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Abstract. Telecommunication (Telco) localization is an important com-
plementary technique of Global Position System (GPS). Traditional
Telco localization approaches requires radio signal strength indicator
(RSSI) of mobile devices with the connected base stations (BSs). Unfor-
tunately, many of real-world signal measurement could miss RSSI val-
ues, and Telco operators typically will not record RSSI information, e.g.,
due to the major departure from current operational practices of Telco
operators [6]. To address this problem, we design a novel BS ID-based
coarse-to-fine Telco localization model, namely BSLoc, which requires
only the connected BS IDs, time and speed information of mobile devices.
BSLoc consists of two layers: (1) a sequence localization model via Hid-
den Markov Model (HMM) to localize the mobile devices with coarse-
grained locations, and (2) a machine learning regression model with engi-
neered features to acquire the fine-grained locations of mobile devices.
Our experiments verify that, on a 2G dataset, BSLoc achieves a median
error 26.0 m, which is almost comparable with two state-of-art RSSI-
based techniques [9] 17.0m and [20] 20.3m.

1 Introduction

Recent years witnessed the popularity of location-based applications such as
Google Map, Uber and Wechat on mobile devices. Billions of mobile users make
use of such applications in their daily life, which motivates the development of
outdoor localization techniques. As the most widely used localization technique,
the Global Position System (GPS) still suffers from some shortcomings such
as: (1) hungry energy-consuming, (2) easily blocked by high buildings, and (3)
usually turned off by users due to privacy leakage consideration.

Meanwhile, telecommunication (Telco) localization has been proposed to
localize mobile devices with measurement report (MR) data from Telco net-
works. The MR data can be collected when mobile devices connect to nearby
base stations (BSs). A MR record contains connection information with up to
6 neighboring BSs [3]. Compared with the GPS, telco localization has strong
points as: (1) energy-efficient (2) feasible in most mobile devices (3) better net-
work coverage and being available indoors and underground (4) active when
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making calls or mobile broadband (MBB) services. Most existing telco local-
ization studies involve four categories. (i) Measurement-based methods [17] esti-
mate the point-to-point distances or angles from a device to its nearby BSs based
on a radio propagation model, (i) fingerprint-based approaches [4] build a his-
togram of received signal strength indicator (RSSI) for each location grid as its
fingerprint, (%i) machine learning based methods [19,20] learn the relationship
between MR features and locations to predict the position of an individual MR
record (namely single-point localization), and (iv) sequence localization [5,13]
uses sequence-to-sequence models to generate a location sequence from a MR
sequence.

The majority of the localization methods above assume that MR data con-
tains sufficient signal strength information (e.g., RSSI). Nevertheless, a high ratio
of real-world MR records collected from mobile users contain such information
from at most two BSs [13,20]. In the worst case, MR records contain BS IDs
alone even without any signal strength information. Moreover, Telco operators
typically will not record the signal strength information due to (1) the major
departure from current operational practices of Telco operators [6] and (2) extra
storage and computation overhead caused by logging such information [12].

In this paper, when given such MR records above with BS IDs alone, we
design a BS ID-based coarse-to-fine telco localization model, namely BSLoc.
BSLoc consists of two layers. In the first layer, we build a sequence localization
model via Hidden Markov Model (HMM) encouraged by the good performance
of sequence methods [13]. In the second layer, based on the coarse-grained grid
locations by the first layer, we employ a machine learning regression model with
engineered features to obtain fine-grained locations of mobile devices.

Compared with the state-of-the-art BS ID-based techniques, BSLoc offers
three advantages: (1) no need of base station position. The two previous meth-
ods [6,12] exploit the infrastructure information of BSs (e.g., precise position of
BSs) from Telco providers, which can hardly be obtained by individual users, (2)
Map constrained. Perera, et al. [12] computes straight lines by Vironoi as move-
ment path which may falsely depart from real road segments. Instead, BSLoc
leverages road networks for higher localization accuracy. (3) Good performance.
The experimental results verify that our proposed model outperforms the best
competitor by 37.3% in median error.

The rest of this paper is organized as follows. Section 2 first introduces the
problem statement and then gives an overview of our solution. Section3 gives
the detail of our solution, and Sect.4 evaluates our solution. Section5 finally
concludes the paper. Table 1 summarizes some symbols and their meanings used
in this paper.

2 Overview

2.1 Problem Statement

Problem 1. (BS ID-based Telco Localization): BS ID-based Telco localization
problem is to localize a mobile device using its connected BS IDs.
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Table 1. Mainly used symbols/names and associated meanings

Symbol | Meaning Symbol | Meaning

BS Base Station RAF Random Forest

HMM | Hidden Markov Model | RSSI Received Signal Strength Indicator
MR Measurement Report | Telco | Telecommunication

When a mobile device connects to nearby BSs in a Telco network, the BSs
generate MR records. As shown in Table 2, an example LTE 4G MR record con-
tains a user ID (IMSI: International Mobile Subscriber Identification Number),
connecting time (MRTime), up to 6 nearby BSs (eNodeBID and CellID) and
radio signal strength indicator (RSSI) if any.

Table 2. An example of an LTE 4G MR record

MRTime 2017/5/31 14:12:06 | IMSI **%012|Serving_eNodeBID 99129 |Serving_-CellID |1

eNodeBID_1 /99129 CelllD_1|1 RSRP_1 —93.26 |[RSSI_1 —67.18
eNodeBID_2|99131 CelllD_2|4 RSRP_2 —98.44|RSSI_2 —53.65
eNodeBID_6/99145 CellID_6|5 RSRP_6 —90.02 |RSSI_6 —50.92

Problem 1 essentially localizes mobile devices when the given MR records
contain empty items of RSRP and RSSI. To solve Problem 1, we have to tackle
three challenges. (¢) The low spatial sensitivity of BS IDs. The coverage radius
of a base station is 0.5-5km [13], and the switch of connected BSs is rather
infrequent [9], leading to the low spatial sensitivity of BS IDs. (i7) The disparity
of MR records. The collected MR, data is unevenly distributed on different areas,
resulting in the difficulty of localization in rarely visited area. (i4i) The GPS noise
of MR data. The corresponding GPS labels of the MR data can be far away from
true locations, leading to the difficulty of accurate localization.

To illustrate the above challenges, Fig. 1 shows an example of collected data
from a dataset Jiading Campus. Figure 1(a) is a bicycle trajectory around the
campus. The part of the trajectory highlighted by a black square is about 3 km
but the serving BS did not change. Figure 1(b) dashed by a black square involves
plenty of noisy GPS labels of the MR data, and the area dashed by a black circle
shows some rarely traveled (by two or three trajectories) roads.

2.2 System Overview

In Fig. 2, the proposed localization model contains two following stages. First,
the offline stage is to train historical data (i.e., those MR records together with
associated GPS positions and speed information of mobile devices) to generate a
two-layer machine learning models: Hidden Morkov Model (HMM) and Random
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Fig. 1. Dataset Jiading Campus
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Fig. 2. System overview

Forest (RAF) regression model. In the first layer, we design a sequence localiza-
tion model via HMM. It maps a sequence of observed BS IDs, timestamp, and
speed information to a sequence of coarse-grained grid locations. In the second
layer, we employ the RAF regression model to map the features with respect to
the coarse-grained locations generated by the first layer to the fine-grained GPS
positions.

Next, at the online stage, we takes as input a sequence of receiving BS IDs,
timestamp and speed information to generate the coarse-grained grid locations
as the output, e.g., by using the classic Viterbi algorithm [1]. After that, such
grid location is next feed to the second layer RAF regression model which finally
generates the fine-grained GPS locations.

To enable the proposed model, we need to perform the preprocessing steps.
First, when people are moving along road networks, we adopt a classic map-
matching technique such as [8] to project the GPS positions in our data onto the
digital road network extracted from OpenStreetMap. The purpose is to mitigate
GPS noise. Thus we use the projected GPS points on road networks as the
ground truth of moving positions. Second, we divide the ground map area of
interest into square grids with width cw. A grid location is a spatial index which
refers to an area (cw X cw) in a ground map, and we typically set cw = 30m
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to represent the road width. The grid locations are used in the first layer of our
model to generate coarse-grained locations.

3 System Design

In this section, we give the detail of the two models: HMM and RAF regression.

3.1 Hidden Markov Model
We describe the used HMM A = (S, V, A, B, 7) with the following variables:

- S8 = {s1,82...sn} is the set of states. In our case, each state represents a
grid position for each MR record, and N indicates the total amount of divided
grid in the area of interest.

— V = wq,vy...vp is the set of observations. In our case, each observation v;
is the set of up to 6 BS IDs appearing inside MR records. The first ID is the
one with the serving base station.

— A = {a;;} is the state transition probability distribution, where a;; represents
the probability that the grid s; at time ¢ is transited to the next one s; at
time ¢ 4 1.

— B = {b;(k)} is the probability distribution of observation k in state j, where
b;(k) is the emission probability of vy in the grid s;, i.e., b;(k) = P(uvgl|s;).

— m = m; is the initial state distribution with m; = P[g; = S;].

In the HMM model, the key is to learn the probabilities A and B.

Learn Transition Probability: The transition probability measures the prob-
ability of a device moving from a grid location G; to another Gj with time
interval At. We learn transition probability from two parts: transition matrices
from historical trajectories associated with training MR data, and speed con-
straint from mobile phone sensor. The detail transition probability computation
is described in Algorithm 1.

Transition Matrices. We use the statistics of trajectory data to compute tran-
sition probability. We construct transition matrices built by three steps. First,
we convert each GPS point into a triplet (T'rajID, Time, Location). Second, for
every two points in the same trajectory, we extract a new triplet (At, G, G)
which indicates the transition from grid G; to Gy with time interval A¢. Third,
triplets with same At make a matrix, thus generating multiple matrices with
different At. Each entry in a matrix denotes the count of movements from grid
location G; to G}, with time interval At.

Speed Constraint. Based on the velocity vy at time ¢ and velocity vy41 at time t+1
(vt < vg41), we heuristically constrain the moving distance inside the interval
d, = [dy,d1] where dy = vy % At and dy = vy11 * At. However, the velocity infor-
mation is noisy due to the common measurement errors. For example, a mobile
device pauses for 30s but the velocity value collected from the accelerometer
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Algorithm 1. Transition probability calculation algorithm

Input: G*: candidate locations in time t, G*™1: candidate location in time ¢ + 1,
M: offline computed transition matrices, At: time interval between ¢
and t + 1, v’: speed at ¢, v'*!: speed at t + 1

Output: transProb: the transition probabilities from ¢ to t + 1

1 M~ = mat € M with time interval At~ = At;
2 for each G; in G* do
3 n; = ZGZ+1€Gf+1 M_[GH[GZJA};
4 | for each GL™ in G' do
— t t+1
5 L transProb[Gé][Gﬁl]:% * Pspeed; Where pspeca=Eq. 1;

6 return transProb;

sensor might still indicate a moving speed (i.e., 2m/s). Suppose the velocity
noise follow a Gaussian distribution. We set the movement probability as follow:

1, distj’k S [do,dl}
_ (d—dg)?
P(Gk‘Gj, V¢, ’L}t+1) = e 243 s d’L.Stjyk e [do — k * cw, d()} (1)
_(d—dp?
e I dist;, € [di,dy + k * cw]

In the equation above, dist; ) is the distance between two grids G; and Gy,
typically computed by the centroid distance of such grids. The parameter k
restricts the noisy deviations into a certain range, and we empirically set k as
the standard deviation of the trajectory of GPS positions of a given mobile
device.

Emission Probability: Given the observed BS IDs as a feature Oy in a grid
state s;, we compute the emission probability b;(k) by Algorithm 2.

Algorithm 2. Emission probability calculation algorithm
Input: Vj: feature of MR record k, G;: grid locations
Output: emissionProb: the emission probabilities for observation V4 in grid G;
1 for each G; in G do
n; = amount of BS IDs in grid Gj;
n;; = amount of BS IDs equal to V; in grid Gj;
emissionProb|G;] = %J * w;;, where w;; = Eq. (2);

W N

5 return emissionProb;

Bayesian Emission Probability. Providing that we observe feature Oy from a
MR record, we first roughly estimate the probability that Oy locates on a grid
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location G;. First of all, the training samples indicate the empirical distribution
of the BS IDs in the area of interest. Then according to Bayes’ rule, we formulate
the emission problem as P(Ox|G,) = %éﬁj). For each grid location G;, we
count the number of training samples as n;. Similarly we count the number
ny; of training samples with feature Oy in grid G;. The emission probability

P(Og|Gj) is then estimated as %, which is proportional to %C‘f)j).

J
Grid Weight Enhancement. Beyond the rough estimation Zﬂ above, we are

interested in the reliability of the empirical distribution in that grid, and thus
define the weight of grid G; with observation Oy as wy;:

nj

wkj B —
ZerG(Ok) Nk

(2)

where n; denotes the number of training samples in grid G, and G(Oy) indicates
all those grids containing feature O and thus ZerG(Ok) ng computes the total
amount of training samples in all such grids.

R1 R1
GO G1 G2 G3 (9,55)
G4 G5 G6 G7 (12,67)
- , / RO G8 G9 | G10 | G11 (3,8) | (511) |(10,72)|(13,31) RO
~ .- ’J G12 | G13 | G14 | G15 (11, 80)
Trajectc;ries of
MR records G16 | G17 | G18 | G19 (10,46)
(a) (b) ()

Fig. 3. Example emission probability calculation (from left to right): (a) Example
trajectories on two roads Ro, Ri; (b) Map division by grids Go - - - Gig; (c) Empirical
distribution on the divided grids

Figure 3 shows an example to compute the emission probability. In this figure,
mobile devices are moving on two intersected roads Ry and Ri, and we divide
the map into 4 x 5 = 20 grids Gy --- G19. Assume that all the 20 gray grids
are with a certain feature (e.g., two BS IDs), i.e., Oy are all inside such 20
grids. In the right-most figure, each pair in the gray grids indicates n;; and n;,
respectively. We then emission probability of O; locating on Gg is computed as

_3 8 -
P(01|Gs) x w1 s = § * sq585767% rarsoraorar ~ 0-0081.

3.2 Regression Model

Based on the predicted grid locations of HMM model, we use the center of grids
with size of cw x cw as its coarse locations. After that, based on the coarse
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Table 3. Engineered features

Features Description

pred_loc pi’s longitude/latitude from the output of the first layer
obsv pi’s observed BS IDs
speed pi’s speed

last_loc pi—1’s longitude/latitude from the output of the first layer
last_obsv | p;—1’s observed BS IDs
last_speed | pi—1’s speed

next_loc pi+1’s longitude/latitude from the output of the first layer

next_obsv | p;+1’s observed BS IDs

next_speed | pi+1’s speed

locations generated by the first layer, we compute the contextual information
such as observed BS IDs, speed and predicted grid locations into feature vectors
in Table 3. The RAF regression model trains the features with the fine-grained
GPS coordinates. Our experiment will validate that the two-layer design per-
forms much better than the approach using the first layer HMM model alone.
We use standard RAF regression model to build the mapping from engineered
features to GPS locations (longitude/latitude pairs). The regression target is
to minimize the total error in the leaves of trees in RAF. We formulate the

regression objective as

T

= bii) @

t=14iecLt
where T is the number of trees in the forest, L? is the leaves of a tree in RAF and
D(i) is the squared error of samples in the leave 7. During the offline training
stage, the regression target S leads to the minimization of the training error.
Then as the online stage, the trained RAF model predicts GPS locations by
engineered inputs from the first layer.

4 Evaluation

Table 4. Statistics of two data sets

Jiading Campus | Siping Campus

Number of samples (4G) | 19542 2650
Number of 4G BSs 39 23
Number of samples (2G) | 13416 3585

Number of 2G BSs 91 53
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4.1 Datasets

Our experiments use two data sets collected in Shanghai city: (1): Jiading dataset
is collected from a university campus located in a rural area of the North-west
Shanghai (2): Siping dataset is collected from another university campus in an
urban area of the North-east Shanghai. We developed an Android app to collect
MR records, speed information and associated GPS position to collected the two
data sets above. Specifically, when collecting MR data, we meanwhile turn on
GPS sensors to acquire GPS coordinates.

Table 4 summarizes the two data sets. A piece of sample of the two data sets
is an MR record with a GPS location. Both two data sets are collected with
sampling rate of three seconds. Although the amount of samples and coverage
area of Siping data set are smaller than that in Jiading data set, Siping data set
includes more BSs per unit area due to dense BS deployment in urban Siping
campus than the one in rural Jiading campus.

4.2 Counterparts and Evaluation Metrics

We implement three state-of-art algorithms (the detail refers to Sect.5): (1) BS
ID-based algorithm Cell* by Leontiadis et al. [6], (2) RSSI-based algorithm NBL
by Margolies et al. [9], and (3) RSSI-based algorithm CCR by Zhu et al. [20].
Our evaluation objectives include:

— How BSLoc can outperform the BS ID-based algorithm Cell*.
— How BSLoc is comparable to the existing RSSI-based algorithms.

We evaluate BSLoc against the three algorithms by the metrics including
Mean, Median and 67% error. The three algorithms compute localization errors
by the distance between predicted locations and true locations except Cell*. Cell*
predicts the path of mobile device, which consists of several road segments. For a
MR record, the localization error is computed as the minimum distance between
its true location and predicted road segment.

4.3 Baseline Study

jiading campus(2G Data) jiading campus(4G Data) siping campus(4G Data) siping campus(2G Data)

1.0

CDF
o
o

CDF

+—+ Cell* + =+ Cell*
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Fig. 4. Comparison with best competitor for BS ID-based techniques.
Figure 4 shows the comparison of our solution including one layer (L1) and two

layer (L2) design with Cell*. Here, BSLoc only uses the serving BS ID as observa-
tion. From the result, we can see BSLoc(LL2) achieves much better accuracy than
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Cell* and BSLoc(L1) in general. For example, on Jiading 2G dataset, the median
errors (and mean errors) of three algorithms BSLoc(L1), BSLoc(L2) and Cell* are
{80.8m, 50.3m, 80.2m} ({116.0m, 79.0m, 171.3m}), respectively. BSLoc(L2)
achieves 37.3% improvement than Cell* in median error and 53.9% improve-
ment in mean error.

Specially, we find that the former 50% errors of Cell* are often lower than
our BSLoc. The reason is the difference of evaluation metrics. The localization
error of Cell* is computed by the distance between true location and predicted
road segment. In general, both BSLoc(L1) and BSLoc(L2) behave better than
Cell* on the four datasets.

4.4 Comparison with RSSI-Based Methods

o__Jiading campus(2G Data) o__ siping campus(2G Data) o siping campus(4G Data)
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Fig. 5. Comparison with latest RSSI-based algorithms.

Figure5 shows the comparison of BSLoc with the two RSSI-based algorithms
(CCR and NBL). Here, BSLoc uses first two BS IDs as observation. From the
result, we can conclude that BSLoc has comparable performance with NBL
and CCR in general. For example, the median errors (and mean errors) of
three algorithms (NBL, CCR, BSLoc) are {17.0m, 20.3m, 26.0m} ({49.7m,
30.0m, 47.7m}) on Jiading 2G dataset, and {9.4m, 6.5m, 13.1m} ({20.1m,
26.7m, 26.3m}) on Siping 2G dataset respectively. Considering the missing of
the RSSI information, the proposed method has a good performance on both
of the datasets. Since both the other two algorithms depend on the connec-
tion with neighboring BSs. Such neighboring BS IDs can hardly be obtained by
mobile apps in LTE network. The results show our new BS ID-based method
could have comparable performance with RSSI-based techniques with missing
RSSI information.

4.5 Sensitivity Study

In this section, we vary the values of the parameters, which are the grid size and
the extent of missing RSSI information, and study the sensitivity of BSLoc.

Effect of Grid Size: Figure 6(a) gives the experimental results when changing
the grid size cw. A smaller grid size means more precise locations. In this exper-
iment, we test five grid sizes: {15m, 20m, 30 m, 50 m, 100 m}. The result shows
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Fig. 6. Sensitivity study on the dataset Jiading 2G Campus: (a) Effect of grid size (b)
Effect of missing RSSI

that the best grid size for Jiading dataset is between 20m and 30 m. This is
because a smaller grid size also means less training samples in each grid, leading
to more inaccurate emission probabilities. Thus, the errors become higher when
grid size is smaller than 20 m.

Effect of Missing RSSI: In Fig. 6(b), the performance of our method changes
when adding different percentage of RSSI information. The figure shows that a
higher percentage of RSSI information brings lower localization errors in general.
The experiment validates the enhancement of signal strength information from
base stations.

5 Related Work

In this section, we review the literature work of Telco localization, including
RSSI-based and BS ID-based techniques. The RSSI-based techniques can be
classified into four categories: measurement-based methods [7,11,15,17], finger-
printing methods [4,9, 18], machine learning based methods [19,20] and sequence
methods [5,13,16]. The BS ID-based techniques are all BS infrastructure based
methods [6,10,12].

Measurement Based Methods: Measurement based methods employ signal
measurement to estimate the location distance and the angle for telco localiza-
tion. These methods suppose the signal information follows signal propagation
model and estimate the distance/angle from neighboring base stations. Then the
location of mobile device is computed via trilateration. There are a variety of
measurements such as AOA, TOA and RSS [7,11,15,17]. However, the signal
measurements are often noisy in urban areas due to multi-path propagation,
non-line-of-sight propagation and multiple access interference, leading to large
localization errors.

Fingerprinting Methods: Fingerprinting methods locate devices by compar-
ing an input MR record against a fingerprint database which is constructed
during an offline phase. The representative work CellSense [4] first divides the
map area into square grids and then builds a fingerprint database that stores the
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RSSI histogram for each grid at offline stage. Then at online stage it searches
the K nearest grid neighbors for a given MR record via empirical distribution
and returns the weighted average location. Moreover, a very recent work NBL
[9] builds a Gaussian distribution in each grid for each base station, and achieve
improvement than CellSense. Compared with measurement-based methods, fin-
gerprinting methods lead to much lower localization error.

Machine Learning Based Approaches: Machine learning based methods
build a representative feature on MR records and learn the mapping function
from the built feature to actual location through well-trained models, such as
Random Forest (RaF) and artificial neural network (ANN) [3,20]. For instance,
Zhu et al. [20] first propose a two-layer random forest regression model to learn
the location from the RSSI based features, and achieve good performance with
high accuracy. Huang et al. [3] implement a variety of machine learning based
methods for localization including Random Forest, MLP (Multilayer percep-
tron), XGBoost and etc., which has verified the effectiveness of machine learn-
ing models. In addition, Zhang et al. [19] propose a confidence level-based data
repair method to optimize Telco localization.

Sequence Methods: Sequence methods map a sequence of MR records to a
trajectory of locations. The sequence methods consider the contextual infor-
mation, i.e., time and speed context, yielding more accurate estimations than
single point methods. Mohamed et al. [5] propose a HMM model and employ
Viterbi algorithm to map a sequence of MR records to a trajectory. Ray et al.
[13] employ HMM and particle filtering algorithm to localize a sequence of MR
records. These methods have demonstrated better localization accuracy.

BS ID-Based Methods: BS ID-based methods just take as input the ID of con-
nected base stations (one or two) without signal strength information to locate
mobile devices. Paek et al. [10] matches cell-id sequence with location sequence
by Smith-Waterman algorithm. Leontiadis et al. [6] exploits the location and
azimuth information of connected base station and builds a coverage map for
each base station. The applied A* algorithm searches a path with maximum
likelihood on the generated weighted road network. Perera et al. [12] aims to pro-
vide a realtime localization approach by mathematical computations based on
the connected base station’s location and coverage shape. Nevertheless, mobile
users can hardly obtain such base station information from commercial Telco
providers. It is not hard to find that the performance of both works is not as
good as RSSI-based methods.

6 Conclusions

In this paper, we propose a BS ID-based coarse-to-fine telco localization approach
without signal strength information or position of BSs. The two-layer localization
framework first locates mobile devices in square grids, and next predict a precise
GPS location. Our experiments on two data sets have successfully validated
the advantages of our method over the state-of-art BS ID-based methods, and
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almost comparable to RSSI-based approaches. As the future, we plan to employ
sequence-to-sequence learning framework [2,14] for more precise localization.
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