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Abstract. Consider a set of autonomous, identical, opaque point robots
in the Euclidean plane. The Mutual Visibility problem asks the robots to
reposition themselves, without colliding, to a configuration where they
all see each other, i.e., no three of them are collinear. In this paper, we
consider the problem in a grid based terrain where the movements of the
robots are restricted only along grid lines and only by a unit distance in
each step. We consider the luminous robots model, in which each robot
is equipped with an externally visible light which can assume a constant
number of predefined colors. These colors serve both as internal memory
and as a form of communication. The robots operate in Look-Compute-
Move cycles under a fully asynchronous scheduler. The robots do not
have any common global coordinate system or chirality and do not have
the knowledge of the total number of robots. Our proposed distributed
algorithm solves the problem for any arbitrary initial configuration and
guarantees collision-free movements.

Keywords: Distributed computing · Autonomous robots ·
Mutual visibility · Robots with lights · Asynchronous ·
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1 Introduction

Robot swarms are a distributed system of autonomous mobile robots that collab-
oratively execute some complex tasks. Swarms of low-cost, weak, simple robots
are emerging as a viable alternative to using a single powerful and expensive
robot. In the traditional model of robot swarms, the mobile robots are assumed
to be autonomous (there is no central control), homogeneous (they execute the
same distributed algorithm), anonymous (they have no unique identifiers), iden-
tical (they are indistinguishable by their appearance) and disoriented (they do
not agree on any global coordinate system). The robots do not have any direct
means of communication. Each robot is equipped with sensor capabilities (i.e.,
vision) to perceive the positions of the other robots. The robots operate in Look-
Compute-Move (LCM) cycles: when a robot becomes active it takes a snapshot
of the positions of the other robots, then computes a destination based on the
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snapshot using a deterministic algorithm (Compute), and then moves towards
the destination along a straight line (Move).

The opaque robots or obstructed visibility model assumes that visibility can
be obstructed by the presence of other robots: that is, two robots can see each
other if and only if no other robot lies on the line segment joining them. The
fundamental problem in this model is the Mutual Visibility problem: starting
from arbitrary distinct positions in the plane, the robots have to reposition
themselves, within finite time and without colliding, to a configuration in which
they are in distinct locations and no three of them are collinear. The problem
is important as it provides a basis for any subsequent task requiring complete
visibility. We consider this problem in the robots with lights or luminous robots
model [8,10]. In this model, each robot is equipped with an externally visible
light which can assume a constant number of predefined colors.

1.1 Our Contribution

In this paper, we have considered the Mutual Visibility problem in a grid
based terrain. The infinite grid is a natural discretization of the Euclidean plane.
Traditional spatial representation methods in robot navigation commonly repre-
sent the world as a two dimensional grid around the robot. Grid type floor layouts
are also commonly implemented in real life robot navigation systems, e.g., indus-
trial Automated Guided Vehicles (AGV), using magnets or optical guidances on
the floor [3]. The simple model of movement along grid lines from one grid
point to another can be easier to implement for robots with weak mechanical
capabilities as they may not be able to execute accurate movements in arbi-
trary directions or by arbitrarily small amounts. Although the simple model of
movement may be easier to physically execute, the restrictions imposed on the
movements of the robots pose the main difficulty of the algorithmic problem.
Our proposed distributed algorithm solves the Mutual Visibility problem on
infinite grid for any arbitrary initial configuration. We have solved the problem
in the luminous robots model using 11 colors.

1.2 Earlier Works

While fundamental problems in autonomous mobile robots like Gathering have
been studied in grid environments [5–7,11,17], the Mutual Visibility prob-
lem has only been studied in continuous Euclidean plane. The first distributed
algorithm for the Mutual Visibility problem was presented by Di Luna et al.
[9] for oblivious and semi-synchronous robots. Later, Sharma et al. [13] analyzed
and modified the round complexities of the algorithm in the fully synchronous
model. The Mutual Visibility problem under the luminous robots model was
first studied by Di Luna in [8]. They solved the problem with semi-synchronous
scheduler using 3 colors and with asynchronous schedulers using 3 colors under
one axis agreement. Later Sharma et al. [14] attained this result using only 2
colors both for semi-synchronous and for asynchronous robots. Then a series
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of papers [15,16] appeared aiming towards reducing the runtime of the algo-
rithm. Recently Bhagat and Mukhopadhyaya [4] have solved the problem for
asynchronous robots without any agreement on coordinate axes or chirality. The
problem has also been considered for fat robots [12] and faulty robots [2].

2 Model and Definitions

In this section, we present the model and some basic definitions.

Robots: We consider a set of N ≥ 3 homogeneous, autonomous, anonymous
and identical robots R = {r1, r2, . . . , rN} deployed on a two dimensional infinite
grid. All the robots are initially positioned on distinct grid points. The robots
are assumed to be dimensionless and modeled as points on the plane. The robots
do not have access to any global coordinate system. The total number of robots
N is not known to them.

Movement: The movement of the robots are restricted only along grid lines
from one grid point to one of its four neighboring grid points. Traditionally
in discrete domains, robot movements are assumed to be instantaneous. For
simplicity of analysis, we also assume the movements to be instantaneous. This
implies that the robots are always seen on grid points, not on edges. However,
our strategy will also work without this assumption.

Lights: Each robot is equipped with an externally visible light which can assume
a constant number of predefined colors. The robots explicitly communicate with
each other using these lights. The lights are persistent (i.e., the color is not
erased at the end of a cycle), but otherwise the robots are oblivious. The colors
used in our algorithm are C = {Off,Boundary,RequestExpansion,Expanding,
Moving1, Rectangle, Square,NextToCorner,Moving2,Moving3,Done}.

Visibility: The visibility range of the robots is unlimited, but can be obstructed
by the presence of other robots. A robot ri can see another robot rj if and only
if there are no robots on the straight line segment rirj . The set of positions of
all robots visible by a robot r at time t, expressed in its local coordinate system,
is denoted by Vr(t), or simply Vr when there is no ambiguity.

Look-Compute-Move Cycles: The robots, when active, operate according to
the so-called Look-Compute-Move cycle. In each cycle, a previously idle or
inactive robot wakes up and executes the following steps. In the Look phase a
robot takes the snapshot of the positions of the robots visible to it represented
in its own coordinate system. Based on the perceived configuration, the robot
performs computations according to a deterministic algorithm to decide a des-
tination point p ∈ Z

2 (either the grid point on which it currently resides or one
of the four neighboring grid points) and a color c ∈ C. Finally based on the
outcome of the algorithm, the robot changes its light to the computed color, and
either remains stationary or makes an instantaneous move to an adjacent grid
point.
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Scheduler: We assume that the robots are controlled by a fully asynchronous
adversarial scheduler. This implies that the amount of time spent in Look,
Compute, Move and inactive states by different robots is finite but unbounded
and unpredictable. As a result, the robots do not have a common notion of
time and the configuration perceived by a robot during the Look phase may
significantly change before it actually makes a move.

Fig. 1. Illustrations for the geometric defi-
nitions given in Sect. 2.

Geometric Definitions: Given a
configuration of robots at time t, the
smallest enclosing rectangle is defined
as the smallest axis-aligned rectan-
gle that contains all the robots. The
boundary of the largest rectangle con-
tained inside the smallest enclosing
rectangle is called the penultimate
layer, and each side of the rectan-
gle is called penultimate line segment.
The robots on the boundary of the
smallest enclosing rectangle will be
called boundary robots, and other-
wise interior robots. The boundary
of the smallest enclosing rectangle of
the interior robots is called the inner
boundary, and each side of the rectangle is called inner boundary side. A con-
figuration will be called an empty rectangle if there are only boundary robots.
A robot r on a grid line segment L will be called non-terminal on L if it lies
between two robots on L, and otherwise it will be called terminal on L (Fig. 1).

3 The Algorithm

The main difficulty of the problem arises from the restrictions imposed on the
movements of the robots. If the four neighboring grid points of a robot are
occupied, then any move made by it will lead to a collision. Our plan is to
first create an empty rectangle configuration where all the robots are positioned
on the boundary of the smallest enclosing rectangle. This phase is called the
Interior Depletion phase. Our main idea is to exploit the symmetry of the empty
rectangle to our advantage. In the Symmetric Movements phase, the robots will
sequentially leave the empty rectangle and form a mutually visible configuration.
During the movements, the robots may not be able to perceive the positions of
other robots due to obstructed visibility, but can predict their movements from
the symmetries of the empty rectangle. The robots at the corners of the empty
rectangle will not move in the symmetric movements phase, but, however, will
play an important role in the process. The specified lights of the corner robots will
guide the movements of the other robots. From their positions relative to these
corners, the robots will deduce their destination. However, the empty rectangle
created in the interior depletion phase may not have robots at the corner points.
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So in an intermediate phase, called Corner Creation, the robots terminal on the
sides of the empty rectangle will reposition themselves at the corners. These
phases are described in more detail in the following subsections.

3.1 Interior Depletion

The main idea of the algorithm is to sequentially move the interior robots to the
boundary. In order to avoid collisions, only those robots that are on the inner
boundary will move. However, there may not be an empty grid point on the
boundary for the robot to position itself. In that case, the robot, using its lights,
will ask the boundary robots to expand the boundary. A pseudo-code description
of the procedure is presented in Algorithm 1. The geometric functions used in
the algorithm are explained briefly in the following. The lights used in this phase
are {Off,Boundary,RequestExpansion,Expanding,Moving1}.

Fig. 2. Illustrations for the function FindSpace().

The lights of all the robots are initially set to Off . Upon waking up, a robot
r calls the function OnBoundary() to decide if it is on the boundary. If it
finds that there is an open-half plane, delimited by one of the grid lines passing
through itself, containing no robots, then it concludes that it is a boundary robot
and sets its light to Boundary. If r finds itself in the interior, then it calls the
function OnInnerBoundary(). If there is an open-half plane, delimited by one
of the grid lines passing through itself, containing only robots with lights set
to Boundary, then it is on the inner boundary. Only the robots on the inner
boundary are allowed to move towards the boundary. Now, there are two cases
to consider: the robot on the inner boundary is either on the penultimate layer
or not.
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If r is not on the penultimate layer and is terminal on an inner boundary side,
then it has to move towards the boundary. But it will not move immediately.
First, it will set its light to Moving1. Then in the next round, it will redo the
same computations. An interior robot will move only if its light is already set to
Moving1 (in some previous round).

On the other hand, if r finds itself on a penultimate line segment L and is ter-
minal on L, then it has to decide whether it is possible to move to the boundary.
It does so using the function FindSpace(). The function FindSpace() works
in the following way.

For the robot r, let Sr denote the portion of the boundary as shown in the
Fig. 2a. If L contains more than one robot, then define Hr as the closed-half
plane, delimited by the grid line perpendicular to L and passing through r, such
that L∩Hr contains no robot other than r. If there is no other robot on L except
r, then Hr is the entire plane. The robot r will scan Hr ∩ Sr for an empty grid
point. If it finds an empty point, it makes sure that the shortest path to that
point is not blocked by some other robot. Even if it finds an unobstructed empty
point on Hr ∩ Sr, a move towards it can lead to a collision. To avoid this, it
must make sure that there are no robots with light Moving1 within Manhattan
distance 2 in the direction in which it intends to move. See Fig. 3.

Fig. 3. Illustrations for the function FindSpace(). (a) The robot r1 finds an empty
grid point, while r2 does not find any empty grid point. (b) The robot r1 finds an empty
grid point, but the shortest paths leading to it are blocked by other robots. (c)–(d)
The robot r finds an empty grid point but there is a robot with light Moving1 within
Manhattan distance 2 in the direction it should move to get there. (e) There is a robot
r1 with light Moving1 within Manhattan distance 2, but not in the direction towards
the empty point. Hence, FindSpace() will return True for r. (f) r is the only terminal
robot on the penultimate line segment, and hence Hr ∩ Sr = Sr. It has found two
empty grid points in Sr. Here, it will choose the empty grid point on the left, because
on the right side there is a robot with light Moving1 within Manhattan distance 2.

If the function FindSpace() returns True, then r will move towards the
empty grid point on the boundary. Again, it will move only if its light is already
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set to Moving1, otherwise it will only change its light to Moving1. If Find-

Space() returns False, r will set its light to RequestExpansion, requesting the
boundary robots to expand the smallest enclosing rectangle so that an empty
space is created on the boundary.

Algorithm 1. Interior Depletion
1 Procedure InteriorDepletion()

2 r ← myself
3 while EmptyRectangle() = False do
4 if r.color = Off then
5 if OnBoundary() = True then
6 r.color ← Boundary
7 else if OnInnerBoundary() = True then
8 if OnPenultimate() = True then
9 if TerminalOnPenultimate() = True then

10 if FindSpace() = True then
11 r.color ← Moving1
12 else
13 r.color ← RequestExpansion

14 else if TerminalOnInnerBoundary() = True then
15 r.color ← Moving1

16 else if r.color = RequestExpansion then
17 if OnPenultimate() = False then
18 r.color ← Off

19 else if r.color = Moving1 then
20 if OnBoundary() = True then
21 r.color ← Boundary
22 else if OnInnerBoundary() = True then
23 if OnPenultimate() = True then
24 if TerminalOnPenultimate() = True then
25 if FindSpace() = True then
26 Move towards the empty boundary point
27 else
28 r.color ← RequestExpansion

29 else if OnPenultimate() = False then
30 Move towards boundary

31 else if r.color = Expanding then
32 if ExpansionCompleted() = True then
33 r.color ← Boundary

34 else if r.color = Boundary then
35 if OnBoundary() = False then
36 Move towards the boundary
37 else if All terminal robots on the penultimate grid line segment next to it

have lights set to RequestExpansion then
38 r.color ← Expanding
39 Move outward

Now consider a robot r′ with light Boundary. It will first recheck if it is
still on the boundary. It may happen that some of the boundary robots on
its grid line had started the expansion earlier, leaving r′ inside the smallest
enclosing rectangle. However, these robots will only move at most one hop from
the previous boundary. Thus, if r′ finds itself in the interior, it can move to the
new boundary in a single step. If r′ is on the boundary, and it observes that all
terminal robots on the penultimate line segment next to it have set their lights
to RequestExpansion, then it will change its light to Expanding and will start
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moving outwards. If a robot finds its light set to Expanding, it checks whether
all its fellow boundary robots from the previous round have completed their
moves by checking the penultimate line next to it. If it finds that the expansion
is completed, it will change its light to Boundary.

A rigorous proof of correctness of the algorithm is omitted due to space
constraints. The following two lemmas address the two main issues regarding
the correctness of the algorithm. The proofs of the lemmas in this subsection are
briefly presented in AppendixA.

Lemma 1. The interior depletion phase is collision free.

Lemma 2. If a robot r at time t0 on the penultimate layer sets it light to
RequestExpansion, then there exist a time t (> t0) when the robot r reaches
the boundary.

The interior depletion phase is completed when all the robots are on the
boundary of the smallest enclosing rectangle, and the lights of all the robots
are set to Boundary. However, it may not be possible for the robots to locally
detect this. This is because, if the first condition is attained, a robot r can not
determine whether the second condition is satisfied, as it may not be able to see
all the robots on boundary line on which it resides. We say that a robot detects
the partial completion of the interior depletion phase if it can determine if the
first condition is satisfied. It does so using the function EmptyRectangle(),
which returns True if the following conditions are satisfied:

1. all robots in Vr are on the boundary of their smallest enclosing rectangle,
2. the lights of all the robots in Vr are set to Boundary.

Lemma 3. The function EmptyRectangle() can detect the partial comple-
tion of the interior depletion phase.

Theorem 1. The algorithm Interior Depletion creates an empty rectangle
configuration starting from any arbitrary configuration.

3.2 Symmetric Movements

Due to space constraints, we will not describe the corner creation phase. A brief
discussion on this phase is given in AppendixC. This phase will require four
different lights, namely, Rectangle, Square, NextToCorner and Moving2. The
objective of the corner creation phase is to create an empty rectangle configu-
ration with its four corners occupied by robots with specified lights. However,
this may not be achievable if the empty rectangle is a square. Due to space
restrictions, we will describe the symmetric movements phase assuming that the
starting configuration is the generic configuration of a non-square rectangle hav-
ing four corner robots with lights set to Rectangle. The algorithms for other
configurations, like squares with possibly some missing corners or a straight line
configuration, are based on the same movement strategy subject to some minor



Mutual Visibility by Asynchronous Robots on Infinite Grid 91

modifications. The lights that will be used in the symmetric movements phase
are {Moving3,Done}. See AppendixB, for the proofs of the claims in this sub-
section.

In this phase, the non-terminal robots on the sides of the empty rectangle
will leave the boundary and move outwards along the grid line passing through
its starting position. The extent of their movement will depend on (1) the length
of the sides of the empty rectangle, and (2) the starting position of the robot on
the boundary.

Fig. 4. (a) The final mutually visible configuration for a 7 × 8 empty rectangle.
(b) The coordinate system of the boundary of the rectangle.

The grid points on the boundary of the rectangle will be given coordinates
(p, k), where p = the size of the side of the rectangle it belongs to, and k =
its distance from the closest corner. The coordinates of the four corners will be
(0, 0). This coordinate scheme is illustrated in Fig. 4b. The group of symmetries
of the rectangle is generated by reflections with respect to perpendicular bisec-
tors of its sides. The group of symmetries induces an equivalence relation on the
grid points on the rectangle: P ∼ Q if and only if Q can be obtained from P
by some reflection operations. This partitions the set of grid points on the rect-
angle into equivalence classes. The distance, that two robots on starting points
belonging to the same equivalence class should move, have to be equal. Two
points are equivalent if and only if their coordinates are equal (See Fig. 4b). We
shall exploit these symmetries to design a recursive function called Destination

that computes the destination points of the robots. The distance that a robot
starting from (p, k) should move is Destination(m,n, p, k), where m,n (m ≥ n)
are size of the sides.

The pseudocode of the function Destination is omitted. We shall briefly
sketch out the recursive computation of the destination points corresponding to
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all the points on the rectangle. At each step, the algorithm computes destinations
corresponding to all the points belonging to an equivalence class. In other words,
the iteration runs over the set of equivalence classes of the grid points on the
rectangle. The set of all the destinations computed up to the ith step of the
procedure will be denoted by Ci.

Step 0: Robots at the corners (k = 0) will not move. Hence, C0 consists of the
starting positions of the corner robots.

Step 1 and 2: At step 1 and 2, the destinations corresponding to the middle
points of the sides, i.e., k = �m

2 � − 1 and �n
2 � − 1, are computed. Suppose we

are computing the destinations corresponding to the middle points of a side AB.
Draw two straight lines through A and B, parallel to the two diagonals of the
rectangle. Let HA and HB be the open half-planes delimited by these straight
lines that do not contain the rectangle. Then the destination of the robot(s) at
the middle of AB will be the nearest grid points belonging to HA ∩ HB (the
shaded region in Fig. 8 in the Appendix).

Step 3 to �m
2

�: In these steps, the destinations corresponding to the remaining
grid points on the larger side are computed. This is done in a recursive manner.
Suppose that at the ith step, we are to compute the destinations for grid points
{x1, x2, x3, x4}. We shall denote the computed destination corresponding to xj

as yj . The destinations are computed according to the following rules.

1. The destinations computed in step i are strictly farther from the rectangle
than the ones computed in step i − 1.

2. Choose any one of {x1, x2, x3, x4}, say x1. Then the corresponding destina-
tion y1 is the grid point (on the grid line passing through x1) closest to the
rectangle (respecting condition 1) such that no three points in Ci−1 ∪ {y1}
are collinear. The destinations y2, y3, y4 are obtained from y1 from the reflec-
tional symmetries. Since no two points in Ci−1 are collinear with y1, from the
reflectional symmetries we can say that the same is true for y2, y3 and y4.
But it is still not apparent that no three points in Ci = Ci−1 ∪ {y1, y2, y3, y4}
are collinear. We prove this in Lemma 4.
Step �m

2
� + 1 to �m

2
� + �n

2
� − 2: In these steps, the destinations corre-

sponding to the grid points on the smaller side are computed. The procedure
is the same as before.

Lemma 4. If no three points in Ci−1 are collinear, then the same is true for Ci.

Theorem 2. No three points of the destinations computed by the function Des-

tination are collinear.

Proof. Since no three points of C0 are collinear, the result immediately follows
from the Lemma 4.

We shall now describe the movement strategy. A pseudocode description of
the procedure is given in Algorithm2. As mentioned earlier, the algorithm is
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described for only non-square empty rectangle configurations with four occupied
corners. In the function Destination, the destinations corresponding to the
middle points of the sides were computed first in the recursive process. But the
movements will occur in the exactly opposite order. The robots will sequentially
leave the boundary with the ones closest to the corner moving first. A boundary
robot will call the function EligibleToMove() to determine whether it should
start moving. It checks if the following conditions are satisfied:

1. It can see at least one corner robot on its boundary side, and two corner
robots on the opposite side. In Fig. 5, r1 can see c1, c3 and c4. r3 can also see
c2, c3 and c4. But r5 cannot see c1 or c2, and so it is not eligible to move yet.

2. If there were robots initially on its boundary side between it and the corner(s)
it can see, they have already completed their movements and changed their
lights to Done. The robot r1 checks this by scanning the shaded region A,
which is empty. Hence r1 is eligible to move. But when r3 scans the region
B, it finds r2 with its light set to Moving3, and hence it will not move.

Fig. 5. Illustrations supporting the proof of
Theorem3

If EligibleToMove() returns
True, the robot will change its light
to Moving3 and leave the bound-
ary. Note that a robot can leave
the boundary even before the corner
creation phase is completed. This is
because the robot leaves the bound-
ary when it sees at least three cor-
ners. The fourth corner is probably
yet not created. We call this a pre-
mature move. But it can determine
if it has made a premature move just
after moving one hop from the bound-
ary. This is because if the other corner
is created, it will be able to see from
the grid line one hop away from the
boundary. If it can’t, it will wait for the completion of the corner creation phase.
Note that at most one robot on a boundary line can make a premature move.
Also note that Premature() will always return false if the robot is more than
one hop away from the boundary.

When the robot is moving, after each one hop move it has to compute
Destination(m,n, p, k) to find whether it has reached its destination. But that
requires the knowledge of m and n. Consider the robot r2 in Fig. 5. Since the
robots closer to the corners move farther, r2 will always be able to see c2 and
c3. But to know the size of both the boundary sides, it also has to see another
corner. If it cannot see c1, then its view must be obstructed by some robot in
the shaded region in Fig. 5. So r2 now has to decide if its view is obstructed by a
moving robot or a robot that has reached its destination. If r2 scans the shaded
region and it finds a robot with light Moving3 below it, then BlockedByMov-

ingRobot() will return True. Notice that if r2 can’t see c1, it can not identify
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the actual extent (on the left side) of the shaded region. But this is not a major
problem as there can not be any robots (from any branch) moving in the area
beyond the left boundary of the shaded region. The robots, upon reaching their
destination points, will change their lights to Done.

Algorithm 2. Symmetric Movements

1 Procedure SymmMovement()

2 r ← myself
3 if I am on the empty rectangle and EligibleToMove() = True then
4 r.color ← Moving3
5 Move outwards

6 else if r.color = Moving3 and Premature() = False then
7 if I can see at least three robots with light Rectangle then
8 d ← Destination(m,n, p, k)
9 if r.position = d then

10 r.color = Done
11 else
12 Move

13 else if BlockedByMovingRobot() = False then
14 Move

Theorem 3. Algorithm Symmetric Movements correctly leads all the robots
to the destinations computed by the Destination function.

From Theorem 2 and 3, we can conclude the following.

Theorem 4. The Mutual Visibility problem on infinite grid can be solved
using 11 colors.

Note that the robots terminate the execution once their lights are set to
Rectangle or Done. We say that the Mutual Visibility problem is solved
with detection if we additionally require that a robot terminates only after it
detects that the mutual visibility is attained. This can be easily achieved, but
will require one extra color. Each corner robot can determine if the symmetric
movements have been completed in its quadrant, and then changes its light to
the extra color. When all four corner robots change their colors, it implies that a
mutually visible configuration is attained and all the robots in the configuration
can detect this.

Theorem 5. The Mutual Visibility problem on infinite grid can be solved
with detection using 12 colors.

4 Conclusion

Our proposed distributed algorithm solves the Mutual Visibility problem
on infinite grid for any arbitrary initial configuration under the luminous robots
model using 11 colors. We considered the robots as dimensionless points. A more
realistic model would be to consider robots with physical extent, i.e., fat robots.
The Mutual Visibility problem for fat robots is solved as a subroutine of the
gathering algorithm presented in [1]. But it is assumed that each robot knows
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the size of the team. Recently, Sharma et al. have solved the problem in a fully
synchronous setting [12]. It would be interesting to see if our strategy can be
extended to solve the problem for fat robots in asynchronous setting with less
assumptions. Another direction would be to investigate if the number of colors
used or the number of moves by the robots can be reduced.

Acknowledgements. The first three authors are supported by CSIR, Govt. of India,
NBHM, DAE, Govt. of India and UGC, Govt. of India respectively. We would like to
thank the anonymous reviewers for their valuable comments which helped us improve
the quality and presentation of this paper.

Appendix A Correctness of Interior Depletion

A.1 Proof of Lemma 1

Collision can only occur when a robot r is moving along the penultimate layer
towards an empty space in the boundary in the situations shown in Fig. 3c and
d. Suppose that two robots r and r1, at Manhattan distance 2 from each other,
computes the same destination point. Initially none of them had their lights set
to Moving1. This is because if one of them had its light set to Moving1 when
the other one takes the snapshot, it would not have computed a destination
point. So they will first change their lights to Moving1, say at time t and t1
respectively. Let t ≤ t1. Now in its next Look phase at time t2(> t1 ≥ t), r1
perceives that r has either already made its move or is yet to move but has set
its light to Moving1. In either case, r1 will not move according to our algorithm.
Hence, there will be no collision. 
�

A.2 Proof of Lemma 2

Assume that the robot r on a penultimate line segment L at time t0 has set
its light to RequestExpansion. If the other terminal robot on L, say r′, also
sets its light to RequestExpansion, then the corresponding boundary robots
will execute the expansion. Otherwise, r′ and subsequently the other robots that
will become terminal on L will move to the boundary. Eventually, either we have
another terminal robot requesting expansion, or r is the only robot remaining
on L still with light RequestExpansion. Therefore, the corresponding boundary
will eventually execute expansion.

After the expansion, r is now not on the penultimate line. Then there is
a time t′ when it will again move to the new penultimate line L′. Now there
could be at most two robots on L′, since only the terminal robots on the inner
boundary line move. An expansion always creates at least two empty points on
the boundary (See Fig. 6), and one of them is in Hr ∩Sr. If r moves to the empty
point, then we are done. If not, then it implies that there is a robot r1 with light
Moving1 within Manhattan distance two in the direction it intends to move.
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Fig. 6. (a) There is no empty grid point in the shaded region. (b) Two new empty
points are created after the expansion

Case 1: Assume that r1 is also on L′. But since Hr ∩ Sr and Hr1 ∩ Sr1 are in
opposite directions, r1 is not in the direction in which r wants to move (and vice
versa).

Case 2: Let r1 be on the grid line below L′, as shown in Fig. 3c and f. But
since r is the only robot on L′, it has at least two empty points available in two
directions. Then it will choose the empty point which is not towards r1.

Case 3: Now consider the situation shown in Fig. 3d, where r1 is a robot moving
on an adjacent penultimate line segment. Then r and r1 will request another
expansion. It can be seen from Fig. 7, that in the new configuration, both robots
will be able to move to an empty boundary point. 
�

Fig. 7. (a) The situation is similar to the example shown in Fig. 3d. (b) The subsequent
configuration after both boundary sides expand and both r and r1 move to the new
penultimate layer.

A.3 Proof of Lemma 3

Suppose that (1) the robots in Vr form an empty rectangle, (2) the lights of
all the robots in Vr are set to Boundary. It may happen that some robots in
Vr (with lights set to Boundary) are actually not on the boundary, but on the
penultimate layer. Then these robots are in the middle of an expansion, but are
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yet to change their lights to Expanding, and are obstructing some robots on the
boundary also having light Expanding. We argue that this is not possible.

First of all, if r itself was executing an expansion in a previous round, then all
the fellow robots, with which it had previously shared a boundary side, must have
also completed the expansion. This is because r has its light set to Boundary.
Now for the remaining three boundary sides, if the robots are executing an expan-
sion, then they must be instructed to do so by some robot in the interior with
light RequestExpansion. But Vr has only robots with light Boundary. Hence,
all the robots in Vr are indeed boundary robots. Hence, the empty rectangle
configuration is achieved. 
�

Appendix B Correctness of Symmetric Movements

B.1 Proof of Lemma 4

Suppose that there are three points in Ci, say {u, v, w}, that are collinear. No
three points in Ci−1 are collinear. So at least one of the three points is in Ci\Ci−1,
say u. But u is computed in such a way that it is collinear with no two points
in Ci−1. So another one among the three points must be in Ci, say v. From
the symmetries, we can say that v is one of the three possible points shown in
Fig. 8 as {v1, v2, v3}. Clearly the straight lines through u and v1 or u and v3
do not pass through any other point in Ci−1. If the straight line through u and
v2 passes through a point z ∈ Ci−1, from symmetry it will also pass through
another point z′ ∈ Ci−1 (See Fig. 8). This implies that the straight line passes
through two points in Ci−1, which is not possible. Hence, no three points in Ci are
collinear. 
�

Fig. 8. Illustration supporting the proof of Lemma 4.
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B.2 Proof of Theorem 3

Since the robots closer to the corners move farther, a robot r will always be able
to see at least two corners. Due to obstructions, it may not see another corner.
We show that this will not create any lock cases.

Case 1: (BlockedByMovingRobot() = False): If it sees no robot with light
Moving3, its view must be obstructed by a robot with light Done that has
already reached its destination. Hence, this is clearly not the destination point
of r. So r will move.

Case 2 (BlockedByMovingRobot() = True): If it sees a robot with light
Moving3, it simply waits. In our movement strategy, at any time at most two
robots can be moving in the shaded region (see Fig. 5). Hence, it sees exactly
one moving robot below it, say r′. Clearly no moving robot is obstructing r′’s
view. Hence, r′ will eventually move or turn its light to Done. 
�

Appendix C Corner Creation

The lights that will be used in this phase are {Rectangle, Square,
NextToCorner, Moving2}. The objective of this phase is to occupy the cor-
ners of the empty rectangle by robots with specified lights. For simplicity, we
shall first assume that there are at least two robots on each of the four sides.
Only the robots terminal on the boundary sides will move in this phase. If the
configuration is a non-square rectangle, then the terminal robots on the larger
side will move to the corner and set its light to Rectangle. Note that the robots
can determine the length of the sides of the rectangle. However, if it is a square,
it may not be always possible to break tie. If two terminal robots on adjacent
sides of the square move to the corner, there will be a collision. If it is possible
to break tie, then one of them will go to the corner and set its light to Square.
Otherwise, the robots will move to the point adjacent to the corner and then
set its light to NextToCorner. While moving, the terminal robots will set their
lights to Moving2.

However, this simple scheme will not be always applicable. The initial empty
rectangle configuration may have different anomalies. For example, some sides
may have only a single robot, or all the robots could lie on a single straight line,
or form an L-shape, etc. (See Fig. 9). While designing algorithms for these config-
urations, the following issues should be properly addressed. A robot may not be
always able to distinguish between two configurations from their local views. In
these cases, the movement specified for the robot in both configurations should
not contradict each other. During the movements, the configuration may change
from one case to another. Due to the asynchronous scheduler, the adversary may
delay the move of a robot, which will have a pending move based on an out-dated
view of the configuration. Such pending moves should not cause any inconsis-
tencies in the algorithm. The algorithms for these different configurations are
pictorially presented in Fig. 9. Proofs and other details of the algorithms are
omitted due to space constraints.
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Fig. 9. Movements in the corner creation phase for atypical empty rectangle configu-
rations.
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