
Vijay Gadepally · Timothy Mattson
Michael Stonebraker · Fusheng Wang
Gang Luo · George Teodoro (Eds.)

 123

LN
CS

 1
14

70

VLDB 2018 Workshops, Poly and DMAH
Rio de Janeiro, Brazil, August 31, 2018
Revised Selected Papers

Heterogeneous
Data Management,
Polystores, and
Analytics for Healthcare

Lecture Notes in Computer Science 11470

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Vijay Gadepally • Timothy Mattson
Michael Stonebraker • Fusheng Wang
Gang Luo • George Teodoro (Eds.)

Heterogeneous
Data Management,
Polystores, and
Analytics for Healthcare
VLDB 2018 Workshops, Poly and DMAH
Rio de Janeiro, Brazil, August 31, 2018
Revised Selected Papers

123

Editors
Vijay Gadepally
Massachusetts Institute of Technology
Lexington, MA, USA

Timothy Mattson
Intel Corporation
Hillsboro, OR, USA

Michael Stonebraker
Massachusetts Institute of Technology
Cambridge, MA, USA

Fusheng Wang
Stony Brook University
Stony Brook, NY, USA

Gang Luo
University of Washington
Seattle, WA, USA

George Teodoro
University of Brasília
Brasilia, Brazil

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-14176-9 ISBN 978-3-030-14177-6 (eBook)
https://doi.org/10.1007/978-3-030-14177-6

Library of Congress Control Number: 2019932781

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-14177-6

Preface

In this volume we present the accepted contributions for the VLDB conference
workshops entitled Polystore and Other Systems for Heterogeneous Data (Poly 2018)
and the 4th International Workshop on Data Management and Analytics for Medicine
and Health Care (DMAH 2019) held in Rio De Janeiro, Brazil, with 44th International
Conference on Very Large Data Bases during August 27–31, 2018.

Poly 2018 Overview

Enterprises must deliver data management solutions for large, heterogeneous datasets
often composed of disparate data with queries constructed from a variety of pro-
gramming models. A “one size fits all” mentality simply will not work in these cases.
Parallel database management systems (DBMSs) help with performance and federated
DBMSs support heterogeneity, but no single engine can support these complex datasets
for any but the simplest problems.

In response, new multi-DBMS systems such as Polystore systems have been pro-
posed. These systems combine individual DBMSs, each suited to the needs of a portion
of the dataset, into a single system. They are designed to support heterogeneous
datasets but do so in a way that exposes the complete functionality and programming
models of underlying DBMSs.

Poly 2018 was a workshop designed to bring together leading researchers and
practitioners and focused on growing a larger and more diverse research agenda around
data system solutions for heterogeneous data.

DMAH 2018 Overview

The goal of the workshop is to bring researchers from the cross-cutting domains of
research including information management and biomedical informatics. The work-
shop aims to foster exchange of information and discussions on innovative data
management and analytics technologies. We encourage topics that highlight the
(a) end-to-end applications, systems, and methods addressing problems in health care,
public health, and everyday wellness and (b) integration with clinical, physiological,
imaging, behavioral, environmental, and “omics” data, as well as the data from social
media and the Web. Our hope for this workshop is to provide a unique opportunity for
the mutual benefit and informative interaction between information management and
biomedical researchers from the interdisciplinary fields.

January 2019 Vijay Gadepally
Timothy Mattson

Michael Stonebraker
Fusheng Wang

Gang Luo
George Teodoro

Organization

Poly 2018

Workshop Chairs

Vijay Gadepally Massachusetts Institute of Technology, USA
Timothy Mattson Intel Corporation
Michael Stonebraker Massachusetts Institute of Technology, USA

Program Committee

Edmon Begoli Oak Ridge National Laboratory, USA
Rada Chirkova North Carolina State University, USA
Amarnath Gupta University of California San Diego, USA
Bill Howe University of Washington, USA
Jeremy Kepner Massachusetts Institute of Technology, USA
David Maier Portland State University, USA
Samuel Madden Massachusetts Institute of Technology, USA
Ratnesh Sahay NUI Galway, Ireland
Nesime Tatbul Intel Corporation, USA
Kristin Tufte Portland State University, USA
Timothy Weale Department of Defense, USA

DMAH 2018

Workshop Chairs

Fusheng Wang Stony Brook University, USA
Gang Luo University of Washington, USA
George Teodoro University of Brasilia, Brazil

Program Committee

Jesús B. Alonso-Hernández Universidad de Las Palmas de Gran Canaria, Spain
Thomas Brettin Argonne National Laboratory, USA
J. Blair Christian Oak Ridge National Laboratory, USA
Alba Cristina M. A. Melo Universitat Politècnica de Catalunya, Spain
Dejing Dou University of Oregon, USA
Alevtina Dubovitskaya École polytechnique fédérale de Lausanne, Switzerland
Peter Elkin University at Buffalo, USA
Zhe He Florida State University, USA
Guoqian Jiang Mayo Clinic, USA
Jun Kong Emory University, USA
Tahsin Kurc Stony Brook University, USA
Ulf Leser Humboldt-Universität zu Berlin, Germany

Yanhui Liang Google Research, USA
Gang Luo University of Washington, USA
Fernando Martin-Sanchez Weill Cornell Medicine, USA
Jorge Munoz-Gama Pontificia Universidad Católica de Chile, Chile
Casey Overby Taylor Johns Hopkins University, USA
Maristela Terto De Holanda University of Brasília, Brazil
George Teodoro University of Brasília, Brazil
Fusheng Wang Stony Brook University, USA
Hua Xu University of Texas Health Science Center at Houston,

USA

VIII Organization

Data-Driven Genomic Computing:
Making Sense of the Signals from the Genome

(Keynote Paper)

Stefano Ceri

Dipartimento di Elettronica,
Informazione e Bioingegneria Politecnico di Milano, Milano, Italy

stefano.ceri@polimi.it

Abstract. Genomic computing is a new science focused on understanding the
functioning of the genome, as a premise to fundamental discoveries in biology
and medicine. Next Generation Sequencing (NGS) allows the production of the
entire human genome sequence at a cost of about 1000 US $; many algorithms
exist for the extraction of genome features, or signals, including peaks (enriched
regions), variants, or gene expression (intensity of transcription activity). The
missing gap is a system supporting data integration and exploration, giving a
biological meaning to all the available information; such a system can be used,
e.g., for better understanding how genetic or epigenetic features influence cancer
development.

The GeCo Project (Data-Driven Genomic Computing, ERC Advanced
Grant, 2016–2021) has the objective or revisiting genomic computing through
the lens of basic data management, through models, languages and instruments,
focusing on genomic data integration. Starting from an abstract model, we
developed a system that can be used to query processed data produced by
several large Genomic Consortia, including Encode and TCGA; the system
employs internally the Spark engine, and prototypes can already be accessed
from PoliMi servers, from Cineca or from FireCloud (Broad Institute). During
the five-years of the ERC project, the system will be enriched with data analysis
tools and environments and will be made increasingly efficient. Among the
objectives of the project, the creation of an “open source” repository of public
data, available to biological and clinical research through query languages, web
services, and search interfaces.

Contents

Poly 2018

FastDAWG: Improving Data Migration in the BigDAWG
Polystore System. 3

Xiangyao Yu, Vijay Gadepally, Stan Zdonik, Tim Kraska,
and Michael Stonebraker

Multi-model Database Management Systems - A Look Forward 16
Zhen Hua Liu, Jiaheng Lu, Dieter Gawlick, Heli Helskyaho,
Gregory Pogossiants, and Zhe Wu

Progressive Interactions Between Data Sources . 30
Ben McCamish and Arash Termehchy

TDM: A Tensor Data Model for Logical Data Independence
in Polystore Systems . 39

Eric Leclercq and Marinette Savonnet

Sketching Data Structures for Massive Graph Problems 57
Juan P. A. Lopes, Fabiano S. Oliveira, Paulo E. D. Pinto,
and Valmir C. Barbosa

Managing Structurally Heterogeneous Databases in Software
Product Lines . 68

Parisa Ataei, Arash Termehchy, and Eric Walkingshaw

PDSPTF: Polystore Database System for Scalability
and Access to PTF Time-Domain Astronomy Data Archives 78

Shashank Shrestha, Manoj Poudel, Yilang Wu, Wanming Chu,
Subhash Bhalla, Thomas Kupfer, and Shrinivas Kulkarni

Demonstration: API Federation in the BigDAWG Polystore 93
Matthew J. Mucklo

DMAH 2018

Augmented Therapy with Online Support Groups . 107
Behrooz Omidvar-Tehrani

RHCS - A Clinical Recommendation System for Geriatric Patients 115
Saliha Irem Besik and Ferda Nur Alpaslan

Implementation of a Medical Coding Support System by Combining
Approaches: NLP and Machine Learning . 133

Idir Amine Amarouche, Dehbia Ahmed Zaid, and Tayeb Kenaza

Building a Research-Quality Copy Number Variation Data Repository
for Translational Research . 148

Chen Wang, Raymond M. Moore, Jared M. Evans, Xiaonan Hou,
S. John Weroha, and Guoqian Jiang

DEAME - Differential Expression Analysis Made Easy 162
Milena Kraus, Guenter Hesse, Tamara Slosarek, Marius Danner,
Ajay Kesar, Akshay Bhushan, and Matthieu-P. Schapranow

Author Index . 175

XII Contents

Poly 2018

FastDAWG: Improving Data Migration
in the BigDAWG Polystore System

Xiangyao Yu1(B), Vijay Gadepally2, Stan Zdonik3, Tim Kraska1,
and Michael Stonebraker1

1 Massachusetts Institute of Technology, Computer Science and Artificial Intelligence
Laboratory, Cambridge, USA

yxy@mit.edu
2 Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, USA

3 Computer Science Department, Brown University, Providence, USA

Abstract. The problem of data integration has been around for
decades, yet a satisfactory solution has not yet emerged. A new type
of system called a polystore has surfaced to partially address the inte-
gration problem. Based on experience with our own polystore called Big-
DAWG, we identify three major roadblocks to an acceptable commercial
solution. We offer a new architecture inspired by these three problems
that trades some generality for usability. This architecture also exploits
modern hardware (i.e., high-speed networks and RDMA) to gain perfor-
mance. The paper concludes with some promising experimental results.

Keywords: Polystore · BigDAWG · Migration · RDMA

1 Introduction

The database landscape has been plagued for decades by problems of data inte-
gration. Operational data is stored in multiple heterogeneous database manage-
ment systems (DBMSs) each of which may differ in their data model, their
vendor, or their schema. Typically, the component systems run on different
machines adding communication problems to this nightmare. How can a user
extract and combine information from multiple heterogeneous sources? Most
systems have tried to solve this problem in its full generality, by integrating
arbitrary databases. But what if we could simplify the notion of what can be
integrated in a way that is still useful and that addresses some of the long-time
impediments to wide-spread adoption? The architecture presented in this paper
attempts to do just that.

A number of recent collection of papers popularized the notion of poly-
stores [5,7,8,11,18]. The concept was to allow K islands of information each
of which supports a common data model and a common island query language
along with a candidate set of database engines. Examples include a relational
island, an array island, and a key-value island. An individual DBMS, call it D,
would join an island by constructing a wrapper that maps between the island
c© Springer Nature Switzerland AG 2019
V. Gadepally et al. (Eds.): Poly 2018/DMAH 2018, LNCS 11470, pp. 3–15, 2019.
https://doi.org/10.1007/978-3-030-14177-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14177-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-14177-6_1

4 X. Yu et al.

query language and the local query language of D and a local-cast that converts
D’s data representation to the standard island format. In addition, there is an
an island-cast from each island to every other island (very often, direct casts are
made between particular engines of interest). Hence, when system A needs to
send data to system B, then A converts its data to standard island format, an
island-cast is applied to get to the other island representation, and then finally
the data is converted to the local dialect via a local-cast. For more information
consult the individual papers that discuss the components of the middleware in
detail [4,6,9,14].

We have implemented this island concept in a system called BigDAWG. At
present, we have two islands in operation, a relational one with Postgres, MySQL,
and Vertica as members and an array island composed of SciDB. We have iden-
tified the following problems with our initial architecture:

1. Learning multiple query languages is a daunting task. Our previous
proposal assumed that a BigDAWG programmer would know multiple query
languages. In practice, this is a lot to ask. Most programmers have a main
language in which they are competent. A realistic polystore proposal should
not require a multi-lingual facility.

2. Data movement is too slow. Moving one record at a time using an insert
in SQL is exceeding slow. Even connecting to the bulk load facility of the
various systems is quite slow. We need a faster way to move data between
islands.

3. Wrappers are inefficient and hard to write. The idiosyncrasies of the
various query languages make wrappers tedious to write. Also, different type
systems, treatment of nulls, integrity constraints, and the complexity of SQL
just make matters worse. To add MySQL to the BigDAWG island took mul-
tiple months of effort. We need a simpler architecture that makes it easier to
add new DBMSs to a polystore system.

In this paper, we propose a new polystore architecture that addresses all three
concerns above. Section 2 presents a simpler overall architecture which does not
require a user to learn multiple query languages and effectively addresses Chal-
lenge 1 above. Section 3 continues with a data movement system using networks
with remote direct memory access (RDMA) supports and solves Challenges 2
and 3. Section 4 shows experimental results that make us optimistic about the
success of this new architecture. Finally, Sect. 5 discusses some previous work,
Sect. 6 talks about future work, and Sect. 7 concludes the paper.

2 A New Polystore Architecture

One issue with the current BigDawg system is that a user has to learn the
query languages of multiple systems in order to run queries across them. The
architecture proposed in this section requires a user to learn only one query
language which will be translated to different systems, which effectively solves
Challenge 1 discussed in the previous section.

FastDAWG: Improving Data Migration in the BigDAWG Polystore System 5

We assume that a user has a main query language and most of his data is in
systems that support some dialect of his main query language. Hence, an analyst
might know an array query language, and a business intelligence expert would
know some relational query language, such as Postgres or Vertica or Redshift.
We will term this system as the user’s main system.

Most sophisticated systems support the notion of foreign objects; for exam-
ple, RDBMSs support the notion of external tables. We assume that all foreign
objects (e.g., arrays, graphs) will be specified using the foreign object interface of
the main system. We require this external interface to be extended with simple
notions of indexing, so the query optimizer of the main system can do a complete
query plan for any user query in the dialect of the main system. This query plan
will be executed locally until foreign objects must be dealt with.

Assume the main system is relational. In this case, assume joins are coerced
to run locally. Hence, the operation that is associated with an external table is a
predicate and perhaps a projection. The one-table query is the result of pushing
down all predicates and collecting them into a single query with the combined
predicate.

Listing 1 shows an example of a query Q executed over two machines. Table
R1 resides on the main system and table R2 is an external table residing on a
different machine. In BigDAWG, query Q is broken down into three subqueries,
Q1, Q2, and Q3, as shown in Listing 2. At the local machine, Q1 filters table
R1 and stores the results into a temporary table T1. Meanwhile at the remote
machine, Q2 filters table R2 and stores the results into a temporary table T2.
After both filtering operations finish, BigDAWG migrates T2 from the remote
machine to the local machine and performs the join locally.

Listing 1. Example Query Execution.

Q: SELECT *

FROM R1, R2

WHERE R1.A1=a AND

R2.A1=b AND

R2.A2=R1.A2

Listing 2. Query Q is broken down into subqueries Q1, Q2, and Q3.

Q1: SELECT * // filter R1 locally

INTO T1

FROM R1

WHERE R1.A1 = a

Q2: SELECT * // filter R2 remotely

INTO T2

FROM R2

WHERE R2.A1 = b

Q3: SELECT * // migrate T2 and perform the join locally

FROM T1, T2

WHERE T1.A2 = T2.A2

6 X. Yu et al.

The data movement discussed in the next section deals with the remote
subquery (Q2) of the example above. A filtered table is returned to the main
system which is stored and query execution continues. Hence, the data for all
joins and aggregates can be fetched by pushing the predicates to the remote
node. In this case, the entire query semantics is that of the main system.

3 Data Movement and Semantic Transformations

In this section, we propose an RDMA-based data movement design that
addresses Challenges 2 and 3 discussed in Sect. 1. Specifically, Sect. 3.1 describes
how datatype conversion works in the new architecture. Section 3.2 discusses
how the system uses RDMA to accelerate data transfer and datatype transfor-
mation. Section 3.3 shows the execution of an example query. Finally, Sect. 3.4
compares the proposed data movement strategy with data migration solution in
the current BigDAWG system.

3.1 Semantic Transformations

In this section, we describe the required steps in manipulating data across sys-
tems. Consider a main system M and a second system S. If a user wishes to
interact with an object in the second system, he must enter an external object
schema into the catalog at M. Thus, when the query execution engine needs data
from S, it will look it up in M’s catalog where it will find the external object
definition. The data conversion logic will be included in the definition.

Assuming a polystore system that supports a relational database, an array
store, a graph database, and a key-value store, the data conversion logic for each
type of main system is discussed below:

Relational Database: A key-value store, a graph database, and an array store
can all be “table-ized” in a straightforward way and be queried using SQL.
Hence, it is easy for the owner of any of these systems to export a collection
of tables, whose schema information can be used to access remote objects by
entering it into remote catalogs.

Array Store: Relational tables are a special case of arrays. A graph store can
easily export an incidence matrix and a node matrix. Similarly, a key-value store
is a degenerate array.

Graph Database: Each tuple in a relational database can be considered a
node of a graph and the foreign key relationship can be considered an edge of
the graph. Similarly, a collection of key-value stores and arrays can be considered
separate nodes in a graph.

Key-Value Store: A table can be exported as multiple key-value stores with
each attributed exported as a key-value pair. An array or a graph database can
be table-ized and then exported the same way.

FastDAWG: Improving Data Migration in the BigDAWG Polystore System 7

As a result, data wrappers at this level are straightforward to construct.
Most systems support the notion of predicates so a predicate on the main system
can usually be converted straightforwardly to one on S, so predicates can be
pushed into the remote system. Of course M and S may have different semantics
for nulls and operators on single objects. Hence, pushing predicates has to be
optional.

3.2 RDMA-Based Data Movement

We assume that all nodes are connected by networks with remote direct mem-
ory access (RDMA) support. RDMA allows a computer to directly access data
in a remote computer’s main memory without the intervention of the remote
CPUs or the operating system (OS). Compared to traditional TCP/IP net-
works, RDMA can provide an order of magnitude lower latency and higher net-
work bandwidth [3], making it a promising technology to replace TCP/IP based
networks in small to medium sized computer clusters.

Besides high bandwidth and low latency, the next generation of InfiniBand
network interface controller (NIC) is equipped with embedded compute capabil-
ity (e.g., Mellanox BlueField SmartNIC integrates the NIC with ARM proces-
sors [2] and the Innova Flex adapters integrate the NIC with FPGA [1]). As a
result, type conversion can be done in the processor within the NIC, thereby not
requiring CPU involvement. Null conversion can be similarly accomplished. We
first discuss the protocol for local execution of query Q with potentially remote
data:

The site M sends an RPC request over RDMA to S to fetch remote object O.
We use the term object to mean any collection data type (e.g., relation, array,
graph) that is supported by S. Site S does the appropriate casting to the data
model of M as noted above and returns a set of locations in S’s memory where the
result is located. M then directly reads the memory locations on S using RDMA
and continues with the local query plan.

If a predicate P is being pushed, then the RPC request is P(O). In this case, S
does casting plus filtering and returns a collection of memory locations as above.

3.3 An Example of Query Execution

Consider a simplified version of the query example presented in Sect. 2. To under-
stand the proposed architecture, we use an example of two relational tables, R1
and R2, located on two nodes, main system and second system, respectively. The
coordinator node (which can be co-located with the main system) is responsible
for receiving client queries and dispatching them to other nodes. When a query,
such as select * from R1,R2 where R1.id=R2.id is received, the coordina-
tor breaks the query into two pieces, similar to the breakdown in Listing 2, and
dispatches it to the two systems for execution. Figure 1 describes the flow of
messages for this example.

When the coordinator receives the query from the client, it first instructs the
second system to do a part of the query locally (select * from R2 into tmp).

8 X. Yu et al.

Fig. 1. An example query executed over two systems, main and second systems, with
tables R1 and R2 respectively.

In this example, tmp is the location in the second system’s memory that can be
directly accessed by the main system through RDMA. Once this is complete, the
main system is notified and performs the join of table R1 and table tmp locally.
Finally, the results are sent back to the coordinator and the client.

In the case of two systems with dissimilar organizations (e.g., arrays or key-
value stores), we assume that the remote systems (the second system in the
above example) can be table-ized (i.e., we can consider the object foreign to the
main system as a table). When there are dissimilar datatypes the above message
between the main and remote systems will need to include information about
how the type conversion is to be performed. The processor within the NIC can
then perform the type conversion.

3.4 Comparison with Writing BigDAWG Connector

We believe that the proposed system can significantly reduce the amount of
effort to integrate a new database system. Adding a new database engine to
BigDAWG is a non-trivial task. As described in [19], there are a number of
steps to be followed to add a new system (within an existing island). First, the
developer must define a connection to the database. With relational systems,
one can leverage a JDBC driver. The classes for the new database engine must
then be generated. Next, a query generator is required that can translate one
query language to another. In the case of different datatypes, some common
representation must be defined. Once the engine definitions are complete, islands
are modified in order to “see” this new engine. Assuming that queries will move
data from one system to another, developers need to write export and load classes
that can be used for migration. Again, this needs to take datatype conversion into
account. Next, migrators are needed for all possible migrations. New migrators
are registered in the middleware. Finally, catalog entries are required in the
BigDAWG middleware. For MySQL and Vertica, adding each new engine was
on the order of 2000 lines of code (each).

In short, adding a new engine to a system such as BigDAWG requires three
major development efforts: (1) Connections, (2) Query generation/data conver-
sion and (3) Migration. We believe that the proposed architecture can greatly

FastDAWG: Improving Data Migration in the BigDAWG Polystore System 9

simplify this process. By removing the need for users to translate queries from
one global query language to a local query, we drastically simplify the query
generation step from the description above. Additionally, writing custom data
migrators between each system can be time consuming and difficult. Our pro-
posed system relies on the well-defined RDMA protocol that can be used on a
variety of interconnects.

4 Performance Analysis

4.1 Experimental Setup

In this section, we look at the relative performance of using RDMA vs. TCP/IP
for data movement. We use predicted performance when comparing against the
BigDAWG migrator.

The experiments in this section are performed on two machines, each with
an Intel Xeon CPU E5-2660 v2 processor and 256 GB of main memory and
runs Ubuntu 14.04.1. Both machines are equipped with a Mellanox Connect IB
EDR NIC, which supports a theoretical bandwidth of 100 Gigabit per second.
Each machine is also equipped with an Ethernet NIC that supports a theoretical
bandwidth of 1 Gigabit per second.

For the BigDAWG experiments, we installed BigDAWG v0.1 [8] on both
servers. Each server runs PostgreSQL [16] as the native database system.

4.2 RDMA Vs. TCP

We now compare the performance of RDMA with TCP/IP over the same Infini-
Band network. In this case, TCP is implemented using IP over InfiniBand
(IPoIB). As discussed in Sect. 3.2, one advantage of RDMA over TCP is the
lower network latency due to bypassing the network stack. This is shown in
Fig. 2 where we measure the network latency of both RDMA and TCP at differ-
ent message sizes.

Fig. 2. Network latency with different message sizes.

10 X. Yu et al.

With small messages, the latency of a TCP message stays constant at 14µs,
which is primarily the time to process the message in the operating system.
RDMA, in contrast, incurs only 1.9µs latency with small messages. This is
because RDMA queries do not require the involvement of the OS and only minor
CPU computation is required at the client side. As the message size increases, the
latency for both RDMA and TCP increases. But the latency of RDMA remains
lower than that of TCP.

4.3 InfiniBand Vs. Ethernet

In this experiment, we compare the network bandwidth of InfiniBand and Ether-
net. The results are shown in Fig. 3. With both network settings, the bandwidth
consumption increases as messages get larger, until the bandwidth saturates
when the message size reaches 2 KB. Regardless of the message size, the band-
width of InfiniBand is around 2 orders of magnitude higher than that of Ethernet.
This matches the theoretical bandwidth gap between these two types of networks
(i.e., 1 Gigabit vs. 100 Gigabit).

Fig. 3. Network bandwidth of InfiniBand and Ethernet with different message sizes.

4.4 BigDAWG Comparison

In this section, we investigate the performance bottleneck of BigDAWG and
study how much performance improvement RDMA can bring to BigDAWG. To
perform this study, we deployed two PostgreSQL tables, S at the local machine
and R at the remote machine. Both tables have the same schema:

Table S s key: integer, s value: char (1000)
Table R r key: integer, r value: char (1000)

Each table contains one million rows which corresponds to roughly 1 GB
of storage. The BigDawg system runs the following query over tables S and R
where table S is on the main server and table R is on the remote server.

FastDAWG: Improving Data Migration in the BigDAWG Polystore System 11

Query Q1:

SELECT * from S, R

WHERE S.s_key = R.r_key

Fig. 4. The runtime breakdown of Query Q1 running on BigDawg.

Within BigDAWG, the query is broken down into three subqueries: (1) select-
ing the local table S, (2) selecting the remote table R and performing the migra-
tion, and (3) performing the join locally. The breakdown of execution time of
Q1 is shown in Fig. 4. The majority of the execution time is spent on the migra-
tion process, namely, migrating one table from the remote machine and perform
the join operation locally. After integrating RDMA into BigDAWG, this portion
of execution time can be largely eliminated, leading to about 3× performance
improvement.

Fig. 5. Predicted speedup of BigDawg when replacing Ethernet with RDMA.

In Fig. 5, we demonstrate the performance improvement of BigDAWG when
using RDMA as the selectivity of the join operation changes from 0 to 1. As

12 X. Yu et al.

the selectivity increases, the performance gain of using RDMA decreases. This
is because higher selectivity leads to a larger joined table. Therefore, the portion
of execution time spent on the join operation increases and the portion of time
spent on migration decreases, limiting the potential improvement of RDMA
which can accelerate only the migration but not the join.

4.5 Alternate Architecture and Proof of Concept

Many relational systems support the notion of a foreign table. An alternate
architecture uses the concept of a foreign table on S. In this model, we can
design a foreign data wrapper that can communicate with the node containing
table R. The wrapper is used to define server connections, fetch/update data,
and return to the executor. When a query is issued that requires data from R, the
foreign data wrapper can fetch this remote data via an RDMA connection. The
architecture of Sect. 3 leverages RDMA as a generalized migrator for polystore
systems. This alternate architecture, while likely requiring increased developer
effort, can reduce latency, improve query planning and optimization and can be
used to largely hide the details of data movement from the end-user.

To demonstrate the viability of this RDMA-based join, we wrote a simple
program to manually perform the join using RDMA and compare its performance
to a local join. In this experiment, we used two tables S and R that have the
same schema and size as in Sect. 4.4 where each row in table S joins with exactly
one row in table R. For the local join, both tables reside on the same machine
which performs a hash join. For the distributed join, the host machine builds a
hash table using the local table, and then uses one-sided RDMA read operations
to load individual records from the second table over the network and performs
the join operation.

Table 1. Execution time of local Join vs. RDMA-based remote join.

Local join Remote join

Execution time 0.798 s 0.806 s

Table 1 shows the runtime of both the local join and the RDMA join. Overall,
the RDMA join is only 1% slower than the local join, although 1 GB of data is
transferred over the network during that period of time. For this type of data
intensive query, the computation is the high pole in the tent and RDMA does
not limit the system performance at all. Note that the performance number in
Table 1 is much better than the performance number measured on PostgreSQL.
This is because the hand-optimized join code does not have some overhead in
PostgreSQL.

FastDAWG: Improving Data Migration in the BigDAWG Polystore System 13

5 Previous Work

The notion of making database systems that interoperate has a long history. In
the early 1980s the topics of multi-databases and federated systems were the
focus of much research [10,13,15]. The high-level vision of these systems was
very much like the concept of a polystore, but the implementation challenges
were different.

First, a multi-database was built from a loosely-coupled collection of com-
puters that communicate via TCP. Queries that required a lot of very expensive
data motion, typically made the system unusable. Second, The multi-database
system needed to be capable of integrating any data model and complete with
any queries making interoperability a difficult task. Foreign database schemas
were converted first to a common intermediate representation and then trans-
lated to the target system’s schema/model which was complex and slow.

We address the data movement problem by using RDMA to make remote
data access competitive in speed to local RAM. We address the complexity issue
by limiting the models that can interoperate. We show that we can cover the
common cases even with limited models.

More recently, a number of polystore systems have been developed to address
the downsides of multi-databases; examples include BigDAWG [5,7], CloudMD-
sQL [12], Myria [18], and Apache Drill [11]. While these systems all have dif-
ferent query interfaces and heterogeneous execution strategies [17], all of them
used software-based data wrappers and migration policies. The RDMA based
fast migration solution that we propose in this paper is able to benefit all of
these systems above.

6 Future Work

Compared to BigDAWG, one limitation of FastDAWG is that a query is exe-
cuted only on the main system—the other systems in the polystore handle data
conversion and predicates, but not query execution. BigDAWG, in contrast, can
execute different parts of a query using different systems, thereby potentially
achieves better overall performance. While a FastDAWG user can still choose
the main system for maximal performance, the level of flexibility is more lim-
ited. In practice, however, we believe the majority of most queries are optimized
by running on a single system, in which case BigDAWG and FastDAWG will
have similar execution plans. We plan to study the performance implication of
FastDAWG by comparing its performance to BigDAWG on a variety of queries.

This paper has demonstrated the performance potential of FastDAWG
using relational database systems. As future work, we plan to study how data
type conversion and predicates can be pushed down to the new-generation of
RDMA hardware. Hopefully, we can demonstrate the simplicity and performance
improvement of this design.

14 X. Yu et al.

7 Summary

We have described a new polystore architecture that addresses three shortcom-
ings that we observed in our own polystore called BigDAWG, They are (1) the
need to learn multiple query languages, (2) the data movement is too slow, and
(3) wrappers are inefficient and hard to write. We make a conscious decision to
limit interoperability between systems in order to make the system easier to use.
We believe that our choice for how to maintain this balance is a sweet-spot. Our
next step is to follow this up with some real-world deployments.

References

1. Innova-2 Flex Programmable Network Adapter (2018). https://goo.gl/xNzVD1
2. Mellanox BlueField SmartNIC (2018). https://goo.gl/dic6HH
3. Binnig, C., Crotty, A., Galakatos, A., Kraska, T., Zamanian, E.: The end of slow

networks: it’s time for a redesign. Proc. VLDB Endow. 9(7), 528–539 (2016)
4. Chen, P., Gadepally, V., Stonebraker, M.: The BigDAWG monitoring framework.

In: 2016 IEEE High Performance Extreme Computing Conference (HPEC), pp.
1–6. IEEE (2016)

5. Duggan, J., et al.: The BigDAWG polystore system. ACM SIGMOD Rec. 44(2),
11–16 (2015)

6. Dziedzic, A., Elmore, A.J., Stonebraker, M.: Data transformation and migration
in polystores. In: 2016 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1–6. IEEE (2016)

7. Elmore, A., et al.: A demonstration of the BigDAWG polystore system. Proc.
VLDB Endow. 8(12), 1908–1911 (2015)

8. Gadepally, V., et al.: BigDAWG version 0.1. In: 2017 IEEE High Performance
Extreme Computing Conference (HPEC), pp. 1–7. IEEE (2017)

9. Gupta, A.M., Gadepally, V., Stonebraker, M.: Cross-engine query execution in
federated database systems. In: 2016 IEEE High Performance Extreme Computing
Conference (HPEC), pp. 1–6. IEEE (2016)

10. Hammer, M., McLeod, D.: On database management system architecture. Tech-
nical report, Massachusetts Institute of Technology Cambridge Lab for Computer
Science (1979)

11. Hausenblas, M., Nadeau, J.: Apache drill: interactive ad-hoc analysis at scale. Big
Data 1(2), 100–104 (2013)

12. Kolev, B., et al.: Design and implementation of the CloudMdsQL multistore sys-
tem. In: CLOSER: Cloud Computing and Services Science, vol. 1, pp. 352–359
(2016)

13. McLeod, D., Heimbigner, D.: A federated architecture for database systems. In:
Proceedings of the National Computer Conference, 19–22 May 1980, pp. 283–289.
ACM (1980)

14. She, Z., Ravishankar, S., Duggan, J.: BigDAWG polystore query optimization
through semantic equivalences. In: 2016 IEEE High Performance Extreme Com-
puting Conference (HPEC), pp. 1–6. IEEE (2016)

15. Sheth, A.P., Larson, J.A.: Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Comput. Surv. (CSUR) 22(3),
183–236 (1990)

https://goo.gl/xNzVD1
https://goo.gl/dic6HH

FastDAWG: Improving Data Migration in the BigDAWG Polystore System 15

16. Stonebraker, M., Rowe, L.A.: The Design of Postgres, vol. 15. ACM, New York
City (1986)

17. Tan, R., Chirkova, R., Gadepally, V., Mattson, T.G.: Enabling query processing
across heterogeneous data models: a survey. In: 2017 IEEE International Confer-
ence on Big Data (Big Data), pp. 3211–3220. IEEE (2017)

18. Wang, J., et al.: The Myria big data management and analytics system and cloud
services. In: CIDR (2017)

19. Yu, K., Gadepally, V., Stonebraker, M.: Database engine integration and perfor-
mance analysis of the BigDAWG polystore system. In: 2017 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), pp. 1–7. IEEE (2017)

Multi-model Database Management
Systems - A Look Forward

Zhen Hua Liu1, Jiaheng Lu2(&), Dieter Gawlick1, Heli Helskyaho2,3,
Gregory Pogossiants4, and Zhe Wu1

1 Oracle Corporation, Redwood City, USA
2 University of Helsinki, Helsinki, Finland

Jiaheng.lu@helsinki.fi
3 Miracle Finland Oy, Helsinki, Finland

4 Soulmates.ai, Pasadena, USA

Abstract. The existence of the variety of data models and their associated data
processing technologiesmake datamanagement extremely complex. In this paper,
we envision a single Multi-Model DataBase Management Systems (MMDBMS)
providing declarative accesses to a variety of data models. We briefly review the
history of the evolution of the DBMS technology to derive requirements of
MMDBMSs and then we illustrate our ideas of building MMDBMSs satisfying
those requirements. Since the relational algebra is not powerful enough to provide
a mathematical foundation for MMDBMSs, we promote the category theory as a
new theoretical foundation, which is a generalization of the set theory. We also
suggest a set of shared data infrastructure services among data models to support
“Just-In-Time” multi-model data access autonomously.

1 Introduction – Why MMDBMS?

Here is a short history of databases: Initially, database management systems supported
the hierarchical and the network model (e.g., IBM’s IMS and GE’s IDS respectively).
These databases evolved very fast and developed the core infrastructures, such as
journaling, transactions, locking, 2PC (group and fast commit), recovery, restart, fault
tolerance, high performance, TP-monitors, messaging, main storage databases, and
much, much more. We still use these concepts today. In the 80’ and 90’, these data-
bases were widely replaced by the relational database management systems (RDBMS).
The main argument is its solid theoretical foundation: set based relational data model
and declarative query language (SQL) based on abstract algebra over set processing.

However, the demands to simplify the interaction between applications and data-
bases with simple storage and querying interfaces are not always possible using only
the relational model. Object databases ODBMS (Object Database Management Sys-
tems) filled this gap by providing easy access to objects with object-oriented pro-
gramming languages. With additional OO features in RDBMSs, ORDBMSs are able to
support many domain data types, such as text, spatial, and images data. Interestingly,
the last decade has witnessed the re-emergence of hierarchical data models in the form
of XML and JSON data and the re-emergence of the network data model in the form of
RDF semantic graph and property graph data. This has led to native XML, JSON,

© Springer Nature Switzerland AG 2019
V. Gadepally et al. (Eds.): Poly 2018/DMAH 2018, LNCS 11470, pp. 16–29, 2019.
https://doi.org/10.1007/978-3-030-14177-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14177-6_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14177-6_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14177-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-14177-6_2

graph database systems and ORDBMSs providing XML, JSON, RDF and graph data
support via SQL/XML, SQL/JSON standards and ongoing standard development to
provide graph access via SQL. More applications are adopting graph modelling and
graph query since graphs provide a flexible way to structure application data and adapt
them dynamically to changes [15, 27, 29]. The source of graph data could come from
relational, XML, or JSON that exist in the different databases [17].

The history of the database evolution has shown that new applications often require
new data models leading to extended infrastructure of DBMSs with new query lan-
guages over these new data models. One existing solution is the polyglot persistency
approach, which leverages numerous DBMSs to support different data models and
integrates them programmatically at the application layer. The biggest issue of polyglot
persistency is that the combined DBMSs is neither declarative nor unified. It leaves
database application to procedurally join data among multiple data models and man-
ually transform among data model instances. Instead of putting the burden on appli-
cations, it is more desirable to have a unified single DBMS [16], which hides the
complexity of multiple data models by providing declarative approach of querying
multi-model data instances and just-in-time data model transformation.

In this position paper, we advocate a multi-model database management system
(MMDBMS) that has the ability to incorporate any data model and allows users to
manipulate all data models declaratively. Users are able to explore the real power of an
MMDBMS by leveraging its ability to autonomously transform data from one data
model to another. MMDBMSs allow data providers and data consumers to look at the
same data using different models depending on their most effective view. MMDBMSs
accomplish these data model transformation autonomously on behalf of users.

We argue that the design of a full-fledged MMDBMS requires a more powerful
mathematical foundation. The last few decades have witnessed a tremendous success of
RDBMSs leveraging the relational algebra as theoretical foundation and therefore
limiting this foundation to relational data. We recognize the same data can be repre-
sented relationally, hierarchically, graphically and are thus queryable by SQL, XQuery,
Property-Graph Query Language respectively. Therefore, we feel the need of having a
new theoretical foundation to provide transparent data model and query language
transformations among those data models and languages. In other words, MMDBMSs
require a powerful mathematical foundation to reason about declarative data model
transformation among multiple data models. In this paper, we promote category theory
[5, 14] shall be able to play the role of the new mathematical foundation to reason
declarative construction and transformations among various data models.

In addition, this paper describes a set of shared data infrastructure services. The
shared services not only include essential common data services, such as transaction,
recovery, security, high availability but also include integrating artificial intelligence to
provide “Just-In-Time” data model access and telemetry service to promote multi-
model situation awareness service [4].

Organization. The remainder of this paper is structured as follows: Sect. 2 introduces
the preliminaries on categories and examples of model transformation. Section 3
presents category theory as the mathematical foundation for MMDBMS. Section 4
illustrates MMDBMS infrastructure services. Section 5 shows related work and Sect. 6
concludes the paper.

Multi-model Database Management Systems - A Look Forward 17

2 Preliminaries on Categories and Model Transformation

The category theory exists since 1940 and has been successfully used in many
mathematical, physical and computer science areas. Recently, researchers have applied
it to the databases area (e.g. the functorial query language in [9–11, 18]). In this section,
we review the concept of category, functor and give an example to perform cross-
model transformation between relation and JSON data.

Definition 1 [19]. A category consists of a collection of objects, a collection of
morphisms, so that:

• Each morphism has specified domain and codomain objects; the notation f: X ! Y
signifies that f is a morphism with domain X and codomain Y.

• Each object has a designated identity morphism: X ! X.
• For any pair of morphisms f, g, there exists a composite morphism whose domain is

equal to the domain of f and whose codomain is equal to the codomain of g.

Definition 2 [19]. A functor F: C ! D, between categories C and D, consists of the
following data:

• An object FC 2 D, for each object c 2 C,
• A morphism F: FC ! FC0 2 D, for each morphism f: c ! c0 2 C, so that the

domain and codomain of F are, respectively equal to F applied to the domain or
codomain of f.

Each category can be considered as a collection of objects with some relations between
them, expressed by “morphisms” – special form of describing relation dependency of
the objects. One category could be mapped to some other by “functors”. Mapping
category C to D means mapping objects in such a way that relationship between
mapped objects in D will be inducted by the corresponded relation in C. With category
theory, MMDBMSs can be considered as a container that hosts multiple data sets of
different data models as multiple different categories.

Fig. 1. A functor F: C ! D from the schema of relation to that of JSON

18 Z. H. Liu et al.

In particular, a functor F: C ! D of database schemas is a mapping that takes
vertices in C to vertices in D and arrows in C to arrows or paths (a sequence of arrows)
in D. For example, in Fig. 1, each of the six leaf vertices: Staff_ID, First, Last, Dep_ID,
Name, Head in C is mapped to the vertex in D of the same label. This mapping is not
necessarily bijective (e.g. the vertex of Dept in D cannot map to any vertex in C).
Based on this mapping, we will discuss in turn three functors on the level of data
instances in Example 1–3, which transform JSON instances to relational instances and
vice versa, illustrated in Table 1.

Example 1 (Pullback). We explore the pullback functor DF by applying it to a JSON
file depicted in Fig. 2. This operation splits the JSON document into two tables.

In the next two examples, we will explore the right and left pushforward functors
induced by Fig. 1.

Example 2 (Right Pushforward). We explore the right pushforward functors
Q

F by
applying on two tables in Fig. 1(b). The JSON file is described in Fig. 2. The JSON file
can be considered as the inner-join of two relational tables (Fig. 3).

Example 3 (Left Pushforward). In this example, we explore the left pushforward
functor. Instead of being an inner-join, as in the case of above, the JSON file is formed
by the union of two tables. In order to deal with the fact that the record do not have
department information, the respective value are skolemized. In other words, the cell is
simply added by a new “variable”.

Table 1. Illustration of data instance transformations induced by three functors.

Category operations Symbol Database operations

Pullback DF : J-inst ! R-inst JSON to relation
Right Pushforward

Q
F : R-inst ! J-inst Relation to JSON by inner-join

Left Pushforward
P

F : R-inst ! J-inst Relation to JSON by outer-join

Fig. 2. Example JSON file and the tables after pull-back operations

Multi-model Database Management Systems - A Look Forward 19

As shown in the above example, based on category schema and functor mapping, a
relational model can be created on top of a hierarchical XML or JSON object. Con-
versely, a hierarchical model can be created on top of relational rows to access rela-
tional object. Therefore, category theory builds the mathematical foundation for the
transformation of data instances between different models, which will be further
elaborated in the following sections.

3 MMDBMS Framework and Category Theory

Building RDBMSs based on the abstract/set algebra as theoretical foundation has been
a tremendous success. The ORDBMS technology is a subsequent successful engi-
neering framework to enable RDBMS to accommodate object data. However, an
ORDBMS by itself is not a MMDBMS since MMDBMSs require an improved
mathematical foundation to reason about a declarative data model transformation
among multiple data models, something not covered by the relational or object-
relational algebra. To facilitate transformations among multiple data models, we argue
that the category theory [5, 14, 19] is a more appropriate theoretical foundation for
MMDBMS. In this section, we will discuss query transformation, view processing, in-
memory processing in MMDBMSs and their potential connections to the category
theory.

3.1 Query Transformation

MMDBMS enables a query over one data model to be transparently rewritten into an
equivalent query over another data model. For example, given the property graph
defined in Fig. 4, one can run various graph queries (e.g. shortest path). We investigate
the following two graph queries (GQ1 and GQ2) in the context of MMDBMS.

Fig. 3. JSON files after Right Pushforward and Left Pushforward functors

20 Z. H. Liu et al.

Assume the graph data stays in the underly-
ing relational base tables T1, T2, shown in
Fig. 1. The two declarative graph PGQL queries
(Property Graph Query Language, see specifi-
cations in [22]) in Table 2 are created on top of
T1 and T2. Table 2 also shows equivalent SQL
implementations using a recursive WITH clause.

Category theory enables query rewriting
crossing different data models. In particular, we
consider each model data-set of a MMDBMS as
a category and declare one or many functors to
transform objects from one category to another through query languages. Further, a
natural transformation provides a way of transforming one functor into another while
respecting the internal structure (i.e., the composition of morphisms) of the categories
involved. Hence, a natural transformation can be considered a “morphism of functors”.
Sometimes two quite different constructions yield the “same” result; this is expressed
by a natural isomorphism between the two functors. Therefore, the transformation
between functors can be employed to investigate the equivalence between queries with
different models.

Table 2. Graph and relational model transformations

Description Graph query (PGQL
v1.1)

Equivalent SQL query

Find a department D1’s head and all
individuals who report directly or
indirectly to D1’s head

GQ1: PATH fp AS ()-[e:
Mgr]-> ()
SELECT emp
MATCH (emp)-/:fp+/-
> (h)-[e1:Head]-> (d
WITH Dep_ID=“D1”)

WITH g(Staff_ID, First, Last, Dep_ID,
Mgr, Depth) AS (SELECT Staff_ID,
First, Last, Dep_ID, Mgr, 1 as
Depth FROM T1
UNION all
SELECT T1.Staff_ID, T1.First, T1.Last,
T1.Dep_ID, g.Mgr, 1+g.Depth as Depth
FROM g, T1 where T1.Mgr=g.Staff_ID)
SELECT g.Staff_ID FROM g WHERE
Mgr is not null and Mgr in (SELECT
Head FROM T2 WHERE T2.
Dep_ID=‘D1’)

Find a complete list of departments
that an employee John and his
whole team belong to

GQ2: PATH fp AS ()-[e:
Mgr]-> ()
SELECT DISTINCT d
MATCH (d) < -[e1:
Dept]-(emp) -/:fp +/-> (j
WITH First = ”John”)

WITH g(Staff_ID, First, Last, Dep_ID,
Mgr, 1 as Depth) AS (FROM Staff_ID,
First, Last, Dep_ID, Mgr, 1+g.Depth as
Depth FROM T1
UNION all
FROM T1.Staff_ID, T1.First, T1.Last,
T1.Dep_ID, g.Mgr, g.Depth as Depth
from g, T1 where T1.Mgr=g.Staff_ID)
SELECT DISTINCT Dep_ID FROM g
WHERE Mgr=(SELECT T1.Staff_ID
FROM T1 WHERE T1.First=‘John’)

Fig. 4. An example of property graph

Multi-model Database Management Systems - A Look Forward 21

3.2 Multi-model Data View Processing

A view is nothing but a query. However, a view bridges the gap between how data is
logically organized from the perspective of users and how the data is physically
organized from the perspective of the underlying DB system. In MMDBMSs, a view is
also a simple way to virtually access one data model on top of another via declarative
data model transformation. This is the power of MMDBMSs, which allows an
application to store data in one data model and later query the same data by
another application using a different data model via defining multi-model data
views. Thus, multi-model data view realizes the genuine value of MMDBMS which
enables data applications requiring different data models to share the same MMDBMS
and rely on MMDBMS to transparently provide different access views of the same data
adaptive to each data application’s requirement.

For example, JSON documents and XML documents are based on hierarchical data
models. However, JSON and XML documents can be viewed relationally by decom-
posing the hierarchy into set of rows and columns. This is achieved by defining
XMLTABLE() or JSON_TABLE() view on top of the native storage of XML or JSON
documents to view the XML and JSON content relationally. Similarly, contents in a set
of relational tables can be weaved constructively to create hierarchical model through
SQL/XML and SQL/JSON generation function. Therefore XML view or JSON view
can be achieved by defining SQL/XML and SQL/JSON generation function on top of
the relational tables. In general, when transformation functions are defined to convert
data between different data models, views can be defined to use the transformation
function to present desired data model even though the underlying storage of the data
may not be in that data model physically. Using relational tables and JSON files in
Figs. 1 and 2, Table 3 shows SQL/JSON views for constructing relational data model
from JSON data model and construct JSON data model from relational model.

Table 3. JSON and relational model transformations

Description Query

Q1- Construct JSON view from
relational content

CREATE JSON_VIEW AS
SELECT JSON {“Staff” : {“STAFF_ID” : e.staff_id,
“First” : e.first, “Last” : e.last, “Mgr” : e.mgr,
{“Dept” : {“Dept_ID” : d.dept_id, “Names” : d.name,
“Head” : d.head}}}
FROM Employee e, department d
WHERE e.dep_id=d.dep_id

Q2 - Construct relational view of
employee from JSON

CREATE EMPLOYEE_REL_VIEW AS
SELECT *
FROM JSON_VIEW f, JSON_TABLE (f.Staff
COLUMNS (Staff_ID, First, Last, Mgr)

Q3 - Construct relational view of
department from JSON file

CREATE DEPARTMENT_REL_VIEW AS
SELECT *
FROM JSON_VIEW f, JSON_TABLE(f.Dept
COLUMNS (Dep_ID, Name, Head)

22 Z. H. Liu et al.

One approach to improve query over such multi-model view is to through query
rewrite technique by leveraging the underlying algebraic property of the transformation
functions among different data models. For example, relational predicates over
XMLTABLE() or JSON_TABLE() views can be written into XPATH/JSON PATH
predicates directly navigating the native hierarchical storage of the underlying XML or
JSON data [2]. Inversely, XPATH/JSON path query over the views constructed via
SQL/XML or SQL/JSON generation functions over relational tables can be written into
relational predicate over the underlying relational table storage [2, 13]. Table 4 shows
applying query rewrite transformation for Q2 and Q3 of Table 3. The intermediate
JSON view don’t need to be physically materialized.

Providing view update capability is feasible provided that transformation function
is reversible. The MMDBMS can manage a set of built-in transformation functions
between different models and understand the reversibility of the transformation func-
tion so that it can automatically determine if the view is updatable. For views that are
not updatable systematically due to lack of inverse function, instead-of-update trigger
can be supplied by users to deal with ad-hoc update. Therefore, the category theory can
be used to reason about view updatability when a natural transformation is reversible.
An MMDBMS optimizer manages a set of transformation algebraic rules between
different models for query optimization and rewrite and understand the reversibility of
the algebraic transformations for view update feasibility.

3.3 Multi-model In-memory Processing

The classical RDBMS technology assumes the data layout on disk is the same as the
one cached in the buffer cache. However, the use of columnar main-memory structures
has revolutionized this model [3]. By decoupling the storage format from their in-
memory data format, MMDBMSs shall decide how to provide fast in-memory access
for multi-model data. There is probably no single best storage format for a data model
instance to satisfy all the workload requirements. Using functors and natural trans-
formation in the category theory, MMDBMSs may autonomously rearrange and cache
data in a different format as compared to the format stored on disk. MMDBMSs need
not to lock down an optimized universal way of storing multi-model data and yet being
able to provide ‘Just-In-Time’ data model access through materializing data model
instances in alternative forms in NVRAM or RAM.

When the query over multi-model view is complex enough so that it is not feasible
to do such query rewrite, for example, performing arbitrary directional path navigations
in a hierarchical tree model, then materialized multi-model view technique can be used.
The materialized view performs the actual transformation of the data into the physical

Table 4. Query rewrite transformation results

Description Query

Q2 SELECT Staff_id, First, Last, Mgr FROM Employee
Q3 SELECT Dep_ID, Name, Head FROM Department

Multi-model Database Management Systems - A Look Forward 23

model to run the query. In classical RDDBMS, materialized view has to be persistent,
an in-memory only materialized view is a good option for MMDBMS to have because
in-memory materialized view can be populated to speed up query without incurring the
overhead of persistency management. Furthermore, the in-memory transformation can
be implemented in background without delaying or blocking the foreground DML
operations on the original base data. This is in the same way as how in-memory
columnar population of the on-disk row format serves a good alternative to persistently
migrating from row storage format to columnar storage format [6]. Rather than
attempting to determine a best storage format of data upfront to satisfy potentially all
workload, in-memory materialized view provides a flexible mechanism to decouple the
storage format of data in view from the base table. In this way, neither the system nor
the users need to lock down one way of storing and indexing the data. Applying this
idea to RDBMS, users may have columnar physical storage with row oriented views
materialized in memory or may have row oriented physical storage with columnar view
materialized in memory.

In summary, MMDBMS shall use meta-algebra among data model instances to
decide whether and when to materialize data model instances physically or in memory
or to leave it as a logical entity to avoid materialization cost while providing good
access performance. This is the key to integrate in-memory query processing with
MMDBMS.

3.4 Multi-model Security Access via View

Just as classical RDBMS, view serves as an effective mechanism to enforce data
security. In classical RDBMS, security can be enforced at table level, row level,
column level via column projection and row filtering criteria declared declaratively by
users. In MMDBMS, we shall be able to leverage view to enforce data security.
Although MMDBMS has concept of table as collection and documents in a collection
as a row so that inter-document security can be enforced just as relational DB case, the
intra-document security enforcement is not a clear cut as the document does not have
concept of column. However, we shall still be able to leverage the concept of view to
enforce the intra-document security. For example, a view using XPATH to project a set
of XML fragments within an XML document can be used to define part of an XML
document that access is granted or revoked. Users may not be granted any privilege to
access the base table or collection, however, they are granted access to views defined
using document filter and projection to define fine-grained security access privilege.

3.5 Multi-model with Flexible Schema

In MMDBMS that aligns with the idea of data first/schema later or never, there is
another creative usage of view in MMDBMS. It allows system and users to use
adaptive schema concept [1] to access the data. The key to provide adaptive schema
access is to leverage view. For example, in a heterogeneous collection of semi-
structured documents, the underlying semi-structured data have loose structures so that
defining a full schema over the semi-structured data could result in a very large sparse
schema with many choices and uncertainties. Such full schema may not be practically

24 Z. H. Liu et al.

useful for query analysis. Therefore, multiple views with various degrees of exposure
of the underlying semi-structure data can be provided to users for their query use cases.
In this way, users and their applications are not required to lock down one schema of
the data using classical E-R design resulting a set of physically materialized tables but
rather may have multiple logical flexible schemas, each of which represents certain way
of viewing and accessing the data [23]. The underlying data may be stored natively in
user input format as the source of the truth. There are many views defined in the
system. Some of the views are virtual that require on-the-fly query rewrite to push the
access to the underlying storage data. Other views are materialized persistently or
computed and populated on-demand in-memory to speed up query access. The
advantage of supporting multi-view approaches is that there are no schema evolution
and physical data migration issues that classical RDBMS with fixed schema has. This is
because there is only one source of truth using the original data directly from the import
of the user without using any physical schema to shred the original data. All views are
secondary whose content are always re-computable from the original physical data
based on the schema that the system and user agree upon [23]. Through automatic
schema derivation efforts by the MMDBMS system, users have tremendous flexibility
to pick and choose views needed for their current applications and are able to keep
evolving their view definition without physically migrating the storage data.

3.6 Application of Inverted Index in MMDBMS

Borrowed from the idea from IR inverted index on full text search, MMDBMS may
extend the inverted index to a universal index that indexes not only full text content,
but also other multi-model data instances and their schema. The inverted index in
MMDBMS is model-context-aware schema and data search. The advantage of such
inverted search index is that users do not need to know what to index in advance yet
still enjoy high performance for an explorative type of queries. For example, searching
keywords from inverted index shows the occurrence of the keywords under different
data models: keywords within XML documents or JSON objects under a hierarchical
path, within graph structures inside a graph traversal path, or within relational rows
under a specific set of columns. From the search result of a multi-model context aware
inverted index, users can then use model domain specific index to further narrow down
the search and query criteria.

The existing ORDBMS supports domain index as a way to index domain specific
data. MMDBMS inherits the domain index approach. However, a new usage of domain
index is that it can be used as a secondary index after general inverted index. Fur-
thermore, just as in RDBMS, conventional B+ tree index scan might be slower than in-
memory columnar scan for an unselective query. Similar investigation needs to be
carried out to evaluate if in-memory scan in MMDBMS is compatible with adaptive
domain index for different kinds of multi-model data.

Multi-model Database Management Systems - A Look Forward 25

3.7 Benefits of MMDBMS Users

We summarize two main benefits for MMDBMS users:

• Flexible data models. In a MMDBMS, there is no primary data model. It does not
matter that the data are initially defined with hierarchical data model or relational
model or graph model etc. It will be easy for users to start the operation with one
model and later add and incorporate new data models as their use cases demand.
Users are able to incorporate multiple data models into a single MMDBMS and
manage them in a holistic way.

• Transparent cross-model query transformation and rewriting. All query lan-
guages are equal in MMDBMSs. Each data model may have its own domain-
specific declarative query and modification language. User applications may ini-
tially start with one data model language to access one data model. However, as
they start to manage multiple data models and try to transform, join and mix data
models in MMDBMSs, MMDBMSs understand the connections among these data
models and their respective languages so that it can transparently do query trans-
formation and rewriting among different data model languages on behalf of
applications. The genuine value of MMDBMSs is that they allow many data
applications to share one DBMS and on-demand declaratively transform from one
data model to another. It is the MMDBMS’s (not users’) responsibility to optimize
and execute inter-data model queries and modification requests.

3.8 Limitation of Category Theory

Some logical limitation of Category Theory has been pointed by Jean–Yves Girard
[24], renowned logician in Proof Theory area. Girard considered the notion of
equivalence in Category Theory to be too strict “up to isomorphism”. Therefore, he
wrote, the Category Theory can’t operate with other, more complicated equality forms,
in-particular in novel logic theory [25, 26]. However, right now we are far away from
such problems in our MMDBMS approach.

4 Infrastructure Services – Ecosystem for MMDBMS

MMDBMSs need to provide a set of common services that can be used by the different
models. This section describes some of these key services:

• Atomicity: Databases allow users to bundle requests; this is the well-known
transaction support. The fundamental idea is that if a transaction is unable to
complete there will not be any trace of that transaction in the database and if it
succeeds, everything is committed permanently. To achieve this any required
database object has to be isolated from other transactions progressing in parallel and
changes are not visible until a transaction completes successfully. However, this
basic (ACID) model has significant limitations in respect to functionality, perfor-
mance and scalability. A well-known technology is to use escrow technology,
which supports parallel updates for commutative operations that are commonly

26 Z. H. Liu et al.

frequently available for inventory management. Additionally, weaker models exist
for those applications that can tolerate relaxed support; e.g., BASE. MMDBMSs
need to support a wide range of models and therefore support different levels of
atomicity for different data models and different use cases. The level of atomicity
should be able to be tuned differently for different data models and use cases based
on their requirements both manually and automatically.

• Fault resilience for recovery and provenance: Fault resilience is a service to
capture information to recover from any error and avoid any loss of data while
supporting atomicity. Implementing fault resilience for an MMDBMS is chal-
lenging but it should be done better than with a polyglot solution due to its single
integrated backend. The requirements for fault resilience can be different for diverse
data models and use cases. It should be able to be tuned both manually and
automatically.

• Telemetry: This service will provide a base for a wide range of data capturing and
analysis services in MMDBMS. The basic usage is to understand the system
behavior for a wide range of perspectives; e.g., understanding and debugging
functionality and performance, understanding usage patterns, and billing. A more
advanced usage is to identify abnormal behavior in real time. Multi-model data can
be analyzed in real time and/or externalized for provenance and offline-analysis. For
this service, MMDBMSs should be able to be more adaptive and flexible, such as
adaptive in-memory processing, adaptive universal multi-model indexing, and
adaptive view processing via query rewrite or in-memory materialization and
adaptive schema view for just-in-time semi-structured data in-memory processing.

• Machine Learning: MMDBMSs will use machine learning on top of telemetry
Data to understand user’s data application so that it can recommend suitable data
model for applications. As applications evolve different data model might become
appropriate. MMDBMSs will autonomously build the appropriate data model just-
in-time to better serve users. At a more advanced level, telemetry and machine
learning can also identify abnormal behavior such as faulty sensors, as well as assets
and system components.

5 Related Work

A multi-model data management system is designed to address the variety challenge of
a complex world. In general, there exist two solutions: (i) polyglot persistence and
(ii) multi-model database.

The history of polyglot persistence may trace back to the federation of relational
engines or distributed DBMSs, which was studied in depth during the 1980s and early
1990s. Polyglot persistence approach is similar to the use of mediators in early fed-
erated database systems. Recently, some research groups have been working on
polyglot persistence platforms. For example, Musketeer [6] provides an intermediate
representation between applications and data processing platforms and has the merit of
proposing an optimizer for the supported applications and platforms. DBMS+ [7] is
another work that aims at embracing several processing and storage platforms for

Multi-model Database Management Systems - A Look Forward 27

declarative processing. BigDAWG [8] has recently been proposed as a federated
system that enables users to run their queries over multiple vertically integrated systems
such as column stores, NewSQL engines, and array stores.

The second approach is to develop MMDBMSs to support multiple data models
against a single, integrated backend, while meeting the growing requirements for
scalability and performance. However, as far as our knowledge, there exist very few
research works [12, 20, 21, 28] on the theories and algorithms of MMDBMS. Paper
[20] illustrates the query compilation technique for logical and physical design in data
management that is relevant to query processing over multiple physical data models in
MMDBMS. Paper [21] has introduced the concept of “meta-model” as a framework for
defining different data models and specifying translations schema among data models.
In this paper, we make the contributions by showing the benefit of leveraging category
theory as new theoretical foundation in MMDBMS. We suggest a new mathematical
foundation, which not only can capture relational model and relational algebra but also
be able to capture many other data models and their algebra, so that the meta-
connections among data models and their algebra are transparent from their data
applications.

6 Conclusion and Future Work

In this paper, we have discussed the challenges supporting the “Variety” of data; we are
advocating an MMDBMS technology with category theory as mathematical founda-
tion. We envision leveraging category theory for multi-model query transformation,
viewing processing, in-memory processing and adaptive schema. We also propose a set
of shared data infrastructure services in MMDBMS to support “Just-In-Time” multi-
model data access autonomously.

Exciting follow-up research can be centered on an in-depth research of category
theory into MMDBMS. Of foremost importance is to chart the natural transformation
among multiple models to enable transparent cross-model query processing and
rewriting. Another of our efforts is aimed at the potential impact of the interplay
between category theory and machine learning algorithms on an autonomous data
model selection and accesses.

Acknowledgement. Jiaheng Lu is partially supported by the Academy of Finland (No. 310321).

References

1. Spoth, W., et al.: Adaptive schema databases. In: CIDR (2017)
2. Liu, Z.H., Gawlick, D.: Management of flexible schema data in RDBMSs-opportunities and

limitations for NoSQL. In: CIDR (2015)
3. Lahiri, T., et al.: Oracle database in-memory: a dual format in-memory database. In: Data

Engineering (ICDE) (2015)
4. Gawlick, D., Chan, E.S., Ghoneimy, A., Liu, Z.H.: Mastering situation awareness: the next

big challenge? ACM SIGMOD Rec. 44(3), 19–24 (2015)

28 Z. H. Liu et al.

5. Spivak, D.I.: Database queries and constraints via lifting problems. Math. Struct. Comput.
Sci. 24(6) (2014)

6. Grosvenor, M.P., Clement, A., Hand, S.: Musketeer: all for one, one for all in data
processing systems. In: EuroSys, pp. 1–16 (2015)

7. Lim, H., Han, Y., Babu, S.: How to fit when no one size fits. In: CIDR (2013)
8. Elmore, A., et al.: A demonstration of the BigDAWG polystore system. Proc. VLDB

Endow. 8(12), 1908–1911 (2015)
9. Schultz, P., et al.: Algebraic databases. CoRR abs/1602.03501 (2016)
10. Fleming, M., Gunther, R., Rosebrugh, R.: A database of categories. J. Symb. Comput. 35,

127–135 (2002)
11. Wisnesky, R., Spivak, D.: A functorial query language. Presented at Boston Haskell (2014).

http://categoricaldata.net/fql/haskell.pdf
12. Abiteboul, S., et al.: Research directions for principles of data management (Abridged).

SIGMOD Rec. 45(4), 5–17 (2016)
13. Liu, Z.H., et al.: Towards a physical XML independent XQuery/SQL/XML engine. PVLDB

1(2), 1356–1367 (2008)
14. Michael, B., Charles, W.: Category Theory for Computing Science. Reprints in Theory and

Applications of Categories, vol. 22 (2012)
15. Yan, Da, et al.: Big graph analytics platforms. Found. Trends Databases 7(1–2), 1–195

(2017)
16. Lu, J., Holubová, I.: Multi-model data management: what’s new and what’s next? In: EDBT

2017, pp. 602–605 (2017)
17. World Wide Web Consortium (W3C). https://www.w3.org/
18. Wisnesky, R., Spivak, D.I., Schultz, P., Subrahmanian, E.: Functorial data migration: from

theory to practice. CoRR abs/1502.05947 (2015)
19. Riehl, E.: Category Theory in Context. Courier Dover Publications, Mineola (2017)
20. Toman, D., Weddell, G.E.: Fundamentals of Physical Design and Query Compilation.

Synthesis Lectures on Data Management. Morgan & Claypool Publishers, San Rafael (2011)
21. Atzeni, P., Torlone, R.: A metamodel approach for the management of multiple models and

translation of schemes. Inf. Syst. 18(6), 349–362 (1993)
22. Property Graph Query Language 1.1 Specification. http://pgql-lang.org/spec/1.1/
23. Liu, Z.H., Hammerschmidt, B.C., McMahon, D., Liu, Y., Chang, H.J.: Closing the

functional and performance gap between SQL and NoSQL. In: SIGMOD Conference 2016,
pp. 227–238 (2016)

24. Girard, J.-Y.: Locus solum: from the rules of logic to logic of rules. Math. Struct. Comput.
Sci. 11(3), 301–506 (2001)

25. Girard, J.-Y.: From foundations to ludics. Bull. Symb. Log. 9(2), 131–168 (2003)
26. Lecomte, A.: Meaning, Logic and Ludics. Imperial College Press, London (2011)
27. Liu, Y., et al.: ProbeSim: scalable single-source and top-k SimRank computations on

dynamic graphs. PVLDB 11(1), 14–26 (2017)
28. Lu, J.: Towards benchmarking multi-model databases. In: CIDR (2017)
29. Chen, J., et al.: Big data challenge: a data management perspective. Front. Comput. Sci. 7(2),

157–164 (2013)

Multi-model Database Management Systems - A Look Forward 29

http://categoricaldata.net/fql/haskell.pdf
https://www.w3.org/
http://pgql-lang.org/spec/1.1/

Progressive Interactions Between Data
Sources

Ben McCamish(B) and Arash Termehchy

Oregon State University, Corvallis, OR, USA
{mccamisb,termehca}@oregonstate.edu

Abstract. Queries submitted by the user to their local database may
require the DBMS to retrieve additional information from another
DBMS. This is traditionally done through mappings, which can be quite
costly. We have modeled the process of achieving these mappings as a
communication game between multiple DBMSs. One DBMS will attempt
to communicate what data it desires from the other DBMS using a com-
mon language. Thus, the DBMSs will use this game to facilitate com-
munication in order to successfully build a mapping between them. We
give an overview of our system and discuss the challenges presented.

Keywords: Entity matching · Schema mappings · Game theory ·
Reinforcement learning

1 Introduction

To better satisfy the users’ information needs, a data management system
(DBMS) should often use data stored in external data sources in its domain
of interest. It may also require data that is in another format, but not remote.
Each data source may represent information in a distinct form. For example, dif-
ferent databases may use different schemas to store information or refer to the
same domain entity differently. Hence, DBMS has to translate the input user
query to a query that is understandable by the external data sources, get the
results, aggregate the external results with its own local results, and returned
the aggregated answers to the user. This process is traditionally performed via
mappings between the local and external data sources [1]. Well-known exam-
ples of such mappings are schema mappings that establish relationships between
schema elements in multiple data sources. That is, a mapping allows for one
data source to map its own entities to entities in a remote data source.

Mappings provide powerful abstractions and simplify communication
between data sources. However, it takes a significantly long time and a great
deal of financial resources and manual labor to develop mappings [2]. As the
underlying data sources evolve, one has to spend time and effort to update and
repair their associated mappings. Hence, it is difficult and costly to scale the
data integration systems to cover a large number of local databases. Mapping
developers must also have access to the content and schemas of the underlying
c© Springer Nature Switzerland AG 2019
V. Gadepally et al. (Eds.): Poly 2018/DMAH 2018, LNCS 11470, pp. 30–38, 2019.
https://doi.org/10.1007/978-3-030-14177-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14177-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-14177-6_3

Progressive Interactions Between Data Sources 31

data sources in their entirety to create correct mappings. Such an access is not
often possible as many databases may be available only via query interfaces. For
instance, many Web data sources can be accessed only via restricted keyword or
form-based query interfaces and/or API calls [6].

To address the aforementioned limitations, we propose a new approach to
constructing mappings between data sources progressively via sending queries
between data sources. The user submits queries to her own local database.
The local data source finds the tuples that satisfy the user’s query in the local
database. Then, it formulates a query in a common query language that is sup-
ported and understandable by other data sources, in particular keyword queries,
based on the input user query and its local results and sends the query to other
data sources. The local DBMS does not need to know the schema of other data
sources to formulate the keyword queries. Each data source returns some results
to the local DBMS. The local DBMS aggregates and shows the final results to
the user. Because keyword queries are inherently vague, the external data sources
may return non-relevant tuples to the user query and/or do not return all the
relevant tuples they contain. Moreover, since the local DBMS does not know the
structure of the data stored in the external data sources completely, it may not
accurately aggregate them with its own results. The local DBMS leverages user
feedback on the returned results to learn and progressively improve its query
formulation and result aggregation strategies. Since external data sources often
support feedback on their returned results, the local DBMS also propagates
the user feedback to the other data sources so they revise their own strategy
of understanding and answering keyword queries. In this framework, a query
over the local DBMS is mapped to a query over the external data source using
the query reformulation strategy of the local DBMS and the (keyword) query
answering strategy of the external data source. In a conceptual level, one may
view this interaction is a collaborative game between some potentially rational
agents that interaction and revise their communication strategy based on the
success of previous communications [3,4].

Our method builds on and extends current ideas on pay-as-you-go and
human-in-the-loop approaches to data integration [2,5] by using interactive
communication in a common and possibly vague query language between data
sources to build mappings. Since data sources communicate using a common
query language, this method has the potential to be used for integrating struc-
tured and semi-structured data. This method may not create an accurate map-
ping due to the vagueness of the common query language and inaccurate initial
aggregations of the results. Our goal is to ensure that with minimal user feed-
back, the data sources improve the accuracy of their mapping over time in a
reasonable pace. The design of the system is inspired by the theory of natural
language creation and evolution [4]. It is believed that a natural language does
not have a single inventor and is created gradually by interactive communication
of humans via sending utterances and receiving feedback. Since this approach has
been obviously successful in creating mutually understandable communications,
we believe that our proposed method is promising for pay-as-you-go data inte-

32 B. McCamish and A. Termehchy

gration and communication. In the rest of the paper, we overview the elements
of our proposed method and discuss its challenges.

2 Framework

In this section we will describe our framework. We model the mapping between
two different DBMSs as an interactive and collaborative game. We have used a
similar framework in our previous work modeling the interaction between users
and DBMSs [3]. The goal of this game is to facilitate successful communication
between two different DBMSs. One DBMS wishes to find content in another
DBMS that might be similar to its own data in order to integrate and combine
the two datasets to answer the users initial query. For this work, we restrict our-
selves to the case of entity resolution, where one DBMS wishes to find tuples in
other databases that might contain the same content conceptually. The DBMSs
may be written in conflicting languages, making knowing how to query the other
impossible. Often databases can only be accessed through the deep web, requir-
ing the use of restricting forms or ambiguous keyword queries. We examine the
case where the common means of communication between the two DBMSs is key-
word queries. Thus the DBMS wishing to find relevant information in another
DBMS may attempt to access it through the keyword query interface.

Consider Tables 1(a) and (b), each are an instance of the databases for differ-
ent companies. Company A wishes to see how their prices compare to the prices
of Company B for the same items. However, both databases store the information
with different names and IDs. Thus, Company A is going to have to learn how
to properly query the database in Company B in order to find updated prices for
similar products in the future. For the remainder of the paper we assume that
there are two different DBMSs, one with a sender strategy and another with a
receiver strategy. However, it is quite intuitive to expand this model to an infi-
nite number of DBMSs, all with either both strategies or a single one. Figure 1
illustrates how this system would like with the two DBMSs described above.
The remainder of this section will cover the details of each of the components
depicted in this figure.

2.1 Entity

An entity is the tuple(s) that a DBMS wishes to communicate to another DBMS.
In more general terms, the entity is a query in the language that the DBMS
follows. If the sender contains a DBMS that is written in SQL, then the entities
would be SQL queries. Likewise, if the receiver contains a DBMS with a Datalog
database, then the entities would in turn be Datalog queries. For the remainder
of this paper, however, we consider an entity to be a set of tuples from the
respective DBMS.

Example 1. Consider the database instance and entities illustrated in Tables 1(a)
and 2(a) respectively. If the sender had the entity e1, then it would attempt to
communicate this entity to the other DBMSs in the game. There would be similar
entities for the receiver, with regards to its database.

Progressive Interactions Between Data Sources 33

Query

Tuples

Receiver

Sender

Strategy

Strategy

(sender entities,
receiver entities)

Feedback

Fig. 1. Example framework for two databases, one with a sender strategy the other
with a receiver strategy

2.2 Query

A query is the chosen information that a DBMS uses to communicate its entity to
other databases. Often the complete interface of a database is not available. Most
of the data available through the web is stored on the deep web, thus requiring
the use of limited methods of access. That is, in order to communicate with
other DBMSs, we may have use some sort of form or limited interface in order
to access the database. One most common form of limited communication that
is available to many types of databases is the use of keyword queries. Keyword
queries, while vague, are used as the common language and means of querying
other databases. We may not wish to send an unlimited number of keyword
queries, due to limits in communication or the interface. Thus, the queries that
are sent to other databases is some finite set of keywords.

Example 2. Again, consider the database instance, entities, and queries illus-
trated in Tables 1(a), 2(a), and 2(b) respectively. Suppose that the entity of the
DBMS is still e1. Thus the queries available are q1, q2, q3, each constructed from
features, which will be explained later.

2.3 Sender Strategy

The sender strategy reflects how entities are conveyed to other DBMS using
queries. Since the entities are queries in a language that may be foreign to other

34 B. McCamish and A. Termehchy

Table 1. Two database instances of relations Company A and Company B

(a) Company A

Product ID Product Name Price
1 Water 12.99
2 Soda 5.99

(b) Company B

Product ID Product Name Price
3 H2O 2.99
4 Pop 13.99

Table 2. Entities and queries

(a) Entities for Company A Sender

Entity# Entity
e1 1 Water 12.99
e2 2 Soda 5.99

(b) Queries for Company A Sender

Query# Query
q1 ‘1 Water’
q2 ‘1 12.99’
q3 ‘Water 12.99’
q4 ‘2 Soda’
q5 ‘2 5.99’
q6 ‘Soda 5.99’

Table 3. Sender and receiver strategies

(a) Sender strategy profile

q1 q2 q3 q4 q5 q6
e1 0.25 0.25 0.5 0 0 0
e2 0 0 0 0.33 0.33 0.34

(b) Receiver strategy profile

e1 e2
q1 1 0
q2 0.5 0.5
q3 0.75 0.25
q4 0 1
q5 0.5 0.5
q6 0.25 0.75

DBMSs, they must be communicated in a way that is understood by every
DBMS. We assume there are 0 ≤ i ≤ n entities. For each entity there are
0 ≤ j ≤ m queries available. We call the sender strategy S, where S is a n × m
row-stochastic matrix.

First the DBMS picks an entity ei that it wishes to find some similar data in
a remote DBMS. This entity is determined by receiving a query from the user.
Once the query from the user has been received, it can be used to determine
what tuples will be contained in this entity. Once an entity has been selected, the
query qj is chosen to send to another DBMS. Thus, the probability of sending
query qj for entity ei is Si,j . A particular query has a probability associated with
it given the entity. However, in practice the queries are constructed from various
components which we refer to as features. These will be discussed in Sect. 3.1.

Progressive Interactions Between Data Sources 35

2.4 Receiver Strategy

The other type of strategy that a DBMS can have would be that of the receiver
strategy. The receiver strategy takes as input a query from the sender and then
decides what entity of its own it should return. There are 0 ≤ j ≤ m queries that
the receiver can get as input. It is not necessary for the receiver to know all the
queries that it may receive before interaction takes place. Instead these queries
are added to the strategy as the interaction proceeds. For each query received
there are 0 ≤ � ≤ o entities. We refer to the receiver strategy as R, where R is
a m × o row-stochastic matrix. Thus the probability of returning entity r� when
query qj is received is R�j .

Entities are the queries written in the local query language, thus returning
simply the entity would not be beneficial to the sender. The sender may not
understand the entity or the proper interface to run the query over the receiver’s
database may be unavailable. Thus, the receiver instead returns the tuples that
it receives from running its entity over its own database. These tuples may be
returned in the form of plain text or in a common format that both the sender
and receiver understand.

Example 3. Consider the database instance of Company B in Table 1(b). The
receiver strategy for this DBMS is illustrated in Table 3(b), where r1 and r2 are
the first and second tuples in the instance respectively. The queries received on
the receiver strategy do not need to be known ahead of time. Instead, when a
new query is received, then a new entry is added into the strategy. This prevents
unnecessary communication beforehand. In our example, we can assume that the
receiver has seen all the queries available to the sender and has some probabilities
for the tuples to return. For instance, if the receiver gets query q2, then it will
return r1 or r2 with equal probability.

2.5 Feedback

Next, we compute the expected payoff of the players. We call the set of a sender
and receiver strategy a strategy profile. The expected payoff for both players with
strategy profile (S,R) is shown in Eq. 1. The probability of the sender picking
an entity to send a query for is represented with π. The feedback function y
is the feedback that the sender and receiver strategy receive after one single
interaction.

uy(S,R) =
m∑

i=1

πi

n∑

j=1

Sij

o∑

�=1

Rj� y(ei, r�), (1)

The feedback module of our system is a “black box” in the sense that any form
of a feedback function can be used here. The first approach would be to use an
oracle that is able to determine with utter certainty whether ei and r� match. This
oracle function would take the two sets of tuples as input and be able to determine
with perfect accuracy if these are proper matches. However, an oracle is not always
available and one must construct other methods of conducting feedback.

36 B. McCamish and A. Termehchy

This oracle in the system can also be viewed as a user in practice. The user
would give feedback to the system letting it know whether the communication
between the sender and receiver was a success, based on the query they ini-
tially submitted to the sender. However, it is unreasonable to ask the user to
give feedback on every single interaction. It would be better if the user could
give feedback at a much reduced rate. We must examine alternative methods of
receiving feedback in order to supplement or reduce the amount of user feedback
required.

3 Methodology

A single interaction consists of the following. We do not have an actual user
involved to decide the entities for the sender and give feedback. Thus we pick
entities for the sender with equal probability. The feedback is determined by
our oracle, knowing the true mapping and letting the sender and receiver know
whether their communication was successful or not with either a reward of 1 or
0 respectively.

1. The sender will decide on which entity ei to send a query for.
2. Based on the strategy of S, the sender will send a query qj with probabil-

ity Sij .
3. The receiver will receive the query qj and pick entity r� to return with prob-

ability Rj�.
4. Since the sender may not understand the entity of the receiver, the entity r�

chosen by the receiver will be queried over the receiver’s database. Then the
tuples returned from the entity r� will be returned to the sender.

5. The sender, upon receiving the tuples from the receiver, will evaluate how
well the tuples match. It compares the entity it chose at the beginning of the
interaction si and the tuples returned from the receivers entity r�. To do this,
the sender uses the feedback function y(ei, r�).

6. Once the feedback has been calculated from y(ei, r�), the sender will com-
municate the feedback to the receiver and each will update their strategies
appropriately.

3.1 Feature Construction

A query is composed of multiple features, such that q = f1, f2, . . . , fx. Consider
the entity e1 in Table 2(a). Assuming that we set the length of each query to
consist of 2 features, then the possible queries that could be sent for this entities
are q1, q2, q3 illustrated in Table 2(b). This is assuming that the features are
constructed using 1-grams. It is possible to create a variety of features to compose
and send to the receiver. For the current work, we only consider n-grams as
features.

Progressive Interactions Between Data Sources 37

3.2 Reinforcement

Once the sender has received tuples from the receiver strategy it can then eval-
uate how well those tuples match its own entity. Since the goal of the entire
communication game is to find tuples in other databases that sufficiently match
the tuples in its own database, the better the returned tuples match with the
entity, the higher the reward should be. We use our extension of Roth and Erev
that was used in previous work [3]. The following equations are for the sender
strategy. The same update algorithm can be applied to the receiver side.

We keep a reward matrix for each strategy. If entity ei was selected and
expressed with query qj , then the reward matrix would be updated as illustrated
in Eq. 2.

Gij(t + 1) = Gij(t) + y(ei, ro) (2)

We currently employ an oracle to determine the value of y(ei, ro). If ei is a
match to ro, then y(ei, ro) = 1, otherwise 0. To update the actual strategy of the
sender or receiver, we use the reward matrix values. This update occurs after
every interaction if the value of the reward matrix to be updated has changed.
The sender strategy is updated as shown in Eq. 3 using the reward matrix from
Eq. 2.

Sij(t + 1) =
Gij(t + 1)

m∑
j′

Gij′(t + 1)
(3)

The strategy update in Eq. 3 occurs for every query in the strategy. This
way, if the reward matrix was increased for the query sent, that query will
have its probability increased while all other queries will have their probabilities
implicitly decreased.

4 Open Problems

There has been some research investigating how keyword queries over multiple
data sources can successfully integrate data. However, their model assumes that
the data is available to all parties, which is not always feasible. Thus interacting
and learning over time with other data sources becomes necessary in order to
find the data desired. We wish to extend our model for the case where not
all DBMSs are capable of learning. Most modern data sources are capable of
accepting feedback, specifically from clicks. In the current model, the user is
able to provide feedback every interaction. However, this is not always feasible as
many interactions may be necessary for an effective mapping to surface. Therefor,
we wish to determine alternative methods of giving feedback to the system.
Without constraints on what information is exchanged between data sources,
one may extract and send all features. This is not feasible, as sending too much
information often leads to noisy and ineffective queries. However, sending too
little information can inhibit learning as there might not be enough information
to facilitate learning. We wish to examine the problem of query construction and
communication between the data sources.

38 B. McCamish and A. Termehchy

References

1. Bernstein, P., Melnik, S.: Model management 2.0: manipulating richer mappings.
In: SIGMOD (2007)

2. Franklin, M.J., Halevy, A.Y., Maier, D.: A first tutorial on dataspaces. PVLDB
1(2), 1516–1517 (2008). http://www.vldb.org/pvldb/1/1454217.pdf

3. McCamish, B., Ghadakchi, V., Termehchy, A., Touri, B., Huang, L.: The data inter-
action game. In: Proceedings of the 2018 International Conference on Management
of Data, pp. 83–98. ACM (2018)

4. Nowak, M.A., Krakauer, D.C.: The evolution of language. Proc. Nat. Acad. Sci.
96(14), 8028–8033 (1999)

5. Yan, Z., Zheng, N., Ives, Z.G., Talukdar, P.P., Yu, C.: Actively soliciting feedback
for query answers in keyword search-based data integration. In: Proceedings of the
VLDB Endowment. vol. 6, pp. 205–216. VLDB Endowment (2013)

6. Zhang, N., Das, G.: Exploration of deep web repositories. PVLDB 4(12), 1506–1507
(2011). http://www.vldb.org/pvldb/vol4/p1506-zhang-tutorial3.pdf

http://www.vldb.org/pvldb/1/1454217.pdf
http://www.vldb.org/pvldb/vol4/p1506-zhang-tutorial3.pdf

TDM: A Tensor Data Model for Logical
Data Independence in Polystore Systems

Eric Leclercq(B) and Marinette Savonnet

LE2I EA 7508 - University of Bourgogne, 20178 Dijon, France
{eric.leclercq,marinette.savonnet}@u-bourgogne.fr

Abstract. This paper presents a Tensor Data Model to carry out logical
data independence in polystore systems. TDM is an expressive model
that can link different data models of different data stores and simplifies
data transformations by expressing them by means of operators whose
semantics are clearly defined. Our contribution is the definition of a data
model based on tensors for which we add the notions of typed schema
using associative arrays. We describe a set of operators and we show how
the model constructs take place in a mediator/wrapper like architecture.

Keywords: Polystore · Data model · Logical data independence ·
Tensor

1 Introduction and Motivations

In a globalized economy, driven by digital technologies, data become an element
of added value and wealth. Beyond the volume, data are also more and more
diverse in their production mode and use. All sectors of the economy are under-
going a deep transformation of their business. Banks must be able to trace and
detect potential risks for their clients, to predict evolution of stock markets.
Retail must be able to optimize tour management using historical data deliver-
ies. In the energy sector, the implementation of remote control tools, smart-grids
can be used to optimize and adapt networks delivery to users needs. In the envi-
ronmental sector, data can be used to detect pollution phenomena, anticipate
the risks of flooding. In marketing, social networks data are used to discover
communities, opinion leaders or to detect and study the propagation of fake
news.

All these domains use data grounded in different models such as complex
networks, times series, grids, cubed sphere, multi-layer networks, etc. In order
to study these data in depth, i.e. to go through data, information and knowl-
edge layers, several analyses are made. Analyses usually require to use data from
different sources in an integrated way and are performed by algorithms which
have different theoretical foundations such as graph theory, linear algebra, sta-
tistical models, Markov models and so on. For example, many algorithms for
detecting communities use a graph represented as an adjacency matrix associ-
ated with a random walk or a density measure. Recommendation systems built
c© Springer Nature Switzerland AG 2019
V. Gadepally et al. (Eds.): Poly 2018/DMAH 2018, LNCS 11470, pp. 39–56, 2019.
https://doi.org/10.1007/978-3-030-14177-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14177-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-14177-6_4

40 E. Leclercq and M. Savonnet

with machine learning techniques frequently use linear algebra such as singular
value decomposition (SVD) [5] and/or alternating least squares (ALS) [53]. To
develop predictive models that determine relationships between graph entities,
identify behaviors or detect anomalies or events in time series, statistical models
such as covariance matrix are needful.

Furthermore, subjects or goals of modern data-intensive applications are not
always well-defined. This is especially true when the aim of analyses is scientific
research or when the phenomenon being analyzed is poorly understood. These
characteristics are not typically observed in Business Intelligence where enter-
prise data semantics is usually well-defined. For example, there is no ambiguity
about a person who is a customer and about its features. However, in a more
general context, a single algorithm is not enough to analyze data and to ensure
the veracity of the results. For example, social scientists will gather a set of
results from different community detection algorithms applied on Twitter data
to establish a body of evidence and then conduct a qualitative study.

Anyway, forcing varied data to fit into a single database could lead to perfor-
mance problems and be a hindrance to setting up analyses. As stated by Stone-
braker in [47,48] “one size fits all” is not a solution for modern data-intensive
applications. Likewise Ghosh explains in [19], storing data the way it is used in
an application simplifies programming and makes it easier to decentralize data
processing. For these reasons, a number of research projects are shifting the focus
to build system on multiple data stores using multiple data models.

In-database analysis is another important issue as it can reduce complex and
costly data transformations (i.e. features selection, export and convert data)
before applying analysis algorithms. Recent algorithms are rarely implemented
in DBMS and matrix operations and associated factorizations [23,38] are not
directly supported by traditional storage systems. For graph analysis tools, only
a few NoSQL systems like Neo4j support a small set of algorithms1. However,
Neo4j does not allow to manage very large amount of data with attributes as
the column-oriented systems would do [24]. The situation is almost similar for
machine learning algorithms and tools. Only some recent systems such as Ver-
tica2 or SciDB3 support standard machine learning algorithms as black-box.
On the other hand some tool-boxes such as TensorFlow4, Theano5, Keras6 or
MLlib in Apache Spark7 have been developed to design machine learning tools
using data structures close to algorithms. As a result these systems require to
develop complex, hard to reuse and often error-prone programs for loading and
transforming data [1,22].

1 https://neo4j.com/developer/graph-algorithms/.
2 https://www.vertica.com/product/database-machine-learning/.
3 https://www.paradigm4.com/.
4 https://www.tensorflow.org/.
5 http://deeplearning.net/software/theano/.
6 https://keras.io/.
7 https://spark.apache.org/mllib/.

https://neo4j.com/developer/graph-algorithms/
https://www.vertica.com/product/database-machine-learning/
https://www.paradigm4.com/
https://www.tensorflow.org/
http://deeplearning.net/software/theano/
https://keras.io/
https://spark.apache.org/mllib/

TDM: A Tensor Data Model for Polystore 41

PostgreSQL Neo4j JSON / HDFSHBase

Data producers

P
o

ly
st

o
re

 L
ay

er

SciDB

Analysis tools and frameworks (R, Spark, Drill, TensorFlow, etc.)

Query languages, models and data transformations

Extract Transform Load (ETL) processes

Fig. 1. Outline of the approach

We propose to revisit logical data independence in the context of polystore
to develop an approach close to in-database analysis that integrates analysis
tools such as Spark, R, Drill, TensorFlow in a loosely coupled architecture. Our
approach allows users to quickly feed algorithms with data coming from several
databases by reducing models and data transformations (Fig. 1).

The remainder of the paper is organized as follows. While Sect. 2 discusses
about multi-paradigm storage systems, Sect. 3 presents the tensor based data
model and its operators. Section 4 describes the software architecture and dif-
ferent experiments and results obtained in TEP 2017 project which studies the
use of Twitter during the French presidential election in 2017.

2 Related Works on Multi-paradigm Storage Systems

The problem of accessing to heterogeneous data sources has been addressed for
many years by research communities in schema integration and multi-database
system [44]. Big Data oriented storage systems like HDFS and NoSQL systems,
which have been mature for several years, have changed the heterogeneous data
access issues [17]. As a result, several research projects have been inspired by
previous works on distributed databases [44] in order to take advantage of a
federation of specialized storage systems with different models8. Multi-paradigm
data storage relies on multiple data storage technologies, chosen according to

8 http://wp.sigmod.org/?p=1629.

http://wp.sigmod.org/?p=1629

42 E. Leclercq and M. Savonnet

the way data is used by applications and/or by algorithms [45]. The problem is
magnified by some other facts: (1) NoSQL systems do not always have a well-
established separation between logic model and physical model; (2) to achieve
flexibility new systems do not necessarily provide a well-defined schema.

2.1 A Taxonomy

In [49] authors propose a survey of such systems and a taxonomy in four classes:

– federated database systems as collection of homogeneous data stores and
a single query interface;

– polyglot systems as a collection of homogeneous data stores with multiple
query interfaces;

– multistore systems as a collection of heterogeneous data stores with a single
query interface;

– polystore systems as a collection of heterogeneous data stores with multiple
query interfaces.

In order to have more significant groups of systems we adopt a slightly dif-
ferent classification that replaces federated database systems by a more specific
class of pragmatic systems using a common query language. So, our updated clas-
sification is based on models and languages by: (1) considering multi-database
query language approach [40] instead of federated systems to better represent the
autonomy of data sources and existing enterprise-oriented systems; (2) replac-
ing homogeneity of data model systems by isomorphic models9, for example for
JSON and the relational model [9,15] and; (3) instead of using query interface or
query engine terms as a criterion we prefer query language. According to these
criteria our classification is (Table 1): multi-database query language (unique lan-
guage), polyglot system including data models isomorphic to relational model
(with multiple languages), multistore, and polystore. For each of these classes
we describe some of the most significant representative systems.

Table 1. Classification of multi-paradigm storage approaches

Model Language

Single Multiple

Single or isomorphic Multibase Polyglot

Multiple Multistore Polystore

9 To be isomorphic two data models must allow two way transformations at the struc-
ture level but also support equivalence between sets of operators. For example graph
data model and relational data model are not isomorphic because relational data
model with relational algebra do not support directly transitive closure.

TDM: A Tensor Data Model for Polystore 43

2.2 Representative Systems

Spark SQL10 is the major representative of multidatabase query language. It
allows to query structured data from relational-like data sources (JDBC, JSON,
Parquet, etc.) in Spark programs, using SQL. Apache Drill11 is similar to Spark
without having a very large support of analysis algorithms as Spark does with
MLlib and GraphX.

According to our classification, CloudMdsQL [35] is more a polyglot system
than a multistore system as suggested by the title of one of their articles pub-
lished before the first taxonomy proposal. CloudMdsQL is a functional SQL-
like language, designed for querying multiple data store engines (relational or
column-store) within a query that may contain sub-queries to each data store’s
native query interface. SQL++ which is a part of the FORWARD platform12, is
a semi-structured query language that encompasses both SQL and JSON [41,42].

HadoopDB [2] coupled to Hive13 is a multistore, it uses the map-reduce
paradigm to push data access operations on multiple data stores. D4M (Dynamic
Distributed Dimensional Data Model) [29] is a multistore that provides a well
founded mathematical interface to tuple stores. D4M allows matrix operations
and linear algebra operators composition and applies them to the tuple stores.
D4M reduces the autonomy of data stores to achieve a high level of perfor-
mance [30].

The BigDAWG system [16,18] is a polystore allowing to write multi-database
queries with reference to islands of information, each corresponding to a type of
data model (PostgreSQL, SciDB and Accumulo). Myria [52] supports multiple
data stores as well as different data computing systems such as Spark. It supports
SciDB for array processing, RDBMS, HDFS. The RACO (Relational Algebra
COmpiler) acts as a query optimizer and processor for MyriaL language. Myria
also supports user data functions in different other languages such as Python.
Morpheus [3] is a polystore approach, implemented using Apache Spark, that
focuses on Cypher query language instead of SQL and takes advantage of graph
analysis algorithms implemented in Neo4j.

2.3 Discussion

Polystores are designed to make the best use of the data models, combining sys-
tems by unification with language. Tool-box approaches (TensorFlow, Theano)
use data structures close to algorithms but they do not supply storage mecha-
nism. The MLog system [39] is an hybrid approach which defines a tensor data
model with operators and study optimization techniques for queries over Ten-
sorFlow.

Several kinds of data analytics platforms have also been defined in the last few
years [46]. They are usually an aggregation of existing technologies and can be
10 https://spark.apache.org/sql/.
11 https://drill.apache.org/.
12 http://forward.ucsd.edu/.
13 https://hive.apache.org/.

https://spark.apache.org/sql/
https://drill.apache.org/
http://forward.ucsd.edu/
https://hive.apache.org/

44 E. Leclercq and M. Savonnet

classified in computation-centric architecture or data-centric architecture. Two
main typical architectures are data analytics stacks and data lakes.

New data analytics stacks have emerged as infrastructure for giving access to
data stores and enabling data processing workflows. The Berkeley Data Analytics
Stack (BDAS) from the AMPLAb project14 is a multi-layer architecture that
provides multiple storage layer (multistore) using Alluxio15 and data processing
using Apache Spark ecosystem.

The IT industry uses the metaphor of data lake to define shared data environ-
ment consisting of multiple repositories. A data lake provides data to a variety
of processing systems including streaming. The solutions are mature and there
are products on the market such as Microsoft Azure Data Lake16, IBM data
lake17. Alluxio included in BDAS is also a data lake system.

The ANSI/SPARC architecture [12] characterizes classical data management
systems (relational, object-oriented) from a logical point of view by proposing a
3-layer decomposition that reflects the abstraction levels of data: (i) the exter-
nal data schemata describe the different external views over data dedicated to
end-users or applications; (ii) the logical or conceptual schema describes entities
and relationships among them, including integrity constraints and (iii) the phys-
ical schema describes the storage and the organization of data. As for operating
systems or network protocols, Härder and Reuter [20,21] have proposed a decom-
position of the functional architecture of a DBMS in 5 layers: (i) file management
that operates on blocks and files, (ii) propagation controls that define and man-
age segments and pages, (iii) records and access path management that works on
access path and physical records, (iv) record oriented navigational access that
describes records, sets, hierarchies and (v) non-procedural or algebraic access
that defines tuples, relations, views and operators for logical schema description
and data retrieval. But most of RDBMS rather use less layer following System
R [6] which defines two layers: (1) the Relational Storage System (RSS) with a
Relational Storage Interface (RSI) which handles access to tuples and manages
devices, space, allocation, storage buffers, transaction consistency and locking
as well as indexes; (2) the Relational Data System (RDS) with a Relational
Data Interface (RDI) provides authorization, integrity enforcement, and sup-
port views of data as well as a definition, manipulation and query language. The
RDS also maintains the catalogs of names to establish correspondences with
internal names in RSS.

NoSQL systems, beyond their models differences, exhibit a common charac-
teristic with respect to the architecture: the external and logic levels disappear
[50]. As a consequence the applications are close to the physical level with no real
logical independence between programs and data. Moreover, due to the nature
of schema-less NoSQL systems, the source code contains implicit assumptions
about the data schema. These drawbacks make it difficult to set up a data cura-

14 https://amplab.cs.berkeley.edu/software/.
15 http://www.alluxio.org/.
16 https://azure.microsoft.com/en-us/services/data-lake-analytics/.
17 https://www.ibm.com/analytics/data-lake.

https://amplab.cs.berkeley.edu/software/
http://www.alluxio.org/
https://azure.microsoft.com/en-us/services/data-lake-analytics/
https://www.ibm.com/analytics/data-lake

TDM: A Tensor Data Model for Polystore 45

tion process. The ingestion phase can be done quite easily (i.e. a feature puts
forward by data lake vendors) but the data transformation, schema integration,
data cleaning and entity consolidation are heavily hindred by the lack of logical
and external schemata.

Our approach is a top-down approach that favors the notion of model and
applications in contrast to bottom-up approaches that are guided by performance
and query optimization. The Tensor Data Model acts as views over data sources,
and aims at quickly feed algorithms with data coming from several sources by
reducing models and data transformations. Our focus is on the theoretical foun-
dation of the model and the algebraic structures of its operators before studying
their implementation. It is obvious that these two points of view must be studied
jointly to build an operational system.

3 Core Concepts of TDM

This section addresses the definition of a Tensor Data Model (TDM), starting
with the tensor mathematical object, we add it the notion of typed schema using
associative arrays and we define a set of data manipulation operations. We also
study mappings between TDM and others data models.

Tensors are very general abstract mathematical objects which can be consid-
ered according to various points of view. A tensor can be seen as a multi-linear
applications, as the result of the tensor product, as an hypermatrix. We will
use the definition of a tensor as an element of the set of the functions from the
product of N sets Ij , j = 1, . . . , N to R : X ∈ R

I1×I2×···×IN , N is the number of
dimension of the tensor or its order or its mode. In a more general definition, a
tensor is a family of values indexed by N finite sets. A tensor is often treated as
a generalized matrix, 0-order tensor is a scalar, 1-order one is a vector, 2-order
one is a matrix, tensors of order 3 or higher are called higher-order tensors.

Tensor operations, by analogy with the operations on matrices and vectors,
are multiplications, transpose, unfolding or matricization and factorizations (also
named decompositions) [13,34]. The most used tensor products are the Kro-
necker product denoted by ⊗, Khatri-Rao product denoted by �, Hadamard
product denoted by �, external product denoted by ◦ and n-mode denoted by
×n.

In the rest of the article, we use the boldface Euler script letters to indicate
a tensor X , boldface capital letters M for matrices, boldface lowercase letters
to indicate a vector v, and an element of the tensor or a scalar is noted in italic,
for example xijk is ijk-i-th element of 3-order tensor X .

3.1 TDM’s Data Model

In TDM, tensor dimensions and values are represented by associative arrays. In
the general case, an associative array is a map from a key space to a value space
and can be implemented using hash table or tree.

46 E. Leclercq and M. Savonnet

Definition 1 (Associative Array). An associative array is a map that asso-
ciates keys to values as A : K1 × · · · × KN → V where Ki, i = 1, . . . , N are the
sets of keys and V is the set of values.

The definition given in [27] restricts V to have a semi-ring structure and the
associative array to have a finite support. In TDM we use associative arrays in
three different cases.

First, we use different associative arrays denoted by Ai for i = 1, . . . , N to
model dimensions of a tensor X , in this case the associative array has only one
set of keys associated with integers Ai : Ki → N and Ai represents bijective
functions. For example A1 : String → N associates integers to users names.
Their values are obtained by native queries sent to storage systems.

Second, at a lower level, an associative array can be used to represent the
values of a sparse N -order tensor by associating compound keys from dimensions
to values (real, integer) Avst : K1 × · · · × KN → V.

Third, for tensors with non numerical values, two associative arrays are used
as an indirection, one to map keys dimensions to a set integer keys (Avst) and
another one to map the integer keys to non-numeric domains values (one integer
is associated with each different value).

Definition 2 (Named Typed Associative Array). A named and typed asso-
ciative array of a tensor X is a triple (Name,A, TA) where Name is a unique
string which represents the name of a dimension, A is the associative array, and
TA the type of the associative array i.e. K → N.

The signature of a named typed associative array is Name : K → N. The schema
of a named typed associative array is (Name : DomA), its set of key values is
noted Name.Keys.

Definition 3 (Typed Tensor). A typed tensor X is a tuple (Name,DA, V, T)
where Name is the name of the tensor, DA is a list of named typed associative
arrays i.e., one named typed associative array per dimension, V is an associative
array that stores the values of the tensor and T is the type of the tensor, i.e. the
type of its values.

The schema of a tensor is the concatenation of Name : T with the schema
of all elements of DA. For example if a tensor represents the hashtags of tweets
published by a user during an hour, the schema will be (UHT : N, U : String,H :
String, T : Integer). A TDM schema is a set of typed tensors schema.

If we consider the representation of tensor values, V handles the sparsity
of tensors. Sparse tensors have a default value (e.g. 0) for all the entries that
not explicitly exist in the associative array. Associative array refers to the gen-
eral mathematical concept of map or function, as we want to conform to the
separation of logical and physical levels, the associative arrays in the model are
abstract data types that can be implemented using different representation tech-
niques as well as for the tensor values. For example Kuang et al. [36] describe
a unified tensor model to represent unstructured, semi-structured, and struc-
tured data and propose a tensor extension operator to represent various types of

TDM: A Tensor Data Model for Polystore 47

data as sub-tensors merged into a unified tensor. Lara [25,26] proposes a logical
model and an algebra using associative array (called associative table) with a set
of operations to unify different data models such as relational, array and key-
value. The authors show how to use Lara as middleware algebra, their approach
is directed towards operators translation and optimization. However their model
is not very suitable for expressing high-level data transformations as tensors can
do with their capacity of modeling complex relationships (i.e. not only binary).

3.2 Translating TDM’s and Other Models

In this section we establish mappings between TDM and other data models with
the assumption that associative arrays are invariant to permuting keys.

1. a relation R is a set of tuples (v1, v2, . . . , vk), where each element vj is a
member of a domain Domj , so the set-theoretic relation R is a subset of the
cartesian product of the domain Dom1 × Dom2 × · · · × Domk. We can write
a typed tensor X using the name of each associative array in DA as domain
Domi, i = 1, . . . , N for R and by adding an attribute whose domain is the
name of the tensor. The values of a tuple are those corresponding to keys of
each DA associated with the values of X . The names of DA form a compound
key for R. The reverse mapping from a relation R to typed tensors produces
a set of tensors Xi where the dimensions are the n attributes that are the key
of R and for the k − n remaining attributes we create a tensor for each. The
keys of each DA are formed of the different values of each attribute domains.

2. most of key-value stores save data as ordered (key, value) pairs in a dis-
tributed hash table [7]. As typed tensor schema and its values are described
by associative arrays there is a straight mappings between this type of NoSQL
store and Tensor Data Model.

3. a column store system, like Vertica or Cassandra, uses a relational-like schema
so their mapping to Tensor Data Model is the same as for relation.

4. a graph G = (V,E), where V is the set of vertices and E ⊂ V × V the set of
edges, can be represented by its adjacency or incidence matrices i.e. a 2-order
tensor. Matrices can also represent oriented, weighted graphs. For multigraph,
i.e. graph with different types of links for which E = {E1, E2, . . . , Ek} is par-
titioned set of edges, can be modeled by a 3-order tensor where one dimension
is used to specify the different edges types. Moreover, multi-layer network [32]
is defined as GM = (V,E,L) where V = {V1, V2, . . . , Vn} is a partitioned set
of nodes, E = {E1, E2, . . . , Ek} is partitioned set of edges, with E ⊆ V × V
and Ei ⊆ Vl×Vm for i ∈ {1, . . . , k} and l,m ∈ {1, . . . n}. L is a partitioned set
of layers, L = {L1, L2, . . . , Lp} where Li ⊆ E, with Li∩Lj = ∅,∀i, j modeling
the dimensions. The construction of a tensor (2(p+1) order) for multi-layered
networks is given in [14,32]. Hypergraphs are also taken in consideration in
[32] that shows their mapping to tensors. Graph databases handle in different
way theoretical models of graphs [4] most of them except maybe the nested-
graph can be generalized by multi-layer graph and specified by tensors.

48 E. Leclercq and M. Savonnet

All the above models are structurally equivalent to TDM. The most appro-
priate storage system can be chosen based on the nature of the data and the
cost models associated with the operations to be favored. Moreover, in specific
cases part of data can be duplicated. We have studied some real examples of
such equivalences in [37].

3.3 TDM’s Operators

To carry out a wide range of queries it should possible to define several of
the standard operators from relational algebra in terms of tensor operations.
In [26,27] the authors define a model and operators over associative arrays to
unify relational, arrays, and key-value algebras. Our operators are defined to
provide programmers with a logical data independence layer i.e. to bridge the
semantic gap between analysis tools and storage systems. Our set of operators
works on typed tensors at two different levels: at the associative array level
and at the tensor value level. We focus on the following subset of operators on
typed tensors: selection, projection, union, intersection, join and some analytic
operators such as group by and tensors decomposition.

Data Manipulation Operators
Projection operators are the usual operators of tensor algebra. A fiber of a tensor
X is a vector obtained by fixing all but one X ’s indices: X:jk, Xi:k and Xij:.
Fibers are always assumed to be column vectors, similar to matrix rows and
columns. A slice of a tensor X is a matrix obtained by fixing all but two of X ’s
indices: Xi::, X:j: et X::k. A project operator can be generalized by using the
mode-n product ×n (mode-n product behavior is detailed in [34]).

Definition 4 (Project). The projection of a N -order typed tensor X on one
or more mode, noted as Πmode(expr), where mode = 1, . . . , N and expr is an
equality between the name of an associative array and a constant value, reduces
the dimensions of the tensor to the selected ones.

The project operator can be computed by using the n-mode product with a
boolean vector that contains 1 for the elements of the mode(s) to retain: X ×nb.
For example, consider a 3-order tensor, X1, with dimensions users, hashtags and
time used to store the number of times a hashtag is used in tweets by a user per
time slice. The number of each hashtag used by a user ui, for all time slices is a
2-order tensor such as: X2 = X1 ×1 b with bi = 1, bj = 0, ∀j �= i.

A selection operator can be defined on two levels: (1) on the values contained
in the tensor or (2) on the values of the dimensions i.e. typed associative arrays
Ai, i = 1, . . . , N .

Definition 5 (Select on tensor values). The operator σexprX selects values
of the tensor which satisfy expr and produces a new tensor with the same schema.
The connectors allowed in expr are ∧,∨ and ¬, the binary operators are {<,≤
,=, �=,≥, >}. The implicit left operand is a variable (values of X), the right one
is a constant.

TDM: A Tensor Data Model for Polystore 49

For example σ[>10]X produces a new tensor (user, hashtag, time) with users
that have published one or more tweets during time slice using more than 10
times the same hashtag.

Definition 6 (Restriction on dimensions values). The operator ρexprX
restricts the tensor shape by selecting some values of the dimensions contained
in the propositional formula expr. The connectors allowed in expr are ∧, ∨ and
¬, the binary operators are {<,≤,=, �=,≥, >}, the terms or variables are the
sames of the associative arrays corresponding to dimension.

The schema of a tensor is not affected by the restriction operator nor the schema
of its typed associative arrays. The following example selects hashtags used by
the user u1 for time slices between 18-03-08 and 18-02-28, from the tensor X :

ρ[U = ‘u1’ ∧ T ≥ ‘18-02-28’ ∧ T ≤ ‘18-03-08’]X

Definition 7 (Union). The union of two typed tensors X1 and X2 having the
same schema, noted ∪θ, where θ ∈ {+,−,×,÷,max,min} is a typed tensor
X3 with the same schema, X3.DAi

.Keys = X1.DAi
.Keys ∪ X2.DAi

.Keys, for
i = 1, . . . , N . Values of X3 are values from X1 and X2 except for keys in common
for which the operator θ is applied.

Definition 8 (Intersection). The intersection of two typed tensors X1 and X2

having the same schema, noted ∩θ, where θ ∈ {+,−,×,÷,max,min} is a typed
tensor X3 with the same schema, X3.DAi

.Keys = X1.DAi
.Keys∩X2.DAi

.Keys,
for i = 1, . . . , N . Values of X3 are values associated to common keys of each
dimension on which the operator θ is applied.

Definition 9 (Join). The join of two typed tensors X1 and X2 having at least
one common dimension, noted ��θ is a typed tensor X3 which schema is the union
of the two sets of dimension. The keys retained in the common dimensions are
those satisfying the operator θ, where θ ∈ {<,≤,=, �=,≥, >}.

Analytical Operators
Group by like operations [33,43] can be defined on typed tensors applying aggre-
gation function with selection of tensor dimension values to aggregate.

Definition 10 (Aggregation). The aggregation applied on a typed tensor X is
noted Fexpr(assoc) where expr is a list of expressions of the op(name) where op ∈
{SUM,AV G,COUNT,MIN,MAX} and name is the name of an associative
array in DA, assoc is a list of names of associative arrays in DA. The aggregation
operator applies operators on specified dimensions for equals values of keys to
produce a typed tensor with a schema specified by assoc.

This operator is useful to transform typed tensor to time series for example to
obtain the total number of each hashtag used during each time slice.

Tensor decompositions such as CANDECOMP/PARAFAC (CP), Tucker,
HOSVD are used to perform dimensionality reductions and to extract latent

50 E. Leclercq and M. Savonnet

relations [34]. Since tensor representations of data are multiple and their seman-
tics are not explicit, the results of tensor decompositions are complex to inter-
pret. Research in applied mathematics is important, it concerns the problems of
robustness, remote calculations and value reconstruction [8,10,28]. To develop an
in-database approach, the cost models of the manipulation and analysis tensors
operators must be studied carefully in regards to sparsity.

4 Architecture and Experiments

We validate our approach by a proof-of-concept, showing polystore architecture
with real data from a multi-disciplinary project (TEP 2017) involving collabora-
tions with communication scientists. The main research objective of TEP 2017
is to study the dynamics of political discourse on Twitter during the French
Presidential election in March–May 2017.

The architecture set up to carrying out the experimentation includes a poly-
store built on the top of PostgreSQL, HDFS, and Neo4j and three analysis
frameworks R, Spark and TensorFlow. The data set is a tweets corpus cap-
tured during the period from 2017-02-27 to 2017-05-18. The data set contains
49 million tweets emitted by more than 1.8 million different users using 288, 221
different hashtags. Of the 49 million tweets, 36 million are retweets. Raw data
are stored in JSON file format in HDFS (720Go), most important attributes
of tweets are stored in a relational database (PostgreSQL) in a unique table
(50Go), in another database with a normalized schema (55Go), links between
entities (tweets, users, hashtags) are stored in Neo4j (23Go).

The abstraction layer is developed using R and Spark connectors. Associa-
tive arrays are implemented using RDD and dataframes. More details on the
architecture (Fig. 2) are given in [37].

In order to study the possible influence of robots on the circulation of viral
tweets, we sought to detect robots among Twitter accounts which had retweeted
at least 1,000 times over the period between the two rounds of this election (from
23rd April until 7th May 2017), reducing the corpus of 49M of tweets to one
thousand. In order to reduce the number of accounts to analyze, only accounts
having tweeted more the 100 times in the 2-weeks period are retained. 1,077
accounts are selected in this way. This corresponds to the hypothesis that robots
are tweeting intensively during these final period of the election campaign. A
second hypothesis is that robots does not tweet in hazard so we extract hashtags
contained in these tweets. We built a 3-order tensor modelling these accounts
A, the hashtags H and the time T (2-weeks period). We got a tensor containing
potentially 1, 077× 568× 336 items. The tensor construction from the relational
data requires approximately 15 SQL lines and less of 5 min including a few
seconds for the associative arrays. TensorFlow is used as reference for simulating
a traditional framework without a polystore connection using data exchange
with file and data transformation programs. Around a hundred lines of complex
SQL queries are required to produce a tensor for TensorFlow.

We performed a CP decomposition to reduce the user space based on their
behavior, it produces n groups of three 1-order tensors, here vectors A, H, T . We

TDM: A Tensor Data Model for Polystore 51

PostgreSQL Neo4j

Wrapper Wrapper Wrapper Wrapper Wrapper

JSON / HDFSHBaseSciDB

Dataframe/RDD

tensor

associative array

T
D

M
 L

ay
er

associative array
values

Time serie n−order tensorAdjacency matrix

P
o

ly
st

o
re

 S
to

ra
g

e
L

ay
er

tensor
values

Apache Spark, R and data analysis algorithms

Fig. 2. Architecture of the polystore system using TDM

then apply the k-means clustering algorithm to identify groups of users having
similar behavior in the time. A k-means algorithm applied to this data deter-
mines 4 groups of users: a group of one account previously detected as a robot
and suspended by Twitter, a group of three accounts, a group of about thirty
accounts and a last group containing other users. The group of three accounts,
revealed after manual study, to be linked (same behavior and hashtags) and
assisted by an algorithm that retweets messages against the Macron candidate.
Each tweeted between 1,000 and 1,800 times during the period with a vast
majority of retweets.

We also used the Louvain algorithm [11] to detect accounts which retweet or
are retweeted frequently by the other accounts and which tend to share the same
retweets. The retweet graph represented by its adjacency matrix is obtained from
a 3-order tensor (AAT : N, A : String,A : String, T : Integer). The result of the
CP decomposition is confirmed (Fig. 3): yellow community corresponds to the
user detected as robot, pink community corresponds to the group of three users
and others (blue and green communities) are the users of the third group. The
biggest nodes are accounts from the 4 clusters obtained by the CP decomposition
and k-means.

52 E. Leclercq and M. Savonnet

Fig. 3. Communities obtained from retweet graph (Color figure online)

Our result is consistent with the use of OSoMe API Botometer18 which pro-
vides an overall probability score that an account studied is automated. It uses
1,150 criteria and machine learning techniques to calculate the probability [51].
The group of about thirty accounts comprises more than half users with a prob-
ability of being a robot greater than 0.42 (Fig. 4). But we note that the values of
the probabilities were not enough significant to detect robots during the studied
period. One of the assumptions is that it is hybrid accounts of users assisted
by algorithms. However, simple criteria such as the maximum number of tweets
published in one hour make it possible to unambiguously find some accounts
with automated behavior, confirmed by the manual study.

18 https://botometer.iuni.iu.edu/.

https://botometer.iuni.iu.edu/

TDM: A Tensor Data Model for Polystore 53

Fig. 4. Results given by Botometer (column with label proba) and cluster number
obtained by the CP decomposition (column with label cluster)

5 Conclusion

In this article we described a Tensor Data Model for polystore systems and
studied its ability to generalized several kinds of models such as relational, col-
umn, key-value, graph (including multi-layer graphs). Using associative array
we defined schema, manipulation and analytics operators. We are working on an
implementation of each operator in Spark and R.

We defined a set of real experiments with Twitter data to evaluate the ease of
use of the operator toolkit and the performance of the architecture. We detected
the possible influence of robots on the circulation of viral tweets. Our results
have been validated by researchers in communication science. The experiments
demonstrated the TDM capabilities according to the ease of data transforma-
tions in analyses.

Our short term future work will be on the storage of tensor as materialized
views in SciDB through a matricization process [31]. As there is multiple ways
of doing matricization, one must be chosen according to the privileged operators
and it should be necessary to specify normal forms to guide matricization.

References

1. Abo Khamis, M., Ngo, H.Q., Nguyen, X., Olteanu, D., Schleich, M.: In-database
learning with sparse tensors. In: Proceedings of the 35th ACM SIGMOD/PODS
Symposium on Principles of Database Systems, pp. 325–340. ACM (2018)

2. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., Rasin, A.:
HadoopDB: an architectural hybrid of mapreduce and DBMS technologies for ana-
lytical workloads. Proc. VLDB Endow. 2(1), 922–933 (2009)

3. Allen, D., Hodler, A.: Weave together graph and relational data in apache spark.
In: Spark+AI Summit. Neo4j (2018). https://vimeo.com/274433801

https://vimeo.com/274433801

54 E. Leclercq and M. Savonnet

4. Angles, R.: A comparison of current graph database models. In: 2012 IEEE 28th
International Conference on Data Engineering Workshops (ICDEW), pp. 171–177.
IEEE (2012)

5. Arora, S., Ge, R., Moitra, A.: Learning topic models-going beyond SVD. In: 2012
IEEE 53rd Annual Symposium on Foundations of Computer Science (FOCS), pp.
1–10. IEEE (2012)

6. Astrahan, M.M., et al.: System R: relational approach to database management.
ACM Trans. Database Syst. (TODS) 1(2), 97–137 (1976)

7. Atikoglu, B., Xu, Y., Frachtenberg, E., Jiang, S., Paleczny, M.: Workload analysis
of a large-scale key-value store. In: ACM SIGMETRICS Performance Evaluation
Review, vol. 40, pp. 53–64. ACM (2012)

8. Austin, W., Ballard, G., Kolda, T.G.: Parallel tensor compression for large-scale
scientific data. In: 2016 IEEE International Parallel and Distributed Processing
Symposium, pp. 912–922. IEEE (2016)

9. Baazizi, M.A., Lahmar, H.B., Colazzo, D., Ghelli, G., Sartiani, C.: Schema infer-
ence for massive JSON datasets. In: Extending Database Technology (EDBT), pp.
222–233 (2017)

10. Battaglino, C., Ballard, G., Kolda, T.G.: A practical randomized CP tensor decom-
position. arXiv preprint arXiv:1701.06600 (2017)

11. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008
(2008)

12. Brodie, M.L., Schmidt, J.W.: Final report of the ANSI/X3/SPARC DBS-SG rela-
tional database task group. ACM SIGMOD Rec. 12(4), 1–62 (1982)

13. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.: Nonnegative Matrix and Tensor
Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind
Source Separation. Wiley, Hoboken (2009)

14. De Domenico, M., et al.: Mathematical formulation of multilayer networks. Phys.
Rev. X 3(4), 041022 (2013)

15. DiScala, M., Abadi, D.J.: Automatic generation of normalized relational schemas
from nested key-value data. In: Proceedings of the 2016 International Conference
on Management of Data, pp. 295–310. ACM (2016)

16. Duggan, J., et al.: The BigDAWG polystore system. ACM SIGMOD Rec. 44(2),
11–16 (2015)

17. Franklin, M., Halevy, A., Maier, D.: From databases to dataspaces: a new abstrac-
tion for information management. ACM SIGMOD Rec. 34(4), 27–33 (2005)

18. Gadepally, V., et al.: The BigDAWG polystore system and architecture. In: IEEE
High Performance Extreme Computing Conference (HPEC), pp. 1–6 (2016)

19. Ghosh, D.: Multiparadigm data storage for enterprise applications. IEEE Softw.
27(5), 57–60 (2010)

20. Haerder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM
Comput. Surv. (CSUR) 15(4), 287–317 (1983)

21. Härder, T.: DBMS architecture-the layer model and its evolution. Datenbank-
Spektrum 13, 45–57 (2005)

22. Hellerstein, J.M., et al.: The MADlib analytics library: or MAD skills, the SQL.
Proc. VLDB Endow. 5(12), 1700–1711 (2012)

23. Hogben, L.: Handbook of Linear Algebra. Chapman and Hall/CRC, Boca Raton
(2013)

24. Hölsch, J., Schmidt, T., Grossniklaus, M.: On the performance of analytical
and pattern matching graph queries in Neo4j and a relational database. In:

http://arxiv.org/abs/1701.06600

TDM: A Tensor Data Model for Polystore 55

EDBT/ICDT 2017 Joint Conference: 6th International Workshop on Querying
Graph Structured Data (GraphQ) (2017)

25. Hutchison, D., Howe, B., Suciu, D.: Lara: a key-value algebra underlying arrays
and relations. arXiv preprint arXiv:1604.03607 (2016)

26. Hutchison, D., Howe, B., Suciu, D.: LaraDB: a minimalist kernel for linear and
relational algebra computation. In: Proceedings of the 4th ACM SIGMOD Work-
shop on Algorithms and Systems for MapReduce and Beyond, pp. 2–12. ACM
(2017)

27. Jananthan, H., Zhou, Z., Gadepally, V., Hutchison, D., Kim, S., Kepner, J.: Poly-
store mathematics of relational algebra. In: IEEE International Conference on
Big Data (Big Data), pp. 3180–3189, December 2017. https://doi.org/10.1109/
BigData.2017.8258298

28. Kang, U., Papalexakis, E., Harpale, A., Faloutsos, C.: GigaTensor: scaling ten-
sor analysis up by 100 times - algorithms and discoveries. In: Proceedings of the
18th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 2012, pp. 316–324. ACM (2012)

29. Kepner, J., et al.: Dynamic distributed dimensional data model (D4M) database
and computation system. In: IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 5349–5352. IEEE (2012)

30. Kepner, J., et al.: Achieving 100,000,000 database inserts per second using Accu-
mulo and D4M. In: High Performance Extreme Computing Conference (HPEC),
pp. 1–6. IEEE (2014)

31. Kim, M.: TensorDB and tensor-relational model (TRM) for efficient tensor-
relational operations (2014)

32. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.:
Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)

33. Klug, A.: Equivalence of relational algebra and relational calculus query languages
having aggregate functions. J. ACM 29(3), 699–717 (1982)

34. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev.
51(3), 455–500 (2009)

35. Kolev, B., Bondiombouy, C., Valduriez, P., Jiménez-Peris, R., Pau, R., Pereira, J.:
The CloudMdsQL multistore system. In: Proceedings of the International Confer-
ence on Management of Data (SIGMOD), pp. 2113–2116 (2016)

36. Kuang, L., Hao, F., Yang, L.T., Lin, M., Luo, C., Min, G.: A tensor-based approach
for big data representation and dimensionality reduction. IEEE Trans. Emerg. Top.
Comput. 2(3), 280–291 (2014)

37. Leclercq, E., Savonnet, M.: A tensor based data model for polystore: an application
to social networks data. In: Proceedings of the 22nd International Database Engi-
neering and Applications Symposium (IDEAS), pp. 1–9. ACM, New York (2018)

38. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge
University Press, Cambridge (2014)

39. Li, X., Cui, B., Chen, Y., Wu, W., Zhang, C.: MLog: towards declarative in-
database machine learning. Proc. VLDB Endow. 10(12), 1933–1936 (2017)

40. Litwin, W., Abdellatif, A., Zeroual, A., Nicolas, B., Vigier, P.: MSQL: a multi-
database language. Inf. Sci. 49(1–3), 59–101 (1989)

41. Ong, K.W., Papakonstantinou, Y., Vernoux, R.: The SQL++ unifying semi-
structured query language, and an expressiveness benchmark of SQL-on-Hadoop,
NoSQL and NewSQL databases. Technical report, UCSD (2014)

42. Ong, K.W., Papakonstantinou, Y., Vernoux, R.: The SQL++ query language: con-
figurable, unifying and semi-structured. Technical report, UCSD (2015)

http://arxiv.org/abs/1604.03607
https://doi.org/10.1109/BigData.2017.8258298
https://doi.org/10.1109/BigData.2017.8258298

56 E. Leclercq and M. Savonnet

43. Özsoyoğlu, G., Özsoyoğlu, Z.M., Matos, V.: Extending relational algebra and rela-
tional calculus with set-valued attributes and aggregate functions. ACM Trans.
Database Syst. 12(4), 566–592 (1987)

44. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-1-4419-8834-8

45. Sharp, J., McMurtry, D., Oakley, A., Subramanian, M., Zhang, H.: Data Access for
Highly-Scalable Solutions: Using SQL, NoSQL, and Polyglot Persistence. Microsoft
Patterns & Practices, 1st edn. (2013)

46. Singh, D., Reddy, C.K.: A survey on platforms for big data analytics. J. Big Data
2(1), 8 (2015)

47. Stonebraker, M., et al.: One size fits all? Part 2: benchmarking results. In: Pro-
ceedings of CIDR (2007)

48. Stonebraker, M., Cetintemel, U.: “One size fits all”: an idea whose time has come
and gone. In: Proceedings of 21st International Conference on Data Engineering,
ICDE 2005, pp. 2–11. IEEE (2005)

49. Tan, R., Chirkova, R., Gadepally, V., Mattson, T.G.: Enabling query processing
across heterogeneous data models: a survey. In: IEEE International Conference on
Big Data (Big Data), pp. 3211–3220. IEEE (2017)

50. Vargas-Solar, G., Zechinelli-Martini, J.L., Espinosa-Oviedo, J.A.: Big data man-
agement: what to keep from the past to face future challenges? Data Sci. Eng.
2(4), 328–345 (2017)

51. Varol, O., Ferrara, E., Davis, C.A., Menczer, F., Flammini, A.: Online human-
bot interactions: detection, estimation, and characterization. In: Proceedings of
the Eleventh International Conference on Web and Social Media (ICWSM), pp.
280–289 (2017)

52. Wang, J., et al.: The Myria big data management and analytics system and cloud
services. In: CIDR (2017)

53. Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large-scale parallel collaborative
filtering for the netflix prize. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS,
vol. 5034, pp. 337–348. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68880-8 32

https://doi.org/10.1007/978-1-4419-8834-8
https://doi.org/10.1007/978-3-540-68880-8_32
https://doi.org/10.1007/978-3-540-68880-8_32

Sketching Data Structures for Massive
Graph Problems

Juan P. A. Lopes1(B), Fabiano S. Oliveira2, Paulo E. D. Pinto2,
and Valmir C. Barbosa1

1 Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
{jlopes,valmir}@cos.ufrj.br

2 State University of Rio de Janeiro, Rio de Janeiro, Brazil
{fabiano.oliveira,pauloedp}@ime.uerj.br

Abstract. In this work, we explore the application of sketching data
structures to solve problems in graphs that do not fit entirely in mem-
ory. These structures allow compact representations of data, admitting
some probability of failure. We aim at the implicit representation and
dynamic connectivity problems. Our contributions include two new prob-
abilistic implicit representations, one that uses Bloom filters and allows
representing sparse graphs with O(|E|) bits, and another that uses Min-
Hash sketches and represents trees with O(|V |) bits. We also describe
a variant of an �0-sampling sketch that allows proving a tighter upper
bound on the failure probability of sampling.

Keywords: Sketching data structures · Graphs · Stream algorithms

1 Introduction

Sketching data structures allow the representation of data in a compact fash-
ion, often in sublinear space with respect to the original data. The interest in
these data structures has increased in recent years, as a direct consequence of
the emergence of applications that deal with large volumes of streaming data.
In these applications, it is often necessary to answer queries quickly, which is
infeasible by simply querying over stored data due to high latency. Be that as it
may, such volumes do not generally fit into memory in the first place. Sketching
data structures offer a good compromise for many applications, allowing less
memory and CPU usage at the cost of decreased accuracy.

In this work, we survey some sketching data structures and their applications
to massive graph problems. In Sect. 2, we describe the application of Bloom
filters and MinHash sketches to the implicit graph representation problem [16],
one of them representing trees with better space complexity than the optimal
deterministic representation. In Sect. 3, we detail two variants of a sketch to solve
the �0-sampling problem, which can be used to determine dynamic connectivity
in n-vertex graph streams using O(n log3 n) bits [1,13].

c© Springer Nature Switzerland AG 2019
V. Gadepally et al. (Eds.): Poly 2018/DMAH 2018, LNCS 11470, pp. 57–67, 2019.
https://doi.org/10.1007/978-3-030-14177-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14177-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-14177-6_5

58 J. P. A. Lopes et al.

2 Probabilistic Implicit Graph Representations

An implicit graph representation is a vertex labeling scheme that allows test-
ing the adjacency between any two vertices efficiently by just comparing their
labels [9,15,16]. More formally, given a graph class C with 2Θ(f(n)) graphs with
n vertices, a representation is said to be implicit if

1. it is space-optimal, that is, it requires O(f(n)) bits to represent graphs in C;
2. it distributes information evenly among vertices, that is, each vertex is rep-

resented by a label using O(f(n)/n) bits;
3. the adjacency test is local, that is, when testing the adjacency of any two

vertices, only their labels are used in the process.

According to this definition, the adjacency matrix is an implicit represen-
tation of the class containing all graphs, because there are 2Θ(n2) graphs on n
vertices and the adjacency matrix can represent them using Θ(n2) bits. On the
other hand, for m the number of edges, the adjacency list is not an implicit
representation, because it requires Θ(m log n) bits to represent the same graph
class, which may require Θ(n2 log n) bits in the worst case (e.g., for complete
graphs). In contrast, an adjacency list is space-optimal to represent trees, as
O(m log n) = O(n log n) for trees and there are 2Θ(n log n) trees on n vertices,
but still it is not an implicit representation because it does not distribute infor-
mation evenly: each tree vertex may use Θ(n log n) bits to represent its adjacency
in an adjacency list (e.g., the center vertices of stars).

In [11], the concept of probabilistic implicit graph representations was
explored, extending the concept of implicit representations by relaxing one of
the properties: the adjacency test is probabilistic, meaning that it has a con-
stant probability of resulting in false negatives or false positives. A 0% chance
of false positives and negatives implies an ordinary implicit representation. The
main benefit of probabilistic representations is the ability to trade accuracy for
memory, that is, to achieve more space-efficient representations by allowing some
incorrect results in adjacency tests. We present two novel probabilistic implicit
representations, each based on a distinct sketching data structure.

2.1 Representation Based on Bloom Filters

The Bloom filter is a data structure that represents a set S′ ⊆ S and allows
testing elements for set membership with some probability of false positives,
but no false negatives [2]. A Bloom filter consists of an array M of m bits
and k pairwise independent hash functions, hi : S → [1, . . . , m] for 1 ≤ i ≤
k. The insertion of an element x is performed by computing k hash values,
h1(x), . . . , hk(x), and setting these indices in the array to 1, that is, M [hi(x)] ← 1
for all 1 ≤ i ≤ k. The membership query for some element x is done by verifying
whether all bits in positions given by the hash values are 1, that is, by verifying
whether M [hi(x)] = 1 for all 1 ≤ i ≤ k. If at least one bit is 0, then x is
certainly not in the set. If all bits are 1, it is assumed that the element is in the

Sketching Data Structures for Massive Graph Problems 59

set, although this may not be the case (a false positive). The probability of a
false positive when n elements are already stored (event FP) can be determined
from the probability of collisions in all k hash values, that is,

Pr[FP] = Pr

⎡
⎣ ∧
1≤i≤k

M [hi(x)] = 1

⎤
⎦ =

(
1 −

(
1 − 1

m

)kn
)k

≈
(
1 − e−kn/m

)k

.

Defining q = m/n, that is, q as the ratio between the size of M in bits and
the number of stored elements, it is possible to show that the probability of false
positives is minimized when k ≈ q ln 2, so Pr[FP] ≈ (1 − e− ln 2)q ln 2 ≈ 0.6185q.
Thus, for example, setting the dimension of M to 10 bits per element and using
7 hash functions, it is possible to estimate set membership with less than 1% of
false positives.

Bloom filters are commonly used in database systems, both to avoid the
attempt to fetch non-existing data and to optimize communication costs in
distributed joins. In summary, Bloom filters are useful in contexts where the
performance gain in negative queries makes up for the cost of false positives.

Bloom filters can also be used in implicit graph representations, as follows.
For each vertex, a Bloom filter is created using some constant number of bits
per element (say, 10 bits), representing the set of vertices adjacent to it. The set
of Bloom filters of all vertices constitutes a probabilistic implicit representation.
This representation requires Θ(

∑
v∈V (G) d(v) = 2m) bits to represent any graph,

which makes it equivalent to the adjacency matrix in the worst case (e.g., for
complete graphs). However, this representation has better space complexity for
sparse graphs than the deterministic one. In fact, it is better for any graph having
m = o(n2). Also, it has the property of not allowing false negatives in adjacency
tests. That is, it will never fail to report an existing edge, although it may report
the existence of non-existing edges with a small probability.

The theoretical predictions about this representation were verified through
two practical experiments. These experiments aimed to validate the rate of false
positives as the graph’s density (2m/(n2 − n)) or the number of bits per edge
(q) changed while keeping other parameters fixed (results are shown in Fig. 1).

0.2 0.4 0.6 0.8
0%

1%

2%

3%

4%

Graph density (2m/(n2 − n))

q = 10, n = 200

5 10 15 20
Bits per edge (q)

n = 200, m = 9950

false positives

Fig. 1. Rate of false positives.

60 J. P. A. Lopes et al.

2.2 Representation Based on MinHash

MinHash is a sketching data structure that represents sets A,B ∈ S and allows
estimating their Jaccard coefficient, J(A,B) = |A ∩ B|

|A ∪ B| [3]. The estimation is done
by computing a signature (a k-tuple of hash values) for each set S ∈ S, using k
pairwise independent hash functions h1, . . . , hk. Each element in the signature
is given by hmin

i (S) = min{hi(x) : x ∈ S}, 1 ≤ i ≤ k. The probability of two sets
A and B having a common signature element can be shown to be equal to their
Jaccard coefficient, that is, Pr[hmin

i (A) = hmin
i (B)] = J(A,B), 1 ≤ i ≤ k. Given

two sets A, B, let Xi denote the Bernoulli random variable such that Xi = 1 if
hmin

i (A) = hmin
i (B), or Xi = 0 otherwise. The set {X1, . . . , Xk} consists of an

independent set of unbiased estimators for J(A,B), in such a way that increas-
ing k decreases the estimator variance. The error bounds for the estimation of
J(A,B) can be proved using the Chernoff inequalities. In particular, to achieve
an error factor of θ with probability greater than 1 − δ, k should be chosen such
that k ≥ 2+ θ

θ2 ln(2/δ).
MinHash’s original motivation remains its most useful application, detecting

plagiarism. It is possible to evaluate the similarity of two documents by only
comparing their MinHash signatures in constant time. It can also be used in
conjunction with HyperLogLog [7] to estimate the cardinality of set intersection
without having both sets in the same machine [12].

In the context of graphs, we introduced a probabilistic implicit representation
based on MinHash in which the main idea is, for any graph G = (V,E) in a
class C and for some pair of constants 0 ≤ δA < δB ≤ 1, to find representing
sets Sv 	= ∅ for every v ∈ V such that the following two conditions hold: (i)
J(Su, Sv) ≥ δB if and only if (u, v) ∈ E, and (ii) J(Su, Sv) ≤ δA if and only if
(u, v) /∈ E. Therefore, no pairwise Jaccard coefficient of representing sets should
lie within the interval (δA, δB). This way, the adjacency (u, v) could be tested
by determining J(Su, Sv) and comparing it with δA and δB . We use MinHash to
provide not the exact values, but estimates of the Jaccard coefficients. Therefore,
the actual idea to test adjacency is to assume that (u, v) ∈ E if J(Su, Sv) > δ
for some δA ≤ δ ≤ δB . Note that only the signatures of the representing sets
must be stored, requiring a constant number of elements. Furthermore, those
signatures can be represented with a constant number of bits [10], and therefore
a representation based on MinHash requires O(n) bits to represent any class for
which such representing sets exist.

In [11], we presented an algorithm to build such representing sets for trees
with δA = 1/3 and δB = 1/2. Given a tree T , the construction is performed
recursively starting at an arbitrary vertex v, with Sv being defined with � arbi-
trary distinct elements, where � = min{2r : r ∈ N | 2Δ(T) ≤ 2r}. Transforming
T into a tree rooted at v, for each level the procedure alternates between choos-
ing Su as a subset of Sp (selection phase) and choosing Su as a superset of
Sp (extension phase), where p is the parent of u in T . Figure 2 exemplifies this
construction.

The selection phase is done as follows. For a set Sp = {a1, . . . , ax}, x/2
subsets U1, . . . , Ux/2 are selected from it, each with x/2 elements, such that each

Sketching Data Structures for Massive Graph Problems 61

A

CB

{1, 2, 3, 4, 5, 6, 7, 8}

D E
F

G

{1, 3, 5, 7} {1, 4, 5, 8}

{1, 3, 5, 7, 9, 10, 11, 12}
{1, 3, 5, 7, 13, 14, 15, 16}

{1, 4, 5, 8, 17, 18, 19, 20}

{1, 5, 9, 11}

root

selection

extension

selectionH I J

{1, 5, 17, 19} {1, 8, 17, 20} {1, 5, 18, 20}

Fig. 2. Example of representing sets for a given tree.

pair of subsets has x/4 elements in common. This way, J(Ui, Uj) = 1/3 for
1 ≤ i < j ≤ x/2 and J(Ui, Sp) = 1/2 for 1 ≤ i ≤ x/2. Thus, each child of p must
be assigned a distinct Ui as its representing set. The efficient implementation
of this selection procedure is based on the representation by a binary string
ui, with length x/2, of a subset Ui ⊂ Sp, such that if the jth bit of ui has
value b, then a2j−1+b belongs to Ui. The generation of the strings that represent
U1, . . . , Ux/2 can be achieved iteratively, starting from a 1 × 1 matrix and, at
each step, fourfolding the current matrix with negated bits in the lower right
quadrant. This is illustrated in Fig. 3 for Sp = {1, . . . , 8}. The extension phase
is done through the inclusion of |Sp| unique elements from the already defined
representing sets.

1

3

2

4

i

1 2 3 4 5 6 7 8

a1 a2

1 3 5 7

1 3 6 8

1 4 5 8

1 4 6 7

Ui

0000

0011

0101

0110

a3 a4 a5 a6 a7 a8

ui

0
0 0

0 1

0 0

0 1

0 0

0 1

0 0

0 1

1 1

1 0

Fig. 3. Example of a subset selection for Sp = {1, . . . , 8}.

The MinHash signatures are then computed for the representing sets and used
as labels for the corresponding vertices. As this labeling scheme requires only
O(n) space to probabilistically represent trees, a class with 2Θ(n log n) graphs on
n vertices, such a probabilistic representation has better space complexity than
the optimal deterministic representation.

The theoretical predictions about this representation were verified through
three practical experiments. The experiments aimed to validate the rate of false

62 J. P. A. Lopes et al.

positives and negatives as we change the evaluation threshold (δ), the number
of vertices in the graph (n), and the signature size (k), while keeping the other
parameters fixed. The results are shown in the Fig. 4.

0.1 0.2 0.3 0.4 0.5
0%

2%

4%

6%

8%

10%

Threshold (δ)

k = 128, n = 200

50 100 150 200
Number of vertices (n)

k = 128, δ = 0.375

50 100
Signature size (k)

n = 200, δ = 0.375

false positives
false negatives

Fig. 4. Rate of false positives and negatives.

2.3 Considerations on Bipartite Graphs

In [16], it is shown that any hereditary graph class with 2Θ(n2) members of n
vertices should entirely include either the bipartite, co-bipartite, or split graphs.
Also, it is possible to transform any graph G = (V,E) into a bipartite graph
G′ = (V ′, E′) such that V ′ = {v1, v2 | v ∈ V }, and E′ = {(u1, v2), (v1, u2) |
(u, v) ∈ E}. Any efficient representation of G′ can be used to efficiently rep-
resent G. This makes the search for a probabilistic representation of bipartite
graphs specially appealing. However, we proved the non-existence of some repre-
sentations. For example, it is impossible to construct a MinHash-based represen-
tation with δA = 0.4 and δB = 0.6 for a graph as simple as the complete bipartite
K3,3 [11]. Our proof is based on the formulation of a corresponding integer lin-
ear programming problem, which turns out to be infeasible. This suggests that
further investigation concerning this probabilistic implicit graph representation
is that of characterizing the class of graphs that are amenable to it.

3 Graph-Streams Connectivity

In many real applications, graphs are not static entities. Instead, it is often the
case that edges and vertices are added and removed with high frequency. The
study of fully dynamic graph algorithms is already well established [6,13], but
the recent explosion in the scale of graphs has encouraged further research into
algorithms that require sublinear space to compute queries on them. In this
work, we present two variants of an �0-sampling sketch, a data structure that
allows the sampling of edges in graph cut-sets and can be used to determine
dynamic graph connectivity using O(n log3 n) bits.

Sketching Data Structures for Massive Graph Problems 63

3.1 �0-sampling Sketch

The �0-sampling problem consists in sampling a nonzero coordinate from a
dynamic vector a = (a1, . . . , an) with uniform probability. This vector is defined
in a turnstile model, which consists of a stream of updates S = 〈s1, s2, . . . , st〉
on a (initially 0), where si = (ui,Δi) ∈ {1, . . . , n} × R for 1 ≤ i ≤ t, meaning
an increment of Δi units to aui

. It is desirable that such sample be produced in
a single pass through the stream with sublinear space complexity. The challenge
arises from the fact that, since Δi can be negative and hence some updates in
the stream may cancel others, directly sampling the stream may lead to incor-
rect results. In order to achieve sublinear space complexity in a single pass, an
�0-sampling algorithm must represent a through a sketch.

In [5], a seminal sketch-based algorithm for the �0-sampling problem was
introduced. The algorithm uses a universal family of hash functions to partition
the vector a into O(log n) subvectors with exponentially decreasing probabil-
ities of representing each element of a. It is proved that there is a constant
lower bound on the probability that at least one of those subvectors has exactly
one nonzero coordinate. Through a procedure called 1-sparse recovery, which
stores O(log n) bits for each subvector, it is possible to recover such coordi-
nate. Considering that the probability of failure has a constant upper bound,
running O(log(1/δ)) independent instances of the algorithm can ensure a suc-
cess probability of at least 1 − δ. The total space complexity of this algorithm is
O(log2 n log(1/δ)). Further studies show stronger results by relaxing assumptions
on the hash functions used [8,14]. Nevertheless, they keep the same worst-case
space complexity. In fact, any algorithm that performs �0-sampling in a single
pass should require Ω(log2 n) bits in the worst case [8]. This holds even if the
algorithm allows a relative error of ε and a failure probability of δ.

1-Sparse Recovery Procedure. A vector is 1-sparse when it has a single
nonzero coordinate. A 1-sparse recovery procedure allows deciding whether a
vector a is 1-sparse, and recover the only nonzero coordinate from it. Note
that while a is expected to be 1-sparse at the time of a successful recovery, it
may have any number of nonzero coordinates before that. This procedure is a
building block for many �0-sampling algorithms. Here we present a false-biased
randomized variant that handles cases where a has negative values [4]. It begins
by choosing a sufficiently large prime p ≤ nc, for some constant c > 1, and a
random integer z ∈ Zp. Then, iterating through all si = (ui,Δi) ∈ S, three sums
are computed:

b0 =
t∑

i=1

Δi, b1 =
t∑

i=1

Δiui, b2 =
t∑

i=1

Δiz
ui mod p.

If a is 1-sparse, it is easy to see that the nonzero coordinate i can be recovered
as i = b1/b0, with ai = b0. However, verifying that a is 1-sparse requires more
effort.

64 J. P. A. Lopes et al.

Theorem 1. If a is 1-sparse, then b2 ≡ b0z
b1/b0 mod p. Otherwise, b2 	≡

b0z
b1/b0 mod p with probability at least 1 − n/p.

Proof (sketch). If a is 1-sparse, with a nonzero coordinate i, it is trivial to see
that b2 ≡ aiz

i mod p. Otherwise, b2 ≡ b0z
b1/b0 mod p may still hold if z is a

root in Zp of the polynomial p(z) = b0z
b1/b0 − ∑

Δiz
ui . As p(z) is a degree-n

polynomial, it has at most n roots in Zp. Therefore, given that z is chosen at
random, the probability of a false recovery is at most n/p. ��

This 1-sparse recovery procedure stores z, b0, b1, and b2. Assuming that every
ai is limited by a polynomial in n, the total space required is O(log n) bits.

Algorithm. Here, two variants of the same �0-sampling sketch are presented.
Both variants define a(1),a(2), . . . ,a(m) subvectors of a. For all 1 ≤ j ≤ m, each
ai 	= 0 has a 1/2j probability of being present at a(j), that is, a

(j)
i = ai with

probability 1/2j , otherwise a
(j)
i = 0. To decide whether a

(j)
i is present, we draw

a hash function hj : {1, . . . , n} → {0, . . . , 2m − 1} from a universal family, and
observe whether m − �log2 hj(i)� = j, which happens with probability 1/2j . An
independent 1-sparse recovery is then computed for each a(j). The variants differ
only in the number of functions used. Variant (a) uses a single hash function for
every a(j) (Algorithm 1), while Variant (b) uses a different function for each
subvector (Algorithm 2). While Variant (a) is more useful in practice, the error
analysis for Variant (b) is more straightforward. We provide empirical evidence
that the error in either variant converges quickly as a function of n.

Algorithm 1. Variant (a)
1: M [1..m]: 1-sparse recoveries
2: for each (ui, Δi) ∈ S do
3: k ← m − �log2 h(ui)�
4: M [k].b0 += Δi

5: M [k].b1 += Δiui

6: M [k].b2 += ΔiM [k].zui mod p

7: for j ∈ [1..m] do
8: v ← M [j].b0M [j].zM [j].b1/M [j].b0 mod p
9: if M [j].b2 = v then

10: return M [j].b1/M [j].b0

11: report Failure

Algorithm 2. Variant (b)
1: M [1..m] : 1-sparse recoveries
2: for each (ui, Δi) ∈ S do
3: for j ∈ [1..m] do
4: k ← m − �log2 hj(ui)�
5: if k = j then
6: M [k].b0 += Δi

7: M [k].b1 += Δiui

8: M [k].b2 += ΔiM [k].zui mod p

9: for j ∈ [1..m] do
10: v ← M [j].b0M [j].zM [j].b1/M [j].b0 mod p
11: if M [j].b2 = v then
12: return M [j].b1/M [j].b0

13: report Failure

Each variant either succeeds in returning a single nonzero coordinate of a
or reports a failure. The probability of failure is given by the joint probability
of failure of all m 1-sparse recoveries. In Variant (b), these are independent
events. The probability that a single recovery M [j] fails is the complement of
the probability that a(j) is 1-sparse, that is, assuming a has r � 1 nonzero
coordinates:

Pr[Failure] =
m∏

j=1

(
1 − r2−j(1 − 2−j)r−1

) ≈
m∏

j=1

(
1 − r2−je−r2−j

)
.

Sketching Data Structures for Massive Graph Problems 65

Theorem 2. If 5 ≤ log2 r ≤ m − 5, then Pr[Failure] ≤ 0.31 for Variant (b).

Proof (sketch). It is easy to see that the lowest probabilities of failure concentrate
around j such that 2j ≤ r < 2j+1. Letting q = r/2�log2 r	, it holds that

Pr[Failure] ≤
5∏

k=−5

(
1 − q2ke−q2k

)
.

Note that 1 ≤ q < 2. In this interval, all factors 1 − q2ke−q2k are either
monotonically increasing or decreasing. Analyzing their global maxima, we arrive
at a maximum product of approximately 0.3071, therefore Pr[Failure] ≤ 0.31.

��
This result shows that, as n grows, choosing m = 5 + �log2 n� is enough to

ensure a constant upper bound on the probability of failure. Furthermore, to
ensure a success probability of at least 1 − δ, it is sufficient to run �log0.31 δ�
instances of the sketch.

In order to assess the algorithm’s behavior in a real implementation, an
experiment was set up. Both variants were implemented and tested with a vector
of size n = 4096 and increasing values of r. We tested both a correctly sized
(i.e., for m = 17) and an undersized instance of the �0-sampling sketch. The
empirical cumulative distribution was also recorded. The experiment was run
100 000 times and the mean value for each data point is reported in Fig. 5.

32 1024 2048 3072 4096
0%

20%

40%

60%

80%

100%

V
ar

ia
nt

(a
)

Failures
n = 4096, m = 17

failure rate

32 1024 2048 3072 4096

Failures
n = 4096, m = 10 (undersized)

failure rate

32 1024 2048 3072 4096

CDF
n = 4096, m = 17

cumulative distribution

32 1024 2048 3072 4096
0%

20%

40%

60%

80%

100%

Number of nonzero coordinates (r)

V
ar

ia
nt

(b
)

32 1024 2048 3072 4096
Number of nonzero coordinates (r)

32 1024 2048 3072 4096
Sampled coordinate

Fig. 5. Failure rate and cumulative distribution of successes.

This experiment suggests that in a correctly sized �0-sampling sketch, the
failure probability stays almost constant and under 20%. There is little difference

66 J. P. A. Lopes et al.

between Variants (a) and (b). Furthermore, in an undersized setup, the failure
rate rapidly reaches critical levels.

3.2 Dynamic Connectivity Using �0-samplers

It is possible to use �0-sampling sketches to determine whether a dynamic graph
G = (V,E) is connected. One possible randomized algorithm runs in O(log n)
turns and either answers affirmatively with certainty or negatively with a con-
stant probability of error [1].

The algorithm starts with an empty subgraph of G. In each turn, for each
connected component S ⊂ V , an edge is drawn (if any) from the cut-set [S, V \S],
connecting two components. It is possible to prove that this procedure finishes
in at most �log2 n� turns, yielding a spanning tree of G if it is connected.

The �0-sampling sketches are used to represent each vertex set’s adjacency, in
the form of a modified incidence vector, where each edge is represented twice, one
for each ordering of its ends. More formally, given an ordering u1w1, . . . , umwm

of the edges of E, we define a vector av = (av
u1w1

, av
w1u1

, . . . , av
umwm

, av
wmum

), for
each vertex v ∈ V , in a way that av

u,w = 1 if v = u; av
u,w = −1, if v = w; or

av
u,w = 0, otherwise.

This representation has the useful property that, for each set of vertices
S = {v1, v2, . . . , vq}, the nonzero coordinates of aS =

∑q
i=1 avi represents the

edges across the cut [S, V \ S]. Therefore, considering that the �0-sampling rep-
resentation of any vector a is a linear transformation of that vector, this implies
that a set of �0-sampling sketches can be used to sample edges in any cut-set of
a graph.

It is important to note that an �0-sampling sketch cannot be reused to sample
another edge with the same failure probability. Nevertheless, a different sampling
sketch can be used in each turn of the algorithm. Keeping �log2 n� �0-sampling
sketches (one for each turn) for each vertex allows performing the connectivity
algorithm just described using O(n log3 n) bits.

4 Conclusion

In this paper we explored the use of sketching data structures for massive graph
problems. We have established the concept of probabilistic implicit graph rep-
resentations, introducing two new representations. One, based on Bloom filters,
can represent sparse graphs with O(m) bits; another, based on MinHash, can
represent trees with O(n) bits. We have provided empirical evidence confirming
the theoretical predictions about these representations.

We have also described a variant of the �0-sampling sketch and proved its fail-
ure probability to be bounded by a constant value, provided a certain structure-
size condition is met. A simple dynamic graph connectivity algorithm using this
sketch was explained. Research is ongoing on the proof of exact probabilities of
failure for both algorithm variants. Future research may also include novel graph
algorithms that use �0-sampling as a primitive.

Sketching Data Structures for Massive Graph Problems 67

Acknowledgements. The authors acknowledge partial financial support from CNPq,
CAPES, and a FAPERJ BBP grant.

References

1. Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via linear measure-
ments. In: Proceedings of SODA 2012, pp. 459–467 (2012)

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

3. Broder, A.Z.: On the resemblance and containment of documents. In: Proceedings
of SEQUENCES 1997, pp. 21–29 (1997)

4. Cormode, G., Firmani, D.: A unifying framework for �0-sampling algorithms. Dis-
trib. Parallel Databases 32(3), 315–335 (2014)

5. Cormode, G., Muthukrishnan, S., Rozenbaum, I.: Summarizing and mining inverse
distributions on data streams via dynamic inverse sampling. In: Proceedings of
VLDB 2005, pp. 25–36 (2005)

6. Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms (chap. 8). In:
Atallah, M.J. (ed.) Algorithms and Theory of Computation Handbook. CRC Press,
Boca Raton (1999)

7. Flajolet, P., Fusy, É., Gandouet, O., Meunier, F.: HyperLogLog: the analysis of a
near-optimal cardinality estimation algorithm. In: Proceedings of AofA 2007, pp.
127–146 (2007)

8. Jowhari, H., Sağlam, M., Tardos, G.: Tight bounds for Lp samplers, finding dupli-
cates in streams, and related problems. In: Proceedings of PODS 2011, pp. 49–58
(2011)

9. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. Dis-
cret. Math. 5(4), 596–603 (1992)

10. Li, P., König, A.C.: b-Bit minwise hashing. In: Proceedings of WWW 2010, pp.
671–680 (2010)

11. Lopes, J.P.A.: Probabilistic data structures applied to implicit graph representa-
tion. Master’s thesis, State University of Rio de Janeiro (2017, in Portuguese)

12. Lopes, J.P.A., Oliveira, F.S., Pinto, P.E.D.: Estimating the intersection cardinality
of sets using MinHash and HyperLogLog. In: Proceedings of CNMAC 2016, pp.
010077- 1–2 (2017, in Portuguese)

13. McGregor, A.: Graph stream algorithms: a survey. ACM SIGMOD Rec. 43(1),
9–20 (2014)

14. Monemizadeh, M., Woodruff, D.P.: 1-pass relative-error Lp-sampling with appli-
cations. In: Proceedings of SODA 2010, pp. 1143–1160 (2010)

15. Muller, J.H.: Local structure in graph classes. Ph.D. thesis, Georgia Institute of
Technology (1988)

16. Spinrad, J.P.: Efficient Graph Representations. American Mathematical Society,
Providence (2003)

Managing Structurally Heterogeneous
Databases in Software Product Lines

Parisa Ataei(B), Arash Termehchy, and Eric Walkingshaw

Oregon State University, Corvallis, OR 97331, USA
{ataeip,termehca,walkiner}@oregonstate.edu

Abstract. Data variations are prevalent while developing software
product lines (SPLs). A SPL enables a software vendor to quickly pro-
duce different variants of their software tailored to variations in their
clients’ business requirements, conventions, desired feature sets, and
deployment environments. In database-backed software, the database of
each variant may have a different schema and content, giving rise to
numerous data variants. Users often need to query and/or analyze all
variants in a SPL simultaneously. For example, a software vendor wants
to perform common tests or inquiries over all variants. Unfortunately,
there is no systematic approach to managing and querying data varia-
tions and users have to use their intuition to perform such tasks, often
resorting to repeating a task for each variant. We introduce VDBMS
(Variational Database Management System), a system that provides a
compact, expressive, and structured representation of variation in rela-
tional databases. In contrast to data integration systems that provide
a unified representation for all data sources, VDBMS makes variations
explicit in both the schema and query. Although variations can make
VDBMS queries more complex than plain queries, a strong static type
system ensures that all variants of the query are consistent with the
corresponding variants of the database. Additionally, variational queries
make it possible to compactly represent and efficiently run queries over
a huge range of data variations in a single query. This directly supports
many tasks that would otherwise be intractable in highly variational
database-backed SPLs.

Keywords: Variational databases · Variational queries · VSQL ·
Variational relational algebra · Software product lines ·
Heterogeneous databases

1 Introduction

Data variation is ubiquitous when developing software. Each domain contains
numerous databases which differ in terms of schema, data representation, and/or
content. In fact, even a single software vendor or project may need to maintain
many different data representations of the same concepts. One way this arises is
in the context of a software product line (SPL), which is a single software project
c© Springer Nature Switzerland AG 2019
V. Gadepally et al. (Eds.): Poly 2018/DMAH 2018, LNCS 11470, pp. 68–77, 2019.
https://doi.org/10.1007/978-3-030-14177-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14177-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-14177-6_6

Managing Structurally Heterogeneous Databases in SPLs 69

that can be used to generate many different program variants [1]. For instance,
software vendors often customize their software and create distinct variants for
each client based on the client’s geographical settings, business requirements, and
the capabilities it wants. Most open source projects have hundreds or thousands
of static configuration options, yielding a staggering number of variants [8].

Table 1. A subset of features in an email system SPL and the relations associated with
them. If a feature is enabled, the schema of the email database includes the correspond-
ing relation. The first two relations are included in all variants of the SPL. The three
different employee relations, associated with different countries’ naming conventions,
are mutually exclusive.

Feature Associated relation

- message(ID , sender , date, subject , body)

- recepientInfo (rid , ID , rtype)

Encryption encryption(ID , isEncrypted , encryptionKey)

Signature signature(ID , signed , signKey)

Verification verification(ID , isVerified)

US person(ID ,firstName,middleName, lastName)

France person(ID ,firstName, lastName)

Iceland person(ID ,firstName, fatherName, gender)

Different variants of a SPL require different data representations. Consider a
vendor that develops an email messaging system for customers around the globe.
Each country may have a different standard of naming people, for example, in
contrast to the US, there is no notion of a middle name in France, and in Iceland,
a person’s last name is determined by their gender and their father’s name.
Hence, this vendor may have to create a distinct relation schema for the relation
person according to the country of the customer as shown in Table 1. A common
intent in this email system is to retrieve a person’s ID by their full name. To
express this intent, a developer of the system has to write a distinct SQL query
for each naming convention in their code. This problem grows multiplicatively
when different variations interact, for example, a query to retrieve full names
combined with an optional privacy feature, may require two distinct queries
for each naming convention. Thus, a developer may end up writing many SQL
queries to express the same intent across many software variants.

The database community has long recognized that users must modify their
queries to preserve their semantic and syntactic correctness over various schemas
and has proposed (declarative) schema mappings to solve this problem [3,5]. For
example, in the context of schema evolution, one first defines or discovers the
mapping between the original and new schemas. Given this schema mapping,
one can safely and automatically translate the queries written over the original
schema to the new one. Of course, the new schema must contain the information
the query needs. However, the variations in a SPL do not enjoy this property.

70 P. Ataei et al.

For instance, if one knows the mapping between the schema for the client in
the US and the one in France, they cannot automatically translate the query
written for the France-based client to the one for the US-based client as the
schema mapping does not imply the need to use the attribute middle name to
preserve the intent behind the query. In fact, if one follows the mapping between
the schemas, the query written for the US-based client will not use the attribute
middle name!

In Sect. 2, we describe how such variation is managed in real-world SPLs and
why current approaches are unsatisfactory to developers.

As a solution, we propose VDBMS (Variational Database Management Sys-
tem), a system that manages structurally heterogeneous databases in similar
context and allows users to query multiple variants simultaneously without los-
ing data provenance. In Sect. 3, we describe the core concepts of VDBMS, and
describe the architecture of the VDBMS system in Sect. 4.

2 Motivating Example

One way of defining a SPL is to identify and model the features that give rise
to different variants of the software [1]. For our purposes, a feature is a name
that corresponds to some potentially optional unit of functionality, and a feature
model describes the relationship between features. In the example illustrated in
Table 1, US , France, and Iceland are features corresponding to different nam-
ing conventions and are mutually exclusive according to the feature model (not
shown in the table). Other features in the email system include Encryption,
Signature, and Verification. If, say, the Encryption feature is enabled, then the
corresponding software variants will encrypt and decrypt emails. Features can
be combined in different ways and extend or modify a shared code base that
implements the basic requirements of the system shared across all variants, such
as sending and receiving messages in an email system. By organizing the vari-
ability of a SPL around features, a vendor or project can share significant costs
and effort in developing and maintaining many software variants [1].

Generating, managing, and maintaining separate schemas for each variant in
a SPL is not simply tedious, but often impossible since the number of variants
grows exponentially with the number of independent features. From our conver-
sation with SPL experts, the dominant workaround is to create a global schema
that contains all relations and attributes used across all variants of the software,
then write queries over this global schema. However, such a schema may not be
meaningful. For instance, in our email system example, the global schema must
contain all attributes required to store various naming conventions for the rela-
tion person, which will not have any instance in the real world. Also, numerous
tuples in the database will contain null values, e.g. middle names for all people
in France. If the database is deployed and resides on the client’s location, the
client has a large schema but uses only a small subset of it. Developers must
write distinct SQL queries for different software variants to express an intent
that is shared among all variants. It may also be error-prone to write a query

Managing Structurally Heterogeneous Databases in SPLs 71

directly over such a global schema, as the query has access to many attributes
and relations that do not make sense in its variants.

A cleaner approach is to define a view over the global schema for each variant
and write queries for each variant against its view. However, developers then have
to generate and maintain numerous view definitions and must still write many
SQL queries to express the same intent. The developer must manually generate
and manage the mappings between views and the global schema for each client.
As a result, while querying database variants, they face similar problems to ones
mentioned for schema mapping methods in Sect. 1. Moreover, update queries
after deployment must deal with the problems of view-updating since the base
tables of the products are defined as views. This approach works for a SPL with a
small number of clients/variants. However, it doesn’t scale to open-source SPLs
where the selection of an individual variant is up to the end-user, and the space
of potential variants is massive.

VDBMS introduces a novel abstraction called a variational schema, a com-
pact representation of all schemas used by the software variants of a SPL, where
the presence of relations and attributes in the schema is defined in terms of
the features of the SPL. It also provides a novel variational query language
that enables SPL programmers to refer to features explicitly. Instead of writ-
ing separate queries for each variant of a SPL, programmers can express an
intent over all possible schema variants of a SPL in a single query. By making
variation explicit in schema and queries, VDBMS simplifies the task of testing
and maintaining database-related functionality across software variants. Finally,
it provides opportunities for sharing query processing across multiple schema
variants.

3 Variational Database Framework

A variational database (VDB) is conceptually a set of relational database vari-
ants that may each have a different schema. It is conceptually useful in any
context where one wants to work on some/all of these variants simultaneously.

3.1 Variational Schema

Similar to relational databases, we need to compactly express the schema of a
VDB. We assume that different variants of a SPL can either include or exclude
a relation, and if they include a relation they can either include or exclude an
attribute of that relation. A variational schema (v-schema) concisely encodes the
plain relational database schemas for all of the software variants in a SPL [2].
The representation of v-schemas is based on the formula choice calculus [4,7].

Conceptually, a variational schema is just a relational schema with embed-
ded choices that locally capture the differences among variants. A choice F 〈x, y〉
consists of a feature expression F and two alternatives x and y. A feature expres-
sion is a propositional formula over the features of the SPL, where each feature
can either be enabled (true) or disabled (false). For a particular set of enabled

72 P. Ataei et al.

features, the choice F 〈x, y〉 can be replaced by x if F evaluates to true, or y oth-
erwise. Each software variant of the SPL corresponds to a set of enabled features
(its configuration); the plain schema for that variant can be obtained by simply
eliminating each of the choices in the v-schema as described above.

A v-schema allows for the embedding of choices within the sets of attribute
names, forming variational relation schemas. We illustrate this in Example 1.

Example 1. Assume our schema contains the relation person and our SPL con-
tains the country-specific features. Then A = US〈l1∪{middleName},France〈l1, l2〉〉
encodes the set of attribute names for the person relation shown in Table 1, where
l1 = {ID ,firstName, lastName}, l2 = {ID ,firstName, fatherName, gender}.
Note that l2 contains the attributes for the Iceland feature, which are included
when neither US nor France are enabled. The entire v-schema can be represented
as S = (US ∨France ∨ Iceland)〈person(A), ∅〉, where person(A) is a variational
relation schema (v-relation schema) and ∅ indicates a non-existing schema.

A v-relation is a set of tuples that conform to the same v-relation schema,
where each tuple has a feature expression that indicates the software variants
that include the tuple (its presence condition). A set of v-relations form a VDB.

Within a SPL, not all configurations yield valid software variants. For exam-
ple, any valid configuration of our email system contains exactly one of the
features US , France, and Iceland . In practice, the set of valid configurations of
a SPL is described by a feature model [1]. Here, we consider a feature model
to be a feature expression that is satisfied iff the configuration is valid. For
example, the corresponding fragment of our email system feature model is:
(US ∧ ¬France ∧ ¬Iceland)∨ (¬US ∧ France ∧ ¬Iceland)∨ (¬US ∧ ¬France ∧ Iceland)

The feature model is an input to VDBMS and is implicitly applied
globally. For example, given the feature model above, the nested choice
US 〈x,France〈y, z〉〉 will resolve to x for the US, y for France, and z for Iceland.
Although for simplicity we use propositional formulas for feature expressions and
feature models, our model can be easily generalized to other encodings, such as
first-order logic.

3.2 Variational SQL

To query a VDB, we introduce the notion of a variational query (v-query),
which returns a v-relation. We define variational SQL (VSQL) as an extension
of SQL with a new function CHOICE(f, e1, e2), where f is a feature expression
and e1 and e2 may be VSQL queries, attribute sets used in a SELECT clause,
relations (or joins of some relations) used in a FROM clause, or conditions in
a WHERE clause. With VSQL, the SPL developer can use the CHOICE function to
indicate different attributes, conditions, and relations to use for different variants
of the database. This enables expressing a single intent across a potentially huge
number of configurations in a single v-query.

In our examples, we use variational relational algebra (VRA) rather than
VSQL, for brevity. VRA is relational algebra extended by the choice notation

Managing Structurally Heterogeneous Databases in SPLs 73

introduced in Sect. 3.1. However, we expect end-users to prefer the VSQL nota-
tion. Example 2 illustrates different ways of writing a v-query in VRA.

Example 2. Consider again the schema sketched in Table 1 and defined in Exam-
ple 1. Suppose a developer would like to express the intent of querying a
last name by projecting the last name attribute for US and France, and the
father’s name and gender in Iceland. They can do this with the following query:
Q1 = π(France∨US)〈{lastName},{fatherName,gender}〉person. The output of this query is a
v-relation that has the lastName attribute for both US and France variants and
the fatherName and gender attributes for the Iceland variant of the data. The
user may also submit the following query with nested choice expression to articu-
late the same intent: Q′

1 = πFrance〈{lastName},(US〈{lastName},{fatherName,gender}〉)〉person.
Without choices and a VDB, expressing this query requires executing two dif-
ferent plain queries against three different databases.

Since VSQL is a strict superset of SQL, a developer may still write queries in
plain SQL when the intent is expressed the same way across all variants. That is,
VSQL does not impose additional complexity when it is not needed. Additionally,
we employ type inference and a strong static type system that enables omitting
choices in many cases where the variation in the v-query is completely determined
by the corresponding variation in the v-schema. For example, we can express
query Q1 in Example 2 more simply as πlastName,fatherName,gender person. This
will project the lastName attribute for the US and France, and the fatherName
and gender attributes for Iceland, and the inferred type of this query will track
which attributes and tuples are present in which variants.

The type system also supports usability by ruling out invalid v-queries. For
example, a query that contains the condition lastName = fatherName would be
invalid since there is no configuration of the database that includes both the
lastName and fatherName attributes of the person relation.

Type inference enables omitting the “boring” choices that would only be
needed to ensure consistency between the v-query and the v-schema, which in
turn ensures that each variant of the v-query is structurally consistent with its
corresponding variant of the VDB. This frees choices to be reserved for the more
interesting cases where a v-query must describe unsystematic or non-structurally
determined differences amongst its variants. This is illustrated in Example 3.

Example 3. Suppose we want to read the body of all emails. Our query must
take into account whether an email is encrypted or not. This is illustrated by
the following query with a choice over the feature Encryption, where Δ is a
user-defined function that takes attributes encryptionKey and body and decodes
the body according to the key.

Encryption〈πΔ(body,encryptionKey)(σisEncrypted=truemessage ��ID=ID encryption)

∪ πbody (σisEncrypted=falsemessage ��ID=ID encryption), πbodymessage〉

74 P. Ataei et al.

Note that variation in this query is not determined by the v-schema since
each alternative of the choice not only queries different attributes and relations,
but must also perform different functionality (namely, decoding the email body).

4 VDBMS Architecture

Figure 1 shows the architecture of VDBMS. V-schema and v-query are supported
by the VDBMS abstraction layer to enable the SPL developer to interact with
the VDB. The SPL developer can include v-queries in the SPL codebase or input
them to VDBMS directly. In this section, we briefly report our ongoing effort of
implementing VDBMS using an existing RDBMS.

Fig. 1. Overview of VDBMS. The v-schema captures variation in database layouts and
is accessible from all modules within the VDBMS layer.

4.1 Encoding the Variational Database

We implement VDBMS on top of PostgreSQL. All variants of a v-relation are
encoded as a single relational table in PostgreSQL. This table contains the union
of all attributes contained in all variants of the relation schema. We encode both
the v-schema and the feature model as additional tables in PostgreSQL. The
v-schema associates with each attribute a feature expression, called the presence
condition, indicating in which variants the attribute is included.

A key aspect of a VDB is that it conceptually represents many different
variant databases, and often it is important to both keep these databases distinct,
and to keep track of which results come from which databases. One scenario
where this is especially important is when features correspond to different clients,
in which case we want to ensure that data associated with different clients do not

Managing Structurally Heterogeneous Databases in SPLs 75

mix. Therefore, our system must not only manage structural differences between
variants, but also track which data is associated with which variants. We do this
by attaching a presence condition to each tuple that indicates the variants in
which the tuple is present. The presence condition is represented as a feature
expression that VDBMS maintains and updates throughout the execution of a
v-query. The key property enforced by maintaining presence conditions on tuples
is variation preservation, which states that running a v-query on a v-database
yields a v-relation that is equivalent to running each variant of the v-query on
the corresponding variant of the v-database.

4.2 Optimizing and Evaluating Variational Query

The evaluation of a v-query proceeds in several steps. First, the query validator
applies the rules of the type system to check whether the query is consistent with
the variational schema. For example, the query π(France〈middleName,∅〉)person is
invalid since it projects the middleName attribute when the France feature is
enabled, but this attribute is present only when the US feature is enabled.

The query optimizer translates the v-query into a tree whose internal nodes
are either relational operators or choices, and whose leaves are v-relations. The
optimizer then applies equivalence laws from relational algebra and the choice
calculus to achieve better performance.

Conceptually, the query executor executes an optimized variational query by
translating it into a sequence of relational query operations interspersed by oper-
ations that enforce the variation-preservation property (Sect. 4.1). In practice,
this is achieved efficiently by embedding user-defined functions in queries that
can be executed entirely with the PostgreSQL DBMS. During the execution of
a variational query, tuples can be filtered out of intermediate results not only by
the selection predicate, but also because the tuples are not present in the vari-
ations that are applicable to that part of the query. Additionally, the presence
conditions of tuples will be refined as they are processed by the query.

Finally, VDBMS must return a v-relation to the user. The result builder
module collects the results, including the presence conditions of the relation,
attributes, and tuples, and assembles them into a v-relation to return. Note that
the query executor and result builder modules can work in a pipeline since the
tuples’ presence conditions are independent from one another.

5 Related Work

OrpheusDB supports database versioning [6]. Both OrpheusDB and VDBMS
provide access to some versions or variants of a database at a time. How-
ever, unlike database versioning, which manages heterogeneity of content only,
VDBMS also supports heterogeneous structure, that is, different schemas for dif-
ferent variants. Both database version and VDBMS support data sharing among
versions/variants. In VDBMS, this is supported by presence conditions on tuples
that are consistent with many different configurations. For example, a tuple with

76 P. Ataei et al.

presence condition US ∨France is included in all variants with either the US or
France feature enabled (regardless of the configuration of other features).

Multi-tenant databases [9] take an architectural approach towards sharing
resources among various organization that use different applications and hence
different databases without any limitation on database variations. They do so by
storing data ownership and the database schema in relational tables. However,
VDBMS is only used for databases in similar contexts since it adds a level of
abstraction to both the schema and content of the database. As a result, it allows
for as much sharing as possible among database variants while multi-tenant
databases do not allow for any sharing since the variations can be completely
different. Interestingly, they both secure client’s information, VDBMS does so
by providing the variation-preservation property and multi-tenant databases do
so by tagging the client ID to data.

6 Conclusion and Future Work

While developing SPLs, developers must deal with many variants of a database
corresponding to different configurations of the software. Maintaining each data-
base and its corresponding set of queries manually doesn’t scale to highly config-
urable SPLs. Alternative solutions, such as including all of the information for
all variants in a single schema, are error-prone and don’t address the problem
of unsystematic variation, that is, when different configurations of the software
may require different queries to express the same intent, which are not deter-
mined by differences in structure alone. We introduced a conceptual framework
for VDBMS, including v-schemas, which compactly represents the schema asso-
ciated with each configuration of an SPL, and variational queries, which enable
users to express both systematic and unsystematic variations of a single intent
across all variants of the database. We have also introduced the VDBMS archi-
tecture, including how it integrates with the SPL and how it is realized in the
underlying DBMS, PostgreSQL. VDBMS enforces a variation-preservation prop-
erty that ensures that queries and data associated with different configurations
remain distinct and consistent.

We plan to extend VDBMS to allow for disciplined overriding of the variation-
preservation property, to enable combining results from many different variants
in a single v-query. We also plan to explore further optimizations to the system
to improve performance, and how to extend VDBMS to support other use cases
besides SPL development.

References

1. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-642-37521-7

2. Ataei, P., Termehchy, A., Walkingshaw, E.: Variational databases. In: International
Symposium on Database Programming Languages (DBPL), pp. 11:1–11:4 (2017)

https://doi.org/10.1007/978-3-642-37521-7

Managing Structurally Heterogeneous Databases in SPLs 77

3. Doan, A., Halevy, A., Ives, Z.: Principles of Data Integration. Morgan Kaufmann,
San Francisco (2012)

4. Erwig, M., Walkingshaw, E.: The choice calculus: a representation for software vari-
ation. ACM Trans. Softw. Eng. Methodol. (TOSEM) 21(1), 6:1–6:27 (2011)

5. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query
answering. In: International Conference on Database Theory (ICDT) (2003)

6. Huang, S., Xu, L., Liu, J., Elmore, A.J., Parameswaran, A.: OrpheusDB: bolt-on
versioning for relational databases. Proc. VLDB Endow. 10(10), 1130–1141 (2017)

7. Hubbard, S., Walkingshaw, E.: Formula choice calculus. In: International Workshop
on Feature-Oriented Software Development (FOSD), pp. 49–57 (2016)

8. Liebig, J., Apel, S., Lengauer, C., Kästner, C., Schulze, M.: An analysis of the
variability in forty preprocessor-based software product lines. In: ACM/IEEE Inter-
national Conference on Software Engineering, pp. 105–114 (2010)

9. Weissman, C.D., Bobrowski, S.: The design of the force.com multitenant internet
application development platform. In: Proceedings of the 2009 ACM SIGMOD,
SIGMOD 2009, pp. 889–896 (2009). https://doi.org/10.1145/1559845.1559942

https://doi.org/10.1145/1559845.1559942

PDSPTF: Polystore Database System
for Scalability and Access to PTF

Time-Domain Astronomy Data Archives

Shashank Shrestha1(&), Manoj Poudel1, Yilang Wu1, Wanming Chu1,
Subhash Bhalla1, Thomas Kupfer2, and Shrinivas Kulkarni2

1 University of Aizu, Aizu-Wakamatsu, Japan
{d8201104,m5212201,y-wu,w-chu,bhalla}@u-aizu.ac.jp

2 California Institute of Technology, Pasadena, CA 91125, USA
tkupfer@caltech.edu, srk@astro.caltech.edu

Abstract. Recent developments in time-domain astronomy use a large amount
of data for gaining domain-specific information. The ever increasing data size
and different data models require the development of new ideas to manage such
data. The data type varies from the images of astronomical bodies, unstructured
texts and structured (relations and key-values). There are many astronomical
data repositories that manage such kind of data. Palomar Transient Factory
(PTF) is one such data repository which has large amount of data with different
varieties. Managing such variety of data in a single database can have many
performance, growth and scalability issues. In this paper, we propose a proto-
type system for demonstrating the advantages of using Polystore Database
System with a scientific workflow based query system.

Keywords: Query management � Polystore databases � Astronomical data �
Workflow management � Federation of information

1 Introduction

PTF (Palomar Transient Factory) is a collection of telescopes in San Diego, USA
monitoring the Northern Sky for any changes in the astronomical bodies [1]. The study
of changes in astronomical bodies with respect to time is called “Time-domain
astronomy”. Any changes in astronomical bodies is recorded and indexed in their
database in real-time. PTF deals with two kinds of data processing (real-time and
archival). Like many other astronomical data repositories, PTF contains high-resolution
images, key-values, relations and unstructured text files.

The archival data for PTF is available publicly through IRSA (NASA/IPAC
Infrared Science Archive) [2]. The IRSA/IPAC has developed an image archive, a
high-quality photometry pipeline and a searchable database (relational) of observed
astronomical sources [3].

There have been three data releases so far between the years 2009–2016. All those
data releases have highly calibrated epochal images and photometric catalogs which
have the information of the imagery data.

© Springer Nature Switzerland AG 2019
V. Gadepally et al. (Eds.): Poly 2018/DMAH 2018, LNCS 11470, pp. 78–92, 2019.
https://doi.org/10.1007/978-3-030-14177-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14177-6_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14177-6_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14177-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-14177-6_7

1.1 PTF Data Processing

Palomar observatory is located in Mount Palomar in San Diego, California, USA which
routinely monitors the night sky through their telescopes. The images are the raw data
which flows through multiple pipelines, creating a variety of science products. These
pipelines process the data in real time. PTF uses EXTASCID (EXTensible system for
Analyzing SCIentific Data) built around massively parallel GLADE (Generalized
Linear Aggregate Distributed Engine) architecture for data aggregation and comparison
of new raw images with old ones [4]. Any changes in the images get indexed in their
archives or else is rejected and removed. The comparison and removal of images is
known as image subtraction.

A Photometric pipeline is used for frame processing where astrometric calibration
is done at the individual CCD (Charge-coupled Device)-images level against combined
Sloan Digital Sky Survey (SDSS) [5] and UCAC4 catalog [6]. Outputs are calibrated
single-CCD FITS (Flexible Image Transport System) images and source catalogs in
FITS binary table format [7]. Once the individual CCD images are accumulated, the
images are sent to the “reference image” pipeline. This pipeline combines the best
image data for a given CCD, field and filter. Reference images products are images,
coverage maps and catalogs. After the end of each night, all detected sources from
photo-metric pipeline are matched with reference image catalog where gain-correction
factors are computed. This pipeline improves the overall relative calibration of images
for brighter sources [8]. This pipeline is the Lightcurve pipeline and a new database
containing these images and catalogs were published in December 2016. Finally, the
raw images pass through a real-time pipeline. In this pipeline, image – differencing is
used against the reference-image library to extract transient candidates. The new raw
images (candidates) are scored using machine learning. The candidates are scored with
the features used by the real-or-bogus classifier during image subtraction. Images with
higher scores are then indexed and stored in the archives [4, 9].

1.2 State of Data Access in PTF

PTF alongside its real-time system also maintains an archive for images. The images
with the accompanying catalogs are curated and distributed by IPAC/IRSA [2]. By the
year 2016, around 4.1 million epochal images with catalogs have already been released.
IRSA/IPAC also provides download platform for this data through their own web
based systems [10].

The web based system provided by IPAC/IRSA provides public data access to
different data available in PTF. Camera images, processed images, reference images,
different catalogs and calibration files can be accessed through their web system. For
example, a user needs to find images from a particular night in a particular field and
from a certain camera. This query has 3 objects to search Nights, Fields and CCD
cameras. These kinds of queries need multi-object system searches. However, the
system only allows users to simply search for astronomical bodies by name or IDs.
Thus, the user can only search for the information from a single object at any time. The
users have to write complex programs and compose SQL manually to perform a multi-
object search.

PDSPTF: Polystore Database System for Scalability 79

1.3 Downloading the PTF Data

All the image data have been released in Flexible Image Transport System (FITS)
format [11] which have epochal (single exposure) images and photometric catalogs.
The images are taken with 12 CCD cameras which have different filters where quality
of the images differs. The photometric catalogs include the information about images
which have key-values and header information for the images. Those key-values can be
transformed into relations and stored in relational database management systems
(RDBMS).

For the purpose of study, we have created a local repository. The header infor-
mation and key-and-value for the tables are downloaded from the Public Astronomical
Catalogs and Data Resources provided by IPAC. The download process is imple-
mented in a Python script named Astropy [12] which dynamically generates SQL
which then downloads the optimized catalog data. The downloaded header files and the
catalogs are then stored in a PostgreSQL relational database, in the local LINUX server
with 16 GB memory and 5 TB disk size. Python script includes a JSON file used for
data formatting (assign key-and-values to the relations). As the data size is very large,
the Python script only downloads the header information of the FITS file required for
the proposed web based system and research activities (Fig. 1).

The downloaded raw data is subsequently restructured in the local Postgres server
with header information, key-value of the data in relational form. The attributes of the
relations are then defined and stored [13]. The refined data then gives a detailed view
about the data in a relational form (Appendix 1). The following entities (objects of
interests) are included in the catalog database.

• Nights. Contains the dates of observation for each particular image (DBNID).
• Fields. Contains the exact X (OBJRAD) and Y (OBJDECD) coordinate of the

images in a particular time (DBFIELD). Also includes the information for galaxies.
• Raw Images/Exposures. Relation table to map a particular image time and (X, Y)

coordinate location for each observation, (DBEXPID). Additionally, it has more
detail about the processed images and CCD details such as observation type, image
type, exposure time, processed image IDs, CCD IDs etc.

• Filters. Contains the filter name and type of filter used in the image, (DBFID).
• Procimages. Contains FITS header files of processed images (DBPID) for each

observation. Additionally, it has unique serial numbers required to map the primary
keys of each table and exposures ID (DBEXPID) required to map Raw
Images/Exposures table to show the image.

• CCD. Contains the camera details per CCD (CCDID) and the names of the CCD
(CCDNAME).

• Host Galaxy. Contains information for the host galaxies (DBHOST) and the names
of the galaxies (HOST_NAME).

• Instrument Telemetry. Contains information for the measurements and other
communication details of the instruments used for capturing images of the astro-
nomical bodies.

• Host Fields. Contains information of the host galaxies (DBHOST) as well as the
information for the coordinates of the images in a particular time (DBFIELD).

80 S. Shrestha et al.

2 System Overview and Use of Polystore Databases

PTF data has different types of data (images, texts, relations). In this study, we propose
an architecture to manage different data models through polystore databases. Key-
values and the header information for the images downloaded from IPAC/IRSA are
stored in PostgreSQL. The images are stored in NED/IPAC Extragalactic Database [14]
which is an online astronomical database. The header files have HTML tags and
predefined URLs to connect to the NED/IPAC remote database for image retrieval.

2.1 Existing IPAC Sources

Current solutions for domain-specific search in astronomical domain requires user to
write complex programs or create complex queries themselves in order to gain infor-
mation. Writing complex queries and complex programs require time and effort
depending on the skill of the user. The users make different queries to gain access to the
information (mainly epochal images of Northern sky) provided by the data. The query
can be simple or complex regarding the information that a user needs. Thus, the
proposed query system eliminates the need of complex programming for information
retrieval and provides query language support for the users to communicate with the
data via the Internet.

2.2 Proposed System

By the use of workflow method, the users have easily accessible query language and
can interact with the data. Workflow of the system is based on the steps a user may take
during finding information about the astronomical bodies. As PTF deals with “Time-
domain Astronomy” which is the study of how astronomical bodies change with time,
the main concern of the astronomical domain experts is to find particular images of
astronomical bodies in a certain place at a certain time. So, most of the queries are
about finding images related to time and space. Other general queries can be about

Fig. 1. Importing FITS header files to local PostgresDB

PDSPTF: Polystore Database System for Scalability 81

finding images with certain cameras or filters or finding images from an entire galaxy.
A sample of queries for the PTF data can be found in Appendix 2.

The system maintains a web-based GUI with an image visualizer where simple and
complex queries can be executed. It supports complex query manipulation where SQL
is generated dynamically as per user interaction with the GUI. The query generated is
then transformed into predefined URL requests to get the images from the IPAC/IRSA
web system which is managed by the image database at IPAC/IRSA server. The query
formulation, query transformation and visualization of information are performed in a
sequence of stages as follows (Fig. 2).

• Query Formulation: The underlying relations and data sources can be formulated
in web based GUI for workflow query management named Datawnt0. The system
allows the users to compose queries by selecting the objects and relating it to other
objects through logical (and/or) operators. Each time an object is selected and the
input is filled, the system generates an SQL. After relating the result of the first
object to other object and continuing the same process; the system generates a new
SQL by appending the resulting SQL with the new one. The system uses join
operation between the objects. After the queries are formulated, they are stored and
sent to the Postgres database. Simultaneously, image SQLs are also formulated
which are used for the next process of query transformation.

• Query Transformation: The formulated queries after being sent to the Postgres
database are processed. The image SQLs are formed by joining the resulting SQL of
the formulated queries with ProcImages table and the Raw Images table which have
information about the header files of images. In this stage, the Image SQLs are
matched with the header files of the URL links for the images and then transformed
into server requests to retrieve the images and information of the images from the
NED/IPAC image database.

• Visualization: Retrieved images and the information are then visualized in the
FITS image viewer which is an API to connect with the NED/IPAC image database
and view FITS image files. The resulting query answers are visualized as images
and tables which can be downloaded.

The current system consists of multiple components to support workflow based
query language. It supports image viewing, download of images and tables, query
formulation and manipulation for end users. It shares common characteristics with
Polystore databases. The connection between two database engines with the flow of
queries and transforming it to the local dialect of each engines matches the Polystore
terminology. The federation of information from relational data source and images with
a query language and transformation of queries into server requests can be compared
with the ‘islands of information’ which was defined in the research [15]. The visualizer
in the system also uses an API for viewing images and connecting to the image
database which acts as a middleware.

82 S. Shrestha et al.

3 Workflow Based Query Management System

Astronomical domain experts need query tools to access various information from
multiple astronomical bodies. Images and information of the images are the major
searches. The user may have different queries according to different scenarios. The
users may want to query a single object or multiple objects to gain information. The
user may also want to choose some logical operators (and, or) between multiple objects
to enhance the query. The system maintains a GUI for Information Requirements
Elicitation (IRE). The user interaction with the system generates SQL. Two SQLs are
generated for each task performed. One SQL is generated to retrieve the information of
images in a tabular form which is stored in the local database. The other SQL is
generated to connect to the NED/IPAC image database to get the queried images. The
system supports querying for 8 object parametric combinations. The system provides
simple relate and join operation between those objects (Fig. 3). The system uses SQL
for handling structured data in the relational database. Composing SQL manually for
single object can be simple but as the number of objects are increased, the difficulty in
composing SQL can be much complex [16, 17].

Fig. 2. Querying heterogeneous data sources via workflow method

PDSPTF: Polystore Database System for Scalability 83

3.1 Query Language Interface

The proposed system supports formulation of queries from an interactive GUI (Fig. 4)
where the users can select the object and input the IDs and object names predefined in
the system [18]. The user can relate multiple objects as per the requirement of the
query. Each time a user selects an object while querying, a query is generated. Adding
those queries together while relating multiple objects transforms the initial query into
more complex one. The process of appending queries in multiple steps has been termed
multi-stage querying [17]. The query is then stored in the server which on clicking the
results button gives the table with information as a result. Clicking on the contents of
the table it connects to the FITS image viewer and visualize the images.

Example 1: Let us consider a query where a user wants to find an image of a certain
astronomical object at a certain place. The user has DBFIELD ID as 100001.

Process: First the user selects the object ‘Fields’. Enters 100001 as Field ID in the
query system (Fig. 5), then clicks on search button and get the results.

At the local catalog database, SQL for connecting to the image database is also
formulated which subsequently sends server request to the IPAC/IRSA image server
which uses the URLs to select and send the images.

Image SQL for Example 1:

Fig. 3. Relate matrix of the objects in the system

SQL for Example 1:

84 S. Shrestha et al.

Example 1 is a single-object search where only one object ‘Fields’ was queried to
get the information.

Example 2: Let us consider a query where a user wants to find an image from a certain
place with a certain camera. The user has Field ID as 100001 and Camera (CCD) ID as 5.
Process: First the user selects the object ‘Fields’. Enters 100001 as Field ID in the
query system. Then, the user clicks on search button and then related button and relate
to ‘Raw Images’. The user again clicks on search button and then related button and
then relate to ‘CCD’ where the user can enter 5 as the CCD ID, search and get the
results.
SQL for Example 2:

Image SQL for Example 2:

Example 2 is a multi-object search where three objects, ‘Fields’, ‘Raw Images’ and
‘CCD’ were queried to get the information. The information was retrieved using simple
relate and join operation between those objects (Fig. 4).

The system supports querying for multiple objects using the workflow method as
query is generated through user interaction in the GUI. The results are visualized in the
form of tables and images (Fig. 6). When an object is queried, the system generates two
SQLs one for the GUI and one for the FITS image viewer (visualizer). The image SQL
is used to connect to the remote image database which is transformed into server URL
requests to fetch the images and display it in the visualizer.

PDSPTF: Polystore Database System for Scalability 85

Fig. 4. Relate and join operation for Example 2

Fig. 5. GUI for Datawnt0 workflow management system

86 S. Shrestha et al.

4 Performance Enhancement Through PDSPTF

We present and compare the performance of Datawnt0 workflow based query man-
agement system and the IPAC web based system for accessing PTF data. The com-
parison is based on the usability, accuracy and the range of queries that can be
performed on these systems for requirements elicitation. The Datawnt0 presents a
simple set theoretic query language that can be easily mastered by skilled users of
Astronomy data resources.

4.1 Experiment

For the experiment, we select 25 queries (Appendix 2) and invite 30 students as
participants. The range of queries are divided into 3 categories. The query where only a
single object is used, the query where multiple objects are used and query to search
entire set of fields and galaxies. The participants are at different levels of skill on the
basis of experience on working with query systems. The participants are divided into
two groups with matching level of ability. One group (G1) is given an explanation on
how to use both systems and brief background on the data. The other group (G2) is just
given list of queries and links to the systems. The experiment follows with three
hypotheses.

Fig. 6. Results table and visualizer (FITS image viewer)

PDSPTF: Polystore Database System for Scalability 87

Hypothesis 1: Datawnt0 workflow query system is easier to understand and use.
Hypothesis 2: Datawnt0 workflow query system can perform more range of queries.
Hypothesis 3: Datawnt0 workflow based query system results are accurate and cor-
responds to the results of IPAC web based system.

4.2 Methods

The participants are given a list of 25 queries with the ER model of the database. They
are also given paper and pencil to map their workflow in order to gain the intended
information. The participants have to use both systems to get the result to see the
usability, performance and correctness. There is no time limit to perform the task.

To examine Hypothesis 1, we take feedbacks from the groups about the ease of use
and understandability of the systems through a questionnaire. We also consider the
time taken for completing the complete set of queries.

To examine Hypothesis 2, we compare the performance of both systems while
executing the queries. We also compare the performance of both groups in executing
the different categories of queries.

To examine Hypothesis 3, the result of the queries that can be performed on both
systems are compared and checked for accuracy.

4.3 Findings

As a result, we found that G1 performed all the queries faster with minimal use of paper
and pencil. G2, on the other hand, performed all the queries taking more time and also
showed the tendency to use paper and pencil to formulate the queries. We also found
that more range of queries could be performed in Datawnt0 compared to IPAC web
based system. Out of 25 queries, the participants in average could perform 22 queries in
the Datawnt0 system in comparison to 11 queries in IPAC web based system (Fig. 7).
The IPAC web based system could not perform most queries that required participants
to use multiple objects. The experiment also found that Datawnt0 system perform most
of the queries performed by IPAC web based system.

25 out of 30 participants stated that Datawnt0 was easier to understand and use. The
results from both systems were also compared and returned same number of rows
which means Datawnt0 system is accurate and corresponds with the source of PTF data
(IPAC web system). Table 1 represents the range of queries supported by IPAC and
Datawnt0 systems. IPAC only supports manual multi-object search where complex
programming is required.

Table 1. Range of queries that can be performed

IPAC Both systems Datawnt0

Manual multi-object search Single object search Multi-object search
Search entire fields and galaxies

88 S. Shrestha et al.

5 Summary and Conclusions

The astronomical domain has seen an exponential growth of data in recent years. The
astronomical data provided by PTF is very large and has different varieties of data. It
requires specific reorganizing of its catalog part and processing to import most recent
data and images from the IPAC/IRSA database and store it in the local relational
database. By use of polystore system, we have demonstrated how heterogeneous data
can be managed and queried across multiple database engines. The proposal considers
growth of data and scalability problems.

Analyzing the current scenario, there is a lack of proper query tools for supporting
domain-specific language. Therefore, this study presents a workflow based query man-
agreement system (Datawnt0) using the polystore database approach. We compared
data access for PTF data with Datawnt0 and web based system of IPAC. As a result of
an experiment, we found that by the use of workflow method, querying is easier and
more understandable. Datawnt0 also supports multi-object search where users from
astronomical domain do not have to write complex programs. Range of queries that can
be performed is also higher in Datawnt0 because of multi-object search support.

Astronomical data archives in PTF is updated frequently. New database for
Lightcurve data has been introduced. PTF collaboration with IPAC are planning to
release new astronomical data soon as ZTF (Zwicky Transient Facility) [19]. So, to
update our local database on a regular basis would provide a major challenge. In view
of growth and scalability of the current system, we plan to include lightcurve data and
all the new releases. We hope the scalability and growth of the system can be met with
polystore database systems approach.

Fig. 7. Comparing the amount of queries the systems can perform

PDSPTF: Polystore Database System for Scalability 89

Appendix

Appendix 1: ER Model of the Database with Relations and Attributes

90 S. Shrestha et al.

Appendix 2: List of Queries

1. Find all the images from the Host Galaxy ‘m81’
2. Find all images where Field ID = ‘100043’
3. Find all images from Host Galaxy ‘m44’ where CCD ID = ‘2’
4. Find all images from Fields where Fields ID = ‘100045’ and CCD ID = ‘5’
5. Find all images where Filter ID = ‘11’ and Filter name = ‘Ha656’
6. Find all images for the Asteroid name ‘20 massalia’.
7. Find all the images where Nights ID = ‘1001’ from 2009-01-01 to 2010-03-03
8. Find all images where Field ID = ‘100001’ and Night ID = ‘1014’
9. Find all images where Field ID = ‘100003’ with Filter = ‘R’

10. Find images with coordinates 12.3.634, −12.29167
11. Find all images where Field ID = ‘10027’, Filter ID = ‘1’ and CCDID = ‘7’
12. Find all images from Host Galaxy where CCD ID = ‘8’
13. Find all images from Nights where date is 2010-03-06 2010-03-05 with

CCDID = ‘10’
14. Find all images from Host Galaxy where Field ID = ‘22683’ and CCD ID = ‘9’
15. Find all images of CCD ID = ‘2’ with CCD name ‘w91c2’
16. Find all images of Galaxy = ‘m81’ with data product ‘level 1’
17. Find all images of raw images with ID = ‘1772174’
18. Find all images of raw images with Field ID = ‘148577’ and CCDID = ‘2’
19. Find all images from Night ID = ‘1000’ with date 2011-06-06 2011-12-06 with

CCD ID = ‘10’
20. Find all images from Filter with Field ID = 12234’ and CCD ID = ‘2’.
21. Find all images where Filter ID = ‘1’ and Filter name = ‘g’.
22. Find all images by field position where OBJRAD = ‘127.41573’ and

OBJDECD = ‘32.625’.
23. Find all images from Nights from observation date (OBS-DATE) between 2009-

01-01 to ‘2009-12-31’.
24. Find all images where Field ID = ‘110003’ and galaxy name = ‘M44’.
25. Find all images where Filter ID = ‘2’.

References

1. Palomar Transient Factory, July 2018. www.ptf.caltech.edu/iptf
2. NASA/IPAC Infrared Science Archive, July 2018. http://irsa.ipac.caltech.edu/ibe/index.html
3. Law, N.M., et al.: The Palomar Transient Factory: system overview, performance, and first

results. Publ. Astron. Soc. Pac. 121(886), 1395 (2009)
4. Rusu, F., Nugent, P., Wu, K.: Implementing the Palomar Transient Factory real-time

detection pipeline in GLADE: results and observations. In: Madaan, A., Kikuchi, S., Bhalla,
S. (eds.) DNIS 2014. LNCS, vol. 8381, pp. 53–66. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-05693-7_4

5. Sloan Digital Sky Survey (SDSS), July 2018. www.sdss3.org
6. UCAC4 catalog, July 2018. http://cdsarc.u-strasbg.fr/viz-bin/Cat?I/322A

PDSPTF: Polystore Database System for Scalability 91

http://www.ptf.caltech.edu/iptf
http://irsa.ipac.caltech.edu/ibe/index.html
http://dx.doi.org/10.1007/978-3-319-05693-7_4
http://dx.doi.org/10.1007/978-3-319-05693-7_4
http://www.sdss3.org
http://cdsarc.u-strasbg.fr/viz-bin/Cat%3fI/322A

7. Information about FITS image, July 2018. https://fits.gsfc.nasa.gov/iaufwg/iaufwg.html
8. Lightcurve Database, July 2018. https://www.ptf.caltech.edu/page/lcgui
9. Cheng, Y., Qin, C., Rusu, F.: GLADE: big data analytics made easy. In: Proceedings of the

2012 ACM SIGMOD International Conference on Management of Data. ACM (2012)
10. General Information on IRSA/IPAC web systems. http://irsa.ipac.caltech.edu/applications/

ptf/
11. Pence, W.D., et al.: Definition of the flexible image transport system (FITS), version 3.0.

Astron. Astrophys. 524, A42 (2010)
12. Ginsburg, A., Robitaille, T., Parikh, M.: Astroquery v0. 1 (2013)
13. Wu, Y., et al.: Query languages for domain specific information from PTF astronomical

catalogs and data resources. In: BASE 2015 (2015). http://yilang.me/activity/BASE/2015/
14. NED/IPAC website, July 2018. https://ned.ipac.caltech.edu/
15. Gadepally, V., et al.: The BigDAWG polystore system and architecture. In: 2016 IEEE High

Performance Extreme Computing Conference (HPEC). IEEE (2016)
16. Shrestha, S., et al.: Workflow based query management system for astronomical data

repository. In: SoMeT, pp. 719–730 (2017)
17. Madaan, A., Bhalla, S.: Domain specific multistage query language for medical document

repositories. Proc. VLDB Endow. 6(12), 1410–1415 (2013)
18. Datawnt0 workflow based query system, July 2018. http://datawnt0.u-aizu.ac.jp/demo/dbv4-

20180320/astrodemo-newdbv4/
19. Zwicky Transient Facility (ZTF), July 2018. http://www.ztf.caltech.edu/

92 S. Shrestha et al.

https://fits.gsfc.nasa.gov/iaufwg/iaufwg.html
https://www.ptf.caltech.edu/page/lcgui
http://irsa.ipac.caltech.edu/applications/ptf/
http://irsa.ipac.caltech.edu/applications/ptf/
http://yilang.me/activity/BASE/2015/
https://ned.ipac.caltech.edu/
http://datawnt0.u-aizu.ac.jp/demo/dbv4-20180320/astrodemo-newdbv4/
http://datawnt0.u-aizu.ac.jp/demo/dbv4-20180320/astrodemo-newdbv4/
http://www.ztf.caltech.edu/

Demonstration: API Federation
in the BigDAWG Polystore

Matthew J. Mucklo(B)

Massachusetts Institute of Technology, Cambridge, MA 02139, USA
mmucklo@mit.edu

Abstract. The BigDAWG polystore has been a successful demonstra-
tion of the principle that “one size does not fit all” in the world of
database management. BigDAWG binds together multiple diverse sets
of datastores to form a cohesive unit that allows users to focus their
data analysis using the most appropriate store for data and the result set
without the time consuming and cumbersome Extract-Transform-Load
(ETL) pipelines and their associated setup processes. In this article, we
introduce a new BigDAWG Island that can be used to pull data from
API-based data sources to enrich the access to remote data and enhance
BigDAWG’s capabilities.

Keywords: Polystore · API · Federation · BigDAWG

1 Introduction

This paper introduces a system of federating data fed through APIs within a
polystore. The polystore chosen for demonstration purposes is known as Big-
DAWG - developed as a joint project across multiple universities, as well as with
various other participants, and supported via the Intel Science and Technology
Center for Big Data [4]. The notion of BigDAWG, of course, is to execute against
the vision of “one size does not fit all” [3] by binding together disparate data
storage systems from RDBMSes to text and stream stores to form a single cohe-
sive system that excels at managing and processing data in the format that best
suits both the data being processed and the desired result.

With the ever increasing number of systems offering API access over standard
internet protocols such as HTTP and HTTPS, there’s become an opportunity to
offer greater integration with existing external data sources to enhance the ability
to correlate data from not only within the polystore, but also without. Previously
this would had to be accomplished via a standard ETL (extract-transform-load)
against a third-party API into one of the RDBMS or other types of stores that
the polystore supports. By allowing the polystore to directly access these systems
without an ETL step, this enhancement to BigDAWG enables easier access to
existing data available via these APIs. In addition it makes near realtime data
access possible as well.

c© Springer Nature Switzerland AG 2019
V. Gadepally et al. (Eds.): Poly 2018/DMAH 2018, LNCS 11470, pp. 93–103, 2019.
https://doi.org/10.1007/978-3-030-14177-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14177-6_8&domain=pdf
http://orcid.org/0000-0002-8595-0683
https://doi.org/10.1007/978-3-030-14177-6_8

94 M. J. Mucklo

One of the other considerations that came up when crafting the BigDAWG
API integration was the ability to support multiple different types of APIs and
various API authentication schemes. While only support for JSON over REST
or a REST-like approach has been implemented so far, the ability exists to
extend to the up-and-coming GraphQL format or even legacy protocols such
as SOAP. Also the authentication features support both OAuth, Basic Authen-
tication, Bearer Tokens, as well as url-based tokens with flexible parameters
so that diverse APIs should be able to be connected to the system without a
problem. These parameters were determined by taking a survey of a number of
public APIs including some very well known ones, as well as those that were
very domain-specific.

2 Island Architecture

The Island architecture of BigDAWG was used in order to implement this new
feature [9]. As explained in previous papers [4] and online documentation [1],
BigDAWG organizes its stores around the concepts of Islands. For example,
there’s a Relational Island which talks to RDBMSes such as Postgres, MySQL
and Vertica, a Text Island which talks to the text key-value store Accumulo,
an Array-based Island for talking to SciDB, as well as several others. The idea
behind the Island concept is that each of these Islands represents a different data-
model and language that would be hard to conform to anything else without loss
of features or functionality. Largely the Islands expose much of the syntax of the
underlying stores (SQL for the Relational Island, Array-based for SciDB, etc.).

Although discussion was made around making the API connection part of an
existing Island, after studying the parameters needed and carefully considering
the different types of APIs, it was decided that it would be most appropriate to
create an entirely new Island to support the API queries. Presently, therefore a
new API Island has been developed, and an initial proof-of-concept handler has
been developed for that Island for REST-based APIs.

Underneath the hood, the REST API queries are made using the standard
Java URLConnection libraries that ship with the JDK, however the methods for
API authentication are abstracted in into their own separate classes. For exam-
ple, there’s a separate class for handling the OAuth2 authentication steps, which
involves an initial query to fetch the appropriate authorization token, which is
then cached in memory in BigDAWG for a configurable amount of time.

3 Cast

In addition a cast functionality is exposed via the BigDAWG architecture. Cast-
ing is a core feature of BigDAWG that enables the migration of data between
various datastores [3,5]. For example, data may come into BigDAWG stuffed
into standard SQL tables, but that doesn’t limit it’s processing to RDBMS-
based queries. If, for instance, there was a large text field in one of the tables
that contained doctors notes on patients, it might be better to cast that data

Demonstration: API Federation in the BigDAWG Polystore 95

over to a text store such as Accumulo, and using the Graphulo [2] extensions,
one can then more easily do things such as calculate the Non-Negative Matrix
Factorization on the data set [8].

By allowing data from an API to be cast into another data store, some of the
basic limitations that APIs have are overcome. These limitations are typically
greatly-constrained filtering, sorting, and aggregation abilities. However, these
sort of querying operations are typically very easy for relational database systems
of today’s age to perform. By simply casting responses from the API Island into
the Relational Island one can take full advantage of the capabilities of a well-
established RDBMS such as Postgres.

The cast intelligently breaks the data into rows using the result key provided.
Then it further breaks each row into columns using the headings provided in the
response, even comparing each row’s headers to previous row’s headers in case
the data is sparse (as possible in JSON) to make sure the full complement of
headers is obtained. Finally as JSON data can be hierarchical, it also exposes
the ability to further query nested objects using the PostgreSQL JSON query
operators (See 1).

Further one can take advantage of the capabilities of the other stores to do
additional processing on the data, by simply casting the data to a supported
Island.

This capability works well with the philosophy of the polystore in that the dif-
ferent components of the system can be utilized for their strengths. For example,
the collective amount of effort to write native support for supporting SQL-like
queries against a public API could take months if not years of effort and culmi-
nate in the attempt to write an RDBMS on top of an API. Although though this
may be a valiant effort (and even one considered at the start of this endeavor),
it brings a certain amount of re-invent-the-wheel-ism to the approach. Contrast-
ingly, with BigDAWG, one already has a state-of-the-art RDBMs system at
hand. Depending on the data needs, it’s a much easier effort to just allow the
polystore to migrate the data to such a store and run a SQL query against a
system that’s designed for such uses.

bdre l (s e l e c t t ext from bdcast (bdapi ({ ’name ’ : ’ tw i t t e r ’ , ’
endpoint ’ : ’ tweets ’ , ’ query ’ : { ’ q ’ : ’#mit ’ } }) , tab3 ,
’ (metadata json , t ex t t ext) ’ , r e l a t i o n a l) where metadata
−>> ’ i s o l anguage code ’ = ’ en ’)

Fig. 1. An example API query through BigDAWG cast to the Relational Island for
processing

Another problem with a typical raw API response revolves around the fact
that they don’t usually allow for projections, such as using SELECT to return
only the columns needed. While GraphQL [6] has provided a way to overcome
that limitation, it is still new and not fully adopted across the industry, with the
majority of APIs fully embracing REST at this point.

96 M. J. Mucklo

Consequently our query mechanism for APIs revolves around simply calling
the API and passing the relevant parameters to it in order to gather a full JSON
response. The cast ability of BigDAWG is what is fully relied in order to do
relevant querying or composing of the data with other sources.

4 Design

One of the design considerations made with the BigDAWG API was to keep
the interface simple and easy to understand. A similar format to the BigDAWG
Accumulo interface was chosen - a pseudo-json like query definition language, but
details abstracted away so that things such as the actual URL of the endpoint
doesn’t have to be entered on every query (see Fig. 2).

bdapi ({ ’name ’ : ’ tw i t t e r ’ , ’ endpoint ’ : ’ tweets ’ , ’ query ’ : {
’ q ’ : ’#mit ’ } })

Fig. 2. API query: simple example

It was decided to support both parameterized and raw queries, where the
parameterized version is generally turned into a URL-encoded query string that
is passed to the endpoint, but could also become a JSON string depending on
configuration parameters setup for the endpoint itself.

Configuration details for each endpoint are stored in the BigDAWG catalog.
It was the vision of this project to also provide an easy to use Administrative
interface for adding and managing these API stores. To this end, the BigDAWG
admin-ui has been enhanced (see Fig. 3).

To smoothly Add, Edit, and Delete APIs, the existing administrative inter-
face now has a new API page. In this page there are two tabs, one for showing
the List of APIs, and one for adding or editing them.

Fig. 3. BigDAWG List APIs

Also as detailed later, some new functionality has been added in addition to
the API page, such as the ability to query, export to CSV, and import from CSV
all from the same interface.

Demonstration: API Federation in the BigDAWG Polystore 97

The idea with all of the administrative enhancements is to abstract away the
details of managing the APIs into something easier to use. After spending time
working with various APIs, it’s amazing even among REST implementations the
diversity of different manners of connecting to them. While the concept of REST
is generally implemented as some form of JSON over HTTP (which albeit is not
necessarily “true REST” [7]), and there is general agreement about using HTTP
verbs to access Resources, the actual details of the means of access, from query
parameters to authentication have significant variances (Fig. 4).

Fig. 4. BigDAWG Add API administrative interface

Result Key. In order to support the ability to cast data into other formats,
one additional parameter was necessary. When JSON-based results come back,
typically they come back in object form, with a key, or series of keys that gives
access into the actual array of entities. For instance, the twitter 7-day tweets
API returns tweets under a key called “statuses” (see Fig. 5).

98 M. J. Mucklo

{
” s t a t u s e s ” : [

{ . . . ” t ex t ” : ” the text o f the tweet ” , . . . } ,
{ . . . ” t ex t ” : ” e t c . ” , . . . }
. . .

]
}

Fig. 5. Sample Twitter tweets.json API Response format

In order to extract these results into actual rows, one additional parameter
that is the “key” into the results must be stored. Otherwise BigDAWG doesn’t
know how to properly index into the results. Presently this “result key” is stored
in the BigDAWG objects table in the catalog. For instance, the key stored in
the case of a response like Fig. 5 would be “statuses”.

5 Output

The raw output from a bdapi query is simply a list of entries sent back from
the API endpoint. Using the “result key” of “statuses” mentioned above, we’re
able to index into into the Twitter object that is returned in a typical tweets api
response, and output a list of tweet objects similar to what is seen in Fig. 6.

{”metadata ” :{” r e s u l t t y p e ” :” r e c en t ” ,” i s o l anguage code ” :” ta

{”metadata ” :{” r e s u l t t y p e ” :” r e c en t ” ,” i s o l anguage code ” :” es”},” i nr e p l yt o . . .

{”metadata ” :{” r e s u l t t y p e ” :” r e c en t ” ,” i s o l anguage code ” :” en”},” i nr e p l yt o . . .

. . .

”},” i nr e p l yt o . . .

Fig. 6. Sample (truncated) raw output from Twitter API indexed by the “statuses”
key

The cast functionality of BigDAWG can then be used to further trim the
results and manipulate them in the appropriate store. For example say one
wanted to filter the results that came back by “iso language code” - one could do
that by simply casting into the Relational Island and appending a where clause
at the end of the query. An example of this sort of BigDAWG query can be seen
in Fig. 7.

Demonstration: API Federation in the BigDAWG Polystore 99

bdre l (s e l e c t f u l l t e x t from bdcast (bdapi ({ ’name ’ : ’ tw i t t e r
’ , ’ endpoint ’ : ’ tweets ’ , ’ query ’ : { ’ q ’ : ’#mit ’ , ’
tweet mode ’ : ’ extended ’ } }) , tab3 , ’ (metadata json ,
f u l l t e x t t ext) ’ , r e l a t i o n a l) where metadata −>> ’
i s o l anguage code ’ = ’ en ’)

Fig. 7. Casting the same query into the relational store and filtering by language code

The resulting output of such a query from Fig. 7 would look like the example
in Fig. 8.

f u l l t e x t
RT @southc ine ta lk i e : I s #SureshChandra gave money to #MIT . . .
RT @MiriKrupkin : S e l e c t i v e hydroge l cake ! Made from gummy . . .
RT @tn a j i th : This week #Kungumam Magazine about our #Thala . . .
Meet Mareena Robinson Snowden , the f i r s t b lack woman to . . .
. . .

Fig. 8. Sample (truncated) output from the bdcast in Fig. 7

5.1 Column Auto-Detection

When the data is cast into the relational store, the columns are chosen based
on the key/value pairs in the JSON response object. This particular response
has both a metadata column, and a full text column which is utilized during
the subsequent relational query. In fact the system detects that the metadata
column contains a further JSON object, allowing us to index deeper into the
object using a Postgres-style JSON query syntax (see Fig. 9).

where metadata −>> ’ i s o l anguage code ’ = ’ en ’

Fig. 9. Highlight of the where clause illustrating the Postgres-style JSON query syntax

6 Future Work

Presently the data that comes back is either fed directly back to the requesting
client, or stored in a temporary table for the duration of any cast operations. It
would be perhaps a nice enhancement to add the ability to support the caching
of data retrieved from APIs for a longer period of time. This would allow both
offline or air-gapped processing, as well as the ability to store lengthy or historic
result sets that perhaps take a significant amount of time to load over standard
internet access.

Secondly while out of the box a number of query and authentication schemes
are supported, it is by no means comprehensive as alluded elsewhere. Future
work might be to enhance this effort with support for GraphQL, and other types
of APIs (such as those that perhaps do a significant amount of asynchronous
processing before allowing access to a result of a query).

100 M. J. Mucklo

Though the first implementation has been for REST base queries, the imple-
mentation should be generic enough to allow new shims (as they are called) to
be added to the API Island in BigDAWG in order to support other types of API
query languages.

7 Additional Administrative Enhancements

7.1 Import by CSV

During the course of this project, the BigDAWG administrative interface was
also extended to enable importing of data via CSV.

One can upload a CSV file to the page, and choose an existing (see Fig. 10)
or a new (see Fig. 11) table into which to insert the data. It will optionally check
the headers of the CSV if they exist and compare them against those of the
underlying table, or in the case of a new table use them as the basis of the
“CREATE” statement.

Fig. 10. BigDAWG import into existing interface

Demonstration: API Federation in the BigDAWG Polystore 101

Further it allows one to specify column types for both the table definition,
and the BigDAWG schema definition if appropriate.

Fig. 11. BigDAWG import into new interface

7.2 Query Page

One other thing that was done is to create a web-based query page that allows
one to execute BigDAWG queries from within the browser, returning a formatted
result (see Fig. 12).

Futher one can the export the results into a CSV if desired directly from the
administrative interface. The hope is that this should make BigDAWG easier for
researchers to work with in the future.

102 M. J. Mucklo

Fig. 12. BigDAWG new query page

8 Conclusion

Through this paper it’s hoped to have given a brief overview of the BigDAWG
subsystem for allowing a polystore to communicate to publicly available APIs
without need of heavy customization (i.e. writing code). It’s also hoped that
some new additions to the BigDAWG administrative interface were adequately
demonstrated that should make working with BigDAWG and APIs easier in the
future.

Acknowledgments. The author would like to give special thanks to the following
people for their contributions to the guidance of this project: Dr. Vijay Gadepally of
MIT’s Lincoln Labs for his continual oversight, wisdom, and attentiveness to having me
see this through, Professor Samuel Madden for his oversight of the project and overall
guidance and advising, plus Professor Michael Stonebraker for his initial guidance as
well, all three of which have been influential contributors to BigDAWG in the past as
well. The author thanks God for all the wonderful help and guidance that has been
given and that he’s received over the course of this project, he couldn’t have done it
without.

References

1. BigDAWG Polystore. http://bigdawg.mit.edu
2. Graphulo: Accumulo library of matrix math primitives and graph algorithms.

http://graphulo.mit.edu/, https://github.com/Accla/graphulo
3. Gupta, A.M., Vijay Gadepally, M.S.: Cross-engine query execution in federated

database systems. In: IEEE High Performance Extreme Computing (2016)

http://bigdawg.mit.edu
http://graphulo.mit.edu/
https://github.com/Accla/graphulo

Demonstration: API Federation in the BigDAWG Polystore 103

4. Duggan, J., et al.: The BigDAWG polystore system. ACM SIGMOD Rec. 44, 11–16
(2015)

5. Dziedzic, A., Elmore, A.J., Stonebraker, M.: Data transformation and migration in
polystores. In: IEEE High Performance Extreme Computing (2016)

6. Facebook Inc.: GraphQL — A query language for your API. https://graphql.org
7. Fowler, M.: Richardson maturity model - steps toward the glory of REST (2010).

https://martinfowler.com/articles/richardsonMaturityModel.html
8. Gadepally, V.: BigDAWG polystore applied to MIMIC II medical dataset. https://

www.youtube.com/watch?time continue=299&v=1GjA2mJFBb0
9. Gadepally, V., et al.: The BigDAWG polystore system and architecture. In: IEEE

High Performance Extreme Computing (2016)

https://graphql.org
https://martinfowler.com/articles/richardsonMaturityModel.html
https://www.youtube.com/watch?time_continue=299&v=1GjA2mJFBb0
https://www.youtube.com/watch?time_continue=299&v=1GjA2mJFBb0

DMAH 2018

Augmented Therapy with Online
Support Groups

Behrooz Omidvar-Tehrani(B)

University of Grenoble Alpes, Grenoble, France
behrooz.omidvar-tehrani@univ-grenoble-alpes.fr

Abstract. Support groups are often formed in hospitals and clinics to
enable group therapy. A support group consists of patients suffering from
a same disease. Manual formation of support groups has three drawbacks.
First, it is “local”, i.e., a support group for a specific type of cancer
in a local hospital may contain patients with different symptoms and
treatments. Discussions in such heterogeneous groups are not necessarily
useful for their members. Second, support groups are often “static” and
do not meet emerging needs of patients. Third, there may not be enough
motivation in patients to join such groups. In this paper, we use the social
Web to envision a framework for the automatic formation of dynamic
support groups. Our framework consists of several components to build
support groups, motivate patients to join, and keep them engaged in
those groups.

1 Introduction

Most medical operations consist of two different stages: treatment and outcome.
The former begins as soon as a patient is detected with a disease and spans over
the whole period of medical tests, check-ups and hospitalizations. The outcome,
however, captures the final status of the patient after the treatment period, e.g.,
“survived” or “dead”. Medical research has a focus on the outcome by investigat-
ing various directions from epidemiology to molecular bioscience. However, there
has been less attention to psychological factors of patients during the treatment
stage [1,2]. Patients often suffer from extreme depression or fear of the dire and
unknown world of their disease.

Without loss of generality, we focus on “cancer” as an explicit use case. A
cancer treatment is typically a 4 to 6-month period depending on the type and
gravity. Beside physical burdens in this period (e.g., going through a tunnel for
positron emission tomography, losing hair due to Chemotherapy, constant feeling
of nausea, etc.), the patient should resist a high mental pressure as well. This
pressure often leads to depression and treatment deprivation, as the patient feels
that he/she is approaching death [3].

If patients keep an optimistic and positive mood during the treatment pro-
cess, this will reduce tension, anxiety, tiredness and depression [4,5]. It has been
frequently shown in the literature that group therapy has direct impact on the
c© Springer Nature Switzerland AG 2019
V. Gadepally et al. (Eds.): Poly 2018/DMAH 2018, LNCS 11470, pp. 107–114, 2019.
https://doi.org/10.1007/978-3-030-14177-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14177-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-14177-6_9

108 B. Omidvar-Tehrani

treatment process, by letting the patient know how similar cases are going [6–
9]. Formation of support groups is a common practice in hospitals and clinics
to enable group therapy [10,11]. A support group consists of patients suffering
from a same disease and a moderator (i.e., a medical doctor) to lead discussions
between the group members. However, there exists three main drawbacks for this
implementation of group therapy, i.e., “locality”, “staticity”, and “reluctance”.

Locality. A support group for patients suffering from a specific type of cancer
may contain patients with totally different symptoms and treatments. This is
because there exists vast amount of sub-categories in cancers (e.g., see [12] for
the case of breast cancer). However, a hospital has only access to local patients.
In case a world-wide audience is available, more specific and homogeneous groups
can be tailored whose members can be cherry-picked to derive more insightful
discussions.

Staticity. Support groups are often static, i.e., they are built only based on pre-
defined statistics in a medial unit. For instance, University Hospital of Cleveland
lists 15 different static support groups for patients suffering from Alzheimer,
Breast cancer, weight loss, etc.1 As these groups do not regularly evolve over
time, they do not meet emerging needs of patients.

Reluctance. Patients with cancer may not necessarily feel motivated for any
social involvement including support groups [13]. There should be visible moti-
vations and explicit benefits in the support group to capture patients’ verve.

We believe that the social Web provides an infrastructure for methods which
can address the aforementioned deficiencies. Users express their likes and dislikes
and share their experiences in different platforms of the social Web [14]. This
opportunity can be investigated for the development of tools which enable the
automatic formation of dynamic support groups in a global spectrum.

Beyond general-use social networks such as Twitter and Facebook, there are
many instances of patient-oriented networks where patients can share experi-
ences with their peers. Examples are PatientsLikeMe for connecting patients
together suffering from any disease, WhatNext and CareAcross for patients
with cancer, Ben’s Friends for patients with rare diseases or chronic illnesses,
and MyGlu for patients with type-1 diabetes. Although these networks over-
come the challenge of locality, still groups should be created manually (i.e., the
challenge of staticity) and patients should seek and join those groups all by
themselves (i.e., the challenge of reluctance).

In this paper, we propose a framework on top of the data collected from the
online activities of patients in the social Web, in order to automatically build
dynamic groups, recommend them to patients to join, and keep them engaged.
Section 2 details the components of our proposed framework.

1 http://www.uhhospitals.org/health-and-wellness/support-groups.

https://www.patientslikeme.com
https://www.whatnext.com
https://www.careacross.com
http://www.bensfriends.org
https://myglu.org
http://www.uhhospitals.org/health-and-wellness/support-groups

Augmented Therapy with Online Support Groups 109

Table 1. Patient demographics.

Attributes →
Examples ↓

Gender Age category Occupation Location Life status

p1 Female Young Student Paris Alive

p2 Male Old Teacher Rio Dead

Table 2. Patient activities.

Attributes →
Examples ↓

Patient Activity Time

a1 p1 Posted a comment about “anemia” May 22, 2018

a2 p2 Is diagnosed with “lymphoma” cancer June 12, 2018

2 System Overview

We propose a framework which exploits the social Web in order to automatically
construct and recommend support groups to patients. This augments the human-
oriented quality of the treatment stage.

We follow our discussion with an example to motivate our approach using
a real-world scenario. Consider Julia who is suffering from kidney cancer and
her blood pressure is often running high at night. But she is not able or doesn’t
feel motivated to seek the causality and solution. In case a group of patients is
already formed whose members are all suffering from the same cancer (with same
symptoms), she could see the profiles of other people like her, and see where she
falls relative to the “norm”.

Terabytes of online activities are available in the social Web. Beyond activ-
ities, each user is also associated to a set of demographics (e.g., age, gender,
birth location and occupation). We rely on this data to automatically build sup-
port groups for patients with similar profiles. A support group G consists of n
patients G = {p1, p2 . . . pn} with at least one common demographic or activity.
For instance, the set of all female patients forms a group G1. Also, the set of
all patients suffering from kidney cancer forms another group G2. Obviously,
groups may overlap: a female patient suffering from kidney cancer is a member
of both G1 and G2. In order to tackle the aforementioned challenges (i.e., local-
ity, staticity, and reluctance), our framework contains five following components
(C1 to C5), from preparing data for dynamic group formation, to engaging
patients in groups.

C1: Data Preparation. Our first necessary step is to prepare data for a fruitful
group formation. Our data comes from various sources: social networks, local
resources such as cancer research centers (e.g., Cancer Data Warehouse, abbr.,
CDW) and existing support groups. Hence there should be “data integration”
and “data cleaning” steps right after collecting the data from the resources.
Tasks include anonymizing data of real patients to protect their privacy and

110 B. Omidvar-Tehrani

conform with GDPR [15], matching schemata to a unified schema, and prune
incorrect and unnecessary data.

In [16], we consider a gold-standard data structure for the collected data,
shown in Tables 1 and 2. Patient demographics (Table 1) are obtained either in
an admission process prior to a hospitalization, or in an online registration in
a health-oriented social network. We assume that demographics do not change
in time. Patient activities (Table 2) reflect either health-care interactions (e.g.,
diagnoses, compliances, marker reads) or what patients do online. We call the
online activities of patients, “discussions”.

C2: Group Formation. Once the data is ready-to-use, we discover interesting
support groups in a dynamic fashion. Any subset of patients with at least one
common demographic or activity can form a group. However, a set of “interesting
support groups” should adhere to the following desiderata [17].

– Coverage. Together, the set of support groups should cover most patients
in the data. While ideally we would like each and every patient to belong
to at least one support group, that is not always feasible due to other
desiderata associated with the set of groups. Given a set of support groups
G = {G1, G2, . . . } and the set of patients P, we define coverage as in Eq. 1.

coverage(G,P) = | ∪G∈G (p ∈ P, p ∈ G)|/|P| (1)

– Diversity. Support groups need to be different from each other in order to pro-
vide complementary information. The diversity of a set of support groups G
is computed as follows.

diversity(G,P) = 1/(1 + ΣG,G′∈G |p ∈ P, p ∈ G ∧ p ∈ G′|) (2)

– Cardinality. The number of returned support groups should not be too high in
order to prevent information overload. Also each single support group should
contain a minimum number of patients to be meaningful.

We employ the group set discovery approach that we proposed in [17] which
returns a group set G where diversity(G,P) and coverage(G,P) are maximized
simultaneously. The size of the set G is bounded to an input parameter k, where k
is often considered to be a small value [18]. Each support group is also verified
to contain more users than a given frequency threshold.

C3: Group Recommendation. Once the set of all groups is mined, we rec-
ommend a limited set of groups to each patient. We employ a group navigation
approach that we proposed in [19] to iteratively refine the recommendation list
based on patient’s feedback (likes and dislikes about recommended groups). At
each iteration, the patient receives k different support groups, each described
by common demographics and activities of its members. The patient picks one
group out of k. In the next iteration, the system will immediately return k other
groups which are highly relevant to the selected group. The patient may join a

Augmented Therapy with Online Support Groups 111

group and stop the navigation at any time. The goal is to motivate the patient
by showing the most relevant set of groups which is in line with patient’s pref-
erences.

C4: Discussion Recommendation. A patient may join one or several groups.
Then she needs to reach useful discussions in each group. An example of a dis-
cussion in support groups is shown in Table 2 where patient p1, a young female
student in Paris, posts a comment about “anemia” on May 22, 2018. A valid
assumption is that the patient may not be interested to skim over all previous
discussions. Hence, we employ a recommendation approach which discovers dis-
cussions which are more suited for the patient by considering her profile. Given
the preferences of the patient, collaborative filtering [20,21] is the best fit for
recommending discussions.

In order to quantify the recommendation value of a discussion a for a
patient p1, we need to know either the similarity of p1’s discussions and a (item-
item collaborative filtering), or the similarity of p1 and another patient p2 who
liked a (user-user collaborative filtering). The similarity between two patients
p1 and p2 is computed using cosine(−→p1,−→p2) where −→p is a vector which concate-
nates p’s demographics and p’s activities. The similarity between a patient p
and a discussion a is computed using the cosine between TF-IDF vectors of p’s
discussions and the discussion a.

C5: Engagement. The other need in our approach is to keep patients engaged
in joined groups, as their motivations may quickly drop [22]. This is only possible
if patients take an active role in the group through personalization [23]. For this
aim, we employ a question-answering system [24] which discovers the best set of
proactive questions (in form of questions like “did you know” or “do you think”)
to engage patients in group discussions. We are inspired from related work on
routing “right questions” to “right users” [25,26] to outguess patients’ interest
and keep them motivated.

We also build a time decay model which determines the domain of engag-
ing questions [27,28]. At early stages, the system explores different domains of
discussions to capture patient’s reaction. At later stages, the system exploits
previously well-adopted domains to reduce the risk of losing the patient.

3 Use Case

We provide an example which describes one real-world use case of our approach
and shows the functionality of each component in practice (Fig. 1). Our data
preparation component (i.e., component C1) collects data from the Patients-
LikeMe network to obtain all users who talked about “cancer” and its relevant
terms, at least once. We obtain around 3000 patients. Our group formation com-
ponent (i.e., component C2) constructs various dynamic groups. Julia (suffering
from kidney cancer) has already subscribed to our framework via her hospital.
Our system then recommends her (i.e., component C3) to join three following
groups: “genetic-based cancers”, “patients with Renal cell carcinoma”, “patients
concerned with blood pressure”. Julia decides to join the second and third group.

112 B. Omidvar-Tehrani

Fig. 1. Components of our framework for automatic construction and recommendation
of dynamic support groups.

There exist one million discussions in the selected groups. Each discussion in
a support group is posted by one of the members of that group. Our discussion
recommendation component (C4) selects three following discussions for Julia:
“what to do in case of low blood counts (anemia)?”, “surprises at bed time with
kidney cancer” and “any vision lost in kidney cancer level T1?”. Note that an
example discussion “do you know signs of Wilms’ tumor?” does not show up for
Julia, because she has already shown interest in the second group (i.e., patients
suffering from Renal cell carcinoma) which potentially means that her cancer
type is RCC and not Wilms tumor.

Julia delves into the second discussion where she finds some common expe-
riences about her problem of having high blood pressure at night. She reads the
discussion posted by a group member and understands that her problem is com-
mon among others as well. A week later, our engagement component (C5) will
send a notification to Julia and asks her the following question: “do you have any
comments on this discussion: can diet be used to treat kidney cancer?”. The sys-
tem picks this specific discussion for her because Julia has already investigated
other discussions about diet.

4 Conclusion

Group therapy can increase the quality of the treatment phase by making
patients more social and knowledgeable about their disease. The availability
of social data enables our approach to go beyond local and manual discussions
and provide global insights. This paper discusses our proposed framework for

Augmented Therapy with Online Support Groups 113

automatic construction and recommendation of dynamic support groups as a
means for group therapy. Our immediate future direction is to run an extensive
user study to evaluate the usability and adaptability of the system in practice.

Acknowledgment. The author would like to thank Sihem Amer-Yahia for her valu-
able comments about this paper. This work is partially supported by CDP LIFE
project under grant C7H-ID16-PR4-LIFELIG and COFECUB-CAPES 2018 project
under grant 40022TB.

References

1. Parush, A., Parush, D., Ilan, R.: Human factors in healthcare: a field guide to
continuous improvement. Synth. Lect. Assistive, Rehabilitative, Health-Preserving
Technol. 6(1), i202 (2017)

2. Conti, C.M., Maccauro, G., Fulcheri, M.: Psychological stress and cancer (2011)
3. Cancer Center: Cancer-related depression: what is it and what can you do

about it? (2017). https://www.cancercenter.com/discussions/blog/cancer-related-
depression-what-is-it-and-what-can-you-do-about-it/

4. The American Cancer Society: Attitudes and cancer (2014). http://www.cancer.
org

5. The American Cancer Society: Anxiety, fear, and depression: having cancer affects
your emotional health (2016). http://www.cancer.org

6. Cain, E.N., Kohorn, E.I., Quinlan, D.M., Latimer, K., Schwartz, P.E.: Psychosocial
benefits of a cancer support group. Cancer 57, 183–189 (1986)

7. Klemm, P., Reppert, K., Visich, L.: A nontraditional cancer support group. The
internet. Comput. Nurs. 16(1), 31–36 (1998)

8. Høybye, M.T., Johansen, C., Tjørnhøj-Thomsen, T.: Online interaction. Effects of
storytelling in an internet breast cancer support group. Psycho-Oncology 14(3),
211–220 (2005)

9. Orenstein, B.W.: Benefits of group therapy in mental health treatment (2014).
http://www.everydayhealth.com/news/benefits-group-therapy-mental-health-
treatment/

10. Ussher, J., Kirsten, L., Butow, P., Sandoval, M.: What do cancer support groups
provide which other supportive relationships do not? The experience of peer sup-
port groups for people with cancer. Soc. Sci. Med. 62(10), 2565–2576 (2006)

11. BCancer.Net Editorial Board: Support groups (2016). http://www.cancer.net/
coping-with-cancer/finding-support-and-information/support-groups

12. Yersal, O., Barutca, S.: Biological subtypes of breast cancer: prognostic and ther-
apeutic implications. World J. Clin. Oncol. 5(3), 412 (2014)

13. Aabom, B., Pfeiffer, P.E.R.: Why are some patients in treatment for advanced
cancer reluctant to consult their GP? Scand. J. Prim. Health Care 27(1), 58–62
(2009)

14. Swan, M.: Crowdsourced health research studies: an important emerging comple-
ment to clinical trials in the public health research ecosystem. J. Med. Internet
Res. 14(2), e46 (2012)

15. Irwin, L.: The GDPR: what exactly is personal data? (2018). https://www.
itgovernance.eu/blog/en/the-gdpr-what-exactly-is-personal-data

16. Omidvar-Tehrani, B., Amer-Yahia, D., Lakshmanan, L.: Cohort representation
and exploration. In: 2017 IEEE International Conference on Data Science and
Advanced Analytics (DSAA). IEEE (2018)

https://www.cancercenter.com/discussions/blog/cancer-related-depression-what-is-it-and-what-can-you-do-about-it/
https://www.cancercenter.com/discussions/blog/cancer-related-depression-what-is-it-and-what-can-you-do-about-it/
http://www.cancer.org
http://www.cancer.org
http://www.cancer.org
http://www.everydayhealth.com/news/benefits-group-therapy-mental-health-treatment/
http://www.everydayhealth.com/news/benefits-group-therapy-mental-health-treatment/
http://www.cancer.net/coping-with-cancer/finding-support-and-information/support-groups
http://www.cancer.net/coping-with-cancer/finding-support-and-information/support-groups
https://www.itgovernance.eu/blog/en/the-gdpr-what-exactly-is-personal-data
https://www.itgovernance.eu/blog/en/the-gdpr-what-exactly-is-personal-data

114 B. Omidvar-Tehrani

17. Omidvar-Tehrani, B., Amer-Yahia, S., Dutot, P.-F., Trystram, D.: Multi-objective
group discovery on the social web. In: Frasconi, P., Landwehr, N., Manco, G.,
Vreeken, J. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9851, pp. 296–312.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46128-1 19

18. Miller, G.: Human memory and the storage of information. IRE Trans. Inf. Theory
2(3), 129–137 (1956)

19. Omidvar-Tehrani, B., Amer-Yahia, S., Termier, A.: Interactive user group analysis.
In: Proceedings of the 24th ACM International on Conference on Information and
Knowledge Management, pp. 403–412. ACM (2015)

20. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the 10th International Conference
on World Wide Web, pp. 285–295. ACM (2001)

21. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl.
Data Eng. 6, 734–749 (2005)

22. Heldman, A.B., Schindelar, J., Weaver, J.B.: Social media engagement and public
health communication: implications for public health organizations being truly
“social”. Public Health Rev. 35(1), 13 (2013)

23. Mobasher, B., Cooley, R., Srivastava, J.: Automatic personalization based on web
usage mining. Commun. ACM 43, 142–151 (2000)

24. Sun, H., Ma, H., He, X., Yih, W., Su, Y., Yan, C.: Table cell search for question
answering. In: Proceedings of the 25th International Conference on World Wide
Web, pp. 771–782. International World Wide Web Conferences Steering Committee
(2016)

25. Dror, G., Koren, Y., Maarek, Y., Szpektor, I.: I want to answer; who has a ques-
tion?: Yahoo! answers recommender system. In: Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1109–1117. ACM (2011)

26. Geiger, D., Schader, M.: Personalized task recommendation in crowdsourcing infor-
mation systems-current state of the art. Decis. Support Syst. 65, 3–16 (2014)

27. Koren, Y.: Collaborative filtering with temporal dynamics. In: Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 447–456. ACM (2009)

28. Zhou, S., Valentine, M., Bernstein, M.S.: In search of the dream team: temporally
constrained multi-armed bandits for identifying effective team structures. In: Pro-
ceedings of the 2018 CHI Conference on Human Factors in Computing Systems,
p. 108. ACM (2018)

https://doi.org/10.1007/978-3-319-46128-1_19

RHCS - A Clinical Recommendation
System for Geriatric Patients

Saliha Irem Besik1,2(B) and Ferda Nur Alpaslan2

1 Department of Computer Science,
Humboldt-Universität zu Berlin, Berlin, Germany

besiksal@informatik.hu-berlin.de
2 Department of Computer Engineering,

Middle East Technical University, Ankara, Turkey
alpaslan@ceng.metu.edu.tr

Abstract. Medication errors caused by the mistakes of healthcare pro-
fessionals are still one of the leading causes of death. The problem is even
more serious with the elderly people suffering from multiple health prob-
lems at the same time. Clinical recommendation systems can be used
to prevent such medication errors. In this paper, we present our clini-
cal recommendation system (RHCS) which generates drug recommenda-
tions to assist healthcare professionals in making decisions on treatment
process of geriatric patients. Geriatric patients refer to elderly patients
aged 65 years or over. One of the distinctive points of our study lies
in the methodology used, which is empowering collaborative filtering
recommendation approach with historical data of geriatric patients. Its
ontology-based approach and compatibility with clinical classification
systems also make this study prominent. We evaluated RHCS with dif-
ferent types of evaluation metrics, and the results show that it is promis-
ing.

Keywords: Recommendation systems · Collaborative filtering ·
Ontology · Data mining · Similarity measures

1 Introduction

The healthcare of geriatric patients is a complex and error-prone process. Geri-
atric patients are highly vulnerable to chronic diseases and they tend to take
several different drugs at the same time [1]. Therefore, healthcare profession-
als should put a special effort in order to avoid the risk of making medication
errors. In this regard, clinical recommendation systems are important by aiding
healthcare professionals during clinical decision-making.

Our proposed system RHCS generates drug recommendations as Anatomi-
cal Therapeutic Chemical (ATC) Classification System codes. ATC classification
mechanism is an international standard to classify drugs according to their active
ingredients. We follow this standard because recommending drug names is not
c© Springer Nature Switzerland AG 2019
V. Gadepally et al. (Eds.): Poly 2018/DMAH 2018, LNCS 11470, pp. 115–132, 2019.
https://doi.org/10.1007/978-3-030-14177-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14177-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-14177-6_10

116 S. I. Besik and F. N. Alpaslan

a proper way to recommend drugs. Different drugs might have similar active
ingredients and therefore they have similar treatment effects on diseases. RHCS
is compatible with ICD-10 coding mechanism which is an international classifi-
cation system for diagnoses. We use ICD-10 diagnoses codes to define diagnoses
because working with textual diagnosis data is both error-prone and costly. We
also use a clinical ontology, SNOMED CT, in order to examine the relationships
between different diagnoses.

RHCS uses a collaborative filtering recommendation approach which is
empowered by historical data of patients. So, it generates recommendations by
considering both medical records of different similar patients and historical medi-
cal records of the patients themselves. Although RHCS is specialized for geriatric
patients, our methodology can be adapted to different age groups.

We evaluated RHCS through both offline experiments with historical patient
data taken by Ankara Numune Hospital and user studies conducted with medical
doctors. Offline experiment results are evaluated by three well-known types of
metrics which are precision, recall, and f-measure.

The remainder of this paper is organized as follows: Sect. 2 gives some back-
ground information about clinical classification systems and clinical ontology
used in RHCS. Section 3 explains RHCS in detail which includes information
on how to prepare data, how to define similarity and how to implement recom-
mendation system. Section 4 evaluates RHCS with different evaluation metrics
and shows the results. Section 5 discusses the related work on clinical recommen-
dation systems. Finally, Sect. 6 concludes with a summary and future research
work based on RHCS.

2 Background and Terminology

RHCS follows two international clinical classification standards which are ATC
and ICD-10 and it works integrated with a clinical ontology (SNOMED CT).
In this section, we give some background information about these classification
mechanisms and SNOMED CT as a clinical ontology.

2.1 ATC Classification System

ATC classification system is used for classifying drugs according to their active
ingredients. ATC classification system is controlled by the World Health Orga-
nization Collaborating Centre for Drug Statistics Methodology (WHOCC). The
significant principals for ATC classification can be listed as follows:

– In ATC system, drugs are classified in groups at five different levels. As an
example, the ATC code of metformin “A10BA02” which is at 5th level. 1st
level is “A”, 2nd level is “A10”, 3rd level is “A10B”, 4th level is “A10BA”
and finally 5th level is “A10BA02”.

– In order to treat a certain disease, health professionals can use different drugs
with same or similar active ingredients. Different drugs with same ingredients

RHCS - A Clinical Recommendation System for Geriatric Patients 117

have similar effects on treatment. Drugs having ATC codes same until 3rd

level can be considered as similar. For instance, lidocaine with ATC code
“N01BB02” and prilocaine with ATC code “N01BB04” can be considered as
similar.

2.2 ICD-10 Classification System

The International Classification of Diseases (ICD) is a standard classification
system developed by World Health Organization (WHO). It is “the standard
diagnostic tool for epidemiology, health management and clinical purposes” [2].
The diagnoses and their correlated ICD-10 codes can be accessed online on
WHO website. For instance; the ICD-10 code of the diagnosis “Hypertensive
heart disease with (congestive) heart failure” is “I11.0”.

2.3 SNOMED CT as Clinical Ontology

Ontology is an agreed-upon vocabulary compromising set of semantically related
“concepts” in order to exchange information in a domain. SNOMED CT is a
clinical healthcare terminology file that includes three main types of components
which are concepts, descriptions, and relationships [3].

– Concepts are unique clinical definitions which are organized into hierarchies.
Related concepts range from general to specific within a hierarchy.

– Descriptions are textual explanations of concepts in order to make concepts
human readable.

– Relationships are links between related concepts.

Within SNOMED CT Release, there are mapping files to other code systems
and classifications including ICD-10. ICD-10 mapping file consists of SNOMED
CT concept ids and textual SNOMED CT descriptions; and their correlated ICD-
10 codes and textual ICD-10 descriptions. For instance, diagnosis “Pneumonia
in mycosis” is coded as “J17.2” in ICD-10 classification. The corresponding
SNOMED CT concept is —Pneumonia in aspergillosis (disorder)— and the
corresponding concept id is “111900000”.

3 Methodology

Figure 1 illustrates the conceptual diagram of our research. There are two major
modules which are “Electronic Health Record Module” and “Main Module”.
Electronic Health Record Module prepares clinical data for reliable analysis.
Main Module is used to generate recommendation list. It generates top-K treat-
ment plans as ATC codes. “K” is the size of the recommendation list. We will
explain how to determine “K” in Sect. 4. This decision is made empirically after
some logical statements.

118 S. I. Besik and F. N. Alpaslan

Fig. 1. System architecture for RHCS.

3.1 Data Preparation

We used only real data in order to have a platform being suitable for real-life
scenarios. Our main database, “Clinical Data Repository” (CDR), is a patient
database of Ankara Numune Hospital which includes the data of inmate patients
who are older than 65 (geriatrics). CDR includes medical data of patients which
are complaints, laboratory procedures, diagnosis, and drugs used for treatment.
We also used two explicit knowledge sources which are a drug database used
for classifying drugs and a clinical ontology (SNOMED CT) to understand the
relationships between diagnoses.

Preparing Complaints Data: CDR includes textual complaints data which
have misspellings and noise. We corrected them manually and grouped the simi-
lar complaints into one. We created separate fields for each complaint. We filled
them with “1” if a patient has that complaint, and “0” otherwise.

Preparing Diagnoses Data: Ignoring the tuple with missing prominent fea-
tures is a common way to get rid of incomplete data. In our case, information
related to diagnoses are indispensable. Therefore, we simply eliminated the tuples
with missing diagnosis codes. After data cleaning, we integrated SNOMED CT
ontology to determine the relationships between diagnoses. CDR includes ICD-
10 codes to define diagnoses, we converted those ICD-10 diagnoses codes into
SNOMED CT concept-ids by using SNOMED CT ontology. We created separate
fields for each diagnosis. We filled them with “1” if a patient has that diagnosis,
and “0” otherwise.

RHCS - A Clinical Recommendation System for Geriatric Patients 119

Preparing Laboratory Data: We worked with medical domain experts to
determine diseases which are detected by laboratory procedures. For instance,
for blood glucose test, we have two related diseases, which are hyperglycemia
(high blood sugar) and hypoglycemia (low blood sugar). We used test results
of patients and reference range values to determine whether patients have that
diseases. For instance, for glucose laboratory reference ranges in healthy adults
is 65–110 mg/dL. A patient whose blood glucose test result is lower than 65 can
be diagnosed as hypoglycemia. We created separate fields for each laboratory
procedure related disease. We filled them with “1” if a patient has that disease,
and “0” otherwise.

Preparing Drugs Data: CDR includes barcodes to identify the drugs. We
eliminated the tuples with missing drug barcodes. We then converted these drug
barcodes into ATC codes through a drug database.

Transformation Phase: When we used collaborative filtering algorithm [16]
with data from our CDR, RHCS generated recommendations based on only a
few similar patients. It was because geriatric patients, in general, use lots of
drugs and it restricts RHCS to generate diverse drug recommendations and so
decrease the success of the system. Hence, we needed to transform our data into
a more convenient format.

After data cleaning and data integration phases, we had almost prepared
(clean, meaningful and structured) data. For each patient, we had information
about complaints, diagnoses, laboratory procedures and the active ingredients
of the drugs used. However, we were not able to comprehend the direct reason
behind the usage of these drugs. The reason could be based on a diagnosis or
a complaint or the result of a laboratory procedure. In order to determine the
exact reasons for use of drugs, we worked with medical domain experts and
we used different clinical guidelines and books [4–7]. By referring these guide-
lines and books, we manually determined the causes (complaints or diagnoses or
laboratory procedures) which can be correlated to each drug.

Table 1 is an illustrative example for patient data before transformation
phase. In this example, a patient with complaints (Hypertension, Asthenia,
Fever, Cough, Nasal Obstruction) is diagnosed with Acute Sinusitis. S/he has
two laboratory results which are outside of reference range (Hyperglycaemia
and Albumin deficiency). S/he uses drugs listed as ATC codes which are given
in alphabetical order.

In transformation phase, we manually determined correlation between causes
and ATC codes. Table 2 illustrates the patient data used in Table 1 after transfor-
mation phase. In this example; complaints, diagnosis and laboratory procedures
are all considered as causes. As it is shown in the example, some causes might
not have a corresponding ATC code and some others might have more than one.
There might be some overlapping conditions as well, for instance “R05C” and
“R05D” ATC codes can be used for both “Cough” and “Acute Sinusitis”.

120 S. I. Besik and F. N. Alpaslan

Table 1. An example of patient data before transformation phase.

Complaints Diagnosis Lab ATC-Codes

Hypertension, Asthenia,
Fever, Cough, Nasal
Obstruction

Acute
Sinusitis

Hyperglycaemia,
Albumin deficiency

A10A, B05A, C09C,
J01C, J01E, J01F,
M01A, N02B, R01A,
R05C, R05D

We defined a frequency measure named as “priority score” (Eq. 1) to deter-
mine how frequent to use a certain ATC code to treat an illness based on a
certain cause. As it is shown in Table 2, “Acute Sinusitis” can be treated with
7 different ATC codes. For each of these ATC codes, priority scores were calcu-
lated. For instance, priority − scoreAcuteSinusitis,J01C is 70%. It means within
all patients diagnosed as “Acute Sinusitis”, 70% of them use drugs with “J01C”
ATC code.

priority − scored,ATC =
of patients with d using ATC

of patients with d
(1)

In the priority-score calculation, there is an exceptional case; when some ATC
codes can be used for more than one cause. In such cases, we first determined
main cause regarding that ATC code usage. We used the same formula (Eq. 1) to
calculate the priority score of that main cause; however for the other additional
causes we used Eq. 2 where c is main cause to use ATC. For instance; as it is
shown in Table 2, “R05C” ATC code can be used for both “Cough” complaint

Table 2. An example of patient data after transformation phase.

Cause ATC Priority (%)

Acute Sinusitis J01C 70

J01E 30

J01F 10

M01A 20

R01A 60

R05C 60

R05D 40

Albumin deficiency B05A 90

Fever N02B 90

Nasal Obstruction R01A 95

Hyperglycaemia A10A 30

Hypertension C09C 20

Cough R05C 70

R05D 70

RHCS - A Clinical Recommendation System for Geriatric Patients 121

and “Acute Sinusitis” diagnosis. But, the main cause to use “R05C” is based on
“Cough” complaint. Hence, priority − scoreCough,R05C is calculated as in Eq. 1.
However, for “Acute Sinusitis” diagnosis, priority − scoreAcuteSinusitis,R05C is
calculated with Eq. 2 where c; main cause; is “Cough”.

priority − scored,ATC =
of patients with d not having c who use ATC

of patients with d not having c
(2)

3.2 Similarity Measures

After transformation phase, we had several different causes of different illnesses
and corresponding treatment plans as ATC codes. We considered these entries
as “patient entries” since these cause-ATC mappings belong to patients. We
represented each of these patient entries as a vector. We used Algorithm 1 to
define the vectorial representation of patient entries in CDR.

Algorithm 1. Pseudo code for the algorithm to define a vectorial representation
for patient entries in the database.

P ← patient vector space

v(pM) ← vectorial representation of patient-entryM

v(pM) ∈ P

diagnosisiM ← ”1” if the patient-entryM is related to diagnosisi and ”0” otherwise.

complaintiM ← ”1” if the patient-entryM is related to complainti and ”0” otherwise.

labiM ← ”1” if the patient-entryM is related to labi and ”0” otherwise.

diagnosisiM ∈ 0, 1, where 0 < i < D,D ← number of diagnoses

complaintiM ∈ 0, 1, where 0 < i < C,C ← number of complaints

labiM ∈ 0, 1, where 0 < i < L,L ← number of laboratory procedures

v(pM) = {diagnosis1M , ..., diagnosisD−1M , complaint1M , ..., complaintC−1M , lab1M, ...

, labL − 1M}

Assume we have a target patient (PatientN) and we would like to find similar
patient entries to generate a recommendation list accordingly. For this purpose,
we also represented target patient (PatientN) as a vector by using Algorithm 2.

We basically defined similarity as “closeness”. When two patient vectors are
close to each other, then these patients can be considered as similar. Distance
and/or similarity functions provide a way to measure how close two elements are,
where elements do not have to be numbers but can also be different arbitrary
objects. A typical distance for real number vectors is the absolute difference.
In our case, patient vectors have non-numeric attribute values thus instead of
using absolute difference metric, we used a different metric. In order to calculate
the distance between patient entry PatientM and target patient (PatientN), we
generated a specialized weighted Hamming distance measure as given in Eq. 3.

122 S. I. Besik and F. N. Alpaslan

Algorithm 2. Pseudo code for the algorithm to define target patient vector.
v(pN) ← vectorial representation of target patient PatientN

diagnosisiN ← ”1” if PatientN has the diagnosisi and ”0” otherwise.

complaintiN ← ”1” if PatientN has the complainti and ”0” otherwise.

labiN ← ”1” if PatientN has the laboratory procedure labi and ”0” otherwise.

diagnosisiN ∈ 0, 1, where 0 < i < D,D ← number of diagnoses

complaintiN ∈ 0, 1, where 0 < i < C,C ← number of complaints

labiN ∈ 0, 1, where 0 < i < L,L ← number of laboratory procedures

v(pN) = {diagnosis1N , ..., diagnosisD−1N , complaint1N , ..., complaintC−1N , lab1N, ...,

labL − 1N}

d−Weighted HammingM,N =
D−1∑

i=0

(wi×�MiNi
)+

D+C+L−1∑

i=D

wi×(Ni⊗Mi) (3)

where Mi is the value for ith attribute for PatientM, Ni is the value for ith

attribute for PatientN and wi is the weight for ith attribute. ⊗ is used as bit-
wise XOR operator, which results in 1 if the two bits are different, and 0 if
they are the same. �MiNi

is a distance value used to determine the distance
between diagnosis codes Mi and Ni. �MiNi

is “1” if the diagnosis codes are the
same. �MiNi

is “0.5” if the diagnosis codes are related to each other. We used
SNOMED CT ontology to decide whether diagnosis codes are related to each
other or not. Diagnosis codes are all SNOMED CT concept identifiers (IDs). The
‘ ‘Relationship” table in SNOMED CT stores the related concepts. We mapped
the relational data of the “Relationship” table into a graph database. Through
the graph database we determined the direct relationships between parent and
child nodes and neighborhood relationships with distant nodes. If there is no
relation between two diagnosis codes, we stated that they are different and the
value of �MiNi

is “0”.
The similarity, simWeightedHamming, between target patient (PatientN),

v(pN) and the patient entry in database (PatientM), v(pM), is calculated by
the formula given in Eq. 4.

sim − Weighted HammingM,N =
1

d − Weighted HammingM,N
(4)

,
We measured similarity according to three major attributes which are diag-

nosis, complaints and laboratory procedures. We determined whether these
attributes are equally important or not. In Eq. 3, wi is used as the weight for ith

attribute of target patient. We considered weight as importance of the attribute.
We used a metric related to frequency score to determine the weights of each
attribute. This metric is named as “priority score” and the formula is given in
Eqs. 1 and 2. We calculated “priority score” for each cause. Weights wi are equal
to this priority score.

RHCS - A Clinical Recommendation System for Geriatric Patients 123

3.3 Implementation

RHCS system takes target patient data as input and generates a treatment
plan list as ATC codes accordingly. We used an algorithm based on user-based
collaborative-filtering recommendation technique [16]. The general algorithm
used for this approach can be summarized into these following steps:

1. Group patient entries into three (diagnosis or complaint or laboratory proce-
dure) according to their attributes.

2. For each patient, measure similarity with the target patient.
3. Until we have “K” patient entries,

(a) For each group, select patient entries with the highest similarity scores.
4. If size of selected patient entries bigger than “K”, remove patient entries with

minimum similarity scores until we have “K” patient entries.
5. Generate a recommendation list consisting of ATC codes of the selected

patient entries.

We used Algorithm 3 to generate the recommendation list RN for PatientN
(target patient). We categorized patient entries into three according to their
types. We had set of diagnosis related patient entries (Pd), set of complaint
related patient entries (Pc) and set of laboratory related patient entries (Pl).
For each group, we tried to find total K nearest neighbor patient entries which
have highest similarity measures su,N . The value su,N is a similarity measure
between the patient Patientu and the target patient PatientN. K is a predefined
number which was determined according to the results we get after evaluations.

4 Results and Evaluation

We evaluated RHCS by offline experiments and a user study.

4.1 Evaluation Results of Offline Experiments

We used patient data in CDR (pre-collected data) as test users (target patients).
Table 3 shows numeric information about Offline Experiments.

Table 3. The numeric information about offline experiments.

Number of patients before data preprocessing 2866

Number of patients used after data preprocessing 2453

Number of patients tested 2453

Number of all ATC codes recommended 14817

Average number of ATC codes used per patient ≈6.04

For each of the test patients, we aimed to generate top-K recommendation
plans. K is the number of ATC codes generated, we determined K empirically.

124 S. I. Besik and F. N. Alpaslan

Algorithm 3. Pseudo code for the User-based Collaborative Filtering algorithm
used in RHCS to generate top-K recommendation list for PatientN.

P ← set of all patient entries.

T ← set of all treatment plans for each patient entry.

PatientN ← target patient data.

Pd ← set of all patient entries whose causes are diagnoses.

Pc ← set of all patient entries whose causes are complaints.

Pl ← set of all patient entries whose causes are laboratory procedures.

P = {Patient1, Patient2, ..., PatientM}
T = {T1, T2, ..., TM} where TM is the treatment applied for PatientM .

M ∈ R>0 where M is the size of P.

S1,N ← similarity measure between Patient1 and target patient PatientN .

for i=1 to M+1 do

calculate similarity scores Si,N

end for

K ∈ R>0 where K, a predefined number, is the size for recommendation.

SselectedK set of selected K similarity scores.

temp = 1

repeat

find patient entry tempd in Pd with maximum similarity score

if tempd > 0 then

add tempd to SselectedK

add 1 to temp

end if

find patient entry tempc in Pc with maximum similarity score

if tempc > 0 then

add tempc to SselectedK

add 1 to temp

end if

find patient entry templ in Pl with maximum similarity score

if templ > 0 then

add templ to SselectedK

add 1 to temp

end if

until temp = K

size ← size of set SselectedK .

for i=0 to K-size do

find minimum similarity score min in SselectedK

remove min from SselectedK

end for

Assume SselectedK = {S1,N , S2,N , ..., SK,N}
RN = {T1, T2, ..., TK} recommendation list for PatientN .

RHCS - A Clinical Recommendation System for Geriatric Patients 125

The average number of ATC codes used per patient is measured as 6 approxi-
mately. As a logical interpretation, we picked two close numbers to this average
number 6 as K which are 5 and 10. Hence, we evaluated RHCS both for K = 5
and K = 10 by using three evaluation metrics which are precision, recall, and
f-measure.

Precision, recall, and f-measure accuracy metrics are generally used to eval-
uate recommendation systems which focus on top-N recommendation problem
[8]. The relevant and irrelevant recommendations generated by a recommender
system can be displayed in a two-by-two confusion matrix as shown in Table 4.

Table 4. Confusion matrix.

Recommended

Relevant Irrelevant

Autual Relevant True Positive (tp) False Negative (fn)

Irrelevant False Positive (fp) True Negative (tn)

Precision (Eq. 5) is to measure that within all recommendations how many
is relevant.

precision =
True positives

True positives + False positives
(5)

Recall (Eq. 6) is to measure that within all recommendable or relevant items
how many is recommended.

recall =
True positives

True positives + False negatives
(6)

F-measure also known as balanced F-score or F1 score (Eq. 7) is the harmonic
mean of precision and recall.

f -measure =
2 × precision × recall

precision + recall
(7)

The evaluation results are illustrated in Table 5.

Table 5. The evaluation results of offline experiments.

TP FP TN FN Precision (%) Recall (%) F-measure (%)

K = 5 11438 827 447973 3379 93.257236 77.1951137 84.4693893

K = 10 14804 9726 439074 13 60.3505911 99.9122629 75.2484306

In our CDR, the number of ATC codes used per patient is varied from 3 to
10. As a more detailed evaluation, we also looked through the evaluation results
for patients grouped by number of ATC codes per them.

126 S. I. Besik and F. N. Alpaslan

Figure 2 is the precision vs. number of ATC codes used per patient graph.
For both K = 5 and K = 10, the precision values getting higher with the number
of ATC codes per patient is increased; as it is expected. When we generate a
recommendation list with the size of 5, we can get 60% as the maximum precision
value for a patient who uses 3 ATC codes. However, for a patient who uses more
than 5 ATC codes, the precision value can reach 100%. Precision scores we get for
K = 5 are greater than the scores for K = 10. This is also an expected situation
as K (number of recommendations) is denominator to measure precision, and
higher denominator results in a lower ratio. Precision for K = 5 is approximately
93.26% and precision for K = 10 is approximately 60.35%.

Fig. 2. Precision for K = 5 and K = 10.

Figure 3 is the recall vs. number of ATC codes used per patient graph. For
K = 5, patients who use 5 or more ATC codes have lower recall values than those
using 3 or 4 ATC codes. This is because the number of ATC codes per patient is
denominator to measure recall. When we generate a recommendation list with
the size of 5, we can get 50% as the maximum recall value for a patient who uses
10 ATC codes. However, for a patient who uses 5 or less ATC codes, this value
can reach 100%. For K = 10, the numbers of ATC codes used per patient do not
affect recall values too much since there is no patient who uses more than 10
ATC codes. In general, recall scores we get for K = 10 are greater than the scores
for K = 5. In order to have higher recall values, we have to increase nominator

RHCS - A Clinical Recommendation System for Geriatric Patients 127

part which is the number of truly recommended ATC codes (true-positive). For
K = 10, we have a higher chance to have more truly recommended ATC codes.
Hence, it is expected to have higher recall scores for K = 10. Recall for K = 5 is
approximately 77.2% and recall for K = 10 is approximately 99.9%.

Fig. 3. Recall for K= 5 and K = 10.

Figure 4 is the f-measure vs. number of ATC codes used per patient graph. F-
measure is a measure to make use of both precision and recall evaluation metrics
and so it is difficult to find a direct correlation between f-measure values and
number of ATC codes used per patient. The f-measure values for overall system
RHCS are illustrated in Table 5. F-measure for K = 5 is approximately 84.47%
and f-measure for K = 10 is approximately 75.25%.

4.2 Evaluation Results of User Study

The user study is conducted with real system users (medical doctors) that per-
form some predetermined tasks. We provided a user study set with 8 different
patients and 13 different medical doctors. We asked doctors to evaluate recom-
mendation lists generated for these 8 patients.

In offline experiments, we showed that the number of ATC codes per patient
might affect the evaluation results. Therefore, selecting random patients without
considering the number of ATC codes used for them might result in biased
evaluation results. In order to build a more reliable experiment set, we randomly
selected one patient from each of 8 different groups classified by the number of
ATC codes (from 3 to 10).

128 S. I. Besik and F. N. Alpaslan

Fig. 4. F-measure for K = 5 and K = 10.

Doctors evaluated ATC codes generated for these 8 patients one by one
picking scores between “1” to “5”. “1” means not-related and “5” means very
related. This scoring mechanism enables doctors to scale relatedness of ATC
codes.

We generated a formula (Eq. 8) to evaluate online experiment. Our aim is to
measure the relevancy of generated ATC codes for a given patient. “1” is 0%
relevant and 2 means 25% relevant, 3 means 50%, 4 means 75% and 5 means
100% relevant. For each doctor and patient pair a relevancy score is calculated
by the Eq. 8 where # of 5 scoresdoctor,patient is the number of “5” scores given
by doctor to generated ATC codes for patient and K is the number of ATC codes
generated which are 5 and 10 respectively.

rdoctor,patient,K(%) =
1
K

∗ (# of 5 scoresdoctor,patient ∗ 100

+ # of 4 scoresdoctor,patient ∗ 75
+ # of 3 scoresdoctor,patient ∗ 50
+ # of 2 scoresdoctor,patient ∗ 25
+ # of 1 scoresdoctor,patient ∗ 0)

(8)

The success of RHCS according to a doctor is determined by Eq. 9 which
is the mean of relevancy scores related to that doctor. Table 6 illustrates the
relevancy score of RHCS according to different doctors participated in user study
when K is equal to 5 and 10.

RHCS - A Clinical Recommendation System for Geriatric Patients 129

relevancy − scoreDi,K (%) =

∑8
j=1 rDi,Pj,K

8
(9)

Table 6. Relevancy scores for each doctor calculated for K = 5 and K = 10.

Doctor Relevancy score for K= 5 Relevancy score for K = 10

D1 100 100

D2 98.125 97.5

D3 100 98.4375

D4 100 98.4375

D5 100 100

D6 100 97.5

D7 100 100

D8 97.5 95.625

D9 99.375 99.6875

D10 98.125 96.875

D11 100 100

D12 100 98.4375

D13 98.125 98.4375

In order to evaluate the overall relevancy of RHCS, we use Eq. 10 which is
the mean of relevancy scores measured by each doctor.

relevancy − scoreK (%) =
∑13

i=1 relevancy − scoreDi,K

13
(10)

Table 7 shows the relevancy score we calculated for K = 5 and K = 10. These
values are too close to each other, so it is not obvious that K = 5 is superior than
K = 10 in terms of relevancy score.

Table 7. Relevancy score for overall system RHCS for K = 5 and K = 10.

Relevancy score

K = 5 99.32692308

K = 10 98.60576923

4.3 Overall Analysis

We can summarize our findings and remarks as follows:

– In offline experiments, we assumed that only ATC codes used for patients
are recommendable. If generated ATC codes were not used by patients, we

130 S. I. Besik and F. N. Alpaslan

classified them as falsely recommended (FP). However, this assumption is not
totally accurate. ATC codes generated by RHCS can be relevant in spite of
not using in our CDR. Hence, our precision percentages measured on offline
experiment set might be under presented, and so it may be misleading.

– User study has some drawbacks. The first problem is that it is not an objective
method since the success is related to personal decisions of doctors. Second
drawback is that we can evaluate the relevance, however, we cannot learn
whether there is a missing ATC code in recommendation list or not. So we
cannot evaluate system by a metric like recall. Lastly, the number of patient
data used for online evaluation is limited and this might affect the evaluation
results.

– Determining which K is more preferable depends on our aim. If we want to
have a greater precision value than K should be selected as 5. If recall value
is more important for us than K should be 10. We prefer K as 10 and there
are three main reasons behind this preference:

• Because one of our motivation points is guiding health professionals in
terms of reminding ATC codes, recall is an important metric for us.

• Precision measured on offline experiment set can be misleading.
• According to user study results, it is not worth to consider the difference

between scores for K = 5 and 10; both are acceptable.
– For K=10 on offline experiment set; precision is approximately 60.35%, recall

is approximately 99.91% and f-measure is approximately 75.25%. For K = 10
on online experiment set; the relevancy score is approximately 98.6%.

5 Related Work

In this section, some prominent related studies will be explained. Shimadaa
et. al. develop a clinical decision support system in order to recommend drugs
for patients who have infectious diseases. They aim to help health profession-
als particularly doctors to select first-line drugs appropriate for the risk level
of an infection drug [9]. Meisamshabanpoor and Mahdavi study medical deci-
sions for disease recognition, treatment, and time of period needed for recovery.
Their proposed system use classification techniques and collaborative filtering
recommendation approach [10]. Duan, Street and Lu generate a nursing care
plan recommender system to provide a ranked list of nursing plans based on
historical data. This ranked list is updated as new items are entered. They
use association-rule measures (support and confidence). They also propose a
novel approach named as “information value” that expects which selections may
improve the future rankings [11]. Hoens, Blanton and Chawla have a research
on generating a reliable medical recommender system considering privacy. In
their article, they explain a physician recommending system. Patients can rate
physicians based on their satisfactions and the system considers these ratings to
generate a recommendation. Two important features of their research are secure
processing architecture and anonymous contributions architecture. Secure pro-
cessing architecture provides patients to contribute encrypted ratings and the

RHCS - A Clinical Recommendation System for Geriatric Patients 131

recommendations are generated over encrypted data. Anonymous contributions
architecture provides patient to submit their ratings anonymously. In order to
have a more reliable system, dishonest users and physicians cannot tamper with
ratings. They evaluate their recommendation system in terms of reliability of rec-
ommendations and system performance [12]. Rodŕıguez et al. propose a medical
recommendation system SemMed to assist health professionals by recommend-
ing possible drugs or medications by using Semantic Web Technologies. They use
an ontology in OWL format with three main related classes which are diseases,
allergies and medicines. The system generate drug recommendations by using
information within this ontology [13]. Lim, Husain and Zakaria generate per-
sonalized wellness treatment recommendations using an Artificial Intelligence
technique, hybrid case-based reasoning. They propose an online consultation
form to users. Users state their wellness concerns on consultation form and the
system tries to find similar cases by case-based reasoning. If there is no suitable
similar cases, the system provides recommendations by rule-based reasoning [14].
Su and Chiang introduce their system “IAServ” as a personalized health-care
service implemented as a web service and deployed in a cloud computing setting.
IAServ cannot be directly classified as a medical recommendation system, rather
it is a clinical decision support system. IAServ generates personalized care plan
by using the patient’s ontological profile and formulated rules [15]. Our proposed
system RHCS is different from others since it provides a distinct similarity app-
roach and recommendation algorithm which give promising evaluation results.
Its compatibility with classification standards and ontology usage also make the
research prominent.

6 Conclusion and Future Work

In this paper, we introduced our clinical recommendation system RHCS. Decid-
ing proper drugs for the treatment of geriatric patients is a difficult task since
such patients likely require lots of drugs during their treatment process. For
this reason, RHCS generates drug recommendations as ATC codes to assist
health professionals. ATC is an international standard to classify drugs accord-
ing to their active ingredients. The system works with a clinical ontology named
SNOMED CT in order to determine relationships between different diagnoses.
It is also compatible with ICD-10 coding mechanism which is an international
classification system for diagnoses. RHCS uses an algorithm based on user-based
collaborative filtering recommendation approach. We evaluated RHCS with both
offline experiments and a user study. For offline experiments, we used three eval-
uation metrics which are precision, recall, and f-measure and the results were
all higher than 60%. We conducted a user study with 13 medical doctors and
evaluated user study through a relevancy score which we generated. We mea-
sured this relevancy score as approximately 98% and it shows an evidence that
according to 13 medical doctors, RHCS generates relevant recommendations.

As a future work, we are planning to use RHCS as part of a patient based
home health care service. RHCS can also be adapted to work with instantaneous

132 S. I. Besik and F. N. Alpaslan

data measurements through different biomedical sensors and medical devices like
electrocardiography (ECG), digital scales, glucometers and so on.

References

1. Hale, W.E., Marks, R.G., Stewart, R.B.: Drug use in a geriatric population. J. Am.
Geriatr. Soc. 27(8), 374–377 (1979)

2. International Classification of Diseases (ICD). http://www.who.int/classifications/
icd/en/. Accessed 2 May 2018

3. SNOMED CT Starter Guide. Technical report, IHTSDO (2014)
4. Chisholm-Burns, M.A., Wells, B.G., Schwinghammer, T.L.: Pharmacotherapy

Principles and Practice. McGraw-Hill, New York (2016)
5. McPhee, S.J., Papadakis, M.A., Tierney, L.M. (eds.): Current Medical Diagnosis

& Treatment 2010. McGraw-Hill Medical, New York (2010)
6. Ferri, F.F.: Ferri’s Clinical Advisor: Instant Diagnosis and Treatment, 2006. W.B.

Saunders Company, Philadelphia (2003)
7. Sinclair, A.J., Morley, J.E., Vellas, B. (eds.): Pathy’s Principles and Practice of

Geriatric Medicine. Wiley, Hoboken (2012)
8. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering

recommendation algorithms. In: Proceedings of the 10th International Conference
on World Wide Web, pp. 285–295. ACM (2001)

9. Shimada, K., et al.: Drug-recommendation system for patients with infectious dis-
eases. In: AMIA Annual Symposium Proceedings, vol. 2005, pp. 1112. American
Medical Informatics Association (2005)

10. Shabanpoor, M., Mahdavi, M.: Implementation of a recommender system on med-
ical recognition and treatment. Int. J. e-Educ. e-Bus. e-Manag. e-Learn. 2(4), 315
(2012)

11. Duan, L., Street, W., Lu, D.: A nursing care plan recommender system using a
data mining approach. In: 3rd INFORMS Workshop on Data Mining and Health
Informatics, Washington DC (2008)

12. Hoens, T.R., Blanton, M., Steele, A., Chawla, N.V.: Reliable medical recommenda-
tion systems with patient privacy. ACM Trans. Intell. Syst. Technol. (TIST) 4(4),
67 (2013)

13. Rodŕıguez, A., et al.: SemMed: applying semantic web to medical recommendation
systems. In: First International Conference on Intensive Applications and Services,
INTENSIVE 2009, pp. 47–52. IEEE (2009)

14. Lim, T.P., Husain, W., Zakaria, N.: Recommender system for personalised wellness
therapy. Int. J. Adv. Comput. Sci. Appl. 4(9), 54–60 (2013)

15. Su, C.J., Chiang, C.Y.: IAServ: an intelligent home care web services platform in
a cloud for aging-in-place. Int. J. Environ. Res. Publ. Health 10(11), 6106–6130
(2013)

16. Hiralall, M., Kowalczyk, W.: Recommender systems for e-shops. Business Mathe-
matics and Informatics Paper. Vrije Universiteit, Amsterdam (2011)

http://www.who.int/classifications/icd/en/
http://www.who.int/classifications/icd/en/

Implementation of a Medical Coding
Support System by Combining

Approaches: NLP and Machine Learning

Idir Amine Amarouche1(B), Dehbia Ahmed Zaid1(B), and Tayeb Kenaza2(B)

1 Department of Medical and Hospital Informatics, Central Hospital of Army,
Ain Naadja, 16005 Algiers, Algeria

i.a.amarouche@gmail.com,ahmed zaid dehbia@hotmail.fr
2 Ecole Militaire Polytechnique, BP 17, 16046 Bordj El Bahri, Algiers, Algeria

ken.tayeb@gmail.com

Abstract. Diagnosis-Related Groups (DRG) billing for hospital stays
is based on the collection of coded and standardized information consti-
tuting the Hospital Discharge Abstract (HDA). The HDA describes the
pathological state of the patient and the care provided during his stay.
This work aims to design and implement a coding support system for
diagnoses and acts expressed in ICD-10 (ICD-10: International Classifica-
tion of Disease, 10th version) and GNPA (GNPA: General Nomenclature
of Professional Acts), respectively. The proposed solution takes a med-
ical report as input and provides a list of recommended diagnoses and
acts. It is based on the combination of two approaches, namely, NLP
(NLP: Natural Language Processing) and machine learning. Firstly, the
medical reports are pre-processed, via the NLP algorithms, in order to
better understand the extent of the codes concerned. Secondly, the use
of machine learning approaches offers the means of making the choice of
codes as relevant as possible. The experiments carried out showed very
satisfactory results, which are confirmed by hospital practitioners.

Keywords: Medical coding support ·
Natural language processing (NLP) · Machine learning · ICD-10 ·
GNPA

1 Introduction

Hospital Information Systems (HIS) are distinguished by their ability to record,
process, share and communicate medical and hospital information. The auto-
matic processing of this information, mainly providing support for quality care,
also aims at ensuring optimal management of hospital resources [1].

Hospitals use Information System as a support to improve both the quality of
healthcare services and the cost control. For instance, at the patient discharge,
the Hospital Information System (HIS) provides functionalities that allow the
production of Hospital Discharge Abstract (HDA). The HDA summarizes the
c© Springer Nature Switzerland AG 2019
V. Gadepally et al. (Eds.): Poly 2018/DMAH 2018, LNCS 11470, pp. 133–147, 2019.
https://doi.org/10.1007/978-3-030-14177-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14177-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-14177-6_11

134 I. A. Amarouche et al.

medico-administrative information produced or captured during a hospital stay
and used for billing. Precisely, the HDA contains identification and medical data
(e.g. main diagnosis, associated (s) diagnosis (s) and performed acts) expressed
in international, or local purpose, and standardized terminologies. Generally, the
coding of diagnoses and acts is done manually by hospital practitioners (doctors,
coding technicians, etc.) and is therefore subject to errors. According to [2], the
coding constitutes the basis of the valuation of the inpatient stay, and therefore,
any error related to its results leads to an erroneous coverage (at most or at
least) of the costs incurred by the hospital.

The International Statistical Classification of Diseases and Related Health
Problems in its tenth version (ICD-10)1 and the General Nomenclature of Pro-
fessional Acts (GNPA)2 are the two terminologies used, in our context, to docu-
ment the medical records in terms of diagnoses and acts performed respectively.
For this purpose, it is relevant to provide practitioners with a support in the form
of an assistant that will recommend the most appropriate codes, among nearly
40,000 diagnostic listed in the ICD-10 and 10,000 acts of the GNPA. This is
made effective, mainly, through information contained in unstructured medical
reports, such as, Operating Report (OR), Hospitalization Report (HR), etc.

1.1 Challenges

The HIS provides practitioners with required tools to document patient records
with diagnoses and acts. However, the functionalities provided by these tools
are based mainly on a manual exploration of terminologies. Given the consid-
erable number of codes provided by these terminologies, the coding operation
is perceived by practitioners as long and tedious. This weighs negatively on the
activity of hospital departments and can lead to the erroneous billing of hospi-
tal stays. In addition, the challenges of medical coding are not only financial.
Coded diagnoses and acts can be used for epidemiological studies. Similarly,
reliable statistics are essential for optimal management of hospital resources.
As a result, the medical coding challenges raises the need to develop a solu-
tion that provides assistance to practitioners during the medical codes selection.
This solution must use the patient medical record that includes unstructured
data (reports, clinical notes, etc.). The use of unstructured data is largely due
to their richness in terms of information and are mainly the support whereby
healthcare practitioners express their activities mostly. As a result, the following
challenges arise:

– Need to achieve a solution to provide medical coding assistance from unstruc-
tured textual data (medical reports, observations, clinical notes, etc.).

– The solution to be proposed must cover all diagnoses treated and performed
acts in the hospital that is the subject of our study.

1 http://www.atih.sante.fr/cim-10-fr-2017-usage-pmsi.
2 https://www.ameli.fr/medecin/exercice-liberal/facturation-remuneration/nomencla

tures-codage/ngap.

http://www.atih.sante.fr/cim-10-fr-2017-usage-pmsi
https://www.ameli.fr/medecin/exercice-liberal/facturation-remuneration/nomenclatures-codage/ngap
https://www.ameli.fr/medecin/exercice-liberal/facturation-remuneration/nomenclatures-codage/ngap

Implementation of a Medical Coding Support System 135

1.2 Contributions

In view of the challenges mentioned above, the realization of an automated
solution for medical coding support is of interest. This paper proposes a solution
to assist practitioners in the choice of diagnoses and acts by using textual data
from the patient’s medical record (Hospitalization Report, Operating Report).
This solution is based essentially on the combination of two approaches, namely:
the NLP and the multi-class classification by machine learning. Thus, the main
contributions are as follows:

– The realization of a workflow (pipeline) ensuring the preprocessing of the
medical reports by exploiting the techniques of NLP. This is dictated by the
unstructured aspect of these reports.

– The use of machine learning techniques and algorithms to realize prediction
models of the diagnoses and acts. This is the naive Bayes and the Support
Vector Machines (SVM) algorithms. We choose these two algorithms for the
prediction models they generate, that have proved their worth in the classi-
fication of medical documents according to [5,7,11].

The rest of this paper is structured as follows: Sect. 2 provides a concise descrip-
tion of the theoretical background inherent to the problematic. Section 3 presents
the proposed architecture. Sections 4 and 5 present respectively the experiments
conducted and the evaluation results of the proposed solution. The sixth section
concludes with a review of our contributions and the resulting perspectives.

2 Background

This section describes the medical coding support system, declines the flow of
related tasks or the general pipeline and details the different phases for its real-
ization.

2.1 Medical Coding Support System

The automatic processing of medical information is based on the collection of
clinical data relating to hospital stays of patients. As a result, considerable efforts
have been made to construct the terminological resources used to express these
data in coded form, similar to ICD-10 and GNPA [3]. However, despite the
increasing use of these terminologies, natural language remains the privileged
vector of information and medical knowledge. From hospital reports to diag-
nostic and therapeutic protocols, the text is omnipresent. A medical coding
support system is a system that analyzes medical documents and produces the
appropriate codes according to the sentences and terms mentioned on these
documents [4].

136 I. A. Amarouche et al.

2.2 Pipeline of Medical Coding Support System

Figure 1 illustrates the sequence of steps commonly used for the realization of a
medical coding support system [4]. In the first step, known as preprocessing, the
contents of the reports are structured in sections. For each section, the text is
subdivided into sentences (sentence splitting) and words (tokenization). At the
“word” level, additional normalizations can be applied to obtain the lexical root
of the term, referred to as stemming. This includes correcting misspellings and
replacing abbreviations with their complete forms and eliminating stop words.
Secondly, the treatment step requires as input the result of the preprocessing
step. It can be done according to three types of approaches, namely, a classifi-
cation approach based on machine learning, a rule-based approach or a hybrid
approach combining the first two. An evaluation step of the coding support
system succeeds immediately the processing phase.

Fig. 1. Pipeline of medical coding support system [4].

Several previous studies, namely [4–6] have used NLP techniques associated
with automatic classification approaches to extract coded clinical information
from unstructured medical reports expressed in English.

2.3 Automatic Classification of Textual Medical Reports

The classification consists of assigning instances of a given domain described by
a set of discrete or continuous value attributes to a set of classes, which can be

Implementation of a Medical Coding Support System 137

considered as values of a selected discrete target attribute [7]. The process of clas-
sifying texts is based on a learning set D = {d1,. . .,dn} composed of documents
labeled with classes {C1,. . .,Ck} [8]. In the case of medical coding assistance,
these classes may correspond to diagnosis codes expressed according to ICD-10.
This enables to create a classification model based on a corpus of labeled doc-
uments able to assign the correct class (es) to any new document d [9]. This
corpus is partitioned into two sets: one for learning and another for testing. As
illustrated in Fig. 2, the classification process consists first in training the model
with the learning set. Once learned, its effectiveness will be tested with the test
set. It should be noted that before beginning the construction of the classifica-
tion model, it is important to make the textual documents understandable by
the learning algorithms [5]. This occurs at the step designated by “Document
Representation” illustrated in Fig. 2.

Fig. 2. Process of automatic classification of documents

Representation of Textual Documents. The representation by bag of words is
often preferred. It consists to describe the content of a text by means of descrip-
tors (words or groups of words) [5]. The idea is to transform the different doc-
uments of a corpus into vectors where each element of a text vector represents
textual units or simply words [9]. The set of these words will be referred to as
“vocabulary”. In the vector model, the components of a vector are determined
according to the occurrences of words in the text. These words are selected
according to their appearance frequency in the documents and according to the
number of documents containing these words. Let C be a corpus of textual doc-
uments of size n and Di a document belonging to C. Let m be the number of
terms and T = {T1, ..., Tm} be the set of these terms. In the vector representa-
tion, the document Di is represented by a vector Vi. The collection of texts can
be represented by a matrix whose columns represent the words and lines repre-
sent the documents as illustrated in Fig. 3. The Wij represent the weighting of
a term Tj in the document Di where 0 < j < m, 0 < i < n. There are several
possibilities for defining the weight of the words wij . Among others, Boolean
weighting, weighting with word frequencies, TF × IDF , etc. [9].

138 I. A. Amarouche et al.

Fig. 3. Documents-terms matrix

Machine Learning. Machine Learning is a computer science and statistics sub-
domain that aims to solve problems in different scientific fields. It is deeply
related to artificial intelligence and optimization. It allows the creation of math-
ematical models from data [10]. Many techniques and algorithms inherent in
machine learning have been proposed in the literature. We present below two
variants of these algorithms namely: Naive Bayes and SVM. The prediction mod-
els generated by these algorithms have proved their worth in the classification
of documents according to [5,7,11].

– Naive Bayes is a probabilistic algorithm based on Bayes’ theorem. The naive
aspect is due to the assumption that the variables are independent and fixed
at the beginning. In the classification of texts the descriptors are designated
by variables [7].
The hypothesis of independence of the descriptors of the Naive Bayes model,
makes it simple and effective. Its training does not require many documents.
This classification model has proven itself in the classification of short docu-
ments, including emails (Ham/Spam).

– Support Vector Machines (SVM) are methods that come from an accurate
and advanced mathematical analysis of the learning problem and based on
binary separator in a vector space. The separators are hyperplanes. To choose
the best hyperplane, the notion of “margin” is solicited. The margin of a sep-
arating hyperplane is the smallest distance that separates it from the nearest
points. The SVM algorithm favors the hyperplane which ensures the largest
possible margin [7]. SVMs are powerful tools, which often obtain the best
classification performance [11].

3 Medical Coding Support System: Proposed Approach

In this section, we describe the different steps that highlight the implementation
of our solution which is based on a multi-class classification approach considering

Implementation of a Medical Coding Support System 139

our data characteristics. In order to properly describe our solution, we first explain
the functionalities for each step constituting the proposed pipeline shown in Fig. 4.

Fig. 4. Overall scheme of the proposed solution

Corpus (1 of Fig. 4). The textual documents we are interested in are HRs for
ICD-10 diagnoses coding and ORs for GNPA acts coding. The advantage of
using these reports lies in the fact that they are the most requested by medical
information doctor to document a clinical case and verify the coding performed
by the treating physician. Indeed, the HR is a document that includes a sum-
mary of the main elements relating to the patient’s stay as well as the elements
useful for the continuity of care. The OR is a medical-technical document that
accompanies every surgery performed on the patient. It summaries the findings
and procedures performed during the surgical procedure.

Preprocessing (2 of Fig. 4). Our medical data source includes HRs and ORs writ-
ten in French by doctors from different hospital departments (surgery, medical
and obstetrics). These reports are characterized by their narrative, unstructured
and sometimes ambiguous aspects. That is why, the passage through a prepro-
cessing step, based on NLP techniques is unavoidable (see Sect. 3.1).

140 I. A. Amarouche et al.

Data Representation (4 of Fig. 4). The preprocessed HRs and ORs (3 in Fig. 4)
go through a representation step that includes a vocabulary extraction task and
another formatting one for these documents based on that vocabulary.

Machine Learning (5 of Fig. 4). Machine learning algorithms have been used to
construct a prediction model (6 in Fig. 4) of a collection of codes that best reflect
the pathology of the patient and the set of cares provided.

Classification. Any new unclassified document (7 in Fig. 4) needs preprocessing
(8 of Fig. 4) and representation (9 of Fig. 4) steps. This document then serves
as an input parameter for the classification model (6 in Fig. 4) to produce the
appropriate code (s) (10 in Fig. 4) which is a multi-class classification.

3.1 Preprocessing Phase of Medical Reports

The HRs and ORs that are available to us are written in French. The preprocess-
ing phase illustrated in Fig. 4 aims at mitigating anomalies recorded in medical
reports. It consists of a series of steps, broken down as follows:

Normalization. It consists mainly of a lowercase text.

Tokenization. It immediately succeeds the normalization step. It allows recog-
nition and separation of lexical entities in the texts “tokens”. This separation
is preceded by a cleanup task that deletes dates, digits, and special characters,
reduces consecutive spaces to one, and removes line breaks.

Elimination of Stop Words. This step directly follows the tokenization. Once
the textual documents cut into tokens, some of them appear in all texts of the
corpus in the form of articles, prepositions, determinants, adverbs ... etc. The
presence of these so-called meaningless words in all the texts renders them non-
discriminating, therefore their use for a classification task turns out to be useless,
hence the need for their removal.

Automatic Correction of Spelling. HRs and ORs corpus sometimes include
spelling mistakes. Thus, the passage through this step is inevitable.

Stemming. In this step, it is a question of managing the different inflections of
a word. This step allows considering only the root of the word rather than the
entire word without worrying about grammatical analysis.

3.2 Classification Phase by Machine Learning

After the preprocessing of medical reports, we proceed to the treatment phase.
In our case, it consists of a multi-class classification by machine learning. This
involves designing a prediction model that assigns each HR and each OR to
one or more corresponding classes, which are designated by ICD-10 codes and

Implementation of a Medical Coding Support System 141

GNPA codes respectively. At first, the corpus is partitioned into two sets: one for
learning and the other for testing, as shown in Fig. 5. The classification process
consists, in the first instance, of training the model with the learning set. Once
learned, its effectiveness will be tested with the test set.

Fig. 5. Classification process for medical reports

Data Description (Documents-Terms Matrix). The implementation of predictive
techniques requires the mandatory passage through a phase of representation of
the data. The nature of the predictive variable, which is in our case textual
document, denotes the peculiarity of operation, which was achieved by using the
bag of words representation to bring the description of the text corpus back to
a table.

Individuals (documents) - Variables (terms)’: this is the documents-terms
matrix described in Sect. 2.3. The construction of the documents-terms matrix
is done in two steps: the first consists of a descriptor selection operation, des-
ignated by generation of the vocabulary representing the corpus and a second
step designated by text formatting. In this sense, we have considered “words”
as descriptors and the “Term Frequency (TF) x Inverse Document Frequency
(IDF)” as a type of text formatting, allowing relativizing the importance of a
word in a document (TF) by its importance in the corpus (IDF). TF × IDF is
defined as follows:

TF × IDF (tk, dj) = N(tk, dj) ∗ log(|Tr|/Tr(tk)) (1)

142 I. A. Amarouche et al.

where:

– N(tk, dj): the number of occurrences of the descriptor tk in the document dj ;
– |Tr|: the number of documents in the learning corpus;
– Tr(tk): the number of documents in the set in which the descriptor tk appears

once at least.

Machine Learning. In the classification of texts by machine learning, it is impor-
tant not to use the same data for modeling and evaluation of prediction models.
In this case, it is a question of dividing data into two parts: a first sample,
called learning, is used to elaborate the model; a second one, called test, is used
to measure the performance. This task occurs before the construction of the
matrix documents terms. Indeed, the texts of the test corpus must intervene
neither in the constitution of vocabulary nor in calculation of the weights of the
matrix used for learning.

4 Experiments and Results

This section describes the experimental settings including experimental environ-
ment, data and coding support system implementation. The experimental results
are also presented.

4.1 Experimental Environment

The operating system under which our solution is implemented, tested and
installed is the Microsoft Windows 64-bit system with 4 GB RAM, Intel (R)
Core (TM) 3.70 GHz processor. In order to implement our solution, we opted
for the Python programming language. Indeed, the processing of texts written in
natural language requires some basic treatments and tedious to implement, hence
the use of services offered by the library “NLTK (Natural Language Tool Kit)”.
We also exploited the functionality of Python’s “scikit-learn” package, which
provided the machine learning algorithms used in our case, namely: Bayes’ naive
algorithm and the SVM algorithm.

4.2 Experimental Approach

After preparing learning and test data, the construction of the document-term
matrix was carried out according to the following two criteria:

– The abundance of descriptors in the corpus: it is the maximum number of doc-
uments where a descriptor appears. Indeed, the more a descriptor is common
in the corpus, the less it will be used as discriminating between classes.

– The size of the vocabulary: it is the number of descriptors to be selected from
the corpus.

The challenge is to find the combination of the two parameters above, which will
lead to better system accuracy. For this purpose, an experimental study involv-
ing our data is required. It consists of varying the variable characterizing the

Implementation of a Medical Coding Support System 143

abundance of descriptors in the corpus as well as the size of the vocabulary rep-
resenting the latter. For each combination of these variables, a prediction model
is generated and is evaluated in terms of usual NLP based system performance
indicators that are defined in Sect. 4.3 (precision, F-measure, recall rate). Since
our goal is to provide practitioners with coding support for medical information,
evaluation metrics are calculated so that the correct code appears among the
first k propositions of the system (see Sect. 4.4).

4.3 Evaluation Metrics

Evaluation is an important step in the same way as the other phases of the pre-
diction model construction process. There are several indicators that reflect the
success or the failure of a prediction model. In our case, we define the evaluation
metrics commonly used in the literature for the evaluation of medical coding
support systems, in this case:

Precision: The ratio of the number of documents correctly classified in a class
to the number of documents to which this class is assigned.

Recall: It is the ratio between the number of documents correctly classified in a
class on the number of documents belonging to this class.

F-Measure: It is an indicator that combines recall and precision. It is given by
the following formula:

F − Measure =
2 ∗ (Precision ∗ Recall)

(Precision + recall)
(2)

4.4 Results

For a corpus composed of 19 605 HRs spread over 225 ICD-10 classes, the follow-
ing table shows the results obtained in terms of precision, recall and F-measure
calculated so that the correct code appears among the first 10 proposals of the
system (see Table 1).

Table 1. Evaluation of the coding support system: case of the ICD-10 diagnostics.

Model Vocabulary size Documents-termes matrics Precision Recall F-measure

Naif Bayes 2000 (19605,2000) 68% 96% 79.7%

SVM 4000 (19605,4000) 87.4% 96% 91.5%

The plot in the Fig. 6a illustrates the precision values based on the number
of ICD-10 diagnoses proposed by our solution.

As for the corpus composed of 8 973 ORs spread over 67 GNPA codes, the
results of the evaluation of the system for coding the acts are presented in the

144 I. A. Amarouche et al.

Pr
ec

isi
on

k top results

Pr
ec

isi
on

k top results

(b)(a)

Fig. 6. Precision values of the coding support system.

Table 2. Evaluation of the coding support system: case of GNPA acts.

Model Vocabulary size Documents-termes matrics Precision Recall F-measure

Naif Bayes 2000 (8973,2000) 95% 86% 90.4%

SVM 6000 (8973,6000) 99% 86% 92%

Table 2. The evaluation metrics are calculated so that the correct code appears
among the first 10 propositions of the system.

By varying the number of GNPA acts proposed by our solution, the precision
was evaluated as shown in Fig. 6b. In this case, when the number of proposals
exceeds 40, the precision reaches a value of 100%. It should be noted that the
precision rate, calculated on the system involving ORs, is higher than the pre-
cision rate by involving HRs. This difference can be explained by the quality of
these documents. Indeed, the ORs are characterized by a direct style, generally
in the affirmative form, concise and precise sentences through which the surgeon
expresses only the succession of steps constituting the operating protocol. Unlike
the HRs in which the attending physician details the hospital stay of the patient
by describing his pathology and all the care provided.

Evaluation of the Classification Model. The accuracy of a classification can be
evaluated by calculating the confusion matrix [12] shown in Fig. 7.

One of the interests of this matrix is that it quickly shows if the system
manages to classify correctly. In this sense, a classification system will be all
the better as its confusion matrix approaches a diagonal matrix. In a confusion
matrix, each class in the classification model is represented by a column and
a row. The line indicates the number of real documents belonging to the class
(C) and the column indicates to which number of documents this class (C)
is assigned. Note that whatever the class C different from the class C′, We
distinguish four situations:

Implementation of a Medical Coding Support System 145

Fig. 7. Components of a confusion matrix [12].

– TP (True positives): The documents belonging to the class C that the clas-
sification model has classified to the class C.

– FP (False positives): The documents that do not belong to the class C and
that the classification model has classified to the class C′.

– TN (True negatives): The documents belonging to the class C′ that the clas-
sification model has classified to the class C′.

– FN (False negatives): The documents belonging to the class C that the clas-
sification model has classified to the class C′.

Considering the classification models constructed by the SVM learning algo-
rithm for the coding of the ICD-10 HRs and the GNPA coded ORs, we proceeded
to their evaluation using their respective confounding matrices. For this purpose,
the composition of the test corpus is shown in Table 3.

Table 3. Composition of the test corpus for the construction of the confusion matrix.

Corpus Number of documents Number of classes Number of documents per class

HR 4500 225 20

OR 1340 67 20

(a) Prediction model confusion matrix for “HR” coding
in ICD-10

(b) Prediction Model Confusion Matrix for “OR” Coding
in GNPA

Predicted classes

Eff
ec

ve
 c

la
ss

es

Do
cu

m
en

ts
 n

um
be

r

Predicted classes

Eff
ec

ve
 c

la
ss

es

Do
cu

m
en

ts
 n

um
be

r

Fig. 8. Confusion matrices of models of prediction by SVM.

146 I. A. Amarouche et al.

The confusion matrices, calculated for the two corpora (HR and OR) respec-
tively, are refined to approximate a diagonal matrix and is illustrated in Fig. 8.

For a better readability of the contents of the confusion matrices, we pre-
sented the results in a tabular form. Since our system returns k codes (ICD-10
or GNPA), we considered two cases as illustrated in Fig. 9, namely: the case
where the solution proposes a single code and the case where the solution pro-
poses 10 codes.

(1) Case of the first code proposed by the system (k=1).

(2) Case of ten codes proposed by the system (k=10).
(a) HR Corpus (a) OR Corpus

Fig. 9. Preview on some values of the components of confusion matrices.

The evaluation of the classification model of the HRs and the ORs shows the
existence of heterogeneity in the precision values of the classes taken individually.
We find that the precision of some classes is very low when the system returns
only one code. However, when the system returns 10 codes, the accuracy of these
classes marks a significant increase, so the doctor will be more likely to find the
best code describing the diagnosis and acts performed on a patient.

5 Conclusion

The main purpose of the present paper is to propose a solution that reduces
the burden of medical coding on practitioners. Precisely, we have developed a
solution that helps hospital practitioners during medical coding. This solution
affords a list of relevant diagnosis and acts codes that best match a given clinical
situation. Doing so, we reduce the searching time spent by practitioners in the
selection of required ICD-10 and GNPA codes. An empirical evaluation of the
proposed solution with real clinical data provides preliminary evidence for the
effectiveness of our proposal. Future work will focus on the following perspectives:

– Develop a solution to differentiate between different types of diagnosis (main,
associated, etc.) based on multi-label classification. This evolution will best
help the practitioner when choosing diagnoses codes;

Implementation of a Medical Coding Support System 147

– The performance improvement of the proposed solution, in terms of accuracy,
based on the use of structured data in electronic patient records (medications,
laboratory results, etc.).

References

1. Scheurwegs, E., et al.: Selecting relevant features from the electronic health record
for clinical code prediction. J. Biomed. Inform. 74, 92–103 (2017)

2. Weathers, A.L.: Use of the electronic health record for coding in outpatient neurol-
ogy. CONTINUUM: Lifelong Learn. Neurol. 23(2), e12–e16 (2017). Selected Topics
in Outpatient Neurology

3. Duclos, C., et al.: Medical vocabulary, terminological resources and information
coding in the health domain. In: Venot, A., Burgun, A., Quantin, C. (eds.) Medical
Informatics, e-Health, pp. 11–41. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-2-8178-0478-1 2

4. Pons, E., et al.: Natural language processing in radiology: a systematic review.
Radiology 279(2), 329–343 (2016)

5. Holzinger, A., Schantl, J., Schroettner, M., Seifert, C., Verspoor, K.: Biomedical
text mining: state-of-the-art, open problems and future challenges. In: Holzinger,
A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomed-
ical Informatics. LNCS, vol. 8401, pp. 271–300. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-43968-5 16

6. Doan, S., et al.: Natural language processing in biomedicine: a unified system
architecture overview. In: Clinical Bioinformatics, pp. 275–294. Humana Press,
New York (2014)

7. Zaki, M.J., Meira Jr., W., Meira, W.: Data Mining and Analysis: Fundamental
Concepts and Algorithms. Cambridge University Press, Cambridge (2014)

8. Aggarwal, C.C., Zhai, C.: A survey of text classification algorithms. In: Aggarwal,
C., Zhai, C. (eds.) Mining text data, pp. 163–222. Springer, Boston (2012). https://
doi.org/10.1007/978-1-4614-3223-4 6

9. Korde, V., Mahender, C.N.: Text classification and classifiers: a survey. Int. J.
Artif. Intell. Appl. 3(2), 85 (2012)

10. Holzinger, A. (ed.): Machine Learning for Health Informatics: State-of-the-Art
and Future Challenges, vol. 9605. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-319-50478-0

11. Wang, Z., Xue, X.: Multi-class support vector machine. In: Ma, Y., Guo, G. (eds.)
Support Vector Machines Applications, pp. 23–48. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-02300-7 2

12. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for
classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009)

https://doi.org/10.1007/978-2-8178-0478-1_2
https://doi.org/10.1007/978-2-8178-0478-1_2
https://doi.org/10.1007/978-3-662-43968-5_16
https://doi.org/10.1007/978-1-4614-3223-4_6
https://doi.org/10.1007/978-1-4614-3223-4_6
https://doi.org/10.1007/978-3-319-50478-0
https://doi.org/10.1007/978-3-319-50478-0
https://doi.org/10.1007/978-3-319-02300-7_2
https://doi.org/10.1007/978-3-319-02300-7_2

Building a Research-Quality Copy Number
Variation Data Repository for Translational

Research

Chen Wang(&), Raymond M. Moore, Jared M. Evans, Xiaonan Hou,
S. John Weroha, and Guoqian Jiang

Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
{wang.chen,moore.raymond,evans.jared,hou.xiaonan,

weroha.saravut,jiang.guoqian}@mayo.edu

Abstract. Copy number variation (CNV) has known associations with popu-
lation diversities and disease conditions. However, research communities face
great challenges in reusing the CNV data due to the heterogeneity of existing
CNV data sources. The objective of the study is to design, develop and evaluate
a scalable CNV data repository based on a proposed common data schema for
facilitating research-quality CNV data integration and reuse. We created a
proposal for a CNV common data schema through analyzing multiple existing
CNV data sources. We designed a collection of the CNV quality metrics and
demonstrated its usefulness using the CNV data from a study of ovarian cancer
xenograft models. We implemented a CNV data repository using a MongoDB
database backend and established the CNV genomic data services that enable
reusing of the curated CNV data and answering CNV-relevant research ques-
tions. The critical issues and future plan for the system enhancement and
community engagement were discussed.

Keywords: Copy number variation � Standardization �
Integrated data repository � Quality assurance

1 Introduction

Copy number variation (CNV) is usually defined as genomic regionswith a duplication or
loss more than 1 kb in size. CNV includes copy number polymorphism (CNP) common
in population, rare pathogenic copy number variation (PCNV), and somatic copy number
aberration (SCNA). CNVs have been shown to play an important role in regulating gene
expression levels [1, 2]. CNVs also have associations with human population diversity,
common phenotypes, and human diseases [3–5].Most of the CNPs are inherited and very
few are de-novo events. The category of CNVs with known disease associations can be
defined as pathogenic CNV (PCNV). The size of PCNV could be ranging from large as
entire chromosome (e.g. chr21 trisomy causing Down-syndrome), a few Mega base-pair
regions (e.g. p22.1q deletion, associated with DiGeorge Syndrome), to a single gene (e.g.
germline TP53 deletion defined for Li-Syndrome). SCNAs in somatic tissues can be
introduced through normal cell division processes, genetic defects of DNA damage
repairing, as well as environmental exposures [6].

© Springer Nature Switzerland AG 2019
V. Gadepally et al. (Eds.): Poly 2018/DMAH 2018, LNCS 11470, pp. 148–161, 2019.
https://doi.org/10.1007/978-3-030-14177-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14177-6_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14177-6_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14177-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-14177-6_12

Increasing amounts of CNV data have been produced based on microarray and
sequencing techniques [7–10]. At least three public large data sources exist: Database
of Genomic Variants (DGV) [11], Exome Aggregation Consortium (ExAC) [12], The
Cancer Genome Atlas (TCGA) [3]. However, consistent storage and efficient re-use of
CNV data are challenging and the FAIR (findable, accessible, interoperable, reusable)
data principles remain unmet [13], due to various and incomparable ways of CNV data
generation and lack of quality-ensured data reuse. In particular, we identified three
major informatics hurdles for effective and efficient curation of existing large CNV
datasets: (1) data standardization issue: lack of common CNV data schema scalable to
accommodate different levels and types of CNV data from various data sources.
(2) lack of quality assurance: CNV events are estimated based on microarray or
sequencing measurements with various levels of noises. (3) data not queryable: lack of
genomic service to ease query and facilitate biological hypothesis examination and
formulation. Given increasingly generated genomic datasets, future advancements of
basic and translational research will be increasingly dependent on well-organized
genomic databases with queryable and re-usable genomic services.

The objective of this study is to design, develop and evaluate a genomic service for
effectively managing storage and enabling flexible queries of various CNV data
sources. We first design a common data schema through a review of existing major
CNV data sources. Second, we design and implement a CNV quality assurance module
using an internal dataset from an ovarian cancer PDX study. Third, we create a series of
extraction, transformation and loading (ETL) scripts for converting various data
sources into a centralized MongoDB database according to designed common data
schema. Finally, we demonstrate the utility of the CNV genomic services through
answering a collection of sample-level queries. In addition, we discuss the lessons
learnt from the common schema and future functional requirements for using the
genomic service to facilitate integrative biological research with further phenotype
incorporation.

2 System Architecture

In this study, we intend to build a CNV data repository and associated genomic
services for integrating several representative CNV data sources and an internal
CNV PDX dataset. The overall design is presented in Fig. 1. The ultimate goal is to
facilitate commonly needed CNV-based research examinations or hypothesis formu-
lations. In particular, we considered three major modules for a CNV data repository.

2.1 A Common Data Schema

Existing CNV data sources are very heterogeneous and direct result comparisons are
often impossible. According to analytical convince, CNV call data might be reported
based on feature- or segment-level, e.g. ExAC reports on exon feature-level and TCGA
reports on gene feature-level. Each individual CNV study may report CNVs at different
and incomparable levels due to the lack of a common data schema. For examples, the
DGV database collected all the called CNV events at regional levels, with both

Building a Research-Quality Copy Number Variation Data Repository 149

individual sample- and study-population level; ExAC reported CNV frequency at exon-
and gene-level, with only availability of aggregated calls at population level; TCGA
reported CNVs in both regional and genomic feature levels (i.e. gene-level), with both
segmented CNV and CNV calls; CCLE and PDX studies only report gene-level seg-
mented CNV values. As another example, while DGV has both hg37 and hg38 version
of CNV results, TCGA only has hg37 results ready. With all these inconsistent ways of
reporting and publishing CNV results, various levels of challenges exist to query CNV
results from different studies and make efficient data-reuse. In order to summarize and
reuse existing CNV data sets in a comparable way, a common CNV data schema is
highly needed.

2.2 A Quality Assurance Module

Regardless measurement platforms (e.g. aCGH, NGS), CNV events were all compu-
tationally inferred based on DNA-level measurements with inherent variability stem-
ming from biological sample extraction, DNA library preparations and platform noises.
CNV data without quality assurance may confound or even mislead formulation of
particular research questions. CNV measuring and calling steps have been reported
sensitive to biochemistry sample processing procedures, individual platforms, as well
as original Biospecimen DNA qualities [14, 15]. CNV data without quality examina-
tions could lead to artifacts-associated false discoveries [16, 17]. Therefore, we believe
it is critical to include a module dedicated to summarize CNV-specific quality metrics
and assure only research-quality results going into the genomic service collections.

Fig. 1. Function requirements and design of CNV genomic service

150 C. Wang et al.

2.3 A Data Repository and Service Module

With a well-designed common data schema, we implement a CNV data repository with
a series of ETL processes to convert original data sources to standard format of CNV
results. For the prototype implementation, we use the MongoDB database as the
backend. This is in order to enable gene- or region-level CNV queries, with either
sample-level or population-level results return. At gene-level, it is well known that loss
or deletion events of tumor suppressor genes, e.g. BRCA1 or TP53, are associated with
significantly increased cancer incidences; at region-level, it is also established that
many genetic syndromes are associated with Mb-level to chromosome-level specific
CNV events.

Besides of above-mentioned three considerations, we will also consider expanding
the CNV data repository and services from two aspects: (i) a web user interface and a
script API expansion based on Tomcat; (ii) further connections with a medical phe-
notype database such as the solution enabled by i2b2.

3 System Implementation

3.1 Analyzing Existing CNV Reports and Data Types

CNV event of a genomic region is measured by relative signal differences of genomics
features, which could be individual probe-sets for aCGH and SNP microarray, exons
for whole-exome sequencing (WXS) data, and genomic bins for whole-genome
sequencing (WGS) data. These original CNV signals, often referred as raw CNV data,
correspond to hybridization intensity differences in microarray or sequencing coverage
differences in NGS platforms. The raw CNV data will be typically normalized to
remove technical artifacts correlated with genomic contexts (e.g. GC content), and then
segmented to infer regional copy number changes using computational algorithm,
leading to a typical regional notation of start, end, and regional average amplitude of
segmented CNV data. To determine types of CNV, complex mathematics and prob-
ability models are often used to determine whether each segment of CNV is likely to
correspond to CNV calls, e.g. duplication, deletion events in DGV. As the consequence
of lacking a common schema, each individual CNV study may report CNVs at different
and incomparable levels due to several of reasons. For examples, the DGV database
collected all the called CNV events at regional levels, with both individual sample- and
study-population level; ExAC reported CNV frequency at exon- and gene-level, with
only availability of aggregated calls at population level; TCGA reported CNVs in both
regional and genomic feature levels (i.e. gene-level), with both segmented CNV and
CNV calls; CCLE and PDX studies only report gene-level segmented CNV values.
With all these inconsistent ways of reporting and publishing CNV results, various
levels of challenges exist to query CNV results from different studies and make efficient
data-reuse.

CNV data results could be reported from individual sample, or aggregated as
population-level. CNV event of a genomic region is measured by relative signal dif-
ferences of genomics features, which could be individual probe-sets for aCGH and
SNP microarray, exons for WXS, and genomic bins for WGS. CNV data are often

Building a Research-Quality Copy Number Variation Data Repository 151

expressed as a relative form comparing observed signals versus expect signals, such as
Log2Ratio (L2R) transformation: L2R = log2[(observed signal)/(expected signal)]. For
two channel aCGH measurement, the observed signal is measured from sample of
interest and expected signal coming from control channel; for whole genome
sequencing data, the observed signal is the actual observed coverage and expected
signal is expected average/median coverage in given sample. L2R = -inf, −1, 0, 0.58, 1
correspond to homozygous deletion, loss, normal copy number, one copy gain, and two
copies gain, respectively. According to review of existing CNV data sources, we
summarized three types of CNV results:

Feature L2R Data. The feature-level CNV data are defined as L2R CNV measure-
ments derived from individual genomic features, which could be microarray probe-sets
for SNP microarray and aCGH, or genomic regions either dividing according to
genomic coordinates or exon/gene coordinates. At this level, normalization has been
done to make different samples in a same study comparable, and further adjustment is
often made to remove technical artifacts correlated with genomic contexts (e.g. GC
content).

Segment L2R Data. Based on feature-level L2R data, the copy number segmentation
algorithm is often applied to smooth adjacent genomic features, to infer candidate CNV
events, each of which is defined by genomic start and end positions, as well as an
average L2R across multiple features in given segment. Non-CNV segments (i.e. close
to diploid state) are also reported at this level, and type of CNV events is not
determined.

CNV Call Data. Given multiple evidences, including segment-level L2R and noise
level within each CNV region, CNV event might be called as “loss” or “deletion” if the
genomic region is determined to be of less than 2 copies; “gain” or “amplification” if
more than 2 copies. Copy number neural event such as loss-of-heterozygosity
(LOH) might be called as well based on allelic imbalance evidence (Table 1).

Table 1. Overview of representative CNV data sources. DGV: Database of genomic variants;
ExAC: Exome Aggregation Consortium; TCGA: The Cancer Genome Atlas; CCLE: Cancer Cell
Line Encyclopedia; PCT: Patient derived xenograft clinical trial.

CNV data
sources

CNV data type Report level

Feature
L2R

Segment
L2R

CNV call Sample Population
Exon/gene
call

Segment-
call

DGV [11] x x x
ExAC [12] x x
TCGA [3] x x x x x
CCLE [18] x x x
PCT [19] x x

152 C. Wang et al.

3.2 Designing a CNV Common Data Schema

As reflected from our summary of existing data sources, CNV data types are hetero-
geneous and lack standards for harmonizing different CNV data sources. We selec-
tively described a few recommended elements included in the three types of collections
for making this genomic service reusable:

Data Collection. Data-collection includes basic CNV data and calling results, con-
taining chromosome coordinates and other details of CNV events. Noticeably, most of
the CNV data sources even not contain original CNV dosage (i.e. log2ratio data),
making the future reuse of data challenging. In addition, we found none of existing
CNV data sources contains confidence measurement of each called CNV region. To
address paucity of QC metrics, we made further recommendations to include several
additional meta-data:

• N_feature: number of CNV features used to derive the given CNV segment;
• Seg_L2R_Mean: mean estimate of log2ratio across multiple features in a same

segment;
• Seg_L2R_Std: standard-deviation estimate of log2ratio across multiple features in a

same segment.

Sample Collection. Sample collection contains basic sample-level metadata. Besides
of biological sample information such as original tissue type and reported gender, we
also recommended to include more details of CNV data-types and sample-level QC
metrics:

• data_type: type of CNV data, e.g. feature L2R, segment L2R, or CNV call;
• feature_type: the type of genomic features used for deriving CNV call, e.g. probe,

exon, or genomic bin;
• N_called_CNV: number of called CNV events in a given sample;
• smoothness: a sample-level QC metric describing the smoothness of feature-level

L2R data, defined as MAD(x_i − x_i + 1).

Study Collection. Study Collection contains basic study-level metadata, including
reference and contact information. Detailed metadata of each study, such as reference
literature and web link, are recommended to ensure future access and reproducible
research.

3.3 CNV Quality Assurance Module

In practice, it is very difficult to summarize quality metrics without accesses to original
data. While it may be infeasible to retrospectively assess and assure quality of existing
CNV data sources, we considered a quality assurance (QA) module with required
inputs of feature- and segment-L2R data. Specifically, we implemented R scripts to
form several CNV and sample-level quality metrics, in order to allow cross-platform
based examinations of important sample-level quality metadata. According to several
literatures focusing on CNV quality checks [14, 16], we included both CNV- and
sample-level metrics applicable to both microarray- and NGS-based CNV calls, such as

Building a Research-Quality Copy Number Variation Data Repository 153

smoothness and N_called_CNV defined in Sect. 3.2. In addition, we also implemented
a function for facilitating visual inspection of CNV QCs, which will be described in
more details in results sections.

3.4 ETL Processes and MongoDB Solution for Centralizing Each
Individual Data Sources

Several considerations were taken to develop the Extract-Transform-Load process
including; minimizing dependencies, modular code design, quality checks and database
performance. Python was chosen as a common scripting language that contained a
mature database connection library, pymongo. Python is used at various institutions,
which we anticipate will lower the barrier to entry for collaborators. These scripts have
been released under the MIT open source license. Due to each dataset having varied,
individual formatting, we decided rather than pursuing a robust single extraction
strategy requiring many iterations, we developed a single script per each new data
source. However, this strategy is mitigated by a collection of common, utility functions.
These functions include; formatting data types from strings, quality checking assumed
data type, and converting keywords. Each python script is a complete ETL operation
that follows a modular template. Each script follows these basic steps, check depen-
dencies, gather command line arguments, transform and load sample-meta data, check
then transform and load the CNV event data. The data transformations focused around
filling out our core schema, then allocating the overflow fields into a nested document,
with dynamic fields, retaining the keyword names from their source. An example of
this in DVG, is determining the genomic chromosome, start, and end fields, then
transforming the string based designation [loss, gain, deletion, duplication] to a stan-
dardized CNV call. Those fields along with associated metadata describing type where
saved in to the static, common core schema. The remaining fields specific to that data
source where just allocated to a nested object referred to as ‘features’. Thus both
common and specific fields can be queried, but only the common core fields can be
leveraged across multiple data types. The effort going forward is to determine which
fields in the dynamic schema can be transformed and moved into the common core.

For databasing solution, we used MongoDB storing the CNV data and associated
sample and study metadata. As a NoSQL database solution, MongoDB is a free and
open-source database program, with features such as cross-platform compatibility and
document-oriented flexibilities. MongoDB uses JSON-like documents with schemas,
which make it an inherent choice for leveraging a centralized API system. There are a
number of solutions that can provide API end points, for purposes we chose another
common choice written in Java; SpringMVC served by Tomcat. The coding strategy
follows the same path as the scripts, end points are specific to a use case, but there are
modular functions to minimize impact when adding another. For example there are end
points that return full records based on queries of gene symbols, genomic coordinates
or accession numbers. The underlining functions are then reused to provide summa-
rizations of those same records, by bins or field aggregations.

154 C. Wang et al.

4 Results

In this section, we will summarize two representative aspects of our results, for loading
and querying public data sources, and examining QC for an in-house PDX study.

4.1 A Draft Proposal of the CNV Common Data Schema

Through iterative literature and data source reviews, we designed CNV data common
schema, shown as Table 2. The common schema was recommend as minimum
requirement and additional recommendations were made to fulfil quality assurance and
further sample-/study-tracking purposes.

Table 2. CNV data common schema

Attribute name Brief description Collections in
MongoDB

Availability in
representative CNV
data sources

Data Sample Study DGV ExAC TCGA

genome_ver Reference genome version,
e.g. hg37, hg38

m m m ✓ ✓ ✓

study_unique_ID Unique identifier for a study m m m ✓ ✓ ✓

data_source_ID Unique identifier for a CNV
data source, e.g. TCGA

m m m

sample_unique_ID Unique identifier for a CNV
sample

m m ✓ ✓ ✓

Chr Chromosome of CNV event,
e.g. chr3

m ✓ ✓ ✓

start Bp-level start position of
CNV, e.g. 1001

m ✓ ✓ ✓

end Bp-level end position of
CNV, e.g. 8336

m ✓ ✓ ✓

CNV_call Called CNV event, e.g.
duplication

m ✓ ✓ ✓

Feature_type Type of CNV features, e.g.
probe, exon

o

N_feature Number of features in this
segmental CNV

o

Seg_L2R_Mean Log2ratio mean in this
segmental CNV

o

Seg_L2R_Std Log2ratio standard-deviation
in this segmental CNV

o

Seg.pval Nominal p-value of calling
this CNV

o

Seg.FDR False-discovery rate of
calling this CNV

o

(continued)

Building a Research-Quality Copy Number Variation Data Repository 155

4.2 CNV Data Entities of Loaded Public Data Sources

Here, we described two examples of loaded entities from two representative CNV data
sources, shown as Fig. 2. Besides of self-contained queries, MongoDB has a series of
flexible API for enabling communications with different programming languages, such
as C++, Python and R. In particular, we evaluated several solutions and identified
“rmongodb” R package as for enabling flexible and complex queries (https://gist.
github.com/Btibert3/7751989), with future statistical and visualization considerations.

Table 2. (continued)

Attribute name Brief description Collections in
MongoDB

Availability in
representative CNV
data sources

Data Sample Study DGV ExAC TCGA

bio_sample_type Type of samples, e.g. normal,
disease

m ✓

bio_sample_origin Type of sample tissue origin,
e.g. blood, breast, prostate

m ✓

report_type Type of CNV reports, e.g.
sample-level, population-
level

m ✓ ✓ ✓

data_type Type of CNV calls e.g.
exon-/gene-/segment-CNV
calls

m ✓ ✓ ✓

assay_type Type of assays used for CNV
calls, e.g. microarray, WXS

m ✓ ✓ ✓

feature_type Type of features used for
CNV calls, e.g. probe, exon

m ✓

N_called_CNV Number of called CNVs in
this sample

o

L2R_smoothness Log2ratio smoothness score
in this sample

o

study_reference_publication Reference publication for the
CNV study

m ✓ ✓ ✓

study_reference_websource Reference website for the
CNV study

m ✓ ✓

study_contact_person Whom to contact with for
data access

o

study contact email Email to contact with for data
access

o

study_contact_phone Phone to contact with for
data access

o

m: minimum requirement; o: optional but highly recommended

156 C. Wang et al.

https://gist.github.com/Btibert3/7751989
https://gist.github.com/Btibert3/7751989

4.3 Quality Assurance of a PDX CNV Dataset

In order to examine functionality of the CNV-QA module, we performed a case study
on an internal CNV dataset of SCNA samples measured from ovarian cancer patient-
derived xenograft (PDX) models, which were developed at Mayo Clinic (IRB: 09-
008768; IACUC: A60115-15). These PDXs are relevant to ovarian cancer patients
because they recapitulate patient disease in terms of histologic, genomic, and tran-
scriptomic heterogeneity [20–22]. Most importantly, the PDX response to
carboplatin/paclitaxel in vivo correlates with the matched patient clinical outcomes and
similarly, they demonstrate a high concordance of SCNAs with the matched patient
tumor [21]. In particular, SCNAs have been found associated with signaling mecha-
nisms mediating chemo-responses in ovarian cancer [23], and with ongoing as well as
future studies, these PDX models and their corresponding molecular data will continue
to grow. Given the established SCNA knowledge for ovarian cancer, it is of great
research interest to not only standardize methods to curate ovarian cancer SCNA data,
but also to ensure the quality of such data. Previously, SCNA profiling was performed
on 40 PDX models using the Agilent Human Genome CGH microarray kit 244A with
matched-patient reference germline DNA as described in [21]. CNV raw data were first
normalized to aCGH probe-level L2R signals, and CNV segments were inferred using
a circular binary segmentation algorithm [24]. Following related recommendations in
calling CNVs in tumor samples [25], L2R values of −0.1 and 0.1were used for CNV
loss and gain calling cutoffs, respectively. In practice, we found “smoothness” and
“N_called_CNV” are the most informative metrics to identify outlier samples. Shown
as Fig. 3(A) and (B), smoothness and N_called_CNV metrics are both of single-peak
distributions, while extreme values may indicate problematic samples. Figure 3(C)
showed a scatterplot between smoothness and N_called_CNV metrics, highlighting a
few representative PDX samples. Shown as Fig. 3(D) and (E), “PH036” and “PH079”
are two typical ovarian cancer samples with an expected high degree of genome
instability and many SCNA events; moderate smoothness scores suggest they have

Fig. 2. Examples of CNV entities retrieved from the genomic services: (A) a CNV event
reported at single germline sample level from DGV; (B) a CNV event reported at aggregated
population level from ExAC

Building a Research-Quality Copy Number Variation Data Repository 157

clean copy number measurements. In contrast, PDX “PH101” was derived from a
typical serous ovarian cancer but had very few called CNV events (Fig. 3F), consistent
with a diploid genome; after further pathology evaluation, it was found to be an
unintended EBV transformed lymphoma rather than the originally implanted ovarian
tumor, which happens occasionally from co-transplantation of human tumor infiltrating
lymphocytes in the immunodeficient mice [26]. In Fig. 3(G), we further found an
extremely noisy PDX sample associated with an ultra-high smoothness score that was
later explained by low input DNA from a recurrent ovarian tumor. Together, these
examples support the QA module as a useful correlate to PDX validation in addition to
the CNV data for which the assay was designed.

5 Discussions

A number of CNV datasets have been generated using various techniques to understand
common population diversity, human disease risks and tumor genomic landscapes.
These techniques include fluorescence in situ hybridization (FISH), array comparative
genomic hybridization (aCGH), SNP microarray and next-generation sequencing
techniques [10]. Given large volume of existing CNV data and increasing knowledge
around CNVs, there are great incentives to curate and reuse existing CNV data for
addressing basic and translational research questions. Several annotation tools and
aggregation databases have been developed for the purpose. For examples, using text-
mining based approaches to curate CNV with disease phenotype relationships [27], and

Fig. 3. Example outputs of PDX CNV data from quality assurance module. (A) a histogram of
smoothness scores, (B) a histogram of N_called_CNV scores; (C) a scatterplot between
smoothness and N_called_CNV scores, with highlighted PDX models. (D–G) whole-genome
CNV plots for highlighted PDX models.

158 C. Wang et al.

developing annotation tools to predict likely functional and pathogenic status of CNV
events [28]. However, for each CNV study, a series of platform-specific processing and
bioinformatics procedures are needed to convert raw data to actual CNV data. The
exact CNV calling procedures may significantly differ among various methods, as well
as be limited by data platforms. Moreover, basic meta-data are required to make
different studies comparable, e.g., projects focusing on health individuals (e.g.
1000 genome project), human cancer models (e.g. cell line and xenograft studies [18,
19]), and patient tumor cohorts (e.g. the cancer genome atlas) [3]. The pilot studies
described in this manuscript are based on thorough surveys of existing CNV data
sources and phenotype databases, and intended to further leverage existing data and
knowledge to overcome the challenges towards efficient CNVs data re-use. In brief, we
developed ETL methods that can effectively aggregate different CNV data sources and
reconcile CNV data in a common schema, from DGV [11], ExAC [12], and TCGA [3].

From designing stage, our common data schema was intended to accommodate
different CNV data sources with heterogeneous formats. Our initial design could be of
limited scopes and restricted by our views of required data formats. It is of community
interest, we believe, to refine and agree upon such common data schema. During ETL
processes of loading different data sources to central database, we often found
ambiguous mappings from original terminologies of individual data source to standard
attributes we recommended: e.g. DGV does not distinguish “gain” or “amplifications”
for increased DNA copy numbers while TCGA has strictly different definitions of
different degrees of increased copy numbers. Further, population-level aggregations of
CNV reports, such as from ExAC, often impose challenges of checking and assuring
qualities of CNV events. All these issues are also obstacles of the FAIR data principles
and thereby required future community-based efforts to address. Noticeably, genomic
data standards have been separately developed by several major initiatives, including
the NCI’s Genomic Data Commons (GDC) (https://gdc.cancer.gov/), the Global Alli-
ance for Genomics and Health (GA4GH) (http://genomicsandhealth.org/), and HL7
Fast Healthcare Interoperability Resources (FHIR) (https://www.hl7.org/fhir/). As more
genomic CNV data and results being generated, it is critical to reach community-based
consensus and develop corresponding CNV API services to standardize CNV data
exchange formats, specify quality assurance practices, as well as enable CNV data
sharing and collaborations.

As another highly valuable future work, we will integrate the CNV genomic data
repository with medical phenotype database, for examining samples with phenotype-
implicated CNVs, such as severe clinical syndromes or research-reported phenotype
associations. For examples, some large CNV regions have been reported associated
with hyperlipidemia [29, 30], essential hypertension of extreme blood pressures [31],
type-2 diabetes and extreme obesity [32, 33]. At gene-level, several research obser-
vations have also been reported with treatment implications, e.g. amplification of
CCNE1 gene has been reported associated with resistant to chemo-therapies [23, 34].
Noticeably, there already exist several CNV phenotype collections curated by genomic
community, such as DECIPHER (https://decipher.sanger.ac.uk/), ISCA (http://
dbsearch.clinicalgenome.org/search/) and ClinVar databases (https://www.ncbi.nlm.
nih.gov/clinvar/). These would serve as important phenotypic information sources for
us to expand our CNV genomic repository in the future.

Building a Research-Quality Copy Number Variation Data Repository 159

https://gdc.cancer.gov/
http://genomicsandhealth.org/
https://www.hl7.org/fhir/
https://decipher.sanger.ac.uk/
http://dbsearch.clinicalgenome.org/search/
http://dbsearch.clinicalgenome.org/search/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/

6 Conclusions

We summarized our preliminary efforts of designing, developing and evaluating a
CNV data repository with genomic service for effectively managing storage and
enabling flexible queries of various CNV data sources. We will make continuous
efforts to expand and share the genomic service as an open-source solution in col-
laboration with genomic and translational research communities. Currently, we make
an open-source project calling for collaborative participants and community-orientated
improvements and the project GitHub website is available at: https://github.com/
raymond301/CNVdb-Mongo-ETL.

Acknowledgements. The study is supported in part by a NIH BD2KOnFHIR U01 project (U01
HG009450), a NCI U01 Project – caCDE-QA (U01 CA180940), the Mayo Clinic Specialized
Program in Research Excellence (SPORE) grant P50 CA136393, R01 CA184502 from the
National Institutes of Health, Minnesota Ovarian Cancer Alliance, and Ovarian Cancer Research
Fund Alliance.

References

1. Gamazon, E.R., Stranger, B.E.: The impact of human copy number variation on gene
expression. Brief. Funct. Genomics 14(5), 352–357 (2015)

2. Karlsson, J., Larsson, E.: FocalScan: scanning for altered genes in cancer based on
coordinated DNA and RNA change. Nucleic Acids Res. 44(19), e150 (2016)

3. Zack, T.I., et al.: Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45(10),
1134–1140 (2013)

4. Bragin, E., et al.: DECIPHER: database for the interpretation of phenotype-linked plausibly
pathogenic sequence and copy-number variation. Nucleic Acids Res. 42(Database issue),
D993–D1000 (2014)

5. Zarrei, M., et al.: A copy number variation map of the human genome. Nat. Rev. Genet. 16
(3), 172–183 (2015)

6. Wain, L.V., Armour, J.A., Tobin, M.D.: Genomic copy number variation, human health, and
disease. Lancet 374(9686), 340–350 (2009)

7. McCarroll, S.A., et al.: Integrated detection and population-genetic analysis of SNPs and
copy number variation. Nat. Genet. 40(10), 1166–1174 (2008)

8. Wang, C., et al.: PatternCNV: a versatile tool for detecting copy number changes from
exome sequencing data. Bioinformatics 30(18), 2678–2680 (2014)

9. Wang, W., et al.: Target-enrichment sequencing and copy number evaluation in inherited
polyneuropathy. Neurology 86(19), 1762–1771 (2016)

10. Zhao, M., et al.: Computational tools for copy number variation (CNV) detection using next-
generation sequencing data: features and perspectives. BMC Bioinf. 14(Suppl 11), S1 (2013)

11. MacDonald, J.R., et al.: The database of genomic variants: a curated collection of structural
variation in the human genome. Nucleic Acids Res. 42(Database issue), D986–D992 (2014)

12. Karczewski, K.J., et al.: The ExAC browser: displaying reference data information from over
60 000 exomes. Nucleic Acids Res. 45(D1), D840–D845 (2017)

13. Wilkinson, M.D., et al.: The FAIR guiding principles for scientific data management and
stewardship. Sci. Data 3, 160018 (2016)

160 C. Wang et al.

https://github.com/raymond301/CNVdb-Mongo-ETL
https://github.com/raymond301/CNVdb-Mongo-ETL

14. Diskin, S.J., et al.: Adjustment of genomic waves in signal intensities from whole-genome
SNP genotyping platforms. Nucleic Acids Res. 36(19), e126 (2008)

15. Staaf, J., et al.: Normalization of illumina infinium whole-genome SNP data improves copy
number estimates and allelic intensity ratios. BMC Bioinf. 9, 409 (2008)

16. Ginsbach, P., et al.: Copy number studies in noisy samples. Microarrays 2(4), 284–303
(2013)

17. Cooper, N.J., et al.: Detection and correction of artefacts in estimation of rare copy number
variants and analysis of rare deletions in type 1 diabetes. Hum. Mol. Genet. 24(6), 1774–
1790 (2015)

18. Barretina, J., et al.: The cancer cell line encyclopedia enables predictive modelling of
anticancer drug sensitivity. Nature 483(7391), 603–607 (2012)

19. Gao, H., et al.: High-throughput screening using patient-derived tumor xenografts to predict
clinical trial drug response. Nat. Med. 21(11), 1318–1325 (2015)

20. AlHilli, M.M., et al.: In vivo anti-tumor activity of the PARP inhibitor niraparib in
homologous recombination deficient and proficient ovarian carcinoma. Gynecol. Oncol. 143
(2), 379–388 (2016)

21. Weroha, S.J., et al.: Tumorgrafts as in vivo surrogates for women with ovarian cancer. Clin.
Cancer Res. 20(5), 1288–1297 (2014)

22. Glaser, G., et al.: Conventional chemotherapy and oncogenic pathway targeting in ovarian
carcinosarcoma using a patient-derived tumorgraft. PLoS ONE 10(5), e0126867 (2015)

23. Etemadmoghadam, D., et al.: Integrated genome-wide DNA copy number and expression
analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas.
Clin. Cancer Res. 15(4), 1417–1427 (2009). An official journal of the American Association
for Cancer Research

24. Olshen, A.B., et al.: Circular binary segmentation for the analysis of array-based DNA copy
number data. Biostatistics 5(4), 557–572 (2004)

25. Mermel, C.H., et al.: GISTIC2.0 facilitates sensitive and confident localization of the targets
of focal somatic copy-number alteration in human cancers. Genome Biol. 12(4), R41 (2011)

26. Butler, K., et al.: Ovarian cancer tumorgraft: viral latency propagates lymphoma. Gynecol.
Oncol. 127(1), S16 (2012)

27. Qiu, F., et al.: CNVD: text mining-based copy number variation in disease database. Hum.
Mutat. 33(11), E2375–E2381 (2012)

28. Zhao, M., Zhao, Z.: CNVannotator: a comprehensive annotation server for copy number
variation in the human genome. PLoS ONE 8(11), e80170 (2013)

29. Pollex, R.L., Hegele, R.A.: Copy number variation in the human genome and its
implications for cardiovascular disease. Circulation 115(24), 3130–3138 (2007)

30. Shia, W.C., et al.: Genetic copy number variants in myocardial infarction patients with
hyperlipidemia. BMC Genom. 12(Suppl 3), S23 (2011)

31. Marques, F.Z., et al.: Measurement of absolute copy number variation reveals association
with essential hypertension. BMC Med. Genomics 7, 44 (2014)

32. Wang, K., et al.: Large copy-number variations are enriched in cases with moderate to
extreme obesity. Diabetes 59(10), 2690–2694 (2010)

33. Prabhanjan, M., et al.: Type 2 diabetes mellitus disease risk genes identified by genome wide
copy number variation scan in normal populations. Diabetes Res. Clin. Pract. 113, 160–170
(2016)

34. Patch, A.M., et al.: Whole-genome characterization of chemoresistant ovarian cancer. Nature
521(7553), 489–494 (2015)

Building a Research-Quality Copy Number Variation Data Repository 161

DEAME - Differential Expression
Analysis Made Easy

Milena Kraus(B), Guenter Hesse, Tamara Slosarek, Marius Danner,
Ajay Kesar, Akshay Bhushan, and Matthieu-P. Schapranow

Hasso Plattner Institute, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany
{milena.kraus,guenter.hesse,schapranow}@hpi.de

{tamara.slosarek,marius.danner,ajay.kesar}@student.hpi.uni-potsdam.de
https://www.hpi.de

Abstract. Differential gene and protein expression analysis reveals clin-
ically significant insights that are crucial, e.g., for systems medicine
approaches. However, processing of data still needs expertise of a com-
putational biologist and existing bioinformatics tools are developed to
answer only one research question at a time. As a result, current auto-
mated analysis pipelines and software platforms are not fully suited to
help research-oriented clinicians answering their hypotheses arising dur-
ing their clinical routine. Thus, we conducted user interviews in order
to identify software requirements and evaluate our research prototype of
an application that (i) automates the complete preprocessing of RNA
sequencing data in a way that enables rapid hypothesis testing, (ii) can
be run by a clinician and (iii) helps interpreting the data. In our contribu-
tion, we share details of our preprocessing pipeline, software architecture
of our first prototype and the identified functionalities needed for rapid
and clinically relevant hypothesis testing.

Keywords: Differential expression analysis · Explorative analysis ·
Rapid hypothesis testing · Web application

1 Introduction

Analysis of differential expression (DE) is the process of identifying genes or
proteins that have an altered level of expression in a group of samples, which is
statistically significant when compared to another. The differences in expression
levels may be the result of a disease or other perturbations of the examined cells
or tissues. Therefore, the identification of the differences can lead to biomarkers
of a disease [11] or a transcriptomic profile that may be reversed through a new
or existing treatment.

The development of next-generation sequencing (NGS) techniques have
enabled the usage of RNA sequencing (RNAseq) data as primary source for DE
analysis [5]. Processing of raw RNA reads includes a pipeline of quality control,
read alignment and quantification, all of which require a sophisticated selection
of tools and methods [6]. Byron et al. describe examples for how analysis of
c© Springer Nature Switzerland AG 2019
V. Gadepally et al. (Eds.): Poly 2018/DMAH 2018, LNCS 11470, pp. 162–174, 2019.
https://doi.org/10.1007/978-3-030-14177-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14177-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-14177-6_13

DEAME - Differential Expression Analysis Made Easy 163

RNAseq can benefit clinical practice. However, the great flexibility and resulting
complexity for RNAseq have hindered its path to the clinic so far [5].

In recent years, many studies, e.g., in the context of systems medicine,
included a detailed clinical examination of patients, supported by a molecu-
lar characterization via omics technologies [10]. Oftentimes these studies have
an observational, i.e., a non-interventional character and do not include the
effect of an active perturbation, e.g., testing a new drug or therapy in a defined
environment. Thus, effects on the molecular level, e.g., in gene expression, are
the result of many in vivo factors. Research-oriented clinicians, i.e., physicians
that work in part as a physician but also conduct research on their patients,
observe these in vivo factors, such as gender or previous diagnoses, but only
have a limited understanding and capability to interpret DE results. Contrary,
computational biologists have little insights into clinical practice and thus, their
research hypotheses are mainly motivated by literature. In order to find and val-
idate a joint research hypothesis the clinician and the computational biologist
must interact and communicate efficiently.

In our contribution, we share a software systems architecture as well as our
first prototypical web application, which will enable clinicians and computational
biologists to rapidly perform exploratory hypothesis testing in the context of
observational studies. The hypothesis testing is based on gene as well as protein
expression data and results are visualized within the proposed application.

Our contribution is structured as follows: First, we describe the generic pro-
cess of how differential expression analysis is performed traditionally in Sect. 2
and how it has been implemented in related work so far (Sect. 3). In Sect. 4
we share details of our user research, which results in specific software require-
ments. The developed software systems architecture and application prototype
are described in Sect. 5.

2 The Differential Expression Analysis Process

We provide a generic process model of all steps needed for a DE analysis ema-
nating from an RNA sequencing experiment using Business Process Modeling
Notation (BPMN) in Fig. 1. The pipeline is based on Conesa et al. [6] and resem-
bles many of the implemented pipelines described in Sect. 3.

Differential
Expression
Calculation

Annotation
and

Interpretation

Experimental
Design and
Experiment

Bioinformatics
Preprocessing

Visualization

Design Matrix
Raw Reads

Bam-Files
Quality Control

Metrics
Count Matrix

List of DE Genes
Fold Changes

Statistic Measures

Fig. 1. Generic differential expression process steps and their results.

164 M. Kraus et al.

Experimental Design. Inherent to DE analysis are at least two groups of
samples that are assumed to show differences in gene expression. These groups
need to be specified before in vitro testing in order to plan and design the wet
lab process, such as treatment with a specific chemical or drug. In contrast, the
clinical context usually assumes in vivo experiments, e.g., biopsy analysis for
a group of diseased patients as well as a healthy control group. Many of these
studies are purely observational and factors that contribute to the differential
gene expression are multiple and therefore not defined as clearly as in the in
vitro setup. Confounding factors, such as batch effects or other patient specific
clinical parameters, should be recorded and taken into account when analyzing
DE results. As a result, the researcher needs to define a design formula which
resembles the research hypothesis and is the basis of any DE experiment. The
formula is then provided as input of the pipeline.

Bioinformatics Preprocessing. The sequencing process results in raw reads.
Raw reads go through quality control and in some cases need to be trimmed
from adapter sequences prior to alignment. All reads are aligned to a reference
genome or transcriptome. In the best case all genomic ranges, such as a gene, an
exon or coding region, are covered by multiple reads after the alignment step.
Counting tools calculate the exact quantity of reads per given genomic range.

Differential Expression Calculation is the statistical process of finding sig-
nificant expression differences of two or more groups as defined in the experimen-
tal design. In short, all counts of a genomic range in one group are compared to
the counts of the same range in another group of samples. The calculation pro-
vides information about the fold change, i.e., how much more counts where found
in one group when compared to the other. Additionally, p-values are given, which
are adjusted for multiple testing as many data sets comprise 10–20 k genomic
regions to compare.

Visualization of results is a critical part in DE analysis as raw and trans-
formed data as well as DE results are usually high in dimension and therefore
need to be displayed in a comprehensive format. Frequently used techniques are
principal component analysis and clustering of data. Both give an impression of
similarity between the analyzed samples. For example, plotting samples on their
corresponding first and second principal component (dimension of largest varia-
tion) should result in scatters of samples grouped according to the experimental
design formula. Accordingly, clustering algorithms should be able to find clusters
and a dendrogram resembling the desired study groups. Clustered heatmaps are
specifically popular as they can display sample-to-sample as well as gene-to-gene
relationships and the corresponding normalized and log transformed count val-
ues in a single diagram. Volcano plots depict the p-value versus expression fold
change between two conditions. Differentially expressed genes or proteins are
usually marked and therefore the plot gives a good overview of all results. Many
more diagnostic plots are used as, e.g., depicted in a bioconductor workflow [17].

DEAME - Differential Expression Analysis Made Easy 165

Annotation and Interpretation. Annotation and interpretation of results is a
critical and complex part of the analysis. Typically, more than 100 genes/proteins
are found to be differentially expressed between patient groups. Regarding the
most relevant expression changes, a manual search for function and involved
pathways is performed. Gene Ontology (GO) annotation and Gene Set Enrich-
ment Analysis (GSEA) help to find perturbed anatomical structures, biochemical
processes or pathways in an automated manner.

3 Related Work

Gaur et al. provide an overview about automated RNAseq analysis platforms
and a short description of their utility [9]. Four of the tools listed by Gaur et al.
show similarities to our approach:

The main aim of RAP [7] is to provide an RNAseq tool that does not need to
be installed on the client side. The web interface provides possibility for data sub-
mission and a browsing facility for results exploration. While the overall appear-
ance seems more user friendly than command line tools, the platform is suited
for users with bioinformatics knowledge that are able to configure pipelines and
interpret results. Furthermore, RAP offers a great variety of possibilities for ana-
lyzing RNAseq data and thus, no focus on DE analysis. Especially visualizations
and plots are not available so far. DE genes are given as lists.

RNAminer [14] provides three different fully parameterized pipelines that
work simultaneously and results are consolidated among the pipeline. However,
the resulting DE genes are given as text files and any new hypothesis needs
an upload of files and a manual specification of two groups of samples at the
maximum.

QuickNGS [21] has many options to analyze a variety of NGS data and thus
lacks visualizations and functions that are specific for RNAseq analysis. Again,
results are only given in lists. Plots are limited to a static clustered heatmap
and a PCA plot. Additionally, experimental design is static and as described
within the publication only usable for two groups (sample and control) plus
batch effects.

Wolfien et al. implemented TRAPLINE for automated analysis of RNAseq
data, evaluation and annotation within the Galaxy framework [3,22]. The
TRAPLINE workflow was built to enable experimentalists to analyze data with-
out requiring programming skills [22]. In addition to preprocessing and DE
calculation, it provides several lists of results and help or links for visualizing
data. Additionally, links to annotation and interpretation tools are given. RAP
and RNAMiner are both closed source web applications, while QuickNGS and
TRAPLINE (as a Galaxy implementation) offer the possibility to setup a private
instance.

In general, most state-of-the-art tools are designed for users with some bioin-
formatics knowledge that is needed to configure the pipelines and interpret the
data. Moreover, some applications are built on the assumption that there is only
a single experimental design or perturbation to be tested on. As a result, all

166 M. Kraus et al.

programs mentioned have at least two of the following drawbacks: (i) No ad-
hoc or only static visualization for DE results, (ii) a static experimental design
and/or a resulting (iii) cumbersome reconfiguration for any new hypothesis to be
tested. Additionally, the complete pipeline including preprocessing is repeated
in every analysis of the input data, which results in redundancy when multiple
hypotheses are tested on the same or a subset of samples. While the listed tools
work well for interventional studies and a single hypothesis, a new approach is
needed in the case of observational setups and many hypothesis.

4 Requirements Engineering

The idea and development of the web application has been discussed and
evaluated iteratively within the Systems Medicine Approach for Heart Failure
(SMART) consortium based on an RNAseq raw data and clinical data raised
within an observational study on heart failure patients. Several iterations on
mockups and prototypes were conducted within the SMART consortium, which
consists of research-oriented clinicians, molecular and computational biologists.

In a literature survey, we identified relevant and state-of-the-art preprocessing
tools as well as DE calculation and visualization options. In order to validate the
pipeline as described in literature, we conducted informal phone interviews with
experts from different research institutes that focus on the analysis of RNAseq
data and DE analysis. We discussed all steps of the technical pipeline to deter-
mine the acceptance of tools within the user community and shortcomings of
selected programs.

In the following, key findings gathered in user research and literature review
are assembled to identify concrete user groups of our application.

4.1 User Groups

We identified and characterized two user groups of our application: The
Research-oriented Clinician who is interested in (i) testing own hypotheses
based on daily observations and assessed clinical parameters and (ii) interpre-
tation of DE results in the clinical context, e.g., if results point to a disease,
a potential treatment or interesting research directions. All of that should not
require any programming skills. The Computational Biologist is primarily
interested in a statistically accurate preprocessing pipeline and calculation of
DE results. The execution of the pipeline should require minimum input and
configuration. It should allow ad-hoc exploration and analysis of DE experiment
results. Furthermore, the computational biologist would like to get publication-
ready result reports.

While the computational biologist has little insights with respect to the
patients studied and the resulting hypotheses, the clinician cannot perform bioin-
formatic processes and algorithms alone. Frequently, the clinician has no expe-
rience with omics data and therefore does not know what information can be

DEAME - Differential Expression Analysis Made Easy 167

obtained from it. Communication on interesting results and strategies on fur-
ther investigations is therefore hampered. Therefore, both user groups need a
platform that provides a common ground for discussion.

4.2 Software Requirements

Based on our user research observations and the shortcomings of related plat-
forms as depicted in Sect. 3, we specified the following software requirements (R)
of our DEAME application.

R 1 Automated Preprocessing: Only a single program execution is needed
to preprocess raw RNAseq reads to count matrices.

R 2 Pipeline Configuration Options: The pipeline may be altered and con-
figured by the computational biologist, but does not need to.

R 3 Split of Pipeline: Bioinformatics tools within the processing pipeline need
to allow a split into preprocessing and experimental design/DE calculation.

R 4 State-of-the-art Tools: All bioinformatics tools need to be well-
established and accepted within the scientific community.

R 5 Clinical Information: Clinical data on the samples needs to be readily
accessible to setup the experimental design.

R 6 Rapid Experimental Design Creation: The translation of the clinician’s
hypothesis into an experimental design matrix needs to be easy and fast.

R 7 Interactive Visualization of Results: Results of DE calculation are high
in dimensionality and need proper and interactive visualization.

R 8 Actionable Information on Results: Additional information on DE
calculation results need to be provided within the application context, i.e.,
publications on regulated genes may be available.

R 9 Usability: The overall workflow should resemble the research process. The
representation needs to be visually appealing but at the same time correct
in content. The application provides sufficient features for the computational
biologist yet comprehensible for the clinician.

5 DEAME Application

Our DEAME application is part of the systems medicine IT infrastructure
(SMART IT platform) described in [12] and uses resources, such as the worker
framework and the in-memory database, provided by the AnalyzeGenomes (AG)
platform [18]. In Fig. 2, the overall software architecture of the DEAME applica-
tion as well as relevant parts of the SMART platform are modeled using Funda-
mental Modeling Concepts (FMC). A thorough explanation of all components
will be given in this section.

168 M. Kraus et al.

In-Memory Database

Clinical Data Omics Counts

Experimental
Parameters Results

R
Client

Rserve

DE
calculation

Research-oriented
Clinician/

Computational
Biologist

R

DE Application

Experimental
Design

Interactive
Visualizations

Knowledge
Cockpit

AG Worker
Framework

Preprocessing
Pipeline

Fig. 2. Software system architecture of the DEAME application including parts pro-
vided by the SMART and AnalyzeGenomes IT infrastructure [12,18].

5.1 Data Layer

An in-memory database contains all frequently accessed data: The patient centric
star schema of the SMART platform was expanded within the experiment part
(please refer to [12] for further details on the clinical data and security aspects).
Tables for counts, as they are produced within the preprocessing as well as inten-
sities from, e.g., proteomics data, are added as well as tables for experimental
parameters and results of DE calculation. Furthermore, an R client is established
to perform DE calculation within an Rserve instance.

5.2 Platform Layer

The platform layer contains the preprocessing pipeline, experimental setup infor-
mation and DE calculation functionality. The split into preprocessing and exper-
imental design plus DE calculation is a design decision that limited the selection
of tools to be used within the pipeline when compared to the traditional setup
as in Sect. 2. The split resembles the need given within a clinical setting, where
many hypotheses may be tested and thus, the experimental design for DE calcu-
lation is not known before preprocessing of raw data. As a result, preprocessing
and DE calculation are independent from each other.

Technical Preprocessing Pipeline. In our architecture, the preprocessing is
embedded within the worker framework of AnalyzeGenomes, which provides a
scalable runtime environment for automatic execution of BPMN pipeline models.
In Fig. 3, we describe the pipeline, input and output of the individual steps and
the order in which they are executed. The boxes represent applications, i.e.,
python wrappers around the incorporated bioinformatics tools, e.g., TopHat.

DEAME - Differential Expression Analysis Made Easy 169

Such programs could be extended and interchanged when new tools need to be
introduced.

TopHat

Trimmomatic

FASTQC

STAR featureCounts

Count Matrix

Aligned
Reads

FASTQC

Trimmed
Reads

QC-Report

Raw Reads

QC-Report

Fig. 3. Specific implementation of our RNAseq preprocessing pipeline

We identified the following tools to be suitable for our first prototype:
FastQC [2] for quality control before and after trimming of reads with trim-
momatic [4], Tophat [20] or STAR [8] for alignment of reads to the reference
genome, and featureCounts [15] for creating count tables from alignment files.
In this setup, all samples will be preprocessed only once to avoid redundancies.

DE Calculation and Design Formula Creation. DE calculation as
explained in Sect. 2 is done via DESeq2 [16] within our Rserve instance. DESeq2
is called from a stored procedure within our in-memory database and requires
the raw count table as generated by our preprocessing pipeline. Furthermore,
DESeq2 receives metadata on the selected patients, i.e., user selected features
and the corresponding design formula, e.g., gender + age + gender:age. We
reduced the number of possible designs to be a two-factorial, two-level design
with an interaction term to allow for sufficiently large study groups in small data
sets. Factors in the clinical data are of differing statistical types, i.e., they consist
of numerical data, e.g., age, binary data, e.g., gender, or categorical data, e.g.,
race, as given in Table 1. Furthermore, categorial data can be differentiated to
be exclusive, i.e., a patient can only be described by one category (blood group),
or non-exclusive, i.e., a patient may be assigned to more than one instance of a
category (e.g., different medications). The type of data defines how it is handled
within in the experimental design procedure.

In this setting, any given factor needs to be split into two levels as specified
by the user and therefore will be reduced to a binary representation (Table 1).
While levels are natural in the case of binary data, the levels of numerical
and categorial data need user input. In the case of numerical data the user
defines a split point x which divides the values into two groups. For exclusive
categorial data, the user chooses at least one instance of the factor per level
or can combine multiple instances into one level. Non-exclusive factors need
one binary representation per instance. Thus, e.g., the instance “Beta-blocker”
of the factor “Medications” is split into being present or absent (yes/no). A

170 M. Kraus et al.

Table 1. Description of statistical data types, factors and their corresponding binary
representation (levels).

Data type Factor full range example Binary level example

Binary Gender
Male/Female

Male = all male patients
Female = all female patients

Numerical Age
0–90 years

Below x = [0 – x)
AboveAnd x = [x – 90]

Categorial
exclusive

Blood group
A, B, AB, 0

Blood 1 = A, B, AB
Blood 2 = 0

Categorial
non-exclusive

Medication
Beta-blocker, Aspirin, Thyroxin

Med yes = Aspirin yes
Med no = Aspirin no

second instance of the factor can be used to create a second factor. Factors
and levels are subsequently translated into the design formula as expected by
DESeq2.

Interactive Visualization and Annotation. Many results and intermediate
results are of interest for both the clinician and computational biologist. Quality
control as done by FASTQC produces an html-file for every sample which is
stored and accessed for display within the application. Additionally, results from
DESeq2, i.e. the list of DE genes, their test statistics and also the complete
normalized and transformed count matrix, are visualized within the application.
Interactive heatmaps are implemented via the clustergrammer software and its
biology-specific extensions to show gene/protein names, cluster statistics and
GSEA [1]. Further plots are implemented as D3 library extensions.

5.3 Application Layer

Our application consists of three parts: (i) the experimental design panel, (ii) a
visualization panel and (iii) a knowledge panel.

Experimental Design Panel. The experimental design panel is the main part
of the application as it enables to dynamically choose interesting clinical patient
data categories to be studied in DE analysis (Fig. 4). The overall goal is to split
the patient population into at least two subgroups based on the patients’ char-
acteristics. For demonstration purposes, we use data from the SMART study.
Patients are characterized by approx. 200 clinical variables (e.g., gender, height,
blood pressure) that are grouped in categories (e.g., demographics or ECG mea-
surements). All categories are displayed and may be expanded to show the vari-
ables. Binary variables and non-exclusive categorical data can be dragged into
the design matrix directly. Continuous variables are split by the user via an inter-
active slider over the full range of possible values. Exclusive categorical variables

DEAME - Differential Expression Analysis Made Easy 171

Fig. 4. Screenshot of experimental design panel.

may be combined within one column of the design matrix via drag-and-drop.
The design matrix displays factors and levels, calculates group sizes and pro-
vides an estimation on the achieved statistical power at user interaction. After
the creation of a valid design, i.e. at least three samples in every group, DeSEQ2
is triggered with the corresponding count tables generated in the preprocessing
step via the ‘Run Experiment’-button.

Visualization Panel. Within the visualization panel the user may choose
between four different tabs to choose plots on quality control of the prepro-
cessing from FASTQC, overall characteristics of the data (e.g., PCA, sample-to-
sample heatmap) and DE results (e.g., interactive heatmap, volcano plot, list of
Genes/proteins and their statistics). A mouse over on genes/proteins displays a
short description and clusters are clickable for statistics and for an update of the
literature search. All results can be downloaded into a publication-ready report.

Knowledge Panel. Especially the clinician needs additional external informa-
tion on analysis results. Instead of querying for mere names of, e.g., a gene,
the found relationship, e.g., effects of upregulation of a gene or the disease con-
text, are included in the query to find actionable insights. Examples for external
resources that can be leveraged are search engines such as Olelo [13] for intelli-
gent PubMed queries or DisGeNet [19] for gene-disease associations.

172 M. Kraus et al.

6 Evaluation and Discussion

Our DEAME application is designed for users with limited to no bioinformatics
knowledge while using state-of-the-art tools to meet scientific needs for accuracy
(R 4, R 9). It allows easy configuration of design parameters based on the actual
clinical patient information (R 5). Bioinformatics processing of raw RNA reads
is completed automatically in the background to yield count matrices (R 1,
R 2). The split of the pipeline (R 3) does not necessarily reduce the time to test
a single hypothesis, but it avoids redundant preprocessing and thus eliminates
computational overhead as soon as multiple hypotheses are tested. We bridge the
gap between DE calculations and their clinical interpretation by the experimental
design panel. Static design formulation as used in related work is exchanged by
a more flexible handling that allows for ad-hoc adaptions (R 6). The interactive
plots do not require additional experience or tools and display information on
the found genes and proteins (R 7). Additionally, our knowledge panel shows
literature on the found genes/proteins and includes the context of the analysis
to provide actionable insights (R 8).

Within most of the used tools there are many options to fine-tune the anal-
ysis. We purposely do not use many of these options as they most certainly
will confuse the clinician as a user. We expect the results set of regulated genes
or proteins to be smaller than within a fine-tuned environment. While this is
a drawback in a detailed analysis of a computational biologist, the clinicians
we spoke to are interested primarily in the strong signals and are pleased with
a shorter list of candidate genes/proteins. If a specific hypothesis turns out to
be worth more research, the computational biologist may take over or a follow-
study can be set up. Our application provides a platform for communication in
DE results between the research-oriented clinician and the computational biol-
ogist. The concept of DEAME is aimed for use in observational studies, e.g., in
the systems medicine context, were study design lacks a strong intervention or
treatment factor to test in differential expression analysis.

7 Conclusions and Future Work

For the first time, requirements of a clinicians were included and matched with
those of computational biologists in the design of an RNAseq and DE calculation
platform. As a result, we planned and implemented a research prototype of an
application that (i) automates the complete preprocessing of RNA sequencing
data in a way that enables rapid hypothesis testing, (ii) can be run by a clinician
and (iii) helps interpreting the data. Our first working prototype will be validated
in terms of specificity of the results set and the usability of the application within
the SMART systems medicine consortium.

In addition to the RNAseq data, we have also started to use our framework
to analyze DE proteins as calculated from shot gun proteomics. We will also
extend possible design formulas to enable more complex experimental designs.
Currently, our application is only usable within the SMART project, but as

DEAME - Differential Expression Analysis Made Easy 173

soon as the data is published, we plan to provide free of cost access to the web
application. Users will then be able to browse the rich SMART data or to create
own projects to explore.

Acknowledgement. Parts of this work were generously supported by a grant of the
German Federal Ministry of Education and Research (031A427B).

References

1. Clustergrammer’s Documentation. http://clustergrammer.readthedocs.io/index.
html

2. FASTQC Documentation. http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc
3. Afgan, E., et al.: The Galaxy platform for accessible, reproducible and collaborative

biomedical analyses: 2016 update. Nucl. Acids Res. 44, W537–W544 (2016)
4. Bolger, A.M., Lohse, M., Usadel, B.: Trimmomatic: a flexible trimmer for Illu-

mina sequence data. Bioinformatics 30, 2114–2120 (2014). https://doi.org/10.
1093/bioinformatics/btu170

5. Byron, S.A., et al.: Translating RNA sequencing into clinical diagnostics: oppor-
tunities and challenges. Nat. Rev. Genet. 17, 257 (2016)

6. Conesa, A., et al.: A survey of best practices for RNA-Seq data analysis. Genome
Biol. 17(1), 13 (2016)

7. D’Antonio, M., et al.: RAP: RNA-Seq analysis pipeline, a new cloud-based NGS
web application. BMC Genom. 16(6), S3 (2015)

8. Dobin, A., et al.: STAR: ultrafast universal RNA-Seq aligner. Bioinformatics 29(1),
15–21 (2013)

9. Gaur, P., Chaturvedi, A.: A survey of bioinformatics-based tools in RNA-
Sequencing (RNA-Seq) data analysis. In: Wei, D.Q., Ma, Y., Cho, W., Xu, Q.,
Zhou, F. (eds.) Translational Bioinformatics and Its Application, pp. 223–248.
Springer, Dordrecht (2017). https://doi.org/10.1007/978-94-024-1045-7 10

10. Gietzelt, M., et al.: The use of tools, modelling methods, data types, and endpoints
in systems medicine: a survey on projects of the German e: Med-Programme. Stud.
Health Technol. Inform. 228, 670–674 (2016)

11. Han, H., Jiang, X.: Disease biomarker query from RNA-Seq data. Cancer Inform.
13(Suppl. 1), 81 (2014)

12. Kraus, M., Schapranow, M.P.: An in-memory database platform for systems
medicine. In: Proceedings of the 9th International Conference on Bioinformatics
and Computational Biology. ISCA (2017)

13. Kraus, M., et al.: Olelo: a web application for intuitive exploration of biomedical
literature. Nucl. Acids Res. 45(W1), W478–W483 (2017)

14. Li, J., et al.: From gigabyte to kilobyte: a bioinformatics protocol for mining large
RNA-Seq transcriptomics data. PloS ONE 10(4), e0125000 (2015)

15. Liao, Y., Smyth, G.K., Shi, W.: FeatureCounts: an efficient general purpose pro-
gram for assigning sequence reads to genomic features. Bioinformatics 30(7), 923–
930 (2014)

16. Love, M., Anders, S., Huber, W.: Differential analysis of count data-the DESeq2
package. Genome Biol. 15, 550 (2014)

17. Love, M.I., Anders, S., Kim, V., Huber, W.: RNA-Seq workflow: gene-level
exploratory analysis and differential expression. F1000Research 4 (2015)

http://clustergrammer.readthedocs.io/index.html
http://clustergrammer.readthedocs.io/index.html
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1007/978-94-024-1045-7_10

174 M. Kraus et al.

18. Plattner, H., Schapranow, M.P. (eds.): High-Performance In-Memory Genome
Data Analysis: How In-Memory Database Technology Accelerates Personalized
Medicine. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-03035-7

19. Queralt-Rosinach, N., Piñero, J., Bravo, A., Sanz, F., Furlong, L.: DisGeNET-
RDF: harnessing the innovative power of the semantic web to explore the genetic
basis of diseases. Bioinformatics 32(14), 2236–2238 (2016)

20. Trapnell, C., Pachter, L., Salzberg, S.L.: TopHat: discovering splice junctions with
RNA-Seq. Bioinformatics 25(9), 1105–1111 (2009)

21. Wagle, P., Nikolić, M., Frommolt, P.: QuickNGS elevates next-generation sequenc-
ing data analysis to a new level of automation. BMC Genom. 16(1), 487 (2015)

22. Wolfien, M., et al.: TRAPLINE: a standardized and automated pipeline for RNA
sequencing data analysis, evaluation and annotation. BMC Bioinform. 17(1), 21
(2016)

https://doi.org/10.1007/978-3-319-03035-7

Author Index

Ahmed Zaid, Dehbia 133
Alpaslan, Ferda Nur 115
Amarouche, Idir Amine 133
Ataei, Parisa 68

Barbosa, Valmir C. 57
Besik, Saliha Irem 115
Bhalla, Subhash 78
Bhushan, Akshay 162

Chu, Wanming 78

Danner, Marius 162

Evans, Jared M. 148

Gadepally, Vijay 3
Gawlick, Dieter 16

Helskyaho, Heli 16
Hesse, Guenter 162
Hou, Xiaonan 148

Jiang, Guoqian 148
John Weroha, S. 148

Kenaza, Tayeb 133
Kesar, Ajay 162
Kraska, Tim 3
Kraus, Milena 162
Kulkarni, Shrinivas 78
Kupfer, Thomas 78

Leclercq, Eric 39
Liu, Zhen Hua 16
Lopes, Juan P. A. 57
Lu, Jiaheng 16

McCamish, Ben 30
Moore, Raymond M. 148
Mucklo, Matthew J. 93

Oliveira, Fabiano S. 57
Omidvar-Tehrani, Behrooz 107

Pinto, Paulo E. D. 57
Pogossiants, Gregory 16
Poudel, Manoj 78

Savonnet, Marinette 39
Schapranow, Matthieu-P. 162
Shrestha, Shashank 78
Slosarek, Tamara 162
Stonebraker, Michael 3

Termehchy, Arash 30, 68

Walkingshaw, Eric 68
Wang, Chen 148
Wu, Yilang 78
Wu, Zhe 16

Yu, Xiangyao 3

Zdonik, Stan 3

	Preface
	Poly 2018 Overview
	DMAH 2018 Overview

	Organization
	Data-Driven Genomic Computing: Making Sense of the Signals from the Genome (Keynote Paper)
	Contents
	Poly 2018
	FastDAWG: Improving Data Migration in the BigDAWG Polystore System
	1 Introduction
	2 A New Polystore Architecture
	3 Data Movement and Semantic Transformations
	3.1 Semantic Transformations
	3.2 RDMA-Based Data Movement
	3.3 An Example of Query Execution
	3.4 Comparison with Writing BigDAWG Connector

	4 Performance Analysis
	4.1 Experimental Setup
	4.2 RDMA Vs. TCP
	4.3 InfiniBand Vs. Ethernet
	4.4 BigDAWG Comparison
	4.5 Alternate Architecture and Proof of Concept

	5 Previous Work
	6 Future Work
	7 Summary
	References

	Multi-model Database Management Systems - A Look Forward
	Abstract
	1 Introduction – Why MMDBMS?
	2 Preliminaries on Categories and Model Transformation
	3 MMDBMS Framework and Category Theory
	3.1 Query Transformation
	3.2 Multi-model Data View Processing
	3.3 Multi-model In-memory Processing
	3.4 Multi-model Security Access via View
	3.5 Multi-model with Flexible Schema
	3.6 Application of Inverted Index in MMDBMS
	3.7 Benefits of MMDBMS Users
	3.8 Limitation of Category Theory

	4 Infrastructure Services – Ecosystem for MMDBMS
	5 Related Work
	6 Conclusion and Future Work
	Acknowledgement
	References

	Progressive Interactions Between Data Sources
	1 Introduction
	2 Framework
	2.1 Entity
	2.2 Query
	2.3 Sender Strategy
	2.4 Receiver Strategy
	2.5 Feedback

	3 Methodology
	3.1 Feature Construction
	3.2 Reinforcement

	4 Open Problems
	References

	TDM: A Tensor Data Model for Logical Data Independence in Polystore Systems
	1 Introduction and Motivations
	2 Related Works on Multi-paradigm Storage Systems
	2.1 A Taxonomy
	2.2 Representative Systems
	2.3 Discussion

	3 Core Concepts of TDM
	3.1 TDM's Data Model
	3.2 Translating TDM's and Other Models
	3.3 TDM's Operators

	4 Architecture and Experiments
	5 Conclusion
	References

	Sketching Data Structures for Massive Graph Problems
	1 Introduction
	2 Probabilistic Implicit Graph Representations
	2.1 Representation Based on Bloom Filters
	2.2 Representation Based on MinHash
	2.3 Considerations on Bipartite Graphs

	3 Graph-Streams Connectivity
	3.1 0-sampling Sketch
	3.2 Dynamic Connectivity Using 0-samplers

	4 Conclusion
	References

	Managing Structurally Heterogeneous Databases in Software Product Lines
	1 Introduction
	2 Motivating Example
	3 Variational Database Framework
	3.1 Variational Schema
	3.2 Variational SQL

	4 VDBMS Architecture
	4.1 Encoding the Variational Database
	4.2 Optimizing and Evaluating Variational Query

	5 Related Work
	6 Conclusion and Future Work
	References

	PDSPTF: Polystore Database System for Scalability and Access to PTF Time-Domain Astronomy Data Archives
	Abstract
	1 Introduction
	1.1 PTF Data Processing
	1.2 State of Data Access in PTF
	1.3 Downloading the PTF Data

	2 System Overview and Use of Polystore Databases
	2.1 Existing IPAC Sources
	2.2 Proposed System

	3 Workflow Based Query Management System
	3.1 Query Language Interface

	4 Performance Enhancement Through PDSPTF
	4.1 Experiment
	4.2 Methods
	4.3 Findings

	5 Summary and Conclusions
	Appendix
	Appendix 1: ER Model of the Database with Relations and Attributes
	Appendix 2: List of Queries

	References

	Demonstration: API Federation in the BigDAWG Polystore
	1 Introduction
	2 Island Architecture
	3 Cast
	4 Design
	5 Output
	5.1 Column Auto-Detection

	6 Future Work
	7 Additional Administrative Enhancements
	7.1 Import by CSV
	7.2 Query Page

	8 Conclusion
	References

	DMAH 2018
	Augmented Therapy with Online Support Groups
	1 Introduction
	2 System Overview
	3 Use Case
	4 Conclusion
	References

	RHCS - A Clinical Recommendation System for Geriatric Patients
	1 Introduction
	2 Background and Terminology
	2.1 ATC Classification System
	2.2 ICD-10 Classification System
	2.3 SNOMED CT as Clinical Ontology

	3 Methodology
	3.1 Data Preparation
	3.2 Similarity Measures
	3.3 Implementation

	4 Results and Evaluation
	4.1 Evaluation Results of Offline Experiments
	4.2 Evaluation Results of User Study
	4.3 Overall Analysis

	5 Related Work
	6 Conclusion and Future Work
	References

	Implementation of a Medical Coding Support System by Combining Approaches: NLP and Machine Learning
	1 Introduction
	1.1 Challenges
	1.2 Contributions

	2 Background
	2.1 Medical Coding Support System
	2.2 Pipeline of Medical Coding Support System
	2.3 Automatic Classification of Textual Medical Reports

	3 Medical Coding Support System: Proposed Approach
	3.1 Preprocessing Phase of Medical Reports
	3.2 Classification Phase by Machine Learning

	4 Experiments and Results
	4.1 Experimental Environment
	4.2 Experimental Approach
	4.3 Evaluation Metrics
	4.4 Results

	5 Conclusion
	References

	Building a Research-Quality Copy Number Variation Data Repository for Translational Research
	Abstract
	1 Introduction
	2 System Architecture
	2.1 A Common Data Schema
	2.2 A Quality Assurance Module
	2.3 A Data Repository and Service Module

	3 System Implementation
	3.1 Analyzing Existing CNV Reports and Data Types
	3.2 Designing a CNV Common Data Schema
	3.3 CNV Quality Assurance Module
	3.4 ETL Processes and MongoDB Solution for Centralizing Each Individual Data Sources

	4 Results
	4.1 A Draft Proposal of the CNV Common Data Schema
	4.2 CNV Data Entities of Loaded Public Data Sources
	4.3 Quality Assurance of a PDX CNV Dataset

	5 Discussions
	6 Conclusions
	Acknowledgements
	References

	DEAME - Differential Expression Analysis Made Easy
	1 Introduction
	2 The Differential Expression Analysis Process
	3 Related Work
	4 Requirements Engineering
	4.1 User Groups
	4.2 Software Requirements

	5 DEAME Application
	5.1 Data Layer
	5.2 Platform Layer
	5.3 Application Layer

	6 Evaluation and Discussion
	7 Conclusions and Future Work
	References

	Author Index

