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Preface

The 14th annual edition of the International Meeting on Computational Intelligence
methods for Bioinformatics and Biostatistics (CIBB 2017) built upon the tradition
of the CIBB conference series and provided a multi-disciplinary forum open to
researchers interested in the application of computational intelligence, in a broad sense,
to open problems in bioinformatics, biostatistics, systems and synthetic biology,
medical informatics, as well as computational approaches to life sciences in general.

In line with the spirit of CIBB, the 2017 meeting brought together researchers from
different communities who address problems from different, but connected and often
overlapping, perspectives. CIBB 2017 tackled the difficult task of bridging different
backgrounds by providing an inclusive venue to discuss advances and future per-
spectives in different areas. It also fostered interaction between theory and practice,
addressing both the theories underpinning the methodologies used to model and ana-
lyze biological systems, the practical applications of such theories, and the supporting
technologies. Accordingly, participants at CIBB 2017 came from mathematical,
computational, and medical backgrounds and institutions, both from academia and the
private sector, offering collaboration opportunities and novel results in the areas of
computational life sciences.

CIBB 2017 also offered a view on emerging and strongly developing trends and
future opportunities at the edge of mathematics as well as computer and life sciences,
such as synthetic biology, statistical investigation of genomic data, and applications to
the understanding of complex diseases, such as cancer, and therapy opportunities.
Along these lines, three keynote speakers, prominent scholars in their fields, presented
the latest advances of their research within the context of their area of interest, and
provided insights into open problems and future directions of general interest for the
field. While papers in the main conference track addressed a rich set of open problems
at the forefront of current research, the conference hosted three further special sessions
on specific themes: synthesis of artificial cells by combining bio-interfaces engineering
and systems biology modeling, modeling and simulation methods for systems biology
and systems medicine, and molecular communication. Researchers from Europe, Asia,
and America attended the conference.

CIBB 2017 was made possible by the efforts of the Organizing, Program, and
Steering Committees and by the support of sponsors and participants. CIBB 2017 was
held in Cagliari, Italy, during September 7–9, 2017. Overall, 44 contributions were
submitted for consideration to CIBB 2017, amongst which 33 were invited for an oral
presentation at the conference, after a first round of reviews (at this stage, each paper
received an average of 3.25 reviews from the Program Committee and about 13
additional referees). Following the conference, selected papers were invited for further
submission, after feedback and discussion from the conference. This volume collects
the papers that were accepted after a further round of reviews (2.5 for each paper, on
average).



From 2004 to 2007, CIBB had the format of a special session of larger conferences,
namely, WIRN 2004 in Perugia, WILF 2005 in Crema, FLINS 2006 in Genoa, and
WILF 2007 in Camogli. Given the great success of the special session at WILF 2007
that included 26 strongly rated papers, the Steering Committee decided to turn CIBB
into an autonomous conference starting with the 2008 edition in Vietri. The following
editions in Italian venues were held in Genoa (2009), Palermo (2010), and Gargnano
(2011). Until 2012, CIBB meetings were held annually in Italy with an increasing
number of participants. CIBB 2012 was the first edition organized outside Italy, in
Houston, then in Nice, France (2013), Cambridge, UK (2014), Naples, Italy (2015),
and Stirling, UK (2016).

A rigorous peer-review selection process is applied every time to ultimately select
the papers included in the program of the conference, in the conference proceedings
published in the LNBI-LNCS book series by Springer, and in some cases, selected
papers were published in special issues of well-qualified international journals, such as
BMC Bioinformatics.

December 2018 Annalisa Barla
Massimo Bartoletti
Andrea Bracciali
Gunnar W. Klau

Leif Peterson
Alberto Policriti

Roberto Tagliaferri
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An Open-Source Tool for Managing
Time-Evolving Variant Annotation

Ilio Catallo1(B), Eleonora Ciceri1, Stefania Stenirri1, Stefania Merella2,
Alberto Sanna1, Maurizio Ferrari2,3,4, Paola Carrera2,3, and Sauro Vicini1

1 e-Services for Life and Health, San Raffaele Scientific Institute, Milan, Italy
{catallo.ilio,ciceri.eleonora,stenirri.stefania,sanna.alberto,

vicini.sauro}@hsr.it
2 Clinical Molecular Biology Laboratory,

San Raffaele Scientific Institute, Milan, Italy
{merella.stefania,ferrari.maurizio,carrera.paola}@hsr.it

3 Unit of Genomics for Human Disease Diagnosis,
San Raffaele Scientific Institute, Milan, Italy

4 Chair of Clinical Pathology, Vita-Salute San Raffaele University, Milan, Italy

Abstract. During the past decade, genomics has been drawing more
and more attention, thanks to the introduction of fast and accurate
sequencing strategies. Accumulation of data is fast and the amount of
information to be managed and integrated is snowballing. While new
variants are discovered every day, we still do not know enough about
the human genome to have a final understanding of all the implications
that they could have from a clinical point of view. When inherited dis-
eases are considered, variants clinical classification may change over time,
in relation to new discoveries. In this scenario, software solutions that
help operators in the analysis and maintenance of constantly changing
genomic data are relevant in the field of modern molecular medicine. In
this paper we present GLIMS (short for Genomics Laboratory Informa-
tion Management System), an open-source laboratory information man-
agement system for genomic data that allows to deal with time-evolving
variant annotations. This solution answers to the need of genomic lab-
oratories to keep up with their knowledge about variants and annota-
tions, so as to provide patients with up-to-date reports. We illustrate
the architecture of GLIMS modules that are in charge of keeping the
database of variants updated and reclassifying patients’ variants. Then,
we demonstrate (via the use of GLIMS) that variant clinical classifica-
tions are changing rapidly even in ClinVar, one of the most known and
cited genomic databases, thus underlining the need for a tool that tracks
changes over time.

1 Scientific Background

A genome is the genetic material of an individual. The genetic instructions it
contains are used in the growth, development, functioning and reproduction of
individuals, and define one’s phenotype Genomes contain genes, that is, regions
c© Springer Nature Switzerland AG 2019
M. Bartoletti et al. (Eds.): CIBB 2017, LNBI 10834, pp. 1–8, 2019.
https://doi.org/10.1007/978-3-030-14160-8_1
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of DNA that encode specific functions. Genes can acquire mutations in their
sequence of nucleotides, leading to different variants in the population. Every
variant comes with a set of genomic annotations, which state its semantics (e.g.,
specifying whether it is associated with an increased probability of develop-
ing a pathology) and its biological structure. Over the years, scientists have
published several archives of genomic variants and annotations. A well-known
example is ClinVar [1], a freely available archive of clinically significant relation-
ships among human variations and phenotypes. Such archives are not limited
to specific pathologies and are constantly updated to reflect the knowledge that
researchers acquire over time, providing benefits on two main aspects. First,
the constant update permits the gathering of new information about Variants
of Unknown Significance (VUS), which are known to change very frequently
towards a clear pathological significance [6]. As a matter of fact, an uncertain
finding can be frustrating for clinicians and patients alike, who may decide for
drastic treatment measures (e.g., surgical decisions) only in the name of the per-
sistent fear of contracting a disease [7]. Second, since multiple sources of genomic
information may differently interpret the clinical significance of a variant [8],
archives of genomic variants often include errors and misinterpretations [9] and
present classification inconsistencies (even for well-studied genomic panels [10]).
In this regard, only a continuous update guarantees that exams will be carried
out against the most coherent annotations.

Thus, it is vital for laboratories to: (i) keep their knowledge about variant
classifications updated with respect to the current literature; (ii) track changes
in variant classifications in order to identify which patients’ past genetic results
are in need of a review. Several published works already outlined the necessity of
notifying patients when their genetic test clinical significance changes as a conse-
quence of a variant reclassification, arguing about the clinical impact and ethical
duties of such actions [11,12]. From a technical point of view, the introduction
of an automatic solution seems to be the best option at scale, as the exponen-
tial growth of interest in the genomic field has brought to the production of an
unprecedented mass of genomic data and tests, and laboratories would incur in
high costs if they had to manually reclassify patients’ exams. Some works in
the state of the art already presented automatic solutions that allow laborato-
ries to update database variants and genetic test reports upon reclassification
of variants [13–15]. Still, these solutions are mainly proprietary, and work with
non-standard (if not unknown) data format. For instance, in [16] the authors
presents a pipeline based on IBM Watson (which is not open-source). Moreover,
their scope is limited to targeted exons and tumor-related data.

In this paper, we present GLIMS (short for Genomics Laboratory Informa-
tion Management System), an open-source laboratory information management
system for genomic data1, that, in addition to automatizing alignment and anno-
tation tasks, also provides reclassification capabilities for time-evolving variant

1 As of this writing, we are perfecting an imminent release on a publicly-available
repository. In the meantime, please reach the corresponding author for the source
code.
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Fig. 1. The sequence of operations needed for enriching the internal database. The
upload of a VCF file triggers the VCF Process Manager component, which takes care
of orchestrating the importing procedure. Lines in the input VCF are converted to
Enrich Meta-entry and Enrich Variant commands, which are then directed to the
proper Meta-entry and Variant models

annotations. GLIMS promotes interoperability between systems by adopting the
well-known Variant Call Format (VCF) standard as the exporting and importing
format for genomic variants.

2 Materials and Methods

GLIMS takes care of two important steps in the analysis of Next-Generation
Sequencing (NGS) data, that is, sequence alignment and variant annotation2,
in a privacy-compliant cloud environment (in order to reduce the burden of
such expensive computations). On top of that, GLIMS also provides two more
distinctive functionalities, namely, that of (i) growing an internal database of
variants encountered in patients, which can be exported in VCF format; and (ii)
supporting periodic reclassification of variants so as to update patients’ record
whenever there is a change in their variant annotations.

The management of the internal database of variants and the annotation
process in GLIMS are supported by the usage of the well-known VCF file for-
mat. A VCF file is a text file used for storing gene sequence variations, and
it has been widely used in the last years, with the support of large-scale DNA
sequencing projects such as ExAC [2] and 1000 Genomes [3]. The diffusion of the
VCF format among the most known genomic databases allows GLIMS to import
2 Alignment and annotations may be carried out with an array of off-the-shelf tools.

While at present GLIMS uses bwa [4] and SnpSift [5], it remains agnostic about the
particular technological choice.
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Table 1. Sequence of events stored into GLIMS in a given moment in time

Event Timestamp

VariantEnriched(id=4c0e94, info=CLNDBN, ...) 2017-04-18T17:14:39.097Z

VariantEnriched(id=4c0e94, info=CLNSIG, ...) 2017-01-10T11:10:28.023Z

VariantCreated(id=4c0e94, chrom=chr17, ...) 2016-03-27T16:37:02.862Z

any information they provide, and keep it updated whenever a new version of
such databases is released. On the other way around, GLIMS makes it easy for
biologists to share custom annotations they may have recorded into the system,
since the platform already stores them in a standard format. A VCF file encodes
variant characteristics by subdividing the information in two sections: meta-
entries and variants. A meta-entry provides metadata describing the file content
(e.g., the semantics of a variant annotation). A variant provides the description
of a genomic variant, defining its characteristics (e.g., chromosome, position on
the chromosome, expected nucleotide according to the reference genome, found
alternative) and decorating it with its annotations.

The process of enriching the internal database with new variants (and their
related annotation) is depicted in Fig. 1. As shown, the act of importing a VCF
is organized as a sequence of commands and events. When a user asks for a VCF
file to be imported, GLIMS stores her request as a new VCF model, which in
turn causes a VCF accepted event to be fired3. Such an event is captured by the
VCF Process Manager component, which initiates and thereupon orchestrates
the enriching process. At this point, depending on their position and content,
lines in the input VCF are converted to Enrich Meta-entry and Enrich Vari-
ant commands, which are then directed to the proper Meta-entry and Variant
models.

GLIMS stores every event happening in the system. An example of possible
events is reported in Table 1. As shown, each event describes how the system has
been altered as a consequence of its occurrence. This means that the state of any
model can be reconstructed by simply re-applying what happened in the past.
In this respect, the presence of a timestamp allows every model to be restored
to a specific moment in time.

A pictorial representation of the annotation process is presented in Fig. 2.
This process can be used for creating a new exam, as well as for its periodic
reclassification, in that reclassification can be seen as a sequence of two anno-
tations on the same exam. Like the enriching process, the interaction between
components is driven by commands and events. A user triggers the annotation of
a patient’s exam by issuing an Annotate command. The Annotator component
reacts to such a request by first making a local copy of the internal database,
fetching an up-to-date version of each requested remote database, and then

3 It is important to note that VCF accepted events are always fired asynchronously,
as the process of importing even small-sized VCF files has to be considered a long-
running operation.
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Fig. 2. The sequence of operations needed for the annotation of a patient’s exam.
Upon invocation, the Annotator component retrieves both the internal and the remote
databases and then proceeds with the annotation. Since the updated exam may contain
novel information, the Annotator also takes care of updating the internal database

Table 2. Dataset: ClinVar releases

2014 2016(1) 2016(2) 2017(1) 2017(2)

February 2014 January 2016 November 2016 February 2017 April 2017

proceeding with the actual annotation. Upon completion, the output VCF may
contain novel information with respect to both the internal database and the
current state of the exam. Therefore, the Annotator takes care of submitting
the VCF to the internal database, as well as updating the Exam model of inter-
est. Finally, the user is notified with an Exam annotated event, which informs
her (e.g., via a notification through the user interface) about relevant changes in
the annotation of patients’ variants.

As anticipated, the crucial aspect for the Annotator component is to annotate
the patient’s variants against the appropriate version of the internal database. To
this end, the exam model maintains a list of references to every database that
has ever been used for its annotation. When performing a reclassification, the
Annotator component can therefore instruct the internal database to provide only
those variants that have been subject to change since the last reclassification.

3 Results

In this section we demonstrate the need of an automatic solution, such as the
one proposed by GLIMS, by evaluating the variability of genomic variants and
annotations contained in ClinVar.

We retrieved five ClinVar GRCh37 (human hg19) releases (Table 2), retained
only the variants belonging to the BRCA1/BRCA2 genes and finally imported the
resulting VCF files in GLIMS. For each considered release, we then computed:
(i) the number of new variants introduced with respect to release 2014; (ii) the
number of variants whose clinical significance (CLNSIG) annotation or variant
disease name (CLNDBN) annotation changed with respect to previous releases.
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Figure 3 reports the number of new variants added to ClinVar since release
2014. It is shown that the volume of data in ClinVar continues to grow, gaining
up to 360% of the initial volume in two years. This underlines the necessity
of maintaining the knowledge on variants constantly updated, so that when a
patient requires a new genomic test, her variants can be correctly interpreted at
the best of researchers’ knowledge.

Figure 4 reports the number of release-to-release changes in CLNSIG or CLNDBN
annotations. It is shown that changes happen frequently also for variants that
are already known to the scientific community, updating up to 75% of variant
classifications with respect to what was reported in the previous release. This
highlights the need of updating periodically the outcomes for already performed
genomic tests, so that if an important change on the clinical significance of one’s
variants is found, then she can be timely notified with an updated report.

These results are further confirmed if the updated variants are analyzed in
detail, as in the case of the four variants presented in Table 3. In all these cases,
the provided update would impact on the final interpretation on one’s variants,
and thus this links to the necessity of providing patients with an updated report
upon reclassification. Reclassification of variants may have an impact on patients’
follow-ups (in terms of surveillance, preventive or pharmacological treatments)
as well as on the evaluation of risk for their relatives.

The above discussion highlights how discovering changes in annotations (and
specifically for changes in annotations conveying clinical significance) is a press-
ing concern for diagnostic laboratories. Still, its manual execution remains a
time-consuming, infeasible tasks when the genomic data at hand are too large.
In this respect, GLIMS’s automatic reclassification of exams may be decisive
to the capability of laboratories to provide timely and relevant information to
patients.

Fig. 3. New variants added to ClinVar since release 2014
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Fig. 4. Variants with changed and unchanged CLNSIG or CLNDBN annotations

Table 3. Variants evolving over time (human reference genome release:
GRCh37/hg19). The reported HGVS nomenclature is the standard for the descrip-
tion of sequence variations.

Variants (HGVS nomenclature) Gene Position CLNSIG

2014 2017(2)

NM 007294.3(BRCA1) : c.190T > G BRCA1 41258495 VUS Pathological

NM 007294.3(BRCA1) : c.3119G > A BRCA1 41244429 VUS Benign

NM 000059.3(BRCA2) : c.1889C > T BRCA2 32907504 VUS Benign

NM 000059.3(BRCA2) : c.5428G > A BRCA2 32913920 Pathological VUS

4 Conclusion

In this paper we presented GLIMS, an open-source laboratory information man-
agement system for genomic data on germline mutations, and focused our atten-
tion on two distinctive functionalities: the capability of maintaining an evolving
database of variants over time, and its support to the periodic reclassification
of patients’ variants. These two functionalities, when combined, offer the pos-
sibility of providing patients with fresh and up-to-date information about their
genomic variants, which are known to be always changing and in need of refine-
ments (as also proven by our pilot study on the BRCA genes in the ClinVar
database). The pilot will be expanded including an extensive analysis of the tool
with larger panels, in cooperation with the Clinical Molecular Biology Labora-
tory at San Raffaele Hospital. This project may include other genomic variations
such as Copy Number Variations (CNV), somatic mutations and data from other
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OMICS studies (e.g., epigenetics, proteomics, transcriptomics). Machine learn-
ing techniques may be developed for the automatic classification of VUS clini-
cal significance and the computation of genotype-phenotype correlation. These
applications would be extremely important and helpful not only for the integra-
tion of data, correlation to the clinical phenotype and formulation of hypothe-
ses, but also in the process of harmonization and standardization of protocols.
Heterogeneity of the conclusions drawn by different operators is in fact a variable
with an important impact on the classification of genetic variants as well as on
the clinical management.

Acknowledgments. This work is partially funded by the EU H2020 Framework Pro-
gramme under project WITDOM (project no. 644371).
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Abstract. Phylogenetic tree reconciliation is the approach commonly
used to investigate the coevolution of sets of organisms such as hosts
and symbionts. Given a phylogenetic tree for each such set, respectively
denoted by H and S, together with a mapping φ of the leaves of S to
the leaves of H, a reconciliation is a mapping � of the internal vertices
of S to the vertices of H which extends φ with some constraints.

Given a cost for each reconciliation, a huge number of most parsimo-
nious ones are possible, even exponential in the dimension of the trees.
Without further information, any biological interpretation of the under-
lying coevolution would require that all optimal solutions are enumerated
and examined. The latter is however impossible without providing some
sort of high level view of the situation. One approach would be to extract
a small number of representatives, based on some notion of similarity or
of equivalence between the reconciliations.

In this paper, we define two equivalence relations that allow one to
identify many reconciliations with a single one, thereby reducing their
number. Extensive experiments indicate that the number of output solu-
tions greatly decreases in general. By how much clearly depends on the
constraints that are given as input.

Keywords: Cophylogeny · Reconciliations · Equivalence relation

1 Scientific Background

Given a directed binary tree T , we denote by V (T ) and A(T ) the set of its
vertices and arcs, respectively. Given v ∈ V (T ), we denote by p(v) its parent and
by s(v) its (unique) sibling.
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Given two vertices u, v ∈ V (T ), u is an ancestor of v, denoted by u �T v,
if either u = v or there exists a directed path from u to v. If either u �T v
or v �T u, then we say that they are comparable. We say that u and v are
incomparable if there is not a directed path between u and v.

If u �T v, we denote by pathT (u, v) = (t1, . . . , tj) the (unique) ordered
sequence of vertices of T traversed along the directed path from u to v. Of
course, t1 = u and tj = v.

A phylogenetic tree T is a leaf-labelled rooted binary tree that models the
evolution of a set of taxa (placed at the leaves) from their most recent common
ancestor (placed at the root). The internal vertices of the tree correspond to the
speciation events.

The model of host-symbiont evolution we rely on in this paper is the event-
based one [1,15]. Let H and S be the phylogenetic trees for the host and symbiont
species, respectively. A function φ is defined from the leaves of S to the leaves
of H that indicates the association between currently living host and symbiont
species.

A reconciliation � is a function from the set of internal vertices of S to the
set of vertices of H that extends the mapping φ of the leaves under some con-
straints. Note that each internal vertex of S can be associated to an event among:
cospeciation (when both the symbiont and the host speciate), duplication (when
the symbiont speciates but not the host) and host switch (when the symbiont
speciate and one of its children is associated to an incomparable host), while
each arc (u, v) of S is associated to a certain number of loss events l(u,v) ≥ 0
that is equal to the length of pathH(�(u), �(v)) if �(u) �H �(v). It is therefore
possible to associate to each reconciliation � a vector E� = 〈ec, ed, es, el〉 [2], that
we call event vector, where ec, ed, es and el denote the number of cospeciations,
duplications, host switches and losses, respectively, that are in �.

Given a vector C = 〈cc, cd, cs, cl〉 of real values that correspond to the cost
of each type of event, the most parsimonious (or optimal) reconciliations are the
ones that minimise the total cost, i.e. that minimise cost(�) =

∑
i∈{c,d,s,l} ei ci.

Note that it is usual to assume cc < cd and cl > 0; in the following we adopt these
assumptions. We denote by R(H,S, φ,C) the set of all optimal reconciliations
from the tree S to the tree H whose leaves are connected by means of the
mapping φ, and in which the costs of the events are given by C.

In the context of gene-species associations, our model is known as DTL and
has been extensively studied (see, for example, [1,6,9,14,15]). The least common
ancestor of a set W of vertices of T is the lowest vertex of T that is an ancestor of
every vertex in W . The so-called LCA mapping of a symbiont vertex p ∈ S [7] is
defined as the least common ancestor in H of all host species where a symbiont
descended from p has been mapped, inductively computed with φ as base of
the induction. It is known that the LCA mapping induces a most parsimonious
reconciliation in a model without host-switches [7,8,11,12].

Phylogenetic tree reconciliation is the approach commonly used to investigate
the coevolution of sets of organisms such as hosts and symbionts [4,13].
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However, a huge number of most parsimonious reconciliations are possible
(see e.g. [5]). While any biological interpretation of the underlying coevolution
would require that all optimal solutions are enumerated and examined, this
is humanly unfeasible without providing some sort of high level view of the
situation. One approach allowing this would be to extract a small number of
representatives, based on some notion of similarity between reconciliations.

To the best of our knowledge, only a few such notions have been proposed
in the literature. One of them is based on the comparison of the number of
each one of the four events (cospeciation, duplication, loss and host switch): two
reconciliations are considered similar, and hence put in a same cluster, if they
have the same number of each event, i.e. if they have the same event vector
[2]. However, it is not difficult to find examples of very different reconciliations
having the same number of each kind of event. Two of them are given in Figs. 1a
and b.

In [3], the authors define some operators which enable to go from one rec-
onciliation to another, and from this provide a similarity measure between two
reconciliations that is the smallest number of operations needed to change one
reconciliation into another. Unfortunately, with this approach, it can happen
that reconciliations that appear very similar have a rather high distance, as
shown for example by Figs. 1c and d. Moreover, the complexity of computing
the similarity between reconciliations remains an open question, and there are
thus no efficient algorithms for now.

In this work, we try to overcome the above problems by proposing, in Sect. 2,
two equivalence relations that allow to identify many similar reconciliations with
a single one, thereby substantially reducing the number of reconciliations that
are enumerated.

In Sect. 3, we present some experimental results on real datasets which show
that in most of the cases, these relations perform very well, especially when they
are considered together. Finally, Sect. 4 proposes some future lines of research.

2 Equivalent Reconciliations

In this section we describe two equivalence relations for reconciliations. We
choose to favour the intuition on which reconciliations we consider as equiva-
lent and why, instead of overburdening the exposition with too many technical
details.

2.1 Equivalence ∼1

Given an optimal reconciliation � ∈ R(H,S, φ,C) and a vertex u of S such that
arc (u, v) is mapped by � as a host switch, i.e. v is mapped to a vertex �(v) that
is incomparable with �(u), we have that u can be mapped by � to anyone of the
vertices of pathH(�(p(u)), �(s(v))) without changing the cost of �, as proved by
the following result.
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Fig. 1. a. and b. Two reconciliations with the same event vector that nevertheless are
rather different. c. and d. Two reconciliations very similar with a possibly high distance
(by adding arbitrarily many host vertices on the right path from the root) based on
the operators. The grey tubes represent the host tree, while the black (plain or dotted)
lines inside the tubes represent the symbiont tree. The roots of the symbiont trees are
double lined to facilitate their recognition.

Lemma 1. Given any two reconciliations �, σ, if:

– there exists an arc (u, v) mapped by both � and σ as a host switch, and
– �(w) = σ(w) for each w �= u, and
– �(u) �= σ(u) and �(u) and σ(u) are mapped to two different vertices of

pathH(�(p(u)), �(s(v))), �(p(u)) excluded

then the costs associated to � and σ are the same. In particular, � will be optimal
if and only if σ is.

The previous result leads us to consider as equivalent (using symbol ∼1) all
reconciliations that, for each host switch (u, v), map u on a different vertex of
pathH(�(p(u)), �(s(v))). We call the latter a sliding path to highlight the idea
that u can be moved anywhere inside this path without modifying the cost of
the reconciliation.

The following result claims an interesting property of equivalent reconcilia-
tions w.r.t. relation ∼1.

Theorem 1. Given two reconciliations �, σ ∈ R(H,S, φ,C), if � ∼1 σ, then
they have the same event vector, i.e. E� = Eσ.

Observe that from the previous lemma, it follows that the partition of
R(H,S, φ,C) induced by ∼1 is finer than the partition induced by the event
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vector, since two reconciliations that are equivalent w.r.t. ∼1 are surely equiva-
lent w.r.t. to the event vector partition, but the opposite is not true, and this is
in agreement with the fact that two reconciliations with the same event vector
can be very different: in such a case, our equivalence distinguishes them.

2.2 Equivalence ∼2

We now propose a second equivalence relation between optimal reconciliations.
This one is motivated by the following observation. Assume there are two siblings
v and w in S that are mapped by φ on two incomparable vertices φ(v) and φ(w)
in H. If host switches are allowed, any reconciliation can equivalently map p =
p(v) = p(w) on a vertex that is either comparable with φ(v) and incomparable
with φ(w) or vice-versa. All these solutions are equally feasible, and there is no
reason to distinguish them. We can better explain this concept on the basis of
the following result.

Lemma 2. Given a reconciliation � ∈ R(H,S, φ,C), for each arc (u, v) mapped
by � as a host switch s.t. �(u) and �(p(u)) are incomparable, �(u) = �(s(v)).

Given optimal reconciliations in which there are two adjacent vertices u and
v of S (w.l.o.g. assume u = p(v)) that are both associated to a host switch
event, the previous result leads us to consider as equivalent (using symbol ∼2)
the reconciliations that map v to anyone of the vertices of H where its children
are mapped. Figure 2a illustrates this concept.

More formally, we have the following:

Theorem 2. Given any two reconciliations �, σ, if in both � and σ:

– there exists a vertex v such that the mappings of v and of one of its children,
let it be w, are incomparable, while v and s(w) have the same mappings, and

– its parent u = p(v) is such that its mapping and the one of one of its children
(either v or s(v)) are incomparable, and

– �(t) = σ(t) for each t �= v,

then the costs associated to � and σ are the same. In particular, � will be optimal
if and only if σ is.

Observe that, if u = p(v) is incomparable with s(v) (hence we are in the
context of Fig. 2b), then if the two reconciliations are optimal, if cl > 0 and cc ≤
cd, either the arc (u, p(u)) is mapped as a host switch while arc (p(p(u)), p(u)) is
not mapped as a host switch by � or σ, or there must be an ancestor of u (and
thus of v), let us denote it by x, such that the following is verified:

– arc (p(x), x) is mapped as a host switch by both � and σ, and
– arc (p(p(x)), p(x)) is not mapped as a host switch by both � and σ (we reach

the end of the ancestry recursion), and
– all the vertices y in the path pathS(x, u) are such that:

• they are mapped to the same host vertex as v, and
• their child that is not in the path, let us denote it by z, is such that the

arc (y, z) is mapped as a host switch by both � and σ.
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Fig. 2. The two cases in which equivalence ∼2 can be applied, focusing on vertex v.

3 Results

We now show the results of some experiments performed on real datasets.
To compute the numbers of ∼1 and ∼2 equivalence classes, we modified the

code of a well known algorithm enumerating reconciliations, i.e. Eucalypt. It
works by computing a matrix by means of dynamic programming, and then
exploiting it to enumerate or count all reconciliations in polynomial delay. For
both equivalence classes, we operated only on the first part producing a different
matrix in order not to count many reconciliations falling in the same class. Our
modification therefore does not affect the computational time.

As concerns the first equivalence relation, we output for each class what can
be considered as a canonical representative since the produced reconciliations
have some identifying properties. On the contrary, for the second equivalence,
we limit ourselves to count the number of classes without enumerating them.

We selected 13 datasets which correspond to those also used in [5] and that
are indicated in that paper as GL, RH, FD, COG2085, COG3715, COG4964,
COG4965, PP, SFC, EC, PMP, PML, and Wolbachia. The latter is a dataset
of our own which corresponds to arthropod hosts and a bacterium genus, Wol-
bachia, living inside the cells of their hosts. It represents a larger set (each tree
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has 397 leaves) than the others that were taken from the literature and where
the number of leaves varies between 13 to 100. We performed the experiments
using the most commonly used cost vectors, namely (0, 1, 1, 1), (0, 1, 2, 1), and
(0, 2, 3, 1) which correspond also to those presented in [5].

In all the tables, # solutions indicates the number of all optimal reconcili-
ations, while # ∼1, # ∼2 and # ∼2 + ∼1 indicate the number of equivalence
classes when relations ∼1, ∼2 or both are applied; the last column, called NMR,
indicates the value of the Normalized Magnitude Reduction, rounded to two dig-
its after the decimal point, which is given by log(#sol)−log(#∼1+∼2)

log(#sol) . Such value
is one when all optimal solutions are reduced to a single parsimonious reconcil-
iation when applying the two equivalences. Inversely, the closer this value is to
zero, the less the two equivalences were able to reduce by similarity the number
of solutions.

Observe that for Wolbachia, the number of solutions is so huge that, for space
reason, we rounded the number to fit the table.

Table 1. Results for cost vector (0, 1, 1, 1).

Dataset # solutions # ∼1 # ∼2 # ∼2 + ∼1 NMR

GL 2 2 2 2 0

RH 42 42 8 8 0.44

FD 25184 22752 224 180 0.49

COG2085 44544 36224 11 4 0.87

COG3715 1172598 777030 1888 872 0.52

COG4964 224 224 2 2 0.87

COG4965 17408 17408 4 4 0.86

PP 5120 4480 344 280 0.34

SFC 184 160 16 10 0.56

EC 16 16 13 13 0.07

PMP 2 2 1 1 1

PML 180 160 33 21 0.41

Wolbachia ∼ 3.19 · 1048 ∼ 5.72 · 1047 ∼ 9.33 · 105 ∼ 7.68 · 104 0.90

We now briefly comment the results presented in Tables 1, 2 and 3.
First, note that it is not surprising that in the case of the cost vector

(0, 1, 1, 1), there are on average more optimal solutions than with the other cost
vectors. This is due to the fact that the events that are different from cospe-
ciation are indistinguishable in terms of cost, and this freedom of choice offers
many alternatives for reaching a most parsimonious solution.

Given that both equivalence relations are primarily based on host switch
mappings, we would then expect that the higher is the number of host switches,
the greater would be the chance of having a lower number of equivalence classes
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Table 2. Results for cost vector (0, 1, 2, 1).

Dataset # solutions # ∼1 # ∼2 # ∼2 + ∼1 NMR

GL 2 2 2 2 0

RH 2208 368 1608 268 0.27

FD 408 180 48 20 0.50

COG2085 37568 3200 226 14 0.75

COG3715 9 7 4 2 0.68

COG4964 36 4 9 1 1

COG4965 640 576 4 3 0.83

PP 72 72 36 36 0.16

SFC 40 16 10 4 0.62

EC 18 18 18 18 0

PMP 2 2 1 1 1

PML 2 2 1 1 1

Wolbachia ∼ 1.01 · 1047 ∼ 3.77 · 1044 ∼ 2.92 · 108 ∼ 2.42 · 104 0.91

Table 3. Results for cost vector (0, 2, 3, 1).

Dataset # solutions # ∼1 # ∼2 # ∼2 + ∼1 NMR

GL 2 2 2 2 0

RH 288 48 288 48 0.32

FD 80 16 10 2 0.84

COG2085 46656 1344 540 10 0.79

COG3715 33 2 33 2 0.80

COG4964 54 6 18 2 0.83

COG4965 6528 448 94 5 0.82

PP 72 72 36 36 0.16

SFC 40 16 10 4 0.62

EC 16 16 16 16 0

PMP 18 18 10 10 0.20

PML 11 6 7 4 0.42

Wolbachia ∼ 4.08 · 1042 ∼ 1.33 · 1036 ∼ 4.18 · 1010 ∼ 1.15 · 103 0.93

w.r.t. the total number of solutions. Equivalence ∼2 depends further on the
relative position of such host switches, that is, on whether the vertices involved
in a host switch are ancestors of one another, and on how long is such ancestor
path in H. It is better if such paths are very long rather than if they are frequent,
as there is then more chance that each long one will lead to a collapse of many
solutions into a single class.
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Comparing the three tables, we observe that when the cost of a host switch
event is close to the cost of a loss, there is in general a smaller reduction of the
number of optimal reconciliations when we pass to the ∼1 equivalence classes.
Intuitively, this is indeed because long sliding paths are more uncommon in this
case. Inversely, the highest reductions from the total number of optimal solutions
to the number of ∼1 equivalence classes in general occur when the cost vectors
are (0, 1, 2, 1) or (0, 2, 3, 1), i.e. when the cost of the host-switch event is higher
w.r.t. the cost of a loss. In the other situations with many host switches (due
either to the cost vector – e.g. (0, 1, 1, 1) - or to the leaf-mapping, spreading close
symbiont leaves to far host leaves – e.g. the dataset COG2085), equivalence ∼2

performs better.

4 Perspectives

While the two equivalence relations introduced in this paper in general lead to
very good results in terms of the overall goal of providing a more compact view
of the solution space, we believe there are more such relations that could be
explored in future.

Moreover, although the equivalence relations introduced in Sect. 2 reduce the
number of enumerated reconciliations for most of the data sets, as discussed in
Sect. 3, in some cases this number remains inapplicable for a direct observation
of a given set of reconciliations. When less solutions are desired, it is possible to
apply known clustering techniques based on a new measure of similarity between
reconciliations that is able to take into account the equivalences we have defined
in this paper.

More in detail, given a reconciliation � ∈ R(H,S, φ,C), preliminarily notice
that each one of its host switches is univocally determined by an arc a = (u, v)
of S and by its mapping on a non-arc of H (�(u), �(v)), where �(u) and �(v) are
incomparable. Hence, we can formalise the host switch set of a reconciliation �
as follows:

Θ(�) :=
{

(u, �(u), v, �(v)) ⊆ VS × VH × VS × VH : (u, v) ∈ A(S),

�(u) �H �(v) and u is associated to a host-switch event w.r.t. �
}
.

Now, given two reconciliations � and σ, both in R(H,S, φ,C), assume we are
able to define a distance ds between two host switches s1 of � and s2 of σ that
is able to take into account the equivalences defined in Sect. 2.

Let n� (respectively nσ) be the number of host switches of reconciliation �
(respectively σ), i.e. n� = |Θ(�)| (respectively nσ = |Θ(σ)|). We can define the
complete bipartite graph G�,σ on n�+nσ vertices, where each vertex corresponds
to a host switch of either � or σ (if a host switch belongs both to � and σ, two
vertices corresponding to it are in G�,σ). On G�,σ, an arc weight is defined: for
any arc (s�, sσ), its weight is w(s�, sσ) = ds(s�, sσ). Compute on G�,σ a perfect
matching of minimum weight M�,σ, with w(M�,σ) =

∑
e∈M�,σ

w(e).
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We can hence define the distance between two reconciliations �, σ ∈
R(H,S, φ,C) as:

dist(�, σ) = |n� − nσ| + 2w(M�,σ).

This definition is able to capture similarity between reconciliations according
to the two defined equivalences and seems a promising tool to define reconcilia-
tion clusters.
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Abstract. The rapidly growing volume of genomic data, including
pathogens, both invites exploration of possible phylogenetic relationships
among unclassified organisms, and challenges standard techniques that
require multiple sequence alignment. Further, the ability to probe vari-
ations in selection pressure e.g. among viral outbreaks, is an important
characterization of the life of a virus in its biological reservoir.

In this paper, we derived the probability distribution of k-mer align-
ment lengths between random sequences for a given optimized score
to quantify the probability that a given alignment was not better
than chance, and applied it to Human Papiloma Virus (HPV), primate
mtDNA, and Ebola. Even for highly variable HPV types, the number
of k-mers required to significantly distinguish an alignment of related
genomes from random sequences was reduced from 64 for 1-mers to 6 for
3-mers and 4 for 4-mers, indicating k-mers provide sufficient specificity
to be able to characterize differences in sequences by their k-mer fre-
quencies, allowing distances based on the k-mer frequencies to proxy for
evolutionary distance. We computed mtDNA coding sequence and Ebola
phylogeny construction. Primate mtDNA coding region k-mer UPGMA
phylogenies reproduced most of the expected primate phylogeny. The
Mantel test, applied to RAxML and Bayesian phylogenetic distances
between Ebola samples versus 3-mer frequency distances, was highly sig-
nificant (≤ 1 × 10−5). We characterized differences in selection pressure
between coding and non-coding regions, and of selection in early cell
cycle vs. late genes in Ebola. Coding versus non-coding regions showed
evidence of purifying selection, while the early vs. late cell cycle pro-
teins showed differences with late cycle proteins resembling influenza
like immunological response, noting the g-proteins are among the late
genes.
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1 Introduction

In the last few years k-mers analysis has been applied to a variety of scopes
in bioinformatics (e.g. [5,8,9,16,19]). Since its introduction in [2], k-mer based
phylogeny construction has found interest in the promise of alignment-free phy-
logenies might be easily obtained [4,7,11,17] due to their computational cost and
precision. Further, not only does the computational load increase dramatically
with the number of taxa, but the quality of the results obtained through mul-
tiple sequence alignment algorithms drops [3]. However, it had been noted that
non-alignment based phylogenetic reconstruction may suffer from some weak-
nesses, with an example involving primate differentiation in mtDNA [11]. This
provides an opportunity to establish a baseline sensitivity for k-mer based phy-
logeny reconstruction. Further, a recent publication developing data from the
most recent, and so far worst, Ebola outbreak [10] finds that the most recent
outbreak appears to derive from an individual exposure event. Evolution within
the reservoir appears to show selection pressure, while evolution in the human
population reservoir following the outbreak suggesting that the pathogen is rel-
atively benign in its non-human reservoir, allowing for evolution and selection
in those hosts. This highlights the role that identification of selection pressure
among genes and in outbreaks can play in understanding viral function in its
reservoir and in its transmission to and among humans.

In this study, we seek to understand how k-mer specificity interacts with the
changes imposed by mutations over time to yield phylogenetic reconstructability
even without overt alignment. We quantify specificity in terms of the length of
alignments required to exceed chance based on an extension of [12]. We argue
that, starting with a common ancestor (identically aligned), each mutation dif-
ferentiating lineages induces changes in the individual SNPs would each individ-
ually change the frequencies of k-mers depending on the density of mutations,
generally increasing distances between vectors of k-mer frequencies. Even with-
out specific alignments, the numbers of accumulated mutations between diverg-
ing lineages will be reflected in the differences between the k-mer frequencies.
Considering that a reasonable question might be whether there is a meaning-
ful phylogeny relating a set of hypothetically related taxa, it is worthwhile to
quantify how much signal is required to resolve distances between taxa in such
a phylogeny from what might be expected by chance.

We sought to understand how k-mer frequencies would capture alignment-
specific information relevant to phylogenetic reconstruction. The first question
is what happens to k-mer frequencies comparing aligned sequences that differ
according to accumulation of mutations. The second question is the amount of
specificity k-mers needed to show in order to distinguish between accumulated
mutations and chance. We applied these approaches to HPV, Ebola, and primate
mtDNA sequences.
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2 Methods and Materials

2.1 Datasets

We downloaded mtDNA sequences for 187 human (including one Neanderthal),
187 chimpanzee (standard and pygmy), 18 baboons, 3 gibbons, 5 gorillas, and 1
orangutan from Genbank. HPV sequences identified in the International Human
Papillomavirus Reference Center1 at Karolinska Institutet were obtained from
GenBank on 12/16/2014, and aligned using MAFFT [13]. We acquired 124
EBOLA segments from [10], already aligned using MAFFT.

3 Quantification of the Information Carried by k-mer

Consider two identical sequences. Distributions of the absolute frequencies of
their k-mers will be identical. Introduction of a single substitution at any site
will reduce the count of one k-mers, and increase the count of another one.
This will produce a change of 2k between the two k-mer distributions in abso-
lute (Manhattan) count. If more than one substitution occurs within k steps,
so that at least one k-mer has more than one change, the impact on differ-
ences between absolute frequency distributions will be reduced from the 2k per
mutation, since some k-mer changes capture both mutations within a single
k-mer change. Insertions and deletions are similar in effect, except that the
k-mers whose counts change are only those k-mers containing the deletion on
the one strand compared to those on the other strand. None of the corresponding
k-mers established by alignment change, so their absolute frequency distributions
remain unchanged. A single deletion (or insertion) will then impact k−1 k-mers.
Hence, it is expected that various formulations of k-mer distances would scale
with genetic distance as mutations accumulate along diverging lineages, and with
time to most recent common ancestor.

Given a set of alignments derived from a common ancestor, accumulated
mutations, including SNPs, large deletions, or other modifications, as well as
sequencing errors, can make it difficult to distinguish k-mer alignments from
what might be expected by chance. To estimate how discriminating k-mer align-
ments are, we sought to ask how long a k-mer alignment segment would have
to be in order for it to have been unlikely by random chance where nucleotides
were randomly sampled from a pool matching the nucleotide frequencies of the
samples.

For nucleotides N = {A,C,G, T}, k-mers will be drawn from an alphabet
Nk. An alignment of two k-mers is represented as a pair of these, drawn from
ζ ∈ S = Nk ×Nk. Each k-mer is associated with offsets l into putatively aligned
sequences yielding ζl ∈ S. Given species frequencies of nucleotides N , it is pos-
sible to assign a probability qζ = P (ζ = ζl) = E (I(ζ = ζl)) measuring the
probability that a given alignment would have been observed by chance, with
each of the ζl being considered to be i.i.d. random variables. k-mer alignments

1 http://www.hpvcenter.se/html/refclones.html.

http://www.hpvcenter.se/html/refclones.html
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are constructed for each of the sites along aligned segments, incrementing l by
one for each step as a sliding window k long. A score sζ is associated with each
of the possible alignments ζ ∈ S. Such a score might be derived from energies,
or other criterion. A total score for aligned k-mers indexed by l ∈ L is defined
by s =

∑
l∈L sζl

. So for a specific sequence, this score has a definite value. In the
statistical model, this is a random variable. Noting that

∑
ζ I(ζ = ζl) = 1, it fol-

lows that s =
∑

ζ

∑
l∈L I(ζ = ζl)sζl

=
∑

ζ

∑
l∈L I(ζ = ζl)sζ =

∑
ζ nζsζ , where

nζ =
∑

l∈L I(ζ = ζl). In the random case, the alignment score s is a random
variable. It can be proved that the nζ as defined above are multinomially dis-
tributed such that p[nζ ] = |L|!∏

ζ∈S nζ !

∏
ζ∈S q

nζ

ζ . Given this, it is possible to define

a distribution function f(s||L|)ds = E
(
I(s <

∑
ζ nζsζ < s + ds)

)
. This may be

evaluated assymptotically to yield f(s|L)ds = ds√
2πσ2

s

exp
(
βs + L ln Z

(
β

(
s
L

)))

where σ2
s = Nζs

2
ζ − L

(
s
L

)
, Z(β) =

∑
ζ∈S qζe

−βsζ , β satisfies s =
∑

ζ∈S Nζsζ =
L

Z(β)

∑
ζ∈S sζqζe

−βsζ , and Nζ

(
s
L

)
= L

qζe−βsζ

Z(β) . In this case, the Nζ domi-
nate the contribution from the multinomial distribution to f(s|L)ds. It may
be shown that σ2

s ≥ 0. The distribution of scores for a mix of alignment
lengths 1 ≤ l ≤ L0 uniformly distributed as w(l) = 1

L0
for 1 ≤ l ≤ L0 and

zero elsewhere, will satisfy f(s)ds = 1
L0

∑
l f(s|L)ds. This may be evauluated

to be f(s)ds = ds
L0

√
l20
s2 exp(βcs), where Z(βc) = 1. This condition has two

roots, one with βc = 0 that dominates the asymptoic behavior for s < 0,
and one with βc < 0 for s > 0. Note that l20

s2 is fixed by β
(

s
l0

)
= βc,

where l0 is the length that dominates the sum for a given s. Lastly, a distri-
bution of lengths g(l|s) may be obtained from g(l|s)f(s)ds = f(s|l)dsw(l). Then
g(l|s) =

√
s2

2πl20σ2
s

exp
(
− s2

2m2
0σ2

s
(l − l0)2

)
.

Given these considerations, it is possible to construct tests of a hypothesis
that an observed set of alignments would have emerged by chance, as opposed
to the hypothesis that they were derived by a systematic process such as inher-
itance and mutations. To this end, we note that the Nζ = Lpζ = Lqζe

−βsζ are
the nζ that dominate the distribution of s from the multinomial distribution. So
for observed proportions pζ , it is possible to construct scores sζ = − 1

βc
ln pζ

qζ
that

will match the observed alignment frequencies (recalling βc < 0 in this regime).
The distribution g(l|s) may then be used to compute probabilities of seeing
aligned lengths as long as or longer than observed given an alignment score s. If
the alignments observed are significantly higher, then the signal being observed
by alignment-free methods would count much higher alignment among k-mers
than expected by chance. This gives a method for probing how significant the
observed alignment lengths are for various k-mer lengths given observed align-
ment frequencies pζ . Note that the problem considered here is the distribution
of all possible alignment scores assuming random alignments with no preferred
lengths, the selection of a scoring matrix optimized to extremize for observed
values, and the chances of observing a length of such observed alignments
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by chance. This is distinct from the problem of determining the distribution of
scores that would be obtained by an alignment search algorithm that optimizes
scoring matrix based scores [6].

We consider test cases for that alignment drawn from primate mtDNA, HPV,
and Ebola virus. While mtDNA and Ebola show very low variability, HPV types
are distinguished by at least 10% variation between sequences, with values often
exceeding 30%, so serves as an extreme case. By contrast, Ebola viruses must
all be within 10% to be classified as Ebola. The number of k-mers required to
resolve an alignment therefore serves to measure the k-mer distance required to
unambiguously resolve distances between taxa in comparison to what might be
expected for a random collection of unrelated taxa.

It had been noted that, among alignment-free phylogeny construction tech-
niques, reconstruction of phylogenies from k-mer distances was “unreliable” [11].
An example given was primate phylogeny based on mtDNA. We sought to repli-
cate that result, computing k-mer distances on mtDNA coding regions for a
number of primates.

Since phylogeny inference techniques are ultimately link to distance matri-
ces, we sought to compare phylogenies reported among Ebola virus [10] with
k-mer distance-based methods by reconstructing distance matrices from reported
trees, and applying a Mantel test. This removes variability due to tree-building
algorithms, but retains information about similarity between specific sequences
from which phylogenies could be constructed. Selection pressure promotes con-
servation, which reduces variability among genes important to the biological
function of the organism. We sought to establish whether constructed phyloge-
nies would reflect selection pressure by considering the differences in phyloge-
nies constructed from coding and non-coding Ebola virus sequences. Further,
we sought to characterize the level of selection pressure that appeared between
genes expressed early vs. late in the viral interaction with the cell cycle.

3.1 Distances

In this study we consider several distances to apply any alignment-free philoge-
nies. In particular, we computed 3-mer distances using Manhattan, Euclidean,
and Kullback-Leibler [15] distances. As argued above, Manhattan distances most
closely correspond to the accumulation of SNPs and therefore most directly cor-
responds to genetic distances. Euclidean distances emphasize k-mers with the
largest differences in frequency between taxa. The impact is to reduce the number
of important dimensions discriminating taxa observed by clustering algorithms
used to build phylogenies. Likewise, from the above considerations, Kullback-
Leibler distances reflect the chances two random sequences could be so similar.

The Kullback-Leibler distance is formally defined as:

DKL =
KL(P ||Q) + KL(Q||P )

2
where P and Q are the empirical probabilities of the k-mers and KL(P ||Q) =
H(P,Q) − H(P ), where H(P,Q) = −∑

x
px log2 qx is referred to as the cross
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entropy of P and Q, and H(P ) is the entropy of P . Intuitively, KL(P ||Q) is a
measure of the information lost when Q is used to approximate P . This emerges
naturally when considering the Q’s as a multinomial sampling of the P ’s.

Other distance scales (e.g. D2, DS
2 , D∗

2) based on correlations [17] have been
introduced and extensively studied (e.g. [4,17]). While Manhattan distances
arguably most closely reflect SNP counts and genetic distances, and KL dis-
tances measure the log of the likelihood that one sequence might have been
sampled by chance from the other and vice versa and are approximated by
Euclidean distances for smaller deviations, D2 and related measures also reflect
Euclidean deviations at smaller genetic variances, so were not included for sake
of redundancy in this analysis.
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Fig. 1. Dendrogram of the primates using Euclidean distance (on top) and Manhattan
distances (on the bottom). Red = Baboon (Papio papio), Yellow-green = Gibbon
(Nomascus siki), Green = Gibbon (Hylobates lar), Blue-violet = Neanderthal (Homo
sapiens neanderthalensis), Blue = Human (Homo sapiens), Aqua = Orangutan (Pongo
pygmaeus), Orange = Gorilla (Gorilla gorilla), Violet = Chimpanzee (Pan troglodytes
troglodytes), Red-violet = Bonobo (Pan paniscus) (Color figure online)
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4 Results and Discussion

The characteristic lengths of k-mers required to yield a significant score are
as follows. For mtDNA, the alignment length required to show two sequences
align better than chance for k = 1 is 3.28 ± 1.75, 1.62 ± 0.86 for 2-mers, and
1.06 ± 0.55 for 3-mers. In other words, the length required to show a significant
score is just one site. As k increases, k-mers are less and less likely to show
alignment by chance, driving most of the sζ ’s to be more negative, with smaller
probability of seeing alignment. For HPV, the length required to distinguish
between alignments of random sequences from signal for 1-mer is 63.7 ± 52.4;
for 2-mers, is 13.19 ± 10.76; for 3-mers, is 6.15 ± 5.15, and for 4-mers, is 3.87 ±
3.34. This shows very strikingly that, even for very diverse but clearly related
sequences, the higher specificity of multimers much more strongly discriminates
from alignment by chance within a much smaller length than by using monomers.
Also, these lengths represent minimum alignment lengths needed to resolve taxa
into a phylogeny based on alignments distinguished from chance.

For primate mtDNA clustering, we applied mean-linkage agglomerative clus-
tering to 3-mer distances of mtDNA coding regions. Figure 1 shows that the
chimpanzees cluster closer to gorillas than humans, which contradicts known
phylogenies. However, the split between humans, gorillas, and chimpanzees are
described as nearly polytomous. The distinction among other primates is much
more clearly defined, contrary to the result previously reported for 3-mers [11].

In order to validate information comparing alignment-based phylogeny con-
struction to k-mer based phylogeny construction, we chose to compare distance
matrices rather than phylogenies derived from k-mer distances. We constructed
distance matrices from the NEXUS files describing trees that [10] built for Ebola
virus using a Bayesian approach and by RAxML [18]. Distances were computed
as the sum along both lineages to their most recent common ancestor. We also
computed 3-mer distances using Manhattan, Euclidean, and Kullback-Leibler
distances. Mantel tests estimate the correlation coefficient between distance
matrices, and measure significance defined in terms of 99,999 random replicates
of the given rows and columns. This will therefore give a measure of whether phy-
logenetic trees derived from these distances similarly place taxa similarly prox-
imal to each other without the added variable of clustering algorithms. Table 1
shows in general that all p-values were limited by the number of replicates, and
highly significant. Correlations were highest for all 3-mer distances with Bayesian
trees, but somewhat less than for RAxML trees. Interestingly, the RAxML trees,
which showed relatively lower correlations with the 3-mer distances than the
Bayesian tree distances, showed a similarly strong correlation with the Bayesian
tree distances as the 3-mer distances. The 3-mer distances agreed more strongly
with the Bayesian tree distances than the RAxML tree distances did. The Man-
hattan distances showed slightly stronger correlation with RAxML results than
either Euclidean or Kullback-Leibler.

We extracted Coding DNA Sequence (CDS) and non-Coding DNA Sequence
(nCDS) in the Ebola virus by selecting the sequence with fewest deletions,
and using the the markers for coding and non-coding segments specified in the
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Fig. 2. Dendogram and heatmap of the strand in CDSs. Violet = Bundibugyo
virus2007, Blue-violet = Tai Forest virus 1994, Blue = EBOV 1976/1977, Aqua-
green = EBOV 1994-1996, Green = EBOV 2007, Yellow-Green = EOBV 2014,
Orange = Reston virus 1990/1996/2008/2009, Blue = SUDV 1976, Red = SUDV
1979/2000/2004/2011/2012; Heatmap is rainbow with red = most similar, violet least
similar (Color figure online)
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Fig. 3. Dendrogram and heatmap of the strand in nCDSs. Violet = Bundibugyo
virus2007, Blue-violet = Tai Forest virus 1994, Blue = EBOV 1976/1977, Aqua-
green = EBOV 1994-1996, Green = EBOV 2007, Yellow-Green = EOBV 2014,
Orange = Reston virus 1990/1996/2008/2009, Blue = SUDV 1976, Red = SUDV
1979/2000/2004/2011/2012; Heatmap is rainbow with red = most similar, violet least
similar (Color figure online)
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Fig. 4. Heatmap and corresponding dendogram of the k-mer distribution in strand in
nCDSs and nCDSs. Violet = Bundibugyo virus2007, Blue-violet = Tai Forest virus
1994, Blue = EBOV 1976/1977, Aqua-green = EBOV 1994-1996, Green = EBOV
2007, Yellow-Green = EOBV 2014, Orange = Reston virus 1990/1996/2008/2009,
Blue = SUDV 1976, Red = SUDV 1979/2000/2004/2011/2012; Heatmap is rainbow
with red = most similar, violet least similar (Color figure online)

GENBANK file. We computed 3-mer distance matrices and phylogenies on these
segments using complete linkage [14]. We expect purifying selection to exclude
lineages with more deleterious SNPs, yielding a simple graphical identification of
selection pressure. Similarly, we extracted individual genes, and compared selec-
tion pressure for genes that express early in the viral cell cycle to those later in
the cycle.

Figures 2 and 3 show clustering of strands using the DKL distance in the
Coding DNA Sequence (CDS) and non-Coding DNA Sequence (nCDS) regions,
respectively. While Fig. 4 clustered CDS and nCDS segments together. Moreover,
some genes are active early in the life cycle, and others later. We characterized
nucleoproteins (NP - early), RNA polymerase (L early), glycoproteins (GP -
later). Therefore contrasting early versus later, we consider a combination of
NP and L vs GP. Figure 5 shows the results when only these regions are taken
into account. This suggests that there is much more conservation for NP and L
vs GP.
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Fig. 5. Heatmap and corresponding dendogram of the k-mer distribution in strand
in NP and L vs G’s. Violet = Bundibugyo virus2007, Blue-violet = Tai Forest virus
1994, Blue = EBOV 1976/1977, Aqua-green = EBOV 1994-1996, Green = EBOV
2007, Yellow-Green = EOBV 2014, Orange = Reston virus 1990/1996/2008/2009,
Blue = SUDV 1976, Red = SUDV 1979/2000/2004/2011/2012; Heatmap is rainbow
with red = most similar, violet least similar (Color figure online)

Table 1. Mantel test with 99,999 replicates.

1st Distance matrix 2nd Distance matrix r2 p-value estimate

3-mer Manhattan Bayesian tree 0.9545 ≤ 1 × 10−5

3-mer Manhattan RAxML tree 0.8816 ≤ 1 × 10−5

3-mer Euclidean Bayesian tree 0.9531 ≤ 1 × 10−5

3-mer Euclidean RAxML tree 0.8793 ≤ 1 × 10−5

3-mer Kullback-Leibler Bayesian tree 0.9578 ≤ 1 × 10−5

3-mer Kullback-Leibler RAxML tree 0.8746 ≤ 1 × 10−5

Bayesian tree RAxML tree 0.9379 ≤ 1 × 10−5

5 Conclusion

Given the large and rapidly growing number of studies considering the relation-
ship among multiple genomes, a rapid and simple way to extract phylogenetic
relationships among putatively related taxa is increasingly important, especially
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where the sequences may be sufficiently phylogonetically divergent that multi-
ple sequence alignment may be problematical. Distances determined from k-mer
distributions serve as a simple way to estimate phylogenies. We have sought to
quantify how much information is required to discriminate relationships among
taxa compared to what might be expected from a random collection of unrelated
samples. HPV serves as a great example since HPV types must show a mini-
mum of 10% variation or more between them, and demonstrate a huge range
of diversity. This makes HPV phylogeny construction challenging for alignment
methods, and provides a good test case to understand how much power k-mer
frequency-based distances have to resolve phylogeny-bearing mutations from ran-
dom chance. In this case, we see that k-mer distances can resolve phylogenies
with a very small number of bases compared to what would be expected for
monomers. Therefore, k-mer distance based phylogeny construction is likely to
be effective in noisy environments exploring relationships among a hypothetically
related set of taxa than some prior publications have suggested.

Ebola is a fascinating virus in that it primarily evolves and survives in a wild
reservoir largely out of sight until it is transmitted into the human population, at
which point it is very lethal, and relatively easily transmitted. Since the reservoir
allows for transmission, preserving the virus and allowing it to evolve, selection
pressure preserving function of genes, and yet being pruned by immune system
responses of the hosts, the virus will show typical viral evolution patterns in
its hosts similar to influenza or any other virus. It is reasonable to expect that
the role of g-proteins in invading cells, and the sensitivity of immune system
responses to those proteins, would resemble what happens with influenza and
other pathogens. However, most Ebola viruses are lethal in humans. According
to [10], there is little evidence of any selection pressure once it has been trans-
mitted to the human population. There are not enough human survivors with
established immune responses selecting against older strains to show any selec-
tion pressure within an outbreak. Therefore, explorations of selection presents a
probe into the evolution of Ebola within its reservoir. One possible human reser-
voir that may be of interest is the Reston virus, which was seen to be non-lethal.
If it has not been cleared by normal immune responses, it and its descendants
may be present and evolving in the human population today. The Reston virus
appears to be indigenous to a reservoir in the Philippines, shows no significant
impact upon transmission to humans, and immune antibodies against Reston is
present in the human Philippine population [1].

Our experiment of clustering coding and non-coding 3-mer relative frequency
vectors together showed that the coding and non-coding regions were more
distinct from each other than the variation across strains within the regions.
Further, the phylogeny of the Ebola strains were recapituated in the coding
and non-coding regions. Lastly, the non-coding region showed more evidence of
the survival accumulated SNPs, indicating less selection pressure against them.
Accepting these as guidelines, we considered early vs. late genes, more diversity
among g-proteins, perhaps indicative of pruning due to immune response within
the reservoir species, similar to the phylogenies of influenza.
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Abstract. Somatic DNA mutations are a characteristic of cancerous
cells, being usually key in the origin and development of cancer. In the
last few years, somatic mutations have been studied in order to under-
stand which processes or conditions may generate them, with the pur-
pose of developing prevention and treatment strategies. In this work we
propose a novel sparse regularised method that aims at extracting muta-
tional signatures from somatic mutations. We developed a pipeline that
extracts the dataset from raw data and performs the analysis returning
the signatures and their relative usage frequencies. A thorough compar-
ison between our method and the state of the art procedure reveals that
our pipeline can be used alternatively without losing information and
possibly gaining more interpretability and precision.

Keywords: Somatic mutations · Mutational signatures ·
Dictionary learning · Sparsity

1 Scientific Background

Environmental factors as well as failings in the biological mechanisms of DNA
replication and repairing are among the main causes of somatic DNA mutations,
possibly leading to the pathogenesis of cancer.

In this context, one of the main challenges is to distinguish which phenom-
ena or environmental processes generated such mutations, with the aim of better
understanding each patient’s history and, possibly, devising a personalized ther-
apy. The problem translates into discovering the so-called mutational signatures,
that are patterns of mutations characterizing the diseases. This is possible using
genome sequencing techniques in combination with statistical and computational
methods. A methodology for extracting mutational signatures was recently pro-
posed by [2]. It is based on Non-negative Matrix Factorization (NMF) [5] and a
variation of k-means [4] in which a one-to-one assignment based on cosine sim-
ilarity is performed between clusters and signatures. In this method, from now
on addressed as NMF-CL, each patient is represented with a vector of mutations
c© Springer Nature Switzerland AG 2019
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https://doi.org/10.1007/978-3-030-14160-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14160-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-14160-8_4


Sparse Dictionary Learning for Mutational Signatures 33

counts (see Sect. 2.1) and his feature vector is approximated with a linear com-
bination of weighted basic patterns (mutational signatures). The strong prior
imposed by the non-negativity constraint in NMF is due to the data represen-
tation of choice where negative patterns of mutations have no meaning. In [1],
NMF-CL analysed 10000 samples comprising 30 different cancer types extract-
ing 22 mutational signatures. Of these signatures 11 were linked to biological or
external causes.

Here, we present an alternative methodology based on dictionary learning
[3,8] implemented within a cross-validation schema (DL-CV). Dictionary learn-
ing is a general decomposition technique that aims at approximating the signal
with a linear combination of dictionary atoms (namely signatures) and coeffi-
cients. For the type of analysis we are dealing with dictionary learning can be
specialized into NMF by imposing a non-negativity constraint. DL-CV exploits
the use of sparsity on both signatures and coefficients. In fact the effect of spar-
sity allows for a better signal approximation and a better interpretability of the
results. DL-CV is implemented within a Python library1 [11] that can also take
advantage of high-performance computing facilities as it can be distributed to
an arbitrary number of processes, greatly reducing the computational time.

1.1 DNA Somatic Mutations

Deoxyribonucleic acid (DNA) encodes all the genetic background of every living
organism with an alphabet of four nucleotides: adenine (A), guanine (G), cyto-
sine (C) and thiamine (T). After conception DNA may be altered by somatic
mutations which are changes generally caused by environmental factors (e.g.,
ultraviolet light). They are called simple nucleotide variations (SNVs) and they
may consist of insertions, deletions or substitutions. They are predominantly
linked to diseases, one of them being cancer.

2 Materials and Methods

The data set used for this paper is a 21 breast cancer whole genomes dataset
[2] that was sequenced and pre-processed in [6]. For each sample, the considered
data representation counts the number of occurrences of six main substitutions
(C→T, C→G, C→A, T→C, T→A, T→G) within the context of the nucleotides
immediately in 5′ and 3′ position w.r.t. the mutated base. Therefore, each sample
is represented by a 96 dimensional vector counting 6 types of substitutions × 4
types of 5′ base × 4 types of 3′ base. Mutations types (data matrix columns)
whose sum is lower than the 1% of the total were discarded as in [2]. The derived
data matrix is X ∈ R

21×88
+ .

1 Code publicly available at https://github.com/slipguru/dalila under Free BDS
license.

https://github.com/slipguru/dalila
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2.1 Learning Methods

Dictionary Learning. Dictionary learning is a machine learning method that
approximates a data matrix X ∈ R

n×p with two matrices assuming a linear
combination X ≈ CD. The output consists of a dictionary matrix D∗ ∈ R

k×p of
basic patterns (signatures) and the coefficients matrix C∗ ∈ R

n×k which repre-
sents how much each signature is active in a sample. The problem is formalized
in Eq. (1).

C∗, D∗ ← argmin
C∈A⊂R

n×k,

D∈B⊂R
k×p

‖X − CD‖2F + Φ(C) + Ψ(D) (1)

where Φ and Ψ are penalties that impose prior knowledge of the minimization
problem and A and B are constraint subsets of the real space.

To solve such problem we adopt an alternating proximal gradient descent
algorithm which is appropriate for functionals with the following properties [3]:
(i) all terms may be non-convex; (ii) the residual error is differentiable in one
variable keeping the other fixed; (iii) the penalty terms involve only one variable
at the time and they may be non-differentiable. This allows to use different types
of penalties without changing the optimization flow, whose overview is given in
Algorithm 1 following the theory of [3,8]. In this work we choose Φ and Ψ as
Lasso penalty terms. This choice guarantees that the functional is also partially
convex (i.e. it is convex in one variable keeping the other fixed).

Non-negative Matrix Factorization. NMF is a sub-class of the dictionary learn-
ing problem that assumes non-negativity for all the elements in the involved
matrices. This assumption allows to develop targeted optimization methods as
the one used in NMF-CL that finds its C∗ and D∗ as

C∗, D∗ ← argmin
C∈R

n×k
+ ,

D∈R
k×p
+

‖X − CD‖2F (2)

This method, proposed in [5], cannot be extended to penalized problems.
It is possible to use generic approaches as those cited in previous paragraph

to obtain the same decomposition by imposing a non-negative constraint on the
involved matrices. In fact Algorithm 1 can be specialized in NMF by applying a
projection on the positive sub-space during the minimization.

Algorithm 1. Alternating proximal gradient descent
1: Random initialization of the matrices C and D
2: Let F be the name of ‖X − CD‖2

F

3: for i = 0 : max iters do
4: Dt+1 = proxγΨ (Dt − γ �D (F))
5: Ct+1 = proxγΦ(Ct − γ �C (F))
6: if difference between iterates < ε and
7: different between previous and current objective function < ε then
8: break
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2.2 Pipelines Description

In this section we will describe in detail the pipelines used to implement DL-CV
and NMF-CL. Both pipelines aim at extracting mutational signatures and the
related coefficients in order to infer which signatures are the most representative
of the different cancer types. The pipelines are presented in terms of functional,
optimization method, robustness and parameters selection and sparsity.

NMF-CL. The main core of this pipeline is the NMF algorithm followed by a
clustering step. In particular it minimize the problem in Eq. (2) through alternat-
ing multiplicative optimization [5] for non-negative matrix factorization (NMF).
The robustness and the parameters selections are reached through the following
steps:

1. random sampling from the dataset with Monte Carlo resampling;
2. decomposing the sampled matrix with NMF and storing the result;
3. performing clustering on the obtained signatures: the new signatures are

mapped into clusters with a one-to-one mapping using cosine similarity

sisj
‖si‖2‖sj‖2

where si and sj are mutational signatures;
4. the steps 1, 2 and 3 are repeated until the centroids of the clusters coincide

up to a precision ε

The right number of signatures is selected as that number that has an high
silhouette [10] value and low reconstruction error. At the end of the procedure
NMF-CL requires the sparsification of the coefficients in which its coefficients
are taken and normalized in order to obtain a probability distribution over the
signatures. Then, the signatures that have a contribution lower than 25% are
discarded (set to zero).

DL-CV. This pipeline is based on the optimisation of the problem in Eq. (1)
where Φ and Ψ are �1-penalties and A and B are the positive subsets of the
real space. The problem (1) is minimized via an alternating proximal gradient
descent [8], for generic penalized and constrained dictionary learning. In order
to find the correct number of atoms, to tune the penalization parameters and to
be robust to noise in the data the dictionary learning algorithm is nested in a
cross-validation procedure. Given the data matrix, for each possible combination
of parameters we perform a 3-splits Montecarlo boostrap cross validation each
time estimating the Bayesian Information Criterion (BIC).

BIC = −
[
log(k) · log(n) + c · O(C∗,D∗)

]
(3)

where O(C∗,D∗) is the objective function applied on the optimal matrices and
c is a multiplicative constant. As the BIC is a sum of two negative terms the



36 V. Tozzo and A. Barla

optimal solution will correspond to the highest possible value of the BIC. Ideally
we look for the minimum number of signatures (k) that guarantee the most
accurate reconstruction (i.e. a small value of O(C∗,D∗)). The assessment of the
penalization terms is embedded in the evaluation of O(C∗,D∗).

Pipelines Comparison. NMF-CL imposes non-negativity in the solution accord-
ing to [5]. Conversely, DL-CV adopts two sparse penalisation terms which require
the alternating proximal gradient descent optimization method. Moreover the
solution is imposed to be non-negative. For what concerns parameters selection,
DL-CV is based on cross-validation with an analysis of the Bayesian Informa-
tion Criterion (BIC) values while NMF-CL is based on cluster stability and
the analysis of the reconstruction errors. Differently from NMF-CL, where the
sparsity of the solution is obtained via a thresholding procedure, in DL-CV the
sparsity of the solution is enforced by the sparse penalty imposed on the coeffi-
cients matrix C∗. Finally, both pipelines perform a last step of analysis of the
coefficients, i.e., the computation of the frequencies for each signature obtained
by counting how many samples have the related coefficients different from zero.

3 Results

In this section we present the results obtained using NMF-CL and DL-CV on the
breast cancer dataset. We will first focus on how many signatures are identified
by the two methods and then we will present a qualitative comparison of the
patterns. Finally, we compare the two methods in terms of their approximation
error.

Fig. 1. Criteria used to choose the number of mutational signatures. The left panel
shows the stability (mean silhouette) and the reconstruction error plotted w.r.t the
number of atoms for NMF-CL. The plot on the right represents the mean BIC values
for each different number of mutational signatures for DL-CV. (Color figure online)
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The blue plot in Fig. 1 represents the stability criterion used to determine
the right number of signatures in NMF-CL. The choice balances the trade-off
between stability and reconstruction error. We favoured the reconstruction error
as the stability decreases with increasing number of clusters ending up select-
ing 6 signatures. The red plot in Fig. 1, instead, shows the mean BIC values
obtained with DL-CV. To high BIC values correspond a better model, here the
highest and optimal value for BIC corresponds to a dictionary with 5 signatures.

Fig. 2. Distribution of the residuals obtained for each sample with the two pipelines.
The residual is computed as in Eq. (4) and it is observable that the red boxplot (DL-
CV) has a lower mean and a smaller variance. (Color figure online)

NMFA1

Mutations

DLA1

Mutations

Fig. 3. This figure shows the comparison between NMFA1 and DLA1—blue and red
background, respectively. Overall the two atoms share a similar shape suggesting the
presence of diffused mutations across the entire DNA. (Color figure online)
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NMFA2

Mutations

DLA2

Mutations

Fig. 4. This figure shows the comparison between NMFA2 and DLA2—blue and red
background, respectively. Overall the two atoms share a similar shape suggesting the
presence of diffused mutations across the entire DNA. (Color figure online)

NMFA3

Mutations

DLA3

Mutations

Fig. 5. This figure shows the comparison between NMFA3 and DLA3—blue and red
background, respectively. Overall both methods enhance the occurrence of C→T muta-
tion. (Color figure online)
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Using the selected number of signatures we performed a qualitative comparison
of the resulting signatures. The outcomes are shown in Figs. 3, 4, 5, 6, 7 where
the signatures are normalized in order to represent probabilities, i.e. each of
96 peaks represents the probability of a specific mutation to be informative.
Are comparable to the ones in [2] and they can be easily matched. Figure 4,
in particular, shows three signatures that are equivalently obtained with both
the procedures. Figures 6 and 7 are two cases where it is necessary to com-
bine two signatures of one method to obtain one of the other. This behaviour
ensues by the fact that dictionary learning decomposition is not unique and the

NMFA4

Mutations

NMFA5

Mutations

DLA4

Mutations

Fig. 6. This figure shows the comparison between NMFA4 and NMFA5 and DLA4—
blue and red background, respectively. The main highlighted behaviour is a peak occur-
ring in the C→T mutation. DLA4 shows a higher peak that is possibly split between
NMFA4 and NMFA5. Also note that with NMF-CL method also captures background
noise in the non-relevant mutations of these signatures. (Color figure online)
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NMFA6

Mutations

DLA4

Mutations

DLA5

Mutations

Fig. 7. This figure shows the comparison between NMFA6 and DLA4 and DLA5—blue
and red background, respectively. The main highlighted behaviour is a peak occurring
in the C→G mutation. While in NMFA6 there is also a relevant contribution of C→T
mutation that is not present in DLA5, this can be explained by DLA4. Indeed NMFA6
can be obtained by the weighted combination of DLA4 and DLA5. (Color figure online)

possibility to multiply the signatures by the coefficients allows to recover differ-
ent conformations of the patterns.

Lastly we performed an analysis on the reconstruction errors with respect to
each sample. The residual for a sample i in the dataset is computed as

ri =
‖Xi,: − C∗

i,:D
∗‖2

‖Xi,:‖2 (4)

where C∗ and D∗ are the matrices found with NMF-CL and DL-CV method. A
perfect reconstruction is reached when ri = 0.
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All the residuals are plotted in Fig. 2 and it is noticeable that mean and
variance in DL-CV are lower than in NMF-CL. This means that DL-CV achieves
a better reconstruction and its errors are more similar across data points.

4 Conclusion

The proposed method is able to reproduce state of the art results and introduces
new elements as sparsity and flexibility in the functional. This last novelty allows
to add prior knowledge on the problem and possibly to obtain more specific
results. Moreover the distributed implementation facilitates the research of the
parameters by parallelizing the computation and greatly reducing the running
time. In future work we plan to proceed with the coefficients analysis to assess the
positive effects of post-processing elimination and to validate our methodology
on new data. To this aim we will apply the pipeline on public available datasets
considering also the option of analysing all the available TCGA cancer classes.
Nevertheless we are aware that the use of whole-genome sequencing data may be
the source of statistical issues due to the difference in the trinucleotides counts
in whole genome and exomes data [9].
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Abstract. Immunoglobulin (IG) clonotype identification is a fundamen-
tal open question in modern immunology. An accurate description of the
IG repertoire is crucial to understand the variety within the immune sys-
tem of an individual, potentially shedding light on the pathogenetic pro-
cess. Intrinsic IG heterogeneity makes clonotype inference an extremely
challenging task, both from a computational and a biological point of
view. Here we present icing, a framework that allows to reconstruct
clonal families also in case of highly mutated sequences. icing has a
modular structure, and it is designed to be used with large next gener-
ation sequencing (NGS) datasets, a technology which allows the char-
acterisation of large-scale IG repertoires. We extensively validated the
framework with clustering performance metrics on the results in a simu-
lated case. icing is implemented in Python, and it is publicly available
under FreeBSD licence at https://github.com/slipguru/icing.

Keywords: Clonotype identification · Immunoglobulin · NGS data ·
Cluster analysis

1 Scientific Background

The identification of immunoglobulin (IG) clonotypes is a key question in mod-
ern immunology. A clonotype is a particular combination of IGs generated by a
single plasma cell clone, which is a population of cells all derived from a single
progenitor cell (germline). The ability to infer clonotypes is crucial as it allows to
understand how much diversity an individual has in its immune repertoire and to
study immune response through B-cell clonal amplification and diversification.
Indeed, understanding the variety within the immune system of an individual
may potentially shed light on pathogenetic processes. In healthy individuals the
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repertoire is expected to be extremely diverse, to guarantee the ability to respond
to a wide range of antigens (e.g. bacteria, viruses). The diversity of the B-cell
repertoire is due to the gene recombination process, where, by random selection,
one for each V, D and J genes are joined together, with a simultaneous trim-
ming and addition of random nucleotides (Fig. 1). The resulting bridging segment
between V and J genes, called complementarity determining region 3 (CDR3),
is the most variable and therefore important for the antigen binding [11]. Before
encountering an antigen, B-cells have zero (or few) somatic mutations. Without
considering mutations, the overall repertoire diversity usually comprises 107 to
108 clonotypes, with lower bounds of diversity of 105 and potentially as high
as 1011 unique molecules in a single individual [4]. After the immune response,
they undergo clonal amplification and somatic hypermutation, to increase the
binding affinity to the antigen [8]. The potential frequency of somatic hypermuta-
tion, which can be at least 105–106 fold greater than the normal rate of mutation
across the genome [9], may generate many orders of magnitude more diversity
in the B-cell receptor repertoire than the 1011 unique molecules per individ-
ual. Therefore, intrinsic data heterogeneity makes IG clonotyping an extremely
difficult task.

Fig. 1. IG recombination. Starting from V(D)J gene segments, one of each type is
selected to produce the IG sequence. When joining two segments, some insertions and
deletions (indels) may occur. A constant region is appended to the IG sequence after
the recombination.

2 Icing

To tackle the problem of IG clonotyping inference, we developed icing
(Inferring Clonotypes of ImmuNoGlobulins), a Python library publicly available
at https://github.com/slipguru/icing. The method aims at grouping IGs into
clonal families, whose members derive from the same germline ancestor. Input
and output data have the same format used by the Change-O suite, hence icing
is easily integrable in the usual pRESTO/Change-O pipeline [5,14]. In partic-
ular, data should be in the format produced by Change-O, that is, IGs should
be represented via their V gene calls and CDR3 amminoacidic (or nucleotidic)
sequence. Also, an indication of the mutation level of the sequence with respect to
reference should be present, to allow for the final steps of the pipeline (Sect. 3.3).

icing is designed to be used with a large number of data, for example coming
from NGS technologies, composed of more than 106 sequences. The method is

https://github.com/slipguru/icing
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implemented in Python, exploiting separate processes on multi-core machines
for almost each step of three sequential phases: (i) data shrinking, (ii) high-level
grouping and (iii) fine-grained clonotype identification (Fig. 2).

Fig. 2. icing pipeline. Starting from a CSV or TAB-delimited file, the first step con-
sists in grouping together sequences based on their V gene calls and CDR3 identity
(data shrinking step). An high-level clustering is done on CDR3 lengths to reduce the
computational workload of the third and final phase, which involves a clustering step
on each of the previously found groups to obtain fine-grained IG clonotypes.

3 Materials and Methods

3.1 Synthetic Data Generation

We used partis [10] to generate synthetic datasets, which are characterised by an
increasing number of IGs and clones, 0.05 frequency of insertions and deletions
(indels) of maximum length of 6 nucleotides on the CDR3 sequence, and different
degrees of V gene sequence mutation level. Table 1 presents an overview of the
datasets.

3.2 Preprocessing

The datasets were submitted to IMGT/HighV-QUEST [1] for V(D)J genes infer-
ence, then preprocessed by a Change-O feature [5]. The outcome is a single TAB-
delimited file containing the information about IGs and their metadata, such as
the identification of V(D)J sequences (i.e., V(D)J gene calls), V gene sequence
mutation level and identification of CDR3 sequence, to be used as input to the
pipeline.

3.3 Clonotype Identification

The clonotype identification step is divided into three parts.

Data Shrinking. Input data are grouped based on V gene calls (exact corre-
spondence) and CDR3 identity (completely overlapping sequence). This allows
to reduce the computational workload of next clustering steps. To each group is
assigned a weight, equal to the cardinality of the group.
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Table 1. Datasets overview. For reference, the total number of functional gene seg-
ments for the V/D/J regions of heavy chains in the human genome are 65/27/6 [7].

Dataset Sequences Clonotypes Avg
seqs/clone

Unique V
genes

Unique D
genes

Unique J
genes

Mean (std) of
V gene
mutation

D1 9233 77 92.35 35 24 6 9.59 (4.64)

D2 17825 74 185.09 38 24 6 8.64 (4.46)

D3 37897 77 396.43 34 25 6 9.04 (4.51)

D4 47764 389 99.08 56 25 6 8.63 (4.30)

D5 102336 388 209.44 58 25 6 8.41 (4.70)

D6 205986 379 428.44 56 25 6 9.56 (4.46)

D7 162713 1168 109.66 58 25 6 8.72 (4.67)

D8 301978 1180 206.22 58 25 6 9.15 (4.73)

D9 589680 1185 400.26 58 25 6 8.94 (4.65)

D10 291076 2282 96.29 58 25 6 8.84 (4.46)

D11 568799 2317 187.76 58 25 6 9.12 (4.76)

D12 1208110 2358 404.30 58 25 6 9.11 (4.77)

High-Level Group Inference. This phase involves a clustering step on CDR3
lengths of previously identified groups. The outcome, which consists of high-level
groups of IGs to be refined afterwards, contains IG sequences having comparable
CDR3 lengths. This is done using MiniBatchKMeans clustering algorithm [12],
which is computationally efficient and, more importantly, may group together
very similar clusters.

Fine-Grained Group Inference. Each high-level group extracted before is then
subdivided based on the actual IG distance. The distance between IGs is com-
puted taking into account V gene calls and CDR3 sequences. In particular, the
distance between two IGs is lower than infinity if and only if they have at least
one V gene call in common. In such case, their actual distance is computed using
a sequence distance method on their CDR3 sequences. In particular, the method
implements a generic normalised distance measure based on a particular model
matrix M. Let ‖M‖max = maxi,j |Mij |. For two sequences s and t of equal
length �, we defined their distance D(s, t) as follows:

D(s, t) =
1

� · ‖M‖max

�∑

i=1

M(si, ti). (1)

The choice of a specific model depends on the type of data under analysis.
When M = H, where H(x, y) = 0 if x = y and 1 otherwise, the model assumes
the form of a normalised Hamming distance [6].

Such distance measure allows seamless integration of different nucleotidic
and amminoacidic models. icing includes Hamming and its weighted variants,
such as HS1F [16]. The models are defined between sequences of equal length.
The method allows also the comparison of sequences with different lengths, by
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tuning a tolerance parameter. In such case, a standard alignment step between
two sequences of different lengths may be performed before the computation of
their distance, using the Smith-Waterman algorithm for sequence alignment [13].

IG sequences are characterised by an high level of mutation. Therefore, a cor-
rection function based on V gene sequence mutation level may be used to reduce
distances between two IGs if mutated. This procedure encodes the uncertainty
of the distance measure when dealing with highly mutated data, allowing for a
more robust measure. We note that this is a step which is strongly depends on
the data at hand. In our experiments, we corrected the distances between two
IGs by multiplying D(s, t) with νst, where νst = 1 − ms−mt

2 , with ms and mt

are the mutation levels of the sequences s and t, respectively.
After the design of such distance metric, fine-grained groups (i.e., final clono-

types) are extracted using the DBSCAN clustering algorithm [2], which only
require the parameter ε for the neighbourhood search of spatial distances. On
top of an appropriate index structure, the algorithm can run in O(n log n) and
it only needs linear memory, allowing the analysis of large-scale data.

3.4 Performance Assessment

For synthetic datasets the information about IG clonotypes is known, and it is
used as ground truth. In order to evaluate clustering performance of the method,
we used standard metrics such as homogeneity (HOM), completeness (COM) and
V-measure (VSC), mutual information based scores, namely Adjusted Mutual
Information (AMI) and Normalized Mutual Information (NMI), Adjusted Rand
Index (ARI), and Fowlkes-Mallows score (FMI) [3,15]. Such measures are bound
by [0, 1], and no assumption is made on the cluster structure. Moreover, AMI,
ARI and FMI are adjusted against chance, which is an important feature when
evaluating a clustering performance in presence of a large number of clusters.
Therefore, random (uniform) label assignments have scores close to 0 for mea-
sures normalised against chance.

3.5 Computing Architecture

Experiments were performed using a computing machine equipped with two
Intel R© Xeon R© CPUs E5-2630 v3 (2.4GHz, 8 cores each) and 128GB of RAM1.

4 Results

4.1 Performance Evaluation

We evaluated the method performance on the datasets shown in Table 1. In par-
ticular, Table 2 shows the clustering scores (Sect. 3.4) for datasets D1–3, obtained

1 This is not representative of the amount of computational resources required by the
method.
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using different icing configurations. The metric used for CDR3 sequence dis-
tance computation is the Hamming metric. The other parameters we investigated
involve the neighbourhood selection radius of the DBSCAN clustering algorithm
(restricted to 0.2 or 0.6), the tolerance of the difference in CDR3 sequence lengths
(0, 3 or up to 6 allowed insertions or deletions), and the optional distance cor-
rection based on the V gene segment mutation level. Table 2 is ordered based
on a decreasing FMI score, which, for its properties, it is the most strict of the
clustering measures described in Sect. 3.4. The highest scores (close to 1) for each
of the three datasets are associated to similar icing configurations, in which the
neighbourhood selection of the DBSCAN clustering algorithm is restricted to
0.2, the tolerance of the difference in sequence lengths is 0 (i.e., no alignment
between CDR3s needed to be done), and sequence distances are corrected based
on the V gene segment mutation level. Particularly for dataset D1, the distance
correction is shown to be a critical step to reliably identify IG clonotypes, as
confirmed by high ARI, AMI and FMI scores (chance-corrected clustering mea-
sures). Notably, for D2 and D3 datasets, the correction gives better results when
associated to a tolerance parameter of 0 or 6 nucleotides for CDR3 sequences.

The best parameters selected on datasets D1–3 were used to evaluate the
results on the remaining datasets of Table 1. The results presented in Table 3

Table 2. Comparison of performance metrics between various icing configuration on
synthetic datasets. Columns are: ε (the DBSCAN parameter for neighbourhood selec-
tion), tolerance (tolerance parameter on CDR3 length), correction (Y for a correction
based on the mutation level of V gene segments, N for no correction), followed by the
clustering measures as described in Sect. 3.4. For each dataset, results are ordered by
a decreasing FMI, which is the most strict of the measures for its properties.

Dataset ε Tolerance Correction No chance normalisation Chance normalisation
HOM COM VSC NMI AMI ARI FMI

D1 0.2 0 Y 0.91 0.94 0.92 0.92 0.90 0.86 0.87
0.2 6 Y 0.90 0.94 0.92 0.92 0.89 0.86 0.86
0.2 3 Y 0.87 0.94 0.90 0.90 0.86 0.76 0.78
0.2 6 N 0.87 0.94 0.90 0.90 0.86 0.75 0.77
0.2 0 N 0.86 0.94 0.90 0.90 0.85 0.75 0.77

D2 0.2 0 Y 0.93 0.93 0.93 0.93 0.93 0.90 0.91
0.2 6 Y 0.93 0.93 0.93 0.93 0.93 0.90 0.91
0.2 3 Y 0.93 0.93 0.93 0.93 0.93 0.90 0.90
0.2 3 N 0.92 0.93 0.92 0.92 0.91 0.88 0.88
0.2 0 N 0.91 0.93 0.92 0.92 0.91 0.87 0.88

D3 0.2 0 Y 0.94 0.93 0.93 0.93 0.92 0.92 0.92
0.2 3 Y 0.94 0.92 0.93 0.93 0.92 0.92 0.92
0.2 0 N 0.92 0.93 0.92 0.92 0.91 0.89 0.89
0.2 6 Y 0.92 0.93 0.93 0.93 0.92 0.88 0.88
0.2 6 N 0.92 0.93 0.92 0.92 0.91 0.87 0.87
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Table 3. icing results on synthetic datasets, using the best parameters as selected in
Table 2 (ε: 0.2, tolerance: 0, correction: Y). For each datasets, clustering measures are
reported as described in Sect. 3.4.

Dataset Sequences No chance normalisation Chance normalisation
HOM COM VSC NMI AMI ARI FMI

D4 47764 0.90 0.95 0.93 0.93 0.88 0.79 0.80
D5 102336 0.94 0.95 0.94 0.94 0.93 0.89 0.89
D6 205986 0.94 0.95 0.94 0.94 0.94 0.89 0.89
D7 162713 0.93 0.96 0.94 0.94 0.91 0.84 0.84
D8 301978 0.93 0.95 0.94 0.94 0.92 0.86 0.86
D9 589680 0.93 0.96 0.95 0.95 0.92 0.88 0.87
D10 291076 0.94 0.95 0.95 0.96 0.92 0.87 0.86
D11 568799 0.93 0.95 0.94 0.96 0.91 0.89 0.88
D12 1208110 0.95 0.94 0.95 0.95 0.90 0.88 0.90

show that icing is capable to achieve high performance, which means a reliable
IG sequence clonotyping, even with an increasing number of sequences. Also, the
method is stable across datasets with different sizes.

4.2 Expected Clonotypes

Figure 3 shows the number of clonotypes found by icing compared to the
expected clonotypes (ground truth). Inferred clonotypes are very close to the

Fig. 3. Comparison between icing clusters and expected clonotypes on synthetic
datasets. For each dataset (x-axis), the number of clonotypes found by icing is com-
pared with the expected clonotypes (y-axis), i.e., the ground truth. For datasets D1–3,
only the best results based on FMI score (Table 2) are included.



Icing: Large-Scale Inference of Immunoglobulin Clonotypes 49

ground truth disregarding the size of the datasets. This result, together with the
high clustering performance achieved by our method (Tables 2 and 3), makes
icing a reliable framework for IG clonotype identification in real contexts, where
real clonotypes are not known.

5 Conclusion

Our results show icing to be capable of successfully identifying IG clonotypes,
using synthetic data comprising highly mutated sequences, different V(D)J
recombination events and indels on CDR3 sequences. Due to the intrinsic dif-
ficulty of validating the method on real data (where the ground truth is not
known), we chose to include only the results obtained on synthetic data, where
the method can be validated in relation to the ground truth.

icing has a modular structure which allows to combine different features. In
particular, the clonotype identification step has the potential to include Ham-
ming or other arbitrary nucleotidic or amminoacidic models to compute sequence
distances, arbitrary CDR3 length tolerance or V gene sequence mutation-based
correction, which is an original contribution of this framework. icing is scal-
able with the number of input sequences, allowing for the analysis of large-scale
datasets composed of more than 106 sequences, which is a typical use-case when
dealing with NGS data. To achieve scalability, icing is based on a novel method-
ology which exploits the DBSCAN clustering algorithm, on top of an appropriate
index structure. In particular, we were not able to compare our pipeline with
plain Change-O which, since it is based on hierarchical clustering, has memory
complexity of O(n2), thus infeasible for large datasets. However, we were able to
analyse arbitrarily large datasets by exploiting all of the steps shown in Sect. 3.3,
which turned out to be fundamental in our analysis.

icing is easily integrable in the usual pRESTO/Change-O pipeline for IG
analysis and it is ready to be used in real scenarios. In presence of sequences
with low rate of recombination and mutation (i.e., as in the case of non-healthy
patients), we expect the data shrinking step (Sect. 3.3) to be highly beneficial for
reducing the complexity of the algorithm, which is proportional to the number
of unique CDR3 sequences and V gene calls in the dataset.
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Abstract. adenine is a machine learning framework designed for bio-
logical data exploration and visualization. Its goal is to help bioinfor-
maticians achieving a first and quick overview of the main structures
underlying their data. This software tool encompasses state-of-the-art
techniques for missing values imputing, data preprocessing, dimension-
ality reduction and clustering. adenine has a scalable architecture which
seamlessly work on single workstations as well as on high-performance
computing facilities. adenine is capable of generating publication-ready
plots along with quantitative descriptions of the results. In this paper
we provide an example of exploratory analysis on a publicly available
gene expression data set of colorectal cancer samples. The software and
its documentation are available at https://github.com/slipguru/adenine
under FreeBSD license.

Keywords: Data exploration and visualization ·
Dimensionality reduction · Clustering ·
Software tool for bioinformatics · High-performance computing

1 Scientific Background

In biology, as well as in any other scientific domain, exploring and visualizing
the collected measures is an insightful starting point for every data analysis
process. For instance, the aim of a biomedical study can be detecting groups
of patients that respond differently to a given treatment, or inferring possible
molecular relationships among all, or a subset, of the measured variables. In
both cases, bioinformaticians will be asked to extract meaningful information
from collections of complex and high-dimensional measures, such as NGS data.

In these cases, a preliminary Exploratory Data Analysis (EDA) is not only a
good practice, but also fundamental before further and deeper investigations can
take place. To accomplish this task, several machine learning and data mining
techniques were developed over the years. Among those, we recall the combined
use of the following classes of methods: (i) missing values imputing, (ii) data
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Table 1. Pipeline building blocks available in adenine.

Step Algorithm Reference

Imputing Mean
Median
Most frequent
k-nearest neighbors [22]

Preprocessing Recentering
Standardize
Normalize
Min-max

Dimensionality reduction Principal component analysis (PCA) [11]
Incremental PCA [15]
Randomized PCA [10]
Kernel PCA [18]
Isomap [21]
Locally linear embedding [17]
Spectral embedding [13]
Multidimensional scaling [3]
t-distributed stochastic neighbor embedding [23]

Clustering k-means [2]
Affinity propagation [8]
Mean shift [4]
Spectral [20]
Hierarchical [9]
DBSCAN [7]

preprocessing, (iii) dimensionality reduction and (iv) unsupervised clustering
(see Sect. 2).

In the last few years, a fair number of data exploration software and libraries
were released. Such tools may be grouped in two families: GUI-based and
command-line applications. Among the first group we recall Divvy [12], a soft-
ware tool that performs dimensionality reduction and clustering on input data
sets. Divvy is a light framework; however, its collection of C/C++ algorithm
implementations does not cover common strategies such as kernel principal com-
ponent analysis [18] or hierarchical clustering [9] and it does not offer strategies
to perform automatic discovery of the number of clusters. The most notable
project that spans between the two families is Orange [6], a data mining soft-
ware suite that offers both visual programming front-end and Python APIs. In
the context of data exploration, Orange can be successfully employed. However,
in order to test different data analysis pipelines, each one must be manually
created as it does not support their automatic generation. Moreover, large data
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sets are difficult to analyze with both Divvy and Orange as they can run only
on a single workstation, lacking of distributed computing support.

In this paper, we present adenine, a command-line Python tool for bio-
logical data exploration and visualization that, starting from a set of unsuper-
vised algorithms, creates textual and graphical reports of an arbitrary num-
ber of pipelines. Missing data imputing, preprocessing, dimensionality reduction
and clustering strategies are considered as building blocks for constructing data
analysis pipelines. The user is simply required to specify the input data and
to select the desired blocks. adenine, then, takes care of generating and run-
ning the pipelines obtained by all possible combinations of the selected blocks.
Every algorithm implementation of the presented software tool is inherited, or
extended, from scikit-learn [14] which is, to the best of our knowledge, the
most complete machine learning open source Python library available online.

adenine natively supports data integration with the NCBI Gene Expression
Omnibus (GEO) archive [1], which data sets can be retrieved specifying their
GEO accession number.

Thanks to its scalable architecture, adenine pipelines can seamlessly run in
parallel as separate Python processes on single workstations or MPI1 tasks in
high-performance computing (HPC) cluster facilities. This remarkable feature
allows to explore and visualize massive amounts of data in a reasonable compu-
tational time. Moreover, as adenine makes large use of numpy and scipy, it
automatically benefits from their bindings with optimized linear algebra libraries
(such as OpenBLAS or Intel® MKL).

2 Adenine

adenine is developed around the data analysis concept of pipeline. A pipeline is a
sequence of the following fundamental steps: (i) missing values imputing, (ii) data
preprocessing, (iii) dimensionality reduction and (iv) unsupervised clustering.
For each task, different off-the-shelf algorithms are available (see Table 1).

Data collected in biomedical research studies often present missing values.
Devising imputing strategies is a common practice [5] to deal with such issue.
adenine offers an improved version of the Imputer class provided by scikit-
learn. In addition to the pre-existent feature-wise mean, median and most
frequent strategies, this extension presents the k-nearest neighbors imputing
method proposed for microarray data in [22].

Collecting data from heterogeneous sources may imply dealing with variables
lying in very different numerical ranges and this could have a negative influ-
ence on the behavior of data analysis techniques. To tackle this issue adenine
offers different strategies to preprocess data, such as recentering, standardizing
or rescaling.

The presented software includes a set of linear and nonlinear dimensional-
ity reduction and manifold learning algorithms that are particularly suited for

1 http://mpi-forum.org/.

http://mpi-forum.org/


54 S. Fiorini et al.

exploration and visualization of high-dimensional data. Such techniques rely on
the fact that it is often possible to decrease the dimensionality of the problem
estimating a low-dimensional embedding in which the data lie.

Besides offering a wide range of clustering techniques, adenine implements
strategies and heuristics to automatically estimate parameters that yield the
most suitable cluster separation. The optimal parameter selection of centroid-
based algorithms follows the B-fold cross-validation strategy presented in Algo-
rithm1, where S(X, y) is the mean silhouette coefficient [16] for all input samples.

Algorithm 1. Automatic discovery of the optimal clustering parameter.
1: for clustering parameter k in k1 . . . kK do
2: for cross-validation split b in 1 . . . B do
3: Xtr

b , Xvld
b ← b-th training, validation set

4: m̂ ← fit model on Xtr
b

5: ŷ ← predict labels of Xvld
b according to m̂

6: sb ← evaluate silhouette score S(Xvld
b , ŷ)

7: end for
8: S̄k = 1

B

∑B
i=1 si

9: end for
10: kopt = arg max

k
(S̄k)

For affinity propagation [8] and k-means [2] clustering parameters can be
automatically defined (preference and number of clusters, respectively). Mean
shift [4] and DBSCAN [7] offer an implicit cluster discovery. For hierarchical [9]
and spectral clustering [20], no automatic discovery of clustering parameters is
offered. However, graphical aids are generated to evaluate clustering performance
such as dendrogram tree and eigenvalues of the Laplacian of the affinity matrix
plots, respectively.

3 Gene Expression Data

In this section we show how adenine can be used to perform two EDAs on a gene
expression microarray data set obtained from the GEO repository (accession
number GSE87211). This data set was collected in a recent medical study that
aimed at understanding the underlying mechanism of colorectal cancer (CRC) as
well as identifying molecular biomarkers, fundamental for the disease prognosti-
cation. It is composed of 203 colorectal cancer samples and 160 matched mucosa
controls. The adopted platform was the Agilent-026652 Whole Human Genome
Microarray, which was used to measure the expression of 34127 probe sets.
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4 Usage Example

adenine offers a handy tool to automatically download the data set from the
GEO repository given only its accession name. It also let the user select pheno-
types and/or probe sets of interest. Given these preferences, adenine automati-
cally converts the data set from the SOFT format to a comma-separated values
text file. To download the remote GEO data set specifying the tissue type as
phenotype of interest we used the following command.

$ ade_GEO2csv.py GSE87211 --label_field characteristics_ch1 .3. tissue

This automatically creates GSE87211_data.csv and GSE87211_labels.csv
which contain gene expression levels and tissue type of each sample, respectively.

The first EDA aims at stratifying the samples according to their tissue type
(mucosa or rectal tumor) this can be performed by executing the following com-
mand.

$ ade_run.py ade_config.py

Where ade_config.py is a configuration file which should look like the snippet
below.

1 from adenine.utils import data_source
2 data_file = 'GSE87211_data.csv'
3 labels_file = 'GSE87211_labels.csv'
4 X, y, feat_names, index = data_source.load(
5 'custom', data_file, labels_file, samples_on='rows', sep=',')
6 step1 = {'Recenter': [True], 'Normalize': [True, {'norm': ['l2']}]}
7 step2 = {'KernelPCA': [True, {'kernel': ['linear', 'rbf', 'poly']}],
8 'Isomap': [True, {'n_neighbors': 5}]}
9 step3 = {'KMeans': [True, {'n_clusters': ['auto']}]}

Each step variable refers to a dictionary having the name of the building block as
key and a list as value. Each list has a on\off trigger in first position followed by
a dictionary of keyword arguments for the class implementing the corresponding
method. When more than one method is specified in a single step, or more than
a single parameter is passed as list, adenine generates the pipelines composed
of all possible combinations.

The configuration snippet above generates eight pipelines with similar struc-
ture. The first and the second halves have recentered and �2-normalized samples,
respectively. Each sample is then projected on a 2D space by isomap or by linear,
Gaussian or polynomial kernel PCA. k-means clustering with automatic cluster
discovery is eventually performed on each dimensionality-reduced data set, as
in Algorithm1. Results of such pipelines are all stored in a single output folder.
Once this process is completed, plots and reports can be automatically generated
running the following command.

$ ade_analysis.py results/ade_output_folder_YYYY -MM -DD_hh:mm:ss
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The aim of the second EDA is to uncover the relationships among a set of
genes known from the literature to be strongly associated with CRC. Specifically
this signature is composed of the following genes: apc, kras, ctnnb1, tp53,
msh2, mlh1, pms2, pten, smad4, stk11, gsk3b and axin2 [19]. We also con-
sidered probe sets measuring expression level of the same gene, and we labelled
them with a progressive number. Three partially overlapping sublists compose
this signature.

(S1) Genes fundamental for the progression of CRC (i.e. apc, kras, ctnnb1,
tp53).

(S2) Genes relevant in the Wnt signaling pathway, which is strongly activated in
the first phases of CRC (i.e. apc, ctnnb1, gsk3b, axin2).

(S3) Genes involved in hereditary syndromes which predispose to CRC (i.e. apc,
msh2, mlh1, pms2, pten, smad4, stk11) [19].

A reduced version of the GEO data set that comprises only such genes
can be easily created calling ade_GEO2csv.py with the option --signature
GENE_1,GENE_2,...,GENE_N. On the same line, the option --phenotypes
P_1,P_2,...,P_M can be used to keep only mucosa or rectal tumor samples.
To run such experiment, one simply needs to select and activate the hierarchical
clustering building block and to follow the same steps presented above.

For adenine installation instructions and for a comprehensive description of
all the options available in the configuration file we refer to the online documen-
tation and tutorials2.

5 Results

In the first EDA, we compared the clustering performance achieved by the eight
adenine pipelines and we reported in Fig. 1 an intuitive visualization of the
results achieved by the top three, evaluated in terms of silhouette score [16]. As
expected, the top performing pipelines show a clear separation between the two
sample groups, as the k-means algorithm devises a domain partitioning that is
consistent with the actual tissue types.

For the second EDA, the relationships among the probe sets corresponding
to the genes of the signature are separately explored learning a different hierar-
chical clustering [9] tree for mucosa (Fig. 2a) and CRC samples (Fig. 2b), sepa-
rately. The two trees are learned from different tissues, nevertheless they show
some remarkable similarities. For instance, the pairs tp53-tp53.1 and msh2-
pms2.1 always share a common parent. Interestingly, the first is a relationship
between probe sets of the same gene, and the second is confirmed in literature, as
msh2 and pms2 are both involved in hereditary non-polyposis CRC, a syndrome
that predisposes for CRC. Moreover, two probe sets of the genes of S1, namely
apc and ctnnb1, are consistently close to the root of the two trees. This sug-
gest that the expression level of these two genes highly differs from the others.

2 http://slipguru.github.io/adenine.

http://slipguru.github.io/adenine


Adenine: A HPC-Oriented Tool for Biological Data Exploration 57

Fig. 1. Three different 2D projections of the samples of the GEO gene expression data
set used in this work. Projections on the left (a), middle (b) and right (c) panes are
obtained via linear PCA, Gaussian PCA and isomap, respectively. The color of each
point corresponds to the actual tissue type, while the background color is automatically
learned by the k-means clustering algorithm. White hexagons correspond to cluster
centroids. (Color figure online)

Fig. 2. An example of hierarchical trees visualization learned by two adenine pipelines
on mucosa (a) and CRC (b) samples. Each probe set is color coded according to the
corresponding sublist. This visualization provides insights on the underlying structure
of the measured gene expression level.

Two interesting differences between the two trees can also be noticed. First, most
of the elements of the sublist S3, which contains genes that enhance the risk of
developing CRC, tend to be grouped together in Fig. 2b, while the same obser-
vation cannot be done for Fig. 2a. Secondly, probe sets of the genes belonging
to sublists S2 and S3 tend more to more closely connected in Fig. 2b than in
Fig. 2a.
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6 Conclusions

In this paper we presented adenine, a biomedical data exploration and visual-
ization tool that can seamlessly run on single workstations as well as on HPC
clusters. Thanks to its scalable architecture, adenine is suitable for the analysis
of large and high-dimensional data collections, that are nowadays ubiquitous in
biomedicine.

adenine natively supports the integration with the GEO repository. There-
fore, a user provided with the accession number of the data set of interest can
select target phenotypes and genotypes and adenine takes care of automatically
downloading the data and plugging them into the computational framework.
adenine offers a wide range of missing values imputing, data preprocessing,
dimensionality reduction and clustering techniques that can be easily selected
and applied to any input data.

In this paper we showed adenine capabilities performing two EDAs on a
CRC gene expression data set. From the obtained results we can observe that
a clear discrimination between CRC and control samples can be achieved by
unsupervised data analysis pipeline. Moreover, a meaningful description of the
relationships among the group of genes strongly associated with CRC can be
represented as hierarchical trees.

Acknowledgments. We would like to acknowledge Dr. Davide Marini for his help,
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Abstract. One of the main issues in detecting the genes involved in the
etiology of genetic human diseases is the integration of different types of
available functional relationships between genes. Numerous approaches
exploited the complementary evidence coded in heterogeneous sources of
data to prioritize disease-genes, such as functional profiles or expression
quantitative trait loci, but none of them to our knowledge posed the
scarcity of known disease-genes as a feature of their integration method-
ology. Nevertheless, in contexts where data are unbalanced, that is, where
one class is largely under-represented, imbalance-unaware approaches
may suffer a strong decrease in performance. We claim that imbalance-
aware integration is a key requirement for boosting performance of
gene prioritization (GP) methods. To support our claim, we propose
an imbalance-aware integration algorithm for the GP problem, and we
compare it on benchmark data with other state-of-the-art integration
methodologies.

Keywords: Medical Subject Headings · Gene prioritization ·
Imbalance-aware integration · Network integration

1 Background

In the context of Network Medicine, discovering genes causing or associated
with complex diseases, also known as “disease-genes”, has become a central and
complex challenge [2,7,16]. This process, called gene prioritization (GP), usu-
ally aims to supply a ranking of genes according to their involvement in the
etiology of a given disease. A main issue characterizing the GP problem is the
availability of a large amount of heterogeneous information about genes, ranging
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from protein–protein interactions to gene co-expression and functional similar-
ity [15]. Excluding the potentially complementary evidence coming from hetero-
geneous data sources may be a strong limitation [3]. Several research groups have
adopted computational methodologies that rely on the use of multiple hetero-
geneous networked-sources, and a general approach is to combine the topology
of each available network into a more informative ‘consensus’ network, also hav-
ing a larger coverage [9,18]. A common practice leverages weighted schemes to
construct a linear combination of the input networks, by computing for the dis-
ease under study an informativeness coefficient for each network. For instance,
in [13] the informativeness of a network has been computed as the percentage
of decay in the area under the ROC curve or under the precision-recall curve of
a given classifier when removing that network from the integration process. We
show in this study that such a coefficient should take into account the rarity of
known disease-genes characterizing most entries in existing disease ontologies,
such as the Medical Subject Headings (MeSH)1 (thousands of genetic diseases
still have none or very few known causative genes). Indeed, when a disease-gene
(positive gene) is rare for a given disease, it carries most information about
the latter, and in principle an input source should be considered informative
when it embeds information (in the form of gene connections) allowing a given
classifier to correctly rank positive genes. Such an integration process is usually
called “imbalance-aware”, and it already led to successful results in similar con-
texts, such as the protein function prediction [8]. Unfortunately, the central issue
represented by the rarity of disease-genes has been neglected by most existing
approaches for data source integration for gene prioritization.

We argue that network integration must be imbalance-aware even for the GP
problem, to improve the accuracy of gene rankings. To this purpose, we lever-
aged a method recently proposed for imbalance-aware integration in the context
of protein function prediction, UNIPred (Unbalance-aware Network Integration
and Prediction, [8]), and extended it in order to emphasize the important role
disease-genes play in the integration process. Informally, UNIPred operates a
projection of the network onto the plane, where the projected points/genes con-
stitute the items of a new optimization problem, whose solution provides the
informativeness coefficient for the input network (see [8] for theoretical details).
This method has been extended by introducing a novel optimization criterion,
in which the relevance to be attributed to disease-genes is associated with a free
parameter, so as to easily verifying our claim. Through the network usefulness
computed by UNIPred, the consensus network is built and given as input to
WGP, a recent network-based algorithm proposed to prioritize disease-genes [6].
The overall methodology has been then validated on a benchmark data set com-
posed of nine human networks and 708 MeSH disease terms [18].

1 http://www.nlm.nih.gov/mesh/.

http://www.nlm.nih.gov/mesh/
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2 Materials

Our setup follows a benchmark proposed in [18] for data integration in the GP
context. Nine human gene networks covering 8449 genes are available, consider-
ing heterogeneous data sources, as described in the following (see [18] for details
about each network).

Functional interaction network – finet. A network covering 8441 selected pro-
teins and containing protein–protein functional binary interactions predicted
through a Naive Bayes classifier trained on a ‘gold’ pairwise relationships set
extracted from curated pathways [19].

Human net – hnnet. 21 large-scale genomics and proteomics data sets from
human and from orthologs in yeast, fly and worm are integrated by
including distinct lines of evidence, spanning human mRNA co-expression,
protein-protein interactions, protein complex, and comparative genomics data
sets [10].

Cancer module network – cmnet. A network of 8849 genes collecting interactions
derived from expression profiles in different tumors in terms of the behavior
of modules of correlated genes.

Gene chemical network – gcnet. A network of 7649 genes constructed on the basis
of direct and indirect gene–chemical interactions available at the Comparative
Toxicogenomics Database (CTD) [4].

BioGRID database network – dbnet. BioGRID protein–protein interaction net-
work for 8449 proteins based upon direct physical and genetic interactions
constructed in [18].

BioGRID projected network – bgnet. An extended network from BioGRID con-
structed by retrieving the connection between the 8849 genes in the bench-
mark against all human genes in a bipartite graph, and by considering the
common neighbours to determine the degree of similarity between two genes
in the benchmark.

Semantic similarity networks – {bp,mf, cc}net. Three networks obtained by con-
sidering the Gene Ontology (GO, [1]) terms in the three branches annotating
the considered genes: biological process (bp), molecular function (mf) and
cellular component (cc). The connection between two genes is given by the
maximum Resnik semantic similarity between all the terms (in that branch)
the two genes are annotated with.

Gene–disease associations have been downloaded from the CTD database and
include 708 selected MeSH terms having from 5 to 200 annotated disease-genes.

3 Methods

A network integration problem assumes m network sources about gene pairwise
similarities are given, every source represented through a weighted undirected
graph G(k) = 〈V,W (k)〉, where V is the set of genes/instances (or a subset of it),
k ∈ {1, 2, . . . ,m} is the network index and W (k) is the connection matrix: the
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entry W
(k)
i,j ∈ [0, 1] indicates a degree of functional similarity between genes i

and j. If a data source covers just a subset of genes in V , we extended it to V by
adding zeros in the corresponding entries of its connection matrix. We assume
thereby in the following that all networks cover the set V . Given a disease of
interest d, every gene i ∈ V is associated with a label yi ∈ {0, 1} denoting
that gene i is currently associated with d (label 1, positive gene) or not (label 0,
negative gene).

The aim is to construct a composite network Gd = 〈V,W 〉 integrating all
available networks, to be used to predict candidate disease-genes for d. This is
performed by associating every network G(k) with a coefficient r

(k)
d related to

its informativeness for disease d, and then by linearly combining input networks
through the obtained coefficients (see Sect. 3.2). To compute r

(k)
d we adopt an

extension of the UNIPred algorithm, briefly described in the following.

3.1 UNIPred

The UNIPred algorithm computes for every networked-source G(k) a relevance
score taking expressly into account the disproportion between 1-labeled and
0-labeled genes for the studied genetic disease d. In particular, UNIPred oper-
ates a network projection onto the plane so that each gene i ∈ V is associated
with a labelled bi-dimensional point P

(k)
i , embedding the local imbalance in the

corresponding node position. The coordinates P
(k)
i ≡ (P (k)

i,1 ; P
(k)
i,2 ) are computed

as follows:

P
(k)
i,1 =

∑

j∈V

W
(k)
ij · yj ,

P
(k)
i,2 =

∑

j∈V

W
(k)
ij · (1 − yj) ,

(1)

In other words, P
(k)
i,1 is the weighted sum of 1-labeled neighbors, P

(k)
i,2 is the

weighted sum of 0-labeled neighbors. The position of each point in the plane
thereby reflects the topology of the connections towards neighboring positive
and negative nodes (Fig. 1).

The algorithm then learns the straight line which best separates positive and
negative points, in the sense we describe below. Since every point i ∈ V already
has a label yi, each line separating positive and negative points is associated
with the number TP

(k)
d of positive points correctly classified (true positives),

the number FN
(k)
d of positive points wrongly classified (false negatives), and the

number FP
(k)
d of negative points wrongly classified (false positives). The optimal

line is the one maximizing the F–measure: F
(k)
d = 2TP

(k)
d

2TP
(k)
d +FP

(k)
d +FN

(k)
d

. The value

F̄
(k)
d corresponding to the optimal line is then considered as relevance r

(k)
d for

the input network G(k). The method is imbalance-aware since the F–measure by
definition penalizes more heavily the misclassification of positive instances, with
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Fig. 1. Examples of distributions of points P
(k)
i for a given network G(k) in which labels

are unbalanced towards (a) negative points (black) and (b) positive points (light grey).
In the case (a), the coordinate P2 tends to be much larger due to the predominance of
negative neighbours; as opposite, P1 is larger in case (b), since the large majority of
neighbours in average is positive.

respect to the penalty for misclassifying negatives. Moreover, maximizing F
(k)
d

moves the know labeling y = (y1, . . . , y|V |) towards a minimum of the energy
of underlying Hopfield network—allowing the model to better fit the input data
(see [8]).

In order to emphasize the need of attributing higher importance to positive
genes, here we extend UNIPred by adopting the variant Fβ of F , defined as it
follows:

F
(k)
β,d :=

(1 + β2)TP
(k)
d

(1 + β2)TP
(k)
d + FP

(k)
d + β2FN

(k)
d

. (2)

Indeed, the parameter β ∈ R
+ allows to regulate the importance to be

assigned to the misclassification of positives rather than negatives, thus for β > 1
we assign a higher penalty to the misclassification of positives. The larger β, the
more relevant are positives in determining the network coefficient r

(k)
d . Since β is

dependent on the input data, we learned it through internal cross validation in
our experimentations; in addition, in Sect. 4 we also supply the results of tuning
β, to investigate its impact on the algorithm performance.

3.2 Constructing the Integrated Network

For a given disease of interest d, UNIPred is applied to each input network
independently, obtaining the relevance vector rd = (r(1)d , r

(2)
d , · · · , r

(m)
d ). The

consensus network is then constructed as a weighted sum (WS) of the corre-
sponding adjacency matrices:

W =
m∑

k=1

r
(k)
d W (k) .
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Moreover, in order to have a baseline comparison, networks are also inte-
grated by unweighted average sum (US ), that is W = 1

m

∑m
k=1 W

(k).

3.3 Inferring the Gene Prioritization List

Once the consensus network Gd = 〈V,W 〉 for disease d is constructed, we
are ready to face the gene prioritization problem, which is modeled as a semi-
supervised ranking problem on graphs. The set of genes is assumed to be parti-
tioned into L and U , disjoints subsets of V respectively containing the labeled
and unlabeled genes, and the objective is to infer a ranking of genes in U with
respect to d. Only for genes i ∈ L the label yi ∈ {0, 1} is thereby known, and
the aim is learning a function φ : U → R so as to rank higher genes susceptible
to be involved in the etiology of d.

Furthermore, analogously to the integration step, the complexity of the prob-
lem is increased when the imbalance between positive and negative genes is large.
Accordingly, the adopted methodology has to consider this feature of the problem
to prevent a large decay of the ranking quality [5]. To learn the ranking function φ
we employed a regression model proposed in [6], termed WGP (Weighted Gene
Prioritization), able in handling the label imbalance during the prioritization
process. Briefly, starting from the integrated network, WGP learns a weighted
binomial regression model with log-log link function, a skewed function suitable
for unbalanced data, to separate positive and negative nodes, and consequently
infer the prediction for genes U using the learned regression model.

4 Results

Following the benchmark setting [18], the generalization performance of our
method has been assessed through a classical 5-fold cross-validation procedure,
and the results have been evaluated by using the Area Under the Receiver Oper-
ating Characteristic Curve (AUC) and the Precision at different Recall levels
(PxR). In addition, we have computed the Area Under the Precision Recall
Curve (AUPRC), to take into account the imbalance of annotated vs. unanno-
tated genes for the MeSH disease terms. The obtained results on benchmark
data show a noticeable and statistically significant improvement of validation
of WGP-UNIPred algorithm with respect to the compared methods (Wilcoxon
signed rank test, p-value < 0.01), including random walks [11], random walks
with restarts, guilt-by-association methods [12] and kernelized average score
functions (SAV [17]). In particular SAV , the top benchmark method, is based on
an extension of the gene–gene similarity to non neighboring nodes by adopting
a suitable kernel matrix. The score for each gene i with regard to a given disease
d is defined according to a suitable distance d(i, Vd) between i and the subset
Vd of genes positive for d. In SAV , d(i, Vd) is defined as the average distance
between the images in the corresponding Hilbert space of i and the elements in
Vd (see [17] for details).
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Figure 2 shows the overall performance, remarking both the gain of UNIPred
with respect to US integration scheme and the influence of the β parameter
on the performance. We only report the results of SAV with weighted and
unweighted sum integration, since random walk and the other compared methods
achieved worse results than SAV . In [18], the average AUC results across diseases
have been used to weight networks according to the WS integration for SAV .
The β parameter has been tuned in the set of values {1, 2, 3, 4, 5, 10, 15, 20, 25},
in this first experiment, to show how it influences the model performance. To
better evaluate the behaviour of our methodology, we also show results averaged
across diseases with at most 10 (category ‘l10’) and more than 10 (category
‘m10’) associated genes. AUPRC results are not provided in the benchmark.
The predictive capability of the model remarkably improves when increasing
the parameter β, and more in the most unbalanced diseases (l10 ), confirming
the need of imbalance-aware integration. Conversely, in US schemes, there is
an almost negligible difference between l10 and m10 disease categories. The
performance of WGP-UNIPred tends to become stable for values of β larger
than 10, and, interestingly, the improvement of weighted integration is larger for
WGP than for SAV when compared with the corresponding unweighted strate-
gies. This confirms that using an imbalance-aware criterion (unlike the AUC)
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Fig. 2. Performance of WGP-UNIPRED on benchmark data. ‘l10’ and ‘m10’ refer to
the subsets of MeSH disease terms with 5–10 and 11–200 associated genes, respectively,
whereas circles correspond to results averaged across all diseases. WGP-US is the aver-
age performance across all diseases of WGP on unweighted sum data, whereas WGP-US
l10 (resp. WGP-US m10) denotes the WGP performance on US data averaged across
the category ‘l10’ (resp. ‘m10’). SAV results are averaged across all diseases.
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Fig. 3. PxR results achieved by the top benchmark method SAV and WGP-UNIPred
on both unweighted and weighted schemes.

to weight networks is more effective in this context. Apparently, the larger
improvement for UNIPred compared to US scheme for m10 with respect to
l10 terms (in both AUC and AUPRC) is quite unexpected, since l10 terms are
more unbalanced; nevertheless, since the available information for l10 terms is
very small, this behavior is likely due to overfitting phenomena. Indeed, similar
works have shown that regularizing the network effectiveness for more unbal-
anced terms leads to better results [14]. We also compared the methods in terms
of PxR (Fig. 3): in this experiment we learned β through internal cross valida-
tion. WGP-UNIPred favourably compares even in terms of PxR, outperforming
SAV in all experiments and WGP-US in all but 0.1 recall settings, where results
are almost indistinguishable. Confirming the behaviour in terms of AUC, the
UNIPred weighted sum integration led to larger improvements (mainly for lower
values of recall) than the imbalance-unaware weighted integration of SAV , with
regard to the US corresponding results.

5 Conclusion

Experimental results supported our claim that the integration of omics data
(genomics, transcriptomics, proteomics and so on) needs imbalance-aware pro-
cedures for improving the accuracy of gene prioritization lists. A state-of-the-art
integration algorithm, UNIPred [8], has been used to boost the performance of
a gene prioritization method, WGP [6]. By explicitly modelling the integration
procedure on the exploitation of the known disease-genes, WGP-UNIPred out-
performed other state-of-the-art methods in predicting gene–disease associations
on public benchmark data.
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Abstract. The Human Phenotype Ontology (HPO) provides a stan-
dard categorization of the phenotypic abnormalities encountered in
human diseases and of the semantic relationship between them. Quite
surprisingly the problem of the automated prediction of the associa-
tion between genes and abnormal human phenotypes has been widely
overlooked, even if this issue represents an important step toward the
characterization of gene-disease associations, especially when no or very
limited knowledge is available about the genetic etiology of the disease
under study. We present a novel ensemble method able to capture the
hierarchical relationships between HPO terms, and able to improve exist-
ing hierarchical ensemble algorithms by explicitly considering the pre-
dictions of the descendant terms of the ontology. In this way the algo-
rithm exploits the information embedded in the most specific ontology
terms that closely characterize the phenotypic information associated
with each human gene. Genome-wide results obtained by integrating
multiple sources of information show the effectiveness of the proposed
approach.

Keywords: Human Phenotype Ontology ·
Hierarchical multi-label classification · Hierarchical ensemble methods ·
Gene-abnormal phenotype prediction

1 Background

The Human Phenotype Ontology (HPO) project [9] aims at providing a stan-
dard categorization of the abnormalities associated with human diseases and
the semantic relationships between them. Each HPO term does not represent
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a disease, but rather it denotes individual signs or symptoms or other clini-
cal abnormalities that characterize a disease. The HPO contains approximately
11,000 terms (still growing) and over 115,000 annotations to hereditary dis-
eases. Moreover the HPO provides a large set of HPO annotations to approxi-
mately 4000 common diseases. The HPO is structured as a direct acyclic graph
(DAG), where more general terms are found on the top levels of the hier-
archy and the term specificity increases moving from the root to the leaves.
Figure 1 shows an example of a small subset of the HPO, including all the HPO
nodes that are ancestors of the Tryptophanuria term. In this example Trypto-
phanuria is the most specific HPO term, its parent term Aminoaciduria is less
specific, and following the path toward the root term we find more general terms,
such as Abnormality of the urinary system, till to the root term Phenotypic
abnormality.

Each HPO term belongs to one of the following five subontologies: Phe-
notypic abnormality, Clinical modifier, Mortality/Aging, Mode of inheritance
or Frequency. All the HPO relationships are is-a (class-subclass relationships)
and are governed by the true-path-rule (also known as annotation propagation
rule) [2] that can be summarized as follow: an annotation for a functional term is

Fig. 1. Ancestor view of the HPO terms Tryptophanuria (Phenotypic abnormality
subontology). Figure created by using OBO-Edit, an open source ontology editor.
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transferred in a recursive way to its ancestors, whereas if a gene is unannotated
for a class, it cannot be annotated with its descendants.

While the problem of the prediction of gene–disease associations has been
widely investigated [10], the related problem of gene–phenotypic feature (i.e.
HPO term) association has been largely overlooked, despite the quickly growing
application of the HPO to relevant medical problems [16,22]. In principle in the
contest of gene–abnormal phenotype prediction, any “flat” method that predicts
labels independently of each other can be applied [21], but it may introduce
significant inconsistencies in the classification due to the violation of the true path
rule that governs the HPO taxonomy. Besides inconsistency, flat methods may
also loose important a priori knowledge about the constraints of the hierarchical
labeling that could enhance the accuracy of the predictions.

To overcome these limitations we recently proposed an ensemble method
(Hierarchical True path Rule for Directed Acyclic Graph - TPR-DAG) [11,
13] that explicitly takes into account the hierarchical relationships between
HPO terms, and in [11] we showed that TPR-DAG achieves competitive results
with respect to state-of-the-art methods for HPO term prediction. More in gen-
eral ensemble methods have been successfully applied to several branches of
bioinformatics, ranging from genetic associations studies to pathogenic genetic
variant prediction [7,15]. In this paper we propose a variant of the TPR-
DAG algorithm, that we named DEScendant Classifier ENSemble (DESCENS).
The novelty of DESCENS with respect to TPR-DAG consists in strongly con-
sidering the contribution of all the descendants of each node instead of only
that of its children, since with the TPR-DAG algorithm the contribution of
the descendants of a given node decays exponentially with their distance from
the node itself, thus reducing the impact of the predictions made at the most
specific levels of the ontology [17]. On the contrary DESCENS predictions are
more influenced by the information embedded in the most specific terms of the
taxonomy (e.g. leaf nodes), thus putting more emphasis on the terms that most
characterize the gene under study, and that are those usually most informative
and meaningful from a bio-medical standpoint.

2 Materials and Methods

Let G =< V,E > a Directed Acyclic Graph (DAG) with vertices V =
{1, 2, . . . , |V |} and edges e = (i, j) ∈ E, i, j ∈ V . G represents the HPO tax-
onomy structured as a DAG, whose nodes i ∈ V represent classes (terms) of the
ontology and a directed edge (i, j) ∈ E the hierarchical relationships between i
(parent term) and j (child term). A “continuous flat multi-label scoring” pre-
dictor f : X → [0, 1] provides a score ŷi ∈ [0, 1] that can be interpreted as the
likelihood or probability that a given gene belongs to a given node/HPO term
i ∈ V of the DAG G. The set of |V | flat classifiers provides a multi-label score
ŷ ∈ [0, 1]|V |: ŷ =< ŷ1, ŷ2, . . . , ŷ|V | >. We say that a multi-label scoring y is
consistent if it obeys the true path rule:

y is consistent ⇐⇒ ∀i ∈ V, j ∈ parents(i) ⇒ yj ≥ yi (1)
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According to this rule the score of a parent or an ancestor node must be larger
or equal than that of its children or descendants nodes.

To process and provide flat scores of the proposed hierarchical ensemble
methods we used both a semi-supervised network-based approach (RANKS [18])
and a supervised machine learning method (Support Vector Machine – SVM).
In our experiments we applied RANKS with the average score function and the
random walk kernel at 1, 2 and 3 steps, i.e. kernels able to evaluate the direct
neighbors and those far away 2 and 3 steps from each gene in the network. It is
worth noting that RANKS returns a score and not a probability [12]. To make
the scores comparable across classes we normalized the scores in the sense of the
maximum (i.e. we divided the score values of each class by the maximum score
of that class) or according to the quantile normalization [3].

After the learning phase the “flat” predictions are modified by the
DESCENS algorithm, whose high-level pseudo-code is shown in Fig. 2.

Input:
- G =< V, E >
- V = {1, 2, . . . , |V |}
- ŷ =< ŷ1, ŷ2, . . . , ŷ|V | >, ŷi ∈ [0, 1]
begin algorithm

01: A. dist := ∀i ∈ V ComputeMaxDist (G, root(G))
02: B. Per-level bottom-up visit of G:
03: for each d from max(dist) to 0 do

04: Nd := {i|disti = d}
05: for each i ∈ Nd do

06: Δi := {j ∈ desc(i)|ȳj > ŷi}
07: ȳi := 1

1+|Δi| (ŷi +
∑

j∈Δi
ȳj)

08: end for

09: end for

10: C. Per-level top-down visit of G:
11: ŷ := ȳ
12: for each d from 1 to max(dist) do
13: Nd := {i|disti = d}
14: for each i ∈ Nd do

15: x := minj∈parents(i) ȳj

16: if (x < ŷi)
17: ȳi := x
18: else

19: ȳi := ŷi

20: end for

21: end for

end algorithm

Output:
- ȳ =< ȳ1, ȳ2, . . . , ȳ|V | >

Fig. 2. DEScendant Classifier ENSemble for DAGs (DESCENS)
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The block A of the algorithm (row 1) computes the maximum distance of each
node from the root. To this end a method based on the Topological Sorting
algorithm can be applied [5]. The block B computes a per-level bottom-up visit
of the graph G (rows 2 to 9) to propagate the “positive” predictions across the
hierarchy. More precisely, according to the true path rule, only the “positive”
descendants of a certain node i (e.g. descendant nodes having scores larger than
that of their ancestor node i) influence the prediction for the node i itself (row 6
of Fig. 2). In this way all the “positive” descendants of node i provide the same
contribution to the ensemble prediction ȳi, by modifying the flat predictions ŷi.

1. Threshold Free (TF) Strategy. We choose as “positive” descendants those
nodes that achieve a score higher than that of their ancestor node i:

Δi := {j ∈ desc(i)|ȳj > ŷi} (2)

This strategy leads to the DESCENS-TF algorithm (Fig. 2).
2. Adaptive Threshold (T) Strategy. The threshold is selected to maximize some

performance metric M(j, t) (e.g. F-score or AUPRC) estimated on the train-
ing data for the class j with respect to the threshold t. The corresponding set
of positives ∀i ∈ V is:

Δi := {j ∈ desc(i)|ȳj > t∗j , t
∗
j = argmax

t
M(j, t)} (3)

For instance t∗j can be selected from a set of t ∈ (0, 1) through internal cross-
validation techniques. This strategy leads to the DESCENS-T algorithm,
simply by changing row 6 in Fig. 2 with Eq. 3.

Moreover, by changing the line 7 of the algorithm in Fig. 2, we can design the
“weighted” version of the DESCENS algorithm (DESCENS-W) merely adding
a weight w ∈ [0, 1] to balance the contribution between the node i and that of
its “positive” descendants:

ȳi := wŷi +
(1 − w)

|Δi|
∑

j∈Δi

ȳj (4)

Another variant of DESCENS (namedDESCENS-τ) balances the contribution
between the “positive” children of a node i and that of its “positive” descendants
excluding its children by adding a weight τ ∈ [0, 1]:

ȳi :=
τ

1 + |φi| (ŷi +
∑

j∈φi

ȳj) +
1 − τ

1 + |δi| (ŷi +
∑

j∈δi

ȳj) (5)

where φi are the “positive” children of i and δi = Δi \ φi the descendants of i
without its children. If τ = 1 we consider only the contribution of the “positive”
children of i, and if τ = 0 only the descendants that are not children contribute
to the score, while for intermediate values of τ we can balance the contribution
of φi and δi positive nodes.
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Independently of which variants of the DESCENS algorithm we decide to
use, “positive” predictions are “bottom-up” recursively propagated from the
parents towards the ancestors of each node. The bottom-up step does not assure
the consistency of the predictions. Therefore, this is guaranteed by the block
C of the algorithm (row 10 to 21), where the nodes are top-down processed by
level in an increasing order (from the least to the most specific terms) and the
“bottom-up” scores computed at the block B are hierarchically corrected to ȳ
according to the following simple rule:

ȳi :=

⎧
⎨

⎩

ŷi if i ∈ root(G)
minj∈parents(i) ȳj if minj∈parents(i) ȳj < ŷi

ŷi otherwise
(6)

The aim of the top-down step consists in propagating the “negative” predictions
towards the children and in a recursive way towards the descendants of each
node. Considering the sparseness of the HPO, it is easy to see that the overall
computational complexity of DESCENS algorithm is O(|V |).

3 Results

We downloaded physical and genetic experimental interactions relative to 4970
proteins from BioGRID (v. 3.2.106, [4]) and the integrated protein-protein inter-
action and functional association data for 18,172 human proteins from STRING
(v. 9.1, [6]). Moreover, starting from the Gene Ontology annotations of the three
main sub-ontologies (Biological Process, Molecular Function and Cellular Com-
ponent) and from OMIM annotations [1], both represented as binary feature
vectors, we constructed 4 more networks by using the classical Jaccard index to
represent the edge weight (functional similarity) between the nodes (genes) of
the resulting network. In our context the Jaccard index of two genes measures
the ratio between the cardinality of their common annotations and the cardi-
nality of the union of their annotations. The rationale behind the usage of this
index is that two genes are similar if they share most of their annotations. All
these annotations were obtained by parsing the raw text annotation files made
available by Uniprot knowledge-base considering only its SWISSPROT compo-
nent. Finally the resulting n = 6 networks have been integrated by averaging
the edge weights wd

ij between the genes i and j of each network d ∈ {1, n} after
normalizing their weights in the same range of values wd

ij ∈ [0, 1] (Unweighted
Average (UA) network integration, [20]):

w̄ij =
1
n

n∑

d=1

wd
ij (7)

The resulting weighted adjacency matrix representing the obtained networks is
made up of 19,430 human proteins. From the HPO website we downloaded the
January 2014 release, by considering the Phenotypic Abnormality subontology,
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that is the main subontology of the HPO (the other subontologies are signif-
icantly smaller and amount to only some tens of terms). To avoid prediction
of HPO terms having too few annotations, for a reliable assessment we pruned
HPO terms having less than 10 annotations obtaining a final HPO-DAG com-
posed by 2154 HPO terms and 2641 between-terms-relationship.

The generalization performance of the methods were assessed through a
classical 5-fold cross-validation procedure, whereas the results were evaluated
by using the gene-centric metric Fmax (i.e. the maximum hierarchical F-score
achievable by “a posteriori” setting an optimal decision threshold [8]) and two
term-centricmetrics: the classical Area Under the Receiver Operating Character-
istic Curve (AUROC) and the Area Under the Precision Recall Curve (AUPRC)
to take into account the imbalance of annotated vs. unannotated HPO terms.

Table 1 summarizes the results achieved by the hierarchical methods HTD-
DAG [19] and TPR-DAG [11] and by DESCENS, the novel ensemble variant
presented in this manuscript.

Table 1. Average AUROC and AUPRC across terms and average Fmax, Precision
and Recall across genes of HTD-DAG, TPR-DAG and DESCENS ensemble variants
using both RANKS and SVMs as base learner. Results of “flat” RANKS and SVMs
are also reported. Results are estimated through 5-fold cross-validation. Separately for
each metric and base learner the results significantly better than the others according
to the Wilcoxon Rank Sum Test (α = 10−9) are highlighted in bold.

Method AUROC AUPRC Fmax Precision Recall

RANKS (flat) 0.8493 0.0910 0.3106 0.2407 0.4377

HTD-RANKS 0.8506 0.1065 0.3411 0.2717 0.4583

TPR-TF-RANKS 0.8567 0.1166 0.3547 0.2880 0.4615

TPR-T-RANKS 0.8512 0.1338 0.3574 0.2929 0.4582

TPR-W-RANKS 0.8507 0.1264 0.3620 0.3025 0.4506

DESCENS-TF-RANKS 0.8554 0.1082 0.3679 0.3148 0.4426

DESCENS-τ -RANKS 0.8530 0.1360 0.3622 0.3021 0.4520

DESCENS-T-RANKS 0.8503 0.1087 0.3771 0.3227 0.4535

DESCENS-W-RANKS 0.8502 0.1223 0.3671 0.3071 0.4561

SVM (flat) 0.7128 0.0429 0.1205 0.1165 0.1247

HTD-SVM 0.8328 0.0888 0.2597 0.1898 0.4112

TPR-TF-SVM 0.7060 0.0525 0.2034 0.1633 0.2694

TPR-T-SVM 0.8297 0.1036 0.2611 0.1939 0.3997

TPR-W-SVM 0.7915 0.0909 0.2187 0.1827 0.2723

DESCENS-TF-SVM 0.7092 0.0561 0.2338 0.1877 0.3100

DESCENS-τ -SVM 0.7182 0.0666 0.2424 0.1927 0.3266

DESCENS-T-SVM 0.7940 0.0514 0.3102 0.2796 0.3483

DESCENS-W-SVM 0.7724 0.0948 0.2373 0.1815 0.3427
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In every experiment the hierarchical ensemble methods are able to improve
the results of the flat methods used as base learner both in terms of AUROC,
AUPRC and Fmax. More in detail looking at the results obtained using RANKS
as base learner, DESCENS-τ and DESCENS-T achieve better results than all
the other compared methods in terms of AUPRC and Fmax, while TPR-TF
achieves the best results in terms of AUROC, but HPO classes are highly
imbalanced, and in this setting it is well-known that AUPRC is a significantly
more reliable metric than AUROC [14]. Looking at the results obtained using
as base learner the SVMs, we can observe that, independently of the ensem-
ble method chosen, we achieve a significant strong improvement with respect
to the flat prediction, especially in terms of AUPRC and Fmax. Interestingly
enough, considering Fmax, the only hierarchical metric among those considered,
DESCENS achieves significantly better results both if we use RANKS or SVMs
as base learners.

Finally we can observe that the performances of hierarchical ensembles
largely depend on those of the flat base learners: for instance DESCENS-τ -
RANKS achieves a significantly higher precision at all recall levels with respect to
DESCENS-W-SVM, due to the better performance of the RANKS base learner
(Fig. 3).

Fig. 3. Compared precision at different recall levels averaged across 2153 HPO terms of
DESCENS-τ using RANKS and SVM as base learner. The results of the corresponding
flat methods, RANKS and SVM are also reported.

This is not surprising since the improvement introduced by hierarchical
ensemble methods also depends on the predictions of the underlying flat base
learner:DESCENS can improve the flat predictions, but there is no guarantee of
a correct prediction if most of the base flat learners provide incorrect predictions
(Fig. 4).
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Fig. 4. Flat (SVM) and hierarchical DESCENS-τ HPO predictions for the gene RGS9.
At the right side are displayed the correct TP and the incorrect FN predictions made
respective by flat-SVM and by hierarchical DESCENS-τ . In the A box are depicted
the predictions that the hierarchical method was able to correct with respect to flat
method (FN → TP ); in B are portrayed the correct predictions for both flat and
hierarchical methods and finally in C are shown the incorrect flat predictions that the
hierarchical method was not able to recover.

4 Conclusion

Genome and ontology wide experimental results show that the DESCENS algo-
rithm is able to improve the predictions of both semi-supervised flat methods,
such as the RANKS algorithm, that resulted one of the top ranked method in
the recent CAFA2 challenge for HPO term prediction [8], and of supervised
methods such as SVMs, in terms of AUROC, AUPRC and Fmax. Moreover
DESCENS further improves HTD-DAG, and TPR-DAG, two of the state-
of-the-art methods for HPO prediction, in terms of both AUPRC and Fmax.
Furthermore the proposed ensemble methods always provide consistent predic-
tions that obey the true path rule, a fundamental fact to assure biologically
coherent predictions among HPO terms.

Acknowledgments. We acknowledge partial support from the project “Discovering
Patterns in Multi-Dimensional Data” (2016–2017) funded by Università degli Studi di
Milano.
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Abstract. In this paper several methods of grammar induction problem
are examined in the context of biological sequence analysis. In addition to
this, a new method which generates noncircular context-free grammars is
proposed. It has been shown through a computational experiment that
the proposed, evolutionary-inspired approach overcomes statistically—
with respect to classification quality—other grammatical inference algo-
rithms on the sequences from a real amyloidogenic dataset.
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1 Introduction

Protein sequences can be analyzed by means of diverse computational methods.
One of their taxonomies groups the methods into five main categories: machine
learning, alignment algorithms, statistical language learning, artificial intelli-
gence (AI) techniques, and structural pattern recognition [5,7,8]. Unfortunately,
there is no universal approach that can be successfully applied for all two-class
bioinformatics datasets. Thus, every new idea may emerge as a valuable tool. For
example, in hidden Markov models (HMMs) it is assumed that the probability of
each symbol xj depends only on a few previous symbols xj−1, . . . , xj−m, which
makes the model drastically simplified. Moreover, while parameters estimation
in HMM is well refined, the choice of the model topology is a very hard task.
In the case of support vector machines (SVMs), protein sequences have to be
embedded into a d-dimensional feature space. A possible embedding is achieved
by the relative frequencies of k-tuples of amino acids. This results in a feature
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space of dimension d = 20k. Therefore, such an approach might also lead to too
simple assumption or to the immense dimension of the input space. Additional
examples can be multiplied, but it is clearly seen that every method has a certain
fundamental weakness.

The purpose of the present proposal is twofold. Our main contribution is
to provide a procedure for inferring the collection of noncircular context-free
grammars (CFGs) which accepts all example sequences and a small number
of counter-example sequences. The second objective is to determine that the
proposed algorithm is better suited for the benchmark data—amyloidogenic
sequence fragments—than selected comparative grammatical inference (GI)
algorithms and a machine learning approach (SVM). The devised algorithm
uses genetic programming, so it lies at the intersection of two categories: AI
techniques and structural pattern recognition.

The most closely related works to our study are by Chirathamjaree and
Ackroyd [3] and by Langdon and Barrett [9]. The former work is about generat-
ing compact noncircular context-free grammars having a near minimal number
of rules and non-terminals, compatible with the requirement to be able to gener-
ate all sequences in the example set. Their work differs from ours in two respects.
Firstly, they did not use the counter-example set. Secondly, in every rule of the
form A → B C either B or C is the non-terminal corresponding to a letter (i.e.
terminal symbol). The latter work is about using genetic programming (GP)
to automatically create interpretable predictive models of a small number of
very complex biological interactions of interest to medicinal and computational
chemists who search for new drug treatments. Particularly, they found a simple
predictive model of human oral bioavailability. Besides the difference in goals
(we aim at obtaining a classifier for amyloidogenic sequences), another obvious
distinction is the fact that our trees (basic GP structures) implicitly represent
grammars and theirs represent arithmetic expressions. It is also worth mention-
ing our two recent works pertaining to classification of amyloidogenic sequences:
one that uses directed acyclic word graphs [10] and one that uses star-free regu-
lar expressions [11]. These methods, however, cannot be applied to the present
database since they are suitable for fixed-length sequences and they are too
time-consuming for larger (thousands of sequences) datasets.

The paper’s content is organized into five sections. In Sect. 2 we present
necessary definitions and facts originating from combinatorics on words, formal
languages and the GP method. Section 3 presents the proposed procedure of the
construction of noncircular CFGs. Section 4 shows the experimental results of our
approach against the background of the remaining GI algorithms. Conclusions
and research perspectives are contained in Sect. 5.

2 Basic Definitions and Concepts

In this section, the concepts of string-rewriting systems, evolutionary computa-
tions and grammar induction problems are introduced. For more detailed defini-
tions and advanced presentation of these topics, the reader is referred to [2,8,12]
or other available textbooks.
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2.1 Words, Grammars and Parse Trees

Grammars are very convenient tools to describe sets of sequences of symbols
taken from a fixed alphabet. We will use the term sequence interchangeably
with the term word. In the biological context, such words are usually sequences
of the single-letter abbreviation of 20 amino acids. A context-free grammar in
Chomsky normal form consists of a set of rules. Each rule is of one of the two
possible forms: (1) Vi → Vj Vk, or (2) Vi → A, where V s denote non-terminals
and A denotes terminal (single-letter). Starting from a distinct non-terminal,
let say V0, we may generate words or check whether a given word belongs to
a language (understood as a set of words) represented by the grammar. Such
a production is performed via the series of rewritings. For example, the grammar:
V0 → V1 V2, V1 → V1 V1, V1 → A, V2 → V2 V2, V2 → C allows us to produce
any word leading with As and ending with Cs. The following derivation: V0 ⇒
V1 V2 ⇒ AV2 ⇒ A V2 V2 ⇒ AC V2 ⇒ A C C proves that the word ACC can be
produced (or in other words is accepted) by the grammar.

We say a CFG is noncircular if the right-hand side of every Vi’s rule does
not contain a non-terminal Vj , where j ≤ i. The noncircularity of a grammar
guarantees that the language accepted by the grammar is finite. From now on
through the rest of this paper we will deal only with noncircular CFGs in Chom-
sky normal form, simply calling them grammars.

Every derivation can be presented as a parse tree whose internal nodes store
non-terminals and leaves store terminals. The root of a tree is always V0. If in
a derivation there is Vi ⇒ Vj Vk then in a corresponding tree piece there are two
edges from Vi: bottom left to Vj and bottom right to Vk. If in a derivation there
is Vi ⇒ T then in a corresponding tree piece there is an edge from Vi down to
T. A tree corresponding to the above-mentioned derivation of ACC is depicted
in Fig. 1.

V0

V1

A

V2

V2

C

V2

C

Fig. 1. A parse tree represented a derivation of the word ACC.

2.2 Genetic Programming

The genetic programming (GP) method used in our work is a kind of evolution-
ary computation, i.e., an algorithm for global optimization inspired by the nat-
ural microevolution of organisms. In technical terms, it is located in a family of
population-based trial and error problem solvers with a stochastic optimization
character. In evolutionary computation, an initial set of candidate solutions is
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generated and iteratively updated. Each new generation is produced by stochas-
tically removing less desired solutions, and introducing small random changes.
As a result, the population will gradually evolve to increase in fitness, in this
case the chosen fitness function of the algorithm.

In GP the element of a population, so-called an individual, is usually a tree
structure representing an expression. Random changes are performed through
two operations: crossover (subtree exchange) and mutation (a single node modi-
fication). In our implementation, steady-state GP is used. This means that there
are no generations. It differs from the generic evolutionary computation in such
a way that instead of adding the children of the selected parents into the next
generation, the two best individuals out of the two parents and two children are
added back into the population so that the population size remains constant:

procedure run GP:
P := generate a population of p individuals randomly
while stopping criterion has not been met:

parent1, parent2 := tournament selection(P )
child1 := crossover(parent1, parent2)
child2 := crossover(parent2, parent1)
child1 := mutate(child1)
child2 := mutate(child2)
best1, best2 := get the two highest fitness

individuals out of parent1, parent2, child1, child2
replace parent1 with best1
replace parent2 with best2

In tournament selection, k (the tournament size) individuals from the population
are chosen at random and two of them with the highest fitness are returned. After
obtaining a new individual in the initialization process or through the crossover
or mutation operation, the individual is evaluated in order to determine its fitness
f . The procedure uses the following conditions to determine when to stop: (i)
steps (it stops when the number of loop iterations reaches an assumed value
�), (ii) time limit (it stops after running for an amount of time in seconds), (iii)
fitness limit (it stops when the value of the fitness function for the best individual
is lower than or equal to assumed fitness limit), or others. In experiments we
used criterion (i).

2.3 Grammatical Inference

Let S+ (examples) and S− (counter-examples) be two (multi)sets of words over
a finite alphabet Σ. From the viewpoint of the present research, grammatical
inference (GI) problem relies on finding a compact grammar G that accepts the
greatest proportion of S+ and the tiniest proportion of S−.

Note that more often it is required that G fulfills S+ ⊆ L(G) and S−∩L(G) =
∅, where L(G) stands for a language accepted by G. A list of practical GI methods
can be found in many works; the reader can refer to [12] as a good starting point
on this topic.
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3 The Present Method

Let Σ denote a finite alphabet. For given examples X and counter-examples Y
which are words over Σ, our algorithm gives such a family of grammars, G, that
for every x ∈ X there exists a G ∈ G satisfying x ∈ L(G) and only the tiniest
proportion of Y is accepted by any G ∈ G.

procedure infer grammars(X, Y ):
G := ∅
U := X -- uncovered words
while U 	= ∅:

S+ := choose with replacement p elements of U -- a multiset
S− := choose with replacement p elements of Y -- a multiset
run GP
t := the fittest individual in P
let G(t) be a grammar extracted from a parse tree t
if L(G(t)) ∩ U 	= ∅:

U := U − L(G(t))
G := G ∪ G(t)

return G -- the family of grammars

In order to put the above procedure to work, we have to define the following
elements and routines of GP: the primitives, the structure of an individual, the
initialization, genetic operators, and the fitness function.

Individuals are parse trees composed of non-terminals, V0, V1, . . . , Vn, and
terminals being elements of Σ. An initial population is built upon S+ so that
each tree corresponds to one random derivation of a word. Naturally, trees must
hold the following property: if Vj is below Vi in its left or right branch, then
j > i. Crossover has been also designed in the way that satisfies this property.
In Fig. 2 we can see two parent trees (the first two) and a child tree (the third),
which is a combination of two parents made by substituting a part of one parent
(shown in bold) with a part of the other (also shown in bold).
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×
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V2

T

V3

T

V2

A

Fig. 2. An example of crossover.

More specifically, crossover proceeds as follows. Try these steps at most four
times, otherwise return the copy of the first parent:

– Select a random internal node in each parent. Let say Vi and Vj .
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– If i ≤ j then substitute the subtree selected by Vi in the copy of the first
parent with the subtree selected by Vj in the copy of the second parent.

Mutation randomly decreases (if it is allowed with respect to noncircularity)
the index of a non-terminal, in a randomly selected single node.

Finally, the fitness function measures a grammar’s accuracy based on an indi-
vidual t, and the sample (S+, S−) with Eq. 1:

f(t) =
|{w ∈ S+ : w ∈ L(G(t))}| + |{w ∈ S− : w 	∈ L(G(t))}|

2p
. (1)

4 Referenced Methods and Results

We decided to compare our (GP) algorithm with four selected GI algorithms: two
state merging algorithms, namely Blue-fringe and Traxbar, and two substring-
based algorithms, ECGI (error-correcting grammatical inference), and ADIOS
(automatic distillation of structure).

State merging algorithms are the most popular algorithms for the induction of
finite state automata. Their common denominator is the merging of two states.
All differences result from various particular reasons for choosing the pair of
states to do this operation.

Substring-based algorithms is the group of algorithms for induction of
automata and grammars in which words comparison for searching their frag-
ments that are changed or fixed plays the crucial role. ECGI incrementally grows
an inferred automaton by explicitly minimizing (with the help of dynamic pro-
gramming) the number of states added when each new word is presented. ADIOS
is a context-free grammar learning system, which relies on a statistical method
for pattern extraction and on structured generalization. Please see [12] for a bib-
liographical references.

We also included one machine learning approach. An unsupervised data-
driven distributed representation, called ProtVec [1], was applied and protein
family classification has been performed using support vector machine classifier
(SVM) [14] with the linear kernel.

In experiments we used the implementation1 of our algorithm written in
Python 3. An interpreter ran on an AMD Phenom II X6 1055T, 2.8 GHz pro-
cessor under Windows 10 operating system with 8 GB RAM. The following
values of parameters have been chosen: the size of a population, p = 100, the
loop iteration limit, � = 400, the tournament size, k = 7, and the non-terminals
limit, n = 12.

As a testbed, we considered the recently published AmyLoad dataset [13]
containing a binary classification of almost 1500 unique, experimentally derived
amyloidogenic sequence fragments. The analyses of such data are essential in
studies of neurodegenerative diseases.

1 https://github.com/wieczorekw/wieczorekw.github.io/tree/master/GP.

https://github.com/wieczorekw/wieczorekw.github.io/tree/master/GP
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So as to estimate the GP’s and compared approaches’ ability to classify
unseen sequences corrected repeated ten times tenfold cross-validation (10 × 10
cv) with 10 degrees of freedom test was applied. This scheme was proved to
have excellent replicability [4] and, opposite to the MCNemar test and 5× 2
cv test, low Type-II error. In repeated 10 × 10 cv, the data is randomly split
in 10 mutually exclusive folds, next the model is learned over all but one fold
and tested on the skipped fold. This protocol is repeated 10 times, each time
assessing the model on the next skipped fold. To reduce variability, this scheme
is repeated 10 times. Repeated r -times k -fold cross validation results in the
following statistic

tc =
1/(k · r)

∑k
i=1

∑r
j=1 xij

√
(1/(k · r) + n2/n1)σ̂2

where xij is the difference of the performance quality between two compared
algorithms on i-fold and j-run, n1 is the number of instances used for training,
n2 the number of instances used for testing, σ̂2 is the variance of the n differences.
To control the family-wise error rate, i.e. the probability that one or more Type-I
errors will occur while multiple comparisons, the Holm correction was used [6].

To evaluate the quality classification of the compared models, we use the
classification results stored in a confusion matrix. The following four scores were
defined as tp, fp, fn, and tn, representing the numbers of true positives (correctly
recognized amyloids), false positives (nonamyloids recognized as amyloids), false
negatives (amyloids recognized as nonamyloids), and true negatives (correctly
recognized nonamyloids), respectively. Based on the values stored in the confu-
sion matrix, we calculate the widely used Precision and Recall, and combined
metrics as F1-score, the AUC, and Matthews correlation coefficient.

Precision is defined as

P = tp/(tp + fp),

Recall as

R = tp/(tp + fn),

F1 as the harmonic mean of Precision and Recall

F1 = 2 · (P · R/(P + R)),

Area under Roc Curve (AUC) for binary classification as a Balanced Accuracy

AUC = (tp/p + tn/n)/2,

Matthews Correlation Coefficient is definded as

MCC = (tp · tn − fp · fn)/
√

(tp + fn)(tp + fp)(tn + fp)(tn + fn).
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Table 1. Performance of compared methods in terms of averaged Precision (P), Recall
(R), F1, AUC, and MCC with standard deviation. The results are ordered by decreasing
AUC.

P R F1 AUC MCC

GP 0.431 ± 0.064 0.561 ± 0.099 0.481 ± 0.057 0.619 ± 0.049 0.227 ± 0.094

Blue-fringe 0.467 ± 0.083 0.340 ± 0.065 0.391 ± 0.065 0.587 ± 0.039 0.193 ± 0.088

Traxbar 0.411 ± 0.061 0.413 ± 0.083 0.408 ± 0.059 0.580 ± 0.040 0.161 ± 0.081

SVM 0.571 ± 0.147 0.172 ± 0.064 0.260 ± 0.086 0.559 ± 0.034 0.187 ± 0.101

ECGI 0.787 ± 0.182 0.119 ± 0.050 0.205 ± 0.079 0.554 ± 0.027 0.230 ± 0.095

ADIOS 0.328 ± 0.071 0.628 ± 0.228 0.402 ± 0.083 0.524 ± 0.051 0.048 ± 0.109

Comparative analysis of the five measures (Precision, Recall, F-score, the
AUC, and Matthews correlation coefficient) is summarized in Table 1 and Figs. 3,
4 and 5. These quantities are reported for six compared predictors. Reported
numerical results show that GP has the highest values in all but one combined
measures (i.e. AUC and F1) of the performance of a binary classification test.
Table 2 gives adjusted by Holm procedure p values for the comparison of the GP
as the control method with the remaining algorithms. These p values indicate
that there are significant performance differences between GP algorithm and all
compared methods over AUC and F1 measures. Additionally, GP outperforms
statistically Traxbar and ADIOS approaches regarding MCC measure.
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Fig. 3. Performance comparison of ADIOS, Blue-fringe, ECGI, GP, Traxbar, and SVM
methods. Boxplots represent the AUC values obtained from 10 × 10 cross-validation.
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Table 2. p-values for the comparison of the GP as a control method with the other
methods and F1, AUC, and MCC measures. The initial level of confidence α = 0.05 is
adjusted by Holm procedure.

GP versus Holm p for F1 Holm p for AUC Holm p for MCC

Blue-fringe 9.036106 e−11 5.219685 e−04 1.505537 e−01

Traxbar 1.833783 e−08 6.211608 e−05 1.068778 e−03

ECGI 3.508577 e−35 4.400321 e−12 8.360555 e−01

ADIOS 2.238259 e−07 1.210657 e−14 5.612043 e−13

SVM 9.377921 e−26 1.409218 e−09 1.474196 e−01
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Fig. 4. Performance comparison of ADIOS, Blue-fringe, ECGI, GP, Traxbar, and SVM
methods. Boxplots represent the F1 values obtained from 10 × 10 cross-validation.
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Fig. 5. Performance comparison of ADIOS, Blue-fringe, ECGI, GP, and Traxbar meth-
ods. Boxplots represent the MCC values obtained from 10 × 10 cross-validation.
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5 Conclusions and Future Work

This paper dealt with the induction of noncircular CFGs based on a finite sample.
That is constituted by the following task: given two sets X, Y of words build
a family of compact grammars which is well fitting with the input (recognizes X
and rejects the most of Y ). In order to address the problem, we have made use of
genetic programming. The experiments conducted showed that the new proposed
algorithm outperformed statistically all the compared methods in terms of F-
score and AUC for real amyloidogenic sequences.

Our method has also a few disadvantages. The most significant ones are: sen-
sitiveness to parameters’ values and long working time. In the near future, we are
planning to minimize the execution time by considering parallel implementation.
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Abstract. The simulation and analysis of mathematical models of bio-
logical systems require a complete knowledge of the reaction kinetic con-
stants. Unfortunately, these values are often difficult to measure, but they
can be inferred from experimental data in a process known as Parameter
Estimation (PE). In this work, we tackle the PE problem using Particle
Swarm Optimization (PSO) coupled with three different reboot strate-
gies, which aim to reinitialize particle positions to avoid local optima.
In particular, we highlight the better performance of PSO coupled with
the reboot strategies with respect to standard PSO. Finally, since the
PE requires a huge number of simulations at each iteration of PSO, we
exploit cupSODA, a GPU-powered deterministic simulator, which per-
forms all simulations and fitness evaluations in parallel.

Keywords: Particle Swarm Optimization · Parameter Estimation ·
GPGPU computing · cupSODA · Systems Biology

1 Scientific Background

Mechanism-based mathematical models are used in the field of Systems Biology
to provide a detailed description of the biochemical processes occurring in liv-
ing cells [21]. A complete parameterization of such models is needed to perform
simulations of the dynamics; however, kinetic parameters are often difficult to
measure through experimental methodologies. Different Parameter Estimation
(PE) techniques [11], relying either on approximation strategies or global opti-
mization methods, can be employed to automatically infer a parameterization
that fits the experimental data. Especially, Particle Swarm Optimization (PSO)
c© Springer Nature Switzerland AG 2019
M. Bartoletti et al. (Eds.): CIBB 2017, LNBI 10834, pp. 92–102, 2019.
https://doi.org/10.1007/978-3-030-14160-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14160-8_10&domain=pdf
http://orcid.org/0000-0002-3383-367X
http://orcid.org/0000-0002-5856-4453
http://orcid.org/0000-0003-3341-5483
http://orcid.org/0000-0001-7780-0434
http://orcid.org/0000-0002-7692-7203
https://doi.org/10.1007/978-3-030-14160-8_10


Reboot Strategies for Kinetic Reaction Constants Estimation Using PSO 93

has shown to be one of the best optimization techniques for the PE [2,5,7,12].
PSO is a meta-heuristic in which a population (swarm) of candidate solutions
(particles) explores a bounded search space to find the best solution to a certain
problem, according to a fitness function.

Different works presented variants aimed to improve the standard PSO algo-
rithm, by introducing specific strategies that attempted to overcome stagnation
of the swarm in local minima, either by implementing hybrid PSO approaches
[18,23] or reboot strategies [6,8]. In this work, we consider different reboot strate-
gies to re-initialize particles if they are too close to the global best position or if
the global or local best positions remain unchanged for a given number of iter-
ations, and assess their influence on the performance of PSO applied to the PE
of the kinetic constants of biochemical systems. Our results show that reboot-
ing can considerably improve PSO’s performances, in particular when a “local”
methodology (i.e., based on local best position monitoring) is exploited.

In this context, the PE typically requires a huge amount of simulations during
each iteration of PSO for the fitness calculation; we therefore exploit a GPU-
powered deterministic simulator, called cupSODA, to efficiently perform in par-
allel all simulations, strongly reducing the required computation time.

The paper is structured as follows. In Sect. 2 we introduce the parameter
estimation problem and the basic notions of PSO, we describe the reboot strate-
gies exploited in this study, as well as briefly recall the features of cupSODA
and of the parallelization strategy adopted in this work. Section 3 presents the
results of performance analysis regarding the PE on the mathematical model of
the Heat Shock Response (HSR) mechanism. Finally, in Sect. 4 we conclude with
some final remarks and directions for future work.

2 Materials and Methods

2.1 Parameter Estimation of Biochemical Systems

In this study, we focus on mechanistic models of biochemical systems, defined
according to the reaction-based formalism. Reaction-based models consist of a
set S = {S1 . . . , SN} containing the molecular species occurring in the system,
and a set R = {R1, . . . , RM} of reactions describing the interactions that take
place among them. A reaction Rj , with j = 1, . . . , M , is characterized by the
sets of its reactants and products, whose elements belong to S, and a kinetic
constant kj ∈ R

+, whose unit of measure depends on the reaction order (i.e.,
the number of reacting molecules). Since kinetic constants’ values are typically
hard or impossible to measure experimentally, hereafter we suppose to have zero
or partial knowledge about the vector of kinetic constants k = (k1, . . . , kM ),
while we assume to have complete knowledge of the sets S and R, as well as
of the initial concentrations of the molecular species. Note that, in principle,
the PE strategy presented in this paper can be applied to estimate the initial
concentrations of the molecular species involved in the model.

A PE can be performed if some target data are available, such as the measure-
ment of the molecular amount of a subset of species S ′ = {S1, . . . , SS} ⊆ S, with
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S ≤ N . In this context, each element of S ′ corresponds to a time-series, which
consists of experimental data sampled at a finite set of time points τ1, . . . , τF .
Ys(τf ) denotes the molecular amount of species Ss ∈ S ′ measured at time τf
(s = 1, . . . , S and f = 1, . . . , F ). Overall, this set of experimental measurements
is called discrete-time target series (DTTS).

The PE process consists in comparing the DTTS of every Ss ∈ S ′ with the
simulated dynamics of the same species Ss, obtained by executing an in silico
simulation of the model. In particular, in this work we adopted cupSODA [13],
a deterministic simulator that takes as input the model, the initial amounts of
all species in S, and the candidate solutions k = (k1, . . . , kD), with D ≤ M ,
containing the kinetic constants of the reactions in R′

= {R1, . . . , RD} ⊆ R,
which need to be estimated. Given the outcome of a cupSODA simulation, we
sample a set of consecutive time instants τ0, . . . , τmax, where τ0 and τmax are
the first and last instant of the simulation, respectively. We denote by Xk

s (τ)
the molecular amount of the species Ss ∈ S ′ at time τ , with s = 1, . . . , S and
τ0 ≤ τ ≤ τmax.

The fitness of a candidate solution vector k is computed by comparing the
measured experimental data of species Ss in the DTTS with the simulation
outcome: (i) we determine the value of Xk

s (τf ), that is, the simulated molecular
amount of Ss at time point τf , for each f = 1, . . . , F ; (ii) we calculate how
much the simulated molecular amounts Xk

s (τf ) match the experimental measures
Ys(τf ) at each time instant f = 1, . . . , F , for each species Ss ∈ S ′. To be more
precise, the fitness function is defined as follows:

F(k) =
F∑

f=1

S∑

s=1

|Ys(τf ) − Xk
s (τf )|

Ys(τf )
. (1)

F(k) measures the distance between the DTTS and the simulation outcome of
all species in S ′ and all sampled time instants τf . Therefore, the PE problem
consists in minimizing F(k) to identify the vector k able to provide a simulated
dynamics that matches at best the DTTS.

2.2 Particle Swarm Optimization

In PSO, a set of candidate solutions is represented by a population of n particles
(swarm). Each particle i, where i = 1, . . . , n, is characterized by a position
vector xi and a velocity vector vi that allow to update its own current position,
both defined in a multi-dimensional search space R

D. During the optimization
process, particles are attracted towards the best position bi ∈ R

D, found by the
particle itself, and the global best position g ∈ R

D, reached by the entire swarm,
until a termination criterion is achieved.

Global exploration and local exploitation behaviors are governed by two
parameters: the social factor csoc ∈ R

+ and the cognitive factor ccog ∈ R
+,

respectively. Furthermore, two vectors r1, r2 of random numbers, sampled from
a uniform distribution in [0, 1), are employed to add stochasticity to particles
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movement and prevent premature convergence to local optima. A maximum
velocity vector vmax = (vmax1 , . . . , vmaxD

), with vmaxd
∈ R

+ and d = 1, . . . , D,
limits the velocity of particles that are also modulated by an inertia factor
w ∈ R

+ to avoid chaotic behaviors in the swarm. In this work, we assess the
effects of fixed and linearly decreasing inertia on the performance of PSO in solv-
ing a PE problem. For the inertia parameter, we set the values typically used in
literature (such as in [2]) in which the inertia is either kept fixed to w = 0.729,
or decreases from 0.9 down to 0.4. According to this formulation, the velocity of
each particle i is updated as vi = w ·vi + csoc · r1 ◦ (xi −g)+ ccog · r2 ◦ (xi −bi),
where ◦ denotes the component-wise product. Lastly, the particle position xi is
updated as xi = xi + vi.

In PSO, the search space is bounded to avoid the divergence of candidate
solutions towards infinity. We indicate as βmin

d and βmax
d the lower and upper

bound of the d-th dimension, respectively, with d = 1, . . . , D. Moreover, in order
to keep the particles inside the bounded region, we assume damping boundary
conditions, in which the particle “bounces” (with a random elasticity) on the
limit of the search space. Particle initialization is performed by sampling from a
logarithmic distribution, as described in [3].

2.3 Reboot Strategies in PSO

Reboot strategies for particles have been introduced to avoid early convergence
of the swarm and stagnation in local minima. A reboot strategy should accu-
rately and efficiently identify particles that are no longer exploring effectively
the search space, and re-initialize them to increase diversity in the swarm. In
the context of continuous optimization problems in large search spaces, different
reboot strategies were integrated in PSO [6,8], which consist in “restarting” the
algorithm by re-initializing all particles in the swarm except for the global best
position found so far.

In this work, we exploit reboot strategies and assess their influence on the
performance of PSO applied to the PE of the kinetic constants of biochemical
systems. The following re-initialization approaches were implemented:

– (i) Global, if the global best position g of the swarm does not improve for η
iterations (where η is a user-defined parameter), each particle of the swarm
is randomly re-initialized in the logarithmic interval (βmin

d , βmax
d ), its local

best position bi is set to the new position xi and its velocity vi is reset to 0;
– (ii) Local, if the local best position bi of particle i does not improve for η

iterations, its position xi is randomly re-initialized in the logarithmic interval
(βmin

d , βmax
d ), its local best position bi is set to the new random position and

its velocity vi is reset to 0;
– (iii) Distance, if ‖b∗

i − g∗‖< θ, particle i is randomly re-initialized in the
logarithmic interval (βmin

d , βmax
d ), its local best position bi is set to xi and its

velocity vi is reset to 0. θ is a user setting, b∗
i = (log10 (bi,1), . . . , log10 (bi,D))

and g∗ = (log10 (g1), . . . , log10 (gD)) are the logarithmic transformation of
bi and g, respectively.
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2.4 Deterministic Simulations on GPUs Using cupSODA

cupSODA [13] is a GPU-based simulator capable of accelerating the tasks typi-
cally executed in the field of Systems Biology—such as PE, sensitivity analysis or
reverse engineering [1,4]—which are usually computationally intensive since they
involve large batches of simulations of a model. cupSODA exploits an efficient
coarse-grained parallelization strategy to perform deterministic simulations, by
launching a GPU thread for each model parameterization, running in parallel a
huge amount of independent simulations of the same model. In particular, each
simulation is characterized by a different setting of initial molecular amounts of
chemical species and/or kinetic constants values.

cupSODA is built upon a C version of the numerical integrator LSODA [20],
ported and adapted to the CUDA architecture [17]. cupSODA is a black-box sim-
ulator that can be easily employed without any programming skills by the final
user: given a reaction-based model of a biochemical system, cupSODA automati-
cally generates the corresponding system of ODEs, according to the mass-action
kinetics [24]. In order to reduce the memory latencies [16], cupSODA exploits
the shared memory of the GPU to save the current state of each simulation, and
the constant memory of the GPU to save all the constants values (e.g., number
of reactions and chemical species in the model, length of ODEs and Jacobian
arrays, etc.) and the LSODA settings [9].

Considering the specific case of the PE, cupSODA can offer an additional
feature, as it allows for easily comparing the outcome of simulations with any
available experimental data. In particular, given a set of F time points sampled
in a DTTS, cupSODA proceeds as follows: (i) it invokes the LSODA kernel
F − 1 times; (ii) at each time, the kernel is run over a time window of length
Δτ = τf −τf−1, f = 1, . . . , F ; (iii) at the end of each Δτ , it stores the simulated
molecular amounts of each species in S ′. Finally, cupSODA calculates in parallel
the fitness values associated with candidate model parameterizations, following
Eq. (1).

3 Results

In this section, we compare the performances of the reboot strategies described
in Sect. 2.3 with respect to the standard PSO. In all tests, we used the follow-
ing settings for PSO: (i) damping boundary conditions; (ii) maximum velocity
vmaxd

= 0.2 · ψd, where ψd = βmax
d − βmin

d , for d ∈ {1, 2, . . . ,D}; (iii) number
of iterations ITMAX = 1000. We also set ccog = csoc = 1.494, which correspond
to the values typically used in literature, and compared the effect of decreasing
inertia (from w = 0.9 to w = 0.4) against a fixed value (w = 0.729) (see [22] for
additional details).

The performances are evaluated by computing the average best fitness (ABF)
over Φ = 20 independent repetitions of the PE, and by showing the box-plots
obtained with the best fitness values reached by PSO at the last iteration of
each PE run. Note that, since we are minimizing the fitness value, a smaller
ABF corresponds to a better result.
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Fig. 1. Left : ABF achieved by PSO implementing the Global reboot strategy with
different η values. In all cases, we used w = 0.729 and n = 512. Right : box-plots
obtained considering the best fitness values reached by PSO with Global reboot at the
last iteration of each optimization, with the same settings specified above. The solid
(dashed) line corresponds to the median (mean).

All tests were executed exploiting a model of the Heat Shock Response (HSR)
presented in [19], consisting of 17 reactions among 10 species. HSR is a regulatory
mechanism that allows the cell to quickly react to high temperatures and other
forms of physiological and environmental stress. The initial molecular amounts
of the species are also given in [19]. In the PE of the HSR model, we consider
D = 16 dimensions, since the value of a kinetic constant is known and kept to its
real value throughout the optimization. The search space boundaries were fixed
to βmin

d = 10−10 and βmax
d = 100, for each d = 1, . . . , D. The target data used

in the PE were generated in silico, by sampling 140 points from a simulation
realized by using a reference kinetic parameterization.

First of all, we considered the influence of the swarm size and of the inertia
value on the standard PSO algorithm. In particular, we executed the PE using:
a swarm composed of n = 32 particles and fixed inertia w = 0.729; a swarm with
n = 512 particles and a linearly decreasing inertia (from w = 0.9 to w = 0.4
throughout the entire simulation); a swarm with n = 512 particles and inertia
w = 0.729. These results (data not shown) highlighted that: (i) as expected, a
large number of particles allows us to achieve lower ABF values and reach better
results at the end of the optimization process with respect to a swarm of smaller
size; (ii) a fixed inertia value outperforms PSO with a decreasing inertia in this
particular test case.

Figures 1, 2 and 3 illustrate the results obtained by PSO implementing the
three different reboot strategies. In these tests, we varied the threshold param-
eters exploited by the reboot strategies. Especially, we considered the values
10, 25, 50, 75, 100 of the parameter η of Global and Local reboot strategies, and
the values 0.01, 0.1, 0.25, 0.5, 0.75, 1.0 of the parameter θ of the Distance reboot
strategy. Note that these values were arbitrarily chosen to the aim of assess-
ing the influence of η and θ on the performance of PSO coupled with reboot
strategies.

On the one hand, the performance of the Distance reboot (Fig. 3) appears
to be affected by the choice of θ values; on the other hand, both Global reboot
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Fig. 2. Left : ABF achieved by PSO implementing the Local reboot strategy with dif-
ferent η values. In all cases, we used w = 0.729 and n = 512. Right : box-plots obtained
considering the best fitness values reached by PSO with Local reboot at the last iter-
ation of each optimization, with the same settings specified above. The solid (dashed)
line corresponds to the median (mean).

Fig. 3. Left : ABF achieved by PSO implementing the Distance reboot strategy with
different θ values. In all cases, we used w = 0.729 and n = 512. Right : box-plots
obtained considering the best fitness values reached by PSO with Distance reboot at
the last iteration of each optimization, with the same settings specified above. The
solid (dashed) line corresponds to the median (mean).

(Fig. 1) and Local (Fig. 2) strategies are robust with respect to the choice of
η values, a result confirmed by the smaller dispersion in the box-plots. It is
worth noting that the threshold parameters directly affect the number of reboots
occurring at each iteration of PSO, even though this does not necessarily lead to
better performances. For instance, it is evident how θ = 0.1 performs better than
both θ = 0.01 and θ = 0.25 in the case of Distance reboot (Fig. 3). Therefore,
a good trade-off for the threshold parameters should be identified to prevent
excessive or insufficient rebooting of particles.

Afterwards, we selected the best threshold values of each reboot strategy and
compared them against standard PSO. Figure 4 shows that all reboot strategies
outperform standard PSO both in terms of ABF and interquartile range of the
final best fitness; this experimental evidence is observed especially in the case of
Global and Local reboot strategies.

Since the Local strategy seemed to consistently outperform the other
approaches, we tested an additional reboot strategy: instead of sampling the
new positions from a logarithmic distribution, we used a lognormal distribution
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Fig. 4. Left : ABF achieved by the standard PSO (n = 512 and w = 0.729) and PSO
with the three reboot strategies, performed with their respective best threshold values.
Right : box-plots obtained considering the best fitness values reached at the last iteration
of each optimization φ, with the same settings specified above. The solid (dashed) line
corresponds to the median (mean).

with mean equal to (log(βmin
d ) + log(βmax

d ))/2 and σ equal to (log(βmax
d ) −

log(βmin
d ))/2 [10]. In Fig. 4 we denote the Local strategy based on logarithmic

samples and lognormal samples with localloguni and locallognorm, respectively.
According to our results, the new version slightly improves the average perfor-
mances (left plot) although with a higher variance in the final ABF (right plot).
Moreover, the generation of lognormally distributed random deviates is more
computationally expensive than uniform random numbers (approximately five
times slower). Due to these drawbacks, localloguni remains the most reliable
strategy for PSO reboots.

Finally, in order to verify the correctness of the PE, we simulated the dynam-
ics of the HSR model by using the best parameterization found by PSO (over
the 20 runs) with Local and Global reboot strategies. Figure 5 shows that both
the Local and Global reboot allowed to simulate a dynamics that closely approx-
imates the target temporal dynamics of the hsf3:hse species.

Fig. 5. Temporal dynamics of the hsf3:hse species of the HSR model, obtained with
the best parameterization found by PSO coupled with the Local (η = 50) and Global
(η = 75) reboot strategies.
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4 Conclusion

In this paper, we considered different reboot strategies for particles in PSO and
assessed their performance for the estimation of kinetic constants in reaction-
based models of biological systems. PE might be computationally intensive even
in the case of small-scale models of biological systems, as it requires a huge
amount of fitness function evaluations. We therefore exploited cupSODA [13], a
GPU-powered deterministic simulator that performs large batches of simulations
relying on a coarse-grained parallelization strategy, which allowed to speedup the
computation up to 86× with respect to a CPU-based execution.

The results obtained in this work highlight that reboot strategies can be
successfully coupled with PSO to avoid early convergence and stagnation of
the swarm. In particular, the Global and Local reboot strategies proved to be
considerably reliable, since they are characterized by (i) high convergence speed,
(ii) lower ABF with respect to the Distance reboot strategy, and (iii) higher
robustness with respect to different choices for their functioning setting η.

As a future extension of this work, we plan to apply the PE methodology
based on PSO and cupSODA to more complex models of biological systems,
where standard approaches fail because of the computational burden of the sim-
ulation process. We will also consider a multi-swarm approach [14], where a set
of DTTS—measured in different experimental conditions—are simultaneously
taken into account to the aim of improving the quality and the biological rel-
evance of the inferred model parameterization. In this situation, special reboot
methods can be investigated to implement asynchronous migration strategies
between the swarms.

Finally, when the biochemical systems under investigation are characterized
by molecular species present in small quantities, stochasticity plays a funda-
mental role and cannot be neglected. In such a situation, stochastic simulation
algorithms must be employed to calculate the fitness of PSO particles; we will
therefore replace cupSODA with cuTauLeaping [15], a GPU-based stochastic
simulator, and we will develop an appropriate fitness function capable of dealing
with complex and noisy dynamics.
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Abstract. Resolving the correct structure and succession of highly simi-
lar sequence stretches is one of the main open problems in genome assem-
bly. For non haploid genomes this includes determining the sequences of
the different haplotypes. For all but the smallest genomes it also involves
separating different repeat instances. In this paper we discuss methods
for resolving such problems in third generation long reads by classifying
alignments between long reads according to whether they represent true
or false read overlaps. The main problem in this context is the high error
rate found in such reads, which greatly exceeds the variance between
the similar regions we want to separate. Our methods can separate read
classes stemming from regions with as little as 1% difference.

1 Scientific Background

Third generation sequencing reads like those produced by Pacific BioSciences
(PacBIO) and Oxford Nanopore Technologies (ONT) sequencers are very long
in comparison with the ones produced by second generation sequencers. The
average read length for PacBIO is often 10 k base pairs (bp) and for ONT
7–16 kbp have been reported. For PacBIO more than half of the sequenced bases
can be in reads of length 20 kbp and above. Second generation sequencers often
yield reads as short as 150 bp, so third generation sequencers allow a much bet-
ter repeat resolution for assembly because more repeats are spanned by single
reads. The increased read length of third generation sequencers however comes
at the price of a much higher average base error rate (about 13% for PacBIO
and even higher for ONT).

This poses major algorithmic challenges in the areas of sequence alignment,
comparison and signal detection. Read versus read comparison (see e.g. [1]) oper-
ates at a correlation of 70% and less. This makes it very hard to detect small
differences between regions where reads were sampled from. Reads stemming
from sufficiently similar regions in an underlying genome, like instances of a
repeat or different haplotypes, will often align within the parameters used, as
the difference between the two sources is small in comparison with the read error
rate. Being able to segregate read alignments into classes according to whether
c© Springer Nature Switzerland AG 2019
M. Bartoletti et al. (Eds.): CIBB 2017, LNBI 10834, pp. 103–114, 2019.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14160-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-14160-8_11


104 G. Tischler-Höhle

or not an alignment between a read pair designates a real overlap in the underly-
ing genome is however important for multiple applications like genome assembly
and variant detection. In genome assembly for instance the quality of any con-
sensus sequence produced rises and falls with the ability to select the correct
reads as input (cf. [2]). Linking up different haplotypes during the assembly
of a non haploid organism results in patchwork like output, in particular an
assembly process yielding output contigs which are not contained in the genome
to be reconstructed. Haplotype assembly designates the problem of separating
reads into haplotype classes by first mapping them to a given reference sequence
and then splitting the reads into groups using the information obtained. Several
papers have presented methods for haplotype assembly (or read phasing) in the
diploid setting (cf. [3–10]). Some of these methods are capable of employing base
qualities to improve the phasing accuracy. The case of phasing in the more gen-
eral polyploid setting has also been considered (see [11] and references therein).
Canu (see [12]) performs repeat separation using a sequence of error correction,
residual error estimation and classification of the error corrected reads. The
authors report being able to separate repeat instances with 3% difference and
above.

2 Materials and Methods

In this paper we discuss methods for repeat and haplotype separation in long
reads. We consider the setting of de novo assembly, in particular we do not
presume or require the existence of a reference sequence or known variation
sites. Instead of read to reference alignments we use read to read consensus
alignments, i.e. we align reads to error corrected reads. In addition we do not
limit our attention to a scenario requiring there to be at most two versions
of a sequence. Our setting is thus more general than the setting of haplotype
assembly for diploid genomes.

We consider two basic principles for splitting a set of reads. The first one
is based on the trivial observation that reads in the same class should agree
on most positions, particularly including those for which a very rough analysis
shows a potential for disagreement in the read set. As the reads we consider
are not error free we cannot expect the reads inside one class to agree on all
positions. This approach has its merits when the number of versions a sequence
appears in is low but as we will see below, it becomes unsuitable as the number of
versions grows. The second principle is based on observing sets of reads (more or
less) consistently disagreeing on certain positions. This scales to higher version
numbers but is computationally much more expensive.

2.1 Preliminaries

Let G = {S1, S2, . . . , Sk} denote a genome containing sequences Si for i =
1, . . . , k, i.e. strings over the alphabet Σ = {A,C,G, T}. Further let R =
{R1, R2, . . . Rr} be a set of reads sampled from G (randomly of the forward
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and reverse complement strand) such that the strings in R have length L on
average and the error rate (errors per length on G) between the reads and the
intervals on G they were drawn from is pe on average. For PacBIO the length
distribution in R would follow a log normal distribution with average length
10kb and pe would be in the order of 0.13.

We denote a local alignment between sequences Ui and Uj by a tuple
(i, j, ib, ie, jb, je, c) where ib and ie mark the start and end of the alignment
on Ui, jb and je the start and end on Uj and c is a Boolean value marking
whether Uj or the reverse complement of Uj was used (c = true for reverse
complement).

In practice long reads often contain stretches of very low quality, so even for
two reads sharing a true overlap we find a sequence of local alignments instead
of a single suffix/prefix or containment type alignment. Our methods can easily
be generalised to this case, however for the sake of simplicity of exposition we
assume that alignments between reads are contiguous below. Let A denote the
set of all (local) alignments between pairs of reads in R s.t. the correlation
between the two reads inside the alignment is at least 1− 2pe and the alignment
covers at least � bases on both reads involved for some length �. In practice we
commonly use � = 1k for third generation long reads (which is the default setting
for DALIGNER, see [1]). For a given read Rk we call the subset of A s.t. the
first component of the tuples is k the alignment pile for Rk. If G represents a
non haploid genome or contains sufficiently long repeating regions then not all
the alignments in A may refer to true read overlaps on G.

We can use an alignment pile of a read or a subset thereof (for instance by
choosing the top k best aligning other reads for some k) to compute a preliminary
consensus or error corrected version of the read, e.g. using the algorithm proposed
in [2]. We denote a preliminary consensus obtained for a read Ri in this way by
R̂i. The alignment pile for Ri can be transformed into an alignment pile for R̂i

by aligning the reads in the pile for Ri to R̂i while taking the positions of the
original alignments on Ri into account and transforming those to positions on
R̂i using an alignment of Ri and R̂i. In addition to the original alignments in
the pile of Ri we also insert an alignment between R̂i and Ri into the pile of R̂i.

An alignment pile for some R̂k can be transformed into a matrix where
the columns represent positions on or before the bases of R̂k (before for base
insertions into R̂k) and the rows are the reads in the alignment pile for R̂k. An
alignment (k, j, kb, ke, jb, je, c) between R̂k and a read j is active from base kb
to ke on k. The cells of a matrix row corresponding to read Rj are set as follows.
Columns the respective alignment is inactive on remain empty. In the active
region of the alignment a cell is filled with the base from Rj if the alignment
features a match, mismatch or insertion operation for the respective position and
a dash (−) otherwise. As a convention we always have the alignment between
R̂k and Rk as the first row of the matrix. Table 1 shows an example. The excerpt
shows positions 100 to 102 on the read. Some bases have been inserted before
position 102, which is marked by the position identifier (102,−1). The alignment
corresponding to the second row ends at position 101, the one for the last row
starts at position 101.
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Table 1. Excerpt from a matrix given by an alignment pile

(100,0) (101,0) (102,-1) (102,0)
A C A T
A C
A T A T

2.2 Agreement Based Splitting

Let d denote the average sequencing depth of the read set R. We assume the
arrival rate of reads on the genome follows a Poisson distribution with mean d,
i.e. we have a probability of Pd(i) = di

i! e
−d to see a depth of i at a given position.

This describes the case of a uniform sampling of the underlying genome without
any bias (e.g. an amplification bias common for sequencing methods requiring
PCR based amplification).

The probability to see d′ correctly sequenced bases for any position is thus

Pc(d′) =
∞∑

i=d′
Pd(i)

(
i

d′

)
(1 − pe)d′

pi−d′
e (1)

We want to detect variation sites inside a given read Ri. One very simple way
to do this is to scan the matrix constructed for R̂i for columns in which more
than one symbol appears with a frequency above a given threshold. Assuming
the alignments used to construct the matrix are suitable we would see such a
variation with probability

∑∞
j=d′ Pc(j) if we chose a threshold of d′. For d = 20

and pe = 0.15 we obtain d′ = 8 if we ask the probability to be at least 99%,
i.e. we are 99% sure not to miss a relevant site if we look for columns containing
at least two symbols with 8 or more instances. There is however the chance of
calling variation sites because of unsuitable alignments in the pile for R̂i or a
sufficiently high number of wrongly sequenced bases (this is a problem especially
in the presence of a high number of sequence versions as this increases the total
number of reads involved in the pile).

Consider a given position q in the genome G and two reads Ri and Rj covering
this position. Then we have a probability of (1 − pe)2 for having the base at
position q sequenced correctly in both Ri and Rj . Let Aij = (i, j, ib, ie, jb, je, c)
denote an alignment between read Ri and Rj and assume we called n variants
on Ri inside the index interval [ib, ie]. If Ri and Rj overlap as designated by Aij

in the underlying genome, then we have a probability of

Ps(κ) =
n∑

κ′=κ

(
n

κ′

)
(1 − pe)2κ′

(1 − (1 − pe)2)n−κ′
(2)

to see Ri and Rj agree on at least κ of the n disagreement points in the matrix
for the alignment pile of R̂i.
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If there are two underlying versions, e.g. a repeat with two copies or hap-
lotypes in a diploid genome, then we would expect to see reads coming from
different versions to disagree on most of the variant locations. In this case we
have a strong signal for separating the two versions. It becomes weaker in the
presence of more versions when some of the versions agree with others in a large
fraction of the variant locations. In this case we cannot reliably tell the differ-
ence between two reads stemming from different versions with a relatively low
number of sequencing errors and two reads stemming from the same version
but agreeing on a lower number of variant locations due to a higher number
of sequencing errors. For experiments we choose the number m of disagreement
points two reads need to agree on so we consider them as from the same class
as the smallest number s.t. Ps(m) ≥ 0.995. The asymptotical time complexity
of the algorithm for processing the pile of some read R is O(�d) where � denotes
the length of R in bases and d is the number of alignments in the pile for R.

2.3 Disagreement Based Splitting

One of the main problems with agreement based splitting is suboptimal perfor-
mance when reads from different classes agree on a large number of the detected
variant locations. Splitting based on the differences between genomic regions
does not suffer from this effect. Every attempt via directly comparing two long
reads is however bound to fail as the high sequencing error rate drowns any slight
difference between the two underlying real sequences. At a single base error rate
of pe = 15% the probability to see a correct pair of corresponding bases in two
reads is (1−pe)2 = 72.25%, i.e. 27.75% of the pairs are wrong and most of these
wrong pairs lead to a false disagreement between reads which should agree.

When we compare bases for discovering disagreements between reads, we
need to make reasonably sure that the bases compared are correct represen-
tations of their class for a given position. Consider some position on k reads
stemming from the same class. Then we have a probability of 1 − pk

e to see the
correct base in at least one of these k reads. For k = 2 and pe = 0.15 we have a
probability of 97.75%, still a probability of more than 2% for all the bases to be
wrong, for k = 3 we reach 99.6625%.

In consequence, if three reads from the same class agree on a base, then this
is most likely a correctly reported base. We use this observation by comparing
three tuples of bases to three tuples of bases instead of comparing single read
bases to single read bases.

Given a read Rj we first build the matrix corresponding to the alignment
pile of R̂j . We then scan the matrix column for column. In each column c we
extract all 6 tuples (r1, r2, r3, r4, r5, r6) s.t. ri for 1, 2, . . . , 6 are row identifiers
marking non empty cells in column c, the cells for row r1, r2 and r3 all contain
the same symbol a, the cells for row r4, r5 and r6 all contain the same symbol b,
a �= b, 1 = r1 < r2 < r3 and r4 < r5 < r6. Remember row 1 in the matrix refers
to the alignment between R̂j and Rj . There are O(

(
q
2

)(
q
3

)
) = O(q5) distinct such

tuples in the worst case if q is the maximum number of active alignments in any
column of the matrix. For each distinct tuple T we count the number Y (T ) of
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times it appears summed up over all columns. The support Z(T ) of a tuple T is
the intersection of the active intervals of the alignments it is based on.

If we want to split read sets down to a difference rate of δ, then we expect
Δ = δ|Z(T )| differences to exist inside Z(T ). Assuming suitable alignments
comprising R̂j ’s matrix, the probability to see each single of these differences is
p6 = (1−pe)6 which is about 37.7% for pe = 15%. The probability to see at least
m of these differences is η(i) =

∑Δ
i=m

(
Δ
i

)
pi
6(1 − p6)Δ−i. We choose the smallest

i s.t. η(i) is at least 99.5% as a threshold. For each i we count the number H(i)
of tuples satisfying their threshold in which i appears as r4, r5 or r6.

Given Pd (Poisson distribution) as defined above we can determine a depth
threshold dt which is reached for most bases on the genome. Using the average
sequence depth we can also estimate the likelihood of having a certain number
v of sequence variants in the pile observed. Reads i with a count H(i) close to
or exceeding ht =

(
dt

2

)(
(v−1)dt

2

)
(we have fixed r1 to 1 and one of r4, r5 or r6 to

r) are most likely not in the same class at Rj . Reads i in the same class as Rj

should have a H(i) equal or close to zero.
The asymptotical time complexity of the algorithm for processing the pile

for some read R containing d alignments is dominated by enumerating the 5-
tuples, which is O(�d5) where � denotes the length of R in bases. Note that
we do not need an array of size d5 for counting the frequency of each distinct
tuple. The tuples originating from each single matrix column for a read Rj can
easily be enumerated in lexicographically increasing order in the following way.
Let α = α1, α2, . . . , αy be the sequence of read ids in the column featuring the
same symbol as Rj in increasing order excluding Rj itself and β = β1, β2, . . . , βz

the sequence of read ids in the column featuring a different symbol from Rj ’s
in increasing order. If y < 2 or z < 3 then there are no tuples for this column.
Otherwise we keep two pointers a1 and a2 into α s.t. 1 ≤ a1 < a2 ≤ y starting
with a1 = 1, a2 = 2 and three pointers b1, b2 and b3 into β s.t. 1 ≤ b1 < b2 <
b3 ≤ z starting with b1 = 1, b2 = 2, b3 = 3. These pointers encode a tuple
(αa1 , αa2 , βb1 , βb2 , βb3). The next tuple is obtained by updating the pointers. If
b3 < z then we increment b3. Otherwise if b2 + 1 < z then we increment b2 and
then set b3 to b2 + 1. Otherwise if b1 + 2 < z then we increment b1 and then set
b2 to b1 + 1 and b3 to b1 + 2. Otherwise if a2 < y then we increment a2 and set
b1 = 1, b2 = 2, b3 = 3. Otherwise if a1 + 1 < y then we increment a1 set a2 to
a1 + 1 and b1 = 1, b2, b3. Otherwise there is no next tuple. It is thus sufficient to
have the arrays α and β as well as 5 pointers to enumerate the tuples originating
from a column in lexicographically increasing order.

For enumerating all tuples originating from the matrix in lexicographically
increasing order we use a min heap containing the current tuple for each col-
umn encoded in pointer form where comparisons between heap elements are
performed using decoded tuples from those pointers.

Let � denote the length of Rj in bases and d the number of alignments in it’s
alignment pile. Concerning space we require the arrays α and β as well as the
5 pointers for each column plus a heap containing a maximum of � pointer sets.
This space usage is in O(�d).
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3 Results

We have implemented both splitting methods. They are freely available as the
programs split agr and split dis in the daccord package (see https://gitlab.com/
german.tischler/daccord). The daccord program (see [2]) in this package was also
used to compute preliminary consensus sequences for the splitting. Read versus
read alignments were computed using DALIGNER (cf. [1]).

We performed two types of performance tests, both of which are based on
simulated reads to ensure we can properly check whether and to what degree
splittings computed are accurate. For the sake of comparison with other state
of the art solutions we compared our results to those computed by WhatsHap
(cf. [4]) for the diploid setting. As far as polyploid phasing is concerned we are
not aware of another practical implementation solving the problem we discuss
in this paper, i.e. de novo detection of variants from long noisy reads only and
subsequently assigning haplotypes/repeat ids to these reads. All tests were run
on 24 core Intel Xeon E5-2680 v3 systems equipped with 256G of RAM.

In the first test we took a 190kb piece of the E. coli genome, duplicated it
k times for k = 1, 2, . . . 7 and spiked in 1% difference between the duplicated
versions and the original. The differences are single bp insertions, deletions and
substitutions with equal probability.

We generated reads of average length 15 kbp to evenly cover the sequences
at depth d = 20. The reads produced have stretches of low average error rate
drawn from a normal distribution with average 15% and standard deviation 3%
as well as stretches of high error rate drawn from a normal distribution with
an average of 40% and standard deviation 3%. The generator uses a simple two
state probabilistic finite state machine to determine whether to stay in a low or
high error region or whether two switch to the other. The probabilities used are
0.9998 to stay in low error mode and 0.995 to stay in high error mode, while we
start in low error mode with a probability of 0.7. Thus the error rate can greatly
vary along a read. Of the errors inserted 80% were insertions, 13.3% deletions and
6.6% substitutions (see [13]). An overview over available read simulators is given
in [14]. None of the published long read simulators (e.g. [15]) met our requirement
of producing even coverage while generating reads following a log normal length
distribution and with a wide range of different error rates a described above (as
it is commonly found in long reads), so we used our own simulator to generate
synthetic reads (available as the longreadgen program in the loresim2 package,
see https://gitlab.com/german.tischler/loresim2). One crucial feature missing
from most simulators is the generation of low quality strechtes inside reads.
Such regions are quite common in real read data and cause partial instead of
complete alignments between reads. Without this feature we think the reads
simulated would be rather unrealistic.

For the splitting we only considered read overlaps of 5 kbp and more to reduce
noise in the underlying statistics. The benchmarking scripts used to produce the
data shown below can be found at https://gitlab.com/german.tischler/daccord
separation benchmarks.

https://gitlab.com/german.tischler/daccord
https://gitlab.com/german.tischler/daccord
https://gitlab.com/german.tischler/loresim2
https://gitlab.com/german.tischler/daccord_separation_benchmarks
https://gitlab.com/german.tischler/daccord_separation_benchmarks
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Table 2. Performance of splitting on 190 kbp stretch of E. coli with 1−7 copies added
at 1% difference to original

Agreement based Disagreement based

Copies Precision Recall F1 t Copies Precision Recall F1 t

1 0.999 0.788 0.881 1.48 1 0.999 0.981 0.990 4.52

2 0.980 0.634 0.770 2.31 2 0.999 0.949 0.973 32.4

3 0.904 0.721 0.802 3.17 3 0.999 0.977 0.988 139

4 0.719 0.829 0.770 4.26 4 0.998 0.983 0.991 411

5 0.443 0.910 0.596 5.96 5 0.998 0.986 0.992 1055

6 0.218 0.957 0.355 8.17 6 0.998 0.986 0.992 2383

7 0.139 0.981 0.244 10.76 7 0.997 0.980 0.989 4784

Table 2 shows the performance of agreement and disagreement based splitting
in this scenario. We provide precision (which fraction of the alignments kept is
true), recall (which fraction of the true alignments is kept) and F1 (harmonic
mean of precision and recall) score measures to quantify the performance of the
read classification methods. The last column provides the average run-time of
the splitting programs in seconds per read. All scores given are rounded to 3
significant decimals. For agreement based splitting the performance values in
the respective tables only include data for such reads where the method is able
to detect variants for at least 0.1% (i.e. 1 in 1000) of the read bases. Reads below
this threshold are marked as unsplit in the output.

While agreement based splitting has good precision for one and two modified
copies, the performance quickly drops to the point where essentially most wrong
alignments are kept. The disagreement based splitting works very well in this
setting. For computing the threshold ht we have provided the correct value for
the number of variants v to the program, as it does not yet support estimating
it from the input data. For the separation of read piles caused by repeats this
parameter could in principle be estimated from the read data using an estimate
of the sequencing depth obtained by inspecting the pairwise alignments and
counting the number of reads aligned to each single base of a read. The ploidy
of a sequenced organism is probably most easily observed by wet lab based
methods. The δ parameter was set to 1%.

While the run time grows essentially linearly with the number of copies for
agreement based splitting, the growth is a lot steeper for the disagreement based
method due to the factor of (dv)5 (where we keep d = 20 constant in our exper-
iments, so the growth is with v5).

As the first test is highly synthetic, we have chosen a somewhat more realistic
scenario for the second one. We have extracted regions containing the genes
FCGR1(A|B|CP), FCGR2(A|B|C) and FCGR3(A|B) plus 100 kbp to the left
and right of these regions from chromosome 1 of the human reference genome
(GRCh38). These regions are highly repetitive with repeating stretches of length
up to 46 kbp with a difference of merely 1% and one repeat of length 26 kbp with
0.4% difference between the copies.
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Table 3. Performance of splitting on FCGR regions of human chromosome 1

Agreement based Disagreement based

Precision Recall F1 t Precision Recall F1 t

0.933 0.824 0.875 1.36 0.925 0.947 0.936 6.03

We generated reads and alignments using the same parameters as for the
other test. Table 3 shows the performance of the splitting approaches we mea-
sured. While the region considered is repetitive in its entirety, we do not have
many cases of stretches appearing more than twice in total, i.e. most repeats
have only two instances. As this is the setting in which agreement based split-
ting mostly works, we see a decent performance for this method in terms of
precision as reflected in the table. In comparison the disagreement based split-
ting, for which we used δ = 1% and v = 2, yields a slightly lower precision value
while the recall value is superior. A closer look reveals that the average difference
between the true sequences we fail to separate (which lead to the false positive
alignments we keep) is about 0.5% which is way below our setting for δ, so the
failure in separation is not surprising. Just reducing the parameter δ below 1%
however does not markedly improve the splitting, as this also greatly increases
noise (disagreement tuples observed although they are not real). Improving this
provides opportunities for additional research.

For the sake of putting our results into perspective relative to other state of
the art software we in the following provide some performance scores reached
by WhatsHap (cf. [4]) on the diploid (like) settings supported by that program.
This concerns the E.coli test with one added modified copy at 1% difference and
the FCGR region test.

WhatsHap requires alignments in the form of a BAM file and a VCF files
containing variant sites as input. To provide these we first computed a corrected
version R̂ for each read R using daccord (see [2]) and then transformed all
alignments (R,Q) with another read Q produced by DALIGNER into alignments
(R̂,Q) and produced a BAM file containing these alignments. The corrected
version R̂ was used to provide a situation similar to the alignment of sequencing
reads to a error free/low error reference sequence as it is common for BAM files.
We then used FreeBayes [16] as suggested by the WhatsHap documentation
to produce a VCF file containing variants. These two files were then used as
input for WhatsHap to first compute a phased VCF file (using WhatsHap’s
phase command) and then a coloured BAM file (using WhatsHap’s hapltotag
command). For score values we considered only such reads R in the coloured
BAM file where the alignment (R̂, R) had been coloured. For those reads we
considered alignments (R̂,Q) as correctly coloured if (R̂,Q) was assigned the
same haplotype as (R̂, R) and (R,Q) is a true overlap or (R̂,Q) was assigned a
different haplotype as (R̂, R) and (R,Q) is not a true overlap.
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Table 4. Performance of WhatsHap colouring on E.coli test and FCGR regions using
FreeBayes variant calls

E.coli FCGR

Precision Recall F1 t Precision Recall F1 t

0.488 0.991 0.654 5.46 0.405 0.993 0.576 7.15

Table 4 shows the performance values achieved. The time given only refers to
the time used by the WhatsHap program, the variant calling by FreeBayes is not
included. In both cases the performance in terms of the precision score is quite
bad, less than half of the alignments retained for a read are true overlaps. This
result left us wondering whether the poor performance is due to inadequate vari-
ant detection by FreeBayes (considering the fact that it is described as a short
read variant detector) or a poor use of the information provided by WhatsHap.
Attempts at different ways to produce a suitable VCF file using standard tools
failed (samtools mpileup crashed on the BAM files provided, GATK Haplotype-
Caller produced essentially empty VCF files). As a last resort we tried converting
the set of variants detected by our agreement based splitting to the VCF format,
which gave us the performance values shown in Table 5. For the E.coli test based
on simple SNP and single base insertion and deletions the colouring by What-
sHap is close to perfect, although it does not quite reach the precision score of
our methods presented in this paper. For the FCGR test based on partly more
complex variations the performance of WhatsHap is still a lot worse than the
new solutions presented in this paper. The times provided are those required
for the WhatsHap runs plus the times required for the respective runs of the
agreement based splitting used for calling the variants.

Table 5. Performance of WhatsHap colouring on E.coli test and FCGR regions using
agreement based variant calling as proposed in this paper

E.coli FCGR

Precision Recall F1 t Precision Recall F1 t

0.998 1 0.999 3.88 0.642 0.944 0.764 4.48

4 Conclusion

We have shown that repeat and haplotype separation in long reads with current
read length and error rates is possible down to a difference of 1% and possibly
less. If our preliminary results extend to more general settings, then this may
improve on the current state of the art of 3% set by Canu. The methods proposed
also work if there are more than two underlying sequence versions. We hope these
new insights can help to significantly improve the assembly of repetitive regions
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in genomes. The disagreement based splitting is very computationally expensive
in its pure and exhaustive form. We are however hopeful that a randomised
approach will yield similar performance values. To this end we will randomly
subsample alignments inside a pile and perform the disagreement based splitting
on such piles. The repeated application of such a subsampling experiment will
improve the splitting similar to the Miller-Rabin randomised primality test.

Acknowledgments. We thank Gene Myers for interesting algorithmical discussions
related to this paper and Shilpa Garg for advice on running WhatsHap.
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Abstract. Recent advances in the methods for reconstruction of can-
cer evolutionary trajectories opened up the prospects of deciphering the
subclonal populations and their evolutionary architectures within can-
cer ecosystems. An important challenge of the cancer evolution studies
is how to connect genetic aberrations in subclones to a clinically inter-
pretable and actionable target in the subclones for individual patients.
In this study, our aim is to develop a novel method for constructing a
model of tumor subclonal progression in terms of cancer hallmark acqui-
sition using multiregional sequencing data. We prepare a subclonal evo-
lutionary tree inferred from variant allele frequencies and estimate path-
way alteration probabilities from large-scale cohort genomic data. We
then construct an evolutionary tree of pathway alterations that takes
into account selectivity of pathway alterations via selectivity score. We
show the effectiveness of our method on a dataset of clear cell renal cell
carcinomas.

Keywords: Cancer evolution · Multiregional sequencing ·
Pathway alteration · Clear cell renal cell carcinomas

1 Scientific Background

Cancer is a heterogeneous genetic disease characterized by dynamic evolution
through acquisition of genomic aberrations. The clonal theory of cancer proposed
by Nowell [1] postulates that acquisition of a mutation in cancer follows natural
selection of the Darwinian model, in which cancer obtains the advantages of
biological fitness under selective pressure.

The development of multiregional sequencing techniques has provided new
perspectives on genetic heterogeneity [2]. According to studies on multiregional
sequencing, spatially distinct regions within the same tumor acquire different sets
of somatic single-nucleotide variants (SSNVs), and this phenomenon is called
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intratumor heterogeneity. Recently, methods for reconstruction of cancer evo-
lutionary structures were extensively studied. Because the cell population of
each region is a mixture of normal and tumor cells, distinct regions are decon-
voluted into cell subpopulations called subclones, and then they are assigned
to tree structures under the constraint that is derived from the infinite site
assumption [3].

Nonetheless, identification of clinically actionable subclone targets for indi-
vidual patients remains problematic. One of the reasons is that resulting sub-
clonal trees are too diverse to interpret with clinical information. In this direc-
tion, Matsui et al. [4] proposed clustering methods for cancer evolutionary trees
based on the tree shapes and interpreting clinical impact of subclonal evolution
via clustering results with clinical information of each tree. Another reason is
the difficulties with identifying the most plausible biological event from the lim-
ited number of SSNVs because of the sequencing depth and low frequencies of
mutations.

With the aim to overcome this problem, we developed a novel method for
inferring a tumor progression model in terms of acquisition of cancer hallmarks
(Fig. 1). Our contributions are as follows: (1) proposing a novel framework for
interpreting the cancer evolutionary tree using pathways and cancer hallmarks
(2) developing the integrative approach to estimate individual each subclone’s
cancer hallmarks by merging multiregional sequencing data and large scale
genomic cohort data. We also demonstrate the effectiveness of our method on
an actual dataset of clear cell renal cell carcinomas (ccRCCs [7]).

2 Materials and Methods

Our method consists of 3 steps: (1) constructing a skeleton of a cancer subclonal
evolutionary tree, (2) estimation of pathway alteration probability and calcula-
tion of selectivity score, and (3) constructing a model of progression of pathway
alterations.

First, we construct an a priori evolutionary tree of the pathway alteration
progression model, called a skeleton, to decompose the cell population into sub-
clones and infer the subclonal evolutionary structures for each patient on the
basis of multiregional variant allele frequencies (VAFs). Second, we estimate the
pathway alteration probability by means of a large cohort dataset to identify
the most likely pathway alterations in the subclones and to calculate selectivity
score, i.e., the strength of the selectivity among the pathway alterations at the
subsequent step. At the last step, we construct the tumor progression model of
pathway alterations based on the skeleton and pathway alteration probabilities
under three assumptions as follows:

(Assumption 1) No pathway alteration occurs twice in the course of cancer
evolution.

(Assumption 2) No pathway alteration is ever lost.
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Fig. 1. Overview of our proposed approach for inferring tumor progression model for
cancer hallmarks to interpret the biological functions of each subclones. The proposed
method consists of 3 steps: (1) constructing a cancer subclonal evolutionary trees for
individuals by multiregional sequencing data, (2) estimating pathway alteration prob-
abilities and the strength of selective pressure between pathway alterations, and (3)
constructing a model of progression of pathway alterations with cancer hallmarks.

Assumptions 1 and 2 mean that if a given pathway alteration occurs in any
subclone, it happens exactly once in the course of tumor progression. We recon-
struct the progression model from ancestral subclones, and we never use the
pathway alterations in those subclones for their descendant subclones. In addi-
tion to the 2 assumptions, we assume selective pressures between the pathway
alterations.

(Assumption 3) There is selective pressure between the pathway alterations.

We model this system on the basis of the notion of conditional probability,
which can be estimated from large-scale cohort datasets. Using the 3 assump-
tions, we identify a unique pathway alteration from the multiple candidates of
pathway alterations with the strongest selectivity. In the following section, we
describe our method in more detail.

2.1 Constructing a Skeleton of the Cancer Subclonal Evolutionary
Tree

This skeleton represents the subclonal evolutionary tree based on VAFs obtained
by bulk sequencing from a single patient with multiple regions. The VAFs are
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approximately proportional to the sizes of cell populations with the set of SSNVs;
however, in the settings of bulk data, each region may be a mixture of normal and
tumor cells and may require deconvoluting the cell populations into subpopula-
tions. The identified subclones are assigned to tree structures via 2 assumptions:
(i) a mutation cannot recur in the course of cancer evolution, and (ii) no mutation
can be lost [6]. Several approaches are implemented to deal with the problem.
Using one of the algorithms, LICHeE [3], we construct the skeleton from the
VAFs for each patient.

Let T 0
i = (Vi, Ei) be a skeleton of patient i; i = 1, 2, . . . , n with a set of

vertices Vi = {vij ; i = 1, 2, . . . , n, j = 1, 2, . . . , ηi} and edges Ei = {eik; i =
1, 2, . . . , p, k = 1, 2, . . . νi}, where vertices and edges represent subclones with
a set of SSNVs and evolutionary relations, respectively. Without a loss of
generality, vi,j=1 always represents normal cells. Each vertex has a set of
labels that can be obtained from the mapping L : vi,j �→ Li,j , e.g., Li,j =
{SSNV1, SSNV2, SSNV3}.

2.2 Estimation of Pathway Alteration Probability and Selectivity
Score

To carry out phenotypic characterization of each subclone, we need to identify
the most closely related pathway alterations for subclones. There are mainly
2 approaches to detection of pathway alterations: one is knowledge-based gene
enrichment analysis such as Fisher’s exact test, and the other is a de novo–
oriented approach, where the alteration patterns are mapped to large-scale
protein networks and identify subnetworks as a driver pathway with cost func-
tions such as a tendency for mutual exclusivity. In this study, we focus on the
knowledge-based approach because the biological validation for de novo path-
ways is usually difficult to perform quickly.

Using the large-scale cohort data, because of the nature of the limitation
on sample size in experimental data, we estimate the pathway alteration prob-
ability using SLAPenrich [5], which is a state-of-the-art method for identifying
pathway alteration and provides background pathway alteration probabilities
and mutual exclusivity. Let P denote the pathway list, and then the main
output of SLAPenrich is the P -value pξ; ξ = 1, 2, . . . , |P | for each pathway
ξ that represents the significance of the enrichment of mutations. Option-
ally, we can obtain pathway alteration probabilities for each sample, that is,
ρξ,ζ = Pr(Xξ,ζ ≥ 1); ξ = 1, 2, . . . , |P |, ζ = 1, 2, . . . , N where Xξ,ζ represents the
number of SSNVs that are included in pathway ξ in sample ζ.

We define binary variable yξ,j if ρξ,ζ > t then yξ,ζ = 1 otherwise yξ,ζ = 0
with a given threshold 0 ≤ t ≤ 1. We evaluate the selectivity score, Sα→β ;α, β =
1, 2, . . . , |P |, α �= β, defined as

Sk→l = Pr(Yα|Yβ = 1) − Pr(Yα|Yβ = 0) (1)
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where Yα represents a variable denoting the alteration status of pathway α. We
empirically estimate Sα→β as follows:

S̃α→β =

∑N
ζ=1 yα,ζ|yβ,ζ=1
∑N

ζ=1 yβ,ζ

−
∑N

ζ=1 yα,ζ|yβ,ζ=0
∑N

ζ=1(1 − yβ,ζ)
. (2)

We consider zero or negative values to represent a no selectivity, i.e., S̃α→β =
0 if S̃α→β ≤ 0.

2.3 Constructing a Model of Progression of Pathway Alterations

Now we are ready to construct the subclonal evolutionary tree for pathway
alterations. Given a subclone, we first scan the SSNVs to identify candidate
pathway alterations. If at least 1 SSNV is included in a pathway, this situation
is called a candidate pathway alteration. Suppose Pξ; ξ = 1, 2, . . . , |P | is the genes
included in pathway ξ and Zi,j,ξ is the candidate pathway alteration status of
subclone j in patient i where Zi,j,ξ = 1 if L(vi,j) ⊆ Pξ; i = 1, 2, . . . , n, j =
1, 2, . . . , ηi otherwise Zi,j,ξ = 0. In case of Zi,j,ξ = 0 for all ξ, we regard the
subclone as a nonfunctional one and remove node vi,j and the corresponding
edges from skeleton T 0

i .
By means of candidate pathway alterations Zi,j,ξ, we identify the unique

pathway alteration. In the event that an ancestral subclone consists of normal
cells, we select a pathway with the smallest P -value, i.e.,

argminξ pξ for Zi,j,ξ = 1 and ξ /∈ Q (3)

Otherwise, we select the pathway with the highest selectivity score, i.e.,

argmaxβ Sα→β for Zi,j,ξ = 1 and ξ /∈ Q (4)

where α is the pathway alteration of the ancestral subclone, and Q is a set
of pathway alterations that have already appeared in the ancestral subclones.
Assumptions (1) and (2) are ensured by the condition ξ /∈ Q. If there is no
corresponding pathway alteration because all the candidate pathway alterations
have already taken place in the ancestral subclones, then we remove the subclone
as a nonfunctional one.

2.4 The Dataset

A dataset from a study on ccRCCs [7] was used for the analysis. Whole-exome
multiregional bulk sequencing was performed on 8 individuals with clinical infor-
mation, and 587 out of 602 mutations remained after filtering of mutations with
depth less than 100×.

The estimation of pathway alteration probabilities followed SLAPenrich pro-
cedures described in [5]. The 417 KIRC (corresponding to ccRCC) samples from
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The Cancer Genome Atlas (TCGA) and International Cancer Genome Consor-
tium (ICGC) and high-confidence variants identified in another study, [8], were
used for estimation of the pathway alteration probabilities. Pathway gene sets
were downloaded from the Pathway Commons data portal (v8, 2016/04), and
gene sets containing fewer than 4 or more than 1,000 genes were discarded. After
merging the gene sets that correspond to the same pathway across multiple data
sources or have a large overlap defined as Jaccard index ≥ 0.8, we obtained 1,911
pathway gene sets. Cancer hallmarks were assigned to 456 pathways [5].

3 Results

We reconstructed the skeletons from VAFs by means of LICHeE using the same
parameters in their experimental settings that are described in [3], and even-
tually, 8 skeletons were obtained. Next, we estimated the pathway alteration
probabilities based on SLAPenrich and obtained P -values for 209 pathways and
pathway alteration probabilities for 417 patients. We evaluated the selectivity
score with the threshold t = 0.1.

We show the results of the constructed models of ccRCC progression in terms
of cancer hallmark acquisition in Fig. 2. The complexity of cancer evolutionary
trees were reduced because several SSNVs in subclones plays the similar roles in
terms of the biological pathway. Specifically, EV003 were reduced to only the two
pathways alteration, which means most of SSNVs in the subclones are involved
in the TP53 related pathway. In this way, our approach could summarize the
original cancer evolutionary trees and give biological interpretation via mapping
SSNVs to the biological pathways.

Table 1. Counts of subclones (patients) with each cancer hallmark. For example, “10
(7)” in Sustaining Proliferative Signaling means that 10 subclones have the cancer
hallmark, and it was observed in 7 patients. Columns “trunk” and “private” list the
numbers of cancer hallmarks in the common ancestral subclone and in subclones with-
out any descendants, respectively.

Cancer hallmarks Total number Trunk Private Other

Sustaining Proliferative Signaling 10 (7) 1 (1) 5 (5) 4 (1)

Evading Growth Suppressors 6 (4) 0 (0) 2 (2) 4 (2)

Avoiding Immune Destruction 1 (1) 0 (0) 1 (1) 0 (0)

Enabling Replicative Immortality 2 (2) 0 (0) 1 (1) 1 (1)

Tumor-Promoting Inflammation 2 (2) 0 (0) 2 (2) 0 (0)

Activating Invasion and Metastasis 7 (5) 0 (0) 6 (5) 1 (0)

Inducing Angiogenesis 12 (6) 4 (4) 6 (4) 2 (1)

Genome Instability and Mutation 4 (3) 2 (2) 2 (1) 0 (1)

Resisting Cell Death 4 (4) 0 (0) 3 (3) 1 (1)

Deregulating Cellular Energetics 3 (3) 0 (0) 0 (0) 3 (3)
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Fig. 2. ccRCC progression models of acquisition of cancer hallmarks (left side in the
panels) with skeletons from LICHeE (right side in the panels and the figure is the
same in [3]). The circle and square shapes indicate the normal cell population and
subclone population in the proposed progression model, respectively. Cancer hallmarks
are represented as colors shown in the top left panel. Pathway names are described
below the box.
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Next, we count the cancer hallmarks observed in the common ancestral sub-
clones (trunk) and subclones without any descendants (private) as shown in
Table 1.

The patterns of cancer hallmark acquisition still seemed diverse among
patients; however, there were several patterns related to phenotypes when we
focused on the trunk and private subsets. In the trunk subset, the “Inducing
Angiogenesis” (4 subclones were counted) was the most frequently observed
cancer hallmark that was due to pathway alterations caused by VHL mutations.
The second most frequently observed cancer hallmark was “Genome Instabil-
ity and Mutation” (2) caused by transcription factor–related aberrations such
as the FOXM1 Transcription Factor Network. In the private subset, Sustaining
Proliferative Signaling (5) and Activating Invasion and Metastasis (6) were the
most common events among the patients (5 out of 8 patients). In particular,
untreated patients (RMH004, RMH008, and RK26) showed Activating Invasion
and Metastasis (6).

We also determined the frequency of evolutionary paths of cancer hallmarks
up to 2 descendants. The most frequent path is “Normal - Inducing Angio-
genesis - Deregulating Cellular Energetics” (3) and the second most frequent
paths are “Normal - Inducing Angiogenesis - Inducing Angiogenesis” (2), “Nor-
mal - Genome Instability and Mutation - Inducing Angiogenesis” (2), “Normal
- Genome Instability and Mutation - Activating Invasion and Metastasis” (2),
and “Normal - Genome Instability and Mutation - Evading Growth Suppres-
sors” (2). These results give us biological and clinical implications beyond the
SSNVs.

4 Conclusion

We developed a method for constructing personalized tumor progression models
in terms of cancer hallmark acquisition and demonstrated the effectiveness of this
model in terms of interpreting cancer evolutionary trees by means of an actual
ccRCC dataset. In the example of ccRCC, identification of druggable target
subclones that evolved after pathway alteration (HIF activation with a VHL
mutation) is a clinically important problem. Our model has some implications.
A cancer hallmark can help us to reduce complexity of cancer development and
to characterize the phenotypes of subclones. Our method effectively incorporates
cancer hallmarks into the current state-of-the-art tree reconstruction method of
cancer subclonal evolution.

The three assumptions that we used to construct the model should be further
examined in the context of cancer development. Our assumptions come from that
an one time alteration of each pathway is enough for cancer establishment and
development and a pathway alteration may trigger other biologically related
pathway alterations. As a future challenge, we will examine our approach via
exploring how the identified genomic level subclonal pathway alterations such
as the common pathway alterations among the subclones, relate to downstream
dysregulations, e.g., transcriptomic/proteomic level abnormality.
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Abstract. The regulation of transcription factor activity dynamically
changes across cellular conditions and disease subtypes. The identifica-
tion of biological modulators contributing to context-specific gene regula-
tion is one of the challenging tasks in systems biology, which is necessary
to understand and control cellular responses across different genetic back-
grounds and environmental conditions. Previous approaches for identify-
ing biological modulators from gene expression data were restricted to the
capturing of a particular type of a three-way dependency among a reg-
ulator, its target gene, and a modulator; these methods cannot describe
the complex regulation structure, such as when multiple regulators, their
target genes, and modulators are functionally related. Here, we propose
a statistical method for identifying biological modulators by capturing
multivariate local dependencies, based on energy statistics, which is a
class of statistics based on distances. Subsequently, our method assigns
a measure of statistical significance to each candidate modulator through
a permutation test. We compared our approach with that of a leading
competitor for identifying modulators, and illustrated its performance
through both simulations and real data analysis. Our method, entitled
genome-wide identification of modulators using local energy statistical
test (GIMLET), is implemented with R (≥3.2.2) and is available from
github (https://github.com/tshimam/GIMLET).
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1 Introduction

The regulation of gene expression is a process in which the expression of a
particular gene can be either activated or repressed. Transcription factors (TFs)
contribute greatly to the process of gene regulation by binding to a specific DNA
sequence in the promoter regions of their target genes and controlling their tran-
scription. The responsiveness of a target gene expression to a TF typically varies
owing to genetic variation or a change in the cellular environment. This modu-
lation in gene-specific responsiveness is often caused by a specific factor, called a
modulator, at different levels, including the transcriptional, post-transcriptional
and post-translational levels.

In the last decade, large international consortia, such as The Cancer Genome
Atlas (TCGA) [1] and the International Cancer Genome Consortium (ICGC)
[2], have generated large-scale gene expression profiles of different tumor types
and catalogued their genetic alterations (recurrent mutations and copy number
variations). Genome-wide association studies (GWAS) have also identified tens of
thousands of human disease-associated variants and millions of single nucleotide
polymorphisms [3]. However, it remains unknown if and in what way many
genetic alterations and variants interact with physical and functional interactions
within cellular networks.

The identification of genetic alterations and variations that function as bio-
logical modulators and contribute to gene expression control is one of the chal-
lenging tasks in systems biology. Recently, sophisticated algorithms have been
developed for this task, which has successful applications in many areas [4–9].
For example, MINDy [4] formulated the problem of identifying modulators as
a problem of testing whether the expressions of a univariate TF and its tar-
get gene, denoted by T and G, are independent each other, conditioned on the
expression levels of an univariate modulator denoted by M in the framework of
conditional mutual information. GEM [5] used a linear regression model with the
effects of interaction between T and M to describe the relationships between T
and G modulated by M . MIMOSA [6] considered a mixture model of T and G
from two different fractions based on M . Note that these methods were designed
to capture a particular type of three-way dependency, where T , G, and M are
univariate random variables. Therefore, they cannot capture multivariate depen-
dencies where sets of random variables are associated with each other. Currently,
no systematic mathematical framework exists for identifying biological modula-
tors of complex gene regulation, such as combinatorial regulation, where multiple
TFs and modulators are functionally related.

In this study, we present a novel method, genome-wide identification of mod-
ulators using local energy statistical test (GIMLET), to overcome the challenges
outlined above. GIMLET includes the following contributions.

1. GIMLET is mainly based on dependence coefficients from energy statistics
for modeling the relationships between genes. These types of coefficients are
a measure of the statistical dependence between two random variables or two
random vectors of arbitrary, not necessarily equal dimension. This enables the
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correlation of the expression of sets of any size for TFs, their target genes,
and modulators.

2. We provide a new dependence coefficient, called local distance correlation, to
compare the difference in distance correlation at low and high values of given
modulators, allowing the identification of all types of local dependencies, such
as nonmonotone and nonlinear relationships, between TFs and their target
genes at the fixed point of modulators.

3. We develop a permutation-based approach to evaluate whether local distance
correlation varies with modulators, which enables the discovery of modula-
tors involved in complex regulatory relationships, including synergistic and
cooperative regulation, from a statistical point of view.

We describe our proposed framework and algorithm in Sect. 2. We present
the efficiency of GIMLET using synthetic and real data in Sects. 3 and 4.

2 GIMLET Methodology

2.1 Local Distance Correlation

The distance correlation [10,11] was introduced as a measurement of dependence
between two random vectors X ∈ R

p and Y ∈ R
q. It is based on the concept

of distance covariance between X and Y which measures the distance between
the joint characteristic function of (X, Y ) and the product of the marginal
characteristic functions. This method is extremely general in that it is applicable
to random vectors of arbitrary and not necessarily equal dimension and only
involves Euclidean pairwise distance. The remarkable properties of the distance
correlation, denoted by R(X,Y ), include 0 ≤ R(X,Y ) ≤ 1 and R(X,Y ) = 0 if
and only if X and Y are independent.

We introduce a local estimator of the distance correlation evaluated at
another random vector Z = zα ∈ R

r as a local measurement of the dependence
between X and Y conditioning on Z = zα based on the observed data. We con-
sider a collection {(xk,yk,zk) : k = 1, . . . , n} of n i.i.d. observations for random
vectors X, Y , and Z. Let us denote wkα = Kh(zk,zα) satisfying

∑n
k=1 wkα = 1

as the new weight function based on the distance between two sample vectors
zk and zα where Kh is a specified kernel function with a bandwidth h.

Based on the definition of the Nadaraya-Watson estimator [12,13] as a
weighted averaging method, we define a local estimator of distance covariance
conditioning on Z = zα, using the weighted Euclidean distance as

V2
n(X,Y |Z = zα) = S1(X,Y |Z = zα) + S2(X,Y |Z = zα) − 2S3(X,Y |Z = zα),

where

S1(X,Y |Z = zα) =
n∑

k,l=1

wkαwlα|xk − xl||yk − yl|,
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S2(X,Y |Z = zα) =
n∑

k,l=1

wkαwlα|xk − xl|
n∑

k,l=1

wkαwlα|yk − yl|,

S3(X,Y |Z = zα) =
n∑

k=1

wkα

n∑

l,m=1

wlαwmα|xk − xl||yk − ym|.

Each sample of the neighborhood in the α-th sample is weighted according to
its weighted Euclidean distance from Z = zα. Points close to Z = zα have
a large weight, and points far from Z = zα have a small weight. The ker-
nel function Kh used in all of our examples is the Gaussian kernel function
Kh(zk,zα) = exp(−|zk − zα|2/h) where h is a bandwidth parameter that
controls the smoothness of the fit. For a specific point Z = zα, the nearest-
neighbor bandwidth h is determined such that the local neighborhood contains
the q = �nδ� closest samples to the α-th sample in the Euclidean distance of Z,
where δ ∈ (0, 1) is a tuning parameter that indicates the proportion of neighbors.
Therefore, each local estimator is inferred with q observations that fall within
the sphere Bδ(zα), centered at the α-th sample. We use a varying width param-
eter h that reduces the problem of data sparsity by increasing the radius in the
regions with fewer observations.

The empirical local estimator of the distance correlation, called local distance
correlation, Rn(X,Y |Z = zα) for given Z = zα is then defined by the equation

Rn(X,Y |Z = zα) =
V2

n(X,Y |Z = zα)
√V2

n(X,X|Z = zα)V2
n(Y, Y |Z = zα)

(1)

if both V2
n(X,X|Z = zα) and V2

n(Y, Y |Z = zα) are strictly positive, and it is
equal to zero otherwise.

2.2 Statistical Hypothesis Test for Identifying Modulators

In the statistical hypothesis testing for identifying modulators, the inference
questions arise naturally such as whether the local dependence between X and
Y are really varying with Z. This question can be formulated the hypothesis:

H0 : Rn(X,Y |Z) = c, (2)

where Rn(X,Y |Z) is a function of Z and c is a constant.
For calculating the p-values of the local dependence between X and Y for

each Z, we apply a permutation-based approach similar to the one used by
[4]. Under the assumption that Rn(X,Y |Z) is a monotonic function of Z, we
calculate the test statistic:

ΔRn(X,Y |Z) =

∣
∣
∣
∣
∣

1
|UZ |

∑

k∈UZ

R(X,Y |Z = zk) − 1
|LZ |

∑

k∈LZ

R(X,Y |Z = zk)

∣
∣
∣
∣
∣
,

(3)
where UZ and LZ are the index sets of the upper and lower points of Z, respec-
tively. To assess the statistical significance of ΔRn(X,Y |Z), we generate a series
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of null hypotheses, and calculate the empirical p-value, using the following per-
mutation procedures:

1. Permute the values of Z for all samples.
2. Re-calculate the test statistics using (3). Denote the null statistic of the l-th

permutation by ΔR0
n(l).

3. Repeat steps 1–2 B times and calculate the empirical p-value for Z:

pZ =
1
B

B∑

l=1

I(ΔRn(X,Y |Z) ≤ ΔR0
n(l)), (4)

where the indicator function I(A) equals one when the condition A is true
and it equals zero otherwise.

Note that this empirical method directly couples both the minimal obtain-
able p-value and the resolution of the p-value to the number of permutations
B. Therefore, it requires a very large number of permutations to calculate the
p-values when we want to accurately estimate small p-values. In order to com-
pute more accurate p-values, we use a semi-parametric approach based on a tail
approximation [14,15]. The corrected empirical p-value p̃Z , using the distribution
tail approximation, is given by

p̃Z =

{
pZ if ΔRn(X,Y |Z) ≤ ΔR̃0

n

exp
[
−λ(ΔRn(X,Y |Z) − ΔR̃0

n)
]

otherwise
, (5)

where λ is a scale parameter, and ΔR̃0
n is a threshold that we set to the 99-

th percentile of null distributions. The parameter λ is estimated by the null
statistics satisfying the condition ΔR0

n > ΔR̃0
n.

3 Synthetic Data Results

We generated synthetic data and evaluated the performance of our method in
order to gain insight into the statistical power and type I error rate control in
identifying modulators, based on the hypothesis H0 : Rn(X,Y |Z) = c ↔ H1 :
Rn(X,Y |Z) �= c.

A simulation study was conducted as follows. An i.i.d. sample of (X,Y,Z) was
generated using the endogenous switching regression model under the following
three settings:

M1 : Y = μ(X,Z) + σ(Z)ε,
M2 : Y = μ(X,Z) + σ(Z1Z2)ε,
M3 : Y = μ(X1X2, Z) + σ(Z)ε,

with

μ(X1X2, Z) =
{

fl(X1X2) if Z > θ1
0 otherwise , and σ(Z) =

{
γ1 if Z > θ2
γ2 otherwise ,
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where X,X1,X2, Z, Z1, Z2 ∼ U [0, 1], ε ∼ N(0, 1), μ and σ are the conditional
mean and variance of Y depending on Z, and fl is a function that determines a
functional relationship between X and Y .

For a function fl(X), we considered the following eight functional relation-
ships:

F1 (Line) : f1(X) = X − 1/2,
F2 (Quadratic) : f2(X) = 4(X − 1/2)2 − 1/2,
F3 (Cubic) : f3(X) = 80(X − 1/3)3 − 12(X − 1/3) − 7,
F4 (Sinusoid, 2 periods) : f4(X) = sin(4πX),
F5 (Sinusoid, 8 periods) : f5(X) = sin(16πX),
F6 (x1/4) : f6(X) = X1/4 − 1/2,

F7 (Circle) : f7(X) = (2W − 1)
√

1 − (2X − 1)2,
F8 (Step) : f8(X) = I(X > 1/2) − 1/2,

(6)

where W ∼ Bern(0.5). These functions were originally used in [16] to assess the
statistical power against independence.

We set θ1 and θ2 to be 0.25 and 0.75, respectively, and γ1 and γ2 as follows:

γ1 =
{

1/6, if fl(X) = f1(X) or fl(X) = f3(X)
1/2, otherwise ,

γ2 =
{

1, if fl(X) = f1(X) or fl(X) = f3(X)
3, otherwise . (7)

Scatter plots of the data obtained from these eight relationships are shown in
Fig. 1.

The first setting, M1, was designed to find modulators in the traditional
framework for identifying modulators [4], where the expression value of a mod-
ulator Z ∈ R influences the dependence between the expression values of a TF
X ∈ R and its target gene Y ∈ R. The second and third settings, M2 and M3,
were aimed at finding the modulators in the new conceptual framework investi-
gated in this study: M2 was intended for the combinatorial modulation, where
the expressions of two modulators Z = (Z1, Z2)′ ∈ R

2 influence the dependency
between a TF X ∈ R and its target gene Y ∈ R. M3 was intended for combi-
natorial regulation, where the expression of a modulator Z ∈ R influences the
dependency between two TFs X = (X1,X2)′ ∈ R

2 and their target gene Y ∈ R,
and both X1 and X2 are required for Y .

The identification of modulators using our method (GIMLET) was assessed
by comparing it with MINDy [4], one of the most widely used methods for this
purpose. We note that MINDy cannot be directly applied to the identification
of modulators under the settings M2 and M3, because MINDy is not designed
for combinatorial modulation and regulation. In these simulations, all possible
triplets were tested separately using MINDy, and the statistical significance was
evaluated by using Fisher’s method, which is widely used to combine p-values. A
hypothesis testing problem for identifying modulators with varying sample sizes
(n = 100, 200, 500) was simulated with 1,000 datasets generated for each of the
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Fig. 1. Sample plots of the eight simulated relationships. Dark gray dots indicate sam-
ples with Z > 0.75, whereas light gray dots indicate samples with Z ≤ 0.75.
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above three settings. All tests were performed at the significance level α = 0.05.
The statistical power was estimated by the fraction of test statistics that were at
least as large as the 95th percentile of the null distribution. The null distribution
was calculated by 1, 000 permutations, as illustrated in Sect. 2. The type I error
rate was estimated by calculating the power from data generated under the null
hypothesis H0 : r(Z) = c, which can be obtained by modifying the simulations
where the random effect is set to be independent of Z. Theoretically, the type I
error rate of the test should be equal to the significance level α = 0.05.

Table 1. Statistical power of GIMLET and MINDy using synthetic data with different
sample sizes (n = 100, 200, 500) for eight relationships (linear, quadratic, cubic, sine
period 1/2, sine period 1/8, x1/4, circle, and step), under three different settings (M1,
M2, and M3). The average of the p-values below the significant level α = 0.05 were
calculated through 1,000 simulations.

n Relationship Simulation model

M1 M2 M3

GIMLET MINDy GIMLET MINDy GIMLET MINDy

100 Line 0.895 0.576 0.621 0.090 0.652 0.141

Quadratic 0.536 0.307 0.219 0.062 0.663 0.140

Cubic 0.506 0.158 0.176 0.047 0.083 0.015

Sine period 1/2 0.345 0.271 0.164 0.065 0.141 0.041

Sine period 1/8 0.058 0.018 0.072 0.038 0.068 0.041

x1/4 0.750 0.314 0.241 0.055 0.708 0.200

Circle 0.053 0.134 0.056 0.044 0.173 0.134

Step 0.880 0.554 0.545 0.089 0.364 0.041

200 Line 0.995 0.939 0.913 0.121 0.930 0.315

Quadratic 0.861 0.780 0.480 0.081 0.935 0.353

Cubic 0.767 0.520 0.334 0.039 0.235 0.025

Sine period 1/2 0.679 0.463 0.336 0.061 0.297 0.040

Sine period 1/8 0.078 0.013 0.105 0.027 0.123 0.019

x1/4 0.939 0.693 0.474 0.043 0.949 0.405

Circle 0.128 0.342 0.078 0.019 0.420 0.250

Step 0.994 0.793 0.866 0.096 0.705 0.087

500 Line 1.000 1.000 1.000 0.208 1.000 0.761

Quadratic 0.995 1.000 0.885 0.090 1.000 0.822

Cubic 0.981 0.979 0.717 0.030 0.559 0.024

Sine period 1/2 0.934 0.997 0.759 0.087 0.709 0.067

Sine period 1/8 0.183 0.008 0.175 0.004 0.289 0.017

x1/4 1.000 0.996 0.839 0.035 1.000 0.850

Circle 0.453 0.905 0.172 0.028 0.916 0.650

Step 1.000 0.998 0.997 0.143 0.965 0.202
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Table 1 shows the power calculated for eight different relationships with a
varying sample sizes of 100, 200, and 500. Although both of the tested methods
have low power in detecting modulators from a small sample size (n = 100), their
power increases with the sample size. Note that GIMLET has higher power than
MINDy in all relationships, except for the circle. Both GIMLET and MINDy
have low chances of identifying modulators in the high-frequency sine relation-
ship. GIMLET was shown to outperform MINDy, especially in the settings M2

and M3, because MINDy is not designed as a multivariate dependence measure
for identifying modulators. Table 2 shows the type I error rates for the eight

Table 2. Type I error rate of GIMLET and MINDy, using synthetic data with different
sample sizes (n = 100, 200, 500), for eight relationships (linear, quadratic, cubic, sine
period 1/2, sine period 1/8, x1/4, circle, and step), under three different settings (M1,
M2, and M3). The type I error rate of a test should be equal to the significance level
α = 0.05.

n Relationship Simulation model

M1 M2 M3

GIMLET MINDy GIMLET MINDy GIMLET MINDy

100 Line 0.047 0.042 0.045 0.071 0.057 0.061

Quadratic 0.041 0.029 0.052 0.076 0.064 0.063

Cubic 0.050 0.036 0.051 0.062 0.062 0.051

Sine period 1/2 0.038 0.037 0.058 0.062 0.053 0.053

Sine period 1/8 0.045 0.015 0.041 0.051 0.057 0.040

x1/4 0.046 0.023 0.042 0.061 0.055 0.041

Circle 0.039 0.031 0.056 0.055 0.049 0.056

Step 0.053 0.049 0.048 0.077 0.054 0.056

200 Line 0.047 0.035 0.058 0.066 0.058 0.034

Quadratic 0.035 0.016 0.052 0.059 0.037 0.044

Cubic 0.045 0.021 0.048 0.046 0.043 0.027

Sine period 1/2 0.062 0.021 0.034 0.047 0.043 0.030

Sine period 1/8 0.049 0.009 0.045 0.030 0.039 0.026

x1/4 0.049 0.030 0.059 0.056 0.059 0.041

Circle 0.059 0.017 0.048 0.056 0.046 0.035

Step 0.046 0.028 0.063 0.058 0.055 0.028

500 Line 0.047 0.021 0.041 0.030 0.040 0.012

Quadratic 0.051 0.017 0.053 0.023 0.046 0.012

Cubic 0.046 0.010 0.048 0.022 0.047 0.007

Sine period 1/2 0.060 0.010 0.053 0.016 0.030 0.005

Sine period 1/8 0.053 0.007 0.053 0.004 0.045 0.006

x1/4 0.045 0.018 0.045 0.024 0.040 0.013

Circle 0.056 0.004 0.049 0.021 0.053 0.010

Step 0.046 0.012 0.044 0.023 0.047 0.012
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different relationships with varying sample sizes of 100, 200, and 500. The type
I error rates are quite close to the chosen α level for all the tests, demonstrat-
ing that GIMLET shows better type I error rate control than MINDy, in this
scenario.

4 Results with Real Data

We first sought to identify the genetic alterations that modulate the strength of
the functional connection between HIF1A and the expression of its target genes
in pan-kidney cohort in TCGA project [1]. The transcription factor HIF1A is a
master transcriptional regulator of cellular and systemic homeostatic response
to hypoxia. HIF1A activates the transcription of genes that are involved in
crucial aspects of cancer biology, including angiogenesis, cell survival, glucose
metabolism and invasion, and is implicated in the development of clear cell renal
clear cell carcinoma (ccRCC). We examined mRNA expression profiles of 536
ccRCC and 357 non-ccRCC (papillary RCC and chromophobe RCC) patients,
somatic mutation profiles of 436 ccRCC and 348 non-ccRCC patients, and copy
number profiles of 528 ccRCC and 354 non-ccRCC patients, which can be down-
loaded from the Broad GDAC Firehose website [17]. We used 90 literature-
validated target genes of HIF1A from the Ingenuity Knowledge Base [18] and
calculated the factor scores for each patient by performing maximum-likelihood
single factor analysis on the expression data matrix of these genes. In this exam-
ple, we considered the factor score as the unobserved activity of HIF1A at the
protein level and used it as Y . As candidates of Z, we first tested the somatic
mutation of 85 genes, which were detected in more than 50 patients by genomic
analyses of the pan-kidney cohort. We next considered the copy-number alter-
ations of 41 chromosomal arms as candidates of Z. For this analysis, we expected
to find an alteration of von Hippel-Lindau (VHL) tumor suppressor gene, which
leads to overexpression of HIF1A and is a critical event in the pathogenesis of
most ccRCC [19].

The modulator analysis of GIMLET yields five significantly associated gene
mutations and genetic alterations modulating HIF1A activity with q-value < 0.10
(Table 3). Indeed, GIMLET identified VHL as the most significantly associated

Table 3. Five significantly associated gene mutations and genetic alterations modu-
lating HIF1A activity.

Modulator Type q-value ldcor (no mut/alt) ldcor (mut/alt)

VHL Mutation 0.001 0.24 0.49

3p Deletion 0.001 0.23 0.44

20q Amplification 0.001 0.42 0.20

20p Amplification 0.002 0.42 0.20

PBRM1 Mutation 0.006 0.27 0.51
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gene mutation. Although PBRM1, identified as the second-most significantly
associated gene mutation, is not reported to directly modulate HIF1A activity,
this result remains significant because almost all PBRM1 mutant cases also have
dysregulation of the hypoxia signaling pathway [20] and it is likely that PBRM1
and VHL cooperate in kidney carcinogenesis, which leads to the overexpression
of hypoxia-inducible HIF1A. The analysis also yields three regions significantly
modulating HIF1A activity with a q-value < 0.10. Chromosome 3p deletions are
observed in approximately 90% of ccRCC, which harbors VHL and tumor sup-
pressor genes [21].

We next examined drug-treated gene expression profiles from Broad Insti-
tute The Library of Integrated Cellular Signatures (LINCS) Center for Tran-
scriptomics [22]. We sought to use these data to identify drugs that inhibit the
strength of the functional connection between FOXM1 and CENPF which are
master regulators of prostate cancer malignancy [23] and the expression of their
target genes. A total of perturbational gene expression profiles of 22,268 probes
for 6,684 experiments treated with 271 compounds after 24 h under different
doses (0.04, 0.12, 0.37, 1.11, 3.33, and 10 µm) in the two prostate cancer cell
lines, PC3 and LNCaP, were downloaded from the LINCS L1000 dataset [22].
The expression values for each profile were normalized by robust z-scores relative
to the control (plate population) and summarized using the median across repli-
cates. If there are multiple probes that correspond to the same gene, the probe
with the highest variance across all samples was selected as a single representa-
tive probe. Finally, the expression matrix data of 12,716 genes and 1,976 samples
were used for further analysis. We used the expression of FOXM1 and CENPF
as X and their unobserved activity as Y which was defined using maximum-
likelihood single factor analysis on the expression data matrix for the 173 and
55 literature-validated targets of FOXM1 and CENPF, respectively, from the
Ingenuity Knowledge Base [18]. The drug target genes for each compound under
a given dose level were defined as differentially expressed genes, which were
significantly lower in the drug-treated cell lines than in the vehicle-treated cell
lines using a one-tailed t-test (p-value < 0.001). As candidates of Z, the drug-
perturbational activity for each sample under each of 1,850 different pertubagens
was then estimated using the enrichment scores (maxmean statistics) of these
drug target gene sets for gene set analysis [24]. We applied GIMLET to identify
functional pertubagens modulating FOXM1 and CENPF activity.

The analysis yields 13 pertubagens that significantly inhibit the regulation of
FOXM1 and CENPF with a q-value < 10−7 (Table 4). Indeed, these pertubagens
support the inhibition of tumor progression in human prostate cancer by several
resent studies. For example, Vorinostat known as suberanilohydroxamic acid is a
member of a larger class of compounds that inhibit histone deacetylases (HDAC)
[25]. A previous study has also shown that Vorinostat may inhibit tumor growth
by both oral and parenteral administration in prostate cancer [26]. Withaferin
A, a major bioactive component of the Indian herb Withania somnifera, induces
cell death and inhibits tumor growth in human prostate cancer [27]. The activa-
tion of the PI3K-AKT-mTOR pathway is extremely common, if not universal,
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Table 4. Thirteen significantly associated modulators (pertubagens) modulating
FOXM1 and CENPF activity.

Modulator Dose Cell line Target − log10(q-value)

Vorinostat 10µm PC3 HDAC1 9.91

Withaferin A 3.33µm PC3 MMP2 9.63

Dasatinib 0.37µm PC3 ABL1 9.02

Dasatinib 0.12µm PC3 ABL1 8.38

JW-7-24-1 10µm PC3 LCK 8.38

OSI-027 10µm PC3 mTOR 8.38

Radicicol 10µm PC3 HSP90 8.38

PHA-793887 3.33µm LNCaP CDK2 8.30

WYE-125132 10µm PC3 mTOR 8.07

GSK-1059615 0.37µm PC3 PI3K 7.39

Sirolimus 0.37µm LNCaP mTOR 7.38

WYE-125132 10µm PC3 mTOR 7.38

Celastrol 1.11µm LNCaP PSB5 7.20

in castrate-resistant prostate cancer [28]. Certain PI3K and mTOR inhibitors
are currently under investigation in clinical trials for CRPC including the dual
inhibitor NVP-BEZ235 [29] and the mTOR inhibitor RAD001 or everolimus
[30,31].

The analyses with two examples thus show that GIMLET can identify genetic
alterations and functional pertubagens modulating the relationship between a
given set of regulators and the expression of their target genes in particular
cancer subtypes.

5 Discussion

The identification of modulators is a challenging problem for researchers who
study gene regulation. The paradigm introduced by [4] and the state-of-the-art
classical methods for identifying modulators are quite useful because they allow
us to identify content-specific modulators of a TF activity using gene expression
data. However, these methods are restricted to the capturing of a particular
type of dependency between univariate random variables, and it can be difficult
to describe more complex multivariate dependency structures, when TFs and
modulators are functionally related. We have developed a more general class
of the identification of modulators, in the framework of energy statistics and
a specific implementation, called GIMLET. An appealing property of the pro-
posed method is that it can easily measure all types of dependencies, including
nonmonotonic and nonlinear relationships, between random vectors in an arbi-
trary dimension. Our simulation results demonstrate that GIMLET outperforms
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MINDy in terms of its statistical power and type I error rate. An analysis with
a real example thus showed that GIMLET can identify genetic alterations and
functional pertubagens modulating TF activities. We believe that the presented
method may be useful for a range of biological applications, and it could repre-
sent a breakthrough in gene regulation research.
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Abstract. The development of drug delivery systems, sensors and other
devices based on liposomes (small unilamellar lipid vesicles, SUVs) requires the
adsorption of intact lipid structures onto solid surfaces in the first place. In this
work, we report on the in situ investigation of the adsorption of liposomes of
1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) (DPPG)
onto a rough surface by neutron reflectivity. Rough surfaces are achieved by
preparing polyelectrolyte layer-by-layer films, which act as soft polymer cush-
ions. Neutron reflectivity measurements performed at the solid/D2O interface
allow for the determination of the thickness of the adsorbed structures. The
conducted investigation proofs that the liposomes dispersed in the liquid phase
are generally adsorbed intact onto the cushion surface, confirming that the
roughness of the latter is a variable to be taken into account if one intends to
adsorb intact lipid structures. Liposome flattening is observed and justified by
the attractive electrostatic interactions occurring between the negatively charged
lipid liposomes and the outermost, positively charged polyelectrolyte layer of
the cushion. The conducted measurements further demonstrate that the adsorbed
liposomes are stable for several hours. These findings are fundamental for the
development of devices based on immobilized but intact SUVs on sensor
surfaces.

Keywords: Liposome � Surface � Adsorption � Neutron reflectivity �
Roughness

1 Introduction

Artificial cells or protocells based on natural biomolecules and synthetic compounds
can be assembled in a bottom-up approach by preparing lipid vesicles or liposomes
carrying biological molecules inside. Although the use of such lipid containers in the
dedicated engineering of cellular machinery is still a rather experimental approach, the
preparation of liposomes itself is already well established [1–4]. Prototypical examples
based on implemented liposome systems are biosensors, drug delivery systems and
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encapsulated molecules systems for irradiation studies with high energy photons (or
particle beams) in a cellular environment. Most of these applications require that the
liposomes/vesicles to be adsorbed stay intact on their solid supports. First studies of
liposomes adsorption demonstrated that the liposomes opened upon contact with the
solid surface and transformed into adsorbed lipid bilayers [5 and references therein],
[6]. Recently, a study conducted by Duarte and co-workers revealed that the mor-
phology of the surface might influence liposome integrity and also determine
adsorption kinetics [7]. These suggestions are supported by quartz crystal microbalance
(QCM) and atomic force microscopy (AFM) measurements [7].

In the work reported here, we used neutron reflectivity for the in situ characteri-
zation of the interfacial structure of a polymeric cushion prepared by the layer-by-layer
(LbL) technique [6 and references therein] before and after adsorption of liposomes of
1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) (DPPG) against
the liquid phase on the molecular scale. Special care was taken in generating a rough
surface of the polymer cushion. As a remark, the lipid utilized is one of the most
investigated to model membranes and presents a negative charge at pH*7 allowing to
be adsorbed onto positively charged surfaces. In the present work, DPPG was used for
comparison with the findings from a very similar system investigated in an earlier study
utilizing quartz crystal microbalance, atomic force microscopy, and X-ray photoelec-
tron spectroscopy [6].

2 Materials and Methods

Synthetic 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt)
(DPPG) lipid, with molecular weight of 744.96 gmol−1, was purchased from Avanti
Polar Lipids. Small unilamellar vesicles (SUVs) were prepared by dissolving 5 mM
DPPG in methanol:chloroform (2:8). After solvent evaporation using a gentle nitrogen
stream, the lipid film was hydrated overnight in pure water supplied by a Milli-Q
purification system (resistivity 18.2 MXcm and pH*5.7). The solution was vortexed
intermittently leading to multilamellar vesicles (MLVs). The SUVs (liposomes) were
then obtained by extruding this solution in a mini-extruder from Avanti Polar Lipids in
a polycarbonate membrane with 0.1 lm pores. The number of passages through the
membrane were eleven. Figure 1 shows the chemical structure of DPPG molecule as
well as those of the polyelectrolytes used in the preparation of the soft polymer
cushion.

The liposomes were adsorbed onto the polymeric cushion which was obtained by
the LbL technique and which was pre-deposited onto a silicon wafer. The polymeric
cushion resulted from the alternated adsorption of poly(ethylene imine) (PEI), poly
(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS) polyelectrolytes
from respective aqueous solutions with monomeric concentrations of 10−2 M. The
cushion layer sequence was PEI/(PSS/PAH)5. The adsorption period was 30 min for
the PEI layer and 20 min for the PAH and PSS layers. Between each adsorption step
wafer + LbL film (cushion) were rinsed with ultrapure water. The silicon wafer of
80 � 50 � 10 mm3 was purchased from Holm Siliciumbearbeitung, Tann, Germany,
and cleaned with “piranha” solution containing hydrogen peroxide and sulfuric acid
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(1:1). It was kept in the piranha solution for 30 min prior to polymer adsorption, after
which it was exhaustively washed with ultrapure water. To avoid contamination, the
wafer was stored in ultrapure water until the sample preparation.

The cushion was characterized by neutron reflectivity measurements at the
solid/liquid interface before and after lipid adsorption with a neutron beam of wave-
length 4.66 Å, a graphite monochromator and a 3He detector, on the V6 reflectometer
facility at the Berlin Neutron Scattering Center (BENSC), Helmholtz Zentrum Berlin
für Materialien und Energie (former Hahn-Meitner-Institut). The measurements con-
sisted in obtaining the reflectivity patterns of the thin films at the solid/D2O interface.
The used experimental setup is similar to that described by Howse et al. [8] and Steitz
et al. [9]. The data were fitted by applying the optical matrix method [10] with the
Parratt32 fitting program [10, 11] which allowed for determining layer structure and
thickness.

3 Results

Figure 2 shows the neutron reflectivity curves at the solid/D2O interface of the PEI/
(PSS/PAH)5 LbL film (cushion) without and with liposomes adsorbed to it. The
method of characterization of these curves and the achievement of respective param-
eters is reported in [12]. Several attempts have been carried out to fit the experimental
data. Best match was achieved with a 4 box model representing the polymer cushion
with scattering length density (SLD) and roughness increasing towards the liquid
phase. The total thickness of 348 Å obtained was slightly above the values measured
for similar, but flat cushions [9, 12]. The observed increase in thickness is explained by
a more imperfect coating with continuously increased number of internal voids and
roughness towards the liquid phase. Successful adsorption of DPPG is proven by the
respective shift of the so-called Kiessig fringes in the reflectivity pattern to the left

a) DPPG b) PEI

c) PAH d) PSS

Fig. 1. Chemical structure of (a) 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]
(sodium salt) (DPPG); (b) Poly(ethyleneimine) (PEI); (c) poly(allylamine hydrochloride) and
(d) Poly (styrene sulfonate) (PSS).
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(lower Q) and respective enhancement in amplitude (Fig. 2). Interestingly, all attempts
to fit simple models based on lipid bilayer structures adsorbed to the polymer cushion
failed.

Conducting a simple analysis bymultiplying the reflectivity data with Q4 and plotting
the minima positions Qn versus their order n, the extracted thickness from the coatings
(linear fits with slope d/(2p)) was 354 ± 28 Å for the cushion and 428 ± 8 Å for the
cushion + DPPG. That is to say that adsorption of DPPG vesicles resulted in a net
increase in thickness of 74 ± 36 Å. The thickness of a DPPG bilayer in dry state is
43 ± 2 Å. This value corresponds to the distance between the phosphorus peaks across
the bilayer and was calculated using simulated electron density profiles [13, 14]. The
measured value in the present work is smaller but is approaching the thickness of two
individual phospholipid bilayers. In fact, the thickness of a unilamellar lipid vesicle
adsorbed in pancake fashion must be at minimum 86 Å, with very little free water
between the lipid leaflets and with additional swelling in liquid environment not taken
into account. The neutron reflectivity measurements, however, were carried out at
solid/liquid interfacewith deuteratedwater further hydrating the lipid bilayers. As still the
measured thickness of the adsorbed liposomes is smaller than 86 Å one has to conclude
that severe structural reorganizations of the vesicles in adsorbed state must have occurred,
for instance strong tilting of the aliphatic lipid chains against the surface normal.
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Fig. 2. A Neutron reflectivity curves as obtained from the PEI(PSS/PAH)5 (black) and PEI
(PSS/PAH)5/DPPG films (green). (Color figure online)
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Duarte et al. [7] have shown that the fraction of open liposomes decreases with
cushion roughness. At a surface roughness of the cushion of about 40 Å, the fraction of
open DPPG liposomes was 0.5. At a surface roughness of 60 Å the fraction of open
DPPG liposomes was zero, i.e. DPPG liposomes adsorbed exclusively in intact state
[7]. In the present work, the cushion roughness as measured by neutron reflectivity is
58 ± 9 Å. Therefore, in accordance with ref. [7], it is expected that liposomes are
adsorbed intact. Although the obtained values do not allow excluding that a small
fraction of adsorbed liposomes is open, most liposomes must have adsorbed intact but
flattened on the cushion surface. The liposome flattening is justified by the attractive
electrostatic interactions occurring between the negatively charged lipids and outer-
most, positively charged polyelectrolyte layer of the cushion. Figure 3 shows a sche-
matic representation of liposomes on the cushion surface. The results obtained in this
work are consistent with those obtained by QCM and AFM techniques and allow to
conclude that roughness of the receiving surface is a variable determining the structure
and in consequence the functionality of the immobilized lipid aggregates. Finally, as
the reflectivity measurements take several hours, the obtained results also reveal that
the adsorbed liposomes are stable at least during the time period of measurements.

4 Conclusions

This work shows that surface roughness is a key parameter in the achievement of intact
liposomes immobilized on solid surfaces. The adsorbed liposomes are found stable for
several hours. The adsorbed liposomes take on a flattened conformation (pan cake
type). Attractive electrostatic interactions occurring between the lipids and the outer-
most layer of the cushion are held responsible for the pan cake conformation of the
immobilized DPPG aggregates. The reported findings are of extreme importance for the
development of drug delivery systems, sensors and other devices, based on liposomes
as in particular intact adsorbed liposomes can keep encapsulated molecules hydrated
and in a medium close to the cellular environment.

Finally, as concluding remarks, this work is an example of nano-bio-technology
associated to Bioinformatics and Biostatistics for the following reasons: (1) the
obtained structures lies in the nm range; (2) liposome thin films can be employed as
biosensors having the advantage of liposomes surface properties (recognition capacity,
selectivity, etc.) can be easily tuned by varying the lipid composition; (3) by applying

Fig. 3. Oversimplified schematic representation of the PEI(PSS/PAH)5/DPPG films (not to
scale).
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the concept of electronic tongue [15] to the liposome biosensors, the methods of data
treatment are the ones used in the Bioinformatics and Biostatistics scientific area;
(4) adsorption of liposome with encapsulated molecules on scaffolds can allow con-
trolled delivery of drugs during, for example, tissue growth; and (5) the adsorption of
intact liposome is a contribution for development of synthetic biology with the next
step being the study of the conditions leading to adsorption of intact exosomes on
surfaces.
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Abstract. The development of new synthetic biology frontiers has led
to scenarios where the embodied information-processing capability of
biological organisms are implanted, in minimalistic version, in liposome-
based synthetic cells. These are cell-like systems of minimal complexity
resembling biological cells. Although not yet alive, synthetic cells are
useful for generating basic biological understanding, and can become
interesting biotechnological tools. In 2012 we devised a research pro-
gram aimed at the design and construction of synthetic cells capable
of exchanging chemical signals with biological micro-organisms (in par-
ticular bacteria). Here we review the fundamental steps leading to this
innovative research field and comment on the most relevant experimental
results obtained by us and others.

Keywords: Bio-chem ITs · Lipid vesicles ·
Molecular communications · Synthetic Biology · Synthetic Cells

1 Lipid Vesicles in Origin-of-Life Research
and in Synthetic Biology

The goal of synthetic biology (SB) is the design and the construction of bio-
logical parts, devices and programmable systems to perform useful functions.
In the majority of cases these novel synthetic parts are implemented in liv-
ing cells, taking advantage of their native cellular ‘chassis’ (i.e., the genome,
the native set of transcription factors, the pre-existing metabolic routes, the
protein-functionalized membrane, and so on). There is however another app-
roach which focuses on the total assembly of synthetic cells (SCs) starting from
separated biological parts [29,38,40,46]. This second approach, often labeled as
bottom-up, leads to very simple cell-like structures (yet not living), by exploiting
the convergence of three main technologies: (a) cell-free systems, in particular
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Fig. 1. Semi-synthetic (minimal) cells. (a) Three of the technological pillars for the
bottom-up construction of liposome-based SCs, namely: cell-free systems, liposome
technology, microfluidics. A brief referenced description of these three technologies
and of their intersections is reported in Appendix A. (b) Schematic drawing of semi-
synthetic minimal cells, as derived from the inclusion of cell-free systems (water-soluble
proteins, membrane proteins, the TX-TL system, DNA in form of a plasmid, and low
molecular-weight compounds). The shown structure can be obtained experimentally
by combining liposome technology and cell-free system (or by the use of microfluidic
devices). A great impulse to the construction of cell-like systems as depicted in this
figure has resulted by the introduction of a special giant vesicle formation method,
namely, the droplet-transfer method [37] which allow the easy encapsulation of complex
biochemical machineries inside vesicles that have size in the 5–20µm range (typically),
thus easily observable under the optical microscope.

transcription-translation (TX-TL), (b) lipid vesicles or similar compartments,
(c) microfluidics (Fig. 1a).

The first experiments for constructing simplified cells in the laboratory
started within the community of origin-of-life researcher, as a way to study
primitive cells, inspired by the Haldane-Oparin “principle of continuity” between
inanimate and animate matter [35]. According to this principle, living systems
are just a type of molecular assemblies; despite their complexity, they are not
qualitatively different than any other chemical system. This premise implies that
the scientific progresses will probably allow the construction of a living system
in the laboratory, neglecting, then, any vitalistic approach. One of the theoreti-
cal frameworks that can guide the construction of minimal living systems is the
autopoietic theory [28], a system view of life that specifically describes living
systems as those systems whose built-in and observer-independent ‘purpose’ is
just their own self-maintenance.

Among the various possible bottom-up SCs designs, the so-called semi-
synthetic approach [23] appears to be one of the most promising in terms
of feasibility, versatility, modularity, robustness, and possibility of interfacing
with biological systems. Semi-synthetic minimal cells can be defined as those
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synthetic cell-like systems based on the encapsulation of the minimal number of
biomolecules (nucleic acids, proteins, etc.) inside lipid vesicles (liposomes), see
Fig. 1b, and that display minimal living-like properties. For example, these prop-
erties can be: autopoietic self-maintenance, self-reproduction, movement, signal
recognition, and so on. As specified, current approaches have not lead to living
SCs yet. Nevertheless these sort of “intermediate” structures – between life and
non-life – are useful in many theoretical and practical respects.

We have recently proposed that semi-synthetic SCs of minimal complexity
can play a major role in the nascent field of Molecular Communications [32]
and more in general of bio-chemical Information and Communication Technolo-
gies (bio-chem ICTs) [43]. Bio-chem-ICTs can be defined as those technolo-
gies deriving from the integration of research areas such systems- and synthetic
biology, micro-electromechanical systems, chemical information processing and
nanobiotechnology. Their applications range from the creation of life-inspired
technologies to smart drug delivery, from adaptive artificial systems to novel
information-energy-matter processing [3]. In a narrower context, and inspired
by the natural signal processing ability of biological cells, we foresee that SCs
can manipulate chemical information in a programmable way by reconstructing
a minimal set of molecular sensors, actuators, controllers inside liposomes. After
decades of electromechanical-based systems, cybernetics can thus re-start in the
biomolecular realm [41].

2 The Technology of SCs

Figure 1a and Appendix A evidence which are, in the authors opinion, the three
most relevant technologies currently used to build SCs, in particular liposome-
based SCs that operate by gene expression.

Lipid vesicles (liposomes) have played and still play a central role in this
enterprise. Gradually, the research moved from liposomes encapsulating sim-
ple chemicals to liposomes encapsulating biochemical reactions, and reached the
contemporary approach that is strongly anchored to intra-liposome TX-TL reac-
tions. In particular, by means of TX-TL it is possible to produce proteins in
order to functionalize SCs. The in situ produced proteins are ‘actuators’, which
can perform specific operations in the SCs such as catalyzing reactions, binding
small molecules, exerting control over the permeation of other molecules across
the lipid membrane, regulating TX, acting as cytoskeleton elements, and so on.

When SCs are prepared by traditional vesicle formation methods, a large
between-vesicle variability is observed, especially with respect to solute encap-
sulation [2]. This translates into a large heterogeneity in SC function (rate of
protein production, for example). Such phenomenon is due to extrinsic stochastic
effects due to solute partition in the very moment of vesicle formation. Micro-
compartments, in fact, contain – on average – a small number of solutes and
therefore the internal solute concentration can vary either expectedly [42] or
unexpectedly [24].

When this sort of spontaneously emerged ‘vesicle diversity’ is not desirable,
microfluidic technology becomes one of the best tools for SC technology. To date,
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most of published papers report on SCs constructed by traditional batch methods
(sector 1–2 of Fig. 1a), but an ever-increasing number of recent reports focuses
on the employment of microfluidic chips to build solute-filled vesicles (gener-
ally giant vesicles), realizing, de facto, the next standard for SCs technology.
These advancements will lead, once properly developed, to a sort of assembly
line machine for producing SCs with low between-vesicle variability.

A fourth subject, not explicitly included in Fig. 1a, is mathematical mod-
eling. According to SB paradigm, the construction of synthetic parts, device
and systems is always strongly integrated with a design phase, which requires
knowledge on chemistry, biochemistry and bioinformatics. From this consider-
ation, it emerges a pressing requirement, i.e., understanding biological cellular
processes at a quantitative level. Values of binding constants, kinetic constants,
and connectivity between the network components are essential ingredients of
accurate models, as well as the inclusion of stochastics processes (intrinsic and
extrinsic). The network dynamics is another related topic that can be grafted
into SC research for a better SC understanding and design (e.g., synchroniza-
tion phenomena, essential in both self-reproduction and self-maintenance [12]).
Among the several goals of modeling, here we recall that novel approaches based
on information and communication theories should be properly developed in
molecular communications, taking into account that chemical signals are often
based on passive stochastic diffusion [31].

Bottom-up synthetic biology represents a very modern, challenging and
promising arena for developing novel systems of increasing complexity, from SCs
to synthetic cellular communities, encompassing basic and applied science. There
are studies where SCs are used to understand biochemical phenomena, or to pro-
vide models of intermediate complexity (before more complex SCs are created),
or to play a role for biotechnological applications. Research in this field is moving
from very simple SCs to systems capable of performing more complicated tasks,
which often result from the integration of previously achieved performances. In
other words, the contemporary studies aim at demonstrating that SCs can go
beyond the proof-of-principle stage that characterized the “pioneer” phase [45].

Recent examples demonstrate the progresses of SC research. It has been
reported that SCs can synthesize a therapeutic protein inside the tumor [19],
or that a modular design can bring to artificial platelets [25]. Enzymatic
fermentation-like reactions [13], as well as the de novo synthesis of cell divi-
sion proteins have been achieved [14]. DNA has been replicated in SCs [34].
Thanks to microfluidics, it has been possible to achieve a sequential bottom-up
assembly of SCs [50].

A particularly elaborated and elegant system, published in 2008, has been
reported by Tetsuya Yomo and collaborators, who constructed a cell-like system
capable of synthesizing the Qβ-replicase enzyme starting from a RNA sequence,
by a TL reaction [18]. The same RNA sequence, however, is also a substrate
of Qβ-replicase, that builds the complementary strand of it. These reactions
originate a recursive process, whereby a RNA molecule encodes for the enzyme,
whose function is the RNA replication. This work can be seen as an attempt
of constructing cell-like systems where nucleic acids and proteins reciprocally
induce their own formation.
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3 Chemical Signaling and Actuation Control of SCs

The Vision

The progress and the success of SC technologies has motivated several scholars
to inquire whether and at what extent it is possible to engineer SCs so to allow
chemical signaling and actuation (i.e., execute a predetermined operation in
response to a well defined stimulus).

The interest in such a kind of SCs functionalization is manifold, but it mainly
focuses on the construction of programmable SCs that “do something” only when
it is required. In other terms, we are starting to conceive very simple soft-wet-
microrobots that share with biological systems their constituents, the structure,
and – importantly – the mechanism of the operations.

The appeal of such a vision was recognized by Arturo Rosenblueth,
Norbert Wiener and Julian Bigelow, the pioneers of cybernetics, who in their
1943 foundation paper wrote [41]:

If an engineer were to design a robot, roughly similar in behavior to an
animal organism, he would not attempt at present to make it out of pro-
teins and other colloids. He would probably build it out of metallic parts,
some dielectrics and many vacuum tubes. The movements of the robot
could readily be much faster and more powerful than those of the original
organism. Learning and memory, however, would be quite rudimentary. In
future years, as the knowledge of colloids and proteins increases, future
engineers may attempt the design of robots not only with a behavior, but
also with a structure similar to that of a mammal. The ultimate model of
a cat is of course another cat, whether it be born of still another cat or
synthesized in a laboratory.

Now, we “future engineers” have the chance of designing and constructing
robots – at the supramolecular cell-like scale – thanks to our increased knowledge
of “proteins and colloids”, accumulated after decades of research on biochemistry
and molecular biology.

It is evident that a reachable goal consists in SCs capable of sending and
receiving chemical messages, and possibly activating internal genetic circuits
that ultimately lead to a specific response – usually the synthesis of a protein.

This topic emerged, independently, from several fronts. The relevance of
inter- and intra-cellular communication was underlined by the Suda-Nakano
groups [32], who wanted to develop a new kind of communication technology –
the Molecular Communications – getting inspired by the biological world. The
implication of synthetic-to-natural communication and vice versa, in the field of
wetware artificial life, was instead emphasized in a perspective paper [7], where
a hypothetical Turing test adapted to SCs was firstly discussed. Shortly after,
one of the authors of this paper published an experimental report where very
simple solute-containing liposomes could produce and release a chemical that
was sensed by bacteria [15]. Discussing the future of nanomedicine, LeDuc pro-
posed the term “nano-factories” [20], to indicate programmable SCs that travel
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into the human body and activate internal circuits for the transformation of
metabolites or for the production of a drug. These SCs could recognize ill tis-
sues, communicate with biological cells, and behave consequently.

It seems clear that SCs can indeed be built in order to be able to exchange
chemical signals with other SCs or with biological cells. In this way, it would be
possible to:

– in general, further advance SC technology
– develop nanomachines for Molecular Communications and bio-chem-ICTs [32]
– create tools for intelligent drug delivery, sensing, diagnosis [19,20]
– investigate what is autonomy and minimal cognition [4]
– put forward a radically new approach to embodied AI [9,10]

Experimental Results

As mentioned, the first example of synthetic communication between cell-like
vesicle systems and biological cells was published in 2009 by Ben Davis and
collaborators [15]. Lipid vesicles were prepared in order to encapsulate the com-
ponents of the so-called formose reaction [5,6]; consequently, various types of
aldoles were produced and released in the medium. After forming the corre-
sponding adducts with borate (present in the medium) some of these products
were able to stimulate a biological response in the bioluminescent bacterium
Vibrio harveyi. This was possible because V. harveyi mistake such artificial
products for the true signal molecule AI-2 (autoinducer-2), which has a similar
structure and is used by this species for molecular communications.

Based on these pioneering results, we started and promoted by several prelim-
inary publications an experimental program aimed at extending the Ben Davis’
approach to SCs, which can be advantageous in terms of design, modularity, pro-
grammability [29,38,40,46]. By exploiting cell-free TX-TL systems and enzyme-
catalyzed reactions, SCs can indeed produce signal molecules like biological cells.
Moreover, they can also receive and decode such types of signal thanks to the
incorporation of receptors and/or transcription factors in their inner genetic
circuitry. The central idea is that one or more genetic circuits must be inserted
inside liposomes in order to produce either the enzyme(s) that synthesize a signal
molecule, or the receptor(s) for such molecules.

The resulting SC activity can be regulated, in principle, so that the signal
is not sent continuously but only when needed. Analogously, the received signal
molecule should trigger a series of steps leading to one (or more) action(s),
i.e., operating as actuators do. Interestingly, the association between the signal
and the response can be imposed by design, and can differ from what occurs in
biological cells. Such a versatility is possible by a careful engineering of molecular
parts and devices that are artificially constructed for this specific goal.

Four recent papers have described this sort of SCs approach to molecular
communications. In their first work [22], Mansy and collaborators designed SCs
acting as ‘translators’ for E. coli. Theophylline only weakly activate bacteria.
SCs were constructed in order to sense theophylline and release IPTG, which
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strongly activates the bacterial response. At this aim, a theophylline riboswitch
was employed, generating α-haemolysin (αHL) pores in IPTG-filled vesicles. In
the presence of theophylline, SCs synthesized αHL, which allowed the release of
IPTG (previously co-entrapped inside liposomes) in the medium. E. coli cells
uptake IPTG and activate their internal machinery for a response.

The same authors recently reported a two-way chemical communication
between SCs and bacteria [21]. In particular, it was shown that SCs, made
by encapsulating the proper genetic circuitry inside liposomes, could either
be responsive to chemical signals (AHLs), either synthesize and release in the
medium these molecules (and thus activating a response in biological cells).
Moreover, it was shown that SCs and biological cells could bidirectionally com-
municate by exchanging chemical signals.

The investigation of Boyden and collaborators [1] demonstrated that, in two
separated SCs populations, arabinose (or theophylline in a second example) acti-
vate the αHL production, so that pre-encapsulated IPTG (or doxycycline in a
second example) could be released, and thus activate a second SC population.
This work showed for the first time the establishment of chemical communication
between two SCs populations.

The chemical communication between two different types of SCs (vesicles
and proteinosomes) was also reported [47]. Stimulated by an AHL, vesicle-based
SCs activated the internal TX-TL reactions which produce αHL. The latter
creates pore in the lipid membrane, allowing glucose to escape from the SCs
into the environment. The released glucose was taken up by enzymes-containing
proteinosomes, which sensed this chemical by glucose oxidase/peroxidase coupled
reaction path, resulting in the production of a measurable fluorescence.

Our Approach: SCs and Pseudomonas aeruginosa

As evident from the above descriptions, N -acyl-homoserine lactones (AHLs) are
interesting molecules for artificial chemical communications as they are involved
in bacterial quorum sensing. We have recently published a report on one-way
communication between AHL-producing SCs and P. aeruginosa [39].

The system, described in Fig. 2, uses a short chain AHLs, called N -butyryl
homoserine lactone (C4-HSL) as molecular messenger between the SCs (senders)
and the bacterium P. aeruginosa (receiver).

Receiver cells need to be “signal-negative”, i.e., their capacity of C4-HSL
production has been knocked-down by specific genomic deletion. SCs firstly pro-
duce the enzyme for C4-HSL production (called RhlI) in well-folded, and thus
functioning, form. The enzyme converts two substrates (butyryl-coenzyme A,
C4-CoA, and S -adenosylmethionine, SAM) into the target molecule C4-HSL.
Further details can be found in Fig. 2 caption.

All steps of the SCs mechanism were checked, namely mRNA and RhlI pro-
duction, C4-HSL identification and quantification, as well as the response of the
biological partner (activation of several genes in response to the presence of C4-
HSL). The success of molecular communication, both in liquid and gel medium
was monitored by bioluminescence or confocal fluorescence microscopy.
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Fig. 2. SCs sending a quorum sensing signal molecule to P. aeruginosa. The send-
ing system is based on the production of the signal molecule C4-HSL by the syn-
thase RhlI, encoded by the rhlI gene, and two precursors (C4-CoA and SAM). Inside
SCs, the RhlI enzyme is produced by the PURE system by transcription (TX) and
translation (TL) steps, starting from a DNA template (plasmid pWM-rhlI ). C4-HSL
spreads through lipid membranes, diffuses into the medium and reaches P. aeruginosa
cells. The receiving cells (named RepC4lux ) contain a genetic reporter device for C4-
HSL-induced bioluminescence (PrhlA::luxCDABE) and a mutation inactivating the
rhlI gene, so that they cannot produce C4-HSL. C4-HSL produced by SCs binds to the
receptor RhlR, which in turn triggers luxCDABE transcription and bioluminescence
emission by RepC4lux. Reproduced from [39] with permission from The Royal Society of
Chemistry.

4 Implications and Perspectives

The language of information, communication and control theories pervades mod-
ern biology. Terms such as code, encoding-decoding, signal, response, receptor,
messenger, translation, transcription, and so on, are very common in the vocab-
ulary of any student or professional biologist.

For the first time, however, synthetic biology now provides a conceptual and
technical platform for designing and constructing novel information, communi-
cation, control systems based on biomolecules and cell-like systems (the SCs).
This can be done, importantly, via a bottom-up approach, meaning that the
experimentalist knows what are the parts used for building a system, allowing a
full control and understanding of its operations.
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We would like to shortly comment on two aspects stemming from this nascent
research, namely on Molecular Communications and on Minimal Cognition.

Molecular Communications

A totally new branch of wireless communication engineering has been recently
launched with the name of “Molecular Communications” [31]. Nakano is one of
the most active pioneer in this young field [30,32]. The community of scientists
interested in this topic is rapidly growing, and a dedicated series of workshops
further witnesses this international trend. Molecular communication technologies
aim at exploiting the peculiar features of chemical signals to make systems of
nanomachines capable of communicating information, exchanging signals, coor-
dinate their behavior, and so on. This capability of chemical signal manipulation
will advance information theory and provide the bases for novel approaches.

However, due to its novelty, almost everything must be built from scratch
(experiments and theory), thanks to the collaboration between communication
engineers and synthetic biologists. Engineers are interested in theoretical and
pragmatic aspects of molecular communications, such as its bandwidth, the noise
sources in the emitter and receiver and in the propagation medium, the channel
capacity, the probability distribution that best describes a chemical diffusive sig-
nal, or the definition of signal-to-noise ratio, and so on [33]. Synthetic biologists
are interested in constructing artificial systems capable of controlled communi-
cation capabilities, so that the resulting systems (i.e., the SCs) are comparable
to bio-version of computer and robots. The decodification of information, and
the triggered actuation will be central to this enterprise. But, at the same time,
this responsiveness will be at the basis of autonomous behavior. This latter con-
sideration brings us to the next fascinating issue.

Minimal Cognition

Wetware artificial models of cognitive processes and systems are rare [16]. Tradi-
tionally, cognition has been interpreted either as computation (of heteronomous
system) or as self-regulation (of autonomous systems). A detailed discussion on
this topic lies outside the scope of this paper, however, we believe that the rise of
synthetic biology can radically change the scenario in favor of the self-regulation
interpretation, because SCs could be designed in order to perceive changes in
their environment and respond accordingly, by modifying their internal dynam-
ical state in a self-regulative manner. In this perspective, the cognitive act is
interpreted and realized by the SCs, as a change of their own internal states
triggered by a perturbation (the arrival of a signal molecule from the environ-
ment). This process is at the basis of biological autonomy [48], and allows the
exploitation of SCs as models of basic cognitive systems in the autopoietic sense
(i.e., minimal biological cells) [28].

Preliminary discussions on these research directions have been published
recently by us [8,10]. In particular, we maintain that SB can contribute to cog-
nitive sciences and artificial intelligence (intended in their minimalistic form)
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by virtue of its synthetic/constructive paradigm [9]. The goal would be the
construction of artificial systems (SCs designed by autopoietic principles) that
autonomously produce patterns of cognition (for example, the cognitive capa-
bilities of unicellular organisms), by generating, without any symbolic represen-
tation, proper self-regulative mechanisms, as living beings do. As observers, we
could continue to interpret the absence or the presence of a chemicals in a dig-
italized 0–1 form, and translate the SCs pattern as it was a computation (e.g.,
by IF-THEN-ELSE operations). However, SCs would act without the need of a
logical central processing unit, but simply by an adaptive response of its reaction
network (and being, then, embodied-cognitive).

Acknowledgments. P.S. is grateful to Luisa Damiano (University of Messina, Italy)
for inspiring discussions on autonomy, autopoiesis, embodied cognition.
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α-HL α-haemolysin
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ICTs information and communication technologies
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SC synthetic cell
TL translation (from RNA to protein)
TX transcription (from DNA to RNA)
TX-TL coupled transcription-translation reactions

Appendix A

With reference to Fig. 1, here we give explanatory comments on the role and
relevance of three technologies and on their intersections.

1: Cell-free systems have been traditionally used in biochemical and molec-
ular biology to study biological processes outside the cell. Known since decades,
the TX-TL systems have been recently re-discovered, also thanks to the intro-
duction of a purified kit whose composition is minimal and perfectly known, the
so-called PURE system [44].

2: Liposome technology has been developed mainly for producing liposomes
for drug-delivery applications and for biophysical studies. Several methods are
available to prepare empty and solute-filled liposomes, depending on the lipid
type and vesicle size and morphology. Of particular interest are the so-called
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‘giant’ vesicles (GVs) because they mimic biological cells and can be directly
visualized by optical microscopy, for a review on GVs, see [49].

3: Microfluidic devices have been recently introduced in order to manipulate
solutions at the micrometer scale. The use of microfluidics for producing water-
in-oil droplets is one of the most important application of this technique, but the
relevant goal is the production of giant vesicles directly in the microfluidic appa-
ratus (for a review, see [11]). Currently the strategy is based on the formation
of water-in-oil-in-water double emulsion droplet, followed by solvent removal.

1–2: These systems are the most used (to date), and consist of liposomes
formed by non-microfluidic methods with TX-TL systems (or other biochemical
machineries) encapsulated in their aqueous lumen or embedded in their mem-
brane. For a review, see [45]. Note that the populations of spontaneously formed
liposomes are generally quite heterogeneous with respect to several parameters
(C.V. often >50%).

1–3: Cell-free systems included in microfluidic devices are also a possible
combination useful for synthetic biology. For example, work has been carried
out to study the dynamics of transcription-translation processes [17].

2–3: To this section belong all work aiming at constructing vesicles, and
in particular GVs, by microfluidic devices. It is important to remark that the
formation of vesicles in microfluidic devices occurs by repetitive reconstitution
of microscopic conditions, and thus all vesicles have very similar structure and
a homogeneous population is obtained (C.V. <5–10%). Pioneering work can be
found here [27,36].

1–2–3: This triple overlapping region is probably the ‘Holy Grail’ of bottom-
up SB, namely, the construction by microfluidic devices of solute-filled vesicles, so
to have a homogeneous population of bioreactors that can be designed and build
according to the general requirements of SB, namely modularity, programmabil-
ity, reproducibility, etc. An example can be found in [26].
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Abstract. In this paper, we show a simulation scenario of a short section
of a blood vessel, in which white blood cells, red blood cells, and platelets
move as a consequence of collisions and the Hagen–Poiseuille law. In
addition to these cells, we have considered also the presence of circulating
tumor cells (CTC) and of a receiver node that is able to detect the
presence of CTC by using its surface receptors which are affine to the
ligands present on the CTC surface.

This study aims at identifying potential optimal positions of CTC
sensors within blood vessels in order to maximize the probability of a
successful detection.

A simulation campaign has been performed by the BiNS2 simulation
framework for several distances of the receiver node from the vessel axis.
Obtained results show that CTCs tend to move towards the endothelium.

Keywords: Molecular communications · Simulation ·
Tumor detection · Circulating Tumor Cell · Blood vessels

1 Scientific Background

Nanoscale communications is a new research area that spans on many fields
[1,22] and in the recent years lots of studies have focused on the biological and
medical cases [5]. This research activity aims to develop a sort of cyber-physical
system able to support and improve the natural biological processes against
diseases and other degenerative phenomena. In fact, a first step includes the
continuous monitoring of the concentrations of specific parameters in the body
of the patient and, more in details in the blood stream. This phase could help
doctors to detect, monitor and analyze the health conditions, allowing a prompt
response increasing the effectiveness of the treatment and reducing, at the same
time, undesired side effects.
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A nanoscale communication system composed by tiny devices, called
nanomachines, could allow the exchange of health informations from the inner
body of the patient to the external, allowing the start of therapies in standard
ways and also by means of the release of specific drugs by the nanomachines
deployed in the human body. This could give great benefits in the support to
the immune system against phatogens but also on the tumor detection and pro-
gression inside blood vessels by means the detection of the Circulating Tumor
Cells (CTCs).

In healthy conditions a minimal presence of CTCs may be found in the blood
stream, and the immune system is typically able to remove them [31]. When
a cancer has started to develop, CTCs originate massively from the primary
tumor site and, through the bloodstream, may propagate in any part of the
body, generating the so-called metastases if suitable conditions are found (Fig. 1).
Hence the concentration of such cells in the bloodstream gives useful diagnostic
and prognostic information about the location and progression of a tumor. The
monitoring of the CTC concentration allows both an early detection of a disease
both in its initial phase and any at any relapse of it after an apparently successful
treatment.

Fig. 1. (1) Circulating Tumor cells detach from the primary tumor site and (2) dis-
seminate into bloodstream (3) so those are virtually capable of reach any part of the
body and (4–5) contaminate healthy cells and tissues forming secondary tumor sites
(metastasis). (6) The process may restart from the beginning.
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Tumors try to evade the immune system by exploiting the regulatory mech-
anisms that protect healthy cells from immune mediated attacks [6]. Indeed,
each CTC exposes several biomarkers on its surface that are useful for the cell
detection. One of the most important biomarker is the CD47 that is in general
over-expressed by the tumoral cells to fool the immune system and avoid to be
destroyed by macrophages [6,28], which are cells having the task of removing
dying or dead cells and cellular debris. The CD47 protein, an immunoglobulin
(Ig)-like receptor, is normally exposed by many cell types in order to indicate to
macrophages that they should not be eliminated. The binding of CD47 expressed
on the cell surface with the signal regulatory protein-α (SIRP-α) also known
as SHPS1. It acts as a receptor for CD47, thus blocking the phagocytosis of
macrophages, as schematically shown in Fig. 2.

Fig. 2. Tumor cell blocking phagocytosis through CD47 exposure.

For this reason blocking this mechanism through modifying the relationship
between CD47 and SIRP-α is an active research area [29]. Current nanomedicine
approaches consider RNA interference (RNAi) technology by means of liposomes
made with protamine-hyaluronic acid and loaded with anti-CD47 siRNA. This
has resulted in an efficient silencing of CD47 and tumor regression [27]. It is worth
to mention other important biomarkers, such as the circulating microRNA-101
for the hepatocellular carcinoma [12], the plectin, for the pancreatic cancer [26],
the apolipoprotein C-II for the cervical cancer [18], the CD164 protein for the
ovarian cancer [20], the plasma osteopontin, for non-small cell lung cancer [17],
and the carcinoembryonic antigen (CEA) for different types of lung cancer [14].
All these markers are expressed over the surface of CTCs, which are slightly
larger than white blood cells (they seem also to detach from the primary tumors
in groups). It may also happen that CTCs spread their DNA throughout the
circulatory system by using microvesicles/exosomes as transport vector [8].

Hence, by the simultaneous detection of different types of biomarkers it is
possible to identify different cancer types and their stage with a high degree of
accuracy, thus obtaining also information about the location of the tumor. It is
likely that risk ascertainment methodologies will rely on networks of markers or
markers that will undergo remodulation in different progression of the disease.
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Table 1. Simulation parameters

General parameters

Vessel length 6.0 mm

Vessel diameter 30µm

Mean flow velocity 0.5 mm/s

Viscosity 1.3 mPa·s
Temperature 310 K

Time step 100µs

Red Blood Cells (RBC)

Concentration 5 ·106 U/mm3

Radius 2.9µm

White Blood Cells (WBC)

Concentration 7.5 ·103 U/mm3

Radius 3.8µm

Platelet

Concentration 2.5 ·105 U/mm3

Radius 1.0µm

CTC and Receiver node

CTC concentration 10−4 U/mm3

CTC and Receiver radius 5.0µm

CTC initial distance from axis [0, 12.5, 25]µm

Initial distance between CTC and Receiver 6 mm

Molecular communications have a central role for realtime detecting CTCs
by using implanted devices. Detection can happen by either using contact-
based communications [15], or by absorbing microvesicles/exosomes transporting
RNA-i strands of the tumor emitted by CTCs [30] in the blood.

The CTCs enumeration could allow the monitoring of the dynamics of the
tumor burden and of its spreading to other locations in the body. Moreover, the
monitoring phase allows also the detection of any relapse of the disease after a
successfull treatment. Hence, the scope of this work is to analyze the distribution
of the CTCs along the blood vessels in order to realize an efficient monitoring
by means of a smart positioning of the detector nodes.

Nevertheless, the concentration of CTCs in the blood is very low compared
to the blood cells concentration and their detection could be quite difficult to
achieve [16]. For this reason, in recent years, several research studies have been
made in this field and promising results have been achieved by different groups,
stimulating further research in the field [13,19,31]. One of the most promising
result is the micro-fluidic chip capable to capture CTCs with a high degree of
success [4].
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2 Simulation Methods

The distribution of the CTCs within blood vessels has been analyzed by means
of a simulation campaign performed with the BiNS2 (Biological and Nano-Scale
Communication Simulator) simulation framework [9–11].

BiNS2 is an agent-based simulator developed in Java language, able to repro-
duce, with a high degree of accuracy, the interactions among particles dispersed
in a fluid medium inside both unbounded or bounded volumes of different shapes
and sizes.

From a communication point of view, some elements can be configured as
transmitter or receiver nodes (or both) and other elements as information car-
riers, implementing some of the typical phases of the communication protocol
stack (transmission and reception, signal encoding and decoding, signal modu-
lation and demodulation, information processing, etc.).

BiNS2 allows also the definition of several propagation models, one for each
volume, and up to now the most important models defined are: (a) the diffusion-
based model, where the Brownian motion affects the propagation of each element
dispersed in the medium, and (b) the flow-based model, where each particle is
affected by a laminar flow, in addition to a Brownian motion component. The
last one is typically used for the simulation of biological environments (i.e. inside
blood vessels) or microfluidic devices. BiNS2 accounts explicitly for collisions
between different elements, and implements different types of receivers, such as
the transparent receiver, the absorbing receiver, and the receiver with absorbing
receptors.

The biological scenario used in this study is composed by a short section of a
blood vessel in which white blood cells, red blood cells, and platelets move as a
consequence of collisions and the Hagen–Poiseuille law [27]. Relevant biological
parameters have been set in the MolComML configuration file [2] according to
realistic values found in literature [24] and have been reported on Table 1.

As shown by the numerical data, the concentration of the RBCs is some orders
of magnitude higher than the concentration of the other cell types [16]. This means
that RBCs are predominant in the blood and have an important effect on the rhe-
ological properties of the blood. One of the key effect is that these cells tend to
aggregate along the central axis of the vessel (characterized by the higher blood
speed, due to the Hagen–Poiseuille law) forming a sort of cell-free layer on the
section close to the vessel walls. The thickness of this free layer is significant in
smaller vessels, whereas it becomes negligible on large vessels [23]. Here, we have
assumed an initial cell-free layer comparable to the size of the RBC but the size
of the layer may change over the space and time according to the motion law of
the particles (mostly due to collisions and Hagen–Poiseuille law).

Assuming to analyze a vessel portion far from the tumor location, the prob-
ability of having more than one CTC at time in the same short vessel section is
negligible, because their concentration is several order of magnitude lesser than
the concentration of the main blood cells [16], as reported on Table 1. Experi-
mental data confirm this assumption as reported in [3,7,21]. Indeed, the authors
of [3] show that more than half of the tested patients with metastatic prostate
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cancer had two or more CTCs per 7.5 mL of blood, and only 18% of them had
more than 10 CTCs per milliliter. Since, in our simulation setting the total sim-
ulated volume is equal to only 4.24× 10−6 mL, it is evident that the probability
of finding more than one CTCs at time in this blood volume is really rare and
unlikely.

We simulate the presence of a CTC at the vessel entrance, and locate both
the receiver and CTC at different distances from the vessel axis (i.e. from 0 up to
25µm). The initial longitudinal distance from the CTC to the receiver node is
equal to the total vessel length (6 mm) and, without any loss of generality, the
receiver size is set equal to the CTC.

We make the common assumption that the receiver can detect the presence
of the CTC by using its surface receptors, which are compliant with the lig-
ands present on the CTC surface (e.g. the CD47 protein) or with any other
soluble tumor biomarker that has been released by the tumor cells. Finally, we
assume also that the detection phase does not affect the movement of the CTC
(hypothesis of transparent receiver).

The noise sources that could affect this communication system are of two
types. The first noise component typical of a diffusion-based system (i.e. the
particle sampling noise) affects the transmitter side [25], but in this scenario
there is not any transmitter, because we just count the tumor cells that enter in
the observed blood vessel section. Thus, this noise source can be neglected. The
second noise contribution is given by the particle counting noise [25], which affect
the signal propagation. In this case, this contribution is given by the randomness
of the Brownian motion contribution on the trajectory of the CTC, as well as by
the random displacement due to the collisions with RBCs. Thus, we fully model
noise in our simulation scenario.

This study aims at identifying potential optimal positions of a CTC sensor
within a blood vessel in order to maximize the CTC detection probability. As
said before, detection happens upon collision between the sensor and the CTC,
which trigger the chemical reaction of ligands present on the CTC surface with
compliant receptors on the receiver one. Thus, the next section shows a compre-
hensive analysis of the CTC positions as a function of its initial location at the
entrance of the blood vessel.

3 Results

Extensive simulations have been performed by means of the BiNS2 simulation
framework and the configuration parameters have been setup by the MolComML
configuration file. For each case study has been analyzed a different initial posi-
tion of the CTC cell compared to the distance from the central axis of the vessel.
In order to extrapolate the propagation pattern of the CTC, each case study has
been simulated at least 10 times.

On Fig. 3 are shown the results for the most representative case studies, for
the two extreme positions and for the intermediate position of the CTC, depicted
here by a black dot along the thin dotted line on the Top View of each graph.
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Fig. 3. CTC propagation profile for different distances from the vessel axis: (a)
d=0µm, (b) d = 12.5µm, (c) d= 25µm. Vessel length is 6 mm. Different colors are
relevant to different simulation runs. (Color figure online)
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The circular dotted line on the same view represent the maximum position that
could be assumed by the center of the CTC because of the collision with the
vessel walls, depicted here by the black dashed line. On the right are shown the
side views for each case study and again, the two dashed lines are for the vessel
walls and for the maximum allowed position of the CTC. Note that these views
show the distance of the CTC from the central axis over the time.

The duration of each run of the same simulation may be different. This is
due to the fact that the simulation ends when the CTC crosses the final section
of the vessel. The total propagation time depends on the cell velocity, which, in
turn, is a function of the actual distance from the central axis, in accordance
with the Hagen-Poiseuille law.

Hence, the more the cell is close to the vessel walls and the higher is the
crossing time in that section of the vessel.

The results have shown that CTC close to the vessel walls tend to remain
close to the endothelium, with a small angular displacement from the initial
position, just over 30◦ (π/6 rad) on both directions, as shown on Fig. 3c.

On Fig. 3b is shown the intermediate case (distance from the axis = 12.5µm).
The side view show that in most cases the CTC prefer to move towards the vessel
walls with respect to the initial position, even if a sort of steady position seems
to exists because the CTC is trapped between the blood cells. Anyway there are
continuous jumps between different locations due to the collisions with the blood
cells and, as shown on the top view, the CTC propagate randomly all around
the initial position.

A similar behavior is observed for the last case Fig. 3a. Again, the CTC
randomly propagate all around the initial position (top view) but the distance
from the central axis (side view) is always increasing (positive slope in the long
term for each case). This is due to the fact that the central position is affected
by the highest velocity profile and the cell collisions are more energetic and
the lightest cells (the CTC in this case) are bounced away by the heavier cells
towards the edge of the vessel, where the blood density is lower.

Figure 4a shows the mean CTC propagation profile with the relevant 99%
confidence intervals for different initial distances from the vessel axis, ranging
from: d = 0µm up to d = 25µm. It is evident the trend of CTCs to move away
from the center of the vessel, which suggest to position a possible sensor close
to the endothelium, which also ensure a possibility to anchor it. Clearly, as
shown in Fig. 3, there is also the non negligible possibility that some CTCs
will follow a different path, mainly dependent on the sequence of collisions with
RBCs. In order to provide a further analysis by considering a sufficiently long
blood vessel, these CTC propagation profiles could be sequentially combined,
in order to obtain an unique propagation profile given by the succession of the
individual profiles (i.e. each profile will starts from the end of the previous one).
What emerges from Fig. 4b is that, after a given time (or similarly, after a given
distance traveled), in average the CTC will tend to drift towards the vessel walls,
even if its starting position was near to the central axis of the vessel. Moreover,
the peculiarities of the parabolic velocity profile cause a long passing time for
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Fig. 4. (a) CTC propagation profile with the relevant 99% confidence intervals for
different initial positions from the vessel axis, from: d = 0µm up to d= 25µm. (b)
Sequential analysis of the CTC mean propagation profile.

positions close to the vessel walls, involving long sections of the endothelium to
get in touch with the CTC, making reasonable the use of engineered cells on
those locations for their detection.

What emerges from these graphs is that in the long term, the CTC seems to
move towards the vessel walls regardless to the initial position, with a transverse
displacement, around the initial position, which gradually decreases as the cell
reaches the edges. Clearly, the area close to the vessel wall is convenient for
anchoring engineered cells acting as sensor, but it is also the vastest to monitor.
However, as shown in Fig. 3b and c (left sub-figure), once reached the vessel wall,
the CTC does not continue its path in a straight longitudinal fashion. Instead,
it tends to change its latitude, moving around the vessel wall. This increases
the probability that, independently from the initial position of a CTC, a sensor
deployed on the vessel wall will have a significant probability to intercept it.
The optimal strategy would be engineering portions of the endothelium so as to
increase this probability.

These findings are confirmed also by Fig. 5, which shows the mass probabili-
ties versus the distance from the vessel axis for each case study. The position of
the CTC are collected when it exits from the simulated section of the vessel. The
collected results show that for the first case of Fig. 5a, the positions assumed by
the CTC have a sort of Gaussian distribution centered between 0.5 to 0.75µm
(note that the mean value is shifted to the right of the graph, i.e. towards the
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Fig. 5. Distribution of CTC as a function of the distance from the vessel axis

endothelium). Instead, for the intermediate initial position of the CTC (Fig. 5b),
we can see that for the half of the cases the position assumed is close to the ves-
sel walls and for the second half the positions are equally scattered towards the
center of the vessel. Note also that for this second half, the CTC have spent less
time inside the vessel, with respect to the first half, due to higher propagation
velocities. Anyway, over than 90% of cases, the CTC have reached a higher posi-
tion with respect to the initial position, so our opinion is that in the end, for
longer vessels, the general trend of the CTCs is to move toward the vessel walls.

Finally, for the last case of Fig. 5c, almost the totality of the CTCs have
maintain the initial position (close to the endothelium).

4 Conclusion

In this work we have analyzed the propagation profile of the CTC inside blood
vessels for different initial position of the CTCs. The collected results, obtained
by a simulation campaign, allow to identify the more convenient location, for
the receiver nodes, in order to maximize the probability to intercept CTCs in
the blood. A reasonable solution could be to place the CTC sensors on the
endothelium, or close to the vessel walls. A lot of feasible solutions could allow
the positioning of these detectors, from artificial sensors or stents to modified
endothelial cells that could react upon the collision of the CTC.
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Abstract. In the past years, artificial cellular models for origins-of-life
research and synthetic biology have been extensively studied. At this aim,
solute-filled lipid vesicles (liposomes) are widely used. Several evidences
have been collected about the capture of water-soluble chemicals, the
mechanism of vesicle self-reproduction, and the course of (bio)chemical
reactions in the vesicle lumen. Among the several fascinating questions
which emerged from these studies, here we focus on a peculiar feature,
namely, the fact that a spontaneous heterogeneity of vesicle structure
often emerges. In other words, vesicle populations created in the lab-
oratory by classical batch methods include very ‘diverse’ vesicles with
respect to size, morphology, and – importantly – solute content. The
consequences of this between-vesicle diversity are shortly discussed.

Keywords: Autopoiesis · Lipid vesicles · Synthetic biology ·
Synthetic cells · Primitive cells · Origins of life

1 Lipid Vesicles in Origin-of-Life Research and in
Synthetic Biology

Lipid vesicles (liposomes) are versatile microscopic structures originated from
the self-assembly of lipids. They are hollow aqueous micro-compartments, often
spherical, whose boundary is a semi-permeable membrane composed by two jux-
taposed lipid layers (the so-called ‘bilayer’), where lipids are arranged tail-to-tail.
Lipid bilayers form spontaneously as soon as lipids are dissolved in an aqueous
solution, and normally they bend and self-seal to form a closed spherical com-
partment (typical diameters from ca. 30 nm to ca. 100µm). Water-soluble com-
pounds, if present in the aqueous phase, become passively encapsulated in the
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Fig. 1. Giant lipid vesicles are often used for constructing cell-like systems. The pic-
ture shows calcein-filled vesicles whose membranes have been stained by Trypan Blue.
Reproduced from [38] according to the CC-BY license. (Color figure online)

vesicle lumen, whereas hydrophobic and amphiphilic chemicals will self-localize
in the membrane (Fig. 1).

The vesicle formation is spontaneous. This is due to entropic factors, and it
represents a very remarkable exergonic mechanism for achieving highly ordered
structures (the lipid bilayer, and thus the vesicle) at the expenses of the water
molecules of the solvent, whose entropy increases. Moreover, the bilayer closure
to form a vesicle further dissymmetrizes the system by generating a distinction
between the intra-vesicle chemical composition and the external one.

Due to these features, lipid vesicles are used as simplified models of bio-
logical cells in two apparently diverse research areas, namely origins of life and
synthetic biology. In origins of life investigations, lipid vesicles are taken as prim-
itive cell models. The ‘constructive’ approach [6,17] represents the unique way
to study primitive cells – so to explore their structure, behavior, stability, reac-
tivity, capacity of encapsulating other substances, and so on. On the other hand,
the same approach can be adopted in synthetic biology to build simplified cellu-
lar models aiming at the engineering and construction of cell-like structures in
controlled and programmed way. These ‘minimal synthetic cells’ can help under-
standing of how molecular biosystems work or can accomplish specific biotech-
nological tasks. As mentioned, these two research directions, which might appear
almost at the antipodes, share as their common ground the theory and the prac-
tice of constructing cellular models in the laboratory [37].

2 Inquiring into the Cell Cycle of Primitive Cells

Experimental research on vesicles as primitive cell models was started in the
1990s essentially by the group of Pier Luigi Luisi at the ETH Zürich. Prior
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models were indeed based on coacervates [27] or microspheres [10] (see [13] for
an historical review), but the discovery of liposomes by Alec Bangham [2] and
especially the several studies on fatty acid vesicles [11,15] strongly promoted the
shift toward vesicles as biomimetic compartments.

Two elements of innovation were introduced by the Swiss group. Firstly,
the target was the assembly of enzyme-filled vesicles (analogous to the Oparin
enzyme-filled coacervates). Second, the vesicles were not static, but thanks to
the incorporation of new membrane building blocks, they could grow and divide
in order to simulate a protocellular proliferation. In other words, from the very
beginning it was clear that primitive cell models have to incorporate two of the
main features of living cells: an internal reaction network and the grow of the
‘shell’, and ideally perform a sort of primitive cell cycle, as shown in Fig. 2.

The two chemical systems (the ‘core’ and the ‘shell’) should act harmonically
so to produce – inside the compartment – all constituents of the primitive cells.
Only in this way the daughter cells will be able to re-start the life cycle.

To date, a vesicle system capable of performing a primitive cell cycle as that
one depicted in Fig. 2 has not been realized yet. It is worth mentioning that such
a system would be autopoietic [23], as it would be able to autonomously produce
all its internal components from internal reactions. However several experimental
studies have inquired into the several physico-chemical processes underlying that
complex pattern.

Commenting on such results lies outside the scope of this paper. The inter-
ested readers can find a detailed account in a recently published review [35].
For the present discussion it is enough to mention that great efforts have been
made (and are still made) to study internalized reactions either by employ-
ing allegedly primitive compounds (ribozymes, short peptides), either ‘modern’
molecules (protein, ribosomes, DNA). Ideally, an internal reaction network, irre-
spective from its material constitution, in order to be autopoietic should be able
to synthesize all components of the network, and the boundary compounds as
well. For the latter goal, lipid synthesis inside vesicles can be achieved [8,19,30]
but not to the point of observing growth and division. Vice versa, if excess
boundary-forming compounds (or their precursors) are added from outside, vesi-
cle self-reproduction has been demonstrated [41,44]. Moreover, it is of great inter-
est the physical understanding of the 0th-step of the cell cycle in Fig. 2, namely,
the ‘booting’ self-assembly process that leads to a solute-containing vesicle from
separated components.

3 The Need of a Population Perspective: Vesicle
‘Diversity’

Overlaid to the dynamics illustrated in Fig. 2, which refers to the molecular and
supra-molecular processes of chemical self-assembly, entrapment, transforma-
tion, growth-and-division, there is a central physical aspect that was neglected
until a few years ago. This is the inescapable between-vesicle variability that
emerges from the microscopic nature of these assemblies. The interplay between
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Fig. 2. The hypothetical cycle of a primitive cell. 0th step: formation of primitive cell
by lipid self-assembly and solute capture; 1st step: primitive cell growth at the expenses
of external compounds, which should enter into the primitive cell (e.g., by diffusion,
by the help of a primitive translocator), and being processed by the internal metabolic
network so to produce primitive cell own components, including the membrane, so to
allow a growth; 2nd step: division of the grown mother cell into two or more daughter
cell, a process that implies solute partition; 3rd step: each one of the daughter cell
re-start the cycle, giving rise to primitive cell proliferation. The transformations here
depicted independent from the chemical nature of primitive cell components, but obey
to an autopoietic mechanism whereby the internalized reaction network produces all its
components and the boundary molecules as well. Note that an autopoietic mechanism
is a prerequisite for a cell cycle, but does not imply it (an autopoietic cell can stay in a
stationary homeostatic state without self-reproduction, but still displaying – as inter-
nal activity – a continuous production and degradation of its components, membrane
ones included). For a discussion on autopoiesis, and reported experiments on artificial
autopoietic self-reproduction and autopoietic homeostasis, see, respectively [21,41,43].

their small volume and the stochastic events at the molecular scale originate this
additional level of description, that we refer as vesicle ‘diversity’ [39].

Although it was self-evident that a population of vesicles – intended as cell
models – is clearly composed by different vesicles, because of different size, dif-
ferent content, different membrane composition, different number of lamellae,



Between-Vesicle Diversity 175

different metabolic efficiency, and so on, an adequate level of understanding of
this diversity was not available.

Referring again to Fig. 2, vesicle diversity is generated and associated at
each step of the cycle and its booting. In particular, at the 0th step, vesicle
self-assembly and solute encapsulation generate probably the largest differences,
but also the cycle steps such as the growth (due to diverse reaction rates of
the network reactions), and the division (when compartmentalized solutes of the
grown mother vesicle are distributed among daughter cells).

Each one of the above-mentioned events might generate large between-vesicle
structural diversity, which might translate into functional diversity, and thus
generating competition between vesicles (between protocells) - a typical ‘biolog-
ical’ behavior. Moreover, the existence and the observation of diversity and of
‘extremes’ in vesicle populations can be highly informative about the mechanisms
of life origins. This diversity is actually a faithful representation of primordial
protocellular systems, where populations of lipid compartments spontaneously
emerged from the multi-molecular milieu created by a contingent combination
of local physico-chemical factors.

On the other hand, it should be noted that when vesicles are employed as syn-
thetic cells (in the biotechnological or synthetic biology arenas), between-vesicle
diversity should be kept at the lowest possible level, so to have homogeneous
populations where all individuals behave the same manner.

4 The Numbers of Vesicle Diversity

Among the various sources of between-vesicle diversity, the number and the type
of solutes encapsulated in their lumen provides the most striking effect of diverse
functionality in these cell-like systems.

All steps of the primitive cell cycle (Fig. 2) influence (and are influenced by)
the composition of the internal vesicle solution as specified in Table 1.

Table 1. Sources and effects of between-vesicle diversity in a primitive cell cycle

Process Source of diversity Diversity production

Self-assembly size, lamellarity, solute content composition, concentration, S/V ratio

Growth binding, kinetics, intrinsic
stochastic effects

reaction feasibility, performance

Division size, solute partition among
the daughter cells

reactions of next generation

In the past few years we have explored the diversity of vesicle population
with respect to the capture of solutes (0th step: bilayer self-assembly and vesicle
formation) and partition of solutes among daughter vesicles (3rd step: vesicle
division).
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The two cases are somehow similar because the solute capture and solute
partition can be modeled by the same maths. In particular, we defined a simple
model based on a very reasonable ‘null hypothesis’ H0, which states that when
lipids self-assemble into a vesicle, it is expected that the average number λ of
solutes captured in the vesicle lumen is proportional to the vesicle volume. This
is equivalent to say that each vesicle ‘samples’ the aqueous solution where it
forms, and capture the solutes dissolved in it, with a probability p = v/Vtot,
where v is the vesicle volume and Vtot is the total aqueous volume. Because
there are Ntot molecules in Vtot (thus Cbulk = Ntot/Vtot, then λ = p × Ntot and
cvesicle = Cbulk.

It follows that λ can be easily calculated as follows:

λ/NA

v
= cvesicle = Cbulk (1)

λ = NA · Cbulk · v (2)

where NA is the Avogadro’s number. For example, if Cbulk = 5µM, λ is 12.6
and ∼ 2 × 105, respectively, for vesicles with diameter of 200 nm and of 5µm.

Owing to stochastic fluctuations of the local (microscopic) Cbulk near the
nascent vesicles, it is expected that the actual number n of entrapped solute
molecules differs from λ (and cvesicle, the actual intra-vesicle solute concentration,
which is proportional to n, will differ from Cbulk). As order of magnitude, it is
expected that Δλ/λ goes as λ−1/2 (as obtained by the fluctuations theory).
Given a certain Cbulk, high variance should be observed for small vesicles, and
small variance for large vesicles. Referring to the above-mentioned cases, Δλ/λ
should be ∼ 30% and 0.2%, respectively.

As mentioned, according to H0, the entrapment process is equivalent to ran-
dom sampling the solution by the nascent vesicle. Due to stochastic fluctua-
tion of the solute concentration in the solution volume, a vesicle will capture n
solutes when instead λ are expected on average. It follows that the number of
entrapped solute in the vesicle population is distributed according to the Poisson
distribution (Eq. 3):

p(n) =
λn

n!
e−λ (n = 0, 1, ...) (3)

where λ is the mean value, and
√

λ is the standard deviation. When λ is high,
i.e., >10–15 (which in turn means large Cbulk and/or large V ), the Poisson
distribution becomes similar to the Normal (Gaussian) distribution.

However, the same mathematics can be applied to the question of solute
partition during the division of a grown mother vesicle (2nd step in Fig. 2). If
the distribution of solutes in the mother vesicle is spatially homogeneous, the
expected number of solutes that will be found in the daughter cells will be
proportional to their volume. Again, the λ value can be estimated by Eq. 2 and
the distribution by Eq. 3.

The discussion becomes more complicated when solutes of different types
(different chemical species) are considered. The simplest hypothesis is that the
entrapment of a species does not depend on the presence of the others, so that
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the co-entrapment probability is simply given by the product of each entrap-
ment probability (of each individual solute). In mathematical terms (for just
two solutes A and B):

p(nA and nB) = p(nA) · p(nB) (4)

In general, for k different species, it is the product of k Poissonian terms with
averages λk = NA · Ck,bulk · v [16,18,31].

5 Experimental Evidences

There are not many studies specifically dealing with the question of between-
vesicle diversity associated with the vesicle formation, and rare are those dealing
with the steps of primitive cell cycle.

In a recent review [1], we have commented quite in detail the available exper-
imental results. Only few authors have studied the solute occupancy distribution
inside conventional and giant vesicles in the simple case of one-solute system.
At this aim, non-averaging techniques are required, such as microscopy or flow
cytometry. On the contrary, numerous reports are based on multiple-solute sys-
tems, but the studies do not address the measurement of the solutes concentra-
tion, rather focus on the outcome of complex reactions inside vesicles, such as
the transcription-translation (TX-TL). TX-TL reactions lead to the production
of a protein – a keystone step for this synthetic biology branch.

Anyway, most investigations, but not all, indicate that the between-vesicle
diversity is often high, beyond the statistical expectations.

Let us summarize here a series of results, obtained by us, dealing with 0th
and 2nd step of the primitive cell cycle (Fig. 2).

5.1 Spontaneous Formation of Solute-Filled Vesicles

Among the four traditional methods for vesicle preparation, the thin lipid film
hydration (‘natural swelling’) is certainly the aptest for simulating the sponta-
neous formation of primitive cell-like structures. It consists in the deposition of
a thin lipid film over a surface (e.g., in a glass test tube) followed by a lipid
swelling in the presence of a solution of interest.1

It is probably evident to most liposomists that vesicles formed by the thin
lipid film hydration method are diverse in terms of morphology, size, lamellarity
and – especially – solute content. No detailed discussions have been reported

1 Ideally, one would like to have a single lipid monolayer deposited over a large surface
so that all parts of the film would experience the same conditions. This corresponds,
in most cases, to work well below the µM lipid concentration range, with conse-
quent vesicle losses and other impractical complications. Thus, in the most common
experimental conditions the film is rarely so perfect and different regions of the film
will experience different micro-environments. Actually, realistic laboratory condi-
tions might affect the measured heterogeneity of vesicle formation paths.
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on the reasons for the latter heterogeneity (the width of the solute occupancy
distribution) and on the expected-versus-observed variance.

We studied the encapsulation of ferritin, ribosomes and ribo-peptidic com-
plexes (reviewed in [32]) in conventional phospholipid vesicles prepared by the
film method. These are convenient macromolecular solutes – especially ferritin
– because they can be visualized by cryo-transmission electronmicroscopy, and
directly counted. Thus, the intravesicle solute occupancy distribution can be
determined by analyzing a large number of images. Our expectation was to
find the classical bell-shaped distribution (Poisson or Gaussian), but we surpris-
ingly found a power-law distribution (Fig. 3) and interesting ‘super-filled’ vesicles
whose formation cannot be easily explained by stochastic fluctuations.

According to these observation, that have been confirmed qualitatively (but
not quantitatively) when fluorescent proteins were encapsulated inside small (1–
2µm) giant vesicles [5,39], the actual solute occupancy distribution might vary
significantly from expectations, and in particular the formation of solute-filled
vesicles, although rare, can shed light on the self-organization drive to the onset
of early cells.

When two or more solutes are considered, Eq. 4 extended to the k = 80 dif-
ferent solutes of TX-TL reaction has shown limitations, because we recorded
again solute rich vesicles even if statistically their occurrence should have been
extremely rare. The solute-rich vesicles were those capable of synthesizing a pro-
tein. This was proved by running experiments in those conditions that give small
λk values in two different ways, namely, using small vesicles (small v) [31], or
using small Ck,bulk [36]. When conventional vesicles, with diameter of ca. 200 nm
have been used, it results that although most vesicles cannot synthesize proteins,
some still can, despite the very unfavorable co-entrapment probability (of the
order of 10−26). It has been shown that a power-law model can successfully
explain the observation of TX-TL reactions in small GVs [25].

An attempt to explain the physics of solute entrapment and the reported
power law [22] has been proposed, based on the Cox’s theory of renewal point
processes [28], but a definitive clarification is still missing.

5.2 Division of a Grown Mother Vesicle into Two or More Daughter
Vesicles

In order to model the spontaneous division of primitive cells we devised a
mechanical approach whereby solute-filled phospholipid vesicles were fragmented
in many small daughter by a mechanical non-spontaneous process called extru-
sion [9]. Although this strategy clearly represents a crude approximation of the
spontaneous vesicle self-reproduction [41,44], it includes the core mechanism of
interest for our discussion, i.e., the stochastic partition of encapsulated solutes in
the daughter vesicles. In the past, extrusion was applied to primitive cell models,
providing information about average solute retention [14,34].

We investigated how a population of giant vesicles (average diameter 5–8µm)
behave when vesicles are extruded to give small (0.8µm) daughter vesicles. The
study was carried out by firstly encapsulating fluorescent solutes of different size
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Fig. 3. Encapsulation of ferritin inside conventional lipid vesicles. (A-B-C) Typical
super-filled vesicles which contain a higher-than-expected number of ferritin molecules.
Such special vesicles are present in minor amount (ca. 0.1%). In particular, the intrav-
esicle ferritin concentration is 8.5× (A), 3.8× (B), 11.8× (C) the expected bulk con-
centration (Cbulk, cf. Eq. 2). In the bottom panel (D), the expected (empty symbols)
and the measured (filled symbols) solute occupancy distribution is reported. Note the
logarithmic scale on the y-axis. The experimental data, when plotted on a double loga-
rithmic plot, give a straight line (a power-law distribution). Reproduced from [22] with
the permission of Wiley.

inside giant vesicles, then by extruding giant vesicles and measuring the internal
solute concentration of the daughter vesicles (by confocal microscopy). According
to H0 the solute concentration in the mother vesicles and in the daughter ones
should be the same, although the spread around the mean value can differ due
to stochastic fluctuations.
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Figure 4, taken from [9], summarizes the experimental results. In particular,
the plots compare the experimental solute occupancy distribution with the the-
oretical one, obtained by stochastic partition of the solutes initially present in
giant vesicles. In this manner not only the average but also the variance of the
expected and measured distributions is compared.

Fig. 4. Comparison between the solute occupancy distribution as obtained experi-
mentally (grey area) and by numerical modeling (red lines). The distributions refer
to extruded filled with (a) pyranine; (b) calcein; (c) fluorescein-marked bovine serum
albumin; (d) fluorescein-marked dextran. Reproduced from [9] with permission from
The Royal Society of Chemistry. (Color figure online)

Results show that the solute partition pattern depends on the solute size.
Small solutes such as pyranine (0.52 kDa) and calcein (0.62 kDa) are largely
lost during the extrusion of giant vesicles (−48% and −76%, respectively).2 In
contrary, large solutes such as bovine serum albumin (69 kDa) and dextran (150
kDa) – both marked by fluorescein) – experience a lower lost (−11% and −30%,
respectively).

2 Note that this loss does not refer to the volume loss which follows from the vesicle
size reduction, but it is an authentic concentration reduction due to the reduction
of the average number per unit of volume.
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Data have been explained on the basis of the different diffusion coefficient
(D) of small and large solutes. The high D of small solutes implies a greater
movement in the time interval of ∼1 ms when the daughter vesicles seal their
membrane (after being pinched off from the mother vesicle). In most cases then,
the solutes will diffuse away from the volume captured by the daughter vesicle.
Vice versa, large solutes will mainly stay and be captured due to their low D.

6 Relevance, Future Challenges, and the Role
of Bioinformatics

In this work we have emphasized the role of vesicle diversity as derived from
spontaneous processes such as vesicle formation, growth, division. We have shown
that when this aspect is specifically investigated, interesting observations are
collected – but most of them are currently without a clear explanation.

What are the very generative mechanisms and what is the role of vesicle
diversity when primitive cell models or synthetic cells are built in the laboratory?

While undergoing and future research tools need to be sharpened in order to
solve the first question, it is already evident that vesicle diversity is a concep-
tually important factor to consider. Focusing on this topic represents already a
cultural shift that can lead to interesting developments. For example, the emer-
gence of primitive cells, often discussed from an individualist viewpoint should
be instead discussed from a population perspective, and the factors that amplify
or propagate any between-individual variations should be taken into account.

The new vision based on protocell ensembles makes the story more inter-
esting. The duality between competition and cooperation, two central ideas in
biology, makes sense only when structural and functional diversities are explic-
itly considered. In the prebiotic context, such a diversity is strongly linked to
structure and precedes the onset of genotype variations. The structural differ-
ence between protocells is more radical as it originates from the mechanisms of
vesicle formation (by self-assembly or by division of a parent vesicle). Therefore,
protocell diversity has realistically impacted on early pre-biological evolution.

Protocell assemblies models have been already put forward [4,12,33] but
more research is needed. Vesicles could be included in a gel matrix [29] so to
create large tissue-like models.

Synthetic biology applications, on the other hand, require highly homoge-
neous samples. Although most of published work generally rely on batch vesicle
preparation methods (and thus display high between-vesicle variability), mod-
ern trends suggest that the microfluidic technologies [7,40,42] will revolution
the experimental approaches to synthetic cells. We expect indeed that syn-
thetic cell construction by microfluidics will overcome soon the traditional batch
methods [35].

The evidences here summarized strongly call for integrate theoretical, exper-
imental, and stochastic modeling approaches [3,9,20,24,25].

Bioinformatics can be an important tool for understanding the behavior of
vesicle populations, and realize a qualitative jump in the direction of a systemic
and multi-scale view. Bioinformatics can be introduced at three different levels.
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1. In the theory of minimal living systems, the conceptualization of the so-called
“organizational closure”, which characterize autopoietic systems, has been
central. Now that synthetic approaches have become realistic, organizational
closure can be designed by bioinformatics. What is the minimal complexity of
a reaction network capable of self-sustainment? How to understand whether
the production of certain component(s) can be omitted from the autopoietic
system and instead be ‘outsourced’ to the environment? What are the network
topology features that define autonomy?

2. As modeling support for the experimental approaches, numerical simulations
can be very useful in two important aspects that determine the course of
micro-compartmentalized reactions, namely extrinsic and intrinsic stochastic
effects. The phenomena discussed in Sect. 5 are based on extrinsic stochastic
effects. Reactions inside microcompartments, however, are subjected to rele-
vant intrinsic stochastic effects, due to the small number of molecules confined
in the vesicle lumen or in the membrane. This fact implies that the reactions
occurring in primitive cell models and synthetic cells are best simulated by
stochastic kinetics (i.e., master equations, Monte-Carlo methods, etc.), rather
than with ordinary differential equations.

3. In the emerging field of bio-chemical-based Information Technologies (bio-
chem-ITs) and Molecular Communications [26], bioinformatics becomes func-
tional to develop synthetic cells capable of manipulating chemical signals
in terms of the communication theory, from relatively simple systems such
as signal exchanges between synthetic cells, to coordinated or synchronized
behavior of synthetic cell assemblies, up to more complex pattern as can be
a rudimentary differentiation – which are experimental goals probably not so
distant in the future.

7 Concluding Remarks

In this paper we have emphasized and discussed the important but often
neglected topic of between-vesicle diversity, referred to the current experimental
approaches to primitive cell models and synthetic cells. Experiments show that
experimentally obtained vesicle populations display quite high variances (except
when new microfluidics methods are employed). Accordingly, the definition of
an ‘average behavior’ might become almost meaningless. But instead of being
a bad news, these evidences offer an opportunity for better understanding the
generative mechanism of protocells, the paths that lead to prebiotic evolution,
and the early cell communities.

Finally, we remark that as laboratory-made artificial cells are very simple
systems when compared to biological living cells, the application of rigorous
bioinformatic models is not only helpful, but also very meaningful.
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Abstract. In this contribution we discuss the possible strategies to synthesize
photo-autotrophic artificial protocells starting from scratch, following the semi-
synthetic bottom up approach. The main aim is to build up artificial compart-
mentalized systems able to mimic living cell behavior in the transduction of
light energy in chemical energy. Some preliminary results and future perspective
are presented and discussed.
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1 Introduction

1.1 ASAPs: Artificial Simplified Autotrophic Protocells

The synthesis of artificial cells starting from inanimate artificial or natural compounds
is an ambitious scientific goal [1–6] that was postulated initially as an issue in the
origin-of-life researches [7–10], but it has fast gained attention in the past few years. In
fact, the rapid expansion of synthetic biology [11] has given additional conceptual
stimuli and technical tools to this field, especially by the so-called bottom-up approach
[12]. In this framework, it has been shown that vesicle-based cell-like systems (shortly
“protocells”, a term often used to indicate both primordial cells or simplified cellular
prototypes) can be designed and assembled to perform specific function (for biotech-
nological applications) and for studies in the origin-of-life field.

We recently focused our attention on the construction of synthetic cells capable to
convert light energy into chemical energy in form of proton gradient across the vesicle
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membrane [13, 14] that can eventually be exploited to synthetize high free energy
compound, like ATP and/or NADH. To achieve this aim we have been inspired by
natural systems trying to mimic the light phase of the photosynthesis performed by
bacteria [15]. Two main different strategies are followed: the single and the multi
compartment approaches (SCA and MCA respectively). In SCA, we try to reconstitute
in the lipid membrane of giant unilamellar vesicles (GUVs) all the protein complexes
involved in the light phase of bacterial photosynthesis: the reaction center (RC), the
coenzyme Q–cytochrome c oxidoreductase (bc1), and the ATP synthase (ATP-syn).
GUVs are spherical aqueous compartments closed by a lipid double layer with diameter
in the range of tenth of micrometers, that are self-aggregate artificial structures suitable
to mimic the cellular morphology. On the other hand, in MCA, instead of extracting
each single photosynthetic enzyme from bacteria and reconstituting all of them in the
vesicle membrane, we optimize a procedure for extracting cromatophores, small natural
organelles (radius 20–50 nm), that contain all the photosynthetic apparatus in their
membrane. The cromatophores can be then entrapped in the internal aqueous lumen of
GUVs, in order to implement multi-compartment systems able to transduce light energy.

Therefore, in both approaches, the final goal is to prepare photo-autotrophic syn-
thetic protocells able to convert ADP into ATP molecules driven by light. In this paper
we describe the steps already done to achieve this ambitious goal following both the
mentioned approaches and the further moves to be accomplished in a close future.
Before doing this, in the next section we briefly describe the photosynthetic apparatus
present in bacteria.

Fig. 1. Schematic representation of the ternary RC/bc1/ATP-syn system in its physiological
orientation. After visible irradiation, the antenna complex LH1 absorbs and transfers the light
energy to bacteriochlorophylls dimer of RC that is photo-oxidized. 2 electrons are then
translocated to a ubiquinone molecule (Q), which is reduced to ubiquinol QH2 with protons taken
up from the inner membrane side (cytosol side). The photo-oxidized dimer is reduced back to its
initial state by the reduced cytochrome c2 (cyt2+), which in turn becomes oxidized (cyt3+). The
two newly produced species (QH2 and cyt3+) are converted back to Q and cyt2+ by the coenzyme
Q–cytochrome c oxidoreductase (bc1). A proton gradient (alkaline inside) is thus obtained. Next,
ATP synthase (ATP-syn) exploits the proton gradient to produce ATP from ADP and inorganic
phosphate Pi in the internal side of the membrane.
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1.2 The Bacterial Photosynthetic Apparatus

Photosynthesis is responsible for the photochemical conversion of light into the chemical
energy that fuels the planet Earth. The protein complexes that are involved in this process
are schematically reproduced in Fig. 1 and they are located in the cytoplasmic membrane
(CM) of photosynthetic bacteria [15]. The photochemical core of this process in all
photosynthetic organisms is the transmembrane protein called the Reaction Center (RC) a
transmembrane protein complex composed of one mostly hydrophilic H subunit and two
highly hydrophobic subunits, L and M. In purple photosynthetic bacteria, this photo-
enzyme is located in CM surrounded by antenna complexes LH1 and LH2 that absorb
light energy and transfer it to reaction centers. In fact, when the energy of a photon is
transferred to RC, the photo-cycle starts and an electron-hole pair is generated. In the
presence of the reduced cytochrome cyt2+ (an electron donor) in the external pool,
electrons are transferred from cyt2+ to RC while protons are taken up from the cytoplasm
by ubiquinone Q (an electron acceptor) present in an internal site located in the H
hydrophilic subunit. This process produces a molecule of ubiquinol QH2 that eventually
leaves its binding site. The stoichiometry of this first step is as follows:

2cyt2þ þQþ 2H þ
in !RC;h 2cyt3þ þQH2 ð1Þ

The photocycle is then completed by the activity of the coenzyme Q–cytochrome c
oxidoreductase (bc1) that catalyses the opposite reaction without consuming light
energy:

2cyt3þ þQH2 þ 2H þ
in !bc1 2cyt2þ þQþ 4H þ

out ð2Þ

The result of the photo-cycle, Eqs. (1) and (2), is the net translocation of 4 protons
across the cytoplasmic membrane and the formation of a transmembrane proton gra-
dient driven by the transduction of light energy.

This proton motive force is then exploited by the ATP synthase, an enzyme able to
convert ADP in ATP molecules in presence of endogenous phosphate groups Pi in the
cytoplasm. In this way, photo-autotrophic cells fuel the whole metabolism of the
organism.

It is worthwhile to stress that the physiological orientation of the three enzymatic
complexes must be preserved when transmembrane proteins are reconstituted in the
artificial protocell membrane, in order to make the photosynthetic apparatus perfectly
functioning. This is, of course, a crucial requirement in the optimization of the
preparation procedure of ASAPs. To overcome this drawback, an alternative strategy is
to extract from photosynthetic bacteria nano-sized vesicles: the chromatophores, con-
taining all the photosynthetic apparatus retaining the physiological orientation [15, 16].
A schematic draw of a chromatophore is reported in Fig. 2 [17]. Chromatophores are
usually originated from invaginations of the cytoplasmic membrane, mostly produced
when bacteria grow photosynthetically in anaerobic conditions. They can be collected
by breaking the CM membrane with a suitable procedure and separating them from
others cellular fragments.
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2 Materials and Methods

In this section some experimental procedures common to both SCA and MCA will be
briefly described.

2.1 Giant Unilamellar Vesicles Preparation: The Phase Transfer Method

Giant unilamellar vesicles (GUVs) are spherical artificial compartments with a diameter
in the range of tenths of micrometers enveloped by a bilayer of lipids. For their size and
morphology, they represent suitable in vitro models for real cells. GUVs can be pre-
pared following different protocols [18]: natural swelling and electro formation are the
more traditional ones, but recently the lipid-coated ice droplet hydration method [19],
the phase transfer method [20] have been also presented and microfluidic apparatus
developed [21]. In this paper we used the droplet transfer method [20] since this
method does not require a complex instrumentation or manipulation procedure.
Moreover, it needs a small amount of chemicals and exhibits high rate of success and
high yield of solute encapsulation. This method starts by preparing a water in oil
macroemulsion [13, 20]. The water droplets, swimming in the organic phase, are
enveloped by just a single monolayer of phospholipids, and they represent the pre-
cursors of GUVs. The macroemulsion is obtained simply pipetting by hand a water
solution (the Inner Solution IS) in the organic phase composed of mineral oil in

Fig. 2. Atomic structural model of a chromatophore vesicle from R. sphaeroides, the inner
radius is 50 nm. Lipid molecules among protein complexes are not shown for sake of simplicity.
Reproduced with modifications from [17] according to CC by 4.0 license.
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presence of a single kind of phospholipid: 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine (POPC). IS must contain all the compounds that have to be entrap-
ped in the internal volume of the GUVs and these molecules remain confined in the
core of the droplets. In order to add the second layer to the droplets to form the
bilayered membrane of GUVs, the macroemulsion is stratified in a 1,5 mL Eppendorf
tube on a water phase (the Outer Solution OS) on top of which it has been previously
stratified a mineral oil layer rich with POPC. By centrifugation, the droplets are then
forced to go from the upper organic phase to the lower water phase and, by crossing the
POPC-rich interphase, they take up the second layer. Finally, GUVs can be collected as
a pellet at the bottom of the test tube after centrifugation, thanks to a density difference
between the IS and OS obtained by adding sugars with different molecular weights,
keeping isotonic conditions. The pellet, then, can be washed and re-suspended in an
isotonic aqueous solution obtaining a vesicle suspension with the external and internal
water phase of the desired compositions. In Fig. 3, a schematic draw of this procedure
is reported in the left panel (a), while a picture of the pellet of GUVs obtained after
centrifugation is illustrated in the middle panel (b). For further details the readers are
recommended to refer to the original papers [13, 20].

2.2 Chromatophores Extraction from Rhodobacter sphaeroides

Cells of Rh. sphaeroides strain R26 were purchased from the Deutsche Sammlung von
Mikroorganismen und Zellkulturen GmbH (DSMZ, catalog number 2340). Bacterial
cells were grown, first, oxygenically in the dark for 12 h, then photoheterotrophically
under anaerobic conditions at pH 6.9 illuminating the bottles with a 100 W tungsten

Fig. 3. The phase transfer method: (a) schematic draw of the formation of the second layer
during the droplets centrifugation; (b) the pellet obtained at the bottom of the test tube pointed
out by the arrow; (c) a possible mechanism of the encapsulation of membrane proteins extracted
from living systems in form of micellar aggregates and added to the inner solution. The white
arrow indicates the favored encapsulation of a RC@micelle aggregate driven by the hydrophilic
subunit. Reproduced from [13] with permission.
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filament light bulb placed at 25 cm from the vessels. Harvested cells were washed twice
and re-suspended in a 5 mM K-Phosphate buffer (Ph = 8). A few flakes of DNase and
5 mMMgSO4 were added. After 15 min incubation, the cells were disrupted by a single
French press step operating at 15 MPa and 4 °C. In these conditions cell disruption
promotes the closure of the CM invagination to form sealed vesicles with diameter of
roughly 50–100 nm bearing the intact photosynthetic apparatus: RC, LHI, LHII, bc1
complex, ATP synthase and the water-soluble cytochrome cyt2+ in the inner aqueous
core. The sample was centrifuged at 4 °C, for 15 min obtaining a pellet containing the
cell debris and a supernatant containing the chromatophores. The supernatant solution
was then ultra-centrifuged at 140000 g for 120 min and the obtained pellet was sus-
pended in the same buffer containing chromatophores roughly at a OD860 = 50.

2.3 Proteins Extraction from Rhodobacter sphaeroides

Extraction and Purification of the Reaction Center (RC). RC was extracted from
blue-green strain R-26 of the photosynthetic bacterium Rhodobacter sphaeroides fol-
lowing an established procedure using lauryldimethylamine N-oxide (LDAO), then it
has been precipitated with ammonium sulphate and purified with a diethylaminoethyl
(DEAE) Sephadex G25 chromatography [22]. The final ratio of absorbances at 280 nm
and 802 nm (A280/A802) was lower than 1.3 (the optimal value for pure RC is 1.28).
The RC concentration was determined spectrophotometrically measuring the absorp-
tion at 802 nm of the steady-state using 288,000 M−1 cm−1 as extinction coefficient
[23]. Usually the stock solution of RC in LDAO 0.025% is obtained at the final
concentration of around 70 lM.

Extraction and Purification of the Coenzyme Q–Cytochrome C Oxidoreductase
(bc1). Extraction and purification of bc1 were performed as previously described in
literature [24]. One volume of chromatophores suspension (OD860 = 50) was diluted
with 0.3 volumes of buffer (50 mM MOPS (pH 7.8), 100 mM NaCl, 1 mM MgSO4,
20% (w/v) glycerol, and 5 mM histidine) and 0.7 volumes of Ni-NTA resin equili-
brated in buffer B. Dodecyl maltoside (DM) from Sigma was added dropwise from a
stock solution 10% (w/v) to a final concentration of 0.6% (w/v). After 40 min incu-
bation at 4 °C, the mixture was transferred to a chromatographic column and washed
with about 20 column volumes of the buffer until the eluent was clear. Therefore, the
purified bc1 was eluted with a solution containing 200 mM histidine and 15 lg/mL
POPC (Avanti Polar-Lipids, Inc., Alabaster, AL). The histidine was removed by
overnight dialysis against 50 mM MOPS (pH 7.0), 100 mM NaCl, 1 mM MgSO4,
20% (w/v) glycerol, 0.01% DM, and 15 lg/mL POPC.

2.4 CrioTEM Analysis of Cromatophores

The membrane fragment suspension derived by cromatophores extraction procedure
were vitrified by applying a 3 lL aliquot to a previously glow-discharged 200-mesh 2/1
Quantifoil carbon grids (Ted Pella, USA). Grids were blotted and then plunged into
liquid ethane using a FEI Vitrobot Mark IV (FEI Company, the Netherlands). The
samples were imaged in bright field transmission electron microscopy (TEM) using a
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Tecnai G2F20 microscope (FEI Company, the Netherlands) operating at an acceleration
voltage of 200 kV and equipped with a Schottky Field Emission electron source and a
US1000 2kx2k Gatan charge-coupled device (CCD) camera. The cryo-EM imaging was
performed under low dose conditions (with a total dose of 60–80 electrons/Å2).

2.5 ATP Production by Chemiluminescent Assay

In order to monitor the conversion of ADP in ATP, the light produced by the ATP-
dependent oxidative carboxylation of luciferin by firefly luciferase enzyme has been
followed. In fact, this enzymatic reaction takes place only in presence of ATP and
consists in the oxidation of the luciferin in oxyluciferin, a compound in an excited state
that relaxes emitting energy in form of light at wavelength 555 nm.

For this chemiluminescent assay, we prepared 10 mL of an enzymatic kit as fol-
lows: 8.9 mL H2O, 0.5 mL 20X solution buffer (containing 500 mM Tricine buffer pH
7.8, 100 mM MgSO4, 2 mM EDTA and 2 mM sodium azide), 0.1 mL 0.1 M DTT,
0.5 mL of 10 mM D-luciferin and 2.5 lL of firefly luciferase 5 mg/mL stock solution.

3 Results and Discussion

Obtained results and new data for both SCA and MCA will be presented and further
steps and optimizations discussed in order to prepare really functioning ASAPs.

3.1 SCA: Single Compartment Approach

Reconstituting RC in GUVs: RC@GUV. In a previous paper [13], we have already
shown as the phase transfer method is a suitable method for the reconstitution of
transmembrane proteins in the GUV membrane. If the transmembrane proteins are
extracted from living systems in form of a micellar suspension, this suspension can be
added to the IS water solution before preparing the macroemulsion. Since transmem-
brane proteins have highly hydrophobic subunits (for instance the L and M subunits in
the RC structure), these force the spontaneous embedding of the proteins in the vesicle
membrane [13, 20]. In the case of the RC, since the H subunit is instead hydrophilic, it
drives the embedding process to occur with a preferential orientation, determining a
high percentage of uniform alignment of RCs, around 90% [13]. This orientation
corresponds to the physiological one observed in the cytoplasmic membrane. This
process is schematically represented in Fig. 3(c). It is worthwhile to note that in this
configuration when photon energy is transferred to RCs the reaction reported in Eq. (1)
occurs and protons are taken up from the internal aqueous vesicle lumen increasing the
internal pH of GUVs.

Testing the RC@GUV Photo-Activity. The RC@GUV photo-activity can be proved
by encapsulating in the vesicle internal lumen a fluorescent probe sensible to pH, like
pyranine that increases its fluorescence emission as the pH increases. Therefore,
RC@GUVs entrapping pyranine in the internal aqueous lumen RC@GUVs{pyranine}
can be irradiated at 860 nm wavelength in order to promote the reaction described by
Eq. (1). This produces an increase of the internal pH due to consumption of two

192 E. Altamura et al.



protons necessary for the conversion of Q in QH2 and it causes an increase of the
encapsulated pyranine fluorescence, recorded at 520 nm. This experiment has been
performed directly under a confocal microscope [13] and the result is shown in Fig. 4,
while the experimental conditions are reported in Table 1.

Since in RC@GUVs{pyranine} RC works alone, i.e. it is not coupled with the bc1,
the photo-cycle does not take place completely. Therefore, in order to restore the
electron donor (the reduced cytochrome cyt2+), K3Fe(CN)6 has been added to the
external solution since this compound can spontaneously reduce cyt3+ according to the
following reaction:

cyt3þ þ Fe CNð Þ3�6 ! cyt2þ þ Fe CNð Þ4�6 ð3Þ

Fig. 4. Confocal microscopy images of RC@GUVs{pyranine} transducing light energy in a
transmembrane pH gradient. The process is monitored by the increase of the internal fluorescence
of the pyranine. The vesicle suspension has been irradiated at 860 nm directly under the
microscope for 4 times intervals of 5 min and then each picture has been taken. The rate of pH
increase has been determined equal to 0.061 ± 0.004 pH units per min.
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Coupling RC and bc1. In order to test if the bc1 extracted from living bacteria is still
active, it can be coupled with RC, by mixing the protein complex micellar suspensions:
RC@micelles and bc1@micelles, in a test tube in presence of the needed substrates
[26]. Moreover, this allows us to check if it is possible to implement in a simplified
artificial system the photo-cycle occurring in the bacteria cytoplasmic membrane,
Eqs. (1) and (2). In the case of a micellar suspension, it is important to stress that the
light energy cannot be converted into a pH gradient, since a lipid membrane is not
present. Therefore, the absorbed photon energy is dissipated in form of thermal energy,
while the pH of the solution remains constant since all the protons are exchanged with
the same water solution. The time course of the reaction can then be monitored by
following the absorbance at 550 nm of the pairs cyt2+/cyt3+ by exploiting the difference
between cyt2+ and cyt3+ molar extinction coefficients (namely, ecyt2+ = 28 mM−1cm−1

and ecyt3+ = 9 mM−1cm−1). Figure 5 shows repetitive light-driven oscillations, in
highly reproducible way for 45 min. These A550 oscillations are due to the
oxidation/reduction of the couple cyt2+/cyt3+ since the extinction coefficient ecyt2+ is
greater than ecyt3+. In these experimental conditions, irradiation drives the RC-catalysed
reaction very efficiently, and cyt2+ gets completely oxidised and A550 decreases from
ca. 0.56 to ca. 0.20. Consequently, its concentration reaches a minimal stationary value
that is balanced by the opposite – and simultaneously occurring – bc1-catalysed cyt3+

reduction. When the light is switched off, the RC activity is stopped and bc1 can restore
the cyt2+ concentration almost to its initial value.

This experiment proves that RC and bc1 are both active in the investigated
experimental conditions and the photo-cycle can take place in the artificial micellar
system as expected. Moreover, Fig. 5 clearly shows that the light-driven RC-catalysed
reaction is more efficient than bc1-catalysed one, in fact, when at the end of the light
phase the stationary state is reached, the cyt2+ is almost completely consumed.

Optimizing the Photo-Cycle in GUVs. The further steps in SCA will be focused on
the implementation of protocells: RC/bc1@GUV, and on the optimization of the
enzymatic levels in order to increase the RC turnover and the efficiency of the light
transduction. The reconstitution of bc1 in GUVs can be achieved by adding the
bc1@micelles suspension in the inner solution like in the case of RC@micelles, or
alternatively adding bc1@micelles at a solution of preformed RC@GUVs [25].

Table 1. Overall concentrations of different compounds in the vesicle and micelle suspensions.
For the complete set of the experimental conditions the reader must refer to the original papers.

Compound Concentration giant vesicle
Ref. [13]

Concentration micelles
Ref. [26]

[RC] 30 nM
[bc1] 0.0 150 nM
[cyt2+] 0.0 20.0 lM
[cyt3+] 5.0 lM 0.0 lM
[Q] 60.0 lM 50.0 lM
[QH2] 0.0 150 lM
[K3Fe(CN)6] 10.0 mM 0.0
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This because in the case of bc1, its hydrophilic subunit is located in the cytoplasm, i.e.
from the opposite side of the cellular membrane respect to the H hydrophilic subunit of
RC (see Fig. 2). Regarding the optimization of the RC turnover, this can be done using
the micellar systems as a prototype model for the implementation of the photo-cycle.
What can be done is to increase the level of the bc1, more than the ration 1/7 of
RC/bc1, as reported in Fig. 5. This should allow to increase the efficiency of the cyt3+

reduction and to rise the stationary rate at which both enzymes work under continuous
illumination. The reconstitution in GUVs of bc1 extracted from mitochondria of
mammalian cells could be another possible strategy. In fact, these enzymes, in spite of
the similarity of the active site with those of the bacterial version, exhibit a higher
enzymatic activity and a higher stability [27]. This will bring us to realize engineered
hybrid protocells able to maximize the light energy transduction in form of a proton
motive force, as a first milestone towards the synthesis of ASAPs following the Single
Compartment Approach.

3.2 MCA: Multi Compartment Approach

In this section we describe some preliminary results obtained by following the MCA
for the preparation of ASAPs. In particular, we have focused the attention in a pro-
cedure for extracting chromatophores from living bacteria and testing their activity in
producing ATP under irradiation.

Morphological Analysis of Chromatophores. A procedure for the extraction of
cromatophores from living bacteria has been optimized and described in the Materials
and Methods section. The solution containing the cromatophores has been then ana-
lyzed by Cryo-TEM microscopy in order to check if the cytoplasmic membrane closes
to form spherical nano-sized vesicles after the rupture in the French press (Fig. 6).

Fig. 5. Time course of the absorbance at 550 nm of a mixed RC@micelles and bc1@micelles
solution ([RC] = 30 nM and [bc1] = 210 nm) under continuous light irradiation and in the dark
(red and grey background) in presence of [cyt2+] = 20 lM, [Q] = 50 lM and [QH2] = 150 lM.
Reproduced with permission from [26] (Color figure online)
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Cryo-TEM analysis shows that aggregates of different morphology are present in
the obtained suspension, most of all are closed vesicles with an average diameter
D = 116 ± 69 nm (average done on 76 collected items), but some of them exhibit
elongate forms and some open membrane fragments are also presents, as it is shown in
Fig. 6.

Testing the Chromatophores Activity. To check if the extraction procedure brings to
cromatophores that keep the activity of all the photosynthetic protein complexes we
checked if ADP added to the bacterial extract suspension can be converted in ATP
molecules by irradiating the solution. To reveal the presence of ATP a well-known
chemiluminescent assay, the enzymatic oxidation of luciferin, has been used. The plot
in Fig. 7 shows the time course of the 555 nm chemiluminescence registered spec-
trophotometrically from a cuvette filled with the enzymatic kit, after the addition of
ADP and cromatophores, and after switching on/off the light irradiation at 860 nm. The
enzymatic kit alone exhibits a negligible chemiluminesence that undergoes a small
jump when ADP is added to the kit, probably due to some ATP present as impurity.
After the chromatophores addition the light emission increases linearly and this can be
due to a residual activity of cromatophores driven by the pH gradient that occurs across
the organelles and the buffered solution of the enzymatic kit. When the cuvette is
irradiated at the wavelength 860 nm corresponding to the RC excitation, the signal
increases abruptly, proving that the cromatophores start to produce ATP and this speed
up the firefly luciferin enzymatic activity. When the irradiation is switched off, what is
observed is a decrease of the signal due to the natural decay of the excited oxyluciferin.
If the light is switched on again, the emission increases with the same rate as before,

Fig. 6. Cryo transmission electron microscopy (Cryo-TEM) analysis. (A) Low magnification
image of vitrified vesicles acquired at low electron dose. (B) Higher magnification showing
vesicles of various size and shape
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reaching quite soon the instrumental saturation of the signal. Switching off the irra-
diation results in a new decay that becomes visible after almost one minute, time
needed for the consumption of the excess of the exited product. This experiment proves
that the fraction of integer chromatophores keep their physiological activity and they
can produce ATP driven by light in the external solution.

Towards the Preparation of ASAPs. The next move towards the preparation of
ASAPs is to optimize the encapsulation of the chromatophores extracted by bacteria in
GUVs and proves that in this multi-compartment systems ATP can be produced driven
by light irradiation. For this purpose, the chemiluminesence assay cannot be suitable
due to the large light scattering of the GUVs suspension. Therefore, an alternative
strategy can be the use of a probe that can become fluorescent in presence of the ATP
molecules [28]. In fact, this will allow to preformed activity test directly by the con-
focal microscope. Moreover, a procedure for the purification of the chromatophores
from cytoplasmic open membrane fragments can also optimize the behavior of ASAPs.

Fig. 7. Chemiluminesence time course monitored at 555 nm to prove the activity of
chromatophores. The enzymatic kit alone (light yellow time window) does not exhibit
bioluminescence. After the addition of ADP (dark yellow) a small increase in the signal is
obtained, maybe due to ATP present as contamination. Adding the cromatophores suspension in
the cuvette (dark green) the enzymatic reaction takes place at slow rate. When the light is
switched on (first red sector) the enzymatic reaction speeds up. Switching off the light (gray), the
reaction stops and the decay of the product reduce the emission. If the light is switched on again,
the emission restarts at the same rate as before and the signal rapidly reaches a saturation
condition. By switching off the light, it takes almost a minute before observing a new decay in
chemiluminesence, since the accumulated product has to be consumed. (Color figure online)
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4 Conclusion

In this contribution two possible strategies finalized to the synthesis of autotrophic
simplified artificial protocells (ASAPs) have been discussed recalling some recent
results and presenting new experimental data. Although, with the Single Compartment
Approach it has been possible to prepare protocells able to transduce light energy in a
pH transmembrane gradient, however, the Multi Compartment Approach seems more
promising, since it avoids the problem of a correct protein alignment when enzymes are
reconstituted in the GUVs membrane. Therefore, the achievement of preparing ASAPs
does not appear a so far goal and this can represent a step forward the challenging
synthesis of artificial cells. On the other hand, it can also be sejen as an important
milestone in the implementation of soft bio-robots, since ASAPs are able to get the
energy for their activity directly from the external environment.
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Abstract. Scientists are facing two important challenges when inves-
tigating life processes. First, biological systems, from gene regulation
to physiological mechanisms, are inherently multiscale. Second, complex
disease data collection is an expensive process, and yet the analyses are
presented in a rather empirical and sometimes simplistic way, completely
missing the opportunity of uncovering patterns of predictive relation-
ships and meaningful profiles. In this work, we propose a multi-view
clustering methodology that, although quite general, could be used to
identify patient subgroups, for different omic information, by studying
the hierarchical structures of the patient data in each view and merg-
ing their topologies. We first demonstrate the ability of our method to
identify hierarchical structures in synthetic data sets and then apply it
to real multi-view multi-omic data sets. Our results, although prelimi-
nary, suggest that this methodology outperforms single-view clustering
approaches and could open several directions for improvements.

Keywords: Multi-view clustering · Patient sub-typing ·
Hierarchical block matrices

1 Introduction

The technological advancement and the richness and variety of available data
sets have opened new horizons for investigators in the bio-medical field. One
of the last challenges is to create learning models based on heterogeneous data
sources. Multi-view learning methodologies concerns with the analysis of multi-
model data, where the patterns are represented by different sets of features
extracted from multiple data sources [17]. Multi-view learning techniques are
usually divided into early, intermediate or late integration, depending on the
stage of the analysis when the integration is performed [17]. In early integration,
data are concatenated to create a single feature space before starting the analysis.
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In intermediate integration, all the single views are translated into a common
space (i.e. a kernel) and then combined in order to be analysed. Finally, in late
integration, each view is analysed independently and then the results are linked
together.

Multi-view learning has been applied also to improve classical clustering
learning algorithms making them capable to identify data structures by tak-
ing into account different feature sets in order to provide a deeper understand-
ing of the underlying principles governing complex systems. Different methods
were proposed such as those based on matrix factorisation that integrate clus-
tering solutions obtained on each single view [8,12,16]. Other approaches use
modifications of the classical clustering algorithms such as k-means [2]. Other
methods, instead, are based on canonical correlation analysis to perform multi-
view clustering [6]. Finally, other methods work on the integrative analysis of
networks built on each view by using an iterative optimisation analysis based
on the local neighbourhood and then applying spectral clustering on the final
integrated matrix [22].

We propose a network analysis based on the late integration approach that
finds clusters by using two main steps: it first computes the hierarchical organ-
isation of the samples in each view by means of a nested community detection
technique and then it identifies the groups of samples that are consistent between
the views. It is known that biological networks are highly clustered and have a
small node-to-node distance [9]. Statistical network analysis tries to discover the
underlying structure in these networks. Hierarchical structures, where vertices
are divided into groups and sub-groups, are of particular interest since they build
a hierarchy on the data and allow to easily understand the interactions between
the nodes [10]. Efforts have been made to propose measures to quantify the level
of hierarchy present in complex networks [13]. Unfortunately, many of these
approaches work for directed [3] or undirected graphs where a rank of the nodes
is known [20]. Our method can be used, not only to perform clustering but also
to solve these problems. Indeed, it works on undirected graph structures where
no prior information on the organisation of the samples structures is known and
it is able to suggest the level of hierarchy present in the data and the structural
organisation. We first performed a simulation study to prove the capability of
the method to identify hierarchies in multi-view data, and then we applied it to
the problem of multi-view patient sub-typing. Classical approaches to patient
stratification are performed by studying differences in genetic association anal-
ysis by clustering patients through their gene expression data [24]. Indeed, high
throughput technologies, such as microarrays and next-generation sequencing,
have opened new possibilities for biomarker discovery and cancer sub-typing, by
moving from single gene studies to an analysis encompassing the whole genome
and/or transcriptome [7,11]. The application of multi-view clustering to multiple
omic views, related to the same patients, can help identify groups of samples that
share relevant molecular properties. Since diseases have complex phenotypes, the
use of individual genes as biomarkers may not be effective in disease sub-typing.
Moreover, multi-view techniques allow identifying the combinations of different
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molecular characteristics (i.e., genes, miRNAs, proteins) that best describe each
sub-type [16,19,22].

We compared the patient multi-view clustering results of our approach
with those recently obtained by two multi-view data integration methodologies,
MVDA [16] and SNF [22]. MVDA works by factorising the cluster membership
matrices obtained in every single view in a late integration approach. In this way,
the information from different views is integrated at the result levels to obtain
better performance with respect to the single view clustering algorithms. Similar-
ity Network Fusion (SNF) is an intermediate multi-view clustering methodology
that combines data of different types of genome-wide data (e.g. mRNA expres-
sion, miRNA, DNA methylation) to better characterise patient sub-groups. The
integration is performed in an iterative manner, in such a way that, step after
step, it updates the similarities between the patients with the information com-
ing from the different views and leads to the construction of their interaction
network. This network is used to cluster patients and to identify patient sub-
types. We showed that the clustering impurity error obtained by our method is
at least comparable with that obtained with the MVDA methodology.

The rest of the paper is organized as follows: in Sect. 2 our methodology is
described. The Hierarchical block matrix is introduced along with our adapta-
tion to use it for hierarchical clustering (Sect. 2.1). Furthermore, details on syn-
thetic data generation and the simulation study are reported in Sects. 2.2 and
2.3, respectively. In Sect. 2.4 the multi-view data sets are described. In Sect. 3
results on the simulation study are reported and commented. In Sect. 4 the multi-
view clustering results are discussed. Finally, concluding remarks are provided
in Sect. 5.

2 Materials and Methods

The proposed methodology integrates the complementary information of differ-
ent omic views to perform the multi-view clustering. It takes as input n matrices
Mi ∈ RFi×P for i ∈ 1, . . . , n, where Fi is the number of features and P is the
number of samples. The result is a multi-view partitioning C =

⋃k
i=1(Ci) of

the samples information. The methodology is composed of four main steps as
showed in Fig. 1: (i) similarity matrices construction: for each omic view the
Pearson correlation between each couple of samples is computed; (ii) for each
omic view the hierarchical block matrices are computed; the community detec-
tion algorithm used here is the Louvain modularity method, that is a greedy
optimisation method that runs in O(nlogn) [1] (iii) HBM matrix integration;
(iv) Hierarchical clustering, with Ward minimum variance criterion [23], per-
formed on the integrated matrix. The method was first tested on simulated
data and then applied to real multi-view data for cancer patient sub-typing.
The results are compared with recently proposed multi-view clustering methods
such as MVDA [16] and SNF [22]. To make these results comparable with those
already published in [16], the same number of clusters was used.
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Fig. 1. Proposed methodology: (left) starting from the multi-view omic data (e.g. gene
expression, miRNA expression, methylation) the samples similarity matrices are con-
structed by using the Pearson correlation metrics. (middle), for each similarity matrix,
an HBM is constructed. The HBM matrices are then integrated into a single matrix
that is used as a dissimilarity matrix for the hierarchical clustering method, used to
identify the groups of samples (right).

2.1 Hierarchical Block Matrix (HBM)

In this work we applied the data integration algorithm proposed by Shavit et al.
[18] (which we refer as HBM) to identify possible hierarchical structures in multi-
view data sets. The method was designed to identify hierarchical and modular
DNA structures within the cell nucleus, using different granularity of a chromatin
fragment proximity measure. In this work, we investigated the potential of using
the HBM method to identify hierarchical structures in multi-view data set and
we applied it to the problem of identifying patient groups (modules) from multi-
view genomic experiments for which the presence of hierarchies is not known a
priori.

Let N = (V,E) be an interaction network where V = {p1, p2, . . . , pn} is
the set of nodes representing the samples and E = {{pi, pj}|ρpi,pj

�= 0} is the
set of edges whose weights are computed as the Pearson correlation coefficients
between the i− th and j − th samples. The HBM matrix is defined as follows: let
C be the set of clusters in N, C = {cl}kl=1 where cl ⊆ V and k ≥ 1. We denote
B(1) to be an m × m matrix, with:

B(1)i,j =

{
1, i, j ∈ c, c ∈ C, c ⊆ V,

0, otherwise

Let N1(V1, E1) be an undirected graph whose nodes are the clusters in N
and C1 = {c1,l}k1

l=1 is the set of the clusters in N1, with c1,l ⊆ V and k1 ≥ 1.
Note that each cluster in C1 is a union of sets (clusters in C) that contains nodes
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in V. Using a recursive definition, we denote Ns to be an undirected graph whose
nodes are the clusters in Ns−1 and B(s) to be a m × m matrix, with:

B(s)i,j =

{
1, i, j ∈ c, c ∈ Cs−1, c ⊆ V,

0, otherwise

where Cs−1 = {cs−1,l}ks−1
l=1 is the set of clusters in Ns−1 with cs−1,l ⊆ V and

ks−1 ≥ 1, for s ≥ 2. Note that if B(s)i,j = 1 than for all s′ > s, B(s′)i,j = 1 as
well.

The hierarchical block matrix (HBM) of N is a non-negative symmetric
m × m matrix, H, with: Hi,j = mins{s|B(s)i,j = 1}, for s ≥ 1.

In this work, we adapted the hierarchical block matrix technique to iden-
tify the hierarchical structure in multi-view data sets and to better characterise
patient sub-classes in omic data sets. In particular, for the patient sub-typing
task, we applied the described method to construct the HBM matrices from the
pairwise correlation matrices of the patients in each view, in order to identify
the hierarchical structure of the patient classification. According to the defini-
tion given in [18], we merged the HBM matrices to obtain a stratification of the
patients that is concordant in the different views.

Giving two HBMs A and B, the merging matrix M is defined as

M =
HA + HB

2

where Mi,j takes the “average level” between the levels at which i and j where
assigned to the same community for the first time. The merged HBM HA,B can
be obtained by merging their topologies.

Let Z = {zi}lMi=1 be the set of unique levels in M , sorted by increasing order,
HA,B

i,j is given by:
HA,B

i,j = g(Mi,j)

where g is the function that takes a level in M and returns its index in Z such
as g(zi) = i, zi ∈ Z.

Once the integrated HBM is computed, it can be used as input for a hierar-
chical clustering algorithm, to obtain the clusters of samples.

2.2 Synthetic Data Generation and Simulation Study

In order to test the ability of HBM to identify hierarchical structures in multi-
view data sets, we performed different simulation studies. The simulation process
is divided into three steps: (a) multi-view data set generation; (b) HBM algo-
rithm execution; (c) evaluation of the HBM results; The multi-view data sets
were generated in the following way: starting from two semi-positive covariance
matrices S1 and S2 of size N ×N (where N is the number of samples in the data
set) we built a data set with two views by randomly sampling points from a mul-
tivariate normal distribution with mean equal to zero and covariance matrices
S1 and S2. At the end of this process, we obtained two matrices D1 ∈ RM1×N
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Fig. 2. Graphical visualisation of the synthetic datasets. The hierarchical networks,
whose nodes are coloured based on the group they belong, underlying the synthetic
datasets, are shown in the first row. The covariance matrices used to generate the
synthetic datasets are shown in the second row. See text for differences between A, B,
C cases. (Color figure online)

and D2 ∈ RM2×N where M1 and M2 were the number of features in the two
different views, respectively, which, in these cases, were selected as 1000 and 500.
The number of samples N was selected to be 100. Depending on the structure
of the initial covariance matrices, different hierarchical data sets were generated.
The first one was the nested hierarchical structure in which a pattern was nested
and repeated into the network (See Fig. 2A).The second one was a nested block
matrix structure that is a diagonal block matrix divided into blocks and sub-
blocks (See Fig. 2B). The last one was a random network in which there was not
a hierarchical structure (See Fig. 2C). For each experiment, a multi-view matrix
was obtained by using the same covariance structure but different parameter
settings, such as, for example, the number of blocks and sub-blocks. In the first
experiment, the two nested hierarchical structures obtained nesting groups of 5
and 4 nodes, respectively. In the second experiment, in the first view, the number
of blocks was three, each one composed by groups of two and three sub-blocks.
While for the second view, the number of blocks was 2 each composed of two sub-
blocks. In the third experiment, the two matrices were randomly sampled from a
uniform distribution in the range [0, 1]. After the generation of the data set, the
HBM algorithm was executed and a final merged multi-view hierarchical block
matrix was obtained. Then, the purity index between the original clustering and
the one obtained from the HBM3C matrix was computed in the following way:

purity(Ω,C) =
1
N

∑

k

maxj |ωk ∪ cj |
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where Ω is the original clustering, C is the multi-view clustering obtained from
the HBM method, ωk is the set of elements in the k-th cluster of Ω and cj is
the set of elements in the j-th cluster of C. Moreover, the Von Newman entropy
[14] of the hierarchical block matrices and their histograms were investigated.
Indeed, the Von Neumann entropy, which is the natural extension of the Shannon
information entropy, is a widely adopted descriptor to measure the mixedness of
a system and we used it as an indicator of the hierarchical structure present in
the HBM matrix.

Fig. 3. The network of co-expression genes used in the study; see text for a description
of the network (A). Adjacency matrix (B). Hierarchical clustering applied to the gene
co-expression matrix to identify groups of modules (C). Hierarchical visualisation of
the network performed with the RedeR package (D).

2.3 Simulation Based on a Gene Co-expression Matrix

To show the capability of the HBM methods to identify hierarchical and modular
structures in a network, a further experiment based on a real gene co-expression
matrix was performed. Since, gene co-expression networks are known to have
hierarchical and modular structure [15], they are well suited to our purposes.
The gene expression data used in this study comes from a study on the regula-
tion effect of the estrogen receptor in breast cancer [4]. The gene co-expression
network is available in R through the RedeR bioconductor package [5]. The net-
work, showed in Fig. 3, contains 174 early ER-responsive genes connected by
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1061 edges representing the reliable correlation based connections between the
genes. As per the simulated data set, the co-expression network was treated as a
covariance matrix to generate two multi-view data sets of 174 objects, randomly
sampled by a multivariate normal distribution with zero mean. The number of
features is selected as 1000 and 500 in the two different views. A hierarchical
clustering was applied to the network in order to identify the modules that will
be later used to compute the purity index between the clusters identified by the
HBM algorithm and the real hierarchical organisation in the network. Also in
this setup, the experiment were performed adding different amounts of noise to
the original network in order to study the capability of the HBM method to
identify hierarchies in presence of noise.

2.4 Multi-view Data Set for Patient Sub-typing

The HBM method was applied to two multi-view omic data sets (see Table 1)
related to Glioblastoma and Prostate Cancer, respectively.

The data set TCGA.GBM was downloaded from The Cancer Genome Atlas
(TCGA) (https://cancergenome.nih.gov/). The data set is composed of 167
patients represented by two views: gene expression and miRNA expression. As
described in [21], the patients were divided into four classes: Classical, Mesenchy-
mal, Neural and Proneural. The MSKCC.PRCA data set was downloaded from
the Memorial Sloan Kettering Cancer Center data portal (http://cbio.mskcc.
org/cancergenomics/). It has four views: clinical data, gene expression, miRNA
expression and copy number variation. Patients were classified into two classes
by using the tumour stage. All the downloaded data sets were already prepro-
cessed. As a further step, features with low variance were eliminated and batch
effect removal was performed.

Table 1. Multi-view omic data sets used in the experiments. The TCGA.GBM data
set has two views that are the gene and miRNA expressions, while the MSKCC.PRCA
data set has three views that are the gene and miRNA expressions and the Copy
Number Variation (CNV).

Data set Nr. Views N. Samples N. Classes Disease

TCGA.GBM 2 167 4 Glioblastoma

MSKCC.PRCA 4 88 2 Prostate cancer

3 Simulation Study Results

In order to prove the ability of the hierarchical block matrix algorithm to retrieve
hierarchical clustering structures from multi-view data sets, four different simula-
tion studies were performed, as explained in the previous section. In the first one
a nested hierarchical multi-view data set was generated, while, in the second one,
a nested block matrix was created. In the third one, a random multi-view data

https://cancergenome.nih.gov/
http://cbio.mskcc.org/cancergenomics/
http://cbio.mskcc.org/cancergenomics/
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set was generated (see Fig. 2). Furthermore, a multi-view data set was generated
based on a real gene co-expression matrix (see Fig. 3). Then, the HBM algorithm
was executed and the multi-view hierarchical clusterings were retrieved, while
the purity index between the known clustering and the new one was computed.
For each simulation setting, the experiment was repeated 10 times by changing
the percentage of noise injected in the original hierarchical covariance matrices.
As we can see from Table 2 the HBM algorithm is able to retrieve hierarchical
structures when present in the data, as for the block matrix, the nested hierar-
chical organisation and the data set based on the gene co-expression matrix. In
these cases, the purity index is always higher than 64%. Of course, the lower the
noise the higher is the purity index. On the other hand, in case of no hierarchi-
cal structure in the data set, the purity index is much lower. The hierarchical
block matrices obtained with no noise are reported in Fig. 4. The HBM matrices
contain integer numbers that indicate in which level of the hierarchical agglom-
eration algorithm two samples were put in the same cluster. Visual inspection of
the HBM matrices and their histograms can suggest if a hierarchy is present or
absent in the data. Indeed, in the case of a random sample data set, the HBM
matrix is full of 1, meaning that all the samples are clustered at the first itera-
tion of the algorithm (Fig. 4C). On the other hand, different values are retrieved
in the hierarchical organisation. Furthermore, the Von Neumann entropy of the
multi-view HBM matrices was measured. The values are of 258.17 for the nested
hierarchical experiment, 352.75 for the nested block matrix structure, 503.96
for the gene co-expression based structure and 1101.68 for the random network
experiment. These values correspond to the experiments with no noise in the syn-
thetic generated data sets. These results suggest Von Neumann entropy could be
used as an indicator of how much hierarchical structure is present in the HBM
matrix since it has lower values in case of well defined structures and higher
values in case of random structures.

4 Application to a Real Data Set

The proposed methodology was applied to two multi-view omic cancer data sets
to identify patient sub-typing. For each of the omic views available in the data
sets an HBM matrix was computed. The single HBM matrices were then inte-
grated with the hierarchical agglomerative strategy previously described. Finally,
on the integrated matrix a hierarchical clustering was performed. The obtained
clustering was compared with those coming from two state-of-the-art method-
ologies called MVDA [17] and SNF [22]. The comparison was performed in terms
of purity of the clusters with respect to the known patient subclasses. The num-
ber of clusters used in the analysis is that previously used in the MVDA paper
[17]. As reported in Table 3, the accuracy obtained by the integrative methods
(MVDA, SNF, and HBM) is higher or comparable to the accuracy obtained by
the single views. The accuracy obtained by HBM is comparable to those obtained
with the MVDA and SNF approaches in the case of the MSKCC data set, while
it is significantly higher than MVDA and SNF in the case of the TCGA.GBM
data set.
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Table 2. Purity index values between the known clustering structure and the multi-
view ones obtained with the HBM methods by varying the amount of noise in the
data (the x value in Thx% means how much is the percentage of noise in the generated
covariance matrices. In the row names, BM stands for the block matrix experiment, NS
stands for recursively nested experiment, RD stands for the random matrix experiment
and CE stands for the gene co-expression experiments. The 1 or 2 close to the names
on the rows indicate if the comparison was performed with respect to the labelling of
the samples in the first or second view. Purity values close to 1 indicate better results.

Th 0% Th 1% Th 2% Th 3% Th 4% Th 5% Th 6% Th 7% Th 8% Th 9%

BM1 0.95 0.99 0.82 0.81 0.71 0.71 0.81 0.70 0.79 0.69

BM2 1.00 0.99 0.98 0.97 0.97 0.95 0.90 0.88 0.85 0.80

NS1 0.88 0.88 0.89 0.87 0.84 0.85 0.86 0.81 0.70 0.64

NS2 0.97 0.88 0.88 0.86 0.88 0.89 0.89 0.88 0.65 0.64

RD1 0.49 0.46 0.40 0.38 0.37 0.39 0.38 0.36 0.35 0.33

RD2 0.55 0.53 0.50 0.48 0.46 0.43 0.40 0.38 0.37 0.32

CE1 0.75 0.72 0.71 0.70 0.66 0.62 0.59 0.59 0.57 0.55

CE2 0.73 0.71 0.71 0.69 0.64 0.63 0.57 0.55 0.55 0.53

Fig. 4. HBM matrices along with their histograms. The HBM associated to the nested
hierarchical model has three levels of hierarchy as shown by its associated histogram
(A), while the HBM of the nested block matrix has four levels of hierarchy as shown by
its associated histogram (B). Also, the HBM based on the gene co-expression matrix
shows three levels of hierarchy (C). On the other hand, the HBM associated to the
random data set does not show hierarchical structures, indeed the whole matrix is
filled by ones (D). The histograms are filled by the number of true edges (light grey)
and false edges (dark grey) present in the original matrix. The true edges are mainly
enriched in the first level of the hierarchy, meaning that the samples connected by true
edges are clustered together in the first level of the HBM methodology. On the other
hand, most of the second, third and fourth levels are full of false edges because these
samples are further away from each other and are merged together later by the HBM
method. (Color figure online)
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In term of computational time, the single view hierarchical clustering method
is the fastest one. Between the integrative methods, computational time of the
HBM and SNF are comparable. The computational time of the MVDA method
is significantly higher than the HBM method.

Table 3. Clustering purity measures are reported for both single view clustering
(applied to gene expression, miRNA expression, and CNV), and multi-view cluster-
ing approaches (MVDA, SNF, and GBM). Please note that TCGA.GBM matrix has
only two views (gene expression and miRNA expression), while the MSKCC has three
views (gene and miRNA expression and CNV). The clustering purity measure is signif-
icantly higher in the multi-view clustering obtained by the HBM method in both the
glioblastoma data set (TCGA.GMB) and prostate cancer data set (MSKCC.PRCA).
The single view clusterings are obtained by using the hierarchical clustering algorithm
on each view.

Approach TCGA.GBM MSKCC

Gene expression 79.05% 63.64%

miRNA expression 61.08% 60.23%

CNV - 36.36%

MVDA 63.48% 63.64%

SNF 76.00% 64.00%

HBM 83.24% 64.78%

5 Conclusion

In this study, we proposed an adaptation of the Hierarchical Block Matrix
method [18] to the problem of multi-view clustering with a particular appli-
cation to patient sub-typing.

We first demonstrated the effectiveness of the HBM method to identify hier-
archical structures in networks, derived from multi-view data sets, by performing
four different simulation studies. We computed the normalized mutual informa-
tion between the known clustering structure imposed in the simulated multi-
view data set with that obtained with the HBM method. When the hierarchy
is present in the data set, the mutual information is never lower than 0.60 even
with an injected noise of 90%.

Then we applied our method to two real multi-view omic data sets related
to cancer studies to identify patient sub-typing. Based on the pairwise Pearson
correlation between the patients, an HBM matrix is built for each view of the
data sets, and then the HBM matrices are merged into a single one that is used
as starting point for a hierarchical clustering analysis.

We compared the clustering purity scores obtained with the HBM based
method with those obtained with the MVDA and SNF methodologies. Our
results show that all multi-view approaches perform slightly better than the
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single view hierarchical clustering. Moreover, the HBM clustering reaches higher
performances compared to SNF and MVDA. Altogether, the HBM method is a
viable alternative methodology for multi-view patient sub-typing.
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