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Abstract. In the problem of minimum connected dominating set with
routing cost constraint, we are given a graph G = (V, E) and a posi-
tive integer α, and the goal is to find the smallest connected dominating
set D of G such that, for any two non-adjacent vertices u and v in G,
the number of internal nodes on the shortest path between u and v in
the subgraph of G induced by D ∪ {u, v} is at most α times that in G.
For general graphs, the only known previous approximability result is an
O(log n)-approximation algorithm (n = |V |) for α = 1 by Ding et al. For

any constant α > 1, we give an O(n1− 1
α (log n)

1
α )-approximation algo-

rithm. When α ≥ 5, we give an O(
√

n log n)-approximation algorithm.
Finally, we prove that, when α = 2, unless NP ⊆ DTIME(npoly logn),

for any constant ε > 0, the problem admits no polynomial-time 2log1−ε n-
approximation algorithm, improving upon the Ω(log δ) bound by Du et
al., where δ is the maximum degree of G (albeit under a stronger hard-
ness assumption).

Keywords: Connected dominating set · Spanner ·
Set cover with pairs · MIN-REP problem

1 Introduction

1.1 Motivation

In wireless network routing, a common approach is to select a set of nodes
as the virtual backbone. The virtual backbone is responsible for relaying pack-
ets. Specifically, when a node s generates a packet destined to t, the packet is
routed through path (s, v1, v2, · · · , vk, t), where every internal node vi, 1 ≤ i ≤ k,
belongs to the virtual backbone. To realize this idea, we can model the wireless
network as a graph G = (V,E), where V is the set of nodes in the wireless
network, and (u, v) ∈ E if and only if u and v can communicate with each
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other directly. Thus, a connected dominating set of G is a virtual backbone for
the wireless network.1 One of the concerns in constructing the virtual backbone
is the routing cost. Specifically, the routing cost of sending a packet from the
source s to the destination t is the number of internal nodes (relays) in the
routing path from s to t. For example, the routing cost is k if the routing path
is (s, v1, v2, · · · , vk, t). The routing cost should not be too high even if packets
are only allowed to be routed through the virtual backbone. Next, we give the
formal definition of the problem.

1.2 Problem Definition

Let G[S] be the subgraph of G = (V,E) induced by S ⊆ V . Let mG(u, v) be
the number of internal vertices on the shortest path between u and v in G. For
example, if u and v are adjacent, then mG(u, v) = 0. If u and v are not adjacent
and have a common neighbor, then mG(u, v) = 1. Furthermore, given a vertex
subset D of G, mD

G(u, v) is defined as mG[D∪{u,v}](u, v), i.e., the number of
internal vertices on the shortest path between u and v through D. We use n(G)
to denote the number of vertices in graph G. When the graph we are referring
to is clear from the context, we simply write n, m(u, v), and mD(u, v) instead
of n(G), mG(u, v), and mD

G(u, v), respectively.

Definition 1. Given a connected graph G and a positive integer α, the Con-
nected Dominating set problem with Routing cost constraint (CDR-α)
asks for the smallest connected dominating set D of G, such that, for every two
vertices u and v, if u and v are not adjacent in G, then mD(u, v) ≤ α · m(u, v).

1.3 Preliminary

An Equivalent Problem: In the CDR-α problem, we need to consider all
the pairs of non-adjacent nodes. Ding et al. discovered that to solve the CDR-α
problem, it suffices to consider only vertex pairs (u, v) such that m(u, v) = 1,
i.e., u and v are not adjacent but have a common neighbor [5]. We call the
corresponding problem the 1-DR-α problem.

Definition 2. Given a connected graph G = (V,E) and a positive integer α,
the 1-DR-α problem asks for the smallest dominating set D of G, such that, for
every two vertices u and v, if m(u, v) = 1, then mD(u, v) ≤ α.

We say that u and v form a target couple, denoted by [u, v], if m(u, v) = 1.
We say that a set S covers a target couple [u, v] if mS(u, v) ≤ α. Hence, the
1-DR-α problem asks for the smallest dominating set that covers all the target
couples. Notice that any feasible solution of the 1-DR-α problem must induce
a connected subgraph of G. The equivalence between the CDR-α problem and
the 1-DR-α problem is stated in the following theorem.
1 A set D ⊆ V is a dominating set of G = (V, E) if every vertex in V \ D is adjacent

to D. Furthermore, if D induces a connected subgraph of G, then D is called a
connected dominating set of G.
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Theorem 1 (Ding et al. [5]). D is a feasible solution of the CDR-α problem
with input graph G if and only if D is a feasible solution of the 1-DR-α problem
with input graph G.

Corollary 1. Any r-approximation algorithm of the 1-DR-α problem is an r-
approximation algorithm of the CDR-α problem.

In this paper, we thus focus on the 1-DR-α problem.

Feasibility of the 1-DR-α Problem for α ≥ 5: Next, we give the basic idea
of finding a feasible solution of the 1-DR-α problem for α ≥ 5 used in previous
researches, e.g., in [11]. One of our algorithms still uses this idea. First, find a
dominating set D. Thus, for any target couple [u, v], there exist ud and vd in D,
such that ud and vd dominate u and v, respectively.2 Let D′ = D. We then add
more vertices to D′ so that D′ becomes a feasible solution. For any two vertices
u′ and v′ in D, if m(u′, v′) ≤ 3, then we add the m(u′, v′) internal vertices of the
shortest path between u′ and v′ on G to D′. Observe that m(ud, vd) ≤ 3. Hence,
mD′

(u, v) ≤ 5 and D′ is a feasible solution of the 1-DR-α problem for α ≥ 5.

Lemma 1. Let D be a dominating set of G. Let D′ ⊇ D be a vertex subset
of G such that, for any two vertices u′ and v′ in D, if m(u′, v′) ≤ 3, then
mD′

(u′, v′) ≤ 3. Then, D′ is a feasible solution of the 1-DR-α problem with
input G and α ≥ 5.

1.4 Previous Result

Previous Result on General Graphs: When α = 1, the 1-DR-α problem can
be transformed into the set cover problem, i.e., cover all the vertices (to form
a dominating set) and cover all the target couples. Observe that each target
couple can be covered by a single vertex. The resulting approximation ratio is
O(log n) [5]. When α is sufficiently large, e.g., α ≥ n, any connected dominating
set is feasible for the CDR-α problem. Note that, for any α, the size of the
minimum connected dominating set is a lower bound of the CDR-α problem.
Since the connected dominating set can be approximated within a factor of
O(log n) [12,21], the CDR-n problem can be approximated within a factor of
O(log n). If α falls between these two extremes, e.g., α = 2, the only known
previous result is the trivial O(n)-approximation algorithm. On the hardness
side, it has been proved that, unless NP ⊆ DTIME(nO(log log n)), there is no
polynomial-time algorithm that can approximate the CDR-α problem within a
factor of ρ ln δ (∀ρ < 1) for α = 1 [5] and α ≥ 2 [8,9], where δ is the maximum
degree of G.

Open Question 1 (Du and Wan [8]). Is there a polynomial-time O(log n)-
approximation algorithm for the CDR-α problem for α ≥ 2?

2 ud dominates u if ud = u or ud and u are adjacent.
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Previous Result on Unit Disk Graph (UDG): Most of the studies on the
CDR-α problem focused on UDG [5,8,9,11,19]. UDG exhibits many nice prop-
erties that enable constant factor approximation algorithms (or PTAS) in many
problems where only O(log n)-approximation algorithms (or worse) are known
in general graphs, e.g., the minimum (connected) dominating set problem and
the maximum independent set problem [3,4,20]. All the previous research on
the CDR-α problem on UDG leveraged constant bounds of the maximum inde-
pendent set or the minimum dominating set. However, all the previous research
only solved the case where α ≥ 5 (by Lemma 1), and the best result so far is a
PTAS by Du et al. [11]. When 1 < α < 5, the only known previous result is the
trivial O(n)-approximation algorithm.

1.5 Our Result and Basic Ideas

In this paper, we first give an approximation algorithm of the 1-DR-α prob-
lem on general graphs for any constant α > 1. A critical observation is that
the 1-DR-2 problem is a special case of the Set Cover with Pairs (SCP) prob-
lem [13]. Hassin and Segev proposed an O(

√
t log t)-approximation algorithm for

the SCP problem, where t is the number of targets to be covered. However, since
there are O(n2) target couples to be covered, directly applying the O(

√
t log t)-

approximation bound yields a trivial upper bound for the 1-DR-2 problem. We
re-examine the analysis in [13] and find that, when applying the algorithm to the
1-DR-2 problem, the approximation ratio can also be expressed as O(

√
n log n).

Nevertheless, in this paper, we give a slightly simplified algorithm with an easier
analysis for the SCP problem. The algorithm and analysis also make it easy to
solve the generalized SCP problem. We obtain the following result, which is the
first non-trivial result of the CDR-α problem for α > 1 on general graphs and
for 1 < α < 5 on UDG.

Theorem 2. For any constantα>1, there is anO(n1− 1
α (log n)

1
α )-approximation

algorithm for the 1-DR-α problem.

Apparently, the above performance guarantee deteriorates quickly as α
increases. In our second algorithm, we apply the aforementioned idea of find-
ing a feasible solution when α ≥ 5, i.e., Lemma 1. We have the following result.

Theorem 3. When α ≥ 5, there is an O(
√

n log n)-approximation algorithm for
the 1-DR-α problem.

Finally, we answer Open Question 1 negatively. We improve upon the Ω(log δ)
hardness result for the 1-DR-2 problem (albeit under a stronger hardness
assumption) [8,9]. In this paper, we give a reduction from the MIN-REP prob-
lem [15].

Theorem 4. Unless NP ⊆ DTIME(npoly log n), for any constant ε > 0, the
1-DR-2 problem admits no polynomial-time 2log

1−ε n-approximation algorithm,
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even if the graph is triangle-free3 or the constraint that the feasible solution
must be a dominating set is ignored4.

1.6 Relation with the Basic k-Spanner Problem

When we ignore the constraint that any feasible solution must be a connected
dominating set, the CDR-α problem is similar to the basic k-spanner problem.
For completeness, we give the formal definition of the basic k-spanner problem.
Given a graph G = (V,E), a k-spanner of G is a subgraph H of G such that
dH(u, v) ≤ kdG(u, v) for all u and v in V , where dG(u, v) is the number of edges in
the shortest path between u and v in G. The basic k-spanner problem asks for the
k-spanner that has the fewest edges. The CDR-α problem differs with the basic
k-spanner problem in the following three aspects: First, in the CDR-α problem,
we find a set of vertices D, and all the edges in the subgraph induced by D can
be used for routing; while in the basic k-spanner problem, only edges in H can be
used. Second, in the CDR-α problem, the objective is to minimize the number of
chosen vertices; while in the basic k-spanner problem, the objective is to minimize
the number of chosen edges. Finally, in the basic k-spanner problem, the distance
is measured by the number of edges; while in the CDR-α problem, the distance
is measured by the number of internal nodes. Despite the above differences,
these two problems share similar approximability and hardness results. Althöfer
et al. proved that every graph has a k-spanner of at most n1+ 1

�(k+1)/2� edges,
and such a k-spanner can be constructed in polynomial time [1,7]. Since the
number of edges in any k-spanner is at least n − 1, this yields an O(n

1
�(k+1)/2� )-

approximation algorithm for the basic k-spanner problem. For k = 2, there is an
O(log n)-approximation algorithm due to Kortsarz and Peleg [16], and this is the
best possible [15]. For k = 3, Berman et al. proposed an Õ(n1/3)-approximation
algorithm [2]. For k = 4, Dinitz and Zhang proposed an Õ(n1/3)-approximation
algorithm [7]. On the hardness side, it has been proved that for any constant
ε > 0 and for 3 ≤ k ≤ log1−2ε n, unless NP ⊆ BPTIME(2poly log n), there is no
polynomial-time algorithm that approximates the basic k-spanner problem to a
factor better than 2(log

1−ε n)/k [6].

2 Two Algorithms for the 1-DR-α Problem

2.1 The First Algorithm

We first give the formal definition of the Set Cover with Pairs (SCP) problem.

3 If the graph is triangle-free, then any two vertices with a common neighbor form a
target couple.

4 One may drop the constraint that the solution must be a dominating set, and focuses
on minimizing the number of vertices to cover all the target couples. This theorem
also applies to such a problem.
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Definition 3. Let T be a set of t targets. Let V be a set of n elements. For every
pair of elements P = {v1, v2} ⊆ V , C(P ) denotes the set of targets covered by
P . The Set Cover with Pairs (SCP) problem asks for the smallest subset S of V
such that

⋃

{v1,v2}⊆S

C({v1, v2}) = T .

Let OPT be the number of elements in the optimal solution. We only need to
consider the case where t > 1 and OPT > 1.

Approximating the SCP Problem: Our algorithm is a simple greedy algo-
rithm: in each round, we choose at most two elements u and v that maximize
the number of covered targets. Specifically, S is an empty set initially. In each
round, we select a set P ⊆ V \ S such that |P | ≤ 2 and P increases the number
of covered targets the most, i.e., P = argmax

P ′:|P ′|≤2,P ′⊆V \S

g(P ′), where

g(P ′) = |
⋃

{v1,v2}⊆S∪P ′
C({v1, v2})| − |

⋃

{v1,v2}⊆S

C({v1, v2})|.

We then add P to S and repeat the above process until all the targets are
covered. The algorithm terminates once all targets are covered.5

Theorem 5. The above algorithm is an O(
√

n log t)-approximation algorithm
for the SCP problem.

Proof. Let Ri be the number of uncovered targets after round i. In the first
round, some pair of elements in the optimal solution can cover at least t/

(
OPT

2

)

targets. Since we choose a pair of elements greedily in each round, R1 ≤
t(1 − 1/

(
OPT

2

)
). In the second round, there exists a pair of elements in the

optimal solution that can cover at least R1/
(
OPT

2

)
targets among the R1 uncov-

ered targets. Again, we choose the pair of elements that increases the number
of covered targets the most. Hence, R2 ≤ R1 − R1/

(
OPT

2

)
≤ t(1 − 1/

(
OPT

2

)
)2.

In general, Ri ≤ t(1 − 1/
(
OPT

2

)
)i. After r =

(
OPT

2

)
ln t rounds, the number of

uncovered targets is at most t(1 − 1/
(
OPT

2

)
)r ≤ t(e−1/(OP T

2 ))r ≤ te− ln t = 1.
Hence, after O(OPT 2 ln t) rounds, all targets are covered. Let ALG be the
number of elements chosen by the algorithm. Since we choose at most two
elements in each round, ALG = O(OPT 2 ln t). Finally, since ALG ≤ n,
ALG = O(

√
n · OPT 2 ln t) = O(

√
n ln t)OPT . 	


Note that, in Theorem5, we can replace n with any upper bound of the size
of solutions obtained by any polynomial-time algorithm A for the SCP problem.
This is achieved by executing both A and our algorithm. Choosing the best
between the two outputs yields the desired approximation ratio. For example, if
we replace n with 2t, we then get the result in [13].
5 In [13], in each round, a set P = argmax

P ′:|P ′|≤2,P ′⊆V \S
g′(P ′) is added to S, where g′(P ′) =

g(P ′)
|P ′| .
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Approximating the 1-DR-2 Problem: To transform the 1-DR-2 problem to
the SCP problem, we treat each target couple as a target. Moreover, we treat
each vertex as a target so that the output is a dominating set. The set of elements
V in the SCP problem is the vertex set of G. C(P ) consists of all the vertices
that are dominated by P in G and all the target couples that are covered by P
in G. In this SCP instance, n = n(G) and t = O(n(G)2). It is easy to verify the
following result.

Theorem 6. There is an O(
√

n log n)-approximation algorithm for the 1-DR-2
problem.

The Set Cover with α-Tuples (SCT-α) Problem: In the 1-DR-2 problem,
every target couple can be covered by no more than two vertices. In the 1-DR-α
problem, every target couple can be covered by no more than α vertices. Hence,
we consider the following generalization of the SCP problem.

Definition 4. Let T be a set of t targets. Let V be a set of n elements.
Let α be a positive integer constant greater than one. For every α-tuple P =
{v1, v2, · · · , vα} ⊆ V , C(P ) denotes the set of targets covered by P . The Set
Cover with α-Tuples (SCT-α) problem asks for the smallest subset S of V such
that

⋃

{v1,v2,··· ,vα}⊆S

C({v1, v2, · · · , vα}) = T .

We only need to consider the case where t > 1 and OPT ≥ α (α is a constant).

Approximating the SCT-α Problem and the 1-DR-α Problem: The
algorithm for the SCT-α problem is a straightforward generalization of the algo-
rithm for the SCP problem. The difference is that, in each round, we choose a
set P of at most α elements that increases the number of covered targets the
most. The transformation from the 1-DR-α problem into the SCT-α problem is
also similar to the previous transformation. The value of α in the constructed
SCT-α instance is equal to that in the 1-DR-α instance. Again, n = n(G) and
t = O(n(G)2) in the constructed SCT-α instance. Theorem 2 is a direct result
of the following theorem.

Theorem 7. There is an O(n1− 1
α · (ln t)

1
α )-approximation algorithm for the

SCT-α problem.

Claim 1. When c = 1
α − ln ln(tα)

α lnn , n1−c =
√

n · α(nc)α−2 ln t = n1− 1
α · (α ln t)

1
α .

Proof of Claim 1:

n1−c =
√

n · α(nc)α−2 ln t

⇔ n2−2c = n · α(nc)α−2 ln t

⇔ n2−2c−(1+c(α−2)) = α ln t

⇔ n1−cα = α ln t.
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When c = 1
α − ln ln(tα)

α lnn ,

n1−cα = n1−(1− ln ln(tα)
ln n )

= n
ln ln(tα)

ln n (1)

= (nln(ln(tα)))
1

ln n (2)

= ((ln(tα))lnn)
1

ln n (3)

= ((α ln t)lnn)
1

ln n (4)
= α ln t. (5)

Hence, when c = 1
α − ln ln(tα)

α lnn , n1−c =
√

n · α(nc)α−2 ln t.
Finally, when c = 1

α − ln ln(tα)
α lnn ,

n1−c = n1− 1
α+

ln ln(tα)
α ln n

= n1− 1
α · n

ln ln(tα)
α ln n

= n1− 1
α · (n

ln ln(tα)
ln n )

1
α

= n1− 1
α · (α ln t)

1
α .

In the last equality, we reuse Eqs.(1)–(5). 	

Proof of Theorem 7: Let Ri be the number of uncovered targets after

round i. By a similar argument in the proof of Theorem5, we get that Ri ≤
t(1−1/

(
OPT

α

)
)i. After r =

(
OPT

α

)
ln t rounds, the number of uncovered targets is

at most one. Hence, after O(OPTα ln t) rounds, all targets are covered. Let ALG
be the number of elements chosen by the algorithm. Since we choose at most
α elements in each round, ALG = O(αOPTα ln t). Since ALG ≤ n, ALG =
O(

√
n · αOPTα ln t).

Let c = 1
α − ln ln(tα)

α lnn . When OPT ≥ nc, the approximation ratio is n1−c. When
OPT ≤ nc, ALG = O(

√
n · αOPTα−2 ln t)OPT = O(

√
n · α(nc)α−2 ln t)OPT .

The proof then follows from Claim1 and α
1
α = O(1). 	


2.2 The Second Algorithm

The second algorithm is designed for the 1-DR-α problem when α ≥ 5. It has
a better approximation ratio than that of the previous algorithm when α ≥ 5.
The algorithm is suggested in Lemma 1: We first find a dominating set D by any
O(log n)-approximation algorithm. Let D′ = D. For any two vertices u and v in
D, if m(u, v) ≤ 3, we then add at most three vertices to D′ so that mD′

(u, v) ≤ 3.
Proof of Theorem 3: By Lemma 1, D′ is a feasible solution for the 1-DR-α

problem when α ≥ 5. Let OPTDS be the size of the minimum dominating set in
G. Let OPT be the size of the optimum of the 1-DR-α problem. Since any feasible
solution of the 1-DR-α problem must be a dominating set, OPTDS ≤ OPT .
Moreover, |D′| ≤ |D|+3

(|D|
2

)
= O((log n ·OPTDS)2) = O((log n ·OPT )2). Since

|D′| ≤ n, we have |D′| = O(
√

n · (log n · OPT )2) = O(
√

n log n)OPT . 	
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3 Inapproximability Result

3.1 The MIN-REP Problem

We prove Theorem 4 by a reduction from the MIN-REP problem [15]. The input
of the MIN-REP problem consists of a bipartite graph G = (X,Y,E), a partition
of X, PX = {X1,X2, · · · ,XkX

}, and a partition of Y , PY = {Y1, Y2, · · · , YkY
},

such that
⋃kX

i=1 Xi = X and
⋃kY

i=1 Yi = Y . Every Xi ∈ PX (respectively, Yi ∈ PY )
has size |X|/kX (respectively, |Y |/kY ). X1,X2, · · · ,XkX

and Y1, Y2, · · · , YkY
are

called super nodes, and two super nodes Xi and Yj are adjacent if some vertex
in Xi and some vertex in Yj are adjacent in G. If Xi and Yj are adjacent, then
Xi and Yj form a super edge. In the MIN-REP problem, our task is to choose
representatives for super nodes so that if Xi and Yj form a super edge, then
some representative for Xi and some representative for Yj are adjacent in G.
Note that a super node may have multiple representatives. Specifically, the goal
of the MIN-REP problem is to find the smallest subset R ⊆ X ∪ Y such that
if Xi and Yj form a super edge, then R must contain two vertices x and y such
that x ∈ Xi, y ∈ Yj and (x, y) ∈ E. In this case, we say that {x, y} covers the
super edge (Xi, Yj). The inapproximability result of the MIN-REP problem is
stated as the following theorem.

Theorem 8 (Kortsarz et al. [17]). For any constant ε > 0, unless NP ⊆
DTIME(npoly log n), there is no polynomial-time algorithm that can distinguish
between instances of the MIN-REP problem with a solution of size kX + kY and
instances where every solution is of size at least (kX + kY ) · 2log

1−ε n(G), where
n(G) is the number of vertices in the input graph of the MIN-REP problem.

3.2 The Reduction

Given inputs G = (X,Y,E), PX , and PY of the MIN-REP problem, we construct
a corresponding graph G′(G,PX ,PY ) of the 1-DR-2 problem. When G, PX , and
PY are clear from the context, we simply write G′ instead of G′(G,PX ,PY ).
Initially, G′ = G. Hence, G′ contains X, Y , and E. For each super node Xi

(respectively, Yi), we create two corresponding vertices px1
i and px2

i (respectively,
py1

i and py2
i ) in G′. If x is in super node Xi (respectively, y is in super node Yi),

then we add two edges (x, px1
i ) and (x, px2

i ) (respectively, (y, py1
i ) and (y, py2

i ))
in G′. If Xi and Yj form a super edge, then we add two vertices r1i,j and r2i,j to
G′, and we add four edges (px1

i , r
1
i,j), (r1i,j , py1

j ), (px2
i , r

2
i,j), (r2i,j , py2

j ) to G′. r1i,j
(respectively, r2i,j) is called the relay of px1

i and py1
j (respectively, px2

i and py2
j ).

Before we complete the construction of G′, we briefly explain the idea behind
the construction so far. If two super nodes Xi and Yj form a super edge, then pxI

i

and pyI
j (I ∈ {1, 2}) have a common neighbor in G′, i.e., the relay rI

i,j . Because
pxI

i and pyI
j are not adjacent, pxI

i and pyI
j form a target couple. To transform

a solution D of the 1-DR-2 problem to a solution of the MIN-REP problem, we
need to transform D to another feasible solution D′ for the 1-DR-2 problem so
that none of the relays is chosen, and only vertices in X ∪Y are used to connect
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pxI
i and pyI

j . This is the reason that we have two corresponding vertices for each
super node (and thus two relays for each super edge). Under this setting, to
connect px1

i to py1
j and px2

i to py2
j , choosing two vertices in X ∪ Y is no worse

than choosing the relays.

Fig. 1. An example of the reduction.

Let PX = {px1
1, px1

2, · · · , px1
kX

} ∪ {px2
1, px2

2, · · · , px2
kX

} be the set of ver-
tices in G′ corresponding to the super nodes in PX . Similarly, let PY =
{py1

1 , py1
2 , · · · , py1

kY
} ∪ {py2

1 , py2
2 , · · · , py2

kY
}. Let R be the set of all relays. To

complete the construction, we add four vertices (hubs) hX,R, hY,R, hPX , and
hPY to G′. In G′, all the vertices in X, Y , PX, and PY are adjacent to hX,R,
hY,R, hPX , and hPY , respectively. Moreover, every relay is adjacent to hX,R

and hY,R. These four hubs induce a 4-cycle (hPX , hY,R, hPY , hX,R, hPX) in G′.
Finally, for each hub h, we create two dummy nodes d1 and d2, and add two edges
(h, d1) and (h, d2) to G′. This completes the construction of G′. Figure 1 shows an
example of the reduction. Let H and M be the set of hubs and the set of dummy
nodes, respectively. Hence, the vertex set of G′ is X ∪Y ∪PX ∪PY ∪R∪H ∪M .
Let N(u) be the set of neighbors of u in G′. We then have

N(px) ⊆ X ∪ R ∪ {hPX} if px ∈ PX. N(py) ⊆ Y ∪ R ∪ {hPY } if py ∈ PY.

N(x) ⊆ PX ∪ Y ∪ {hX,R} if x ∈ X. N(y) ⊆ PY ∪ X ∪ {hY,R} if y ∈ Y.

N(hX,R) \ M = X ∪ R ∪ {hPX , hPY }. N(hY,R) \ M = Y ∪ R ∪ {hPX , hPY }.

N(hPX) \ M = PX ∪ {hX,R, hY,R}. N(hPY ) \ M = PY ∪ {hX,R, hY,R}.

N(m) ⊆ H if m ∈ M. N(r) ⊆ PX ∪ PY ∪ {hX,R, hY,R} if r ∈ R.

Observe that |R| = O(n(G)2). We have the following lemma.
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Lemma 2. n(G′) = O(n(G)2).

It is easy to check that, for any two adjacent vertices u and v in G′, u and v
have no common neighbor. Hence, we have the following lemma.

Lemma 3. G′ is triangle-free.

We say that a target couple [a, b] is in [A,B] if a ∈ A and b ∈ B. It is easy
to verify the following two lemmas.

Lemma 4. Only H can cover the target couples in [M,M ].

Lemma 5. H is a dominating set of G′.

The proof of the following lemma can be found in the appendix.

Lemma 6. H covers all the target couples except those in [PX,PY ].

Let px and py be vertices in PX and PY , respectively. Observe that, if
(px, x, y, py) is a path in G′, then x ∈ X and y ∈ Y . We then have the following
lemma.

Lemma 7. D covers target couples [px1
i , py1

j ] and [px2
i , py2

j ] if and only if at
least one of the following conditions is satisfied.

1. There exist x ∈ X and y ∈ Y such that (px1
i , x, y, py1

j ) and (px2
i , x, y, py2

j ) are
paths in G′ and {x, y} ⊆ D.

2. {r1i,j , r
2
i,j} ⊆ D.

3.3 The Analysis

Let IMR be an instance of the MIN-REP problem with inputs G, PX , and PY .
Let ID be the instance of the 1-DR-2 problem with input G′(G,PX ,PY ). To
prove the inapproximability result, we use the following two lemmas.

Lemma 8. If IMR has a solution of size s, then ID has a solution of size s+4.

Lemma 9. If every solution of IMR has size at least s · 2log
1−ε n(G), then every

solution of ID has size at least s · 2log
1−ε n(G) + 4.

Proof of Theorem 4: By Theorem 8, for any constant ε > 0, unless NP ⊆
DTIME(npoly log n), there is no polynomial-time algorithm that can distinguish
between instances of the MIN-REP problem with a solution of size kX + kY

and instances where every solution is of size at least (kX + kY ) · 2log
1−ε n(G).

By the above two lemmas, it is hard to distinguish between instances of the
1-DR-2 problem with a solution of size kX + kY + 4 and instances in which
every solution is of size at least (kX + kY ) · 2log

1−ε n(G) + 4. Therefore, for any
constant ε > 0, unless NP ⊆ DTIME(npoly log n), there is no polynomial-time
algorithm that can approximate the 1-DR-2 problem by a factor better than
(kX+kY )·2log1−ε n(G)+4

kX+kY +4 . Lemma 2 implies that, for any constant ε′ > 0, unless



On the Approximability and Hardness of the Minimum CDR 43

NP ⊆ DTIME(npoly log n), there is no O(2log
1−ε′

n(G′)0.5
)-approximation algo-

rithm for the 1-DR-2 problem. By considering sufficiently large instances and a
small enough ε′, we have the hardness result claimed in Theorem 4. On the other
hand, let 1-DR-2′ be the problem obtained by removing the constraint that any
feasible solution must be a dominating set from the 1-DR-2 problem. Thus, in
the 1-DR-2′ problem, we only focus on covering target couples. By Lemmas 4
and 5, a solution D is feasible for the 1-DR-2′ problem with input G′ if and only
if D is a feasible solution of ID. Thus, the inapproximability result also applies
to the 1-DR-2′ problem. Finally, the proof follows from Lemma3. 	


Lemma 8 is a direct result of the following claim.

Claim 2. If S is a feasible solution of IMR, then S ∪H is a feasible solution of ID.

Proof. Since H is a dominating set, by Lemma 6, it suffices to prove that every
target couple [u, v] = [pxI1

i , pyI2
j ] in [PX,PY ] is covered by S. Note that

[pxI1
i , pyI2

j ] cannot be a target couple if I1 
= I2. This is because pxI1
i and pyI2

j do
not have a common neighbor if I1 
= I2. If I1 = I2, then the common neighbor
must be rI

i,j . By the construction of G′, this implies that Xi and Yj form a super
edge. Since S is a feasible solution of IMR, there exists x ∈ Xi and y ∈ Yj such
that x and y are adjacent in G and {x, y} ⊆ S. Again, by the construction of
G′, (u, x, y, v) is a path in G′. Hence, S ⊇ {x, y} covers [u, v]. 	


To prove Lemma 9, we use the following claim.

Claim 3. ID has an optimal solution D∗, such that D∗ \H is a feasible solution
of IMR.

Proof of Claim 3: Let DOPT be any optimal solution of ID. By Lemmas 4,
6, and 7, DOPT ⊆ H ∪ X ∪ Y ∪ R. If DOPT ∩ R = ∅, by Lemma 7, each target
couple [pxI

i , pyI
j ] is covered by some x ∈ X and some y ∈ Y . By the construction

of G′, such x and y also cover the super edge (Xi, Yj) in IMR. Because each super
edge in IMR has a corresponding target couple in ID, DOPT \ H is a feasible
solution of IMR.

If DOPT ∩ R 
= ∅, then some rI
i,j ∈ DOPT . We can further assume that both

r1i,j and r2i,j are in DOPT ; otherwise, by Lemma 7, we can remove rI
i,j from DOPT ,

the resulting solution is smaller and is still feasible. We then replace r1i,j and r2i,j
with some x ∈ X and some y ∈ Y satisfying the first condition in Lemma7.
By Lemma 7, the resulting solution is still feasible, and the size remains the
same. Repeat the above replacing process until the resulting solution does not
contain any relay. The proof then follows from the argument of the case where
DOPT ∩ R = ∅. 	


Proof of Lemma 9: Let S∗ be the optimal solution of IMR. By the assump-
tion, we have |S∗| ≥ s · 2log1−ε n(G). It suffices to prove that S∗ ∪H is an optimal
solution for ID, which implies that every feasible solution of ID has size at least
|S∗ ∪ H| = |S∗| + 4 ≥ s · 2log

1−ε n(G) + 4. The feasibility of S∗ ∪ H follows from
Claim 2. For the sake of contradiction, assume that the optimal solution of ID

has size smaller than |S∗ ∪H| = |S∗|+4. Claim 3 and Lemma 4 then imply that
S∗ is not an optimal solution of IMR, which is a contradiction. 	
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A Proof of Lemma 6

If [u, v] is in [PX,PX ∪ {hX,R, hY,R}], [PY, PY ∪ {hX,R, hY,R}], [X,X ∪ R ∪
{hPX , hPY }], [Y, Y ∪ R ∪ {hPX , hPY }], or [R,R ∪ {hPX , hPY }], then [u, v] can
be covered by one vertex in H. If [u, v] is in [PX, Y ], [PY,X], [X, {hY,R}], or
[Y, {hX,R}], then [u, v] can be covered by an edge in H. If [u, v] is in [PX,X ∪
R ∪ {hPX , hPY }], [PY, Y ∪ R ∪ {hPX , hPY }], or [X,Y ], then [u, v] cannot be
a target couple (since u and v do not have a common neighbor). If [u, v] is
in [X, {hX,R}], [Y, {hY,R}], or [R, {hX,R, hY,R}], then [u, v] cannot be a target
couple (since u and v are adjacent6). Moreover, it is easy to see that H covers
all the target couples in [H,H] or [V (G′),M ], where V (G′) is the vertex set of
G′. Finally, observe that if [u, v] is in [PX,PY ], then H cannot cover [u, v]. 	


B Reduction from the 1-DR-α Problem to Other Related
Problems

In this section, we show that the 1-DR-α problem can be transformed into the sub-
modular cost set cover problem and the minimum rainbow subgraph problem on
multigraphs. We also summarize the approximability results of these two prob-
lems in the literature. Future progress in the approximability results of these two
problems may lead to better approximation algorithms for the 1-DR-α problem.

Submodular Cost Set Cover Problem: The 1-DR-α problem can be
considered as a special case of the submodular cost set cover problem [10,14,23].
In the set cover problem, we are given a set of targets T and a set of objects S.
Each object in S can cover a subset of T (specified in the input). The goal is to
choose the smallest subset of S that covers T . In the submodular cost set cover
problem, there is a non-negative submodular function c that maps each subset
of S to a cost, and the goal is to find the set cover with the minimum cost. To
transform the 1-DR-α problem with input G = (V,E) to the submodular cost
set cover problem, let T be the union of V and the set of all target couples, and
let S be the set of all subsets of V with size at most α. Hence, each object in
S is a subset of V . An object S ∈ S can cover a vertex v if v is adjacent to
some vertex in S or v ∈ S. An object S ∈ S can cover a target couple [u, v] if
mS(u, v) ≤ α. The cost of a subset S ′ of S is simply the size of the union of
objects in S ′, i.e., the number of distinct vertices specified in S ′.

Iwata and Nagano proposed a |T |-approximation algorithm and an f -
approximation algorithm, where f is the maximum frequency, maxT∈T |{S ∈
S|S covers T}| [14]. Koufogiannakis and Young also proposed an f -
approximation algorithm when the cost function c is non-decreasing [18]. It is
easy to see that these algorithms give trivial bounds for the 1-DR-α problem.
When the cost function c is integer-valued, non-decreasing, and satisfies
c(∅) = 0, Wan et al. proposed a ρH(γ)-approximation algorithm, where ρ =

min
S∗:S∗ is an optimal solution

∑
S∈S∗ c({S})

c(S∗) , γ is the largest number of targets that can

6 In addition, by Lemma 3, u and v do not have a common neighbor.
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be covered by an object in S, and H(k) is the k-th Harmonic number [23]. Du
et al. applied this algorithm to the 1-DR-α problem on UDG for α ≥ 5 and
obtained a constant factor approximation algorithm [10]. It is unclear whether
or not ρ can be upper bounded by O(n1−ε) for some ε > 0 when applied to the
1-DR-α problem on general graphs.

Minimum Rainbow Subgraph Problem on Multigraphs: Given a set
of p colors and a multigraph H, where each edge is colored with one of the p
colors, the Minimum Rainbow Subgraph (MRS) problem asks for the smallest
vertex subset D of H, such that each of the p colors appears in some edge
induced by D. The 1-DR-2 problem can be transformed into the MRS problem
as follows. Let G = (V,E) be the input graph of the 1-DR-2 problem. Let T be
the union of V and the set of all target couples. The set of colors for the MRS
problem is {ci|i ∈ T}. The input multigraph H of the MRS problem has the
same vertex set as G. To form a dominating set, for each v ∈ V , v is incident to
d(v)+1 loops (v, v) in H, where d(v) is the degree of v in G. Each of these loops
receives a different color in {cv} ∪ {cu|(u, v) ∈ E}. For each target couple [u, v]
in G, if w is a common neighbor of u and v in G, we add a loop (w,w) with color
c[u,v] to H. Finally, for each target couple [u, v] in G, if (u,w1, w2, v) is a path
in G, we add an edge (w1, w2) with color c[u,v] to H. The MRS problem can be
transformed into the SCP problem. When the input graph is simple, Tirodkar
and Vishwanathan proposed an O(n1/3 log n)-approximation algorithm [22].
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