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Abstract. One of the main issues in detecting the genes involved in the
etiology of genetic human diseases is the integration of different types of
available functional relationships between genes. Numerous approaches
exploited the complementary evidence coded in heterogeneous sources of
data to prioritize disease-genes, such as functional profiles or expression
quantitative trait loci, but none of them to our knowledge posed the
scarcity of known disease-genes as a feature of their integration method-
ology. Nevertheless, in contexts where data are unbalanced, that is, where
one class is largely under-represented, imbalance-unaware approaches
may suffer a strong decrease in performance. We claim that imbalance-
aware integration is a key requirement for boosting performance of
gene prioritization (GP) methods. To support our claim, we propose
an imbalance-aware integration algorithm for the GP problem, and we
compare it on benchmark data with other state-of-the-art integration
methodologies.

Keywords: Medical Subject Headings · Gene prioritization ·
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1 Background

In the context of Network Medicine, discovering genes causing or associated
with complex diseases, also known as “disease-genes”, has become a central and
complex challenge [2,7,16]. This process, called gene prioritization (GP), usu-
ally aims to supply a ranking of genes according to their involvement in the
etiology of a given disease. A main issue characterizing the GP problem is the
availability of a large amount of heterogeneous information about genes, ranging
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from protein–protein interactions to gene co-expression and functional similar-
ity [15]. Excluding the potentially complementary evidence coming from hetero-
geneous data sources may be a strong limitation [3]. Several research groups have
adopted computational methodologies that rely on the use of multiple hetero-
geneous networked-sources, and a general approach is to combine the topology
of each available network into a more informative ‘consensus’ network, also hav-
ing a larger coverage [9,18]. A common practice leverages weighted schemes to
construct a linear combination of the input networks, by computing for the dis-
ease under study an informativeness coefficient for each network. For instance,
in [13] the informativeness of a network has been computed as the percentage
of decay in the area under the ROC curve or under the precision-recall curve of
a given classifier when removing that network from the integration process. We
show in this study that such a coefficient should take into account the rarity of
known disease-genes characterizing most entries in existing disease ontologies,
such as the Medical Subject Headings (MeSH)1 (thousands of genetic diseases
still have none or very few known causative genes). Indeed, when a disease-gene
(positive gene) is rare for a given disease, it carries most information about
the latter, and in principle an input source should be considered informative
when it embeds information (in the form of gene connections) allowing a given
classifier to correctly rank positive genes. Such an integration process is usually
called “imbalance-aware”, and it already led to successful results in similar con-
texts, such as the protein function prediction [8]. Unfortunately, the central issue
represented by the rarity of disease-genes has been neglected by most existing
approaches for data source integration for gene prioritization.

We argue that network integration must be imbalance-aware even for the GP
problem, to improve the accuracy of gene rankings. To this purpose, we lever-
aged a method recently proposed for imbalance-aware integration in the context
of protein function prediction, UNIPred (Unbalance-aware Network Integration
and Prediction, [8]), and extended it in order to emphasize the important role
disease-genes play in the integration process. Informally, UNIPred operates a
projection of the network onto the plane, where the projected points/genes con-
stitute the items of a new optimization problem, whose solution provides the
informativeness coefficient for the input network (see [8] for theoretical details).
This method has been extended by introducing a novel optimization criterion,
in which the relevance to be attributed to disease-genes is associated with a free
parameter, so as to easily verifying our claim. Through the network usefulness
computed by UNIPred, the consensus network is built and given as input to
WGP, a recent network-based algorithm proposed to prioritize disease-genes [6].
The overall methodology has been then validated on a benchmark data set com-
posed of nine human networks and 708 MeSH disease terms [18].

1 http://www.nlm.nih.gov/mesh/.

http://www.nlm.nih.gov/mesh/
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2 Materials

Our setup follows a benchmark proposed in [18] for data integration in the GP
context. Nine human gene networks covering 8449 genes are available, consider-
ing heterogeneous data sources, as described in the following (see [18] for details
about each network).

Functional interaction network – finet. A network covering 8441 selected pro-
teins and containing protein–protein functional binary interactions predicted
through a Naive Bayes classifier trained on a ‘gold’ pairwise relationships set
extracted from curated pathways [19].

Human net – hnnet. 21 large-scale genomics and proteomics data sets from
human and from orthologs in yeast, fly and worm are integrated by
including distinct lines of evidence, spanning human mRNA co-expression,
protein-protein interactions, protein complex, and comparative genomics data
sets [10].

Cancer module network – cmnet. A network of 8849 genes collecting interactions
derived from expression profiles in different tumors in terms of the behavior
of modules of correlated genes.

Gene chemical network – gcnet. A network of 7649 genes constructed on the basis
of direct and indirect gene–chemical interactions available at the Comparative
Toxicogenomics Database (CTD) [4].

BioGRID database network – dbnet. BioGRID protein–protein interaction net-
work for 8449 proteins based upon direct physical and genetic interactions
constructed in [18].

BioGRID projected network – bgnet. An extended network from BioGRID con-
structed by retrieving the connection between the 8849 genes in the bench-
mark against all human genes in a bipartite graph, and by considering the
common neighbours to determine the degree of similarity between two genes
in the benchmark.

Semantic similarity networks – {bp,mf, cc}net. Three networks obtained by con-
sidering the Gene Ontology (GO, [1]) terms in the three branches annotating
the considered genes: biological process (bp), molecular function (mf) and
cellular component (cc). The connection between two genes is given by the
maximum Resnik semantic similarity between all the terms (in that branch)
the two genes are annotated with.

Gene–disease associations have been downloaded from the CTD database and
include 708 selected MeSH terms having from 5 to 200 annotated disease-genes.

3 Methods

A network integration problem assumes m network sources about gene pairwise
similarities are given, every source represented through a weighted undirected
graph G(k) = 〈V,W (k)〉, where V is the set of genes/instances (or a subset of it),
k ∈ {1, 2, . . . ,m} is the network index and W (k) is the connection matrix: the
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entry W
(k)
i,j ∈ [0, 1] indicates a degree of functional similarity between genes i

and j. If a data source covers just a subset of genes in V , we extended it to V by
adding zeros in the corresponding entries of its connection matrix. We assume
thereby in the following that all networks cover the set V . Given a disease of
interest d, every gene i ∈ V is associated with a label yi ∈ {0, 1} denoting
that gene i is currently associated with d (label 1, positive gene) or not (label 0,
negative gene).

The aim is to construct a composite network Gd = 〈V,W 〉 integrating all
available networks, to be used to predict candidate disease-genes for d. This is
performed by associating every network G(k) with a coefficient r

(k)
d related to

its informativeness for disease d, and then by linearly combining input networks
through the obtained coefficients (see Sect. 3.2). To compute r

(k)
d we adopt an

extension of the UNIPred algorithm, briefly described in the following.

3.1 UNIPred

The UNIPred algorithm computes for every networked-source G(k) a relevance
score taking expressly into account the disproportion between 1-labeled and
0-labeled genes for the studied genetic disease d. In particular, UNIPred oper-
ates a network projection onto the plane so that each gene i ∈ V is associated
with a labelled bi-dimensional point P

(k)
i , embedding the local imbalance in the

corresponding node position. The coordinates P
(k)
i ≡ (P (k)

i,1 ; P
(k)
i,2 ) are computed

as follows:

P
(k)
i,1 =

∑

j∈V

W
(k)
ij · yj ,

P
(k)
i,2 =

∑

j∈V

W
(k)
ij · (1 − yj) ,

(1)

In other words, P
(k)
i,1 is the weighted sum of 1-labeled neighbors, P

(k)
i,2 is the

weighted sum of 0-labeled neighbors. The position of each point in the plane
thereby reflects the topology of the connections towards neighboring positive
and negative nodes (Fig. 1).

The algorithm then learns the straight line which best separates positive and
negative points, in the sense we describe below. Since every point i ∈ V already
has a label yi, each line separating positive and negative points is associated
with the number TP

(k)
d of positive points correctly classified (true positives),

the number FN
(k)
d of positive points wrongly classified (false negatives), and the

number FP
(k)
d of negative points wrongly classified (false positives). The optimal

line is the one maximizing the F–measure: F
(k)
d = 2TP

(k)
d

2TP
(k)
d +FP

(k)
d +FN

(k)
d

. The value

F̄
(k)
d corresponding to the optimal line is then considered as relevance r

(k)
d for

the input network G(k). The method is imbalance-aware since the F–measure by
definition penalizes more heavily the misclassification of positive instances, with
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Fig. 1. Examples of distributions of points P
(k)
i for a given network G(k) in which labels

are unbalanced towards (a) negative points (black) and (b) positive points (light grey).
In the case (a), the coordinate P2 tends to be much larger due to the predominance of
negative neighbours; as opposite, P1 is larger in case (b), since the large majority of
neighbours in average is positive.

respect to the penalty for misclassifying negatives. Moreover, maximizing F
(k)
d

moves the know labeling y = (y1, . . . , y|V |) towards a minimum of the energy
of underlying Hopfield network—allowing the model to better fit the input data
(see [8]).

In order to emphasize the need of attributing higher importance to positive
genes, here we extend UNIPred by adopting the variant Fβ of F , defined as it
follows:

F
(k)
β,d :=

(1 + β2)TP
(k)
d

(1 + β2)TP
(k)
d + FP

(k)
d + β2FN

(k)
d

. (2)

Indeed, the parameter β ∈ R
+ allows to regulate the importance to be

assigned to the misclassification of positives rather than negatives, thus for β > 1
we assign a higher penalty to the misclassification of positives. The larger β, the
more relevant are positives in determining the network coefficient r

(k)
d . Since β is

dependent on the input data, we learned it through internal cross validation in
our experimentations; in addition, in Sect. 4 we also supply the results of tuning
β, to investigate its impact on the algorithm performance.

3.2 Constructing the Integrated Network

For a given disease of interest d, UNIPred is applied to each input network
independently, obtaining the relevance vector rd = (r(1)d , r

(2)
d , · · · , r

(m)
d ). The

consensus network is then constructed as a weighted sum (WS) of the corre-
sponding adjacency matrices:

W =
m∑

k=1

r
(k)
d W (k) .
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Moreover, in order to have a baseline comparison, networks are also inte-
grated by unweighted average sum (US ), that is W = 1

m

∑m
k=1 W

(k).

3.3 Inferring the Gene Prioritization List

Once the consensus network Gd = 〈V,W 〉 for disease d is constructed, we
are ready to face the gene prioritization problem, which is modeled as a semi-
supervised ranking problem on graphs. The set of genes is assumed to be parti-
tioned into L and U , disjoints subsets of V respectively containing the labeled
and unlabeled genes, and the objective is to infer a ranking of genes in U with
respect to d. Only for genes i ∈ L the label yi ∈ {0, 1} is thereby known, and
the aim is learning a function φ : U → R so as to rank higher genes susceptible
to be involved in the etiology of d.

Furthermore, analogously to the integration step, the complexity of the prob-
lem is increased when the imbalance between positive and negative genes is large.
Accordingly, the adopted methodology has to consider this feature of the problem
to prevent a large decay of the ranking quality [5]. To learn the ranking function φ
we employed a regression model proposed in [6], termed WGP (Weighted Gene
Prioritization), able in handling the label imbalance during the prioritization
process. Briefly, starting from the integrated network, WGP learns a weighted
binomial regression model with log-log link function, a skewed function suitable
for unbalanced data, to separate positive and negative nodes, and consequently
infer the prediction for genes U using the learned regression model.

4 Results

Following the benchmark setting [18], the generalization performance of our
method has been assessed through a classical 5-fold cross-validation procedure,
and the results have been evaluated by using the Area Under the Receiver Oper-
ating Characteristic Curve (AUC) and the Precision at different Recall levels
(PxR). In addition, we have computed the Area Under the Precision Recall
Curve (AUPRC), to take into account the imbalance of annotated vs. unanno-
tated genes for the MeSH disease terms. The obtained results on benchmark
data show a noticeable and statistically significant improvement of validation
of WGP-UNIPred algorithm with respect to the compared methods (Wilcoxon
signed rank test, p-value < 0.01), including random walks [11], random walks
with restarts, guilt-by-association methods [12] and kernelized average score
functions (SAV [17]). In particular SAV , the top benchmark method, is based on
an extension of the gene–gene similarity to non neighboring nodes by adopting
a suitable kernel matrix. The score for each gene i with regard to a given disease
d is defined according to a suitable distance d(i, Vd) between i and the subset
Vd of genes positive for d. In SAV , d(i, Vd) is defined as the average distance
between the images in the corresponding Hilbert space of i and the elements in
Vd (see [17] for details).
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Figure 2 shows the overall performance, remarking both the gain of UNIPred
with respect to US integration scheme and the influence of the β parameter
on the performance. We only report the results of SAV with weighted and
unweighted sum integration, since random walk and the other compared methods
achieved worse results than SAV . In [18], the average AUC results across diseases
have been used to weight networks according to the WS integration for SAV .
The β parameter has been tuned in the set of values {1, 2, 3, 4, 5, 10, 15, 20, 25},
in this first experiment, to show how it influences the model performance. To
better evaluate the behaviour of our methodology, we also show results averaged
across diseases with at most 10 (category ‘l10’) and more than 10 (category
‘m10’) associated genes. AUPRC results are not provided in the benchmark.
The predictive capability of the model remarkably improves when increasing
the parameter β, and more in the most unbalanced diseases (l10 ), confirming
the need of imbalance-aware integration. Conversely, in US schemes, there is
an almost negligible difference between l10 and m10 disease categories. The
performance of WGP-UNIPred tends to become stable for values of β larger
than 10, and, interestingly, the improvement of weighted integration is larger for
WGP than for SAV when compared with the corresponding unweighted strate-
gies. This confirms that using an imbalance-aware criterion (unlike the AUC)

β
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Fig. 2. Performance of WGP-UNIPRED on benchmark data. ‘l10’ and ‘m10’ refer to
the subsets of MeSH disease terms with 5–10 and 11–200 associated genes, respectively,
whereas circles correspond to results averaged across all diseases. WGP-US is the aver-
age performance across all diseases of WGP on unweighted sum data, whereas WGP-US
l10 (resp. WGP-US m10) denotes the WGP performance on US data averaged across
the category ‘l10’ (resp. ‘m10’). SAV results are averaged across all diseases.
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Fig. 3. PxR results achieved by the top benchmark method SAV and WGP-UNIPred
on both unweighted and weighted schemes.

to weight networks is more effective in this context. Apparently, the larger
improvement for UNIPred compared to US scheme for m10 with respect to
l10 terms (in both AUC and AUPRC) is quite unexpected, since l10 terms are
more unbalanced; nevertheless, since the available information for l10 terms is
very small, this behavior is likely due to overfitting phenomena. Indeed, similar
works have shown that regularizing the network effectiveness for more unbal-
anced terms leads to better results [14]. We also compared the methods in terms
of PxR (Fig. 3): in this experiment we learned β through internal cross valida-
tion. WGP-UNIPred favourably compares even in terms of PxR, outperforming
SAV in all experiments and WGP-US in all but 0.1 recall settings, where results
are almost indistinguishable. Confirming the behaviour in terms of AUC, the
UNIPred weighted sum integration led to larger improvements (mainly for lower
values of recall) than the imbalance-unaware weighted integration of SAV , with
regard to the US corresponding results.

5 Conclusion

Experimental results supported our claim that the integration of omics data
(genomics, transcriptomics, proteomics and so on) needs imbalance-aware pro-
cedures for improving the accuracy of gene prioritization lists. A state-of-the-art
integration algorithm, UNIPred [8], has been used to boost the performance of
a gene prioritization method, WGP [6]. By explicitly modelling the integration
procedure on the exploitation of the known disease-genes, WGP-UNIPred out-
performed other state-of-the-art methods in predicting gene–disease associations
on public benchmark data.
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