
Multi-model Database Management
Systems - A Look Forward

Zhen Hua Liu1, Jiaheng Lu2(&), Dieter Gawlick1, Heli Helskyaho2,3,
Gregory Pogossiants4, and Zhe Wu1

1 Oracle Corporation, Redwood City, USA
2 University of Helsinki, Helsinki, Finland

Jiaheng.lu@helsinki.fi
3 Miracle Finland Oy, Helsinki, Finland

4 Soulmates.ai, Pasadena, USA

Abstract. The existence of the variety of data models and their associated data
processing technologiesmake datamanagement extremely complex. In this paper,
we envision a single Multi-Model DataBase Management Systems (MMDBMS)
providing declarative accesses to a variety of data models. We briefly review the
history of the evolution of the DBMS technology to derive requirements of
MMDBMSs and then we illustrate our ideas of building MMDBMSs satisfying
those requirements. Since the relational algebra is not powerful enough to provide
a mathematical foundation for MMDBMSs, we promote the category theory as a
new theoretical foundation, which is a generalization of the set theory. We also
suggest a set of shared data infrastructure services among data models to support
“Just-In-Time” multi-model data access autonomously.

1 Introduction – Why MMDBMS?

Here is a short history of databases: Initially, database management systems supported
the hierarchical and the network model (e.g., IBM’s IMS and GE’s IDS respectively).
These databases evolved very fast and developed the core infrastructures, such as
journaling, transactions, locking, 2PC (group and fast commit), recovery, restart, fault
tolerance, high performance, TP-monitors, messaging, main storage databases, and
much, much more. We still use these concepts today. In the 80’ and 90’, these data-
bases were widely replaced by the relational database management systems (RDBMS).
The main argument is its solid theoretical foundation: set based relational data model
and declarative query language (SQL) based on abstract algebra over set processing.

However, the demands to simplify the interaction between applications and data-
bases with simple storage and querying interfaces are not always possible using only
the relational model. Object databases ODBMS (Object Database Management Sys-
tems) filled this gap by providing easy access to objects with object-oriented pro-
gramming languages. With additional OO features in RDBMSs, ORDBMSs are able to
support many domain data types, such as text, spatial, and images data. Interestingly,
the last decade has witnessed the re-emergence of hierarchical data models in the form
of XML and JSON data and the re-emergence of the network data model in the form of
RDF semantic graph and property graph data. This has led to native XML, JSON,

© Springer Nature Switzerland AG 2019
V. Gadepally et al. (Eds.): Poly 2018/DMAH 2018, LNCS 11470, pp. 16–29, 2019.
https://doi.org/10.1007/978-3-030-14177-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14177-6_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14177-6_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14177-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-14177-6_2

graph database systems and ORDBMSs providing XML, JSON, RDF and graph data
support via SQL/XML, SQL/JSON standards and ongoing standard development to
provide graph access via SQL. More applications are adopting graph modelling and
graph query since graphs provide a flexible way to structure application data and adapt
them dynamically to changes [15, 27, 29]. The source of graph data could come from
relational, XML, or JSON that exist in the different databases [17].

The history of the database evolution has shown that new applications often require
new data models leading to extended infrastructure of DBMSs with new query lan-
guages over these new data models. One existing solution is the polyglot persistency
approach, which leverages numerous DBMSs to support different data models and
integrates them programmatically at the application layer. The biggest issue of polyglot
persistency is that the combined DBMSs is neither declarative nor unified. It leaves
database application to procedurally join data among multiple data models and man-
ually transform among data model instances. Instead of putting the burden on appli-
cations, it is more desirable to have a unified single DBMS [16], which hides the
complexity of multiple data models by providing declarative approach of querying
multi-model data instances and just-in-time data model transformation.

In this position paper, we advocate a multi-model database management system
(MMDBMS) that has the ability to incorporate any data model and allows users to
manipulate all data models declaratively. Users are able to explore the real power of an
MMDBMS by leveraging its ability to autonomously transform data from one data
model to another. MMDBMSs allow data providers and data consumers to look at the
same data using different models depending on their most effective view. MMDBMSs
accomplish these data model transformation autonomously on behalf of users.

We argue that the design of a full-fledged MMDBMS requires a more powerful
mathematical foundation. The last few decades have witnessed a tremendous success of
RDBMSs leveraging the relational algebra as theoretical foundation and therefore
limiting this foundation to relational data. We recognize the same data can be repre-
sented relationally, hierarchically, graphically and are thus queryable by SQL, XQuery,
Property-Graph Query Language respectively. Therefore, we feel the need of having a
new theoretical foundation to provide transparent data model and query language
transformations among those data models and languages. In other words, MMDBMSs
require a powerful mathematical foundation to reason about declarative data model
transformation among multiple data models. In this paper, we promote category theory
[5, 14] shall be able to play the role of the new mathematical foundation to reason
declarative construction and transformations among various data models.

In addition, this paper describes a set of shared data infrastructure services. The
shared services not only include essential common data services, such as transaction,
recovery, security, high availability but also include integrating artificial intelligence to
provide “Just-In-Time” data model access and telemetry service to promote multi-
model situation awareness service [4].

Organization. The remainder of this paper is structured as follows: Sect. 2 introduces
the preliminaries on categories and examples of model transformation. Section 3
presents category theory as the mathematical foundation for MMDBMS. Section 4
illustrates MMDBMS infrastructure services. Section 5 shows related work and Sect. 6
concludes the paper.

Multi-model Database Management Systems - A Look Forward 17

2 Preliminaries on Categories and Model Transformation

The category theory exists since 1940 and has been successfully used in many
mathematical, physical and computer science areas. Recently, researchers have applied
it to the databases area (e.g. the functorial query language in [9–11, 18]). In this section,
we review the concept of category, functor and give an example to perform cross-
model transformation between relation and JSON data.

Definition 1 [19]. A category consists of a collection of objects, a collection of
morphisms, so that:

• Each morphism has specified domain and codomain objects; the notation f: X ! Y
signifies that f is a morphism with domain X and codomain Y.

• Each object has a designated identity morphism: X ! X.
• For any pair of morphisms f, g, there exists a composite morphism whose domain is

equal to the domain of f and whose codomain is equal to the codomain of g.

Definition 2 [19]. A functor F: C ! D, between categories C and D, consists of the
following data:

• An object FC 2 D, for each object c 2 C,
• A morphism F: FC ! FC0 2 D, for each morphism f: c ! c0 2 C, so that the

domain and codomain of F are, respectively equal to F applied to the domain or
codomain of f.

Each category can be considered as a collection of objects with some relations between
them, expressed by “morphisms” – special form of describing relation dependency of
the objects. One category could be mapped to some other by “functors”. Mapping
category C to D means mapping objects in such a way that relationship between
mapped objects in D will be inducted by the corresponded relation in C. With category
theory, MMDBMSs can be considered as a container that hosts multiple data sets of
different data models as multiple different categories.

Fig. 1. A functor F: C ! D from the schema of relation to that of JSON

18 Z. H. Liu et al.

In particular, a functor F: C ! D of database schemas is a mapping that takes
vertices in C to vertices in D and arrows in C to arrows or paths (a sequence of arrows)
in D. For example, in Fig. 1, each of the six leaf vertices: Staff_ID, First, Last, Dep_ID,
Name, Head in C is mapped to the vertex in D of the same label. This mapping is not
necessarily bijective (e.g. the vertex of Dept in D cannot map to any vertex in C).
Based on this mapping, we will discuss in turn three functors on the level of data
instances in Example 1–3, which transform JSON instances to relational instances and
vice versa, illustrated in Table 1.

Example 1 (Pullback). We explore the pullback functor DF by applying it to a JSON
file depicted in Fig. 2. This operation splits the JSON document into two tables.

In the next two examples, we will explore the right and left pushforward functors
induced by Fig. 1.

Example 2 (Right Pushforward). We explore the right pushforward functors
Q

F by
applying on two tables in Fig. 1(b). The JSON file is described in Fig. 2. The JSON file
can be considered as the inner-join of two relational tables (Fig. 3).

Example 3 (Left Pushforward). In this example, we explore the left pushforward
functor. Instead of being an inner-join, as in the case of above, the JSON file is formed
by the union of two tables. In order to deal with the fact that the record do not have
department information, the respective value are skolemized. In other words, the cell is
simply added by a new “variable”.

Table 1. Illustration of data instance transformations induced by three functors.

Category operations Symbol Database operations

Pullback DF : J-inst ! R-inst JSON to relation
Right Pushforward

Q
F : R-inst ! J-inst Relation to JSON by inner-join

Left Pushforward
P

F : R-inst ! J-inst Relation to JSON by outer-join

Fig. 2. Example JSON file and the tables after pull-back operations

Multi-model Database Management Systems - A Look Forward 19

As shown in the above example, based on category schema and functor mapping, a
relational model can be created on top of a hierarchical XML or JSON object. Con-
versely, a hierarchical model can be created on top of relational rows to access rela-
tional object. Therefore, category theory builds the mathematical foundation for the
transformation of data instances between different models, which will be further
elaborated in the following sections.

3 MMDBMS Framework and Category Theory

Building RDBMSs based on the abstract/set algebra as theoretical foundation has been
a tremendous success. The ORDBMS technology is a subsequent successful engi-
neering framework to enable RDBMS to accommodate object data. However, an
ORDBMS by itself is not a MMDBMS since MMDBMSs require an improved
mathematical foundation to reason about a declarative data model transformation
among multiple data models, something not covered by the relational or object-
relational algebra. To facilitate transformations among multiple data models, we argue
that the category theory [5, 14, 19] is a more appropriate theoretical foundation for
MMDBMS. In this section, we will discuss query transformation, view processing, in-
memory processing in MMDBMSs and their potential connections to the category
theory.

3.1 Query Transformation

MMDBMS enables a query over one data model to be transparently rewritten into an
equivalent query over another data model. For example, given the property graph
defined in Fig. 4, one can run various graph queries (e.g. shortest path). We investigate
the following two graph queries (GQ1 and GQ2) in the context of MMDBMS.

Fig. 3. JSON files after Right Pushforward and Left Pushforward functors

20 Z. H. Liu et al.

Assume the graph data stays in the underly-
ing relational base tables T1, T2, shown in
Fig. 1. The two declarative graph PGQL queries
(Property Graph Query Language, see specifi-
cations in [22]) in Table 2 are created on top of
T1 and T2. Table 2 also shows equivalent SQL
implementations using a recursive WITH clause.

Category theory enables query rewriting
crossing different data models. In particular, we
consider each model data-set of a MMDBMS as
a category and declare one or many functors to
transform objects from one category to another through query languages. Further, a
natural transformation provides a way of transforming one functor into another while
respecting the internal structure (i.e., the composition of morphisms) of the categories
involved. Hence, a natural transformation can be considered a “morphism of functors”.
Sometimes two quite different constructions yield the “same” result; this is expressed
by a natural isomorphism between the two functors. Therefore, the transformation
between functors can be employed to investigate the equivalence between queries with
different models.

Table 2. Graph and relational model transformations

Description Graph query (PGQL
v1.1)

Equivalent SQL query

Find a department D1’s head and all
individuals who report directly or
indirectly to D1’s head

GQ1: PATH fp AS ()-[e:
Mgr]-> ()
SELECT emp
MATCH (emp)-/:fp+/-
> (h)-[e1:Head]-> (d
WITH Dep_ID=“D1”)

WITH g(Staff_ID, First, Last, Dep_ID,
Mgr, Depth) AS (SELECT Staff_ID,
First, Last, Dep_ID, Mgr, 1 as
Depth FROM T1
UNION all
SELECT T1.Staff_ID, T1.First, T1.Last,
T1.Dep_ID, g.Mgr, 1+g.Depth as Depth
FROM g, T1 where T1.Mgr=g.Staff_ID)
SELECT g.Staff_ID FROM g WHERE
Mgr is not null and Mgr in (SELECT
Head FROM T2 WHERE T2.
Dep_ID=‘D1’)

Find a complete list of departments
that an employee John and his
whole team belong to

GQ2: PATH fp AS ()-[e:
Mgr]-> ()
SELECT DISTINCT d
MATCH (d) < -[e1:
Dept]-(emp) -/:fp +/-> (j
WITH First = ”John”)

WITH g(Staff_ID, First, Last, Dep_ID,
Mgr, 1 as Depth) AS (FROM Staff_ID,
First, Last, Dep_ID, Mgr, 1+g.Depth as
Depth FROM T1
UNION all
FROM T1.Staff_ID, T1.First, T1.Last,
T1.Dep_ID, g.Mgr, g.Depth as Depth
from g, T1 where T1.Mgr=g.Staff_ID)
SELECT DISTINCT Dep_ID FROM g
WHERE Mgr=(SELECT T1.Staff_ID
FROM T1 WHERE T1.First=‘John’)

Fig. 4. An example of property graph

Multi-model Database Management Systems - A Look Forward 21

3.2 Multi-model Data View Processing

A view is nothing but a query. However, a view bridges the gap between how data is
logically organized from the perspective of users and how the data is physically
organized from the perspective of the underlying DB system. In MMDBMSs, a view is
also a simple way to virtually access one data model on top of another via declarative
data model transformation. This is the power of MMDBMSs, which allows an
application to store data in one data model and later query the same data by
another application using a different data model via defining multi-model data
views. Thus, multi-model data view realizes the genuine value of MMDBMS which
enables data applications requiring different data models to share the same MMDBMS
and rely on MMDBMS to transparently provide different access views of the same data
adaptive to each data application’s requirement.

For example, JSON documents and XML documents are based on hierarchical data
models. However, JSON and XML documents can be viewed relationally by decom-
posing the hierarchy into set of rows and columns. This is achieved by defining
XMLTABLE() or JSON_TABLE() view on top of the native storage of XML or JSON
documents to view the XML and JSON content relationally. Similarly, contents in a set
of relational tables can be weaved constructively to create hierarchical model through
SQL/XML and SQL/JSON generation function. Therefore XML view or JSON view
can be achieved by defining SQL/XML and SQL/JSON generation function on top of
the relational tables. In general, when transformation functions are defined to convert
data between different data models, views can be defined to use the transformation
function to present desired data model even though the underlying storage of the data
may not be in that data model physically. Using relational tables and JSON files in
Figs. 1 and 2, Table 3 shows SQL/JSON views for constructing relational data model
from JSON data model and construct JSON data model from relational model.

Table 3. JSON and relational model transformations

Description Query

Q1- Construct JSON view from
relational content

CREATE JSON_VIEW AS
SELECT JSON {“Staff” : {“STAFF_ID” : e.staff_id,
“First” : e.first, “Last” : e.last, “Mgr” : e.mgr,
{“Dept” : {“Dept_ID” : d.dept_id, “Names” : d.name,
“Head” : d.head}}}
FROM Employee e, department d
WHERE e.dep_id=d.dep_id

Q2 - Construct relational view of
employee from JSON

CREATE EMPLOYEE_REL_VIEW AS
SELECT *
FROM JSON_VIEW f, JSON_TABLE (f.Staff
COLUMNS (Staff_ID, First, Last, Mgr)

Q3 - Construct relational view of
department from JSON file

CREATE DEPARTMENT_REL_VIEW AS
SELECT *
FROM JSON_VIEW f, JSON_TABLE(f.Dept
COLUMNS (Dep_ID, Name, Head)

22 Z. H. Liu et al.

One approach to improve query over such multi-model view is to through query
rewrite technique by leveraging the underlying algebraic property of the transformation
functions among different data models. For example, relational predicates over
XMLTABLE() or JSON_TABLE() views can be written into XPATH/JSON PATH
predicates directly navigating the native hierarchical storage of the underlying XML or
JSON data [2]. Inversely, XPATH/JSON path query over the views constructed via
SQL/XML or SQL/JSON generation functions over relational tables can be written into
relational predicate over the underlying relational table storage [2, 13]. Table 4 shows
applying query rewrite transformation for Q2 and Q3 of Table 3. The intermediate
JSON view don’t need to be physically materialized.

Providing view update capability is feasible provided that transformation function
is reversible. The MMDBMS can manage a set of built-in transformation functions
between different models and understand the reversibility of the transformation func-
tion so that it can automatically determine if the view is updatable. For views that are
not updatable systematically due to lack of inverse function, instead-of-update trigger
can be supplied by users to deal with ad-hoc update. Therefore, the category theory can
be used to reason about view updatability when a natural transformation is reversible.
An MMDBMS optimizer manages a set of transformation algebraic rules between
different models for query optimization and rewrite and understand the reversibility of
the algebraic transformations for view update feasibility.

3.3 Multi-model In-memory Processing

The classical RDBMS technology assumes the data layout on disk is the same as the
one cached in the buffer cache. However, the use of columnar main-memory structures
has revolutionized this model [3]. By decoupling the storage format from their in-
memory data format, MMDBMSs shall decide how to provide fast in-memory access
for multi-model data. There is probably no single best storage format for a data model
instance to satisfy all the workload requirements. Using functors and natural trans-
formation in the category theory, MMDBMSs may autonomously rearrange and cache
data in a different format as compared to the format stored on disk. MMDBMSs need
not to lock down an optimized universal way of storing multi-model data and yet being
able to provide ‘Just-In-Time’ data model access through materializing data model
instances in alternative forms in NVRAM or RAM.

When the query over multi-model view is complex enough so that it is not feasible
to do such query rewrite, for example, performing arbitrary directional path navigations
in a hierarchical tree model, then materialized multi-model view technique can be used.
The materialized view performs the actual transformation of the data into the physical

Table 4. Query rewrite transformation results

Description Query

Q2 SELECT Staff_id, First, Last, Mgr FROM Employee
Q3 SELECT Dep_ID, Name, Head FROM Department

Multi-model Database Management Systems - A Look Forward 23

model to run the query. In classical RDDBMS, materialized view has to be persistent,
an in-memory only materialized view is a good option for MMDBMS to have because
in-memory materialized view can be populated to speed up query without incurring the
overhead of persistency management. Furthermore, the in-memory transformation can
be implemented in background without delaying or blocking the foreground DML
operations on the original base data. This is in the same way as how in-memory
columnar population of the on-disk row format serves a good alternative to persistently
migrating from row storage format to columnar storage format [6]. Rather than
attempting to determine a best storage format of data upfront to satisfy potentially all
workload, in-memory materialized view provides a flexible mechanism to decouple the
storage format of data in view from the base table. In this way, neither the system nor
the users need to lock down one way of storing and indexing the data. Applying this
idea to RDBMS, users may have columnar physical storage with row oriented views
materialized in memory or may have row oriented physical storage with columnar view
materialized in memory.

In summary, MMDBMS shall use meta-algebra among data model instances to
decide whether and when to materialize data model instances physically or in memory
or to leave it as a logical entity to avoid materialization cost while providing good
access performance. This is the key to integrate in-memory query processing with
MMDBMS.

3.4 Multi-model Security Access via View

Just as classical RDBMS, view serves as an effective mechanism to enforce data
security. In classical RDBMS, security can be enforced at table level, row level,
column level via column projection and row filtering criteria declared declaratively by
users. In MMDBMS, we shall be able to leverage view to enforce data security.
Although MMDBMS has concept of table as collection and documents in a collection
as a row so that inter-document security can be enforced just as relational DB case, the
intra-document security enforcement is not a clear cut as the document does not have
concept of column. However, we shall still be able to leverage the concept of view to
enforce the intra-document security. For example, a view using XPATH to project a set
of XML fragments within an XML document can be used to define part of an XML
document that access is granted or revoked. Users may not be granted any privilege to
access the base table or collection, however, they are granted access to views defined
using document filter and projection to define fine-grained security access privilege.

3.5 Multi-model with Flexible Schema

In MMDBMS that aligns with the idea of data first/schema later or never, there is
another creative usage of view in MMDBMS. It allows system and users to use
adaptive schema concept [1] to access the data. The key to provide adaptive schema
access is to leverage view. For example, in a heterogeneous collection of semi-
structured documents, the underlying semi-structured data have loose structures so that
defining a full schema over the semi-structured data could result in a very large sparse
schema with many choices and uncertainties. Such full schema may not be practically

24 Z. H. Liu et al.

useful for query analysis. Therefore, multiple views with various degrees of exposure
of the underlying semi-structure data can be provided to users for their query use cases.
In this way, users and their applications are not required to lock down one schema of
the data using classical E-R design resulting a set of physically materialized tables but
rather may have multiple logical flexible schemas, each of which represents certain way
of viewing and accessing the data [23]. The underlying data may be stored natively in
user input format as the source of the truth. There are many views defined in the
system. Some of the views are virtual that require on-the-fly query rewrite to push the
access to the underlying storage data. Other views are materialized persistently or
computed and populated on-demand in-memory to speed up query access. The
advantage of supporting multi-view approaches is that there are no schema evolution
and physical data migration issues that classical RDBMS with fixed schema has. This is
because there is only one source of truth using the original data directly from the import
of the user without using any physical schema to shred the original data. All views are
secondary whose content are always re-computable from the original physical data
based on the schema that the system and user agree upon [23]. Through automatic
schema derivation efforts by the MMDBMS system, users have tremendous flexibility
to pick and choose views needed for their current applications and are able to keep
evolving their view definition without physically migrating the storage data.

3.6 Application of Inverted Index in MMDBMS

Borrowed from the idea from IR inverted index on full text search, MMDBMS may
extend the inverted index to a universal index that indexes not only full text content,
but also other multi-model data instances and their schema. The inverted index in
MMDBMS is model-context-aware schema and data search. The advantage of such
inverted search index is that users do not need to know what to index in advance yet
still enjoy high performance for an explorative type of queries. For example, searching
keywords from inverted index shows the occurrence of the keywords under different
data models: keywords within XML documents or JSON objects under a hierarchical
path, within graph structures inside a graph traversal path, or within relational rows
under a specific set of columns. From the search result of a multi-model context aware
inverted index, users can then use model domain specific index to further narrow down
the search and query criteria.

The existing ORDBMS supports domain index as a way to index domain specific
data. MMDBMS inherits the domain index approach. However, a new usage of domain
index is that it can be used as a secondary index after general inverted index. Fur-
thermore, just as in RDBMS, conventional B+ tree index scan might be slower than in-
memory columnar scan for an unselective query. Similar investigation needs to be
carried out to evaluate if in-memory scan in MMDBMS is compatible with adaptive
domain index for different kinds of multi-model data.

Multi-model Database Management Systems - A Look Forward 25

3.7 Benefits of MMDBMS Users

We summarize two main benefits for MMDBMS users:

• Flexible data models. In a MMDBMS, there is no primary data model. It does not
matter that the data are initially defined with hierarchical data model or relational
model or graph model etc. It will be easy for users to start the operation with one
model and later add and incorporate new data models as their use cases demand.
Users are able to incorporate multiple data models into a single MMDBMS and
manage them in a holistic way.

• Transparent cross-model query transformation and rewriting. All query lan-
guages are equal in MMDBMSs. Each data model may have its own domain-
specific declarative query and modification language. User applications may ini-
tially start with one data model language to access one data model. However, as
they start to manage multiple data models and try to transform, join and mix data
models in MMDBMSs, MMDBMSs understand the connections among these data
models and their respective languages so that it can transparently do query trans-
formation and rewriting among different data model languages on behalf of
applications. The genuine value of MMDBMSs is that they allow many data
applications to share one DBMS and on-demand declaratively transform from one
data model to another. It is the MMDBMS’s (not users’) responsibility to optimize
and execute inter-data model queries and modification requests.

3.8 Limitation of Category Theory

Some logical limitation of Category Theory has been pointed by Jean–Yves Girard
[24], renowned logician in Proof Theory area. Girard considered the notion of
equivalence in Category Theory to be too strict “up to isomorphism”. Therefore, he
wrote, the Category Theory can’t operate with other, more complicated equality forms,
in-particular in novel logic theory [25, 26]. However, right now we are far away from
such problems in our MMDBMS approach.

4 Infrastructure Services – Ecosystem for MMDBMS

MMDBMSs need to provide a set of common services that can be used by the different
models. This section describes some of these key services:

• Atomicity: Databases allow users to bundle requests; this is the well-known
transaction support. The fundamental idea is that if a transaction is unable to
complete there will not be any trace of that transaction in the database and if it
succeeds, everything is committed permanently. To achieve this any required
database object has to be isolated from other transactions progressing in parallel and
changes are not visible until a transaction completes successfully. However, this
basic (ACID) model has significant limitations in respect to functionality, perfor-
mance and scalability. A well-known technology is to use escrow technology,
which supports parallel updates for commutative operations that are commonly

26 Z. H. Liu et al.

frequently available for inventory management. Additionally, weaker models exist
for those applications that can tolerate relaxed support; e.g., BASE. MMDBMSs
need to support a wide range of models and therefore support different levels of
atomicity for different data models and different use cases. The level of atomicity
should be able to be tuned differently for different data models and use cases based
on their requirements both manually and automatically.

• Fault resilience for recovery and provenance: Fault resilience is a service to
capture information to recover from any error and avoid any loss of data while
supporting atomicity. Implementing fault resilience for an MMDBMS is chal-
lenging but it should be done better than with a polyglot solution due to its single
integrated backend. The requirements for fault resilience can be different for diverse
data models and use cases. It should be able to be tuned both manually and
automatically.

• Telemetry: This service will provide a base for a wide range of data capturing and
analysis services in MMDBMS. The basic usage is to understand the system
behavior for a wide range of perspectives; e.g., understanding and debugging
functionality and performance, understanding usage patterns, and billing. A more
advanced usage is to identify abnormal behavior in real time. Multi-model data can
be analyzed in real time and/or externalized for provenance and offline-analysis. For
this service, MMDBMSs should be able to be more adaptive and flexible, such as
adaptive in-memory processing, adaptive universal multi-model indexing, and
adaptive view processing via query rewrite or in-memory materialization and
adaptive schema view for just-in-time semi-structured data in-memory processing.

• Machine Learning: MMDBMSs will use machine learning on top of telemetry
Data to understand user’s data application so that it can recommend suitable data
model for applications. As applications evolve different data model might become
appropriate. MMDBMSs will autonomously build the appropriate data model just-
in-time to better serve users. At a more advanced level, telemetry and machine
learning can also identify abnormal behavior such as faulty sensors, as well as assets
and system components.

5 Related Work

A multi-model data management system is designed to address the variety challenge of
a complex world. In general, there exist two solutions: (i) polyglot persistence and
(ii) multi-model database.

The history of polyglot persistence may trace back to the federation of relational
engines or distributed DBMSs, which was studied in depth during the 1980s and early
1990s. Polyglot persistence approach is similar to the use of mediators in early fed-
erated database systems. Recently, some research groups have been working on
polyglot persistence platforms. For example, Musketeer [6] provides an intermediate
representation between applications and data processing platforms and has the merit of
proposing an optimizer for the supported applications and platforms. DBMS+ [7] is
another work that aims at embracing several processing and storage platforms for

Multi-model Database Management Systems - A Look Forward 27

declarative processing. BigDAWG [8] has recently been proposed as a federated
system that enables users to run their queries over multiple vertically integrated systems
such as column stores, NewSQL engines, and array stores.

The second approach is to develop MMDBMSs to support multiple data models
against a single, integrated backend, while meeting the growing requirements for
scalability and performance. However, as far as our knowledge, there exist very few
research works [12, 20, 21, 28] on the theories and algorithms of MMDBMS. Paper
[20] illustrates the query compilation technique for logical and physical design in data
management that is relevant to query processing over multiple physical data models in
MMDBMS. Paper [21] has introduced the concept of “meta-model” as a framework for
defining different data models and specifying translations schema among data models.
In this paper, we make the contributions by showing the benefit of leveraging category
theory as new theoretical foundation in MMDBMS. We suggest a new mathematical
foundation, which not only can capture relational model and relational algebra but also
be able to capture many other data models and their algebra, so that the meta-
connections among data models and their algebra are transparent from their data
applications.

6 Conclusion and Future Work

In this paper, we have discussed the challenges supporting the “Variety” of data; we are
advocating an MMDBMS technology with category theory as mathematical founda-
tion. We envision leveraging category theory for multi-model query transformation,
viewing processing, in-memory processing and adaptive schema. We also propose a set
of shared data infrastructure services in MMDBMS to support “Just-In-Time” multi-
model data access autonomously.

Exciting follow-up research can be centered on an in-depth research of category
theory into MMDBMS. Of foremost importance is to chart the natural transformation
among multiple models to enable transparent cross-model query processing and
rewriting. Another of our efforts is aimed at the potential impact of the interplay
between category theory and machine learning algorithms on an autonomous data
model selection and accesses.

Acknowledgement. Jiaheng Lu is partially supported by the Academy of Finland (No. 310321).

References

1. Spoth, W., et al.: Adaptive schema databases. In: CIDR (2017)
2. Liu, Z.H., Gawlick, D.: Management of flexible schema data in RDBMSs-opportunities and

limitations for NoSQL. In: CIDR (2015)
3. Lahiri, T., et al.: Oracle database in-memory: a dual format in-memory database. In: Data

Engineering (ICDE) (2015)
4. Gawlick, D., Chan, E.S., Ghoneimy, A., Liu, Z.H.: Mastering situation awareness: the next

big challenge? ACM SIGMOD Rec. 44(3), 19–24 (2015)

28 Z. H. Liu et al.

5. Spivak, D.I.: Database queries and constraints via lifting problems. Math. Struct. Comput.
Sci. 24(6) (2014)

6. Grosvenor, M.P., Clement, A., Hand, S.: Musketeer: all for one, one for all in data
processing systems. In: EuroSys, pp. 1–16 (2015)

7. Lim, H., Han, Y., Babu, S.: How to fit when no one size fits. In: CIDR (2013)
8. Elmore, A., et al.: A demonstration of the BigDAWG polystore system. Proc. VLDB

Endow. 8(12), 1908–1911 (2015)
9. Schultz, P., et al.: Algebraic databases. CoRR abs/1602.03501 (2016)
10. Fleming, M., Gunther, R., Rosebrugh, R.: A database of categories. J. Symb. Comput. 35,

127–135 (2002)
11. Wisnesky, R., Spivak, D.: A functorial query language. Presented at Boston Haskell (2014).

http://categoricaldata.net/fql/haskell.pdf
12. Abiteboul, S., et al.: Research directions for principles of data management (Abridged).

SIGMOD Rec. 45(4), 5–17 (2016)
13. Liu, Z.H., et al.: Towards a physical XML independent XQuery/SQL/XML engine. PVLDB

1(2), 1356–1367 (2008)
14. Michael, B., Charles, W.: Category Theory for Computing Science. Reprints in Theory and

Applications of Categories, vol. 22 (2012)
15. Yan, Da, et al.: Big graph analytics platforms. Found. Trends Databases 7(1–2), 1–195

(2017)
16. Lu, J., Holubová, I.: Multi-model data management: what’s new and what’s next? In: EDBT

2017, pp. 602–605 (2017)
17. World Wide Web Consortium (W3C). https://www.w3.org/
18. Wisnesky, R., Spivak, D.I., Schultz, P., Subrahmanian, E.: Functorial data migration: from

theory to practice. CoRR abs/1502.05947 (2015)
19. Riehl, E.: Category Theory in Context. Courier Dover Publications, Mineola (2017)
20. Toman, D., Weddell, G.E.: Fundamentals of Physical Design and Query Compilation.

Synthesis Lectures on Data Management. Morgan & Claypool Publishers, San Rafael (2011)
21. Atzeni, P., Torlone, R.: A metamodel approach for the management of multiple models and

translation of schemes. Inf. Syst. 18(6), 349–362 (1993)
22. Property Graph Query Language 1.1 Specification. http://pgql-lang.org/spec/1.1/
23. Liu, Z.H., Hammerschmidt, B.C., McMahon, D., Liu, Y., Chang, H.J.: Closing the

functional and performance gap between SQL and NoSQL. In: SIGMOD Conference 2016,
pp. 227–238 (2016)

24. Girard, J.-Y.: Locus solum: from the rules of logic to logic of rules. Math. Struct. Comput.
Sci. 11(3), 301–506 (2001)

25. Girard, J.-Y.: From foundations to ludics. Bull. Symb. Log. 9(2), 131–168 (2003)
26. Lecomte, A.: Meaning, Logic and Ludics. Imperial College Press, London (2011)
27. Liu, Y., et al.: ProbeSim: scalable single-source and top-k SimRank computations on

dynamic graphs. PVLDB 11(1), 14–26 (2017)
28. Lu, J.: Towards benchmarking multi-model databases. In: CIDR (2017)
29. Chen, J., et al.: Big data challenge: a data management perspective. Front. Comput. Sci. 7(2),

157–164 (2013)

Multi-model Database Management Systems - A Look Forward 29

http://categoricaldata.net/fql/haskell.pdf
https://www.w3.org/
http://pgql-lang.org/spec/1.1/

	Multi-model Database Management Systems - A Look Forward
	Abstract
	1 Introduction – Why MMDBMS?
	2 Preliminaries on Categories and Model Transformation
	3 MMDBMS Framework and Category Theory
	3.1 Query Transformation
	3.2 Multi-model Data View Processing
	3.3 Multi-model In-memory Processing
	3.4 Multi-model Security Access via View
	3.5 Multi-model with Flexible Schema
	3.6 Application of Inverted Index in MMDBMS
	3.7 Benefits of MMDBMS Users
	3.8 Limitation of Category Theory

	4 Infrastructure Services – Ecosystem for MMDBMS
	5 Related Work
	6 Conclusion and Future Work
	Acknowledgement
	References

