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Abstract. We consider the problem of gathering a set of autonomous,
identical, oblivious, asynchronous, mobile robots at a vertex of an anony-
mous hypercube. The robots operate in Look-Compute-Move cycles. In
each cycle, a robot takes a snapshot of the current configuration (Look),
then based on the perceived configuration, decides whether to stay idle or
to move to an adjacent vertex (Compute), and in the later case makes an
instantaneous move accordingly (Move). We have shown that the prob-
lem is unsolvable if the robots do not have multiplicity detection capabil-
ity. With weak multiplicity detection capability, the problem is solvable
in an oriented hypercube for any initial configuration of 2k + 1(k > 0)
number of robots. For 4k(k > 0) number of robots, the problem is solv-
able under the same assumptions if and only if the group of automor-
phism of the configuration is trivial. Our proposed algorithms are optimal
with respect to the total number of moves executed by the robots.

Keywords: Distributed computing · Autonomous robots · Gathering ·
Hypercube · Weber point · Asynchronous · Look-Compute-Move cycle

1 Introduction

The gathering problem requires a set of n mobile computational entities, usually
called robots or agents, initially situated at different locations in a spatial uni-
verse, to gather at some unspecified location within finite time. When only two
robots are involved, the problem is usually referred to as the rendezvous problem.
In distributed computing, gathering has been extensively studied both in con-
tinuous and in discrete domains. In the continuous setting, the robots operate in
the two-dimensional Euclidean space and in the discrete case, they operate in a
network modeled as a graph. In the discrete setting, the problem has been previ-
ously studied in different graph topologies, e.g. rings [10,18,22,23], grids [8,31],
trees [8] etc. The problem is particularly difficult in graphs that are highly sym-
metric and is solvable only in very limited cases. Hence, for characterization
of gatherability, it is important to investigate the problem in highly symmetric
graphs. In this paper, we investigate the problem in a hypercube graph.
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1.1 The Model

A set of autonomous mobile robots is randomly deployed on the vertices of a
d-dimensional hypercube network. The d-dimensional hypercube Qd is an undi-
rected graph with vertex set V (Qd) = Z

d
2 = {0, 1}d, and two vertices are adjacent

if and only if the two binary strings differ in exactly one coordinate. An oriented
hypercube is an edge-labeled hypercube with the so-called dimensional labeling
λ : E(Qd) → {1, . . . , d} where λ(uv) = i, if u and v differ in the ith coordinate.
We shall denote an oriented hypercube by QO

d , and an unoriented hypercube by
simply Qd. The binary string labels of the vertices are for descriptive purposes,
and are not known to the robots. However, in an oriented hypercube, the edge-
labels are known to the robots. It is traditionally assumed that the robots can
only perceive the labels of the edges adjacent to the vertex on which it resides.
But since the labels of edges adjacent to a single vertex determine the dimen-
sional labels of all the edges in a hypercube (See Theorem 3.1 in [33]), we assume
without loss of generality that the robots know the labels of all the edges.

The robots are oblivious (they have no memory of past configurations and
previous actions), autonomous (there is no central control), homogeneous (they
execute the same distributed algorithm), anonymous (they have no unique iden-
tifiers) and identical (they are indistinguishable by their appearance). The robots
have global visibility, i.e., they are able to perceive the entire graph. The robots
do not agree on any global coordinate system. Furthermore, there are no means
of communication between the robots.

The robots, when active, operate according to the so-called Look-Compute-
Move cycle. In each cycle, a previously idle or inactive robot wakes up and
executes the following steps. In the Look phase, the robot takes the snapshot of
the positions of all the robots, represented in its own coordinate system. Based
on the perceived configuration, the robot performs computations according to a
deterministic algorithm to decide whether to stay idle or to move to an adjacent
vertex. Based on the outcome of the algorithm, the robot either remains sta-
tionary or makes an instantaneous move to an adjacent vertex. Since the moves
are instantaneous, it implies that the robots are always seen on vertices, not
on edges. In the fully synchronous setting (FSYNC), the activation phase of
all robots can be logically divided into global rounds, where all the robots are
activated in each round. The semi-synchronous (SSYNC) model coincides with
the FSYNC model with the only difference that not all robots are necessarily
activated in each round. The most general type of scheduler is the asynchronous
scheduler (ASYNC). In ASYNC, the robots are activated independently, and
the amount of time spent in Look, Compute, Move and inactive states are
finite but unbounded and unpredictable. As a result, the robots do not have a
common notion of time.

An important capability associated to the robots is multiplicity detection.
During the Look phase, a robot may perceive a vertex occupied by more than
one robot in different ways. In strong multiplicity detection, the robots perceive
the actual number of robots in each vertex. In weak multiplicity detection, the
robots are only able to detect whether a vertex is occupied by more than one
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robot, but not the exact number. If the robots have no multiplicity detection
capability, they can only decide if a vertex is occupied or empty.

1.2 Related Works

The gathering problem has been extensively studied in continuous domain
under various assumptions [1,4–7,16,29,30]. In discrete domains, both gather-
ing and rendezvous have been studied in different graph topologies [2,8,11,13–
15,22,23,25,27,28,32]. The problem of gathering two robots on an anonymous
ring was studied in [12,26,28]. The problem for more than two robots was stud-
ied in [15]. In [15], the robots had memory and used tokens to break symmetry.
In [23], the problem was first considered in a very minimal setting with identical,
asynchronous, memoryless robots without tokens or any kind of communication
capability. They proved that without multiplicity detection, gathering is impos-
sible on rings for n ≥ 2 robots. With weak multiplicity detection capability, they
solved the problem for all configurations with an odd number of robots, and
all the asymmetric configurations with an even number of robots by different
algorithms. In [22], symmetric configurations with an even number of robots
were studied, and the problem was solved for more than 18 robots. Some of the
remaining configurations were solved in [9,18,24] in separate algorithms. In [10],
a single unified algorithm was proposed, that achieves gathering for all gather-
able initial configurations except some potentially gatherable configurations with
4 robots. The problem was studied with weak local multiplicity detection in [19–
21]. A full characterization of gatherable configurations for finite grids and trees
with weak multiplicity detection was provided in [8]. Gathering in finite grids
in presence of crash-faults was studied in [3]. Optimal gathering in infinite grid
with strong multiplicity detection was studied in [31].

2 Theoretical Preliminaries

2.1 Group of Automorphisms

An automorphism of a graph G = (V,E) is a bijection ϕ : V −→ V such that
for all u, v ∈ V , u, v are adjacent if and only if ϕ(u), ϕ(v) are adjacent. The set
of all automorphisms of G forms a group, called the automorphism group of G
and is denoted by Aut(G).

The automorphism group of a hypercube is generated by two types of auto-
morphisms, namely translation and rotation.

Translation: For a ∈ Z
d
2, the map τa : V (Qd) −→ V (Qd) given by u �→ u ⊕ a is

called translation by a. Here, u ⊕ a is the vertex obtained by adding the binary
strings u and a componentwise. The set T = {τa | a ∈ Z

d
2} of all translations

forms a subgroup of Aut(Qd).

Rotation: For σ ∈ Sd, the map rσ : V (Qd) −→ V (Qd) given by u �→ σ(u) is
called rotation by σ, where σ(u) is the vertex obtained by permuting the binary
string u by σ : {1, . . . , d} −→ {1, . . . , d}. The set R = {rσ | σ ∈ Sd} of all
rotations forms a subgroup of Aut(Qd).
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Theorem 1 [17]. Aut(Qd) = TR.

Hence, for any automorphism ϕ ∈ Aut(Qd), ∃ a unique pair (a, σ) ∈ (Zd
2, Sd),

such that ϕ : V −→ V can be written as u �→ σ(u) ⊕ a.
It is easy to see that |T | = 2d and |R| = d!. Since T ∩ R is trivial, |TR|

= |T ||R|/|T ∩ R| = 2dd!. Therefore, we have the following corollary.

Corollary 1 [17]. |Aut(Qd)| = 2dd!.

The definition of automorphism of graphs can be extended to edge-labeled
graphs in a natural way. Given an edge-labeled graph G = (V,E, λ) with edge-
labeling λ : E −→ N, an automorphism of G is a bijection ϕ : V −→ V such that
for all u, v ∈ V , ϕ(u)ϕ(v) ∈ E if and only if (1) uv ∈ E and (2) λ(ϕ(u)ϕ(v))
= λ(uv). In view of this definition, it is easy to see that the dimensional labeling
of a hypercube kills all rotational automorphisms. Thus the automorphism group
of an oriented hypercube consists of only translations.

Theorem 2. Aut(QO
d ) = T .

2.2 Feasibility of Gathering

Consider a set of robots placed on the vertices of a simple undirected connected
graph G = (V,E). Define a function f : V −→ N∪{0}, where f(v) is the number
of robots on the vertex v. The pair (G, f) is called a configuration of robots on G,
or simply a configuration. If all the robots in a configuration reside on a single
vertex, then it is called final configuration; otherwise it is called a non-final
configuration. Given a configuration (G, f), we define the multiplicity function
f̃ in the following way. If the model assumes robots with strong multiplicity
detection capability, then f̃(v) = f(v) for all v ∈ V . If the robots have weak
multiplicity detection capability, then f̃ : V −→ {0, 1, 2} is defined as,

f̃(v) =

⎧
⎪⎨

⎪⎩

0 if v is an empty vertex
1 if v is occupied by exactly one robot
2 if v is a multiplicity.

If the robots have no multiplicity detection capability, then f̃ : V −→ {0, 1}
is defined as,

f̃(v) =

{
0 if v is an empty vertex
1 if v is occupied by at least one robot.

Given a configuration (G, f), the pair (G, f̃) is called the perceived configu-
ration.

An automorphism of a perceived configuration (G, f̃) is a graph automor-
phism ϕ ∈ Aut(G) such that f̃(v) = f̃(ϕ(v)) for all v ∈ V . The set of all
automorphisms of (G, f̃) also forms a group that will be denoted by Aut(G, f̃).
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If |Aut(G, f̃)| = 1, we say that (G, f̃) is asymmetric, otherwise it is said to be
symmetric.

For an automorphism ϕ ∈ Aut(G, f̃), let <ϕ> ⊆ Aut(G, f̃) be the cyclic
subgroup generated by ϕ. Elements of this group are {ϕ0, ϕ1, ϕ2, . . . , ϕp−1},
where ϕ0 is the identity, ϕk = ϕ ◦ ϕ ◦ · · · ◦ ϕ

︸ ︷︷ ︸
k times

and p is the order of ϕ.

For any subgroup H of Aut(G, f̃), define the equivalence relation on V given
by: x ∼ y if and only if x = ϕ(y) for some ϕ ∈ H. This equivalence relation
induces a partition on V . The orbit of a vertex v ∈ V under the action of
H is the set Hv= {σ(v)|σ ∈ H}, which is the corresponding equivalence class
containing v.

Partitive Automorphism: Let C = ((V,E), f̃) be a perceived configuration.
A non-trivial automorphism ϕ ∈ Aut(C) is said to be partitive on V if |Hv| = p
for all v ∈ V , where p > 1 is the order of ϕ and H = <ϕ>.

Lemma 1. In Qd, any non-trivial translation is partitive.

Theorem 2 in [32], stated for configurations of robots with strong multiplicity
detection capability can be easily generalized to the following theorem.

Theorem 3. Let C = ((V,E), f̃) be a non-final perceived configuration. If there
exists a ϕ ∈ Aut(C) partitive on V , then C is not gatherable.

Theorem 4. Without multiplicity detection capability, gathering in (both ori-
ented and unoriented) hypercubes is not deterministically solvable in SSYNC.

Proof. Assume that there exists a correct gathering algorithm A. In the SSYNC
model, time can be logically divided into discrete global rounds. So, starting
from some non-final initial configuration, consider a synchronous execution of
algorithm A, in which gathering is achieved in round t.

Case 1: Suppose that in round t − 1, exactly two vertices in Qd are occupied.
Hence, the perceived configuration in round t−1 is (Qd, f̃) where f̃(v) = f̃(w) =
1 for two distinct vertices v, w ∈ V (Qd), and f̃(u) = 0 ∀u ∈ V (Qd)\{v, w}. But,
then the perceived configuration (Qd, f̃) admits a partitive automorphism given
by x �→ x ⊕ v ⊕ w. Hence by Theorem 3, gathering can not be deterministically
achieved from this configuration.

Case 2: Assume that at least three vertices in Qd are occupied in round t − 1.
Then algorithm A brings all the robots to a common vertex, say u, in one step.
But the adversary can choose to activate all the robots except one that is not
placed at u. Then all but one robot will reach u. This will create a configuration
with exactly two vertices occupied. Since this configuration admits a partitive
automorphism, gathering can not be deterministically achieved from here by
Theorem 3. ��
Corollary 2. Without multiplicity detection capability, gathering in (both ori-
ented and unoriented) hypercubes is not deterministically solvable in ASYNC.
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2.3 Weber Point

Given a configuration (G, f), with G = (V,E), the centrality of v ∈ V is defined
as cG,f (v) =

∑

u∈V

d(u, v) ·f(u). When there is no ambiguity, we shall write cf (v),

or simply c(v).

Weber Point: Given a configuration C = (G = (V,E), f), a vertex v ∈ V is a
Weber point of C, if c(v) = min{c(u)|u ∈ V }.

By definition, a Weber point is a vertex with minimum centrality. In other
words, a vertex w ∈ V is a Weber point if the sum of the lengths of the shortest
paths from all robots to w is minimum. Therefore, an algorithm that gathers all
the robots at a Weber point via the shortest paths is optimal with respect to
the total number of moves performed by the robots. However, a configuration
may have more than one Weber point. Given a configuration (G, f), we shall
denote the set of Weber points by WG,f , or simply Wf or W when there is no
ambiguity.

Theorem 5 [32]. Let (G, f) be a configuration with Weber points Wf . If a robot
moves towards a Weber point w ∈ Wf , resulting in a new configuration (G, f ′),
then

1. cf ′(v) = cf (v) − 1 for each v ∈ Wf ′

2. w ∈ Wf ′

3. Wf ′ ⊆ Wf .

We shall now discuss about the Weber points of configurations on a hyper-
cube. Consider a set of n robots {r1, r2, . . . , rn} on a d-dimensional hypercube
Qd. Suppose that the robots r1, r2, . . . , rn are placed on the vertices v1, v2, . . . , vn

respectively. For i = 1, 2, . . . , n, let the binary string representation of vi be
bi1bi2 . . . bid, where bij ∈ {0, 1}. For j = 1, 2, . . . , d, let us define sets [b]j ⊆ {0, 1}
in the following way.

[b]j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{0}, if the number of 0’s in the multiset {b1j , b2j , . . . , bnj} is more
than the number of 1’s

{1}, if the number of 1’s in the multiset {b1j , b2j , . . . , bnj} is more
than the number of 0’s

{0, 1}, if the multiset {b1j , b2j , . . . , bnj} has equal number of 0’s and 1’s.

In Theorem 6, we show that the set of Weber points of the configuration is

W = [b]1 × [b]2 × . . . × [b]d.

For instance, consider a configuration of a set of 8 robots {r1, r2, . . . , r8} on
a 4-dimensional hypercube Q4. Suppose that the robots are positioned on the
following vertices respectively: 0110, 0111, 1000, 1110, 0000, 0001, 1110, 1101.
Then the set of Weber points of this configuration is given by

W = {0, 1} × {1} × {0, 1} × {0}
= {0100, 0110, 1100, 1110}.
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Theorem 6. Let {ri}n
i=1 be a set of robots placed on the vertices of Qd with

binary string representations {bi1bi2 . . . bid}n
i=1 respectively. Then the set of

Weber points of the configuration is W = [b]1 × [b]2 × . . . × [b]d.

Proof. The distance between any two vertices in Qd is the number of positions in
which their binary string representations differ. Then it can be easily seen that
(1) the centrality of all w ∈ [b]1 × [b]2 × . . . × [b]d are equal, (2) the centrality
of any v ∈ V (Qd)\[b]1 × [b]2 × . . . × [b]d is strictly greater than the centrality of
w ∈ [b]1 × [b]2 × . . . × [b]d. ��
Corollary 3. The subgraph induced by the set of Weber points W of a configu-
ration on a hypercube Qd is also a hypercube.

Corollary 4. The number of Weber points of a configuration on a hypercube
Qd is 2k, where 0 ≤ k ≤ d.

2.4 Leading Weber Point

A configuration of robots on a hypercube can have more than one Weber point.
We want to devise an algorithm that gathers all the robots at one of the
Weber points via the shortest paths. Our proposed algorithm requires to solve a
subproblem called LeadingWeberPoint. Let us formally define the problem
LeadingWeberPoint. Consider a configuration in which no vertex contains
more than one robot, and that has no partitive automorphism. Let W be the set
of Weber points of this configuration. The problem LeadingWeberPoint asks
to devise an algorithm so that every robot that perceives this configuration in
its local view, deterministically elects a unique Weber point w� ∈ W. We shall
call the vertex w� the leading Weber point.

Since we have assumed that the robots are positioned at distinct vertices,
there is no distinction between the configuration and the perceived configuration.
In other words, given such a configuration (G, f), we have f̃ = f . A vertex v ∈ V
is called a fixed vertex if ϕ(v) = v, ∀ϕ ∈ Aut(G, f).

Theorem 7. LeadingWeberPoint can be deterministically solved only if W
has at least one fixed vertex.

Proof. See AppendixA.

Theorem 8. LeadingWeberPoint may not be deterministically solvable in
an unoriented hypercube.

Proof. Consider a configuration (Q5, f) of a set of 14 robots on the 5-dimensional
unoriented hypercube Q5. The robots are placed on the following vertices: 00100,
00001, 11000, 10010, 01100, 01010, 00101, 00011, 11010, 10110, 11001, 10101,
01111, 11111. It is easy to see that Wf = V (Q5). It can be shown that Aut(Q5, f)
= {e, ϕ1, ϕ2, ϕ3}, with each ϕi given by u �→ σi(u) ⊕ ai, where ai ∈ Z

5
2, σi ∈ S5

are the following: a1 = 00000, σ1 = (1)(24)(35), a2 = 10000, σ2 = (1)(2543),
a3 = 10000, σ3 = (1)(2345). Then it can be easily verified that (1) there is
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no partitive automorphism in Aut(Q5, f), (2) there is no fixed vertex in Wf =
V (Q5). So by Theorem7, LeadingWeberPoint is deterministically unsolvable.

��
Now we show that LeadingWeberPoint can be deterministically solved in

an oriented hypercube.

Lemma 2. Given a vertex u0 in an oriented hypercube QO
d , ∃ exactly one coor-

dinate assignment (bijection) Ψ : V (QO
d ) −→ {0, 1}d such that

1. Ψ(u0) = 00 . . . 0 ∈ {0, 1}d

2. u, v are adjacent if and only if Ψ(u), Ψ(v) differ in exactly one bit
3. for uv ∈ E(QO

d ), λ(uv) = i if and only if Ψ(u), Ψ(v) differ in the ith position.

Proof. The coordinates given to u0 are 00 . . . 0. Then by rule (2) and (3), the
coordinates of all its neighbors are uniquely determined. If the coordinates of all
vertices at distance i(< d) from u0 are uniquely determined, then again by rule
(2) and (3), the coordinates of all vertices at distance i + 1 can be determined
uniquely. Hence by induction, the coordinates assigned to all the vertices are
unique. ��

Now for any w ∈ V (QO
d ), we define a binary string ζ(w) of length 2d in the

following the way:

1. First, give QO
d the unique coordinate assignment Ψ : V (QO

d ) −→ {0, 1}d with
Ψ(w) = 00 . . . 0.

2. Now we define a total ordering ≺ on V (QO
d ) as: u ≺ v

u ≺ v ⇔

⎧
⎪⎨

⎪⎩

d(u,w) < d(v, w)
Or,

d(u,w) = d(v, w), and Ψ(u) is lexicographically larger that Ψ(v),

where d(u,w) is the distance of u from w. For example, when d = 4,
the assigned coordinates of the vertices written in increasing order
will be: 0000︸︷︷︸

distance 0

, 1000, 0100, 0010, 0001
︸ ︷︷ ︸

distance 1

, 1100, 1010, 1001, 0110, 0101, 0011
︸ ︷︷ ︸

distance 2

,

1110, 1101, 1011, 0111
︸ ︷︷ ︸

distance 3

, 1111︸︷︷︸
distance 4

.

3. Finally, scan the vertices of the hypercube according to the above ordering.
For each vertex, put a 0 if it is empty, or 1 if it is occupied by a robot. Recall
that any vertex can be occupied by at most one robot. The string of length
2d thus obtained is ζ(w). In the previous example, if the occupied vertices
are 0000, 1000, 0010, 1001, 0011, 1011, 1111, then ζ(w) = 1101000100100101.

Lemma 3. For any two distinct vertices u, v ∈ V (QO
d ), if ζ(u) = ζ(v), then the

configuration has a partitive automorphism.
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Proof. It can be easily seen that if ζ(u) = ζ(v), then the configuration has the
automorphism (translation) given by x �→ x ⊕ u ⊕ v. ��
Theorem 9. LeadingWeberPoint is solvable in an oriented hypercube.

Proof. Since the configuration has no partitive automorphism, ζ(w1) �= ζ(w2)
for any distinct w1, w2 ∈ W. Hence the robots can unanimously elect w ∈ W
with the lexicographically (strictly) largest ζ(w) as the leading Weber point. ��

3 The Algorithm

Our plan is to solve the problem in two stages. In stage 1, we create a multiplicity
at a Weber point and then in stage 2, we sequentially bring the remaining robots
to that vertex. Before describing the algorithm, we first give two definitions.

Anchor: Let (QO
d , f̃) be a non-final perceived configuration on an oriented

hypercube with at most one multiplicity and no partitive automorphism. The
anchor of (QO

d , f̃) is a vertex α ∈ V (QO
d ) defined as the following. If (QO

d , f̃)
has no multiplicity, then α is the leading Weber point; otherwise α is the unique
vertex with multiplicity. Note that all the robots observing the configuration
(QO

d , f̃) agree on which vertex is the anchor.

Leader: Since all the robots observing the configuration (QO
d , f̃) agree on the

anchor α, they also agree on a common coordinate system, which is the unique
coordinate system Ψ described in Lemma 2 with Ψ(α) = 00 . . . 0. This also allows
the robots to order the vertices of the hypercube as described in the previous
section. In this ordering, the first robot appearing on a non-anchor vertex will
be called the leader.

3.1 2k+1 (k> 0) Robots

Theorem 10. Any configuration on a hypercube with odd number of robots has
exactly one Weber point.

Proof. Using the same notations as in Theorem 6, the set of Weber points is
given by W = [b]1 × [b]2 × . . . × [b]d. Since there are odd number of robots, the
multiset {b1j , b2j , . . . , bnj} can never have equal number of 0’s and 1’s. Hence,
[b]j = {0} or {1}, ∀j ∈ {1, . . . , d}. Thus |W| = 1. ��
Theorem 11. Gathering in QO

d is optimally solvable in ASYNC with weak mul-
tiplicity detection for any configuration of odd number of robots.

Proof. We simply ask only the leader to move towards the anchor. The anchor α
is the unique Weber point of the configuration. As the leader moves towards it,
the Weber point remains invariant by Theorem5. After one or two robots reach
α, a multiplicity is created at α. Throughout stage 2, α remains the unique mul-
tiplicity in the configuration, since only the leader moves. Thus, all the remaining
robots will sequentially reach α. The algorithm is clearly optimal with respect
to the total number of moves executed by the robots. ��
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Algorithm 1. Gathering for 4k (k > 0) robots

1 Procedure Gather()
2 α ← anchor
3 if α is a multiplicity then
4 if I am leader then
5 Move towards α

6 else
7 if I am leader then
8 if I am on a Type 1 vertex then
9 Move towards α via a Type 1 edge

10 else if I am on a Type 2 vertex then
11 Move towards α

3.2 4k (k> 0) Robots

In view of Theorems 2, 3 and Lemma 1, any configuration with non-trivial auto-
morphism group is ungatherable. We show that for all the remaining configu-
rations, gathering can be optimally solved. Again our strategy is to move the
leader towards the anchor. However, in this case the leader has to judiciously
choose the edge via which it should approach the anchor. Unlike the previous
case, the anchor may change after a move.

Consider the first stage of the algorithm, when there is no multiplicity in the
configuration. Then the anchor is the leading Weber point w�. We classify all
the non-anchor vertices into two types: type 1 and type 2. If the configuration
has 2m (0 ≤ m ≤ d) Weber points, then among the d neighbors of w�, m are
also Weber points. This is because of Lemma 3. Let us call these Weber points
w1, . . . , wm. Since the coordinates assigned to w� are 0 . . . 0, the coordinates of
each wi ∈ {w1, . . . , wm} have exactly one 1. For each wi, assume that its assigned
coordinates have the 1 at the pith place, which implies that the edge joining wi

and w� has label pi. Also, the set of Weber points, in the assigned coordinates,
is given by W = [b]1 × [b]2 × . . . × [b]d, where [b]l is {0, 1} if l ∈ {p1, . . . , pm},
and {0} otherwise.

Type 1 Vertex: A non-anchor vertex v will be called a type 1 vertex if the
following holds: there is at least one pi ∈ {p1 . . . pm} such that the assigned
coordinates of v have 1 at pith place. Also the edge incident to v with label pi

will be called a type 1 edge.

Type 2 Vertex: If a non-anchor vertex v is not type 1, then it will be called a
type 2 vertex. This implies that the p1th, . . . pmth terms of the assigned coordi-
nates of v are 0. Note that if the configuration has only one Weber point, i.e.,
m = 0, then all non-anchor vertices are vacuously type 2.

Theorem 12. Let (QO
d , f) be a configuration of 4k (k > 0) robots with no mul-

tiplicities and no partitive automorphisms. Let w� be the leading Weber point,
and hence the anchor. Assume that the leader r is placed at a type 1 vertex u.
Suppose that it moves via a type 1 edge with label pi to an empty vertex v, and
gives rise to configuration (QO

d , f ′). Then the following holds.
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1. w� ∈ Wf ′

2. If |Wf | = 2m(m > 0), then |Wf ′ | = 2m−1

3. (QO
d , f ′) has no partitive automorphism.

Proof

(1) Assume that r moves via a type 1 edge with label pi. Then the assigned
coordinates of u and v differ in exactly one bit at the pith position. At the
pith place, u has 1, while v has 0. Then v has less 1’s than u, and hence v
is closer to w� than u, i.e., r has moved towards w�. Hence, by Lemma 5,
w� ∈ Wf ′ .

(2) It is easy to see that, as r moves from u to v, (i) its distance from all
Weber points whose coordinates have 1 at pith place (there are 2m−1 of
them), increases by one, and (ii) its distance from all Weber points whose
coordinates have 0 at pith place, decreases by one. Hence the move reduces
the set of Weber points by half.

(3) If possible, assume that (QO
d , f ′) admits a partitive automorphism, i.e., a

non-trivial translation τ . Assume that the translation, in the assigned coor-
dinate system, is given by x �→ x ⊕ a, for some a ∈ {0, 1}d. Let R and R′

be the set of vertices occupied by robots in (QO
d , f) and (QO

d , f ′) respec-
tively. Since τ maps any vertex of R′ to another vertex of R′, the group
<τ> induces an equivalence relation on R′, partitioning it into 2k disjoint

sets of cardinality 2: R′ =
2k⋃

j=1

{xj , τ(xj)}. Let Rpi
and R′

pi
be the multiset

containing the pith terms of the assigned coordinates of vertices of R and
R′ respectively. Clearly Rpi

contains 2k number of 0’s and 2k number of
1’s. In R′

pi
, we have 2k + 1 number of 0’s and 2k − 1 number of 1’s.

Case 1: Let the pith term of a be 0. Hence, if pith term of x is b ∈ {0, 1},
then the pith term of τ(x) = x ⊕ a is also b. This implies that R′

pi
has

even number of 0’s and 1’s. This is a contradiction, as we have shown that
number of 0’s and 1’s in R′

pi
is 2k + 1 and 2k − 1 respectively.

Case 2: Let the pith term of a be 1. So, if pith term of x is b ∈ {0, 1}, then
the pith term of τ(x) = x ⊕ a is b. This implies that R′

pi
has equal number

of 0’s and 1’s. This is again a contradiction. ��

Theorem 13. Let (QO
d , f) be a configuration of 4k (k > 0) robots with no mul-

tiplicities and no partitive automorphisms. Let w� be the leading Weber point,
and hence the anchor. Suppose that the leader r is placed at a type 2 vertex u.
If it moves towards w� to an empty vertex, then

1. the new configuration (QO
d , f ′) has no partitive automorphism

2. Wf = Wf ′

3. w� is the leading Weber point of (QO
d , f ′)

4. r is the leader in (QO
d , f ′).
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Proof. We use the same notations as in the proof of the previous theorem. For
each w ∈ Wf\{w�} the following holds: (i) among the p1th, . . . , pmth terms of
the assigned coordinates, there is at least one 1, (ii) all the terms except the
p1th, . . . , pmth ones are 0. Exactly the opposite is true for the type 2 vertex
u. It implies that the distance of r from w� is strictly less than its distance
from any other Weber point in Wf )\{w�}. Also, after the move, its distances
from all Weber points reduce by exactly 1. Hence, after the move, ζ(w�) remains
lexicographically strictly largest among {ζ(w) | w ∈ Wf ′}. All the statements of
the theorem easily follow from these observations. ��
Lemma 4. Let G = (V,E) be an arbitrary graph. Let P = v0e0v1e1v2 . . . vl−1

el−1vl be a path from v0 to vl. Suppose that for any ej, a move through it by a
robot from vj to vj+1 reduces its distance from vl by 1. Then P is a shortest path
from v0 to vl in G.

Lemma 5. Suppose that a robot moves from a vertex u to an adjacent vertex v
in a hypercube Qd. Then for any w ∈ V (Qd), either its distance from w reduces
by 1 or increases by 1, i.e., its distance from w does not remain unchanged.

Theorem 14. Algorithm1 achieves optimal gathering in ASYNC, for all asym-
metric configurations of 4k (k > 0) robots with weak multiplicity detection.

Proof. By Theorems 12 and 13, no move in the first stage creates a partitive
automorphism. Since at any time, only the leader is allowed to move, a multi-
plicity can only be created at the anchor. Since throughout stage 2, there is a
unique multiplicity, a configuration with a partitive automorphism is never cre-
ated. Notice that in both stages, an anchor is always a Weber point. Hence, the
robots always move towards some Weber point. So, after each move, the central-
ity of the surviving set of Weber points is reduced by 1. Therefore, eventually
the centrality of one Weber point becomes 0, which implies that gathering is
accomplished.

It remains to prove that Algorithm1 is optimal with respect to the total
number of moves executed by the robots. Suppose that the algorithm gathers all
the robots at w, which was a Weber point of the initial configuration. In view of
Theorem 12, it is sufficient to show that every movement executed by any robot
is towards w. Since every movement executed by a robot is towards some Weber
point, according to Theorem 5, the set of Weber points of the configurations
starting from the initial to the final configuration form the following nested
series: W0 ⊇ W1 ⊇ . . . ⊇ Wfinal = {w}. In other words, w remains a Weber
point throughout the progress of the algorithm. If at some step, a move by a
robot is not towards w, then by Theorem 13, it moves away from w. Then the
centrality of w is increased by 1, while the centrality of some other Weber point
is decreases by 1. This means that w does not remain a Weber point after the
move. This is a contradiction. ��
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4 Concluding Remarks

This is the first paper that investigates the gathering problem on a hyper-
cube graph. We have provided a complete characterization of all gatherable
configurations in ASYNC for 2k + 1 and 4k (k > 0) number of robots
with weak multiplicity detection in an oriented hypercube. This leaves unset-
tled only the configurations with 4k + 2 (k > 0) number of robots. Note
that our strategy for 4k robots does not work for 4k + 2 robots. To see
this, consider a configuration in Q9 of 10 robots placed on the following
vertices: 000000000, 110111000, 101111000, 011111000, 000111000, 001000111,
010000111, 100000111, 111000111, 111000000. Here, the anchor, i.e., the lead-
ing Weber point is 000000000 and the leader is 111000000. It can be seen that
a move by the leader towards the anchor via any edge creates a configuration
with a partitive automorphism. Another challenging direction of future research
would be to study the problem with limited visibility. It would also be interesting
to consider randomized algorithms to bypass the impossibility results.
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Appendix A Proof of Theorem7

Consider a configuration (Qd, f) that has no partitive automorphism. Since we
have assumed that the robots are positioned at distinct vertices, there is no
distinction between the configuration and the perceived configuration. In other
words, we have f̃ = f . Assume that the configuration has no fixed Weber point.
Let us assume that there is an algorithm A that deterministically solves Lead-
ingWeberPoint. Let w1 ∈ W be the leading Weber point elected by the robots.
Since w1 is not a fixed vertex, there is a w2 �= w1 such that ϕ(w1) = w2, for
some ϕ ∈ Aut(G, f).

Each robot observes the positions of other robots in its local coordinate sys-
tem. A local coordinate system of a robot is just an assignment Ψ : V (Qd) −→
{0, 1}d, respecting the rule that u, v ∈ V (Qd) are adjacent if and only if
Ψ(u), Ψ(v) differ in precisely one bit. Since there is no global agreement, the
local coordinate system of each robot is arbitrary, and is chosen by the adver-
sary. Let us formally define the view of a robot. The view of a robot is given by
the triplet VΨ = (Ψ, f̃ ,me), where Ψ : V (Qd) −→ {0, 1}d is the local coordinate
system, f̃ : {0, 1}d −→ {0, 1} is the multiplicity function defined on the set of
vertices expressed in local coordinates, and me ∈ {0, 1}d is the coordinates of
the vertex on which the robot resides. The view VΨ is the input for algorithm
A. The output A(VΨ ) ∈ {0, 1}d is the coordinates of the required leading Weber
point, i.e., the returned leading Weber point is the vertex Ψ−1(A(VΨ )).

Consider a robot r1 in the configuration residing at vertex v1. The robot r1,
using a local coordinate system Ψ1 : V (Qd) −→ {0, 1}d, elects w1 as the leading
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Weber point. That is, given the input in the coordinate system Ψ1, the output
of A is Ψ1(w1). Now consider the following cases.

Case 1: Suppose that ϕ(v1) = v1. Consider the local coordinate system Ψ2 =
Ψ1 ◦ ϕ−1. Note that the view of r1 in coordinate systems Ψ1 and Ψ2 are exactly
the same, i.e., VΨ1 = VΨ2 . Since A is a deterministic algorithm, A(VΨ1) = A(VΨ2).
Since the elected leading Weber point in local coordinate system Ψ1 is w1, we
have A(VΨ1) = Ψ1(w1). So we have,

A(VΨ2) = A(VΨ1) = Ψ1(w1)

⇒ Ψ−1
2 (A(VΨ2)) = Ψ−1

2 (Ψ1(w1)) = ϕ ◦ Ψ−1
1 ◦ Ψ1(w1) = ϕ(w1) = w2

Hence, we see that in local coordinate system Ψ1 the robot r1 elects w1 as
the leading Weber point, while in Ψ2 it elects w2. This is a contradiction.

Case 2: Now assume that ϕ(v1) = v2 �= v1. Then there must be a robot r2
in v2. Suppose that the adversary sets the local coordinate system of r2 as
Ψ2 = Ψ1 ◦ ϕ−1. Then the view of r1 and r2 will be identical, i.e., VΨ1 = VΨ2 .
Again we have, A(VΨ2) = A(VΨ1) = Ψ1(w1) and hence, Ψ−1

2 (A(VΨ2)) = w2.
Therefore, r2 will elect w2, while r1 elects w1 as the leading Weber point. This
is again a contradiction. ��
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