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Abstract. This paper deals with the NP-hard problem of covering a
line segment by n initially arbitrarily arranged circles on the plane by
moving their centers to the segment in such a way that the sum of the
Euclidean distances between the initial and final positions of the centers
of the disks would be minimal. In the case of identical circles, a dynamic
programming algorithm is known, which constructs a

√
2–approximate

solution to the problem with O(n4)–time complexity. In this paper, we
propose a new algorithm that has the same accuracy, but the complexity
of which is reduced by n2 times to O(n2).
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1 Introduction

The sensor network consists of devices, each of which collects data within a
proximity, which is called a coverage area. On the plane, a coverage area most
often is a circle (disk) with a sensor in its center [5,7,19,24]. Though both an
ellipse [16] and a sector [17] can be a coverage area of the sensor. In the wireless
sensor networks energy of the sensors is often irreplaceable because the recharge
or change of the battery is either impossible or impractical. The energy of the
sensors defines network’s lifetime. Rational use of energy prolongs the lifetime
of the sensor network [5,7]. For energy efficient operation of the sensor network,
it is necessary to solve several optimization problems. One of the problems is
optimal placement of sensors and determination of the values of their parameters.
As sensing energy consumption is proportional to the coverage area, this problem
is reduced to the classical min-density covering problem [5–7,13,24].

In barrier monitoring, it is necessary to detect an unauthorized crossing of a
barrier separating the two territories. In some cases, the barrier is considered as
a line [1,4,10–14,20,21], in others as a strip [17,23]. The barrier can be covered
by stationary sensors [2,9,10,15,17,20,22,23,25], and by mobile sensors [1,4,11–
14,18]. A coverage area is often considers as a circle [4,11–14,20], but sometimes
(in the case of directed devices) it is a sector [17,22,25]. In [20] a notion of weak
coverage is introduced and the critical conditions for the existence of weak barrier
coverage in a randomly deployed sensor network is proposed. Later, in [9] the
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algorithm of guaranteed detection and localization of intruders, the trajectory
of which is located in the area of sensors placement, is proposed. How to assess
and ensure the quality of the barrier coverage is examined in [10].

If a sensor is mobile, the movement energy consumption is proportional to the
distance traveled by a sensor. The important optimization problem for mobile
sensor networks is minimization of the total distance traveled by sensors [1,4,
11–14,18]. It is necessary to move the sensors in such a way that each point
of the barrier (the line segment) belongs to the coverage area of at least one
sensor, and the total length of the relocations would be minimal. In [13] the
NP-hardness of the problem is proved. The efficiency of the different placement
strategies of sensors for a barrier coverage is studied in [21]. There was also
studied the question how to improve a barrier coverage after the placement
using the mobility of the sensors. The authors of [21] presented an algorithm
for efficient improvement of barrier coverage with a wide range of parameters
of placement the sensors. Circular barriers in the plane were studied in [4,11].
Paper [4] presents a O(n2)–time algorithm for the special case of the circular
barrier covering problem (when the sensors are placed along the boundary of
the region uniformly) with approximation ratio 1 + π, where n is the number of
sensors. Later, in [1], this result was improved by presenting an algorithm with
the same running time and approximation ratio 3. A PTAS was also proposed for
this problem in [4], which was improved in [8]. In [3] for the case, when arbitrary
disks are lying on the line containing the segment, and the disks in the cover do
not intersect, an FPTAS is proposed.

In the literature on barrier monitoring, as a rule, the problem of covering a
line segment with identical circles when the centers of the circles move to the seg-
ment, is considered. In case of the Euclidean metric it is nothing known about the
complexity of this problem, however, there is a polynomial

√
2–approximation

algorithm [12]. A line segment coverage problem in the special case when equal
disks initially lie on the segment is considered in [1] and a O(n log2 n)–time
algorithm is proposed to solve this problem.

Sometimes the problem of barrier coverage is considered in 3D space [22]. We
within this paper consider a problem on a plane. Let barrier be a line segment
on abscissa axis, and let us number the circles according to the nondecreasing
abscissas of their centers. A solution in which after moving the sensors the order
preserves is called an order-preserving covering (OPC). In the general case may
not exist an optimal OPC [12]. In [12] the authors presented a O(n4)–time

√
2–

approximation algorithm.
In this paper, we propose a dynamic programming

√
2–approximation algo-

rithm that solves the problem with O(n2)–time complexity. Compared with the
known algorithm [12], the degree of the time complexity polynomial is halved.

This paper is organized as follows. Section 2 presents a mathematical formula-
tion of the problem. Section 3 gives the description of new dynamic programming√

2–approximation algorithm A. In Sect. 4 it is proved that the time complex-
ity of the algorithm A is O(n2). The Conclusion section contains summary and
further directions of the research. In the AppendixA we describe in detail the



120 A. Erzin and N. Lagutkina

solution of one example of a covering of a given line segment by three identical
circles.

2 Problem Formulation

Let barrier is a L-length line segment on the plane. It is required to cover it by
mobile sensors with circle coverage areas. We introduce a coordinate system in
such a way that the barrier is a segment between the points (0, 0) and (L, 0).
Let S be a set of disks (corresponding to the coverage areas of the sensors),
|S| = n, each of which is given by initial coordinates of its center pi = (xi, yi)
and radius ri > 0, i ∈ S. We assume that the sensors are numbered from left to
right according to the values xi, i = 1, 2, . . . , n.

Definition 1. The function p̂ : S → R2 is called a covering assignment if the
segment is completely covered when the final positions of the sensors are p̂i =
(x̂i, ŷi), i ∈ S.

Let d(pi, p̂i) be a distance between the points pi and p̂i. The problem of
barrier coverage by mobile sensors is to find a covering assignment p̂∗ of minimum
cost, which is the solution of the problem

cost(p̂∗) = min
p̂

cost(p̂) = min
p̂

∑

i∈S

d(pi, p̂i). (1)

In the general case, the covering of a segment can be obtained not necessarily
by moving the sensors to a segment. However, in [12–14] the special case of the
problem (1) when the sensors move on the barrier is considered. In this paper,
we also consider this case, though we can modify our algorithm in such a way
that it builds the solution in a general case. However, within the framework of
this paper, we do not set ourselves the goal of describing the general case.

In the case when disks have different radii, the problem (1) is known to be
NP-hard even to approximate up to a constant factor [13,14]. However, if the
circles are identical it is unknown whether this problem is NP-hard or it is poly-
nomially solvable [12,14]. Paper [12] presents a dynamic programming algorithm
for finding p̂ that determines an optimal OPC under L1 metric with O(n4)–time
complexity. Meanwhile, the optimal solution of the problem (1) under metric L1

is a
√

2–approximate solution under the Euclidean metric [12].

3 Algorithm A
In the following, as earlier, we shall identify the centers of the circles (disks)
with the sensors. Let the circles be numbered in the nondecreasing order of
the abscissas of their centers. We start with the known definitions and simple
observations.

Definition 2. A covering assignment p̂ is order-preserving if for every i, j ∈ S
we have x̂i < x̂j iff i < j.
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Lemma 1 [12]. If the circles are identical, then there is an optimal order-
preserving covering assignment under L1 metric.

Lemma 2 [12]. If the circles are identical, then any optimal order-preserving
covering under L1 metric is a

√
2-approximate solution to the problem (1) under

Euclidean metric.

Further, in this section, we present a new dynamic programming algorithm
A that constructs an OPC, which, in the case of identical circles, is an optimal
solution to the problem (1) under the metric L1. The algorithm consists of one
forward recursion and one backward recursion.

3.1 Forward Recursion

Let Sk(l) be a minimum sum of the distances d(pi, p̂i) = |xi − x̂i| + |yi − ŷi|,
i = 1, . . . , k, for the first k, k = 1, . . . , n, sensors that form an OPC of the
segment [0, l], 0 ≤ l ≤ L. Without loss of generality, we suppose that yi ≥ 0,
i ∈ S. Then we can calculate the cost

S1(l) =

{
d(p1, p̂1(l)), 2r1 ≥ l

+∞, 2r1 < l.

Here the point p̂1(l) is lying on the segment, it is the nearest point to the point
p1, and the segment [0, l] is covered by disk 1. The value d(p1, p̂1(l)) is defined
analytically depending on the initial position of the sensor 1. We assume that
the center of the disk 1 moves to the point (x, 0) on the segment (see Fig. 1).
Then

d(p1, p̂1(l)) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−x1 + y1, x1 ≤ 0, l ≤ r1, x = 0
l − r1 − x1 + y1, max{x1 + r1, r1} ≤ l, x = l − r1

y1, 0 ≤ l − r1 ≤ x1 ≤ r1, x = x1

x1 − r1 + y1, x1 > r1, r1 ≤ L, x = r1

x1 − L + y1, x1 > r1 > L, x = L.

Let now there are two disks 1 and 2 with radii r1 and r2. If l ≤ 2min{r1, r2},
then either two sensors, or one of the sensors can be used in the cover. Let’s
consider the following possible cases.

1. The sensor 2 is not used in the cover.
2. The sensor 1 is not used in the cover.
3. Both sensors 1 and 2 are used in the cover.

In the first case, we have S2(l) = S1(l). In the second case, we let S2
1(l) be

the minimum distance of movement of a sensor 2 for covering [0, l] (suppose that
S2(l) = +∞, if 2r2 < l). Let now both sensors are used in the cover of the
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Fig. 1. Movement of disk 1 depending on r1, p1 and l. The original location (p1) and
the final location (p̂1) are connected by arrow. (a) If l − r1 ≤ 0, x1 ≤ 0, then x = 0.
(b) If x1 ≤ l − r1, l − r1 ≥ 0, then x = l − r1. (c) If 0 ≤ l − r1 ≤ x1 ≤ r1, then x = x1.
(d) If x1 ≥ r1, r1 ≤ L, then x = r1. (e) If x1 > r1, r1 > L, then x = L.

segment [0, l] and x is a point where the center of the disk 2 moves. Thus we can
calculate the cost

S2(l) =

{
min{S1(l), S2

1(l), S2(l)}, 0 < l ≤ min{2(r1 + r2), L}
+∞, 2(r1 + r2) < l,

where

S2(l) =

⎧
⎨

⎩
min

x∈D2(l)
{|x2 − x| + y2 + S1(x − r2)}, l < x2 + r2

l − r2 − x2 + y2 + S1(l − 2r2), l ≥ x2 + r2,

and D2(l) = [max{r2, l − r2},min{2r1 + r2, l + r2, L}]. Obviously, in the case 3,
we have x > r2 (see Fig. 2).

Fig. 2. Options of movement of the disk 2 in the case 3.

Let the values of all functions Si(l), i = 1, . . . , k − 1, be counted, and let the
segment [0, l] is covering by disks 1, 2, . . . , k. Then, the following recursions can
be used to calculate Sk(l), k = 1, . . . , n.

Sk(l) =

⎧
⎪⎪⎨

⎪⎪⎩

min
{
Sk−1(l), S2

k−1(l), Sk(l)
}

, 0 < l ≤ min{2
k∑

i=1

ri, L}

+∞, 2
k∑

i=1

ri < l,
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where

Sk(l) =

⎧
⎨

⎩
min

x∈Dk(l)
{|xk − x| + yk + Sk−1(x − rk)}, l < xk + rk

l − rk − xk + yk + Sk−1(l − 2rk), l ≥ xk + rk,

S2
k−1(l) is the cost function if only one disk k is covering the segment, and

Dk(l) =
[
max{rk, l − rk},min{2

k−1∑
i=1

ri + rk, l + rk, L}
]
.

After computing Sn(L), the optimal position of the last disk n is found.

3.2 Backward Recursion

If the sensor n is used in the constructed cover then the position of its center
(x̂n, 0) is known, so the segment [0, L− x̂n−rn] is covered by the first n−1 disks.
The formulas for calculating the value Sn−1(l) is found for any l and hence for
the argument l = L−x̂n−rn too. If the sensor n is not used in the optimal cover,
then we consider the sensor n − 1. If the sensor n − 1 is used in the cover, then
we know the position of its center (x̂n−1, 0) and the segment [0, L− x̂n−1 −rn−1]
is covered by the first n − 2 disks. Continuing the backward recursion, we find
the covering of the whole segment [0, L].

4 Time Complexity

In this section, we will prove that the proposed algorithm A can be implemented
within the time complexity O(n2).

Definition 3. We call li ∈ [0, l] the switching points for the function Sk(l) if in
the segment (li, li+1) ⊆ [0, l] the function is defined by one analytical expression
Fi(l) and Fi(li+1) = Fi+1(li+1), Fi(li) = Fi−1(li), or if Sk(l) is unlimited (equals
+∞).

Lemma 3. When adding the next disk k, the number of switching points for
the function Sk(l), k = 1, . . . , n, increases by O(1) with respect to the number of
switching points for the function Sk−1(l).

Proof. Let first k = 1. If 2r1 < l then S1(l) = +∞. Otherwise if 2r1 ≥ l, then
depending on p1 and r1, we have one of the three options for calculation S1(l).

1. If x1 < 0, then

S1(l) =

{
−x1 + y1, l ≤ r1, x = 0
l − r1 − x1 + y1, l > r1, x = l − r1.

2. If 0 ≤ x1 ≤ r1, then

S1(l) =

{
y1, l ≤ r1 + x1, x = x1

l − r1 − x1 + y1, l > r1 + x1, x = l − r1.
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3. If x1 > r1, then

S1(l) =

{
x1 − r1 + y1, r1 ≤ L, x = r1

x1 − L + y1, r1 > L, x = L.

Thus, for any value of x1 the number of switching points for function S1(l) is
bounded by O(1) (constant).

Let now the two first disks can be used in the covering. It is necessary to
consider all cases for the calculation of S2(l). Due to the limitations of the space,
we will consider in detail only two cases from the set of cases.

Let’s consider, for example, the case when 0 < l < x2 + r2. As both sensors
are used in the cover of the segment [0, l], then x2 > max{l − r2, r2}. Note that
the sensor 1 does not cover the point (0, l), and the sensor 2 does not cover the
point (0, 0). Therefore,

S2(l) =

{
x2 − x + y2 + S1(x − r2), x ∈ X1

x − x2 + y2 + S1(x − r2), x ∈ X2,

where X1 = [max{r2, l − r2},min{2r1 + r2, l + r2, L, x2}],
and X2 = [max{r2, l − r2, x2},min{2r1 + r2, l + r2, L}].

The function S1 depends on the x1, and it is computed as follows:

– if x1 < 0, then

S1(x − r2) =

{
−x1 + y1, x ≤ r1 + r2

x − r1 − r2 − x1 + y1, x > r1 + r2;

– if 0 ≤ x1 ≤ r1, then

S1(x − r2) =

{
y1, x ≤ x1 + r1 + r2

x − r1 − r2 − x1 + y1, x > x1 + r1 + r2;

– if x1 > r1, then S1(x − r2) = x1 − r1 + y1, r1 ≤ L.

Assume that x1 < 0, x ≤ x2 and x ≤ r1 + r2. Then we have the formula:

S2(l) = x2 − x + y2 + S1(x − r2),

where max{r2, l−r2} ≤ x ≤ min{2r1+r2, l+r2, L, x2} and S1(x−r2) = −x1+y1.
As a result, we have the following analytical expression

S2(l) = x2 − x + y2 − x1 + y1,

where max{r2, l − r2} ≤ x ≤ min{2r1 + r2, l + r2, L, x2}
and x = min{r1 + r2, x2, l + r2, L}.
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Let’s consider one more case when l ≥ x2 + r2 and x1 < 0. Then we have the
formula S2(l) = l − r2 − x2 + y2 + S1(l − 2r2), where

S1(l − 2r2) =

{
−x1 + y1, x1 ≤ 0, l − 2r2 ≤ r1

l − r1 − 2r2 − x1 + y1, x1 ≤ 0, l − 2r2 > r1.

If l − 2r2 ≤ r1, then in order to cover the segment [0, l − 2r2] the disk 1 moves
to the point (0, 0). Otherwise, if l − 2r2 > r1, the disk 1 moves to the point
(l − 2r2 − r1, 0).

Assume that l−2r2 ≤ r1, then the function S2(l) = l−r2 −x2 +y2 +y1 −x1.
Other cases are considered similarly. Thereby the number of switching points

for the function S2(l) is upper bounded by constant.
For an arbitrary number of sensors k = 1, 2, . . . , n, we can calculate the cost

as follows.

Sk(l) =

⎧
⎪⎪⎨

⎪⎪⎩

min
{
Sk−1(l), S2

k−1(l), Sk(l)
}

, 0 < l ≤ min{2
k∑

i=1

ri, L}

+∞, 2
k∑

i=1

ri < l,

where

Sk(l) =

⎧
⎨

⎩
min

x∈Dk(l)
{|xk − x| + yk + Sk−1(x − rk)}, l < xk + rk

l − rk − xk + yk + Sk−1(l − 2rk), l ≥ xk + rk,

S2
k−1(l) is the cost function if only one disk k is covering the segment, and

Dk(l) =
[
max{rk, l − rk},min{2

k−1∑
i=1

ri + rk, l + rk, L}
]
.

When calculating the value of Sk(l) it is considered two cases l < xk +rk and
l ≥ xk + rk, and the number of switching points increases by constant. Hence,
for calculation of the next value of Sk(l), k = 1, . . . , n, the constant number of
switching points is added, that completes the proof.

Corollary 1. When calculating the function Sk(l) the optimal position of the
center of the disk k, k = 1, . . . , n can be computed with time complexity equals
O(n).

Remark 1. In the case of different disks may not exist an optimal order-
preserving assignment under L1 metric (see Fig. 3). Therefore, we can apply
the proposed algorithm A, but we cannot obtain a

√
2-approximate solution.

The main result of this paper is the

Theorem 1. In the case of identical disks the algorithm A constructs a
√

2–
approximate solution to the problem (1) with time complexity equals O(n2).
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Fig. 3. (a) The optimal cover under L1 metric. (b) The order-preserving cover which
is worse by 2(r1 − r2) than the optimal cover.

Proof. It is known that in the considered case an optimal order-preserving cov-
ering under L1 metric is a

√
2–approximate solution to the problem (1) under

Euclidean metric [12]. Taking into account that the functions Sk(l) are calcu-
lated n times and Corollary 1, we find that the complexity of the algorithm A is
O(n2). The theorem is proved.

To illustrate the operation of the algorithm, in the AppendixA an example
is given.

5 Conclusion

The paper deals with the problem of moving the centers of n circles located
at arbitrary position on a plane on a given line segment of length L so that
the line is completely covered by the circles while minimizing the cumulative
Euclidean distance between the initial position of centers and their position
on the segment. It is known that this problem is NP-hard in the case of a
non-identical disks [13,14]. When the disks are identical the complexity of the
problem is unknown, but there is a O(n4)–time

√
2–approximation algorithm.

In this paper, we propose a O(n2)–time algorithm that is applicable in general
case and constructs a

√
2-approximate solution to the problem in the case of n

identical circles.
In the further research, we plan to clarify the complexity of the problem in

the case of identical disks and to give up a requirement of movement the sensors
on the segment. Moreover, we are planning to design an FPTAS for the case
when each barrier point is covered by exactly one disk.
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A Appendix

Example. Let it is required to cover the line segment [0, 4.5] by three iden-
tical disks with radii equal to 1, which initial positions of the centers are
p1 = (−0.5, 1), p2 = (2.5, 2) and p3 = (5.5, 0) (Fig. 4(a)).

Since x1 < 0, then

S1(l) =

⎧
⎪⎨

⎪⎩

−x1 + y1 = 1.5, l ≤ 1
l − 1 − x1 + y1 = l + 0.5, l > 1
+∞, l > 2.

The disk 1 moves to the point (0, 0), if l ≤ 1 (Fig. 4(b)) and it moves to the point
(l − 1, 0), if l > 1 (Fig. 4(c)). Thus, we have the switching points 0, 1, 2 and 4.5.

Let now two circles participate in the covering. If l ≤ 1, then it is easy to
see, that only disk 1 covers the segment [0,l] and S2(l) = 1.5 (Fig. 4(d)).

If 1 < l ≤ 2, then the segment [0, l] can be covered ether by one disk 1 or
by one disk 2. We have that d(p1, p̂1) = l + 0.5 ≤ d(p2, p̂2). So, in this case only
disk 1 covers the segment [0, l]. Suppose that both disks 1 and 2 participate in

Fig. 4. (a) Initial position of the disks; (b) one disk in the case when l ≤ 1; (c) one
disk in the case when 1 < l ≤ 2; (d) two disks in the case when l ≤ 1.
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Fig. 5. (a) Two disks in the case when 1 < l ≤ 2; (b) two disks in the case when
2 < l ≤ 3.5; (c) two disks in the case when 3.5 < l ≤ 4; (d) the optimal OPC.

the covering of the segment [0, l]. Let us denote by x ∈ (1, 3) the point at which
the center of disk 2 moves. Then the segment [0, x − 1] must be covered by disk
1. If x ≤ 2.5 then S2(l) = 2 + 2.5 − x + S1(x − 1) = 4. If 2.5 < x ≤ 3 then
S2(l) = min

x∈[2.5,3]
{2 + x − 2.5 + S1(x − 1)} = min

x∈[2.5,3]
{2x − 1}. Therefore, in this

case only the center of disk 1 moves to the point (l − 1, 0) (Fig. 5(a)).
If 2 < l ≤ 3.5, then the both disks 1 and 2 must participate in the covering

of the segment [0, l]. If x is a point where the center of disk 2 moves, then the
segment [0, x − 1] must be covered by disk 1. For any x ∈ [l − 1, 2.5], we get the
same value of S2(l) = 4 and set x = 2.5 (Fig. 5(b)).

If 3.5 < l ≤ 4, then both disks participate in the covering of the segment
[0, l]. If x ∈ [l−1, 3] is a point where the center of disk 2 moves, then the segment
[0, x−1] must be covered by disk 1. In this case 2.5 ≤ x ≤ 3. Moreover, x = l−1
and S2(l) = l − 1 − 2.5 + 2 + 1 + l − 2 + 0.5 = 2l − 2 (Fig. 5(c)).

Therefore, the following formula holds

S2(l) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1.5, 0 < l ≤ 1
l + 0.5, 1 < l ≤ 2
4, 2 < l ≤ 3.5
2l − 3, 3.5 < l ≤ 4
+∞, l > 4,

where the switching points are 0, 1, 2, 3.5, 4, 4.5.
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Let now all three sensors participate in the covering. The center of disk 3 can
move to the point x ∈ [3.5, 4.5]. Then the segment [0, x − 1] must be covered by
disks 1 and 2 and

S3(4.5) = min
x∈[3.5,4.5]

{5.5 − x + S2(x − 1)} = min
x∈[3.5,4.5]

{9.5 − x} = 5.

Then the center of disk 3 moves to the point (4.5, 0).
The backward recursion allows us to restore the optimal coverage, which is

shown in the Fig. 5(d).
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