct, P uses its private input w to decrypt ct and obtains

ỹ. If the decryption result is ⊥, then we set ỹ = 0n. Then it computes
ct′ = enck(ỹ) and sends ct′ to V . Furthermore, it uses x̃ = (x, ct) as a
statement of L̃ = {(x, ct) : ∃ (m, r) s.t. ct = Encx(m; r)} to encrypt k and
sends the corresponding ciphertext c̃t = Encx̃(k) to V .

Towards Malicious Security of Private Coin Honest Verifier Zero Knowledge 599

– Verification: The verifier V first decrypts c̃t using w̃ = (y, r) and obtains
k′. If f(k′) �= c, then it aborts; else, it decrypts ct′ with k′ and obtains y′. It
accepts only if y′ = y.

Theorem 2. Protocol 3.2 is a three-round witness indistinguishable argument,
assuming the existence of witness encryption.

We show this protocol is a WI argument by showing the following two lemmas.

Lemma 1. Protocol 3.2 is sound, assuming the security of witness encryption.

Proof. Towards a contradiction, assume that there exists a PPT adversary P ∗

that can break the soundness of Protocol 3.2. We use the cheating prover P ∗ to
construct a PPT adversary RP ∗

breaking the security of witness encryption.
Without loss of generality, we assume P ∗ is deterministic. For infinitely many

x /∈ L, P ∗ can generate an accepting transcript for V with non-negligible prob-
ability ε. Let f(k) be the first message sent by P ∗.

After receiving f(k), the reduction R invokes an external witness encryp-
tion challenger with plaintexts y0

R←− {0, 1}n, y1
R←− {0, 1}n and receives back a

ciphertext ct = Encx(yb), where b
R←− {0, 1}. Then it passes ct to P ∗ and receives

back c̃t, ct′.
Given k as a non-uniform advice, R uses k as private key to ct′ and recovers

y. If y = yβ for β ∈ {0, 1}, then R outputs b′ = β. If y �= yβ for β ∈ {0, 1}, then
R outputs a random bit b′ R←− {0, 1}.

Since P ∗ outputs an accepting proof with probability ε, the advantage of
that RP ∗

outputs b′ = b is at least 1
2ε, which is against the security of witness

encryption. ��
Lemma 2. Protocol 3.2 is witness indistinguishable, assuming the existence of
witness encryption.

Proof. Let V ∗ be an arbitrary PPT malicious verifier. Gameb denotes the
experiment 〈P (wb), V ∗〉 (x) where the prover completes the proof using wb,
for b ∈ {0, 1}: The prover uses wb to decrypt ct sent by V ∗ and obtains
ỹb = Decwb

(ct); Then P generates the third message c̃t = Encx̃(k), ct′ = enck(ỹb),
where x̃ = (x, ct). The only difference between the two experiments is the way
of generating ỹ.

To complete the proof, we show that for any ciphertext ct sent by V ∗, it will
fall into the following two cases:

– Case 1. (x, ct) ∈ L̃. In this case, ct is actually an encryption under x. By
the correctness of witness encryption of L, it holds that ỹ0 = Decw0(ct) =
Decw1(ct) = ỹ1. The distributions Game0 and Game1 are identical.

– Case 2. (x, ct) /∈ L̃. This in turn implies that the distributions {c̃t =
Encx̃(k)} and {c̃t = Encx̃(0n)} are computationally indistinguishable.
By one-wayness of injective one way function f and the CPA security of
hybrid encryption, we have that ỹb is computationally hiding. In this case,
though ỹ0 and ỹ1 may be not the same value, {f(k), ct,Encx̃(k), enck(ỹ0)} c≈
{f(k), ct,Encx̃(k), enck(ỹ1)}.

Thus, in either case, Game0
c≈ Game1 as desired. ��

600 J. Yu

4 Two-Round Witness Indistinguishable Proofs
for Specific Languages

In this section, we present a two-round witness indistinguishable proof for specific
languages, based on witness encryption technique. We transform a two-round
HVZK proof from lossy encryption into a two-round witness indistinguishable
proof, using witness encryption techniques.

Let L = {pk : (pk, sk) ← LE.Gen(1n, inj)} be the language consisting of all
injective public keys. Recall an HVZK proof system using lossy encryption [5]
for a specific language that works as follows:

1. V sends to the prover an encryption ct of a random string y
R←− {0, 1}n under pk.

2. After receiving ct, P decrypts the ciphertext using its secret key and sends
back ỹ.

3. V accepts iff y = ỹ.

It’s not hard to see this protocol is an HVZK proof. The proof is similar to
the proof of the protocol in Fig. 1. In the following, we transform this HVZK
protocol into witness indistinguishable, without additional round. We consider
an NP language Lor = L ∨ L = {(pk0, pk1) : pk0 ∈ L or pk1 ∈ L}, since witness
indistinguishability is only meaningful for languages whose instance has two or
more independent witnesses.

Protocol 4.1. Two-Round Witness Indistinguishable Proof

– Ingredients: Let (LE.Gen, LE.Enc, LE.Dec) be a lossy encryption scheme and
(Enc,Dec) be a witness encryption scheme.

– Common input: (pk0, pk1) ∈ Lor

– Private input of P : sk such that sk ∈ RL(pkb), for b ∈ {0, 1}.
– Interaction:

1. The verifier selects y
R←− {0, 1}n and computes ct0 = LE.Enc(pk0, y; r0),

ct1 = LE.Enc(pk0, y; r1). Then it sends ct = (ct0, ct1) to P .
2. After receiving ct, the prover does the following.

(a) Decrypt ctb using its witness sk and obtain ỹ, where ỹ = 0n if
LE.Decsk(ctb) = ⊥.

(b) Use (pk, ct) ∈ L̃ = {(pk, ct0, ct1) : ∃(y, r0, r1) s.t. ct0 =
LE.Enc(pk0, y; r0), ct1 = LE.Enc(pk0, y; r1)} as statement to encrypt
ỹ and obtain c̃t = Enc(pk,ct)(ỹ).

(c) Output c̃t.
– Verification: The verifier uses (y, r0, r1) as witness to decrypt c̃t and obtains

y′. V accepts iff y′ = y.

Theorem 3. Assuming the existence of lossy encryption and witness encryp-
tion, Protocol 4.1 is a two-round witness indistinguishable proof.

Towards Malicious Security of Private Coin Honest Verifier Zero Knowledge 601

Proof. Regarding completeness, it’s easy to see if both parties follow the proto-
col, then we have ỹ = y and y′ = ỹ, by the correctness of lossy encryption and
witness encryption respectively. Thus V accepts in the final step.

We now proceed to prove soundness. By contradiction, we assume that for
pk = (pk0, pk1) /∈ Lor, P ∗ can generate an accepting proof with non-negligible
probability. We can construct an (unbounded) adversary RP ∗

to break the lossi-
ness of lossy keys in Definition 8.

The reduction R invokes an external lossy encryption challenger C with pk0
and y0, y1

R←− {0, 1}n and receives back ct0 = LE.Enc(pk0, yβ ; r1), for β ∈ {0, 1}.
Then it computes ct1 = LE.Enc(pk1, y0; r1) and sends ct = (ct0, ct1) to P ∗. P ∗

returns a ciphertext c̃t. The reduction R now invokes the LE.Open algorithm on
inputs ct0, y0 and obtains r′

0. Then it uses (y0, r′
0, r1) as witness to decrypt c̃t

and gets y′. If y′ = yβ′ , for β′ ∈ {0, 1}, then it outputs β′; otherwise, it outputs
β′ R←− {0, 1}.

Since P ∗ outputs an accepting proof with non-negligible probability, we have
the advantage of RP ∗

breaking the lossiness of lossy keys (i.e. the advantage of
RP ∗

outputs β′ = β) is non-negligible.
Finally, we prove that the protocol is witness indistinguishable. Define Gameb

as the experiment in which the prover uses skb as witness during the proof. After
receiving ct = (ct0, ct1) from V ∗, the prover uses skb to decrypt ctb and obtains
ỹb, then it encrypts ỹb using (pk, ct) as statement: c̃tb = Enc(pk,ct)(ỹb). Using the

same proof idea as Lemma 2, we can have that Game0
c≈ Game1. Due to page

limitation, we defer to the full version of our paper. ��

5 Three-Round Zero Knowledge Arguments
from Two-Message Secure Function Evaluation

Jawurek et al. [22] proposed an efficient zero knowledge protocol for generic
languages based on Yao’s garbled circuits. Informally, in their protocol, P and
V first execute a SFE (P (w), V (y)) to compute function fL

x which on input (w, y)
outputs ŷ = y if w ∈ RL otherwise ŷ = ⊥. At the end of the secure function
evaluation, P obtains ŷ. For zero knowledge against a malicious verifier, they
used a standard commitment technique: the prover sends a commitment of ŷ to
V , and reveals ŷ to V only if V sends back a valid opening of the garbled circuit.

Following the above idea, we reduce the round-complexity of zero-knowledge
protocols in [22]. Instead of using a standard commitment technique, we use
another SFE to ensure that V obtains ŷ only if it honestly generates the garbled
circuit for fL

x (w, y). This leads to a three-round zero knowledge protocol.

5.1 Constructions

Let L be an NP language with corresponding relation RL. (OT1,OT2,OT3) is
a two-message OT protocol. (Garble,Eval,Ver) is a garbling scheme. Let L̂ :=
{(fL

x , Ê) : ∃KE s.t. Ver(Ê,KE , fL
x) = 1} be a language consisting of all legal

garbled circuits of fL
x .

602 J. Yu

Protocol 5.1. Three-Round Zero Knowledge Arguments

– Ingredients: enc is a private key encryption algorithm. f is an injective one
way function.

– Input: x ∈ L is common input and w ∈ RL(x) is the private input of P .
– Interaction:

1. The prover P does the following:
(a) Select k

R←− {0, 1}n and compute c = f(k);
(b) Act as the receiver of OT protocols using its private input w as choice

bits: (otE1,i, st
E) ← OT1(wi), for i ∈ [|w|];

(c) Output c, otE1 = {otE1,i}i∈[|w|].
2. The verifier V does the following:

(a) Construct a circuit E for fL
x with x ∈ L and y

R←− {0, 1}n hardwired
in it which on input w ∈ {0, 1}|w| outputs y if w ∈ RL(x) and ⊥
otherwise.

(b) Play the role of function constructor of SFE (P (w), V (y)) (x): Eval-
uate the garbled circuit for E, i.e. (Ê,KE) ← Garble(1n, E),
where KE = {labE

i,0, labE
i,1}i∈[|w|], and compute otE2,i ←

OT2(otE1,i, labE
i,0, labE

i,1);

(c) Play the role of function evaluator of SFE
(
V (KE), P (k)

)
(Ê): For

j ∈ [l], (otD1,j , st
D) ← OT1(KE

j), where l = |KE |;
(d) Output Ê, {otE2,i}, {otD1,j}.

3. The prover P does the following:
(a) Act as the function evaluator of SFE (P (w), V (y)) (x) to obtain

ŷ: Compute {labE
i,wi

}i∈[|w|] ← OT3(stE , otE2), and obtain ŷ ←
Eval({labE

i,wi
}i∈[|w|], Ê);

(b) Compute ct = enck(ŷ);
(c) Let D be a circuit with Ê, k hardwired in it, and DÊ,k(KE) = k iff

Ver(Ê,KE , fL
x) = 1, otherwise it outputs ⊥.

(d) Play the role of function constructor
of SFE

(
V (KE), P (k)

)
(Ê): Produce (D̂,KD) ← Garble(1n,D), and

{otD2,j ← OT2(otD1,j , labD
j,0, labD

j,1)};
(e) Output ct, D̂, {otD2,j}

– Verification: The verifier works as the follows:
1. Act as the function evaluator of SFE

(
V (KE), P (k)

)
(Ê) to obtain

k′: Run OT3(stD, otD2) to obtain the corresponding input labels
{labD

j,KE
j

}j∈[l], then compute Eval(D̂, {labD

j,KE
j

});

2. If f(k′) = c then use k′ to decrypt ct and obtain y′.
3. Accept iff y′=y.

Towards Malicious Security of Private Coin Honest Verifier Zero Knowledge 603

Theorem 4. This protocol is a three-round witness indistinguishable argument,
assuming the existence of two-message OT protocol and Yao’s garbled circuits.

Note that if the underlying two-message OT protocol is instantiated by weak
OT [3], then the resulting protocol is zero knowledge with super-polynomial
simulation. If the underlying two-message OT protocol is instantiated by an
ideal OT protocol like [22], then the resulting protocol is zero knowledge in
FOT-hybrid model.

5.2 Security

We prove Theorem 4 by showing the above protocol has soundness and zero
knowledge.

Soundness. If there exists a PPT cheating prover P ∗ breaking the soundness of
Protocol 5.1 with non-negligible probability. We can construct a PPT adversary
RP ∗

that breaks the indistinguishable security for the function constructor of
SFE (P (w), V (y)) (x), using the cheating prover P ∗. The proof of soundness is
similar to the proof of Lemma1. For lack of space, we omit the details and the
formal proof appears in the full version.

Zero Knowledge. We show this protocol is zero knowledge by constructing a
simulator Sim.

Proof. Let V ∗ be a PPT adversarial verifier. The simulator Sim does the
following:

1. Select k
R←− {0, 1}n and compute c = f(k) and otE1 ← OT1(0n).

2. Send c, otE1 to V ∗ and receive back Ê, otE2 , otD1 .
3. Run Ext to extract K

E
from otD1 .

4. Run GC.Ext on inputs Ê,K
E

to extract the evaluation result y =
Eval(Ê,K

E
).

– If y is a valid value such that Ver(Ê,KE , fL
x) = 1, then it sets ŷ = y.

– If y is not a valid value (i.e. y might be a function, Ver(Ê,KE , fL
x) = 0),

then it sets ŷ = 0n.
5. Use ŷ to compute ct = enck(ŷ), D̂, {otD2,j}, where D is a circuit with Ê, k

hardwired in it and DÊ,k(KE) = r iff Ver(Ê,KE , fL
x) = 1, otherwise it

outputs ⊥.
6. Output ct, D̂, {otD2,j}.

Here we argue that the simulation is computationally indistinguishable
from a real proof, by constructing a hybrid simulator Sim′ that has witness
w. Sim′ works in the same way as Sim except the first simulation message
c = f(k), otE1 ← OT1(w). By the receiver security of OT protocol, we have the

Sim′V ∗
(x,w)

c≈ SimV ∗
(x).

604 J. Yu

Next, we show that Sim′V ∗
(x,w)

c≈ 〈P (w), V ∗〉 (x). Note that if V ∗ “cheats”
(i.e. Ver(Ê,KE , fL

x) = 0), then the simulator Sim′ generates a ciphertext ct =
enck(0n) together with D̂Ê,k, {otD2,j}, while an honest verifier might encrypt a dif-

ferent value y. By a simple hybrid game, we have {ct = enck(0n), D̂Ê,k, {otD2,j}} c≈
{ct = enck(0n), D̂Ê,0n , {otD2,j}} c≈ {ct = enck(y), D̂Ê,k, {otD2,j}}. The former
follows the indistinguishable security for function constructor of SFE, since
DÊ,k(KE) = DÊ,0n(KE) = ⊥, for Ver(Ê,KE , fL

x) = 0. The latter follows the
security of the private encryption scheme (enc, dec), since V ∗ cannot obtain k

conditioned on Ver(Ê,KE , fL
x) = 0.

In the other case, V ∗ follows the protocol honestly, the view of V ∗ in the
real word and in the simulation is computationally indistinguishable. This is
guaranteed by the verifiability of garbled circuit: the extracted string y is equal
to Eval(Ê,KE) with overwhelming probability. ��

6 Conclusion

In this paper, we propose a new conditional verification technique using the idea
of witness encryption, and it can be used to transform private coin HVZK pro-
tocols into witness indistinguishable/zero knowledge protocols with at most one
more round. Following this method, we present the constructions of two-round
witness indistinguishable proofs for OR-composition of specific languages pos-
sessed of lossy encryption, from witness encryption. Furthermore, we also present
the efficient construction of three-round zero knowledge for generic languages
under standard assumptions (the existence of two-message SFE), in which the
expensive karp reductions are avoided.

Acknowledgements. We thank Yi Deng and Xuecheng Ma for helpful discussions.
We also thank the anonymous reviewers for comments and suggestions.

This work was supported in part by the National Natural Science Foundation of
China (Grant No. 61772521), Key Research Program of Frontier Sciences, CAS (Grant
No. QYZDB-SSW-SYS035), and the Open Project Program of the State Key Labora-
tory of Cryptology.

References

1. Aiello, W., Bhatt, S., Ostrovsky, R., Rajagopalan, S.R.: Fast verification of any
remote procedure call: short witness-indistinguishable one-round proofs for NP. In:
Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp.
463–474. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45022-X 39

2. Ananth, P., Jain, A.: On secure two-party computation in three rounds. In: Kalai,
Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 612–644. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70500-2 21

3. Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness
indistinguishability and secure computation in the plain model from new assump-
tions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp.
275–303. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 10

https://doi.org/10.1007/3-540-45022-X_39
https://doi.org/10.1007/978-3-319-70500-2_21
https://doi.org/10.1007/978-3-319-70700-6_10

Towards Malicious Security of Private Coin Honest Verifier Zero Knowledge 605

4. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9 1

5. Berman, I., Degwekar, A., Rothblum, R.D., Vasudevan, P.N.: From laconic zero-
knowledge to public-key cryptography. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10993, pp. 674–697. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96878-0 23

6. Bitansky, N., Paneth, O.: Point obfuscation and 3-round zero-knowledge. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 190–208. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28914-9 11

7. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015.
LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46497-7 16

8. Blum, M.: How to prove a theorem so no one else can claim it. In: ICM 1986 (1986)
9. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-

plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

10. Deng, Y., Song, X., Yu, J., Chen, Y.: On the security of classic protocols for
unique witness relations. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol.
10770, pp. 589–615. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76581-5 20

11. Dwork, C., Naor, M.: Zaps and their applications. In: FOCS 2000, pp. 283–293.
IEEE Computer Society (2000)

12. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
STOC 1990, pp. 416–426. ACM Press (1990)

13. Ganesh, C., Kondi, Y., Patra, A., Sarkar, P.: Efficient adaptively secure zero-
knowledge from garbled circuits. In: Abdalla, M., Dahab, R. (eds.) PKC 2018.
LNCS, vol. 10770, pp. 499–529. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-76581-5 17

14. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
2013, pp. 40–49. IEEE Computer Society (2013)

15. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: STOC 2013, pp. 467–476. ACM (2013)

16. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
SIAM J. Comput. 25(1), 169–192 (1996)

17. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC
1987, pp. 218–229. ACM Press (1987)

18. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

19. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious
transfer. J. Cryptology 25(1), 158–193 (2012)

20. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: construc-
tions fromgeneral assumptions and efficient selective opening chosen ciphertext secu-
rity. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 70–88.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 4

https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-319-96878-0_23
https://doi.org/10.1007/978-3-319-96878-0_23
https://doi.org/10.1007/978-3-642-28914-9_11
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-319-76581-5_20
https://doi.org/10.1007/978-3-319-76581-5_20
https://doi.org/10.1007/978-3-319-76581-5_17
https://doi.org/10.1007/978-3-319-76581-5_17
https://doi.org/10.1007/978-3-642-25385-0_4

606 J. Yu

21. Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-dependent simula-
tion in two rounds and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10402, pp. 158–189. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63715-0 6

22. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In: CCS 2013, pp. 955–966. ACM
(2013)

23. Kalai, Y.T., Raz, R.: Probabilistically checkable arguments. In: Halevi, S. (ed.)
CRYPTO 2009. LNCS, vol. 5677, pp. 143–159. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 9

24. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: STOC
1999, pp. 245–254. ACM (1999)

25. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of the
Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 448–457.
Society for Industrial and Applied Mathematics (2001)

26. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 31

27. Yao, A.C.-C.: How to generate and exchange secrets. In: FOCS 1986, pp. 162–167.
IEEE (1986)

https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/978-3-642-03356-8_9
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31

Faster Homomorphic Permutation
and Optimizing Bootstrapping in Matrix

GSW-FHE

Shuai Liu(&) and Bin Hu

Information Science and Technology Institute, Zhengzhou, China
sssshuai1993@163.com

Abstract. We present a new packing messages strategy for the Matrix GSW-
FHE proposed by Hiromasa et al. at PKC 2015. Based on the packing messages
strategy, we describe a simpler homomorphic permutation algorithm which just
needs one homomorphic multiplication.
By applying this permutation algorithm, we propose an optimizing boot-

strapping procedure that can refresh ciphertexts of all known standard LWE-
based FHE. Our optimizing bootstrapping procedure needs less homomorphic
multiplication operation and outputs refreshed ciphertexts with smaller noise.
Alternatively, we give a space-time trade-off to hasten considerably the exe-
cution time whilst sacrificing reasonable memory space.

Keywords: Homomorphic permutation � Bootstrapping � Matrix GSW-FHE

1 Introduction

Fully homomorphic encryption (FHE) enables performing arbitrarily-complex function
over ciphertexts without knowing the secret key. Almost all known FHE schemes [2–8]
followed the same blueprint, namely the first FHE scheme [1] proposed by Gentry in
2009. To date, the fastest (and simplest) FHE scheme based on LWE assumption is
GSW-FHE by Gentry, Sahai, and Waters [7].

Packing multiple messages into one ciphertext allows us to evaluate more effi-
ciently by applying SIMD (single-instruction-multiple data) homomorphic operations
to all encrypted messages. Smart and Vercautren [9], for the first time, showed that
applying the Chinese reminder theorem (CRT) to number fields partitions the message
space of the Gentry’s FHE [1] scheme into a vector of plaintext slots. At PKC 2015,
Hiromasa, Abe, and Okamoto proposed a variant [10] of GSW-FHE, which can
encrypt matrices and support homomorphic matrix addition and multiplication.
(hereafter, referred to as Matrix GSW-FHE). To implement SIMD homomorphic
operations, we need a complete set of operations over packed messages. In general, it’s
easy to compute homomorphic slot-wise addition and multiplication, but permuting
plaintext slots homomorphically is nontrivial. In this paper we will present a new
packing messages strategy and a simpler homomorphic permutation algorithm of
Matrix GSW-FHE scheme. We have to remind readers that our new packing messages
strategy don’t support homomorphic slot-wise multiplication though it leads to a

© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 607–617, 2019.
https://doi.org/10.1007/978-3-030-14234-6_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_32&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_32

simpler homomorphic permutation algorithm. We find that the algorithm results in
higher efficiency in many applications, specifically we propose an optimizing boot-
strapping procedure to bring out the potential of our homomorphic permutation
algorithm.

Bootstrapping, originally due to Gentry [1], is currently the only known technique
to obtaining a “pure” fully homomorphic encryption scheme from a somewhat
homomorphic encryption scheme. The bootstrapping procedure output refreshed
ciphertexts with reduced noise by homomorphically evaluating the decryption circuit.

Bootstrapping has received intensive study, with progress often going hand-in-hand
with innovations in the design of homomorphic encryption schemes. There have
recently been the significant progresses [11, 12] in improving the bootstrapping pro-
cedure of LWE-based FHE. Their progresses make use of the asymmetric noise growth
in ciphertexts of GSW-FHE. The major milestone is due to Brakerski and
Vaikuntanathan [12], who gave a bootstrapping method that incurs only polynomial
error in the security parameter k. The BV method is motivated by the “circuit
sequentialization” property of Barrington’s Theorem [13], which converts any depth-d
circuit into a length�4d “branching program”, which is essentially a fixed sequence of
conditional multiplications.

Unlike most previous works, Alperin-Sheriff and Peikert [11] treated the decryption
more directly as an arithmetic circuit. In more detail, the decryption function for
essentially every LWE-based FHE scheme can without loss of generality (via bit-
decomposition techniques) be written as a “rounded inner product” s; ch ib e22 f0; 1g
between the secret key s 2 Zd

q and a binary ciphertext c 2 f0; 1gd for some appropriate
rounding function �b e2: Zq ! f0; 1g. The authors observed that the inner product is
just a subset-sum of the secret key elements and uses only the additive group structure
of Zq. The additive group Zq is isomorphic to a subgroup of the symmetric group Sq.
The authors rewrote the inner product to the sequence of compositions of the cyclic
permutations, which we will introduce in detail in Sect. 2.2. In [10], Hiromasa et al.
optimized the bootstrapping procedure of [11]. We find that the bootstrapping proce-
dure in [10] mainly uses many homomorphic permutation operations, and there is some
room for improvement.

1.1 Our Results

In this paper, we first present a new packing messages strategy and a simpler homo-
morphic permutation algorithm of the Matrix GSW-FHE scheme. Then, we optimize
the bootstrapping procedure in [10] that can refresh ciphertexts of all known LWE-
based FHE scheme. Our bootstrapping procedure is more efficient and outputs refre-
shed ciphertexts with smaller noise since it needs less homomorphic multiplications.

Finally, we give a space-time trade-off with no need for bit-decomposition tech-
nique, which can hasten considerably the execution time whilst sacrificing reasonable
memory space.

608 S. Liu and B. Hu

1.2 Organization

The rest of the paper is organized as follows. In Sect. 2 we introduce the Matrix GSW-
FHE and recall some basic facts about symmetric groups. In Sect. 3 we present a new
packing messages strategy and a simpler homomorphic permutation algorithm in
Matrix GSW-FHE. In Sect. 4 we propose an optimizing bootstrapping procedure and
analyze the security, correctness and performance of our optimizing bootstrapping
procedure. In Sect. 5, we study a space-time trade-off for further improvement.

2 Preliminaries

For a nonnegative integer n, we let ½n� ¼ f1; . . .; ng. We let Z denote the set of integers.
Vectors are in column form and are written by using bold lower-case letters, e.g., x. We
denote the i-th element of a vector by xi. xk k1 denote the l1 norm (the maximum
norm) of the vector x and xk k2 denote the l2 norm (the Euclidean norm) of x. Matrices
are written by using bold capital letters, e.g., X, and the i-th column vector of a matrix
is denoted by xi. For a matrix X 2 Zm�n, Xk k1¼ maxi2½n� xik k1

� �
and

Xk k2¼ maxi2½n� xik k2
� �

. We denote the concatenation of matrices or vectors by
½X1jjX2�. And we let In denote the n� n identity matrix.

2.1 Subgaussian

A real random variable X is subguassian with parameter s if for all real number t, its
(scaled) moment generating function holds E½expð2ptXÞ� � expðps2t2Þ. It’s easy to see
that subguassian random variables have the following two properties:

(1) Homogeneity: If the subguassian random variable X has parameter s, then cX is
subguassian with parameter cs.

(2) Pythagorean additivity: For two subgaussian random variables X1 and X2 (which
are independent from each other) with parameter s1 and s2, respectively, X1þX2

is subguassian with parameter
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s21þ s22

p
.

A real random vector x 2 Rn is subguassian with parameter s if all coordinates xi is
subguassian with parameter s. For a subguassian vector x 2 Rn, there exists a universal
constant C such that Pr½ xk k2 [C � s ffiffiffi

n
p �� 2�XðnÞ. And subguassian vectors also have

the two properties: homogeneity and pythagorean additivity. By using the notion of the
subguassian vectors, we can tightly analyze the noise growth in the Matrix GSW-FHE
scheme.

2.2 Matrix GSW-FHE

In this section, we review the Matrix GSW-FHE scheme formally. Let k be the security
parameter and r be the number of bits to be encrypted, which defines the message space
f0; 1gr�r. The Matrix GSW-FHE scheme is parameterized by an integer dimension n,
an integer modulus q, and some error distribution v over Z which we assume to be

Faster Homomorphic Permutation and Optimizing Bootstrapping 609

subgaussian. Let l ¼ log qd e, m ¼ Oððnþ rÞ log qÞ, and N ¼ ðnþ rÞ � l. Let ciphertext
space be Zðnþ rÞ�N

q . Define gT ¼ ð1; 2; 22; . . .; 2l�1Þ and G ¼ gT � Inþ r.

– KeyGenð1k; rÞ: Set the parameters n, q, m, l, N and v as described above. Sample a
uniformly random matrix A Zn�m

q , secret key matrix S0 vr�n, and noise matrix

E vr�m. Set S¼ ½Irjj�S0� 2 Zr�ðnþ rÞ
q . We denote the i-th row of S by sTi . Let

B ¼ S0AþE
A

� �
2 Zðnþ rÞ�m

q :

Let Mði;jÞ 2 f0; 1gr�rði; j ¼ 1; � � � ; rÞ be the matrix with 1 in the ði; jÞ-th position
and 0 in the others. For all i; j ¼ 1; . . .; r, sample uniformly random matrices
Rði;jÞ f0; 1gm�N , and set

Pði;jÞ ¼ BRði;jÞ þ
Mði;jÞS

0

� �
G 2 Zðnþ rÞ�N

q :

Output pk ¼ ðfPði;jÞgi;j2½r�;BÞ and sk ¼ S.

– SecEncskðM 2 f0; 1gr�rÞ: Sample a random matrix A0 Zn�N
q and E vr�N , and

output the ciphertext

C ¼ S0A0 þE
A0

� �
þ MS

0

� �
G

� �
q
2 Zðnþ rÞ�N

q :

– PubEncpkðM 2 f0; 1gr�rÞ: Sample a random matrix R f0; 1gm�N , and output the
ciphertext

C ¼ BRþ
X

i;j2½r�:M½i;j�¼1
Pði;jÞ 2 Zðnþ rÞ�N

q ;

where M½i; j� is the ði; jÞ-th element of M.
– DecskðCÞ: Output the matrix M ¼ ð si; cjl�1

	
� �
2Þi;j2½r� 2 f0; 1gr�r:

– C1 � C2: Output Cadd ¼ C1þC2 as the result of homomorphic addition between
the input ciphertexts.

– C1 	 C2: Output Cmult ¼ C1G�1ðC2Þ as the result of homomorphic multiplication
between the input ciphertexts, where G�1ðCÞ is a randomized, efficiently com-
putable function that outputs a matrix X0 such that GX0 ¼ C mod q and X0 is
subgaussian.

2.3 Symmetric Groups and Zq-Embeddings

Tounderstand our bootstrapping procedure, it is necessary to know some basic facts about
symmetric groups, which we can find in most abstract algebra textbooks, e.g., [14].

610 S. Liu and B. Hu

A symmetric group Sr is the group of all permutations p : f1; . . .; rg ! f1; . . .; rg
with function composition as the group operation. Sr is isomorphic to the multiplicative
group of r-by-r permutation matrices (i.e., 0–1 matrices with exactly one nonzero
element in each row and each column). Every p 2 Sr is corresponding to a permutation
matrix Pp with 1 in the ðpðiÞ; iÞ-th ði ¼ 1; . . .; rÞ position and 0 in the others.

The additive cyclic group ðZr; þÞ embeds into the symmetric group Sr: every
x 2 Zr corresponds to a cyclic permutation p 2 Sr, defined as pðiÞ ¼ iþ x. Notice that
the permutation matrices in the image of this embedding can be represented by just
their first column, an indicator vector with 1 in the ðxþ 1Þ-th position, because the
remaining columns are just the successive cyclic shifts of this column. Similarly, such
permutation matrices can be multiplied only by multiplying one matrix by the first
column of the other.

3 Simpler Homomorphic Permutation in Matrix GSW-FHE

The original Matrix GSW-FHE scheme [10] encrypts matrices and supports homomor-
phic matrix addition and multiplication. To achieve homomorphic slot-wise multiplica-
tion and permutation operation, the authors let plaintext slots correspond to diagonal
entries of plaintext matrices. They achieve homomorphic permutation by multiplying the
encryptions of a permutation and its inverse from left and right. We find that homo-
morphic permutation can be achieved just by one homomorphic multiplication operation.

We first introduce a new packing messages strategy in Matrix GSW-FHE.

Packing Messages in Column-Major Order: We let plaintext slots in packed FHE
correspond to entries of first column in plaintext matrix with 0 in other columns.

For an r-dimensional vector v and a permutation p, it is easy to permute v by
computing w ¼ Ppv, where Pp is a permutation matrix corresponding to the permu-
tation p. Given a permutation p, we can obtain the corresponding permutation matrix
by the following function.

– PerMatrixGenðpÞ: Take as input a permutation p, output the corresponding per-
mutation matrix Pp 2 f0; 1gr�r with 1 in the ðpðiÞ; iÞ-th ði ¼ 1; . . .; rÞ position and
0 in the others.
Based on our new packing messages strategy, we present a simpler homomorphic
permutation algorithm that can permute plaintext slots when packing messages in
column-major order as follow.

– PermuteKeyGenðS; pÞ: Input a secret key matrix S of the Matrix GSW-FHE scheme
and a permutation p, and generate Pp¼PerMatrixGenðpÞ. Output the permute key
Cp ¼ SecEncSðPpÞ.

– SlotPermuteðC;CpÞ: Given the permute key Cp and a ciphertext C that encrypts a
plaintext matrix which packs messages in first column, output C ¼ Cp 	 C.

It should be noted that our packing messages strategy don’t support homomorphic
slot-wise multiplication. However, homomorphic slot-wise multiplication is not neces-
sary for some special applications. In next section we will give an optimizing boot-
strapping procedure to bring out the potential of our homomorphic permutation algorithm.

Faster Homomorphic Permutation and Optimizing Bootstrapping 611

4 Bootstrapping

In this section, we optimize the bootstrapping procedure of [10] by using our packing
messages strategy and homomorphic permutation algorithm described in Sect. 3. In
Sect. 4.1, we present the optimizing bootstrapping procedure, whose correctness,
security and performance are discussed in Sect. 4.2.

4.1 Optimizing Bootstrapping Procedure

Our bootstrapping procedure rely on the instantiation of Matrix GSW-FHE with
parameters n; Q; v. Importantly, the modulus Q is not the modulus qL of the scheme
we are bootstrapping, but rather some Q
 qL that is sufficiently larger than the error in
the output ciphertext of our bootstrapping procedure.

We follow the framework of bootstrapping procedure in [11] to bootstrap any
LWE-based FHE scheme. Assuming that the ciphertext c1 to be bootstrapped encrypts
a plaintext m under a secret key s1 for modulus qL. We can make dimension d and
modulus q as small as quasi-linear eOðkÞ in the security parameter via dimension-
modulus reduction technique [4], while still providing provable 2k security under
conventional lattice assumptions. Here, set modulus q ¼ Qt

i¼1 ri, where ri are small
and powers of distinct primes. We can get the appropriate modulus q by Lemma 1 [11].

Lemma 1 ([11]). For all x� 7, the product of all maximal prime powers ri� x is at
least expð3x=4Þ.

Let d0 ¼ d � log qd e, then we get a binary ciphertext c 2 f0; 1gd0 encrypts m under
secret key s 2 Zd0

q by Lemma 2 [2] as follows. We first describe two subroutines.

– BitDecompðx 2 Zn
q; qÞ: Decompose x into bit representation. Namely, write

x ¼P log qb c
j¼0 2 juj, where uj 2 Zn

2, and output ðu0; u1; . . .; u log qb cÞ 2 Zn� log qd e
2 .

– Powersof 2(x 2 Zn
q; q): Output the vector ðx; 2 � x; . . .; 2 log qb c � xÞ 2 Zn� log qd e

q .

Lemma 2 ([2]). For vectors c, s of equal length, we have

BitDecompðc; qÞ; Powersof 2ðs; qÞh i ¼ c; sh imod q:

After above pre-processing, we just need to evaluate the function s; ch ib e22 f0; 1g
between the secret key s 2 Zd0

q and a binary ciphertext c 2 f0; 1gd0 for an rounding
function �b e2: Zq ! f0; 1g. It is evident that the inner product is just a subset-sum of
the Zq-entries of s indicated by c, and uses only the additive group structure of Zq.

By the Chinese Remainder Theorem, the ring Zq is isomorphic to the direct product
of rings Zr1 � Zr2 � � � � � Zrt . Recalling the group embeddings of ðZri ; þÞ into Sri , we
get an group embedding from ðZq; þÞ into Sr1 � Sr2 � � � � � Srt . For all i 2 ½t�, x 2 Zri

corresponds to a cyclic permutation that can be represented by an indicator vector with
1 in the x-th position. Let /i : Zq ! f0; 1gr be the isomorphism of an element in Zq

into the cyclic permutation that corresponds to an element in Zri , where r ¼ maxifrig.

612 S. Liu and B. Hu

Our optimizing bootstrapping procedure consists of two algorithms except for
above pre-processing, and we give the detail below.

– BootKeyGenðsk; sÞ: Input the secret key s 2 Zd0
q for ciphertexts to be refreshed and

a secret key sk for the Matrix GSW-FHE scheme. For every i 2 ½t� and j 2 ½d0�, let
Di;j 2 f0; 1gr�r be a matrix with /iðsjÞ in its first column and 0 in the others, and
p/iðsjÞ be the permutation corresponding to /iðsjÞ. Generate

si;j ¼ SecEncskðDi;jÞ;

Ci;j ¼ PermuteKeyGenðsk; p/iðsjÞÞ:

In addition, we generate hints to check the equality on packed indicator vectors. For
every x 2 Zq such that xb e2¼ 1; compute

C/i xð Þ ¼ PermuteKeyGenðsk; p/iðxÞÞ ði 2 ½t�Þ;

where p/iðxÞ is the cyclic permutation that maps the ðxmod riÞ-th row to the first row
in the matrix. Output the bootstrapping key

bk ¼ fðsi;j;Ci;j;C/i xð ÞÞg

– Bootstrapðbk; c 2 f0; 1gd0 Þ: Given the bootstrapping key bk and a binary ciphertext

c 2 f0; 1gd0 , do the following:
Inner Product: For every i 2 ½t�, homomorphically compute an encryption of
/ið c; sh iÞ. Let h ¼ minfj 2 ½d0� : cj ¼ 1g. For i 2 ½t�, set C�i ¼ si;h, and iteratively
compute

C�i ¼ SlotPermuteðC�i ;Ci;jÞ;

for j ¼ hþ 1; . . .; d0 such that cj ¼ 1.
Rounding: Homomorphically check the equality between c; sh i and every x 2 Zq

such that xb e2¼ 1; and sum their results. We can get the refreshed ciphertext as:

C� ¼ �ð 	
i2½t�
ðSlotPermuteðC�i ;C/i xð ÞÞÞÞ ð1Þ

where � traverses through all x 2 Zq such that xb e2¼ 1:
Output the refreshed ciphertext C�.

The bootstrapping procedure outputs a refreshed ciphertext C� that encrypts in the
first slot the same plaintext as the ciphertext c.

Faster Homomorphic Permutation and Optimizing Bootstrapping 613

4.2 Correctness, Security and Performance

Our bootstrapping procedure bases on the Matrix GSW-FHE, so it is secure by
assuming the circular security and DLWE. Correctness holds as the following theorem.

Theorem 1 (Correctness). Given a secret key sk for the Matrix GSW-FHE, a
ciphertext c and a secret key s described in our bootstrapping procedure, let
bk ¼ BootKeyGenðsk; sÞ. The refreshed ciphertext C� ¼ Bootstrapðbk; cÞ encrypts
c; sh ib e22 f0; 1g in the first slot.

Proof. From the basic facts about symmetric groups and Zri -embeddings, it is easy to
see that C�i encrypts /ið c; sh iÞ. Because Zq is isomorphic to Zr1 � Zr2 � � � � � Zrt by
CRT, 	

i2½t�
ðC/i xð Þ 	 C�i Þ encrypts 1 in the first slot if and only if x ¼ c; sh imod q. So, C�

encrypts 1 in the first slot if and only if c; sh ib e2¼ 1:
Here, we will analyze the noise growth of our bootstrapping procedure. Let B be the

initial noise such that Ek k1\B, where E is the noise matrix of fresh ciphertext which
outputted by SecEncsk. Recall that n is the LWE dimension, r is the number of
encrypted bits, l ¼ logQd e, N ¼ ðnþ rÞ � l, t ¼ Oðlog k=log log kÞ, d ¼ eOðkÞ, d0 ¼
d � log qd e and q ¼ eOðkÞ. We first introduce two lemmas about noise growth in Matrix
GSW-FHE scheme.

Lemma 3 ([10]). Given a secret key matrix S of the Matrix GSW-FHE, let C1 and C2

be two ciphertexts that encrypt M1 2 f0; 1gr�r and M2 2 f0; 1gr�r with noise matrices
E1 and E2, respectively. For Cadd¼ C1 � C2 and Cmult ¼ C1 	 C2, we have

SCadd ¼ Eadd þðM1þM2ÞSG,

SCmult ¼ Emult þðM1M2ÞSG,

where Eadd ¼ E1þE2 and Emult ¼ EþM1E2. In particular, E has in every row the
independent subgaussian entries with parameter Oð ET

1

2Þ.

Lemma 4 ([10]). For i ¼ 1; . . .; k, let Ci be a ciphertext that encrypts Mi 2 f0; 1gr�r
such that for any matrix E 2 Zr�N , ðMiEÞT

2� ET

2 with noise matrix Ei. Let

C ¼ C1 	 ðC2 	 ð� � � ðCk�1 	 ðCk 	 GÞÞ � � �ÞÞ:

For i ¼ 1; . . .; k, let ei ¼ ET
i

2. Then the noise matrix of C has in every row the

independent subgaussian entries with parameter Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

i¼1 e
2
i

q
Þ.

In Lemma 4, there is a fixed ciphertext G 2 Zðnþ rÞ�N of the message Ir with noise
0. This makes the noise in the output ciphertext subguassian and independent from the
noise in the input ciphertexts. It is easy to see that the Matrix GSW-FHE scheme has
the asymmetric noise growth property, so computing a polynomial length chain of
homomorphic multiplications incurs the noise growth by a multiplicative polynomial
factor. We estimate the noise growth of our bootstrapping procedure in Theorem 2.

614 S. Liu and B. Hu

Theorem 2. Given a secret key sk, a ciphertext c and a secret key s described in our
bootstrapping procedure, let bk ¼ BootKeyGenðsk; sÞ. The noise in the refreshed
ciphertext C� ¼ Bootstrapðbk; cÞ has independent subgaussian entries with parameter
OðB ffiffiffiffiffiffiffiffiffiffiffi

Nd0tq
p Þ.

Proof. We can write the parenthesized part before the additions in Eq. (1) as a
sequence of Oðd0tÞ homomorphic multiplications. From Lemma 4, we can get that the
noise in the term are subgaussian with parameter OðB ffiffiffiffiffiffiffiffiffi

Nd0t
p Þ. From Lemma 3 and the

Pythagorean additivity of subgaussian random variables, the noise in C� are sub-
gaussian with parameter OðB ffiffiffiffiffiffiffiffiffiffiffi

Nd0tq
p Þ.

In conclusion, our bootstrapping procedure outputs refreshed ciphertexts with error
growth by the Oð ffiffiffiffiffiffiffiffiffiffiffi

Nd0tq
p Þ factor. By choosing a larger modulus Q than the final noise,

we can get a pure FHE.
Finally, we compare our optimizing bootstrapping procedure with that in [10] as

follows.
From Table 1, our optimizing bootstrapping procedure uses less homomorphic

multiplications and outputs the refreshed ciphertexts with smaller noise.

5 A Space-Time Trade-Off

To make further improvement, we adopt a space-time trade-off. Here, we no longer use
bit-decomposition technique, and evaluate directly a function s; ch ib e22 f0; 1g between
the secret key s 2 Zd

q and a ciphertext c 2 Zd
q after the dimension-modulus reduction.

We store the encryptions of k � si for every k 2 f1; . . .; q� 1g and si 2 Zqði 2 ½d�Þ in
the bootstrapping key rather than the encryptions of si 2 Zq, on which we will give the
detail explanation in Sect. 5.1.

5.1 The Bootstrapping Procedure

Similarly, given a ciphertext c1 to be bootstrapped that encrypts a plaintext m under the
secret key s1 for modulus qL, we first make dimension d and modulus q as small as
quasi-linear eOðkÞ via dimension-modulus reduction technique [4], and get the secret
key s 2 Zd

q and a ciphertext c 2 Zd
q .

Table 1. Performance comparison.

PKC15 [10] Our procedure

Homomorphic multiplications 2qd0t qd0t
Noise growth B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nd0tq
p

B
ffiffiffiffiffiffiffiffiffiffiffi
Nd0tq
p

Faster Homomorphic Permutation and Optimizing Bootstrapping 615

Then we evaluate the decryption function s; ch ib e22 f0; 1g homomorphically as
follows.

– BootKeyGenðq; sk; sÞ: Input the modulus q, secret key s 2 Zd
q and a secret key sk

for the Matrix GSW-FHE scheme. For every i 2 ½t�, j 2 ½d� and k 2 f1; . . .; q� 1g,
let Di;j;k 2 f0; 1gr�r be a matrix with /iðk � sjÞ in its first column and 0 in the others,
and p/iðk�sjÞ be the permutation corresponding to /iðk � sjÞ. Compute

si;j;k ¼ SecEncskðDi;j;kÞ;

Ci;j;k ¼ PermuteKeyGenðsk; p/iðk�sjÞÞ:

For every x 2 Zq such that xb e2¼ 1; compute

C/i xð Þ ¼ PermuteKeyGenðsk; p/iðxÞÞ ði 2 ½t�Þ;

where p/iðxÞ is the cyclic permutation that maps the ðxmod riÞ-th row to the first row
in the matrix. Output the bootstrapping key

bk ¼ fðsi;j;k;Ci;j;k;C/i xð ÞÞg:

– Bootstrapðbk; c 2 Zd
qÞ: Given the ciphertext c 2 Zd

q and bootstrapping key bk, do
the following:
Inner Product: Let h ¼ minfj 2 ½d� : cj 6¼ 0g. For every i 2 ½t�, set C�i ¼ si;h;ch ,
iteratively compute

C�i ¼ SlotPermuteðC�i ;Ci;j;cjÞ

For j ¼ hþ 1; . . .; d such that cj 6¼ 0.
Rounding: Homomorphically check the equality between c; sh i and every x 2 Zq

such that xb e2¼ 1; and sum their results. Get the refreshed ciphertext

C� ¼ �ð 	
i2½t�
ðSlotPermuteðC�i ;C/i xð ÞÞÞÞ

where � traverses through all x 2 Zq such that xb e2¼ 1:

5.2 Efficiency Comparison

We can prove that the space-time trade-off bootstrapping is secure and correct and
analyze its noise growth like in Sect. 4.2. Below we just give the analysis results and
efficiency comparison (Table 2).

It is easy to see that the space-time trade-off bootstrapping procedure optimizes the
number of homomorphic multiplication and noise growth while increases memory
complexity of the bootstrapping key. It is worthy because we can repeatedly use the
same bootstrapping key to refresh as many ciphertexts as we want.

616 S. Liu and B. Hu

References

1. Gentry, C.: A Fully Homomorphic Encryption Scheme. Stanford University, Stanford (2009)
2. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully homomorphic encryption

without bootstrapping. ACM Trans. Comput. Theory 6(3), 1–36 (2014)
3. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical

GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–
886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_50

4. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard)
LWE. In: Foundations of Computer Science, pp. 97–106. IEEE (2011)

5. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and
security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29

6. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption
over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_2

7. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors:
conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40041-4_5

8. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the
cloud via multikey fully homomorphic encryption. In: Forty-Fourth ACM Symposium on
Theory of Computing, pp. 1219–1234. ACM (2012)

9. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and
ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 420–443. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_25

10. Hiromasa, R., Abe, M., Okamoto, T.: Packing messages and optimizing bootstrapping in
GSW-FHE. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 699–715. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_31

11. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44371-2_17

12. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Conference on
Innovations in Theoretical Computer Science, pp. 1–12 (2014)

13. Barrington, D.A.: Bounded-width polynomial-size branching programs recognize exactly
those languages in NC1. J. Comput. Syst. Sci. 38(1), 150–164 (1989)

14. Jacobson, N.: Basic Algebra I. Dover Publications, USA (2012)

Table 2. Efficiency comparison.

PKC15 [10] Optimizing
procedure

Space-time
tradeoff

Homomorphic
multiplications

2qdt � log q qdt � log q qdt

Noise growth B
ffi
2Nqdt � log qp

B
ffi
Nqdt � log qp

B
ffiffiffiffiffiffiffiffiffiffi
Nqdt
p

Memory complexity dt � log q dt � log q qdt

Faster Homomorphic Permutation and Optimizing Bootstrapping 617

http://dx.doi.org/10.1007/978-3-642-32009-5_50
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-13190-5_2
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/978-3-642-13013-7_25
http://dx.doi.org/10.1007/978-3-662-46447-2_31
http://dx.doi.org/10.1007/978-3-662-44371-2_17

Short Papers

A Note on the Sidelnikov-Shestakov
Attack of Niederreiter Scheme

Dingyi Pei and Jingang Liu(B)

School of Mathematics and Information Science, Guangzhou University,
Guangzhou 510006, People’s Republic of China

dypei4188@163.com, xy07liu@126.com

Abstract. The terminology “code based public-key cryptosystem”
means that the algorithmic primitives of such public-key cryptosystems
use error correcting codes. In papers [1,2] methods of building such
public-key cryptosystems have been suggested. The Niederreiter’s public-
key cryptosystem [2] based on q-ary generalized Reed-Solomon codes was
proposed in 1986, Sidelnikov and Shestakov [3] presented an attack on
this public-key cryptosystem in 1992, showing its insecurity. By examin-
ing the attack algorithm, we note that one can change some redundant
procedures to simplify the algorithm.

Keywords: Code-based cryptography · Niederreiter encryption ·
GRS codes · Sidelnikov-Shestakov attack

1 Introduction

Many widely-used public key cryptosystems, such as RSA and elliptic curve cryp-
tography, can be broken by a large-scale quantum computer. By the terminology
“code based public-key cryptosystem”, it means that the algorithmic primitives
of such public-key cryptosystems use error correcting codes, as one promising
family of public key systems which might still work in a pos-quantum computer
environment [4]. In 1978, McEliece [1] proposed the first public-key cryptosystem
based on coding theory. McEliece’s proposal to use Goppa codes is one of the
oldest public-key cryptosystems and remains unbroken for appropriate system
parameters. Its security is based on the NP-complete problem of decoding ran-
dom linear codes. However, the main drawback lies in the large size of the public
key. In 1986, H. Niederreiter proposed a different scheme which uses generalized
Reed-Solomon (GRS) codes. Unfortunately, Sidelnikov and Shestakov [3] showed
in 1992 that Niederreiter’s proposal to use GRS codes is insecure. Subsequently,
the approach of [3] plays an important role in cryptanalysis regarding code-based
cryptosystem, such as distinguisher and filtration attacks [5,6].

In this paper, we will simplify the attack suggested in [3]. As Goppa codes are
subfield subcodes of GRS codes over F2m , this attack has been widely concerned
in [7,8]. Furthermore, a different version of this attack was proposed in [9].

c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 621–625, 2019.
https://doi.org/10.1007/978-3-030-14234-6_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_33&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_33

622 D. Pei and J. Liu

2 Niederreiter’s Public-Key Cryptosystem
Based on GRS Codes

Let Fq be a finite field with q elements. The symbol A denotes a check matrix
of a q-ary GRS code over Fq,

A(x1, x2, . . . , xn; z1, z2, . . . , zn)

=

⎛
⎜⎜⎜⎝

z1x
0
1 z2x

0
2 . . . znx0

n

z1x
1
1 z2x

1
2 . . . znx1

n
...

...
. . .

...
z1x

s
1 z2x

s
2 . . . znxs

n

⎞
⎟⎟⎟⎠ ∈ F

(s+1)×n
q (1)

where
s + 1 < n < q; xi, zi ∈ Fq

and
zi �= 0 (1 ≤ i ≤ n), xi �= xj for i �= j

Suppose this GRS code has an efficient syndrome decoding algorithm D, which
can correct up to t errors. Let E be a collection consisting of all matrices of the
form B = HA where A is a matrix of type (1) and

H =
(
hij

)
0≤i,j≤s

is a (s+1)× (s+1) non-singular matrix with the elements in Fq. It follows from
the definitions that the matrix B of E has the form

B(s+1)×n = HA =

⎛
⎜⎜⎜⎝

z1f0(x1) z2f0(x2) . . . znf0(xn)
z1f1(x1) z2f1(x2) . . . znf1(xn)

...
...

. . .
...

z1fs(x1) z2fs(x2) . . . znfs(xn)

⎞
⎟⎟⎟⎠ =

(
bij

)
(2)

and

bij = zjfi(xj) = zj

s∑
k=0

hikxj
k (0 ≤ i ≤ s, 1 ≤ j ≤ n) (3)

In Niederreiter’s public-key cryptosystem, Bob randomly and equiprobably
chooses a matrix

B = HA(x1, x2, . . . , xn; z1, z2, . . . , zn)

of type (2) in E with t as his public key, and takes H;x1, x2, . . . , xn; z1, z2, . . . , zn
and the decoding algorithm D as his private key. If Alice wants to send a secret
message m to Bob, firstly, the message m must be transformed into a vector
m̄ ∈ F

n
q with not more than t = � s

2� non-zero coordinates, called a plaintext.
Then Alice encrypts m̄ into a ciphertext c = Bm̄T . When Bob receives the
ciphertext c, he calculates H−1c = Am̄T and reconstructs the plaintext m̄ using
the syndrome decoding algorithm D.

A Note on the Sidelnikov-Shestakov Attack of Niederreiter Scheme 623

3 Simplified Attack

An attack on the public-key cryptosystem based on GRS codes was proposed in
[3], which can recover a (alternative) private key H =

(
hij

)
and x1, x2, . . . , xn;

z1, z2, . . . , zn by using its public key B =
(
bij

)
. More precisely, one solution

(
H =

(
hij

)
;x1, x2, . . . , xn; z1, z2, . . . , zn

)

as unknown of the system of Eq. (3) can be computed. The calculation is accom-
plished in two steps: first to find the numbers x1, x2, . . . , xn, and then the num-
bers z1, z2, . . . , zn as well as the matrix H.

The most space of [3] is devoted to describing the algorithm in the first step,
exploiting birational transformations on the projective line Fq∪∞, and solutions
of several systems of linear equations. It’s easy to see that this algorithm can
not guarantee to find the real numbers x1, x2, . . . , xn used in the original private
key. In this note, we simplify the attack algorithm by pointing out that the
algorithm of the first step may be replaced by “randomly and equiprobably to
choose n different numbers x1, x2, . . . , xn from Fq”, which may reduce O(s3+sn)
arithmetic operations in the first step (Refer to [3] for detail). There are

(
q
n

)
choices for x1, x2, . . . , xn. The rest of the algorithm is the same as that in the
second step of [3]. For completeness, we briefly explain it as follows.

Let x1, x2, . . . , xn be the numbers randomly chosen in the first step. Since
any s+1 columns of B are linearly independent over Fq, and any s+2 columns
of B are linearly dependent over Fq, the system of equations

s+2∑
j=1

cjbij = 0 (0 ≤ i ≤ s)

has a solution
(c1, c2, . . . , cs+2) ∈ F

s+2
q

with each cj �= 0 (1 ≤ j ≤ s + 2), otherwise the matrix B would contain s + 1
linearly dependent columns. Furthermore,

s+2∑
j=1

cjbij =
s+2∑
j=1

cjzj

s∑
k=0

hikx
k
j

=
s∑

k=0

(
s+2∑
j=1

cjx
k
j zj)hik = 0 (0 ≤ i ≤ s)

which implies that

(
s+2∑
j=1

cjx
0
jzj ,

s+2∑
j=1

cjx
1
jzj , . . . ,

s+2∑
j=1

cjx
s
jzj) · HT = 0 (4)

624 D. Pei and J. Liu

Because H is a non-singular matrix, it reduces that

s+2∑
j=1

cjx
k
j zj = 0 (0 ≤ k ≤ s) (5)

Since for any α �= 0 ∈ Fq, we have

α−1H · A(x1, x2, . . . , xn; αz1, αz2, . . . , αzn)
= HA(x1, x2, . . . , xn; z1, z2, . . . , zn)

We may assume that z1 = 1. Then equality (5) becomes a linear system of s + 1
equations with s + 1 unknowns z2, z3, . . . , zs+2,

s+2∑
j=2

(cjxk
j zj + c1x

k
1) = 0 (0 ≤ k ≤ s)

This system has unique solution because its determinant is the form of Vander-
monde determinant. Solving this system yields the unique sought numbers

z1 = 1, z2, . . . , zs+2

with each
zi �= 0 (2 ≤ i ≤ s + 2)

By (3) we have, for each (0 ≤ i ≤ s)

s∑
k=0

hikx
k
j = z−1

j bij (1 ≤ j ≤ s + 1)

This is a system of linear equations with unknown

Hi = (hi0, hi1, . . . , his)

which is the i-th row of the matrix H. Its determinant also is the Vandermonde
determinant, the Hi can be determined uniquely, so does the matrix H.

To find the matrix H−1, we have by (2)

A = H−1B =

⎛
⎜⎜⎜⎝

z1 z2 . . . zn
z1x1 z2x2 . . . znxn

...
...

. . .
...

z1x
s
1 z2x

s
2 . . . znxs

n

⎞
⎟⎟⎟⎠

The sought numbers zj (s + 3 ≤ j ≤ n) are determined by the first row. The
algorithm is accomplished now. The computational complexity of the algorithm
is O(s4 + sn) as shown in [3]. For a given set x1, x2, . . . , xn, there is an unique
solution for z1, z2, . . . , zn and H, the number of all solutions of the equation
system (3) is

(
q
n

)
.

A Note on the Sidelnikov-Shestakov Attack of Niederreiter Scheme 625

4 Conclusion

In this note, we studied Sidelnikov-Shestakov attack of Niederreiter’s public-key
cryptosystems based on Generalized Read-Solomon codes, and simplified the
original attack algorithm [3]. Future work in attempting to apply the improved
attack on other related methods, may also be an interesting problem.

Acknowledgments. The authors would like to thank the anonymous reviewers of
Inscrypt 2018 for their fruitful comments that improved the presentation of this note.
This work has been partially supported by the Guangzhou University project (Project
No. 2017GDJC-D04).

References

1. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Deep
space network progress report, 42–44, pp. 114–116 (1978)

2. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob.
Control Inf. Theory 15(2), 159–166 (1986)

3. Sidelnikov, V.M., Shestakov, S.O.: On insecurity of cryptosystems based on gener-
alized Reed-Solomon codes. Discrete Math. Appl. 2(4), 439–444 (1992)

4. Chen, L., Chen, L., Jordan, S., Liu, Y.-K., Moody, D., et al.: Report on post-
quantum cryptography. Technical reports (2016). https://doi.org/10.6028/nist.ir.
8105

5. Couvreur, A., Gaborit, P., Gauthier-Umana, V., et al.: Distinguisher-based attacks
on public-key cryptosystems using Reed–Solomon codes. Des. codes Crypt. 73(2),
641–666 (2014)

6. Couvreur, A., Otmani, A., Tillich, J.P.: Polynomial time attack on wild McEliece
over quadratic extensions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 17–39. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-55220-5 2

7. Engelbert, D., Overbeck, R., Schmidt, A.: A summary of McEliece-type cryptosys-
tems and their security. J. Math. Cryptol. 1(2), 151–199 (2007)

8. Overbeck, R., Sendrier, N.: Code-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 95–145. Springer,
Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7 4

9. Gabidulin, E.: Public-key cryptosystems based on linear codes. In: Proceedings of
4th IMA Conference on Cryptography and Coding 1993, Codes & Ciphers. IMA
Press (1995)

https://doi.org/10.6028/nist.ir.8105
https://doi.org/10.6028/nist.ir.8105
https://doi.org/10.1007/978-3-642-55220-5_2
https://doi.org/10.1007/978-3-642-55220-5_2
https://doi.org/10.1007/978-3-540-88702-7_4

An Efficient Anonymous Authentication
Scheme Based on Double Authentication

Preventing Signature for Mobile
Healthcare Crowd Sensing

Jinhui Liu1, Yong Yu1(B), Yannan Li2, Yanqi Zhao1, and Xiaojiang Du3

1 School of Computer Science, Shaanxi Normal University, Xi’an 710119, China
yuyong@snnu.edu.cn

2 School of Computing and Information Technology, University of Wollongong,
Wollongong, NSW 2522, Australia

3 Department of Computer and Information Sciences, Temple University,
Philadelphia, PA 19122, USA

Abstract. With the widespread growth of cloud computing and mobile
healthcare crowd sensing (MHCS), an increasing number of individuals
are outsourcing their masses of bio-information in the cloud server to
achieve convenient and efficient. In this environment, Cloud Data Cen-
ter (CDC) needs to authenticate masses of information without reveal-
ing owners’ sensitive information. However, tremendous communication
cost, storage space cost and checking time cost lead to CDC that give
rise to all kinds of privacy concerns as well. To mitigate these issues, To
mitigate these issues, we propose a data anonymous batch verification
scheme for MHCS based on a certificateless double authentication pre-
venting aggregate signature. The proposed scheme can authenticate all
sensing bio-information in a privacy preserving way. We then present that
the proposed CL-DAPAS scheme is existentially unforgeable in the Ran-
dom Oracle Model (ROM) assuming that Computational Diffie-Hellman
problem is difficult to solve. Furthermore, we provide an implementation
and evaluate performance of the proposed scheme and demonstrate that
it achieves less efficient computational cost compared with some related
schemes.

Keywords: Mobile healthcare crowd sensing · Security · Privacy ·
Double authentication preventing signature ·
Elliptic curve discrete logarithm problem

1 Introduction

An increasing interest is growing around Cloud Data Centers (CDC) that allows
the delivery of various kinds of agile services and applications over telecommu-
nication networks and the Internet. Mobile crowd sensing (MCS) in the IOT
assembles scenario, environmental, and individual data within a specific range
c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 626–636, 2019.
https://doi.org/10.1007/978-3-030-14234-6_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_34&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_34

An Efficient Anonymous Authentication Scheme 627

via the intelligent sensing equipment carried by mobile users, thus providing
social decision-making services [1]. As an important application branch of MCS,
MHCS furnishes a more convenient healthcare medical services for institutions
and individuals [2,3]. In MHCS, participants accept a sensing assignment for
specific purpose from cloud sever and they make a collection of relevant health
data and upload these data to the cloud sever. At the same time, the cloud sever
transmits requested information to a range of special healthcare institutes for
further analysis. CDC in MHCS needs to authenticate masses of bio-information
without revealing sensitive information of these participants. There exists numer-
ous research findings from data integrity checking protocols and data deletion
protocols that were proposed to different requirements of authentication which
can be applied to MHCS [4–10].

A representative structure of the MHCS is listed in Fig. 1 [3,11]. Communica-
tion process in MHCS can be falled into two aspects. For one thing, participants
put up health data which are assembled by mobile intelligent terminals to a CS
(Cloud Server). For another, by studying personal health data, anytime any-
where medical service and health information can be offered by remote health-
care system and vital signs of patients which are refered to long distance health
applications can be mounted in mobile intelligent endpoints or other monitoring
equipment.

Fig. 1. A typical MHCS framework

By wireless communication model, adversaries against MHCS is easy to man-
age fairly communication channels, that is to say, adversaries could hold up, alter,
replay and erase messages that transmitted in MHCS system. Hence MHCS are

628 J. Liu et al.

susceptible to numberous types of attacks. In practice, sensitive information of
participates, such as identity, individual social activities and health status, may
be leakaged by the collected health data. These collected health data ought to be
managed safely in a actual time mode, else it will reduce health service quality.
If health data is eavesdropped or tampered by an adversary, it will cause damage
to personal health and estates, so far as to personal lives. Therefore, security and
privacy protection of collected health data in MHCS is an indispensable part of
many practical applications [12–14].

Several papers have studied related security and privacy of wireless issues
[15–18]. Aggregate signature (AS), as one of the most efficient privacy and
integrity, resolving the issues of limited resources, privacy, message integrity
and authenticity, is applicable to addressing the some issues in MHCS [19–22].
At present, there are many AS schemes which have been put forward for all
kinds of practical applications. In 2003, Boneh et al. put forward the first AS
(aggregate signature) which enables a signer to construct a valid signatures on
their messages to be signed and have a batch verification [19]. After that, most
of AS schemes were incurred a complicated certificate management [23,37]. In
2007, Castro et al. [24] provided a general notion of certificateless (CL) AS that
made a combination of properties of AS and CLPKC (Certificateless Public Key
Cryptography). The same year, Gong et al. standardized a security model for
CL-AS [25]. After that many CLAS schemes were designed [3,26–29]. Although
previously proposed AS could mitigate privacy preserving authentication for
MHCS, there exists many double signature problems and the performance of
these schemes is unsatisfactory.

Consider such a scenario, if some special field doctor in a hospital sign twice
about a patient of same identity and kinds of diseases, we can consider that the
doctor have done some misconducts. To prevent fraud by discouraging users from
submitting (signing) duplicates, we use double authentication preventing signa-
tures (DAPS) instead of conventional signatures, where the address a (or its asso-
ciated space respectively) can be given some application dependent semantics.
Unlike group signature and linkable-ring signature [30,31], DAPS are stronger
signatures in the sense that signers secret keys can be revealed [32,33]. Revealing
the secret key as discouragement to behave fraudulent is related to PKI-assured
non-transferability approach in anonymous credential systems. Many instances
are shown that a double signer is not enough of a penalty but is enough of a
deterable function. There are some research about post-quantum DAPS system
[34–36]. Based on these, we provide a new and more higher efficient conditional
privacy protection signature scheme for MHCS.

Our main contributions are summarized in the following.

1. We propose a high efficient authentication scheme to verify batch messages
received from MHCS participants.

2. We make a security analysis to show that CL-DAPAS fulfil some security
needs in MHCS.

3. We present a computation cost analysis to show that our CL-DAPAS scheme
has higher efficiency than some related schemes.

An Efficient Anonymous Authentication Scheme 629

2 Preliminaries and System Model

2.1 Hard Problem Assumption

Definition 1 (ECDLP (Elliptic Curve Discrete Logarithm Problem)).
Given two points P,Q ∈ G on E, it is difficult to calculate an integer x ∈ Z∗

q to
get the equation P = xQ.

Definition 2 (CDHP (Computational Diffie Hellman Problem)). Given
two random points xP, yP ∈ G1, where x, y are two unknown information in Zq,
it is difficult to obtain xyP in polynomial time.

2.2 System Model

We define system model of MHCS scenario, which consists of requestors, a Cloud
Data Center (CDC), a Management Server (MS), and a MHCS participants.

1. For some specific purposes, requestors refer healthcare sensing tasks to CDC.
Then they can study memoir from CDC and then forecast certain health and
medical problems in some regions.

2. According to the demands of the requestors, CDC release and manage health-
care sensing tasks. And it can aggregate and verify healthcare data for par-
ticipants.

3. MS can administer registration for participants, where MS is a trusted third
party. MS assignments indexes for participants to substitute for their actual
identities and is responsible for issuing a half private keys of legitimate par-
ticipants. MS is able to verify health data uploaded by participants by using
an index.

4. Participants can upload healthcare data for CDC by intelligent terminals.

2.3 Security Requirements

The aim objective of the proposed scheme for MHCS is to provide an efficient
privacy preserving to satisfy the following security requirements:

1. Batch authentication: The signed health data is able to be aggregated and
verified by CDC.

2. Nonrepudiation: Participants have sent related health data to CDC that
they cannot deny.

3. Anonymity: Even if CDC can obtain and check these aggregated messages,
CDC is not able to get data provider’s real identity.

4. Deterable-iff-double signature by one signer: If an participant signs on
colliding message (a, p1) and (a, p2), he can be linked and his signature keys
can be extracted by anyone.

630 J. Liu et al.

3 The Proposed Data Batch Verification Scheme Based
on CL-DAPAS for MHCS

Consider such a scenario in MHCS, if some special field doctor in a hospital sign
twice about a patient of same identity and kinds of diseases, we can consider
that the doctor have done some misconduct. Due to lack of space, a concrete
CL-DAPAS will appear in the full version of this paper.

3.1 The Proposed Scheme

Initialization. In this phase, MS sets up an enrollment system in the following.

1. G is an q order additive group. P is a generator of G. Choose a key sMS and
calculate corresponding public key PMSpub = sMSP . Elect hash functions
h1 : {0, 1}∗ × G → G and h2 : {0, 1}∗ × G → Z∗

q .
2. Publish parameters (P,E,G, p, q, PMSpub, h1, h2) and maintain the master

private key sMS . CDC’s key pair (QCDC , sCDC) as its key pair, where
QCDC = sCDCP .

Registration. In this phase, a participant Ci computes partial key and MS is
to access a CDC.

1. Ci chooses randomly a number si1 ∈R Z∗
q as partial private key and computes

Qi1 = si1P . Ci obtains pski1 from MS who computes pski1 = sMSh1(Idi, Qi1)
as the other part of private key.
Ci’s public-private keys (si1, pski1) and (Idi, Qi1) as public key.

2. MS chooses randomly a number wi ∈R Z∗
q and computes

Qi2 = h1(Idi, Qi1), pski2 = sMSh1(Idi, Qi1), indexis = wiQi2 and indexiv =
wipski2. Thus, MS stores serial number sni = (Idi, Qi1, Qi2, indexis, indexiv).
Then MS sends sni = indexiv and indexis to the Ci via a secure channel.

Sign. Ci chooses randomly ri ∈R Z∗
q and ti ∈R Z+, where ti is a time stamp

which is able to keep freshness of Mi = (a, pi). Ci performs the following steps:

1. Ci computes Ri = riP , Ki = h2(pi‖ti, Ri), Si = si1 + a · Kiri mod q,
Ui = pski1 + riPMSpub and EncQCDC

(SNi‖Ki‖ti) = SN ′
i

2. Ci uploads (Ri,Ki, Si, Ui,Mi, SN ′
i) to CDC who announces the sensing task,

where Mi = (a, pi).

Verify. To ensure the validity of each required sensing data signed by a Ci, the
following steps are executed by CDC.

1. CDC calculates SNi‖Ki‖ti = DecsCDC
(SN ′

i). Verify Ki = h2(pi‖ti, Ri).
2. Check whether equations Ki = h2(pi‖ti, Ri), SiP = Qi1 + a · kiRi and

e(Ui, P) = e(PMSpub, Ri + h1(Idi, Qi1)) hold.
If the above equations are true, then the verifier affirms the signature is a
valid signature; otherwise, the signature is invalid.

An Efficient Anonymous Authentication Scheme 631

Aggregation. Upon receiving (Ri,Ki, Si, Ui,Mi, SN ′
i), CDC computes

SNi‖Ki‖ti = DecsCDC
(SN ′

i).
For a set of n participants C1, · · · , Cn and the corresponding signatures

(Ri,Ki, Si, Ui,Mi), CDC aggregates all signatures as follows once time T is up:

1. KR =
n∑

i=1

a · KiRi, Q =
n∑

i=1

Qi1, R =
n∑

i=1

Ri, S =
n∑

i=1

Si mod q,

H =
n∑

i=1

h1(Idi, Qi1) and indexv =
n∑

i=1

indexiv mod q.

2. σ = (KR,Q, S,R,H, indexv) is the aggregated signature.

Batch Verification. CDC verifies the validity of these equations. Check
whether equations SP = Q + KR and e(U,P) = e(PMSpub,H + R) hold.

Extractsk Iff Double Signature by One Signer. Ci: If Cj sign twice, CDC
receives two signatures from colliding messages Mi1 = (a, pi1) and Mi2 = (a, pi2)
from one signer.

According to σi1 = (Mi1, Ri,Ki1, Si1, Ui) and σi2 = (Mi2, Ri,Ki2, Si2, Ui),
Anyone can compute the private key si1, pski1 of Cj as follows.

1. According to Ri = riP , Ki1 = h2(IDi‖Ri‖pi1), Ki2 = h2(IDi‖pi, Ri),
{

Si1 = si1 + a · Ki1rimodq ;
Si2 = si1 + a · Ki2rimodq .

2. Compute

si1 =
(Ki1Si2 −Ki2Si1)

(Ki1 −Ki2)
, ri =

(Si2 − Si1)

a(Ki2 −Ki1)
and pski1 = Ui − (Si2 − Si1)

a(Ki2 −Ki1)
Ppub.

3.2 Security Analysis

Theorem 1. If the adversary A1 who has the ability of substituting for partic-
ipants’ public keys with MS’ private keys can break CL-DAPAS, CDH problem
could be solved in a non-negligible probability.

Theorem 2. Assuming that CDH problem is hard, our CL-DAPAS is existen-
tially unforgeable under chosen message attack.

The proof process of the two theorem above will appear in the full version
of this paper. By security analysis, we can show that our scheme satisfy the
following property.

Batch Authentication and Message Integrity Authentication: The
authentication and integrity of individual CL-DAPAS can be reduced to the
CDH assumption. So CDC could authenticate identities of participants by their
signatures. Furthermore, CDC is able to find any variation of received signatures
by checking whether the equation SP = Q + KR holds.

632 J. Liu et al.

Non-repudiation: The non-repudiation of the individual crowdsensed data
depends on the security of underlying Encryption algorithm. MHCS participants
can not deny that they have transmitted their health data. CDC can verify their
signatures via corresponding public keys.

No Inefficiency Problem of the Double Secret Key: CDC needs to save
the master key secretly which can be reduced to the CDH assumption. Therefore,
the proposed scheme for MHCS is able to provide no inefficiency problem of the
double secret key.

Deterable-iff-double Signature by One Signer: Deterable-iff-double signa-
ture by one signer can be reduced to DSE security of the DAPAS [32,33].

4 Performance Analysis

To give practical performance analysis, we get the execution time of different
cryptographic processes by Pairing-Based Cryptography library [38], which is a
famous and free java library for implementing of pairing-based cryptosystems.
For schemes based on bilinear pairings for MHCS, to achieve 80 bits security
level, we choose a bilinear pairing e : Ga × Ga → Gm, where Ga is generated by
a q order point P on E : y = x3 + x mod p. For the proposed scheme, we use
Type-I elliptic curve E : y2 = x3−x+1 over a ternary extension field F3m . G1 is
a group of points E(F3m). The experiment is executed on a personal calculator,
which is equipped with an windows 7 64 OS, intel(R) Core(TM) i7-4710MQ
CPU 2.50 GHz, 12 GB RAM With JPBC library for 1000 times. Execution time
and related cryptographic operations are shown in Table 1.

Table 1. The definition and execution time of related operations.

Cryptographic operation Definition Execution time

Tbp a bilinear pairing process 7.8 ms

Tsm−bp a point multiplication process 14 ms

Tpa−bp a point addition process 0.0005 ms

TZp−bp a map-to-point hash process 0.003 ms

TG1−bp a map-to-G1 hash process 32.8 ms

Tsm−ecc a point multiplication process 2.8 ms

Tpa−ecc a point addition process 0.0005 ms

TZp−ecc a map-to-point hash process 0.003 ms

TG1−ecc a map-to-G1 hash process 0.2 ms

Let P1, P2, P3 and P4 denote Signing, Verification, Aggregation and Batch
Verification phase respectively. We present a comparison analysis of THH [27],
Malhi-Batra [28], XGCL [29], Liu-Cao scheme [3] and our proposed scheme.

An Efficient Anonymous Authentication Scheme 633

In the Signing stage P1, we find that our scheme requires 2nTbp+nTHZp−ecc+
nTsm−ecc + nTpa−ecc ≈ 18.4035n ms, while schemes in THH [27], Malhi-Batra
[28], XGCL [29] and Liu-Cao’s scheme [3] require 2nTHZp−bp + 2nTHG−bp +
3nTsm−bp ≈ 107.6006n ms, nTHZp−bp+4nTsm−bp ≈ 56.003n ms and nTHZp−bp+
3nTsm−bp ≈ 42.003n ms, nTHZp−bp + 2nTsm−bp ≈ 28.003n ms respectively. For
the total execution time, the percentage improvement for the Signing stage P1 of
CLDAPAS over THH et al.’s scheme is about (107.6006n−18.4035n)

107.6006n ≈ 83%. Other
percentage improvements can also be computed by similar method, they are
67%, 56%, 34% respectively.

In the verification stage, our scheme needs nTHZp−bp + nTHG−bp +
5nTsm−ecc + 2nTbp ≈ 29.8003n ms, while schemes require 2nTHZp−bp +
3nTHG−bp + 4nTbp + 2nTsm−bp ≈ 157.606n ms in [27], nTHZp−bp + nTHG−bp +
3nTbp + 3nTsm−bp ≈ 98.203n ms in [28], nTHZp−bp + nTHG−bp + 3nTbp +
2nTsm−bp ≈ 84.203n ms in [29] and nTHZp−bp + nTHG−bp + 2nTbp + nTsm−bp ≈
62.403n ms in [3]. The percentage improvement for P2 of CLDAPAS are 81%,
70%, 65%, 52% respectively.

In aggregation stage P3, our scheme needs 5Tsm−ecc ≈ 14n ms scalar multi-
plications, while the scheme in [3] requires 28n ms.

In aggregation verification stage P4, our scheme needs 2nTsm−ecc + 2Tbp ≈
21.2 ms, while schemes in [3,27–29] requires about 31.2 + 28n ms, 23.4 + 42n ms,
23.4 + 28n ms and 15.6 ms respectively. Although the execution time of our
scheme in batch verification stage P4 is higher than the execution time of scheme
[3], other stages are much lower than execution time of these schemes.

5 Conclusion

To protect the security and privacy of online health data from the unauthorized
entities in MHCS, we construct an efficient anonymous data batch authentication
scheme. Our proposed scheme has advantages of certificateless signature, aggre-
gate signature and double signature that can be disincentivized. The security
analysis of the scheme is conducted to ensure the data integrity, non-repudiation,
no inefficiency problem of the double secret key, batch authentication and deter-
able function. Performance analysis results of our proposed scheme has higher
efficient in time consumption. With rapid development of quantum computers,
in the future we will study the design of post-quantum certificateless double
authentication preventing aggregate signatures which are suitable for MHCS.

Acknowledgments. The author would like to thank the anonymous reviewers for
their constructive comments and suggestions. This work was supported by National
Key R&D Program of China (2017YFB0802000), National Natural Science Foundation
of China (61772326, 61572303, 61872229, 61802239), NSFC Research Fund for Inter-
national Young Scientists (61750110528), National Cryptography Development Fund
during the 13th Five-year Plan Period (MMJJ20170216, MMJJ201701304), Foundation
of State Key Laboratory of Information Security (2017-MS-03), Fundamental Research
Funds for the Central Universities(GK201702004, GK201803061, 2018CBLY006) and
China Postdoctoral Science Foundation (2018M631121).

634 J. Liu et al.

References

1. Ganti, R.K., Ye, F., Lei, H.: Mobile crowdsensing: current state and future chal-
lenges. IEEE Commun. Mag. 49(11), 32–37 (2011)

2. Pryss, R., Reichert, M., Herrmann, J., Langguth, B., Schlee, W.: Mobile crowd
sensing in clinical and psychological trials – a case study. In: IEEE International
Symposium on Computer-Based Medical Systems, pp. 23–24 (2015)

3. Liu, J., Cao, H., Li, Q., Cai, F., Du, X., Gui, M.: A large-scale concurrent data
Anonymous batch verification scheme for mobile healthcare crowd sensing. IEEE
Internet Things J. (2018). https://doi.org/10.1109/JIOT.2018.2828463

4. Zhang, H., Zhang, Q., Du, X.: Toward vehicle-assisted cloud computing for smart-
phones. IEEE Trans. Veh. Technol. 12(64), 5610–5618 (2015)

5. Li, J., Chen, X., Chow, S.S.M., Huang, Q., Wong, D.S., Liu, Z.: Multi-authority
fine-grained access control with accountability and its application in cloud. J. Netw.
Comput. Appl. https://doi.org/10.1016/j.jnca.2018.03.006

6. Li, T., Li, J., Liu, Z., Li, P., Jia, C.: Differentially private naive bayes learning over
multiple data sources. Inf. Sci. 444, 89–104 (2018)

7. Yu, Y., et al.: Identity-based remote data integrity checking with perfect data
privacy preserving for cloud storage. IEEE Trans. Inf. Forensics Secur. 12(4), 767–
778 (2017)

8. Li, Y., Yu, Y., Susilo, W., Min, G., Ni, J., Choo, R.: Fuzzy identity-based data
integrity auditing for reliable cloud storage systems. IEEE Trans. Dependable
Secur. Comput. 16(1), 72–83 (2019)

9. Yu, Y., Li, Y., Yang, B., Susilo, W., Yang, G., Bai, J.: Attribute-based cloud data
integrity auditing for secure outsourced storage. IEEE Trans. Emerg. Top. Comput.
https://doi.org/10.1109/TETC.2017.2759329

10. Xue, L., Yu, Y., Li, Y., Au, M.H., Du, X., Yang, B.: Efficient attribute-based
encryption with attribute revocation for assured data deletion. Inf. Sci. 479, 640–
650 (2019)

11. He, D., Chan, S., Guizani, M.: User privacy and data trustworthiness in mobile
crowd sensing. IEEE Wirel. Commun. 22(1), 28–34 (2015)

12. Gisdakis, S., Giannetsos, T., Papadimitratos, P.: Security, privacy, and incentive
provision for mobile crowd sensing systems. IEEE Internet Things J. 3(5), 839–853
(2016)

13. Zhang, K., Ni, J., Yang, K., Liang, X., Ren, J., Shen, X.S.: Security and privacy
in smart city applications: challenges and solutions. IEEE Commun. Mag. 55(1),
122–129 (2017)

14. Ni, J., Zhang, K., Yu, Y., Lin, X., Shen, X.S.: Providing task allocation and secure
deduplication for mobile crowdsensing via fog computing. IEEE Trans. Dependable
Secur. Comput. 1–12 (2018). https://doi.org/10.1109/TDSC.2018.2791432

15. Xiao, Y., Rayi, V., Sun, B., Du, X., Hu, F., Galloway, M.: A survey of key man-
agement schemes in wireless sensor networks. J. Comput. Commun. 30(11–12),
2314–2341 (2007)

16. Du, X., Xiao, Y., Guizani, M., Chen, H.H.: An effective key management scheme
for heterogeneous sensor networks. Ad Hoc Netw. 5(1), 24–34 (2007)

17. Du, X., Chen, H.H.: Security in wireless sensor networks. IEEE Wirel. Commun.
Mag. 15(4), 60–66 (2008)

18. Du, X., Guizani, M., Xiao, Y., Chen, H.H.: Transactions papers, a routing-driven
elliptic curve cryptography based key management scheme for heterogeneous sensor
networks. IEEE Trans. Wirel. Commun. 8(3), 1223–1229 (2009)

https://doi.org/10.1109/JIOT.2018.2828463
https://doi.org/10.1016/j.jnca.2018.03.006
https://doi.org/10.1109/TETC.2017.2759329
https://doi.org/10.1109/TDSC.2018.2791432

An Efficient Anonymous Authentication Scheme 635

19. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 26

20. Xiong, H., Guan, Z., Chen, Z., Li, F.: An efficient certificateless aggregate signature
with constant pairing computations. Inf. Sci. 219, 225–235 (2013)

21. Shen, L., Ma, J., Liu, X., Wei, F., Miao, M.: A secure and efficient id-based aggre-
gate signature scheme for wireless sensor networks. IEEE Internet Things J. 4(2),
546–554 (2017)

22. Kumar, P., Kumari, S., Sharma, V., Sangaiah, A.K., Wei, J., Li, X.: A certificate-
less aggregate signature scheme for healthcare wireless sensor network. Sustain.
Comput. Inform. Syst. 18, 80–89 (2018)

23. Zhang, L., Zhang, F.: A new certificateless aggregate signature scheme. Comput.
Commun. 32(6), 1079–1085 (2009)

24. Deng, J., Xu, C., Wu, H., Dong, L.: A new certificateless signature with enhanced
security and aggregation version. Concurr. Comput. Pract. Exp. 28(4), 1124–1133
(2016)

25. Gong, Z., Long, Y., Hong, X., Chen, K.: Two certificateless aggregate signatures
from bilinear maps. In: IEEE SNPD 2007, vol. 3, pp. 188–193 (2007)

26. Au, M.H., Yang, G., Susilo, W., Zhang, Y.: (Strong) Multidesignated verifiers
signatures secure against rogue key attack. Concurr. Comput. Pract. Exp. 26(8),
1574–1592 (2014)

27. Tu, H., He, D., Huang, B.: Reattack of a certificateless aggregate signature scheme
with constant pairing computations. Sci. World J. 2014, 1–9 (2014)

28. Malhi, A.K., Batra, S.: An efficient certificateless aggregate signature scheme for
vehicular ad-hoc networks. Discret. Math. Theor. Comput. Sci. 17(1), 317–320
(2015)

29. Bayat, M., Barmshoory, M., Rahimi, M., Aref, M.R.: A secure authentication
scheme for VANETs with batch verification. Wirel. Netw. 21(5), 1–11 (2014)

30. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052252

31. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Secure id-based linkable and revocable-
iff-linked ring signature with constant-size construction. Theory Comput. Sci. 469,
1–14 (2013)

32. Poettering, B., Stebila, D.: Double-authentication-preventing signatures. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014, Part I. LNCS, vol. 8712, pp.
436–453. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11203-9 25

33. Bellare, M., Poettering, B., Stebila, D.: Deterring certificate subversion: efficient
double-authentication-preventing signatures. In: Fehr, S. (ed.) PKC 2017, Part II.
LNCS, vol. 10175, pp. 121–151. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54388-7 5

34. Boneh, D., Kim, S., Nikolaenko, V.: Lattice-based DAPS and generalizations: self-
enforcement in signature schemes. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.)
ACNS 2017. LNCS, vol. 10355, pp. 457–477. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-61204-1 23

35. Mao, S., Zhang, P., Wang, H., Zhang, H., Wu, W.: Cryptanalysis of a lattice based
key exchange protocol. Sci. China Inf. Sci. 60(2), 028101–028105 (2017)

36. Wu, W., Zhang, H., Wang, H., Mao, S., Wu, S., Han, H.: Cryptanalysis of an MOR
cryptosystem based on a finite associative algebra. Sci. China Inf. Sci. 59(3), 32111
(2016)

https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/978-3-319-11203-9_25
https://doi.org/10.1007/978-3-662-54388-7_5
https://doi.org/10.1007/978-3-662-54388-7_5
https://doi.org/10.1007/978-3-319-61204-1_23
https://doi.org/10.1007/978-3-319-61204-1_23

636 J. Liu et al.

37. Huang, X., Mu, Y., Susilo, W., Wong, D.S., Wu, W.: Certificateless signatures:
new schemes and security models. Comput. J. 55(4), 457–474 (2011)

38. He, D., Zeadally, S., Xu, B., Huang, X.: An efficient identity-based conditional
privacy-preserving authentication scheme for vehicular ad hoc networks. IEEE
Trans. Inf. Forensics Secur. 10(12), 2681–2691 (2015)

Understanding User Behavior in Online
Banking System

Yuan Wang1,2, Liming Wang1(B), Zhen Xu1, and Wei An1

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{wangyuan,wangliming,xuzhen,anwei}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

Abstract. Currently, online banking has become extremely popular all
over the world and plays a significant role in people‘s daily lives. However,
the user behaviors have yet to be studied carefully in existing works. In
this paper, we provide a large-scale, comprehensive measurement study
of online banking users based on a two-week long dataset consisting
of transactions conducted by personal users in one of the top banks
in China. We demonstrate the customer behaviors mostly comply with
the heavy-tail distribution which implies abnormal activities. In further
analysis of those activities, we figure out that most of them are generated
by two types of accounts, i.e., corporate accounts paying salaries and
dishonest bank employees plastering the achievement. We extract a set
of features to classify the two types of abnormal accounts from the benign
ones. The experimental result illustrates that our system can accurately
detect them with only 0.5% false positive rate.

Keywords: Online bank · User behavior · Abnormal detection

1 Introduction

Currently, online banking has become extremely popular all over the world and
plays a significant role in people’s daily lives. Beneficial to online banking, cus-
tomers can conduct their financial activities like payments, money transfers or
investment in a convenient and efficient manner at anytime and anywhere.

The popularity of Internet banking has led to an increase of frauds, perpe-
trated through cyber attacks, phishing scams and malware campaigns, result-
ing in substantial financial losses [15]. A lot of researchers dedicate in mitigat-
ing those threats [1–4,9,11,14,15]. The most challenging reason for bank fraud
detection is its dynamic behavioral characteristics. To outwit online banking
defenses, fraudulent behavior is dynamic, rare, and dispersed in very large and
highly imbalanced datasets. In addition, different customer habits vary widely,
making it more difficult to distinguish fraudulent transactions from normal ones.

Therefore, in-depth understanding the customer behaviors is urgent because
(1) It can make our understanding of customer behavior more clear and profound;
(2) It can help us portray customer behavior more appropriately; (3) It provides
c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 637–646, 2019.
https://doi.org/10.1007/978-3-030-14234-6_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_35&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_35

638 Y. Wang et al.

reliable knowledge to distinguish between suspicious behavior and good behavior.
However, few studies have been carried out on understanding customer behaviors
due to existing barriers. Privacy is the first one that leads to the unavailability of
the data for researchers, and another one is the competition issue. Therefore, most
works on online banking only provide coarse results without detailed analysis. Due
to the cooperation with a large Chinese bank, we have the opportunity to inves-
tigate online banking customer behaviors based on the anonymized ground-truth
dataset that will be addressed in detail in Sect. 2.

In this paper, we systematically studied the customer behavior of online
banking. Using the transaction data, we analyzed customer behavior from the
access pattern and transaction pattern to characterize how customers access the
online banking service and conduct their transaction activities. To deeply under-
stand customer behavior, we compared sessions from thirdparty websites with
online banking websites in access pattern analysis and examined the differences
between non-transaction and transaction sessions through transaction pattern
analysis. Our main contributions are stated as follows:

(1) We first present analysis results of customer behavior from a session per-
spective. We find that session length (of requests) is a heavy-tailed (also
power-law) behavior and that sessions from online banking website have a
marked bimodal pattern in working hours, while sessions from thirdparty
websites do not perform as well.

(2) We provide insights into the details of transaction behavior. We find that
transaction amount follows a lognormal distribution. Our analysis of the
number of transactions and payees per session shows that the dishon-
est internal employees and corporate customers are among the personal
accounts.

(3) Based on the analysis, we propose CatchAbs, a supervised method for abnor-
mal activites detection. We show that it can accurately catch these two types
of abnormal behaviors.

The remainder of this paper is organized as follows. Section 2 describes the
data used in this paper and Sect. 3 estimates the access patterns of online bank-
ing customer, especially characteristics of the session perspective. In Sect. 4, we
investigate the transaction behavior and summarize the findings we derived and
implications. In Sect. 5, we present the detection system and analyze the results.
Section 6 discusses the related work, while Sect. 7 concludes this paper.

2 Data Description

With the online banking system, customers log in to access the online banking ser-
vice through a browser, and they can perform various financial activities, inquiries,
money transfers, fee payments, and investments, by using a personal account or
corporate account. Each request of a customer will be stored as a record in the data.
Our data is collected from one of the top banks in China, whose online banking sys-
tem provides online services for millions of customers every day. It includes all the

Understanding User Behavior in Online Banking System 639

records in the duration of 12 days from July 7, 2014 to July 18, 2014. The record
contains various information about the customer’s behavior, such as time stamp,
account ID, payer ID, payee ID, operation (e.g. login, money transfer), amount,
login IP, login area, operation status (success or failure).

Personal information was anonymized to meet personal privacy policy. Three
types of sensitive information about customer identities are anonymized: (1)
customer login ID (or user ID) usually with a unique ID for one customer in the
online banking website, (2) customer transaction IDs (payer IDs or query IDs) in
the online banking site, one for a card, where sometimes one customer login ID
may correspond to a few transaction IDs, (3) payee IDs of the beneficiary account
in a transaction. After filtering some error records, we finally have 23,212,800
sessions and 91,002,483 records in total (Table 1).

The characteristics of the authenticated session are that the session retains
the user ID of the successfully logged-in user, while the unauthenticated session
does not have the user ID. A total of 4,983,518 authenticated sessions include
3,412,869 customers and 23,863,321 total records in our data. Unauthenticated
sessions may be created by the crawler and have less value than authenticated
sessions, so our analysis in the following sections will focus on authenticated
sessions. Operation describes a customer’s action like ‘login’ or ‘logout’ in the
online banking system. We call a session as a transaction session if there exists
at least one transaction (money-moving operation) in a session; otherwise call it
as a non-transaction session.

Table 1. Summary of the on-line banking data

Records Sessions Customers

Unauthenticated 18,162,843 12,467,088 0

Authenticated Website 56,249,672 6,457,533 2,707,737

Thirdparty 16,589,968 4,288,179 1,375,557

Total 91,002,483 23,212,800 3,411,486

Customers can also access online banking services through a thirdparty web-
site. For example, a customer surfs an online shopping website, finds a product of
interest, and then logins to an online banking account for payment. To the online
banking system, these sessions from thirdparty websites are given a special login
API (‘PayGateLogin’). In our paper, we use ‘thirdparty’ to denote these sessions
and ‘website’ denotes those sessions from online banking homepage.

3 Access Patterns

Login frequency is the key metric for the online banking system. We first study
the login frequency of customers in term of the number of logins per hour in
the duration of 12 days. As shown in Fig. 1, both logins from the online banking

640 Y. Wang et al.

Fig. 1. No. of customer logins over time (interval of 1 h).

website and the thirdparty websites reveal a clear diurnal pattern, i.e. the heavy
logins in the daytime and the light logins at night. The logins from online bank-
ing homepage (website) are significantly different from those via the thirdparty
websites (thirdparty). It is observable that the number of website logins on every
day is bimodal. Specifically, one peak appears before lunch time (10 am–11 am),
and the other appears at afternoon (3 pm–4 pm), which implies that more people
like to access the online banking service at work time.

Unlike the counter service, customers can access the online banking system at
anytime via the online banking system and thereby increase the service capability
for the bank. As shown in Fig. 1, the online banking system responses to tens
of customers every second in the busy hour, while the inter-arrival time even
achieves 325 s at night for the online banking system. Also, logins of online
banking at weekend are remarkably less than that on weekdays. However, the
logins from the thirdparty websites do not reveal the bimodal pattern and the
weekend pattern.

100 101 102 103 104 105 106

Session duration (s)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

C
C

D
F

Website
Thirdparty

(a)Session duration

100 101 102 103 104 105

Session length (of requests)

10-6

10-5

10-4

10-3

10-2

10-1

100

C
C

D
F

=1.558

=2.373

Website
Thirdparty
Thirdparty fit
Website fit

(b)Fitting for session length

100 101 102 103 104 105

Inter-request time (sec)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

C
C

D
F

Website
Thirdparty

(c)Inter-request time

Fig. 2. Characteristic of intra-session.

Figure 2(a) shows CCDF as session duration varies. Here, the complementary
cumulative distribution(CCDF) is defined as

F (x) = P (X > x) (1)

which presents more information on the tail-end extreme events. As shown in
this figure, customers spent less time from the thirdparty websites (thirdparty)
than that from online banking (website). Specifically, the mean and median of

Understanding User Behavior in Online Banking System 641

session duration of thirdparty sessions are 71.4 s and 34 s, 209.6 s and 87 s for
website sessions, which double the time that is spent on the thirdparty sessions
on average. Most of thirdparty sessions last for a short time, while some website
sessions last for a longtime, even for a few hours. As shown in Fig. 2(a), 85.47%
of thirdparty sessions are less than 100 s, while only 58.62% of website sessions
last less than 100 s.

In Fig. 2(b), we observe a well fitted power-law distribution of session length
of online banking sessions (website) in double-logarithmic plot of CCDF and a
power-law tail for the distribution of thirdparty sessions. Here, the power-law
distribution has a probability density function (PDF)

f(x) ∼ x−α−1, x → ∞. (2)

where the complementary cumulative distribution (CCDF) is

P (X ≥ x) ∼ x−α, x → ∞. (3)

The power-law-type distribution is called heavy-tailed or fat-tailed if α < 2.
In this case, the variance of the random variable is infinite. Furthermore, when
α ≤ 1, the mean of random variable is also infinite [5]. The fitting result of web-
site sessions is shown in Eq. (3) with α = 1.558. It reveals that the distribution
of website sessions is a heavy-tailed distribution. This implies that the number
of long sessions is more than expectation as exponential distribution or normal
distribution, e.g., the longest session has 44,187 requests.

We also characterize the inter-request time within a session. The CCDF dis-
tribution is shown in Fig. 3(c). Due to the timeout settled by online banking,
the distributions present a large change around 900 s (15 m). The inter-requests
more than 900 s happen when customer return to the online banking system
after timeout, the online banking will still record this request with the session
ID kept on in customer client cache. However, the online banking system will
not respond to this request and will require customers to login again.

4 Transaction Patterns

4.1 Transaction and Non-transaction

We first examine the characteristics of non-transaction activities and transaction
activities from the session view. Our data has 1,253,652 transaction sessions
in total and most transactions are performed through website sessions.

As shown in Fig. 5(a), non-transaction sessions take less time than that of
transaction sessions. 58.58% of non-transaction sessions are performed within
the range of [10 s, 100 s], while 72.66% of transaction sessions with falling into
the range of [100 s, 1000 s]. The mean and median of session duration of non-
transaction session are 119.6 s, and 38 s, respectively, while they are 329 s and
193 s for transaction sessions.

642 Y. Wang et al.

100 101 102 103 104 105 106

Session duration (sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C

D
F

Transaction
Non-transaction

(a)Session duration

100 101 102 103 104 105

Session length (of requests)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Transaction
Non-transaction

(b)Session length

100 101 102 103 104 105

Session length (of requests)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

C
C

D
F

=1.524 =2.083

Transaction
Non-transaction
Transaction fit
Non-transaction fit

(c)Session length

Fig. 3. Characteristics of non-transaction and transaction sessions.

Also, non-transaction sessions have less requests as shown in Fig. 5(b), 91.25%
non-transaction sessions have less than 10 requests, while there are only 36.14%
transaction sessions with less than 10 requests. The mean and median of session
length are 16.3 and 11 for transaction sessions, respectively, and they are 5.5
and 4 for non-transaction sessions. Most of the non-transaction sessions are
query tasks, which usually take less time than that of transaction tasks, as
explained in Sect. 4. Figure 5(c) shows that the distribution of session length
of non-transaction sessions is fitted to a power-law distribution with α = 1.524,
which means that it also follows the heavy-tailed distribution. It can be explained
that customers with transaction tasks have more clear goals than those with non-
transaction tasks.

4.2 Transaction Amount

In order to understand transaction behavior, we first examine the amount
per transaction. As shown in Fig. 4, the transaction amount clearly follows a
log-normal distribution. The probability distribution function for the lognormal
distribution is given by:

10-2 100 102 104 106 108

Amount per transaction

10-6

10-5

10-4

10-3

10-2

10-1

100

C
C

D
F

Transaction amount
Lognormal fit

Fig. 4. CCDF of amount per transaction, which follows a lognormal distribution.

Understanding User Behavior in Online Banking System 643

With this equation, we fit the log-normal distribution of Fig. 4 as Eq. (4)
with σ = 2.11 and μ = 8.83. The mean, and median of transaction amounts
are 22,786 and 1900 (CNY), respectively. Among the transactions, the largest
10% contribute 81.35% of the total transaction amount, which largely follows
the 80–20 rule [10].

f(x) =
1

xσ
√

2π
e− (lnx−μ)2

2σ2 (4)

4.3 Transaction Times

The distribution of the number of transactions per session is shown in Fig. 5(a),
which follows a power-law distribution with α = 1.922. 85.46% of transaction
sessions have only one transaction in one session. However, the maximum is 3240
transactions in a session.

100 101 102 103 104

No. of transactions per session

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

C
C

D
F =1.922

(a)No. of transactions in
one session

100 101 102 103 104

No. of transactions per session

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
at

io
 o

f
d

o
m

in
at

in
g

 t
ra

n
sa

ct
io

n
 t

yp
e

(b)The ratio of
dominating transaction

type

100 101 102 103 104

No. of transactions per session

100

101

102

103

N
o

. o
f

p
ay

ee
s

(c) The No. of
transactions and payees

Fig. 5. Characteristic of transaction sessions.

Then we investigate the dominating transaction type, which contributes the
most transactions in the online banking system. Figure 5(b) shows the ratio of the
dominating transaction type in a session. We can find that the more transactions
there are in a session, the higher the proportion of its dominating transaction
type. When a session has more than 10 transactions, the dominating transaction
type contributes most of the transactions: the proportion of dominating trans-
action type for these sessions is all greater than or equal to 0.5; the proportion
of dominating transaction type for 90% of sessions exceeds 0.969.

To further examine the transaction behavior, Fig. 5(c) shows the number of
transactions and payees per session. We find that sessions follow two trends:
One trend is that a large number of transactions accompany a small number of
payees; Another trend is that the number of payees increases with the number of
transactions. (1) We choose the group of sessions with more than 100 transactions
and more than 100 payees. After examining the transaction type and amount for

644 Y. Wang et al.

every session, we confirm these sessions are wage payment activities by corporate
customers. (2) We choose the group of sessions with more than 100 transactions
and less than 10 payees to analyze. These sessions are mainly divided into two
transaction types. One type is fee payment transaction, which refers to business
behavior. The other type has proved to be fraud behavior of bank employee to
obtain better job performance.

5 Abnormal Detection

In this section, we develop a detection system CatchAbs that distinguishes the
abnormal accounts described in Sect. 4.3. Since manual tagging takes a lot of
time and effort, we only mark sessions with session length greater than 500. In
the end, we found 152 anomalous sessions in these 376 sessions, 22 of which were
bank employee activities and 130 were corporate events.

5.1 Feature Extraction

Intuitively, we should select features which help spot the type of anomalies we
are interested in. As mentioned in Sect. 4.3, we want to find the anomalies with
large operations in transaction activities. To accommodate detection of all of
these anomalies, we extract 5 features from session-level information.

F1 The number of transactions per session.
F2 The ratio of transactions (F1) to session length per session.
F3 The ratio of payees to transactions (F1) per session.
F4 The average transaction amount per session.
F5 The entropy of transaction amount per session.

5.2 Detection and Analysis

After we extract the sessions, we want to predict whether they are abnormal
or normal. We use a random forest, a supervised classifier, using the features
described above. The major advantage of using random forest lies in the unex-
celled accuracy and efficiency.

We computed values for all 5 features for all sessions in our dataset, input
the the data to a random forest classifier, and ran 10 fold cross-validation(CV).
In 10-fold CV, the data is randomly splitted into 10 folds, where the classifier is
trained on 9-folds and tested on the remaining fold. The classifier repeats this
process 10 times, each time a different fold is used for testing.

The resulting classification accuracy was 96.9%, with 0.5% false positives (i.e.
classify normal users as abnormal) and 0.0% false negatives (i.e. classify abnor-
mal users as normal). Further, we dig into the false positives (FPs) obtained
from the classifier to gain a better understanding into possible classes of abnor-
mal activities that we may have missed in our ground truth data. We manually
checked each session incorrectly classified as abnormal. We find that most of
them stem from a pay fee service with a very little amount. It is not expected
to see these service provider activities among normal personal accounts.

Understanding User Behavior in Online Banking System 645

6 Related Work

A few works have been carried out on customer behavior analysis in online
banking because of the privacy, secrecy and commercial interest concerns. Their
works focused on two aspects: service quality improving and the online banking
fraud detecting.

Service Quality Improving: Some works attempted to improve the service qual-
ity of online banking services [6,7,12,13]. These works focused on the attitude of
customers who use the online banking services and investigated the factors con-
tributing to customer satisfaction [6]. They usually adopted the way of asking the
participants and bank customers with a questionnaire. Different to their work,
our analysis is based on the transaction data, which comprehensively describes
customer behaviors during transaction activities in server side, with the objec-
tive to in-depth understand customer behaviors and to improve the quality of
online banking services.

Online Banking Fraud Detecting: Some works detected the online banking fraud
based on customer behavior analysis [1,2,9,11,15]. Their research usually mod-
els the behavior of each customer and monitors whether it deviates from nor-
mal behavior [8]. However, these works do not systematically analyze customer
behavior based on the real data. Wei et al. [15] introduced a systematic online
banking fraud detection method using transaction data from a large Australian
bank, but they did not provide any analysis for the online banking customer
behavior. Carminati et al. [2] developed a semi-supervised and unsupervised
fraud and anomaly detection method based on a real-world dataset of a large
Italian national bank. His system design is guided by data analysis, but his work
only describes the distribution of the amount and transaction frequency. Com-
pared to these studies, our research relies on the dataset that includes more
details about the transaction, and more online banking patterns are revealed
in this paper. Moreover, because of the lack of publicly available and real-world
frauds, most these works resort to synthetically generated frauds. Our work based
on ground truth data reveals some of the abnormal behavior that is happening.

7 Conclusion

In this paper, we have analyzed the characteristics of online banking customer
behaviors based on personal transaction data collected from a large bank in
China. To the best of our knowledge, this work is the first attempt to compre-
hensively understand the usage patterns of the online banking.

We first analyzed the statistical and distribution properties of the important
variables of the access patterns from the session level. The analysis showed that
most customer behaviors follow a power-law distribution. Then, we investigated
the details of the transaction behaviors, e.g., the number of transactions, the
transaction amount, and the transaction account. Our analysis also revealed

646 Y. Wang et al.

some special accounts, e.g., corporate accounts and dishonest internal employees.
Finally, we developed CatchAbs, a supervised method for detection of these two
abnormal behaviors. In a word, our work will be helpful to improve the quality
and security of the online banking service.

References

1. Cabanes, G., Bennani, Y., Grozavu, N.: Unsupervised learning for analyzing the
dynamic behavior of online banking fraud. In: Ding, W., et al. (eds.) ICDM Work-
shops, pp. 513–520. IEEE Computer Society (2013)

2. Carminati, M., Caron, R., Maggi, F., Epifani, I., Zanero, S.: BankSealer: a decision
support system for online banking fraud analysis and investigation. Comput. Secur.
53, 175–186 (2015)

3. Carminati, M., Valentini, L., Zanero, S.: A supervised auto-tuning approach for
a banking fraud detection system. In: Dolev, S., Lodha, S. (eds.) CSCML 2017.
LNCS, vol. 10332, pp. 215–233. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-60080-2 17

4. Dhankhad, S., Mohammed, E., Far, B.: Supervised machine learning algorithms for
credit card fraudulent transaction detection: a comparative study. In: 2018 IEEE
International Conference on Information Reuse and Integration (IRI), pp. 122–125.
IEEE (2018)

5. Gao, J., Cao, Y., Tung, W.-W., Hu, J.: Multiscale Analysis of Complex Time Series:
Integration of Chaos and Random Fractal Theory, and Beyond. Wiley, Hoboken
(2007)

6. Hanafizadeh, P., Keating, B.W., Khedmatgozar, H.R.: A systematic review of inter-
net banking adoption. Telematics and Inform. 31(3), 492–510 (2014)

7. Herington, C., Weaven, S.: E-retailing by banks: e-service quality and its impor-
tance to customer satisfaction. Eur. J. Mark. 43(9/10), 1220–1231 (2009)

8. Jyothsna, V., Prasad, V.R., Prasad, K.M.: A review of anomaly based intrusion
detection systems. Int. J. Comput. Appl. 28(7), 26–35 (2011)

9. Karlsen, K.N., Killingberg, T.: Profile based intrusion detection for internet bank-
ing systems (2008)

10. Kock, R.: 80–20 Principle: The Secret to Success by Achieving More with Less.
Crown Business, New York City (1999)

11. Kovach, S., Ruggiero, W.V.: Online banking fraud detection based on local and
global behavior. In: Proceedings of the Fifth International Conference on Digital
Society, Guadeloupe, France, pp. 166–171 (2011)

12. Pikkarainen, K., Pikkarainen, T., Karjaluoto, H., Pahnila, S.: The measurement
of end-user computing satisfaction of online banking services: empirical evidence
from finland. Int. J. Bank Mark. 24(3), 158–172 (2006)

13. Rodrigues, L.F., Costa, C.J., Oliveira, A.: How does the web game design influence
the behavior of e-banking users? Comput. Hum. Behav. 74, 163–174 (2017)

14. Carminati, M., Baggio, A., Maggi, F., Spagnolini, U., Zanero, S.: FraudBuster:
temporal analysis and detection of advanced financial frauds. In: Giuffrida, C.,
Bardin, S., Blanc, G. (eds.) DIMVA 2018. LNCS, vol. 10885, pp. 211–233. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93411-2 10

15. Wei, W., Li, J., Cao, L., Ou, Y., Chen, J.: Effective detection of sophisticated
online banking fraud on extremely imbalanced data. World Wide Web 16(4), 449–
475 (2013)

https://doi.org/10.1007/978-3-319-60080-2_17
https://doi.org/10.1007/978-3-319-60080-2_17
https://doi.org/10.1007/978-3-319-93411-2_10

Privacy-Preserving Remote User
Authentication with k-Times

Untraceability

Yangguang Tian1(B), Yingjiu Li1, Binanda Sengupta1, Robert Huijie Deng1,
Albert Ching2, and Weiwei Liu3

1 School of Information Systems,
Singapore Management University, Singapore, Singapore

{ygtian,yjli,binandas,robertdeng}@smu.edu.sg
2 i-Sprint Innovations, Singapore, Singapore

albert.ching@i-sprint.com
3 School of Mathematics and Statistics,

North China University of Water Resources and Electric Power, Zhengzhou, China
liuweiwei@ncwu.edu.cn

Abstract. Remote user authentication has found numerous real-world
applications, especially in a user-server model. In this work, we intro-
duce the notion of anonymous remote user authentication with k-times
untraceability (k-RUA) for a given parameter k, where authorized users
authenticate themselves to an authority (typically a server) in an anony-
mous and k-times untraceable manner. We define the formal security
models for a generic k-RUA construction that guarantees user authen-
ticity, anonymity and user privacy. We provide a concrete instantiation of
k-RUA having the following properties: (1) a third party cannot imper-
sonate an authorized user by producing valid transcripts for the user
while conversing during a session; (2) a third party having access to
the communication channel between the user and the authority cannot
identify the session participants; (3) the authority can trace the real
identities of dishonest users who have authenticated themselves for more
than k times; (4) our k-RUA construction avoids using expensive pair-
ing operations—which makes it efficient and suitable for devices having
limited amount of computational resources.

Keywords: Remote user authentication · Anonymity ·
User privacy · k-times untraceability

1 Introduction

User authentication is typically the first line of defense in most of the secure
information systems. In the well-known user-server setting, a user has to authen-
ticate herself to a (possibly remote) authentication server before opting for the
services. Moreover, in order to protect a legitimate user’s privacy, anonymous
c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 647–657, 2019.
https://doi.org/10.1007/978-3-030-14234-6_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_36&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_36

648 Y. Tian et al.

user authentication is widely studied in the literature and is deployed in numer-
ous real-world applications. Researchers have come up with several solutions that
exploit cryptographic techniques, such as group signatures [2], blind signatures
and ring signatures [16], to ensure (or enhance) privacy. On the other hand, in
some applications, it is required that a legitimate user can authenticate herself
(and benefit from the services) for a limited number of times. For example, sys-
tems like e-cash, e-coupon and e-voting need such privacy guarantees. In such
scenarios, k-times anonymous authentication (k-TAA) [3,13–15] serves the pur-
pose. It is a fine-grained approach for privacy protection which ensures that a
legitimate user can be authenticated anonymously only up to k number of times
(for a threshold parameter k). On the other hand, if a user tries to authenticate
herself beyond the threshold k, then her anonymity is compromised.

Although k-TAA schemes address the issue of restricting a user to bounded
number of authentications, k-TAA is not suitable for building an authentica-
tion system for a mobile platform due to the following reasons. First, the tra-
ditional (and more generic) user authentication system involves an authentica-
tion server and multiple independent users, whereas k-TAA requires an extra
(trusted) group manager. For example, it is cumbersome for a mobile device
user if she has to consult a third party every time she enrolls to (or logs into)
a server. Second, a mobile-platform-based system usually employs devices with
low-power and limited resources, whereas k-TAA requires certain computation-
intensive operations such as pairings (bilinear maps) and proofs of knowledge.
Thus, to achieve both anonymity and traceability in a secure mobile setting is a
non-trivial task.

In this work, we aim to design an efficient anonymous remote user authen-
tication system suitable for mobile devices with a guarantee that a dishonest
user deviating from the correct execution of the protocol can be traced. We
explore whether we can exploit an e-coupon1/e-cash system to construct an
anonymous remote user authentication system with traceability. We observe that
an e-coupon system is more suitable than an e-cash system due to the following
reasons. Unlike a bank, an e-coupon system, in general, does not involve central
authority (group manager), which is required in an e-cash system in order to gen-
erate coins for the users. Moreover, e-cash system usually uses more expensive
algorithms/protocols than e-coupon system. The deployment of mobile e-coupon
systems [9] has showed their viability in practice. In the e-coupon system, the
issue2 protocol between a user and the vendor (service provider) can be applied
to the enrollment phase of user authentication. On the other hand, the redeem
protocol involves checking the authenticity of coupons, and certain services are
redeemed in case coupons are valid. We do not consider whether the services are
provided or not; we only focus on checking the authenticity of coupons in the
user authentication setting as the goal of authentication server is to authenticate
a legitimate (or authorized) user only.

1 An e-coupon is also sometimes named as a multi-coupon as such a coupon can be
redeemed more than once [6].

2 An e-coupon system is usually comprised of issue and redeem protocols [6].

Privacy-Preserving Remote User Authentication 649

We note that a secure and anonymous remote user authentication with trace-
ability cannot be simply built upon existing e-coupon systems. The main concerns
of existing e-coupon systems [1,5,6,10,12] can be listed as follows: unforgeability,
double-redemption detection, unlinkability and unsplittability. The e-coupon sys-
tem proposed by Liu et al. [11] has a new property: “k-times redemption detec-
tion” while the basic security requirements mentioned above are also met. Specif-
ically, the real identity of a dishonest user can be traced by the service provider
if the user tries to redeem the coupon more than k times—which aligns with
our design goal. However, contrary to their claims, their e-coupon system fails
to achieve traceability since a dishonest user in their system can misuse coupon
without being detected.

1.1 This Work

In this work, we introduce the notion of anonymous remote user authentication
with k-times untraceability (k-RUA) that enables authorized users to authenti-
cate themselves to a remote authentication server anonymously and ensures the
traceability to detect dishonest users. Our contributions can be summarized as
follows.

– We present the formal security definitions for privacy-preserving remote user
authentication. In particular, we propose a user authenticity model to cap-
ture impersonation attacks, an anonymity model to address an honest-but-
curious3 authentication server and a user privacy to ensure the privacy of
protocol participants.

– We present the first generic construction of k-RUA, which is built upon a
secure e-coupon system. We prove it can achieve user authenticity, anonymity
and user privacy. In particular, k-times untraceability enables an authorized
user to authenticate herself to an authentication server up to k times without
being traced. The real identity of a dishonest user is revealed to the authen-
tication server in case the user tries to authenticate for more than k times.

– We show that the e-coupon system proposed in [11] fails to achieve their
claimed k-times redemption detection. We fix their e-coupon system in our
proposed k-RUA. In addition, we show that the same attacks are applicable
to their previous work [10] and we also fix it accordingly.

1.2 Related Work

k-Times Anonymous Authentication. Teranishi et al. [14] proposed the first
authentication scheme which allows users to anonymously perform the authenti-
cation at most k times (k-TAA). In particular, a user’s identity is fully protected
within the k-times authentication, while anyone is able to trace a dishonest user
trying to authenticate herself beyond the allowable k times. Later on, dynamic

3 The authentication server is assumed to execute the protocol as specified, just try
to learn additional information from the transcript during protocol execution.

650 Y. Tian et al.

k-TAA (denote k-TAA′) schemes were proposed in the literature [3,13] that
allow the service provider to independently grant/revoke a user from his access
group in order to have better control over their clients. We note that some con-
structions [3,13] were based on expensive pairings (bilinear maps), which are not
suitable for devices with limited resources.

E-coupon System. The privacy-preserving e-coupon system was first proposed
by Chen et al. [6] that allows a user purchase e-coupons and redeem them unlink-
ably. Furthermore, the number of redemptions remaining can be hidden from
the vendor (i.e., coupon issuer). To reduce the cost for issuing and redeeming
coupons, Nguyen [12] proposed an efficient e-coupon system which has constant
communication and computation costs (that does not scale with the redemption
limit k). Nguyen’s e-coupon system also allows the coupon issuer to revoke an e-
coupon. In an independent work [5], Canard et al. proposed an e-coupon system
that is more efficient than [6]. They added new features to an e-coupon system
that include the following: a user can choose the number of coupons she wants
to issue; a user can choose the value of each coupon from a set of pre-defined
values.

Armknecht et al. [1] proposed an e-coupon system that takes into account
multiple vendors. Specifically, a user can redeem multiple coupons anonymously
with different vendors in an arbitrary order. This system prevents double-
spending by maintaining a trusted database that records the transaction of each
redeemed coupon. Liu et al. [10] proposed a pairing-free e-coupon system that
achieves both traceability against dishonest users and anonymity (i.e., untrace-
able) for honest users without involving any trusted third party.

In a recent work, Liu et al. [11] introduced a new notion called “strong user
privacy”, i.e., the privacy of the service chosen by a user during the redemption
process (user redemption privacy). To meet strong user privacy requirements,
they rely on an existing oblivious transfer scheme [7]. We also notice that the
vendor can easily link two redemptions since a single coupon is issued by each
user. However, the vendor cannot trace the real identities of honest users as long
as the number of redemptions does not exceed k.

2 Security Model

Notation. We define a system with n users. We denote the i-th session estab-
lished by a user U as Πi

U , and identities of all the users recognised by Πi
U

during the execution of that session by partner identifier pidi
U . We define sidi

U

as the unique session identifier belonging to the session i established by the user
U . Specifically, sidi

U = {mj}n
j=1, where mj ∈ {0, 1}∗ is the message transcript

among users.
We say an oracle Πi

U may be used or unused. The oracle is considered as
unused if it has never been initialized. The oracle is initialized as soon as it
becomes part of a group. After the initialisation the oracle is marked as used
and turns into the stand-by state where it waits for an invocation to execute

Privacy-Preserving Remote User Authentication 651

a protocol operation. Upon receiving such invocation the oracle Πi
U learns its

partner identifier pidi
U and turns into a processing state where it sends, receives

and processes messages according to the description of the protocol. During that
phase, the internal state information statei

U is maintained by the oracle. The ora-
cle Πi

U remains in the processing state until it collects enough information to
finalise the user authentication. As soon as the authentication is accomplished
Πi

U accepts and terminates the protocol execution meaning that it would not
send or receive further messages. If the protocol execution fails then Πi

U termi-
nates without being accepted.

2.1 System Model

A remote user authentication with k-times untraceability (k-RUA) involves two
types of entities: multiple enorlled users and an authentication server. We define
a k-RUA protocol that consists of the following algorithms/protocols:

– Setup: The authentication server S takes the security parameter λ as input,
outputs the master public/secret key pair (mpk, msk).

– KeyGen: User takes master public key mpk as input, outputs a public/secret
key pair (pk, sk).

– Enrollment: This is an interactive protocol that runs between an enrolled user
and an authentication server S over a public channel. The enrolled user will
generate a credential and become an authorized user after enrollment.

– Authentication: This is an interactive protocol between an authorized user and
an authentication server S over a public channel. An authorized user sends
her credential and k-size commitments to S, while S accept it if and only if
the credential send is valid.

– k-Times Untraceability: The authentication server S takes k+1 authentication
transcripts of one user as input, outputs the user’s secret key sk.

2.2 Security Model

User Authenticity. Informally, an adversary A attempts to impersonate an
authorized user and authenticate to an authentication server. We define a formal
authenticity game between a probabilistic polynomial-time (PPT) adversary A
and a simulator (i.e., challenger) S below.

– Setup. S generates a master public/secret key pair (mpk, msk) for authenti-
cation server S and public/secret key pairs (pki, ski) for n users by running
the corresponding KeyGen algorithms. In addition, S honestly generates cre-
dential si for n users by running the Enrollment protocol. Eventually, S sends
user’s identity/credential {IDi, si} and server’s identity IDS to A.

– Training. A can make the following queries in arbitrary sequence to S.
• Send: If A issues a send query in the form of (U, i,m) to simulate a network

message for the i-th session of user U , then S would simulate the reaction
of instance oracle Πi

U upon receiving message m, and return to A the

652 Y. Tian et al.

response that Πi
U would generate; If A issues a send query in the form of

(U ′, ‘start’), then S creates a new instance oracle Πi
U ′ and returns to A

the first protocol message.
• Secret Key Reveal: If A issues a secret key reveal (or corrupt, for short)

query to user i, then S will return the secret key ski to A.
• Master Secret Key Reveal: If A issues a master secret key reveal query to

S, then S returns the master secret key msk to A.
• State Reveal: If A issues a state reveal query to (possibly unaccepted)

instance oracle Πj
Ui

(j �= i), then S will return all internal state values
contained in Πj

Ui
at the moment the query is asked.

– Challenge. A wins the game if all of the following conditions hold.
1. S accept user i; It implies pids

S
and sids

S
exist.

2. A did not issue Master Secret Key Reveal query to S;
3. m ∈ sids

S
, but there exists no Πs

Ui
which has sent m (m denotes the

message transcript from user i).
Note that A is allowed to reveal all user’s secret keys. We define the advantage
of an adversary A in the above game as

AdvA(λ) = |Pr[A wins]|.
Definition 1. We say a k-RUA protocol has user authenticity if for any PPT
A, Advk-RUA

A (λ) is a negligible function of the security parameter λ.

Anonymity. Informally, an adversary (e.g., authentication server) is not
allowed to identify who are the authenticated users, with the condition that
authorized users authenticate themselves to authentication server within k times.
We define a game between an insider adversary A and a simulator S below.

– Setup: S generates a master public/secret key pair (mpk, msk) for authentica-
tion server S and public/secret key pairs (pki, ski) for n users by running the
corresponding KeyGen algorithms. In addition, S honestly generates a k-size
set of credentials {si} for each user by running the Enrollment protocol. Even-
tually, S sends user’s identities/credential sets {IDi, si} and server’s master
public/secret key pairs (mpk, msk) to A. S also tosses a random coin b which
will be used later in the game.

– Training: A interacts with all users via a set of oracle queries (as defined
in the user authenticity model). Eventually, A outputs two new distinct
users (ID0, ID1), while S generates two credential sets {s0}, {s1} for users
(ID0, ID1) by running the Enrollment protocol.

– Challenge: A is given one of challenge credential sets {sb}, and A continues to
interact with all users (include two new users ID0, ID1) via all oracle queries
until it terminates and outputs bit b′.
Note that A is allowed to activate at most k sessions for ID0 or ID1 during
Challenge stage, and A is not allowed to reveal the secret keys of ID0 and
ID1. We define the advantage of A in the above game as

AdvA(λ) = |Pr[S → 1] − 1/2|.

Privacy-Preserving Remote User Authentication 653

Definition 2. We say a k-RUA protocol has anonymity if for any PPT A,
AdvA(λ) is a negligible function of the security parameter λ.

User Privacy. Informally, an adversary (e.g., non-authorized user) is not
allowed to identify who are the session participants. We define a game between
an outsider adversary A and a simulator S below:

– Setup: S generates a master public/secret key pair (mpk, msk) for S and
public/secret key pairs (pki, ski) for n users by running the corresponding
KeyGen algorithms. In addition, S honestly generates credential si for each
user by running the Enrollment protocol. Eventually, S sends user’s iden-
tity/credential {IDi, si} and server’s identity IDS to A. S also tosses a ran-
dom coin b which will be used later in the game. We denote the original n
users set as U .

– Training: A is allowed to issue Send, State Reveal queries and at most n-2
Secret Key Reveal queries to S. In particular, A is not allowed to issue Master
Secret Key Reveal query to S. We denote the honest (i.e., uncorrupted) user
set as U ′.

– Challenge: S randomly selects two users ID0, ID1 ∈ U ′ as challenge candi-
dates, and S removes them from U ′ and simulates ID∗

b by either ID∗
b = ID1

if b = 1 or ID∗
b = ID0 if b = 0.

Let authentication server S interact with user ID∗
b . A can access all the

communication transcripts among them.

S ↔ ID∗
b =

{
ID1 b = 1
ID0 b = 0

Finally, A outputs b′ as its guess for b. If b′ = b, then S outputs 1; otherwise,
S outputs 0.
We define the advantage of A in the above game as

AdvA(λ) = Pr[S → 1] − 1/2.

Definition 3. We say a k-RUA protocol has anonymity if for any PPT A,
AdvA(λ) is a negligible function of the security parameter λ.

3 Security Risks of E-coupon Systems [10,11]

We notice that the privacy-preserving e-coupon systems in [10,11] include two
important primitives: a new blind signature scheme and an existing oblivious
transfer scheme [7]. The blind signature aims to achieve user’s anonymity (i.e.,
untraceability) with respect to service provider, which is the target of subsequent
attacks. That is, the dishonest users may misuse a valid coupon and successfully
avoid the Reveal algorithm. To show the potential security risks of [10] and its
extension [11], we just review the extended e-coupon system [11]. Note that the

654 Y. Tian et al.

detailed description of extended e-coupon system is referred to [11], and the
notation below will mostly follow the notation in [10,11].

Concrete Attacks. By summarising the security risks in [11], we classify two
types of adversaries. The goal for both of them is to avoid their Reveal algorithm
and misuse a valid coupon. Below we present the detailed attacks respectively.

– Type one. The target is user’s secret key. In the issue stage, user receives
values (δ1 = pkk′

U , δ2 = gk′
) from S. However, a dishonest user U can replace

her secret key x to x′ and ask S to blindly sign it. Specifically, a dishonest
user computes α = (gx′y)x1 , β = (gx′

)x1 , λ = gx1 , and m = H1(α, β, λ), r =
m · βa · δ

′b·x1/a
1 where δ′

1 = gk·x′
. Eventually, user stores (α, β, λ, r, s) as a

valid coupon after interaction with S. Note that α, β, r are generated using
the new secret key x′.
Notice that a dishonest user is allowed to modify the value δ1 (to δ′

1)
and pass the verification of blinded signature successfully: H1(α, β, λ) ?=
β−s ·αH2(H1(α,β,λ),r) · r. In the reveal stage, the secret value x1 will be revealed
with regard to a misbehaving user. However, S could not determine the iden-
tity of dishonest user in its database since pkx1

U �= β(= gx1·x′
).

– Type two. The target is the chosen randomness. In the issue stage, a dishonest
user computes λ = gx′

1 (rather than λ = gx1) using a different randomness
and generates other parameters honestly using the randomness x1. In the
reveal stage, a secret value x′

1 will be revealed with regard to a misbehaving
user U . However, S could not determine the identity of dishonest user in its
database since pk

x′
1

U �= β(= gx1·x). Note that the randomness in λ is different
from the randomness in α, β, r.
Same attack can be applied to [10]. If a dishonest user redeems a coupon
twice, (R1 = x′

1 + c1 · x1 · x,R2 = x′
1 + c2 · x1 · x), then S is not able to obtain

the secret key x (what S can obtain is a value x1 · x).

4 Proposed Construction

A user obtains her credential after interacting with an authentication server S

during Enrollment stage. Later, S acknowledges an authorized user’s authenticity
during Authentication stage if and only if the user authenticates with a valid
credential. In particular, S is able to link the authorized user’s credential with
commitments at most k times. If an authorized user authenticates herself to S

for k+1 times, then S can identify the real identity of the user.

– Setup: The authentication server S takes the security parameter λ as input
and outputs the master secret key msk = (y, e, f) and the master public
key mpk = (gy, g1 = ge, g2 = gf , gy

1 , gy
2). S also generates the hash functions

H1 : {0, 1}∗ → G, H2 : G → Zq. S chooses a public key encryption (PKE)
scheme (e.g., [8]) for the system.

– KeyGen: The user i chooses the secret key ski = x ∈ Zq and computes the
public key pki = gx

1 .

Privacy-Preserving Remote User Authentication 655

– Enrollment: The user i and the authentication server S interact with each
other as described below

• Upon receiving a request from the user i, S chooses a random element K ∈R

Zq, computes (δ1 = gK, δ2 = (gx
1 · g2)K) and sends them to the user i;

• The user i chooses x1, a, b ∈R Zq and computes α = (gx
1 · g2)y·x1 , β =

(gx
1 ·g2)x1 . Then, the user i computes m = H1(α||β), r = m ·βa ·δb·x1

2 ,m′ =
H2(m||r)/b and sends m′ to S;

• S computes the blinded signature s′ = K + y · m′ and sends it to the user i;
• The user i verifies whether gs′ ?=gy·m′ · δ1. If verification fails, it outputs
abort; otherwise, the user computes s = s′ · b + a and stores (α, β, r, s)
as a valid credential.

– Authentication: The authorized user i and the authentication server S interact
with each other as described below

• The user i computes two k-size sets of commitments (S1, S2, · · · , Sk) =
(gx·s1

1 , gx·s2
1 , · · · , gx·sk

1) and (S1, S2, · · · , Sk) = (gs1
2 , gs2

2 , · · · , gsk
2), where

si ∈ Zq for each 1 ≤ i ≤ k;
• The user i generates the ciphertext Ci = Encmpk({Si, Si}) and sends it to

the authentication server S as an authentication request;
• Upon receiving a request from the user i, S chooses a challenge nonce ci

and sends it to the user i;
• The user i computes R1 = x1 + s1 · ci + s2 · c2i + · · · sk · ck

i , R2 = x · R1

and sends message mi = (R1, R2, α, β, r, s) to S;
• S checks whether H1(α||β) ?=β−s · αH2(H1(α||β)||r) · r and gR2

1 · gR1
2

?=β · Sci
1 ·

S
c2i
2 · · · Scki

k · S1
ci · S2

c2i · · · Sk
cki . If either of them fails, it outputs abort;

otherwise, it outputs accept.
– Trace: We assume that a specific credential (α, β, r, s) is used by a dishonest

user for k + 1 times. Then, S gets k + 1 shares about the secret x1 and x1 · x,
respectively. Once S obtains the values of x1 and x1 · x, S can successfully
compute the user’s secret key x.

4.1 Security Analysis

Theorem 4. The proposed k-RUA achieves user authenticity if the OMDL
assumption [4] holds over the underlying group G.

Due to the page limit, the detailed security proof and the subsequent proofs are
deferred to the full version of this work.

Theorem 5. The proposed k-RUA achieves anonymity if the DDH assumption
[8] holds over the underlying group G.

Theorem 6. The proposed k-RUA achieves user privacy if the underlying public
key encryption scheme [8] is IND-CCA secure.

656 Y. Tian et al.

5 Conclusion

In this work, we have proposed a generic construction of anonymous remote
user authentication with k-times untraceability. We have also defined the for-
mal security models to achieve certain security requirements that include user
authenticity, anonymity and user privacy. We leave the construction of anony-
mous and traceable remote user authentication with designated verifier (where
authorized users can be authenticated by a designated authentication server
only) as a future work.

Acknowledgements. The work is supported by the Singapore National Research
Foundation under NCR Award Number NCR2016NCR-NCR002-022. It is also sup-
ported by AXA Research Fund.

References

1. Armknecht, F., Escalante B, A.N., Löhr, H., Manulis, M., Sadeghi, A.-R.: Secure
multi-coupons for federated environments: privacy-preserving and customer-
friendly. In: Chen, L., Mu, Y., Susilo, W. (eds.) ISPEC 2008. LNCS, vol. 4991,
pp. 29–44. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79104-
1 3

2. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure
coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44598-6 16

3. Au, M.H., Susilo, W., Mu, Y., Chow, S.S.M.: Constant-size dynamic k-times anony-
mous authentication. IEEE Syst. J. 7(2), 249–261 (2013)

4. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol.
16(3), 185–215 (2003)

5. Canard, S., Gouget, A., Hufschmitt, E.: A handy multi-coupon system. In: Zhou,
J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 66–81. Springer,
Heidelberg (2006). https://doi.org/10.1007/11767480 5

6. Chen, L., Enzmann, M., Sadeghi, A.-R., Schneider, M., Steiner, M.: A privacy-
protecting coupon system. In: Patrick, A.S., Yung, M. (eds.) FC 2005. LNCS,
vol. 3570, pp. 93–108. Springer, Heidelberg (2005). https://doi.org/10.1007/
11507840 12

7. Chu, C.-K., Tzeng, W.-G.: Efficient k -Out-of-n oblivious transfer schemes with
adaptive and non-adaptive queries. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol.
3386, pp. 172–183. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-30580-4 12

8. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055717

9. Hinarejos, M.F., Isern-Deyà, A.-P., Ferrer-Gomila, J.-L., Huguet-Rotger, L.:
Deployment and performance evaluation of mobile multicoupon solutions. Int. J.
Inf. Secur. 18, 1–24 (2018)

https://doi.org/10.1007/978-3-540-79104-1_3
https://doi.org/10.1007/978-3-540-79104-1_3
https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1007/11767480_5
https://doi.org/10.1007/11507840_12
https://doi.org/10.1007/11507840_12
https://doi.org/10.1007/978-3-540-30580-4_12
https://doi.org/10.1007/978-3-540-30580-4_12
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717

Privacy-Preserving Remote User Authentication 657

10. Liu, W., Mu, Y., Yang, G.: An efficient privacy-preserving e-coupon system. In: Lin,
D., Yung, M., Zhou, J. (eds.) Inscrypt 2014. LNCS, vol. 8957, pp. 3–15. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16745-9 1

11. Liu, W., Mu, Y., Yang, G., Yu, Y.: Efficient e-coupon systems with strong user
privacy. Telecommun. Syst. 64(4), 695–708 (2017)

12. Nguyen, L.: Privacy-protecting coupon system revisited. In: Di Crescenzo, G.,
Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 266–280. Springer, Heidelberg
(2006). https://doi.org/10.1007/11889663 22

13. Nguyen, L., Safavi-Naini, R.: Dynamic k -times anonymous authentication. In:
Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
318–333. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 22

14. Teranishi, I., Furukawa, J., Sako, K.: k -Times anonymous authentication (extended
abstract). In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 308–322.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 22

15. Tian, Y., Zhang, S., Yang, G., Mu, Y., Yu, Y.: Privacy-preserving k-time authen-
ticated secret handshakes. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS,
vol. 10343, pp. 281–300. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-59870-3 16

16. Zhang, F., Kim, K.: ID-based blind signature and ring signature from pairings.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 33

https://doi.org/10.1007/978-3-319-16745-9_1
https://doi.org/10.1007/11889663_22
https://doi.org/10.1007/11496137_22
https://doi.org/10.1007/978-3-540-30539-2_22
https://doi.org/10.1007/978-3-319-59870-3_16
https://doi.org/10.1007/978-3-319-59870-3_16
https://doi.org/10.1007/3-540-36178-2_33

Early Detection of Remote Access Trojan
by Software Network Behavior

Masatsugu Oya1 and Kazumasa Omote2(B)

1 JAIST, Nomi, Ishikawa 923-1292, Japan
s1510008@jaist.ac.jp

2 University of Tsukuba, Tsukuba 305-8573, Japan
omote@risk.tsukuba.ac.jp

Abstract. APT (Advanced Persistent Threat) attack is increasing in
recent years. APT attackers usually utilize malware called RAT (Remote
Access Trojan) to access and control computers by stealth. The invasion
method of RAT has been refined and it is extremely difficult to prevent
its infection beforehand. Hence, an approach to detect RAT infection
at the early stage after infection is important. However, there are two
drawbacks in the existing early detection methods of RAT; (1) they
do not become early detection in some circumstances; (2) they do not
consider the RAT-like healthy software (e.g., system related software
and antivirus software) for evaluation experiments. In this paper, we
propose a detection method of RAT based on the new mechanism of early
detection. Our evaluation experiments show that the proposed method
can distinguish between RAT and the RAT-like healthy software with
great accuracy.

Keywords: Advanced Persistent Threat (APT) attack ·
Remote Access Trojan (RAT) · Machine learning ·
Host-based detection

1 Introduction

Along with the rapid development of networking technologies and information
systems, most organizations store information in their computers as digitalized
data. At the same time, APT (Advanced Persistent Threat) attack, which is a
type of cyber-crime targeting high-value information assets owned by a specific
organization, is increasing [11]. Today, APT attack is one of the biggest threat
to companies and government agencies. The ultimate objective of APT attacks
is to steal high-value information assets such as technical property, financial
information, and personal information of customers. Once confidential informa-
tion is leaked, organization must incur a great loss, therefore, strong protection
measures against APT attacks are extremely important.

APT attackers usually use malware called RAT (Remote Access Trojan) to
achieve their ultimate goal. RAT is a type of malware that enables the attacker
to access and control remote computers by stealth. After a computer in the
c© Springer Nature Switzerland AG 2019
F. Guo et al. (Eds.): Inscrypt 2018, LNCS 11449, pp. 658–671, 2019.
https://doi.org/10.1007/978-3-030-14234-6_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14234-6_37&domain=pdf
https://doi.org/10.1007/978-3-030-14234-6_37

Early Detection of Remote Access Trojan by Software Network Behavior 659

target organization is infected with RAT, it establishes a connection with C&C
(Command and Control) server prepared by the attacker. The attacker sends
commands through C&C server to control infected computers and RAT conducts
intelligent activities such as downloading tools, exploring the network, searching
and gathering files in the computers, and sending them to the attacker.

RAT infects computers by targeted emails in most cases [12]. The attacker
guides the targets to open the attachments or URLs by utilizing any measures
including social engineering. The methods of targeted email has become more
and more sophisticated, so that it is extremely difficult to completely block the
intrusion of RAT at the entrance. Therefore, an approach to detect infection of
RAT at the early stage of post-infection activity is important.

One of the traditional detection methods of malware is signature based detec-
tion. In signature based detection method, malicious network communications
are judged based on predefined signatures. However, with this method, it is
not possible to detect unknown malware or variants of known malware, so that
detection can be easily avoided [7]. On the other hand, in behavior based mal-
ware detection method, it is possible to detect unknown malware and variants of
known malware by modeling behaviors peculiar to malware and different from
normal state. Also, malware detection methods are classified into two types
depending on the place where the system is introduced: network based detection
method and host based detection method. In a host based detection method, it
is necessary to consider the influence on the host computer and the operation
management of the system since the system is installed in each computer, so
that the operation is difficult as compared with network base detection method.
However, since the host based detection method is much richer in the amount
of information that can be used for malware detection, it is possible to detect
malware more accurately. Moreover, the host based detection method has the
advantage that it is relatively easy to identify the illegal software on the host
when detecting malware.

As a related research on our approach, Adachi et al. [1] proposed a host based
early detection method of RAT based on network behavior on a computer. How-
ever, this method has a drawback that much time may be required for detection
according to behavior of RAT or benign communication. As a result, it does
not become early detection in some circumstances. Furthermore, only several
specific benign software selected by the authors were used for the evaluation
experiments. As a result, it incorrectly detects the communication of system
related software and antivirus software as RAT. Therefore, the practicality of
this method on a real environment is unclear.

Our contributions are as follows.
– We propose a detection method of RAT based on the new mechanism of

early detection. The mechanism is different from the existing methods [1,3].
While the early stage may get longer in the existing methods, our early stage
finishes after a fixed period of time. Thanks to this improvement, it achieves
true early detection.

660 M. Oya and K. Omote

– Our method is greatly different from existing researches in that features
extracted from multiple connections in the initial stage communication are
combined to generate features for one process. As a result, diversity of various
communication by the same process can be expressed as a feature, and also,
it is possible to learn a more accurate detection model of RAT.

– We perform evaluation experiments considering the RAT-like healthy software
such as system related software and antivirus software. The network behavior
of such software resembles RAT. As for benign features, we capture the data
of communication and process from seven computers in the campus network
of JAIST. Nevertheless, our method distinguishes between such software and
RAT with great accuracy. Our method is superior to the previous method [1].
More precisely, our method can detect RAT with F-value of 91.5% while the
previous method can detect it with F-value of 69.6% in our experiment.

2 Related Work

As related researches on behavior based malware detection method, methods
of learning a model classifying malignant behavior and benign behavior using a
machine learning algorithm have been proposed. Tang et al. [10] and Ozsoy et al.
[4] proposed systems that detect malware by using machine learning techniques
for the behavior of hardware such as CPU. In the research by Sangkatsanee
et al. [9] and the research by Bekerman et al. [2], techniques for detecting attacks
by extracting network features such as the number of packets, the number of
destination ports, the number of TCP packets with an ACK flag was proposed.
However, it is not clear whether these methods are effective for RAT.

As a research on RAT detection, Li et al. [5] proposed a method of calculat-
ing feature values from sessions and learning detection models using clustering
method. Liang et al. [6] showed that a highly accurate detection model can be
realized by using features, such as the number of destination IP addresses and
the number of connections for each application, that can be acquired on each
computer. However, these methods use all network packets from the beginning
to the end of a session or software to judge whether the communication is gen-
erated by RAT or not. It means that confidential information can has been
already stolen at the point when the system detects the communication of RAT.
Yamada et al. [14] proposed the method to detect reconnaissance activities of
RAT. However, it is also unclear whether the method contribute to the preven-
tion of information leakage. Wu et al. [13] proposed the network-based detection
framework of human controlled RAT session.

Jiang et al. [3] proposed a method to detect RAT before the information
leakage occurs by using the communication data extracted from the early stage
of the session. Adachi et al. [1] improved the detection rate of RAT by adding
features that can be acquired on the computer to the approach of using the data
from the early stage of the session. However, in common with these two studies,
they have a drawback that much time may be required for detection according
to behavior of RAT or benign communication. As a result, it does not become

Early Detection of Remote Access Trojan by Software Network Behavior 661

early detection for many situations. Furthermore, only several specific benign
software selected by the authors were used for the evaluation experiments. As a
result, it incorrectly detects the communication of system related software and
antivirus software as RAT. Thus, these methods [1,3] are not practical.

The existing methods [1,3] of RAT do not become early detection in some
circumstances, since the early stage does not finish as long as the packets are
transmitted in the existing methods. In other words, the early stage finishes
when the observed packets are not transmitted for a fixed period of time. Thus,
much time may be required for RAT detection. On the other hand, in our new
mechanism of early detection, the early stage inevitably finishes after a fixed
period of time.

3 Proposed Method

From the viewpoint of countermeasures against information leakage, detection
of RAT should be realized as early as possible after infection. We propose a
detection method of RAT based on the new mechanism of early detection. The
mechanism is different from the existing methods [1,3]. While the early stage
may get longer in the existing methods, our early stage finishes after a fixed
period of time. Thanks to this improvement, it achieves true early detection.

Our proposed method consists of two stages: learning phase and detection
phase. In both stages, feature extraction is a main of processing. In this section,
we first describe the details of the feature extraction processing and then explain
the each stage. For simplicity, the detection engine running on the host is
assumed to be trustworthy.

3.1 Our Approach

We observed benign and RAT communications, and then discovered the following
important innate characteristics of RAT:

– RAT tends to behave secretly, and then the communication data are low.
– Benign communication including the RAT-like healthy software has greater

traffic from the beginning because of non-stealthiness. Note that it does not
always has greater traffic.

Our results confirm that the above innate feature of RAT practically exists and
that the difference of network behavior between RAT and the RAT-like healthy
software is obvious during the early stage. If the communication data of RAT are
large, much witness are captured by network devices such as IDS. Our approach
is based on the above characteristics.

3.2 Feature Extraction

In feature extraction processing, features are calculated from monitored com-
munication for each process and a feature vector of the process is generated.
The target network communication is TCP connections that is started from the

662 M. Oya and K. Omote

Fig. 1. Monitoring of target communications

target computer to the external network. Therefore, UDP connections, com-
munication from the target computer to a computer in the same network, and
connection initialized from the outside are not monitored. This is because most
RATs communicate by TCP packets and a connection is established from the
infected computer to the C&C server when RAT infects the computer. Also,
considering the privacy of users and the scalability of the system, TCP payloads
are discarded and only the header parts are acquired.

Since the purpose of this research is to detect RAT at the early stage, features
are calculated using only a part of the first few connections for each process. The
new definition of the early stage of communication in this research is as follows.

Definition 1 (Early Stage). The early stage of communication is t seconds
from the first packet for same 5-tuple (Source IP address, Destination IP address,
Source port number, Destination Port number, and Protocol) network packets.

For feature extraction, the first few early stage of connections in each process
are used. Specifically, for each process, the early stage of connections initiated
during the early stage of the first connection of the process are monitored. Thus,
the monitoring time in each process is 2t seconds at maximum. In the case of the
example of Fig. 1, the system monitors the early stage of Connection 1, which is
the first connection of the process, and Connection 2 and Connection 3, which
are the connections started during the early stage of Connection 1.

From the early stage of monitoring connections, eleven types of features
shown in Table 1 are extracted. Then, after obtaining features from all mon-
itoring early stage connections of the process, “Mean”, “Standard Deviation
(SD)”, “Maximum value (Man)”, “Minimum value (Min)”, and “Range” of each
connection features, and also, “Sum” of “PacNum”, “OutPac”, “InPac”, “Out-
Byte” and “InByte” are calculated. Further,“Number of Connections (Conn)”
and “Number of Destination IP addresses (DstIP)” are counted. Finally, a 62
dimensional vector is outputted as a feature vector of the process. A specific
calculation procedure of feature vectors is as follows.

Early Detection of Remote Access Trojan by Software Network Behavior 663

Table 1. Connection features to extract

Feature Explanation

PacNum Total number of packets

OutPac Number of outbound packets

InPac Number of inbound packets

OutByte Data size of outbound packets

InByte Data size of inbound packets

OutByteSD Standard deviation of data size of outbound packets

InByteSD Standard deviation of data size of outbound packets

O/Ipac Rate of OutPac to InPac

O/Ibyte Rate of OutByte to InByte

OB/OP Average data size per one outbound packet

IB/IP Average data size per one inbound packet

1. Read a packet.
2. Judge whether the packet is TCP and the destination is toward the outside

of the network.
3. Identify the connection from the set of source IP address, destination IP

address, source port number, and destination port number.
4. If it is a new connection, identify the process ID, the process name, and the

path of the executable file from the source port number, and store them in a
correspondence table, otherwise, refer the correspondence table and identify
the process.

5. Judge whether the packet is monitoring target.
6. If it is a monitoring target, update connection features (PacNum, OutPac,

InPac, OutByte, InByte).
7. When all monitoring connections of a process are captured, calculate remain-

ing connection features (OutByteSD, InByteSD, O/Ipac, O/Ibyte, OB/OP,
IB/IP).

8. Calculate Mean, SD, Max, Min, Range of each connection feature and Sum
of PacNum, OutPac, InPac, OutByte, InByte.

9. Calculate “Conn” and “DstIP”.
10. Output a feature vector of the process.

Our proposed method differs greatly from existing researches in the point
that the feature vector of a process is generated based on the multiple early
stage connections of the process. Therefore, the diversity of connection, such
as differences and variations in communication sizes for each connection, by
the same process can be captured as features. RAT communication is often
single session and single connection, and due to its characteristics, there is a
time lag between the establishment of the connection to the C&C server and
the attacker who confirms the connection starts attacks. Thus, we can guess
that RAT communication in the early stage is monotonous. On the other hand,

664 M. Oya and K. Omote

benign software will generate a wide variety of connections even in the early
stage. Therefore, we expect that the difference between RAT and benign software
become clear.

3.3 Learning Phase

In this phase, at first, feature vectors of processes of benign software and RATs
are collected, and then the detection model of RAT is learned using those data.
Feature vectors of benign software are gathered by performing the feature extrac-
tion processing described in the previous section on computers which can be
guaranteed that they are not infected with malware. Also, feature vectors of
RAT are collected by running prepared RAT samples. After that, for each col-
lected feature vector, 0 is assigned if the feature vector is for benign software,
and 1 if it is RAT as a label. Finally, the detection model of RAT is generated
by applying supervised learning algorithm of machine learning for this dataset.

3.4 Detection Phase

At the detection phase, the feature extraction processing is executed at the
monitor target computer, and the calculated feature vector is given as an input
to the detection model generated at the learning phase. When the output is 0,
it is assumed that the process is generated by benign software, and when the
output is 1, the process is judged to be RAT.

When a process of RAT is detected, by referring to the location data of
the execution file saved during the feature extraction processing, it is possible
to check and analyze the actual substance. Therefore, it becomes possible to
quickly respond to attacks in the first place, and it makes a time for implementing
countermeasures before information leakage due to APT attack occurs.

4 Evaluation Experiments

4.1 Overview

In this section, we perform two types of evaluation experiments to confirm the
effectiveness of the RAT detection method proposed in the previous section. In
the first experiment, we mainly evaluate the detection performance of RAT by
K-fold cross-validation for feature vectors of RAT and benign software. K-fold
cross-validation is a method of dividing data into k groups and verifying each
group using a model learned with all data of other groups. K-fold cross-validation
enables to evaluate the detection performance against unknown RAT with lim-
ited data since RAT used for learning is not used at the time of evaluation. In
this experiment, we set k = 5.

In the second experiment, the detection model of RAT was learned using all
of the feature vectors of RAT and a part of the feature vector of benign software,
and we evaluate the false detection of the proposed system by using the remaining

Early Detection of Remote Access Trojan by Software Network Behavior 665

Table 2. List of RAT samples

BX Bandook Bozok Cerberus CyberGate

DarkComet DarkNET Ghost LeGeNd Mega

Netbus NovaLite Nuclear OptixPro Orion

Pandora PoisonIvy ProRAT Turkojan WiRAT

dalethRAT deamondRAT jSpy njRAT ucuL

feature vectors of benign software. In the case that many false detections are
created by the system, the cost for examining alerts increases during operation,
which increases the burden on the system administrators, so that the system
is not practical. Therefore, in the second experiment, the practicality of the
proposed system is evaluated from the viewpoint of the amount of false detection.

Before these experiments, we perform a preliminary experiment to deter-
mine the parameter t of the early stage of communication and the combination
of the features to use in the experiments. In all experiments, we use seven type
of machine learning classification algorithms: Decision Tree (DT), Random For-
est (RF), Support Vector Machine (SVM), Naive Bayes (NB), Gradient Tree
Boosting (GTB), AdaBoost (AB), and Multi-layer Perceptron (MLP).

4.2 Evaluation Indices

We use Accuracy (ACC), FPR, FNR, Precision (PRC), Recall (RCL), and
F-measure (F1) as evaluation indices of the experiments. ACC is the accuracy
of the overall identification, FPR is the false detection rate of the benign pro-
cess, and FNR is the index showing the overlook rate of RAT. Also, PRC is the
reliability of malignancy judgment, RCL means the detection rate of RAT, and
F1 is the harmonic mean of PRC and RCL, which is a comprehensive measure
of accuracy and completeness.

4.3 Dataset

As a benign dataset, we use daily communications including system related soft-
ware and anti-virus software from active PCs to generate new dataset. The fea-
ture vectors of benign software used in the experiments are generated by collect-
ing logs of communication and processes from seven computers in the campus
network of JAIST and then by executing the feature extraction program. We
acquired about 24 h (weekday) of communication logs from each computer. The
usage purpose of each computer is creation of documents, browsing of emails
and Web sites, and access to file servers, so it has no big difference from the
usage of most organizations.

Feature vectors of RAT are collected by running RAT samples in a isolated
network environment, and executing the feature extraction program. We use 25
kinds of RATs for evaluation. Table 2 shows the list of RAT samples used in
experiments.

666 M. Oya and K. Omote

4.4 Preliminary Experiment

For evaluation, it is necessary to derive the optimum value of t, the parameter of
the early stage communication, and the combination of features. However, it is
impossible to test all possible combinations from the viewpoint of computational
cost. Therefore, we determine t and the combination of features by the following
procedure.

Table 3. Evaluation results of Experiment 1

DATA AO’16[1] Proposed

ACC FPR FNR PRC RCL F1 ACC FPR FNR PRC RCL F1

PC1+RAT 0.883 0.100 0.200 0.625 0.800 0.702 0.983 0.011 0.040 0.960 0.960 0.960

PC2+RAT 0.733 0.289 0.200 0.476 0.800 0.597 0.970 0.027 0.040 0.923 0.960 0.941

PC3+RAT 0.822 0.185 0.160 0.636 0.840 0.724 0.938 0.054 0.080 0.885 0.920 0.902

PC4+RAT 0.933 0.055 0.160 0.677 0.840 0.750 0.972 0.019 0.080 0.885 0.920 0.902

PC5+RAT 0.894 0.099 0.160 0.538 0.840 0.656 0.984 0.006 0.080 0.958 0.920 0.939

PC6+RAT 0.868 0.126 0.160 0.600 0.840 0.700 0.960 0.020 0.120 0.917 0.880 0.898

PC7+RAT 0.893 0.080 0.200 0.741 0.800 0.769 0.935 0.048 0.120 0.846 0.880 0.863

Total 0.874 0.115 0.177 0.603 0.823 0.696 0.967 0.022 0.080 0.910 0.920 0.915

When t becomes smaller, the earlier detection is possible, but the amount of
features is smaller. So we first set the values from 1 to 10 as candidate values of t.
For each candidate value, we evaluate the detection performance using 15 useful
features determined by F value in analysis of variance. At this time, we consider t
at which the evaluation result is the best as the optimum value. Next, we fix t is to
the optimum value and find the best combination of features by brute force.

As a result of the above processing, the optimum value of t became 4, and
the optimum combination of features became “InByteSDMin + IB/IPMean +
IB/IPMax + IB/IPMin + OutByteSDMax + OutByteSDMean + OB/OPMin
+ IB/IPRange”. In the subsequent experiments, we use the value of t and the
combination of features obtained.

4.5 Experiment 1

In this experiment, we evaluate the detection performance of the proposed
method using collected benign communication and RAT communication. We
use feature vectors extracted from each computer and feature vectors of RAT as
one dataset, and calculate performance indices by 5-fold cross validation. Table 3
shows the results of this experiment. In evaluation experiments using the method
of Adachi et al. [1], the performance was the best on average when SVM was
used as a learning algorithm1 In the proposed method of this research, the best
performance was obtained when GTB was used. Note that we implemented the
method of Adachi et al. [1] by ourselves for comparison.
1 Naive Bayes was the best algorithm in [1]. But, as a result of our code and feature

refining, the result by SVM was the best in our experiment.

Early Detection of Remote Access Trojan by Software Network Behavior 667

Table 4. Evaluation results of Experiment 2

TrainData TestData AO’16 [1] Proposed

FP FPR FP FPR

PC1+RAT PC2+PC3+PC4+PC5+PC6+PC7 77 0.109 49 0.078

PC2+RAT PC1+PC3+PC4+PC5+PC6+PC7 84 0.112 44 0.068

PC3+RAT PC1+PC2+PC4+PC5+PC6+PC7 78 0.103 29 0.044

PC4+RAT PC1+PC2+PC3+PC5+PC6+PC7 108 0.168 26 0.046

PC5+RAT PC1+PC2+PC3+PC4+PC6+PC7 81 0.126 42 0.075

PC6+RAT PC1+PC2+PC3+PC4+PC5+PC7 64 0.090 15 0.024

PC7+RAT PC1+PC2+PC3+PC4+PC5+PC6 99 0.134 14 0.022

Total 591 0.120 219 0.051

Comparing the results, our method is better than the method by Adachi
et al. for all evaluation indices. The detection rate (RCL) of RAT in the proposed
method is 0.920 as a whole, and it becomes clear that most RAT can be detected.
On the other hand, the detection rate by Adachi et al. method is 0.823, indicating
that the detection performance of our method is high by about 0.1. As for FPR,
the proposed method was 0.022 as a whole, while that of Adachi et al. was 0.115.
In PRC which is an index of reliability of RAT detection, the proposed method
is about 0.3 better than the method by Adachi et al.

4.6 Experiment 2

In this experiment, the detection model learned using communication of the
benign process of one computer and all communication of RAT is tested by
the data collected from the remaining computers. At that time, we derive the
false detection rate and evaluate whether it can be suppressed to a level that can
withstand practical use. Also, the collected environment of data used for learning
and data used for testing is different in this experiment, so the versatility of the
proposed method can also be evaluated.

Table 4 shows the evaluation result of number of false positives and the FPR.
In the method of Adachi et al., the FPR is as high as 0.120 as a whole, and many
benign processes are falsely detected as RAT. Note that we implemented the
method of Adachi et al. [1] by ourselves for comparison. On the other hand, in
the proposed method of this study, the number of processes misjudged as RAT
is relatively small, and the FPR is 0.051 as a whole. Therefore, it can be said
that the proposed method is more practical in terms of false detection rate. Also,
this experimental result shows that the proposed method is effective even when
the collection environment of learning data and evaluation data is different.

668 M. Oya and K. Omote

5 Discussion

5.1 False Detection

In the previous section, we show that the proposed method can detect infec-
tion of RAT with high accuracy, and also the possibility of false detection of
benign software is greatly improved compared to existing research. However, in
a large organization that owns a large number of computers, even if there are few
false detection alerts on one computer, the burden on the system administrators
becomes large since the number of alerts as a whole increases.

Table 5. Processes frequently judged as RAT (RAT-like healthy software)

Process Count Type Distributor

backgroundTaskHost.exe 40 System Microsoft

ActionUriServer.exe 30 System Microsoft

svchost.exe 14 System Microsoft

McPltCmd.exe 10 Antivirus McAfee

OneDrive.exe 9 Cloud Microsoft

explorer.exe 8 System Microsoft

System 7 System Microsoft

avgnt.exe 6 Antivirus Avira

Avira.ServiceHost.exe 6 Antivirus Avira

Avira.Systray.exe 6 Antivirus Avira

Dropbox.exe 6 Cloud Dropbox

OSE.EXE 6 Update Microsoft

Shogidokoro.exe 6 Other Individual

TeamViewer Service.exe 6 Development TeamViewer

wsqmcons.exe 6 System Microsoft

Table 5 shows processes that are erroneously detected as RAT many times by
our method. From the results, many erroneous detections occurred for Windows
system related processes, antivirus software related processes, software update
related processes, and cloud storage services. We consider that the characteris-
tics of these processes are similar to RAT since they do not perform vigorous
communication at the early stage compared with other benign processes.

We assume that it is possible to avoid false detection by pre-registering pro-
cesses often judged as RAT in the whitelist. In the proposed method, when
an alert occurs, the location of the executable file of the process can be easily
specified, so the whitelist can be realized by confirming the digital signature
of executable files. Table 6 shows the FPR and the FP, which are calculated
based on the experiment in the previous section, depending on the presence

Early Detection of Remote Access Trojan by Software Network Behavior 669

Table 6. False detection without whitelist and with whitelist

Without WL With WL: 4 Signaturesa With WL: 8 Signaturesb

FPR 0.051 0.007 0.003

Average FP on
1-PC for 7 days

36.500 5.167 2.167

aMicrosoft, McAfee, Avira, Dropbox
bMicrosoft, McAfee, Avira, Dropbox, TeamViewer, Opera, Oracle, ASUS

of the whitelist. Note that the FP is the estimated average value on 1-PC for
7 days. The results indicates that it is possible to reduce the number of false
detections by about 90% by registering digital signatures of Microsoft, McAfee,
Avira, Dropbox in the whitelist. Also, the FPR decreases to 0.003 when eight
publishers, which are Microsoft, McAfee, Avira, Dropbox, TeamViewer, Opera,
Oracle, ASUS, are registered in the whitelist.

5.2 Evasion

We discuss whether our method can be avoided by attackers. As a detection
avoidance, it is conceivable that attackers make RAT to generate communication
similar to the features of a benign process. In this case, RAT needs to establish
some connections with different traffic amounts and make each packet size widely
varied. However, artificially generating unnecessary communication leads to an
increase in the possibility that RAT communication will be detected by another
attack detection system. In particular, mechanically generated communication
is expected to be regarded as communication of Bots. Also, unnecessary commu-
nication increases the amount of traces of the attack. In APT attacks, attackers
need to complete tasks without noticing the targets, therefore, we consider that
attackers are not willing to attempt such means. Furthermore, since this method
learns the detection model by machine learning, the detection criterion is not
clear compared with signature based detection methods. Thus, it is extremely
difficult to analyze and generate communication that the detection model misses.
From the above viewpoint, we conclude that the risk that attackers intentionally
avoid the detection model by such a method is low.

As another detection avoidance method, injecting RAT into a running benign
process (e.g., cross-process injection) is conceivable. If the RAT program is
injected into a process under execution, the RAT apparently functions as the
benign process, so it may be excluded from detection by the whitelist. Also, if the
injection process already communicates and the monitoring time of the proposed
method has passed, the proposed method cannot detect RAT infection. There-
fore, it is necessary to detect RAT infected by injection by another method. In
this case, since the occurrence of code injection itself can be regarded as suspi-
cious activity, a system that can detect injection can be effective. As measures
against injection, there is a method that previously records the address where
Windows API call instructions on the software executable file are described, and
detects the injection by checking the record when the API is actually called [8].

670 M. Oya and K. Omote

6 Conclusion

We proposed a detection method of RAT based on the new mechanism of early
detection. The mechanism is different from the existing methods [1,3]. While
the early stage may get longer in the existing methods, our early stage finishes
after a fixed period of time. Thanks to this improvement, it achieves true early
detection. This makes it possible for the proposed method to more clearly distin-
guish between RAT and the RAT-like healthy software communication including
system related one. Evaluation experiments show that the proposed method can
detect RAT in early stage of post-infection activity with a detection rate of
92%, FPR of 2.2% and FNR of 8.0%. Therefore, we conclude that the proposed
method is sufficiently practical as an early detection system of RAT. As a future
work, we will conduct the experimental evaluation using new RATs in various
networks.

Acknowledgements. This work was partly supported by Grant-in-Aid for Scientific
Research (C) (16K00183).

References

1. Adachi, D., Omote, K.: A host-based detection method of remote access trojan in
the early stage. In: Bao, F., Chen, L., Deng, R.H., Wang, G. (eds.) ISPEC 2016.
LNCS, vol. 10060, pp. 110–121. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49151-6 8

2. Bekerman, D., Shapira, B., Rokach, L., Bar, A.: Unknown malware detection using
network traffic classification. In: CNS 2015, pp. 134–142. IEEE (2015)

3. Jiang, D., Omote, K.: A RAT detection method based on network behavior of the
communication’s early stage. IEICE Trans. Fundam. E99.A(1), 145–153 (2016)

4. Khasawneh, K.N., Ozsoy, M., Donovick, C., Abu-Ghazaleh, N., Ponomarev, D.:
Ensemble learning for low-level hardware-supported malware detection. In: Bos,
H., Monrose, F., Blanc, G. (eds.) RAID 2015. LNCS, vol. 9404, pp. 3–25. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-26362-5 1

5. Li, S., Yun, X., Zhang, Y., Xiao, J., Wang, Y.: A general framework of trojan
communication detection based on network traces. In: NAS 2012, pp. 49–58. IEEE
(2012)

6. Liang, Y., Peng, G., Zhang, H., Wang, Y.: An unknown trojan detection method
based on software network behavior. Wuhan Univ. J. Nat. Sci, 18(5), 369–376
(2013)

7. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: ACSAC 2007, pp. 421–430. IEEE (2007)

8. Rabek, J.C., Khazan, R.I., Lewandowski, S.M., Cunningham, R.K.: Detection of
injected, dynamically generated, and obfuscated malicious code. In: ACM work-
shop on Rapid Malcode, pp. 76–82. ACM (2003)

9. Sangkatsanee, P., Wattanapongsakrn, N., Charnsripinyo, C.: Practical real-time
intrusion detection using machine learning approaches. Comput. Commun. 34(18),
2227–2235 (2011)

https://doi.org/10.1007/978-3-319-49151-6_8
https://doi.org/10.1007/978-3-319-49151-6_8
https://doi.org/10.1007/978-3-319-26362-5_1

Early Detection of Remote Access Trojan by Software Network Behavior 671

10. Tang, A., Sethumadhavan, S., Stolfo, S.J.: Unsupervised anomaly-based malware
detection using hardware features. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.)
RAID 2014. LNCS, vol. 8688, pp. 109–129. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11379-1 6

11. Tankard, C.: Advanced persistent threats and how to monitor and deter them.
Netw. Secur. 2011(8), 16–19 (2011)

12. Check Point Software Technologies Ltd., Grobal Cyber Attack Treands Report
(2017)

13. Wu, S., Liu, S., Lin, W., Zhao, X., Chen, S.: Detecting remote access trojans
through external control at area network borders. In: ANCS 2017, pp. 131–141.
ACM/IEEE (2017)

14. Yamada, M., Morinaga, M., Unno, Y., Torii, S., Takenaka, M.: RAT-based mali-
cious activities detection on enterprise internal networks. In: ICITST 2015, pp.
321–325. IEEE (2015)

https://doi.org/10.1007/978-3-319-11379-1_6
https://doi.org/10.1007/978-3-319-11379-1_6

Author Index

Ammour, Kamel 200
An, Wei 637
Anada, Hiroaki 101

Bag, Samiran 101
Bai, Guangdong 349

Chen, Gongliang 510
Chen, Haixia 308
Chen, Xiao 554
Chen, Xiaofeng 70
Chen, Yuling 223
Cheng, Zhaohui 3
Ching, Albert 647
Cui, Yuzhao 448

de Chérisey, Eloi 533
Deng, Robert Huijie 647
Deng, Ruoyu 384
Ding, Yong 70
Du, Xiaojiang 626
Dutta, Ratna 468

Ge, Aijun 427
Guilley, Sylvain 533
Guo, Jiale 274

Han, Runchao 29
He, Jingnan 117
Hu, Bin 607
Hu, Shuang 510
Huang, Jianye 448
Huang, Qingjia 404
Huang, Qiong 448
Huo, Wei 404

Ji, Yafei 329
Jia, Weijia 384
Jiang, Yan 240
Jin, Ruidong 384

Kawamoto, Junpei 101

Lai, Shangqi 260
Lam, Kwok-Yan 274
Lei, Lingguang 329
Li, Bao 117
Li, Bingbing 240
Li, Feng 404
Li, Hongbo 448
Li, Hui 370
Li, Shengnan 404
Li, Xinhua 404
Li, Yang 183
Li, Yannan 626
Li, Yingjiu 647
Li, Zengpeng 138
Lin, Dongdai 568
Lin, Jingqiang 329
Liu, Dengzhi 223
Liu, Dongxi 86
Liu, Jingang 621
Liu, Jinhui 626
Liu, Joseph K. 260, 289, 349
Liu, Joseph 29, 86
Liu, Shuai 607
Liu, Weiwei 647
Liu, Zhen 49
Liu, Zhiqiang 49
Loh, Randolph 289
Long, Yu 49
Lu, Xianhui 117
Lu, Yu 384
Luo, Guiwen 554
Luo, Xiapu 349

Ma, Chuangui 427
Ma, Jing 404
Mandal, Mriganka 468
Matsushima, Tomohiro 101
Meng, Mark H. 349

Meng, Weizhi 101
Meng, Xiaohan 183

Ning, Jianting 490

Omote, Kazumasa 658
Oya, Masatsugu 658

Pan, Chen 49
Pei, Dingyi 621
Poh, Geong Sen 490

Qi, Wen-Feng 568
Qian, Haifeng 260

Rioul, Olivier 533
Ruan, Na 384

Sakurai, Kouichi 101
Sengupta, Binanda 647
Shen, Hua 240
Shen, Jian 223
Song, Li 329
Steinfeld, Ron 86
Su, Chunhua 101, 384
Sui, Zhimei 260
Sun, Shi-Feng 289
Susilo, Willy 240

Tang, Shuyang 49
Tian, Haibo 70
Tian, Yangguang 647

Wan, Cencen 49
Wang, Anxi 223
Wang, Chen 223
Wang, Ding 138
Wang, Jian 183
Wang, Jingwei 490
Wang, Kunpeng 117
Wang, Lei 200
Wang, Liming 637
Wang, Qiongxiao 329
Wang, Ruyan 183

Wang, Shangpeng 308
Wang, Shi 163
Wang, Yu 349
Wang, Yuan 637
Wijaya, Dimaz Ankaa 86
Wu, Wei 308

Xia, Luning 329
Xiang, Zejun 163
Xu, Dandan 384
Xu, Lili 404
Xu, Mingjie 404
Xu, Zhen 637
Xue, Haiyang 117

Yang, Guomin 448
Yang, Wenzhuo 274
Yi, Xun 274
Yin, Xinchun 490
Yu, Jiangshan 29
Yu, Jingyue 586
Yu, Yang 370
Yu, Yong 626
Yu, Yu 49
Yuan, Xingliang 260
Yuen, Tsz Hon 86

Zeng, Xiangyong 163
Zhang, Daode 117
Zhang, Fangguo 70
Zhang, Hongyan 308
Zhang, Jie 427
Zhang, Mingwu 240
Zhang, Peng 29
Zhang, Renjun 510
Zhang, Shasha 163
Zhang, Yuncong 49
Zhao, Yanqi 626
Zheng, Qun-Xiong 568
Zhou, Shuai 117
Zhou, Tianqi 223
Zhu, Dali 510
Zhu, Xiaoyan 70
Zhu, Xudong 370
Zuo, Cong 260, 289

674 Author Index

	Preface
	Inscrypt 2018
	Contents
	Invited Paper
	Security Analysis of SM9 Key Agreement and Encryption
	1 Introduction
	2 Preliminaries
	2.1 Pairing and Related Complexity Assumptions
	2.2 Security Model of Key Agreement
	2.3 Security Model of Identity-Based Encryption
	2.4 Notation and Supporting Functions

	3 SM9 Key Agreement and Its Security Analysis
	4 SM9 Encryption and Its Security Analysis
	5 Conclusion
	References

	Blockchain and Crypto Currency
	Evaluating CryptoNote-Style Blockchains
	1 Introduction
	2 Primitives
	3 Protocol-Level Comparisons
	3.1 Algorithm Analysis
	3.2 CryptoNote and RingCT Transactions

	4 Performance and Security Comparisons
	4.1 Experimental Methodologies
	4.2 Performance of Critical Cryptographic Processes
	4.3 Network Usage Analysis and Potential Threats

	5 Conclusion
	References

	Goshawk: A Novel Efficient, Robust and Flexible Blockchain Protocol
	1 Introduction
	1.1 Our Contribution
	1.2 Paper Organization

	2 The Goshawk Protocol
	2.1 Two-Level Mining Mechanism
	2.2 Ticket-Voting Mechanism
	2.3 Goshawk: Hybrid Consensus Scheme

	3 Security Analysis
	3.1 Incentive Compatibility
	3.2 Robustness

	4 Flexibility of Protocol Upgrade
	5 Protocol Evaluation and Performance Test
	6 Conclusion
	References

	AFCoin: A Framework for Digital Fiat Currency of Central Banks Based on Account Model
	1 Introduction
	2 Common Definitions
	3 The AFCoin Framework
	3.1 Overview
	3.2 The Central Bank
	3.3 A Commercial Bank
	3.4 Inter-Bank Transfer

	4 Analysis
	4.1 Efficiency
	4.2 Regulation
	4.3 Privacy
	4.4 Reliability
	4.5 Deployment

	5 Conclusion
	References

	Anonymity Reduction Attacks to Monero
	Abstract
	1 Introduction
	2 Background
	2.1 CryptoNote Protocol
	2.2 Monero
	2.3 Monero Transaction
	2.4 Monero Payment ID

	3 Related Works
	3.1 Monero Zero-Mixin Problems
	3.2 Monero Ring Attack

	4 Mitigating Monero Ring Attack
	4.1 Overview
	4.2 Detection Method
	4.3 Mitigation Strategy: Forbid Mixin Duplicates

	5 Extending the Monero Ring Attack
	5.1 Overview
	5.2 Security Model
	5.3 Attack Mode
	5.4 Collaborating with Other Attackers
	5.5 Detecting the Attack
	5.6 Mitigation Strategy: Input Weighting

	6 Leveraging Monero UPID
	6.1 Overview
	6.2 Results
	6.3 Possible Countermeasure: Encrypted Payment ID

	7 Conclusion and Future Works
	References

	Analysis of Variance of Graph-Clique Mining for Scalable Proof of Work
	1 Introduction
	1.1 Our Contributions
	1.2 The Organization of This Paper

	2 Preliminaries
	2.1 Cryptographic Hash Function
	2.2 Background on Bitcoin Mining
	2.3 Mining Ways and Competition

	3 Our Analysis of Bitcoin Mining Time
	3.1 Bitcoin Solo Mining Time: Exponential Distribution
	3.2 Bitcoin Mining Time Variance
	3.3 Bitcoin Mining Time: Relationship with Geometric Distribution

	4 Our Experimental Analysis of Graph Clique Mining Time
	4.1 Graph Clique/ Solo Mining Time
	4.2 Time Variance of Graph Creek Mining
	4.3 Experimental Evaluation
	4.4 Experiments on Bitcoin Solo Mining and Results
	4.5 Experiments on Graph Clique Solo Mining
	4.6 Discussion on Experimental Results

	5 Conclusion and Future Work
	References

	Lattice-Based Cryptology
	Preprocess-then-NTT Technique and Its Applications to Kyber and NewHope
	1 Introduction
	1.1 RLWE-Based Cryptography
	1.2 Our Contribution
	1.3 Our Technique
	1.4 Related Work
	1.5 Outline

	2 Preliminaries
	2.1 Ring LWE and Module LWE Problems
	2.2 Number-Theoretic Transform

	3 1-Round Preprocess-then-NTT (1PtNTT)
	3.1 How to Compute the Product of Two Polynomials f and g?
	3.2 Complexity of 1PtNTT and Its Comparison with NTT

	4 2-Round Preprocess-then-NTT (2PtNTT)
	4.1 How to Compute the Product of Two Polynomials f and g?
	4.2 Complexity of 2PtNTT and its Comparison with NTT

	5 Application of 1PtNTT to Kyber
	5.1 Small-Kyber Parameter Sets
	5.2 Interconversion to KEM

	6 Application of 2PtNTT to NewHope
	6.1 Small-NewHope Parameter Sets
	6.2 Interconversion to KEM

	7 Conclusion
	References

	Two-Round PAKE Protocol over Lattices Without NIZK
	1 Introduction
	1.1 Our Results and Techniques
	1.2 Related Works

	2 Preliminaries
	2.1 Lattice Background and Learning with Errors
	2.2 Smooth Projective Hash Functions
	2.3 The Bellare-Pointcheval-Rogaway Security Model

	3 Reg-SPHF from the Regev Scheme
	4 MP-SPHF from the Miccianio-Peikert Scheme
	5 Two-Round PAKE Protocol over Lattices
	5.1 Correctness Analysis
	5.2 Security Analysis

	6 Conclusion
	References

	Symmetric Cryptology
	Improved Integral Attacks on PRESENT-80
	1 Introduction
	2 Preliminaries
	2.1 Description of PRESENT
	2.2 Integral Attack

	3 Integral Distinguishers of PRESENT
	4 Integral Attack on Reduced-Round PRESENT-80
	4.1 General Model of Integral Attack
	4.2 Expressions of Internal States
	4.3 Integral Attack on 10-round PRESENT-80 Using the (16-th Order) Integral Distinguisher
	4.4 Integral Attack on 12-round PRESENT-80 Using the 60-th Order Integral Distinguisher

	5 Integral Attack on 11-round PRESENT-80 by Key Partition
	5.1 Differential Property of PRESENT's Sbox
	5.2 Integral Attack on 11-round PRESENT-80 Using the 16-th Order Integral Distinguisher

	6 Integral Attack on 13-round PRESENT-80 by Key Partition
	6.1 Partition of the Secret Key Space
	6.2 Integral Attack on 13-round PRESENT Using the 60-th Order Integral Distinguisher

	7 Conclusions
	A Expressions of y0n-2, y16n-2, y32n-2, y48n-2, y0n-3
	B 10-round Integral Attack on PRESETN-80
	C Other Result of Partition of the Key Space
	References

	Improved Differential Fault Analysis on Authenticated Encryption of PAEQ-128
	1 Introduction
	2 AES and PAEQ
	2.1 AES
	2.2 PAEQ

	3 DFA on PAEQ
	3.1 Fault Injection
	3.2 InBound Phase
	3.3 OutBound Phase
	3.4 Key Recovery

	4 Improved DFA Attack on PAEQ-128
	4.1 Information Theoretical Analysis
	4.2 2nd InBound Phase
	4.3 Group and Combine

	5 Complete Attack and Simulations
	5.1 Complexity Analysis
	5.2 Experiments

	6 Conclusions
	References

	Improved Indifferentiability Security Bound for the Prefix-Free Merkle-Damgård Hash Function
	1 Introduction
	2 Preliminaries
	3 Revising Indifferentiability Security Bound of PF-MDHF Given in Chang2006
	4 Main Theorem
	5 Proof of Theorem 2
	6 Conclusion
	A Formal description of the games
	References

	Applied Cryptography
	Privacy-Preserving Data Outsourcing with Integrity Auditing for Lightweight Devices in Cloud Computing
	1 Introduction
	1.1 Related Works
	1.2 Contributions
	1.3 Organization

	2 Preliminaries
	2.1 Bilinear Pairing
	2.2 Blind Signature
	2.3 BLS Signature

	3 Problem Statement
	3.1 The System Model
	3.2 Design Goals

	4 The Proposed Scheme
	5 Evaluation
	5.1 Security Analysis
	5.2 Performance Analysis

	6 Conclusion
	References

	Cloud-Based Data-Sharing Scheme Using Verifiable and CCA-Secure Re-encryption from Indistinguishability Obfuscation
	1 Introduction
	2 Preliminaries
	3 Models and Definitions
	3.1 Algorithms and Definitions of VPRE
	3.2 CCA Security

	4 Proposed Construction
	4.1 Main Idea
	4.2 Our Construction
	4.3 Proof of Security

	5 Deployment in Secure Data-Sharing in Cloud
	6 Conclusion
	References

	An Encrypted Database with Enforced Access Control and Blockchain Validation
	1 Introduction
	1.1 Related Work
	1.2 Organization

	2 Preliminaries
	2.1 Ciphertext-Policy Attribute Based Encryption (CP-ABE)
	2.2 Symmetric Key Encryption (SKE)
	2.3 Notations

	3 Framework and Attack Model
	3.1 Our Framework
	3.2 Attack Model

	4 Construction
	4.1 Overview
	4.2 Security Discussion

	5 Experimentation
	6 Conclusion
	References

	Using Blockchain to Control Access to Cloud Data
	1 Introduction
	2 System Model
	2.1 Overview
	2.2 Cloud Data Storage Server
	2.3 Cloud Security Servers
	2.4 User Group
	2.5 Blockchain

	3 Security Model
	4 Protocols for Using Blockchain to Control Access to Cloud Data
	4.1 Protocol for Pseudo-identity Generation
	4.2 Protocols for Access Control Transaction
	4.3 Protocol for Data Access Transaction

	5 Cloud Data Access Control
	5.1 Data Upload
	5.2 Data Download

	6 Security and Performance Analysis
	6.1 Security Analysis
	6.2 Performance Analysis

	7 Conclusion
	References

	A Multi-client DSSE Scheme Supporting Range Queries
	Abstract
	1 Introduction
	1.1 Related Works
	1.2 Organization

	2 Preliminaries
	2.1 Notation
	2.2 Hardness Assumption
	2.3 Pseudorandom Functions
	2.4 Trapdoor Permutation
	2.5 Searchable Symmetric Encryption
	2.6 Security Definition
	2.7 Binary Tree
	2.8 Binary Database
	2.9 Binary Tree Construction

	3 Multi-client DSSE with Range Queries
	3.1 Basic Construction
	3.2 Multi-client DSSE with Range Queries

	4 Security Analysis
	4.1 Common Leakage
	4.2 Adaptive Security
	4.3 Malicious Clients

	5 Fine-Grained Access Control
	6 Conclusion
	Appendix
	References

	Image Authentication for Permissible Cropping
	1 Introduction
	1.1 Our Contributions

	2 Related Works
	2.1 Image Authentication

	3 Preliminaries
	3.1 Image and Rectangular Areas
	3.2 Cryptographic tools

	4 Image Signature Schemes for Permissible Cropping (ISPC)
	4.1 Definition of an Image Signature for Permissible Cropping
	4.2 Security Properties of ISPC

	5 Construction
	5.1 Algorithm
	5.2 Algorithm Analysis

	6 Experiments
	7 Conclusions
	References

	Information Security
	Chord: Thwarting Relay Attacks Among Near Field Communications
	1 Introduction
	2 Background and Preliminaries
	2.1 Near Field Communication
	2.2 Relay Attack
	2.3 Received Signal Strength Indicator
	2.4 Spatial Distribution of Magnetic Field

	3 Chord
	3.1 Threat Model and Security Assumptions
	3.2 Basic Idea
	3.3 Chord Method
	3.4 Security Analysis

	4 Evaluation and Discussion
	4.1 Experiment Setup
	4.2 Experiment Results
	4.3 Analysis

	5 Related Work
	6 Conclusion
	References

	Analyzing Use of High Privileges on Android: An Empirical Case Study of Screenshot and Screen Recording Applications
	1 Introduction
	2 Background
	2.1 Privilege and Permission on Android
	2.2 Privilege Escalation
	2.3 Access the Screen Display on Android Devices
	2.4 Related Work

	3 Approach
	3.1 Data Set
	3.2 Application Assessment
	3.3 Exploitation

	4 Empirical Case Study
	4.1 App I – Screenshot Ultimate
	4.2 App II – ``No Root Screentshot It''
	4.3 App III – ``FREE Screen Recorder NO ROOT''

	5 Mitigation
	6 Conclusion
	References

	Blockchain-Based Privacy Preserving Deep Learning
	1 Introduction
	2 Related Work
	2.1 Privacy in Deep Learning
	2.2 Blockchain

	3 Proposed Architecture
	3.1 Participants
	3.2 Hubs
	3.3 Parameter Blockchain

	4 Evaluation
	4.1 Datasets and Learning Objectives
	4.2 Computing Framework
	4.3 Neural Network Architectures
	4.4 Experimental Setup
	4.5 Results

	5 Conclusions and Future Work
	References

	SpamTracer: Manual Fake Review Detection for O2O Commercial Platforms by Using Geolocation Features
	1 Introduction
	2 Preliminaries
	2.1 Terminology
	2.2 Classification Algorithms in Manual Fake Review Detection
	2.3 Hidden Markov Model

	3 Manual Fake Review Detection Model
	3.1 Symbols and Definitions
	3.2 Structure Overview
	3.3 Selecting Geolocation Features
	3.4 Modeling Geolocation Features
	3.5 Application of Fake Review Detection Model

	4 Experiments
	4.1 Dataset Description
	4.2 Model Evaluation
	4.3 Regularities of Review Fraud Action

	5 Conclusion
	References

	A Light-Weight and Accurate Method of Static Integer-Overflow-to-Buffer-Overflow Vulnerability Detection
	Abstract
	1 Introduction
	2 System Overview
	3 Identify Potential IO2BO Vulnerabilities
	3.1 Taint Source Initialization
	3.2 Taint Propagation
	3.3 Vulnerability Identification

	4 Vulnerability Filter
	4.1 Overflow Condition
	4.2 Path Constraint

	5 Evaluation
	5.1 Experiments on Juliet Test Suite
	5.2 Experiments on Real IO2BOs

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

	Asymmetric Encryption
	Fully Secure Decentralized Ciphertext-Policy Attribute-Based Encryption in Standard Model
	1 Introduction
	2 Definition and Security Model
	2.1 Definition
	2.2 Security Model

	3 Scheme I: MA-CP-ABE in Composite-Order Bilinear Group
	3.1 Composite-Order Bilinear Group
	3.2 Construction

	4 Scheme II: MA-CP-ABE in Prime-Order Bilinear Group
	4.1 Revisiting Dual System Groups
	4.2 Construction

	5 Conclusion
	A Proof of Security for Scheme I
	B Proof of Security for Scheme II
	References

	Outsourced Ciphertext-Policy Attribute-Based Encryption with Equality Test
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Access Structure
	3.2 Bilinear Pairing
	3.3 Decisional Parallel Bilinear Diffie-Hellman Exponent Assumption

	4 Outsourced Ciphertext-Policy Attribute-Based Encryption with Equality Test
	4.1 Definition
	4.2 Security Models

	5 Our OCP-ABEET Scheme
	6 Security Analysis
	7 Comparison
	8 Conclusion
	References

	Efficient Adaptively Secure Public-Key Trace and Revoke from Subset Cover Using Dj Q Framework
	1 Introduction
	2 Preliminaries
	2.1 Full Binary Tree and Related Surveillance naor2001revocation
	2.2 Bilinear Groups and Complexity Assumptions
	2.3 Left-Over Hash Lemma
	2.4 Overview of the Dj Q Framework

	3 Our TRSC Construction
	4 Security
	5 Conclusion
	References

	Attribute-Based Encryption with Efficient Keyword Search and User Revocation
	1 Introduction
	1.1 Our Motivation
	1.2 Our Contributions
	1.3 Related Work
	1.4 Organization

	2 Preliminary
	2.1 Bilinear Pairings
	2.2 Linear Secret-Sharing Schemes (LSSS)
	2.3 Access Structure
	2.4 Access Tree
	2.5 The Decisional Bilinear Diffie-Hellman Assumption

	3 An Attribute-Based Encryption System with Efficient Keyword Search
	3.1 System Model
	3.2 Definition
	3.3 Chosen Plaintext Attack (CPA) Security
	3.4 Chosen-Keyword Attack (CKA) Security

	4 Attribute-Based Encryption with Efficient Keyword Search and User Revocation
	5 Security Analysis
	5.1 Chosen Plaintext Attack Security
	5.2 Chosen-Keyword Attack Security
	5.3 Collusion Resistance
	5.4 Trapdoor Unlinkability

	6 Performance Evaluation
	6.1 Theoretical Analysis
	6.2 Experiment Analysis

	7 Conclusion
	References

	Public-Key Encryption with Selective Opening Security from General Assumptions
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	3 Selective Opening Security from Tweaked Lossy Encryption
	4 Tweaked Lossy Encryption Scheme from Extractable -protocol
	4.1 Membership-Hard Languages with Efficient Sampling
	4.2 Our Scheme
	4.3 Security Analysis

	5 Instantiations
	5.1 Instantiation of tLPKE from Dual-Mode Commitments
	5.2 Instantiation of tLPKE from Twin-Cramer-Shoup Scheme

	6 Selective Opening Security for the Receiver
	6.1 Tweaked NCER for Receivers
	6.2 Explainable Hash Proof Systems
	6.3 IND-RSO-CPA Secure PKE from EHPS

	7 Conclusion
	References

	Foundations
	Confused yet Successful:
	1 Introduction
	2 Modelization and Definitions
	2.1 The Leakage Model
	2.2 The Confusion Coefficient
	2.3 Distinguishers

	3 Theoretical Expressions for Distinguishers
	3.1 A Communication Channel Between Y(k) and Y(k*)
	3.2 A General Result
	3.3 Classical Distinguishers as Functions of (k) and 2

	4 Comparing Distinguishers with the Success Exponent
	5 Conclusion
	A Proof of Lemma 3
	B Proof of Lemma 4
	C Proof of Lemma 5
	D Proof of Lemma 6
	References

	Searching BN Curves for SM9
	1 Introduction
	2 Preliminaries
	2.1 BN Curves
	2.2 Bilinear Pairing
	2.3 Algorithm Attacks on SM9

	3 Conditions of SM9 Secure Curves
	4 Searching BN Curves for SM9
	5 R-ate Pairing Computation
	5.1 Complexities of Arithmetics in Tower Extension Field
	5.2 Complexities of R-ate Pairing Computation

	6 Matching Security Level
	7 Constructing SM9 System Parameters with the 384-Bit BN Curve
	8 Conclusion
	A Definitions of 384-bit SM9 System Parameters
	References

	Distribution Properties of Binary Sequences Derived from Primitive Sequences Modulo Square-free Odd Integers
	1 Introduction
	2 Preliminaries
	2.1 Primitive Polynomials and Primitive Sequences over Integer Residue Rings
	2.2 Exponential Sums over Integer Residue Rings

	3 Main Results
	3.1 The Proof of Theorem 1
	3.2 The Proof of Theorem 2
	3.3 An Example: Element Distribution of Modulo 2 Reductions of Primitive Sequences over Z/(232-1)

	4 Conclusions
	References

	Towards Malicious Security of Private Coin Honest Verifier Zero Knowledge for NP via Witness Encryption
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 Basic Notations
	2.2 Interactive Protocols
	2.3 Witness Encryption
	2.4 Lossy Encryption
	2.5 Two-Message Secure Function Evaluation

	3 A Conditional Verification Technique via Witness Encryption
	3.1 Warm-Up: Honest Verifier Zero Knowledge from Witness Encryption
	3.2 Three-Round Witness Indistinguishable Arguments from Witness Encryption

	4 Two-Round Witness Indistinguishable Proofs for Specific Languages
	5 Three-Round Zero Knowledge Arguments from Two-Message Secure Function Evaluation
	5.1 Constructions
	5.2 Security

	6 Conclusion
	References

	Faster Homomorphic Permutation and Optimizing Bootstrapping in Matrix GSW-FHE
	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Organization

	2 Preliminaries
	2.1 Subgaussian
	2.2 Matrix GSW-FHE
	2.3 Symmetric Groups and {\rm Z}_{q} -Embeddings

	3 Simpler Homomorphic Permutation in Matrix GSW-FHE
	4 Bootstrapping
	4.1 Optimizing Bootstrapping Procedure
	4.2 Correctness, Security and Performance

	5 A Space-Time Trade-Off
	5.1 The Bootstrapping Procedure
	5.2 Efficiency Comparison

	References

	Short Papers
	A Note on the Sidelnikov-Shestakov Attack of Niederreiter Scheme
	1 Introduction
	2 Niederreiter's Public-Key Cryptosystem Based on GRS Codes
	3 Simplified Attack
	4 Conclusion
	References

	An Efficient Anonymous Authentication Scheme Based on Double Authentication Preventing Signature for Mobile Healthcare Crowd Sensing
	1 Introduction
	2 Preliminaries and System Model
	2.1 Hard Problem Assumption
	2.2 System Model
	2.3 Security Requirements

	3 The Proposed Data Batch Verification Scheme Based on CL-DAPAS for MHCS
	3.1 The Proposed Scheme
	3.2 Security Analysis

	4 Performance Analysis
	5 Conclusion
	References

	Understanding User Behavior in Online Banking System
	1 Introduction
	2 Data Description
	3 Access Patterns
	4 Transaction Patterns
	4.1 Transaction and Non-transaction
	4.2 Transaction Amount
	4.3 Transaction Times

	5 Abnormal Detection
	5.1 Feature Extraction
	5.2 Detection and Analysis

	6 Related Work
	7 Conclusion
	References

	Privacy-Preserving Remote User Authentication with k-Times Untraceability
	1 Introduction
	1.1 This Work
	1.2 Related Work

	2 Security Model
	2.1 System Model
	2.2 Security Model

	3 Security Risks of E-coupon Systems liu2014efficient,liu2017efficient
	4 Proposed Construction
	4.1 Security Analysis

	5 Conclusion
	References

	Early Detection of Remote Access Trojan by Software Network Behavior
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Our Approach
	3.2 Feature Extraction
	3.3 Learning Phase
	3.4 Detection Phase

	4 Evaluation Experiments
	4.1 Overview
	4.2 Evaluation Indices
	4.3 Dataset
	4.4 Preliminary Experiment
	4.5 Experiment 1
	4.6 Experiment 2

	5 Discussion
	5.1 False Detection
	5.2 Evasion

	6 Conclusion
	References

	Author Index

