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Abstract. The problem of evacuating two robots from the disk in the
face-to-face model was first introduced in [16], and extensively stud-
ied (along with many variations) ever since with respect to worst case
analysis. We initiate the study of the same problem with respect to
average case analysis, which is also equivalent to designing random-
ized algorithms for the problem. First we observe that algorithm B2

of [16] with worst case cost Wrs (B2) := 5.73906 has average case cost
Avg (B2) := 5.1172. Then we verify that none of the algorithms that
induced worst case cost improvements in subsequent publications has
better average case cost, hence concluding that our problem requires the
invention of new algorithms. Then, we observe that a remarkable simple
algorithm, B1, has very small average case cost Avg (B1) := 1 + π, but
very high worst case cost Wrs (B1) := 1 + 2π. Motivated by the above,
we introduce constrained optimization problem 2Evac

w
F2F , in which one

is trying to minimize the average case cost of the evacuation algorithm
given that the worst case cost does not exceed w. The problem is of
special interest with respect to practical applications, since a common
objective in search-and-rescue operations is to minimize the average com-
pletion time, given that a certain worst case threshold is not exceeded,
e.g. for safety or limited energy reasons.

Our main contribution is the design and analysis of families of new
evacuation parameterized algorithms A (p) which can solve 2Evac

w
F2F ,

for every w ∈ [Wrs (B1) , Wrs (B2)]. In particular, by letting param-
eter(s) p vary, we obtain parametric curve (Avg (A (p)) , Wrs (A (p)))
that induces a continuous and strictly decreasing function in the
mean-worst case space, and whose endpoints are (Avg (B1) , Wrs (B1)),
(Avg (B2) , Wrs (B2)). Notably, the worst case analysis of the prob-
lem, since it’s introduction, has been relying on technical numerical,
computer-assisted, calculations, following tedious robots trajectories’
analysis. Part of our contribution is a novel systematic procedure, which,
given any evacuation algorithm, can derive it’s worst and average case
performance in a clean and unified way.
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1 Introduction

Search problems are concerned with the exploration of a domain, aiming to
identify the location of a hidden object. More particularly, in evacuation-type
problems where the domain is the unit disk, introduced recently by Czyzowicz
et al. in [16], a group of mobile agents collectively search for a hidden item (the
exit) placed on the perimeter of the disk, attempting to expedite the time it
takes for the last agent to evacuate, i.e. reach the exit. As it was the case in [16],
as well as in a series of follow-up improvements and problem variations, the
main objective was the design of evacuation algorithms that minimize the worst
case performance. In contrast, real-life search-and-rescue operations, in which
current problems find applications, are mostly concerned with good average per-
formance. Keeping also in mind that, in realistic search tasks, mobile agents
do not have unbounded resources and at the same time it is imperative that
the search terminates successfully with probability 1, one is motivated to study
average case - worst case trade-offs for evacuation search problems.

In this direction, we initiate the study of the traditional evacuation problem
first introduced in [16] from the perspective of average case analysis, which in
our case is equivalent to designing efficient randomized algorithms. More specif-
ically, we introduce problem 2Evac

w
F2F which, at a high level, asks for efficient

evacuation algorithms that perform well on average, given that their worst case
performance does not exceed w (which can be thought as the maximum time
robots can operate, e.g. due to energy restrictions). The problem seems partic-
ularly challenging given that the worst case performance analysis of all known
evacuation algorithms require tedious analysis, tailored to robots’ trajectories,
and followed by intense, computer-assisted calculations, which are always numer-
ical. Our results pertain to new families of evacuation algorithms, whose worst
case performance analysis can be done rigorously, and whose average case analy-
sis requires again intense computer-assisted calculations, achieving average case
- worst case trade-offs for a wide spectrum of values. Our computer-assisted cal-
culations rely on a novel theoretical and unified approach to compute the cost
of any evacuation algorithm and for any placement of the hidden item without
relying on tedious analysis specific to robots’ trajectories. Equipped with these
techniques, we also verify, somehow surprisingly, that the best evacuation algo-
rithms known prior to this work, designed to perform well in the worst case,
do not perform well for 2Evac

w
F2F , adding this way to the motivation of our

problem.

1.1 Related Work

In search problems, mobile agents, commonly referred as robots, aim to
locate efficiently a hidden item placed in some geometric domain. Numerous
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search-types problems have been introduced and studied since the 60’s, when
two seminal papers on probabilistic search, [8] and [9], were concerned with
minimizing the expected time to locate the item. The number of search-type
variants, along with the difficulty of the underlying mathematical problems and
the elegance of many results soon gave rise to what is known nowadays as Search
Theory. Many of the variants have been classified in surveys, e.g. [10,23], while
a number of books provide a comprehensive study for similar problems, e.g. see
[1,4,35] and the most recent [5].

Search-type problems have also been studied under the perspective of explo-
ration in [2,3,22,29] by a single robot, and in [12,36,37] by multiple robots. Ter-
rain mapping has been the main search task even in problems where exploration
is not the primary objective, e.g. [30,32,34]. Numerous other search-type prob-
lems have been introduced and classified as hide-and-seek and pursuit-evasion
games, e.g. see [14,25,31,33]. Overall the list of search-type problems is enor-
mous, and having given a representative list above, in what follows we refer only
to the most relevant ones.

The perception of a search-type problem as an evacuation problem, from a
theoretical perspective, appeared almost a decade ago, e.g. in [7,24]. The problem
we study here is a direct follow-up to the evacuation problem 2EvacF2F (a
search-type problem) first introduced in [16], which included many variants based
on the number of robots and the communication model between them. In the
variant 2EvacF2F which is relevant to our work, two robots start from the center
of the unit disk, while an exit is hidden somewhere on the perimeter. The robots
move at speed 1, their perception of their environment is restricted to their
location and they can exchange information only by meeting. The goal is to
minimize the worst case evacuation time, i.e. the time it takes the last robot to
reach the exit, over all exit placements. The upper bound of 5.73906 in [16] was
later improved to 5.628 in [21], and further to the currently best known 5.625 in
[11], while the best lower bound known for the problem is 5.255 due to [21].

Since the introduction of 2EvacF2F in [16], a number of variants emerged,
focusing on different geometric domains, different number of robots and robots’
specifications, different communication models etc. Examples include evacua-
tion from the disk with more than 1 exits in the wireless model [15], evacua-
tion of a group of robots on a line [13] (generalization of the celebrated Cow-
Path problem [6]), evacuation in the presence of faulty robots in a line [20]
and in a disk [17], evacuation with advice [28] while more recently evacu-
ation with combinatorial requirements on the robots that need to evacuate,
e.g. [18,19,26,27].

1.2 Outline of Our Results and Paper Organization

We initiate the study of evacuating 2 robots from the disk in the face-to-face
model from an average case complexity perspective. In particular we introduce
problem 2Evac

w
F2F in which one tries to minimize the expected performance of

randomized evacuation algorithms, subject to that the worst case performance
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does not exceed w. The problem is particularly challenging given that exist-
ing positive results, from a worst case complexity perspective, rely on tedious
theoretical analysis tailored to algorithmic solutions, and supported by intense
computer-assisted calculations. One of our main contributions is a unified and
simple approach to quantify the performance of any evacuation algorithm and
for any input. Equipped with this technique, we first verify that none of the pre-
viously known evacuation algorithms has good average case performance. Then,
we introduce families of evacuation algorithms that have competitive average
case performance, given that their worst case performance does not exceed w,
for a wide range of w’s. Our results rely on rigorous and technical worst case
performance analysis for the newly proposed algorithms. Building upon our new
technique for efficiently evaluating the cost of evacuation algorithms for any
input, we are able to numerically compute the average case performance of our
algorithms, as well as to quantify formally the induced average case -worst case
trade-offs.

In Sect. 2.1 we formally define 2Evac
w
F2F and we give a high-level outline

of the results we establish. Section 2.2 contains one of our main contributions,
which is a systematic process to compute the performance of any evacuation algo-
rithm, given that robots’ trajectories have convenient representations, described
in Sect. 2.3. In Sect. 3 we analyze two benchmark algorithms for 2Evac

w
F2F , as

well as we motivate further the problem for certain values of w, among others
showing, somehow surprisingly, that none of the previously proposed evacuation
algorithms is efficient for our problem. Section 4 describes our main contribu-
tions in the form of new families of evacuation algorithms. Then, in Sect. 5 we
perform rigorous worst case analysis for all new algorithms and in Sect. 6 we
perform average case analysis, using our results from Sect. 2.2 along with heavy
computer-assisted calculations. In the same section, we also quantify formally
all our results for 2Evac

w
F2F . Finally, in Sect. 7 we conclude with some open

problems. All omitted proofs of statements in the main body of the paper can
be found in the AppendixA.

2 Preliminaries

2.1 Problem Definition and Main Results

In 2EvacF2F , two searchers (robots) start from the center of the unit disk.
Moving at maximum speed 1, the two robots can move anywhere on the plane.
Somewhere on the perimeter of the disk there is a hidden object (exit) that can
be located by any of the robots only if the robot is co-located with the exit.

The two robots do not see each other from distance, neither can they exchange
messages unless they meet (face-to-face model), but they can agree in advance
on each other’s trajectories. A feasible evacuation algorithm is determined by
the trajectories of the robots, in which eventually both robots reach the exit.
For simplicity, we also require, w.l.o.g. that eventually any robot stays idle. For
convenience, we think that the center of the unit disk lies at the origin (0, 0)
of a Cartesian system, and we denote by cycle(x) the point (cos (x) , sin (x)),
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which will be referred to as an instance of 2EvacF2F when the exit is placed
at cycle(x). Given instance cycle(x), we define the evacuation time C(x) of the
feasible evacuation algorithm as the time it takes the last robot to reach the
exit.

In this work we are concerned with determining tradeoffs between the worst
case and the average case performance (of uniform placements of the exit) of
evacuation algorithms for 2EvacF2F . More specifically, we say that an evac-
uation algorithm A with evacuation cost C(x) on instance cycle(x) is (a,w)-
efficient if

Avg (A ) := Ex∈[0,2π)[C(x)] ≤ a,

Wrs (A ) := sup
x∈[0,2π)

{C(x)} ≤ w.

where the expectation is with respect to the uniform distribution over [0, 2π).
Special to our problem is that Avg (A ) can also be interpreted as the expected
performance of a randomized algorithm based on A . Indeed, consider an algo-
rithm which first performs a random rotation of the disk around the origin of
angle θ, where θ is chosen uniformly at random from [0, 2π), and then simulates
A . This random step is equivalent to choosing a deployment point uniformly at
random on the disk. Due to the symmetry of the domain, it is irrelevant where
the adversary will place the unique exit, and hence the expected performance of
this randomized algorithm equals Avg (A ).

For algorithms A (p) parameterized by parameter(s) p, the pair
(Avg (A (p)) ,Wrs (A (p))) will correspond to a subset of R

2 (and a curve if
p is only one parameter), that we will refer to as the Efficient Frontier. We
also adopt an optimization perspective of the problem, and we introduce the
following optimization problem 2Evac

w
F2F on parameter w:

min
1
2π

∫ 2π

0

C(x)dx (2Evacw
F2F )

s.t. C(x) ≤ w, ∀x ∈ [0, 2π).

Due to an analysis we perform later, 2Evac
w
F2F is interesting as long as

w1 ≤ w ≤ w2. At a high level, values w1, w2 above are obtained from two
benchmark algorithms, B1,B2, where Wrs (B1) = w1 ≈ 5.739,Avg (B1) =
a1 ≈ 5.1172,Wrs (B2) = w2 ≈ 7.283,Avg (B1) = a2 ≈ 7.28319, hence B1 being
efficient in worst case and inefficient in average case, while B2 being efficient in
average case and inefficient in worst case. As it is common for 2EvacF2F (and
many follow-up variation problems) closed forms for the cost of best-solutions
known do not exist, and upper and lower bounds are given numerically. Our
results involve upper bounds for a continuous spectrum of parameters w for
problem 2Evac

w
F2F . In particular we propose families of algorithms A (over

some parameters) so that, as their parameters vary, we obtain Wrs (A ) = w and
Avg (A ) = g(w), for each w ∈ [w1, w2]. The curve (g(w), w) summarizing our
results is depicted in Fig. 1, and it is later quantified in Theorem7 (see Sect. 5).
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Fig. 1. Illustration of the performance of our solution to 2Evac
w
F2F , for every w ∈

[w1, w2]. Depicted curve corresponds to parametric curve (g(w), w), where w, g(w) are
the worst case performance and average case performance of three different families of
evacuation algorithms A1,A

′
2 ,A2, discussed formally in Sect. 4. Note that the magenta

curve is not a straight line and, as we show next, induces decreasing worst case perfor-
mance (as the average case performance increases). (Color figure online)

Note that an (a,w)-efficient algorithm gives a solution of value a for
2Evac

w
F2F . Our approach to prove Theorem7 is to define families of evacu-

ations algorithms A (p) parameterized by parameter(s) p. We will prove that
these algorithms are (u(p), v(p))-efficient for some functions u(p), v(p), and in
particular the evaluation of the worst case performance will be exact and mono-
tone in p, while the computation of v(p) will be computer-assisted. Then we will
set p = v−1(w), and will be able to describe the average case performance as a
function of w as g(w) := u(v−1(w)).

2.2 Computing Evacuation Times

For any feasible evacuation algorithm, we define by S(x), the first time that
cycle(x) is visited by any robot. Clearly, when a robot, say R1 locates the exit at
cycle(x), it may attempt to catch R2 while moving along R2’s trajectory along
the shortest line segment, say of length E(x). Once robots meet, they return
together to cycle(x), inducing total evacuation cost C(x) = 1 + S(x) + 2E(x).

All existing results for 2EvacF2F , from a worst case complexity perspective,
rely on numerical computer-assisted estimation of supx C(x), after identifying
properties of the maximizer. In this section, we elevate existing arguments, and
we propose a generalized and unified approach for computing C(x), for any x
and for any robots’ trajectories. For the sake of formality, as well as for practical
purposes, robots’ trajectories will be defined by parametric functions F(t) =
(f(t), g(t)), where f, g : R �→ R are continuous and piecewise differentiable.
In particular, search protocols for the two robots will be given by trajectories
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R1(t),R2(t), where Ri(t) will denote the position of robot Ri at time t ≥ 0.
Therefore, any evacuation algorithm will be identified by a tuple (R1,R2). To
simplify notation, we will only determine the trajectories from the moment the
two robots reach the perimeter of the circle, and until the entire circle is searched,
and we will silently assume that robots stay put after exploration is over.

Lemma 1. Consider instance cycle(x) of 2EvacF2F , and suppose that for a
feasible evacuation algorithm (R1,R2), robot 1 is the first robot that finds the
exit. Then E(x) = t̄ − S(x), where t̄ = t̄(x) is the smallest root, no less than
S(x), of function

hx(t) := ‖R2(t) − R1(S(x))‖ − t + S(x). (1)

Proof. First observe that hx(t) is continuous, and assuming that the two robots
are not co-located when the exit is found, we have hx(S(x)) > 0. At the same
time, since the evacuation algorithm is feasible, R2(t) is eventually a constant,
and hence for big enough t we have that hx(t) becomes eventually negative. By
the mean value theorem, there is t0 > 0 for which hx(t0) = 0.

Now consider the smallest positive root t̄ of hx, no less than S(x). At time
t̄, R2 is located at point R2(t̄), and it is ‖R2(t̄) − R1(S(x))‖ away from the
location cycle(x) of the discovered exit. At the same time, R1 moves with speed
1 along the shortest path to catch R2 in her trajectory. Hence it takes R1 some
t̄ − S(x) extra time from the moment the exit is found till she reaches point
R2(t̄). By definition we have R1(t̄) = R2(t̄), and therefore E(x) = t̄ − S(x) as
claimed. 
�

For some special trajectories, E(x) admits a simpler description that we
describe next. Before that, we introduce some notation pertaining to a func-
tion δ : [0, π] �→ R+, which we widely use in the remaining of the paper:

δ(x) := unique non-negative root (w.r.t. d) of “2 sin
(

x +
d

2

)
= d”. (2)

To simplify notation, we will also abbreviate δ(x) by δx. The fact that δx is well
defined follows easily from the monotonicity of sin in [0, π].

Lemma 2. For some instance cycle(x) of 2EvacF2F , suppose that for a fea-
sible evacuation algorithm (R1,R2), R1 is the founder of the exit, say at time
t0 = S(x). Assume that both R1(t0),R2(t0) lie on the circle at arc distance 2α,
and suppose that R2’s movement is along the perimeter of the circle toward the
complementary arc of length 2π − α. Then, E(x) = δα.

Proof. The lemma follows by applying transformation t − S(x) = d in the defi-
nition of hx(t) in Lemma 1, so that E(x) = t − S(x) = d. 
�

We are ready to conclude with a corollary that will be handy for computing
evacuation times numerically, and without relying on excessive case analysis, as
it was the case before.
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Corollary 1. Consider feasible evacuation algorithm (R1,R2) for 2EvacF2F .
For any instance cycle(x) for which R1 is the exit founder, the evacuation cost
can be computed as C(x) = 1 + 2t̄ − S(x), where t̄ = t̄(x) is the smallest root, at
least S(x), of hx(t) := ‖R2(t) − R1(S(x))‖ − t + S(x).

2.3 Trajectories’ Description

Robots’ trajectories will be described in phases. We will always omit the “deploy-
ment phase”, i.e. the movement from the circle center to its perimeter, and we
will only describe the trajectories from the moment robots start searching the
circle. In each phase, robot R, will be moving between two explicit points, either
along an arc, or along a line segment (chord of an arc), see Observations 1 and 2
below. We will summarize robot’s trajectories in tables of the following format.

Robot Phase # Trajectory Duration
R 1 R(t) t1

2 R(t) t2
...

...

In order to ease notation, trajectory R(t) of phase i will be described with
parametric equations as if the time is reset to 0 after time t0 + t1 + t2 + . . . +
ti−1, where t0 = 1 (this is the time that robots reach the circle). The two
fundamental trajectory components are movements along arcs and movements
along line segments.

Observation 1. Let b ∈ [0, 2π) and σ ∈ {−1, 1}. The trajectory of an object
moving at speed 1 on the perimeter of a unit circle with initial location cycle(b)
is given by the parametric equation cycle(σt + b) = (cos (σt + b) , sin (σt + b)). If
σ = 1 the movement is counter-clockwise (ccw), and clockwise (cw) otherwise.

Observation 2. Consider distinct points A = (a1, a2), B = (b1, b2) in R
2.

The trajectory of a speed 1 object moving along the line passing through A,B
and with initial position A is given by the parametric equation line(A,B, t) :=(

b1−a1
‖A−B‖ t + a1,

b2−a2
‖A−B‖ t + a2

)
.

Finally, the analysis of our algorithms’ trajectories will give rise to a
number of constants. For the reader’s convenience, we list here the numer-
ical values of the most common constants that will be encountered later;
w1 ≈ 5.73906, w0 ≈ 6.11953, w′ ≈ 6.12851, w2 ≈ 7.28319, α′ ≈ 1.15468, ᾱ ≈
1.54419, β′ ≈ 0.0241653, β0 ≈ 0.04388. All constants are formally defined when
they are first introduced.

3 Two Benchmark Algorithms and Motivation

In this section we describe two benchmark algorithms for 2EvacF2F , as well as
perform average case analysis to algorithms previously proposed in the litera-
ture. The reader may consult Fig. 2 for the algorithms analyzed in this section.
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Czyzowicz et al. [16] were the first to introduce an evacuation algorithm for
2EvacF2F , which we denote here by B1 (see Fig. 2 on the left).

Fig. 2. Robots’ Trajectories for algorithms B1,B2,A0. The depicted trajectories show
the search of the circle, and not the evacuation step that is performed once the exit is
found.

Definition 1 (Benchmark Algorithm B1). For all t ∈ [0, π], R1(t) =
cycle(t) and R2(t) = cycle(−t).

Observation 3. Benchmark Algorithm B1 is (5.1172, 5.73906)-efficient.

B1 should be understood as being efficient in the worst case, but inefficient
on average. The claim becomes transparent by introducing the following naive
algorithm for 2EvacF2F that we depict in the middle of Fig. 2.

Definition 2 (Benchmark Algorithm B2). For each t ∈ [0, 2π], R1(t) =
R2(t) = cycle(t).

Observation 4. Benchmark Algorithm B2 is (1 + π, 1 + 2π)-efficient.

B2 should be understood as highly efficient on average, but inefficient in the
worst case. Moreover, it should be clear that B1,B2 are feasible solutions to
2Evac

w
F2F , for w = 5.1172 and w = 1 + 2π, respectively. We conjecture that B1

is indeed the optimal evacuation algorithm among all algorithms with worst case
performance no more than 1+2π. At the same time, below we show that B2 is the
best algorithm for 2Evac

w
F2F , when w = 5.1172, among those previously used to

improve upon the worst case performance. The importance of this observation
is twofold; first we are motivated to study 2Evac

w
F2F for the entire spectrum of

w ∈ [Wrs (B1) ,Wrs (B2)], and second we deduce that in order to perform well
on average, we need to devise and analyze new evacuation algorithms.

Upper bounds for the worst case performance of B1 were later improved
in [11,21], first to 5.628, and then to 5.625, using refined algorithms, respectively.
The main idea behind the improvement is to understand the monoticity of C(x)
for algorithm B1. Indeed, the following lemma was implicit in both [11,21], and
can be obtained numerically.
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Lemma 3. There is α0, where α0 ≈ 0.96782, so that evacuation cost C(x) of
B1 for 2EvacF2F on instance cycle(x) is strictly increasing for x ∈ [0, α0], and
strictly decreasing in x ∈ [α0, π]. In particular, Wrs (B1) = C(α0) ≈ 5.73906.

Consider now an execution of B1 in which one of the robots, say R2 continues
searching on the circle and is close to approach a location that would be the
meeting point if the instance was cycle(α0). In an attempt to help expedite a
potential meeting (in case R1 is approaching) and effectively reducing the cost
of the worst case, R2 would make a minor detour toward the interior of the
disk, before returning back to the exploration of the circle. This simple idea
was explored in [21] where the following family of algorithms were introduced,
parameterized by α ∈ [0, π] and point B within the unit disk, see also right of
Fig. 2.

Definition 3 (1-Detour Algorithm A0(α,B)). For all t ∈ [0, π + 2 ‖cycle
(α) − B‖], the trajectory of R1 is defined as

Robot Phase # Trajectory Duration
R1 1 cycle(t) α

2 line(cycle(α), B, t) ‖cycle(α) − B‖
3 line(B, cycle(α), t) ‖cycle(α) − B‖
4 cycle(t + α) π − α

The trajectory of R2 is symmetric with respect to the horizontal axis.

The crux of the contribution of [21] was to prove that there exists α,B for
which the worst case performance is no more than 5.644 (and a delicate refine-
ment is needed to achieve 5.628). Notably, their analysis is tedious and lengthy,
whereas we can obtain the same result, relying again on numerical calculations,
with minimal effort. Then, [11] introduced variations of A0(α,B) in which each
robot performs more than 1 detours (see Phases 2,3 of A0(α,B)). Hence, t-
detour algorithms are parameterized by a sequence α1, . . . , αt, where αi ≥ 0 and∑

i αi ≤ π, and points Bi in the disk. Even 2-detour algorithms achieve worst
case performance 5.625, while for each t ≥ 2, t-detour algorithms do induce
strictly improved performance (for appropriate choices of the parameters) but
the improvement is negligible.

Motivated by the results in [11,21], one is tempted to ask whether any algo-
rithm in the family A0(α,B) improves upon B1 with respect to the average case
analysis.

Theorem 5. For every α ∈ [0, π) and for every B in the unit disk
Avg (A0(α,B)) ≥ Avg (B1).

Theorem 5 provides strong motivation for studying problem 2Evac
w
F2F , since

it shows that in oder to establish good upper bounds, i.e. our main results
depicted in Fig. 1 and quantified later in Theorem7, one needs to employ new
evacuation algorithms. Recall that even Wrs (B1) that was first calculated in [16],
or Wrs (A0(α,B)) first calculated in [21] for various α,B, were all estimated
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with computer-assisted calculations. Due to the nature of the problem, we are
bound to rely on computer-assisted calculations as well. Notably, our much more
intense computational work is feasible only because we employ the brand new
method for computing evacuation times due to Corollary 1 and Definition 3 of
A0(α,B) trajectories. Overall, in order to verify Theorem5 we compute pairs
(Avg (A0(α,B)) ,Wrs (A0(α,B))) for more than 500,000 different parameter val-
ues and we depict them in Fig. 3.

Fig. 3. Performance analysis of A0(α, B) for various values of parameters α, B. Blue
points (a, w) correspond to (a, w)-efficient algorithms A0(α, B). The red point is
(Avg (B1) , Wrs (B1)), i.e. the performance of B1 in the average-worst case space. Note
that no algorithm A0 performs better on average than B1, while all A0(t, cycle(t)) is
exactly B1 for every point t ∈ [0, π]. (Color figure online)

4 New Evacuation Algorithms

In this section we propose families of evacuation algorithms for problem
2Evac

w
F2F , for the entire spectrum of w ∈ [Wrs (B1) ,Wrs (B2)]. Our algorithms

are summarized in Fig. 4.
First we define families of evacuation algorithms that, as we show next, per-

form well for 2Evac
w
F2F in the “neighborhood of B1”, i.e. for w close to Wrs (B1).

Our algorithms are parameterized by α, and their circle exploration lasts 2π−α.

Definition 4 (Algorithm A1(α)). For all t ∈ [0, 2π −α], the trajectory of R1

is defined as

Robot Phase # Trajectory Duration
R1 1 cycle(t) α

2 line(cycle(α), cycle(−α − δα), t) δα

3 cycle(−α − δα − t) 2π − 2α − δα

where δa is defined in (2). The trajectory of R2 is defined as R2(t) = cycle(−t),
for all t ∈ [0, 2π − α].
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Fig. 4. Robots’ Trajectories for algorithms A1,A2,A
′
2 . The depicted trajectories show

the search of the circle, and not the evacuation step that is performed once the exit
is found. Arcs that are searched by both robots are also searched simultaneously, i.e.
robots are co-located and search together.

A1 is depicted in Fig. 4 on the left. At a high level A1(α) is a modification of
B1 that is based on the following idea. The execution of A1(α) is the same as in
B1 till each robot searches an arc of length α (and hence A (π) coincides with
B1). After time α, R1 abandons her trajectory and catches R2, on the perimeter
of the circle resembling a trajectory as if the exit was located at R1(α). It is not
difficult to see that the definition of δα above satisfies R1(α+δα) = R2(α+δα) =
cycle(−α − δα).

Next we define a family of algorithms A2 which, as we show later, perform
well in the “neighborhood of B2”, i.e. for w close to Wrs (B2). For this recall
definition (2) of δa. We let γ0 ≈ 2.2412 be the root of 2α + δα/2 = 2π. For every
α ≤ γ0 we define a family of algorithms on parameter α whose circle exploration
lasts 2π − α.

Definition 5 (Algorithm A2(α)). For all t ∈ [0, 2π −α], the trajectory of R1

is defined as

Robot Phase # Trajectory Duration
R1 1 cycle(t) α

2 line(cycle(α), cycle(2α + δα/2), t) δα/2

3 cycle(2α + δα/2 + t) 2π − 2α − δα/2

The trajectory of R2 is defined as R2(t) = cycle(α + t), for all t ∈ [0, 2π − α].

A2 is depicted in the middle of Fig. 4. The condition that α ≤ γ0 is added for
simplicity to ensure that the latest catching point occurs while the other robot
is still searching, and is not mandatory. At a high level A2(α) is a generalization
of B2 (note that A2(0) = B2). For the first α time units, robots search in the
same direction till R1 arrives at the deployment point of R2. Then, R1 catches
R2 on the circle, as if the exit was located at R1(α) (which by Lemma 2 happens
in δα/2 extra time).

Finally we introduce a family of evacuation algorithms which will perform
well for 2Evac

w
F2F for intermediate values of w ∈ [Wrs (B1) ,Wrs (B2)]. For this
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we generalize family A2 so that the two robots perform two alternating jumps,
with parameters α, β satisfying 2α+2β+δ(α+β)/2+δβ/2 ≤ 2π, see right of Fig. 4.

Definition 6 (Algorithm A ′
2(α, β)). For notational convenience, we set

ζα,β := 2α + β + δ(α+β)/2. For all t ∈ [0, 2π − α − β], the trajectories of R1,R2

are defined as follows

Robot Phase # Trajectory Duration

R1 1 cycle(t) α
2 line(cycle(α), cycle

(
ζα,β

)
, t) δ(α+β)/2

3 cycle
(
ζα,β + t

)
2π − 2α − β − δ(α+β)/2

R2 1 cycle(α + t) α + β + δ(α+β)/2

2 line(cycle
(
ζα,β

)
, cycle

(
ζα,β + δβ/2

)
, t) δβ/2

3 cycle
(
ζα,β + β + δβ/2 + t

)
2π − 2α − 2β − δ(α+β)/2 − δβ/2

Robots’ trajectories α, β have the following meaning. As in the family of
algorithms A2, parameter α represents the arc distance the two robots have
before the one preceding decides to jump ahead. In A2 the two robots meet
again once the jumper reaches the perimeter of the circle. In A ′

2 the jumper
deploys a little further away on the circle so that when the other robot reaches the
deployment point of the jumper, the two robots are at arc distance β. As a result,
the time it takes both robots to complete searching the entire circle is 2π−α−β,
as well as A2(α, 0) coincides with A2(α). Finally, note that even though A ′

2 will
be eventually invoked for seemingly restricted values of β (β ≤ β0 ≈ 0.04388), the
deviation in the performance will be significant enough (e.g. δβ0/2 ≈ 0.977997)
to account for its utilization in our upper bounds.

5 Worst Case Performance Analysis

In this section we perform worst case analysis for all algorithmic families
A1,A2,A ′

2 with respect to their parameters. Notably, results in this section
are quantified formally and exactly by closed formulas. At a high level, each
of A1,A2,A ′

2 will be invoked to solve 2Evac
w
F2F for different values of w ∈

[Wrs (B1) ,Wrs (B2)], and each of them will have competitive average case per-
formance for the corresponding worst case performance w. As an easy warm-up,
we analyze A1.

Lemma 4 (Worst Case Analysis for A1). Let ᾱ = 1 + 2π − w1, where
w1 = Wrs (B1). Then, for all α ∈ [0, π], we have that

Wrs (A1(α)) =
{

1 + 2π − α, ∀α ∈ [0, ᾱ)
Wrs (B1) , ∀α ∈ [ᾱ, π] .

In a similar fashion, we can easily analyze A2.

Lemma 5 (Worst Case Analysis for A2). For all α ≤ π − 2, we have
Wrs (A2(α)) = 1 + 2π − α.
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Next, our goal is to analyze A ′
2(α, β), which is much more technical. For this

we will invoke A ′
2 only for special parameters, whose choice is motivated by the

following observation pertaining to the performance of A2 (whose generalization
is A ′

2). From the proof of Lemma5, it follows that among all algorithms A2(α),
where α ≤ γ0 (see discussion before Definition 5), the one with minimum worst
case evacuation cost is A2(π − 2), and the cost becomes 3 + π. In fact, for all
w ∈ [3+π, 1+2π] there are two different values of α for which Wrs (A2(α)) = w,
and we restrict α ∈ [0, π − 2] so that we obtain evacuation algorithms with
minimum average case cost. Moreover, α = π − 2 is the only parameter for
which Wrs (A2(α)) = 3+π and as a byproduct, it is the algorithm in the family
A2 that minimizes the worst case.

By Lemma 5 we know that as β → 0, the value of α that minimizes
Wrs (A ′

2(α, β)) approaches π − 2. That value of α is what made the evacuation
cost of A2(α) attain the same value in two different (worst case) exit placements.
Motivated by this, and for values of β > 0 not too big, we still find the optimal
choices of α that minimize the worst case performance.

Lemma 6 (Worst Case Analysis for A ′
2). Let β0 = 0.0438855, and set

αβ := π − β/2 − 2 cos (β/4). Then for all β ∈ [0, β0] we have Wrs (A ′
2(αβ , β)) =

1 + π − β/2 + 2 cos (β/4) .

6 Average Case Performance Analysis and the Efficient
Frontier

In this section we perform average case analysis for all algorithmic families
A1,A2,A ′

2 , with respect to their parameters. For the sake of exposition of our
results, we set w1 = Wrs (B1) ≈ 5.73906, w2 = Wrs (B2) = 1 + 2π ≈ 7.28319
and for β0 ≈ 0.04388, as in Lemma 6, we set w0 := Wrs (A ′

2(αβ0 , β0)) ≈ 6.11953.
We also recall ᾱ ≈ 1.54419 of Lemma 4. Finally, we set

v(α) := 1 + 2π − α

v2(β) := 1 + π − β/2 + 2 cos (β/4)

u1(α) := 0.00889α3 − 0.16944α2 + 0.71518α + 4.23089

u′
2(β) := 530.673β3 − 78.5498β2 + 7.36219β + 4.70493

u2(α) := 0.093056α2 + 0.346659α + 4.1719

Combined with our findings of Sect. 5, the main result of the current section is
the following.

Theorem 6. For every w ∈ [w1, w2] there is algorithm A ∈ {A1,A ′
2 ,A2} and

unique parameter(s) p such that Wrs (A (p)) = w. In particular,

– for all α ∈ [1, ᾱ], A1(α) is (u1(α), v(α))-efficient, and v([1, ᾱ]) = [w1, 2π],
– for all β ∈ [0, β0], A ′

2(αβ , β) is (u′
2(β), v2(β))-efficient, and v2([0, β0]) =

[w0, 3 + π],



76 H. Chuangpishit et al.

– for all α ∈ [0, π − 2], A2(α) is (u2(α), v(α))-efficient, and v([0, π − 2]) =
[3 + π,w2].

Finally, we aim to formally quantify the efficient frontier of our algorithms as
depicted in Fig. 1 (see Sect. 2.1). The parametric curves described in Theorem 6
provide, strictly speaking, an upper bound for the parametric curve of Fig. 1.
Next, we compute g : R �→ R, so that the parametric curves of Theorem 6 are
written in the form {(g(w), w)}w∈[w1,w2]. That would also imply that there is a
solution to 2Evac

w
F2F of cost at most g(w).

In that direction, we study each evacuation algorithm family A (p) with worst
case performance, say, v(p), and average case upper bound, say, u(p). For each
w ∈ [w1, w2] in the range of A (p), we set p = v−1(w) so that the average case
performance achieved becomes u(v−1(w)).

Recall that Wrs (Ai(α)) = v(α), so that v−1(w) = 1 + 2π − w, and hence for
algorithms Ai we can easily compute ui(v−1(w)), i = 1, 2. For A ′

2 we recall that
Avg (A ′

2(αβ , β)) is decreasing in β. Since v−1
2 does not admit a closed form, we

need to observe that 2.999 + π − β/2 ≤ v2(β) ≤ 3 + π − β/2 for all β ∈ [0, β0]
so that an upper bound for Avg (A ′

2(αβ , β)) admitting worst case performance
w can be computed by u′

2(12.2812 − 2w).
Now for each w ∈ [w1, w2] we need to specify which of the evacuation algo-

rithms we will invoke. Note that in Theorem 6 we chose the range of α in A1

to start from 1 so that as to guarantee that Wrs (A1(1)) ≥ w0. We note that
u′
2(12.2812 − 2w) = u1(1 + 2π − w) for w′ ≈ 6.12851, so algorithm A1 should be

invoked for w ∈ [w1, w
′] (and w′ is obtained for α′ := 1 + 2π − w′ ≈ 1.15468),

then A ′
2 for w ∈ [w′, 3 + π] (and w′ is obtained for β′ so that v2(β′) = w′,

where β′ ≈ 0.0241653), and A2 for w ∈ [3 + π,w2]. We conclude with the next
Theorem (for convenience, the values of all constants are summarized at the end
of Sect. 2.3).

Theorem 7. For every w ∈ [w1, w2], the optimal solution to 2Evac
w
F2F is at

most g(w), where

g(w) =

⎧
⎨

⎩

−0.00889w3 + 0.0248026w2 + 0.338241w + 3.88629, w ∈ [w1, w′] (A 1(α), α ∈ [α′, ᾱ])

−4245.38w3 + 77893.3w2 − 476397.w + 971235, w ∈ [w′, 3 + π] (A 2(αβ , β), β ∈ [0, β′])
0.093056w2 − 1.70215w + 11.6328, w ∈ [3 + π, w2] (A 2(α), α ∈ [0, π − 2])

7 Conclusion and Open Problems

Our work suggests a number of open problems directly aiming to understand
2Evac

w
F2F better. Apart from generally improving our upper bounds, we find

the following list of questions particularly interesting and challenging:

(a) Note that when w = Wrs (B1), we presented algorithm A1(α) which, for
certain value of α, has worst case performance equal to w and average case
performance less that Avg (B1). Is there an algorithm whose average case
performance is no more than Avg (B1), and worst case performance strictly
less than w?
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(b) Is it true that the best possible efficient frontier is given by a smooth tran-
sition between families of evacuation algorithms? Note that A2 naturally
extends B2, A ′

2 naturally extends A2, and that A1 naturally extends B1.
However, A1 and A ′

2 behave differently, even though their efficient frontier
agrees for certain values of the parameters.

(c) Avg (B2) = 1 + π, and none of our algorithms beat this performance. We
conjecture that this is the best possible average evacuation time, even in the
wireless model, and for any number of robots.
Apart from the list above, we believe that the direction of studying ran-
domized algorithms for evacuation-type problems, especially with respect
to average case/worst case trade-offs is of special interest, and should be
considered for existing as well as for new search problems in the area.

A Appendix

A.1 Observation 3

Proof (Observation 3). Note that it takes time π to search the entire circle, and
that the two trajectories are symmetric with respect to horizontal axis. There-
fore, we may assume that the instance cycle(x) satisfies x ∈ [0, π].

Clearly, for any such x, we have that S(x) = x. By Lemma 2, we have that
C(x) = 1+S(x)+2E(x) = 1+x+2δx. Numerical calculations (software assisted)
show that

Wrs (B1) = sup
x∈[0,π]

{C(x)} = sup
x∈[0,π]

{1 + x + 2δx} ≈ 5.73906,

Avg (B1) = Ex∈[0,π][C(x)] =
1
π

∫ π

x=0

(1 + x + 2δx) dx ≈ 5.1172.


�

A.2 Observation 4

Proof (Observation 4). It is easy to see that for all x ∈ [0, 2π) we have t̄(x) =
S(x) = x and E(x) = 0. Therefore C(x) = 1 + x, and hence

Wrs (B2) = sup
x∈[0,2π)

{C(x)} = 1 + 2π,

Avg (B2) = Ex∈[0,2π)[C(x)] =
∫ 2π

x=0

(1 + x) dx = 1 + π.


�
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A.3 Lemma4

Proof (Lemma 4). First it is easy to show that the worst case evacuation time is
induced either when R1 finds the exit while moving from cycle(0) to cycle(α), or
while R1,R2 are exploring the circle together (after having met). By Lemma 2,
the cost in the first case would be

max
0≤x≤α

{1 + x + 2δx} =
{

1 + α + 2δα, if α ≤ α0

Wrs (B1), otherwise

where the values of the piecewise function above follow from Lemma 3. In the
other case, the worst placement of exit is obtained using instances cycle(α + ε)
for arbitrary small values of ε > 0 in which case the evacuation cost becomes
1 + 2π − α.

Overall, is easy to see that 1 + α0 + 2δα0 ≤ 1 + 2π − α0 showing that the
dominant evacuation cost when α ≤ ᾱ is 1 + 2π − α. For α > ᾱ the evacuation
cost becomes equal to w1. 
�

A.4 Lemma5

Proof (Lemma 5). We distinguish three cases as to where the exit is. If x ∈ [0, α),
then the worst instance cycle(x) is when x = α−ε for arbitrarily small ε > 0, and
the cost is 1+α+2δα/2. In the second case x ∈ [α, 2α+δα/2) and it is not difficult
to see that the worst case induced cost in this case is not more than that of the
first case. Finally, in the third case x ∈ [2α+ δα/2, 2π), and the two robots move
together, so the total cost, in the worst case, is 1 + 2π − α, when x = 2π − ε for
arbitrarily small ε > 0. It is not difficult to see that the dominant case is actually
the third one, and in fact the two cases induce the same cost when π = α+δα/2.

By the definition of δα/2 we know that δα/2 = 2 sin
(

α+δα/2

2

)
= 2 sin (π/2) = 2.

Hence the costs become equal when α = π − 2. 
�

A.5 Lemma6

Proof (Lemma 6). Let w(β) = 1+π−β/2+2 cos (β/4). First we show that w(β)
is the worst case performance of A ′

2(αβ , β) for two specific placements of the
exit.

We proceed by describing evacuation cost C(x) assuming two arbitrary α, β
for two different instances cycle(x). Using Lemma 2, we see that

lim
ε→0+

C(α − ε) = 1 + lim
ε→0+

S(α − ε) + 2 lim
ε→0+

E(α − ε) = 1 + α + 2δα/2. (3)

Since the total search time is 2π − α − β, we also see that

lim
ε→0+

C(2π − ε) = 1 + 2π − α − β. (4)

Now we claim that (3), (4) are equal when α = αβ . Indeed, equating (3), (4)
gives

a + δα/2 = π − β/2. (5)
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But then, using (2), we see that

δα/2 = 2 sin
(

α + δα/2

2

)
= 2 sin

(
π − β/2

2

)
= 2 cos (β/4) . (6)

Substituting (6) into (5), we see that the value of α for which (3), (4) are equal
satisfies α = π − β/2 − 2 cos (β/4), as promised. Substituting this special value
of α = αβ either in (3) or in (4) induces evacuation cost w(β) = 1 + π − β/2 +
2 cos (β/4).

Next we show that as long as β is not too big, w(β) is indeed the worst
case evacuation cost. We consider the following cases x ∈ Ii, i = 1, . . . , 4 for
possible instances cycle(x); I1 := [0, α), I2 := [α, 2α + β + δ(α+β)/2), I3 := [2α +
β + δ(α+β)/2, 2α + 2β + δ(α+β)/2 + δβ/2), I4 := [2α + 2β + δ(α+β)/2 + δβ/2, 2π).
Clearly, (3), (4) demonstrate the worst case evacuation costs for instances in
I1, I4, respectively, and the cost in both cases, for α = αβ is equal to w(β).

If x ∈ I2 then C(x) = 1 + S(x) + 2E(x). It is easy to see that both S(x), E(x)
are monotone in I2, so the worst case evacuation in this case is

lim
ε→0+

C(2αβ + β + δ(αβ+β)/2 − ε) = 1 + αβ + β + δ(αβ+β)/2 + 2δβ/2. (7)

Denote δβ/2 satisfying (2) by δ′
β . Using (2) and the definition of αβ , we see that

δ(αβ+β)/2 = 2 sin
(

αβ + β + δ(αβ+β)/2

2

)
= 2 cos

(
cos (β/4) − β/4 − δ(αβ+β)/2

)

For simplicity, we denote δ(αβ+β)/2 that satisfies the equation above by δ′′
β . Then,

continuing from (7), the worst case evacuation cost when x ∈ I2 becomes 1+π+
β/2 − 2 cos (β/4) + δ′′

β + 2δ′
β , an expression that depends exclusively on β. The

latter cost is no more than w(β) if and only if 4 cos (β/4)−β −δ′′
β −2δ′

β ≥ 0, and
numerically we verify that this is satisfied as long as β ≤ β0 (see also Fig. 5).

0.02 0.04 0.06 0.08

0.5

1.0

1.5

2.0

2.5

Fig. 5. The behavior of expression 4 cos (β/4) − β − δ′′
β − 2δ′

β , for β = 0, . . . , 0.8.

Finally, it is easy to verify that δβ/2 and |I4| are increasing and decreasing
respectively for β ≤ β0 and that δβ0/2 = 0.977997 ≤ 1.01099 = |I4| (for β = β0).
As a result, the worst case evacuation cost of case x ∈ I3 cannot exceed that of
case x ∈ I4, and hence the lemma follows. 
�
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A.6 Theorem6

Proof (Theorem 6). The claims for the worst case performances of A1,A ′
2 ,A2

follow directly from Lemmata 4, 6 and 5, respectively. Next we argue that as
the parameters vary in their specified range, we obtain the entire spectrum of
w ∈ [w1, w2], and this for unique values of the parameters. For this, we will rely
on that for all evacuation algorithm families, the worst case cost is monotone in
the parameters.

First, we argue about A1. We observe that by the definition of ᾱ,
Wrs (A1(ᾱ)) = w1, and Wrs (A1(1)) = 1 + 2π − 1 = 2π. Together with the
fact that v(α) is strictly decreasing, we see that Wrs (A1(α)) is 1-1 and onto to
[w1, 2π] as α ranges in [1, ᾱ].

Second, we study A ′
2 whose worst case cost v2(β) is strictly decreasing in

β. Moreover, by definition of β0, we have Wrs (A2(αβ0 , β0)) = w0. Then we
note that for β = 0, A2(αβ , β) coincides with A2(π − 2), and in particular the
induced worst case cost becomes 3 + π. Therefore Wrs (A ′

2(αβ , β)) is 1-1 and
onto to [w0, 3 + π] as β ranges in [0, β0].

Third, we study A2, for which we know that Wrs (A2(π − 2)) = 3+π. Again,
the worst case cost is monotone in α and A2(0) coincides with benchmark algo-
rithm B2, that is Wrs (A2(0)) = w2. Hence, Wrs (A2(α)) is 1-1 and onto to
[3 + π,w2] as α ranges in [0, π − 2].

Finally, we argue that

Avg (A1(α)) ≤ u1(α),∀α ∈ [1, ᾱ]
Avg (A ′

2(αβ , β)) ≤ u′
2(β),∀β ∈ [0, β0]

Avg (A2(α)) ≤ u2(α),∀α ∈ [0, π − 2]

For this, we numerically compute Avg (A1(α)) ,Avg (A ′
2(αβ , β)) ,Avg (A2(α))

for various values of parameters α, β, and we heuristically choose u1, u
′
2, u2 so as

to upper bound the average case performance of A1,A ′
2 ,A2, effectively verifying

our claim numerically. For each evacuation algorithm, we utilize Corollary 1,
which together with the analytic description of our evacuation algorithms (see
Definitions 4, 6, and 5) allow us to compute their average case performance using
computer-assisted calculations. Our numerical calculations are depicted in Fig. 6.
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Fig. 6. On the right u1(α) − Avg (A1(α)), for α′ ≤ α ≤ ᾱ. In the middle, u′
2(β) −

Avg (A ′
2 (αβ , β)), for 0 ≤ β ≤ β0. On the right u2(α)−Avg (A2(α)), for 0 ≤ α ≤ π − 2.


�
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iano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R.
(eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46078-8 14

14. Chung, T.H., Hollinger, G.A., Isler, V.: Search and pursuit-evasion in mobile
robotics. Auton. Rob. 31(4), 299–316 (2011)

15. Czyzowicz, J., Dobrev, S., Georgiou, K., Kranakis, E., MacQuarrie, F.: Evacuating
two robots from multiple unknown exits in a circle. Theoret. Comput. Sci. 709,
20–30 (2018)

16. Czyzowicz, J., G ↪asieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evac-
uating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS,
vol. 8784, pp. 122–136. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45174-8 9

17. Czyzowicz, J., et al.: Evacuation from a disc in the presence of a faulty robot.
In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS, vol. 10641, pp. 158–173.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72050-0 10

18. Czyzowicz, J., et al.: God save the queen. In: 9th International Conference on Fun
with Algorithms (FUN 2018) (2018)

19. Czyzowicz, J., et al.: Priority evacuation from a disk using mobile robots. In:
Lotker, Z., Patt-Shamir, B. (eds.) SIROCCO 2018. LNCS, vol. 11085, pp. 392–
407. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01325-7 32

20. Czyzowicz, J., et al.: Search on a line by byzantine robots. In: 27th International
Symposium on Algorithms and Computation, ISAAC 2016, Sydney, Australia, 12–
14 December 2016, pp. 27:1–27:12 (2016)

https://doi.org/10.1007/978-1-4614-6825-7_14
https://doi.org/10.1007/978-3-319-57586-5_10
https://doi.org/10.1007/978-3-662-46078-8_14
https://doi.org/10.1007/978-3-662-45174-8_9
https://doi.org/10.1007/978-3-662-45174-8_9
https://doi.org/10.1007/978-3-319-72050-0_10
https://doi.org/10.1007/978-3-030-01325-7_32


82 H. Chuangpishit et al.

21. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhu-
ber, B.: Evacuating robots from a disk using face-to-face communication (extended
abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp.
140–152. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18173-8 10

22. Deng, X., Kameda, T., Papadimitriou, C.: How to learn an unknown environment.
In: FOCS, pp. 298–303. IEEE (1991)

23. Dobbie, J.: A survey of search theory. Oper. Res. 16(3), 525–537 (1968)
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