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Abstract. The context of this paper is programmable matter, which
consists of a set of computational elements, called particles, in an infi-
nite graph. The considered infinite graphs are the square, triangular and
king grids. Each particle occupies one vertex, can communicate with
the adjacent particles, has the same clockwise direction and knows the
local positions of neighborhood particles. Under these assumptions, we
describe a new leader election algorithm affecting a variable to the par-
ticles, called the k-local identifier, in such a way that particles at close
distance have each a different k-local identifier. For all the presented
algorithms, the particles only need a O(1)-memory space.

Keywords: Programmable matter · Leader election · Identifier ·
Graph coloring

1 Introduction

Programmable matter can be seen as modular robots (called modules or par-
ticles) able to fix to adjacent modules and send (receive) messages to (from)
other modules fixed to the entity. Thus, the different modules form a geometric
shape which is a network. Usually, a module can fix to another module using
a finite number of ports (see Fig. 1 for an example of spherical modules). Also,
the modules know the ports that are in contact with other modules and have
a knowledge about the geographic position of their ports. Moreover, the ports
are supposed to be homogeneously distributed along the surface of each module.
Such assumptions imply that the way how the modules are on a plane can be
modeled by a grid. In this paper, we only consider modules on a plane surface,
i.e. two dimensional grids. In this context, the geometric amoebot model [6–11]
aims to model the properties of a network for programmable matter.

Distributed algorithms aim to give a theoretical algorithmic framework in
order to model the execution of an algorithm that runs on a network of com-
putational elements that can cooperate in order to solve network problems. In
distributed algorithm frameworks, it is often supposed that the different elements
of the network do not have a unique identity, i.e., the network is anonymous. In
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anonymous networks, a natural question is how to perform a leader election, i.e.,
how to determine a singular element in an anonymous network. It is well known
that for some network structures, the ring for example, there is no deterministic
leader election algorithm [1].

In 1999, Mazurkiewicz [19] has presented a deterministic general algorithm to
determine a leader (in the case it is possible to do so). In the situation where the
elements have access to a random source, then it is also proven that no algorithm
can correctly determine a leader in a ring with any probability α > 0 [15]. Due
to the assumption we make about the ports of the particles in the context of
programmable matter (a particle knows the ports which are in contacts with
other particles and knows the geographic position of its ports), the leader election
problem becomes different than in the classical system. In particular, in the field
of programmable matter, there exists a probabilistic algorithm that determine
a leader (and in particular for a ring) with probability 1 [5].

Several projects aim to build programmable matter prototypes. One of such
projects [20,23], financed by the french National Agency for Research, aims to
build cuboctahedral particles able to deform them-selves in order to move. This
project can be split in two phases, one consists in manufacturing the hardware of
prototype matters, the second consists in proposing algorithms for programmable
matter. The final goal of this project is to sculpt a shape-memory polymer sheet
with programmable matter. In the continuity of the algorithm phase of this
project [20], we propose algorithms for the self-configuration, i.e., in order to
create identifiers and spanning trees.

In the context of programmable matter [3,4,14,18,23,24], it is supposed that
a network can contain several millions of modules and that each module has
possibly a nano-centimeter size. These two facts lead us to believe that even a
O(log(n))-space memory for each module, n being the number of modules, is
not technically possible. Also, because of the large number of modules, it can
be very challenging and time consuming to implement a unique identity to the
modules when they are created. In this context, we suppose that the modules
can not store a unique identity, i.e., that the network is anonymous. In this
paper we propose deterministic O(1)-space memory algorithms to determine a
leader in the network and to create k-local identifiers of the particles. A k-local
identifier is a variable affected to each module of the network which is different
for every two modules at distance at most k. Note that leader election [5,13]
plays a significant role in numerous problems of programmable matter.

Our contribution is the following: we introduce a leader election algorithm
based on local computations and simple to implement. This algorithm works
when the structure the particles form has no hole (see Sect. 3). Also, since
the algorithm can be described as a sequence of local computations, its lim-
its (message complexity, required memory-space, etc.) are easy to analyze. We
present a distributed algorithm to construct a spanning tree in the context of
programmable matter and, also, a distributed algorithm to re-organize the port
numbers of the particles. Finally, we present an algorithm to assign a k-local
identifier to each particle. In order to compute k-local identifiers, we suppose



Distributed Leader Election and Computation of Local Identifiers for PM 161

Fig. 1. Five spherical particles forming a simple structure (circle: port of the particles).

that we have done a leader election before. The k-local identifiers are deter-
mined using graph theoretical results about the coloring of the kth power of the
grids. An advantage of the given k-local identifiers is that they are really simple
to update in case the particles move and, consequently, the structure that the
particles form changes.

This paper is organized as follows: in Sect. 2, we present our algorithmic
framework in the context of distributed algorithms for programmable network.
In the third section, we present our leader election algorithm. Finally, in Sect. 4,
we present our algorithm to assign k-local identifiers to the particles (using the
colorings from AppendixD).

2 Notation, Definitions and Our Programmable Matter
Algorithmic Framework

The geometric amoebot model [6–11] aims to model the computations that can
occur in the context of programmable matter. In this paper, we use an algorith-
mic framework inspired by the geometric amoebot model. We assume that any
structure the different particles can form is a subgraph of an infinite graph G.
In this graph, V (G) represents all possible positions the particles can occupy
and E(G) represents possible connections between particles. The set E(G) also
represents the possible movements from a position to another position (for a par-
ticle). We suppose that two particles can bond each other, i.e., can communicate
only in the case they are on adjacent positions. The two following paragraphs
are dedicated to the notation and definitions we use for graphs.

For a graph G, we denote by V (G) the vertex set of G and by E(G) ⊆ V (G)×
V (G) the edge set of G. We denote by dG(u, v), the usual distance between two
vertices u and v in G. If we consider the distance in a subgraph H of G, the
distance will be denoted by dH(u, v). The diameter of G, denoted by diam(G),
is max({dG(u, v)| u, v ∈ V (G)}). The set NG(u) = {v ∈ V (G)| uv ∈ E(G)} is
the set of neighbors of u. By Δ(G), we denote the maximum degree in G, i.e.,
the maximum cardinality of NG(u), for u ∈ V (G). Finally, we denote by G[S],
for S ⊆ V (G), the subgaph induced by the vertices from S and by G − S the
subgraph of G induced by the vertices from V (G) \ S.

In the remaining part of this paper, the graphs considered will be the infinite
square, triangular and king grids. We denote by S the square grid, by T the



162 N. Gastineau et al.

Fig. 2. Subgraphs of the square (a), triangular (b) and king (c) grids, with the port
numbers of two particles.

triangular grid and by K the king grid. A subgraph of each of these three infinite
graphs is represented in Fig. 2. Moreover, we suppose that these three grids are
represented on a plane as in Fig. 2. For these grids, the considered vertex set is
{(i, j)| i, j ∈ Z} and the edge sets are the following:

– E(S) = {(i, j)(i ± 1, j)| i, j ∈ Z} ∪ {(i, j)(i, j ± 1)| i, j ∈ Z};
– E(T) = E(S) ∪ {(i, j)(i + 1, j − 1)| i, j ∈ Z} ∪ {(i, j)(i − 1, j + 1)| i, j ∈ Z};
– E(K) = E(T ) ∪ {(i, j)(i + 1, j + 1)| i, j ∈ Z} ∪ {(i, j)(i − 1, j − 1)| i, j ∈ Z}.

We also remind the distance between two vertices (i, j) and (i′, j′) in the three
different grids:

– dS((i, j), (i′, j′)) = |i − i′| + |j − j′|;
– dT((i, j), (i′, j′)) =

{
max(|i − i′|, |j − j′|), if (i≥ i′ ∧ j ≤ j′)∨(i≤ i′ ∧ j ≥ j′);
|i − i′| + |j − j′|, otherwise;

– dK((i, j), (i′, j′)) = max(|i − i′|, |j − j′|).

Note that there is a way to draw the triangular grid in which each triangle is
equilateral. However, we prefer to draw it as a subgraph of the king grid (see
Fig. 2) in order to have illustrations for which the vertex set {(i, j)| i, j ∈ Z}
corresponds to the position of the vertices in the plane. In both representation,
the notion of distance coincide but is easier to observe in our chosen represen-
tation. However, note that the representation of the triangular grid in which
each triangle is equilateral corresponds to the optimal way to pack unit disks in
the plane (the position of the vertices in this representation corresponds to the
center of the unit disk and an edge represents a contact between two disks).

We also denote by i (mod p) or i (mod p), depending on the context, the
integer j such that j ≡ i (mod p) and 0 ≤ j < p. The remaining part of this
subsection is dedicated to our programmable matter algorithmic framework.
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We give the following properties about the particles and vertices of the graph:

– each particle occupies a single vertex and each vertex is occupied by at most
one particle;

– the subgraph induced by the occupied vertices is supposed to be connected.

The subgraph induced by the occupied vertices of V (G) is called the particle
graph and is denoted by P . The vertex occupied by a particle p is denoted by
s(p). For a particle p, NG(p) = {u ∈ V (G)| u ∈ NG(s(p))}. The ports of a
particle are the endpoints of communication. Each particle has Δ(G) ports in
a regular grid G (Δ(G) = 4 for G = S, Δ(G) = 6 for G = T and Δ(G) = 8
for G = K). The ports of a particle occupying a vertex u are represented by
the edges incident with u. An edge between two vertices represents a possible
communication between two particles p1 and p2 occupying these two vertices
using each one a different port. A particle has the following properties:

– each particle is anonymous, i.e., it does not have an identifier;
– each particle has a collection of ports, each labeled by a different integer from

{0, . . . , Δ(G) − 1};
– the port numbers are given as a function of the position of the edges on a

plane representation of the grids (see Fig. 2);
– each particle knows the labels of the ports that can communicate with parti-

cles from the neighborhood;
– each particle knows the state of the neighbors.

In our algorithmic framework, we suppose that the particles have their ports
labeled following the same clockwise order. Thus, consecutive port numbers cor-
respond to consecutive edges around a vertex (as in the representation on the
plane from Fig. 2). Note that the particles do not have the same notion of ori-
entation, i.e., there is possibly not a unique label for ports that correspond to
edges going in the same cardinal direction. In the presented algorithms, the state
of a particle will contain a variable corresponding to the status of the particle
in the leader election algorithm and the information regarding its parents and
childs for a constructed spanning tree.

The proposed algorithms in our algorithmic framework are results of succes-
sive local computations [2,21]. In particular, the first presented leader election
algorithm from Sect. 3 can be described by a graph relabeling system [2] which is
a local computation system. In this paper, the correct execution of the different
algorithms is only guaranteed if the algorithms are ran in the order depicted in
Fig. 3.

We suppose the following:

– each particle contains the same program and begins in the same state;
– the computation process is represented by successive local computations;
– no local computation occurs simultaneously on two particles at distance at

most 2;
– during a local computation, a particle can perform a bounded number of

computations and can send messages to its neighbors;
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Fig. 3. An illustration of the algorithm dependency (arrow between algorithms/results:
dependency of one algorithm to another algorithm/result).

– a round is a sequence of successive local computations for which each particle
does at least one local computation;

– an algorithm finishes in k rounds if after any k successive rounds the algorithm
is finished.

Note that the concept of rounds is used to bound the running time of the algo-
rithms. In our algorithm framework we suppose that no two particles at distance
at most 2 perform computations simultaneously in order to simplify the presen-
tation of our results. However, this supposition can be removed by implementing,
for example, a probabilistic leader election algorithm on the vertices at distance
at most 2 of one of the two vertices, i.e., by computing a random value on the
vertices at distance 2 and doing the local computation following the increasing
order of the values. In order to compute the running time of an algorithm in
case of a specific programmable matter prototype, the complexity of the algo-
rithm should be computed using the required number of rounds and the required
running time in order to avoid that two particles at distance at most 2 perform
computations simultaneously.

3 Leader Election

In this section we present a new leader election algorithm. This algorithm is very
easy to implement but requires that the particle graph has a specific structure.
In this algorithm, the required memory space is constant, the messages have
constant size, the required computation power of the particle has been optimized
and the required number of rounds is less than 2n (n being the number of
particles).

A hole in a subgraph G′ of a graph G among the three grids is a subgraph
H of G satisfying three properties:

(i) V (H) is finite, H is connected and |V (H)| ≥ 1;
(ii) V (H) ∩ V (G′) = ∅;
(iii) every vertex u ∈ V (H) satisfies NG(u) ⊆ V (H) ∪ V (G′).

Less formally, a subgraph G′ of one of the three grids contains a hole if there is
a finite space only containing vertices from V (G) \ V (G′) which are surrounded
by vertices of G′. A hole containing three vertices is illustrated in the left part
of Fig. 4. We call G′ hole-free, when G′ has no holes.
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Fig. 4. A hole in P (on the left) and the border of P in the case P is hole-free (on the
right; square: particle on the border of P ).

If the particle graph P on G is hole-free, then every particle p which satisfies
|NG(p) ∩ V (P ))| < Δ(G) is at the geographical border of the shape of P . More-
over, we call the set of particles p which satisfy |NG(p) ∩ V (P ))| < Δ(G) and
such that the vertices NG(p) − V (P ) are not all in a hole of P , the border of P .
The right part of Fig. 4 illustrates the border of P .

In addition, for a particle p occupying a vertex (i, j) of the square grid, the
four vertices (i+1, j+1), (i−1, j+1), (i+1, j−1) and (i−1, j−1) are the corners
of p and the set of corners is denoted by C(p). The extended neighborhood of
a particle p, denoted by MG(p), is the set NG(p) if G is the triangular grid or
king grid or the set NG(p) ∪ C(p) if G is the square grid. Note that we define
the extended neighborhood differently for the square grid in order to be able to
present a generic algorithm (Algorithm 1) that works for all the three grids.

We give the following definition of S-contractible particle (see Fig. 5) that
will be used in our leader election algorithm.

Definition 1. Let G be an infinite grid among S, T and K and let S ⊆ V (P ), for
P the particle graph on G. A particle p is said to be S-contractible if it satisfies
the following properties:

(I) G[MG(p) ∩ S] is connected;
(II) |NG(p) ∩ S| < Δ(G), i.e., there exists a neighbor of p in G which is not

occupied by a particle from S.

A particle p is an articulation of a connected subgraph G′ of one of the
three grids if G′ − {s(p)} is not connected. Derakhshandeh et al. [8] proposed
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Fig. 5. Two non S-contractible particles (at the center of the left and the middle
drawing) and an S-contractible particle (at the center of the right drawing) in the
triangular grid (square: particle in S; circle: particle not in S).
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a randomized leader election algorithm in the geometric amoebot model in the
case there is no particle which is an articulation. Our proposed leader election
algorithm (Algorithm1) works even if V (P ) contains a particle p which is an
articulation. However, in contrast with the leader election algorithm from Der-
akhshandeh et al. [8], Algorithm 1 does not work if P has holes. In the remaining
part of this paper, Algorithm1 is called the S-contraction algorithm.

Recently, Daymude et al. [5] have improved the algorithm from Derakhshan-
deh et al. [8] in order that it works when V (P ) contains an articulation. However,
it remains challenging to implement it.

Also, very recently, Di Luna et al. [13] have introduced a leader election algo-
rithm called consumption algorithm. The consumption and the S-contraction
algorithms both consist in successively removing the candidacy of the particles
on the border of P . However, one can easily notice that, in our algorithm, we
possibly remove the candidacy of particles having four or five neighbors (which
is not considered in the consumption algorithm). Also, the consumption algo-
rithm does not work on square and king grids and the considered theoretical
frameworks for the two algorithms are different.

In the S-contraction algorithm (Algorithm1), the particles can be in three
different states: C (candidate), N (not elected) and L (leader). We suppose that
every particle begins in the state C.

Let S be the particle in state C. Algorithm 1 consists in removing from S
the particles which are both on the border of G[S] and not articulations of G[S].
An example of the execution of Algorithm 1 is illustrated by Fig. 6. Note that,
depending on the order in which the local computations occur, the result of the
execution of the algorithm could be different. For example, between the config-
uration of Fig. 6c and that of Fig. 6d, we suppose that the local computations
occur in this order: first a local computation occurs for the bottom left particle,
second it occurs for the upper left particle, third it occurs for the upper right
particle and fourth it occurs for the last particle (we only consider the particles
which are in state C).

Algorithm 1. The S-contraction algorithm for a particle p and S the set of
particles in state C.

Case 1: State C.
if the particle is S-contractible then

if the particle has no neighbor in S then
set the state to L.

else
set the state to N.

end if
else

stay in state C.
end if
Case 2: States L or N.
Perform no further actions.
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(a) (b)

(c) (d)

Fig. 6. An example of the execution of S-contraction algorithm after one round (a),
two rounds (b), three rounds (c) and after four rounds (d; circle: non S-contractible
particle; square: S-contractible particle; triangle: particle in state N; pentagon: particle
in state L; S being the set of particles in state C).

Theorem 1. Let S be the set of particles in state C and P be the particle graph
on G. If P is hole-free, then at the end of the execution of the S-contraction
algorithm, there will be exactly one particle in the state L.

In AppendixA, the proof of Theorem 1 is given. Also, a bound on the com-
plexity of the S-contraction algorithm is given. In AppendixC, it is explained
how to combine the S-contraction algorithm with a general leader election
algorithm.

4 Assigning k-Local Identifiers to Particles

In this section, we combine the results from Sect. 3 and AppendixD in order to
correctly compute a k-local identifier. In a first subsection, we describe a way
to create a spanning tree of particles and a way to change the ports numbering
of the different particles. In a second subsection, we describe how to compute
k-local identifiers based on the coloring functions from AppendixD.

We suppose that Algorithms 2 and 3 are preceded by a leader election algo-
rithm (which could be Algorithm1). Then it follows that there is a single particle
in a specific state (the leader) and all the remaining particles are in the same
state (non elected).

4.1 Re-organizing the Particles

By N+
G (u) we denote the set of port numbers which can communicate with

particles occupying vertices from NG(u). When there is a leader, we can easily
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compute a spanning tree using a distributed algorithm (see AppendixB). Now
suppose that for each particle p, we have two set of ports parent(p) and child(p)
which contains the port numbers of the particles in communication with its
parent and with its children, respectively, in the spanning tree. In this way, the
required memory in order to store where are the children and the parent of the
particle in a spanning tree is constant (since the maximum degree is bounded in
the considered grids).

In our proposed Algorithm2, the goal is to change the way the port are num-
bered in order that every particle has its ports numbered by the same number
going in the same cardinal direction in the different grids. This algorithm does
not work if we do not have a leader among the different particles. The func-
tion rG used in Algorithm 2 is defined, depending the choice of G, as follows:
rS(i) = (i + 2) (mod 4), rT(i) = (i + 3) (mod 6) and rK(i) = (i + 3) (mod 6).

Algorithm 2. The port renumbering algorithm for a particle p.
Case 1: State L.
for each port a from child(p) send a message ma, containing a, through port a.
Case 2: State N.
if the particle receives the message mb, containing b, through the port a then

change the port number a to rG(b) and changes the port numbers of the other
ports following the clockwise order;

update both parent(p) and child(p).
end if
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Fig. 7. One spanning tree of particles, a possible numbering of the ports of the particles
before (a) and after the execution of Algorithm 2 (b) and the 4-identifier obtained by
executing Algorithm 3 (c) in the square grid (square: leader; thick line: edge of the
spanning tree; small number: port number of a particle; big number: 4-identifier of a
particle).
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The idea behind Algorithm2 is to reproduce, in each particle, the way the
ports are numbered in the leader particle. To achieve this goal, each particle
p receives a message from its parent containing the port number of the parent
connected to p and p renumbers its own ports in order that its port numbers are
coherent with the sent number. Figures 7a and b illustrate the port numbers of
particles before and after the execution of Algorithm2.

4.2 The k-Local Identifiers

Now, we aim to give to each particle a variable id, called its k-local identi-
fier, such that every two particles p1 and p2 with the same identifier satisfy
dG(s(p1), s(p2)) > k. If we suppose that the particles have not a memory of at
least log2(n) bits, for n = |P |, then it is not possible to record a unique variable
for each particle. However, it is possible to have a k-local identifier in the three
considered grids only using at most log2((k + 1)2) bits where k is a parameter
given by the user. Our proposed Algorithm3 presents an optimal way (in term of
memory) to compute k-local identifiers. We suppose that the port renumbering
algorithm (Algorithm2) has been done before executing Algorithm3.

Algorithm 3. The k-local identifier algorithm for a particle p.
Case 1: State L.
set i = 0, j = 0, id = 0;
send i and j through each port from child(p).
Case 2: State N.
if the particle receives the integers i′ and j′ through the port a then

set i = Ik
G(i′, a), j = Ik

G(j′, a), id = fk
G(i, j);

send i and j through each port from child(p).
end if

Algorithm 3 consists in assigning a variable which corresponds to a color in
a coloring of the kth power on the grid. More precisely, the function fk

G consists
in assigning a color depending the Cartesian coordinate of the vertices. Since
the colors are given following a pattern, the Cartesian coordinate can be stored
relatively to the size of the patterns. In Algorithm3, the leader affects to itself
the color 0 and following the direction where the messages are transmitted, the
particles reproduce the coloring patterns given in AppendixD. The functions fk

G

and IkG, Jk
G, used in Algorithm 3 are defined, depending on the choice of G, as

follows: fk
S (i, j) = (i + kj) (mod mk), fk

K(i, j) = i (mod k+1) + (k + 1)j (mod k+1)

and fk
T(i, j) = (i (mod 3(k+1)/2)+j(3(k+1)/2)+�2j/(k+1)
(k+1)/2)) (mod m′

k)
if k is odd or fk

T(i, j) = (i + (3k/2 + 1)j) (mod m′
k) otherwise; IkG(i, a) = i if

(a = 1; 3 ∧ G ∼= S) ∨ (a = 1; 4 ∧ G ∼= T) ∨ (a = 2; 6 ∧ G ∼= K), IkS(i, a) = i + 1
(mod �(k+1)2/2�) if a = 0, IkS(i, a) = i−1 (mod �(k+1)2/2�) if a = 2, IkT(i, a) =
i + 1 (mod �3(k + 1)2/4�) if a = 0; 5, IkT(i, a) = i − 1 (mod �3(k + 1)2/4�) if
a = 2; 3, IkK(i, a) = i+1 (mod k+1) if a = 0; 1; 7 and IkK(i, a) = i−1 (mod k+1)
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if a = 3; 4; 5; Jk
G(j, a) = i if (a = 0; 2 ∧ G ∼= S) ∨ (a = 0; 6 ∧ G ∼= T) ∨ (a =

0; 4 ∧ G ∼= K), Jk
S(j, a) = j + 1 (mod �(k + 1)2/2�) if a = 1, Jk

S(j, a) = i − 1
(mod �(k + 1)2/2�) if a = 3, Jk

T(j, a) = i + 1 (mod �3(k + 1)2/4�) if a = 1; 2,
Jk
T(j, a) = i − 1 (mod �3(k + 1)2/4�) if a = 4; 5, Jk

K(j, a) = i + 1 (mod k + 1) if
a = 1; 2; 3 and Jk

K(j, a) = i−1 (mod k+1) if a = 5; 6; 7. Note that the functions
IkG and Jk

G are used to determine the Cartesian coordinate of a particle using
the Cartesian coordinate of a neighbor and the port number of this neighbor.

Since the values of fk
G(i, j) is bounded by 3(k+1)2/4, if G is isomorphic to one

of the three grids, the size of the messages will not exceed log2(3(k + 1)2/4). As
for Algorithm 2, the number of sent messages is |V (P )| − 1. Figure 7c illustrates
the obtained 4-identifiers after the execution of Algorithm3.

Since the particles can move during the execution of an algorithm, the k-local
identifiers may become not valid anymore ( i.e., there may be two particles p1
and p2 with the same k-local identifier and with dG(s(p1), s(p2)) ≤ k) if the
structure of the particle graph P on G changes. It is possible to keep a valid
k-local identifier in case a particle moves in a direction of a port a by setting
id = fk

G(IkG(i, rG(a)), Jk
G(j, rG(a))) as the new k-local identifier. It corresponds

to update the variable id which corresponds to a color in a coloring of the kth

power on the grid in function of the new position of the particle. Also, in the
case a particle do � movements, by storing the successive directions of movement
of the particle during these � movements, it is also possible to update the value
of the k-local identifier in order that it remains valid.

Note that for both Algorithms 2 and 3 finish after at most h rounds, h being
the height of the spanning tree. Also the number of sent messages in both Algo-
rithms 2 and 3 is |V (G)| − 1 (the number of edges in a spanning tree).

5 Conclusion

In this paper, we have presented a new leader election algorithm based on local
computation. We have also presented an algorithm which affects a different vari-
able for every two particles p1 and p2 at distance at most k. All the presented
algorithms only require a O(1)-space memory. This complexity makes it possible
to use our algorithms for programmable matter. Moreover, in case of movements
of particles, there is no need of communication in order to update the k-local
identifiers.

As future work, it would be interesting to determine a more general deter-
ministic leader election algorithm in our algorithmic framework that can take
into account fault tolerance. Also, it would be interesting to extend the presented
results to 3D grids. Another interesting question could be to use our results to
clustering the set of particles in several sets which induce subgraphs of small
diameter.
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Appendix A Proof of Theorem1 and Bound on the
Complexity of the S-Contraction Algorithm

The three lemmas presented in this appendix are used in order to prove Theo-
rem 1.

In the following lemma, we describe how to determine, in the context of
programmable matter, if a particles is S-contractible or not.

Lemma 1. Let G be an infinite grid among S, T and K and let S ⊆ V (P ), for P
the particle graph on G and S the set of vertices occupied by all the particles in the
same fixed state. One round is sufficient in order that every particle determine if
it is S-contractible or not if G is isomorphic to S. Otherwise, if G is isomorphic
to T or K, no round is necessary.

Proof. Let N+(p) be the set of port labels on which p can communicate with
particles from its neighborhood. In order to verify that MG(p)∩S is connected in
the triangular or king grids, it suffices to verify that N+

G (p)∩S forms an interval
of consecutive integers (by considering that 0 and Δ(G)−1 are consecutive). For
example, {0, 4, 5} contains successive integers in the triangular grid but that is
not the case for {0, 2, 5}. Such verification in the triangular and king grids can be
done during any local computation. Figure 5 illustrates three possible cases that
could happen for a particle in the triangular grid. On the left part of Fig. 5, the
particle does not satisfy Property (I) but satisfies Property (II). On the middle
part of Fig. 5, the particle satisfies Property (I) and does not satisfy Property
(II). Finally, on the right part of Fig. 5, the particle satisfies both Properties (I)
and (II).

In the square grid, in order to test if a particle p is such that MG(p) ∩
S is connected, it requires to receive N+

G (p′) ∩ S, from the particle p′ in the
neighborhood of p and afterward to test if N+

G (p) only contains consecutive
integers (by considering that 0 and 3 are consecutive) and then to verify, for any
two successive particles p′ and p′′ from the neighborhood, that the vertex which
corresponds to the corner adjacent to both p′ and p′′ is occupied by a particle.

If G is among T and K, then no round is required to know if a particle is in
S or not (since a particle know the state of its neighbors). If G is isomorphic to
S, then, in one round, which consists in sending the values of N+(p) ∩ S to the
adjacent particles, every particle knows if it is S-contractible or not. �

The following lemma is be useful in order to prove that our leader election
algorithm works correctly.

Lemma 2. Let G be an infinite grid among S, T and K and let S ⊆ V (P ), for
P the particle graph on G. Let p be an S-contractible particle. If S is connected
and hole-free, then S − {s(p)} is connected and hole-free.

Proof. First, note that in all three grids, the fact that |NG(p) ∩ S| < |NG(p)|
implies that there is a vertex v in NG(p) \ S. By contradiction, suppose we
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create a hole in G[S] by removing the vertex s(p) from S. This implies, since
G[MG(p) ∩ S] is connected, that v was already in a hole from G[S]. Second,
since G[MG(p) ∩ S] is connected, we are sure that the subgraph G[S \ {s(p)}] is
connected. ��

To ensure that our leader election algorithm works correctly, it remains to
prove that there always exists an S-contractible particle. That is what we do in
the following Lemma.

Lemma 3. Let S ⊆ V (P ), for P the particle graph on G. If G[S] is hole-free,
then there always exists an S-contractible particle in S.

Proof. Note that there exists a particle on the border of G[S] since S is finite.
Let A be the set of particles on the border of G[S]. For any particle p, the fact
that there are at least two connected components B1 and B2 in G[MG(p) ∩ S]
implies that there is no path in G[S \ {s(p)}] between any vertex of B1 and a
vertex of B2, since it would imply the existence of a hole in G[S] containing a
vertex from MG(p) \ S. Therefore, if p ∈ A and if p is not an S-contractible
particle, then p is an articulation of G[S].

Now suppose, by contradiction, that there is no S-contractible particle in
S. By the previous remark, the graph G[A] is connected and all particles of A
are articulations of G[S]. However, a finite graph containing a cycle contains
vertices which are not articulation of G[S]. Thus, G[A] contains no cycle (G[A]
is a forest). However, by definition, the leaves (the vertices of degree 1) are
S-contractible. Thus, we obtain a contradiction with the fact that there is no
S-contractible particle in S. ��
In the case P is hole-free, note that by Lemmas 2 and 3 there is always a particle
which is both on the border of G[S] and not an articulation of G[S].

Proof (Proof of Theorem 1). Note that before the execution of the algorithm,
the set S is the set V (P ). Since P is hole-free and connected and by Lemma 2,
S remains connected and hole-free during the execution of the algorithm. By
Lemma 3, there is always a particle in S which is S-contractible (every particle
on the border which is not an articulation is S-contractible). Thus, for every
round, the number of particles in state C strictly decreases. Since |V (P )| is
finite, we are sure that at some point, S will only contain one vertex. If at some
point, S contains one vertex, there will be at least one elected leader.

Finally, note that the fact that there are two elected leaders contradicts the
fact that S remains connected during the execution of the algorithm. ��

Let G′ be a subgraph of G such that G′ is hole-free, the radius of G′, denoted
by r(G′), is given by r(G′) = minu∈V (G′) {maxv∈A(dG′(u, v))}, for A the set of
the particles on the border of G′. Moreover, let h(T ) be the height of a tree T ,
i.e., h(T ) = minu∈V (T ) {maxv∈V (T ), |NT (v)|=1 (dT (u, v))} and let mtree(G′) be
the maximum height among all induced subgraphs of G′ which are trees, i.e.,
among the set {G′[B]| B ⊆ V (G′), G′[B] is a tree}.

In the following Proposition, we give a bound on the required number of
rounds for the termination of Algorithm1.
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Proposition 1. Let S be the set of particles in state C and P be the particle
graph on G. Moreover, let bG = r(P ) + mtree(P ) + 1 if G is isomorphic to T

or K or bG = 2(r(P ) + mtree(P )) + 2 if G is isomorphic to S. If P is hole-free,
then after bG(P ) rounds of the S-contraction algorithm on P , one particle will
be the leader.

Proof. First, suppose G is isomorphic to T or K. Let St be the set of particles
in state C after the first t rounds. Note that after r(P ) + 1 rounds we are sure
that every remaining particle u satisfies |NG(u) ∩ Sr(S)+1| < NG(u). This is
due to the fact that each particle u on the border of Si, for i ≥ 0, is not in
Si+1 if |NG(u) ∩ Sr(S)+1| < NG(u). Thus, by Lemma 2, G[Sr(P )+1] is either a
tree or empty. By definition, we have h(G[Sr(P )+1]) ≤ mtree(P ). Note that in
the case G[St] is not a trivial tree (a tree containing only one vertex), we have
h(G[St+1]) = h(G[St]) − 1, for t ≥ r(P ) + 1. Therefore, we obtain that St is
empty if t ≥ r(P ) + mtree(P ) + 1.

Second, suppose G is isomorphic to S. Note that, by Lemma 1, one round is
sufficient in order that every particle determines if it is S-contractible. Conse-
quently, it is easy to observe that the required number of rounds in order that
the S-contraction algorithm finishes for S is bounded by two times the required
number of rounds in order that the S-contraction algorithm finishes for T or K.

��

Appendix B An Example of Algorithm in Order to
Construct a Spanning Tree

Our proposed algorithm (Algorithm4) for constructing a spanning tree consists
in setting the particle in state L as the root and, afterward, constructing a
spanning tree using a classical distributed spanning tree algorithm.

Algorithm 4. A spanning-tree algorithm for a particle p.
Case 1: State L (leader).
set child(p) = N+

G (p);
send a message m (which only contains the bit 0) through each port from child(p).
Case 2: State N (not elected).
if the particle receives the message m through the port a then

if the particle has never received the message m before then
set parent(p) = a;
set child(p) = N+

G (p)\{a1, . . . , a�}, where a1, . . ., a� are ports on which p has
received the message m;

send the message m through each port from child(p).
end if

end if
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Appendix C Combining the S-Contraction Algorithm
with a General Leader Election Algorithm

Daymude et al. [5] introduced a leader election algorithm that works on every
configuration of P . In this appendix we present a way to reduce the required
number of rounds in order that this algorithm finishes its execution (by using
the S-contraction algorithm). In the remaining part of this appendix, the leader
election algorithm from [5] will be called the general leader election algorithm
(to the best of our knowledge, it is the only leader election algorithm for pro-
grammable matter working on every configuration).

In order to simplify the presentation of the results, we only discuss the results
for the triangular grid. However, by modifying the algorithms it is possible to
make it work for the square and king grids also. We begin this appendix by
describing how the general leader election algorithm works. This description
will help the reader to convince itself that, in a lot of cases, combining the S-
contraction algorithm with a general leader election algorithm could be a good
idea.

For particle p and a port a of p connected to another particle, we denote by
n(a) the port number of the first port of p connected to a particle after a in
the clockwise order. The general leader election algorithm uses the fact that it
is possible to send a message around a boundary. Sending a message around a
boundary consists in sending and re-transmitting the message in the following
way: for a particle p, if a message is received from the port a, then the particle
re-transmits the message to the particle connected to p by the port n(a) of p.
Figure 8 represents how the messages are transmitted in this case.

Fig. 8. The way how the messages are re-transmitted in the algorithm of Daymude
et al. [5] (square: articulation; dashed arrow: message transmitted along the border;
simple arrow: message transmitted along the hole).

For each hole H of the particle graph P on G, we denote by b(H), the set of
particles which are adjacent with a vertex of H. Also, when a particle is adjacent
to vertices of different holes or when a particle belongs to the border of P , it is
possible to decompose particles in agents, each agent corresponding to a different
hole or to the border. Thus, an agent will be either adjacent to vertices of at
most one hole or belong to the border but never both.

The general leader election algorithm can be summarized as the succession
of four phases. A first phase consists in removing the candidacy of each par-
ticle having six neighbors. A second phase consists, for each hole H of P , to
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remove the candidacy of some agents of b(H) using a randomized procedure.
Simultaneously, the same process is done for agents in the border of P . A third
phase consists in verifying if there is only one candidate in b(H), for each hole
H of P and only one candidate in the border of P . They calculate the relative
positions of the candidates in order to do such verification. Finally, in the last
phase, they verify if the remaining candidates agents are in b(H) or in border of
P . The leader will be the candidate particle of the border of P . We can verify
if an agent is in b(H) by sending a message around the boundary and verifying
when the message comes back to the initial particle if this message has been re-
transmitted in the clockwise direction or not. As Fig. 8 illustrates, the messages
re-transmitted through the boundary of a hole are re-transmitted in the coun-
terclockwise direction and the messages re-transmitted through the border of P
are re-transmitted in the clockwise direction. In all these phases, the messages
are re-transmitted around a boundary.

The required number of rounds in order that the general leader election
algorithm finishes its execution is O(�), where � is the number of particles in the
border of P .

We do the following remark about the S-contraction algorithm that comes
from the fact that for any S-contractible particle p of S, if G[S] is connected,
then G[S \ {s(p)}] is also connected.

Remark 1. If the particle graph P has a hole then, after the execution of the
S-contraction algorithm on the particle graph P on G there will remain particles
in state C. Also, the graph induced by the particles in state C is connected.

In particular when P has one hole, the remaining particles in state C will form a
ring in the triangular grid. Thus, it is possible to run the S-contraction algorithm
and, afterward, execute the general leader election algorithm on the remaining
particle in state C. Let Sc be the set of particles in state C after the S-contraction
algorithm on the particle graph P on G. Depending on the structure of P , it
could happen that the number of particles in the border T [Sc] is smaller than in
the border of P and that it speeds the execution of the general leader election
algorithm. For example, that is always the case when P has at most one hole.

Appendix D Coloring the kth Power of Graph

The kth power of a graph G is the graph on the same vertex set than G and with
edges connecting every two vertices u and v satisfying dG(u, v) ≤ k. Note that
there is a correlation between this definition and the kth power of the adjacency
matrix of G (the adjacency matrix of the kth power of G is easily obtained from
this matrix). Our goal in this appendix is to determine an optimal coloring of
the kth power of the square, triangular and king grids. We use these colorings in
order to propose a distributed algorithm (supposing we have a leader) in order
to assign k-local identifiers to the particles (see Sect. 4). A coloring of the kth

power of a grid corresponds to assign a value to each vertex of the graph such
that every two vertices with the same assigned value are at distance at least
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k + 1. An example of coloring of the kth power of the square grid is represented
by Figs. 9 and 10. In Fig. 9, it is easy to notice that every two vertices with color
0 (or any other color) are at distance at least 4.

More formally, a k-coloring of a graph G is a map c from V (G) to {0, 1, . . . , k−
1} which satisfies c(u) �= c(v) for every uv ∈ E(G). The chromatic number
χ(G) of G, is the smallest integer k such that there exists a k-coloring of G.
The kth power Gk of a graph G is the graph obtained from G by adding an
edge between every two vertices satisfying dG(u, v) ≤ k. More details about the
coloring of the kth power of graphs can be found in the survey from Kramer and
Kramer [17]. The results presented in this appendix are inspired by the previous
works [12,16,22] about the coloring of the kth power of the grids.

D.1 Coloring the kth Power of Square Grids

We give the following result from Fertin et al. [12].

Theorem 2 ([12]). For any k ≥ 1, χ(Sk) = �(k + 1)2/2�.

Let mk = �(k + 1)2/2�. In their paper, Fertin et al. define an optimal coloring
c of the kth power of the square grid as follows: c((i, j)) = (i + kj) (mod mk).
In Figs. 9 and 10, we represent patterns for coloring the 3th and 4th powers of
the square grid. These patterns have been obtained using the coloring from [12].
Note that since there is a pattern, a vertex (i, j) can determine its color only
knowing i (mod mk) and j (mod mk). We recall the definition of the following
function fk

S (i, j) = (i+kj) (mod mk). Note that fk
S (i, j) = fk

S (i′, j′), in the case
i ≡ i′ (mod mk) and j ≡ j′ (mod mk) This function is used in order to assign
k-local identifiers to particles.

0 1 2 3 4 5 6 7

3 4 5 6 7 0 1 2

6 7 0 1 2 3 4 5

1 2 3 4 5 6 7 0

4 5 6 7 0 1 2 3

7 0 1 2 3 4 5 6

2 3 4 5 6 7 0 1

5 6 7 0 1 2 3 4

Fig. 9. A pattern for coloring the 3th power of the square grid.
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0 1 2 3 4 5 6 7 8 9 10 11 12

5 6 7 8 9 10 11 12 0 1 2 3 4

10 11 12 0 1 2 3 4 5 6 7 8 9

2 3 4 5 6 7 8 9 10 11 12 0 1

7 8 9 10 11 12 0 1 2 3 4 5 6

12 0 1 2 3 4 5 6 7 8 9 10 11

4 5 6 7 8 9 10 11 12 0 1 2 3

9 10 11 12 0 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10 11 12 0

6 7 8 9 10 11 12 0 1 2 3 4 5

11 12 0 1 2 3 4 5 6 7 8 9 10

3 4 5 6 7 8 9 10 11 12 0 1 2

8 9 10 11 12 0 1 2 3 4 5 6 7

Fig. 10. A pattern for coloring the 4th power of the square grid.

D.2 Coloring the kth Power of Triangular Grids

The chromatic number of the kth power of the triangular grid has been deter-
mined by Sevcikova [22].

Theorem 3 ([22]). For any k ≥ 1, χ(Tk) = �3(k + 1)2/4�.

Let m′
k = �3(k + 1)2/4�. We recall the definition of the following function:

fk
T(i, j) =

⎧⎨
⎩

(i (mod 3(k+1)/2) + j(3(k + 1)/2)+
�2j/(k + 1)
(k + 1)/2)) (mod m′

k) if k is odd;
(i + (3k/2 + 1)j) (mod m′

k) otherwise.

Note that fk
T(i, j) = fk

T(i′, j′), in the case i ≡ i′ (mod m′
k) and j ≡ j′ (mod m′

k).
This function is used in order to assign k-local identifiers to particles.

D.3 Coloring the kth Power of King Grid

To our knowledge, the chromatic number of the king grid has not been deter-
mined yet. However, in contrast with the triangular grid, the chromatic number
of the kth power of the king grid is easy to determine. In this subsection, we
determine the exact value of the chromatic number of the kth power of the king
grid.
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Theorem 4. We have χ(Kk) = (k + 1)2.

Proof. Let Kk be the subgraph of K induced by the vertices {(i, j) ∈ V (K)| 0 ≤
i ≤ k, 0 ≤ j ≤ k}. Note that diam(Kk) = k and that |V (Kk)| = (k + 1)2. Thus,
since each vertex of Kk must be colored differently in a coloring of the kth power
of the king grid, we obtain that χ(Kk) ≥ (k+1)2. We define the coloring function
c((i, j)) = i (mod k+1) + (k + 1)j (mod k+1). Note that we have dK(u, v) ≥ k + 1,
for every two vertices u and v with the same color in K. Therefore, we obtain
that χ(Kk) = (k + 1)2. ��

Note that since there is a pattern, a vertex (i, j) can determine its color only
knowing i (mod (k + 1)) and j (mod (k + 1)). We recall the definition of the
following function fk

K(i, j) = i (mod k+1)+(k+1)j (mod k+1). Note that fk
K(i, j) =

fk
K(i′, j′), in the case i ≡ i′ (mod k + 1) and j ≡ j′ (mod k + 1). This function

is used in order to assign k-local identifiers to particles.
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