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Abstract. In this paper, we define a new problem called the Maximum
Connectivity Improvement (MCI) problem: given a directed graph G =
(V, E), a weight function w : V → N≥0, a profit function p : V → N≥0,
and an integer B, find a set S of at most B edges not in E that maximises
f(S) =

∑
v∈V wv · p(R(v, S)), where p(R(v, S)) is the sum of the profits

of the nodes reachable from node v when the edges in S are added to
G. We first show that we can focus on Directed Acyclic Graphs (DAG)
without loss of generality. We prove that the MCI problem on DAG is
NP-Hard to approximate to within a factor greater than 1 − 1/e even
if we restrict to graphs with a single source or a single sink, and MCI
remains NP-Complete if we further restrict to unitary weights. We devise
a polynomial time algorithm based on dynamic programming to solve the
MCI problem on trees with a single source. We propose a polynomial time
greedy algorithm that guarantees (1−1/e)-approximation ratio on DAGs
with a single source or a single sink.

Keywords: Graph augmentation · Approximation algorithms ·
Greedy algorithms · Submodularity · DAG · Trees ·
Dynamic programming

1 Introduction

In this paper, we consider the problem of improving the reachability of a graph.
We approach the problem from a graph augmentation perspective, in which a set
of non-existing edges are added to the graph to increase the overall number of
reachable nodes. There are several recent possible application scenarios for this
problem. For example, suggesting friends in a social network with the objective
of increasing the spreading of information [2,5] or performing faster network
simulations by reducing the convergence time of random walk processes [13,14].
Graph augmentation problems are also well known in traditional graph theory.
In [7], Tarjan et al. consider the problems of adding a minimum (or minimum-
weight) set of edges to a graph so as to satisfy a given connectivity condition,
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such as to make a directed graph strongly connected or to make an undirected
graph bridge-connected or biconnected. They have already proved that some
variants of augmentation problems are NP -Complete.

More recently, several optimization problems related to graph augmentation
have been addressed. Demaine and Zadimoghaddam [6] study the problem of
minimising the eccentricity of a graph by adding a limited number of new edges.
A 4-approximation algorithm is introduced and it is proven that the problem
is NP -hard to be approximated within a factor smaller than 3/2. The problem
of minimising the average all-pairs shortest path distance – characteristic path
length – of the whole graph has been studied by Papagelis in [14]. The author
considers the problem of adding a small set of edges to minimise the character-
istic path length, and proves that the problem is NP -Hard. He proposes a path
screening technique to select the edges to be added. The problem of adding a
small set of links in order to maximise the centrality of a given node in a network
has been addressed for different centrality measures: page-rank [1,13], eccentric-
ity [6], average distance [11], harmonic and betweenness centrality [3,4], some
measures related to the number of paths passing through a given node [10].

In this paper, we study the problem of adding at most B edges to a directed
graph in order to maximise the overall weighted number of reachable nodes,
which we call the Maximum Connectivity Improvement (MCI) problem. We
first show that we can focus on Directed Acyclic Graphs (DAG) without loss of
generality (Sect. 2). Then, we focus on the complexity of the problem (Sect. 3)
and we prove that the MCI problem is NP -Hard to approximate to within a
factor greater than 1− 1

e . This result holds even if the DAG has a single source or
a single sink. Moreover, the problem remains NP -complete if we further restrict
to the unweighted case. In Sect. 4, we give a dynamic programming algorithm
for the case in which the graph is a rooted tree, where the root is the only source
node. In Sect. 5, we present a greedy algorithm which guarantees a (1 − 1/e)-
approximation factor for the case in which the DAG has a single source or a
single sink. We end with some concluding remarks in Sect. 6.

2 Preliminaries

Let G = (V,E) be a directed graph. Each node v ∈ V is associated with
a weight wv ∈ N≥0 and a profit pv ∈ N≥0. Given a node v ∈ V , we
denote by R(v,G) the set of nodes that are reachable from v in G, that
is R(v,G) = {u ∈ V : ∃ path from v to u in G}. Moreover, we denote by
p(R(v,G)) =

∑
u∈R(v,G) pu the sum of the profits of the nodes reachable from

v in G. In the rest of the paper, we also use the form p(R(v,G) \ R(u,G)) =∑
u∈R(v,G)\R(u,G) pu to denote the sum of the profits of the nodes in G that are

reachable from v, but not from u. Note that, in the case R(u,G) ⊆ R(v,G), it
holds p(R(v,G)\R(u,G)) = p(R(v,G))−p(R(u,G)). Given a set S of edges not
in E, we denote by G(S) the graph augmented by adding the edges in S to G,
i.e., G(S) = (V,E ∪ S). Let R(v,G(S)) and p(R(v,G(S))) be, respectively, the
set of nodes that are reachable from v in G(S) and the sum of the profits of the
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nodes in R(v,G(S)). Note that, augmenting G the connectivity cannot be worse,
and thus: R(u,G) ⊆ R(u,G(S)). Let f(G) =

∑
v∈V wvp(R(v,G)) be a weighted

measure of the connectivity of G. When weights and profits are unitary, f(G)
represents the overall number of connected pairs in G.

In this paper, we aim to augment G by adding a set S of edges of at most
size B, i.e., |S| ≤ B and B ∈ N≥0, that maximises the weighted connectivity of
f(G(S)). We call this problem the Maximum Connectivity Improvement (MCI)
problem because maximising f(G(S)) is the same as to maximise f(G(S))−f(G).

From now on, for simplicity, we omit from the notations the original graph G.
So, we simply use R(v) and R(v, S) to denote R(v,G) and R(v,G(S)), respec-
tively. Similarly, we simply denote with f and f(S) the value of the weighted
connectivity in G and in G(S), respectively.

At first, we will show how to transform any directed graph G with cycles
into a Directed Acyclic Graph (DAG) G′ = (V ′, E′) and how to transform any
solution for G′ into a feasible solution for G.

Graph G′ = (V ′, E′) has as many nodes as the number of strongly con-
nected components of G. Specifically, G′ selects one representative node for each
strongly connected component of G and G′ adds one directed edge between two
nodes u′ and v′ of G′ if there is a directed edge in G connecting any vertex of the
strongly connected component represented by u′ with any vertex of the strongly
connected component represented by v′. Graph G′ is called condensation of G
and can be computed in O(|V | + |E|) time by using Tarjan’s algorithm which
consists in performing a DFS visit [16].

The weight and the profit of a node v′ in G′ is given by the sum of the weight
and profit of the nodes of G that belong to the strongly connected component
Cv′ that is represented by v′, i.e., wv′ =

∑
v∈Cv′ wv and pv′ =

∑
v∈Cv′ pv.

Since the condensation preserves the connectivity of G, the following lemma
can be proved:

Lemma 1. Given a graph G and its condensation G′, it yields: f(G′) = f(G).

Proof. See Appendix.
��

Given a solution S′ for the MCI problem in G′, we can build a solution S
with the same value for the MCI problem in G as follows: for each edge (u′, v′)
in S′, we add an edge (u, v) in S, where u and v are two arbitrary nodes in the
connected component corresponding to u′ and v′, respectively.

This derives from the fact that applying the condensation algorithm to
G′ ∪S′ or to G∪S we obtain the same condensed graph, say G′′. From Lemma 1,
we can conclude that f(G′ ∪ S′) = f(G′′) = f(G ∪ S).

Observe that if we add an edge e within the same strongly connected compo-
nent in G, we do not add any edge to G′. Since the condensation G′′ of (G∪{e})
is the same as G′, we have f(G∪{e}) = f(G′) = f(G). As a consequence, in the
remainder of the paper, we will assume that the graph is a DAG.
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Given a DAG, a node with no incoming edges is called a source, while a node
with no outgoing edges is called a sink. The next lemma allows us to focus on
solutions that contain only edges connecting sink nodes to source nodes.

Lemma 2. Let S be a solution to the MCI problem, then there exists a solution
S′ such that |S| = |S′|, f(S) ≤ f(S′), and all edges in S′ connect sink nodes to
source nodes.

Proof. We show how to modify any solution S in order to find a solution S′ with
properties of the statement. To obtain S′, we start from S and we repeatedly
apply the following modifications to each edge (u, v) of S such that u is not a
sink or v is not a source: (1) If u is not a sink then there exists a path from u to
some sink u′ and we swap edge (u, v) with edge (u′, v). The objective function
does not decrease and increases at least by the sum of the weights on a path
from u to u′. Namely, after adding the edge (u′, v), any node z on the path from
u to u′ will now reach v passing through u′. Note that the objective function will
not decrease and, instead, may increase due to the fact that the nodes z now are
able to reach the node v. (2) If v is not a source then there exists a path from a
source v′ to v and we swap edge (u, v) with edge (u, v′). The objective function
does not decrease and increases at least by the number of nodes in a path from
v′ to v multiplied by wu. Note that in both cases the gain of a node on the path
we are extending can be zero if it was already able to reach the source/sink from
another edge in the solution. ��

3 NP-Hardness and Hardness of Approximation

In this section, we first show that the MCI problem is NP -Complete, even in
the case in which all the weights and profits are unitary and the graph contains
a single sink node or a single source node. Then, we show that it is NP -hard to
approximate MCI to within a factor greater than 1 − 1

e . This last result holds
also in the case of graphs with a single sink node or a single source node, but
not in the case of unitary weights.

Theorem 1. MCI is NP-Complete, even in the case in which all the weights
and profits are unitary and the graph contains a single sink node or a single
source node.

Proof. We consider the decision version of MCI in which all the weights and
profits are unitary (i.e., wv = pv = 1): Given a directed graph G = (V,E)
and two integers M,B ∈ N≥0, the goal is to find a set of additional edges
S ⊆ (V × V ) \ E such that f(S) ≥ M and |S| = B. The problem is in NP since
it can be checked in polynomial time if a set of nodes S is such that f(S) ≥ M
and |S| = B. We reduce from the Set Cover (SC) problem which is known to
be NP -Complete [9]. Consider an instance of the SC problem ISC = (X,F, k)
defined by a collection of subsets F = {S1, . . . , Sm} for a ground set of items
X = {x1, . . . , xn}. The problem is to decide whether there exist k subsets whose
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union is equal to X. We define a corresponding instance IMCI = (G,M,B)
of MCI as follows: (1) B = k; (2) G = (V,E), where V = {vxj

| xj ∈ X} ∪
{vSi

| Si ∈ F} ∪ {v} and E = {(vSi
, vxj

) | xj ∈ Si} ∪ {(vxj
, v) | xj ∈ X}; (3)

M = (n + 1 + B)2 + (m − B)(n + B + 2).
See Fig. 1 (left, top) for an example. Note that G is a DAG. By Lemma 2,

we can assume that any solution S of MCI contains only edges (v, vSi
) for some

Si ∈ F . In fact, v is the only sink node and vSi
are the only source nodes.

Assume that there exists a set cover F ′, then we define a solution S to the MCI
instance as S = {(v, vSi

) | Si ∈ F ′}. It is easy to show that f(S) = M and
|S| = k = B. Indeed, all the nodes in G can reach: node v, all the nodes vxj

(since F ′ is a set cover), and all the nodes vSi
such that Si ∈ F ′. Moreover,

each node vSi
such that Si 
∈ F ′ can reach itself. Therefore there are n + B + 1

nodes that reach n + B + 1 nodes and m − B that reach n + B + 2 nodes,
that is f(S) = M . On the other hand, assume that there exists a solution for
MCI then S is in the form {(v, vSi

) | Si ∈ F} and we define a solution for
the set cover as F ′ = {Si | (v, vSi

) ∈ S}. We show that F ′ is a set cover. By
contradiction, if we assume that F ′ is not a set cover and it cover only n′ < n
elements of X then f(S) = (n′ + B + 1)2 + (n − n′ + m − B)(n′ + B + 2) < M .
Note that in the above reduction, the graph G has a single sink node. We can
prove the NP -hardness of the case of graphs with a single source node by using
the same arguments on an instance of MCI made of the inverse graph of G,
M = (B + n + 1)(n + m + 1) + m − B, and B = k (see Fig. 1 (left, bottom) for
an example). ��

v

F X

v

Y...

...

...

...

F X

v

F X

v

F X
Y

Fig. 1. (left) Example of reduction from SC to MCI used in Theorem 1. (right) Example
of reduction from MC to MCI used in Theorem 2. (top) Single sink. (Bottom) single
source.

Theorem 2. MCI is NP-hard to approximate to within a factor 1 − 1
e + ε, for

any ε > 0, even if graph contains a single sink node or a single source node.
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Proof. We give two approximation factor preserving reductions from the Max-
imum coverage problem (MC), which is known to be NP -hard to approximate
to within a factor greater than 1 − 1

e [8].
The MC problem is defined as follows: given a ground set of items X =

{x1, . . . , xn}, a collection of subsets F = {S1, . . . , Sm} of subsets of X, and an
integer k, find k sets in F that maximise the cardinality of their union.

We first focus on the single sink problem. Given an instance of the MC
problem IMC = (X,F, k) we define an instance of the (maximisation) MCI
problem IMCI = (G, k) similar to the one used in Theorem 1, but where we
modify the weights and add Y paths of one node between each vxj

and v, where
Y is an arbitrarily high number (polynomial in n + m).

In detail IMCI is defined as follows: (1) B = k; (2) G = (V,E), where
V = {vxj

| xj ∈ X}∪{vSi
| Si ∈ F}∪{vl

xj
| xj ∈ X and l = 1, . . . , Y }∪{v} and

E = {(vSi
, vxj

) | xj ∈ Si} ∪ {(vxj
, vl

xj
) | xj ∈ X, l = 1, . . . , Y } ∪ {(vl

xj
, v) | xj ∈

X, l = 1, . . . , Y }; (3) w(v) = 1 and w(u) = 0, for each u ∈ V \ {v}; (4) pv = 1
for any node v ∈ V .

See Fig. 1 (right, top) for an example. We first show that there exists a
solution F ′ ⊆ F to IMC that covers n′ elements of X if and only if there exists
a solution S to IMCI such that f(S) = n′(Y + 1) + B + 1. Moreover, we can
compute F ′ from S and vice versa in polynomial time. Indeed, given F ′, we
define S as S = {(v, vSi

) | Si ∈ F ′}. We can verify that f(S) = n′(Y +1)+B +1
and |S| = k = B. Indeed, only node v as a weight different from 0, and then
f(S) = R(v, S) = n′(Y + 1) + B + 1, since v can reach the n′(Y + 1) nodes vxj

corresponding to the items xj covered by F ′, the B nodes vSi
it is connected

to, and itself. On the other hand, given a solution S to IMCI , by Lemma 2 we
can assume that it has only edges from v to nodes vSi

. Let n′ be the number of
nodes vxj

in R(v, S), then f(S) = n′(Y +1)+B +1 and F ′ = {Si | (v, vSi
) ∈ S}

covers n′ elements in X.
If OPT (IMC) and OPT (IMCI) denote the optimum value for IMC and IMCI ,

respectively, then OPT (IMCI) ≥ OPT (IMC)(Y + 1) + B + 1 ≥ Y · OPT (IMC).
Moreover, given the above definition of S and F ′, then for any ε′ > 0 there exists
a value of Y = O(poly(n + m)) such that f(S) ≤ (n′ + ε′)Y .

Let us assume that there exists a polynomial-time algorithm that guarantees
an α approximation for IMCI , then we can compute a solution S such that
f(S) ≥ αOPT (IMCI). It follows that:

αY · OPT (IMC) ≤ αOPT (IMCI) ≤ f(S) ≤ (n′ + ε′)Y,

Where n′ is the number of nodes covered by the solution F ′ to MC obtained
from S. Therefore we obtained an algorithm that approximates the MC problem
with a factor α (up to lower order terms). Since it is NP -hard to approximate
to within a factor greater than 1 − 1

e [8], then the statement follows.
Let us now focus on the single source case. Given IMC , we define IMCI =

(G,B) as follows: (1) B = k; (2) G = (V,E), where V = {vxj
| xj ∈ X} ∪

{vSi
| Si ∈ F} ∪ {v} ∪ {vl | l = 1, . . . Y } and E = {(vxj

, vSi
) | xj ∈ Si} ∪

{(v, vxj
) | xj ∈ X} ∪ {(v, vl) | l = 1, . . . Y }; (3) w(vxj

) = 1, for each xj ∈ X and
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w(u) = 0, for each u ∈ V \{vxj
| xj ∈ X}; (4) pv = 1 for any node v ∈ V . Where

Y is an arbitrarily high polynomial value in m + n. See Fig. 1 (right, bottom)
for an example. We use similar arguments as above. In detail, there exists a
solution F ′ ⊆ F to IMC that covers n′ elements of X if and only if there exists
a solution S to IMCI such that f(S) = n′(n + m − m′ + Y ) + n(m′ + 1), where
m′ is the number of sets in F that do not cover any of the n′ elements covered
by F ′. Moreover, we can compute F ′ from S and vice versa in polynomial time.
Given F ′, we define S as S = {(v, vSi

) | Si ∈ F ′} and we can verify that f(S) =∑
xj∈X p(R(vxj

, S)) =
∑

xj∈X |R(vxj
, S)| = n′(n+m+Y +1)+(n−n′)(m′+1) =

n′(n + m − m′ + Y ) + n(m′ + 1) and |S| = B. Given S, if n′ is the number of
nodes vxj

such that v ∈ R(vxj
, S), then f(S) = n′(n + m − m′ + Y ) + n(m′ + 1)

and F ′ = {Si | (vSi,v) ∈ S} covers n′ elements in X.
As above, we can show that OPT (IMCI) ≥ Y · OPT (IMC) and that there

exists a value of Y = O(poly(n+m)) such that f(S) ≤ (n′ +ε′)Y , for any ε′ > 0.
Then, the statement follows by using the same arguments as above. ��

4 Polynomial-Time Algorithm for Trees

In this section, we focus on the case of directed weighted rooted trees in which
the root of the tree is the only source node and all the edges are directed towards
the leaves. We give a polynomial time algorithm based on dynamic programming
that requires O(|V |B2) time and O(|V |B) space. By Lemma 2, we can focus on
edges that connect leaves to the root. We first assume that the tree is binary
and give an algorithm to solve this special case, then we show how to transform
any tree into a binary tree in such a way that each solution for the transformed
instance has the same value as the corresponding solution in the original instance.
The algorithm for binary trees requires O(|V |B2) time and O(|V |B) space while
the transformation requires O(|V |) time and O(|V |) space.

4.1 Binary Trees

We are given a directed weighted binary tree T = (V,E), where all the edges
are directed towards the leaves, the root r ∈ V is the only source node, and
w : V → N≥0, p : V → N≥0. Let us denote by ψ(v) (left child) and δ(v) (right
child) the children of node v ∈ T , moreover, we denote as T (v) the sub-tree
rooted at v. In the following, we introduce our dynamic-programming algorithm
to solve the MCI problem starting from the leaves of T . Given a node v, let Sv

be a solution that connects some leaves of T (v) to r. The gain of solution Sv in
T (v) is the increase in weighted reachability of all the nodes in T (v), that is the
gain of Sv in T (v) is equal to

∑
u∈T (v) wu(p(T (u, Sv))−p(T (u))). For each node

v and for each budget b = 0, 1, . . . , B, the algorithm computes a solution that
connects b leaves of T (v) to r and maximises the gain in T (v). We define g(v, b)
as the maximum gain in T (v) achievable by adding at most b edges from b leaves
of T (v) to node r. Note that g(v, 1) ≤ g(v, 2) ≤ . . . ≤ g(v, b). We now show
how to compute g(v, b) for each node v and for each budget b = 0, 1, . . . , B by
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Algorithm 1. Dynamic programming algorithm for MCI
Input: T = (V, E), B, wv, pv ∀v ∈ V
Output: Set S of edges

1: for each node v do
2: g(v, 0) := 0;
3: S(v,b) := ∅;

4: for each leaf v and budget b, with {1, . . . , B} do
5: g(v, b) := wv · (p(T (r)) − p(T (v)));
6: S(v,b) := {(v, r)};

7: for each node v in post-ordering do
8: for b ∈ 1, . . . , B do
9: g(v, b) := max

bl,br∈{0,...,b},
bl+br=b

{g(ψ(v), bl) + g(δ(v), br)} + wv · (p(T (r)) − p(T (v)));

� Let bl and br the budgets that maximise Line 9,
10: S(v,b) := S(ψ(v),bl) ∪ S(δ(v),br);

11: S := S(r,B);

using dynamic programming. For each leaf v ∈ T and for each b = 1, 2, . . . , B,
g(v, b) = wv · (p(T (r)) − p(T (v))), that is, the sum of profits p of the new
nodes that v can reach thanks to the new edge (v, r). Moreover g(v, 0) = 0 for
each v ∈ V . Then, the algorithm visits T in post order. For each internal node
v we compute g(v, b) by using the solutions of its sub-trees, i.e., T (ψ(v)) and
T (δ(v)). Let us assume that we have computed g(ψ(v), b) and g(δ(v), b), for each
b = 0, 1, . . . , B. Note that if a solution adds an edge between any leaf of T (v) and
r, then the gain of node v is wv(p(T (r))−p(T (v))) since v will now reach all the
nodes in T . This gain is independent of the number of edges that are added from
the leaves of T (v) to r. In fact, given g(ψ(v), bl) be the maximum gain for T (ψ(v))
and budget bl ∈ {1, 2, . . . , B}, then the gain in T (v) of a solution that connects bl
leaves of T (ψ(v)) to r is equal to g(ψ(v), bl)+wv · (p(T (r))− p(T (v))). Similarly
the gain in T (v) of the solution that connects, for some br ∈ {1, 2, . . . , B}, br
leaves of T (δ(v)) to r is equal to g(δ(v), bl) + wv · p(T (r)) − p(T (v)).

Then, to compute g(v, b) once we have decided how many edges to add in
ψ(v) and how many edges in δ(v), we increase the reachability function of the
same quantity, i.e., wv · (p(T (r)) − p(T (v))).

Hence, g(v, b) is given by the combination of bl and br such that bl + br = b
that maximises the sum g(ψ(v), bl) + g(δ(v), br) + wv · (p(T (r)) − p(T (v))).

Precisely:

g(v, b) = max
bl,br∈{0,...,b}

bl+br=b

{g(ψ(v), bl) + g(δ(v), br)} + wv · (p(T (r)) − p(T (v))). (1)

The optimal value of the problem f(S) = g(r,B) + f(T ), where f(T ) is the
value of the objective function on T (i.e., when no edges have been added). The
pseudocode of the algorithm is reported in Algorithm1.
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Theorem 3. Algorithm1 finds an optimal solution for MCI if the graph is a
binary tree.

Proof. Let us assume by contradiction that v and b are, respectively, the first
node and the first budget for which Algorithm1 computes a non-maximum gain
at line 9 of Algorithm 1, that is g(v, b) < g∗(v, b), where g∗(v, b) is the maximum
gain for tree T (v) and budget b. Let S∗ be an optimal solution that achieves
g∗(v, b) and let S∗

l , S∗
r be the edges in S∗ that starts from leaves in T (ψ(v)) and

T (δ(v)), respectively. Let b∗
l = |S∗

l | and b∗
r = |S∗

r |. Then, the gain of the optimal
solution S∗ is: g∗(v, b) = g(ψ(v), b∗

l ) + g(δ(v), b∗
r) + wv · (p(T (r)) − p(T (v))).

Since by hypothesis g(v, b) is the first time for which Algorithm 1 does not find
the maximum gain and since the cost (p(T (r))−p(T (v)))·wv does not depend on
the edges selected in the left and right sub-trees of v, this implies that at line 9
Algorithm 1 must select g(v, b) = g(ψ(v), b∗

l )+ g(δ(v), b∗
r)+ (p(T (r))− p(T (v))) ·

wv = g∗(v, b). Thus contradicting g(v, b) < g∗(v, b). ��
For each node v, the algorithm computes B +1 values. From Eq. 1, it follows

that Algorithm 1 takes O(|V |B2) time. Note that B ∈ O(|V |) because we limit
the new edges to be of the form leaf-root.

4.2 General Trees

We can transform a generic rooted tree T = (V,E) into an equivalent binary
tree T ′ = (V ∪U,E′), following a tree transformation proposed in [15] by adding
at most |V | − 3 dummy node.

The transformation requires O(|V |) time and space (see Appendix 1.C for
a detailed description of the algorithm). The nodes in T ′ will have w′

v = wv

and p′
v = pv if v ∈ V and w′

v = p′
v = 0 for any dummy node. Note that

p(R(v, T ′)) = p(R(v, T )) for any node v in T due to the fact that the added
dummy nodes have p′

v = 0, moreover, dummy nodes do not increase the objective
function because they have the weight set to zero, i.e., any dummy node v will
have w′

v · p(R(v, T ′)) = 0.
For each node v ∈ T ′ and solution S to MCI in T ′, let f ′(S) =

∑
v∈V wvp

(T (v, S)). It is easy to see that by applying Algorithm 1 to T ′ we will obtain
an optimal solution with respect to f ′. Moreover, for each solution S to T ′,
f ′(S) = f(S). Note that a solution S for T ′ that connects leaves of T ′ to its root
are feasible solution also for T since T and T ′ have the same root and leaves.

5 Polynomial-Time Algorithm for DAG with a Single
Source or a Single Sink

In this section, we focus on the case of weighted DAG in which we have a single
source node or a single sink node. We first describe our greedy algorithm to
approximate MCI on DAGs with a single source. Then, we will show how to
modify the algorithm for the case of DAGs with a single sink.
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In the case of single source, by Lemma 2, we restrict our choices to the edges
that connect sinks nodes to the source. Recall S is the set of edges added to G.
With a little abuse of notation, we also use S to denote the set of sinks from
which the edges in S start. The Greedy algorithm for MCI on DAGs with a
single source (see Algorithm 2), starts from the empty solution, i.e., S = ∅ and
repeatedly adds to S the edge e′ that maximises the function f(S ∪ {e′}). The
edge e′ is chosen from the set E′ of edges (u, s), where u is a sink in V , not
already inserted in S, and s is the single source in V (see lines 2 and 4).

To implement the Greedy Algorithm with single source, some preprocessing
is required. First, for each node v ∈ V , we perform a DFS on G to compute
R(v) and p(R(v)). We store p(R(v, S)) in a vector ρ of size |V |. Every time a
new edge is added to the solution S, each entry of ρ is updated in constant
time because for each node v, p(R(v, S)) is either equal to p(R(v)) or p(R(s)),
as we explain below. To compute the gain of adding the edge e = (u, s), we
need to find all the nodes RT (u, S) that reach u in G(S). RT (u, S) is computed
by performing a DFS starting from u on the reverse graph GT (S) of G(S).
Note that the reverse graph GT of G is initially computed in a preprocessing
phase in O(|V | + |E|) time, and after every new edge is added to S, GT (S)
is updated in constant time. Finally, to compute f(S ∪ {e}) for e = (u, s),
observe that f(S ∪ {e}) = f(S) +

∑
z∈RT (u,S) wz(p(R(s)) − p(R(z, S))). After

selecting the edge e′ = (u, s) that maximise f(S ∪{e′}), we update S and we set
p(R(z, S)) = p(R(s)) for each node z ∈ RT (u, S) in vector ρ because z reaches
s traversing the edge e′ = (u, s) and inherits the reachability of R(s).

The Greedy algorithm with a single source requires O(B|V ||E|) time. Namely,
for each edge e = (u, s) ∈ E′, to compute f(S ∪{e}) it is required O(|E|) time to
compute RT (u, S) on GT , and O(|V |) time to compute

∑
z∈RT (u,S) wz(p(R(s))−

p(R(z, S))). Since there are O(|V |) sinks, the computation of the maximum value
at line 4 costs O(|V ||E|) time. Selected e′, O(|V |) time is spent to update ρ. Since
at most B edges are added, the Greedy algorithm requires O(B|V ||E|).

In the case of a single sink, we use the same Greedy Algorithm 2 only substi-
tuting E′ in Line 2 with the set of edges (d, v), where v is a source in V and d
is the only sink in V (see line 2) by Lemma 2. However, the implementation in
the case of DAGs with a single sink is slightly different. In fact, RT (d, S) = V
because (by definition) all the nodes reach the single sink, but at the same time,
the reachability of a node v does not assume only the values V or R(v). As a
consequence to compute f(S ∪ {(d, v)}) it is not required to perform any DFS
visit of GT , but the vicinity of any other node depends on the set of added edges
and has to be recomputed by performing a DFS on the augmented graph. Hence,
f(S ∪ {(d, v)}) = f(S) +

∑
z∈V wz · p(R(v, S) \ R(d, S)). Since for computing

f(S ∪ {(d, v)}), we must compute |V | DFSs, the overall cost of the Greedy algo-
rithm with a single sink increases by a factor of |V | with respect to the case of
DAG with a single source, thus becoming O(B|V |2|E|).

Observe that Algorithm 2 with a single source can also be used on trees in
place of Algorithm 1. However, the complexity of the Greedy algorithm will be
O(|V |2B) that is greater than the complexity of Algorithm1, which is O(|V |B2).
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Algorithm 2. Greedy Algorithm for single source
Input: DAG G = (V, E), B, wv, pv ∀v ∈ V
Output: set S of edges

1: S := ∅;
2: E′ := {e = (u, s) | u is sink and s is the only source};
3: while |S| ≤ B do
4: e′ := arg max

e∈E′\S

f(S ∪ {e});

5: S := S ∪ {e′};

To give a lower bound on the approximation ratio of Algorithm2, we show that
the objective function f(S) is monotone and submodular1. This allows us to
apply the result by Nemhauser et al. [12]:

Given a finite set N , an integer k′, and a real-valued function z defined on
the set of subsets of N , the problem of finding a set S ⊆ N such that |S| ≤ k′

and z(S) is maximum can be 1 − 1
e approximated by starting with the empty

set, and repeatedly adding the element that gives the maximal marginal gain, if
z is monotone and submodular. We recall that f(S) =

∑
v∈V wvp(R(v, S)) and

wv, pv ∈ N≥0, therefore in order to prove that f(S) is monotone increasing and
submodular, we show that p(R(v, S)) is monotone increasing and submodular,
for each v ∈ V and solution S, because a non-negative linear combination of a
monotone submodular functions is also monotone and submodular.

Theorem 4. Function f(S) is monotone and submodular with respect to any
feasible solution for MCI on DAGs with a single source.

Proof. To prove that f(S) is monotone, we prove that for each v ∈ V , S ⊆ E′,
and e = (t′, s) ∈ E′ \ S, we have p(R(v, S ∪ {e})) ≥ p(R(v, S)). We first notice
that for each v ∈ V and solution S, if there exists an edge (t, s) ∈ S such that
t ∈ R(v), then p(R(v, S)) = p(R(s)); otherwise, p(R(v, S)) = p(R(v)). The same
holds for p(R(v, S ∪ {e})).

We analyse the following cases recalling that e = (t′, s):

– If there exists an edge (t, s) ∈ S such that t ∈ R(v), then, p(R(v, S ∪ {e})) =
p(R(v, S)) = p(R(s));

– Otherwise,
• If t′ ∈ R(v), then, p(R(v, S ∪ {e})) = p(R(v)) and p(R(v, S)) = p(R(v))
• If t′ 
∈ R(v), then, p(R(v, S ∪ {e})) = p(R(v, S)) = p(R(v))

It follows that p(R(v, S ∪ {e})) ≥ p(R(v, S)).
To prove that f(S) is submodular, we prove that for any node v ∈ V , any

two solutions S, T of MCI such that S ⊆ T , and any edge e = (t′, s) 
∈ T , where
t′ is a sink node, it holds:

p(R(v, S ∪ {e})) − p(R(v, S)) ≥ p(R(v, T ∪ {e})) − p(R(v, T )). (2)
1 For a ground set N , a function z : 2N → R is submodular if for any pair of sets

S ⊆ T ⊆ N and for any element e ∈ N \ T , z(S ∪ {e}) − z(S) ≥ z(T ∪ {e}) − z(T ).
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We analyse the following cases:

– If there exists an edge (t, s) ∈ S such that t ∈ R(v), then, p(R(v, S ∪ {e})) =
p(R(v, S)) = p(R(v, T ∪ {e})) = p(R(v, T )) = p(R(s));

– Otherwise,
• If there exists (t′′, s) ∈ T such that t′′ ∈ R(v), then p(R(v, S ∪ {e})) −

p(R(v, S)) ≥ 0 = p(R(v, T ∪{e}))−p(R(v, T )) because p(R(v, T ∪{e})) =
p(R(v, T )) = p(R(s));

• If for each (t′′, s) ∈ T , t′′ 
∈ R(v), then p(R(v, S ∪{e})) = p(R(v, T ∪{e}))
and p(R(v, S)) = p(R(v, T )).

In all the cases Inequality (2) holds. ��
Theorem 5. Function f(S) is monotone and submodular with respect to any
feasible solution for MCI on DAGs with a single sink.

Proof. To prove that f(S) is monotone, we show that for each v ∈ V , S ⊆ E′,
and e = (d, s′) ∈ E′ \ S, we have p(R(v, S ∪ {e})) ≥ p(R(v, S)). We observe that

R(v, S) = R(v) ∪
⋃

(d,si)∈S

R(si)

R(v, S ∪ {e}) = R(v) ∪
⋃

(d,si)∈S

R(si) ∪ R(s′) = R(v, S) ∪ R(s′) (3)

Thus, p(R(v, S)) ≤ ∑
u∈R(v,S)∪R(s′) pu.

To prove that f(S) is submodular, we prove that for any node v ∈ V , any
two solutions S, T of MCI such that S ⊆ T , and any edge e = (d, s′) 
∈ T , where
s′ is a source node:

p(R(v, S ∪ {e})) − p(R(v, S)) ≥ p(R(v, T ∪ {e})) − p(R(v, T )). (4)

We first make the following observations based on Eq. 3:

– R(v, S ∪ {e}) = R(v, S) ∪ R(s′) = R(v, S) ∪ (R(s′) \ R(v, S)) and
– R(v, T ∪ {e}) = R(v, T ) ∪ R(s′) = R(v, T ) ∪ (R(s′) \ R(v, T ))

Then, p(R(v, S ∪ {e})) − p(R(v, S)) = p(R(s′) \ R(v, S)) and p(R(v, T ∪ {e})) −
p(R(v, T )) = p(R(s′) \ R(v, T )).

Inequality (4) follows by observing that R(v, S) ⊆ R(v, T ). ��
Corollary 1. Algorithm2 provides a

(
1 − 1

e

)
-approximation for the MCI prob-

lem either on DAG with a single source or with a single sink.

6 Conclusion and Future Works

In this paper, we first defined the maximum connectivity improvement problem,
that is the problem of adding k edges to a directed graph in order to maximise the
overall weighted number of reachable nodes. We proved that the MCI problem
on DAGs with a single source or a single sink is NP -Complete and NP -Hard to
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approximate to within a factor greater than 1 − 1/e. We proposed a polynomial
time greedy algorithm that guarantees a 1 − 1/e approximation ratio on DAG
with a single source or a single sink. For rooted trees, to solve the MCI problem
on single source, we devised a polynomial time algorithm based on dynamic
programming faster than the greedy algorithm.

As future works, we plan to extend our approach to general DAG, i.e., with
multiple sources and multiple sinks. Another possible extension is to solve the
MCI problem by considering the budgeted version of the problem in which each
edge can be added at a different budget cost.

Appendix 1.A Omitted Proofs

Lemma 3. Given a graph G and its condensation G′, it yields: f(G′) = f(G).

Proof. First, consider two nodes u and v that belong to the same strongly con-
nected component Cv′ in G′. Clearly, R(u,G) = R(v,G).

Moreover, it holds p(R(v,G)) = p(R(v′, G′)) because R(v′, G′) contains one
node for each different strongly connected component in R(u,G) and thus:

p(R(v′, G′)) =
∑

u′∈R(v′,G′)

pu′ =
∑

u′∈R(v′,G′)

∑

u∈Cu′

p(u) =
∑

u∈R(v,G)

p(u) = p(R(v, G))

Denoted Cv′ the strongly connected component represented by v′, we have:

f(G′) =
∑

v′∈V ′
wv′p(R(v′, G′))

=
∑

v′∈V ′
wv′

⎛

⎝
∑

u′∈R(v′,G′)

∑

u∈Cu′

p(u)

⎞

⎠

=
∑

v′:Cv′ ∈C
wv′

⎛

⎝
∑

u′∈R(v′,G′)

∑

u∈Cu′

p(u)

⎞

⎠

=
∑

v′:Cv′ ∈C

⎛

⎝
∑

v∈Cv′

wv

⎞

⎠

⎛

⎝
∑

u′∈R(v′,G′)

∑

u∈Cu′

p(u)

⎞

⎠

=
∑

v′:Cv′ ∈C

∑

v∈Cv′

⎛

⎝wv

⎛

⎝
∑

u′∈R(v′,G′)

∑

u∈Cu′

p(u)

⎞

⎠

⎞

⎠

=
∑

v′:Cv′ ∈C

∑

v∈Cv′

⎛

⎝wv

∑

u∈R(v,G)

p(u)

⎞

⎠

=
∑

v′:Cv′ ∈C

∑

v∈Cv′

wvp(R(v, G))

=
∑

v∈V

wvp(R(v, G)) = f(G)

��
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Appendix 1.B Omitted Images
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Fig. 2. Example of Algorithm 1. Consider the node c with wc = 2, pv = 1 ∀v ∈ V
and B = 2. We have: g(d, 2) = 19, g(d, 1) = 12, g(e, 1) = 7 + 2(6) = 19. Therefore
g(c, 2) = g(e, 1) + g(d, 1) + wc · (p(T (r)) − p(T (v))) = 35.

Appendix 1.C Generic Trees Algorithm

Given a generic rooted tree T = (V,E), let us transform it into a rooted binary
tree T ′ = (V ∪ U,E′) with weights w′, p′ by adding dummy nodes U as follows:

1. Let the root r of T be the root of T ′.
2. For each non-leaf node v, let v1, v2, . . . vl be the children of v:

(a) Add edge (v, v1) to E′;
(b) If l = 2 add (v, v2) to E′;
(c) If l > 2, add l − 2 dummy nodes uv2 , uv3 , . . . , uvl−2 , uvl−1

(d) Add edge (v, uv2) and edges (uvi
, uvi+1) to E′, for each 2 ≤ i ≤ l − 2;

(e) Add edge (uvi
, vi) to E′, for each 2 ≤ i ≤ l − 1;

(f) If l > 2, add edge (uil−1 , vl) to E′.
3. If v ∈ V , then w′

v = wv, otherwise w′
v = 0 and p′

v = pv, otherwise p′
v = 0.

See Fig. 3 for an example of the transformation.

v

v1 v2 . . . vl

(a) General tree T = (V,E)

v

uv2
. . .

uvl−1

v1

v2

vl−1 vl

(b) Transformed binary tree T ′ = (V ∪
U,E′)

Fig. 3. Example of transformation from general tree to binary tree
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