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Chapter 1
Trigeminal Mechanisms of Nociception

Anna P. Andreou and Lars Edvinsson

1.1  Introduction

The trigeminal nerve (Vn) is the largest cranial nerve and it supplies sensory fibres 
to all craniofacial structures. Sensory innervation of the craniofacial region is 
important in functional, psychological and emotional aspects, given the signifi-
cance of the head as an organ in whole, of facial communication and of all special-
ised sense organs of the head such as the retina, olfactory epithelium, taste papillae, 
tooth pulp and cochlea, which are highly innervated by trigeminal fibres [1]. 
Trigeminal fibres are organised to warn the organism against changing environ-
mental conditions, ranging from changes in environmental chemicals, tempera-
ture, injury or other external stimuli. The craniofacial region has a rich innervation 
and an extensive somatosensory representation in the CNS. These aspects make 
the Vn the most complex of the 12 cranial nerves. Mechanisms of nociception 
along the trigeminal nerve are of particular interest in headache conditions and 
orofacial pain [2].
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1.2  The Trigeminal Nerve

The trigeminal ganglion (TG) is the sensory ganglion of the trigeminal nerve and 
occupies the Meckel’s cavity (cavum Meckelii) in the dura mater covering the tri-
geminal impression near the apex of the petrous part of the temporal bone [3]. The 
TG consists of pseudounipolar primary sensory neurons (the dendrite of these neu-
rons are located in the trigeminal nerve, the cell bodies are located in the trigeminal 
ganglion and the axons protrude through the sensory root and into the ventrolateral 
midpons) and is analogous to the dorsal root ganglia (DRG) of the spinal cord, 
which contain the cell bodies of incoming sensory fibres from the rest of the body 
[2, 4]. TG neurons have no synaptic interconnections with one another and they are 
surrounded by satellite glial cells (SGCs). However, the SGCs are connected with 
the TG neurons with gap junctions that intimately communicate between them [5].

The TG gives rise to the trigeminal nerve (Vth cranial nerve), which is the largest 
of the cranial nerves. The trigeminal nerve trifurcates into ophthalmic (V1), maxil-
lary (V2) and mandibular nerves (V3) distally from the trigeminal ganglion. The 
divisions of the trigeminal nerve exit the skull base through the superior orbital fis-
sure for V1, through the foramen rotundum for V2, and through the foramen ovale 
for V3 [6]. The ophthalmic and maxillary nerves are purely sensory, whereas the 
mandibular nerve has both sensory and motor functions. These three branches con-
verge on the TG from which a single large sensory root enters the brainstem at the 
level of the pons. Immediately adjacent to the sensory root, a smaller motor root 
emerges from the pons at the same level, and thus the trigeminal nerve is a mixed 
nerve containing both motor and sensory components [1, 3]. Motor fibres are distrib-
uted together with sensory fibres in branches of the mandibular nerve and supply the 
muscles of mastication and the tensor tympani and tensor veli palatine muscles.

The sensory fibres of the ophthalmic, maxillary and mandibular nerves have a 
diversity of arrangement of trigeminal endings in craniofacial tissues, supplying the 
cutaneous exteroceptors of the face, the retina, cochlea, the mucous membranes of 
the nasal and oral cavities, and a large portion of the intracranial dura mater and 
vessels [2, 7]. Early anatomical studies provided evidence for the meningeal repre-
sentation in the trigeminal ganglion by using horseradish peroxidase histochemistry 
[7, 8] and more specifically using retrograde tracing with True Blue [9–11]. Most of 
the nociceptors around meningeal vessels were found to project mainly to the oph-
thalmic division of the ipsilateral trigeminal ganglion and to a minor degree to the 
maxillary and mandibular divisions [12, 13]. In addition the True Blue tracing 
revealed that the distribution was no strictly unilateral because some overlap existed 
for autonomic as well as sensory innervation [9, 14, 15]. The dermatomes of the 
three branches of the trigeminal nerve have relatively little overlap, unlike derma-
tomes in the rest of the body, which show considerable overlap. More specifically 
the three branches of the trigeminal nerve cover the following sensory areas [16]:

 – The ophthalmic nerve carries sensory information from the skin of the forehead, 
the upper eyelids and the nose ridge and the mucosa of the nasal septum and 
some paranasal sinuses.
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 – The maxillary nerve innervates the skin of the middle facial area, the side of the 
nose and the lower eyelids, the maxillary dentition, the mucosa of the upper lip, 
the palate, the nasal conchae and the maxillary sinus.

 – The mandibular nerve innervates the skin of the lower facial area, the mandibular 
dentition, the mucosa of the lower lip, cheeks and floor of the mouth, part of the 
tongue and part of the external ear.

Within the TG the somata of neurons giving rise to the three branches of the trigemi-
nal nerve are somatotopically organised. Somatotopic organisation is not only found 
within the ganglion but also in the brainstem distribution in the trigeminocervical com-
plex. The cell bodies of the ophthalmic nerve are found medially in the ganglion, those 
of the mandibular nerve are grouped laterally, while in the middle of these two groups, 
the cell bodies of the maxillary nerve are grouped [17–19]. The proprioceptive fibres 
in the motor root of the trigeminal nerve have their cell bodies in the mesencephalic 
nucleus of the pons. The axons of these motor neurons run pass the trigeminal ganglion 
as an independent bundle without synapsing within it. The motor trigeminal nucleus is 
directly stimulated via the corticobulbar tract, originating from the contralateral cere-
bral cortex. Within the motor nucleus, there is also a large amount of somatotopy. Via 
efferent fibres the motor trigeminal nucleus receives proprioceptive information from 
the masticatory muscles, temporomandibular joint and periodontium.

1.3  The Primary Trigeminal Sensory Fibres

The trigeminal sensory fibres convey information regarding pain, temperature, touch 
and proprioception. The nociceptors are the sensory fibres that convey nociceptive 
information. The nociceptors run largely adjacent to the blood vessels and transmit 
nociceptive information mainly through Aδ- (thinly myelinated) and C- (unmyelin-
ated) fibre types [20–22] although other types of primary afferents transmitting 
somatic sensations have also been characterised [23]. Recent work has shown that 
the C-fibres store CGRP while the Aδ-fibres contain CGRP receptor elements [24]. 
Similarly to somatic pain, the pain associated with trigeminal Aδ-fibres activation is 
characterised by an initial extremely sharp pain and is referred to as the “first” pain. 
The “second” pain is referred to the more prolonged and delayed feeling of dull ache 
or burning pain as a result of C-fibre activation. What makes trigeminal nerve unique 
is that it has ~100 times more dense C-fibres than any other nerve (Fig. 1.1).

The peripheral terminal of the nociceptor is where noxious stimuli are detected 
and transduced into inward currents that, if sufficiently large, begin to drive action 
potentials along the axon to the CNS and set a train of events that ultimately lead to 
a conscious awareness of the noxious stimulus [25]. The sensory specificity of the 
nociceptor is established by expression of ion channels which respond with a high 
threshold only to particular features of the mechanical, thermal and chemical envi-
ronment [25, 26]. The high threshold of these transducers differentiates nociceptors 
from sensory neurons that respond to innocuous stimuli by expressing transducers 
with low thresholds [25]. Such transducer channels are TRPV1-4, TRPM8, TRPA1, 
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ASICs, P2X3, TREK, kainate receptors and 5-HT1B/1D receptors [27–36]. A number 
of studies have involved these channels in trigeminal nociception. Potentially, block-
ade of these transducers could act as an emerging treatment for trigeminal related 
disorders. 5-HT1B/1D receptors are the target of triptans, the migraine specific medica-
tions [37]. Single nucleotide polymorphisms in the TRPM8 gene have been repeat-
edly found to be significant in migraine genome-wide association studies [38–42].

Transmission of nociception occurs in response to calcium influx at the central 
terminal and releasing glutamate, as well as multiple neuropeptides and other sig-
nalling molecules that act as synaptic modulators which will activate post-synaptic 
receptors on second order neurons [23]. In response to inflammatory or noxious 
stimuli, trigeminal ganglia neurons release neuropeptides and other molecules that 
initiate and maintain neurogenic inflammation in the peripheral tissue that facilitate 
peripheral sensitisation of trigeminal nociceptors [43].

1.3.1  Neuropeptides of the Trigeminal Ganglion

Neurons of the TG express at different percentages several different neuropeptides, 
including calcitonin gene-related peptide (CGRP), substance P (SP), pituitary 
adenylate- cyclase-activating polypeptide (PACAP), neuropeptide Y (NPY), soma-
tostatin, dynorphin, galanin, orexin, nociception, neurokinin A and neurokinin B, as 
well as nitric oxide synthase, inter alia [44]. Peripherally, upon their release, the 
majority of these neuropeptides are vasodilators, while centrally they are involved in 
signal transmission by acting as neuromodulators. TG neurons and their terminals also 
express many of the receptors for these neuropeptides. The actions of these neuropep-
tides have been extensively reviewed by Lazarov [44] and Goto and colleagues [45].

Fig. 1.1 In human TG, 
CGRP positive pearl-like 
fibres were observed (thin 
arrows). Thick arrow 
points at autofluorescent 
lipofuscin and arrowhead 
at a satellite glial cell
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The expression of different neuropeptides in the TG, as well as the expression 
of their receptors, is altered following inflammation or injury, potentially to induce 
an autocrine-like reaction. For example, the expression of SP and its receptor neu-
rokinin 1-receptor (NK1-R) increases following maxillary molar extraction [46], 
while CGRP is increased following induction of periodontium inflammation [47]. 
It has been suggested that the build-up of these vasodilatory neuropeptides at 
injury site may be related to the development of neurogenic inflammation, ectopic 
neural activity and to contribute to the development of neuropathic pain. 
Interestingly though, such upregulation is often beyond their nerve distribution. As 
TG neurons are anatomically isolated from one another and not synaptically inter-
connected, other means of interaction may exist between the three clusters of neu-
rons giving rise to the three branches of the trigeminal nerve, as mentioned above 
related to the function of the SGCs [5]. One possibility is through SGCs and/or 
microglia/macrophage- like cells (MLCs), particularly with regard to interactions 
between the mandibular and maxillary neurons in the TG. SGCs initially become 
activated by receiving the signal from TG neurons. Following, SGCs activate adja-
cent SGCs or other TG neurons by release of neurotransmitters. Similar to the 
dorsal root ganglion, MLCs in the TG are activated by uptake of a transmitter from 
TG neurons or SGCs. This communication between neurons, SGCs, and MLCs is 
believed to contribute to the development of ectopic pain, hyperesthesia or periph-
eral sensitisation [45].

1.3.1.1  Calcitonin-Gene-Related Peptide

The α-CGRP isoform is expressed in about 50% of TG neurons and is a key neuro-
peptide involved in both neural and vascular responses [48–50]. CGRP is present in 
C-fibre neuronal cells [50–52]. About 30% of CGRP-positive TG neurons also co- 
express SP [53]. CGRP immunoreactive axons, derived from the ipsilateral ophthal-
mic division of the trigeminal nerve, are abundant on the walls of the rostral 
circulation of the major cerebral arteries in the circle of Willis, the rostral cerebral 
circulation, the dura mater and the eye [54–56]. Sensory terminals expressing CGRP 
have been also identified in the nasal mucosa, periodontium and gingivae [57–59]. 
Recent work has described in detail the distribution of CGRP and its receptor in the 
retina [60]. Some of these CGRP containing fibres originate in the TG, putatively 
involved in migraine attacks. CGRP acts mainly on the CLR/RAMP1 receptor, 
which is also found on trigeminal fibres [50] (Fig. 1.2).

CGRP is released from large dense-core vesicles demonstrated in the human 
temporal artery [61] and the human middle meningeal artery [62]. CGRP is regu-
lated by P/Q-type, N- and L-type voltage-dependent calcium channels, and it is [63] 
co-released with glutamate contained in separate vesicles [64]. Release from synap-
tic vehicles involves the SNAP-25 protein of the SNARE complex and hence, like 
glutamate release, it can be inhibited by botulinum toxin type A [65]. These com-
plexes are found also in the TG [66]. Botox is currently an established preventive 
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treatment in chronic migraine [67]. Its spontaneous basal release follows a circadian 
rhythm as it is increased at night [68].

CGRP is the most potent vasodilator when released peripherally, through direct 
activation of its receptor CLR/RAMP1 on smooth muscle cells [48, 69]. Its release 
from primary trigeminal afferents innervating blood vessels of the dura mater and 
the cerebral circulation is one of the main mechanisms of  trigeminovascular activa-
tion [48], which is believed to be involved in the pathophysiology of primary head-
aches [70, 71]. CGRP can also induce vasodilation indirectly by activating 
endothelium CLR/RAMP1, resulting in a rise in cAMP [63, 72] and nitric oxide 
(NO) production [73]. Diffusion of NO into the smooth muscle cell activates gua-
nylate cyclase inducing relaxation. CGRP as a vasodilator is involved in cardiovas-
cular regulation and may have a protective role against ischaemia. CGRP is 
spontaneously released during acute blood pressure reflex for cardiovascular regula-
tion, it antagonises sympathetic system-induced vascular resistance and appears to 
be protective against ischaemia and to reduce brain injury following a stroke [74, 
75]. In human aneurysmal subarachnoid haemorrhage (aSAH) has been shown to 
counterbalance the blood induced vasoconstriction, hence reduced levels are seen in 
the perivascular nerves with an increase in vascular smooth muscle cells activity 
[76]. In human aSAH only CGRP was reduced after a fatal stroke [77] and infusion 
of CGRP could in vivo in patients reduce the vasospasm [78, 79].

CGRP and co-stored with SP are in the periphery involved in mediating axon- 
reflex mechanisms and an inflammation response [80–82]. CGRP application on the 
dura mater does not activate or sensitise the ascending trigeminal pathway [83, 84]. 
Application of CGRP in the temporomandibular joint (TMJ) in rats has been shown 
to increase expression of mitogen-activated protein kinases (MAPK) in trigeminal 
ganglia and of c-Fos neurons in the spinal trigeminal nucleus, as well as expression 
of glial fibrillary acidic protein (GFAP) in astrocytes and OX-42 in microglia [43]. 
Centrally, CGRP on its own has either no effect on spontaneous neuronal firing or a 

Fig. 1.2 RAMP1 
immunoreactivity was 
exclusively found in 
satellite glial cells in 
human TG (arrowheads). 
Arrow points at lipofuscin

A. P. Andreou and L. Edvinsson



9

slow excitatory effect on non-nociceptive neurons [85, 86]. However it can facilitate 
SP- evoked firing [86, 87]. Intracerebral CGRP may locally induce increase in local 
cerebral blood flow (Edvinsson, unpublished).

A number of studies have also investigated the actions of CGRP on glutamate 
excitation given their co-release following stimulation of sensory fibres. It has been 
shown that CGRP can facilitate, inhibit or cause no changes to glutamate-evoked 
firing [86–89]. Interestingly, CGRP was shown to facilitate nociceptive-evoked fir-
ing on second order neurons and CGRP antagonists to inhibit nociceptive activity 
[86–89].

CGRP has been implicated in migraine pathophysiology as its levels were 
found to be elevated during a migraine attack in plasma, saliva and CSF samples 
from patients [70, 90–92]. Intravenous infusion of CGRP has been shown to trig-
ger a migraine-like attack without aura in a proportion of sufferers [92], while 
CGRP antagonists had been used in clinical trials for the treatment of migraine 
[93–96]. CGRP antibodies and CGRP receptor antibodies have now been studied 
in clinical trials for the preventive treatment of frequent episodic and chronic 
migraine with promising results [97, 98]. These monoclonal antibodies are now 
approved by the FDA and the EMA.  Triptans, 5-HT1B/D receptor agonists and 
migraine specific treatments, have been also shown to reduce CGRP plasma lev-
els in migraine patients [99] and in cluster headache [100], but not in healthy 
subjects [101, 102].

Evidence for the importance of CGRP in migraine also comes from experimental 
animal models. Stimulation of the cat superior sagittal sinus led to increased release 
of CGRP and VIP levels while there was no change in SP or NPY [103]. When the 
dura mater was electrically stimulated in rats, it caused dilation of dural blood ves-
sels [104], due to CGRP release from trigeminal sensory nerves that innervate the 
cranial blood vessels [48] since this effect was abolished by the rat CGRP receptor 
antagonist CGRP8–37 [104]. Significant attenuation of the neurogenic meningeal 
vasodilator response is similarly seen with triptans, such as sumatriptan [105]. 
Intravenous administration of CGRP also causes extracranial dural blood vessel 
dilation that is similarly abolished by CGRP8–37. CGRP-induced dilation however is 
not abolished by sumatriptan, indicating that it is likely the triptans act pre- 
junctionally to prevent CGRP release [106], rather than on the smooth muscles of 
the blood vessels [105]. In the TCC, CGRP receptor antagonists inhibited trigemi-
novascular neurons activated by L-glutamate, demonstrating a possible central site 
of action for CGRP receptor antagonists [88].

1.3.1.2  Substance P

Substance P (SP) is present in about 10–30% of TG neurons with nearly all fibres 
that store SP being unmyelinated, arising from small to medium-sized neurons 
[107–109]. All SP-containing TG cells are also immunopositive for CGRP [110, 
111], and coexist with the excitatory neurotransmitter glutamate in primary affer-
ents that respond to painful stimulation. SP-positive fibres innervate same structures 
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as CGRP fibres [112–115]. Like CGRP it can be released both peripherally and 
centrally [116]. Interestingly, alterations in the expression of SP and its receptor 
NK1 have been implicated in pathogenesis of sudden perinatal death [117]. Besides 
SP, the other two peptides of the neurokinin family, Neurokin A and Neurokinin B, 
are also found in the TG system [118]. These are found in the same neurons as SP 
and functionally they appear to have slightly less vasodilatory effects.

Peripherally, SP is a potent vasodilator and, along with CGRP, is implicated in 
the development of neurogenic vasodilatation [119, 120]. Substance P-induced 
vasodilatation is mediated by the endothelial cell NK1 receptor [121], and 
depends on NO release [122]. In brain vessels it is in the same way; SP relaxes 
via an endothelium dependent mechanism and involves NO [48]. In contrast to 
CGRP, endogenous SP does not appear to contribute to the maintenance of 
peripheral vascular tone or systemic blood pressure [121]. SP is involved in the 
axon reflex-mediated vasodilatation and flare reaction, following application of 
heat or an injury.

Peripherally, SP appears to have an important role in the development of 
neurogenic inflammation, which is a local inflammatory response to certain 
types of infection or injury. SP can activate macrophages and mast cells to 
release inflammatory mediators such as interleukins, arachidonic acid com-
pound, cytokines/chemokines and histamine. The release of these chemical 
mediators is crucial for inflammatory response [123]. This neuropeptide has 
been also implicated in the development of neuropathic orofacial pain [124, 
125], and its levels, as well as of its receptor NK1-R, are upregulated in TG 
neurons following an injury [46] or inflammation [126]. Several lines of physi-
ological evidence also indicate that SP has excitatory effects and depolarises TG 
neurons [127]. SP can release histamine from mast cells of the dura mater in 
both animal and human material [128].

Centrally, SP is seen in lamina I–II of the C1–2 and in the TNC. Its release on 
second order neurons following nociceptive peripheral stimulation promotes hyper-
excitability and increased sensitivity to pain, by recruiting inflammatory cytokines 
and inducing glial activation [129]. SP excites second order neurons and facilitates 
glutamatergic neuronal firing, as well as nociceptive-evoked firing. A number of 
studies suggest its involvement in the development of central sensitisation by ampli-
fying glutamatergic responses [130]. Studies in NK1 knockout demonstrated its 
importance in the development of the characteristic “wind up” amplification of sec-
ond order neurons firing following nociceptive stimulation [131]. NK1 knockout 
mice also demonstrated attenuated nociceptive behaviour and reductions of 
 Fos- positive neurons in spinal relay centres, indicating a reduction in nociceptive 
input to the spinal cord [131].

Although SP exists within the trigeminal system, this peptide does not appear to 
play an important role in the development of nociception. Its direct involvement in 
facial pain in man has not been explored, although it has been suggested to be 
involved in trigeminal neuralgia [132]. Based on the ability of SP to be involved in 
neurogenic inflammation several companies made selective NK-1 antagonists 
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which were studied in migraine, however they all failed to demonstrate any efficacy 
as an acute or preventive treatment [133–135]. Therefore at the end of 1999 this line 
of research was abandoned because of futility.

1.3.1.3  PACAP

PACAP was first isolated from rat hypothalamus [136] and shares two-thirds 
sequence homology with the N-terminal domain of VIP. It occurs in two isoforms: 
PACAP-27 and PACAP-38 with 27 or 38 amino acids, respectively. Its actions are 
mediated mainly by the receptor PAR1, which is a member of the family of seven- 
transmembrane G protein-coupled receptors [41–43, 49, 137, 138]. PACAP is also 
a weak agonist of the two known receptors for VIP termed VPAC1 and VPAC2. 
Within the TG, PACAP is found in a subpopulation of small- to medium-size TG 
neurons, which in addition store CGRP [49, 139] (Fig. 1.3). Other structures rele-
vant to the pathogenesis of migraine, such as in trigeminal afferents in the dura 
mater, the cerebral vessels, the trigeminocervical complex, brainstem nuclei, as well 
as the sphenopalatine and otic ganglia, also express PACAP [92–94]. Its levels 
appear to be elevated in the trigeminal system following an injury of the trigeminal 
nerve [140]. However, it is worth pointing out that PACAP together with VIP and 
NOS are main players in the parasympathetic system in the head. Thus, all these 
three molecules are very abundant in the otic and sphenopalatine ganglia [141]. 
Hence, when we analyse the release of these molecules in conjunction it is not 
always clear from where the peptides originate.

PACAP has a broad spectrum of biological effects. In the periphery, PACAP is a 
potent vasodilator [142]. Application of PACAP in TG neuronal cultures induces neu-
rite growth, a PAC1 mediated effect [143]. PACAP appears to have a small stimulating 

Fig. 1.3 PACAP38 
immunoreactivity was 
observed in many neuronal 
cell soma (thin arrow) and 
satellite glial cells (thick 
arrowhead). In addition, 
neurons that were not 
PACAP immunoreactive 
were also observed (thin 
arrowhead). Thick arrow 
points at lipofuscin
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effect on trigeminal ganglion neurons as shown by slow increase in intracellular free 
calcium concentration after PACAP1-38 administration on cultured TG neurons [144]. 
In a recent preclinical study it was found that both VIP and PACAP similarly cause 
transient vasodilation of meningeal arteries, yet only PACAP was able to trigger a 
delayed sensitisation of second order trigeminocervical neurons [145, 146]. 
Stimulation of the trigeminal ganglion was shown to increase PACAP expression in 
the trigeminal nucleus caudalis, a phenomenon blocked by glutamate receptor antago-
nists [147].

In migraine patients, elevated levels of plasma PACAP-38 were revealed in the 
ictal migraine period but not during interictal phase in migraineurs [148–150]. 
Additionally, intravenous infusion of PACAP-38, but not VIP, was shown to trigger 
migraine-like headaches in migraine patients [151–153]. PACAP levels have been 
also found to be increased in cluster headache patients [154]. Currently, a novel 
molecule, AMG 301, is a PAC1 receptor selective monoclonal antibody which has 
been developed for the prevention of migraine, potentially by inhibition of trigemi-
nal autonomic signalling. A phase IIa randomised double-blind placebo controlled 
study that aims to evaluate the efficacy and safety of AMG 301 in migraine preven-
tion is currently underway.

1.4  Trigeminal Nerve and Blood Vessel Relation

1.4.1  Blood Supply of the Trigeminal Nerve

The trigeminal sensory and motor nerve roots exit the brainstem at the anterolat-
eral aspect of the pons. At this level, the arterial supply is provided by a vascular 
network around the trigeminal nerve root, formed by 2–6 trigeminal arteries 
[155, 156]. The parent vessels of the vessels supplying the trigeminal nerve 
include the superior cerebellar artery, the posterolateral, superolateral and infero-
lateral arteries; and the anterior inferior cerebellar artery, all branches of the basi-
lar artery.

Blood vessel compression of the trigeminal nerve is a common cause of trigemi-
nal neuralgia, an extremely severe facial pain disorder. The superior cerebellar 
artery is responsible for most (60–90%) cases of neurovascular compression, while 
the anteroinferior cerebellar artery and basilar artery may cause trigeminal nerve 
compression [157, 158]. Trigeminal nerve compression is thought to induce dis-
charges along nociceptive fibres that could be responsible for the development of 
trigeminal neuralgia [159]. Histopathologic studies have revealed focal axonal 
degeneration and demyelination in postoperative specimens collected from patients 
with TN due to neurovascular compression [160–163]. The reference-standard 
treatment for refractive TN caused by neurovascular compression is microvascular 
decompression [164].

A. P. Andreou and L. Edvinsson
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1.4.2  Perivascular Nerve Fibres Innervating the Cranial 
Circulation

As discussed above, nearly all neuropeptides released in the periphery by trigeminal 
fibres have vasodilatory properties. Vasomotor control in the areas innervated by the 
trigeminal nerve is also the result of a balance between the sympathetic and para-
sympathetic fibres innervating the cranial circulation [165].

1.4.2.1  Sympathetic System

Sympathetic nerve fibres arising from the superior cervical ganglion in the thoracic 
spinal cord supply the cranial vasculature with neuropeptide Y (NPY), noradrena-
line (NA) and ATP [70, 166, 167]. NPY and NA both cause vasoconstriction of the 
cerebral circulation and are secreted at rest; they are therefore thought to provide a 
tonic vasoconstriction. All these molecules have been studied extensively in human 
cerebral, middle meningeal and temporal arteries, and they produce vasoconstric-
tion of different magnitude. In some vessels NPY can act as a potentiator of con-
striction induced by other agents [62, 166].

1.4.2.2  Parasympathetic System

Parasympathetic nerve fibres arising from the sphenopalatine and otic ganglia as 
well as the carotid miniganglia [166] supply the cranial vasculature with VIP, pep-
tide histidine isoleucine (PHI), acetylcholinesterase (AChE), peptide histidine 
methionine 27 (PHM), PACAP as well as other VIP-related peptides [168]. The 
parasympathetic innervation of the cranial circulation is a vasodilatory system, with 
VIP, acetylcholine and PHM all being potent vasodilators in human cranial arteries. 
It is believed to become activated during attacks in trigeminal autonomic cephalal-
gias (TACs).

1.5  Cytoarchitecture of the Trigeminocervical Complex 
and Somatotopical Organisation

The sensory pseudounipolar neurons of the trigeminal and upper cervical ganglia that 
innervate the pain producing cranial structures project centrally and terminate on 
second order neurons in the trigeminocervical complex (TCC), which extends from 
the rostral pons to the upper cervical spinal cord levels and consists of a complex of 
subnuclei divided into the principal trigeminal nuclei (Vp), at which a major part of 
the trigeminal nerve terminates, and the spinal trigeminal nucleus (Vsp) [169]. The 
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Vsp is further divided into three subnuclei; the nucleus oralis (Vo), interpolaris (Vi) 
and caudalis (Vc) arranged in a rostrocaudal manner [170, 171]. The TCC extends 
from the trigeminal nucleus caudalis to the segments of C2–C3 in the rat, cat and 
monkey [172]. The total complex of trigeminal nuclei that includes the mesence-
phalic nucleus where the cell bodies of the trigeminal motor neurons lie is known as 
the trigeminal brainstem nuclear complex.

The subnucleus caudalis (Vc), also known as the trigeminal nucleus caudalis 
(TNC) or medullary dorsal horn (MDH) extends from the obex to the cervical spinal 
cord and is analogous to the dorsal horn of the spinal cord [173]. It is composed of 
separate layers similar in appearance to the spinal cord dorsal horn with the outer-
most layer, the subnucleus marginalis corresponding to lamina I. Ventral to this lies 
the subnucleus gelatinosus (lamina II), and the subnucleus magnocellularis which 
corresponds to laminae III and IV.

The TCC is organised somatotopically, with the three trigeminal divisions being 
represented in a sequence from ventrolateral to dorsomedial direction [174].

 – Mandibular afferents are mainly represented on the dorsal part of each 
subnucleus.

 – Ophthalmic afferents terminate ventral in the trigeminal subnuclei or on the ven-
trolateral aspect of the TNC [175].

 – Maxillary afferents terminate between the mandibular and ophthalmic represen-
tations in the trigeminal subnuclei.

Given the strong somatotopic organisation of the trigeminal system both in the 
TG and in the trigeminal brainstem nuclear complex, the differential diagnosis of 
lesions causing trigeminal neuropathy can be quite varied and is best examined by 
location along the trigeminal pathway [6].

Primary afferent trigeminal sensory fibres converge on second order neurons in 
laminae I–VI, which constitute the dorsal horn, and on second order neurons in the 
TNC. According to their responses when activated by different stimuli, these sec-
ond order neurons have been classified into three categories [23] and all three have 
been identified in the TCC [176]:

 1. Nociceptive-specific (NS) neurons are silent at rest and become activated in 
response to high intensity, noxious stimuli and receive inputs from Aδ- and 
C-fibres.

 2. Non-nociceptive low-threshold (LT) neurons that respond to innocuous stimula-
tion only.

 3. Wide-dynamic range (WDR) neurons exhibit a dynamic response over a broad 
stimulus range eliciting an incremental response to both innocuous and noxious 
stimuli. WDR neurons also receive considerable convergent inputs from extra-
cranial cutaneous and intracranial visceral structures and may respond to C-, 
Aδ- and Aβ- fibres.

The Vp mainly receives touch and pressure impulses from the entire oral area, 
whereas the Vsp receives information on pain, temperature and pressure from the 
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entire trigeminal area. An organisation pattern of cutaneous, primary afferent 
inputs to the dorsal horn of the spinal cord has been suggested with C-fibres pro-
jecting in lamina I, outer lamina II and laminae VI and X, Aδ-fibres terminating in 
lamina I, outer lamina II and laminae III-V, and Aβ-fibres terminating in laminae 
II(inner)-VI and X. This is however not a strict organisation, as it does not quanti-
tatively differentiate between various laminae as concerns primary afferent input, 
and the cell types (NS, WDR or LT) are qualitatively rather than quantitatively 
represented [23, 176].

Earlier studies have shown that the spinal trigeminal nucleus, especially the 
TNC, has an important role in the mediation of pain and temperature sensations 
from the head and facial regions [177, 178]. Sensory inputs from the dural blood 
vessels (such as the superior sagittal sinus and the middle meningeal artery), syn-
apse on second order neurons in the TCC and nociceptive electrical and mechanical 
stimulation of the superior sagittal sinus result in Fos expression in this nuclei com-
plex [179–181]. The sensory central projections of the trigeminal fibres innervating 
superficial temporal artery and the superior sagittal sinus in rats terminate in the 
TNC, the trigeminal nucleus interpolaris and the dorsal horn in the segment C1–C3 
[182, 183]. Stimulation of the superior sagittal sinus or certain other dural compo-
nents increases neuronal activity in the TNC [21, 22, 184, 185] and most of these 
also have facial receptive fields located in the ophthalmic division [184]. Electrical 
stimulation of the superior sagittal sinus causes increased metabolic activity and 
blood flow in the TNC and in C1 and C2 of the spinal dorsal horn [186]. CGRP-like 
immunoreactivity, which represents CGRP carrying afferents from the trigeminal 
ganglion [187], is abundant in the TCC and stimulation of the trigeminal ganglion 
causes increased release of CGRP and SP [188].

Clinical correlates, that indicate an important role of the brainstem in 
migraine, come from imaging studies, which showed activation of the pons and 
brainstem during migraine attacks [189], and this activation is migraine specific 
[190]. Both experimental and clinical evidence suggest that abnormal neuronal 
modulation at the level of the brainstem is clearly implicated in migraine patho-
physiology [191].

1.5.1  Convergence of Trigeminal and Cervical Fibres 
in the Trigeminocervical Complex

An important aspect of trigeminal nociception is the convergence of trigeminal 
fibres and of cervical fibres arising from cervical DRGs on second order neurons in 
the TCC, particularly in the C1 and C2 regions [22, 192, 193]. The greater occipital 
nerve (GON) arises from fibres of the dorsal primary ramus of the C2 nerve and to 
a lesser extent fibres from the C3 nerve. It supplies the medial portion of the poste-
rior scalp as far anterior as the vertex. The lesser occipital nerve arises from the 
ventral primary rami of C2 and C3 nerves. The lesser occipital nerve divides into 
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cutaneous branches that innervate the lateral portion of the posterior scalp and the 
cranial surface of the pinna of the ear. The GON projects centrally, mainly in C2 and 
C3 spinal levels, but also to C1 and Vsp and has a somatotopic organisation [192, 
194, 195]. As early as in 1961, Kerr and Olafson [196] showed that stimulation of 
trigeminal and occipital fibres can modulate the same second order neurons. It is 
estimated that about 40% of second order neurons receiving trigeminal inputs also 
receive occipital fibres. Stimulation of occipital fibres appears to excite, inhibit sec-
ond order neurons or even to induce brief bursts followed by inhibition, inhibition 
followed by rebound or sensitisation [22, 193, 196].

From a clinical point of view the finding of convergence on second order neurons 
is of considerable interest as a possible mechanism for the diffuse spread of head-
ache to occipital regions often seen in migraine and of the headache in the trigemi-
nal territory that often accompanies occipital neuralgia as a form of referred pain, a 
similar functional relationship to the convergence of somatic and visceral afferent 
fibres seen in the dorsal horn of lower spinal levels. From a therapeutic point of 
view, GON block is often used as a preventive treatment in migraine and cluster 
headache [197–199]. Weiner and Reed [200] first reported a series of cases of 
intractable occipital neuralgia responding to occipital nerve stimulation (ONS). 
ONS has been since used as a treatment of chronic migraine [201–203] and chronic 
cluster headache [204–206] with mixed results.

1.6  Trigemino-Autonomic Reflex: Relevance to Trigeminal 
Autonomic Cephalalgias

The trigeminal-autonomic reflex refers to the anatomical and physiological relation-
ship of the afferent trigeminal nerve and the efferent pathway that arises in the 
superior salivatory nucleus (SSN) [207, 208]. The trigemino-autonomic reflex has 
been implicated in the pathophysiology of trigeminal autonomic cephalalgias 
(TACs), which consist of cluster headache, paroxysmal hemicrania and SUNCT/
SUNA (Short-lasting Unilateral Neuralgiform headache attacks with Conjunctival 
injection and Tearing/cranial Autonomic features), and by definition they have cra-
nial autonomic symptoms, either parasympathetic activation: lacrimation, conjunc-
tival injection, nasal symptoms, aural symptoms, peri-orbital swelling; or 
sympatholytic manifestations: ptosis, miosis. These symptoms are also seen in 
some migraine patients and even manifest in the premonitory phase [209, 210]. 
Trigeminal, sympathetic and parasympathetic fibres are well known to innervate 
cranial structures and to control together vessel dilatation [10, 14, 211, 212].

As discussed above, trigeminal fibres project to the trigeminocervical complex 
and second order neurons give rise to the trigeminothalamic pathway. Part of the 
trigeminothalamic projections synapse in the SSN [213, 214]; these appear to 
involve mainly projections from second order neurons that receive inputs from the 
ophthalmic division of the Vn [215]. Fibres from the SSN pass via the facial nerve 
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(VII cranial nerve) to synapse post-ganglionic parasympathetic neurons in the gan-
glion (SPG). SPG neurons express the vasoactive neuropeptides VIP and PACAP, as 
well as nitric oxide synthase [216–218] and they also drive cerebral vasodilation 
following activation of the SPG or the facial nerve [219, 220]. Interestingly, increased 
levels of VIP and PACAP [100, 154], potentially of SPG origin, have been found in 
cluster headache patients, along with increased levels of CGRP which is thought to 
be of trigeminal origin [221, 222]. This SSN-SPG pathway is modulated from the 
hypothalamus [223–225]. Deep brain stimulation in the hypothalamic region has 
been used as a treatment in refractory chronic cluster headache with good results 
[226], while currently SPG stimulation is used as an abortive treatment of episodic 
cluster attacks [227, 228]. Which system becomes first activated in TACs is not yet 
clear, however, the autonomic dysregulation as seen in these primary headache dis-
orders might be due to hypothalamic disturbances [229, 230], given the consistent 
hypothalamic activation seen in brain imaging in cluster attacks [231–233], as well 
as the efficacy of DBS in the hypothalamic area [226]. Other theories that include 
nociceptive trigeminal discharges driving autonomic activation as a secondary phe-
nomenon, or perivascular oedema due to trigeminal-parasympathetic over activity 
that also compromise sympathetic fibres have been discussed [215, 225].

1.7  Ascending and Descending Pathways of the Trigeminal 
System

1.7.1  Ascending Pathways

The majority of the secondary neurons in the TCC decussate at the level of the 
medulla and travel up the brainstem through the ventral trigeminal tract, which 
ascends in close relationship with the contralateral medial lemniscus, and carry sen-
sory information from the face and the meninges to higher brain areas. Their role is 
not only to facilitate the perception and detection of noxious stimuli, but also to 
communicate with cognitive circuits which control mood associated with pain, the 
attention to and memory of pain as well as the tolerance of pain [234].

The trigeminothalamic tract (also called the quintothalamic tract) transmits infor-
mation from the trigeminocervical complex and synapse mainly at the ventral pos-
teromedial nucleus (VPM) of the contralateral thalamus. Ipsilateral projections have 
been reported in some species, associated with the spinothalamic tract carrying sen-
sory information from the body [235]. In addition to the sensory thalamus, neurons 
from the trigeminocervical complex also project to a number of diencephalic and 
brainstem areas involved in the regulation of autonomic, endocrine, affective and 
motor functions. Of them, the trigeminohypothalamic tract is not well studied, how-
ever, it appears to be formed by neurons located bilaterally in the TCC and their 
axons synapse mainly to the lateral preoptic, anterior, lateral, perifornical and caudal 
hypothalamic nuclei [236]. Of interest TCC neurons projecting to the hypothalamus 
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appear to be nociceptive specific [236]. Although the structures that receive axons 
from the TCC have not been well studied, it is believed to act as the mediators of 
activation of descending efferent projections to the TCC that modulate nociceptive 
information within this relay centre.

1.7.2  Glutamate in the Ascending Trigeminovascular 
and Trigeminothalamic Pathways

Glutamate is the excitatory neurotransmitter that drives activation of the ascending 
trigeminovascular and trigeminothalamic pathways [237]. Trigeminal pain-relay 
structures, including the trigeminal ganglion, TCC and thalamus, contain glutamate- 
positive neurons [238, 239]. Glutamate activates neurons in the trigeminal nucleus 
caudalis [240] by acting both on ionotropic and metabotropic GluRs [241], and it is 
involved in signaling from trigeminothalamic tract and hypothalamic pathways and 
corticothalamic afferents [242]. In vivo studies using microdialysis and blood flow 
measurements demonstrated increased levels of glutamate in the TCC during and post 
stimulation of dural structures and following noxious stimulation along the trigeminal 
nerve [243–245]. Glutamate is released from trigeminal ganglion neurons along with 
CGRP by a calcium channels depended mechanism [64]. It has been further demon-
strated that the majority of glutamatergic neurons in the trigeminal ganglia carry 
5-HT1B/D/F receptors, which could possibly modulate glutamate release [246]. 
Glutamate plays additionally a crucial role in the transmission of nociceptive infor-
mation in the sensory thalamus. Extracellular levels of glutamate, measured by micro-
dialysis, are increased in the rat VPM following experimentally produced pain [247] 
and it triggers post-synaptic excitatory potentials by activating multiple GluRs [248].

The presence of glutamate in the transmission of sensory information implicates 
the involvement of GluRs that modulate glutamate responses, in key CNS areas 
involved in migraine pathophysiology. Each of the ionotropic and metabotropic 
GluRs has been identified in the superficial laminae of the trigeminal nucleus cau-
dalis [241] and the sensory thalamus among other pain related areas of the rat brain  
[249]. Expression of NMDA, kainate and mGluRs messenger RNA has been found 
in trigeminal ganglion neurons [250–252].

Migraineurs have elevated levels of glutamate [253, 254] and glutamine [255] in 
the cerebrospinal fluid (CSF) compared to controls, suggesting an excess of neuro-
excitatory amino acids in the CNS. A correlation between the glutamate levels and 
the mean headache scores has been reported [253], suggesting a persistent neuronal 
hyperexcitability that becomes heightened during an attack in migraineurs. In sup-
port of this hypothesis is the finding that migraineurs exhibit cutaneous allodynia 
during an attack, and thus exhibit signs of the development of central sensitisation 
[256]. Central sensitisation following peripheral sensory stimulation involves glu-
tamate release and in some part is glutamate receptor activation mediated [257]. 
Evidence from animals support that increased glutamate levels parallel changes in 
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sensory thresholds of facial receptive fields, as recorded from secondary neurons in 
the TCC [245]. This further supports the involvement of glutamate in the develop-
ment of cutaneous allodynia and central sensitization, as seen in migraine patients.

1.7.3  Descending Pathways

Anti-nociceptive and modulatory networks are only discussed briefly here and the 
readers can find more extensive reviews on descending efferent connections to the 
TCC in [258–260].

The TCC has been shown to receive efferent monoaminergic, enkephalinergic, 
dopaminergic and other peptidergic projections from brainstem, pons and midbrain 
areas [259]. These include the nucleus raphe magnus and the reticular formation 
that project to the outer laminae of the TCC [261], the dopaminergic hypothalamic 
nucleus A11 [262], and the periaqueductal gray [263].

Brain imaging studies in migraine patients showed increased perfusion in the 
rostral brainstem and cingulate cortex during spontaneous and triggered migraine 
attacks. The increased perfusion was further shown to even after pharmacological 
intervention with headache relief. This gave rise to the theory that brainstem activa-
tion is more than a simple reactive response to pain [189, 190, 264, 265]. The area 
suspected to be involved in this increased perfusion studies is the PAG. The PAG is 
an anti-nociceptive modulatory structure as shown in many animal models of pain 
[263]. High resolution magnetic resonance imaging (MRI) of the PAG has identified 
a possible impairment of iron homeostasis, which can be indicative of a neuronal 
dysfunction in both migraine with and without aura [266]. The brain stem activation 
seen during migraine attacks is thought to be specific to migraine pathophysiology, 
as it is not seen in experimentally induced or atypical facial pain [267, 268], acute 
cluster headache [269] and short-lasting, unilateral, neuralgiform headache attacks 
with conjunctival injection and tearing (SUNCT) [270].
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