
Seth Gilbert · Danny Hughes
Bhaskar Krishnamachari (Eds.)

 123

LN
CS

 1
14

10

14th International Symposium on Algorithms and Experiments
for Wireless Sensor Networks, ALGOSENSORS 2018
Helsinki, Finland, August 23–24, 2018
Revised Selected Papers

Algorithms
for Sensor Systems

Lecture Notes in Computer Science 11410

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7411

http://www.springer.com/series/7411

Seth Gilbert • Danny Hughes
Bhaskar Krishnamachari (Eds.)

Algorithms
for Sensor Systems
14th International Symposium on Algorithms and Experiments
for Wireless Sensor Networks, ALGOSENSORS 2018
Helsinki, Finland, August 23–24, 2018
Revised Selected Papers

123

Editors
Seth Gilbert
National University of Singapore
Singapore, Singapore

Danny Hughes
KU Leuven
Heverlee, Belgium

Bhaskar Krishnamachari
University of Southern California
Los Angeles, CA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-14093-9 ISBN 978-3-030-14094-6 (eBook)
https://doi.org/10.1007/978-3-030-14094-6

Library of Congress Control Number: 2019932168

LNCS Sublibrary: SL5 – Computer Communication Networks and Telecommunications

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-3298-7412
http://orcid.org/0000-0001-6227-9500
http://orcid.org/0000-0002-9994-9931
https://doi.org/10.1007/978-3-030-14094-6

Preface

The 14th International Symposium on Algorithms and Experiments for Wireless
Networks was held during August 23–24, 2018 at Helsinki, Finland.

AlgoSensors is an international symposium dedicated to the algorithmic aspects of
wireless networks. Originally focused on sensor networks, it now covers algorithmic
issues arising in wireless networks of all types of computational entities, static or
mobile, including sensor networks, sensor-actuator networks, and autonomous robots.
The focus is on the design and analysis of algorithms, models of computation, and
experimental analysis.

AlgoSensors 2018 was organized as part of ALGO 2018, which also hosts Algo-
Cloud, ATMOS, ESA, IPEC, WABI, and WAOA. Submissions were sought in all
areas of wireless networking, broadly construed, including both theoretical and
experimental perspectives.

AlgoSensors 2018 received a total of 39 submissions. Although they were treated in
a unified manner, there were two tracks for submissions: algorithms (30 submissions)
and experiments (nine submissions). After a rigorous and thorough review process by
our Program Committee of international experts, 15 papers were accepted for the final
program (12 from algorithms submissions and three from the experimental
submissions).

We would like to thank all the TPC members for their valuable time in reviewing the
papers, our publicity chair, Theofanis Raptis, for bringing the venue to the attention of
researchers around the world, our local co-chairs, Parinya Chalermsook, Petteri Kaski,
and Jukka Suomela, for their assistance in organizing the event, and the AlgoSensors
Steering Committee, particularly Sotiris Nikoletseas (Chair) for his guidance and
assistance in every step of the process.

January 2019 Seth Gilbert
Danny Hughes

Bhaskar Krishnamachari

Organization

General Chair

Robert Bai University of Cambridge, UK

Program Committee Chairs

Seth Gilbert National University of Singapore, Singapore
Danny Hughes KU Leuven, Belgium
Bhaskar Krishnamachari University of Southern California, USA

Steering Committee

Josep Diaz U.P. Catalunya, Spain
Magnus M. Halldorsson Reykjavik University, Iceland
Bhaskar Krishnamachari University of Southern California, USA
P. R. Kumar Texas A&M University, USA
Sotiris Nikoletseas

(Chair)
University of Patras and CTI, Greece

Jose Rolim University of Geneva, Switzerland
Paul Spirakis University of Patras and CTI, Greece
Adam Wolisz T.U. Berlin, Germany

Program Committee

Chaodong Zheng Nanjing University, China
Stephan Holzer Massachusetts Institute of Technology, USA
Bogdan Chlebus University of Colorado Denver, USA
Jó Ueyama University of São Paulo, Brazil
Christian Schindelhauer University of Freiburg, Germany
Patrick Thiran Ecole Polytechnique Fédérale de Lausanne, Switzerland
Magnus M. Halldorsson Reykjavik University, Iceland
Gowri Sankar

Ramachandran
University of Southern California, USA

Raphael Eidenbenz ABB Corporate Research, Switzerland
Qiang-Sheng Hua Huazhong University of Science and Technology, China
Kevin Lee Nottingham Trent University, UK
Chantal Taconet Télécom SudParis, France
Jose Proenca HASLab - INESC TEC/University of Minho, Portugal
Dariusz Kowalski University of Liverpool, UK
Utz Roedig Lancaster University, UK
Kristof Van Laerhoven University of Siegen, Germany

Fabian Kuhn University of Freiburg, Germany
Philipp Sommer ABB Corporate Research, Switzerland
Philipp M. Scholl Universität Freiburg, Germany
Davy Preuveneers K.U. Leuven, Belgium
Artur Czumaj The University of Warwick, UK

VIII Organization

Contents

Local Gossip and Neighbour Discovery in Mobile Ad Hoc
Radio Networks . 1

Avery Miller

Competitive Routing in Hybrid Communication Networks 15
Daniel Jung, Christina Kolb, Christian Scheideler,
and Jannik Sundermeier

On the Approximability and Hardness of the Minimum Connected
Dominating Set with Routing Cost Constraint. 32

Tung-Wei Kuo

On the Maximum Connectivity Improvement Problem. 47
Federico Corò, Gianlorenzo D’Angelo, and Cristina M. Pinotti

Average Case - Worst Case Tradeoffs for Evacuating 2 Robots
from the Disk in the Face-to-Face Model . 62

Huda Chuangpishit, Konstantinos Georgiou, and Preeti Sharma

Mutual Visibility by Asynchronous Robots on Infinite Grid 83
Ranendu Adhikary, Kaustav Bose, Manash Kumar Kundu,
and Buddhadeb Sau

Optimal Gathering by Asynchronous Oblivious Robots in Hypercubes. 102
Kaustav Bose, Manash Kumar Kundu, Ranendu Adhikary,
and Buddhadeb Sau

Barrier Coverage Problem in 2D . 118
Adil Erzin and Natalya Lagutkina

Time- and Energy-Aware Task Scheduling in Environmentally-Powered
Sensor Networks . 131

Lars Hanschke and Christian Renner

Mobility-Aware, Adaptive Algorithms for Wireless Power Transfer
in Ad Hoc Networks . 145

Adelina Madhja, Sotiris Nikoletseas, and Alexandros A. Voudouris

Distributed Leader Election and Computation of Local Identifiers
for Programmable Matter . 159

Nicolas Gastineau, Wahabou Abdou, Nader Mbarek, and Olivier Togni

Reaching Consensus in Ad-Hoc Diffusion Networks 180
Dariusz R. Kowalski and Jarosław Mirek

Filling Arbitrary Connected Areas by Silent Robots with Minimum
Visibility Range . 193

Attila Hideg, Tamás Lukovszki, and Bertalan Forstner

BSLoc: Base Station ID-Based Telco Outdoor Localization 206
Jinhua Lv, Qinpei Zhao, Jiangfeng Li, Yige Zhang, Xiaolei Di,
Weixiong Rao, Mingxuan Yuan, and Jia Zeng

Orientation Estimation Using Filter-Based Inertial Data Fusion
for Posture Recognition . 220

David Segarra, Jessica Caballeros, Wilbert G. Aguilar, Albert Samà,
and Daniel Rodríguez-Martín

Author Index . 235

X Contents

Local Gossip and Neighbour Discovery
in Mobile Ad Hoc Radio Networks

Avery Miller(B)

University of Manitoba, Winnipeg, MB R3T 2N2, Canada
avery.miller@umanitoba.ca

Abstract. We propose a new task called δ-local gossip, which can be
viewed as a variant of both gossiping and geocasting. We motivate its
study by showing how the tasks of discovering and maintaining neigh-
bourhood information reduce to solving δ-local gossip. We then provide
a deterministic algorithm that solves δ-local gossip when nodes travel on
a line along arbitrary continuous trajectories with bounded speed.

Keywords: Mobile radio networks · Information dissemination ·
Neighbour discovery

1 Introduction

Designing deterministic algorithms for communication tasks in mobile radio net-
works is difficult due to the fact that the neighbourhoods of nodes can change
frequently and unpredictably while an algorithm is executing. Overcoming such
difficulties is an important step towards designing ad hoc networks of devices
that can cooperate to perform tasks with little to no human supervision, such as
self-driving cars or aerial robotic drones. When a radio-equipped device is turned
on, it may know some initial information about itself and possibly its location,
but it does not have any information about other nearby devices. To form an
ad hoc network, devices need to coordinate communication amongst themselves,
despite wireless signal interference and changing neighbourhoods, so that they
can perform more complex and interesting tasks. Solutions to such tasks often
assume that every device initially has information about all other devices within
its communication range (or even slightly beyond). We are interested in filling
the current gaps in what is known about collecting this initial information with-
out making simplifying assumptions, e.g., without assuming that there is an
initial period during which devices are stationary.

To formalize the notion of sharing and collecting information among nearby
mobile nodes, we define a new task called δ-local gossip. This task can be viewed
as a variant of both gossiping [16] and geocasting [3]: each node initially has a
piece of information that it needs to share, but rather than sharing it with all
other nodes (as in gossiping), it shares this information with all nodes that
enter a certain region (as in geocasting). However, the region is defined as all

c© Springer Nature Switzerland AG 2019
S. Gilbert et al. (Eds.): ALGOSENSORS 2018, LNCS 11410, pp. 1–14, 2019.
https://doi.org/10.1007/978-3-030-14094-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14094-6_1&domain=pdf
http://orcid.org/0000-0002-8231-3697
https://doi.org/10.1007/978-3-030-14094-6_1

2 A. Miller

points that are within a δ-multiple of p’s transmission range, so it depends on
p’s movement (unlike in geocasting where the region is fixed).

In this paper, we restrict our study to deterministic solutions for δ-local gossip
and neighbour discovery. Our motivation stems from the fact that the collection
of information could be an initial step or a subroutine of an algorithm that per-
forms a more complex task. Randomized solutions that allow small amounts of
error may cause subsequent algorithms that depend on accurate initial informa-
tion to fail. For example, algorithms for calculating transmission schedules, for
determining routing paths, or for avoiding physical collisions, could all be sensi-
tive to errors in information about nearby nodes. This is particularly important
in applications where human life is at risk. Further, one cannot amplify the suc-
cess probability of a randomized algorithm for information collection by using
repetition, since the neighbourhoods of mobile nodes can change across different
executions.

The organization of the paper is as follows. In Sect. 1.1, we define our models
of mobile radio networks and define δ-local gossip. In Sect. 2, we motivate the
study of δ-local gossip by showing its connections to neighbour discovery. In
Sect. 3, we give a solution to δ-local gossip in a specific model that involves
nodes moving on a line along arbitrary continuous trajectories with bounded
speed. Due to limited space, the formal proofs have been omitted, but can be
found in [17].

1.1 Models and Definitions

We formally define a mobile radio network model called Mobile-Rcv, which orig-
inally appeared in [8]. The network consists of a fixed set V of n nodes with
distinct identifiers. With each node p, we associate a trajectory function p: given
a time τ as input, p[τ] is p’s location in the environment at time τ . Each node
moves along a continuous trajectory, and, at all times, its speed is bounded
above by some known constant σ. Each node can accurately determine its loca-
tion relative to a global origin. Unless specified otherwise, we assume that every
node knows its entire trajectory function. We assume that nodes have synchro-
nized clocks. Time is partitioned into slots, where each slot is an interval of fixed
length. For all i ≥ 1, all nodes execute slot i of their algorithm at the same time.

Each node in V possesses a radio with which it can perform a transmission
on the shared channel in any slot t. A node can only start transmissions at slot
boundaries, and the length of each transmission is exactly the length of one slot.
If a node is not transmitting in a slot, we say that it is listening. Each radio has
transmission radius R and interference radius R′. A node p receives a message
from a node q if and only if all of the following hold: (1) p does not transmit
during slot t; (2) q transmits during slot t, and, at all times τ in slot t, the
distance between p and q at time τ is at most R; (3) for all nodes q′ �= q that
transmit during slot t, at all times τ in slot t, the distance between q′ and p at
time τ is greater than R′. If the first two of the above conditions are satisfied,
but the third is not, then we say that a transmission collision occurs due to
interference. We assume that nodes do not possess collision detectors, so, for

Local Gossip and Neighbour Discovery 3

each node p and each slot t, either p receives a message in {0, 1}∗ from a node
q during slot t, or, p receives ⊥ during slot t (which represents “no message”).
We assume that all nodes know the values of R, R′, and σ. For two nodes u, v,
we say that v is a neighbour of u for slot t, if, when u is the only transmitting
node in slot t, v receives u’s transmitted message in slot t. In particular, u and
v are neighbours for slot t if the distance between them for the entirety of slot t
is at most R. The neighbour graph Gnbr is a sequence of graphs {Gt}t≥1 where,
for each t ≥ 1, we have V (Gt) = V and {u, v} ∈ Gt if and only if u and v are
neighbours for slot t.

Local Gossip. Informally, the main task considered in this paper is to guarantee
that every node obtains a piece of information from each node that is ever located
within a δ-multiple of its transmission radius. For example, if δ > 1, this could
allow nodes to get advance warning before another node becomes its neighbour.

Definition 1 (δ-local gossip). Suppose that each node p in the network ini-
tially possesses a piece of information Ij. Given a constant δ > 0, there is a
known Tδ > 0 such that each node terminates at the end of slot Tδ and, at ter-
mination, for all nodes pj and pk such that d(pj , pk) ≤ δR at some time before
or at the end of slot Tδ, pj knows Ik.

The condition that d(pj , pk) ≤ δR at some time during the execution is quite
weak. For example, the distance between pj and pk could be greater than δR up
until the exact moment that they both terminate. Also, if δ > 1, it is possible
that nodes pj and pk are never within transmission range of one another. Further,
the task does not even require that pj and pk receive at least one transmission
from one another, even if they are neighbours for the entire execution. This could
happen due to signal interference from simultaneous transmissions.

At a high level, δ-local gossip is similar to geocasting [3], in that information
must be disseminated to all nodes within a specified region. However, there are
several significant differences. First, the geocasting task specifies a single source
with a single piece of information, whereas, in δ-local gossip, each node has a
distinct piece of information that it must share. In this sense, δ-local gossip
can be considered a ‘multi-source’ version of geocasting. Also, in geocasting, the
region within which the source’s information must be shared is fixed relative to
the starting point of the source, whereas, in δ-local gossip, the region follows
the node’s trajectory. Finally, in geocasting, only nodes that stay within the
specified region for a long time must receive the source’s message, whereas, in
δ-local gossip, for any node q that is within distance δR from a node p at some
time during the execution, p must receive q’s piece of information.

1.2 Related Work

Motived by real-world networks, there has been increased activity in the theo-
retical study of distributed algorithms for mobile and dynamic networks [2,15].
Much of this study has focused on dynamic graph models, while some mod-
els opt to explicitly include device movement along continuous trajectories and

4 A. Miller

must deal with the resulting geometric considerations. In this latter category,
the existing work about information dissemination (i.e., broadcasting, gossiping,
geocasting) is most closely related to our work [1,3,16].

A survey of results regarding neighbour discovery in mobile networks can
be found in [12]. In the model we consider in this paper, some previous work
solves the neighbourhood maintenance task, in which it is assumed that each
node initially knows its neighbourhood exactly, and, at all times before termina-
tion, each node must maintain an accurate list of its neighbours. Two solutions
are known for this task in the Mobile-Rcv model: one for the line network by
Ellen, Welch and Subramanian [8], which we refer to as the EWS algorithm, and
one for road networks by Chung, Viqar and Welch [4], which we refer to as the
CVW algorithm. These algorithms work if a certain amount of neighbourhood
information is initially known by each node. In [4], they state that this infor-
mation can be acquired by running a gossiping algorithm for static networks,
under the assumption that all nodes stay close to their starting position for the
entire execution. In Sect. 2, we will show how a δ-local gossip algorithm can be
used to ensure that each node acquires this initial information without mak-
ing such an assumption. In the Mobile-Rcv model with R′ = R, Cornejo et al.
[6] provide an algorithm for a neighbour discovery task that we call “continual
stable-neighbour discovery” in Sect. 2. Their solution assumes the existence of a
MAC layer, as defined in [14] (without aborts), so they do not need to consider
transmission collisions. There are currently no deterministic implementations of
the MAC layer that they use, and the probabilistic implementations that they
cite do not guarantee message delivery.

2 Neighbour Discovery and Local Gossip

Neighbour discovery has been well-studied in the case of static networks, i.e.,
where the devices do not move or fail [5,10,13,18,19]. However, in mobile net-
works, it is not even clear how to define the task: since the neighbour graph
Gnbr is a dynamic graph that can change often during an algorithm’s execution,
which nodes should a node v consider as its neighbours? In this section, we for-
malize neighbour discovery tasks and prove reductions that show the natural
connections between neighbour discovery and δ-local gossip.

To solve a neighbour discovery task, each node p must calculate, at the start
of each slot t, a neighbour list for slot t, which we denote by List(p, t). To define a
neighbour discovery task, we will specify conditions on the relationship between
List(p, t) and p’s actual set of neighbours in Gt, denoted by NBRS (p, t). In all
cases, we assume that nodes have no initial information about their neighbours.

We distinguish between neighbourhood discovery tasks in several ways. First,
we consider the permanence of the task: do nodes determine their neighbour-
hoods for a specific slot, i.e., one-time discovery, or do nodes keep learning about
their neighbourhoods as the neighbourhoods change, i.e., continual discovery?
One-time algorithms are useful in order to satisfy the initial conditions of a sub-
sequent algorithm. In this case, we want all nodes to terminate the neighbour

Local Gossip and Neighbour Discovery 5

discovery algorithm at the same time, and we want all nodes to determine who
their neighbours are at termination. In contrast, when discovering neighbours
to facilitate on-going communication tasks such as routing, we want nodes to
continually learn about changes in their neighbourhood. Next, we consider the
accuracy of the task. In some problems, each node’s neighbour list must match
its actual neighbourhood exactly. For other problems, each node’s neighbour list
will be a subset or superset of its neighbourhood. Depending on the application,
algorithms that calculate inexact neighbour lists might be sufficient. For exam-
ple, if nodes are keeping a list of neighbours in order to avoid physical collisions,
then, as long as each node’s neighbour list is always a superset of its actual
neighbourhood, the system can accomplish its goal. However, such a solution
might be less efficient than in the case where exact neighbourhoods are known.

Using the above distinctions, we give formal definitions for six neighbour
discovery tasks and provide reductions from each task to δ-local gossip. The
reductions are general, i.e., they do not depend on our specific communication
model. In what follows, suppose that we have an algorithm LG(δ) that solves
δ-local gossip, and we denote its running time by |LG(δ)|.
One-Time Exact Neighbour Discovery. A solution to this task guarantees
that, at termination, each node knows the ID of each of its neighbours for the
next slot. Such an algorithm is useful as an initialization step before executing an
algorithm that assumes that each node initially knows its exact neighbourhood.
This is equivalent to how neighbour discovery is defined for static networks. A
parameter TInit specifies how long the discovery process takes.

Definition 2. An algorithm solves one-time exact neighbourhood discovery if,
for some known TInit > 0, every execution terminates at the end of slot TInit,
and, at termination, each node p has List(p, TInit + 1) = NBRS (p, TInit + 1).

Define algorithm OENL as the execution of LG(1), where, for each pj , the value
of Ij is pj ’s trajectory for slot |LG(1)| + 1.

Lemma 1. OENL solves one-time exact neighbour discovery with TInit =
|LG(1)| + 1.

Continual Exact Neighbour Discovery. This is the strongest possible ver-
sion of neighbour discovery: after some fixed number of slots, all nodes know the
identity of all neighbours at all times.

Definition 3. An algorithm solves continual exact neighbour discovery if, for
some known TInit > 0, during every execution, List(p, t) = NBRS (p, t) for
every node p and every slot t ≥ TInit + 1.

First, we consider models where each node knows its entire future trajectory.
One approach is to use a known neighbourhood maintenance algorithm. For
example, in the Mobile-Rcv model where nodes travel along arbitrary, continu-
ous trajectories on a line, we could run the EWS algorithm [8]. Similarly, in the

6 A. Miller

Mobile-Rcv model where nodes travel along arbitrary, continuous trajectories in
a road network, we could run the CVW algorithm [4]. However, both of these algo-
rithms make strong assumptions about each node initially knowing the entire
future trajectories of all other nodes within a certain distance. Let EWSINIT be
the algorithm that consists of executing a 4

3 -local gossip algorithm where, for
each node pj , we take Ij to be pj ’s entire future trajectory. Let CVWINIT be the
algorithm that consists of executing a 13

11 -local gossip algorithm where, for each
node pj , we take Ij to be pj ’s entire future trajectory. The following results can
be verified using the model constraints from [8] and [4], respectively.

Lemma 2. In the Mobile-Rcv model where nodes travel along arbitrary contin-
uous trajectories on the line, executing EWSINIT followed by EWS solves continual
exact neighbour discovery with TInit = |LG(43)|.
Lemma 3. In the Mobile-Rcv model where nodes travel along arbitrary contin-
uous trajectories in road networks, executing CVWINIT followed by CVW solves
continual exact neighbour discovery with TInit = |LG(1311)|.

We can weaken the assumption about entire trajectory knowledge by using δ-
local gossip to communicate trajectory updates. In each phase of our algorithm,
called CENL, each node shares enough future trajectory information to ensure
that all nodes can correctly calculate their neighbourhoods for all slots up until
the completion of the next phase. More specifically, for some fixed δ (to be
specified later), let phase i ≥ 0 consist of the slots i|LG(δ)|+1, . . . , (i+1)|LG(δ)|.
During each phase i, all nodes execute LG(δ), where each pj sets Ij to be its
trajectory for slots (i + 1)|LG(δ)| + 1, . . . , (i + 2)|LG(δ)|. So, by the end of phase
i, each neighbour of pj during phase i + 1 receives pj ’s trajectory for all times
in phase i + 1. The value of δ is chosen so that, for any node pj , every node
that is a neighbour of pj during at least one slot in phase i + 1 is located within
distance δR of pj at some time during phase i. It is sufficient to choose δ such
that δR ≥ R + 2σ|LG(δ)|.
Lemma 4. CENL solves continual exact neighbour discovery with TInit = |LG(δ)|,
where δ satisfies δR ≥ R + 2σ|LG(δ)|.

One-Time Stable-Neighbour Discovery. In some applications, it might be
useful to learn about neighbours that, in a sense, can be considered to be more
‘dependable’. That is, node p cares only about neighbours that will stay nearby
for a while, and ignores nodes that enter its neighbourhood and then leave shortly
afterward. For example, in the context of routing algorithms, such a neighbour
discovery algorithm could be used to periodically update routing tables at every
node.

Definition 4. An algorithm solves one-time stable-neighbour discovery if, for
some fixed TInit > 0 and some fixed TStable > 0, every execution terminates at
the end of slot TInit, and, for all nodes p, q ∈ List(p, TInit + 1) if and only if
q ∈ NBRS (p, t) for all t ∈ {TInit + 1, . . . , TInit + TStable}.

Local Gossip and Neighbour Discovery 7

Suppose that, for some Ftraj > |LG(1)|, each node initially knows its trajec-
tory for slots |LG(1)| + 1, . . . , Ftraj. Define algorithm OSNL as the execution of
LG(1) where, for each node pj , the value of Ij is defined as its trajectory for slots
|LG(1)|+1, . . . , Ftraj. At the end of slot |LG(1)|, let List(p, |LG(1)|+1) = {pk | Ik

has been received, and, pk will be a neighbour for all slots |LG(1)|+1, . . . , Ftraj}.

Lemma 5. OSNL solves one-time stable-neighbour discovery with TInit = |LG(1)|
and TStable = Ftraj − |LG(1)|.

Continual Stable-Neighbour Discovery. In the continual version of stable-
neighbour discovery, we want node p to consider a node q as a neighbour if and
only if q enters p’s neighbourhood and stays for a while. Informally, if q is a
neighbour of p for all slots during some sufficiently long interval, then q must
be contained in p’s neighbour list for some suffix of the interval. Conversely, if p
includes q in its neighbour list for some slot t, it must be the case q is a neighbour
of p for a sufficiently long interval that includes t. A parameter TStable specifies
how many slots must elapse before two neighbours are considered “stable”, while
a parameter TDelay specifies an upper bound on the amount of delay before a
node adds a stable neighbour to its neighbour list.

Definition 5. An algorithm solves continual stable-neighbour discovery if there
exist TStable > 0 and TDelay ≥ 0 such that, for every node p, every slot t, and
every T ≥ t + TStable − 1: if q ∈ NBRS (p, t′) for all t′ ∈ {t, . . . , T}, then
q ∈ List(p, t′′) for all t′′ ∈ {t + TDelay, . . . , T}, and, if q ∈ List(p, t), then
there exists t′ ∈ {t − TStable + 1, . . . , t} such that q ∈ NBRS (p, t′) for all t′′ ∈
{t′, . . . , t′ + TStable − 1}.

We now describe an algorithm, CSNL, for continual stable-neighbour discov-
ery. At a high level, our solution proceeds in phases, each consisting of an exe-
cution of LG(1). Initially, each node’s neighbour list is empty for all slots. When
a node p receives trajectory information about a node q that will be its neigh-
bour for a while, then p adds q to its neighbour list for the appropriate future
slots. More specifically, we ensure that, by the end of each phase i, each node p
receives q’s trajectory information for phases i and i + 1, for each node q within
distance R of p at some time during phase i. Using this trajectory information,
p can determine if q is a neighbour for a suffix of phase i and a prefix of phase
i + 1 whose lengths a and b, respectively, add up to at least |LG(1)| + 1 slots. In
this case, p adds q to its neighbour list for the first b slots of phase i + 1. Our
algorithm proceeds as follows at each node pj and for each phase i ≥ 0 consisting
of slots i|LG(1)| + 1, . . . , (i + 1)|LG(1)|:
– Set Ij to be pj ’s trajectory for slots i|LG(1)|+1, . . . , (i+2)|LG(1)|. Run LG(1)

at the start of slot i|LG(1)| + 1.
– At the end of each slot during which a message containing some Ik is received:

find the largest positive integer a ≤ |LG(1)| such that pj and pk are neighbours
for every slot in {(i+1)|LG(1)|+1−a, . . . , (i+1)|LG(1)|}, and find the largest
positive integer b ≤ |LG(1)| such that pj and pk are neighbours for every slot

8 A. Miller

in {(i + 1)|LG(1)| + 1, . . . , (i + 1)|LG(1)| + b}. If a + b ≥ |LG(1)| + 1, put pk in
List(pj , t) for each t ∈ {(i + 1)|LG(1)| + 1, . . . , (i + 1)|LG(1)| + b}.

Lemma 6. CSNL solves continual stable-neighbour discovery with TStable =
|LG(1)| + 1 and TDelay = |LG(1)|.

One-Time Delayed Neighbour Discovery. Another version of neighbour-
hood discovery involves each node discovering which nodes are its neighbours,
but allowing a certain amount of delay before this occurs. An upper bound on
the amount of delay is specified by a TDel parameter. A node’s neighbour list at
termination could be a subset or a superset of its actual neighbourhood, but the
learned neighbourhood information can still provide useful estimates. For exam-
ple, if there is a known upper bound σ on the speed of nodes, then, knowing
that a node q was a neighbour t′ slots ago can help provide a range of possible
locations for q in the current slot.

Definition 6. An algorithm solves one-time delayed neighbour discovery if, for
some fixed TInit > 0 and some fixed TDel > 0, every execution terminates at the
end of slot TInit, and, for all nodes p, node q ∈ List(p, TInit + 1) if and only if
q ∈ NBRS (p, t) for some t ∈ {TInit − TDel + 1, . . . , TInit}.

Define algorithm ODNL as the execution of LG(1), where, for each pj , the value
of Ij is defined as its trajectory for slots 1, . . . , |LG(1)|. For each Ij received, p can
determine whether or not pj was a neighbour at some time during the previous
|LG(1)| slots.

Lemma 7. ODNL solves one-time delayed neighbour discovery with TInit =
TDel = |LG(1)|.

Continual Delayed Neighbour Discovery. In the continual version of
delayed neighbour discovery, we want each node to discover its neighbours within
a bounded number of slots, and, if a node p has a node q in its neighbour list,
then q must have been a neighbour of p in the recent past.

Definition 7. An algorithm solves continual delayed neighbour discovery if, for
some fixed TDel > 0, for every node p and every slot t, if q ∈ NBRS (p, t), then
q ∈ List(p, t′) for some t′ ∈ {t + 1, . . . , t + TDel}. Also, if q ∈ List(p, t), then
q ∈ NBRS (p, t′) for some t′ ∈ {t − TDel, . . . , t − 1}.

Define algorithm CDNL as a sequence of phases, each consisting of an execution
of LG(1). In each phase i ≥ 0, each node pj sets Ij to be its trajectory for slots
i|LG(1)| + 1, . . . , (i + 1)|LG(1)|. If a node pj receives a message containing Ik

during some slot t in phase i, it compares Ik with its own trajectory for all slots
that occur during phase i. If it determines that, for some slot t′ of phase i, pk is
its neighbour, it adds pk to List(pj , t

′ + 1), . . . , List(pj , (i + 1)|LG(1)| + 1).

Lemma 8. CDNL solves continual delayed neighbour discovery with TDel =
|LG(1)|.

Local Gossip and Neighbour Discovery 9

3 Solving Local Gossip

For the Mobile-Rcv model where nodes travel along continuous trajectories on
a line with speed bounded above by σ, we describe a region-based transmis-
sion schedule RBSched and use it to solve δ-local gossip. At a high level, each
phase of RBSched consists of a subset of the nodes running a particular schedule
that is based on cover-free families of sets. By carefully specifying which nodes
participate in which phases, we ensure that each node transmits frequently and
that the contents of its transmitted message gets propagated quickly in both
directions.

The Phase Schedule. In each phase of RBSched, we use a schedule called PS
based on cover-free families of sets [9,11]. For any set S, an r-cover for S is a
set family of size r that does not contain S and whose union does contain S. For
r ≥ 1, an r-cover-free family F is a family of sets such that, for each S ∈ F ,
there is no r-cover for S consisting of sets from F − {S}. The number of sets
in a family F is called the size of F , denoted by |F |. The length T of a family
F is the largest integer contained in at least one set in F . It is known that
there exists r-cover-free families with T ∈ O(r2 log |F |) [9]. It was shown in [5]
that an r-cover-free family with size |F | and length T can be converted into a
transmission schedule with T slots for nodes with IDs in the range {1, . . . , |F |}
such that, for each set X of at most r + 1 nodes, for each node p ∈ X, there is
a slot in which p is scheduled to transmit and all nodes in X − {p} listen.

In what follows, we denote by Δ a known upper bound on the maximum
degree of any vertex in the neighbour graph, taken over all slots t, i.e., Δ ≥
maxv,t{|NBRS (v, t)|}. Let PS denote the schedule obtained from a ((3+2ρ)(Δ+
1))-cover-free family of size U , where ρ = �(R′/R)�. Let |PS| denote the number
of slots in the resulting schedule. From the discussion above, we can assume that
|PS| ∈ O(ρ2Δ2 log U), and that the following observation holds.

Observation 1. Consider any set X of at most (3+2ρ)(Δ+1) nodes. For each
node p ∈ X, there is a slot in PS during which p is scheduled to transmit and all
nodes in X − {p} listen.

Different implementations for PS could increase the algorithm’s robustness.
For example, the (r; d)-cover-free families from Dyachkov et al. [7], with r =
(3 + 2ρ)(Δ + 1), could be used to construct a schedule that gives a stronger
property than Observation 1: for each node p ∈ X, there are at least d slots
during which p is scheduled to transmit and all nodes in X − {p} listen. This
could help in models which include some amount of unpredictable interference
or some number of transient failures.

The Full Schedule. Our model assumes that each node can accurately deter-
mine its location relative to a global origin. Using this origin, we divide
the line into regions of length R, each overlapping its neighbouring regions
by 5σ|PS| units. Specifically, for all z ∈ Z, region ψz is the set of points
[z(R − 5σ|PS|), z(R − 5σ|PS|) + R). We partition the set of time slots into

10 A. Miller

phases of |PS| slots each, i.e., for all a ∈ N, phase πa is the set of slots
a|PS| + 1, . . . , (a + 1)|PS|. In each phase, a set of participants will start exe-
cuting PS, and those that stay within the same region for the entire phase are
survivors. More formally, a node p is a participant in phase πa for region ψz if
p is located in region ψz at the start of phase πa and z ≡ a mod 2. Denote by
Pa,z the set of such participants. A node p is a survivor in phase πa for region
ψz if p is located in region ψz at all times during phase πa and z ≡ a mod 2.
Denote by Sa,z the set of such survivors.

We now define the schedule RBSched. At the beginning of each phase πa, each
node p checks if its current location is in a region ψz such that a ≡ z mod 2. If
this is not the case, then node p listens for the entire phase. If located in such
a region ψz, then p ∈ Pa,z and so it starts running PS at the start of phase. If
p ever leaves region ψz during phase πa, it immediately stops executing PS and
listens for the remainder of the phase. When a node pj transmits, its message
contains all of the information that it knows, i.e., Ij ∪{Ik | node pj has previously
received Ik}. The total number of phases will be specified later.

Analyzing the Schedule. From our definitions of regions and phases in the
previous section, we notice that: each region is of size R, so that two nodes in
the same region are within communication range; the overlap between regions
is large enough so that, for example, if a node crosses the rightmost border
of region ψz frequently within some phase, then the node is actually found in
region ψz+1 for the entire phase; and, it is also the case that even if a node travels
at maximum speed σ, it cannot pass through an entire region during a single
phase. We depend on two assumptions that relate the various model parameters.
Assumption (A1) is about density: between the leftmost and rightmost nodes,
there is never an empty line segment of length R

2 . Assumption (A2) is that
R ≥ 10σ|PS|, which ensures that each region ψz only overlaps with regions ψz−1

and ψz+1.
For our analysis, we define two types of “windows”. At a high level, these

windows represent how fast information propagates through the network. When
a transmission containing some information I occurs during a phase πa, we
consider windows that move leftward and rightward, once every 3 phases, from
a region ψz where the transmission originated. Formally, we say that, for phase
πa+3ϕ, a node q is located in a rightward-moving window if it is located in region
πz+ϕ for the entire phase. We make analogous definitions for leftward-moving
windows. We will determine an upper bound on the elapsed time before an
arbitrary node q is found within a window, which gives a bound on how soon q
will receive I.

Node Location Bounds. Based on the upper bound σ on node speed and the
length |PS| of each phase, we get the following upper bound on how far a node
can travel from a known location within a bounded amount of time.

Observation 2. If, at some time during phase πa′ , node p is located at a point
x, then, at all times from the beginning of phase πa′−k until the end of phase
πa′+k, p is located in [x − (k + 1)σ|PS|, x + (k + 1)σ|PS|].

Local Gossip and Neighbour Discovery 11

Next, we use Observation 2 to prove that each node is a survivor at least
once in every two consecutive phases, which implies that each node transmits
often.

Lemma 9. Suppose that, at the beginning of phase πa′ , node p is located in
segment SEGz′ . Then, p ∈ Sa′,z′ ∪ Sa′+1,z′ .

Using the definitions of windows and the limit on node speed, we can prove
the following result, which says that all nodes found within a certain area of the
environment have all been located within a window at some time.

Theorem 1. Suppose that a ≡ z mod 2 and γ ≥ 0. If node q is located in
((z −γ)(R−5σ|PS|)+σ|PS|, (z +γ)(R−5σ|PS|)+R−σ|PS|) at the end of phase
πa+3γ , then, for some ϕ ∈ {−γ, . . . , γ}, q ∈ Sa+3|ϕ|,z+ϕ.

Message Propagation Bounds. Suppose that p is a survivor in phase πa for
region ψz, and that p transmits a message containing I during phase πa. Our goal
is to show that I soon gets re-transmitted by nodes in ψz and nearby regions.
First, we show that all survivors in phase πa for region ψz, other than p, receive
I during phase πa.

Lemma 10. Every q ∈ Sa,z receives a message from each p ∈ Sa,z −{q} during
phase πa.

To prove the above, we determine which nearby regions might contain nodes
that cause transmission collisions at nodes in ψz during phase πa, set X to be
all nodes that are located in these regions, and then bound |X| from above by
(3 + 2ρ)(Δ + 1). Then, by Observation 1, we note that PS is a schedule that
ensures that, for each node p′ ∈ X, there is a slot in phase πa such that p′

transmits and all nodes in X − {p′} listen. So, for each p ∈ Sa,z, there is a slot
during which p transmits and that p’s transmission is received by all other nodes
that are within radius R of p for the entire slot (which includes all of Sa,z −{p}).

A careful analysis shows that I gets transmitted again three phases later by
at least one node in each region that overlaps with ψz. An induction argument
shows that this propagation of I continues in both directions, essentially at a
rate of one region per every three phases, as stated in the following result.

Theorem 2. Suppose that p ∈ Sa,z and p transmits I during phase πa. For every
� ∈ Z, if Sa+3|�|,z+� �= ∅, then there exists a node in Sa+3|�|,z+� that transmits I
during phase πa+3|�|.

Theorems 1 and 2 are combined to provide the following guarantee about the
speed of information dissemination amongst nodes following RBSched.

Theorem 3. Suppose that there is a node p ∈ Sa,z for some phase πa and region
ψz. During phase πa, suppose that p transmits a message containing information
I. If, for some γ ≥ 0, a node q is located in ((z − γ)(R − 5σ|PS|) + σ|PS|, (z +
γ)(R − 5σ|PS|) + R − σ|PS|) at the end of phase πa+3γ , then q receives I by the
end of phase πa+3γ .

12 A. Miller

Our Local Gossip Algorithm. Let α =
⌈

δR+2σ|PS|+1
R−8σ|PS|

⌉
. Given δ > 0, our

algorithm for δ-local gossip, denoted by LG(δ), consists of each node running the
schedule RBSched for exactly 3α + 2 phases. Since δ, R, σ and |PS| are known
values, it is clear that all nodes terminate the algorithm at the same time.

Suppose that, at the beginning of some phase πa, a node p is located in
some region ψz. Let q be a node within distance δR from p during a phase πb

with b ≥ a. The following result limits the number of regions that lie between
region ψz and q’s location during phases after πb. In particular, even at maxi-
mum speed, it takes 3 phases for q to move a distance of one region away from
region ψz.

Lemma 11. Suppose that, at the beginning of phase πa, an arbitrary node p is
located in region ψz. For any k ≥ α, suppose that q is within distance δR of p
at some time between the beginning of phase πa and the end of phase πa+3k. At
the end of phase πa+3k, q is located in ((z − k)(R − 5σ|PS|) + σ|PS|, (z + k)(R −
5σ|PS|) + R − σ|PS|).

Suppose p is a survivor for some region ψz in phase πa when it first transmits
its initial information I. If RBSched is executed for the next 3α + 1 phases, it
follows from Lemma 11 and Theorem 3 that I has been received by each node
q that is found within distance δR from p at some time during the execution.
By Lemma 9, node p is a survivor at least once within two consecutive phases,
which proves that running RBSched for 3α + 2 phases suffices.

Theorem 4. Consider any network node pj with initial information Ij. For
any δ > 0, after executing LG(δ), each node that is within distance δR from pj

at some time during the execution has received Ij before termination. Further,
δ < α ≤ 5δ + 3, which implies that LG(δ) uses at most 15δ + 11 phases, and no
fewer than 3δ + 3 phases, where each phase consists of O(ρ2Δ2 log U) slots.

4 Conclusion and Future Work

Local gossip is a task that captures the need for nodes in a mobile network to
share information with other nearby nodes, even if they are not within communi-
cation range of one another for a long period of time. A solution to this task can
be useful as a fundamental building block in algorithms for mobile networks,
and we have demonstrated that this is the case with neighbour discovery via
reductions that hold very generally. The resulting solutions to neighbour discov-
ery need not make the simplifying assumptions made elsewhere in the literature,
and they are deterministic, which means that they can be used as subroutines
without introducing error. By solving the local gossip task in the one-dimensional
Mobile-Rcv model, we obtain solutions to one-time exact neighbour discovery in
the same model, which can be used to answer open questions about initializing
the algorithms in [4,8,16].

Important directions for future work are to solve δ-local gossip in more gen-
eral environments, such as road networks or the plane, and different interference

Local Gossip and Neighbour Discovery 13

models, such as SINR. An important generalization is to weaken the assumption
that the transmission radius is the same for all nodes. A challenging problem to
consider would be to determine the trade-off between future trajectory knowl-
edge and feasible values of the parameters for neighbour discovery tasks. Such
a trade-off would have an impact on the design of real-world systems, where
there can be varying degrees of future trajectory knowledge. For example, satel-
lites or bus routes are fully specified in advance, while a self-driving car has a
planned route until it reaches its destination, while a human-controlled car has
no knowledge of its future trajectory.

Acknowledgements. This work was partially supported by NSERC Discovery Grant
2017-05936. The author would like to thank Faith Ellen for her invaluable advice that
substantially increased the quality of the results and presentation of this research.

References

1. Anta, A.F., Milani, A., Mosteiro, M.A., Zaks, S.: Opportunistic information dis-
semination in mobile ad-hoc networks: the profit of global synchrony. Distrib. Com-
put. 25(4), 279–296 (2012). https://doi.org/10.1007/s00446-012-0165-9

2. Augustine, J., Pandurangan, G., Robinson, P.: Distributed algorithmic foundations
of dynamic networks. SIGACT News 47(1), 69–98 (2016). https://doi.org/10.1145/
2902945.2902959

3. Baldoni, R., Anta, A.F., Ioannidou, K., Milani, A.: The impact of mobility on
the geocasting problem in mobile ad-hoc networks: solvability and cost. Theor.
Comput. Sci. 412(12–14), 1066–1080 (2011). https://doi.org/10.1016/j.tcs.2010.
12.006

4. Chung, H.C., Viqar, S., Welch, J.L.: Neighbor knowledge of mobile nodes in a road
network. In: 2012 IEEE 32nd International Conference on Distributed Computing
Systems, 18–21 June 2012, Macau, China, pp. 486–495. IEEE Computer Society
(2012). https://doi.org/10.1109/ICDCS.2012.16

5. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes,
and broadcasting on unknown radio networks. In: Kosaraju, S.R. (ed.) Proceed-
ings of the Twelfth Annual Symposium on Discrete Algorithms, 7–9 January
2001, Washington, DC, USA, pp. 709–718. ACM/SIAM (2001). http://dl.acm.
org/citation.cfm?id=365411.365756

6. Cornejo, A., Viqar, S., Welch, J.L.: Reliable neighbor discovery for mobile ad
hoc networks. Ad Hoc Netw. 12, 259–277 (2014). https://doi.org/10.1016/j.adhoc.
2012.08.009

7. Dyachkov, A.G., Rykov, V.V., Rashad, A.M.: Superimposed distance codes. Prob-
lems Control Inform. Theory/Problemy Upravlen. Teor. Inform. 18(4), 237–250
(1989)

8. Ellen, F., Subramanian, S., Welch, J.: Maintaining information about nearby pro-
cessors in a mobile environment. In: Chaudhuri, S., Das, S.R., Paul, H.S., Tirtha-
pura, S. (eds.) ICDCN 2006. LNCS, vol. 4308, pp. 193–202. Springer, Heidelberg
(2006). https://doi.org/10.1007/11947950 22

9. Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered
by the union of r others. Israel J. Math. 51, 79–89 (1985)

https://doi.org/10.1007/s00446-012-0165-9
https://doi.org/10.1145/2902945.2902959
https://doi.org/10.1145/2902945.2902959
https://doi.org/10.1016/j.tcs.2010.12.006
https://doi.org/10.1016/j.tcs.2010.12.006
https://doi.org/10.1109/ICDCS.2012.16
http://dl.acm.org/citation.cfm?id=365411.365756
http://dl.acm.org/citation.cfm?id=365411.365756
https://doi.org/10.1016/j.adhoc.2012.08.009
https://doi.org/10.1016/j.adhoc.2012.08.009
https://doi.org/10.1007/11947950_22

14 A. Miller

10. Gasieniec, L., Pagourtzis, A., Potapov, I., Radzik, T.: Deterministic communi-
cation in radio networks with large labels. Algorithmica 47(1), 97–117 (2007).
https://doi.org/10.1007/s00453-006-1212-3

11. Kautz, W., Singleton, R.: Nonrandom binary superimposed codes. IEEE Trans.
Inf. Theory 10(4), 363–377 (1964)

12. Khan, A.A., Rehmani, M.H., Saleem, Y.: Neighbor discovery in traditional wireless
networks and cognitive radio networks: basics, taxonomy, challenges and future
research directions. J. Netw. Comput. Appl. 52, 173–190 (2015). https://doi.org/
10.1016/j.jnca.2015.03.003

13. Krishnamurthy, S., et al.: Time-efficient distributed layer-2 auto-configuration for
cognitive radio networks. Comput. Netw. 52(4), 831–849 (2008). https://doi.org/
10.1016/j.comnet.2007.11.013

14. Kuhn, F., Lynch, N.A., Newport, C.C.: The abstract MAC layer. Distrib. Comput.
24(3–4), 187–206 (2011). https://doi.org/10.1007/s00446-010-0118-0

15. Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. SIGACT News
42(1), 82–96 (2011). https://doi.org/10.1145/1959045.1959064

16. Miller, A.: Gossiping in one-dimensional synchronous ad hoc wireless radio net-
works. In: Blin, L., Busnel, Y. (eds.) 4th Workshop on Theoretical Aspects of
Dynamic Distributed Systems, TADDS 2012, 17 December 2012, Roma, Italy, pp.
32–43. ACM (2012). https://doi.org/10.1145/2414815.2414822

17. Miller, A.: Deterministic neighbourhood learning in ad hoc wireless radio networks.
Ph.D. thesis, University of Toronto (2014). http://hdl.handle.net/1807/68138

18. Mittal, N., Krishnamurthy, S., Chandrasekaran, R., Venkatesan, S., Zeng, Y.: On
neighbor discovery in cognitive radio networks. J. Parallel Distrib. Comput. 69(7),
623–637 (2009). https://doi.org/10.1016/j.jpdc.2009.03.008

19. Vaya, S.: Round complexity of leader election and gossiping in bidirectional radio
networks. Inf. Process. Lett. 113(9), 307–312 (2013). https://doi.org/10.1016/j.
ipl.2013.02.001

https://doi.org/10.1007/s00453-006-1212-3
https://doi.org/10.1016/j.jnca.2015.03.003
https://doi.org/10.1016/j.jnca.2015.03.003
https://doi.org/10.1016/j.comnet.2007.11.013
https://doi.org/10.1016/j.comnet.2007.11.013
https://doi.org/10.1007/s00446-010-0118-0
https://doi.org/10.1145/1959045.1959064
https://doi.org/10.1145/2414815.2414822
http://hdl.handle.net/1807/68138
https://doi.org/10.1016/j.jpdc.2009.03.008
https://doi.org/10.1016/j.ipl.2013.02.001
https://doi.org/10.1016/j.ipl.2013.02.001

Competitive Routing in Hybrid
Communication Networks

Daniel Jung, Christina Kolb(B), Christian Scheideler, and Jannik Sundermeier

Computer Science Department, Heinz Nixdorf Institute, Paderborn University,
Fürstenallee 11, 33102 Paderborn, Germany

{jungd,ckolb,scheideler,janniksu}@mail.upb.de

Abstract. Routing is a challenging problem for wireless ad hoc net-
works, especially when the nodes are mobile and spread so widely that
in most cases multiple hops are needed to route a message from one node
to another. In fact, it is known that any online routing protocol has a
poor performance in the worst case, in a sense that there is a distribu-
tion of nodes resulting in bad routing paths for that protocol, even if the
nodes know their geographic positions and the geographic position of the
destination of a message is known. The reason for that is that radio holes
in the ad hoc network may require messages to take long detours in order
to get to a destination, which are hard to find in an online fashion.

In this paper, we assume that the wireless ad hoc network can make
limited use of long-range links provided by a global communication
infrastructure like a cellular infrastructure or a satellite in order to com-
pute an abstraction of the wireless ad hoc network that allows the mes-
sages to be sent along near-shortest paths in the ad hoc network. We
present distributed algorithms that compute an abstraction of the ad
hoc network in O (

log2 n
)

time using long-range links, which results in
c-competitive routing paths between any two nodes of the ad hoc net-
work for some constant c if the convex hulls of the radio holes do not
intersect. We also show that the storage needed for the abstraction just
depends on the number and size of the radio holes in the wireless ad
hoc network and is independent on the total number of nodes, and this
information just has to be known to a few nodes for the routing to work.

Keywords: Greedy routing · Ad hoc networks · Convex hulls ·
c-competitiveness

1 Introduction

Nowadays almost every person has a cell phone. Hence, in a city center the
density of cell phones would, in principle, be sufficiently high to set up a well-
connected wireless ad hoc network spanning the entire city center, which could

This work was partially supported by the German Research Foundation (DFG) within
the Collaborative Research Center ‘On-The-Fly Computing’ (SFB 901).

c© Springer Nature Switzerland AG 2019
S. Gilbert et al. (Eds.): ALGOSENSORS 2018, LNCS 11410, pp. 15–31, 2019.
https://doi.org/10.1007/978-3-030-14094-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14094-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-14094-6_2

16 D. Jung et al.

then be used for interesting applications in the area of social networks. Wireless
ad hoc networks have the advantage that there is no limit (other than the band-
width and battery constraints) on the amount of data that can be exchanged
while the amount of data that can be transferred at a reasonable rate via long-
range links using the cellular infrastructure or satellite is limited (by some data
plan) or costly. Due to the nice property of being able to exchange massive
amounts of data for free, wireless ad hoc networks can be used in applications
requiring the transfer of huge data, for example video sharing. However, routing
in a mobile ad hoc network is challenging, even if the geographic position of the
destination is known, since buildings or other obstacles like rivers may create
radio holes that make it non-trivial to find a near-shortest routing path. So the
question we address in this paper is:

Can long-range links be used effectively to find near-shortest routing paths
in the ad hoc network?

A simple solution to that problem would be that all nodes regularly post their
geographic position and the nodes within their communication range to a server
in the Internet. This would allow the server to compute optimal routing paths so
that whenever a node wants to forward a message to a certain destination, the
server can tell it which of the neighbors to send it to. An alternative approach
that we are pursuing in this paper is a purely peer-to-peer based approach in
which no other equipment other than the cell phones and an infrastructure for
the long-range links needs to be used. To the best of our knowledge, our approach
is the first one that is making use of a global communication infrastructure in
a peer-to-peer manner in order to efficiently determine short routing paths for
an ad hoc network. Wireless ad hoc networks have been considered before that
utilize base stations in order to exchange messages more effectively, but there,
messages will be sent via long-range links to bridge long distances while we will
only allow messages to be sent via ad hoc links.

1.1 Model

Throughout this paper, we consider V ⊂ R
2 to be a set of nodes in the Euclidean

plane with unique IDs (e.g., phone numbers), where |V | = n. For any given pair
of nodes u = (ux, uy), v = (vx, vy), we denote the Euclidean distance between u

and v by ||uv|| =
√

(ux − vx)2 + (uy − vy)2. We model our cell phone network
as a hybrid directed graph H = (V,E,EAH) where the node set V represents the
set of cell phones, an edge (v, w) is in E whenever v knows the phone number
(or simply ID) of w, and an edge (v, w) ∈ E is also in the ad hoc edge set
EAH whenever v can send a message to w using its Wifi interface. For all edges
(v, w) ∈ E \ EAH , v can only use a long-range link to directly send a message
to w. We adopt the unit disk graph model for the edges in EAH , where for any
point set V ⊆ R

2 the Unit Disk Graph of V , UDG (V), is a bi-directed graph
that contains all edges (u, v) with ||uv|| ≤ 1. We assume UDG (V) to be strongly
connected so that a message can be sent from every node to every other node
in V by just using ad hoc edges. While the ad hoc edges are fixed, the nodes

Competitive Routing in Hybrid Communication Networks 17

can nevertheless change E over time: If a node v knows the IDs of nodes w and
w′, then it can send the ID of w to w′, which adds (w,w′) to E. This procedure
is called ID-introduction. Alternatively, if v deletes the address of some node w
with (v, w) ∈ E, then (v, w) is removed from E. There are no other means of
changing E, i.e., a node v cannot learn about an ID of a node w unless w is in
v’s UDG-neighborhood or the ID of w is sent to v by some other node.

Moreover, we consider synchronous message passing in which time is divided
into rounds. More precisely, we assume that every message initiated in round i
is delivered at the beginning of round i+1, and a node can process all messages
in a round that have been delivered at the beginning of that round.

1.2 Objective

Our objective is to design an efficient routing algorithm for ad hoc networks,
where the source s of a message knows the ID of the destination t, or in other
words, (s, t) ∈ E. This is a reasonable constraint since cell phone users normally
wouldn’t call cell phones whose users are unknown to them. Thus, whenever a
message needs to be sent from a source s to some destination t, we assume that
the geographic position of t is known, since s can ask t via a long-range link for
t′s geographic position before sending the message towards t using the ad hoc
network.

Our routing algorithm consists of two parts: After determining the radio
holes of the wireless ad hoc network, we compute an abstraction, i.e., a compact
representation of these radio holes and use that abstraction in order to route
messages along c-competitive paths. We call a routing strategy c-competitive
if for all node pairs (s, t), the routing path (s, . . . , t) from s to t obtained by
the strategy satisfies ||(s, . . . , t)|| ≤ c · d (s, t), where ||(s, . . . , t)|| denotes the
Euclidean length of (s, . . . , t) and d (s, t) denotes the shortest Euclidean length
of a path in UDG (V) from s to t.

We will focus on computing suitable abstractions of radio holes in the ad
hoc network. The intuition behind that is simple: if there are no radio holes,
then simple greedy routing (i.e., always take the neighbor that is closest to the
destination) would already give us short routing paths to arbitrary destinations.
Radio holes can be specified by the nodes along its boundary, but there can
be many such nodes. Therefore, we look at more compact representations of
radio holes like the (nodes forming the) convex hull of its boundary. Considering
convex hulls as radio hole abstractions makes sense because in huge cities like
New York City the shape of radio holes (caused by obstacles like buildings) is in
many cases convex or close to a convex shape, and these shapes do not overlap.
In order to obtain the desired abstraction, we will make use of ID-introductions
in order to form an overlay network that allows us to compute these abstractions
in a distributed manner using the long-range links. Since sending messages via
long-range links is costly (in terms of money), our goal is to keep the long-range
communication work of the nodes as low as possible.

18 D. Jung et al.

1.3 Our Contributions

We consider any hybrid graph G = (V,E,EAH) where the Unit Disk Graph of
V is connected. Let H be the set of radio holes in G and C be the set of convex
hulls of radio holes in H. P (h) denotes the length of the perimeter of a radio
hole h ∈ H. Further, L(ch) denotes the circumference of a minimum bounding
box of a convex hull ch ∈ C. Our main contribution is:

Theorem 1. For any distribution of the nodes in V that ensures that UDG(V)
is connected and of bounded degree and that the convex hulls of the radio holes
do not overlap, our algorithm computes an abstraction of UDG(V) in O(log2 n)
communication rounds using only polylogarithmic communication work at each
node so that c-competitive paths between all source-destination pairs can be found
in an online fashion.

The space needed by the convex hull nodes of the radio holes is
O (∑

c∈C L(c)
)
. Nodes lying on the boundary of radio holes need storage of size

O (maxh∈H P (h)). For every other node, the space requirement is constant.

The rest of this paper is dedicated to the proof of Theorem1. For that, we
use the following approach:

1. Given the Unit Disk Graph, we compute the 2-localized Delaunay Graph.
This only needs O(1) communication rounds. The 2-localized Delaunay Graph
allows the nodes to detect whether they are at the boundary of a radio hole.
Nodes at the boundary can then form a ring.

2. We then develop a distributed algorithm that computes a convex hull of a
ring of n nodes in expected O (log n) communication rounds.

3. Afterwards, we introduce the nodes of the convex hulls to each other so that
they form a clique. This will allow them to compute c-competitive paths for
all source-destination pairs that are outside of a convex hull. The introduction
requires O(log2 n) communication rounds.

Finally, we also consider the dynamic scenario (i.e., UDG(V) changes over time)
in Sect. 6. All proofs can be found in AppendixB. The full version of this paper
is available online on arXiv.

1.4 Related Work

Routing work in theory has mostly focused on approaches where routing paths
do not have to be set up before sending out a message. Instead the focus has
been on simple online routing strategies that are potentially based on a suitable
overlay network consisting of a subset of the wireless connections available to
the nodes. The simplest online strategy is to use a greedy strategy to route a
message to a destination t: always forward the message to the neighbor closest
to t (with respect to some metric). Unfortunately, greedy strategies like Com-
pass routing [4] fail for graphs with radio holes, i.e., they might get stuck at a
dead end. This can be avoided with the help of suitable virtual coordinates for

Competitive Routing in Hybrid Communication Networks 19

the nodes (e.g., [10]), but computing these is quite expensive. Instead, Kuhn et
al. [9] proposed GOAFR, a routing strategy that uses a combination of greedy
and face routing, which can find paths with quadratic competitiveness [9]. They
also proved that this is worst-case optimal, i.e., it is not possible to design routing
strategies which use only local knowledge and achieve a better competitiveness
than quadratic. Their lower bound is based on the fact that a radio hole might
have a complex structure, like a maze, making it hard to find a short path to a
destination in an online fashion. Some other examples of the many routing strate-
gies that have been proposed are [12,14,16]. For example, Rührup and Schindel-
hauer considered routing strategies for grids that contain failed nodes [16]. This
is similar to our scenario as failed nodes behave like radio holes in an ad hoc
network. Their procedure uses a strategic search which distributes a message
over multiple paths. They proved that their procedure is asymptotically optimal
for their setting. However, it is not clear how the strategy can be generalized to
node distributions in the Euclidean plane.

So the question arises: How to make use of long-range links to find a suit-
able abstraction of the radio holes with a local strategy such that we obtain
c-competitive paths for any source-destination pair in the underlying ad hoc
network?

A Hybrid Communication Network has been introduced in different con-
texts [5,13]. To the best of our knowledge, we are the first ones that consider
these types of networks for the purpose of finding paths in ad hoc networks.

At the core of our algorithm is a 2-localized Delaunay Graph of the ad hoc
network. A 2-localized Delaunay Graph is related to the Delaunay triangulation,
which was introduced in [7]. The advantage of using Delaunay graphs is that
they are Euclidean c-spanners, which means that they contain a path for any
pair of nodes of length at most c times their Euclidean distance. The currently
best known bound for c is 1.998 and was proven by Xia [17]. Because wireless
communication is only possible for limited distances, Delaunay graphs are not
directly applicable to ad hoc networks, but Delaunay graphs restricted to UDG
edges, which are known as Restricted Delaunay Graphs [11]. Restricted Delaunay
graphs are still hard to compute, so we will focus on the related 2-localized
Delaunay Graph, which can be built in a constant number of rounds [11]. Based
on that graph, one can use Chew’s Algorithm [3] to efficiently route messages if
there are no radio holes.

2 Preliminaries

Throughout this paper, we assume the set of nodes V to be in general position,
i.e., there are no three nodes on a line and no four nodes on a cycle. Moreover,
we assume that the coordinates of each node are unique and thus there are
no two nodes on the same position. We consider a 2-localized Delaunay Graph
LDel2(V) as topology for the ad hoc network which is related to the Delaunay
Graph. The Delaunay Graph is a graph, where © (u, v, w) is the unique circle
through the nodes u, v and w and � (u, v, w) be the triangle formed by the

20 D. Jung et al.

nodes u, v and w. For any V ⊆ R
2, the Delaunay Graph Del (V) of V contains

all triangles � (u, v, w) for which © (u, v, w) does not contain any further node
besides u, v and w. The 2-localized Delaunay Graph is a structure that only
allows edges which do not exceed the transmission range of a node. It can be
constructed efficiently in a distributed manner. In k-localized Delaunay Graphs,
a triangle � (u, v, w) for nodes u, v, w of V satisfies that all edges of � (u, v, w)
have length at most 1 and the interior of the disk © (u, v, w) does not con-
tain any node which can be reached within k hops from u, v or w in UDG(V).
The k-localized Delaunay Graph LDelk (V) is defined to consist of all edges of
k-localized triangles and all edges (u, v) for which the circle with diameter uv
does not contain any further node w ∈ V . For k = 2, we obtain the 2-localized
Delaunay Graph which is also a planar graph [11]. Since 2-localized Delaunay
Graphs do not contain all edges of a corresponding Delaunay Graph, one cannot
simply use routing strategies for Delaunay Graphs in our scenario. We denote
faces of the 2-localized Delaunay Graph which are not triangles as holes. For the
formal definition of holes, we distinguish between inner and outer holes.

Definition 1 (Hole). Let V ∈ R
2. An inner hole is a face of LDel2 (V) with

at least 4 nodes.
Furthermore, let CH (V) be the set of all edges of the convex hull of V . Define

LDel2 (V) to be the graph that contains all edges of LDel2(V) and CH (V). An
outer hole is a face in LDel2 (V) with at least 3 nodes, that contains an edge
e ∈ CH (V) with ‖e‖ > 1.

Nodes lying on the perimeter of a hole are called hole nodes. Note that the hole
nodes of the same hole form a ring, i.e., each hole node is adjacent to exactly
two other hole nodes for each hole it is part of. The choice of the 2-localized
Delaunay Graph as network topology is motivated by its spanner -property. The
Delaunay Graph Del (V) contains paths between every pair of nodes v and w of V
which are not longer than c times their Euclidean distance, i.e., a path (v, . . . , w)
between two nodes v and w in a geometric graph G is a geometric c-spanning path
between v and w, if its length is at most c times the Euclidean distance between
w and v. Delaunay Graphs are proven to be geometric 1.998-spanners [17]. Xia
argues that the bound of 1.998 also relates to 2-localized Delaunay Graphs [17].
However, these graphs are not spanners of the Euclidean metric but of the Unit
Disk Graph. Bose et al. introduced the 5.9-competitive online routing strategy
Chew’s Algorithm for Delaunay Graphs which only considers edges of triangles
that are intersected by the direct line segment between source and destination [2].
In case the source and the target node of the 2-localized Delaunay Graph are
visible from each other, i.e., their direct line segment does not intersect any hole,
Chew’s Algorithm also finds 5.9-competitive paths in the 2-localized Delaunay
Graph. To be able to find constant-competitive paths between any pair of nodes
in the 2-localized Delaunay Graph, we take a look at results from computational
geometry. If we abstract from the underlying 2-localized Delaunay Graph, our
scenario is comparable to routing in polygonal domains. These kinds of routing
problems usually consider a starting point s and a target point t in the Euclidean

Competitive Routing in Hybrid Communication Networks 21

plane. The goal is to find a path in the plane from s to t. The challenging aspect
of these problems is the presence of polygonal obstacles which avoid walking
directly along the line segment st. In our scenario, these polygonal obstacles are
radio holes. De Berg et al. showed that it is enough to consider nodes of obstacle
polygons for finding shortest paths in polygonal domains [1]: In the Visibility
Graph V is (V) of a set of polygons, V represents the set of corners of the polygon,
and there is an edge {v, w} in V is (V) if and only if a line can be drawn from
v to w without crossing any polygon, i.e., v is visible from w. The combination
of the mentioned results implies that a shortest path in the Visibility Graph of
hole nodes of the 2-localized Delaunay Graph yields to a 5.9-competitive path in
the 2-localized Delaunay Graph by applying Chew’s Algorithm between every
pair of consecutive nodes on the path.

3 General Routing

We assume for now that every node which is located on the perimeter of a
hole stores a Visibility Graph of all hole nodes. Two hole nodes are visible
from each other if their direct line segment does not intersect any hole of the
2-localized Delaunay Graph. The routing protocol works as follows: A source
node s that wants to send data to a target node t initially contacts t via a
long-range link to ask for t′s geographical position, i.e., a tuple of coordinates
(tx, ty). t responds with its position and s afterwards sends its message via
Chew’s Algorithm towards (tx, ty). We distinguish two cases: (1) The message
reaches t via Chew’s Algorithm and (2) the message reaches a hole node h0, i.e.,
the direct line segment st intersects a hole. In case (1), we immediately obtain a
5.9-competitive path from s to t. Otherwise, h0 inserts t into its Visibility Graph
and applies a shortest path algorithm from itself to t. The resulting shortest path
(h0, h1, h2, . . . , hk = t) is then used to transmit the message via ad hoc links. By
applying Chew’s Algorithm, a path of length 5.9 · ‖h0h1‖ is obtained. After
reaching h1, the procedure is repeated until the message finally reaches t. Let
pst be the shortest path between s and t in the Visibility Graph. In case h0 lies
on the shortest path between s and t in the Visibility Graph, the resulting path
in the 2-localized Delaunay Graph has length at most 5.9 · ‖pst‖. Otherwise, the
initial path to h0 is a detour. Obviously, the detour increases the competitiveness
only by a constant factor. As Chew’s Algorithm did not reach t but a node h0,
the path taken from s to h0 has length less or equal to 5.9 · ‖st‖ which is less or
equal to 5.9 times the shortest possible path between s and t in the 2-localized
Delaunay Graph. Hence, the detour increases the competitive constant only by
an additional factor of 3. We obtain an 17.7-competitive path between s and t.

An idea to reduce the number of edges to O (h) is to not compute the entire
Visibility Graph but only a Delaunay Graph of all nodes lying on different holes.
As Delaunay Graphs are planar graphs, this reduces the number of edges to O (h)
and it also affects the obtained length of the paths. Delaunay Graphs do not
contain the shortest geometric connection between two nodes in general but a
path which is 1.998-competitive to such a path [17]. By using a Delaunay Graph

22 D. Jung et al.

instead of a Visibility Graph, we obtain a path length of 1.998 · 17.7 · ‖pst‖ ≤
35.37 · ‖pst‖.

4 Routing for Convex Hulls as Hole Abstractions

In this section, we focus on the reduction of number of nodes in the Visibility
Graph even further while still being able to compute competitive paths. There-
fore, we consider locally convex hulls, where (v1, v2, . . . , vk, v1) is a cycle of nodes
in LDel2(V) at the perimeter of some hole. We call (vi1 , vi2 , . . . , vi�

, vi1) for some
1 ≤ i1 < i2 < . . . , i� ≤ k a locally convex hull of that hole if (1) ‖vij

vij+1‖ ≤ 1
for all j ∈ {1, . . . , �} (where vi�+1 = vi1), and (2) there are no 3 consecutive
nodes u, v, w in that sequence where ∠ (u, v, w) ≥ 180◦ and ‖uw‖ ≤ 1.

For the locally convex hulls, we prove:

Lemma 1. For any cycle (v1, v2, . . . , vk, v1) of hole nodes in LDel2(V) that
covers an area of size A, any locally convex hull of that cycle contains O (A)
nodes.

Hence, locally convex hulls contain a number of nodes that is independent of
the total number of nodes in the system and only depends on the area covered
by the hole. A further reduction in the number of nodes can be achieved by the
convex hull of a hole.

Lemma 2. For any cycle (v1, v2, . . . , vk, v1) of hole nodes in LDel2(V) with a
bounding box (i.e., the box of minimum size containing v1, . . . , vk) of circumfer-
ence L, the convex hull (vi1 , vi2 , . . . , vi�

, vi1) of the cycle contains O (L) nodes.

4.1 c-Competitive Paths via Convex Hulls

In this section, we assume that the source and the target of a routing request
lie outside of any convex hull and that the source and the target are not visible
from each other as finding c-competitive paths for visible nodes can be found
via Chew’s Algorithm.

Lemma 3. The shortest path between any pair of non-visible nodes of the 2-
localized Delaunay Graph contains convex hull nodes.

We define the Overlay Delaunay Graph to be a Delaunay Graph that contains
all convex hulls of holes and connects the nodes of different convex hulls in a
Delaunay Graph.

The following theorem is a conclusion of the so far mentioned properties:

Theorem 2. Let s and t be two nodes of a 2-localized Delaunay Graph that do
not lie inside of any convex hull. Further, let (s = c0, c1, . . . , c�−1, c� = t) be the
shortest path in the Overlay Delaunay Graph via long-range links. Then we have

1. There is a
(
1.998 · ∑�−1

m=0 dm

)
-path in the 2-localized Delaunay Graph from s

to t, where dm := ‖cmcm+1‖.
2. By applying Chew’s Algorithm, we obtain a

(
5.9 · ∑�−1

m=0 dm

)
-path in the 2-

localized Delaunay Graph from s to t, where dm := ‖cmcm+1‖.

Competitive Routing in Hybrid Communication Networks 23

4.2 Routing Protocol

To investigate all cases of s and t’s different geographical positions, we introduce
bay areas. A bay area HA of a hole consists of the nodes and edges of the
2-localized Delaunay Graph that are inside the convex hull and between two
adjacent convex hull nodes. Bay areas allow us to describe all cases for s and t:
(1) s and t are outside of convex hulls, (2) s or t is inside of a convex hull (3)
s and t are inside different convex hulls (4) s and t are inside the same convex
hull but in different bay areas and (5) s and t are inside the same convex hull
and in the same bay area. Case 1 is solvable with few additional requirements to
the routing protocol described in Sect. 3. Cases 2–5, need a more sophisticated
solution and are postponed to Sect. 4.3.

For Case 1, we assume for now that each node located on the perimeter of
a hole stores references to its two neighboring convex hull nodes and all nodes
lying on convex hulls of holes store an Overlay Delaunay Graph of all convex
hull nodes. The routing protocol for Case 1 works exactly as described in Sect. 3.
A node s sends its message via Chew’s Algorithm into the direction of t. In case
the message arrives at a hole node, it is directed to a convex hull node. The
convex hull node inserts t into its Visibility Graph and applies a shortest path
algorithm. The resulting path is added to the message and used for forwarding
the message in the ad hoc network. Between any pair of nodes on the received
path, Chew’s Algorithm is applied. Based on the results from Sect. 4.1, we obtain
a c-competitive path in LDel2(V).

4.3 Limitations of Convex Hulls

In this section, we focus on routing from s to t, when their geographical coor-
dinates fulfill the properties of Cases 2–5. Here, we only provide the routing
algorithm, where both s and t are in the same bay area, i.e., Case 5. An analo-
gous routing can be executed for Cases 2–4.

For computing c-competitive paths, we assume that each hole node knows
the entire hole ring it belongs to. st denotes the direct line segment between
s and t. We define S to be the first intersection point between st and the hole
boundary, from the direction of s. Let T be the analogous intersection point from
the direction of t. Let P1 be the hole node with the shortest hop distance on the
hole boundary to S and Pt the analogous hole node to T . We denote Hs,t to be
the set of all hole nodes that are located in this bay area between P1 and Pt. We
call the nodes of the convex hull of this set the extreme points {E1, ..., Ek}. We
define Et to be the extreme point with the smallest index, where Et t is visible
to t.

The routing strategy works as follows: s executes Chew’s Algorithm to send
the message m in the direction of t until m either arrives at t (i.e., s and t are
visible to each other) or at P1. If it reaches P1, then m is routed from P1 to E1,
from E1 to E2,..., from Ei to Et, for i = 1, . . . , t. Finally m is routed from Et

to t. All these routing steps are done with Chew’s Algorithm. Because Chew’s
Algorithm is 5.9-competitive and the provided path by the algorithm contains

24 D. Jung et al.

in total 2 + |Eroute| direct lines, where |Eroute| denotes the number of extreme
points that we route to, it is easy to see:

Lemma 4. Let s and t be nodes with geographic coordinates in the same bay
area, then the routing algorithm above provides a c-competitive routing path
between s and t with c = (2 + |Eroute|) · 5.9.

The convex hull node can locally decide to which convex hull the destination
of the routing request belongs, but it cannot decide which convex hull node is
responsible for the bay area the destination is located in. The convex hull node
initiates two messages towards the destination. These messages are routed in
opposite directions around the convex hull in which the target node of the routing
request is located. Once the message arrives at the convex hull of the destination,
each convex hull node there can locally decide whether the destination is located
inside the bay area of the convex hull because we assume that each hole node is
aware of all other hole nodes inside of its bay area (convex hull nodes are also
hole nodes).

5 Computation and Information Dissemination

To compute the 2-localized Delaunay Graph, we use the distributed protocol
described in [11]. The authors assume that an initial connected Unit Disk Graph
of all ad hoc links is given. To obtain the initial connected Unit Disk Graph of
all ad hoc links, every node executes a WiFi broadcast within its transmission
range. Thus, each node is aware of all nodes in its transmission range and we
obtain a Unit Disk Graph. The nodes execute the protocol of Li et al. which
requires communication costs of O (n log n) bits and only O(1) communication
rounds [11]. The result is not a 2-localized Delaunay Graph but a supergraph
of it called Planar Localized Delaunay Graph. As each edge has a length of at
most 1 and the Planar Localized Delaunay Graph is a planar graph, our ideas
of hole detection also work for these type of graphs. For convenience, we restrict
ourselves to 2-localized Delaunay Graphs in the rest of this section.

5.1 Hypercube and Convex Hull Computation

In this section, we give a brief overview on a protocol that transforms a ring of
nodes into a hypercube structure. This protocol is a prerequisite for a convex
hull protocol and allows each node to detect whether it lies on the boundary of
a hole. The full description can be found in AppendixC. In the beginning, each
node of a ring chooses a predecessor and a successor. Then, pointer jumping is
applied. In the first round, each node introduces its predecessor and successor
to each other. Afterwards, the new neighbors are introduced to each other and
so on. In addition to references, the minimal id of all so far seen neighbors is
exchanged in each introduction step such that eventually every node is aware
of the minimal id of all ring nodes. The node with minimal id becomes the
leader and distributed hypercube ids afterwards. We summarize the results of
this section in the following lemma:

Competitive Routing in Hybrid Communication Networks 25

Lemma 5. A ring of k nodes can be transformed into a hypercube in O(log k)
communication rounds. The number of required messages is in O(log k) per node.

In the hypercube, we compute the convex hull of each hole. Initially, the coor-
dinates of points have to be sorted. Sorting n points in a hypercube can be done
in O(log n) communication rounds on expectation with the algorithm of Reif
and Valiant [15]. Upon termination, Miller’s algorithm is applied which ensures
that each node of the ring knows every convex hull node and especially each
convex hull node identifies itself as a convex hull node. The following theorem
follows:

Theorem 3. Given a hole ring with k nodes, the convex hull of this hole ring
can be calculated in O(log k) communication rounds on expectation.

5.2 Hole Detection

Boundary nodes locally cannot detect whether cycles are oriented clockwise or
counterclockwise and hence cannot decide whether they are located on the outer
boundary or on a hole. To let nodes distinguish these cases they sum up angles
along each boundary into the direction of the orientation. Let v1, v2 be a prede-
cessor and a successor along a boundary. In case walking from v1 to v2 requires a
left turn, the angle between v1 and v2 is subtracted from the current sum. Angles
of right turns are added. The result would be 360◦ for the outer boundary and
−360◦ for each hole [6]. The summation along a boundary could be done by a
token passing technique initiated by a leader. The technique requires a linear
number of communication rounds for each cycle. To improve the runtime, we
sum angles in parallel to the hypercube protocol in the following way: In addi-
tion to the minimal ID, we also exchange the sum of angles with each edge of
the pointer jumping procedure. At the end, every node of the ring knows the
sum of all angles along the boundary. Hence, each node can decide whether it is
a hole node in O(log n) communication rounds. For determining outer holes, we
need a second run of convex hull computations along the outer boundary. Outer
holes are defined by an edge of the outer convex hull of the point set. After the
convex hull of the outer boundary has been computed, a second run is started
between every pair of consecutive convex hull nodes whose distance exceeds the
transmission range of a node. All in all, we compute the convex hull of each hole
and of the outer boundary to be able to distinguish the outer boundary and
holes. Afterwards we start a second run of convex hull computations for each
outer hole determined by the convex hull of the outer boundary from the first
run.

5.3 Information Dissemination of Convex Hulls and Hole Rings

The main observation of this section is that nodes of a convex hull locally cannot
decide in which directions other holes are located. Hence, we need to spread
the information about convex hulls in the entire network. We use an Overlay

26 D. Jung et al.

Network via the long-range links which only has a logarithmic diameter [8].
The protocol ensures that all nodes of the network are connected in a rooted
tree via long-range links after O(log2 n) communication rounds. The tree has
a height of O(log n) and a constant degree. Consequently, the diameter of the
tree is O(log n). The tree allows us to distribute references of convex hull nodes
in O(log n) communication rounds, i.e., each convex hull node can direct its
own reference both towards the root and into the subtree below itself. The root
redirects the reference into every other subtree. This procedure avoids that nodes
receive the same broadcast message multiple times. The total runtime of this step
is O(log2 n) as the tree has to be established initially.

The protocol in which the source and the destination of a routing request can
be located inside of a convex hull requires that each node of a hole ring stores
references to every other node of the hole ring (see Sect. 4.3). We set this on top
of the pointer jumping protocol described in Sect. 5.1. In addition to the leading
coordinate, we also exchange references to all hole nodes which are bridged via
an edge in the pointer jumping protocol. Hence, each node of a hole ring is aware
of every other node of that hole ring after O(log n) communication rounds.

6 Node Movement

We say that in a certain time interval, nodes cannot move more than 1
2 . We

assume that only edges of length less or equal than 1
2 are valid ad hoc links.

This ensures that ad hoc links chosen by the routing protocol remain valid for
the rest of the time interval as all nodes which have been in the communication
range of each other at the beginning of the time interval stay inside of these
communication ranges. Therefore, in every time interval, a re-execution of all
protocols except the protocol for the distributed Overlay tree allows us to find
competitive paths in a scenario where nodes are allowed to change their positions.

7 Future Work

In this paper, we considered non-intersecting convex hulls. Future work could
be the design of routing strategies that can deal with finding competitive paths
in areas of intersecting convex hulls. Besides, we concluded our paper with a
dynamic scenario in which nodes are allowed to move. Our solution is to period-
ically recompute the entire Overlay Network. A model with bounded movement
speed could be investigated in which only parts of the Overlay Network have
to be recomputed. A further dynamic which could be considered, is joining and
leaving nodes. Lastly, our model does not tackle physical aspects of wireless com-
munication. Interesting aspects are for example wireless interference in crowded
areas.

A Visualization

See Fig. 1.

Competitive Routing in Hybrid Communication Networks 27

Target

Radio hole detection

Fast calculation of radio hole abstraction

1)

2)

Fast calculation of c-competitive path between source and target3)

Source

Fig. 1. An overview of our approach. It contains the detection of radio holes (1), the
computation of a hole abstraction (2) and a routing algorithm that finds c-competitive
paths (3). The blue regions are called bay areas. (Color figure online)

B Omitted Proofs and Lemmas

Proof (Proof of Lemma 1). Consider any locally convex hull (vi1 , vi2 , . . . , vi�
, vi1),

and let u, v, w be 3 consecutive nodes in that sequence. I f ∠ (u, v, w) ≥ 180◦,
then we know from the definition of the locally convex hull that ‖uw‖ > 1. If
∠(u, v, w) < 180◦, then ‖uw‖ > 1 as well since otherwise v would not be on the
perimeter of the hole. This implies for the predecessor p of u and the successor
s of w that ‖pv‖ > 1 and ‖vs‖ > 1. Also, there cannot exist any other node
x ∈ {vi1 , . . . , vi�

} with ‖vx‖ ≤ 1 as otherwise we had a shortcut in the perimeter,
meaning that (v1, v2, . . . , vk, v1) cannot be the perimeter of a hole. Hence, the
unit cycle around each vij

can contain at most 2 other nodes of the locally convex
hull, which implies that � = O (A).

Proof (Proof of Lemma 2). Let B be the bounding box of the cycle and x be
its center point. Let the points wi1 , . . . , we�

be the projections of vi1 , vi2 , . . . , vi�

from x onto the boundary of B, i.e., the points where the ray from x in the
direction of vij

intersects the boundary of B. As is easy to check, the �1-distance
of wij

and wij+1 on B is at least as large as ‖vij
vij+1‖ for all j. Moreover, for

any 3 consecutive points u, v, w on the convex hull it must hold that ‖uw‖ > 1.
Hence, for any 3 consecutive points u′, v′, w′ on the projection of the convex hull
onto B it must hold that the �1-distance of u′ and w′ is more than 1, which
implies that the convex hull contains only O (L) nodes.

Proof (Proof of Lemma 3). Let s, t be two nodes of the 2-localized Delaunay
Graph, whose direct line segment intersects a hole. Starting from s, let � be the
first intersected line segment of the boundary of the intersected convex hull with
endpoints v, w. We assume that the shortest path contains points of (v, ..., w).
Else, the argumentation must be repeated with the neighboring edges of the
convex hull.

28 D. Jung et al.

By contradiction, we assume that the shortest path from s to t contains a
point p ∈ (v, ..., w) from the interior of the convex hull, i.e., excluding v, w. With-
out loss of generality, we assume that the shortest path furthermore contains the
point w (The same holds for v.).

Because of the triangle inequality, the following holds: ‖sw‖ ≤ ‖sp‖ + ‖pw‖
And we know that ‖ (x, y) ‖ ≤ 1.998 ·‖xy‖ holds for any two nodes of a Delaunay
triangulation.

Then:

‖ (s, w) ‖
1.998

≤ ‖sw‖
≤ ‖sp‖ + ‖pw‖
≤ ‖ (s, p) ‖ + ‖ (p,w) ‖
= ‖ (s, ..., p, ..., w) ‖

Hence, points of the interior of convex hulls cannot be chosen as a path along a
convex hull node would be shorter.

Lemma 6. Let a and b be visible nodes of different convex hulls. Then there is
a 1.998 · ‖ab‖-spanning path between them in the 2-localized Delaunay Graph.

Proof (Proof of Lemma 6). Since the Delaunay Graph is a 1.998-spanner of the
complete Euclidean graph [17] and the 2-localized Delaunay Graph contains
all edges of the original Delaunay Graph between a pair of visible nodes, there
always exists a 1.998·‖ab‖ path between two visible nodes a and b of two different
convex hulls. This proves Lemma6.

Lemma 7. Let a and b be adjacent nodes on a convex hull, where a
= b. Then
there is a 1.998 · ‖ab‖-spanning path in the 2-localized Delaunay Graph between
a and b.

Proof (Proof of Lemma 7). We use the observation of Xia that a 2-localized
Delaunay Graph is a 1.998-spanner of the Unit Disk Graph. Thus there is a
1.998-competitive path between the to convex hull nodes. This proves Lemma 7.

Lemma 8. Let a and b be visible nodes of different convex hulls. Then there is
a 5.9 · ‖ab‖-routing path between them in the 2-localized Delaunay Graph.

Proof (Proof of Lemma 8). This fact follows immediately from [3] and the fact
that for two visible nodes s and t, their direct line segment st intersects only
triangles which are also part of the (standard) Delaunay Graph.

Lemma 9. Let a and b be adjacent node on a convex hull, where a
= b. Then
there is a 5.9 ·‖ab‖-routing path in the 2-localized Delaunay Graph between a and
b.

Proof (Proof of Lemma 9). The proof is the same as for Lemma 8 because two
adjacent convex hull nodes are due to the assumption of non-intersecting convex
hulls per definition visible from each other.

Competitive Routing in Hybrid Communication Networks 29

Proof (Proof of Theorem 2(1)). Theorem 2(1) follows immediately from Lem-
mas 6 and 7.

Proof (Proof of Theorem 2(2)). Recall that there exists an online routing strat-
egy for Delaunay Graphs which finds a path between any source s and target t
with length at most 5.9 · ‖st‖. Furthermore, recall that the 2-localized Delaunay
Graph contains all edges of the original Delaunay Graph between any pair of
visible nodes. Thus, there is a routing strategy from any convex hull node a to
any other convex hull node b in cases a and b are nodes of different convex hulls
with length at most 5.9 · ‖ab‖. This routing strategy can be applied to route in
the 2-localized Delaunay Graph between to adjacent convex hull nodes a and b
as well. This is due to the fact, that the routing strategy chooses the path along
triangles in the 2-localized Delaunay Graph that are intersected by the line from
a to b. As a and b are visible from each other, these edges would also be part of
the original Delaunay Graph. Thus, the routing strategy applied on the hybrid
communication model gives a path of length at most

(
5.9 · ∑�−1

m=0 dm

)
. All in

all, we obtain Theorem 2.

C Hypercube Protocol

In this section, we describe a procedure that establishes a hypercube topology
out of a ring with k nodes. On the one hand, this protocol is a prerequisite
for the convex hull protocol. On the other hand, it allows a fast hole detection,
i.e., enables nodes to quickly distinguish the outer boundary from a hole. More
precisely, we execute the protocol both for holes and the outer boundary of
the entire node set which are both connected in a ring topology. For the ease of
notation, we summarize nodes of the outer boundary and hole nodes as boundary
nodes. Note that each node can locally detect whether it part of an inner or outer
hole by checking whether it is part of a triangle with a missing edge due to the
restriction of the edge length. Each node v which is part of the convex hull of
the entire node set detects that there are two consecutive neighbors v and w in
the clockwise ordering of v′s neighbors such that ∠ (u, v, w) ≥ 180◦.

Initially, each boundary node chooses a successor and a predecessor in each
ring. This can be achieved as follows: Each boundary node sorts its bound-
ary neighbors clockwise. Afterwards, for every pair of consecutive nodes in the
sorting (also for the last and the first node) the first node is chosen as predeces-
sor and the second node is chosen as successor. Now, every boundary is either
oriented clockwise or counterclockwise. More precisely, the outer boundary is
oriented clockwise and each hole is oriented counterclockwise. The orientation,
however, is not important for the hypercube protocol but for the hole detection
in Sect. 5.2.

We proceed with the hypercube protocol by giving a definition of a hyper-
cube, where a d-dimensional hypercube consists of n nodes, where n = 2d, such
that each node has a unique bitstring (x1, . . . , xd) ∈ {0, 1}d and there is an edge
between two nodes if and only if their bitstring differs in only one bit. The dec-
imal representation of a bitstring of a node h is denoted as id(v). We assume

30 D. Jung et al.

the number of nodes in the ring to be a power of two. The techniques can be
applied for an arbitrary number of nodes with a slight modification of the given
protocol. For the construction of the hypercube we use pointer jumping. On the
one hand, this technique enables us to build overlay edges for the hypercube fast
and additionally it allows us to elect a leader in O(log k) communication rounds
which is responsible for setting up the hypercube IDs. The leader of the ring is
the node with minimal ID. The ID of a node v is denoted as idv. In addition,
we assign two values to each edge e = {u, v}, which is created by the pointer
jumping protocol. The first one, �(e) defines the minimal ID of all ring nodes
which are bridged by e, except idu. The second value, level(e) = log(b), where b
denotes the number of ring nodes between u and v.

The pointer jumping is used as follows: Let v be a node of the hole ring
and let pred0 be its predecessor and succ0 its successor on the ring. In round
1 of the protocol, v introduces succ0 to pred0 to each other. Thus succ0 and
pred0 become adjacent nodes and an overlay edge e = {pred0, succ0} is estab-
lished. Further, v assigns �(e) = min{idv, idsucc0} and level(e) = 0. As each
node executes the protocol, v also gets introduced two nodes in round 1 which
are denoted as pred1 and succ1. In particular, in round i, each node v of the hole
ring introduces its predecessor predi−1 to its successor succi−1 and gets intro-
duced predi and succi. The node v that introduces predi−1 and succi−1 to each
other also assigns �({predi−1, succi−1}) = min{�({predi−1, v}), �({v, succi−1})}
and level(e) = level({predi−1, v}) + 1.

With pointer jumping, the hop distance between any pair of nodes halves
from round to round. The protocol stops in a round i in which v gets introduced
succi and predi and �({predi, v}) = �({v, succi}). At that point, each node
(especially the leader itself) is locally aware of the minimal ID and hence knows
the ID of the leader. As the distance between any pair of nodes halves from round
to round, this protocol requires O(log k) communication rounds. For the purpose
of being able to emulate a hypercube, we do not only need the additional overlay
edges, but also hypercube IDs. Recall that the node IDs of the hypercube are
bitstrings of length log k. To distribute the hypercube IDs to the corresponding
boundary nodes, the leader v assigns for each hypercube edge {v, succi} the
binary representation of level({v, succi}) + 1 as ID to succi. Each node that
receives an ID from the leader repeats the ID distribution recursively, relative to
its own ID. As the diameter of a hypercube of k nodes is O(log k), the distribution
of IDs requires O(log k) communication rounds. Eventually, the nodes of the
ring form a hypercube and we are able to apply every protocol designed for
hypercubes.

References

1. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try: Algorithms and Applications, 3rd edn. Springer, Santa Clara (2008). https://
doi.org/10.1007/978-3-540-77974-2

2. Bez, H.E., Edwards, J.: Distributed algorithm for the planar convex hull problem.
Comput. Aided Des. 22(2), 81–86 (1990)

https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2

Competitive Routing in Hybrid Communication Networks 31

3. Bonichon, N., Bose, P., Carufel, J.D., Perkovic, L., van Renssen, A.: Upper and
lower bounds for online routing on delaunay triangulations. Discrete Comput.
Geom. 58(2), 482–504 (2017)

4. Bose, P., et al.: Online routing in convex subdivisions. In: Goos, G., Hartmanis,
J., van Leeuwen, J., Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969,
pp. 47–59. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40996-3 5

5. Cena, G., Valenzano, A., Vitturi, S.: Hybrid wired/wireless networks for real-time
communications. IEEE Ind. Electron. Mag. 2(1), 8–20 (2008)

6. Daymude, J.J., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Improved
leader election for self-organizing programmable matter. In: Fernández Anta, A.,
Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS,
vol. 10718, pp. 127–140. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-72751-6 10

7. Delaunay, B.: Sur la sphère vide. A la Mémoire de Georges Voronöı. Bulletin de
l’Académie des Sciences de l’URSS 6, 793–800 (1934)

8. Gmyr, R., Hinnenthal, K., Scheideler, C., Sohler, C.: Distributed monitoring of
network properties: the power of hybrid networks. In: Chatzigiannakis, I., Indyk,
P., Kuhn, F., Muscholl, A. (eds.) 44th International Colloquium on Automata,
Languages, and Programming (ICALP 2017). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 80, pp. 137:1–137:15. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany (2017)

9. Kuhn, F., Wattenhofer, R., Zollinger, A.: Worst-case optimal and average-case
efficient geometric ad-hoc routing. In: Proceedings of the 4th ACM International
Symposium on Mobile Ad Hoc Networking & Computing. MobiHoc 2003, pp. 267–
278. ACM, New York (2003)

10. Li, S., Zeng, W., Zhou, D., Gu, X., Gao, J.: Compact conformal map for greedy
routing in wireless mobile sensor networks. IEEE Trans. Mob. Comput. 15(7),
1632–1646 (2016)

11. Li, X.Y., Calinescu, G., Wan, P.J.: Distributed Construction of a planar spanner
and routing for ad hoc wireless networks. In: Proceedings of the 21st Annual Joint
Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1268–
1277. IEEE Press, New York (2002)

12. Lumelsky, V.J.: Algorithmic and complexity issues of robot motion in an uncertain
environment. J. Complex. 3(2), 146–182 (1987)

13. Murty, Y.S.N.: Hybrid communication networks for power utilities. In: Power Qual-
ity 1998, pp. 239–242. IEEE Press, New York, June 1998

14. Rao, N.S., Kareti, S., Shi, W., Iyengar, S.S.: Robot navigation in unknown ter-
rains: introductory survey of non-heuristic algorithms. Technical report, Oak Ridge
National Lab., TN (United States) (1993)

15. Reif, J.H., Valiant, L.G.: A logarithmic time sort for linear size networks. J. ACM
(JACM) 34(1), 60–76 (1987)

16. Rührup, S., Schindelhauer, C.: Online multi-path routing in a maze. In: Asano,
T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 650–659. Springer, Heidelberg (2006).
https://doi.org/10.1007/11940128 65

17. Xia, G.: The stretch factor of the Delaunay triangulation is less than 1.998. SIAM
J. Comput. 42(4), 1620–1659 (2013)

https://doi.org/10.1007/3-540-40996-3_5
https://doi.org/10.1007/978-3-319-72751-6_10
https://doi.org/10.1007/978-3-319-72751-6_10
https://doi.org/10.1007/11940128_65

On the Approximability and Hardness
of the Minimum Connected Dominating

Set with Routing Cost Constraint

Tung-Wei Kuo(B)

Department of Computer Science, National Chengchi University,
No. 64, Sec. 2, ZhiNan Road, Taipei 11605, Taiwan (R.O.C.)

twkuo@cs.nccu.edu.tw

Abstract. In the problem of minimum connected dominating set with
routing cost constraint, we are given a graph G = (V, E) and a posi-
tive integer α, and the goal is to find the smallest connected dominating
set D of G such that, for any two non-adjacent vertices u and v in G,
the number of internal nodes on the shortest path between u and v in
the subgraph of G induced by D ∪ {u, v} is at most α times that in G.
For general graphs, the only known previous approximability result is an
O(log n)-approximation algorithm (n = |V |) for α = 1 by Ding et al. For

any constant α > 1, we give an O(n1− 1
α (log n)

1
α)-approximation algo-

rithm. When α ≥ 5, we give an O(
√

n log n)-approximation algorithm.
Finally, we prove that, when α = 2, unless NP ⊆ DTIME(npoly logn),

for any constant ε > 0, the problem admits no polynomial-time 2log1−ε n-
approximation algorithm, improving upon the Ω(log δ) bound by Du et
al., where δ is the maximum degree of G (albeit under a stronger hard-
ness assumption).

Keywords: Connected dominating set · Spanner ·
Set cover with pairs · MIN-REP problem

1 Introduction

1.1 Motivation

In wireless network routing, a common approach is to select a set of nodes
as the virtual backbone. The virtual backbone is responsible for relaying pack-
ets. Specifically, when a node s generates a packet destined to t, the packet is
routed through path (s, v1, v2, · · · , vk, t), where every internal node vi, 1 ≤ i ≤ k,
belongs to the virtual backbone. To realize this idea, we can model the wireless
network as a graph G = (V,E), where V is the set of nodes in the wireless
network, and (u, v) ∈ E if and only if u and v can communicate with each

This work is partially supported by the Ministry of Science and Technology of R.O.C.
under contract No. MOST 106-2221-E-004-005-MY3.

c© Springer Nature Switzerland AG 2019
S. Gilbert et al. (Eds.): ALGOSENSORS 2018, LNCS 11410, pp. 32–46, 2019.
https://doi.org/10.1007/978-3-030-14094-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14094-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-14094-6_3

On the Approximability and Hardness of the Minimum CDR 33

other directly. Thus, a connected dominating set of G is a virtual backbone for
the wireless network.1 One of the concerns in constructing the virtual backbone
is the routing cost. Specifically, the routing cost of sending a packet from the
source s to the destination t is the number of internal nodes (relays) in the
routing path from s to t. For example, the routing cost is k if the routing path
is (s, v1, v2, · · · , vk, t). The routing cost should not be too high even if packets
are only allowed to be routed through the virtual backbone. Next, we give the
formal definition of the problem.

1.2 Problem Definition

Let G[S] be the subgraph of G = (V,E) induced by S ⊆ V . Let mG(u, v) be
the number of internal vertices on the shortest path between u and v in G. For
example, if u and v are adjacent, then mG(u, v) = 0. If u and v are not adjacent
and have a common neighbor, then mG(u, v) = 1. Furthermore, given a vertex
subset D of G, mD

G(u, v) is defined as mG[D∪{u,v}](u, v), i.e., the number of
internal vertices on the shortest path between u and v through D. We use n(G)
to denote the number of vertices in graph G. When the graph we are referring
to is clear from the context, we simply write n, m(u, v), and mD(u, v) instead
of n(G), mG(u, v), and mD

G(u, v), respectively.

Definition 1. Given a connected graph G and a positive integer α, the Con-
nected Dominating set problem with Routing cost constraint (CDR-α)
asks for the smallest connected dominating set D of G, such that, for every two
vertices u and v, if u and v are not adjacent in G, then mD(u, v) ≤ α · m(u, v).

1.3 Preliminary

An Equivalent Problem: In the CDR-α problem, we need to consider all
the pairs of non-adjacent nodes. Ding et al. discovered that to solve the CDR-α
problem, it suffices to consider only vertex pairs (u, v) such that m(u, v) = 1,
i.e., u and v are not adjacent but have a common neighbor [5]. We call the
corresponding problem the 1-DR-α problem.

Definition 2. Given a connected graph G = (V,E) and a positive integer α,
the 1-DR-α problem asks for the smallest dominating set D of G, such that, for
every two vertices u and v, if m(u, v) = 1, then mD(u, v) ≤ α.

We say that u and v form a target couple, denoted by [u, v], if m(u, v) = 1.
We say that a set S covers a target couple [u, v] if mS(u, v) ≤ α. Hence, the
1-DR-α problem asks for the smallest dominating set that covers all the target
couples. Notice that any feasible solution of the 1-DR-α problem must induce
a connected subgraph of G. The equivalence between the CDR-α problem and
the 1-DR-α problem is stated in the following theorem.
1 A set D ⊆ V is a dominating set of G = (V, E) if every vertex in V \ D is adjacent

to D. Furthermore, if D induces a connected subgraph of G, then D is called a
connected dominating set of G.

34 T.-W. Kuo

Theorem 1 (Ding et al. [5]). D is a feasible solution of the CDR-α problem
with input graph G if and only if D is a feasible solution of the 1-DR-α problem
with input graph G.

Corollary 1. Any r-approximation algorithm of the 1-DR-α problem is an r-
approximation algorithm of the CDR-α problem.

In this paper, we thus focus on the 1-DR-α problem.

Feasibility of the 1-DR-α Problem for α ≥ 5: Next, we give the basic idea
of finding a feasible solution of the 1-DR-α problem for α ≥ 5 used in previous
researches, e.g., in [11]. One of our algorithms still uses this idea. First, find a
dominating set D. Thus, for any target couple [u, v], there exist ud and vd in D,
such that ud and vd dominate u and v, respectively.2 Let D′ = D. We then add
more vertices to D′ so that D′ becomes a feasible solution. For any two vertices
u′ and v′ in D, if m(u′, v′) ≤ 3, then we add the m(u′, v′) internal vertices of the
shortest path between u′ and v′ on G to D′. Observe that m(ud, vd) ≤ 3. Hence,
mD′

(u, v) ≤ 5 and D′ is a feasible solution of the 1-DR-α problem for α ≥ 5.

Lemma 1. Let D be a dominating set of G. Let D′ ⊇ D be a vertex subset
of G such that, for any two vertices u′ and v′ in D, if m(u′, v′) ≤ 3, then
mD′

(u′, v′) ≤ 3. Then, D′ is a feasible solution of the 1-DR-α problem with
input G and α ≥ 5.

1.4 Previous Result

Previous Result on General Graphs: When α = 1, the 1-DR-α problem can
be transformed into the set cover problem, i.e., cover all the vertices (to form
a dominating set) and cover all the target couples. Observe that each target
couple can be covered by a single vertex. The resulting approximation ratio is
O(log n) [5]. When α is sufficiently large, e.g., α ≥ n, any connected dominating
set is feasible for the CDR-α problem. Note that, for any α, the size of the
minimum connected dominating set is a lower bound of the CDR-α problem.
Since the connected dominating set can be approximated within a factor of
O(log n) [12,21], the CDR-n problem can be approximated within a factor of
O(log n). If α falls between these two extremes, e.g., α = 2, the only known
previous result is the trivial O(n)-approximation algorithm. On the hardness
side, it has been proved that, unless NP ⊆ DTIME(nO(log log n)), there is no
polynomial-time algorithm that can approximate the CDR-α problem within a
factor of ρ ln δ (∀ρ < 1) for α = 1 [5] and α ≥ 2 [8,9], where δ is the maximum
degree of G.

Open Question 1 (Du and Wan [8]). Is there a polynomial-time O(log n)-
approximation algorithm for the CDR-α problem for α ≥ 2?

2 ud dominates u if ud = u or ud and u are adjacent.

On the Approximability and Hardness of the Minimum CDR 35

Previous Result on Unit Disk Graph (UDG): Most of the studies on the
CDR-α problem focused on UDG [5,8,9,11,19]. UDG exhibits many nice prop-
erties that enable constant factor approximation algorithms (or PTAS) in many
problems where only O(log n)-approximation algorithms (or worse) are known
in general graphs, e.g., the minimum (connected) dominating set problem and
the maximum independent set problem [3,4,20]. All the previous research on
the CDR-α problem on UDG leveraged constant bounds of the maximum inde-
pendent set or the minimum dominating set. However, all the previous research
only solved the case where α ≥ 5 (by Lemma 1), and the best result so far is a
PTAS by Du et al. [11]. When 1 < α < 5, the only known previous result is the
trivial O(n)-approximation algorithm.

1.5 Our Result and Basic Ideas

In this paper, we first give an approximation algorithm of the 1-DR-α prob-
lem on general graphs for any constant α > 1. A critical observation is that
the 1-DR-2 problem is a special case of the Set Cover with Pairs (SCP) prob-
lem [13]. Hassin and Segev proposed an O(

√
t log t)-approximation algorithm for

the SCP problem, where t is the number of targets to be covered. However, since
there are O(n2) target couples to be covered, directly applying the O(

√
t log t)-

approximation bound yields a trivial upper bound for the 1-DR-2 problem. We
re-examine the analysis in [13] and find that, when applying the algorithm to the
1-DR-2 problem, the approximation ratio can also be expressed as O(

√
n log n).

Nevertheless, in this paper, we give a slightly simplified algorithm with an easier
analysis for the SCP problem. The algorithm and analysis also make it easy to
solve the generalized SCP problem. We obtain the following result, which is the
first non-trivial result of the CDR-α problem for α > 1 on general graphs and
for 1 < α < 5 on UDG.

Theorem 2. For any constantα>1, there is anO(n1− 1
α (log n)

1
α)-approximation

algorithm for the 1-DR-α problem.

Apparently, the above performance guarantee deteriorates quickly as α
increases. In our second algorithm, we apply the aforementioned idea of find-
ing a feasible solution when α ≥ 5, i.e., Lemma 1. We have the following result.

Theorem 3. When α ≥ 5, there is an O(
√

n log n)-approximation algorithm for
the 1-DR-α problem.

Finally, we answer Open Question 1 negatively. We improve upon the Ω(log δ)
hardness result for the 1-DR-2 problem (albeit under a stronger hardness
assumption) [8,9]. In this paper, we give a reduction from the MIN-REP prob-
lem [15].

Theorem 4. Unless NP ⊆ DTIME(npoly log n), for any constant ε > 0, the
1-DR-2 problem admits no polynomial-time 2log

1−ε n-approximation algorithm,

36 T.-W. Kuo

even if the graph is triangle-free3 or the constraint that the feasible solution
must be a dominating set is ignored4.

1.6 Relation with the Basic k-Spanner Problem

When we ignore the constraint that any feasible solution must be a connected
dominating set, the CDR-α problem is similar to the basic k-spanner problem.
For completeness, we give the formal definition of the basic k-spanner problem.
Given a graph G = (V,E), a k-spanner of G is a subgraph H of G such that
dH(u, v) ≤ kdG(u, v) for all u and v in V , where dG(u, v) is the number of edges in
the shortest path between u and v in G. The basic k-spanner problem asks for the
k-spanner that has the fewest edges. The CDR-α problem differs with the basic
k-spanner problem in the following three aspects: First, in the CDR-α problem,
we find a set of vertices D, and all the edges in the subgraph induced by D can
be used for routing; while in the basic k-spanner problem, only edges in H can be
used. Second, in the CDR-α problem, the objective is to minimize the number of
chosen vertices; while in the basic k-spanner problem, the objective is to minimize
the number of chosen edges. Finally, in the basic k-spanner problem, the distance
is measured by the number of edges; while in the CDR-α problem, the distance
is measured by the number of internal nodes. Despite the above differences,
these two problems share similar approximability and hardness results. Althöfer
et al. proved that every graph has a k-spanner of at most n1+ 1

�(k+1)/2� edges,
and such a k-spanner can be constructed in polynomial time [1,7]. Since the
number of edges in any k-spanner is at least n − 1, this yields an O(n

1
�(k+1)/2�)-

approximation algorithm for the basic k-spanner problem. For k = 2, there is an
O(log n)-approximation algorithm due to Kortsarz and Peleg [16], and this is the
best possible [15]. For k = 3, Berman et al. proposed an Õ(n1/3)-approximation
algorithm [2]. For k = 4, Dinitz and Zhang proposed an Õ(n1/3)-approximation
algorithm [7]. On the hardness side, it has been proved that for any constant
ε > 0 and for 3 ≤ k ≤ log1−2ε n, unless NP ⊆ BPTIME(2poly log n), there is no
polynomial-time algorithm that approximates the basic k-spanner problem to a
factor better than 2(log

1−ε n)/k [6].

2 Two Algorithms for the 1-DR-α Problem

2.1 The First Algorithm

We first give the formal definition of the Set Cover with Pairs (SCP) problem.

3 If the graph is triangle-free, then any two vertices with a common neighbor form a
target couple.

4 One may drop the constraint that the solution must be a dominating set, and focuses
on minimizing the number of vertices to cover all the target couples. This theorem
also applies to such a problem.

On the Approximability and Hardness of the Minimum CDR 37

Definition 3. Let T be a set of t targets. Let V be a set of n elements. For every
pair of elements P = {v1, v2} ⊆ V , C(P) denotes the set of targets covered by
P . The Set Cover with Pairs (SCP) problem asks for the smallest subset S of V
such that

⋃

{v1,v2}⊆S

C({v1, v2}) = T .

Let OPT be the number of elements in the optimal solution. We only need to
consider the case where t > 1 and OPT > 1.

Approximating the SCP Problem: Our algorithm is a simple greedy algo-
rithm: in each round, we choose at most two elements u and v that maximize
the number of covered targets. Specifically, S is an empty set initially. In each
round, we select a set P ⊆ V \ S such that |P | ≤ 2 and P increases the number
of covered targets the most, i.e., P = argmax

P ′:|P ′|≤2,P ′⊆V \S

g(P ′), where

g(P ′) = |
⋃

{v1,v2}⊆S∪P ′
C({v1, v2})| − |

⋃

{v1,v2}⊆S

C({v1, v2})|.

We then add P to S and repeat the above process until all the targets are
covered. The algorithm terminates once all targets are covered.5

Theorem 5. The above algorithm is an O(
√

n log t)-approximation algorithm
for the SCP problem.

Proof. Let Ri be the number of uncovered targets after round i. In the first
round, some pair of elements in the optimal solution can cover at least t/

(
OPT

2

)

targets. Since we choose a pair of elements greedily in each round, R1 ≤
t(1 − 1/

(
OPT

2

)
). In the second round, there exists a pair of elements in the

optimal solution that can cover at least R1/
(
OPT

2

)
targets among the R1 uncov-

ered targets. Again, we choose the pair of elements that increases the number
of covered targets the most. Hence, R2 ≤ R1 − R1/

(
OPT

2

)
≤ t(1 − 1/

(
OPT

2

)
)2.

In general, Ri ≤ t(1 − 1/
(
OPT

2

)
)i. After r =

(
OPT

2

)
ln t rounds, the number of

uncovered targets is at most t(1 − 1/
(
OPT

2

)
)r ≤ t(e−1/(OP T

2))r ≤ te− ln t = 1.
Hence, after O(OPT 2 ln t) rounds, all targets are covered. Let ALG be the
number of elements chosen by the algorithm. Since we choose at most two
elements in each round, ALG = O(OPT 2 ln t). Finally, since ALG ≤ n,
ALG = O(

√
n · OPT 2 ln t) = O(

√
n ln t)OPT . 	

Note that, in Theorem5, we can replace n with any upper bound of the size
of solutions obtained by any polynomial-time algorithm A for the SCP problem.
This is achieved by executing both A and our algorithm. Choosing the best
between the two outputs yields the desired approximation ratio. For example, if
we replace n with 2t, we then get the result in [13].
5 In [13], in each round, a set P = argmax

P ′:|P ′|≤2,P ′⊆V \S
g′(P ′) is added to S, where g′(P ′) =

g(P ′)
|P ′| .

38 T.-W. Kuo

Approximating the 1-DR-2 Problem: To transform the 1-DR-2 problem to
the SCP problem, we treat each target couple as a target. Moreover, we treat
each vertex as a target so that the output is a dominating set. The set of elements
V in the SCP problem is the vertex set of G. C(P) consists of all the vertices
that are dominated by P in G and all the target couples that are covered by P
in G. In this SCP instance, n = n(G) and t = O(n(G)2). It is easy to verify the
following result.

Theorem 6. There is an O(
√

n log n)-approximation algorithm for the 1-DR-2
problem.

The Set Cover with α-Tuples (SCT-α) Problem: In the 1-DR-2 problem,
every target couple can be covered by no more than two vertices. In the 1-DR-α
problem, every target couple can be covered by no more than α vertices. Hence,
we consider the following generalization of the SCP problem.

Definition 4. Let T be a set of t targets. Let V be a set of n elements.
Let α be a positive integer constant greater than one. For every α-tuple P =
{v1, v2, · · · , vα} ⊆ V , C(P) denotes the set of targets covered by P . The Set
Cover with α-Tuples (SCT-α) problem asks for the smallest subset S of V such
that

⋃

{v1,v2,··· ,vα}⊆S

C({v1, v2, · · · , vα}) = T .

We only need to consider the case where t > 1 and OPT ≥ α (α is a constant).

Approximating the SCT-α Problem and the 1-DR-α Problem: The
algorithm for the SCT-α problem is a straightforward generalization of the algo-
rithm for the SCP problem. The difference is that, in each round, we choose a
set P of at most α elements that increases the number of covered targets the
most. The transformation from the 1-DR-α problem into the SCT-α problem is
also similar to the previous transformation. The value of α in the constructed
SCT-α instance is equal to that in the 1-DR-α instance. Again, n = n(G) and
t = O(n(G)2) in the constructed SCT-α instance. Theorem 2 is a direct result
of the following theorem.

Theorem 7. There is an O(n1− 1
α · (ln t)

1
α)-approximation algorithm for the

SCT-α problem.

Claim 1. When c = 1
α − ln ln(tα)

α lnn , n1−c =
√

n · α(nc)α−2 ln t = n1− 1
α · (α ln t)

1
α .

Proof of Claim 1:

n1−c =
√

n · α(nc)α−2 ln t

⇔ n2−2c = n · α(nc)α−2 ln t

⇔ n2−2c−(1+c(α−2)) = α ln t

⇔ n1−cα = α ln t.

On the Approximability and Hardness of the Minimum CDR 39

When c = 1
α − ln ln(tα)

α lnn ,

n1−cα = n1−(1− ln ln(tα)
ln n)

= n
ln ln(tα)

ln n (1)

= (nln(ln(tα)))
1

ln n (2)

= ((ln(tα))lnn)
1

ln n (3)

= ((α ln t)lnn)
1

ln n (4)
= α ln t. (5)

Hence, when c = 1
α − ln ln(tα)

α lnn , n1−c =
√

n · α(nc)α−2 ln t.
Finally, when c = 1

α − ln ln(tα)
α lnn ,

n1−c = n1− 1
α+

ln ln(tα)
α ln n

= n1− 1
α · n

ln ln(tα)
α ln n

= n1− 1
α · (n

ln ln(tα)
ln n)

1
α

= n1− 1
α · (α ln t)

1
α .

In the last equality, we reuse Eqs.(1)–(5). 	

Proof of Theorem 7: Let Ri be the number of uncovered targets after

round i. By a similar argument in the proof of Theorem5, we get that Ri ≤
t(1−1/

(
OPT

α

)
)i. After r =

(
OPT

α

)
ln t rounds, the number of uncovered targets is

at most one. Hence, after O(OPTα ln t) rounds, all targets are covered. Let ALG
be the number of elements chosen by the algorithm. Since we choose at most
α elements in each round, ALG = O(αOPTα ln t). Since ALG ≤ n, ALG =
O(

√
n · αOPTα ln t).

Let c = 1
α − ln ln(tα)

α lnn . When OPT ≥ nc, the approximation ratio is n1−c. When
OPT ≤ nc, ALG = O(

√
n · αOPTα−2 ln t)OPT = O(

√
n · α(nc)α−2 ln t)OPT .

The proof then follows from Claim1 and α
1
α = O(1). 	

2.2 The Second Algorithm

The second algorithm is designed for the 1-DR-α problem when α ≥ 5. It has
a better approximation ratio than that of the previous algorithm when α ≥ 5.
The algorithm is suggested in Lemma 1: We first find a dominating set D by any
O(log n)-approximation algorithm. Let D′ = D. For any two vertices u and v in
D, if m(u, v) ≤ 3, we then add at most three vertices to D′ so that mD′

(u, v) ≤ 3.
Proof of Theorem 3: By Lemma 1, D′ is a feasible solution for the 1-DR-α

problem when α ≥ 5. Let OPTDS be the size of the minimum dominating set in
G. Let OPT be the size of the optimum of the 1-DR-α problem. Since any feasible
solution of the 1-DR-α problem must be a dominating set, OPTDS ≤ OPT .
Moreover, |D′| ≤ |D|+3

(|D|
2

)
= O((log n ·OPTDS)2) = O((log n ·OPT)2). Since

|D′| ≤ n, we have |D′| = O(
√

n · (log n · OPT)2) = O(
√

n log n)OPT . 	

40 T.-W. Kuo

3 Inapproximability Result

3.1 The MIN-REP Problem

We prove Theorem 4 by a reduction from the MIN-REP problem [15]. The input
of the MIN-REP problem consists of a bipartite graph G = (X,Y,E), a partition
of X, PX = {X1,X2, · · · ,XkX

}, and a partition of Y , PY = {Y1, Y2, · · · , YkY
},

such that
⋃kX

i=1 Xi = X and
⋃kY

i=1 Yi = Y . Every Xi ∈ PX (respectively, Yi ∈ PY)
has size |X|/kX (respectively, |Y |/kY). X1,X2, · · · ,XkX

and Y1, Y2, · · · , YkY
are

called super nodes, and two super nodes Xi and Yj are adjacent if some vertex
in Xi and some vertex in Yj are adjacent in G. If Xi and Yj are adjacent, then
Xi and Yj form a super edge. In the MIN-REP problem, our task is to choose
representatives for super nodes so that if Xi and Yj form a super edge, then
some representative for Xi and some representative for Yj are adjacent in G.
Note that a super node may have multiple representatives. Specifically, the goal
of the MIN-REP problem is to find the smallest subset R ⊆ X ∪ Y such that
if Xi and Yj form a super edge, then R must contain two vertices x and y such
that x ∈ Xi, y ∈ Yj and (x, y) ∈ E. In this case, we say that {x, y} covers the
super edge (Xi, Yj). The inapproximability result of the MIN-REP problem is
stated as the following theorem.

Theorem 8 (Kortsarz et al. [17]). For any constant ε > 0, unless NP ⊆
DTIME(npoly log n), there is no polynomial-time algorithm that can distinguish
between instances of the MIN-REP problem with a solution of size kX + kY and
instances where every solution is of size at least (kX + kY) · 2log

1−ε n(G), where
n(G) is the number of vertices in the input graph of the MIN-REP problem.

3.2 The Reduction

Given inputs G = (X,Y,E), PX , and PY of the MIN-REP problem, we construct
a corresponding graph G′(G,PX ,PY) of the 1-DR-2 problem. When G, PX , and
PY are clear from the context, we simply write G′ instead of G′(G,PX ,PY).
Initially, G′ = G. Hence, G′ contains X, Y , and E. For each super node Xi

(respectively, Yi), we create two corresponding vertices px1
i and px2

i (respectively,
py1

i and py2
i) in G′. If x is in super node Xi (respectively, y is in super node Yi),

then we add two edges (x, px1
i) and (x, px2

i) (respectively, (y, py1
i) and (y, py2

i))
in G′. If Xi and Yj form a super edge, then we add two vertices r1i,j and r2i,j to
G′, and we add four edges (px1

i , r
1
i,j), (r1i,j , py1

j), (px2
i , r

2
i,j), (r2i,j , py2

j) to G′. r1i,j
(respectively, r2i,j) is called the relay of px1

i and py1
j (respectively, px2

i and py2
j).

Before we complete the construction of G′, we briefly explain the idea behind
the construction so far. If two super nodes Xi and Yj form a super edge, then pxI

i

and pyI
j (I ∈ {1, 2}) have a common neighbor in G′, i.e., the relay rI

i,j . Because
pxI

i and pyI
j are not adjacent, pxI

i and pyI
j form a target couple. To transform

a solution D of the 1-DR-2 problem to a solution of the MIN-REP problem, we
need to transform D to another feasible solution D′ for the 1-DR-2 problem so
that none of the relays is chosen, and only vertices in X ∪Y are used to connect

On the Approximability and Hardness of the Minimum CDR 41

pxI
i and pyI

j . This is the reason that we have two corresponding vertices for each
super node (and thus two relays for each super edge). Under this setting, to
connect px1

i to py1
j and px2

i to py2
j , choosing two vertices in X ∪ Y is no worse

than choosing the relays.

Fig. 1. An example of the reduction.

Let PX = {px1
1, px1

2, · · · , px1
kX

} ∪ {px2
1, px2

2, · · · , px2
kX

} be the set of ver-
tices in G′ corresponding to the super nodes in PX . Similarly, let PY =
{py1

1 , py1
2 , · · · , py1

kY
} ∪ {py2

1 , py2
2 , · · · , py2

kY
}. Let R be the set of all relays. To

complete the construction, we add four vertices (hubs) hX,R, hY,R, hPX , and
hPY to G′. In G′, all the vertices in X, Y , PX, and PY are adjacent to hX,R,
hY,R, hPX , and hPY , respectively. Moreover, every relay is adjacent to hX,R

and hY,R. These four hubs induce a 4-cycle (hPX , hY,R, hPY , hX,R, hPX) in G′.
Finally, for each hub h, we create two dummy nodes d1 and d2, and add two edges
(h, d1) and (h, d2) to G′. This completes the construction of G′. Figure 1 shows an
example of the reduction. Let H and M be the set of hubs and the set of dummy
nodes, respectively. Hence, the vertex set of G′ is X ∪Y ∪PX ∪PY ∪R∪H ∪M .
Let N(u) be the set of neighbors of u in G′. We then have

N(px) ⊆ X ∪ R ∪ {hPX} if px ∈ PX. N(py) ⊆ Y ∪ R ∪ {hPY } if py ∈ PY.

N(x) ⊆ PX ∪ Y ∪ {hX,R} if x ∈ X. N(y) ⊆ PY ∪ X ∪ {hY,R} if y ∈ Y.

N(hX,R) \ M = X ∪ R ∪ {hPX , hPY }. N(hY,R) \ M = Y ∪ R ∪ {hPX , hPY }.

N(hPX) \ M = PX ∪ {hX,R, hY,R}. N(hPY) \ M = PY ∪ {hX,R, hY,R}.

N(m) ⊆ H if m ∈ M. N(r) ⊆ PX ∪ PY ∪ {hX,R, hY,R} if r ∈ R.

Observe that |R| = O(n(G)2). We have the following lemma.

42 T.-W. Kuo

Lemma 2. n(G′) = O(n(G)2).

It is easy to check that, for any two adjacent vertices u and v in G′, u and v
have no common neighbor. Hence, we have the following lemma.

Lemma 3. G′ is triangle-free.

We say that a target couple [a, b] is in [A,B] if a ∈ A and b ∈ B. It is easy
to verify the following two lemmas.

Lemma 4. Only H can cover the target couples in [M,M].

Lemma 5. H is a dominating set of G′.

The proof of the following lemma can be found in the appendix.

Lemma 6. H covers all the target couples except those in [PX,PY].

Let px and py be vertices in PX and PY , respectively. Observe that, if
(px, x, y, py) is a path in G′, then x ∈ X and y ∈ Y . We then have the following
lemma.

Lemma 7. D covers target couples [px1
i , py1

j] and [px2
i , py2

j] if and only if at
least one of the following conditions is satisfied.

1. There exist x ∈ X and y ∈ Y such that (px1
i , x, y, py1

j) and (px2
i , x, y, py2

j) are
paths in G′ and {x, y} ⊆ D.

2. {r1i,j , r
2
i,j} ⊆ D.

3.3 The Analysis

Let IMR be an instance of the MIN-REP problem with inputs G, PX , and PY .
Let ID be the instance of the 1-DR-2 problem with input G′(G,PX ,PY). To
prove the inapproximability result, we use the following two lemmas.

Lemma 8. If IMR has a solution of size s, then ID has a solution of size s+4.

Lemma 9. If every solution of IMR has size at least s · 2log
1−ε n(G), then every

solution of ID has size at least s · 2log
1−ε n(G) + 4.

Proof of Theorem 4: By Theorem 8, for any constant ε > 0, unless NP ⊆
DTIME(npoly log n), there is no polynomial-time algorithm that can distinguish
between instances of the MIN-REP problem with a solution of size kX + kY

and instances where every solution is of size at least (kX + kY) · 2log
1−ε n(G).

By the above two lemmas, it is hard to distinguish between instances of the
1-DR-2 problem with a solution of size kX + kY + 4 and instances in which
every solution is of size at least (kX + kY) · 2log

1−ε n(G) + 4. Therefore, for any
constant ε > 0, unless NP ⊆ DTIME(npoly log n), there is no polynomial-time
algorithm that can approximate the 1-DR-2 problem by a factor better than
(kX+kY)·2log1−ε n(G)+4

kX+kY +4 . Lemma 2 implies that, for any constant ε′ > 0, unless

On the Approximability and Hardness of the Minimum CDR 43

NP ⊆ DTIME(npoly log n), there is no O(2log
1−ε′

n(G′)0.5
)-approximation algo-

rithm for the 1-DR-2 problem. By considering sufficiently large instances and a
small enough ε′, we have the hardness result claimed in Theorem 4. On the other
hand, let 1-DR-2′ be the problem obtained by removing the constraint that any
feasible solution must be a dominating set from the 1-DR-2 problem. Thus, in
the 1-DR-2′ problem, we only focus on covering target couples. By Lemmas 4
and 5, a solution D is feasible for the 1-DR-2′ problem with input G′ if and only
if D is a feasible solution of ID. Thus, the inapproximability result also applies
to the 1-DR-2′ problem. Finally, the proof follows from Lemma3. 	

Lemma 8 is a direct result of the following claim.

Claim 2. If S is a feasible solution of IMR, then S ∪H is a feasible solution of ID.

Proof. Since H is a dominating set, by Lemma 6, it suffices to prove that every
target couple [u, v] = [pxI1

i , pyI2
j] in [PX,PY] is covered by S. Note that

[pxI1
i , pyI2

j] cannot be a target couple if I1 = I2. This is because pxI1
i and pyI2

j do
not have a common neighbor if I1 = I2. If I1 = I2, then the common neighbor
must be rI

i,j . By the construction of G′, this implies that Xi and Yj form a super
edge. Since S is a feasible solution of IMR, there exists x ∈ Xi and y ∈ Yj such
that x and y are adjacent in G and {x, y} ⊆ S. Again, by the construction of
G′, (u, x, y, v) is a path in G′. Hence, S ⊇ {x, y} covers [u, v]. 	

To prove Lemma 9, we use the following claim.

Claim 3. ID has an optimal solution D∗, such that D∗ \H is a feasible solution
of IMR.

Proof of Claim 3: Let DOPT be any optimal solution of ID. By Lemmas 4,
6, and 7, DOPT ⊆ H ∪ X ∪ Y ∪ R. If DOPT ∩ R = ∅, by Lemma 7, each target
couple [pxI

i , pyI
j] is covered by some x ∈ X and some y ∈ Y . By the construction

of G′, such x and y also cover the super edge (Xi, Yj) in IMR. Because each super
edge in IMR has a corresponding target couple in ID, DOPT \ H is a feasible
solution of IMR.

If DOPT ∩ R = ∅, then some rI
i,j ∈ DOPT . We can further assume that both

r1i,j and r2i,j are in DOPT ; otherwise, by Lemma 7, we can remove rI
i,j from DOPT ,

the resulting solution is smaller and is still feasible. We then replace r1i,j and r2i,j
with some x ∈ X and some y ∈ Y satisfying the first condition in Lemma7.
By Lemma 7, the resulting solution is still feasible, and the size remains the
same. Repeat the above replacing process until the resulting solution does not
contain any relay. The proof then follows from the argument of the case where
DOPT ∩ R = ∅. 	

Proof of Lemma 9: Let S∗ be the optimal solution of IMR. By the assump-
tion, we have |S∗| ≥ s · 2log1−ε n(G). It suffices to prove that S∗ ∪H is an optimal
solution for ID, which implies that every feasible solution of ID has size at least
|S∗ ∪ H| = |S∗| + 4 ≥ s · 2log

1−ε n(G) + 4. The feasibility of S∗ ∪ H follows from
Claim 2. For the sake of contradiction, assume that the optimal solution of ID

has size smaller than |S∗ ∪H| = |S∗|+4. Claim 3 and Lemma 4 then imply that
S∗ is not an optimal solution of IMR, which is a contradiction. 	

44 T.-W. Kuo

A Proof of Lemma 6

If [u, v] is in [PX,PX ∪ {hX,R, hY,R}], [PY, PY ∪ {hX,R, hY,R}], [X,X ∪ R ∪
{hPX , hPY }], [Y, Y ∪ R ∪ {hPX , hPY }], or [R,R ∪ {hPX , hPY }], then [u, v] can
be covered by one vertex in H. If [u, v] is in [PX, Y], [PY,X], [X, {hY,R}], or
[Y, {hX,R}], then [u, v] can be covered by an edge in H. If [u, v] is in [PX,X ∪
R ∪ {hPX , hPY }], [PY, Y ∪ R ∪ {hPX , hPY }], or [X,Y], then [u, v] cannot be
a target couple (since u and v do not have a common neighbor). If [u, v] is
in [X, {hX,R}], [Y, {hY,R}], or [R, {hX,R, hY,R}], then [u, v] cannot be a target
couple (since u and v are adjacent6). Moreover, it is easy to see that H covers
all the target couples in [H,H] or [V (G′),M], where V (G′) is the vertex set of
G′. Finally, observe that if [u, v] is in [PX,PY], then H cannot cover [u, v]. 	

B Reduction from the 1-DR-α Problem to Other Related
Problems

In this section, we show that the 1-DR-α problem can be transformed into the sub-
modular cost set cover problem and the minimum rainbow subgraph problem on
multigraphs. We also summarize the approximability results of these two prob-
lems in the literature. Future progress in the approximability results of these two
problems may lead to better approximation algorithms for the 1-DR-α problem.

Submodular Cost Set Cover Problem: The 1-DR-α problem can be
considered as a special case of the submodular cost set cover problem [10,14,23].
In the set cover problem, we are given a set of targets T and a set of objects S.
Each object in S can cover a subset of T (specified in the input). The goal is to
choose the smallest subset of S that covers T . In the submodular cost set cover
problem, there is a non-negative submodular function c that maps each subset
of S to a cost, and the goal is to find the set cover with the minimum cost. To
transform the 1-DR-α problem with input G = (V,E) to the submodular cost
set cover problem, let T be the union of V and the set of all target couples, and
let S be the set of all subsets of V with size at most α. Hence, each object in
S is a subset of V . An object S ∈ S can cover a vertex v if v is adjacent to
some vertex in S or v ∈ S. An object S ∈ S can cover a target couple [u, v] if
mS(u, v) ≤ α. The cost of a subset S ′ of S is simply the size of the union of
objects in S ′, i.e., the number of distinct vertices specified in S ′.

Iwata and Nagano proposed a |T |-approximation algorithm and an f -
approximation algorithm, where f is the maximum frequency, maxT∈T |{S ∈
S|S covers T}| [14]. Koufogiannakis and Young also proposed an f -
approximation algorithm when the cost function c is non-decreasing [18]. It is
easy to see that these algorithms give trivial bounds for the 1-DR-α problem.
When the cost function c is integer-valued, non-decreasing, and satisfies
c(∅) = 0, Wan et al. proposed a ρH(γ)-approximation algorithm, where ρ =

min
S∗:S∗ is an optimal solution

∑
S∈S∗ c({S})

c(S∗) , γ is the largest number of targets that can

6 In addition, by Lemma 3, u and v do not have a common neighbor.

On the Approximability and Hardness of the Minimum CDR 45

be covered by an object in S, and H(k) is the k-th Harmonic number [23]. Du
et al. applied this algorithm to the 1-DR-α problem on UDG for α ≥ 5 and
obtained a constant factor approximation algorithm [10]. It is unclear whether
or not ρ can be upper bounded by O(n1−ε) for some ε > 0 when applied to the
1-DR-α problem on general graphs.

Minimum Rainbow Subgraph Problem on Multigraphs: Given a set
of p colors and a multigraph H, where each edge is colored with one of the p
colors, the Minimum Rainbow Subgraph (MRS) problem asks for the smallest
vertex subset D of H, such that each of the p colors appears in some edge
induced by D. The 1-DR-2 problem can be transformed into the MRS problem
as follows. Let G = (V,E) be the input graph of the 1-DR-2 problem. Let T be
the union of V and the set of all target couples. The set of colors for the MRS
problem is {ci|i ∈ T}. The input multigraph H of the MRS problem has the
same vertex set as G. To form a dominating set, for each v ∈ V , v is incident to
d(v)+1 loops (v, v) in H, where d(v) is the degree of v in G. Each of these loops
receives a different color in {cv} ∪ {cu|(u, v) ∈ E}. For each target couple [u, v]
in G, if w is a common neighbor of u and v in G, we add a loop (w,w) with color
c[u,v] to H. Finally, for each target couple [u, v] in G, if (u,w1, w2, v) is a path
in G, we add an edge (w1, w2) with color c[u,v] to H. The MRS problem can be
transformed into the SCP problem. When the input graph is simple, Tirodkar
and Vishwanathan proposed an O(n1/3 log n)-approximation algorithm [22].

References

1. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete Comput. Geom. 9(1), 81–100 (1993). https://doi.org/
10.1007/BF02189308

2. Berman, P., Bhattacharyya, A., Makarychev, K., Raskhodnikova, S., Yaroslavtsev,
G.: Approximation algorithms for spanner problems and directed Steiner forest. Inf.
Comput. 222(Supplement C), 93–107 (2013). https://doi.org/10.1016/j.ic.2012.10.
007

3. Cheng, X., Huang, X., Li, D., Wu, W., Du, D.Z.: A polynomial-time approximation
scheme for the minimum-connected dominating set in ad hoc wireless networks.
Networks 42(4), 202–208 (2003). https://doi.org/10.1002/net.10097

4. Das, G.K., De, M., Kolay, S., Nandy, S.C., Sur-Kolay, S.: Approximation algorithms
for maximum independent set of a unit disk graph. Inf. Process. Lett. 115(3), 439–
446 (2015). https://doi.org/10.1016/j.ipl.2014.11.002

5. Ding, L., Wu, W., Willson, J., Du, H., Lee, W., Du, D.Z.: Efficient algorithms for
topology control problem with routing cost constraints in wireless networks. IEEE
Trans. Parallel Distrib. Syst. 22(10), 1601–1609 (2011). https://doi.org/10.1109/
TPDS.2011.30

6. Dinitz, M., Kortsarz, G., Raz, R.: Label cover instances with large girth and the
hardness of approximating basic k-spanner. ACM Trans. Algorithms 12(2), 25:1–
25:16 (2015). https://doi.org/10.1145/2818375

7. Dinitz, M., Zhang, Z.: Approximating low-stretch spanners. In: Proceedings of the
Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, pp. 821–840. Society for Industrial and Applied Mathematics, Philadelphia
(2016)

https://doi.org/10.1007/BF02189308
https://doi.org/10.1007/BF02189308
https://doi.org/10.1016/j.ic.2012.10.007
https://doi.org/10.1016/j.ic.2012.10.007
https://doi.org/10.1002/net.10097
https://doi.org/10.1016/j.ipl.2014.11.002
https://doi.org/10.1109/TPDS.2011.30
https://doi.org/10.1109/TPDS.2011.30
https://doi.org/10.1145/2818375

46 T.-W. Kuo

8. Du, D.Z., Wan, P.J.: Routing-cost constrained CDS. In: Du, D.Z., Wan, P.J.
(eds.) Connected Dominating Set: Theory and Applications, vol. 77, pp. 119–131.
Springer, New York (2013). https://doi.org/10.1007/978-1-4614-5242-3 7

9. Du, H., Wu, W., Ye, Q., Li, D., Lee, W., Xu, X.: CDS-based virtual backbone
construction with guaranteed routing cost in wireless sensor networks. IEEE Trans.
Parallel Distrib. Syst. 24(4), 652–661 (2013). https://doi.org/10.1109/TPDS.2012.
177

10. Du, H., Wu, W., Lee, W., Liu, Q., Zhang, Z., Du, D.Z.: On minimum submodular
cover with submodular cost. J. Global Optim. 50(2), 229–234 (2011). https://doi.
org/10.1007/s10898-010-9563-3

11. Du, H., Ye, Q., Zhong, J., Wang, Y., Lee, W., Park, H.: Polynomial-time approx-
imation scheme for minimum connected dominating set under routing cost con-
straint in wireless sensor networks. Theor. Comput. Sci. 447(Supplement C), 38–43
(2012). https://doi.org/10.1016/j.tcs.2011.10.010. Combinational Algorithms and
Applications (COCOA 2010)

12. Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets.
Algorithmica 20(4), 374–387 (1998). https://doi.org/10.1007/PL00009201

13. Hassin, R., Segev, D.: The set cover with pairs problem. In: Sarukkai, S., Sen, S.
(eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 164–176. Springer, Heidelberg (2005).
https://doi.org/10.1007/11590156 13

14. Iwata, S., Nagano, K.: Submodular function minimization under covering con-
straints. In: IEEE FOCS, pp. 671–680, October 2009. https://doi.org/10.1109/
FOCS.2009.31

15. Kortsarz, G.: On the hardness of approximating spanners. Algorithmica 30(3),
432–450 (2001). https://doi.org/10.1007/s00453-001-0021-y

16. Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. J. Algorithms 17(2), 222–
236 (1994). https://doi.org/10.1006/jagm.1994.1032

17. Kortsarz, G., Krauthgamer, R., Lee, J.R.: Hardness of approximation for vertex-
connectivity network design problems. SIAM J. Comput. 33(3), 704–720 (2004).
https://doi.org/10.1137/S0097539702416736

18. Koufogiannakis, C., Young, N.E.: Greedy δ-approximation algorithm for cover-
ing with arbitrary constraints and submodular cost. Algorithmica 66(1), 113–152
(2013). https://doi.org/10.1007/s00453-012-9629-3

19. Liu, C., Huang, H., Du, H., Jia, X.: Performance-guaranteed strongly connected
dominating sets in heterogeneous wireless sensor networks. In: IEEE INFOCOM
2016 - The 35th Annual IEEE International Conference on Computer Communi-
cations, pp. 1–9, April 2016. https://doi.org/10.1109/INFOCOM.2016.7524455

20. Nieberg, T., Hurink, J.: A PTAS for the minimum dominating set problem in unit
disk graphs. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879,
pp. 296–306. Springer, Heidelberg (2006). https://doi.org/10.1007/11671411 23

21. Ruan, L., Du, H., Jia, X., Wu, W., Li, Y., Ko, K.I.: A greedy approximation for
minimum connected dominating sets. Theor. Comput. Sci. 329(1), 325–330 (2004).
https://doi.org/10.1016/j.tcs.2004.08.013

22. Tirodkar, S., Vishwanathan, S.: On the approximability of the minimum rainbow
subgraph problem and other related problems. Algorithmica 79(3), 909–924 (2017).
https://doi.org/10.1007/s00453-017-0278-4

23. Wan, P.J., Du, D.Z., Pardalos, P., Wu, W.: Greedy approximations for minimum
submodular cover with submodular cost. Comput. Optim. Appl. 45(2), 463–474
(2010). https://doi.org/10.1007/s10589-009-9269-y

https://doi.org/10.1007/978-1-4614-5242-3_7
https://doi.org/10.1109/TPDS.2012.177
https://doi.org/10.1109/TPDS.2012.177
https://doi.org/10.1007/s10898-010-9563-3
https://doi.org/10.1007/s10898-010-9563-3
https://doi.org/10.1016/j.tcs.2011.10.010
https://doi.org/10.1007/PL00009201
https://doi.org/10.1007/11590156_13
https://doi.org/10.1109/FOCS.2009.31
https://doi.org/10.1109/FOCS.2009.31
https://doi.org/10.1007/s00453-001-0021-y
https://doi.org/10.1006/jagm.1994.1032
https://doi.org/10.1137/S0097539702416736
https://doi.org/10.1007/s00453-012-9629-3
https://doi.org/10.1109/INFOCOM.2016.7524455
https://doi.org/10.1007/11671411_23
https://doi.org/10.1016/j.tcs.2004.08.013
https://doi.org/10.1007/s00453-017-0278-4
https://doi.org/10.1007/s10589-009-9269-y

On the Maximum Connectivity
Improvement Problem

Federico Corò1(B), Gianlorenzo D’Angelo1, and Cristina M. Pinotti2

1 Gran Sasso Science Institute (GSSI), L’Aquila, Italy
{federico.coro,gianlorenzo.dangelo}@gssi.it

2 Department of Computer Science and Mathematics, University of Perugia,
Perugia, Italy

cristina.pinotti@unipg.it

Abstract. In this paper, we define a new problem called the Maximum
Connectivity Improvement (MCI) problem: given a directed graph G =
(V, E), a weight function w : V → N≥0, a profit function p : V → N≥0,
and an integer B, find a set S of at most B edges not in E that maximises
f(S) =

∑
v∈V wv · p(R(v, S)), where p(R(v, S)) is the sum of the profits

of the nodes reachable from node v when the edges in S are added to
G. We first show that we can focus on Directed Acyclic Graphs (DAG)
without loss of generality. We prove that the MCI problem on DAG is
NP-Hard to approximate to within a factor greater than 1 − 1/e even
if we restrict to graphs with a single source or a single sink, and MCI
remains NP-Complete if we further restrict to unitary weights. We devise
a polynomial time algorithm based on dynamic programming to solve the
MCI problem on trees with a single source. We propose a polynomial time
greedy algorithm that guarantees (1−1/e)-approximation ratio on DAGs
with a single source or a single sink.

Keywords: Graph augmentation · Approximation algorithms ·
Greedy algorithms · Submodularity · DAG · Trees ·
Dynamic programming

1 Introduction

In this paper, we consider the problem of improving the reachability of a graph.
We approach the problem from a graph augmentation perspective, in which a set
of non-existing edges are added to the graph to increase the overall number of
reachable nodes. There are several recent possible application scenarios for this
problem. For example, suggesting friends in a social network with the objective
of increasing the spreading of information [2,5] or performing faster network
simulations by reducing the convergence time of random walk processes [13,14].
Graph augmentation problems are also well known in traditional graph theory.
In [7], Tarjan et al. consider the problems of adding a minimum (or minimum-
weight) set of edges to a graph so as to satisfy a given connectivity condition,
c© Springer Nature Switzerland AG 2019
S. Gilbert et al. (Eds.): ALGOSENSORS 2018, LNCS 11410, pp. 47–61, 2019.
https://doi.org/10.1007/978-3-030-14094-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14094-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-14094-6_4

48 F. Corò et al.

such as to make a directed graph strongly connected or to make an undirected
graph bridge-connected or biconnected. They have already proved that some
variants of augmentation problems are NP -Complete.

More recently, several optimization problems related to graph augmentation
have been addressed. Demaine and Zadimoghaddam [6] study the problem of
minimising the eccentricity of a graph by adding a limited number of new edges.
A 4-approximation algorithm is introduced and it is proven that the problem
is NP -hard to be approximated within a factor smaller than 3/2. The problem
of minimising the average all-pairs shortest path distance – characteristic path
length – of the whole graph has been studied by Papagelis in [14]. The author
considers the problem of adding a small set of edges to minimise the character-
istic path length, and proves that the problem is NP -Hard. He proposes a path
screening technique to select the edges to be added. The problem of adding a
small set of links in order to maximise the centrality of a given node in a network
has been addressed for different centrality measures: page-rank [1,13], eccentric-
ity [6], average distance [11], harmonic and betweenness centrality [3,4], some
measures related to the number of paths passing through a given node [10].

In this paper, we study the problem of adding at most B edges to a directed
graph in order to maximise the overall weighted number of reachable nodes,
which we call the Maximum Connectivity Improvement (MCI) problem. We
first show that we can focus on Directed Acyclic Graphs (DAG) without loss of
generality (Sect. 2). Then, we focus on the complexity of the problem (Sect. 3)
and we prove that the MCI problem is NP -Hard to approximate to within a
factor greater than 1− 1

e . This result holds even if the DAG has a single source or
a single sink. Moreover, the problem remains NP -complete if we further restrict
to the unweighted case. In Sect. 4, we give a dynamic programming algorithm
for the case in which the graph is a rooted tree, where the root is the only source
node. In Sect. 5, we present a greedy algorithm which guarantees a (1 − 1/e)-
approximation factor for the case in which the DAG has a single source or a
single sink. We end with some concluding remarks in Sect. 6.

2 Preliminaries

Let G = (V,E) be a directed graph. Each node v ∈ V is associated with
a weight wv ∈ N≥0 and a profit pv ∈ N≥0. Given a node v ∈ V , we
denote by R(v,G) the set of nodes that are reachable from v in G, that
is R(v,G) = {u ∈ V : ∃ path from v to u in G}. Moreover, we denote by
p(R(v,G)) =

∑
u∈R(v,G) pu the sum of the profits of the nodes reachable from

v in G. In the rest of the paper, we also use the form p(R(v,G) \ R(u,G)) =∑
u∈R(v,G)\R(u,G) pu to denote the sum of the profits of the nodes in G that are

reachable from v, but not from u. Note that, in the case R(u,G) ⊆ R(v,G), it
holds p(R(v,G)\R(u,G)) = p(R(v,G))−p(R(u,G)). Given a set S of edges not
in E, we denote by G(S) the graph augmented by adding the edges in S to G,
i.e., G(S) = (V,E ∪ S). Let R(v,G(S)) and p(R(v,G(S))) be, respectively, the
set of nodes that are reachable from v in G(S) and the sum of the profits of the

On the Maximum Connectivity Improvement Problem 49

nodes in R(v,G(S)). Note that, augmenting G the connectivity cannot be worse,
and thus: R(u,G) ⊆ R(u,G(S)). Let f(G) =

∑
v∈V wvp(R(v,G)) be a weighted

measure of the connectivity of G. When weights and profits are unitary, f(G)
represents the overall number of connected pairs in G.

In this paper, we aim to augment G by adding a set S of edges of at most
size B, i.e., |S| ≤ B and B ∈ N≥0, that maximises the weighted connectivity of
f(G(S)). We call this problem the Maximum Connectivity Improvement (MCI)
problem because maximising f(G(S)) is the same as to maximise f(G(S))−f(G).

From now on, for simplicity, we omit from the notations the original graph G.
So, we simply use R(v) and R(v, S) to denote R(v,G) and R(v,G(S)), respec-
tively. Similarly, we simply denote with f and f(S) the value of the weighted
connectivity in G and in G(S), respectively.

At first, we will show how to transform any directed graph G with cycles
into a Directed Acyclic Graph (DAG) G′ = (V ′, E′) and how to transform any
solution for G′ into a feasible solution for G.

Graph G′ = (V ′, E′) has as many nodes as the number of strongly con-
nected components of G. Specifically, G′ selects one representative node for each
strongly connected component of G and G′ adds one directed edge between two
nodes u′ and v′ of G′ if there is a directed edge in G connecting any vertex of the
strongly connected component represented by u′ with any vertex of the strongly
connected component represented by v′. Graph G′ is called condensation of G
and can be computed in O(|V | + |E|) time by using Tarjan’s algorithm which
consists in performing a DFS visit [16].

The weight and the profit of a node v′ in G′ is given by the sum of the weight
and profit of the nodes of G that belong to the strongly connected component
Cv′ that is represented by v′, i.e., wv′ =

∑
v∈Cv′ wv and pv′ =

∑
v∈Cv′ pv.

Since the condensation preserves the connectivity of G, the following lemma
can be proved:

Lemma 1. Given a graph G and its condensation G′, it yields: f(G′) = f(G).

Proof. See Appendix.
��

Given a solution S′ for the MCI problem in G′, we can build a solution S
with the same value for the MCI problem in G as follows: for each edge (u′, v′)
in S′, we add an edge (u, v) in S, where u and v are two arbitrary nodes in the
connected component corresponding to u′ and v′, respectively.

This derives from the fact that applying the condensation algorithm to
G′ ∪S′ or to G∪S we obtain the same condensed graph, say G′′. From Lemma 1,
we can conclude that f(G′ ∪ S′) = f(G′′) = f(G ∪ S).

Observe that if we add an edge e within the same strongly connected compo-
nent in G, we do not add any edge to G′. Since the condensation G′′ of (G∪{e})
is the same as G′, we have f(G∪{e}) = f(G′) = f(G). As a consequence, in the
remainder of the paper, we will assume that the graph is a DAG.

50 F. Corò et al.

Given a DAG, a node with no incoming edges is called a source, while a node
with no outgoing edges is called a sink. The next lemma allows us to focus on
solutions that contain only edges connecting sink nodes to source nodes.

Lemma 2. Let S be a solution to the MCI problem, then there exists a solution
S′ such that |S| = |S′|, f(S) ≤ f(S′), and all edges in S′ connect sink nodes to
source nodes.

Proof. We show how to modify any solution S in order to find a solution S′ with
properties of the statement. To obtain S′, we start from S and we repeatedly
apply the following modifications to each edge (u, v) of S such that u is not a
sink or v is not a source: (1) If u is not a sink then there exists a path from u to
some sink u′ and we swap edge (u, v) with edge (u′, v). The objective function
does not decrease and increases at least by the sum of the weights on a path
from u to u′. Namely, after adding the edge (u′, v), any node z on the path from
u to u′ will now reach v passing through u′. Note that the objective function will
not decrease and, instead, may increase due to the fact that the nodes z now are
able to reach the node v. (2) If v is not a source then there exists a path from a
source v′ to v and we swap edge (u, v) with edge (u, v′). The objective function
does not decrease and increases at least by the number of nodes in a path from
v′ to v multiplied by wu. Note that in both cases the gain of a node on the path
we are extending can be zero if it was already able to reach the source/sink from
another edge in the solution. ��

3 NP-Hardness and Hardness of Approximation

In this section, we first show that the MCI problem is NP -Complete, even in
the case in which all the weights and profits are unitary and the graph contains
a single sink node or a single source node. Then, we show that it is NP -hard to
approximate MCI to within a factor greater than 1 − 1

e . This last result holds
also in the case of graphs with a single sink node or a single source node, but
not in the case of unitary weights.

Theorem 1. MCI is NP-Complete, even in the case in which all the weights
and profits are unitary and the graph contains a single sink node or a single
source node.

Proof. We consider the decision version of MCI in which all the weights and
profits are unitary (i.e., wv = pv = 1): Given a directed graph G = (V,E)
and two integers M,B ∈ N≥0, the goal is to find a set of additional edges
S ⊆ (V × V) \ E such that f(S) ≥ M and |S| = B. The problem is in NP since
it can be checked in polynomial time if a set of nodes S is such that f(S) ≥ M
and |S| = B. We reduce from the Set Cover (SC) problem which is known to
be NP -Complete [9]. Consider an instance of the SC problem ISC = (X,F, k)
defined by a collection of subsets F = {S1, . . . , Sm} for a ground set of items
X = {x1, . . . , xn}. The problem is to decide whether there exist k subsets whose

On the Maximum Connectivity Improvement Problem 51

union is equal to X. We define a corresponding instance IMCI = (G,M,B)
of MCI as follows: (1) B = k; (2) G = (V,E), where V = {vxj

| xj ∈ X} ∪
{vSi

| Si ∈ F} ∪ {v} and E = {(vSi
, vxj

) | xj ∈ Si} ∪ {(vxj
, v) | xj ∈ X}; (3)

M = (n + 1 + B)2 + (m − B)(n + B + 2).
See Fig. 1 (left, top) for an example. Note that G is a DAG. By Lemma 2,

we can assume that any solution S of MCI contains only edges (v, vSi
) for some

Si ∈ F . In fact, v is the only sink node and vSi
are the only source nodes.

Assume that there exists a set cover F ′, then we define a solution S to the MCI
instance as S = {(v, vSi

) | Si ∈ F ′}. It is easy to show that f(S) = M and
|S| = k = B. Indeed, all the nodes in G can reach: node v, all the nodes vxj

(since F ′ is a set cover), and all the nodes vSi
such that Si ∈ F ′. Moreover,

each node vSi
such that Si
∈ F ′ can reach itself. Therefore there are n + B + 1

nodes that reach n + B + 1 nodes and m − B that reach n + B + 2 nodes,
that is f(S) = M . On the other hand, assume that there exists a solution for
MCI then S is in the form {(v, vSi

) | Si ∈ F} and we define a solution for
the set cover as F ′ = {Si | (v, vSi

) ∈ S}. We show that F ′ is a set cover. By
contradiction, if we assume that F ′ is not a set cover and it cover only n′ < n
elements of X then f(S) = (n′ + B + 1)2 + (n − n′ + m − B)(n′ + B + 2) < M .
Note that in the above reduction, the graph G has a single sink node. We can
prove the NP -hardness of the case of graphs with a single source node by using
the same arguments on an instance of MCI made of the inverse graph of G,
M = (B + n + 1)(n + m + 1) + m − B, and B = k (see Fig. 1 (left, bottom) for
an example). ��

v

F X

v

Y...

...

...

...

F X

v

F X

v

F X
Y

Fig. 1. (left) Example of reduction from SC to MCI used in Theorem 1. (right) Example
of reduction from MC to MCI used in Theorem 2. (top) Single sink. (Bottom) single
source.

Theorem 2. MCI is NP-hard to approximate to within a factor 1 − 1
e + ε, for

any ε > 0, even if graph contains a single sink node or a single source node.

52 F. Corò et al.

Proof. We give two approximation factor preserving reductions from the Max-
imum coverage problem (MC), which is known to be NP -hard to approximate
to within a factor greater than 1 − 1

e [8].
The MC problem is defined as follows: given a ground set of items X =

{x1, . . . , xn}, a collection of subsets F = {S1, . . . , Sm} of subsets of X, and an
integer k, find k sets in F that maximise the cardinality of their union.

We first focus on the single sink problem. Given an instance of the MC
problem IMC = (X,F, k) we define an instance of the (maximisation) MCI
problem IMCI = (G, k) similar to the one used in Theorem 1, but where we
modify the weights and add Y paths of one node between each vxj

and v, where
Y is an arbitrarily high number (polynomial in n + m).

In detail IMCI is defined as follows: (1) B = k; (2) G = (V,E), where
V = {vxj

| xj ∈ X}∪{vSi
| Si ∈ F}∪{vl

xj
| xj ∈ X and l = 1, . . . , Y }∪{v} and

E = {(vSi
, vxj

) | xj ∈ Si} ∪ {(vxj
, vl

xj
) | xj ∈ X, l = 1, . . . , Y } ∪ {(vl

xj
, v) | xj ∈

X, l = 1, . . . , Y }; (3) w(v) = 1 and w(u) = 0, for each u ∈ V \ {v}; (4) pv = 1
for any node v ∈ V .

See Fig. 1 (right, top) for an example. We first show that there exists a
solution F ′ ⊆ F to IMC that covers n′ elements of X if and only if there exists
a solution S to IMCI such that f(S) = n′(Y + 1) + B + 1. Moreover, we can
compute F ′ from S and vice versa in polynomial time. Indeed, given F ′, we
define S as S = {(v, vSi

) | Si ∈ F ′}. We can verify that f(S) = n′(Y +1)+B +1
and |S| = k = B. Indeed, only node v as a weight different from 0, and then
f(S) = R(v, S) = n′(Y + 1) + B + 1, since v can reach the n′(Y + 1) nodes vxj

corresponding to the items xj covered by F ′, the B nodes vSi
it is connected

to, and itself. On the other hand, given a solution S to IMCI , by Lemma 2 we
can assume that it has only edges from v to nodes vSi

. Let n′ be the number of
nodes vxj

in R(v, S), then f(S) = n′(Y +1)+B +1 and F ′ = {Si | (v, vSi
) ∈ S}

covers n′ elements in X.
If OPT (IMC) and OPT (IMCI) denote the optimum value for IMC and IMCI ,

respectively, then OPT (IMCI) ≥ OPT (IMC)(Y + 1) + B + 1 ≥ Y · OPT (IMC).
Moreover, given the above definition of S and F ′, then for any ε′ > 0 there exists
a value of Y = O(poly(n + m)) such that f(S) ≤ (n′ + ε′)Y .

Let us assume that there exists a polynomial-time algorithm that guarantees
an α approximation for IMCI , then we can compute a solution S such that
f(S) ≥ αOPT (IMCI). It follows that:

αY · OPT (IMC) ≤ αOPT (IMCI) ≤ f(S) ≤ (n′ + ε′)Y,

Where n′ is the number of nodes covered by the solution F ′ to MC obtained
from S. Therefore we obtained an algorithm that approximates the MC problem
with a factor α (up to lower order terms). Since it is NP -hard to approximate
to within a factor greater than 1 − 1

e [8], then the statement follows.
Let us now focus on the single source case. Given IMC , we define IMCI =

(G,B) as follows: (1) B = k; (2) G = (V,E), where V = {vxj
| xj ∈ X} ∪

{vSi
| Si ∈ F} ∪ {v} ∪ {vl | l = 1, . . . Y } and E = {(vxj

, vSi
) | xj ∈ Si} ∪

{(v, vxj
) | xj ∈ X} ∪ {(v, vl) | l = 1, . . . Y }; (3) w(vxj

) = 1, for each xj ∈ X and

On the Maximum Connectivity Improvement Problem 53

w(u) = 0, for each u ∈ V \{vxj
| xj ∈ X}; (4) pv = 1 for any node v ∈ V . Where

Y is an arbitrarily high polynomial value in m + n. See Fig. 1 (right, bottom)
for an example. We use similar arguments as above. In detail, there exists a
solution F ′ ⊆ F to IMC that covers n′ elements of X if and only if there exists
a solution S to IMCI such that f(S) = n′(n + m − m′ + Y) + n(m′ + 1), where
m′ is the number of sets in F that do not cover any of the n′ elements covered
by F ′. Moreover, we can compute F ′ from S and vice versa in polynomial time.
Given F ′, we define S as S = {(v, vSi

) | Si ∈ F ′} and we can verify that f(S) =∑
xj∈X p(R(vxj

, S)) =
∑

xj∈X |R(vxj
, S)| = n′(n+m+Y +1)+(n−n′)(m′+1) =

n′(n + m − m′ + Y) + n(m′ + 1) and |S| = B. Given S, if n′ is the number of
nodes vxj

such that v ∈ R(vxj
, S), then f(S) = n′(n + m − m′ + Y) + n(m′ + 1)

and F ′ = {Si | (vSi,v) ∈ S} covers n′ elements in X.
As above, we can show that OPT (IMCI) ≥ Y · OPT (IMC) and that there

exists a value of Y = O(poly(n+m)) such that f(S) ≤ (n′ +ε′)Y , for any ε′ > 0.
Then, the statement follows by using the same arguments as above. ��

4 Polynomial-Time Algorithm for Trees

In this section, we focus on the case of directed weighted rooted trees in which
the root of the tree is the only source node and all the edges are directed towards
the leaves. We give a polynomial time algorithm based on dynamic programming
that requires O(|V |B2) time and O(|V |B) space. By Lemma 2, we can focus on
edges that connect leaves to the root. We first assume that the tree is binary
and give an algorithm to solve this special case, then we show how to transform
any tree into a binary tree in such a way that each solution for the transformed
instance has the same value as the corresponding solution in the original instance.
The algorithm for binary trees requires O(|V |B2) time and O(|V |B) space while
the transformation requires O(|V |) time and O(|V |) space.

4.1 Binary Trees

We are given a directed weighted binary tree T = (V,E), where all the edges
are directed towards the leaves, the root r ∈ V is the only source node, and
w : V → N≥0, p : V → N≥0. Let us denote by ψ(v) (left child) and δ(v) (right
child) the children of node v ∈ T , moreover, we denote as T (v) the sub-tree
rooted at v. In the following, we introduce our dynamic-programming algorithm
to solve the MCI problem starting from the leaves of T . Given a node v, let Sv

be a solution that connects some leaves of T (v) to r. The gain of solution Sv in
T (v) is the increase in weighted reachability of all the nodes in T (v), that is the
gain of Sv in T (v) is equal to

∑
u∈T (v) wu(p(T (u, Sv))−p(T (u))). For each node

v and for each budget b = 0, 1, . . . , B, the algorithm computes a solution that
connects b leaves of T (v) to r and maximises the gain in T (v). We define g(v, b)
as the maximum gain in T (v) achievable by adding at most b edges from b leaves
of T (v) to node r. Note that g(v, 1) ≤ g(v, 2) ≤ . . . ≤ g(v, b). We now show
how to compute g(v, b) for each node v and for each budget b = 0, 1, . . . , B by

54 F. Corò et al.

Algorithm 1. Dynamic programming algorithm for MCI
Input: T = (V, E), B, wv, pv ∀v ∈ V
Output: Set S of edges

1: for each node v do
2: g(v, 0) := 0;
3: S(v,b) := ∅;

4: for each leaf v and budget b, with {1, . . . , B} do
5: g(v, b) := wv · (p(T (r)) − p(T (v)));
6: S(v,b) := {(v, r)};

7: for each node v in post-ordering do
8: for b ∈ 1, . . . , B do
9: g(v, b) := max

bl,br∈{0,...,b},
bl+br=b

{g(ψ(v), bl) + g(δ(v), br)} + wv · (p(T (r)) − p(T (v)));

� Let bl and br the budgets that maximise Line 9,
10: S(v,b) := S(ψ(v),bl) ∪ S(δ(v),br);

11: S := S(r,B);

using dynamic programming. For each leaf v ∈ T and for each b = 1, 2, . . . , B,
g(v, b) = wv · (p(T (r)) − p(T (v))), that is, the sum of profits p of the new
nodes that v can reach thanks to the new edge (v, r). Moreover g(v, 0) = 0 for
each v ∈ V . Then, the algorithm visits T in post order. For each internal node
v we compute g(v, b) by using the solutions of its sub-trees, i.e., T (ψ(v)) and
T (δ(v)). Let us assume that we have computed g(ψ(v), b) and g(δ(v), b), for each
b = 0, 1, . . . , B. Note that if a solution adds an edge between any leaf of T (v) and
r, then the gain of node v is wv(p(T (r))−p(T (v))) since v will now reach all the
nodes in T . This gain is independent of the number of edges that are added from
the leaves of T (v) to r. In fact, given g(ψ(v), bl) be the maximum gain for T (ψ(v))
and budget bl ∈ {1, 2, . . . , B}, then the gain in T (v) of a solution that connects bl
leaves of T (ψ(v)) to r is equal to g(ψ(v), bl)+wv · (p(T (r))− p(T (v))). Similarly
the gain in T (v) of the solution that connects, for some br ∈ {1, 2, . . . , B}, br
leaves of T (δ(v)) to r is equal to g(δ(v), bl) + wv · p(T (r)) − p(T (v)).

Then, to compute g(v, b) once we have decided how many edges to add in
ψ(v) and how many edges in δ(v), we increase the reachability function of the
same quantity, i.e., wv · (p(T (r)) − p(T (v))).

Hence, g(v, b) is given by the combination of bl and br such that bl + br = b
that maximises the sum g(ψ(v), bl) + g(δ(v), br) + wv · (p(T (r)) − p(T (v))).

Precisely:

g(v, b) = max
bl,br∈{0,...,b}

bl+br=b

{g(ψ(v), bl) + g(δ(v), br)} + wv · (p(T (r)) − p(T (v))). (1)

The optimal value of the problem f(S) = g(r,B) + f(T), where f(T) is the
value of the objective function on T (i.e., when no edges have been added). The
pseudocode of the algorithm is reported in Algorithm1.

On the Maximum Connectivity Improvement Problem 55

Theorem 3. Algorithm1 finds an optimal solution for MCI if the graph is a
binary tree.

Proof. Let us assume by contradiction that v and b are, respectively, the first
node and the first budget for which Algorithm1 computes a non-maximum gain
at line 9 of Algorithm 1, that is g(v, b) < g∗(v, b), where g∗(v, b) is the maximum
gain for tree T (v) and budget b. Let S∗ be an optimal solution that achieves
g∗(v, b) and let S∗

l , S∗
r be the edges in S∗ that starts from leaves in T (ψ(v)) and

T (δ(v)), respectively. Let b∗
l = |S∗

l | and b∗
r = |S∗

r |. Then, the gain of the optimal
solution S∗ is: g∗(v, b) = g(ψ(v), b∗

l) + g(δ(v), b∗
r) + wv · (p(T (r)) − p(T (v))).

Since by hypothesis g(v, b) is the first time for which Algorithm 1 does not find
the maximum gain and since the cost (p(T (r))−p(T (v)))·wv does not depend on
the edges selected in the left and right sub-trees of v, this implies that at line 9
Algorithm 1 must select g(v, b) = g(ψ(v), b∗

l)+ g(δ(v), b∗
r)+ (p(T (r))− p(T (v))) ·

wv = g∗(v, b). Thus contradicting g(v, b) < g∗(v, b). ��
For each node v, the algorithm computes B +1 values. From Eq. 1, it follows

that Algorithm 1 takes O(|V |B2) time. Note that B ∈ O(|V |) because we limit
the new edges to be of the form leaf-root.

4.2 General Trees

We can transform a generic rooted tree T = (V,E) into an equivalent binary
tree T ′ = (V ∪U,E′), following a tree transformation proposed in [15] by adding
at most |V | − 3 dummy node.

The transformation requires O(|V |) time and space (see Appendix 1.C for
a detailed description of the algorithm). The nodes in T ′ will have w′

v = wv

and p′
v = pv if v ∈ V and w′

v = p′
v = 0 for any dummy node. Note that

p(R(v, T ′)) = p(R(v, T)) for any node v in T due to the fact that the added
dummy nodes have p′

v = 0, moreover, dummy nodes do not increase the objective
function because they have the weight set to zero, i.e., any dummy node v will
have w′

v · p(R(v, T ′)) = 0.
For each node v ∈ T ′ and solution S to MCI in T ′, let f ′(S) =

∑
v∈V wvp

(T (v, S)). It is easy to see that by applying Algorithm 1 to T ′ we will obtain
an optimal solution with respect to f ′. Moreover, for each solution S to T ′,
f ′(S) = f(S). Note that a solution S for T ′ that connects leaves of T ′ to its root
are feasible solution also for T since T and T ′ have the same root and leaves.

5 Polynomial-Time Algorithm for DAG with a Single
Source or a Single Sink

In this section, we focus on the case of weighted DAG in which we have a single
source node or a single sink node. We first describe our greedy algorithm to
approximate MCI on DAGs with a single source. Then, we will show how to
modify the algorithm for the case of DAGs with a single sink.

56 F. Corò et al.

In the case of single source, by Lemma 2, we restrict our choices to the edges
that connect sinks nodes to the source. Recall S is the set of edges added to G.
With a little abuse of notation, we also use S to denote the set of sinks from
which the edges in S start. The Greedy algorithm for MCI on DAGs with a
single source (see Algorithm 2), starts from the empty solution, i.e., S = ∅ and
repeatedly adds to S the edge e′ that maximises the function f(S ∪ {e′}). The
edge e′ is chosen from the set E′ of edges (u, s), where u is a sink in V , not
already inserted in S, and s is the single source in V (see lines 2 and 4).

To implement the Greedy Algorithm with single source, some preprocessing
is required. First, for each node v ∈ V , we perform a DFS on G to compute
R(v) and p(R(v)). We store p(R(v, S)) in a vector ρ of size |V |. Every time a
new edge is added to the solution S, each entry of ρ is updated in constant
time because for each node v, p(R(v, S)) is either equal to p(R(v)) or p(R(s)),
as we explain below. To compute the gain of adding the edge e = (u, s), we
need to find all the nodes RT (u, S) that reach u in G(S). RT (u, S) is computed
by performing a DFS starting from u on the reverse graph GT (S) of G(S).
Note that the reverse graph GT of G is initially computed in a preprocessing
phase in O(|V | + |E|) time, and after every new edge is added to S, GT (S)
is updated in constant time. Finally, to compute f(S ∪ {e}) for e = (u, s),
observe that f(S ∪ {e}) = f(S) +

∑
z∈RT (u,S) wz(p(R(s)) − p(R(z, S))). After

selecting the edge e′ = (u, s) that maximise f(S ∪{e′}), we update S and we set
p(R(z, S)) = p(R(s)) for each node z ∈ RT (u, S) in vector ρ because z reaches
s traversing the edge e′ = (u, s) and inherits the reachability of R(s).

The Greedy algorithm with a single source requires O(B|V ||E|) time. Namely,
for each edge e = (u, s) ∈ E′, to compute f(S ∪{e}) it is required O(|E|) time to
compute RT (u, S) on GT , and O(|V |) time to compute

∑
z∈RT (u,S) wz(p(R(s))−

p(R(z, S))). Since there are O(|V |) sinks, the computation of the maximum value
at line 4 costs O(|V ||E|) time. Selected e′, O(|V |) time is spent to update ρ. Since
at most B edges are added, the Greedy algorithm requires O(B|V ||E|).

In the case of a single sink, we use the same Greedy Algorithm 2 only substi-
tuting E′ in Line 2 with the set of edges (d, v), where v is a source in V and d
is the only sink in V (see line 2) by Lemma 2. However, the implementation in
the case of DAGs with a single sink is slightly different. In fact, RT (d, S) = V
because (by definition) all the nodes reach the single sink, but at the same time,
the reachability of a node v does not assume only the values V or R(v). As a
consequence to compute f(S ∪ {(d, v)}) it is not required to perform any DFS
visit of GT , but the vicinity of any other node depends on the set of added edges
and has to be recomputed by performing a DFS on the augmented graph. Hence,
f(S ∪ {(d, v)}) = f(S) +

∑
z∈V wz · p(R(v, S) \ R(d, S)). Since for computing

f(S ∪ {(d, v)}), we must compute |V | DFSs, the overall cost of the Greedy algo-
rithm with a single sink increases by a factor of |V | with respect to the case of
DAG with a single source, thus becoming O(B|V |2|E|).

Observe that Algorithm 2 with a single source can also be used on trees in
place of Algorithm 1. However, the complexity of the Greedy algorithm will be
O(|V |2B) that is greater than the complexity of Algorithm1, which is O(|V |B2).

On the Maximum Connectivity Improvement Problem 57

Algorithm 2. Greedy Algorithm for single source
Input: DAG G = (V, E), B, wv, pv ∀v ∈ V
Output: set S of edges

1: S := ∅;
2: E′ := {e = (u, s) | u is sink and s is the only source};
3: while |S| ≤ B do
4: e′ := arg max

e∈E′\S

f(S ∪ {e});

5: S := S ∪ {e′};

To give a lower bound on the approximation ratio of Algorithm2, we show that
the objective function f(S) is monotone and submodular1. This allows us to
apply the result by Nemhauser et al. [12]:

Given a finite set N , an integer k′, and a real-valued function z defined on
the set of subsets of N , the problem of finding a set S ⊆ N such that |S| ≤ k′

and z(S) is maximum can be 1 − 1
e approximated by starting with the empty

set, and repeatedly adding the element that gives the maximal marginal gain, if
z is monotone and submodular. We recall that f(S) =

∑
v∈V wvp(R(v, S)) and

wv, pv ∈ N≥0, therefore in order to prove that f(S) is monotone increasing and
submodular, we show that p(R(v, S)) is monotone increasing and submodular,
for each v ∈ V and solution S, because a non-negative linear combination of a
monotone submodular functions is also monotone and submodular.

Theorem 4. Function f(S) is monotone and submodular with respect to any
feasible solution for MCI on DAGs with a single source.

Proof. To prove that f(S) is monotone, we prove that for each v ∈ V , S ⊆ E′,
and e = (t′, s) ∈ E′ \ S, we have p(R(v, S ∪ {e})) ≥ p(R(v, S)). We first notice
that for each v ∈ V and solution S, if there exists an edge (t, s) ∈ S such that
t ∈ R(v), then p(R(v, S)) = p(R(s)); otherwise, p(R(v, S)) = p(R(v)). The same
holds for p(R(v, S ∪ {e})).

We analyse the following cases recalling that e = (t′, s):

– If there exists an edge (t, s) ∈ S such that t ∈ R(v), then, p(R(v, S ∪ {e})) =
p(R(v, S)) = p(R(s));

– Otherwise,
• If t′ ∈ R(v), then, p(R(v, S ∪ {e})) = p(R(v)) and p(R(v, S)) = p(R(v))
• If t′
∈ R(v), then, p(R(v, S ∪ {e})) = p(R(v, S)) = p(R(v))

It follows that p(R(v, S ∪ {e})) ≥ p(R(v, S)).
To prove that f(S) is submodular, we prove that for any node v ∈ V , any

two solutions S, T of MCI such that S ⊆ T , and any edge e = (t′, s)
∈ T , where
t′ is a sink node, it holds:

p(R(v, S ∪ {e})) − p(R(v, S)) ≥ p(R(v, T ∪ {e})) − p(R(v, T)). (2)
1 For a ground set N , a function z : 2N → R is submodular if for any pair of sets

S ⊆ T ⊆ N and for any element e ∈ N \ T , z(S ∪ {e}) − z(S) ≥ z(T ∪ {e}) − z(T).

58 F. Corò et al.

We analyse the following cases:

– If there exists an edge (t, s) ∈ S such that t ∈ R(v), then, p(R(v, S ∪ {e})) =
p(R(v, S)) = p(R(v, T ∪ {e})) = p(R(v, T)) = p(R(s));

– Otherwise,
• If there exists (t′′, s) ∈ T such that t′′ ∈ R(v), then p(R(v, S ∪ {e})) −

p(R(v, S)) ≥ 0 = p(R(v, T ∪{e}))−p(R(v, T)) because p(R(v, T ∪{e})) =
p(R(v, T)) = p(R(s));

• If for each (t′′, s) ∈ T , t′′
∈ R(v), then p(R(v, S ∪{e})) = p(R(v, T ∪{e}))
and p(R(v, S)) = p(R(v, T)).

In all the cases Inequality (2) holds. ��
Theorem 5. Function f(S) is monotone and submodular with respect to any
feasible solution for MCI on DAGs with a single sink.

Proof. To prove that f(S) is monotone, we show that for each v ∈ V , S ⊆ E′,
and e = (d, s′) ∈ E′ \ S, we have p(R(v, S ∪ {e})) ≥ p(R(v, S)). We observe that

R(v, S) = R(v) ∪
⋃

(d,si)∈S

R(si)

R(v, S ∪ {e}) = R(v) ∪
⋃

(d,si)∈S

R(si) ∪ R(s′) = R(v, S) ∪ R(s′) (3)

Thus, p(R(v, S)) ≤ ∑
u∈R(v,S)∪R(s′) pu.

To prove that f(S) is submodular, we prove that for any node v ∈ V , any
two solutions S, T of MCI such that S ⊆ T , and any edge e = (d, s′)
∈ T , where
s′ is a source node:

p(R(v, S ∪ {e})) − p(R(v, S)) ≥ p(R(v, T ∪ {e})) − p(R(v, T)). (4)

We first make the following observations based on Eq. 3:

– R(v, S ∪ {e}) = R(v, S) ∪ R(s′) = R(v, S) ∪ (R(s′) \ R(v, S)) and
– R(v, T ∪ {e}) = R(v, T) ∪ R(s′) = R(v, T) ∪ (R(s′) \ R(v, T))

Then, p(R(v, S ∪ {e})) − p(R(v, S)) = p(R(s′) \ R(v, S)) and p(R(v, T ∪ {e})) −
p(R(v, T)) = p(R(s′) \ R(v, T)).

Inequality (4) follows by observing that R(v, S) ⊆ R(v, T). ��
Corollary 1. Algorithm2 provides a

(
1 − 1

e

)
-approximation for the MCI prob-

lem either on DAG with a single source or with a single sink.

6 Conclusion and Future Works

In this paper, we first defined the maximum connectivity improvement problem,
that is the problem of adding k edges to a directed graph in order to maximise the
overall weighted number of reachable nodes. We proved that the MCI problem
on DAGs with a single source or a single sink is NP -Complete and NP -Hard to

On the Maximum Connectivity Improvement Problem 59

approximate to within a factor greater than 1 − 1/e. We proposed a polynomial
time greedy algorithm that guarantees a 1 − 1/e approximation ratio on DAG
with a single source or a single sink. For rooted trees, to solve the MCI problem
on single source, we devised a polynomial time algorithm based on dynamic
programming faster than the greedy algorithm.

As future works, we plan to extend our approach to general DAG, i.e., with
multiple sources and multiple sinks. Another possible extension is to solve the
MCI problem by considering the budgeted version of the problem in which each
edge can be added at a different budget cost.

Appendix 1.A Omitted Proofs

Lemma 3. Given a graph G and its condensation G′, it yields: f(G′) = f(G).

Proof. First, consider two nodes u and v that belong to the same strongly con-
nected component Cv′ in G′. Clearly, R(u,G) = R(v,G).

Moreover, it holds p(R(v,G)) = p(R(v′, G′)) because R(v′, G′) contains one
node for each different strongly connected component in R(u,G) and thus:

p(R(v′, G′)) =
∑

u′∈R(v′,G′)

pu′ =
∑

u′∈R(v′,G′)

∑

u∈Cu′

p(u) =
∑

u∈R(v,G)

p(u) = p(R(v, G))

Denoted Cv′ the strongly connected component represented by v′, we have:

f(G′) =
∑

v′∈V ′
wv′p(R(v′, G′))

=
∑

v′∈V ′
wv′

⎛

⎝
∑

u′∈R(v′,G′)

∑

u∈Cu′

p(u)

⎞

⎠

=
∑

v′:Cv′ ∈C
wv′

⎛

⎝
∑

u′∈R(v′,G′)

∑

u∈Cu′

p(u)

⎞

⎠

=
∑

v′:Cv′ ∈C

⎛

⎝
∑

v∈Cv′

wv

⎞

⎠

⎛

⎝
∑

u′∈R(v′,G′)

∑

u∈Cu′

p(u)

⎞

⎠

=
∑

v′:Cv′ ∈C

∑

v∈Cv′

⎛

⎝wv

⎛

⎝
∑

u′∈R(v′,G′)

∑

u∈Cu′

p(u)

⎞

⎠

⎞

⎠

=
∑

v′:Cv′ ∈C

∑

v∈Cv′

⎛

⎝wv

∑

u∈R(v,G)

p(u)

⎞

⎠

=
∑

v′:Cv′ ∈C

∑

v∈Cv′

wvp(R(v, G))

=
∑

v∈V

wvp(R(v, G)) = f(G)

��

60 F. Corò et al.

Appendix 1.B Omitted Images

c

2

d

1
e

2

f

1
g
1

h

1

a

1

b

1

T = (V,E).

c

2

d

1
e

2

f

1
g
1

h

1

a

1

b

1

T = (V,E ∪ S)

Fig. 2. Example of Algorithm 1. Consider the node c with wc = 2, pv = 1 ∀v ∈ V
and B = 2. We have: g(d, 2) = 19, g(d, 1) = 12, g(e, 1) = 7 + 2(6) = 19. Therefore
g(c, 2) = g(e, 1) + g(d, 1) + wc · (p(T (r)) − p(T (v))) = 35.

Appendix 1.C Generic Trees Algorithm

Given a generic rooted tree T = (V,E), let us transform it into a rooted binary
tree T ′ = (V ∪ U,E′) with weights w′, p′ by adding dummy nodes U as follows:

1. Let the root r of T be the root of T ′.
2. For each non-leaf node v, let v1, v2, . . . vl be the children of v:

(a) Add edge (v, v1) to E′;
(b) If l = 2 add (v, v2) to E′;
(c) If l > 2, add l − 2 dummy nodes uv2 , uv3 , . . . , uvl−2 , uvl−1

(d) Add edge (v, uv2) and edges (uvi
, uvi+1) to E′, for each 2 ≤ i ≤ l − 2;

(e) Add edge (uvi
, vi) to E′, for each 2 ≤ i ≤ l − 1;

(f) If l > 2, add edge (uil−1 , vl) to E′.
3. If v ∈ V , then w′

v = wv, otherwise w′
v = 0 and p′

v = pv, otherwise p′
v = 0.

See Fig. 3 for an example of the transformation.

v

v1 v2 . . . vl

(a) General tree T = (V,E)

v

uv2
. . .

uvl−1

v1

v2

vl−1 vl

(b) Transformed binary tree T ′ = (V ∪
U,E′)

Fig. 3. Example of transformation from general tree to binary tree

On the Maximum Connectivity Improvement Problem 61

References

1. Avrachenkov, K., Litvak, N.: The effect of new links on Google PageRank. Stoc.
Models 22(2), 319–331 (2006)

2. Cordasco, G., et al.: Whom to befriend to influence people. CoRR abs/1611.08687
(2016). http://arxiv.org/abs/1611.08687

3. Crescenzi, P., D’Angelo, G., Severini, L., Velaj, Y.: Greedily improving our own
centrality in a network. In: Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 43–55.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20086-6 4

4. Crescenzi, P., D’Angelo, G., Severini, L., Velaj, Y.: Greedily improving our own
closeness centrality in a network. TKDD 11(1), 9:1–9:32 (2016)

5. D’Angelo, G., Severini, L., Velaj, Y.: Selecting nodes and buying links to maxi-
mize the information diffusion in a network. In: 42nd International Symposium on
Mathematical Foundations of Computer Science, MFCS 2017, LIPIcs, vol. 83, pp.
75:1–75:14 (2017)

6. Demaine, E.D., Zadimoghaddam, M.: Minimizing the diameter of a network using
shortcut edges. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 420–431.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13731-0 39

7. Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM J. Comput. 5(4),
653–665 (1976)

8. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652
(1998)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

10. Ishakian, V., Erdös, D., Terzi, E., Bestavros, A.: A framework for the evaluation
and management of network centrality. In: Proceedings of the 12th SIAM Interna-
tional Conference on Data Mining (SDM), pp. 427–438. SIAM (2012)

11. Meyerson, A., Tagiku, B.: Minimizing average shortest path distances via
shortcut edge addition. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.)
APPROX/RANDOM -2009. LNCS, vol. 5687, pp. 272–285. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03685-9 21

12. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions-i. Math. Program. 14(1), 265–294 (1978)

13. Olsen, M., Viglas, A.: On the approximability of the link building problem. Theor.
Comput. Sci. 518, 96–116 (2014)

14. Papagelis, M.: Refining social graph connectivity via shortcut edge addition. ACM
Trans. Knowl. Discovery Data (TKDD) 10(2), 12 (2015)

15. Tamir, A.: An o(pn2). algorithm for the p-median and related problems on tree
graphs. Oper. Res. Lett. 19(2), 59–64 (1996)

16. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2),
146–160 (1972)

http://arxiv.org/abs/1611.08687
https://doi.org/10.1007/978-3-319-20086-6_4
https://doi.org/10.1007/978-3-642-13731-0_39
https://doi.org/10.1007/978-3-642-03685-9_21

Average Case - Worst Case Tradeoffs
for Evacuating 2 Robots from the Disk

in the Face-to-Face Model

Huda Chuangpishit(B), Konstantinos Georgiou, and Preeti Sharma

Department of Mathematics, Ryerson University, 350 Victoria Street, Toronto,
ON M5B 2K3, Canada

{h.chuang,konstantinos,preeti.sharma}@ryerson.ca

Abstract. The problem of evacuating two robots from the disk in the
face-to-face model was first introduced in [16], and extensively stud-
ied (along with many variations) ever since with respect to worst case
analysis. We initiate the study of the same problem with respect to
average case analysis, which is also equivalent to designing random-
ized algorithms for the problem. First we observe that algorithm B2

of [16] with worst case cost Wrs (B2) := 5.73906 has average case cost
Avg (B2) := 5.1172. Then we verify that none of the algorithms that
induced worst case cost improvements in subsequent publications has
better average case cost, hence concluding that our problem requires the
invention of new algorithms. Then, we observe that a remarkable simple
algorithm, B1, has very small average case cost Avg (B1) := 1 + π, but
very high worst case cost Wrs (B1) := 1 + 2π. Motivated by the above,
we introduce constrained optimization problem 2Evac

w
F2F , in which one

is trying to minimize the average case cost of the evacuation algorithm
given that the worst case cost does not exceed w. The problem is of
special interest with respect to practical applications, since a common
objective in search-and-rescue operations is to minimize the average com-
pletion time, given that a certain worst case threshold is not exceeded,
e.g. for safety or limited energy reasons.

Our main contribution is the design and analysis of families of new
evacuation parameterized algorithms A (p) which can solve 2Evac

w
F2F ,

for every w ∈ [Wrs (B1) , Wrs (B2)]. In particular, by letting param-
eter(s) p vary, we obtain parametric curve (Avg (A (p)) , Wrs (A (p)))
that induces a continuous and strictly decreasing function in the
mean-worst case space, and whose endpoints are (Avg (B1) , Wrs (B1)),
(Avg (B2) , Wrs (B2)). Notably, the worst case analysis of the prob-
lem, since it’s introduction, has been relying on technical numerical,
computer-assisted, calculations, following tedious robots trajectories’
analysis. Part of our contribution is a novel systematic procedure, which,
given any evacuation algorithm, can derive it’s worst and average case
performance in a clean and unified way.

K. Georgiou—Research supported in part by NSERC Discovery Grant.

c© Springer Nature Switzerland AG 2019
S. Gilbert et al. (Eds.): ALGOSENSORS 2018, LNCS 11410, pp. 62–82, 2019.
https://doi.org/10.1007/978-3-030-14094-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14094-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-14094-6_5

Average Case - Worst Case Tradeoffs for Evacuating 2 Robots 63

Keywords: Evacuation · Disk · Face-to-Face model ·
Average case analysis

1 Introduction

Search problems are concerned with the exploration of a domain, aiming to
identify the location of a hidden object. More particularly, in evacuation-type
problems where the domain is the unit disk, introduced recently by Czyzowicz
et al. in [16], a group of mobile agents collectively search for a hidden item (the
exit) placed on the perimeter of the disk, attempting to expedite the time it
takes for the last agent to evacuate, i.e. reach the exit. As it was the case in [16],
as well as in a series of follow-up improvements and problem variations, the
main objective was the design of evacuation algorithms that minimize the worst
case performance. In contrast, real-life search-and-rescue operations, in which
current problems find applications, are mostly concerned with good average per-
formance. Keeping also in mind that, in realistic search tasks, mobile agents
do not have unbounded resources and at the same time it is imperative that
the search terminates successfully with probability 1, one is motivated to study
average case - worst case trade-offs for evacuation search problems.

In this direction, we initiate the study of the traditional evacuation problem
first introduced in [16] from the perspective of average case analysis, which in
our case is equivalent to designing efficient randomized algorithms. More specif-
ically, we introduce problem 2Evac

w
F2F which, at a high level, asks for efficient

evacuation algorithms that perform well on average, given that their worst case
performance does not exceed w (which can be thought as the maximum time
robots can operate, e.g. due to energy restrictions). The problem seems partic-
ularly challenging given that the worst case performance analysis of all known
evacuation algorithms require tedious analysis, tailored to robots’ trajectories,
and followed by intense, computer-assisted calculations, which are always numer-
ical. Our results pertain to new families of evacuation algorithms, whose worst
case performance analysis can be done rigorously, and whose average case analy-
sis requires again intense computer-assisted calculations, achieving average case
- worst case trade-offs for a wide spectrum of values. Our computer-assisted cal-
culations rely on a novel theoretical and unified approach to compute the cost
of any evacuation algorithm and for any placement of the hidden item without
relying on tedious analysis specific to robots’ trajectories. Equipped with these
techniques, we also verify, somehow surprisingly, that the best evacuation algo-
rithms known prior to this work, designed to perform well in the worst case,
do not perform well for 2Evac

w
F2F , adding this way to the motivation of our

problem.

1.1 Related Work

In search problems, mobile agents, commonly referred as robots, aim to
locate efficiently a hidden item placed in some geometric domain. Numerous

64 H. Chuangpishit et al.

search-types problems have been introduced and studied since the 60’s, when
two seminal papers on probabilistic search, [8] and [9], were concerned with
minimizing the expected time to locate the item. The number of search-type
variants, along with the difficulty of the underlying mathematical problems and
the elegance of many results soon gave rise to what is known nowadays as Search
Theory. Many of the variants have been classified in surveys, e.g. [10,23], while
a number of books provide a comprehensive study for similar problems, e.g. see
[1,4,35] and the most recent [5].

Search-type problems have also been studied under the perspective of explo-
ration in [2,3,22,29] by a single robot, and in [12,36,37] by multiple robots. Ter-
rain mapping has been the main search task even in problems where exploration
is not the primary objective, e.g. [30,32,34]. Numerous other search-type prob-
lems have been introduced and classified as hide-and-seek and pursuit-evasion
games, e.g. see [14,25,31,33]. Overall the list of search-type problems is enor-
mous, and having given a representative list above, in what follows we refer only
to the most relevant ones.

The perception of a search-type problem as an evacuation problem, from a
theoretical perspective, appeared almost a decade ago, e.g. in [7,24]. The problem
we study here is a direct follow-up to the evacuation problem 2EvacF2F (a
search-type problem) first introduced in [16], which included many variants based
on the number of robots and the communication model between them. In the
variant 2EvacF2F which is relevant to our work, two robots start from the center
of the unit disk, while an exit is hidden somewhere on the perimeter. The robots
move at speed 1, their perception of their environment is restricted to their
location and they can exchange information only by meeting. The goal is to
minimize the worst case evacuation time, i.e. the time it takes the last robot to
reach the exit, over all exit placements. The upper bound of 5.73906 in [16] was
later improved to 5.628 in [21], and further to the currently best known 5.625 in
[11], while the best lower bound known for the problem is 5.255 due to [21].

Since the introduction of 2EvacF2F in [16], a number of variants emerged,
focusing on different geometric domains, different number of robots and robots’
specifications, different communication models etc. Examples include evacua-
tion from the disk with more than 1 exits in the wireless model [15], evacua-
tion of a group of robots on a line [13] (generalization of the celebrated Cow-
Path problem [6]), evacuation in the presence of faulty robots in a line [20]
and in a disk [17], evacuation with advice [28] while more recently evacu-
ation with combinatorial requirements on the robots that need to evacuate,
e.g. [18,19,26,27].

1.2 Outline of Our Results and Paper Organization

We initiate the study of evacuating 2 robots from the disk in the face-to-face
model from an average case complexity perspective. In particular we introduce
problem 2Evac

w
F2F in which one tries to minimize the expected performance of

randomized evacuation algorithms, subject to that the worst case performance

Average Case - Worst Case Tradeoffs for Evacuating 2 Robots 65

does not exceed w. The problem is particularly challenging given that exist-
ing positive results, from a worst case complexity perspective, rely on tedious
theoretical analysis tailored to algorithmic solutions, and supported by intense
computer-assisted calculations. One of our main contributions is a unified and
simple approach to quantify the performance of any evacuation algorithm and
for any input. Equipped with this technique, we first verify that none of the pre-
viously known evacuation algorithms has good average case performance. Then,
we introduce families of evacuation algorithms that have competitive average
case performance, given that their worst case performance does not exceed w,
for a wide range of w’s. Our results rely on rigorous and technical worst case
performance analysis for the newly proposed algorithms. Building upon our new
technique for efficiently evaluating the cost of evacuation algorithms for any
input, we are able to numerically compute the average case performance of our
algorithms, as well as to quantify formally the induced average case -worst case
trade-offs.

In Sect. 2.1 we formally define 2Evac
w
F2F and we give a high-level outline

of the results we establish. Section 2.2 contains one of our main contributions,
which is a systematic process to compute the performance of any evacuation algo-
rithm, given that robots’ trajectories have convenient representations, described
in Sect. 2.3. In Sect. 3 we analyze two benchmark algorithms for 2Evac

w
F2F , as

well as we motivate further the problem for certain values of w, among others
showing, somehow surprisingly, that none of the previously proposed evacuation
algorithms is efficient for our problem. Section 4 describes our main contribu-
tions in the form of new families of evacuation algorithms. Then, in Sect. 5 we
perform rigorous worst case analysis for all new algorithms and in Sect. 6 we
perform average case analysis, using our results from Sect. 2.2 along with heavy
computer-assisted calculations. In the same section, we also quantify formally
all our results for 2Evac

w
F2F . Finally, in Sect. 7 we conclude with some open

problems. All omitted proofs of statements in the main body of the paper can
be found in the AppendixA.

2 Preliminaries

2.1 Problem Definition and Main Results

In 2EvacF2F , two searchers (robots) start from the center of the unit disk.
Moving at maximum speed 1, the two robots can move anywhere on the plane.
Somewhere on the perimeter of the disk there is a hidden object (exit) that can
be located by any of the robots only if the robot is co-located with the exit.

The two robots do not see each other from distance, neither can they exchange
messages unless they meet (face-to-face model), but they can agree in advance
on each other’s trajectories. A feasible evacuation algorithm is determined by
the trajectories of the robots, in which eventually both robots reach the exit.
For simplicity, we also require, w.l.o.g. that eventually any robot stays idle. For
convenience, we think that the center of the unit disk lies at the origin (0, 0)
of a Cartesian system, and we denote by cycle(x) the point (cos (x) , sin (x)),

66 H. Chuangpishit et al.

which will be referred to as an instance of 2EvacF2F when the exit is placed
at cycle(x). Given instance cycle(x), we define the evacuation time C(x) of the
feasible evacuation algorithm as the time it takes the last robot to reach the
exit.

In this work we are concerned with determining tradeoffs between the worst
case and the average case performance (of uniform placements of the exit) of
evacuation algorithms for 2EvacF2F . More specifically, we say that an evac-
uation algorithm A with evacuation cost C(x) on instance cycle(x) is (a,w)-
efficient if

Avg (A) := Ex∈[0,2π)[C(x)] ≤ a,

Wrs (A) := sup
x∈[0,2π)

{C(x)} ≤ w.

where the expectation is with respect to the uniform distribution over [0, 2π).
Special to our problem is that Avg (A) can also be interpreted as the expected
performance of a randomized algorithm based on A . Indeed, consider an algo-
rithm which first performs a random rotation of the disk around the origin of
angle θ, where θ is chosen uniformly at random from [0, 2π), and then simulates
A . This random step is equivalent to choosing a deployment point uniformly at
random on the disk. Due to the symmetry of the domain, it is irrelevant where
the adversary will place the unique exit, and hence the expected performance of
this randomized algorithm equals Avg (A).

For algorithms A (p) parameterized by parameter(s) p, the pair
(Avg (A (p)) ,Wrs (A (p))) will correspond to a subset of R

2 (and a curve if
p is only one parameter), that we will refer to as the Efficient Frontier. We
also adopt an optimization perspective of the problem, and we introduce the
following optimization problem 2Evac

w
F2F on parameter w:

min
1
2π

∫ 2π

0

C(x)dx (2Evacw
F2F)

s.t. C(x) ≤ w, ∀x ∈ [0, 2π).

Due to an analysis we perform later, 2Evac
w
F2F is interesting as long as

w1 ≤ w ≤ w2. At a high level, values w1, w2 above are obtained from two
benchmark algorithms, B1,B2, where Wrs (B1) = w1 ≈ 5.739,Avg (B1) =
a1 ≈ 5.1172,Wrs (B2) = w2 ≈ 7.283,Avg (B1) = a2 ≈ 7.28319, hence B1 being
efficient in worst case and inefficient in average case, while B2 being efficient in
average case and inefficient in worst case. As it is common for 2EvacF2F (and
many follow-up variation problems) closed forms for the cost of best-solutions
known do not exist, and upper and lower bounds are given numerically. Our
results involve upper bounds for a continuous spectrum of parameters w for
problem 2Evac

w
F2F . In particular we propose families of algorithms A (over

some parameters) so that, as their parameters vary, we obtain Wrs (A) = w and
Avg (A) = g(w), for each w ∈ [w1, w2]. The curve (g(w), w) summarizing our
results is depicted in Fig. 1, and it is later quantified in Theorem7 (see Sect. 5).

Average Case - Worst Case Tradeoffs for Evacuating 2 Robots 67

Fig. 1. Illustration of the performance of our solution to 2Evac
w
F2F , for every w ∈

[w1, w2]. Depicted curve corresponds to parametric curve (g(w), w), where w, g(w) are
the worst case performance and average case performance of three different families of
evacuation algorithms A1,A

′
2 ,A2, discussed formally in Sect. 4. Note that the magenta

curve is not a straight line and, as we show next, induces decreasing worst case perfor-
mance (as the average case performance increases). (Color figure online)

Note that an (a,w)-efficient algorithm gives a solution of value a for
2Evac

w
F2F . Our approach to prove Theorem7 is to define families of evacu-

ations algorithms A (p) parameterized by parameter(s) p. We will prove that
these algorithms are (u(p), v(p))-efficient for some functions u(p), v(p), and in
particular the evaluation of the worst case performance will be exact and mono-
tone in p, while the computation of v(p) will be computer-assisted. Then we will
set p = v−1(w), and will be able to describe the average case performance as a
function of w as g(w) := u(v−1(w)).

2.2 Computing Evacuation Times

For any feasible evacuation algorithm, we define by S(x), the first time that
cycle(x) is visited by any robot. Clearly, when a robot, say R1 locates the exit at
cycle(x), it may attempt to catch R2 while moving along R2’s trajectory along
the shortest line segment, say of length E(x). Once robots meet, they return
together to cycle(x), inducing total evacuation cost C(x) = 1 + S(x) + 2E(x).

All existing results for 2EvacF2F , from a worst case complexity perspective,
rely on numerical computer-assisted estimation of supx C(x), after identifying
properties of the maximizer. In this section, we elevate existing arguments, and
we propose a generalized and unified approach for computing C(x), for any x
and for any robots’ trajectories. For the sake of formality, as well as for practical
purposes, robots’ trajectories will be defined by parametric functions F(t) =
(f(t), g(t)), where f, g : R �→ R are continuous and piecewise differentiable.
In particular, search protocols for the two robots will be given by trajectories

68 H. Chuangpishit et al.

R1(t),R2(t), where Ri(t) will denote the position of robot Ri at time t ≥ 0.
Therefore, any evacuation algorithm will be identified by a tuple (R1,R2). To
simplify notation, we will only determine the trajectories from the moment the
two robots reach the perimeter of the circle, and until the entire circle is searched,
and we will silently assume that robots stay put after exploration is over.

Lemma 1. Consider instance cycle(x) of 2EvacF2F , and suppose that for a
feasible evacuation algorithm (R1,R2), robot 1 is the first robot that finds the
exit. Then E(x) = t̄ − S(x), where t̄ = t̄(x) is the smallest root, no less than
S(x), of function

hx(t) := ‖R2(t) − R1(S(x))‖ − t + S(x). (1)

Proof. First observe that hx(t) is continuous, and assuming that the two robots
are not co-located when the exit is found, we have hx(S(x)) > 0. At the same
time, since the evacuation algorithm is feasible, R2(t) is eventually a constant,
and hence for big enough t we have that hx(t) becomes eventually negative. By
the mean value theorem, there is t0 > 0 for which hx(t0) = 0.

Now consider the smallest positive root t̄ of hx, no less than S(x). At time
t̄, R2 is located at point R2(t̄), and it is ‖R2(t̄) − R1(S(x))‖ away from the
location cycle(x) of the discovered exit. At the same time, R1 moves with speed
1 along the shortest path to catch R2 in her trajectory. Hence it takes R1 some
t̄ − S(x) extra time from the moment the exit is found till she reaches point
R2(t̄). By definition we have R1(t̄) = R2(t̄), and therefore E(x) = t̄ − S(x) as
claimed.
�

For some special trajectories, E(x) admits a simpler description that we
describe next. Before that, we introduce some notation pertaining to a func-
tion δ : [0, π] �→ R+, which we widely use in the remaining of the paper:

δ(x) := unique non-negative root (w.r.t. d) of “2 sin
(

x +
d

2

)
= d”. (2)

To simplify notation, we will also abbreviate δ(x) by δx. The fact that δx is well
defined follows easily from the monotonicity of sin in [0, π].

Lemma 2. For some instance cycle(x) of 2EvacF2F , suppose that for a fea-
sible evacuation algorithm (R1,R2), R1 is the founder of the exit, say at time
t0 = S(x). Assume that both R1(t0),R2(t0) lie on the circle at arc distance 2α,
and suppose that R2’s movement is along the perimeter of the circle toward the
complementary arc of length 2π − α. Then, E(x) = δα.

Proof. The lemma follows by applying transformation t − S(x) = d in the defi-
nition of hx(t) in Lemma 1, so that E(x) = t − S(x) = d.
�

We are ready to conclude with a corollary that will be handy for computing
evacuation times numerically, and without relying on excessive case analysis, as
it was the case before.

Average Case - Worst Case Tradeoffs for Evacuating 2 Robots 69

Corollary 1. Consider feasible evacuation algorithm (R1,R2) for 2EvacF2F .
For any instance cycle(x) for which R1 is the exit founder, the evacuation cost
can be computed as C(x) = 1 + 2t̄ − S(x), where t̄ = t̄(x) is the smallest root, at
least S(x), of hx(t) := ‖R2(t) − R1(S(x))‖ − t + S(x).

2.3 Trajectories’ Description

Robots’ trajectories will be described in phases. We will always omit the “deploy-
ment phase”, i.e. the movement from the circle center to its perimeter, and we
will only describe the trajectories from the moment robots start searching the
circle. In each phase, robot R, will be moving between two explicit points, either
along an arc, or along a line segment (chord of an arc), see Observations 1 and 2
below. We will summarize robot’s trajectories in tables of the following format.

Robot Phase # Trajectory Duration
R 1 R(t) t1

2 R(t) t2
...

...

In order to ease notation, trajectory R(t) of phase i will be described with
parametric equations as if the time is reset to 0 after time t0 + t1 + t2 + . . . +
ti−1, where t0 = 1 (this is the time that robots reach the circle). The two
fundamental trajectory components are movements along arcs and movements
along line segments.

Observation 1. Let b ∈ [0, 2π) and σ ∈ {−1, 1}. The trajectory of an object
moving at speed 1 on the perimeter of a unit circle with initial location cycle(b)
is given by the parametric equation cycle(σt + b) = (cos (σt + b) , sin (σt + b)). If
σ = 1 the movement is counter-clockwise (ccw), and clockwise (cw) otherwise.

Observation 2. Consider distinct points A = (a1, a2), B = (b1, b2) in R
2.

The trajectory of a speed 1 object moving along the line passing through A,B
and with initial position A is given by the parametric equation line(A,B, t) :=(

b1−a1
‖A−B‖ t + a1,

b2−a2
‖A−B‖ t + a2

)
.

Finally, the analysis of our algorithms’ trajectories will give rise to a
number of constants. For the reader’s convenience, we list here the numer-
ical values of the most common constants that will be encountered later;
w1 ≈ 5.73906, w0 ≈ 6.11953, w′ ≈ 6.12851, w2 ≈ 7.28319, α′ ≈ 1.15468, ᾱ ≈
1.54419, β′ ≈ 0.0241653, β0 ≈ 0.04388. All constants are formally defined when
they are first introduced.

3 Two Benchmark Algorithms and Motivation

In this section we describe two benchmark algorithms for 2EvacF2F , as well as
perform average case analysis to algorithms previously proposed in the litera-
ture. The reader may consult Fig. 2 for the algorithms analyzed in this section.

70 H. Chuangpishit et al.

Czyzowicz et al. [16] were the first to introduce an evacuation algorithm for
2EvacF2F , which we denote here by B1 (see Fig. 2 on the left).

Fig. 2. Robots’ Trajectories for algorithms B1,B2,A0. The depicted trajectories show
the search of the circle, and not the evacuation step that is performed once the exit is
found.

Definition 1 (Benchmark Algorithm B1). For all t ∈ [0, π], R1(t) =
cycle(t) and R2(t) = cycle(−t).

Observation 3. Benchmark Algorithm B1 is (5.1172, 5.73906)-efficient.

B1 should be understood as being efficient in the worst case, but inefficient
on average. The claim becomes transparent by introducing the following naive
algorithm for 2EvacF2F that we depict in the middle of Fig. 2.

Definition 2 (Benchmark Algorithm B2). For each t ∈ [0, 2π], R1(t) =
R2(t) = cycle(t).

Observation 4. Benchmark Algorithm B2 is (1 + π, 1 + 2π)-efficient.

B2 should be understood as highly efficient on average, but inefficient in the
worst case. Moreover, it should be clear that B1,B2 are feasible solutions to
2Evac

w
F2F , for w = 5.1172 and w = 1 + 2π, respectively. We conjecture that B1

is indeed the optimal evacuation algorithm among all algorithms with worst case
performance no more than 1+2π. At the same time, below we show that B2 is the
best algorithm for 2Evac

w
F2F , when w = 5.1172, among those previously used to

improve upon the worst case performance. The importance of this observation
is twofold; first we are motivated to study 2Evac

w
F2F for the entire spectrum of

w ∈ [Wrs (B1) ,Wrs (B2)], and second we deduce that in order to perform well
on average, we need to devise and analyze new evacuation algorithms.

Upper bounds for the worst case performance of B1 were later improved
in [11,21], first to 5.628, and then to 5.625, using refined algorithms, respectively.
The main idea behind the improvement is to understand the monoticity of C(x)
for algorithm B1. Indeed, the following lemma was implicit in both [11,21], and
can be obtained numerically.

Average Case - Worst Case Tradeoffs for Evacuating 2 Robots 71

Lemma 3. There is α0, where α0 ≈ 0.96782, so that evacuation cost C(x) of
B1 for 2EvacF2F on instance cycle(x) is strictly increasing for x ∈ [0, α0], and
strictly decreasing in x ∈ [α0, π]. In particular, Wrs (B1) = C(α0) ≈ 5.73906.

Consider now an execution of B1 in which one of the robots, say R2 continues
searching on the circle and is close to approach a location that would be the
meeting point if the instance was cycle(α0). In an attempt to help expedite a
potential meeting (in case R1 is approaching) and effectively reducing the cost
of the worst case, R2 would make a minor detour toward the interior of the
disk, before returning back to the exploration of the circle. This simple idea
was explored in [21] where the following family of algorithms were introduced,
parameterized by α ∈ [0, π] and point B within the unit disk, see also right of
Fig. 2.

Definition 3 (1-Detour Algorithm A0(α,B)). For all t ∈ [0, π + 2 ‖cycle
(α) − B‖], the trajectory of R1 is defined as

Robot Phase # Trajectory Duration
R1 1 cycle(t) α

2 line(cycle(α), B, t) ‖cycle(α) − B‖
3 line(B, cycle(α), t) ‖cycle(α) − B‖
4 cycle(t + α) π − α

The trajectory of R2 is symmetric with respect to the horizontal axis.

The crux of the contribution of [21] was to prove that there exists α,B for
which the worst case performance is no more than 5.644 (and a delicate refine-
ment is needed to achieve 5.628). Notably, their analysis is tedious and lengthy,
whereas we can obtain the same result, relying again on numerical calculations,
with minimal effort. Then, [11] introduced variations of A0(α,B) in which each
robot performs more than 1 detours (see Phases 2,3 of A0(α,B)). Hence, t-
detour algorithms are parameterized by a sequence α1, . . . , αt, where αi ≥ 0 and∑

i αi ≤ π, and points Bi in the disk. Even 2-detour algorithms achieve worst
case performance 5.625, while for each t ≥ 2, t-detour algorithms do induce
strictly improved performance (for appropriate choices of the parameters) but
the improvement is negligible.

Motivated by the results in [11,21], one is tempted to ask whether any algo-
rithm in the family A0(α,B) improves upon B1 with respect to the average case
analysis.

Theorem 5. For every α ∈ [0, π) and for every B in the unit disk
Avg (A0(α,B)) ≥ Avg (B1).

Theorem 5 provides strong motivation for studying problem 2Evac
w
F2F , since

it shows that in oder to establish good upper bounds, i.e. our main results
depicted in Fig. 1 and quantified later in Theorem7, one needs to employ new
evacuation algorithms. Recall that even Wrs (B1) that was first calculated in [16],
or Wrs (A0(α,B)) first calculated in [21] for various α,B, were all estimated

72 H. Chuangpishit et al.

with computer-assisted calculations. Due to the nature of the problem, we are
bound to rely on computer-assisted calculations as well. Notably, our much more
intense computational work is feasible only because we employ the brand new
method for computing evacuation times due to Corollary 1 and Definition 3 of
A0(α,B) trajectories. Overall, in order to verify Theorem5 we compute pairs
(Avg (A0(α,B)) ,Wrs (A0(α,B))) for more than 500,000 different parameter val-
ues and we depict them in Fig. 3.

Fig. 3. Performance analysis of A0(α, B) for various values of parameters α, B. Blue
points (a, w) correspond to (a, w)-efficient algorithms A0(α, B). The red point is
(Avg (B1) , Wrs (B1)), i.e. the performance of B1 in the average-worst case space. Note
that no algorithm A0 performs better on average than B1, while all A0(t, cycle(t)) is
exactly B1 for every point t ∈ [0, π]. (Color figure online)

4 New Evacuation Algorithms

In this section we propose families of evacuation algorithms for problem
2Evac

w
F2F , for the entire spectrum of w ∈ [Wrs (B1) ,Wrs (B2)]. Our algorithms

are summarized in Fig. 4.
First we define families of evacuation algorithms that, as we show next, per-

form well for 2Evac
w
F2F in the “neighborhood of B1”, i.e. for w close to Wrs (B1).

Our algorithms are parameterized by α, and their circle exploration lasts 2π−α.

Definition 4 (Algorithm A1(α)). For all t ∈ [0, 2π −α], the trajectory of R1

is defined as

Robot Phase # Trajectory Duration
R1 1 cycle(t) α

2 line(cycle(α), cycle(−α − δα), t) δα

3 cycle(−α − δα − t) 2π − 2α − δα

where δa is defined in (2). The trajectory of R2 is defined as R2(t) = cycle(−t),
for all t ∈ [0, 2π − α].

Average Case - Worst Case Tradeoffs for Evacuating 2 Robots 73

Fig. 4. Robots’ Trajectories for algorithms A1,A2,A
′
2 . The depicted trajectories show

the search of the circle, and not the evacuation step that is performed once the exit
is found. Arcs that are searched by both robots are also searched simultaneously, i.e.
robots are co-located and search together.

A1 is depicted in Fig. 4 on the left. At a high level A1(α) is a modification of
B1 that is based on the following idea. The execution of A1(α) is the same as in
B1 till each robot searches an arc of length α (and hence A (π) coincides with
B1). After time α, R1 abandons her trajectory and catches R2, on the perimeter
of the circle resembling a trajectory as if the exit was located at R1(α). It is not
difficult to see that the definition of δα above satisfies R1(α+δα) = R2(α+δα) =
cycle(−α − δα).

Next we define a family of algorithms A2 which, as we show later, perform
well in the “neighborhood of B2”, i.e. for w close to Wrs (B2). For this recall
definition (2) of δa. We let γ0 ≈ 2.2412 be the root of 2α + δα/2 = 2π. For every
α ≤ γ0 we define a family of algorithms on parameter α whose circle exploration
lasts 2π − α.

Definition 5 (Algorithm A2(α)). For all t ∈ [0, 2π −α], the trajectory of R1

is defined as

Robot Phase # Trajectory Duration
R1 1 cycle(t) α

2 line(cycle(α), cycle(2α + δα/2), t) δα/2

3 cycle(2α + δα/2 + t) 2π − 2α − δα/2

The trajectory of R2 is defined as R2(t) = cycle(α + t), for all t ∈ [0, 2π − α].

A2 is depicted in the middle of Fig. 4. The condition that α ≤ γ0 is added for
simplicity to ensure that the latest catching point occurs while the other robot
is still searching, and is not mandatory. At a high level A2(α) is a generalization
of B2 (note that A2(0) = B2). For the first α time units, robots search in the
same direction till R1 arrives at the deployment point of R2. Then, R1 catches
R2 on the circle, as if the exit was located at R1(α) (which by Lemma 2 happens
in δα/2 extra time).

Finally we introduce a family of evacuation algorithms which will perform
well for 2Evac

w
F2F for intermediate values of w ∈ [Wrs (B1) ,Wrs (B2)]. For this

74 H. Chuangpishit et al.

we generalize family A2 so that the two robots perform two alternating jumps,
with parameters α, β satisfying 2α+2β+δ(α+β)/2+δβ/2 ≤ 2π, see right of Fig. 4.

Definition 6 (Algorithm A ′
2(α, β)). For notational convenience, we set

ζα,β := 2α + β + δ(α+β)/2. For all t ∈ [0, 2π − α − β], the trajectories of R1,R2

are defined as follows

Robot Phase # Trajectory Duration

R1 1 cycle(t) α
2 line(cycle(α), cycle

(
ζα,β

)
, t) δ(α+β)/2

3 cycle
(
ζα,β + t

)
2π − 2α − β − δ(α+β)/2

R2 1 cycle(α + t) α + β + δ(α+β)/2

2 line(cycle
(
ζα,β

)
, cycle

(
ζα,β + δβ/2

)
, t) δβ/2

3 cycle
(
ζα,β + β + δβ/2 + t

)
2π − 2α − 2β − δ(α+β)/2 − δβ/2

Robots’ trajectories α, β have the following meaning. As in the family of
algorithms A2, parameter α represents the arc distance the two robots have
before the one preceding decides to jump ahead. In A2 the two robots meet
again once the jumper reaches the perimeter of the circle. In A ′

2 the jumper
deploys a little further away on the circle so that when the other robot reaches the
deployment point of the jumper, the two robots are at arc distance β. As a result,
the time it takes both robots to complete searching the entire circle is 2π−α−β,
as well as A2(α, 0) coincides with A2(α). Finally, note that even though A ′

2 will
be eventually invoked for seemingly restricted values of β (β ≤ β0 ≈ 0.04388), the
deviation in the performance will be significant enough (e.g. δβ0/2 ≈ 0.977997)
to account for its utilization in our upper bounds.

5 Worst Case Performance Analysis

In this section we perform worst case analysis for all algorithmic families
A1,A2,A ′

2 with respect to their parameters. Notably, results in this section
are quantified formally and exactly by closed formulas. At a high level, each
of A1,A2,A ′

2 will be invoked to solve 2Evac
w
F2F for different values of w ∈

[Wrs (B1) ,Wrs (B2)], and each of them will have competitive average case per-
formance for the corresponding worst case performance w. As an easy warm-up,
we analyze A1.

Lemma 4 (Worst Case Analysis for A1). Let ᾱ = 1 + 2π − w1, where
w1 = Wrs (B1). Then, for all α ∈ [0, π], we have that

Wrs (A1(α)) =
{

1 + 2π − α, ∀α ∈ [0, ᾱ)
Wrs (B1) , ∀α ∈ [ᾱ, π] .

In a similar fashion, we can easily analyze A2.

Lemma 5 (Worst Case Analysis for A2). For all α ≤ π − 2, we have
Wrs (A2(α)) = 1 + 2π − α.

Average Case - Worst Case Tradeoffs for Evacuating 2 Robots 75

Next, our goal is to analyze A ′
2(α, β), which is much more technical. For this

we will invoke A ′
2 only for special parameters, whose choice is motivated by the

following observation pertaining to the performance of A2 (whose generalization
is A ′

2). From the proof of Lemma5, it follows that among all algorithms A2(α),
where α ≤ γ0 (see discussion before Definition 5), the one with minimum worst
case evacuation cost is A2(π − 2), and the cost becomes 3 + π. In fact, for all
w ∈ [3+π, 1+2π] there are two different values of α for which Wrs (A2(α)) = w,
and we restrict α ∈ [0, π − 2] so that we obtain evacuation algorithms with
minimum average case cost. Moreover, α = π − 2 is the only parameter for
which Wrs (A2(α)) = 3+π and as a byproduct, it is the algorithm in the family
A2 that minimizes the worst case.

By Lemma 5 we know that as β → 0, the value of α that minimizes
Wrs (A ′

2(α, β)) approaches π − 2. That value of α is what made the evacuation
cost of A2(α) attain the same value in two different (worst case) exit placements.
Motivated by this, and for values of β > 0 not too big, we still find the optimal
choices of α that minimize the worst case performance.

Lemma 6 (Worst Case Analysis for A ′
2). Let β0 = 0.0438855, and set

αβ := π − β/2 − 2 cos (β/4). Then for all β ∈ [0, β0] we have Wrs (A ′
2(αβ , β)) =

1 + π − β/2 + 2 cos (β/4) .

6 Average Case Performance Analysis and the Efficient
Frontier

In this section we perform average case analysis for all algorithmic families
A1,A2,A ′

2 , with respect to their parameters. For the sake of exposition of our
results, we set w1 = Wrs (B1) ≈ 5.73906, w2 = Wrs (B2) = 1 + 2π ≈ 7.28319
and for β0 ≈ 0.04388, as in Lemma 6, we set w0 := Wrs (A ′

2(αβ0 , β0)) ≈ 6.11953.
We also recall ᾱ ≈ 1.54419 of Lemma 4. Finally, we set

v(α) := 1 + 2π − α

v2(β) := 1 + π − β/2 + 2 cos (β/4)

u1(α) := 0.00889α3 − 0.16944α2 + 0.71518α + 4.23089

u′
2(β) := 530.673β3 − 78.5498β2 + 7.36219β + 4.70493

u2(α) := 0.093056α2 + 0.346659α + 4.1719

Combined with our findings of Sect. 5, the main result of the current section is
the following.

Theorem 6. For every w ∈ [w1, w2] there is algorithm A ∈ {A1,A ′
2 ,A2} and

unique parameter(s) p such that Wrs (A (p)) = w. In particular,

– for all α ∈ [1, ᾱ], A1(α) is (u1(α), v(α))-efficient, and v([1, ᾱ]) = [w1, 2π],
– for all β ∈ [0, β0], A ′

2(αβ , β) is (u′
2(β), v2(β))-efficient, and v2([0, β0]) =

[w0, 3 + π],

76 H. Chuangpishit et al.

– for all α ∈ [0, π − 2], A2(α) is (u2(α), v(α))-efficient, and v([0, π − 2]) =
[3 + π,w2].

Finally, we aim to formally quantify the efficient frontier of our algorithms as
depicted in Fig. 1 (see Sect. 2.1). The parametric curves described in Theorem 6
provide, strictly speaking, an upper bound for the parametric curve of Fig. 1.
Next, we compute g : R �→ R, so that the parametric curves of Theorem 6 are
written in the form {(g(w), w)}w∈[w1,w2]. That would also imply that there is a
solution to 2Evac

w
F2F of cost at most g(w).

In that direction, we study each evacuation algorithm family A (p) with worst
case performance, say, v(p), and average case upper bound, say, u(p). For each
w ∈ [w1, w2] in the range of A (p), we set p = v−1(w) so that the average case
performance achieved becomes u(v−1(w)).

Recall that Wrs (Ai(α)) = v(α), so that v−1(w) = 1 + 2π − w, and hence for
algorithms Ai we can easily compute ui(v−1(w)), i = 1, 2. For A ′

2 we recall that
Avg (A ′

2(αβ , β)) is decreasing in β. Since v−1
2 does not admit a closed form, we

need to observe that 2.999 + π − β/2 ≤ v2(β) ≤ 3 + π − β/2 for all β ∈ [0, β0]
so that an upper bound for Avg (A ′

2(αβ , β)) admitting worst case performance
w can be computed by u′

2(12.2812 − 2w).
Now for each w ∈ [w1, w2] we need to specify which of the evacuation algo-

rithms we will invoke. Note that in Theorem 6 we chose the range of α in A1

to start from 1 so that as to guarantee that Wrs (A1(1)) ≥ w0. We note that
u′
2(12.2812 − 2w) = u1(1 + 2π − w) for w′ ≈ 6.12851, so algorithm A1 should be

invoked for w ∈ [w1, w
′] (and w′ is obtained for α′ := 1 + 2π − w′ ≈ 1.15468),

then A ′
2 for w ∈ [w′, 3 + π] (and w′ is obtained for β′ so that v2(β′) = w′,

where β′ ≈ 0.0241653), and A2 for w ∈ [3 + π,w2]. We conclude with the next
Theorem (for convenience, the values of all constants are summarized at the end
of Sect. 2.3).

Theorem 7. For every w ∈ [w1, w2], the optimal solution to 2Evac
w
F2F is at

most g(w), where

g(w) =

⎧
⎨

⎩

−0.00889w3 + 0.0248026w2 + 0.338241w + 3.88629, w ∈ [w1, w′] (A 1(α), α ∈ [α′, ᾱ])

−4245.38w3 + 77893.3w2 − 476397.w + 971235, w ∈ [w′, 3 + π] (A 2(αβ , β), β ∈ [0, β′])
0.093056w2 − 1.70215w + 11.6328, w ∈ [3 + π, w2] (A 2(α), α ∈ [0, π − 2])

7 Conclusion and Open Problems

Our work suggests a number of open problems directly aiming to understand
2Evac

w
F2F better. Apart from generally improving our upper bounds, we find

the following list of questions particularly interesting and challenging:

(a) Note that when w = Wrs (B1), we presented algorithm A1(α) which, for
certain value of α, has worst case performance equal to w and average case
performance less that Avg (B1). Is there an algorithm whose average case
performance is no more than Avg (B1), and worst case performance strictly
less than w?

Average Case - Worst Case Tradeoffs for Evacuating 2 Robots 77

(b) Is it true that the best possible efficient frontier is given by a smooth tran-
sition between families of evacuation algorithms? Note that A2 naturally
extends B2, A ′

2 naturally extends A2, and that A1 naturally extends B1.
However, A1 and A ′

2 behave differently, even though their efficient frontier
agrees for certain values of the parameters.

(c) Avg (B2) = 1 + π, and none of our algorithms beat this performance. We
conjecture that this is the best possible average evacuation time, even in the
wireless model, and for any number of robots.
Apart from the list above, we believe that the direction of studying ran-
domized algorithms for evacuation-type problems, especially with respect
to average case/worst case trade-offs is of special interest, and should be
considered for existing as well as for new search problems in the area.

A Appendix

A.1 Observation 3

Proof (Observation 3). Note that it takes time π to search the entire circle, and
that the two trajectories are symmetric with respect to horizontal axis. There-
fore, we may assume that the instance cycle(x) satisfies x ∈ [0, π].

Clearly, for any such x, we have that S(x) = x. By Lemma 2, we have that
C(x) = 1+S(x)+2E(x) = 1+x+2δx. Numerical calculations (software assisted)
show that

Wrs (B1) = sup
x∈[0,π]

{C(x)} = sup
x∈[0,π]

{1 + x + 2δx} ≈ 5.73906,

Avg (B1) = Ex∈[0,π][C(x)] =
1
π

∫ π

x=0

(1 + x + 2δx) dx ≈ 5.1172.

�

A.2 Observation 4

Proof (Observation 4). It is easy to see that for all x ∈ [0, 2π) we have t̄(x) =
S(x) = x and E(x) = 0. Therefore C(x) = 1 + x, and hence

Wrs (B2) = sup
x∈[0,2π)

{C(x)} = 1 + 2π,

Avg (B2) = Ex∈[0,2π)[C(x)] =
∫ 2π

x=0

(1 + x) dx = 1 + π.

�

78 H. Chuangpishit et al.

A.3 Lemma4

Proof (Lemma 4). First it is easy to show that the worst case evacuation time is
induced either when R1 finds the exit while moving from cycle(0) to cycle(α), or
while R1,R2 are exploring the circle together (after having met). By Lemma 2,
the cost in the first case would be

max
0≤x≤α

{1 + x + 2δx} =
{

1 + α + 2δα, if α ≤ α0

Wrs (B1), otherwise

where the values of the piecewise function above follow from Lemma 3. In the
other case, the worst placement of exit is obtained using instances cycle(α + ε)
for arbitrary small values of ε > 0 in which case the evacuation cost becomes
1 + 2π − α.

Overall, is easy to see that 1 + α0 + 2δα0 ≤ 1 + 2π − α0 showing that the
dominant evacuation cost when α ≤ ᾱ is 1 + 2π − α. For α > ᾱ the evacuation
cost becomes equal to w1.
�

A.4 Lemma5

Proof (Lemma 5). We distinguish three cases as to where the exit is. If x ∈ [0, α),
then the worst instance cycle(x) is when x = α−ε for arbitrarily small ε > 0, and
the cost is 1+α+2δα/2. In the second case x ∈ [α, 2α+δα/2) and it is not difficult
to see that the worst case induced cost in this case is not more than that of the
first case. Finally, in the third case x ∈ [2α+ δα/2, 2π), and the two robots move
together, so the total cost, in the worst case, is 1 + 2π − α, when x = 2π − ε for
arbitrarily small ε > 0. It is not difficult to see that the dominant case is actually
the third one, and in fact the two cases induce the same cost when π = α+δα/2.

By the definition of δα/2 we know that δα/2 = 2 sin
(

α+δα/2

2

)
= 2 sin (π/2) = 2.

Hence the costs become equal when α = π − 2.
�

A.5 Lemma6

Proof (Lemma 6). Let w(β) = 1+π−β/2+2 cos (β/4). First we show that w(β)
is the worst case performance of A ′

2(αβ , β) for two specific placements of the
exit.

We proceed by describing evacuation cost C(x) assuming two arbitrary α, β
for two different instances cycle(x). Using Lemma 2, we see that

lim
ε→0+

C(α − ε) = 1 + lim
ε→0+

S(α − ε) + 2 lim
ε→0+

E(α − ε) = 1 + α + 2δα/2. (3)

Since the total search time is 2π − α − β, we also see that

lim
ε→0+

C(2π − ε) = 1 + 2π − α − β. (4)

Now we claim that (3), (4) are equal when α = αβ . Indeed, equating (3), (4)
gives

a + δα/2 = π − β/2. (5)

Average Case - Worst Case Tradeoffs for Evacuating 2 Robots 79

But then, using (2), we see that

δα/2 = 2 sin
(

α + δα/2

2

)
= 2 sin

(
π − β/2

2

)
= 2 cos (β/4) . (6)

Substituting (6) into (5), we see that the value of α for which (3), (4) are equal
satisfies α = π − β/2 − 2 cos (β/4), as promised. Substituting this special value
of α = αβ either in (3) or in (4) induces evacuation cost w(β) = 1 + π − β/2 +
2 cos (β/4).

Next we show that as long as β is not too big, w(β) is indeed the worst
case evacuation cost. We consider the following cases x ∈ Ii, i = 1, . . . , 4 for
possible instances cycle(x); I1 := [0, α), I2 := [α, 2α + β + δ(α+β)/2), I3 := [2α +
β + δ(α+β)/2, 2α + 2β + δ(α+β)/2 + δβ/2), I4 := [2α + 2β + δ(α+β)/2 + δβ/2, 2π).
Clearly, (3), (4) demonstrate the worst case evacuation costs for instances in
I1, I4, respectively, and the cost in both cases, for α = αβ is equal to w(β).

If x ∈ I2 then C(x) = 1 + S(x) + 2E(x). It is easy to see that both S(x), E(x)
are monotone in I2, so the worst case evacuation in this case is

lim
ε→0+

C(2αβ + β + δ(αβ+β)/2 − ε) = 1 + αβ + β + δ(αβ+β)/2 + 2δβ/2. (7)

Denote δβ/2 satisfying (2) by δ′
β . Using (2) and the definition of αβ , we see that

δ(αβ+β)/2 = 2 sin
(

αβ + β + δ(αβ+β)/2

2

)
= 2 cos

(
cos (β/4) − β/4 − δ(αβ+β)/2

)

For simplicity, we denote δ(αβ+β)/2 that satisfies the equation above by δ′′
β . Then,

continuing from (7), the worst case evacuation cost when x ∈ I2 becomes 1+π+
β/2 − 2 cos (β/4) + δ′′

β + 2δ′
β , an expression that depends exclusively on β. The

latter cost is no more than w(β) if and only if 4 cos (β/4)−β −δ′′
β −2δ′

β ≥ 0, and
numerically we verify that this is satisfied as long as β ≤ β0 (see also Fig. 5).

0.02 0.04 0.06 0.08

0.5

1.0

1.5

2.0

2.5

Fig. 5. The behavior of expression 4 cos (β/4) − β − δ′′
β − 2δ′

β , for β = 0, . . . , 0.8.

Finally, it is easy to verify that δβ/2 and |I4| are increasing and decreasing
respectively for β ≤ β0 and that δβ0/2 = 0.977997 ≤ 1.01099 = |I4| (for β = β0).
As a result, the worst case evacuation cost of case x ∈ I3 cannot exceed that of
case x ∈ I4, and hence the lemma follows.
�

80 H. Chuangpishit et al.

A.6 Theorem6

Proof (Theorem 6). The claims for the worst case performances of A1,A ′
2 ,A2

follow directly from Lemmata 4, 6 and 5, respectively. Next we argue that as
the parameters vary in their specified range, we obtain the entire spectrum of
w ∈ [w1, w2], and this for unique values of the parameters. For this, we will rely
on that for all evacuation algorithm families, the worst case cost is monotone in
the parameters.

First, we argue about A1. We observe that by the definition of ᾱ,
Wrs (A1(ᾱ)) = w1, and Wrs (A1(1)) = 1 + 2π − 1 = 2π. Together with the
fact that v(α) is strictly decreasing, we see that Wrs (A1(α)) is 1-1 and onto to
[w1, 2π] as α ranges in [1, ᾱ].

Second, we study A ′
2 whose worst case cost v2(β) is strictly decreasing in

β. Moreover, by definition of β0, we have Wrs (A2(αβ0 , β0)) = w0. Then we
note that for β = 0, A2(αβ , β) coincides with A2(π − 2), and in particular the
induced worst case cost becomes 3 + π. Therefore Wrs (A ′

2(αβ , β)) is 1-1 and
onto to [w0, 3 + π] as β ranges in [0, β0].

Third, we study A2, for which we know that Wrs (A2(π − 2)) = 3+π. Again,
the worst case cost is monotone in α and A2(0) coincides with benchmark algo-
rithm B2, that is Wrs (A2(0)) = w2. Hence, Wrs (A2(α)) is 1-1 and onto to
[3 + π,w2] as α ranges in [0, π − 2].

Finally, we argue that

Avg (A1(α)) ≤ u1(α),∀α ∈ [1, ᾱ]
Avg (A ′

2(αβ , β)) ≤ u′
2(β),∀β ∈ [0, β0]

Avg (A2(α)) ≤ u2(α),∀α ∈ [0, π − 2]

For this, we numerically compute Avg (A1(α)) ,Avg (A ′
2(αβ , β)) ,Avg (A2(α))

for various values of parameters α, β, and we heuristically choose u1, u
′
2, u2 so as

to upper bound the average case performance of A1,A ′
2 ,A2, effectively verifying

our claim numerically. For each evacuation algorithm, we utilize Corollary 1,
which together with the analytic description of our evacuation algorithms (see
Definitions 4, 6, and 5) allow us to compute their average case performance using
computer-assisted calculations. Our numerical calculations are depicted in Fig. 6.

1.0 1.1 1.2 1.3 1.4 1.5

0.002105

0.002110

0.002115

0.002120

0.002125

0.002130

0.002135

0.01 0.02 0.03 0.04

0.002

0.004

0.006

0.008

0.0 0.2 0.4 0.6 0.8 1.0

0.005

0.010

0.015

Fig. 6. On the right u1(α) − Avg (A1(α)), for α′ ≤ α ≤ ᾱ. In the middle, u′
2(β) −

Avg (A ′
2 (αβ , β)), for 0 ≤ β ≤ β0. On the right u2(α)−Avg (A2(α)), for 0 ≤ α ≤ π − 2.

�

Average Case - Worst Case Tradeoffs for Evacuating 2 Robots 81

References

1. Ahlswede, R., Wegener, I.: Search Problems. Wiley-Interscience, Hoboken (1987)
2. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput.

29(4), 1164–1188 (2000)
3. Albers, S., Kursawe, K., Schuierer, S.: Exploring unknown environments with

obstacles. Algorithmica 32(1), 123–143 (2002)
4. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, vol. 55. Kluwer

Academic Publishers (2002)
5. Alpern, S.: Ten open problems in rendezvous search. In: Alpern, S., Fokkink, R.,

G ↪asieniec, L., Lindelauf, R., Subrahmanian, V. (eds.) Search Theory, pp. 223–230.
Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6825-7 14

6. Baeza Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput.
106(2), 234–252 (1993)

7. Baumann, N., Skutella, M.: Earliest arrival flows with multiple sources. Math.
Oper. Res. 34(2), 499–512 (2009)

8. Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964)
9. Bellman, R.: An optimal search. SIAM Rev. 5(3), 274–274 (1963)

10. Benkoski, S., Monticino, M., Weisinger, J.: A survey of the search theory literature.
Nav. Res. Logist. (NRL) 38(4), 469–494 (1991)

11. Brandt, S., Laufenberg, F., Lv, Y., Stolz, D., Wattenhofer, R.: Collaboration with-
out communication: evacuating two robots from a disk. In: Fotakis, D., Pagourtzis,
A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 104–115. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57586-5 10

12. Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot
exploration. IEEE Trans. Rob. 21(3), 376–386 (2005)

13. Chrobak, M., G ↪asieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Ital-
iano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R.
(eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46078-8 14

14. Chung, T.H., Hollinger, G.A., Isler, V.: Search and pursuit-evasion in mobile
robotics. Auton. Rob. 31(4), 299–316 (2011)

15. Czyzowicz, J., Dobrev, S., Georgiou, K., Kranakis, E., MacQuarrie, F.: Evacuating
two robots from multiple unknown exits in a circle. Theoret. Comput. Sci. 709,
20–30 (2018)

16. Czyzowicz, J., G ↪asieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evac-
uating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS,
vol. 8784, pp. 122–136. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45174-8 9

17. Czyzowicz, J., et al.: Evacuation from a disc in the presence of a faulty robot.
In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS, vol. 10641, pp. 158–173.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72050-0 10

18. Czyzowicz, J., et al.: God save the queen. In: 9th International Conference on Fun
with Algorithms (FUN 2018) (2018)

19. Czyzowicz, J., et al.: Priority evacuation from a disk using mobile robots. In:
Lotker, Z., Patt-Shamir, B. (eds.) SIROCCO 2018. LNCS, vol. 11085, pp. 392–
407. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01325-7 32

20. Czyzowicz, J., et al.: Search on a line by byzantine robots. In: 27th International
Symposium on Algorithms and Computation, ISAAC 2016, Sydney, Australia, 12–
14 December 2016, pp. 27:1–27:12 (2016)

https://doi.org/10.1007/978-1-4614-6825-7_14
https://doi.org/10.1007/978-3-319-57586-5_10
https://doi.org/10.1007/978-3-662-46078-8_14
https://doi.org/10.1007/978-3-662-45174-8_9
https://doi.org/10.1007/978-3-662-45174-8_9
https://doi.org/10.1007/978-3-319-72050-0_10
https://doi.org/10.1007/978-3-030-01325-7_32

82 H. Chuangpishit et al.

21. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhu-
ber, B.: Evacuating robots from a disk using face-to-face communication (extended
abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp.
140–152. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18173-8 10

22. Deng, X., Kameda, T., Papadimitriou, C.: How to learn an unknown environment.
In: FOCS, pp. 298–303. IEEE (1991)

23. Dobbie, J.: A survey of search theory. Oper. Res. 16(3), 525–537 (1968)
24. Fekete, S., Gray, C., Kröller, A.: Evacuation of rectilinear polygons. In: Wu, W.,

Daescu, O. (eds.) COCOA 2010. LNCS, vol. 6508, pp. 21–30. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17458-2 3

25. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph
searching. Theoret. Comput. Sci. 399(3), 236–245 (2008)

26. Georgiou, K., Karakostas, G., Kranakis, E.: Search-and-fetch with one robot on
a disk - (track: wireless and geometry). In: Chrobak, M., Fernández Anta, A.,
G ↪asieniec, L., Klasing, R. (eds.) ALGOSENSORS 2016. LNCS, vol. 10050, pp.
80–94. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53058-1 6

27. Georgiou, K., Karakostas, G., Kranakis, E.: Search-and-fetch with 2 robots on a
disk - wireless and face-to-face communication models. In: Liberatore, F., Parlier,
G.H., Demange, M. (eds.) Proceedings of the 6th International Conference on
Operations Research and Enterprise Systems, ICORES 2017, Porto, Portugal, 23–
25 February 2017, pp. 15–26. SciTePress (2017)

28. Georgiou, K., Kranakis, E., Steau, A.: Searching with advice: robot fence-jumping.
J. Inf. Process. 25, 559–571 (2017)

29. Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon exploration problem.
SIAM J. Comput. 31(2), 577–600 (2001)

30. Kleinberg, J.: On-line search in a simple polygon. In: SODA, p. 8. SIAM (1994)
31. Lidbetter, T.: Hide-and-seek and other search games. Ph.D. thesis, The London

School of Ecoomics and Political Science (LSE) (2013)
32. Mitchell, J.S.B.: Geometric shortest paths and network optimization. Handb. Com-

put. Geom. 334, 633–702 (2000)
33. Nahin, P.: Chases and Escapes: The Mathematics of Pursuit and Evasion. Prince-

ton University Press, Princeton (2012)
34. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. In: Ausiello,

G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.) ICALP 1989. LNCS, vol. 372,
pp. 610–620. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0035787

35. Stone, L.: Theory of Optimal Search. Academic Press, New York (1975)
36. Thrun, S.: A probabilistic on-line mapping algorithm for teams of mobile robots.

Int. J. Rob. Res. 20(5), 335–363 (2001)
37. Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proceedings

of the Second International Conference on Autonomous Agents, pp. 47–53. ACM
(1998)

https://doi.org/10.1007/978-3-319-18173-8_10
https://doi.org/10.1007/978-3-642-17458-2_3
https://doi.org/10.1007/978-3-319-53058-1_6
https://doi.org/10.1007/BFb0035787

Mutual Visibility by Asynchronous
Robots on Infinite Grid

Ranendu Adhikary(B) , Kaustav Bose , Manash Kumar Kundu ,
and Buddhadeb Sau

Department of Mathematics, Jadavpur University, Kolkata, India
{ranenduadhikary.rs,kaustavbose.rs,

manashkrkundu.rs}@jadavpuruniversity.in, bsau@math.jdvu.ac.in

Abstract. Consider a set of autonomous, identical, opaque point robots
in the Euclidean plane. The Mutual Visibility problem asks the robots to
reposition themselves, without colliding, to a configuration where they
all see each other, i.e., no three of them are collinear. In this paper, we
consider the problem in a grid based terrain where the movements of the
robots are restricted only along grid lines and only by a unit distance in
each step. We consider the luminous robots model, in which each robot
is equipped with an externally visible light which can assume a constant
number of predefined colors. These colors serve both as internal memory
and as a form of communication. The robots operate in Look-Compute-
Move cycles under a fully asynchronous scheduler. The robots do not
have any common global coordinate system or chirality and do not have
the knowledge of the total number of robots. Our proposed distributed
algorithm solves the problem for any arbitrary initial configuration and
guarantees collision-free movements.

Keywords: Distributed computing · Autonomous robots ·
Mutual visibility · Robots with lights · Asynchronous ·
Look-Compute-Move cycle · Grid

1 Introduction

Robot swarms are a distributed system of autonomous mobile robots that collab-
oratively execute some complex tasks. Swarms of low-cost, weak, simple robots
are emerging as a viable alternative to using a single powerful and expensive
robot. In the traditional model of robot swarms, the mobile robots are assumed
to be autonomous (there is no central control), homogeneous (they execute the
same distributed algorithm), anonymous (they have no unique identifiers), iden-
tical (they are indistinguishable by their appearance) and disoriented (they do
not agree on any global coordinate system). The robots do not have any direct
means of communication. Each robot is equipped with sensor capabilities (i.e.,
vision) to perceive the positions of the other robots. The robots operate in Look-
Compute-Move (LCM) cycles: when a robot becomes active it takes a snapshot
of the positions of the other robots, then computes a destination based on the
c© Springer Nature Switzerland AG 2019
S. Gilbert et al. (Eds.): ALGOSENSORS 2018, LNCS 11410, pp. 83–101, 2019.
https://doi.org/10.1007/978-3-030-14094-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14094-6_6&domain=pdf
http://orcid.org/0000-0002-9473-2645
http://orcid.org/0000-0003-3579-1941
http://orcid.org/0000-0003-4179-8293
https://doi.org/10.1007/978-3-030-14094-6_6

84 R. Adhikary et al.

snapshot using a deterministic algorithm (Compute), and then moves towards
the destination along a straight line (Move).

The opaque robots or obstructed visibility model assumes that visibility can
be obstructed by the presence of other robots: that is, two robots can see each
other if and only if no other robot lies on the line segment joining them. The
fundamental problem in this model is the Mutual Visibility problem: starting
from arbitrary distinct positions in the plane, the robots have to reposition
themselves, within finite time and without colliding, to a configuration in which
they are in distinct locations and no three of them are collinear. The problem
is important as it provides a basis for any subsequent task requiring complete
visibility. We consider this problem in the robots with lights or luminous robots
model [8,10]. In this model, each robot is equipped with an externally visible
light which can assume a constant number of predefined colors.

1.1 Our Contribution

In this paper, we have considered the Mutual Visibility problem in a grid
based terrain. The infinite grid is a natural discretization of the Euclidean plane.
Traditional spatial representation methods in robot navigation commonly repre-
sent the world as a two dimensional grid around the robot. Grid type floor layouts
are also commonly implemented in real life robot navigation systems, e.g., indus-
trial Automated Guided Vehicles (AGV), using magnets or optical guidances on
the floor [3]. The simple model of movement along grid lines from one grid
point to another can be easier to implement for robots with weak mechanical
capabilities as they may not be able to execute accurate movements in arbi-
trary directions or by arbitrarily small amounts. Although the simple model of
movement may be easier to physically execute, the restrictions imposed on the
movements of the robots pose the main difficulty of the algorithmic problem.
Our proposed distributed algorithm solves the Mutual Visibility problem on
infinite grid for any arbitrary initial configuration. We have solved the problem
in the luminous robots model using 11 colors.

1.2 Earlier Works

While fundamental problems in autonomous mobile robots like Gathering have
been studied in grid environments [5–7,11,17], the Mutual Visibility prob-
lem has only been studied in continuous Euclidean plane. The first distributed
algorithm for the Mutual Visibility problem was presented by Di Luna et al.
[9] for oblivious and semi-synchronous robots. Later, Sharma et al. [13] analyzed
and modified the round complexities of the algorithm in the fully synchronous
model. The Mutual Visibility problem under the luminous robots model was
first studied by Di Luna in [8]. They solved the problem with semi-synchronous
scheduler using 3 colors and with asynchronous schedulers using 3 colors under
one axis agreement. Later Sharma et al. [14] attained this result using only 2
colors both for semi-synchronous and for asynchronous robots. Then a series

Mutual Visibility by Asynchronous Robots on Infinite Grid 85

of papers [15,16] appeared aiming towards reducing the runtime of the algo-
rithm. Recently Bhagat and Mukhopadhyaya [4] have solved the problem for
asynchronous robots without any agreement on coordinate axes or chirality. The
problem has also been considered for fat robots [12] and faulty robots [2].

2 Model and Definitions

In this section, we present the model and some basic definitions.

Robots: We consider a set of N ≥ 3 homogeneous, autonomous, anonymous
and identical robots R = {r1, r2, . . . , rN} deployed on a two dimensional infinite
grid. All the robots are initially positioned on distinct grid points. The robots
are assumed to be dimensionless and modeled as points on the plane. The robots
do not have access to any global coordinate system. The total number of robots
N is not known to them.

Movement: The movement of the robots are restricted only along grid lines
from one grid point to one of its four neighboring grid points. Traditionally
in discrete domains, robot movements are assumed to be instantaneous. For
simplicity of analysis, we also assume the movements to be instantaneous. This
implies that the robots are always seen on grid points, not on edges. However,
our strategy will also work without this assumption.

Lights: Each robot is equipped with an externally visible light which can assume
a constant number of predefined colors. The robots explicitly communicate with
each other using these lights. The lights are persistent (i.e., the color is not
erased at the end of a cycle), but otherwise the robots are oblivious. The colors
used in our algorithm are C = {Off,Boundary,RequestExpansion,Expanding,
Moving1, Rectangle, Square,NextToCorner,Moving2,Moving3,Done}.

Visibility: The visibility range of the robots is unlimited, but can be obstructed
by the presence of other robots. A robot ri can see another robot rj if and only
if there are no robots on the straight line segment rirj . The set of positions of
all robots visible by a robot r at time t, expressed in its local coordinate system,
is denoted by Vr(t), or simply Vr when there is no ambiguity.

Look-Compute-Move Cycles: The robots, when active, operate according to
the so-called Look-Compute-Move cycle. In each cycle, a previously idle or
inactive robot wakes up and executes the following steps. In the Look phase a
robot takes the snapshot of the positions of the robots visible to it represented
in its own coordinate system. Based on the perceived configuration, the robot
performs computations according to a deterministic algorithm to decide a des-
tination point p ∈ Z

2 (either the grid point on which it currently resides or one
of the four neighboring grid points) and a color c ∈ C. Finally based on the
outcome of the algorithm, the robot changes its light to the computed color, and
either remains stationary or makes an instantaneous move to an adjacent grid
point.

86 R. Adhikary et al.

Scheduler: We assume that the robots are controlled by a fully asynchronous
adversarial scheduler. This implies that the amount of time spent in Look,
Compute, Move and inactive states by different robots is finite but unbounded
and unpredictable. As a result, the robots do not have a common notion of
time and the configuration perceived by a robot during the Look phase may
significantly change before it actually makes a move.

Fig. 1. Illustrations for the geometric defi-
nitions given in Sect. 2.

Geometric Definitions: Given a
configuration of robots at time t, the
smallest enclosing rectangle is defined
as the smallest axis-aligned rectan-
gle that contains all the robots. The
boundary of the largest rectangle con-
tained inside the smallest enclosing
rectangle is called the penultimate
layer, and each side of the rectan-
gle is called penultimate line segment.
The robots on the boundary of the
smallest enclosing rectangle will be
called boundary robots, and other-
wise interior robots. The boundary
of the smallest enclosing rectangle of
the interior robots is called the inner
boundary, and each side of the rectangle is called inner boundary side. A con-
figuration will be called an empty rectangle if there are only boundary robots.
A robot r on a grid line segment L will be called non-terminal on L if it lies
between two robots on L, and otherwise it will be called terminal on L (Fig. 1).

3 The Algorithm

The main difficulty of the problem arises from the restrictions imposed on the
movements of the robots. If the four neighboring grid points of a robot are
occupied, then any move made by it will lead to a collision. Our plan is to
first create an empty rectangle configuration where all the robots are positioned
on the boundary of the smallest enclosing rectangle. This phase is called the
Interior Depletion phase. Our main idea is to exploit the symmetry of the empty
rectangle to our advantage. In the Symmetric Movements phase, the robots will
sequentially leave the empty rectangle and form a mutually visible configuration.
During the movements, the robots may not be able to perceive the positions of
other robots due to obstructed visibility, but can predict their movements from
the symmetries of the empty rectangle. The robots at the corners of the empty
rectangle will not move in the symmetric movements phase, but, however, will
play an important role in the process. The specified lights of the corner robots will
guide the movements of the other robots. From their positions relative to these
corners, the robots will deduce their destination. However, the empty rectangle
created in the interior depletion phase may not have robots at the corner points.

Mutual Visibility by Asynchronous Robots on Infinite Grid 87

So in an intermediate phase, called Corner Creation, the robots terminal on the
sides of the empty rectangle will reposition themselves at the corners. These
phases are described in more detail in the following subsections.

3.1 Interior Depletion

The main idea of the algorithm is to sequentially move the interior robots to the
boundary. In order to avoid collisions, only those robots that are on the inner
boundary will move. However, there may not be an empty grid point on the
boundary for the robot to position itself. In that case, the robot, using its lights,
will ask the boundary robots to expand the boundary. A pseudo-code description
of the procedure is presented in Algorithm 1. The geometric functions used in
the algorithm are explained briefly in the following. The lights used in this phase
are {Off,Boundary,RequestExpansion,Expanding,Moving1}.

Fig. 2. Illustrations for the function FindSpace().

The lights of all the robots are initially set to Off . Upon waking up, a robot
r calls the function OnBoundary() to decide if it is on the boundary. If it
finds that there is an open-half plane, delimited by one of the grid lines passing
through itself, containing no robots, then it concludes that it is a boundary robot
and sets its light to Boundary. If r finds itself in the interior, then it calls the
function OnInnerBoundary(). If there is an open-half plane, delimited by one
of the grid lines passing through itself, containing only robots with lights set
to Boundary, then it is on the inner boundary. Only the robots on the inner
boundary are allowed to move towards the boundary. Now, there are two cases
to consider: the robot on the inner boundary is either on the penultimate layer
or not.

88 R. Adhikary et al.

If r is not on the penultimate layer and is terminal on an inner boundary side,
then it has to move towards the boundary. But it will not move immediately.
First, it will set its light to Moving1. Then in the next round, it will redo the
same computations. An interior robot will move only if its light is already set to
Moving1 (in some previous round).

On the other hand, if r finds itself on a penultimate line segment L and is ter-
minal on L, then it has to decide whether it is possible to move to the boundary.
It does so using the function FindSpace(). The function FindSpace() works
in the following way.

For the robot r, let Sr denote the portion of the boundary as shown in the
Fig. 2a. If L contains more than one robot, then define Hr as the closed-half
plane, delimited by the grid line perpendicular to L and passing through r, such
that L∩Hr contains no robot other than r. If there is no other robot on L except
r, then Hr is the entire plane. The robot r will scan Hr ∩ Sr for an empty grid
point. If it finds an empty point, it makes sure that the shortest path to that
point is not blocked by some other robot. Even if it finds an unobstructed empty
point on Hr ∩ Sr, a move towards it can lead to a collision. To avoid this, it
must make sure that there are no robots with light Moving1 within Manhattan
distance 2 in the direction in which it intends to move. See Fig. 3.

Fig. 3. Illustrations for the function FindSpace(). (a) The robot r1 finds an empty
grid point, while r2 does not find any empty grid point. (b) The robot r1 finds an empty
grid point, but the shortest paths leading to it are blocked by other robots. (c)–(d)
The robot r finds an empty grid point but there is a robot with light Moving1 within
Manhattan distance 2 in the direction it should move to get there. (e) There is a robot
r1 with light Moving1 within Manhattan distance 2, but not in the direction towards
the empty point. Hence, FindSpace() will return True for r. (f) r is the only terminal
robot on the penultimate line segment, and hence Hr ∩ Sr = Sr. It has found two
empty grid points in Sr. Here, it will choose the empty grid point on the left, because
on the right side there is a robot with light Moving1 within Manhattan distance 2.

If the function FindSpace() returns True, then r will move towards the
empty grid point on the boundary. Again, it will move only if its light is already

Mutual Visibility by Asynchronous Robots on Infinite Grid 89

set to Moving1, otherwise it will only change its light to Moving1. If Find-

Space() returns False, r will set its light to RequestExpansion, requesting the
boundary robots to expand the smallest enclosing rectangle so that an empty
space is created on the boundary.

Algorithm 1. Interior Depletion
1 Procedure InteriorDepletion()

2 r ← myself
3 while EmptyRectangle() = False do
4 if r.color = Off then
5 if OnBoundary() = True then
6 r.color ← Boundary
7 else if OnInnerBoundary() = True then
8 if OnPenultimate() = True then
9 if TerminalOnPenultimate() = True then

10 if FindSpace() = True then
11 r.color ← Moving1
12 else
13 r.color ← RequestExpansion

14 else if TerminalOnInnerBoundary() = True then
15 r.color ← Moving1

16 else if r.color = RequestExpansion then
17 if OnPenultimate() = False then
18 r.color ← Off

19 else if r.color = Moving1 then
20 if OnBoundary() = True then
21 r.color ← Boundary
22 else if OnInnerBoundary() = True then
23 if OnPenultimate() = True then
24 if TerminalOnPenultimate() = True then
25 if FindSpace() = True then
26 Move towards the empty boundary point
27 else
28 r.color ← RequestExpansion

29 else if OnPenultimate() = False then
30 Move towards boundary

31 else if r.color = Expanding then
32 if ExpansionCompleted() = True then
33 r.color ← Boundary

34 else if r.color = Boundary then
35 if OnBoundary() = False then
36 Move towards the boundary
37 else if All terminal robots on the penultimate grid line segment next to it

have lights set to RequestExpansion then
38 r.color ← Expanding
39 Move outward

Now consider a robot r′ with light Boundary. It will first recheck if it is
still on the boundary. It may happen that some of the boundary robots on
its grid line had started the expansion earlier, leaving r′ inside the smallest
enclosing rectangle. However, these robots will only move at most one hop from
the previous boundary. Thus, if r′ finds itself in the interior, it can move to the
new boundary in a single step. If r′ is on the boundary, and it observes that all
terminal robots on the penultimate line segment next to it have set their lights
to RequestExpansion, then it will change its light to Expanding and will start

90 R. Adhikary et al.

moving outwards. If a robot finds its light set to Expanding, it checks whether
all its fellow boundary robots from the previous round have completed their
moves by checking the penultimate line next to it. If it finds that the expansion
is completed, it will change its light to Boundary.

A rigorous proof of correctness of the algorithm is omitted due to space
constraints. The following two lemmas address the two main issues regarding
the correctness of the algorithm. The proofs of the lemmas in this subsection are
briefly presented in AppendixA.

Lemma 1. The interior depletion phase is collision free.

Lemma 2. If a robot r at time t0 on the penultimate layer sets it light to
RequestExpansion, then there exist a time t (> t0) when the robot r reaches
the boundary.

The interior depletion phase is completed when all the robots are on the
boundary of the smallest enclosing rectangle, and the lights of all the robots
are set to Boundary. However, it may not be possible for the robots to locally
detect this. This is because, if the first condition is attained, a robot r can not
determine whether the second condition is satisfied, as it may not be able to see
all the robots on boundary line on which it resides. We say that a robot detects
the partial completion of the interior depletion phase if it can determine if the
first condition is satisfied. It does so using the function EmptyRectangle(),
which returns True if the following conditions are satisfied:

1. all robots in Vr are on the boundary of their smallest enclosing rectangle,
2. the lights of all the robots in Vr are set to Boundary.

Lemma 3. The function EmptyRectangle() can detect the partial comple-
tion of the interior depletion phase.

Theorem 1. The algorithm Interior Depletion creates an empty rectangle
configuration starting from any arbitrary configuration.

3.2 Symmetric Movements

Due to space constraints, we will not describe the corner creation phase. A brief
discussion on this phase is given in AppendixC. This phase will require four
different lights, namely, Rectangle, Square, NextToCorner and Moving2. The
objective of the corner creation phase is to create an empty rectangle configu-
ration with its four corners occupied by robots with specified lights. However,
this may not be achievable if the empty rectangle is a square. Due to space
restrictions, we will describe the symmetric movements phase assuming that the
starting configuration is the generic configuration of a non-square rectangle hav-
ing four corner robots with lights set to Rectangle. The algorithms for other
configurations, like squares with possibly some missing corners or a straight line
configuration, are based on the same movement strategy subject to some minor

Mutual Visibility by Asynchronous Robots on Infinite Grid 91

modifications. The lights that will be used in the symmetric movements phase
are {Moving3,Done}. See AppendixB, for the proofs of the claims in this sub-
section.

In this phase, the non-terminal robots on the sides of the empty rectangle
will leave the boundary and move outwards along the grid line passing through
its starting position. The extent of their movement will depend on (1) the length
of the sides of the empty rectangle, and (2) the starting position of the robot on
the boundary.

Fig. 4. (a) The final mutually visible configuration for a 7 × 8 empty rectangle.
(b) The coordinate system of the boundary of the rectangle.

The grid points on the boundary of the rectangle will be given coordinates
(p, k), where p = the size of the side of the rectangle it belongs to, and k =
its distance from the closest corner. The coordinates of the four corners will be
(0, 0). This coordinate scheme is illustrated in Fig. 4b. The group of symmetries
of the rectangle is generated by reflections with respect to perpendicular bisec-
tors of its sides. The group of symmetries induces an equivalence relation on the
grid points on the rectangle: P ∼ Q if and only if Q can be obtained from P
by some reflection operations. This partitions the set of grid points on the rect-
angle into equivalence classes. The distance, that two robots on starting points
belonging to the same equivalence class should move, have to be equal. Two
points are equivalent if and only if their coordinates are equal (See Fig. 4b). We
shall exploit these symmetries to design a recursive function called Destination

that computes the destination points of the robots. The distance that a robot
starting from (p, k) should move is Destination(m,n, p, k), where m,n (m ≥ n)
are size of the sides.

The pseudocode of the function Destination is omitted. We shall briefly
sketch out the recursive computation of the destination points corresponding to

92 R. Adhikary et al.

all the points on the rectangle. At each step, the algorithm computes destinations
corresponding to all the points belonging to an equivalence class. In other words,
the iteration runs over the set of equivalence classes of the grid points on the
rectangle. The set of all the destinations computed up to the ith step of the
procedure will be denoted by Ci.

Step 0: Robots at the corners (k = 0) will not move. Hence, C0 consists of the
starting positions of the corner robots.

Step 1 and 2: At step 1 and 2, the destinations corresponding to the middle
points of the sides, i.e., k = �m

2 � − 1 and �n
2 � − 1, are computed. Suppose we

are computing the destinations corresponding to the middle points of a side AB.
Draw two straight lines through A and B, parallel to the two diagonals of the
rectangle. Let HA and HB be the open half-planes delimited by these straight
lines that do not contain the rectangle. Then the destination of the robot(s) at
the middle of AB will be the nearest grid points belonging to HA ∩ HB (the
shaded region in Fig. 8 in the Appendix).

Step 3 to �m
2

�: In these steps, the destinations corresponding to the remaining
grid points on the larger side are computed. This is done in a recursive manner.
Suppose that at the ith step, we are to compute the destinations for grid points
{x1, x2, x3, x4}. We shall denote the computed destination corresponding to xj

as yj . The destinations are computed according to the following rules.

1. The destinations computed in step i are strictly farther from the rectangle
than the ones computed in step i − 1.

2. Choose any one of {x1, x2, x3, x4}, say x1. Then the corresponding destina-
tion y1 is the grid point (on the grid line passing through x1) closest to the
rectangle (respecting condition 1) such that no three points in Ci−1 ∪ {y1}
are collinear. The destinations y2, y3, y4 are obtained from y1 from the reflec-
tional symmetries. Since no two points in Ci−1 are collinear with y1, from the
reflectional symmetries we can say that the same is true for y2, y3 and y4.
But it is still not apparent that no three points in Ci = Ci−1 ∪ {y1, y2, y3, y4}
are collinear. We prove this in Lemma 4.
Step �m

2
� + 1 to �m

2
� + �n

2
� − 2: In these steps, the destinations corre-

sponding to the grid points on the smaller side are computed. The procedure
is the same as before.

Lemma 4. If no three points in Ci−1 are collinear, then the same is true for Ci.

Theorem 2. No three points of the destinations computed by the function Des-

tination are collinear.

Proof. Since no three points of C0 are collinear, the result immediately follows
from the Lemma 4.

We shall now describe the movement strategy. A pseudocode description of
the procedure is given in Algorithm2. As mentioned earlier, the algorithm is

Mutual Visibility by Asynchronous Robots on Infinite Grid 93

described for only non-square empty rectangle configurations with four occupied
corners. In the function Destination, the destinations corresponding to the
middle points of the sides were computed first in the recursive process. But the
movements will occur in the exactly opposite order. The robots will sequentially
leave the boundary with the ones closest to the corner moving first. A boundary
robot will call the function EligibleToMove() to determine whether it should
start moving. It checks if the following conditions are satisfied:

1. It can see at least one corner robot on its boundary side, and two corner
robots on the opposite side. In Fig. 5, r1 can see c1, c3 and c4. r3 can also see
c2, c3 and c4. But r5 cannot see c1 or c2, and so it is not eligible to move yet.

2. If there were robots initially on its boundary side between it and the corner(s)
it can see, they have already completed their movements and changed their
lights to Done. The robot r1 checks this by scanning the shaded region A,
which is empty. Hence r1 is eligible to move. But when r3 scans the region
B, it finds r2 with its light set to Moving3, and hence it will not move.

Fig. 5. Illustrations supporting the proof of
Theorem3

If EligibleToMove() returns
True, the robot will change its light
to Moving3 and leave the bound-
ary. Note that a robot can leave
the boundary even before the corner
creation phase is completed. This is
because the robot leaves the bound-
ary when it sees at least three cor-
ners. The fourth corner is probably
yet not created. We call this a pre-
mature move. But it can determine
if it has made a premature move just
after moving one hop from the bound-
ary. This is because if the other corner
is created, it will be able to see from
the grid line one hop away from the
boundary. If it can’t, it will wait for the completion of the corner creation phase.
Note that at most one robot on a boundary line can make a premature move.
Also note that Premature() will always return false if the robot is more than
one hop away from the boundary.

When the robot is moving, after each one hop move it has to compute
Destination(m,n, p, k) to find whether it has reached its destination. But that
requires the knowledge of m and n. Consider the robot r2 in Fig. 5. Since the
robots closer to the corners move farther, r2 will always be able to see c2 and
c3. But to know the size of both the boundary sides, it also has to see another
corner. If it cannot see c1, then its view must be obstructed by some robot in
the shaded region in Fig. 5. So r2 now has to decide if its view is obstructed by a
moving robot or a robot that has reached its destination. If r2 scans the shaded
region and it finds a robot with light Moving3 below it, then BlockedByMov-

ingRobot() will return True. Notice that if r2 can’t see c1, it can not identify

94 R. Adhikary et al.

the actual extent (on the left side) of the shaded region. But this is not a major
problem as there can not be any robots (from any branch) moving in the area
beyond the left boundary of the shaded region. The robots, upon reaching their
destination points, will change their lights to Done.

Algorithm 2. Symmetric Movements

1 Procedure SymmMovement()

2 r ← myself
3 if I am on the empty rectangle and EligibleToMove() = True then
4 r.color ← Moving3
5 Move outwards

6 else if r.color = Moving3 and Premature() = False then
7 if I can see at least three robots with light Rectangle then
8 d ← Destination(m,n, p, k)
9 if r.position = d then

10 r.color = Done
11 else
12 Move

13 else if BlockedByMovingRobot() = False then
14 Move

Theorem 3. Algorithm Symmetric Movements correctly leads all the robots
to the destinations computed by the Destination function.

From Theorem 2 and 3, we can conclude the following.

Theorem 4. The Mutual Visibility problem on infinite grid can be solved
using 11 colors.

Note that the robots terminate the execution once their lights are set to
Rectangle or Done. We say that the Mutual Visibility problem is solved
with detection if we additionally require that a robot terminates only after it
detects that the mutual visibility is attained. This can be easily achieved, but
will require one extra color. Each corner robot can determine if the symmetric
movements have been completed in its quadrant, and then changes its light to
the extra color. When all four corner robots change their colors, it implies that a
mutually visible configuration is attained and all the robots in the configuration
can detect this.

Theorem 5. The Mutual Visibility problem on infinite grid can be solved
with detection using 12 colors.

4 Conclusion

Our proposed distributed algorithm solves the Mutual Visibility problem
on infinite grid for any arbitrary initial configuration under the luminous robots
model using 11 colors. We considered the robots as dimensionless points. A more
realistic model would be to consider robots with physical extent, i.e., fat robots.
The Mutual Visibility problem for fat robots is solved as a subroutine of the
gathering algorithm presented in [1]. But it is assumed that each robot knows

Mutual Visibility by Asynchronous Robots on Infinite Grid 95

the size of the team. Recently, Sharma et al. have solved the problem in a fully
synchronous setting [12]. It would be interesting to see if our strategy can be
extended to solve the problem for fat robots in asynchronous setting with less
assumptions. Another direction would be to investigate if the number of colors
used or the number of moves by the robots can be reduced.

Acknowledgements. The first three authors are supported by CSIR, Govt. of India,
NBHM, DAE, Govt. of India and UGC, Govt. of India respectively. We would like to
thank the anonymous reviewers for their valuable comments which helped us improve
the quality and presentation of this paper.

Appendix A Correctness of Interior Depletion

A.1 Proof of Lemma 1

Collision can only occur when a robot r is moving along the penultimate layer
towards an empty space in the boundary in the situations shown in Fig. 3c and
d. Suppose that two robots r and r1, at Manhattan distance 2 from each other,
computes the same destination point. Initially none of them had their lights set
to Moving1. This is because if one of them had its light set to Moving1 when
the other one takes the snapshot, it would not have computed a destination
point. So they will first change their lights to Moving1, say at time t and t1
respectively. Let t ≤ t1. Now in its next Look phase at time t2(> t1 ≥ t), r1
perceives that r has either already made its move or is yet to move but has set
its light to Moving1. In either case, r1 will not move according to our algorithm.
Hence, there will be no collision.
�

A.2 Proof of Lemma 2

Assume that the robot r on a penultimate line segment L at time t0 has set
its light to RequestExpansion. If the other terminal robot on L, say r′, also
sets its light to RequestExpansion, then the corresponding boundary robots
will execute the expansion. Otherwise, r′ and subsequently the other robots that
will become terminal on L will move to the boundary. Eventually, either we have
another terminal robot requesting expansion, or r is the only robot remaining
on L still with light RequestExpansion. Therefore, the corresponding boundary
will eventually execute expansion.

After the expansion, r is now not on the penultimate line. Then there is
a time t′ when it will again move to the new penultimate line L′. Now there
could be at most two robots on L′, since only the terminal robots on the inner
boundary line move. An expansion always creates at least two empty points on
the boundary (See Fig. 6), and one of them is in Hr ∩Sr. If r moves to the empty
point, then we are done. If not, then it implies that there is a robot r1 with light
Moving1 within Manhattan distance two in the direction it intends to move.

96 R. Adhikary et al.

Fig. 6. (a) There is no empty grid point in the shaded region. (b) Two new empty
points are created after the expansion

Case 1: Assume that r1 is also on L′. But since Hr ∩ Sr and Hr1 ∩ Sr1 are in
opposite directions, r1 is not in the direction in which r wants to move (and vice
versa).

Case 2: Let r1 be on the grid line below L′, as shown in Fig. 3c and f. But
since r is the only robot on L′, it has at least two empty points available in two
directions. Then it will choose the empty point which is not towards r1.

Case 3: Now consider the situation shown in Fig. 3d, where r1 is a robot moving
on an adjacent penultimate line segment. Then r and r1 will request another
expansion. It can be seen from Fig. 7, that in the new configuration, both robots
will be able to move to an empty boundary point.
�

Fig. 7. (a) The situation is similar to the example shown in Fig. 3d. (b) The subsequent
configuration after both boundary sides expand and both r and r1 move to the new
penultimate layer.

A.3 Proof of Lemma 3

Suppose that (1) the robots in Vr form an empty rectangle, (2) the lights of
all the robots in Vr are set to Boundary. It may happen that some robots in
Vr (with lights set to Boundary) are actually not on the boundary, but on the
penultimate layer. Then these robots are in the middle of an expansion, but are

Mutual Visibility by Asynchronous Robots on Infinite Grid 97

yet to change their lights to Expanding, and are obstructing some robots on the
boundary also having light Expanding. We argue that this is not possible.

First of all, if r itself was executing an expansion in a previous round, then all
the fellow robots, with which it had previously shared a boundary side, must have
also completed the expansion. This is because r has its light set to Boundary.
Now for the remaining three boundary sides, if the robots are executing an expan-
sion, then they must be instructed to do so by some robot in the interior with
light RequestExpansion. But Vr has only robots with light Boundary. Hence,
all the robots in Vr are indeed boundary robots. Hence, the empty rectangle
configuration is achieved.
�

Appendix B Correctness of Symmetric Movements

B.1 Proof of Lemma 4

Suppose that there are three points in Ci, say {u, v, w}, that are collinear. No
three points in Ci−1 are collinear. So at least one of the three points is in Ci\Ci−1,
say u. But u is computed in such a way that it is collinear with no two points
in Ci−1. So another one among the three points must be in Ci, say v. From
the symmetries, we can say that v is one of the three possible points shown in
Fig. 8 as {v1, v2, v3}. Clearly the straight lines through u and v1 or u and v3
do not pass through any other point in Ci−1. If the straight line through u and
v2 passes through a point z ∈ Ci−1, from symmetry it will also pass through
another point z′ ∈ Ci−1 (See Fig. 8). This implies that the straight line passes
through two points in Ci−1, which is not possible. Hence, no three points in Ci are
collinear.
�

Fig. 8. Illustration supporting the proof of Lemma 4.

98 R. Adhikary et al.

B.2 Proof of Theorem 3

Since the robots closer to the corners move farther, a robot r will always be able
to see at least two corners. Due to obstructions, it may not see another corner.
We show that this will not create any lock cases.

Case 1: (BlockedByMovingRobot() = False): If it sees no robot with light
Moving3, its view must be obstructed by a robot with light Done that has
already reached its destination. Hence, this is clearly not the destination point
of r. So r will move.

Case 2 (BlockedByMovingRobot() = True): If it sees a robot with light
Moving3, it simply waits. In our movement strategy, at any time at most two
robots can be moving in the shaded region (see Fig. 5). Hence, it sees exactly
one moving robot below it, say r′. Clearly no moving robot is obstructing r′’s
view. Hence, r′ will eventually move or turn its light to Done.
�

Appendix C Corner Creation

The lights that will be used in this phase are {Rectangle, Square,
NextToCorner, Moving2}. The objective of this phase is to occupy the cor-
ners of the empty rectangle by robots with specified lights. For simplicity, we
shall first assume that there are at least two robots on each of the four sides.
Only the robots terminal on the boundary sides will move in this phase. If the
configuration is a non-square rectangle, then the terminal robots on the larger
side will move to the corner and set its light to Rectangle. Note that the robots
can determine the length of the sides of the rectangle. However, if it is a square,
it may not be always possible to break tie. If two terminal robots on adjacent
sides of the square move to the corner, there will be a collision. If it is possible
to break tie, then one of them will go to the corner and set its light to Square.
Otherwise, the robots will move to the point adjacent to the corner and then
set its light to NextToCorner. While moving, the terminal robots will set their
lights to Moving2.

However, this simple scheme will not be always applicable. The initial empty
rectangle configuration may have different anomalies. For example, some sides
may have only a single robot, or all the robots could lie on a single straight line,
or form an L-shape, etc. (See Fig. 9). While designing algorithms for these config-
urations, the following issues should be properly addressed. A robot may not be
always able to distinguish between two configurations from their local views. In
these cases, the movement specified for the robot in both configurations should
not contradict each other. During the movements, the configuration may change
from one case to another. Due to the asynchronous scheduler, the adversary may
delay the move of a robot, which will have a pending move based on an out-dated
view of the configuration. Such pending moves should not cause any inconsis-
tencies in the algorithm. The algorithms for these different configurations are
pictorially presented in Fig. 9. Proofs and other details of the algorithms are
omitted due to space constraints.

Mutual Visibility by Asynchronous Robots on Infinite Grid 99

Fig. 9. Movements in the corner creation phase for atypical empty rectangle configu-
rations.

100 R. Adhikary et al.

References

1. Agathangelou, C., Georgiou, C., Mavronicolas, M.: A distributed algorithm for
gathering many fat mobile robots in the plane. In: ACM Symposium on Principles
of Distributed Computing, PODC 2013, 22–24 July 2013, Montreal, QC, Canada,
pp. 250–259 (2013). https://doi.org/10.1145/2484239.2484266

2. Aljohani, A., Sharma, G.: Complete visibility for mobile robots with lights tolerat-
ing faults. Int. J. Netw. Comput. 8(1), 32–52 (2018). http://www.ijnc.org/index.
php/ijnc/article/view/166

3. Barberá, H.M., Quiñonero, J.P.C., Zamora-Izquierdo, M.A., Gómez-Skarmeta,
A.F.: i-fork: a flexible AGV system using topological and grid maps. In: Proceedings
of the 2003 IEEE International Conference on Robotics and Automation, ICRA
2003, 14–19 September 2003, Taipei, Taiwan, pp. 2147–2152 (2003). https://doi.
org/10.1109/ROBOT.2003.1241911

4. Bhagat, S., Mukhopadhyaya, K.: Optimum algorithm for mutual visibility among
asynchronous robots with lights. In: Proceedings of 19th International Symposium
Stabilization, Safety, and Security of Distributed Systems, SSS 2017, 5–8 November
2017, Boston, MA, USA, pp. 341–355 (2017). https://doi.org/10.1007/978-3-319-
69084-1 24

5. Bose, K., Adhikary, R., Chaudhuri, S.G., Sau, B.: Crash tolerant gathering on grid
by asynchronous oblivious robots. CoRR abs/1709.00877 (2017). http://arxiv.org/
abs/1709.00877

6. D’Angelo, G., Stefano, G.D., Klasing, R., Navarra, A.: Gathering of robots on
anonymous grids and trees without multiplicity detection. Theor. Comput. Sci.
610, 158–168 (2016). https://doi.org/10.1016/j.tcs.2014.06.045

7. Fischer, M., Jung, D., Meyer auf der Heide, F.: Gathering anonymous, oblivious
robots on a grid. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang,
Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp. 168–181. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-72751-6 13

8. Luna, G.A.D., Flocchini, P., Chaudhuri, S.G., Poloni, F., Santoro, N., Viglietta,
G.: Mutual visibility by luminous robots without collisions. Inf. Comput. 254,
392–418 (2017). https://doi.org/10.1016/j.ic.2016.09.005

9. Luna, G.A.D., Flocchini, P., Poloni, F., Santoro, N., Viglietta, G.: The mutual
visibility problem for oblivious robots. In: Proceedings of the 26th Canadian Con-
ference on Computational Geometry, CCCG 2014, Halifax, Nova Scotia, Canada
(2014). http://www.cccg.ca/proceedings/2014/papers/paper51.pdf

10. Peleg, D.: Distributed coordination algorithms for mobile robot swarms: new direc-
tions and challenges. In: Pal, A., Kshemkalyani, A.D., Kumar, R., Gupta, A. (eds.)
IWDC 2005. LNCS, vol. 3741, pp. 1–12. Springer, Heidelberg (2005). https://doi.
org/10.1007/11603771 1

11. Poudel, P., Sharma, G.: Universally optimal gathering under limited visibility. In:
Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS, vol. 10616, pp. 323–340. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69084-1 23

12. Sharma, G., Alsaedi, R., Busch, C., Mukhopadhyay, S.: The complete visibility
problem for fat robots with lights. In: Proceedings of the 19th International Confer-
ence on Distributed Computing and Networking, ICDCN 2018, 4–7 January 2018,
Varanasi, India, pp. 21:1–21:4 (2018). https://doi.org/10.1145/3154273.3154319

13. Sharma, G., Busch, C., Mukhopadhyay, S.: Bounds on mutual visibility algo-
rithms. In: Proceedings of the 27th Canadian Conference on Computational Geom-
etry, CCCG 2015, 10–12 August 2015, Kingston, Ontario, Canada (2015). http://
research.cs.queensu.ca/cccg2015/CCCG15-papers/43.pdf

https://doi.org/10.1145/2484239.2484266
http://www.ijnc.org/index.php/ijnc/article/view/166
http://www.ijnc.org/index.php/ijnc/article/view/166
https://doi.org/10.1109/ROBOT.2003.1241911
https://doi.org/10.1109/ROBOT.2003.1241911
https://doi.org/10.1007/978-3-319-69084-1_24
https://doi.org/10.1007/978-3-319-69084-1_24
http://arxiv.org/abs/1709.00877
http://arxiv.org/abs/1709.00877
https://doi.org/10.1016/j.tcs.2014.06.045
https://doi.org/10.1007/978-3-319-72751-6_13
https://doi.org/10.1016/j.ic.2016.09.005
http://www.cccg.ca/proceedings/2014/papers/paper51.pdf
https://doi.org/10.1007/11603771_1
https://doi.org/10.1007/11603771_1
https://doi.org/10.1007/978-3-319-69084-1_23
https://doi.org/10.1145/3154273.3154319
http://research.cs.queensu.ca/cccg2015/CCCG15-papers/43.pdf
http://research.cs.queensu.ca/cccg2015/CCCG15-papers/43.pdf

Mutual Visibility by Asynchronous Robots on Infinite Grid 101

14. Sharma, G., Busch, C., Mukhopadhyay, S.: Mutual visibility with an optimal num-
ber of colors. In: Bose, P., G ↪asieniec, L.A., Römer, K., Wattenhofer, R. (eds.)
ALGOSENSORS 2015. LNCS, vol. 9536, pp. 196–210. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-28472-9 15

15. Sharma, G., Vaidyanathan, R., Trahan, J.L., Busch, C., Rai, S.: Complete visibility
for robots with lights in O(1) time. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016.
LNCS, vol. 10083, pp. 327–345. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49259-9 26

16. Sharma, G., Vaidyanathan, R., Trahan, J.L., Busch, C., Rai, S.: O(log n)-time
complete visibility for asynchronous robots with lights. In: 2017 IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2017, 29 May–2 June 2017,
Orlando, FL, USA, pp. 513–522 (2017). https://doi.org/10.1109/IPDPS.2017.51

17. Stefano, G.D., Navarra, A.: Gathering of oblivious robots on infinite grids with
minimum traveled distance. Inf. Comput. 254, 377–391 (2017). https://doi.org/
10.1016/j.ic.2016.09.004

https://doi.org/10.1007/978-3-319-28472-9_15
https://doi.org/10.1007/978-3-319-49259-9_26
https://doi.org/10.1007/978-3-319-49259-9_26
https://doi.org/10.1109/IPDPS.2017.51
https://doi.org/10.1016/j.ic.2016.09.004
https://doi.org/10.1016/j.ic.2016.09.004

Optimal Gathering by Asynchronous
Oblivious Robots in Hypercubes

Kaustav Bose , Manash Kumar Kundu(B) , Ranendu Adhikary ,
and Buddhadeb Sau

Department of Mathematics, Jadavpur University, Kolkata, India
{kaustavbose.rs,manashkrkundu.rs,

ranenduadhikary.rs}@jadavpuruniversity.in, bsau@math.jdvu.ac.in

Abstract. We consider the problem of gathering a set of autonomous,
identical, oblivious, asynchronous, mobile robots at a vertex of an anony-
mous hypercube. The robots operate in Look-Compute-Move cycles. In
each cycle, a robot takes a snapshot of the current configuration (Look),
then based on the perceived configuration, decides whether to stay idle or
to move to an adjacent vertex (Compute), and in the later case makes an
instantaneous move accordingly (Move). We have shown that the prob-
lem is unsolvable if the robots do not have multiplicity detection capabil-
ity. With weak multiplicity detection capability, the problem is solvable
in an oriented hypercube for any initial configuration of 2k + 1(k > 0)
number of robots. For 4k(k > 0) number of robots, the problem is solv-
able under the same assumptions if and only if the group of automor-
phism of the configuration is trivial. Our proposed algorithms are optimal
with respect to the total number of moves executed by the robots.

Keywords: Distributed computing · Autonomous robots · Gathering ·
Hypercube · Weber point · Asynchronous · Look-Compute-Move cycle

1 Introduction

The gathering problem requires a set of n mobile computational entities, usually
called robots or agents, initially situated at different locations in a spatial uni-
verse, to gather at some unspecified location within finite time. When only two
robots are involved, the problem is usually referred to as the rendezvous problem.
In distributed computing, gathering has been extensively studied both in con-
tinuous and in discrete domains. In the continuous setting, the robots operate in
the two-dimensional Euclidean space and in the discrete case, they operate in a
network modeled as a graph. In the discrete setting, the problem has been previ-
ously studied in different graph topologies, e.g. rings [10,18,22,23], grids [8,31],
trees [8] etc. The problem is particularly difficult in graphs that are highly sym-
metric and is solvable only in very limited cases. Hence, for characterization
of gatherability, it is important to investigate the problem in highly symmetric
graphs. In this paper, we investigate the problem in a hypercube graph.
c© Springer Nature Switzerland AG 2019
S. Gilbert et al. (Eds.): ALGOSENSORS 2018, LNCS 11410, pp. 102–117, 2019.
https://doi.org/10.1007/978-3-030-14094-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14094-6_7&domain=pdf
http://orcid.org/0000-0003-3579-1941
http://orcid.org/0000-0003-4179-8293
http://orcid.org/0000-0002-9473-2645
https://doi.org/10.1007/978-3-030-14094-6_7

Optimal Gathering by Asynchronous Oblivious Robots in Hypercubes 103

1.1 The Model

A set of autonomous mobile robots is randomly deployed on the vertices of a
d-dimensional hypercube network. The d-dimensional hypercube Qd is an undi-
rected graph with vertex set V (Qd) = Z

d
2 = {0, 1}d, and two vertices are adjacent

if and only if the two binary strings differ in exactly one coordinate. An oriented
hypercube is an edge-labeled hypercube with the so-called dimensional labeling
λ : E(Qd) → {1, . . . , d} where λ(uv) = i, if u and v differ in the ith coordinate.
We shall denote an oriented hypercube by QO

d , and an unoriented hypercube by
simply Qd. The binary string labels of the vertices are for descriptive purposes,
and are not known to the robots. However, in an oriented hypercube, the edge-
labels are known to the robots. It is traditionally assumed that the robots can
only perceive the labels of the edges adjacent to the vertex on which it resides.
But since the labels of edges adjacent to a single vertex determine the dimen-
sional labels of all the edges in a hypercube (See Theorem 3.1 in [33]), we assume
without loss of generality that the robots know the labels of all the edges.

The robots are oblivious (they have no memory of past configurations and
previous actions), autonomous (there is no central control), homogeneous (they
execute the same distributed algorithm), anonymous (they have no unique iden-
tifiers) and identical (they are indistinguishable by their appearance). The robots
have global visibility, i.e., they are able to perceive the entire graph. The robots
do not agree on any global coordinate system. Furthermore, there are no means
of communication between the robots.

The robots, when active, operate according to the so-called Look-Compute-
Move cycle. In each cycle, a previously idle or inactive robot wakes up and
executes the following steps. In the Look phase, the robot takes the snapshot of
the positions of all the robots, represented in its own coordinate system. Based
on the perceived configuration, the robot performs computations according to a
deterministic algorithm to decide whether to stay idle or to move to an adjacent
vertex. Based on the outcome of the algorithm, the robot either remains sta-
tionary or makes an instantaneous move to an adjacent vertex. Since the moves
are instantaneous, it implies that the robots are always seen on vertices, not
on edges. In the fully synchronous setting (FSYNC), the activation phase of
all robots can be logically divided into global rounds, where all the robots are
activated in each round. The semi-synchronous (SSYNC) model coincides with
the FSYNC model with the only difference that not all robots are necessarily
activated in each round. The most general type of scheduler is the asynchronous
scheduler (ASYNC). In ASYNC, the robots are activated independently, and
the amount of time spent in Look, Compute, Move and inactive states are
finite but unbounded and unpredictable. As a result, the robots do not have a
common notion of time.

An important capability associated to the robots is multiplicity detection.
During the Look phase, a robot may perceive a vertex occupied by more than
one robot in different ways. In strong multiplicity detection, the robots perceive
the actual number of robots in each vertex. In weak multiplicity detection, the
robots are only able to detect whether a vertex is occupied by more than one

104 K. Bose et al.

robot, but not the exact number. If the robots have no multiplicity detection
capability, they can only decide if a vertex is occupied or empty.

1.2 Related Works

The gathering problem has been extensively studied in continuous domain
under various assumptions [1,4–7,16,29,30]. In discrete domains, both gather-
ing and rendezvous have been studied in different graph topologies [2,8,11,13–
15,22,23,25,27,28,32]. The problem of gathering two robots on an anonymous
ring was studied in [12,26,28]. The problem for more than two robots was stud-
ied in [15]. In [15], the robots had memory and used tokens to break symmetry.
In [23], the problem was first considered in a very minimal setting with identical,
asynchronous, memoryless robots without tokens or any kind of communication
capability. They proved that without multiplicity detection, gathering is impos-
sible on rings for n ≥ 2 robots. With weak multiplicity detection capability, they
solved the problem for all configurations with an odd number of robots, and
all the asymmetric configurations with an even number of robots by different
algorithms. In [22], symmetric configurations with an even number of robots
were studied, and the problem was solved for more than 18 robots. Some of the
remaining configurations were solved in [9,18,24] in separate algorithms. In [10],
a single unified algorithm was proposed, that achieves gathering for all gather-
able initial configurations except some potentially gatherable configurations with
4 robots. The problem was studied with weak local multiplicity detection in [19–
21]. A full characterization of gatherable configurations for finite grids and trees
with weak multiplicity detection was provided in [8]. Gathering in finite grids
in presence of crash-faults was studied in [3]. Optimal gathering in infinite grid
with strong multiplicity detection was studied in [31].

2 Theoretical Preliminaries

2.1 Group of Automorphisms

An automorphism of a graph G = (V,E) is a bijection ϕ : V −→ V such that
for all u, v ∈ V , u, v are adjacent if and only if ϕ(u), ϕ(v) are adjacent. The set
of all automorphisms of G forms a group, called the automorphism group of G
and is denoted by Aut(G).

The automorphism group of a hypercube is generated by two types of auto-
morphisms, namely translation and rotation.

Translation: For a ∈ Z
d
2, the map τa : V (Qd) −→ V (Qd) given by u �→ u ⊕ a is

called translation by a. Here, u ⊕ a is the vertex obtained by adding the binary
strings u and a componentwise. The set T = {τa | a ∈ Z

d
2} of all translations

forms a subgroup of Aut(Qd).

Rotation: For σ ∈ Sd, the map rσ : V (Qd) −→ V (Qd) given by u �→ σ(u) is
called rotation by σ, where σ(u) is the vertex obtained by permuting the binary
string u by σ : {1, . . . , d} −→ {1, . . . , d}. The set R = {rσ | σ ∈ Sd} of all
rotations forms a subgroup of Aut(Qd).

Optimal Gathering by Asynchronous Oblivious Robots in Hypercubes 105

Theorem 1 [17]. Aut(Qd) = TR.

Hence, for any automorphism ϕ ∈ Aut(Qd), ∃ a unique pair (a, σ) ∈ (Zd
2, Sd),

such that ϕ : V −→ V can be written as u �→ σ(u) ⊕ a.
It is easy to see that |T | = 2d and |R| = d!. Since T ∩ R is trivial, |TR|

= |T ||R|/|T ∩ R| = 2dd!. Therefore, we have the following corollary.

Corollary 1 [17]. |Aut(Qd)| = 2dd!.

The definition of automorphism of graphs can be extended to edge-labeled
graphs in a natural way. Given an edge-labeled graph G = (V,E, λ) with edge-
labeling λ : E −→ N, an automorphism of G is a bijection ϕ : V −→ V such that
for all u, v ∈ V , ϕ(u)ϕ(v) ∈ E if and only if (1) uv ∈ E and (2) λ(ϕ(u)ϕ(v))
= λ(uv). In view of this definition, it is easy to see that the dimensional labeling
of a hypercube kills all rotational automorphisms. Thus the automorphism group
of an oriented hypercube consists of only translations.

Theorem 2. Aut(QO
d) = T .

2.2 Feasibility of Gathering

Consider a set of robots placed on the vertices of a simple undirected connected
graph G = (V,E). Define a function f : V −→ N∪{0}, where f(v) is the number
of robots on the vertex v. The pair (G, f) is called a configuration of robots on G,
or simply a configuration. If all the robots in a configuration reside on a single
vertex, then it is called final configuration; otherwise it is called a non-final
configuration. Given a configuration (G, f), we define the multiplicity function
f̃ in the following way. If the model assumes robots with strong multiplicity
detection capability, then f̃(v) = f(v) for all v ∈ V . If the robots have weak
multiplicity detection capability, then f̃ : V −→ {0, 1, 2} is defined as,

f̃(v) =

⎧
⎪⎨

⎪⎩

0 if v is an empty vertex
1 if v is occupied by exactly one robot
2 if v is a multiplicity.

If the robots have no multiplicity detection capability, then f̃ : V −→ {0, 1}
is defined as,

f̃(v) =

{
0 if v is an empty vertex
1 if v is occupied by at least one robot.

Given a configuration (G, f), the pair (G, f̃) is called the perceived configu-
ration.

An automorphism of a perceived configuration (G, f̃) is a graph automor-
phism ϕ ∈ Aut(G) such that f̃(v) = f̃(ϕ(v)) for all v ∈ V . The set of all
automorphisms of (G, f̃) also forms a group that will be denoted by Aut(G, f̃).

106 K. Bose et al.

If |Aut(G, f̃)| = 1, we say that (G, f̃) is asymmetric, otherwise it is said to be
symmetric.

For an automorphism ϕ ∈ Aut(G, f̃), let <ϕ> ⊆ Aut(G, f̃) be the cyclic
subgroup generated by ϕ. Elements of this group are {ϕ0, ϕ1, ϕ2, . . . , ϕp−1},
where ϕ0 is the identity, ϕk = ϕ ◦ ϕ ◦ · · · ◦ ϕ

︸ ︷︷ ︸
k times

and p is the order of ϕ.

For any subgroup H of Aut(G, f̃), define the equivalence relation on V given
by: x ∼ y if and only if x = ϕ(y) for some ϕ ∈ H. This equivalence relation
induces a partition on V . The orbit of a vertex v ∈ V under the action of
H is the set Hv= {σ(v)|σ ∈ H}, which is the corresponding equivalence class
containing v.

Partitive Automorphism: Let C = ((V,E), f̃) be a perceived configuration.
A non-trivial automorphism ϕ ∈ Aut(C) is said to be partitive on V if |Hv| = p
for all v ∈ V , where p > 1 is the order of ϕ and H = <ϕ>.

Lemma 1. In Qd, any non-trivial translation is partitive.

Theorem 2 in [32], stated for configurations of robots with strong multiplicity
detection capability can be easily generalized to the following theorem.

Theorem 3. Let C = ((V,E), f̃) be a non-final perceived configuration. If there
exists a ϕ ∈ Aut(C) partitive on V , then C is not gatherable.

Theorem 4. Without multiplicity detection capability, gathering in (both ori-
ented and unoriented) hypercubes is not deterministically solvable in SSYNC.

Proof. Assume that there exists a correct gathering algorithm A. In the SSYNC
model, time can be logically divided into discrete global rounds. So, starting
from some non-final initial configuration, consider a synchronous execution of
algorithm A, in which gathering is achieved in round t.

Case 1: Suppose that in round t − 1, exactly two vertices in Qd are occupied.
Hence, the perceived configuration in round t−1 is (Qd, f̃) where f̃(v) = f̃(w) =
1 for two distinct vertices v, w ∈ V (Qd), and f̃(u) = 0 ∀u ∈ V (Qd)\{v, w}. But,
then the perceived configuration (Qd, f̃) admits a partitive automorphism given
by x �→ x ⊕ v ⊕ w. Hence by Theorem 3, gathering can not be deterministically
achieved from this configuration.

Case 2: Assume that at least three vertices in Qd are occupied in round t − 1.
Then algorithm A brings all the robots to a common vertex, say u, in one step.
But the adversary can choose to activate all the robots except one that is not
placed at u. Then all but one robot will reach u. This will create a configuration
with exactly two vertices occupied. Since this configuration admits a partitive
automorphism, gathering can not be deterministically achieved from here by
Theorem 3. ��
Corollary 2. Without multiplicity detection capability, gathering in (both ori-
ented and unoriented) hypercubes is not deterministically solvable in ASYNC.

Optimal Gathering by Asynchronous Oblivious Robots in Hypercubes 107

2.3 Weber Point

Given a configuration (G, f), with G = (V,E), the centrality of v ∈ V is defined
as cG,f (v) =

∑

u∈V

d(u, v) ·f(u). When there is no ambiguity, we shall write cf (v),

or simply c(v).

Weber Point: Given a configuration C = (G = (V,E), f), a vertex v ∈ V is a
Weber point of C, if c(v) = min{c(u)|u ∈ V }.

By definition, a Weber point is a vertex with minimum centrality. In other
words, a vertex w ∈ V is a Weber point if the sum of the lengths of the shortest
paths from all robots to w is minimum. Therefore, an algorithm that gathers all
the robots at a Weber point via the shortest paths is optimal with respect to
the total number of moves performed by the robots. However, a configuration
may have more than one Weber point. Given a configuration (G, f), we shall
denote the set of Weber points by WG,f , or simply Wf or W when there is no
ambiguity.

Theorem 5 [32]. Let (G, f) be a configuration with Weber points Wf . If a robot
moves towards a Weber point w ∈ Wf , resulting in a new configuration (G, f ′),
then

1. cf ′(v) = cf (v) − 1 for each v ∈ Wf ′

2. w ∈ Wf ′

3. Wf ′ ⊆ Wf .

We shall now discuss about the Weber points of configurations on a hyper-
cube. Consider a set of n robots {r1, r2, . . . , rn} on a d-dimensional hypercube
Qd. Suppose that the robots r1, r2, . . . , rn are placed on the vertices v1, v2, . . . , vn

respectively. For i = 1, 2, . . . , n, let the binary string representation of vi be
bi1bi2 . . . bid, where bij ∈ {0, 1}. For j = 1, 2, . . . , d, let us define sets [b]j ⊆ {0, 1}
in the following way.

[b]j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{0}, if the number of 0’s in the multiset {b1j , b2j , . . . , bnj} is more
than the number of 1’s

{1}, if the number of 1’s in the multiset {b1j , b2j , . . . , bnj} is more
than the number of 0’s

{0, 1}, if the multiset {b1j , b2j , . . . , bnj} has equal number of 0’s and 1’s.

In Theorem 6, we show that the set of Weber points of the configuration is

W = [b]1 × [b]2 × . . . × [b]d.

For instance, consider a configuration of a set of 8 robots {r1, r2, . . . , r8} on
a 4-dimensional hypercube Q4. Suppose that the robots are positioned on the
following vertices respectively: 0110, 0111, 1000, 1110, 0000, 0001, 1110, 1101.
Then the set of Weber points of this configuration is given by

W = {0, 1} × {1} × {0, 1} × {0}
= {0100, 0110, 1100, 1110}.

108 K. Bose et al.

Theorem 6. Let {ri}n
i=1 be a set of robots placed on the vertices of Qd with

binary string representations {bi1bi2 . . . bid}n
i=1 respectively. Then the set of

Weber points of the configuration is W = [b]1 × [b]2 × . . . × [b]d.

Proof. The distance between any two vertices in Qd is the number of positions in
which their binary string representations differ. Then it can be easily seen that
(1) the centrality of all w ∈ [b]1 × [b]2 × . . . × [b]d are equal, (2) the centrality
of any v ∈ V (Qd)\[b]1 × [b]2 × . . . × [b]d is strictly greater than the centrality of
w ∈ [b]1 × [b]2 × . . . × [b]d. ��
Corollary 3. The subgraph induced by the set of Weber points W of a configu-
ration on a hypercube Qd is also a hypercube.

Corollary 4. The number of Weber points of a configuration on a hypercube
Qd is 2k, where 0 ≤ k ≤ d.

2.4 Leading Weber Point

A configuration of robots on a hypercube can have more than one Weber point.
We want to devise an algorithm that gathers all the robots at one of the
Weber points via the shortest paths. Our proposed algorithm requires to solve a
subproblem called LeadingWeberPoint. Let us formally define the problem
LeadingWeberPoint. Consider a configuration in which no vertex contains
more than one robot, and that has no partitive automorphism. Let W be the set
of Weber points of this configuration. The problem LeadingWeberPoint asks
to devise an algorithm so that every robot that perceives this configuration in
its local view, deterministically elects a unique Weber point w� ∈ W. We shall
call the vertex w� the leading Weber point.

Since we have assumed that the robots are positioned at distinct vertices,
there is no distinction between the configuration and the perceived configuration.
In other words, given such a configuration (G, f), we have f̃ = f . A vertex v ∈ V
is called a fixed vertex if ϕ(v) = v, ∀ϕ ∈ Aut(G, f).

Theorem 7. LeadingWeberPoint can be deterministically solved only if W
has at least one fixed vertex.

Proof. See AppendixA.

Theorem 8. LeadingWeberPoint may not be deterministically solvable in
an unoriented hypercube.

Proof. Consider a configuration (Q5, f) of a set of 14 robots on the 5-dimensional
unoriented hypercube Q5. The robots are placed on the following vertices: 00100,
00001, 11000, 10010, 01100, 01010, 00101, 00011, 11010, 10110, 11001, 10101,
01111, 11111. It is easy to see that Wf = V (Q5). It can be shown that Aut(Q5, f)
= {e, ϕ1, ϕ2, ϕ3}, with each ϕi given by u �→ σi(u) ⊕ ai, where ai ∈ Z

5
2, σi ∈ S5

are the following: a1 = 00000, σ1 = (1)(24)(35), a2 = 10000, σ2 = (1)(2543),
a3 = 10000, σ3 = (1)(2345). Then it can be easily verified that (1) there is

Optimal Gathering by Asynchronous Oblivious Robots in Hypercubes 109

no partitive automorphism in Aut(Q5, f), (2) there is no fixed vertex in Wf =
V (Q5). So by Theorem7, LeadingWeberPoint is deterministically unsolvable.

��
Now we show that LeadingWeberPoint can be deterministically solved in

an oriented hypercube.

Lemma 2. Given a vertex u0 in an oriented hypercube QO
d , ∃ exactly one coor-

dinate assignment (bijection) Ψ : V (QO
d) −→ {0, 1}d such that

1. Ψ(u0) = 00 . . . 0 ∈ {0, 1}d

2. u, v are adjacent if and only if Ψ(u), Ψ(v) differ in exactly one bit
3. for uv ∈ E(QO

d), λ(uv) = i if and only if Ψ(u), Ψ(v) differ in the ith position.

Proof. The coordinates given to u0 are 00 . . . 0. Then by rule (2) and (3), the
coordinates of all its neighbors are uniquely determined. If the coordinates of all
vertices at distance i(< d) from u0 are uniquely determined, then again by rule
(2) and (3), the coordinates of all vertices at distance i + 1 can be determined
uniquely. Hence by induction, the coordinates assigned to all the vertices are
unique. ��

Now for any w ∈ V (QO
d), we define a binary string ζ(w) of length 2d in the

following the way:

1. First, give QO
d the unique coordinate assignment Ψ : V (QO

d) −→ {0, 1}d with
Ψ(w) = 00 . . . 0.

2. Now we define a total ordering ≺ on V (QO
d) as: u ≺ v

u ≺ v ⇔

⎧
⎪⎨

⎪⎩

d(u,w) < d(v, w)
Or,

d(u,w) = d(v, w), and Ψ(u) is lexicographically larger that Ψ(v),

where d(u,w) is the distance of u from w. For example, when d = 4,
the assigned coordinates of the vertices written in increasing order
will be: 0000︸︷︷︸

distance 0

, 1000, 0100, 0010, 0001
︸ ︷︷ ︸

distance 1

, 1100, 1010, 1001, 0110, 0101, 0011
︸ ︷︷ ︸

distance 2

,

1110, 1101, 1011, 0111
︸ ︷︷ ︸

distance 3

, 1111︸︷︷︸
distance 4

.

3. Finally, scan the vertices of the hypercube according to the above ordering.
For each vertex, put a 0 if it is empty, or 1 if it is occupied by a robot. Recall
that any vertex can be occupied by at most one robot. The string of length
2d thus obtained is ζ(w). In the previous example, if the occupied vertices
are 0000, 1000, 0010, 1001, 0011, 1011, 1111, then ζ(w) = 1101000100100101.

Lemma 3. For any two distinct vertices u, v ∈ V (QO
d), if ζ(u) = ζ(v), then the

configuration has a partitive automorphism.

110 K. Bose et al.

Proof. It can be easily seen that if ζ(u) = ζ(v), then the configuration has the
automorphism (translation) given by x �→ x ⊕ u ⊕ v. ��
Theorem 9. LeadingWeberPoint is solvable in an oriented hypercube.

Proof. Since the configuration has no partitive automorphism, ζ(w1) �= ζ(w2)
for any distinct w1, w2 ∈ W. Hence the robots can unanimously elect w ∈ W
with the lexicographically (strictly) largest ζ(w) as the leading Weber point. ��

3 The Algorithm

Our plan is to solve the problem in two stages. In stage 1, we create a multiplicity
at a Weber point and then in stage 2, we sequentially bring the remaining robots
to that vertex. Before describing the algorithm, we first give two definitions.

Anchor: Let (QO
d , f̃) be a non-final perceived configuration on an oriented

hypercube with at most one multiplicity and no partitive automorphism. The
anchor of (QO

d , f̃) is a vertex α ∈ V (QO
d) defined as the following. If (QO

d , f̃)
has no multiplicity, then α is the leading Weber point; otherwise α is the unique
vertex with multiplicity. Note that all the robots observing the configuration
(QO

d , f̃) agree on which vertex is the anchor.

Leader: Since all the robots observing the configuration (QO
d , f̃) agree on the

anchor α, they also agree on a common coordinate system, which is the unique
coordinate system Ψ described in Lemma 2 with Ψ(α) = 00 . . . 0. This also allows
the robots to order the vertices of the hypercube as described in the previous
section. In this ordering, the first robot appearing on a non-anchor vertex will
be called the leader.

3.1 2k+1 (k> 0) Robots

Theorem 10. Any configuration on a hypercube with odd number of robots has
exactly one Weber point.

Proof. Using the same notations as in Theorem 6, the set of Weber points is
given by W = [b]1 × [b]2 × . . . × [b]d. Since there are odd number of robots, the
multiset {b1j , b2j , . . . , bnj} can never have equal number of 0’s and 1’s. Hence,
[b]j = {0} or {1}, ∀j ∈ {1, . . . , d}. Thus |W| = 1. ��
Theorem 11. Gathering in QO

d is optimally solvable in ASYNC with weak mul-
tiplicity detection for any configuration of odd number of robots.

Proof. We simply ask only the leader to move towards the anchor. The anchor α
is the unique Weber point of the configuration. As the leader moves towards it,
the Weber point remains invariant by Theorem5. After one or two robots reach
α, a multiplicity is created at α. Throughout stage 2, α remains the unique mul-
tiplicity in the configuration, since only the leader moves. Thus, all the remaining
robots will sequentially reach α. The algorithm is clearly optimal with respect
to the total number of moves executed by the robots. ��

Optimal Gathering by Asynchronous Oblivious Robots in Hypercubes 111

Algorithm 1. Gathering for 4k (k > 0) robots

1 Procedure Gather()
2 α ← anchor
3 if α is a multiplicity then
4 if I am leader then
5 Move towards α

6 else
7 if I am leader then
8 if I am on a Type 1 vertex then
9 Move towards α via a Type 1 edge

10 else if I am on a Type 2 vertex then
11 Move towards α

3.2 4k (k> 0) Robots

In view of Theorems 2, 3 and Lemma 1, any configuration with non-trivial auto-
morphism group is ungatherable. We show that for all the remaining configu-
rations, gathering can be optimally solved. Again our strategy is to move the
leader towards the anchor. However, in this case the leader has to judiciously
choose the edge via which it should approach the anchor. Unlike the previous
case, the anchor may change after a move.

Consider the first stage of the algorithm, when there is no multiplicity in the
configuration. Then the anchor is the leading Weber point w�. We classify all
the non-anchor vertices into two types: type 1 and type 2. If the configuration
has 2m (0 ≤ m ≤ d) Weber points, then among the d neighbors of w�, m are
also Weber points. This is because of Lemma 3. Let us call these Weber points
w1, . . . , wm. Since the coordinates assigned to w� are 0 . . . 0, the coordinates of
each wi ∈ {w1, . . . , wm} have exactly one 1. For each wi, assume that its assigned
coordinates have the 1 at the pith place, which implies that the edge joining wi

and w� has label pi. Also, the set of Weber points, in the assigned coordinates,
is given by W = [b]1 × [b]2 × . . . × [b]d, where [b]l is {0, 1} if l ∈ {p1, . . . , pm},
and {0} otherwise.

Type 1 Vertex: A non-anchor vertex v will be called a type 1 vertex if the
following holds: there is at least one pi ∈ {p1 . . . pm} such that the assigned
coordinates of v have 1 at pith place. Also the edge incident to v with label pi

will be called a type 1 edge.

Type 2 Vertex: If a non-anchor vertex v is not type 1, then it will be called a
type 2 vertex. This implies that the p1th, . . . pmth terms of the assigned coordi-
nates of v are 0. Note that if the configuration has only one Weber point, i.e.,
m = 0, then all non-anchor vertices are vacuously type 2.

Theorem 12. Let (QO
d , f) be a configuration of 4k (k > 0) robots with no mul-

tiplicities and no partitive automorphisms. Let w� be the leading Weber point,
and hence the anchor. Assume that the leader r is placed at a type 1 vertex u.
Suppose that it moves via a type 1 edge with label pi to an empty vertex v, and
gives rise to configuration (QO

d , f ′). Then the following holds.

112 K. Bose et al.

1. w� ∈ Wf ′

2. If |Wf | = 2m(m > 0), then |Wf ′ | = 2m−1

3. (QO
d , f ′) has no partitive automorphism.

Proof

(1) Assume that r moves via a type 1 edge with label pi. Then the assigned
coordinates of u and v differ in exactly one bit at the pith position. At the
pith place, u has 1, while v has 0. Then v has less 1’s than u, and hence v
is closer to w� than u, i.e., r has moved towards w�. Hence, by Lemma 5,
w� ∈ Wf ′ .

(2) It is easy to see that, as r moves from u to v, (i) its distance from all
Weber points whose coordinates have 1 at pith place (there are 2m−1 of
them), increases by one, and (ii) its distance from all Weber points whose
coordinates have 0 at pith place, decreases by one. Hence the move reduces
the set of Weber points by half.

(3) If possible, assume that (QO
d , f ′) admits a partitive automorphism, i.e., a

non-trivial translation τ . Assume that the translation, in the assigned coor-
dinate system, is given by x �→ x ⊕ a, for some a ∈ {0, 1}d. Let R and R′

be the set of vertices occupied by robots in (QO
d , f) and (QO

d , f ′) respec-
tively. Since τ maps any vertex of R′ to another vertex of R′, the group
<τ> induces an equivalence relation on R′, partitioning it into 2k disjoint

sets of cardinality 2: R′ =
2k⋃

j=1

{xj , τ(xj)}. Let Rpi
and R′

pi
be the multiset

containing the pith terms of the assigned coordinates of vertices of R and
R′ respectively. Clearly Rpi

contains 2k number of 0’s and 2k number of
1’s. In R′

pi
, we have 2k + 1 number of 0’s and 2k − 1 number of 1’s.

Case 1: Let the pith term of a be 0. Hence, if pith term of x is b ∈ {0, 1},
then the pith term of τ(x) = x ⊕ a is also b. This implies that R′

pi
has

even number of 0’s and 1’s. This is a contradiction, as we have shown that
number of 0’s and 1’s in R′

pi
is 2k + 1 and 2k − 1 respectively.

Case 2: Let the pith term of a be 1. So, if pith term of x is b ∈ {0, 1}, then
the pith term of τ(x) = x ⊕ a is b. This implies that R′

pi
has equal number

of 0’s and 1’s. This is again a contradiction. ��

Theorem 13. Let (QO
d , f) be a configuration of 4k (k > 0) robots with no mul-

tiplicities and no partitive automorphisms. Let w� be the leading Weber point,
and hence the anchor. Suppose that the leader r is placed at a type 2 vertex u.
If it moves towards w� to an empty vertex, then

1. the new configuration (QO
d , f ′) has no partitive automorphism

2. Wf = Wf ′

3. w� is the leading Weber point of (QO
d , f ′)

4. r is the leader in (QO
d , f ′).

Optimal Gathering by Asynchronous Oblivious Robots in Hypercubes 113

Proof. We use the same notations as in the proof of the previous theorem. For
each w ∈ Wf\{w�} the following holds: (i) among the p1th, . . . , pmth terms of
the assigned coordinates, there is at least one 1, (ii) all the terms except the
p1th, . . . , pmth ones are 0. Exactly the opposite is true for the type 2 vertex
u. It implies that the distance of r from w� is strictly less than its distance
from any other Weber point in Wf)\{w�}. Also, after the move, its distances
from all Weber points reduce by exactly 1. Hence, after the move, ζ(w�) remains
lexicographically strictly largest among {ζ(w) | w ∈ Wf ′}. All the statements of
the theorem easily follow from these observations. ��
Lemma 4. Let G = (V,E) be an arbitrary graph. Let P = v0e0v1e1v2 . . . vl−1

el−1vl be a path from v0 to vl. Suppose that for any ej, a move through it by a
robot from vj to vj+1 reduces its distance from vl by 1. Then P is a shortest path
from v0 to vl in G.

Lemma 5. Suppose that a robot moves from a vertex u to an adjacent vertex v
in a hypercube Qd. Then for any w ∈ V (Qd), either its distance from w reduces
by 1 or increases by 1, i.e., its distance from w does not remain unchanged.

Theorem 14. Algorithm1 achieves optimal gathering in ASYNC, for all asym-
metric configurations of 4k (k > 0) robots with weak multiplicity detection.

Proof. By Theorems 12 and 13, no move in the first stage creates a partitive
automorphism. Since at any time, only the leader is allowed to move, a multi-
plicity can only be created at the anchor. Since throughout stage 2, there is a
unique multiplicity, a configuration with a partitive automorphism is never cre-
ated. Notice that in both stages, an anchor is always a Weber point. Hence, the
robots always move towards some Weber point. So, after each move, the central-
ity of the surviving set of Weber points is reduced by 1. Therefore, eventually
the centrality of one Weber point becomes 0, which implies that gathering is
accomplished.

It remains to prove that Algorithm1 is optimal with respect to the total
number of moves executed by the robots. Suppose that the algorithm gathers all
the robots at w, which was a Weber point of the initial configuration. In view of
Theorem 12, it is sufficient to show that every movement executed by any robot
is towards w. Since every movement executed by a robot is towards some Weber
point, according to Theorem 5, the set of Weber points of the configurations
starting from the initial to the final configuration form the following nested
series: W0 ⊇ W1 ⊇ . . . ⊇ Wfinal = {w}. In other words, w remains a Weber
point throughout the progress of the algorithm. If at some step, a move by a
robot is not towards w, then by Theorem 13, it moves away from w. Then the
centrality of w is increased by 1, while the centrality of some other Weber point
is decreases by 1. This means that w does not remain a Weber point after the
move. This is a contradiction. ��

114 K. Bose et al.

4 Concluding Remarks

This is the first paper that investigates the gathering problem on a hyper-
cube graph. We have provided a complete characterization of all gatherable
configurations in ASYNC for 2k + 1 and 4k (k > 0) number of robots
with weak multiplicity detection in an oriented hypercube. This leaves unset-
tled only the configurations with 4k + 2 (k > 0) number of robots. Note
that our strategy for 4k robots does not work for 4k + 2 robots. To see
this, consider a configuration in Q9 of 10 robots placed on the following
vertices: 000000000, 110111000, 101111000, 011111000, 000111000, 001000111,
010000111, 100000111, 111000111, 111000000. Here, the anchor, i.e., the lead-
ing Weber point is 000000000 and the leader is 111000000. It can be seen that
a move by the leader towards the anchor via any edge creates a configuration
with a partitive automorphism. Another challenging direction of future research
would be to study the problem with limited visibility. It would also be interesting
to consider randomized algorithms to bypass the impossibility results.

Acknowledgements. The first three authors are supported by NBHM, DAE, Govt.
of India, UGC, Govt. of India and CSIR, Govt. of India respectively. We would like to
thank the anonymous reviewers for their valuable comments which helped us improve
the quality and presentation of this paper.

Appendix A Proof of Theorem7

Consider a configuration (Qd, f) that has no partitive automorphism. Since we
have assumed that the robots are positioned at distinct vertices, there is no
distinction between the configuration and the perceived configuration. In other
words, we have f̃ = f . Assume that the configuration has no fixed Weber point.
Let us assume that there is an algorithm A that deterministically solves Lead-
ingWeberPoint. Let w1 ∈ W be the leading Weber point elected by the robots.
Since w1 is not a fixed vertex, there is a w2 �= w1 such that ϕ(w1) = w2, for
some ϕ ∈ Aut(G, f).

Each robot observes the positions of other robots in its local coordinate sys-
tem. A local coordinate system of a robot is just an assignment Ψ : V (Qd) −→
{0, 1}d, respecting the rule that u, v ∈ V (Qd) are adjacent if and only if
Ψ(u), Ψ(v) differ in precisely one bit. Since there is no global agreement, the
local coordinate system of each robot is arbitrary, and is chosen by the adver-
sary. Let us formally define the view of a robot. The view of a robot is given by
the triplet VΨ = (Ψ, f̃ ,me), where Ψ : V (Qd) −→ {0, 1}d is the local coordinate
system, f̃ : {0, 1}d −→ {0, 1} is the multiplicity function defined on the set of
vertices expressed in local coordinates, and me ∈ {0, 1}d is the coordinates of
the vertex on which the robot resides. The view VΨ is the input for algorithm
A. The output A(VΨ) ∈ {0, 1}d is the coordinates of the required leading Weber
point, i.e., the returned leading Weber point is the vertex Ψ−1(A(VΨ)).

Consider a robot r1 in the configuration residing at vertex v1. The robot r1,
using a local coordinate system Ψ1 : V (Qd) −→ {0, 1}d, elects w1 as the leading

Optimal Gathering by Asynchronous Oblivious Robots in Hypercubes 115

Weber point. That is, given the input in the coordinate system Ψ1, the output
of A is Ψ1(w1). Now consider the following cases.

Case 1: Suppose that ϕ(v1) = v1. Consider the local coordinate system Ψ2 =
Ψ1 ◦ ϕ−1. Note that the view of r1 in coordinate systems Ψ1 and Ψ2 are exactly
the same, i.e., VΨ1 = VΨ2 . Since A is a deterministic algorithm, A(VΨ1) = A(VΨ2).
Since the elected leading Weber point in local coordinate system Ψ1 is w1, we
have A(VΨ1) = Ψ1(w1). So we have,

A(VΨ2) = A(VΨ1) = Ψ1(w1)

⇒ Ψ−1
2 (A(VΨ2)) = Ψ−1

2 (Ψ1(w1)) = ϕ ◦ Ψ−1
1 ◦ Ψ1(w1) = ϕ(w1) = w2

Hence, we see that in local coordinate system Ψ1 the robot r1 elects w1 as
the leading Weber point, while in Ψ2 it elects w2. This is a contradiction.

Case 2: Now assume that ϕ(v1) = v2 �= v1. Then there must be a robot r2
in v2. Suppose that the adversary sets the local coordinate system of r2 as
Ψ2 = Ψ1 ◦ ϕ−1. Then the view of r1 and r2 will be identical, i.e., VΨ1 = VΨ2 .
Again we have, A(VΨ2) = A(VΨ1) = Ψ1(w1) and hence, Ψ−1

2 (A(VΨ2)) = w2.
Therefore, r2 will elect w2, while r1 elects w1 as the leading Weber point. This
is again a contradiction. ��

References

1. Agathangelou, C., Georgiou, C., Mavronicolas, M.: A distributed algorithm for
gathering many fat mobile robots in the plane. In: ACM Symposium on Principles
of Distributed Computing, PODC 2013, Montreal, QC, Canada, 22–24 July 2013,
pp. 250–259 (2013). https://doi.org/10.1145/2484239.2484266

2. Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Rendezvous and election of
mobile agents: impact of sense of direction. Theory Comput. Syst. 40(2), 143–162
(2007). https://doi.org/10.1007/s00224-005-1223-5

3. Bose, K., Adhikary, R., Chaudhuri, S.G., Sau, B.: Crash tolerant gathering on grid
by asynchronous oblivious robots. CoRR abs/1709.00877 (2017). http://arxiv.org/
abs/1709.00877

4. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gath-
ering problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J.
(eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-45061-0 90

5. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012). https://doi.
org/10.1137/100796534

6. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in
asynchronous robot systems. SIAM J. Comput. 34(6), 1516–1528 (2005). https://
doi.org/10.1137/S0097539704446475

7. Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane.
Theor. Comput. Sci. 410(6–7), 481–499 (2009). https://doi.org/10.1016/j.tcs.2008.
10.005

https://doi.org/10.1145/2484239.2484266
https://doi.org/10.1007/s00224-005-1223-5
http://arxiv.org/abs/1709.00877
http://arxiv.org/abs/1709.00877
https://doi.org/10.1007/3-540-45061-0_90
https://doi.org/10.1137/100796534
https://doi.org/10.1137/100796534
https://doi.org/10.1137/S0097539704446475
https://doi.org/10.1137/S0097539704446475
https://doi.org/10.1016/j.tcs.2008.10.005
https://doi.org/10.1016/j.tcs.2008.10.005

116 K. Bose et al.

8. D’Angelo, G., Stefano, G.D., Klasing, R., Navarra, A.: Gathering of robots on
anonymous grids and trees without multiplicity detection. Theor. Comput. Sci.
610, 158–168 (2016). https://doi.org/10.1016/j.tcs.2014.06.045

9. D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering of six robots on anonymous
symmetric rings. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS,
vol. 6796, pp. 174–185. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22212-2 16

10. D’Angelo, G., Stefano, G.D., Navarra, A.: Gathering on rings under the look-
compute-move model. Distrib. Comput. 27(4), 255–285 (2014). https://doi.org/
10.1007/s00446-014-0212-9

11. Das, S., Mihalák, M., Šrámek, R., Vicari, E., Widmayer, P.: Rendezvous of mobile
agents when tokens fail anytime. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS
2008. LNCS, vol. 5401, pp. 463–480. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-92221-6 29

12. Dessmark, A., Fraigniaud, P., Kowalski, D.R., Pelc, A.: Deterministic rendezvous
in graphs. Algorithmica 46(1), 69–96 (2006). https://doi.org/10.1007/s00453-006-
0074-2

13. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple agents rendezvous in
a ring in spite of a black hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS
2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27860-3 6

14. Flocchini, P., Kranakis, E., Krizanc, D., Luccio, F.L., Santoro, N., Sawchuk, C.:
Mobile agents rendezvous when tokens fail. In: Královic̆, R., Sýkora, O. (eds.)
SIROCCO 2004. LNCS, vol. 3104, pp. 161–172. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-27796-5 15

15. Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple mobile
agent rendezvous in a ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol.
2976, pp. 599–608. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24698-5 62

16. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theor. Comput. Sci. 337(1–3), 147–168 (2005).
https://doi.org/10.1016/j.tcs.2005.01.001

17. Godsil, C., Royle, G.F.: Algebraic Graph Theory. GTM, vol. 207. Springer Science
& Business Media, New York (2001). https://doi.org/10.1007/978-1-4613-0163-9

18. Haba, K., Izumi, T., Katayama, Y., Inuzuka, N., Wada, K.: On gathering problem
in a ring for 2n autonomous mobile robots. In: Proceedings of the 10th International
Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS),
poster (2008)

19. Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Mobile robots gathering algo-
rithm with local weak multiplicity in rings. In: Patt-Shamir, B., Ekim, T. (eds.)
SIROCCO 2010. LNCS, vol. 6058, pp. 101–113. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13284-1 9

20. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Asynchronous mobile robot gath-
ering from symmetric configurations without global multiplicity detection. In:
Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 150–161.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22212-2 14

21. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Gathering an even number of
robots in an odd ring without global multiplicity detection. In: Rovan, B., Sassone,
V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 542–553. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32589-2 48

https://doi.org/10.1016/j.tcs.2014.06.045
https://doi.org/10.1007/978-3-642-22212-2_16
https://doi.org/10.1007/978-3-642-22212-2_16
https://doi.org/10.1007/s00446-014-0212-9
https://doi.org/10.1007/s00446-014-0212-9
https://doi.org/10.1007/978-3-540-92221-6_29
https://doi.org/10.1007/978-3-540-92221-6_29
https://doi.org/10.1007/s00453-006-0074-2
https://doi.org/10.1007/s00453-006-0074-2
https://doi.org/10.1007/978-3-540-27860-3_6
https://doi.org/10.1007/978-3-540-27860-3_6
https://doi.org/10.1007/978-3-540-27796-5_15
https://doi.org/10.1007/978-3-540-24698-5_62
https://doi.org/10.1007/978-3-540-24698-5_62
https://doi.org/10.1016/j.tcs.2005.01.001
https://doi.org/10.1007/978-1-4613-0163-9
https://doi.org/10.1007/978-3-642-13284-1_9
https://doi.org/10.1007/978-3-642-22212-2_14
https://doi.org/10.1007/978-3-642-32589-2_48

Optimal Gathering by Asynchronous Oblivious Robots in Hypercubes 117

22. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gathering
of many asynchronous oblivious robots on a ring. Theor. Comput. Sci. 411(34–36),
3235–3246 (2010). https://doi.org/10.1016/j.tcs.2010.05.020

23. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. Theor. Comput. Sci. 390(1), 27–39 (2008). https://doi.org/10.1016/j.
tcs.2007.09.032

24. Koreń, M.: Gathering small number of mobile asynchronous robots on ring. Zeszyty
Naukowe Wydzia�lu ETI Politechniki Gdańskiej. Technologie Informacyjne 18, 325–
331 (2010)

25. Kranakis, E., Krizanc, D., Markou, E.: Deterministic symmetric rendezvous with
tokens in a synchronous torus. Discrete Appl. Math. 159(9), 896–923 (2011).
https://doi.org/10.1016/j.dam.2011.01.020

26. Kranakis, E., Santoro, N., Sawchuk, C., Krizanc, D.: Mobile agent rendezvous in a
ring. In: 23rd International Conference on Distributed Computing Systems, ICDCS
2003, Providence, RI, USA, 19–22 May 2003, pp. 592–599 (2003). https://doi.org/
10.1109/ICDCS.2003.1203510

27. Di Luna, G.A., Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Viglietta, G.:
Gathering in dynamic rings. In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS,
vol. 10641, pp. 339–355. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-72050-0 20

28. Marco, G.D., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asyn-
chronous deterministic rendezvous in graphs. Theor. Comput. Sci. 355(3), 315–326
(2006). https://doi.org/10.1016/j.tcs.2005.12.016

29. Pagli, L., Prencipe, G., Viglietta, G.: Getting close without touching: near-
gathering for autonomous mobile robots. Distrib. Comput. 28(5), 333–349 (2015).
https://doi.org/10.1007/s00446-015-0248-5

30. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots.
Theor. Comput. Sci. 384(2–3), 222–231 (2007). https://doi.org/10.1016/j.tcs.2007.
04.023

31. Stefano, G.D., Navarra, A.: Gathering of oblivious robots on infinite grids with
minimum traveled distance. Inf. Comput. 254, 377–391 (2017). https://doi.org/
10.1016/j.ic.2016.09.004

32. Stefano, G.D., Navarra, A.: Optimal gathering of oblivious robots in anonymous
graphs and its application on trees and rings. Distrib. Comput. 30(2), 75–86 (2017).
https://doi.org/10.1007/s00446-016-0278-7

33. Tel, G.: Network orientation. Int. J. Found. Comput. Sci. 5(1), 23–57 (1994).
https://doi.org/10.1142/S0129054194000037

https://doi.org/10.1016/j.tcs.2010.05.020
https://doi.org/10.1016/j.tcs.2007.09.032
https://doi.org/10.1016/j.tcs.2007.09.032
https://doi.org/10.1016/j.dam.2011.01.020
https://doi.org/10.1109/ICDCS.2003.1203510
https://doi.org/10.1109/ICDCS.2003.1203510
https://doi.org/10.1007/978-3-319-72050-0_20
https://doi.org/10.1007/978-3-319-72050-0_20
https://doi.org/10.1016/j.tcs.2005.12.016
https://doi.org/10.1007/s00446-015-0248-5
https://doi.org/10.1016/j.tcs.2007.04.023
https://doi.org/10.1016/j.tcs.2007.04.023
https://doi.org/10.1016/j.ic.2016.09.004
https://doi.org/10.1016/j.ic.2016.09.004
https://doi.org/10.1007/s00446-016-0278-7
https://doi.org/10.1142/S0129054194000037

Barrier Coverage Problem in 2D

Adil Erzin1,2(B) and Natalya Lagutkina2

1 Sobolev Institute of Mathematics, Novosibirsk, Russia
adilerzin@math.nsc.ru

2 Novosibirsk State University, Novosibirsk, Russia
lagutnat@yandex.ru

Abstract. This paper deals with the NP-hard problem of covering a
line segment by n initially arbitrarily arranged circles on the plane by
moving their centers to the segment in such a way that the sum of the
Euclidean distances between the initial and final positions of the centers
of the disks would be minimal. In the case of identical circles, a dynamic
programming algorithm is known, which constructs a

√
2–approximate

solution to the problem with O(n4)–time complexity. In this paper, we
propose a new algorithm that has the same accuracy, but the complexity
of which is reduced by n2 times to O(n2).

Keywords: Sensor networks · Mobile sensors · Barrier coverage

1 Introduction

The sensor network consists of devices, each of which collects data within a
proximity, which is called a coverage area. On the plane, a coverage area most
often is a circle (disk) with a sensor in its center [5,7,19,24]. Though both an
ellipse [16] and a sector [17] can be a coverage area of the sensor. In the wireless
sensor networks energy of the sensors is often irreplaceable because the recharge
or change of the battery is either impossible or impractical. The energy of the
sensors defines network’s lifetime. Rational use of energy prolongs the lifetime
of the sensor network [5,7]. For energy efficient operation of the sensor network,
it is necessary to solve several optimization problems. One of the problems is
optimal placement of sensors and determination of the values of their parameters.
As sensing energy consumption is proportional to the coverage area, this problem
is reduced to the classical min-density covering problem [5–7,13,24].

In barrier monitoring, it is necessary to detect an unauthorized crossing of a
barrier separating the two territories. In some cases, the barrier is considered as
a line [1,4,10–14,20,21], in others as a strip [17,23]. The barrier can be covered
by stationary sensors [2,9,10,15,17,20,22,23,25], and by mobile sensors [1,4,11–
14,18]. A coverage area is often considers as a circle [4,11–14,20], but sometimes
(in the case of directed devices) it is a sector [17,22,25]. In [20] a notion of weak
coverage is introduced and the critical conditions for the existence of weak barrier
coverage in a randomly deployed sensor network is proposed. Later, in [9] the
c© Springer Nature Switzerland AG 2019
S. Gilbert et al. (Eds.): ALGOSENSORS 2018, LNCS 11410, pp. 118–130, 2019.
https://doi.org/10.1007/978-3-030-14094-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14094-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-14094-6_8

Barrier Coverage Problem in 2D 119

algorithm of guaranteed detection and localization of intruders, the trajectory
of which is located in the area of sensors placement, is proposed. How to assess
and ensure the quality of the barrier coverage is examined in [10].

If a sensor is mobile, the movement energy consumption is proportional to the
distance traveled by a sensor. The important optimization problem for mobile
sensor networks is minimization of the total distance traveled by sensors [1,4,
11–14,18]. It is necessary to move the sensors in such a way that each point
of the barrier (the line segment) belongs to the coverage area of at least one
sensor, and the total length of the relocations would be minimal. In [13] the
NP-hardness of the problem is proved. The efficiency of the different placement
strategies of sensors for a barrier coverage is studied in [21]. There was also
studied the question how to improve a barrier coverage after the placement
using the mobility of the sensors. The authors of [21] presented an algorithm
for efficient improvement of barrier coverage with a wide range of parameters
of placement the sensors. Circular barriers in the plane were studied in [4,11].
Paper [4] presents a O(n2)–time algorithm for the special case of the circular
barrier covering problem (when the sensors are placed along the boundary of
the region uniformly) with approximation ratio 1 + π, where n is the number of
sensors. Later, in [1], this result was improved by presenting an algorithm with
the same running time and approximation ratio 3. A PTAS was also proposed for
this problem in [4], which was improved in [8]. In [3] for the case, when arbitrary
disks are lying on the line containing the segment, and the disks in the cover do
not intersect, an FPTAS is proposed.

In the literature on barrier monitoring, as a rule, the problem of covering a
line segment with identical circles when the centers of the circles move to the seg-
ment, is considered. In case of the Euclidean metric it is nothing known about the
complexity of this problem, however, there is a polynomial

√
2–approximation

algorithm [12]. A line segment coverage problem in the special case when equal
disks initially lie on the segment is considered in [1] and a O(n log2 n)–time
algorithm is proposed to solve this problem.

Sometimes the problem of barrier coverage is considered in 3D space [22]. We
within this paper consider a problem on a plane. Let barrier be a line segment
on abscissa axis, and let us number the circles according to the nondecreasing
abscissas of their centers. A solution in which after moving the sensors the order
preserves is called an order-preserving covering (OPC). In the general case may
not exist an optimal OPC [12]. In [12] the authors presented a O(n4)–time

√
2–

approximation algorithm.
In this paper, we propose a dynamic programming

√
2–approximation algo-

rithm that solves the problem with O(n2)–time complexity. Compared with the
known algorithm [12], the degree of the time complexity polynomial is halved.

This paper is organized as follows. Section 2 presents a mathematical formula-
tion of the problem. Section 3 gives the description of new dynamic programming√

2–approximation algorithm A. In Sect. 4 it is proved that the time complex-
ity of the algorithm A is O(n2). The Conclusion section contains summary and
further directions of the research. In the AppendixA we describe in detail the

120 A. Erzin and N. Lagutkina

solution of one example of a covering of a given line segment by three identical
circles.

2 Problem Formulation

Let barrier is a L-length line segment on the plane. It is required to cover it by
mobile sensors with circle coverage areas. We introduce a coordinate system in
such a way that the barrier is a segment between the points (0, 0) and (L, 0).
Let S be a set of disks (corresponding to the coverage areas of the sensors),
|S| = n, each of which is given by initial coordinates of its center pi = (xi, yi)
and radius ri > 0, i ∈ S. We assume that the sensors are numbered from left to
right according to the values xi, i = 1, 2, . . . , n.

Definition 1. The function p̂ : S → R2 is called a covering assignment if the
segment is completely covered when the final positions of the sensors are p̂i =
(x̂i, ŷi), i ∈ S.

Let d(pi, p̂i) be a distance between the points pi and p̂i. The problem of
barrier coverage by mobile sensors is to find a covering assignment p̂∗ of minimum
cost, which is the solution of the problem

cost(p̂∗) = min
p̂

cost(p̂) = min
p̂

∑

i∈S

d(pi, p̂i). (1)

In the general case, the covering of a segment can be obtained not necessarily
by moving the sensors to a segment. However, in [12–14] the special case of the
problem (1) when the sensors move on the barrier is considered. In this paper,
we also consider this case, though we can modify our algorithm in such a way
that it builds the solution in a general case. However, within the framework of
this paper, we do not set ourselves the goal of describing the general case.

In the case when disks have different radii, the problem (1) is known to be
NP-hard even to approximate up to a constant factor [13,14]. However, if the
circles are identical it is unknown whether this problem is NP-hard or it is poly-
nomially solvable [12,14]. Paper [12] presents a dynamic programming algorithm
for finding p̂ that determines an optimal OPC under L1 metric with O(n4)–time
complexity. Meanwhile, the optimal solution of the problem (1) under metric L1

is a
√

2–approximate solution under the Euclidean metric [12].

3 Algorithm A
In the following, as earlier, we shall identify the centers of the circles (disks)
with the sensors. Let the circles be numbered in the nondecreasing order of
the abscissas of their centers. We start with the known definitions and simple
observations.

Definition 2. A covering assignment p̂ is order-preserving if for every i, j ∈ S
we have x̂i < x̂j iff i < j.

Barrier Coverage Problem in 2D 121

Lemma 1 [12]. If the circles are identical, then there is an optimal order-
preserving covering assignment under L1 metric.

Lemma 2 [12]. If the circles are identical, then any optimal order-preserving
covering under L1 metric is a

√
2-approximate solution to the problem (1) under

Euclidean metric.

Further, in this section, we present a new dynamic programming algorithm
A that constructs an OPC, which, in the case of identical circles, is an optimal
solution to the problem (1) under the metric L1. The algorithm consists of one
forward recursion and one backward recursion.

3.1 Forward Recursion

Let Sk(l) be a minimum sum of the distances d(pi, p̂i) = |xi − x̂i| + |yi − ŷi|,
i = 1, . . . , k, for the first k, k = 1, . . . , n, sensors that form an OPC of the
segment [0, l], 0 ≤ l ≤ L. Without loss of generality, we suppose that yi ≥ 0,
i ∈ S. Then we can calculate the cost

S1(l) =

{
d(p1, p̂1(l)), 2r1 ≥ l

+∞, 2r1 < l.

Here the point p̂1(l) is lying on the segment, it is the nearest point to the point
p1, and the segment [0, l] is covered by disk 1. The value d(p1, p̂1(l)) is defined
analytically depending on the initial position of the sensor 1. We assume that
the center of the disk 1 moves to the point (x, 0) on the segment (see Fig. 1).
Then

d(p1, p̂1(l)) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−x1 + y1, x1 ≤ 0, l ≤ r1, x = 0
l − r1 − x1 + y1, max{x1 + r1, r1} ≤ l, x = l − r1

y1, 0 ≤ l − r1 ≤ x1 ≤ r1, x = x1

x1 − r1 + y1, x1 > r1, r1 ≤ L, x = r1

x1 − L + y1, x1 > r1 > L, x = L.

Let now there are two disks 1 and 2 with radii r1 and r2. If l ≤ 2min{r1, r2},
then either two sensors, or one of the sensors can be used in the cover. Let’s
consider the following possible cases.

1. The sensor 2 is not used in the cover.
2. The sensor 1 is not used in the cover.
3. Both sensors 1 and 2 are used in the cover.

In the first case, we have S2(l) = S1(l). In the second case, we let S2
1(l) be

the minimum distance of movement of a sensor 2 for covering [0, l] (suppose that
S2(l) = +∞, if 2r2 < l). Let now both sensors are used in the cover of the

122 A. Erzin and N. Lagutkina

Fig. 1. Movement of disk 1 depending on r1, p1 and l. The original location (p1) and
the final location (p̂1) are connected by arrow. (a) If l − r1 ≤ 0, x1 ≤ 0, then x = 0.
(b) If x1 ≤ l − r1, l − r1 ≥ 0, then x = l − r1. (c) If 0 ≤ l − r1 ≤ x1 ≤ r1, then x = x1.
(d) If x1 ≥ r1, r1 ≤ L, then x = r1. (e) If x1 > r1, r1 > L, then x = L.

segment [0, l] and x is a point where the center of the disk 2 moves. Thus we can
calculate the cost

S2(l) =

{
min{S1(l), S2

1(l), S2(l)}, 0 < l ≤ min{2(r1 + r2), L}
+∞, 2(r1 + r2) < l,

where

S2(l) =

⎧
⎨

⎩
min

x∈D2(l)
{|x2 − x| + y2 + S1(x − r2)}, l < x2 + r2

l − r2 − x2 + y2 + S1(l − 2r2), l ≥ x2 + r2,

and D2(l) = [max{r2, l − r2},min{2r1 + r2, l + r2, L}]. Obviously, in the case 3,
we have x > r2 (see Fig. 2).

Fig. 2. Options of movement of the disk 2 in the case 3.

Let the values of all functions Si(l), i = 1, . . . , k − 1, be counted, and let the
segment [0, l] is covering by disks 1, 2, . . . , k. Then, the following recursions can
be used to calculate Sk(l), k = 1, . . . , n.

Sk(l) =

⎧
⎪⎪⎨

⎪⎪⎩

min
{
Sk−1(l), S2

k−1(l), Sk(l)
}

, 0 < l ≤ min{2
k∑

i=1

ri, L}

+∞, 2
k∑

i=1

ri < l,

Barrier Coverage Problem in 2D 123

where

Sk(l) =

⎧
⎨

⎩
min

x∈Dk(l)
{|xk − x| + yk + Sk−1(x − rk)}, l < xk + rk

l − rk − xk + yk + Sk−1(l − 2rk), l ≥ xk + rk,

S2
k−1(l) is the cost function if only one disk k is covering the segment, and

Dk(l) =
[
max{rk, l − rk},min{2

k−1∑
i=1

ri + rk, l + rk, L}
]
.

After computing Sn(L), the optimal position of the last disk n is found.

3.2 Backward Recursion

If the sensor n is used in the constructed cover then the position of its center
(x̂n, 0) is known, so the segment [0, L− x̂n−rn] is covered by the first n−1 disks.
The formulas for calculating the value Sn−1(l) is found for any l and hence for
the argument l = L−x̂n−rn too. If the sensor n is not used in the optimal cover,
then we consider the sensor n − 1. If the sensor n − 1 is used in the cover, then
we know the position of its center (x̂n−1, 0) and the segment [0, L− x̂n−1 −rn−1]
is covered by the first n − 2 disks. Continuing the backward recursion, we find
the covering of the whole segment [0, L].

4 Time Complexity

In this section, we will prove that the proposed algorithm A can be implemented
within the time complexity O(n2).

Definition 3. We call li ∈ [0, l] the switching points for the function Sk(l) if in
the segment (li, li+1) ⊆ [0, l] the function is defined by one analytical expression
Fi(l) and Fi(li+1) = Fi+1(li+1), Fi(li) = Fi−1(li), or if Sk(l) is unlimited (equals
+∞).

Lemma 3. When adding the next disk k, the number of switching points for
the function Sk(l), k = 1, . . . , n, increases by O(1) with respect to the number of
switching points for the function Sk−1(l).

Proof. Let first k = 1. If 2r1 < l then S1(l) = +∞. Otherwise if 2r1 ≥ l, then
depending on p1 and r1, we have one of the three options for calculation S1(l).

1. If x1 < 0, then

S1(l) =

{
−x1 + y1, l ≤ r1, x = 0
l − r1 − x1 + y1, l > r1, x = l − r1.

2. If 0 ≤ x1 ≤ r1, then

S1(l) =

{
y1, l ≤ r1 + x1, x = x1

l − r1 − x1 + y1, l > r1 + x1, x = l − r1.

124 A. Erzin and N. Lagutkina

3. If x1 > r1, then

S1(l) =

{
x1 − r1 + y1, r1 ≤ L, x = r1

x1 − L + y1, r1 > L, x = L.

Thus, for any value of x1 the number of switching points for function S1(l) is
bounded by O(1) (constant).

Let now the two first disks can be used in the covering. It is necessary to
consider all cases for the calculation of S2(l). Due to the limitations of the space,
we will consider in detail only two cases from the set of cases.

Let’s consider, for example, the case when 0 < l < x2 + r2. As both sensors
are used in the cover of the segment [0, l], then x2 > max{l − r2, r2}. Note that
the sensor 1 does not cover the point (0, l), and the sensor 2 does not cover the
point (0, 0). Therefore,

S2(l) =

{
x2 − x + y2 + S1(x − r2), x ∈ X1

x − x2 + y2 + S1(x − r2), x ∈ X2,

where X1 = [max{r2, l − r2},min{2r1 + r2, l + r2, L, x2}],
and X2 = [max{r2, l − r2, x2},min{2r1 + r2, l + r2, L}].

The function S1 depends on the x1, and it is computed as follows:

– if x1 < 0, then

S1(x − r2) =

{
−x1 + y1, x ≤ r1 + r2

x − r1 − r2 − x1 + y1, x > r1 + r2;

– if 0 ≤ x1 ≤ r1, then

S1(x − r2) =

{
y1, x ≤ x1 + r1 + r2

x − r1 − r2 − x1 + y1, x > x1 + r1 + r2;

– if x1 > r1, then S1(x − r2) = x1 − r1 + y1, r1 ≤ L.

Assume that x1 < 0, x ≤ x2 and x ≤ r1 + r2. Then we have the formula:

S2(l) = x2 − x + y2 + S1(x − r2),

where max{r2, l−r2} ≤ x ≤ min{2r1+r2, l+r2, L, x2} and S1(x−r2) = −x1+y1.
As a result, we have the following analytical expression

S2(l) = x2 − x + y2 − x1 + y1,

where max{r2, l − r2} ≤ x ≤ min{2r1 + r2, l + r2, L, x2}
and x = min{r1 + r2, x2, l + r2, L}.

Barrier Coverage Problem in 2D 125

Let’s consider one more case when l ≥ x2 + r2 and x1 < 0. Then we have the
formula S2(l) = l − r2 − x2 + y2 + S1(l − 2r2), where

S1(l − 2r2) =

{
−x1 + y1, x1 ≤ 0, l − 2r2 ≤ r1

l − r1 − 2r2 − x1 + y1, x1 ≤ 0, l − 2r2 > r1.

If l − 2r2 ≤ r1, then in order to cover the segment [0, l − 2r2] the disk 1 moves
to the point (0, 0). Otherwise, if l − 2r2 > r1, the disk 1 moves to the point
(l − 2r2 − r1, 0).

Assume that l−2r2 ≤ r1, then the function S2(l) = l−r2 −x2 +y2 +y1 −x1.
Other cases are considered similarly. Thereby the number of switching points

for the function S2(l) is upper bounded by constant.
For an arbitrary number of sensors k = 1, 2, . . . , n, we can calculate the cost

as follows.

Sk(l) =

⎧
⎪⎪⎨

⎪⎪⎩

min
{
Sk−1(l), S2

k−1(l), Sk(l)
}

, 0 < l ≤ min{2
k∑

i=1

ri, L}

+∞, 2
k∑

i=1

ri < l,

where

Sk(l) =

⎧
⎨

⎩
min

x∈Dk(l)
{|xk − x| + yk + Sk−1(x − rk)}, l < xk + rk

l − rk − xk + yk + Sk−1(l − 2rk), l ≥ xk + rk,

S2
k−1(l) is the cost function if only one disk k is covering the segment, and

Dk(l) =
[
max{rk, l − rk},min{2

k−1∑
i=1

ri + rk, l + rk, L}
]
.

When calculating the value of Sk(l) it is considered two cases l < xk +rk and
l ≥ xk + rk, and the number of switching points increases by constant. Hence,
for calculation of the next value of Sk(l), k = 1, . . . , n, the constant number of
switching points is added, that completes the proof.

Corollary 1. When calculating the function Sk(l) the optimal position of the
center of the disk k, k = 1, . . . , n can be computed with time complexity equals
O(n).

Remark 1. In the case of different disks may not exist an optimal order-
preserving assignment under L1 metric (see Fig. 3). Therefore, we can apply
the proposed algorithm A, but we cannot obtain a

√
2-approximate solution.

The main result of this paper is the

Theorem 1. In the case of identical disks the algorithm A constructs a
√

2–
approximate solution to the problem (1) with time complexity equals O(n2).

126 A. Erzin and N. Lagutkina

Fig. 3. (a) The optimal cover under L1 metric. (b) The order-preserving cover which
is worse by 2(r1 − r2) than the optimal cover.

Proof. It is known that in the considered case an optimal order-preserving cov-
ering under L1 metric is a

√
2–approximate solution to the problem (1) under

Euclidean metric [12]. Taking into account that the functions Sk(l) are calcu-
lated n times and Corollary 1, we find that the complexity of the algorithm A is
O(n2). The theorem is proved.

To illustrate the operation of the algorithm, in the AppendixA an example
is given.

5 Conclusion

The paper deals with the problem of moving the centers of n circles located
at arbitrary position on a plane on a given line segment of length L so that
the line is completely covered by the circles while minimizing the cumulative
Euclidean distance between the initial position of centers and their position
on the segment. It is known that this problem is NP-hard in the case of a
non-identical disks [13,14]. When the disks are identical the complexity of the
problem is unknown, but there is a O(n4)–time

√
2–approximation algorithm.

In this paper, we propose a O(n2)–time algorithm that is applicable in general
case and constructs a

√
2-approximate solution to the problem in the case of n

identical circles.
In the further research, we plan to clarify the complexity of the problem in

the case of identical disks and to give up a requirement of movement the sensors
on the segment. Moreover, we are planning to design an FPTAS for the case
when each barrier point is covered by exactly one disk.

Barrier Coverage Problem in 2D 127

Acknowledgements. The research is partly supported by the Russian Foundation
for Basic Research (Projects 16-07-00552 and 17-51-45125) and by the Ministry of
Science and Higher Education of the Russian Federation under the 5-100 Excellence
Programme.

A Appendix

Example. Let it is required to cover the line segment [0, 4.5] by three iden-
tical disks with radii equal to 1, which initial positions of the centers are
p1 = (−0.5, 1), p2 = (2.5, 2) and p3 = (5.5, 0) (Fig. 4(a)).

Since x1 < 0, then

S1(l) =

⎧
⎪⎨

⎪⎩

−x1 + y1 = 1.5, l ≤ 1
l − 1 − x1 + y1 = l + 0.5, l > 1
+∞, l > 2.

The disk 1 moves to the point (0, 0), if l ≤ 1 (Fig. 4(b)) and it moves to the point
(l − 1, 0), if l > 1 (Fig. 4(c)). Thus, we have the switching points 0, 1, 2 and 4.5.

Let now two circles participate in the covering. If l ≤ 1, then it is easy to
see, that only disk 1 covers the segment [0,l] and S2(l) = 1.5 (Fig. 4(d)).

If 1 < l ≤ 2, then the segment [0, l] can be covered ether by one disk 1 or
by one disk 2. We have that d(p1, p̂1) = l + 0.5 ≤ d(p2, p̂2). So, in this case only
disk 1 covers the segment [0, l]. Suppose that both disks 1 and 2 participate in

Fig. 4. (a) Initial position of the disks; (b) one disk in the case when l ≤ 1; (c) one
disk in the case when 1 < l ≤ 2; (d) two disks in the case when l ≤ 1.

128 A. Erzin and N. Lagutkina

Fig. 5. (a) Two disks in the case when 1 < l ≤ 2; (b) two disks in the case when
2 < l ≤ 3.5; (c) two disks in the case when 3.5 < l ≤ 4; (d) the optimal OPC.

the covering of the segment [0, l]. Let us denote by x ∈ (1, 3) the point at which
the center of disk 2 moves. Then the segment [0, x − 1] must be covered by disk
1. If x ≤ 2.5 then S2(l) = 2 + 2.5 − x + S1(x − 1) = 4. If 2.5 < x ≤ 3 then
S2(l) = min

x∈[2.5,3]
{2 + x − 2.5 + S1(x − 1)} = min

x∈[2.5,3]
{2x − 1}. Therefore, in this

case only the center of disk 1 moves to the point (l − 1, 0) (Fig. 5(a)).
If 2 < l ≤ 3.5, then the both disks 1 and 2 must participate in the covering

of the segment [0, l]. If x is a point where the center of disk 2 moves, then the
segment [0, x − 1] must be covered by disk 1. For any x ∈ [l − 1, 2.5], we get the
same value of S2(l) = 4 and set x = 2.5 (Fig. 5(b)).

If 3.5 < l ≤ 4, then both disks participate in the covering of the segment
[0, l]. If x ∈ [l−1, 3] is a point where the center of disk 2 moves, then the segment
[0, x−1] must be covered by disk 1. In this case 2.5 ≤ x ≤ 3. Moreover, x = l−1
and S2(l) = l − 1 − 2.5 + 2 + 1 + l − 2 + 0.5 = 2l − 2 (Fig. 5(c)).

Therefore, the following formula holds

S2(l) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1.5, 0 < l ≤ 1
l + 0.5, 1 < l ≤ 2
4, 2 < l ≤ 3.5
2l − 3, 3.5 < l ≤ 4
+∞, l > 4,

where the switching points are 0, 1, 2, 3.5, 4, 4.5.

Barrier Coverage Problem in 2D 129

Let now all three sensors participate in the covering. The center of disk 3 can
move to the point x ∈ [3.5, 4.5]. Then the segment [0, x − 1] must be covered by
disks 1 and 2 and

S3(4.5) = min
x∈[3.5,4.5]

{5.5 − x + S2(x − 1)} = min
x∈[3.5,4.5]

{9.5 − x} = 5.

Then the center of disk 3 moves to the point (4.5, 0).
The backward recursion allows us to restore the optimal coverage, which is

shown in the Fig. 5(d).

References

1. Andrews, A.M., Wang, H.: Minimizing the aggregate movements for interval cov-
erage. Algorithmica 78(1), 47–85 (2017)

2. Astrakov, S.N., Erzin, A.I.: Efficient band monitoring with sensors outer position-
ing. Optim. A J. Math. Program. Oper. Res. 62(10), 1367–1378 (2013)

3. Benkoczi, R., Friggstad, Z., Gaur, D., Thom, M.: Minimizing total sensor move-
ment for barrier coverage by non-uniform sensors on a line. In: Bose, P., G ↪asieniec,
L.A., Römer, K., Wattenhofer, R. (eds.) ALGOSENSORS 2015. LNCS, vol. 9536,
pp. 98–111. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28472-9 8

4. Bhattacharya, B.K., Burmester, M., Hu, Y., Kranakis, E., Shi, Q., Wiese, A.:
Optimal movement of mobile sensors for barrier coverage of a planar region. Theor.
Comput. Sci. 410(52), 5515–5528 (2009)

5. Cardei, M., Du, D.-Z.: Improving wireless sensor network lifetime through power
aware organization. ACM Wirel. Netw. 11(3), 333–340 (2005)

6. Cardei, M., Wu, J.: Energy-efficient coverage problems in wireless ad-hoc sensor
networks. Comput. Commun. 29, 413–420 (2006)

7. Carle, J., Simplot, D.: Energy-efficient area monitoring by sensor networks. IEEE
Comput. 37(2), 40–46 (2004)

8. Carmi, P., Katz, M.J., Saban, R., Stein, Y.: Improved PTASs for convex barrier
coverage. In: Solis-Oba, R., Fleischer, R. (eds.) WAOA 2017. LNCS, vol. 10787,
pp. 26–40. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89441-6 3

9. Chen, A., Kumar, S., Lai, T.H.: Designing localized algorithms for barrier cover-
age. In: Proceedings of the 13th Annual ACM International Conference on Mobile
Computing and Networking, pp. 63–74 (2007)

10. Chen, A., Lai, T.H., Xuan, D.: Measuring and guaranteeing quality of barrier
coverage in wireless sensor networks. In: Proceedings of the ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 421–
430 (2008)

11. Chen, D.Z., Tan, X., Wang, H., Wu, G.: Optimal point movement for covering
circular regions. Algorithmica 72(2), 379–399 (2015)

12. Cherry, A., Gudmundsson, J., Mestre, J.: Barrier coverage with uniform Radii
in 2D. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.)
ALGOSENSORS 2017. LNCS, vol. 10718, pp. 57–69. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-72751-6 5

13. Czyzowicz, J., et al.: On minimizing the sum of sensor movements for barrier
coverage of a line segment. In: Nikolaidis, I., Wu, K. (eds.) ADHOC-NOW 2010.
LNCS, vol. 6288, pp. 29–42. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14785-2 3

https://doi.org/10.1007/978-3-319-28472-9_8
https://doi.org/10.1007/978-3-319-89441-6_3
https://doi.org/10.1007/978-3-319-72751-6_5
https://doi.org/10.1007/978-3-642-14785-2_3
https://doi.org/10.1007/978-3-642-14785-2_3

130 A. Erzin and N. Lagutkina

14. Dobrev, S., et al.: Complexity of barrier coverage with relocatable sensors in the
plane. Theor. Comput. Sci. 579, 64–73 (2015)

15. Erzin, A.I., Astrakov, S.N.: Min-density stripe covering and applications in sensor
networks. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O.
(eds.) ICCSA 2011. LNCS, vol. 6784, pp. 152–162. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21931-3 13

16. Erzin, A.I., Astrakov, S.N.: Covering a plane with ellipses. Optim.: A J. Math.
Program. Oper. Res. 62(10), 1357–1366 (2013)

17. Erzin, A.I., Shabelnikova, N.A.: On the density of a strip covering with identical
sectors. J. Appl. Ind. Math. 9(4), 461–468 (2015)

18. He, S., Chen, J., Li, X., Shen, X., Sun, Y.: Mobility and intruder prior informa-
tion improving the barrier coverage of sparse sensor networks. IEEE Trans. Mob.
Comput. 13(6), 1268–1282 (2014)

19. Kershner, R.: The number of circles covering a set. Am. J. Math. 61(3), 665–671
(1939)

20. Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. In: Pro-
ceedings of the 11th Annual International Conference on Mobile Computing and
Networking, pp. 284–298 (2005)

21. Saipulla, A., Westphal, C., Liu, B., Wang, J.: Barrier coverage with line-based
deployed mobile sensors. Ad Hoc Netw. 11, 1381–1391 (2013)

22. Si, P., Wu, C., Zhang, Y., Jia, Z., Ji, P., Chu, H.: Barrier coverage for 3D camera
sensor networks. Sensors 17(8), 1771 (2017)

23. Wu, F., Gui, Y., Wang, Z., Gao, X., Chen, G.: A survey on barrier coverage with
sensors. Front. Comput. Sci. 10(6), 968–984 (2016)

24. Zalyubovskiy, V., Erzin, A., Astrakov, S., Choo, H.: Energy-efficient area coverage
by sensors with adjustable ranges. Sensors 9(4), 2446–2460 (2009)

25. Zhao, L., Bai, G., Shen, H., Tang, Z.: Strong barrier coverage of directional sensor
networks with mobile sensors. Int. J. Distrib. Sens. Netw. 14(2) (2018). https://
doi.org/10.1177/1550147718761582

https://doi.org/10.1007/978-3-642-21931-3_13
https://doi.org/10.1177/1550147718761582
https://doi.org/10.1177/1550147718761582

Time- and Energy-Aware Task Scheduling
in Environmentally-Powered Sensor

Networks

Lars Hanschke(B) and Christian Renner

Research Group smartPORT, Hamburg University of Technology, Hamburg, Germany
{lars.hanschke,christian.renner}@tuhh.de

Abstract. In the past years, the capabilities and thus application sce-
narios of Wireless Sensor Networks (WSNs) increased: higher compu-
tational power and miniaturization of complex sensors, e.g. fine dust,
offer a plethora of new directions. However, energy supply still remains a
tough challenge because the use of batteries is neither environmentally-
friendly nor maintenance-free. Although energy harvesting promises
uninterrupted operation, it requires adaption of the consumption—which
becomes even more complex with increased capabilities of WSNs. In
existing literature, adaption to the available energy is typically rate-
based. This ignores that the underlying physical phenomena are typically
related in time and thus the corresponding sensor tasks cannot be sched-
uled independently. We close this gap by defining task graphs, allowing
arbitrary task relations while including time constraints. To ensure unin-
terrupted operation of the sensor node, we include energy constraints
obtained from a common energy-prediction algorithm. Using a standard
Integer Linear Programming (ILP) solver, we generate a schedule for task
execution satisfying both time and energy constraints. We exemplarily
show, how varying energy resources influence the schedule of a fine dust
sensor. Furthermore, we assess the overhead introduced by schedule com-
putation and investigate how the size of the task graph and the available
energy affect this overhead. Finally, we present indications for efficiently
implementing our approach on sensor nodes.

Keywords: Energy harvesting · Task scheduling ·
Integer linear programming

1 Introduction

The popularity of Wireless Sensor Networks (WSNs), based on still increasing
computational power, new sensing capabilities [2] or sharing of WSNs [1,16],
offers a plethora of new application scenarios. Sensor nodes are equipped with
multiple sensors, e.g. fine dust, humidity or ozone, or different radio interfaces,
e.g. LoRa [6], WiFi [10] or IEEE 802.15.4. With an increasing number of different
peripherals, the complexity of the underlying program structure grows steadily.
c© Springer Nature Switzerland AG 2019
S. Gilbert et al. (Eds.): ALGOSENSORS 2018, LNCS 11410, pp. 131–144, 2019.
https://doi.org/10.1007/978-3-030-14094-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14094-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-14094-6_9

132 L. Hanschke and C. Renner

Each of these radio interfaces or peripherals imposes a new task on the sensor
node. Since these tasks are influenced by physical phenomena, e.g. detecting
a change or reacting on a control command, they are not independent from
each other. The sampling rate has to be adapted to the physical phenomenon
but additional information of the surroundings has to be considered, e.g. a gas
sensor typically needs to be compensated for temperature or humidity. If power
supply and energy constraints are neglected, this complexity is manageable with
today’s approaches: generating a schedule for all envisaged tasks and performing
these at a constant rate is sufficient.

Supplying sensor nodes with ambient energy from renewable resources, e.g.
solar energy, allows for reducing the environmental footprint of WSNs and also
decreases costs. In many scenarios, energy harvesting allows perpetual operation,
but if the energy budget is restricted, e.g. due to physical size limitation of node
and energy storage, the consumption of the sensor node has to be adjusted
carefully. Since power is only available sporadically and the power consumption
of the sensor node often drastically exceeds source power, scheduling the tasks
of a node correspondingly is key. We also highlight this aspect in Sect. 2. Over
the past years, many classes of energy-driven devices evolved [17]: continuously
operating, as presented in [15] and [21], or even intermittently-powered, e.g. as
shown in [12] and [7]. While these devices support simple program structures,
e.g. sample-and-transmit-to-sink, it is still unclear how they perform with more
complex program structures imposed of today’s capabilities.

Recent work [13] emphasizes to include time constraints between tasks
in scheduling for sensor networks. While this approach concentrates on
intermittently-powered devices, we strongly agree with it. Especially more com-
plex sensors, as gas sensors, need up-to-date information of their surroundings,
e.g. the temperature or humidity, before a meaningful sensor reading can be
obtained. Thus, sampling a gas sensor without querying related sensors in-time
wastes energy.

We argue that future sensor nodes powered by ambient energy need a new
scheduling approach: without consideration of time constraints and dependencies
between tasks, energy is wasted and thus operation is inefficient. In this paper,
we show how dependencies, time and energy constraints can be used for task
graph generation and scheduling.

1.1 Contributions

An important aspect of task scheduling is still missing in existing literature: tasks
are not independent from each other and are strongly related in time. Thus, we
present our approach, which ensures the following:

– Description for a program structure satisfying time constraints.
– Definition of the mathematical problem.
– Automated scheduling for dependent tasks.
– Evaluation of the performance and indications for solving the problem on

low-power microcontrollers used in WSNs.

Time- and Energy-Aware Task Scheduling 133

Temp

Fine Dust

Humidity

Calc. Transmit

expires in 60 s
expires

in 10min

expires in 60 s

expires
in 15min

Fig. 1. Process of fine dust sampling; limited energy storage prevents consecutive exe-
cution of all tasks at once.

Our approach allows complex sensors to operate with ambient energy, especially
with size-restricted energy storage units. This paves the ground for running
multi-purpose sensors, with different sensors and radio interfaces, perpetually
for fine-grained environmental monitoring.

2 Example

In order to illustrate the shortcomings of existing approaches and to show the
benefits of our solution, we give a practical example depicted in Fig. 1. High
aerial fine dust concentration in European cities is a major influencing factor of
human health [25]. Responsible authorities for inner cities, residential areas but
also larger production plants need to monitor their air quality finely grained to
take countermeasures. Especially in port areas, where ships are the main con-
tributor to fine dust pollution, flexible placement of fine dust sensors is desired.
Interruption of production processes for sensor maintenance is time-consuming
and cost-intensive; thus, supplying these sensors by ambient energy is a promis-
ing approach.

Low-cost and small sensors to measure fine dust particles, i.e. PM2.5 and
PM10

1, have been studied in [22] and [4]. However, solely supplying the sensor
nodes with ambient energy requires careful adaption of the sensing activities,
because of the high power consumption compared to the harvest. A cheap fine
dust sensor as the Nova SDS011 draws 70 mA at 5 V, which depletes the energy
stored in a 100 F supercapacitor in just 9 min. Furthermore, fine dust is cross-
sensitive to the relative humidity in ambient air. This requires a humidity and
temperature sensor to be sampled before a valid fine dust measurement can be
processed. Commercial fine dust sensors offer internal humidity compensation,
but they are orders of magnitudes more expensive.

As recent work in [12] and [7] shows, it is not desirable to supply energy
harvesting sensor nodes with large capacitors. Due to non-deterministic events,
the voltage level of the capacitor might drop below the minimum voltage. Since
recharge time is much longer with large capacitors, the system is unavailable for
1 PM2.5 and PM10 are air particles with diameter less than 2.5µm and 10µm respec-

tively.

134 L. Hanschke and C. Renner

a longer time. Unfortunately, the need for smaller capacitors entails that energy-
intensive tasks cannot be completed in one active phase. Entering a low-power
(sleep) state between sampling sensors allows the capacitor to recharge but needs
consideration of time constraints among tasks.

Figure 1 illustrates this behavior: temperature and humidity have to be sam-
pled shortly before the fine dust sensor to ensure correlation between sensor
values. However, once sensor values are gathered, calculation and transmission
of these values can be delayed. Most applications require a certain amount of
information per time interval, e.g. two times per hour. Thus, the margin for
calculation and transmission allows for recharging of the capacitor, ensuring
perpetual operation in the future.

3 Related Work

A plethora of literature exists for scheduling tasks with energy constraints in
sensor networks. The declared goal of all scheduling techniques is to arrange and
serve tasks considering limited energy storage and varying energy harvesting
conditions. The principle of ensuring that the power consumption of a sensor
nodes stays below the energy income and simultaneously ensuring a minimum
battery level is better known as Energy-Neutral Operation (ENO) [15]. While
all presented work satisfy this principle, their strategies vary.

One of the first approaches presented in [14] solely relies on adjusting the
duty cycle based on future energy income to ensure ENO. Neglecting the vari-
ety of different power consumption states of a sensor node and its connected
peripherals, apart from sleep and active state, the approach aims to maximize
the duty cycle. However, for sensor nodes with different tasks and more com-
plex program structures, e.g. as presented in Sect. 2, this approach is limited.
Furthermore, a greedy behavior is pointless for a variety of scenarios, e.g. Delay
Tolerant Networking (DTN).

The work presented in [18] resolves the shortcomings of real-time Earliest
Deadline First (EDF) algorithms by presenting two classes of Lazy Scheduling
Algorithms (LSAs). Arriving tasks are scheduled as late as possible but with a
margin that allows to schedule potentially arriving new tasks without deadline
misses. Unfortunately, LSA relies on independent and preemptive tasks, which
is unsuitable for the application presented in Sect. 2. Furthermore, the approach
assumes the power consumption of the node to be continuously adaptable. Since
the power consumption has discrete levels, determined by the state of the micro-
controller and peripherals, the approach is not directly applicable in practice.

By using Directed Acyclic Graphs (DAGs) and two corresponding ILP
approaches, [23] describes the tasks of the used platform. The approach tries
to find one path in the graph which minimizes the sum of execution times or
maximizes the usefulness of tasks, respectively. Again, a rate-based duty-cycling
ensures ENO. Their graph-based task model does not include timely distances
between tasks: each task is executed directly after its predecessor although this
might not be valuable in practice. Furthermore, energy savings in practice remain

Time- and Energy-Aware Task Scheduling 135

unclear, since their rate adaption requires re-evaluating the task graph before
each new iteration. Since this can be time-consuming on low-power microcon-
trollers, it is not clear if this leads to energy savings in real-world experiments.

A controller-based approach for adjusting the activity rate of the sensor node
is presented in [19]. The authors formally describe their controller design which
is solved by Integer Linear Programmings (ILPs). While controller generation is
done offline, they reduce the complexity of their online approach by only deter-
mining the control region of the actual system state. Although their approach
allows for rate adaption of different tasks, they do not take dependencies among
tasks into account which might lead to energy wastage in more complex appli-
cations, i.e. as described in Sect. 2.

Two approaches for tackling the scheduling problem of energy harvesting
are presented in [3]. By introducing the concept of virtual tasks, the authors
opt for smoothing the average power consumption or achieving full utilization.
While they show that their concept outperforms LSA and EDF in simulations
with static schedules, it is unclear how their approach is influenced by dynam-
ically changing weather conditions and thus a dynamically changing schedule.
Furthermore, they lack the support for dependencies between tasks.

A real-time scheduling approach called Earliest Deadline with Energy Guar-
antees (EDeg) is presented in [9] as a variation of the classical EDF algorithm. By
simulations, the authors show that EDeg outperforms energy-oblivious schedul-
ing approaches in terms of system runtime and deadline miss rate. One draw-
back of EDeg is that it assumes tasks to be preemptive without loss of energy. In
practice, this is hard to justify when communicating with external devices, e.g.
sensors or other nodes in the network. Restarting a task, e.g. quiring an external
sensor, involves repetition and thus wastes energy.

The authors of [26] identified that sampling rates of sensors are typically not
known in beforehand in research experiments. Thus, they develop an interactive
algorithm which allows change of sampling rate upon user request at runtime
considering energy limitations. They ensure ENO by keeping track of the saved
energy due to under sampling phases and allowing to spend saved energy at later
point in time. However, they do not check for task dependencies while varying
the different sampling rates.

Initially developed for intermittently-powered systems, the approach pre-
sented in [13] provides a clear description for time constraints of sensor tasks.
As it focuses on systems which face power outages frequently, the approach uses
time constraints for checking validity of sensor values after execution. However,
for ensuring ENO, integrating these time constraints into task planning – so
before execution – is key to ensure both ENO and time constraints.

4 Task Model

As existing scheduling techniques lack the support for describing relations
between tasks for WSNs, e.g. sensing, actuating, processing or sending, we
describe the underlying mathematical model of our approach. Our model aims at

136 L. Hanschke and C. Renner

t3

t1

t2

t4

e13

e21

e23

e34

(a) Task structure as DAG

A =

⎡
⎢⎢⎣
0 0 1 0
1 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

(b) Corresponding
adjacency matrix

Fig. 2. Example for describing complex program structures by the use of DAGs.

task planning, so tasks are considered as non-preemptive and known in before-
hand. First, we describe the program structure of nodes as a DAG and introduce
the definitions of nodes and edges of the graph. Second, we define the time and
third, the energy constraints which are solved via ILP. Fourth, we elaborate on
the problem definition and how to choose the objective function.

4.1 Program Flow

The time constraints between different tasks of a sensor node are also described
in [13] by the Mayfly language. The authors of [13] claim that tasks can be
divided into three categories or can be described with three properties:

– misd: minimum inter-sample distance; the time after which new data is valu-
able

– expires: the time after which a sensor value looses its meaning
– collect: describes a distinct number of samples to be collected within a

certain timeframe.

We strongly agree with theses definitions, as they allow to describe the pro-
gram flow presented in Sect. 2. misd and expires describe the relation between
consecutive activities, i.e. the time difference. Additionally, collect embraces
numerous activities, which all have to be scheduled into a certain timeframe.

Beyond Mayfly. However, the schedule constructed from the compiler of [13]
only ensures a sequence of task execution. Since intermittently-powered devices
may experience power outages between two consecutive tasks, they cannot ensure
that execution of every task maintains its meaning. If task information is out-
dated, is only checked after execution. We believe that devices ensuring ENO
have the benefit of deciding the meaningfulness of tasks before execution by
accurate task planning. The basis for our task scheduling is the program flow
described as DAG; see also Fig. 2.

The task graph G = (T , E) is defined by the set of vertices, here tasks,
T = {t1, t2, ..., tN}, N ∈ N

+ and edges E ∈ T × T . Since G is a directed graph,
each edge evw ∈ E is represented by a 2-tuple of starting vertice v and end
vertice w. Tasks which are connected by edges are called adjacent ; thus, the

Time- and Energy-Aware Task Scheduling 137

t

t

P

Pk

Pl

dk dl

t

Vcap

Vthres

Vmax

tk tl

sk sl

insufficient energy level to
perform tl immediately

Fig. 3. To prevent depletion of the capacitor, i.e. a voltage below Vthres, sleeping before
execution of tl is needed.

relationships in G can be described by an adjacency matrix A. The entries of
A = [ai,j] are defined as

ai,j =

{
1 if (i, j) ∈ E
0 else

(1)

Tasks. To develop an energy-efficient schedule, more information about the
tasks and the edges of the graph is needed. Typical microcontrollers, e.g. the
ARM Cortex series or the low-cost ESP 8266, have different hardware states,
which vary in computing power, usable internal components and consequently
power consumption. Additionally, the nodes power external peripherals, such as
sensors and actuators, to interact with their surroundings. Thus, a task ti is
described by its power consumption Pi, i ∈ N

+.
To query a sensor or to perform calculations, a microcontroller needs a time

duration. For task ti, this duration di can be obtained or updated at runtime
by internal timers or external devices [8]. Together with the power consumption,
this allows to compute the energy consumption of the node but also enables
overlapping-free scheduling of tasks. To develop the schedule, we calculate all si,
defined as the starting time of ti.

Edges. Apart from its start vertice v and end vertice w, each edge comprises the
constraints for the relation between v and w. Following the definitions in [13],
edges are described by a 4-tuple evw = (misd, expires, timeframe, number).
This 4-tuple describes the constraints which have to be fulfilled by a valid sched-
ule so that a following task w can work with up-to-date data. Not every task
has to fulfill all parameters; e.g. if only one sensor value has to be sampled, no
value for timeframe is defined.

138 L. Hanschke and C. Renner

4.2 Constraints

To compute a valid but also energy efficient schedule, numerous definitions are
needed for satisfying the constraints. We also visualize the constraints in Fig. 3.

Time. In the following, k and l denote indices of their corresponding tasks which
are connected by an edge, so that ak,l = 1. A mandatory requirement is that
connected tasks of the program flow are consecutive and that their execution
times do not overlap:

sl ≥ sk + dk. (2)

Furthermore, the time constraints described by the connecting edges have to be
fulfilled. Thus, the difference between starting times has to be:

misdkl ≤ sl − sk ≤ expireskl. (3)

If one task requests a certain number of samples to be collected within
timeframe, the scheduler ensures a greater time distance towards the follow-
ing tasks, i.e.

sk + timeframek ≤ sl. (4)

Energy. Sensor nodes, which are powered from ambient solar energy, mostly
run energy prediction algorithms, e.g. [20] or [5], which give an approximation of
the harvest within the next prediction horizon (usually 24 h in timeslots of 1 h).
This can be used to obtain, e.g. as presented in [21], an approximation of the
maximum allowed energy consumption per timeslot within the prediction hori-
zon. Typically, this approximation prevents depletion of the energy storage, e.g.
the voltage of a supercapacitor does not drop below a threshold. Within the
prediction horizon, not all tasks can be executed subsequently without breaks
and thus require sleep times in between to ensure recharging of the capacitor. If
less energy is available, the time difference of our tasks are spread further to the
boundaries of expires; if more energy is available, further to misd.

The energy consumption of the sensor node within one timeslot of the pre-
diction horizon is given by the energy consumed by all executed tasks. If there
is a budget b2 which can be taken from the energy storage without depletion
within the next slot of the prediction horizon h, the energy consumption of the
sensor node has to satisfy:

N∑
i=1

ni · di · Pi + (h −
N∑
i=1

ni · di) · Pq ≤ b · Vcc · h. (5)

The budget b describes a constant current drawn by the sensor node at its supply
voltage Vcc. Here, ni denotes the number of executions of task ti—if the budget is

2 In compliance with [21], the budget is a current; the energy follows directly with
constant supply voltage and known time.

Time- and Energy-Aware Task Scheduling 139

high, the task graph may be executed more than once. Additionally, Pq denotes
the quiescent power consumption in sleep state. For simplicity, we only consider
one sleep state but plan to investigate the use of different sleep states in future
work.

4.3 Problem Definition and Objective Function

For the input of the ILP solver, we need the time and energy constraints, but also
the objective function f for optimization. For our concrete scheduling problem,
we use the definition of the canonical form:

maximize fT s

subject to Cs ≤ c (6)
and s ≥ 0

The starting times of all instances of the tasks are contained in s, while the con-
straints presented in Sect. 4.2 are listed and C and c. We use Eq. (5) to determine
the number of instances ni for every task which can be executed without vio-
lating energy constraints. Microcontrollers offer a plethora of timers of different
resolutions, typically limited by the clock frequency of the Microcontroller Unit
(MCU). As we do not explicitly aim on real-time systems, we limit our resolu-
tion to milliseconds since ENO systems typically do not benefit from higher time
resolution. Still, it requires the variables, i.e. the starting times, to be strictly
positive integers. Since ILPs are in general more complex to solve, there is room
for decreasing the complexity of our approach in future work.

The choice of f is typically non-trivial. Commonly used objectives for schedul-
ing problems are minimizing lateness, delay, or a serving time. Other objectives
embrace maximizing the usefulness of a schedule by assigning a utility or priority
to each task. While we agree with opting for a utility-based objective, it is very
application-specific, has to be provided by the user and varies with scenarios.

As our approach is aiming at ENO, we choose a different objective function.
Assuming constant harvest during one timeslot, e.g. 1 h, is simplifying the real
world, as shown in [20]. The harvest can be below average at the start of the
timeslot and above average at the end. A constant energy consumption computed
based on the average hence risks depletion of energy storage at the beginning
of the time slot, even if the average harvest prediction is met. Consequently,
we argue that tasks should be preferably executed at the end of the timeslot
to decrease the risk of depletion—but only if time constraints are still satisfied.
The following objective function is constant, which favors starting times at the
end of a timeslot. However, due to the time constraints, the majority of tasks
is still distributed evenly across the timeslot. As choosing different objective
functions offers potential for increasing the usefulness of our schedule, we plan
to investigate this in future work.

140 L. Hanschke and C. Renner

Fig. 4. Energy-adapting task scheduling of the fine dust example; number of instances
per h varies upon budget; budget trace obtained from real-world tests.

5 Implementation

For assessing the performance of our approach, we implement the problem def-
inition, i.e. the constraints as defined in Sects. 4.2 and 4.3, and feed it into a
MATLAB ILP solver. For the problem definition, we only need two inputs: the
task graph and the budget of the timeslot we are generating the schedule for.
Our goal is to find the number of entries in s as well as matrix C and its cor-
responding vector c to solve Eq. (6). To obtain the number of entries in s, we
incrementally add tasks to the list of tasks to be executed within this timeslot as
long as the budget is not exceeded. Once the number of starting times is known,
we loop through them incrementally. First, we check for the task to be executed
at the current starting time. Second, we query the adjacency matrix A if the
task of the current starting time has neighbors. Neighbors can be predecessors
or successors in the task graph — for both of them, we add the constraints as
defined in Eqs. (2) to (4) to C and c. If tasks are executed more than once, we
also add a constraint to ensure the first task of the next repetition of the task
graph is executed after the last task of the current execution. Last, we ensure
that starting times are upper bounded by the length of a timeslot.

To speed up computation and reduce memory footprint, we use the sparse
matrix representation for C. We use intlinprog from the optimization toolbox
of MATLAB. As intlinprog uses several pre-processing techniques, e.g. reduc-
ing the size of the problem or solve relaxed problems first, the time to solve the
problem only gives a hint on complexity-influencing factors, not on the execution
time itself. Still, we are able to show if our approach generates feasible schedules
and to highlight influencing factors.

Time- and Energy-Aware Task Scheduling 141

Fig. 5. Median of execution times influenced by the number of tasks in task graph;
dashed lines indicate upper and lower quartiles respectively; constant budget of 5mA;
since budget stays constant, number of instances in total and thus complexity of the
problem remains relatively steady.

6 Results

First, we show how an energy-aware schedule is generated for the example
of Sect. 2. Second, we analyze the performance of our approach and show how
the number of tasks in the graph and an increasing budget influences execution
time. Third, we discuss what we can learn for our microcontroller implementa-
tion. We use an Intel Core i7-6700 with 16 GB of RAM for our simulations in
MATLAB. Execution times are measured by the provided cputime function.

6.1 Example

We use the task graph shown in Fig. 1 for generating a schedule. Additionally,
we feed real-world budget traces obtained from a long-term experiment with a
solar energy harvester [11] into simulation. For simplicity, we only depict the
first 64 h in Fig. 4.

Depending on the budget, we can see that instances per hour of the fine
dust sampling task ranges between 6 and 9. The number of instances of all tasks
shows a similar behavior, ranging between 29 and 47. This shows that even more
complex program structures defined by a task graph and with time constraints
can be scheduled being energy-aware simultaneously.

6.2 Performance

Our main metric for comparing the performance is the execution time, i.e. the
time to define and solve the problem. Although energy-aware scheduling is nec-
essary for uninterrupted operation, it is still only a tool for performing the des-
ignated task. Consequently, the energy spent for calculating a schedule means
an energy overhead and thus the time spent for scheduling should be as short
as possible. Figure 5 depicts how the number of tasks in the task graph influ-
ences the execution time. We randomly generate fully connected task graphs
with fixed number of tasks, varying number of edges and a constant budget.

142 L. Hanschke and C. Renner

Fig. 6. Median of execution times influenced by increasing budget. Dashed lines indi-
cate upper and lower quartiles respectively; increased complexity influences both prob-
lem definition and solving; however, increase in execution time primarily influenced by
increasing time for problem definition.

For each number of tasks, we generate 500 different task graphs. Although the
complexity of the task graph increases due to increased number of tasks and
edges, the execution time remains relatively constant. Due to the fixed budget,
an increasing number of tasks does not increase the number of variables—the
number of variables is equal if 15 tasks are executed four times each or if 20
tasks are executed three times each.

However, if the budget increases, also the execution time rises because of more
variables to determine. Figure 6 shows how the increased budget influences the
performance. Again, we randomly generate a task graph and compute a schedule
with increasing budget each. We repeat this process 500 times. The execution
time strongly increases with budget, e.g. increasing the budget from 3mA to
9mA demands 30% more execution time. Although this seems noteworthy, the
increase is good-natured: an increasing budget means good energy harvesting
conditions and thus tolerates a larger overhead for scheduling purposes. However,
it is important to mind this aspect for microcontroller implementations.

6.3 Discussion

Our investigations show that a high-performance PC can generate a schedule for
10 tasks and 20 edges for a typical budget of 3 mA in 8.8 ms. However, the compu-
tational power of microcontrollers is orders of magnitudes lower. To have an idea
on the energy overhead, we compare the DMIPS3 of a common microcontroller,
the ARM Cortex M0+ and our simulation PC. We measure 11.28 DMIPS/MHz
the with Intel Core i7, while a Cortex M0+ offers just 0.95 DMIPS/MHz [24].
Including the clock frequencies in the calculation, the approximated time for
executing the schedule for one timeslot on a Cortex M0+ is roughly 11 s. While
this sounds relatively long, the energy overhead is still only 0.7%, assuming a
current consumption of 6.85 mA [24], a budget of 3 mA and a timeslot length
of 1 h. Surely, these numbers will differ in practice but they indicate that our
approach is feasible.

3 DMIPS = Dhrystone Million Instruction per Seconds; common performance measure
generated by the Dhrystone benchmark.

Time- and Energy-Aware Task Scheduling 143

7 Conclusion

The increasing capabilities of WSNs offer a plethora of new applications but also
pose new demands on energy-aware task scheduling. We showed that using task
graphs, which describe dependencies between tasks, and defining time and energy
constraints, allows for calculation of schedules for sensor nodes. We plan to
investigate the use of different objective functions and to implement our approach
for microcontrollers to perform real-world-experiments in future work.

References

1. Adkins, J., Campbell, B., Ghena, B., Jackson, N., Pannuto, P., Dutta, P.: Energy
isolation required for multi-tenant energy harvesting platforms. In: Proceedings of
the 5th ACM International Workshop on Energy Harvesting and Energy-Neutral
Sensing Systems, ENSsys 2017, pp. 27–30. ACM (2017)

2. Arora, C., Arora, N., Choudhary, A., Sinha, A.: Intelligent vehicular monitoring
system integrated with automated remote proctoring. In: Hu, Y.-C., Tiwari, S.,
Mishra, K.K., Trivedi, M.C. (eds.) Intelligent Communication and Computational
Technologies. LNNS, vol. 19, pp. 325–332. Springer, Singapore (2018). https://doi.
org/10.1007/978-981-10-5523-2 30

3. Audet, D., MacMillan, N., Marinakis, D., Wu, K.: Scheduling recurring tasks in
energy harvesting sensors. In: 2011 IEEE Conference on Computer Communica-
tions Workshops, INFOCOM WKSHPS 2011, pp. 277–282. IEEE (2011)

4. Budde, M., El Masri, R., Riedel, T., Beigl, M.: Enabling low-cost particulate mat-
ter measurement for participatory sensing scenarios. In: Proceedings of the 12th
International Conference on Mobile and Ubiquitous Multimedia, MUM 2013, p.
19. ACM (2013)

5. Cammarano, A., Petrioli, C., Spenza, D.: Pro-energy: a novel energy prediction
model for solar and wind energy-harvesting wireless sensor networks. In: IEEE 9th
International Conference on Mobile Adhoc and Sensor Systems, MASS 2012, pp.
75–83. IEEE (2012)

6. Cattani, M., Boano, C.A., Römer, K.: An experimental evaluation of the reliability
of LoRa long-range low-power wireless communication. J. Sens. Actuator Netw.
6(2), 7 (2017)

7. Colin, A., Ruppel, E., Lucia, B.: A reconfigurable energy storage architecture for
energy-harvesting devices. In: Proceedings of the Twenty-Third International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS 2018, pp. 767–781. ACM (2018)

8. Dutta, P., Feldmeier, M., Paradiso, J., Culler, D.: Energy metering for free: aug-
menting switching regulators for real-time monitoring. In: Proceedings of the 7th
International Conference on Information Processing in Sensor Networks, IPSN
2008, pp. 283–294. IEEE (2008)

9. Ghor, H.E., Chetto, M., Chehade, R.H.: A real-time scheduling framework for
embedded systems with environmental energy harvesting. Comput. Electr. Eng.
37(4), 498–510 (2011)

10. Hanschke, L., Heitmann, J., Renner, C.: Challenges of WiFi-enabled and solar-
powered sensors for smart ports. In: Proceedings of the 4th ACM International
Workshop on Energy Neutral Sensing Systems, ENSsys 2016. ACM (2016)

https://doi.org/10.1007/978-981-10-5523-2_30
https://doi.org/10.1007/978-981-10-5523-2_30

144 L. Hanschke and C. Renner

11. Hanschke, L., Heitmann, J., Renner, C.: Stop waiting: mitigating varying connect-
ing times for infrastructure WiFi nodes. In: Proceedings of the 16th GI/ITG KuVS
Fachgespräch “Sensornetze”, FGSN 2017 (2017)

12. Hester, J., Sitanayah, L., Sorber, J.: Tragedy of the coulombs: federating energy
storage for tiny, intermittently-powered sensors. In: Proceedings of the 13th ACM
Conference on Embedded Networked Sensor Systems, SenSys 2015, pp. 5–16. ACM
(2015)

13. Hester, J., Storer, K., Sorber, J.: Timely execution on intermittently powered bat-
teryless sensors. In: Proceedings of the 15th ACM Conference on Embedded Net-
work Sensor Systems, SenSys 2017, pp. 17:1–17:13. ACM (2017)

14. Hsu, J., Zahedi, S., Kansal, A., Srivastava, M., Raghunathan, V.: Adaptive duty
cycling for energy harvesting systems. In: Proceedings of the 2006 International
Symposium on Low Power Electronics and Design, ISLPED 2006, pp. 180–185.
ACM (2006)

15. Kansal, A., Hsu, J., Zahedi, S., Srivastava, M.B.: Power management in energy
harvesting sensor networks. ACM Trans. Embed. Comput. Syst. (TECS) 6(4), 32
(2007)

16. La Porta, T., Petrioli, C., Spenza, D.: Sensor-mission assignment in wireless sen-
sor networks with energy harvesting. In: 2011 8th Annual IEEE Communications
Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks,
SECON 2011, pp. 413–421. IEEE (2011)

17. Merrett, G.V., Al-Hashimi, B.M.: Energy-driven computing: rethinking the design
of energy harvesting systems. In: Design, Automation and Test in Europe Confer-
ence and Exhibition, DATE 2017, pp. 960–965. IEEE (2017)

18. Moser, C., Brunelli, D., Thiele, L., Benini, L.: Real-time scheduling with regenera-
tive energy. In: 18th Euromicro Conference on Real-Time Systems, ECRTS 2006,
IEEE (2006)

19. Moser, C., Thiele, L., Brunelli, D., Benini, L.: Adaptive power management for
environmentally powered systems. IEEE Trans. Comput. 59(4), 478–491 (2010)

20. Renner, C.: Solar harvest prediction supported by cloud cover forecasts. In: Pro-
ceedings of the 1st ACM International Workshop on Energy Neutral Sensing Sys-
tems, ENSsys 2013, ACM (2013)

21. Renner, C., Meier, F., Turau, V.: Policies for predictive energy management with
supercapacitors. In: International Conference on Pervasive Computing and Com-
munications Workshops, PERCOM Workshops 2012 (2012)

22. Ruprecht, A.A., et al.: Mass calibration and relative humidity compensation
requirements for optical portable particulate matter monitors: the IMPASHS
(impact of smoke-free policies in EU member states) Wp2 preliminary results.
Epidemiology 22(1), S206 (2011)

23. Steck, J.B., Rosing, T.S.: Adapting task utility in externally triggered energy har-
vesting wireless sensing systems. In: 2009 Sixth International Conference on Net-
worked Sensing Systems, INSS 2009, pp. 1–8. IEEE (2009)

24. STMicroelectronics: Datasheet STM32L072x8, September 2017. rev. 4
25. World Health Organization (WHO): Health Risks of Air Pollution in Europe

- HRAPIE Project: Recommendations for Concentration-response Functions for
Cost-benefit Analysis of Particulate Matter, Ozone and Nitrogen Dioxide. UN City,
Copenhagen, Denmark (2013)

26. Yang, J., Tilak, S., Rosing, T.S.: An interactive context-aware power management
technique for optimizing sensor network lifetime. In: Proceedings of the 5th Inter-
national Confererence on Sensor Networks, SENSORNETS 2016, vol. 1, pp. 69–76.
SciTePress (2016)

Mobility-Aware, Adaptive Algorithms for
Wireless Power Transfer in Ad Hoc

Networks

Adelina Madhja1,2, Sotiris Nikoletseas1,2, and Alexandros A. Voudouris3(B)

1 Department of Computer Engineering and Informatics, University of Patras,
Patras, Greece

madia@ceid.upatras.gr
2 Computer Technology Institute and Press “Diophantus” (CTI), Rion, Greece

nikole@cti.gr
3 Department of Computer Science, University of Oxford, Oxford, UK

alexandros.voudouris@cs.ox.ac.uk

Abstract. We investigate the interesting impact of mobility on the
problem of efficient wireless power transfer in ad hoc networks. We con-
sider a set of mobile agents (consuming energy to perform certain sensing
and communication tasks), and a single static charger (with finite energy)
which can recharge the agents when they get in its range. In particular,
we focus on the problem of efficiently computing the appropriate range
of the charger with the goal of prolonging the network lifetime. We first
demonstrate (under the realistic assumption of fixed energy supplies) the
limitations of any fixed charging range and, therefore, the need for (and
power of) a dynamic selection of the charging range, by adapting to the
behavior of the mobile agents which is revealed in an online manner. We
investigate the complexity of optimizing the selection of such an adap-
tive charging range, by showing that two simplified offline optimization
problems (closely related to the online one) are NP-hard. To effectively
address the involved performance trade-offs, we finally present a vari-
ety of adaptive heuristics, assuming different levels of agent information
regarding their mobility and energy.

1 Introduction

Over the last decade, the continuously increasing development and excessive
use of energy-hungry mobile devices (like smartphones, tablets, or even electric
vehicles; see [3,12]) in ad hoc networks, has given rise to the problem of efficient
power management under various objectives. A viable solution to this critical
problem, that has been extensively studied in the recent related literature due
to its efficiency and wide applicability, is the Wireless Power Transfer (WPT)

This work was supported by the Greek State Scholarships Foundation (IKY), and by
a PhD scholarship from the Onassis Foundation. The third author would like to thank
Ioannis Caragiannis for fruitful discussions at early stages of this work.

c© Springer Nature Switzerland AG 2019
S. Gilbert et al. (Eds.): ALGOSENSORS 2018, LNCS 11410, pp. 145–158, 2019.
https://doi.org/10.1007/978-3-030-14094-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14094-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-14094-6_10

146 A. Madhja et al.

technology using magnetic resonant coupling [11] combined together with ultra-
fast rechargeable batteries [13]. By exploiting such a technology, it is possible to
recharge the network devices as required and prolong their lifetime.

In rechargeable ad hoc networks, there are two main types of entities that
are distributed in the network area, called chargers and agents, respectively.
Usually, a charger is a special device that has high energy supplies and acts as a
transmitter, while an agent has significantly lower battery capacity and acts as a
receiver. The charger is responsible for the energy management in the network,
by effectively transferring parts of its energy to the agents. In contrast, the
agents are the actual network devices which consume energy while performing
communication and sensing tasks (like collecting and routing data) and are,
therefore, in need of energy replenishment to sustain their normal operation.

There are generally many different assumptions regarding the charging pro-
cess, whether there is a single or multiple chargers that are mobile or not, as well
as the information that is available about the energy levels and the locations of
the (possibly mobile) agents. As the survey of all these different settings are not
the main focus of this paper, we refer the interested reader to the book [20].

Our Contribution. We consider ad hoc networks that consist of mobile agents
and a single static charger. The agents move around following a mobility model
and consume energy for communication purposes. The charger is assumed to
have initial finite energy that can be used to replenish the battery of the agents
that get in its charging range. The finite energy assumption here is well motivated
in scenarios where we would like to cover isolated areas (for instance, mountains
where people go hiking) and there are simply no wired sources capable to provide
unlimited energy to the charger. See Sect. 2 for a description of our model.

As the mobility and energy consumption characteristics of the agents become
available online, the charger must respond to the behavior of the agents by
dynamically changing its transmission power which, in turn, defines the charging
range. The main objective of this adaptive selection of the charging range is to
extend the network lifetime, which can be defined as the time period during
which there is at least one agent with non-zero energy or the time period during
which a percentage of agents have non-zero energy; of course, this is not the only
objective that one may be interested in. To the best of our knowledge, this is
the first paper that systematically studies the setting where the charging range
is dynamically selected adaptively to the agents status.

We theoretically and experimentally showcase the need for adaptiveness. In
particular, for every possible fixed range that the charger may have, we identify
worst-case scenarios where there is always an adaptive solution that performs
better (see Sect. 3). In addition, we define two simplified offline optimization
problems that are closely related to the online multi-objective one, and prove
their computational intractability (see Sect. 4). Furthermore, we design three
adaptive algorithms and compare them to each other in terms of various metrics
using a non-trivial simulation setup, where we consider probability distributions
over randomized mobility and energy consumption scenarios that are designed
to test our methods in highly heterogeneous instances (see Sect. 5).

Mobility-Aware, Adaptive Algorithms for Wireless Power Transfer 147

Related Work. Mobility in ad hoc networks has been thoroughly studied and
many models have been proposed over the years. Generally, such mobility models
assume that the agents perform different kinds of random walks that may depend
on many different parameters [2,4], and even be influenced by social network
attributes that attempt to capture human behavior [10,16,21]. In this work,
we slightly deviate from previous work and adopt a mobility model that allows
us to construct many interesting mobility patterns for the agents, that can also
simulate cases where human mobility may be arbitrary, greedy or even irrational.

Recharging in mobile ad hoc networks has been the focus of many research
papers. Indicatively, Nikoletseas et al. [19] considered mobile ad hoc networks
with multiple static chargers of finite energy supplies, and evaluated (using real
devices) two algorithms that decide which chargers must be active during each
round, in order to maximize charging efficiency and achieve energy balance,
respectively. Angelopoulos et al. [1] also considered mobile ad hoc networks,
with the difference that there exists a single mobile charger that has infinite
energy and traverses the network in order to recharge the agents as needed.
They focused on designing optimal traversal strategies for the mobile charger
with the goal of prolonging the network lifetime.

He et al. [9] studied the energy provisioning problem to minimize the number
of chargers and compute where they should be located in the network area so
that all (possibly) mobile agents are always active (have or get enough energy
to complete their tasks). By taking into account an agent’s velocity and battery
capacity, Dai et al. [5] showed that the agent’s continuous operation cannot be
guaranteed, and introduced the Quality of Energy Provisioning (QoEP) metric
to characterize the expected time that the agent is actually active.

Dai et al. [6] considered static networks and studied the safe charging prob-
lem to maximize charging utility, while simultaneously ensuring that the elec-
tromagnetic radiation (EMR) does not exceed a threshold value at any point
of the network. In [7], the authors studied a variation, where the power of each
charger can be adjusted once at the beginning of time. Nikoletseas et al. [17]
studied the low radiation efficient wireless charging problem as well, but they
defined a different charging model that takes into account hardware constraints
for the chargers and the agents. The last two papers are the most related ones to
ours, in the sense that the power of each charger is adjustable. However, observe
that since the agents are static in both models considered in [7,17], each charger
adjusts its power only once, at the beginning of the time horizon. In contrast,
the power of the charger in our setting constantly changes over time, adaptively
to the behavior of the mobile agents which is revealed in an online manner.
Therefore, even though our setting and that of [7,17] are seemingly similar, they
are fundamentally different and uncomparable to each other.

There are several studies that deviate from the above modeling assumptions.
In particular, Zhang et al. [22] introduced the notion of collaborative charg-
ing, where the chargers are able to transfer energy to each other as well. This
feature was extended by Madhja et al. [14] in a hierarchical structure. Further-
more, recent studies do not even use chargers, but they assume that the agents

148 A. Madhja et al.

themselves are able to both receive and send power wirelessly [15,18]. Another
research direction deals with the simultaneous energy transfer and data collec-
tion by the charger (e.g. [23]). In this setting, practically, the charger acts as an
energy transmitter as well as a sink.

2 Model

There are n agents that move around in a bounded network area A, and a
single static charger that is positioned at the center of A. For simplicity, we
assume that A is represented by a rectangle defined by the points (0, 0) and
(xmax, ymax) on the Euclidean space. Hence, the position pcharger of the charger
is given by the coordinates (12xmax,

1
2ymax). Further, we assume that there is a

discrete time horizon T ∈ N≥0 consisting of a number of distinct rounds each
of which runs for a constant period of time τ . For every agent i, we denote by
pi(t) = (xi(t), yi(t)) ∈ A its position at the beginning of round t. The positions of
the agents are updated as they move around in A. For the charger, we denote by
R(t) ∈ [Rmin, Rmax] its range during round t. R(t) is decided by the transmission
power of the charger and defines a circle of radius R(t) around pcharger; let
CR(t) ⊆ A denote this circle on the plane. All agents that pass through CR(t)

during round t can get recharged (if they need to).

Mobility Model. At the beginning of each round t, every agent i randomly selects
a speed mode μi(t) ∈ [3] which indicates whether its velocity takes random values
in the intervals I1 = [0, 1

4vmax], I2 =
(
1
4vmax,

1
2vmax

]
, or I3 =

(
1
2vmax, vmax

]
,

where vmax is the maximum possible velocity. Each agent i performs a random
walk as follows. At round t, it starts from position pi(t) ∈ A, and randomly
chooses a new direction θi(t) ∈ [0, 2π) and a new velocity vi(t) ∈ Iμi(t). The
direction θi(t) together with pi(t), define a line along which the agent travels
with the chosen velocity vi(t) until it reaches its final position at the end of the
round, which is the position pi(t + 1) ∈ A at the beginning of the next round.
In particular, pi(t + 1) has coordinates xi(t + 1) = xi(t) + vi(t) · τ · cos θi(t) and
yi(t + 1) = yi(t) + vi(t) · τ · sin θi(t). We remark that if these equations do not
define a point in A, then the movement is redefined accordingly. Starting from
t = 1 and the initial deployment of the agents in A, the above process is repeated
for all rounds t ∈ [T].1

Energy Model. Let Ei(t) be the energy of agent i at the beginning of round t. All
agents have the same battery characteristics in the sense that they have the same
battery capacity B. We assume that initially all agents are fully charged, i.e.,

1 Notice that the mobility model we consider here is similar to the random way-point
model, but we also allow for special restrictions in the movements of the agents that
give birth to many interesting and extreme scenarios. We identify such worst-case
scenarios in Sect. 3 and utilize them in our experimental evaluation in Sect. 5, where
we consider probability distributions over both general and special mobility scenarios
to test our algorithms in highly heterogeneous settings.

Mobility-Aware, Adaptive Algorithms for Wireless Power Transfer 149

Ei(1) = B for every agent i. During round t, each agent i consumes an amount of
energy Ec

i (t) for communication purposes which depends on random sensing and
routing events. Since the thorough study of such events are out of the scope of this
paper, following previous work (e.g., see [1]), we simply assume that Ec

i (t) follows
a poisson probability distribution with expected value γi ∈ [γi

min, γ
i
max]. The

energy of agent i at the beginning of the next round t+1 (assuming no recharging
takes place), is equal to Ei(t+1) = max {0, Ei(t) − Ec

i (t)} . We remark that the
agents are assumed to not consume any energy due to movement as the necessary
energy can be supplied by different sources. For example, in any crowdsensing
scenario it is supplied by the humans that carry around their smart devices.

Charging Model. Let Echarger(t) denote the energy that the charger has at the
beginning of round t. We assume that the charger initially has some finite amount
of energy Echarger(1) = C that can be used to replenish the energy that the agents
consume. In particular, if the charger has the appropriate amount of energy, then
all agents that get in its range receive a positive amount of energy. Let fi(t) and
�i(t) be the first and last position of agent i that are in range. These may or
may not be defined depending on whether the agent travels through CR(t) or not;
Fig. 1 depicts an example of all possible cases about the relations between pi(t),
pi(t + 1), fi(t) and �i(t). The time that agent i spends in the charger’s range is
then equal to

T in
i (t) =

⎧
⎪⎨

⎪⎩

‖fi(t)−�i(t)‖
vi(t)

, if fi(t) �= �i(t), vi(t) �= 0

τ, if fi(t) = �i(t), vi(t) = 0
0, otherwise,

where ‖fi(t) − �i(t)‖ denotes the Euclidean distance between points fi(t) and
�i(t). We assume that agent i receives energy according to a simplified version
of the well-known Friis transmission equation. In particular,

Er
i (t) =

α · R(t)2 · T in
i (t)

(‖pcharger − fi(t)‖ + β)2
, (1)

where α and β are environmental and technological constants. The energy of
agent i at the beginning of round t+1 (accounting for both energy consumption
and recharging), is equal to Ei(t+1) = min {B,max{0, Ei(t) − Ec

i (t) + Er
i (t)}}.

Observe that the amount of energy that the agent receives must respect its
battery limit. Of course, the energy of the charger is also decreased accordingly.

3 The Need for Adaptiveness

Here, we aim to justify the need for algorithms that dynamically change the
charging range over time by adapting to the behavior of the agents. The simplest
algorithm that one could come up with, is to have the range fixed during the
whole period of time; this is the typical algorithm that has been used in most of

150 A. Madhja et al.

pcharger

f2(t) = p2(t)

p1(t)

p3(t)

f4(t) = p4(t)

p5(t)

p1(t + 1)
�2(t) = p2(t + 1)

�3(t) = p3(t + 1)

p4(t + 1)

p5(t + 1)

f3(t)

f5(t)

�5(t)
�4(t)

Fig. 1. An example of all possible cases regarding the relation between the line along
which an agent may travel and CR(t). Here, agent 1 does not get in range and, hence,
f1(t) and �1(t) are undefined. Agent 2 starts and ends in range, agent 3 starts out of
range but ends up inside, agent 4 starts inside but ends up out of range, and finally
agent 5 travels through CR(t).

the related literature so far. However, observe that there are essentially infinitely
many different fixed values. Therefore, finding the one that works efficiently (with
respect to the various objectives that we could be interested in) for every possible
instance is improbable. In fact, in the following we will prove that this is actually
impossible.

We begin by showing that for any fixed non-max range value there exists an
instantiation of the agents’ movements for which no recharging will take place.

Proposition 1. For any range value R < Rmax, there exists a scenario for
which fixing the range equal to R is equivalent to not using a charger at all.

Proof. Consider the mobility scenario according to which no agent ever passes
through the circle CR. Then, if the range is set to R for the whole period of time,
no agent will ever get recharged. ��

A scenario similar to the one in the proof of Proposition 1 exists even for the
maximum possible range Rmax. However, in such a case there exists no algorithm
that can do any better. Hence, we need to make the critical assumption that all
agents will pass through the circle CRmax at least once. Next, we prove a stronger
statement that holds true even when we consider the maximum range value.

Proposition 2. There exists a scenario for which setting the charger’s range
equal to any fixed value R is not optimal.

Proof. Consider the scenario according to which the agents get in range only
when their energy levels are below a threshold. Assume that the agents have the
following energy consumption characteristics. There are n − 1 agents with small
energy consumption and a single greedy agent that consumes all of its available
energy, at every round.

Mobility-Aware, Adaptive Algorithms for Wireless Power Transfer 151

If the charger’s range is fixed to any R during the whole time horizon, this
single greedy agent can choose its in-range position so that it gets its battery
fully recharged. As a result, the charger’s energy can be quickly drained out (if
the initial energy is small enough), before the other agents have a chance to get
recharged. In contrast, consider the algorithm that adapts to the behavior of
this greedy agent and, in each round, sets the range such that this agent gets
a minimum amount of energy. For example, it can set the range equal to the
distance between the agent and the charger so that, according to Eq. (1), it gives
to the agent only a small amount of energy every time. This way, the charger
conserves energy for the rest of the agents and the network’s lifetime can be
expanded. ��

4 Optimization Problems

In this section, we define two simplified offline optimization problems and prove
their computational intractability. These two problems are closely related to the
online one that we defined in the previous sections, and each of them focuses
on a particular objective goal, the number of charges that are performed by the
charger during a given time horizon, and the number of rounds during which the
network is active, respectively. The hardness of these problems is only indicative
of the hardness of the actual online multi-objective problem.

As input, we are given all information about the behavior of the agents
during a time horizon T . The charger has initial energy C and its range can be
chosen from a set of k distinct values {R1, ..., Rk} such that 0 ≤ R1 < ... < Rk.
All non-fully charged agents that are in the specified charging range receive
appropriate energy according to the adopted charging model. For any t ∈ [T],
the objective of MNC (standing for Maximize Number of Charges) is to
set the range R(t) of the charger in order to maximize the total number of
recharged agents until the charger is left out of energy. The objective of MNL
(standing for Maximize Network Lifetime) is to set the range R(t) in order
to maximize the total rounds during which there exists at least one agent with
non-zero (strictly positive) energy.

Theorem 1. MNC is NP-hard, even for two range values.

Proof. We use a reduction from the Knapsack Problem (KP, for short) which
is known to be NP-hard [8]. Its formal description is as follows.

KP: Consider a collection of q items a1, ..., aq such that item ai has value
v(ai) ∈ R≥0 and weight w(ai) ∈ R≥0. We are given a knapsack of capacity
W ∈ R≥0, and the goal is to select a set of items of total weight at most
W ∈ R≥0 in order to maximize the total value of these items.

Given an instance of KP we will design an instance of MNC. First, without
loss of generality, we assume that the values of the items as well as the weight
W of the knapsack in the instance of KP are rescaled so that they are integer

152 A. Madhja et al.

numbers (for example they are all multiplied by some large number). Second,
there are no items with zero value (as such items can be discarded) and no items
with zero weight (as such items are for free).

Now, our MNC instance is as follows:

– There are n = maxt v(at) agents with battery B = maxt
w(at)
v(at)

.
– The initial energy of the charger is C = W (the knapsack corresponds to the

charger).
– There are T = q rounds (every item corresponds to a round) and each of

them lasts for a unit of time.
– The range of the charger can either be set to 0 or R = maxt

√
w(at)
v(at)

; essen-
tially, the charger is either inactive or active (and its range is R).

– For each round t, the movement and energy consumption characteristics of
the agents are as follows. At the beginning of the round, all agents are fully

charged. There is a set At of exactly v(at) agents at distance dt = R
√

v(at)
w(at)

each of whom travels along the circle Cdt
, and consumes energy equal to

w(at)
v(at)

≤ B in case the charger is active, and 0 otherwise; such an energy
consumption may be due to the communication of the agents with the charger
itself. All other agents (if there are any) do not have any energy consumption
during round t and move arbitrarily (but consistently to future positioning
requirements).

Now, let us focus on an arbitrary round t ∈ [q]. If the charger is inactive
during this round, then of course no agent gets recharged. However, according
to the above specified energy consumption characteristics, all agents remain fully
charged in such a case. On the other hand, if the charger is active during round
t, then according to Eq. (1) with α = 1 and β = 0, every agent in At receives
energy equal to

R2

d2t
=

R2

R2 v(at)
w(at)

=
w(at)
v(at)

,

which is exactly its energy consumption during this round. Therefore, the charger
needs to spend w(at) units of energy in total in order to fully recharge these v(at)
agents during round t. In other words, the number of charges corresponds to the
total value of the selected items and the total needed energy corresponds to the
total weight of these items. Consequently, any set of items with maximum total
value satisfying the knapsack capacity corresponds to a set of rounds during
which the charger is active with maximum number of charges satisfying the
initial energy of the charger, and vice versa. The proof is complete. ��
Theorem 2. MNL is NP-hard, even for one agent and two range values.

Proof. We again use a reduction from KP (see the proof of Theorem 1 for its
formal definition). Given an instance of KP, we define an instance of MNL:

– There is a single agent with battery B = maxi w(ai).

Mobility-Aware, Adaptive Algorithms for Wireless Power Transfer 153

– The initial energy of the charger is C = W (the knapsack corresponds to the
charger).

– Every round lasts for a unit of time.
– The charger can either be inactive with zero range or active with range R =

maxi

√
w(ai)
v(ai)

.
– During the first round t1, the agent is out of the range of the charger and

consumes all of its battery. For each item i ∈ [q], there is time horizon Ti

consisting of v(ai) rounds. During the first of these rounds the agent is in
range at fixed distance di = R

√
1

w(ai)
(for example it travels along the circle

Cdi
or is static), while for the remaining v(ai) − 1 rounds, the agent moves

out of range and has a total energy consumption of w(ai) ≤ B so that during
all these rounds it has non-zero energy. These q time horizons are continuous,
given a permutation of the items: T = t1 ∪i Ti.

If the charger is inactive during the first round of any time horizon Ti, then
the agent does not get and does not have any energy during Ti (a total of v(ai)
rounds). On the other hand, if the charger is active during the first round of Ti,
since the agent is at distance di from the charger, and using Eq. (1) with α = 1
and β = 0, the energy that the agent receives by the charger is equal to

R2

d2i
=

R2

R2 1
w(ai)

= w(ai),

which is exactly the energy that it consumes during Ti. Therefore, if the charger
is active during the first round of Ti, the agent is active for v(ai) rounds and the
charger spends w(ai) units of energy. As a result, the number of rounds that the
agent is active is equal to the total value of the selected items. Hence, any set of
items with maximum total value satisfying the knapsack capacity corresponds
to a set of time horizons with maximum number of rounds (during which the
agent is active) satisfying the energy capacity of the charger, and vice versa. The
proof is complete. ��

5 Adaptive Algorithms and Experimental Evaluation

We propose three adaptive algorithms and experimentally compare them to each
other. The algorithms are presented in an increasing order in terms of the knowl-
edge they require in order to decide the charging range during any round t.

Least Distant Agent or Maximum Range (LdMax). The LdMax algorithm uses
a parameter q ∈ [0, 1] and works as follows. At the beginning of each round t,
it sets R(t) := max{Rmin,mini:pi(t)∈CRmax

‖pcharger − pi(t)‖} with probability q,
and R(t) := Rmax otherwise (with probability 1 − q).

154 A. Madhja et al.

Maintain Working Agents (MWA). The MWA algorithm uses a parameter μ ∈
[n] and, during each round t, sets the range R(t) in an attempt to guarantee that
there are at least μ working agents in the network (i.e. agents that either have
positive energy at the beginning of the round or get recharged during it). To
find the appropriate range R(t) it works as follows. First, it counts the number
k1(t) of agents that are in CRmax and have positive energy at the beginning of
the round. If k1(t) ≥ μ, then it sets R(t) := Rmin since the requirement is
already satisfied. Otherwise, it counts the number k2(t) of agents that have zero
energy at the beginning of the round and pi(t) ∈ CRmax or pi(t + 1) ∈ CRmax .
If k1(t) + k2(t) < μ, then it sets R(t) := Rmax since the requirement cannot
be satisfied. Otherwise, it searches for the smallest R∗ such that the circle CR∗

covers at least μ − k1(t) agents, and sets R(t) := R∗.

Maximize Charges over Energy Ratio (MCER). Let R be a set of discrete range
values in [Rmin, Rmax]. Let νj(t) be the number of agents that get recharged
when the range is equal to Rj ∈ R during round t, and let εj(t) be the total
given energy in this case. The MCER algorithm uses a parameter λ ≥ 1 and sets
R(t) := arg max

Rj∈R
νj(t)

λ

εj(t)
. This algorithm attempts to strike a balance between the

number of charges and the energy that it has to give in order to perform these
charges. However, observe that it needs to perform many heavy computations
as, in order to choose the best range, it has to simulate the whole recharging
process multiple times.

Simulation Setup. We now experimentally compare these adaptive algorithms.
We consider a simulation setup2 with n = 100 agents that move around in a
25 × 25 network area A. The charger is positioned at the center of A, has initial
energy C = 105, and its range can take values in [1, 5]. Each agent has battery
B = 1000, maximum velocity vmax = 3, and its speed mode is redefined with
probability 1/4 in each round. Also, the agents are randomly partitioned into
4 groups, namely, (S1, S2, S3, S4) of expected sizes

(
n
2 , n

4 , n
8 , n

8

)
. Then, agent i

consumes energy following a poisson distribution with randomly chosen expected
value γi such that γi ∈ [0, 10 · 2j−1] if i ∈ Sj . We remark that the expected
values are chosen non-uniformly from the corresponding intervals so that there
is heterogeneous energy consumption among the agents.

For the agent mobility behavior we consider three randomized scenarios:
(S1) All agents randomly move around in A; (S2) Choose R ∈ [Rmin,

1
2Rmax]

uniformly at random so that no agent is allowed to enter circle CR; (S3) Choose
δ ∈ [� n

10�], R� ∈ [
Rmin,

1
4 (Rmin + Rmax)

)
and Rh ∈ [

1
4 (Rmin + Rmax), Rmax

]

uniformly at random so that δ agents live in the ring CRh
\ CR�

, while the
remaining (n − δ) agents randomly move around in A. We create a probabil-
ity distribution over these three mobility scenarios by repeating our simulation
2 We remark that the setup that we present here is only indicative. Actually, we have

experimented with many different setups that differ on the number of agents and
their battery capacity, the network size, and the initial energy of the charger. For
all such setups, the relative performance of our algorithms is similar.

Mobility-Aware, Adaptive Algorithms for Wireless Power Transfer 155

0 500 1000 1500 2000 2500

Rounds

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
an

ge
 o

f c
ha

rg
er

LdMax(0.9)
MWA(15)
MCER(2)
Rmax

(a)

0 500 1000 1500 2000 2500

Rounds

0

1

2

3

4

5

6

7

8

9

10

E
ne

rg
y

of
 c

ha
rg

er

×104

LdMax(0.9)
MWA(15)
MCER(2)
Rmax

(b)

0 500 1000 1500 2000 2500

Rounds

0

5

10

15

N
um

be
r

of
 c

ha
rg

es

LdMax(0.9)
MWA(15)
MCER(2)
Rmax

(c)

0 500 1000 1500 2000 2500

Rounds

0

10

20

30

40

50

60

70

80

90

100

N
um

be
r

of
 w

or
ki

ng
 a

ge
nt

s

LdMax(0.9)
MWA(15)
MCER(2)
Rmax

(d)

0 500 1000 1500 2000 2500

Rounds

0

10

20

30

40

50

60

70

80

90

100

N
um

be
r

of
 a

ge
nt

s
w

ith
 a

de
qu

at
e

en
er

gy

LdMax(0.9)
MWA(15)
MCER(2)
Rmax

(e)

0 10 20 30 40 50 60 70 80 90 100

Agent

30

40

50

60

70

80

90

100

110

120

C
ha

rg
in

g
fr

eq
ue

nc
y

LdMax(0.9)
MWA(15)
MCER(2)

(f)

Fig. 2. Comparison between the three adaptive algorithms LdMax(0.9), MWA(15) and
MCER(2) as well as the fixed Rmax value algorithm. Figure (a) depicts the evolution
of the charging range over time. Figure (b) depicts the decrease of the charger’s energy
over time. Figure (c) depicts the number of charges that were performed over time.
Figure (d) depicts the number of working agents over time. Figure (e) depicts the
number of agents with adequate energy over time. Figure (f) depicts the charging
frequency of the agents (the number of times they were recharged). The simulated data
presented here are averages over 100 executions. The performance of each algorithm in
the different executions is robust and sharply concentrated around the depicted average
value.

156 A. Madhja et al.

for 100 times so that a different scenario is chosen equiprobably every time.
Observe that there are many different random choices to be made and these give
birth to many different instantiations. The goal is to test our algorithms under
a highly heterogeneous setting.

Results and Interpretation. After extensive fine-tuning of the parameters used
by our adaptive algorithms, we have concluded that setting q = 0.9, μ = 15 and
λ = 2 are the best values for the particular simulation setup that we consider
here. In general, we expect q to depend heavily on the density of the network;
it should be smaller for more sparse networks. On the other hand, λ = 2 seems
to nicely balance the ratio considered by MCER due to the fact that the given
energy is of square order according to Eq. (1). Finally, parameter μ can be picked
by the designer to maintain a sufficient number of agents, depending on the needs
of the network, the energy of the charger, etc.

Due to its definition, MWA guarantees for a long period of time a stable
number of working agents (as well as agents with adequate energy). However,
MCER seems to outperform the other two algorithms in terms of the total
number of charges and the charging frequency of the agents. Essentially, MWA
and MCER work in exactly opposite ways, while LdMax lies somewhere in-
between of these two, due to its randomized nature.

To interpret this data, we will briefly analyze how MWA and MCER respond
to the behavior of the agents by inspecting Fig. 2a which displays the evolution
of the charging range over time depending on the algorithm. During the early
rounds of the simulation, most of the agents are considered working since they
are initially fully charged. Therefore, the requirement of maintaining 15 working
agents is trivially satisfied and MWA starts by having the minimum possible
range, so that it stores energy for future use (see Fig. 2b). In contrast, MCER
chooses a higher range in order to perform more charges while giving away little
energy; since the agents already have energy, they request only a small amount
of energy when they get in range, which means that the cost (in energy) per
charge is quite small. However, as the time progresses, the energy levels of the
agents gradually get lower, there are less working agents, and when an agent
gets in range requests for more energy. As a result, MWA is forced to increase
the range in order to keep satisfying the requirement of maintaining 15 working
agents, while MCER decreases its range as the cost per charge has increased
substantially.

6 Conclusion and Possible Extensions

In this paper, we studied the problem of dynamically selecting the appropriate
charging range of a single static charger to prolong the lifetime of a network
of mobile agents. We proved the hardness of the problem, and presented three
interesting heuristics that perform fairly well in the simulation setups that we
considered. Of course, there are multiple interesting future directions.

Can we design better adaptive algorithms that perform well under any pos-
sible scenario regarding the agents’ characteristics? An interesting way to try

Mobility-Aware, Adaptive Algorithms for Wireless Power Transfer 157

to tackle this, would be to consider a machine learning like approach. In par-
ticular, given statistical information (a prior probability distribution) about the
behavior of the agents, is it possible to learn the “correct” sequence of values
for the charging range in order to prolong the network lifetime as much as pos-
sible, while maintaining a fair amount of working agents? We remark that our
algorithms do not exploit such training information, and function based only on
the online behavior of the agents. Another possible direction could be to con-
sider the natural generalization of using multiple chargers that can move around
in the network, and even be able to charge each other. This, couples (in a non-
trivial way) our work together with that of Angelopoulos et al. [1], and definitely
deserves investigation.

References

1. Angelopoulos, C.M., Buwaya, J., Evangelatos, O., Rolim, J.D.P.: Traversal strate-
gies for wireless power transfer in mobile ad-hoc networks. In: Proceedings of the
18th ACM International Conference on Modeling, Analysis and Simulation of Wire-
less and Mobile Systems (MSWiM), pp. 31–40 (2015)

2. Bettstetter, C., Resta, G., Santi, P.: The node distribution of the random waypoint
mobility model for wireless ad hoc networks. IEEE Trans. Mob. Comput. 2(3),
257–269 (2003)

3. Bi, Z., Kan, T., Mi, C.C., Zhang, Y., Zhao, Z., Keoleian, G.A.: A review of wireless
power transfer for electric vehicles: prospects to enhance sustainable mobility. Appl.
Energy 179, 413–425 (2016)

4. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network
research. Wirel. Commun. Mob. Comput. 2(5), 483–502 (2002)

5. Dai, H., Chen, G., Wang, C., Wang, S., Wu, X., Wu, F.: Quality of energy pro-
visioning for wireless power transfer. IEEE Trans. Parallel Distrib. Syst. 26(2),
527–537 (2015)

6. Dai, H., et al.: Safe charging for wireless power transfer. IEEE/ACM Trans. Netw.
25(6), 3531–3544 (2017)

7. Dai, H., et al.: SCAPE: safe charging with adjustable power. IEEE/ACM Trans.
Netw. 26(1), 520–533 (2018)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, San Francisco (1979)

9. He, S., Chen, J., Jiang, F., Yau, D.K.Y., Xing, G., Sun, Y.: Energy provisioning in
wireless rechargeable sensor networks. IEEE Trans. Mob. Comput. 12(10), 1931–
1942 (2013)

10. Hrabcák, D., Matis, M., Dobos, L., Papaj, J.: Students social based mobility model
for MANET-DTN networks. Mob. Inf. Syst. 2017, 2714595:1–2714595:13 (2017)

11. Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J.D., Fisher, P., Soljačić,
M.: Wireless power transfer via strongly coupled magnetic resonances. Science
317(5834), 83–86 (2007)

12. Li, S., Mi, C.: Wireless power transfer for electric vehicle applications. IEEE J.
Emerg. Sel. Top. Power Electron. 3, 4–17 (2015)

13. Lin, M., et al.: An ultrafast rechargeable aluminium-ion battery. Nature 520, 324
(2015)

158 A. Madhja et al.

14. Madhja, A., Nikoletseas, S.E., Raptis, T.P.: Hierarchical, collaborative wireless
energy transfer in sensor networks with multiple mobile chargers. Comput. Netw.
97, 98–112 (2016)

15. Madhja, A., Nikoletseas, S.E., Raptopoulos, C., Tsolovos, D.: Energy aware net-
work formation in peer-to-peer wireless power transfer. In: Proceedings of the 19th
ACM International Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems (MSWiM), pp. 43–50 (2016)

16. Musolesi, M., Hailes, S., Mascolo, C.: An ad hoc mobility model founded on social
network theory. In: Proceedings of the 7th International Symposium on Modeling
Analysis and Simulation of Wireless and Mobile Systems (MSWiM), pp. 20–24
(2004)

17. Nikoletseas, S.E., Raptis, T.P., Raptopoulos, C.: Radiation-constrained algorithms
for wireless energy transfer in ad hoc networks. Comput. Netw. 124, 1–10 (2017)

18. Nikoletseas, S.E., Raptis, T.P., Raptopoulos, C.: Wireless charging for weighted
energy balance in populations of mobile peers. Ad Hoc Netw. 60, 1–10 (2017)

19. Nikoletseas, S.E., Raptis, T.P., Souroulagkas, A., Tsolovos, D.: Wireless power
transfer protocols in sensor networks: experiments and simulations. J. Sens. Actu-
ator Netw. 6(2), 4 (2017)

20. Nikoletseas, S.E., Yang, Y., Georgiadis, A. (eds.): Wireless Power Transfer Algo-
rithms, Technologies and Applications in Ad Hoc Communication Networks.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-46810-5

21. Vastardis, N., Yang, K.: An enhanced community-based mobility model for dis-
tributed mobile social networks. J. Ambient Intell. Humaniz. Comput. 5(1), 65–75
(2014)

22. Zhang, S., Wu, J., Lu, S.: Collaborative mobile charging. IEEE Trans. Comput.
64(3), 654–667 (2015)

23. Zhao, M., Li, J., Yang, Y.: Joint mobile energy replenishment with wireless power
transfer and mobile data gathering in wireless rechargeable sensor networks. In:
Nikoletseas, S., Yang, Y., Georgiadis, A. (eds.) Wireless Power Transfer Algo-
rithms, Technologies and Applications in Ad Hoc Communication Networks, pp.
667–700. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46810-5 25

https://doi.org/10.1007/978-3-319-46810-5
https://doi.org/10.1007/978-3-319-46810-5_25

Distributed Leader Election
and Computation of Local Identifiers

for Programmable Matter

Nicolas Gastineau(B), Wahabou Abdou, Nader Mbarek, and Olivier Togni

LE2I, Université Bourgogne Franche-Comté, Dijon, France
nicolas.gastineau@u-bourgogne.fr

Abstract. The context of this paper is programmable matter, which
consists of a set of computational elements, called particles, in an infi-
nite graph. The considered infinite graphs are the square, triangular and
king grids. Each particle occupies one vertex, can communicate with
the adjacent particles, has the same clockwise direction and knows the
local positions of neighborhood particles. Under these assumptions, we
describe a new leader election algorithm affecting a variable to the par-
ticles, called the k-local identifier, in such a way that particles at close
distance have each a different k-local identifier. For all the presented
algorithms, the particles only need a O(1)-memory space.

Keywords: Programmable matter · Leader election · Identifier ·
Graph coloring

1 Introduction

Programmable matter can be seen as modular robots (called modules or par-
ticles) able to fix to adjacent modules and send (receive) messages to (from)
other modules fixed to the entity. Thus, the different modules form a geometric
shape which is a network. Usually, a module can fix to another module using
a finite number of ports (see Fig. 1 for an example of spherical modules). Also,
the modules know the ports that are in contact with other modules and have
a knowledge about the geographic position of their ports. Moreover, the ports
are supposed to be homogeneously distributed along the surface of each module.
Such assumptions imply that the way how the modules are on a plane can be
modeled by a grid. In this paper, we only consider modules on a plane surface,
i.e. two dimensional grids. In this context, the geometric amoebot model [6–11]
aims to model the properties of a network for programmable matter.

Distributed algorithms aim to give a theoretical algorithmic framework in
order to model the execution of an algorithm that runs on a network of com-
putational elements that can cooperate in order to solve network problems. In
distributed algorithm frameworks, it is often supposed that the different elements
of the network do not have a unique identity, i.e., the network is anonymous. In
c© Springer Nature Switzerland AG 2019
S. Gilbert et al. (Eds.): ALGOSENSORS 2018, LNCS 11410, pp. 159–179, 2019.
https://doi.org/10.1007/978-3-030-14094-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14094-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-14094-6_11

160 N. Gastineau et al.

anonymous networks, a natural question is how to perform a leader election, i.e.,
how to determine a singular element in an anonymous network. It is well known
that for some network structures, the ring for example, there is no deterministic
leader election algorithm [1].

In 1999, Mazurkiewicz [19] has presented a deterministic general algorithm to
determine a leader (in the case it is possible to do so). In the situation where the
elements have access to a random source, then it is also proven that no algorithm
can correctly determine a leader in a ring with any probability α > 0 [15]. Due
to the assumption we make about the ports of the particles in the context of
programmable matter (a particle knows the ports which are in contacts with
other particles and knows the geographic position of its ports), the leader election
problem becomes different than in the classical system. In particular, in the field
of programmable matter, there exists a probabilistic algorithm that determine
a leader (and in particular for a ring) with probability 1 [5].

Several projects aim to build programmable matter prototypes. One of such
projects [20,23], financed by the french National Agency for Research, aims to
build cuboctahedral particles able to deform them-selves in order to move. This
project can be split in two phases, one consists in manufacturing the hardware of
prototype matters, the second consists in proposing algorithms for programmable
matter. The final goal of this project is to sculpt a shape-memory polymer sheet
with programmable matter. In the continuity of the algorithm phase of this
project [20], we propose algorithms for the self-configuration, i.e., in order to
create identifiers and spanning trees.

In the context of programmable matter [3,4,14,18,23,24], it is supposed that
a network can contain several millions of modules and that each module has
possibly a nano-centimeter size. These two facts lead us to believe that even a
O(log(n))-space memory for each module, n being the number of modules, is
not technically possible. Also, because of the large number of modules, it can
be very challenging and time consuming to implement a unique identity to the
modules when they are created. In this context, we suppose that the modules
can not store a unique identity, i.e., that the network is anonymous. In this
paper we propose deterministic O(1)-space memory algorithms to determine a
leader in the network and to create k-local identifiers of the particles. A k-local
identifier is a variable affected to each module of the network which is different
for every two modules at distance at most k. Note that leader election [5,13]
plays a significant role in numerous problems of programmable matter.

Our contribution is the following: we introduce a leader election algorithm
based on local computations and simple to implement. This algorithm works
when the structure the particles form has no hole (see Sect. 3). Also, since
the algorithm can be described as a sequence of local computations, its lim-
its (message complexity, required memory-space, etc.) are easy to analyze. We
present a distributed algorithm to construct a spanning tree in the context of
programmable matter and, also, a distributed algorithm to re-organize the port
numbers of the particles. Finally, we present an algorithm to assign a k-local
identifier to each particle. In order to compute k-local identifiers, we suppose

Distributed Leader Election and Computation of Local Identifiers for PM 161

Fig. 1. Five spherical particles forming a simple structure (circle: port of the particles).

that we have done a leader election before. The k-local identifiers are deter-
mined using graph theoretical results about the coloring of the kth power of the
grids. An advantage of the given k-local identifiers is that they are really simple
to update in case the particles move and, consequently, the structure that the
particles form changes.

This paper is organized as follows: in Sect. 2, we present our algorithmic
framework in the context of distributed algorithms for programmable network.
In the third section, we present our leader election algorithm. Finally, in Sect. 4,
we present our algorithm to assign k-local identifiers to the particles (using the
colorings from AppendixD).

2 Notation, Definitions and Our Programmable Matter
Algorithmic Framework

The geometric amoebot model [6–11] aims to model the computations that can
occur in the context of programmable matter. In this paper, we use an algorith-
mic framework inspired by the geometric amoebot model. We assume that any
structure the different particles can form is a subgraph of an infinite graph G.
In this graph, V (G) represents all possible positions the particles can occupy
and E(G) represents possible connections between particles. The set E(G) also
represents the possible movements from a position to another position (for a par-
ticle). We suppose that two particles can bond each other, i.e., can communicate
only in the case they are on adjacent positions. The two following paragraphs
are dedicated to the notation and definitions we use for graphs.

For a graph G, we denote by V (G) the vertex set of G and by E(G) ⊆ V (G)×
V (G) the edge set of G. We denote by dG(u, v), the usual distance between two
vertices u and v in G. If we consider the distance in a subgraph H of G, the
distance will be denoted by dH(u, v). The diameter of G, denoted by diam(G),
is max({dG(u, v)| u, v ∈ V (G)}). The set NG(u) = {v ∈ V (G)| uv ∈ E(G)} is
the set of neighbors of u. By Δ(G), we denote the maximum degree in G, i.e.,
the maximum cardinality of NG(u), for u ∈ V (G). Finally, we denote by G[S],
for S ⊆ V (G), the subgaph induced by the vertices from S and by G − S the
subgraph of G induced by the vertices from V (G) \ S.

In the remaining part of this paper, the graphs considered will be the infinite
square, triangular and king grids. We denote by S the square grid, by T the

162 N. Gastineau et al.

Fig. 2. Subgraphs of the square (a), triangular (b) and king (c) grids, with the port
numbers of two particles.

triangular grid and by K the king grid. A subgraph of each of these three infinite
graphs is represented in Fig. 2. Moreover, we suppose that these three grids are
represented on a plane as in Fig. 2. For these grids, the considered vertex set is
{(i, j)| i, j ∈ Z} and the edge sets are the following:

– E(S) = {(i, j)(i ± 1, j)| i, j ∈ Z} ∪ {(i, j)(i, j ± 1)| i, j ∈ Z};
– E(T) = E(S) ∪ {(i, j)(i + 1, j − 1)| i, j ∈ Z} ∪ {(i, j)(i − 1, j + 1)| i, j ∈ Z};
– E(K) = E(T) ∪ {(i, j)(i + 1, j + 1)| i, j ∈ Z} ∪ {(i, j)(i − 1, j − 1)| i, j ∈ Z}.

We also remind the distance between two vertices (i, j) and (i′, j′) in the three
different grids:

– dS((i, j), (i′, j′)) = |i − i′| + |j − j′|;
– dT((i, j), (i′, j′)) =

{
max(|i − i′|, |j − j′|), if (i≥ i′ ∧ j ≤ j′)∨(i≤ i′ ∧ j ≥ j′);
|i − i′| + |j − j′|, otherwise;

– dK((i, j), (i′, j′)) = max(|i − i′|, |j − j′|).

Note that there is a way to draw the triangular grid in which each triangle is
equilateral. However, we prefer to draw it as a subgraph of the king grid (see
Fig. 2) in order to have illustrations for which the vertex set {(i, j)| i, j ∈ Z}
corresponds to the position of the vertices in the plane. In both representation,
the notion of distance coincide but is easier to observe in our chosen represen-
tation. However, note that the representation of the triangular grid in which
each triangle is equilateral corresponds to the optimal way to pack unit disks in
the plane (the position of the vertices in this representation corresponds to the
center of the unit disk and an edge represents a contact between two disks).

We also denote by i (mod p) or i (mod p), depending on the context, the
integer j such that j ≡ i (mod p) and 0 ≤ j < p. The remaining part of this
subsection is dedicated to our programmable matter algorithmic framework.

Distributed Leader Election and Computation of Local Identifiers for PM 163

We give the following properties about the particles and vertices of the graph:

– each particle occupies a single vertex and each vertex is occupied by at most
one particle;

– the subgraph induced by the occupied vertices is supposed to be connected.

The subgraph induced by the occupied vertices of V (G) is called the particle
graph and is denoted by P . The vertex occupied by a particle p is denoted by
s(p). For a particle p, NG(p) = {u ∈ V (G)| u ∈ NG(s(p))}. The ports of a
particle are the endpoints of communication. Each particle has Δ(G) ports in
a regular grid G (Δ(G) = 4 for G = S, Δ(G) = 6 for G = T and Δ(G) = 8
for G = K). The ports of a particle occupying a vertex u are represented by
the edges incident with u. An edge between two vertices represents a possible
communication between two particles p1 and p2 occupying these two vertices
using each one a different port. A particle has the following properties:

– each particle is anonymous, i.e., it does not have an identifier;
– each particle has a collection of ports, each labeled by a different integer from

{0, . . . , Δ(G) − 1};
– the port numbers are given as a function of the position of the edges on a

plane representation of the grids (see Fig. 2);
– each particle knows the labels of the ports that can communicate with parti-

cles from the neighborhood;
– each particle knows the state of the neighbors.

In our algorithmic framework, we suppose that the particles have their ports
labeled following the same clockwise order. Thus, consecutive port numbers cor-
respond to consecutive edges around a vertex (as in the representation on the
plane from Fig. 2). Note that the particles do not have the same notion of ori-
entation, i.e., there is possibly not a unique label for ports that correspond to
edges going in the same cardinal direction. In the presented algorithms, the state
of a particle will contain a variable corresponding to the status of the particle
in the leader election algorithm and the information regarding its parents and
childs for a constructed spanning tree.

The proposed algorithms in our algorithmic framework are results of succes-
sive local computations [2,21]. In particular, the first presented leader election
algorithm from Sect. 3 can be described by a graph relabeling system [2] which is
a local computation system. In this paper, the correct execution of the different
algorithms is only guaranteed if the algorithms are ran in the order depicted in
Fig. 3.

We suppose the following:

– each particle contains the same program and begins in the same state;
– the computation process is represented by successive local computations;
– no local computation occurs simultaneously on two particles at distance at

most 2;
– during a local computation, a particle can perform a bounded number of

computations and can send messages to its neighbors;

164 N. Gastineau et al.

Fig. 3. An illustration of the algorithm dependency (arrow between algorithms/results:
dependency of one algorithm to another algorithm/result).

– a round is a sequence of successive local computations for which each particle
does at least one local computation;

– an algorithm finishes in k rounds if after any k successive rounds the algorithm
is finished.

Note that the concept of rounds is used to bound the running time of the algo-
rithms. In our algorithm framework we suppose that no two particles at distance
at most 2 perform computations simultaneously in order to simplify the presen-
tation of our results. However, this supposition can be removed by implementing,
for example, a probabilistic leader election algorithm on the vertices at distance
at most 2 of one of the two vertices, i.e., by computing a random value on the
vertices at distance 2 and doing the local computation following the increasing
order of the values. In order to compute the running time of an algorithm in
case of a specific programmable matter prototype, the complexity of the algo-
rithm should be computed using the required number of rounds and the required
running time in order to avoid that two particles at distance at most 2 perform
computations simultaneously.

3 Leader Election

In this section we present a new leader election algorithm. This algorithm is very
easy to implement but requires that the particle graph has a specific structure.
In this algorithm, the required memory space is constant, the messages have
constant size, the required computation power of the particle has been optimized
and the required number of rounds is less than 2n (n being the number of
particles).

A hole in a subgraph G′ of a graph G among the three grids is a subgraph
H of G satisfying three properties:

(i) V (H) is finite, H is connected and |V (H)| ≥ 1;
(ii) V (H) ∩ V (G′) = ∅;
(iii) every vertex u ∈ V (H) satisfies NG(u) ⊆ V (H) ∪ V (G′).

Less formally, a subgraph G′ of one of the three grids contains a hole if there is
a finite space only containing vertices from V (G) \ V (G′) which are surrounded
by vertices of G′. A hole containing three vertices is illustrated in the left part
of Fig. 4. We call G′ hole-free, when G′ has no holes.

Distributed Leader Election and Computation of Local Identifiers for PM 165

Fig. 4. A hole in P (on the left) and the border of P in the case P is hole-free (on the
right; square: particle on the border of P).

If the particle graph P on G is hole-free, then every particle p which satisfies
|NG(p) ∩ V (P))| < Δ(G) is at the geographical border of the shape of P . More-
over, we call the set of particles p which satisfy |NG(p) ∩ V (P))| < Δ(G) and
such that the vertices NG(p) − V (P) are not all in a hole of P , the border of P .
The right part of Fig. 4 illustrates the border of P .

In addition, for a particle p occupying a vertex (i, j) of the square grid, the
four vertices (i+1, j+1), (i−1, j+1), (i+1, j−1) and (i−1, j−1) are the corners
of p and the set of corners is denoted by C(p). The extended neighborhood of
a particle p, denoted by MG(p), is the set NG(p) if G is the triangular grid or
king grid or the set NG(p) ∪ C(p) if G is the square grid. Note that we define
the extended neighborhood differently for the square grid in order to be able to
present a generic algorithm (Algorithm 1) that works for all the three grids.

We give the following definition of S-contractible particle (see Fig. 5) that
will be used in our leader election algorithm.

Definition 1. Let G be an infinite grid among S, T and K and let S ⊆ V (P), for
P the particle graph on G. A particle p is said to be S-contractible if it satisfies
the following properties:

(I) G[MG(p) ∩ S] is connected;
(II) |NG(p) ∩ S| < Δ(G), i.e., there exists a neighbor of p in G which is not

occupied by a particle from S.

A particle p is an articulation of a connected subgraph G′ of one of the
three grids if G′ − {s(p)} is not connected. Derakhshandeh et al. [8] proposed

0
1

2
3

4
5

3
4

5
0

1
2

5
0

1
2

3
4

Fig. 5. Two non S-contractible particles (at the center of the left and the middle
drawing) and an S-contractible particle (at the center of the right drawing) in the
triangular grid (square: particle in S; circle: particle not in S).

166 N. Gastineau et al.

a randomized leader election algorithm in the geometric amoebot model in the
case there is no particle which is an articulation. Our proposed leader election
algorithm (Algorithm1) works even if V (P) contains a particle p which is an
articulation. However, in contrast with the leader election algorithm from Der-
akhshandeh et al. [8], Algorithm 1 does not work if P has holes. In the remaining
part of this paper, Algorithm1 is called the S-contraction algorithm.

Recently, Daymude et al. [5] have improved the algorithm from Derakhshan-
deh et al. [8] in order that it works when V (P) contains an articulation. However,
it remains challenging to implement it.

Also, very recently, Di Luna et al. [13] have introduced a leader election algo-
rithm called consumption algorithm. The consumption and the S-contraction
algorithms both consist in successively removing the candidacy of the particles
on the border of P . However, one can easily notice that, in our algorithm, we
possibly remove the candidacy of particles having four or five neighbors (which
is not considered in the consumption algorithm). Also, the consumption algo-
rithm does not work on square and king grids and the considered theoretical
frameworks for the two algorithms are different.

In the S-contraction algorithm (Algorithm1), the particles can be in three
different states: C (candidate), N (not elected) and L (leader). We suppose that
every particle begins in the state C.

Let S be the particle in state C. Algorithm 1 consists in removing from S
the particles which are both on the border of G[S] and not articulations of G[S].
An example of the execution of Algorithm 1 is illustrated by Fig. 6. Note that,
depending on the order in which the local computations occur, the result of the
execution of the algorithm could be different. For example, between the config-
uration of Fig. 6c and that of Fig. 6d, we suppose that the local computations
occur in this order: first a local computation occurs for the bottom left particle,
second it occurs for the upper left particle, third it occurs for the upper right
particle and fourth it occurs for the last particle (we only consider the particles
which are in state C).

Algorithm 1. The S-contraction algorithm for a particle p and S the set of
particles in state C.

Case 1: State C.
if the particle is S-contractible then

if the particle has no neighbor in S then
set the state to L.

else
set the state to N.

end if
else

stay in state C.
end if
Case 2: States L or N.
Perform no further actions.

Distributed Leader Election and Computation of Local Identifiers for PM 167

(a) (b)

(c) (d)

Fig. 6. An example of the execution of S-contraction algorithm after one round (a),
two rounds (b), three rounds (c) and after four rounds (d; circle: non S-contractible
particle; square: S-contractible particle; triangle: particle in state N; pentagon: particle
in state L; S being the set of particles in state C).

Theorem 1. Let S be the set of particles in state C and P be the particle graph
on G. If P is hole-free, then at the end of the execution of the S-contraction
algorithm, there will be exactly one particle in the state L.

In AppendixA, the proof of Theorem 1 is given. Also, a bound on the com-
plexity of the S-contraction algorithm is given. In AppendixC, it is explained
how to combine the S-contraction algorithm with a general leader election
algorithm.

4 Assigning k-Local Identifiers to Particles

In this section, we combine the results from Sect. 3 and AppendixD in order to
correctly compute a k-local identifier. In a first subsection, we describe a way
to create a spanning tree of particles and a way to change the ports numbering
of the different particles. In a second subsection, we describe how to compute
k-local identifiers based on the coloring functions from AppendixD.

We suppose that Algorithms 2 and 3 are preceded by a leader election algo-
rithm (which could be Algorithm1). Then it follows that there is a single particle
in a specific state (the leader) and all the remaining particles are in the same
state (non elected).

4.1 Re-organizing the Particles

By N+
G (u) we denote the set of port numbers which can communicate with

particles occupying vertices from NG(u). When there is a leader, we can easily

168 N. Gastineau et al.

compute a spanning tree using a distributed algorithm (see AppendixB). Now
suppose that for each particle p, we have two set of ports parent(p) and child(p)
which contains the port numbers of the particles in communication with its
parent and with its children, respectively, in the spanning tree. In this way, the
required memory in order to store where are the children and the parent of the
particle in a spanning tree is constant (since the maximum degree is bounded in
the considered grids).

In our proposed Algorithm2, the goal is to change the way the port are num-
bered in order that every particle has its ports numbered by the same number
going in the same cardinal direction in the different grids. This algorithm does
not work if we do not have a leader among the different particles. The func-
tion rG used in Algorithm 2 is defined, depending the choice of G, as follows:
rS(i) = (i + 2) (mod 4), rT(i) = (i + 3) (mod 6) and rK(i) = (i + 3) (mod 6).

Algorithm 2. The port renumbering algorithm for a particle p.
Case 1: State L.
for each port a from child(p) send a message ma, containing a, through port a.
Case 2: State N.
if the particle receives the message mb, containing b, through the port a then

change the port number a to rG(b) and changes the port numbers of the other
ports following the clockwise order;

update both parent(p) and child(p).
end if

23

2 0

1

3

1

3

1

2

0

3

1

0

30

3 1

2

0

2

0

2

3

1

0

2

101

0 2

3

1

2

1

3

0

2

1

3

2

12

1 3

0

2

0

2

0

1

3

2

0

3 00

0 0

0

0

0

0

0 0

0

0

0

0

11

1 1

1

1

1

1

1

1

1

1

1

122

2 2

2

2

2

2

2 2

2

2

2

2

33

3 3

3

3

3

3

3

3

3

3

3

3

(a) (b)

34
9 8

7
4

12
7

9

6
1

8

5
0

(c)

Fig. 7. One spanning tree of particles, a possible numbering of the ports of the particles
before (a) and after the execution of Algorithm 2 (b) and the 4-identifier obtained by
executing Algorithm 3 (c) in the square grid (square: leader; thick line: edge of the
spanning tree; small number: port number of a particle; big number: 4-identifier of a
particle).

Distributed Leader Election and Computation of Local Identifiers for PM 169

The idea behind Algorithm2 is to reproduce, in each particle, the way the
ports are numbered in the leader particle. To achieve this goal, each particle
p receives a message from its parent containing the port number of the parent
connected to p and p renumbers its own ports in order that its port numbers are
coherent with the sent number. Figures 7a and b illustrate the port numbers of
particles before and after the execution of Algorithm2.

4.2 The k-Local Identifiers

Now, we aim to give to each particle a variable id, called its k-local identi-
fier, such that every two particles p1 and p2 with the same identifier satisfy
dG(s(p1), s(p2)) > k. If we suppose that the particles have not a memory of at
least log2(n) bits, for n = |P |, then it is not possible to record a unique variable
for each particle. However, it is possible to have a k-local identifier in the three
considered grids only using at most log2((k + 1)2) bits where k is a parameter
given by the user. Our proposed Algorithm3 presents an optimal way (in term of
memory) to compute k-local identifiers. We suppose that the port renumbering
algorithm (Algorithm2) has been done before executing Algorithm3.

Algorithm 3. The k-local identifier algorithm for a particle p.
Case 1: State L.
set i = 0, j = 0, id = 0;
send i and j through each port from child(p).
Case 2: State N.
if the particle receives the integers i′ and j′ through the port a then

set i = Ik
G(i′, a), j = Ik

G(j′, a), id = fk
G(i, j);

send i and j through each port from child(p).
end if

Algorithm 3 consists in assigning a variable which corresponds to a color in
a coloring of the kth power on the grid. More precisely, the function fk

G consists
in assigning a color depending the Cartesian coordinate of the vertices. Since
the colors are given following a pattern, the Cartesian coordinate can be stored
relatively to the size of the patterns. In Algorithm3, the leader affects to itself
the color 0 and following the direction where the messages are transmitted, the
particles reproduce the coloring patterns given in AppendixD. The functions fk

G

and IkG, Jk
G, used in Algorithm 3 are defined, depending on the choice of G, as

follows: fk
S (i, j) = (i + kj) (mod mk), fk

K(i, j) = i (mod k+1) + (k + 1)j (mod k+1)

and fk
T(i, j) = (i (mod 3(k+1)/2)+j(3(k+1)/2)+�2j/(k+1)(k+1)/2)) (mod m′

k)
if k is odd or fk

T(i, j) = (i + (3k/2 + 1)j) (mod m′
k) otherwise; IkG(i, a) = i if

(a = 1; 3 ∧ G ∼= S) ∨ (a = 1; 4 ∧ G ∼= T) ∨ (a = 2; 6 ∧ G ∼= K), IkS(i, a) = i + 1
(mod �(k+1)2/2�) if a = 0, IkS(i, a) = i−1 (mod �(k+1)2/2�) if a = 2, IkT(i, a) =
i + 1 (mod �3(k + 1)2/4�) if a = 0; 5, IkT(i, a) = i − 1 (mod �3(k + 1)2/4�) if
a = 2; 3, IkK(i, a) = i+1 (mod k+1) if a = 0; 1; 7 and IkK(i, a) = i−1 (mod k+1)

170 N. Gastineau et al.

if a = 3; 4; 5; Jk
G(j, a) = i if (a = 0; 2 ∧ G ∼= S) ∨ (a = 0; 6 ∧ G ∼= T) ∨ (a =

0; 4 ∧ G ∼= K), Jk
S(j, a) = j + 1 (mod �(k + 1)2/2�) if a = 1, Jk

S(j, a) = i − 1
(mod �(k + 1)2/2�) if a = 3, Jk

T(j, a) = i + 1 (mod �3(k + 1)2/4�) if a = 1; 2,
Jk
T(j, a) = i − 1 (mod �3(k + 1)2/4�) if a = 4; 5, Jk

K(j, a) = i + 1 (mod k + 1) if
a = 1; 2; 3 and Jk

K(j, a) = i−1 (mod k+1) if a = 5; 6; 7. Note that the functions
IkG and Jk

G are used to determine the Cartesian coordinate of a particle using
the Cartesian coordinate of a neighbor and the port number of this neighbor.

Since the values of fk
G(i, j) is bounded by 3(k+1)2/4, if G is isomorphic to one

of the three grids, the size of the messages will not exceed log2(3(k + 1)2/4). As
for Algorithm 2, the number of sent messages is |V (P)| − 1. Figure 7c illustrates
the obtained 4-identifiers after the execution of Algorithm3.

Since the particles can move during the execution of an algorithm, the k-local
identifiers may become not valid anymore (i.e., there may be two particles p1
and p2 with the same k-local identifier and with dG(s(p1), s(p2)) ≤ k) if the
structure of the particle graph P on G changes. It is possible to keep a valid
k-local identifier in case a particle moves in a direction of a port a by setting
id = fk

G(IkG(i, rG(a)), Jk
G(j, rG(a))) as the new k-local identifier. It corresponds

to update the variable id which corresponds to a color in a coloring of the kth

power on the grid in function of the new position of the particle. Also, in the
case a particle do � movements, by storing the successive directions of movement
of the particle during these � movements, it is also possible to update the value
of the k-local identifier in order that it remains valid.

Note that for both Algorithms 2 and 3 finish after at most h rounds, h being
the height of the spanning tree. Also the number of sent messages in both Algo-
rithms 2 and 3 is |V (G)| − 1 (the number of edges in a spanning tree).

5 Conclusion

In this paper, we have presented a new leader election algorithm based on local
computation. We have also presented an algorithm which affects a different vari-
able for every two particles p1 and p2 at distance at most k. All the presented
algorithms only require a O(1)-space memory. This complexity makes it possible
to use our algorithms for programmable matter. Moreover, in case of movements
of particles, there is no need of communication in order to update the k-local
identifiers.

As future work, it would be interesting to determine a more general deter-
ministic leader election algorithm in our algorithmic framework that can take
into account fault tolerance. Also, it would be interesting to extend the presented
results to 3D grids. Another interesting question could be to use our results to
clustering the set of particles in several sets which induce subgraphs of small
diameter.

Acknowledgments. This work was supported by the French “Investissements
d’Avenir” program, project ISITE-BFC (contract ANR-15-IDEX-03).

Distributed Leader Election and Computation of Local Identifiers for PM 171

Appendix A Proof of Theorem1 and Bound on the
Complexity of the S-Contraction Algorithm

The three lemmas presented in this appendix are used in order to prove Theo-
rem 1.

In the following lemma, we describe how to determine, in the context of
programmable matter, if a particles is S-contractible or not.

Lemma 1. Let G be an infinite grid among S, T and K and let S ⊆ V (P), for P
the particle graph on G and S the set of vertices occupied by all the particles in the
same fixed state. One round is sufficient in order that every particle determine if
it is S-contractible or not if G is isomorphic to S. Otherwise, if G is isomorphic
to T or K, no round is necessary.

Proof. Let N+(p) be the set of port labels on which p can communicate with
particles from its neighborhood. In order to verify that MG(p)∩S is connected in
the triangular or king grids, it suffices to verify that N+

G (p)∩S forms an interval
of consecutive integers (by considering that 0 and Δ(G)−1 are consecutive). For
example, {0, 4, 5} contains successive integers in the triangular grid but that is
not the case for {0, 2, 5}. Such verification in the triangular and king grids can be
done during any local computation. Figure 5 illustrates three possible cases that
could happen for a particle in the triangular grid. On the left part of Fig. 5, the
particle does not satisfy Property (I) but satisfies Property (II). On the middle
part of Fig. 5, the particle satisfies Property (I) and does not satisfy Property
(II). Finally, on the right part of Fig. 5, the particle satisfies both Properties (I)
and (II).

In the square grid, in order to test if a particle p is such that MG(p) ∩
S is connected, it requires to receive N+

G (p′) ∩ S, from the particle p′ in the
neighborhood of p and afterward to test if N+

G (p) only contains consecutive
integers (by considering that 0 and 3 are consecutive) and then to verify, for any
two successive particles p′ and p′′ from the neighborhood, that the vertex which
corresponds to the corner adjacent to both p′ and p′′ is occupied by a particle.

If G is among T and K, then no round is required to know if a particle is in
S or not (since a particle know the state of its neighbors). If G is isomorphic to
S, then, in one round, which consists in sending the values of N+(p) ∩ S to the
adjacent particles, every particle knows if it is S-contractible or not. �

The following lemma is be useful in order to prove that our leader election
algorithm works correctly.

Lemma 2. Let G be an infinite grid among S, T and K and let S ⊆ V (P), for
P the particle graph on G. Let p be an S-contractible particle. If S is connected
and hole-free, then S − {s(p)} is connected and hole-free.

Proof. First, note that in all three grids, the fact that |NG(p) ∩ S| < |NG(p)|
implies that there is a vertex v in NG(p) \ S. By contradiction, suppose we

172 N. Gastineau et al.

create a hole in G[S] by removing the vertex s(p) from S. This implies, since
G[MG(p) ∩ S] is connected, that v was already in a hole from G[S]. Second,
since G[MG(p) ∩ S] is connected, we are sure that the subgraph G[S \ {s(p)}] is
connected. ��

To ensure that our leader election algorithm works correctly, it remains to
prove that there always exists an S-contractible particle. That is what we do in
the following Lemma.

Lemma 3. Let S ⊆ V (P), for P the particle graph on G. If G[S] is hole-free,
then there always exists an S-contractible particle in S.

Proof. Note that there exists a particle on the border of G[S] since S is finite.
Let A be the set of particles on the border of G[S]. For any particle p, the fact
that there are at least two connected components B1 and B2 in G[MG(p) ∩ S]
implies that there is no path in G[S \ {s(p)}] between any vertex of B1 and a
vertex of B2, since it would imply the existence of a hole in G[S] containing a
vertex from MG(p) \ S. Therefore, if p ∈ A and if p is not an S-contractible
particle, then p is an articulation of G[S].

Now suppose, by contradiction, that there is no S-contractible particle in
S. By the previous remark, the graph G[A] is connected and all particles of A
are articulations of G[S]. However, a finite graph containing a cycle contains
vertices which are not articulation of G[S]. Thus, G[A] contains no cycle (G[A]
is a forest). However, by definition, the leaves (the vertices of degree 1) are
S-contractible. Thus, we obtain a contradiction with the fact that there is no
S-contractible particle in S. ��
In the case P is hole-free, note that by Lemmas 2 and 3 there is always a particle
which is both on the border of G[S] and not an articulation of G[S].

Proof (Proof of Theorem 1). Note that before the execution of the algorithm,
the set S is the set V (P). Since P is hole-free and connected and by Lemma 2,
S remains connected and hole-free during the execution of the algorithm. By
Lemma 3, there is always a particle in S which is S-contractible (every particle
on the border which is not an articulation is S-contractible). Thus, for every
round, the number of particles in state C strictly decreases. Since |V (P)| is
finite, we are sure that at some point, S will only contain one vertex. If at some
point, S contains one vertex, there will be at least one elected leader.

Finally, note that the fact that there are two elected leaders contradicts the
fact that S remains connected during the execution of the algorithm. ��

Let G′ be a subgraph of G such that G′ is hole-free, the radius of G′, denoted
by r(G′), is given by r(G′) = minu∈V (G′) {maxv∈A(dG′(u, v))}, for A the set of
the particles on the border of G′. Moreover, let h(T) be the height of a tree T ,
i.e., h(T) = minu∈V (T) {maxv∈V (T), |NT (v)|=1 (dT (u, v))} and let mtree(G′) be
the maximum height among all induced subgraphs of G′ which are trees, i.e.,
among the set {G′[B]| B ⊆ V (G′), G′[B] is a tree}.

In the following Proposition, we give a bound on the required number of
rounds for the termination of Algorithm1.

Distributed Leader Election and Computation of Local Identifiers for PM 173

Proposition 1. Let S be the set of particles in state C and P be the particle
graph on G. Moreover, let bG = r(P) + mtree(P) + 1 if G is isomorphic to T

or K or bG = 2(r(P) + mtree(P)) + 2 if G is isomorphic to S. If P is hole-free,
then after bG(P) rounds of the S-contraction algorithm on P , one particle will
be the leader.

Proof. First, suppose G is isomorphic to T or K. Let St be the set of particles
in state C after the first t rounds. Note that after r(P) + 1 rounds we are sure
that every remaining particle u satisfies |NG(u) ∩ Sr(S)+1| < NG(u). This is
due to the fact that each particle u on the border of Si, for i ≥ 0, is not in
Si+1 if |NG(u) ∩ Sr(S)+1| < NG(u). Thus, by Lemma 2, G[Sr(P)+1] is either a
tree or empty. By definition, we have h(G[Sr(P)+1]) ≤ mtree(P). Note that in
the case G[St] is not a trivial tree (a tree containing only one vertex), we have
h(G[St+1]) = h(G[St]) − 1, for t ≥ r(P) + 1. Therefore, we obtain that St is
empty if t ≥ r(P) + mtree(P) + 1.

Second, suppose G is isomorphic to S. Note that, by Lemma 1, one round is
sufficient in order that every particle determines if it is S-contractible. Conse-
quently, it is easy to observe that the required number of rounds in order that
the S-contraction algorithm finishes for S is bounded by two times the required
number of rounds in order that the S-contraction algorithm finishes for T or K.

��

Appendix B An Example of Algorithm in Order to
Construct a Spanning Tree

Our proposed algorithm (Algorithm4) for constructing a spanning tree consists
in setting the particle in state L as the root and, afterward, constructing a
spanning tree using a classical distributed spanning tree algorithm.

Algorithm 4. A spanning-tree algorithm for a particle p.
Case 1: State L (leader).
set child(p) = N+

G (p);
send a message m (which only contains the bit 0) through each port from child(p).
Case 2: State N (not elected).
if the particle receives the message m through the port a then

if the particle has never received the message m before then
set parent(p) = a;
set child(p) = N+

G (p)\{a1, . . . , a�}, where a1, . . ., a� are ports on which p has
received the message m;

send the message m through each port from child(p).
end if

end if

174 N. Gastineau et al.

Appendix C Combining the S-Contraction Algorithm
with a General Leader Election Algorithm

Daymude et al. [5] introduced a leader election algorithm that works on every
configuration of P . In this appendix we present a way to reduce the required
number of rounds in order that this algorithm finishes its execution (by using
the S-contraction algorithm). In the remaining part of this appendix, the leader
election algorithm from [5] will be called the general leader election algorithm
(to the best of our knowledge, it is the only leader election algorithm for pro-
grammable matter working on every configuration).

In order to simplify the presentation of the results, we only discuss the results
for the triangular grid. However, by modifying the algorithms it is possible to
make it work for the square and king grids also. We begin this appendix by
describing how the general leader election algorithm works. This description
will help the reader to convince itself that, in a lot of cases, combining the S-
contraction algorithm with a general leader election algorithm could be a good
idea.

For particle p and a port a of p connected to another particle, we denote by
n(a) the port number of the first port of p connected to a particle after a in
the clockwise order. The general leader election algorithm uses the fact that it
is possible to send a message around a boundary. Sending a message around a
boundary consists in sending and re-transmitting the message in the following
way: for a particle p, if a message is received from the port a, then the particle
re-transmits the message to the particle connected to p by the port n(a) of p.
Figure 8 represents how the messages are transmitted in this case.

Fig. 8. The way how the messages are re-transmitted in the algorithm of Daymude
et al. [5] (square: articulation; dashed arrow: message transmitted along the border;
simple arrow: message transmitted along the hole).

For each hole H of the particle graph P on G, we denote by b(H), the set of
particles which are adjacent with a vertex of H. Also, when a particle is adjacent
to vertices of different holes or when a particle belongs to the border of P , it is
possible to decompose particles in agents, each agent corresponding to a different
hole or to the border. Thus, an agent will be either adjacent to vertices of at
most one hole or belong to the border but never both.

The general leader election algorithm can be summarized as the succession
of four phases. A first phase consists in removing the candidacy of each par-
ticle having six neighbors. A second phase consists, for each hole H of P , to

Distributed Leader Election and Computation of Local Identifiers for PM 175

remove the candidacy of some agents of b(H) using a randomized procedure.
Simultaneously, the same process is done for agents in the border of P . A third
phase consists in verifying if there is only one candidate in b(H), for each hole
H of P and only one candidate in the border of P . They calculate the relative
positions of the candidates in order to do such verification. Finally, in the last
phase, they verify if the remaining candidates agents are in b(H) or in border of
P . The leader will be the candidate particle of the border of P . We can verify
if an agent is in b(H) by sending a message around the boundary and verifying
when the message comes back to the initial particle if this message has been re-
transmitted in the clockwise direction or not. As Fig. 8 illustrates, the messages
re-transmitted through the boundary of a hole are re-transmitted in the coun-
terclockwise direction and the messages re-transmitted through the border of P
are re-transmitted in the clockwise direction. In all these phases, the messages
are re-transmitted around a boundary.

The required number of rounds in order that the general leader election
algorithm finishes its execution is O(�), where � is the number of particles in the
border of P .

We do the following remark about the S-contraction algorithm that comes
from the fact that for any S-contractible particle p of S, if G[S] is connected,
then G[S \ {s(p)}] is also connected.

Remark 1. If the particle graph P has a hole then, after the execution of the
S-contraction algorithm on the particle graph P on G there will remain particles
in state C. Also, the graph induced by the particles in state C is connected.

In particular when P has one hole, the remaining particles in state C will form a
ring in the triangular grid. Thus, it is possible to run the S-contraction algorithm
and, afterward, execute the general leader election algorithm on the remaining
particle in state C. Let Sc be the set of particles in state C after the S-contraction
algorithm on the particle graph P on G. Depending on the structure of P , it
could happen that the number of particles in the border T [Sc] is smaller than in
the border of P and that it speeds the execution of the general leader election
algorithm. For example, that is always the case when P has at most one hole.

Appendix D Coloring the kth Power of Graph

The kth power of a graph G is the graph on the same vertex set than G and with
edges connecting every two vertices u and v satisfying dG(u, v) ≤ k. Note that
there is a correlation between this definition and the kth power of the adjacency
matrix of G (the adjacency matrix of the kth power of G is easily obtained from
this matrix). Our goal in this appendix is to determine an optimal coloring of
the kth power of the square, triangular and king grids. We use these colorings in
order to propose a distributed algorithm (supposing we have a leader) in order
to assign k-local identifiers to the particles (see Sect. 4). A coloring of the kth

power of a grid corresponds to assign a value to each vertex of the graph such
that every two vertices with the same assigned value are at distance at least

176 N. Gastineau et al.

k + 1. An example of coloring of the kth power of the square grid is represented
by Figs. 9 and 10. In Fig. 9, it is easy to notice that every two vertices with color
0 (or any other color) are at distance at least 4.

More formally, a k-coloring of a graph G is a map c from V (G) to {0, 1, . . . , k−
1} which satisfies c(u) �= c(v) for every uv ∈ E(G). The chromatic number
χ(G) of G, is the smallest integer k such that there exists a k-coloring of G.
The kth power Gk of a graph G is the graph obtained from G by adding an
edge between every two vertices satisfying dG(u, v) ≤ k. More details about the
coloring of the kth power of graphs can be found in the survey from Kramer and
Kramer [17]. The results presented in this appendix are inspired by the previous
works [12,16,22] about the coloring of the kth power of the grids.

D.1 Coloring the kth Power of Square Grids

We give the following result from Fertin et al. [12].

Theorem 2 ([12]). For any k ≥ 1, χ(Sk) = �(k + 1)2/2�.

Let mk = �(k + 1)2/2�. In their paper, Fertin et al. define an optimal coloring
c of the kth power of the square grid as follows: c((i, j)) = (i + kj) (mod mk).
In Figs. 9 and 10, we represent patterns for coloring the 3th and 4th powers of
the square grid. These patterns have been obtained using the coloring from [12].
Note that since there is a pattern, a vertex (i, j) can determine its color only
knowing i (mod mk) and j (mod mk). We recall the definition of the following
function fk

S (i, j) = (i+kj) (mod mk). Note that fk
S (i, j) = fk

S (i′, j′), in the case
i ≡ i′ (mod mk) and j ≡ j′ (mod mk) This function is used in order to assign
k-local identifiers to particles.

0 1 2 3 4 5 6 7

3 4 5 6 7 0 1 2

6 7 0 1 2 3 4 5

1 2 3 4 5 6 7 0

4 5 6 7 0 1 2 3

7 0 1 2 3 4 5 6

2 3 4 5 6 7 0 1

5 6 7 0 1 2 3 4

Fig. 9. A pattern for coloring the 3th power of the square grid.

Distributed Leader Election and Computation of Local Identifiers for PM 177

0 1 2 3 4 5 6 7 8 9 10 11 12

5 6 7 8 9 10 11 12 0 1 2 3 4

10 11 12 0 1 2 3 4 5 6 7 8 9

2 3 4 5 6 7 8 9 10 11 12 0 1

7 8 9 10 11 12 0 1 2 3 4 5 6

12 0 1 2 3 4 5 6 7 8 9 10 11

4 5 6 7 8 9 10 11 12 0 1 2 3

9 10 11 12 0 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10 11 12 0

6 7 8 9 10 11 12 0 1 2 3 4 5

11 12 0 1 2 3 4 5 6 7 8 9 10

3 4 5 6 7 8 9 10 11 12 0 1 2

8 9 10 11 12 0 1 2 3 4 5 6 7

Fig. 10. A pattern for coloring the 4th power of the square grid.

D.2 Coloring the kth Power of Triangular Grids

The chromatic number of the kth power of the triangular grid has been deter-
mined by Sevcikova [22].

Theorem 3 ([22]). For any k ≥ 1, χ(Tk) = �3(k + 1)2/4�.

Let m′
k = �3(k + 1)2/4�. We recall the definition of the following function:

fk
T(i, j) =

⎧⎨
⎩

(i (mod 3(k+1)/2) + j(3(k + 1)/2)+
�2j/(k + 1)(k + 1)/2)) (mod m′

k) if k is odd;
(i + (3k/2 + 1)j) (mod m′

k) otherwise.

Note that fk
T(i, j) = fk

T(i′, j′), in the case i ≡ i′ (mod m′
k) and j ≡ j′ (mod m′

k).
This function is used in order to assign k-local identifiers to particles.

D.3 Coloring the kth Power of King Grid

To our knowledge, the chromatic number of the king grid has not been deter-
mined yet. However, in contrast with the triangular grid, the chromatic number
of the kth power of the king grid is easy to determine. In this subsection, we
determine the exact value of the chromatic number of the kth power of the king
grid.

178 N. Gastineau et al.

Theorem 4. We have χ(Kk) = (k + 1)2.

Proof. Let Kk be the subgraph of K induced by the vertices {(i, j) ∈ V (K)| 0 ≤
i ≤ k, 0 ≤ j ≤ k}. Note that diam(Kk) = k and that |V (Kk)| = (k + 1)2. Thus,
since each vertex of Kk must be colored differently in a coloring of the kth power
of the king grid, we obtain that χ(Kk) ≥ (k+1)2. We define the coloring function
c((i, j)) = i (mod k+1) + (k + 1)j (mod k+1). Note that we have dK(u, v) ≥ k + 1,
for every two vertices u and v with the same color in K. Therefore, we obtain
that χ(Kk) = (k + 1)2. ��

Note that since there is a pattern, a vertex (i, j) can determine its color only
knowing i (mod (k + 1)) and j (mod (k + 1)). We recall the definition of the
following function fk

K(i, j) = i (mod k+1)+(k+1)j (mod k+1). Note that fk
K(i, j) =

fk
K(i′, j′), in the case i ≡ i′ (mod k + 1) and j ≡ j′ (mod k + 1). This function

is used in order to assign k-local identifiers to particles.

References

1. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and
Advance Topics. Wiley, Hoboken (2004)

2. Bauderon, M., Métivier, Y., Mosbah, M., Sellami, A.: Graph relabelling systems: a
tool for encoding, proving, studying and visualizing distributed algorithms. Elec-
tron. Notes Theoret. Comput. Sci. 51, 93–107 (2001)

3. Bourgeois, J., Copen Goldstein, S.: Distributed intelligent MEMS: progresses and
perspectives. IEEE Syst. J. 9(3), 1057–1068 (2015)

4. Butler, Z.J., Kotay, K., Rus, D., Tomita, K.: Generic decentralized control for
lattice-based self-reconfigurable robots. Int. J. Rob. Res. 23(9), 919–937 (2004)

5. Daymude, J.J., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Improved
leader election for self-organizing programmable matter. In: Fernández Anta, A.,
Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS,
vol. 10718, pp. 127–140. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-72751-6 10

6. Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann,
T.: Brief announcement: amoebot - a new model for programmable matter. In:
SPAA 2014, pp. 220–222 (2014)

7. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: An
algorithmic framework for shape formation problems in self-organizing particle
systems. In: NANOCOM 2015, vol. 21, pp. 1–21 (2015)

8. Derakhshandeh, Z., Gmyr, R., Strothmann, T., Bazzi, R., Richa, A.W., Scheideler,
C.: Leader election and shape formation with self-organizing programmable matter.
In: Phillips, A., Yin, P. (eds.) DNA 2015. LNCS, vol. 9211, pp. 117–132. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21999-8 8

9. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Uni-
versal shape formation for programmable Matter. In: SPAA 2016, pp. 289–299
(2016)

10. Derakhshandeh, Z., Gmyr, R., Porter, A., Richa, A.W., Scheideler, C., Strothmann,
T.: On the runtime of universal coating for programmable matter. In: Rondelez,
Y., Woods, D. (eds.) DNA 2016. LNCS, vol. 9818, pp. 148–164. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-43994-5 10

https://doi.org/10.1007/978-3-319-72751-6_10
https://doi.org/10.1007/978-3-319-72751-6_10
https://doi.org/10.1007/978-3-319-21999-8_8
https://doi.org/10.1007/978-3-319-43994-5_10

Distributed Leader Election and Computation of Local Identifiers for PM 179

11. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Uni-
versal coating for programmable matter. Theoret. Comput. Sci. 671, 56–68 (2017)

12. Fertin, G., Godard, E., Raspaud, A.: Acyclic and k-distance coloring of the grid.
Inform. Process. Lett. 87(1), 51–58 (2003)

13. Di Luna, G.A., Flocchini, P., Santoro, N., Viglietta, G., Yamauchi, Y.: Shape
formation by programmable particles. In: OPODIS 2017 (2017)

14. Lakhlef, H., Mabed, H., Bourgeois, J.: Optimization of the logical topology for
mobile MEMS networks. J. Netw. Comput. Appl. 42, 163–177 (2014)

15. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. In: Annual Sym-
posium on Foundations of Computer Science, pp. 150–158 (1981)

16. Jacko, P., Jendrol, S.: Distance coloring of the hexagonal lattice. Discuss. Math.
Graph Theory 25, 151–166 (2005)

17. Kramer, F., Kramer, H.: A survey on the distance-colouring of graphs. Discret.
Math. 308, 422–426 (2008)

18. Naz, A., Piranda, B., Bourgeois, J., Copen Goldstein, S.: A distributed self-
reconfiguration algorithm for cylindrical lattice-based modular robots. In: NCA,
pp. 254–263 (2016)

19. Mazurkiewicz, A.: Distributed enumeration. Inform. Process. Lett. 61, 233–239
(1997)

20. Piranda, B., Bourgeois, J.: Geometrical study of a quasi-spherical module for build-
ing programmable matter. In: Groß, R., et al. (eds.) Distributed Autonomous
Robotic Systems. SPAR, vol. 6, pp. 387–400. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-73008-0 27

21. Rosenstiehl, P., Fiksel, J.-R., Holliger, A.: Intelligent graphs. In: Graph Theory
and Computing, pp. 219–265 (1972)

22. Sevcikova, A.: Distant chromatic number of the planar graphs. Safarik University,
Manuscript (2001)

23. Tucci, T., Piranda, B., Bourgeois, J.: Efficient scene encoding for programmable
matter self-reconfiguration algorithms. In: SAC, pp. 256–261 (2017)

24. Yim, M., et al.: Modular self-reconfigurable robot systems. IEEE Rob. Autom.
Mag. 14(1), 43–52 (2007)

https://doi.org/10.1007/978-3-319-73008-0_27
https://doi.org/10.1007/978-3-319-73008-0_27

Reaching Consensus in Ad-Hoc Diffusion
Networks

Dariusz R. Kowalski1,2 and Jaros�law Mirek1(B)

1 Department of Computer Science, University of Liverpool, Liverpool, UK
{D.Kowalski,J.Mirek}@liverpool.ac.uk

2 SWPS University of Social Sciences and Humanities, Warsaw, Poland

Abstract. We consider an algorithmic model of diffusion networks, in
which n nodes are distributed in a 2D Euclidean space and communi-
cate by diffusing and sensing molecules. Such a model is interesting on
its own right, although from the distributed computing point of view it
may be seen as a generalization or even a framework for other wireless
communication models, such as the SINR model, radio networks or the
beeping model. Additionally, the diffusion networks model formalizes and
generalizes recent case studies of simple processes in environment where
nodes, often understood as biological cells, communicate by diffusing and
sensing simple chemical molecules.

To demonstrate the algorithmic nature of our model, we consider a
fundamental problem of reaching consensus by nodes: in the beginning
each node has some initial value, e.g., the reading from its sensor, and
the goal is that each node outputs the same value.

Our deterministic distributed algorithm runs at every node and out-
puts the consensus value equal to the sum of inputs divided by the
sum of the channel coefficients of each cells. For a node v consensus is

reached in O
(
logρ

(
1
2

√
dmin
dmax

· dv
b

∑
i di

))
communication rounds, where

dv is the sum of molecule reachability ratios to node v in the medium,
dmin = mini di, dmax = maxi di, and b is the sum of the initial val-
ues. ρ represents the second largest eigenvalue of a matrix of normalised
molecule reachability ratios, that we analyze together with an associated
Markov Chain.

Keywords: Ad hoc networks · Cells · Diffusion networks · Molecules ·
Consensus

1 Introduction

The consensus problem in distributed systems, where multiple processes want
to agree on a certain value, is considered to be fundamental for many fault-
tolerant and sensors’ systems [17]. We consider the consensus problem in an
ad-hoc network of cells with a diffusion-based molecular communication model.

Supported by Polish National Science Center (NCN) grant UMO-2017/25/B/ST6/
02553.

c© Springer Nature Switzerland AG 2019
S. Gilbert et al. (Eds.): ALGOSENSORS 2018, LNCS 11410, pp. 180–192, 2019.
https://doi.org/10.1007/978-3-030-14094-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14094-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-14094-6_12

Reaching Consensus in Ad-Hoc Diffusion Networks 181

1.1 Previous Work

The consensus problem has been widely considered in distributed systems in
several papers; here we only sample some relevant work. The authors in [1]
focused on solving the classic consensus problem in a network of n mobile nodes,
where the communication in the environment is considered unpredictable, their
main goal was to reach convergence on a common consensus value by all the
n nodes. The authors assumed that each node has its own identifier, the com-
munication is synchronous, and when a message is delivered the destination is
not certain. The proposed protocols solved the consensus problem with crashes
and Byzantine failures. The model in [18] studied systems of autonomous agents
with biologically motivated interactions and the evolving of self-ordered motion
in these systems. According to a local rule, the agents are updated from time to
time. The authors in [18] show that despite the changing neighborhood of each
agent and absence of centralized coordination, as the system gradually evolves,
all agents eventually move in the same direction.

In [16] a profound study of the present consensus algorithms and conver-
gence was presented accompanied by the performance analysis of these algo-
rithms. It reveals collaboration between various fields of engineering and sci-
ence like complex networks, distributed computing, graph theory, and Markov
chains. The idea of cooperation among dynamic systems is explained through
elaborated investigation of formation control for multi-vehicle systems. The con-
nection between spectral and structural properties of complex networks and
the speed of information propagation of consensus algorithms is demonstrated.
The authors in [15] presented a method for solving the consensus problem in
distributed systems. The consensus problem in this method is considered on
two levels. The first level represent general methods that can help in solving
multi-valued and multi-attributed conflicts. The second level relates to different
applications of consensus methods in solving various conflicts that may occur in
distributed systems.

1.2 Related Work in Molecular Communication

Few research scopes [7–9] focused on studying the consensus problem in the
molecular communication model. In the most relevant work [7], the authors
explored consensus-type processes under simplified diffusion based molecular
communication. They focused on studying the convergence of a random process
of exchanging information about an event (measurement) through a diffusion
based network. Through communication, all nodes try to obtain the best esti-
mate. Additionally, they consider two simplified cases of diffusion environments,
including distance unification and random deployment of cells.

1.3 Our Results

In this paper, we consider an ad-hoc network where nodes are deployed in a two-
dimensional medium and communicate with each other by diffusing and sensing

182 D. R. Kowalski and J. Mirek

molecule concentrations. This model has been designed as a complete graph
with weighted edges. We assume that the edge weight (that we called a channel
coefficient up to this point) between two nodes depends on the distance between
them, as signal strength in diffusion is inversely proportional to the cube of the
distance [14], as well as other diffusion parameters. It is however important to
highlight that the weights of the graph are not known a priori.

The most notable novelty of this paper is that the model is very basic and
there are few assumptions that the system has to fulfill in order to execute
the algorithm. This allows to think that our setup is actually a generalization
or a framework for models such as the SINR [11,12]. Precisely, in the SINR
model signals transmitted by processors weaken polynomially with respect to
distance. Nevertheless the strongest signal contains a legible information and
stations are distinguishable by having their unique identifiers. It is worth noticing
that in the diffusion-based molecular model signals weaken in a similar manner.
On the contrary, however, we do not distinguish nodes with identifiers and the
information is actually just the amount of molecules - these similarities remind
of the beeping model [5,6].

We assume that each node has its initial value, and these values are supposed
to be an estimation of a parameter in the environment. The eventual goal is that
nodes share their values between each other until they reach an agreement (con-
sensus) about the average of these values. Nevertheless in biologically-motivated
systems many processes are controlled by some overriding processes. Justifica-
tion is to be found later in this paper. This leads to the notion of an eventual
consensus that we introduce - even though the algorithm converges to a con-
sensus, it is controlled by an overriding mechanism. Hence, each node does not
know how long it should exchange information, yet will be notified when it is
done.

In [7], the authors analyzed the processes of convergence of information-
exchange between randomly distributed nodes in a diffusion medium. We gen-
eralize that work by proposing a model where nodes are placed arbitrarily. We
propose a deterministic distributed algorithm which runs at every node and
eventually computes the consensus value equal to the sum of inputs divided
by the sum of channel coefficients. For a node v consensus is reached in
O

(
logρ

(
1
2

√
dmin

dmax
· dv

b
∑

i di

))
rounds, where dv is the sum of the molecule reach-

ability ratios i.e.
∑

i civ, where a molecule reachability ratio civ between nodes i
and v is the percentage of molecules sent by i that reaches v in a communication
round, dmin = mini di, dmax = maxi di, and b is the sum of the initial val-
ues. ρ represents the second largest eigenvalue of a special matrix of normalised
reachability ratios that we used for our analysis (c.f. Sect. 3).

Finally, we also elaborate on how the length of a round influences the total
time of consensus (defined as the number of rounds multiplied by the round
duration) and propose study on local consensus for such systems.

Reaching Consensus in Ad-Hoc Diffusion Networks 183

1.4 Structure of the Paper

This paper is organized as follows. In Sect. 2 we give a detailed description of our
model. Then we introduce the proposed consensus algorithm and its analysis in
Sect. 3. Section 4 discusses time adjustments for optimizing round duration and
how the local consensus in a molecular environment is implied by the eventual
consensus. Finally, Sect. 5 combines conclusions and prospective future work.

2 Model

2.1 Network Environment

We consider an ad doc diffusion network consisting of n nodes, also called cells,
deployed arbitrarily in a two dimensional Euclidean space. Nodes are identical
and anonymous, in particular, they do not have distinguishing identifiers and
have limited computational power. They also form an ad-hoc network structure,
in the sense that they do not posses any a priori knowledge about network
topology. In the remainder of the paper we use letters i, j, k to distinguish nodes
for the purpose of notation and analysis only.

2.2 Communication Model

Communication between nodes is by diffusion (also called transmission) and
sensing of molecules. More precisely, each node i could decide to diffuse an
amount Q of molecules at time τ , and any other node j of distance d from node
i can sense altogether

c(Q, d, T) =
∫ τ+T

τ

Q · 1
(4πDt)

2
3

· exp(
−d2

4Dt
) δt (1)

of these molecules within time interval [τ, τ + T], where D is the diffusion coef-
ficient, resulting from the communication medium. In case when more than one
node diffuses molecules, a receiver node j accumulates the sensed molecules
through the summation of the values c(Q, d, T) over diffusing nodes i, i.e., in the
interval [τ, τ + T] node j senses

∑
i

c(Qi,dist(i, j), Ti) − c(Qi,dist(i, j), [Ti − T]+)

molecules in total, where dist(i, j) is the Euclidean distance between i and j, Ti

is the time that passed from diffusion of node i up to time τ + T (i.e., node i
diffused at time τ + T − Ti), Qi is the amount of molecules diffused by i at that
time, and [Ti −T]+ equals to max{Ti −T, 0}. In other words, the receiver senses
the total amount of molecules that have been in its nearest proximity in the time
interval [τ, τ + T] without being able to distinguish which molecules come from
which transmitter. In this sense, molecules are indistinguishable.

184 D. R. Kowalski and J. Mirek

2.3 Control Variables

In the bloodstream there is a mechanism, called chemotaxis which gives cells
the ability to migrate in a specific direction. During chemotaxis, cells move
in response to an external signal, most frequently a small molecule, known as
a chemoattractant. When cells sense the concentration of the chemical, they
move in the direction where the concentration of that chemical is higher. Such
a mechanism of directional movement may be observed while wound healing [3].
Consequently, cells’ migration stops when they no longer sense the external signal
of the chemoattractant chemical.

Another example of cell movement are the lymphocyte responses to [Ca2+]
signals, ranging from short-term cytoskeletal modifications to long-term changes
in gene expression [10]. These are only few examples of how biological activities
end.

Such biological processes motivated us to introduce control variables that
allow some oracle to provide additional information to the algorithm during the
execution. In this work we use it in a very basic form to recognize (e.g., based on
some external system behavior) whether the task of consensus has been actually
done in the system or not.

2.4 Rounds and Synchronization

We assume that nodes are synchronized and can work in rounds of some prede-
fined length T . We assume that T is a system parameter and discuss its length
in Sect. 4. However this parameter strongly implies the topology of the network.

Nodes which want to diffuse molecules do it in the beginning of a round,
and all nodes sense the aggregated level of molecules in their close proximities
during the whole round. At the end of the round, we assume that the amount
of molecules drops to zero; in practice, in biological systems this could be guar-
anteed by the ability of cells to absorb the molecules remaining at the end of
the round in negligible time, or releasing other type of molecules that chemi-
cally transform the remaining communication molecules into some other type of
molecules without any implications for communication.

Consequently, inspired by a model from [13] we assume that nodes can utilize
molecules that were used for communication through the use of a mechanism
known as Destroyer molecules, which help controlling the communication channel
by eliminating remaining molecules from the environment. The authors in [13]
assume that destroyer molecules are immobile in the environment and their
size is bigger compared to information molecules. Besides, when an information
molecule gets close to a destroyer molecule, it binds to it and is removed from
the environment, due to the chemical attraction between them.

The conclusion is that treating the system as synchronous is possible because
cells perform a repeating sequence of: diffusing molecules, sensing the concen-
tration of molecules and cleaning the environment. Parameter T is therefore
strongly connected with sensing concentrations because the longer the round
the further broadcasts may be heard. The propagation of molecules across the

Reaching Consensus in Ad-Hoc Diffusion Networks 185

medium in diffusion based communication is due to spontaneous diffusion, which
is a stochastic process and occurs at a much lower speed, i.e. the order of a
few millimeters per second. Finally, after the sensing phase, the environment is
cleaned and a new round begins.

2.5 (Eventual) Consensus Problem

In the consensus problem, in the beginning each node has its initial value. The
goal is that all nodes output the same value. We assume that initial values bi,
for a node i, are in [0, 1], which covers a wide spectrum of potential input types
(i.e., many other input ranges could be easily transformed 1–1 into values in
[0, 1]). Let I = (b1, b2, . . . , bn) denote the vector of initial values.

The definition of consensus is actually meaningless because it has been
already shown in classical distributed systems that if the nodes do not have
knowledge about the network topology, then it may be impossible to compute
any non-constant function even on a ring, see e.g., [2] for details. Consequently,
in such a weak model as the diffusion-based networks some computations may
not be exact and are of a different nature. This brings us to the concept of even-
tual consensus, considered before in weak distributed systems: there is a round
starting from which candidate values stored at nodes are the same. Note that
in some executions nodes may not know this stabilization round, even though it
exists.

2.6 Performance Measure

We consider time as the performance measure, defined in two ways. First, as the
number of rounds in which all nodes reach consensus, regardless of the initial
setting. Second, also called the total time, as the number of rounds multiplied
by the round duration; we will show that the total time of an algorithm may
depend on the actual duration of a round.

3 CONCELLSUS - The Consensus Algorithm in Diffusion
Networks

In this section we introduce a deterministic algorithm Concellsus that allows
cells to arrive at a consensus in a diffusion-based ad hoc network.

3.1 Technical Preliminaries

The nature of a diffusion-based model allows us to think that nodes/cells
deployed in a medium form a distributed system, which can be represented as
a complete graph with weighted edges and self loops added to each node. More
formally, we denote by N = (V,E) the graph representing a given ad-hoc net-
work, where V = {1, 2, . . . , n} and E = V ×V . Notice that we allow self-loops in
the network graph, as when a cell diffuses a certain amount of molecules, it may

186 D. R. Kowalski and J. Mirek

also sense it from the medium. For an edge (i, j) ∈ E, we associate a weight cij

equal to c(1,dist(i, j), T), where T is the length of a round. We call this weight
the molecule reachability ratio between cell i and cell j. Furthermore, it is worth
noticing that for any i, j we have that cij = cji.

Let C = {cij} be the matrix of edges’ weights in network N . We denote the
sum of weights of edges connected to node i by di =

∑
j∈V cji, and call it the

impact of cell i. We associate the stochastic matrix P = {pij}, where pij = cij
di

,
with network N . We call it the matrix of normalised molecule reachability ratios.

3.2 The Algorithm

Algorithm 1. Concellsus, code for node i and input bi; control variable
process

Input: bi, process
Output: wi

1 diffuse a unit of molecules to all neighbors of i;
2 receive value di;

3 initialize valuei to bi
di

;

4 while process do
5 diffuse valuei (to all neighbors of i);
6 receive receivedi (accumulated from all neighbors j of i or i itself);

7 update valuei := receivedi
di

;

8 end

9 wi := [valuei
di

]

Nodes start with some initial local measurements resulting from the envi-
ronment, which could be arbitrary. Recall that we denote the initial sequence of
values as I = (b1, . . . , bn).

Having those initial measurements, nodes start exchanging values, stored as
a local variable valuei at some node i, in order to arrive at a consensus. They
proceed in rounds, starting from round 0, which is slightly different from the
other rounds. In round 0, each node diffuses a unit of molecules, and during
the round, senses/receives some accumulated value (of molecules) from all its
neighbors. The node stores it as di. We may think that cell i receives a form of a
weighted average, which in case of a diffusion of units of molecules corresponds
to value di. We will call this the impact of node i.

In the main part of the algorithm each node diffuses its initial measurement
divided by its impact to all the neighbors. During the round, each node i senses
the medium to receive some accumulated value (of molecules) from all its neigh-
bors and then updates valuei with receivedi

di
. Intuitively, cells that exist farther

from cell i have a smaller impact on the actual valuei (in a single round) than
cells living closer. Thus, if some cell j with a huge measurement is very far from

Reaching Consensus in Ad-Hoc Diffusion Networks 187

cell i then this value will more likely “reach” i via multiple other cells (which will
be sensing and accumulating a large portion of this value) rather than directly.

Let us take a closer look at the main loop of Concellsus, c.f., Algorithm 1.
Motivated by biological processes and the way how they finish, we assume having
a control variable process that indicates whether cells should continue exchang-
ing information or not. For algorithmic reasons, we treat process as a boolean
variable, however we may think that this is an overriding mechanism that con-
trols the protocol, as it was motivated in Sect. 2.3.

The main loop in Concellsus represents the molecule exchange between
cells in consecutive rounds. Each iteration consists of three steps. (1) Initially
a cell i diffuses its own actual value to the medium and then (2) receives the
values, modified by the formula of the communication medium, from all the
neighbors. The value represents the sum

∑{valuej

dj
cij : j is a neighbor of i or

j = i}, where value cij is the weight factor between the cells (the farther the
cells, the smaller the value received). Finally, (3) cell i updates and rescales its
own value accordingly with its sum of weights di that it learned in the initial
round.

Cells, or devices of nanometer order size are considered as very simple and
of weak computational capabilities. Consequently, the computations may not
necessarily need to be of a significant precision. One may imagine that a group
of cells needs to decide which direction they should move. It is somehow more
natural that the cells will decide on a general direction and repeat the procedure
after some movement - especially if the topology of the medium is not known. As
a result, we round the consensus value to a natural number when the estimation
of each cell is sufficiently close to that number.

Eventually, in the described process, each cell will compute a sort of an
average from all the initial measurements, hence make a consensus. The main
loop terminates when valuei is sufficiently close to bπi, where b =

∑
i∈V bi and

πi is the ith component of the stationary distribution vector. Thus, the value
that the algorithm finally computes is b di∑

j dj

1
di

that actually is valuei

di
. The most

important question, from our perspective is, however, what is the convergence
rate of such a process; we will analyze it in the following subsection.

3.3 Analysis of CONCELLSUS

Each cell has an initial measurement as an input, but does not know the mea-
surements of other cells. Cells exchange their measurements, which are implic-
itly weighted by the medium. This process begins with vector I = (b1, . . . , bn)
denoting cells’ initial measurements. It changes with time as cells exchange and
update their values round by round. Hence the vector of current values Ix in step
x corresponds to Ix = IP x, where P is a stochastic matrix defined in Sect. 3.1.

We show first that the Markov chain defined by matrix P converges to a
stationary distribution π = (π1, . . . , πn), where πi = di∑

j dj
for every node i.

188 D. R. Kowalski and J. Mirek

Lemma 1. Consider a Markov chain with transition matrix P defined in
Sect. 3.1. Then its stationary distribution is π = (π1, . . . , πn) where πi = di∑

j dj

for every node i.

Proof. Firstly, we show that π = (π1, π2, . . . , πn) is a stationary distribution for
the process described by P , where πi = di∑

i di
for every node i:

As πi = di∑
j dj

, then
∑

i πi =
∑

i
di∑
j dj

= 1, and π is a proper stationary distri-
bution.

Let N(i) be the neighborhood of i. The condition π = πP together with the
fact that pij = cij

di
means that

πi =
∑

k∈N(i)

⎛
⎝ di(∑

j dj

) cik

di

⎞
⎠ =

di∑
j dj

,

what ends the proof. ��
Now we need to show that the process of exchanging and updating values

converges and that eventually all the nodes end with the same value. Besides we
would like to know what is the rate of convergence. Let us assume that control
variable process, driven by an external system oracle, does not switch off, or
switches off at the same round after (eventual) consensus has been reached in
the system.

Theorem 1. Algorithm Concellsus performs an eventual consensus in
O

(
logρ

(
1
2

√
dmin

dmax
· dv

b
∑

i di

))
iterations.

Proof. We are interested in bounding the number of iterations r after which IP r

will be sufficiently close to the vector of the consensus value. To do this, we will
analyze some property of the Markov chain described by P .

Recall that matrix P = {pij} is a stochastic matrix of a primitive, reversible
Markov chain, that describes a random walk on N . According to Lemma 1 its
stationary distribution is (π1, π2, . . . , πN). We know that the eigenvalues of P
are in the following relation: 1 = λ1 > λ2 ≥ · · · ≥ λk. Let ρ denote the second
largest eigenvalue of P .
From Lemma 2 in [4] we know that

p
(r)
ij = πj + O

(√
πj

πi
· ρr

)
,

where pij corresponds to the appropriate entry of the rth power of matrix P .
Taking MP = maxi,j{

√
πj/πi}, the matrix form of the equation above is

P r = P∞ + O(MP · ρr · E),

where E is the matrix with all the entries equal 1. The limit P∞ = limr→∞ P r of
the chain is an N ×N matrix where all the entries in the ith column are equal πi.
In our case we have that Mp =

√
dmax/dmin. In what follows

Reaching Consensus in Ad-Hoc Diffusion Networks 189

P r = P∞ + O
(√

dmax

dmin
· ρr · E

)
.

For any vector of the initial measurements of the cells I, we have that L =
IP∞ is the eigenvector of P . The ith entry of L equals bπi, where b is the sum
of the input vector I (the initial measurements vector). Consequently

IP r = L + O
(√

dmax

dmin
· ρr · b · e

)
,

where e is the row vector with all its entries equal 1.
In order to be sure that all cells compute the correct value we need to be sure

that for every cell v, c
√

dmax

dmin
· ρr · b < 1

2πv, for some c > 0 resulting from the
O notation. The reason being is that the final step of the algorithm computes a
value rounded to the closest integer. Hence, as πv = dv∑

i di
we have that

ρr <
1
2

√
dmin

dmax
· dv

cb
∑

i di
,

and finally

r < logρ

(
1
2

√
dmin

dmax
· dv

cb
∑

i di

)
.

We conclude that the whole network of cells will reach a consensus in r iterations
that is bounded from above by logρ

(
1
2

√
dmin

dmax
· dv

cb
∑

i di

)
. ��

A final remark is that the result of the theorem concentrates on some val-
ues specific for each node. However, one may think that the overall number of
iterations (for the whole system to terminate) is bounded by extreme values. Fur-
thermore the number of rounds is defined by the base of the logarithm - value ρ,
the second largest eigenvalue of the transition matrix. This leads to an obvious
conclusion that the number of iterations of Concellsus differs according to the
topology of the network.

4 Extensions of Results

Biologically motivated systems have many subtleties, yet to be discovered. Con-
sequently there are numerous problems that one may encounter, even when
establishing the model. In this section we present notions and ideas resulting
from our investigations. On one hand they justify, to some extent, our model,
but on the other they may be inspirational in the sense of follow-up work.

190 D. R. Kowalski and J. Mirek

4.1 Optimizing Round Duration

We stated the notion of rounds in the section regarding the model, but up to
this point we treated it as a priori given. One may ask what is the optimal time
duration of a round.

It is worth emphasizing that the duration of round a influences the weights in
the graph of the network. Clearly, if the round is longer then each transmission
of a certain cell reaches further distances, and consequently higher amount of
molecules is sensed by nodes during rounds; hence the corresponding weights are
also greater. However, the absolute time of the algorithm execution, defined as
the number of rounds multiplied by the duration of a round, may be very long.
On the other hand, too short rounds may cause that the graph becomes prac-
tically “disconnected” in the sense that weights will be too small to guarantee
propagation across the network in a reasonable time. Therefore, our goal is to
find round duration that provides a trade-off between the above mentioned two
extremes.

From the point of view of the analysis from the previous section, we know
that Concellsus requires r = O

(
logρ

(
1
2

√
dmin

dmax
· dv

cb
∑

i di

))
rounds to reach

consensus. Hence, the absolute time needed for the algorithm to terminate is
bounded by rT there T is the duration of a single round (round a together with
round b). The question is what is the optimal value of T, in order to minimize
expression rT .

Considering T as a factor that influences the topology of the graph leads us
to a conclusion that values dmin, dmax, dv and

∑
i di from the bound for r, are

functions of T .
Thus in order to minimize the function u(T) = rT , we solve δu

δT = 0 to
find the argument T ∗ for which u(T ∗) is minimal. However, we need to take
into consideration, that the found value T ∗ has to satisfy T ∗ ≥ T0, where T0 is
the minimal duration of a round required to assure connectivity of the network
graph. Otherwise reaching consensus would be impossible.

4.2 Local Consensus

The classical consensus problem considered in computer science concerns the
matter of achieving a consistent opinion among all nodes in a network. In the
world of cells and diffusion-based communication many processes are flexible.
This means that even if there are numerous cells in the medium, only a subset of
them may be employed for a specified task. If one considers the circulatory sys-
tem then certainly not every platelet takes part in covering a particular wound.
This brought us to a notion of a local consensus.

When considering the consensus problem, cells communicate with each other
in order to reach an eventual consensus, where every cell finishes with the same
value. What is more, we showed the rate of convergence of such a process for
the protocol proposed in the previous section. Nevertheless to the best of our
knowledge processes taking place in the human body are often controlled by some
overriding mechanisms or organs. This leads to the notion of a local consensus.

Reaching Consensus in Ad-Hoc Diffusion Networks 191

If a certain task is considered as performed, by an overriding mechanism,
then it is likely to happen that a process will be stopped and some cells may end
without reaching the eventual value. Yet such an occurrence could suffice for the
considered task, when the consensus has been achieved by a subset of cells. We
say that there has been a local consensus.

The local consensus is implied by the eventual consensus. Precisely, if a value
is becoming closer to be agreed among the whole network of cells with divergence
α, then the divergence between a subset of cells is equal α′ and α′ ≤ α.

5 Conclusions and Open Problems

In this work we demonstrated that the presented bio-inspired model of diffusion
networks is algorithmically challenging - even on the level of establishing a simple
and coherent model - by the design and analysis of a consensus algorithm.

In the consensus problem, it is interesting to see to what extent the external
adversary could distract such a simple ad-hoc system from convergence.

Further study includes classical distributed computing and communication
problems, mobility, fault tolerance, security, or even robotics.

Acknowledgements. We would like to thank Athraa Juhi Jani for fruitful talks and
insight into the literature on the subject.

References

1. Angluin, D., Fischer, M.J., Jiang, H.: Stabilizing consensus in mobile networks. In:
Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol.
4026, pp. 37–50. Springer, Heidelberg (2006). https://doi.org/10.1007/11776178 3

2. Attiya, H., Snir, M., Warmuth, M.K.: Computing on an anonymous ring. J. ACM
35(4), 845–875 (1988). https://doi.org/10.1145/48014.48247

3. Bray, D.: Cell Movements: From Molecules to Motility. Garland Science (2001)
4. Broder, A., Karlin, A.: Bounds on the cover time. J. Theoret. Probab. 2(1), 101–

120 (1989). https://doi.org/10.1007/BF01048273
5. Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: Lynch,

N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 148–
162. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15763-9 15.
http://dl.acm.org/citation.cfm?id=1888781.1888802

6. Du, D.-Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications,
2nd edn. World Scientific (1999). https://doi.org/10.1142/4252. https://www.
worldscientific.com/doi/abs/10.1142/4252

7. Einolghozati, A., Sardari, M., Beirami, A., Fekri, F.: Consensus problem under
diffusion-based molecular communication. In: 2011 45th Annual Conference on
Information Sciences and Systems, pp. 1–6, March 2011. https://doi.org/10.1109/
CISS.2011.5766149

8. Einolghozati, A., Sardari, M., Beirami, A., Fekri, F.: Data gathering in networks
of bacteria colonies: collective sensing and relaying using molecular communica-
tion. In: 2012 Proceedings IEEE INFOCOM Workshops, pp. 256–261, March 2012.
https://doi.org/10.1109/INFCOMW.2012.6193501

https://doi.org/10.1007/11776178_3
https://doi.org/10.1145/48014.48247
https://doi.org/10.1007/BF01048273
https://doi.org/10.1007/978-3-642-15763-9_15
http://dl.acm.org/citation.cfm?id=1888781.1888802
https://doi.org/10.1142/4252
https://www.worldscientific.com/doi/abs/10.1142/4252
https://www.worldscientific.com/doi/abs/10.1142/4252
https://doi.org/10.1109/CISS.2011.5766149
https://doi.org/10.1109/CISS.2011.5766149
https://doi.org/10.1109/INFCOMW.2012.6193501

192 D. R. Kowalski and J. Mirek

9. Einolghozati, A., Sardari, M., Fekri, F.: Networks of bacteria colonies: a new
framework for reliable molecular communication networking. Nano Commun.
Netw. 7, 17–26 (2016). https://doi.org/10.1016/j.nancom.2015.01.003, http://
www.sciencedirect.com/science/article/pii/S1878778915000046

10. Gallo, E.M., Canté-Barrett, K., Crabtree, G.R.: Lymphocyte calcium signaling
from membrane to nucleus. Nat. Immunol. 7(1), 25–32 (2006)

11. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. Inf. The-
oret. 46(2), 388–404 (2006). https://doi.org/10.1109/18.825799

12. Jurdziński, T., Kowalski, D.R.: Distributed randomized broadcasting in wireless
networks under the SINR model. In: Kao, M.Y. (ed.) Encyclopedia of Algo-
rithms, pp. 577–580. Springer, New York (2016). https://doi.org/10.1007/978-1-
4939-2864-4 604

13. Kuran, M., Yilmaz, H.B., Tugcu, T.: A tunnel-based approach for signal shaping
in molecular communication. In: 2013 IEEE International Conference on Com-
munications Workshops (ICC), pp. 776–781, June 2013. https://doi.org/10.1109/
ICCW.2013.6649338

14. Meng, L.S., Yeh, P.C., Chen, K.C., Akyildiz, I.F.: Mimo communications based on
molecular diffusion. In: 2012 IEEE Global Communications Conference (GLOBE-
COM), pp. 5380–5385. IEEE (2012)

15. Nguyen, N.T.: Consensus system for solving conflicts in distributed systems.
Inf. Sci. Inform. Comput. Sci. 147(1–4), 91–122 (2002). https://doi.org/10.1016/
S0020-0255(02)00260-8

16. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked
multi-agent systems. Proc. IEEE 95(1), 215–233 (2007). https://doi.org/10.1109/
JPROC.2006.887293

17. Turek, J., Shasha, D.: The many faces of consensus in distributed systems. Com-
puter 25(6), 8–17 (1992). https://doi.org/10.1109/2.153253

18. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase
transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226 (1995)

https://doi.org/10.1016/j.nancom.2015.01.003
http://www.sciencedirect.com/science/article/pii/S1878778915000046
http://www.sciencedirect.com/science/article/pii/S1878778915000046
https://doi.org/10.1109/18.825799
https://doi.org/10.1007/978-1-4939-2864-4_604
https://doi.org/10.1007/978-1-4939-2864-4_604
https://doi.org/10.1109/ICCW.2013.6649338
https://doi.org/10.1109/ICCW.2013.6649338
https://doi.org/10.1016/S0020-0255(02)00260-8
https://doi.org/10.1016/S0020-0255(02)00260-8
https://doi.org/10.1109/JPROC.2006.887293
https://doi.org/10.1109/JPROC.2006.887293
https://doi.org/10.1109/2.153253

Filling Arbitrary Connected Areas
by Silent Robots with Minimum

Visibility Range

Attila Hideg1(B), Tamás Lukovszki2, and Bertalan Forstner1

1 Department of Automation and Applied Informatics,
Budapest University of Technology and Economics, Budapest, Hungary

{Attila.Hideg,Bertalan.Forstner}@aut.bme.hu
2 Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary

lukovszki@inf.elte.hu

Abstract. We study the uniform dispersal problem (also called the fill-
ing problem) in arbitrary connected areas. In the filling problem robots
are injected one-by-one at k ≥ 1 Doors into an unknown area, subdivided
into cells. The goal is to cover the area, i.e. each cell must be occupied
by a robot. The robots are homogeneous, anonymous, autonomous, have
limited visibility radius, limited persistent memory, and silent, i.e. do
not use explicit communication. A fundamental question is how ‘weak’
those robots can be in terms of hardware requirements and still be able
to solve the problem, which was initiated by Barrameda et al. [4]. In
our previous paper [11] we presented an algorithm which solves the fill-
ing problem for orthogonal areas with O(1) bits of persistent memory, 1
hop visibility range and without explicit communication. The algorithm
utilized the timing of movements and had O(n) runtime, where n is the
number of cells in the area. In this paper, we generalize the problem
for silent robots for an arbitrary connected area represented by a graph,
while maintaining the 1 hop visibility range. The algorithm is collision-
free, it terminates in O(k · Δ · n) rounds, and requires O(Δ · log k) bits
of persistent memory, where Δ is the maximum degree of the graph.

Keywords: Autonomous robots · Filling · Dispersion

1 Introduction

In swarm robotics a huge number of simple, cheap, tiny robots can perform com-
plex tasks collectively. Advantages of such systems are scalability, reliability, and
fault tolerance. In recent years much attention has been paid to the cooperative
behavior of simple, tiny robots which have to complete a particular task col-
lectively. Many distributed protocols have been developed for a wide range of
problems, like gathering, flocking, pattern formation, dispersing, filling, cover-
age, exploration (e.g. [1–6,8,12]; see [7,10] for recent surveys). In this paper we
study the uniform dispersal (or filling) of synchronous robots in an unknown,
connected area.
c© Springer Nature Switzerland AG 2019
S. Gilbert et al. (Eds.): ALGOSENSORS 2018, LNCS 11410, pp. 193–205, 2019.
https://doi.org/10.1007/978-3-030-14094-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14094-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-14094-6_13

194 A. Hideg et al.

The filling problem was introduced by Hsiang et al. [12] for an orthogonal
area, where the area is represented by pixels that form a connected subset of
integer grid. The robots are placed at the same entry point, called the Door,
one-by-one and have to occupy all the pixels. There can be at most one robot
per pixel at any given time. When more than one door is present in the area the
problem is called multiple door filling or k-door filling.

Barrameda et al. [4,5] investigated the minimum hardware requirements and
the possibilities of solving the filling problem for orthogonal regions by robots
with constant visibility radius, constant communication range, and constant
number of bits of persistent memory.

In [5], the authors allowed holes to be present in the map. Two methods were
proposed: one without communication (MUTE) and one with communication
(TALK). Both methods worked in the asynchronous (ASYNC) model, there-
fore, it can be used in the fully-synchronous (FSYNC) model, as well. MUTE
required a visibility range of 6 and was inspired by the dance of bees, where
robots implicitly communicated using only their movements. In TALK they
required a visibility and communication range of 1 and worked strictly in orthog-
onal areas as they could see diagonally. Both solutions [4,5] only required a
constant amount of memory.

In [4], common top-down and left-right directions and externally visible colors
were assumed for the multiple door filling. In [9] Das et al. showed that allowing
visible colors or lights yields a more powerful computational model than allowing
infinite visibility range but no lights.

r1
r2

r3

v

Fig. 1. Robots r1, r2 and r3 would
move to vertex v. Only one can
move to v at any given time, how-
ever, they are not visible by each-
other (1 hop visibility means they
can see adjacent vertices).

In our previous paper [11], we have fur-
ther reduced the hardware requirements of
the robots for filling orthogonal regions. The
robots do not use any communication and also
no lights. The robots have a common sense
of North and East directions, but they can-
not measure their absolute position and do not
share a common coordinate system. They need
a O(1) bits of persistent memory and the vis-
ibility range of the robots is reduced to 1 hop.
We have presented an algorithm solving the
single-door and the multiple-door filling prob-
lem for orthogonal regions in O(n) time in the
synchronous computational model. A key ele-
ment of the algorithm is to reserve time-slots
for each possible direction of the movement (labeled as North, East, South,
and West) in order to prevent collisions. Unfortunately, this idea could not be
extended for the general case, where the area is represented by an arbitrary con-
nected graph (moreover, it relies on notions that are not available in arbitrary
graphs: north, south, orientation). A problematic scenario is illustrated in Fig. 1.
Using a fixed assignment of time-slots to the edges incident to the occupied ver-
tex of a robot r1 can lead to collision with other robot(s) r2, r3, since another
robots can choose the same time slot to target the unvisited vertex v.

Filling Connected Areas by Silent Robots with Minimum Visibility Range 195

Our Contribution: In this paper we present an approach, which is different
from [11], to solve the filling problem for any arbitrary connected graphs with
robots of visibility range of 1 hop, i.e. the robots can see adjacent vertices. (Note:
three-dimensional scenarios and more complex topologies can be modeled.).

First, we present a method, the Virtual Chain Method (VCM), for the
single door filling by a set of autonomous anonymous robots with a visibility
radius of 1 hop in O(Δ ·n) time in the synchronous computational model, where
n is the number of vertices of the graph with a maximum degree of Δ. The
robots require O(Δ) bits of persistent memory.

Then, we consider the multiple door case, when the robots enter in k > 1
doors and we generalize the VCM algorithm for solving this problem. The robots
need a visibility range of 1 hop, O(Δ · log k) bits of persistent memory, and the
algorithm terminates in O(k · Δ · n) time.

Both algorithms are simple enough to be implemented by a swarm of ele-
mentary robots.

Our algorithm is optimal in term of visibility range. This follows from the
fact that with a visibility range of less than 1 the robots cannot even distinguish
between occupied and unoccupied neighbors. For constant k and constant Δ,
our algorithm is asymptotically optimal in the size of the memory. This follows
from the result of Barrameda et al. [4]; they proved that oblivious (memory-
less) robots cannot deterministically solve the problem. Moreover, for constant
k and constant Δ, our algorithm is asymptotically optimal in running time. The
asymptotic optimality of the running time O(n) follows from the fact that we
can place one robot per round in the single door case and n robots must be
placed.

A summary of these previous results and a comparison to our contribution
is presented in Table 1.

Table 1. Summary of the requirements of different Filling algorithms. All of these
algorithms have O(n) running time in the synchronous model.

Requirements of Filling algorithms

Method Visibility
range (hops)

Communication
range (hops)

Memory
(bits)

Graph type

DFLF [12] 2 2 2 Arbitrary

TALK [5] 2 2 4 Orthogonal

MUTE [5] 6 0 9 Orthogonal

k-Door in [4] 2 0 O(1) Orthogonal

Filling in [11] 1 0 13 Orthogonal

k-Door in [11] 1 0 13 Orthogonal

Here: VCM 1 0 O(Δ) Orthogonal

MD-VCM 1 0 O(Δ ·
log k)

Arbitrary

196 A. Hideg et al.

Organization: In Sect. 2 we define our model. In Sect. 3 we describe the Vir-
tual Chain Method for filling a connected regions represented by an arbitrary
graph. Section 4 extends our algorithm to solve the k-door filling. Finally, Sect. 5
summarizes the paper.

2 Model

We are given an unknown, connected area, represented by a graph. Each vertex
of the graph allows only one robot to occupy it at any given time. We assume
that for each vertex the adjacent vertices are arranged in a fixed cyclic order,
which does not change during the dispersion. The entry points of the graph are
called Doors. For simplicity we assume the degree of the Door vertices are 1.
Otherwise, we introduce an auxiliary vertex of Degree 1 connected only to the
Door, which takes the role of the original Door. This models the two side of a
doorstep.

In our model we use common concepts in distributed mobile robotics. For an
excellent overview we refer to the book by Flocchini et al. [10].

Each robot has a sensor allowing it to gather information from its vicinity, a
computational unit, and locomotion capabilities. They are autonomous, i.e. no
central coordination is present, homogeneous, i.e. all the robots have the same
capabilities and behaviors, and anonymous, i.e. they cannot distinguish each
other. They have a visibility range of 1 hop, i.e. each robot can ’see’ only the
vertex it occupies and the vertices adjacent to it. The robots are silent, i.e. they
cannot communicate at all. They have limited bits of persistent memory, which
is O(Δ) bits in the single door case and O(Δ · log k) when k-doors are present.

The robots operate corresponding to the Look-Compute-Move (LCM) model.
During the Look phase, the robots take a snapshot of their surroundings. In
the Compute phase, based on the snapshot they decide whether to stay idle
or to move to one of its neighboring vertices, and during the Move phase they
move there. The movement is atomic between two vertices, meaning it is either
performed and the robot appears at the destination vertex, or does not move
at all. We use the FSYNC model, where the robots perform their LCM cycles
at the same time, i.e. each robot takes snapshots, computes, and moves at the
same time.

The robots are placed on a predefined vertex, which is called the Door. At
the beginning of each cycle, if the Door is empty, a new robot is placed there
and performs its Look-Compute-Move phases during the same cycle.

3 Virtual Chain Method

We now present the Virtual Chain Method (VCM) for the single door case which
is based on the traditional follow-the-leader principle. This principle has also
been used in [4,5,11,12]. One robot becomes a leader and the rest of the robots
follow it until the leader is blocked, then another robot takes the leadership.
During our dispersion algorithm the robots create a virtual chain and move

Filling Connected Areas by Silent Robots with Minimum Visibility Range 197

along it. The method mimics a depth first search like exploration of the area.
An example for the dispersion can be seen on Fig. 2.

Fig. 2. The robots enter through one vertex called the Door (top right vertex), and
follow the leader. The vertices occupied by Followers are blue, while the vertex occupied
by the Leader is red. The red line denotes the path of the leader. (Color figure online)

3.1 Concept

In the Virtual Chain Method the following states are permitted to the robots:

– None: starting state immediately after the robot is placed at the Door.
– Leader : the first robot placed at the Door switches to Leader state. Only the

leader moves to previously unoccupied, so called unvisited vertices. We will
ensure that there can only be at most one leader at a time.

– Follower : the robots following their predecessor are in Follower state. A fol-
lower can promote itself to leader, when its predecessor is in Finished state.

– Finished : the final state of the robots. If a robot detects it cannot move
anymore it switches to this state. A Finished robot can never move again.
Only the leader can switch to Finished state.

The chain is defined by the path of the current leader from the Door. The
followers are following that path, other robots in the area are already in Finished
state.

The chain is not visible nor can be detected by the robots; their successor
or predecessor might not even be in their visibility range at certain times. To
avoid breaking the chain, each robot must follow its predecessor. To ensure the
robots can detect their predecessor they are only allowed to move after their
successor arrived to their previous vertex. That previous vertex on the chain is
called the entry vertex of that robot. This way a robot and its predecessor can

198 A. Hideg et al.

never be farther than two hops. Only the Leader is allowed to move to vertices,
which were never occupied. These vertices are called unvisited vertices. When
the Leader cannot move anymore, either because its vertex does not have any
neighbors (other than its entry) or the movement would result in a collision,
the Leader switches to Finished state and the leadership will be taken by its
successor. Therefore, there can be at most one Leader at a time during the
dispersion. The algorithm terminates when each robot is in Finished state. The
rules followed by the robots can be seen on Algorithm1.

Algorithm 1. (VCM): Rules followed by robot r.
1: If r.State is None:

r promotes itself to Leader if r has no neighbors, or to Follower otherwise
2: If r.State is Follower:

If r.Predecessor moved from its place, r follows it.
If r.Predecessor did not move for two rounds, r switches to Leader state
and performs the actions of a Leader in the same round.

3: If r.State is Leader:
If r is an observer, it stores visited neighbors.
If r is an observed, it finds the first unvisited neighbor in the cyclical order.
If r has an unvisited neighbor, it moves there, otherwise it switches to Finished.

Round Structure. The algorithm operates in rounds. A round is a sequence
of Δ consecutive steps S1 . . . SΔ (a step is an LCM cycle of the robots). The
rounds and the steps are illustrated in Fig. 3. During each round each robot is
either an observer or an observed robot. The observed robot has to schedule its
movement, and can move to one of its neighboring vertex vi, which is the ith

vertex in the fixed cyclic order starting from the entry vertex of the robot. It
can only perform this movement in step si (as in Fig. 4), and not allowed to
move more than once in each round. The observer robot counts the number of
steps its predecessor has waited before moving. At the end of each round the
robots switch their roles (i.e. the observed robots become observers and vice
versa). Each robot starts as an observer when it is placed at the Door. The
robots also store the occupancy information of the neighboring vertices in order
to determine which of them are unvisited vertices. Now we describe the exact
behavior of the robots in the different states:

Finished: Robots that are in Finished state have terminated their actions and
do not move anymore.

Leader: If robot r is a Leader it leads the chain and moves to unvisited vertices.
Thus, the number of unvisited vertices is monotonically decreasing. Robot r can
move to vertex vi in step si if and only if vi is an unvisited vertex. In its observer
round r registers each neighbor which is occupied in any step of the round. In
its observed round, r moves to only those vertices which had not been registered
as occupied in the current or previous round (later we show, it is sufficient to

Filling Connected Areas by Silent Robots with Minimum Visibility Range 199

s1 s2 . . . sΔ

Ri

s1 s2 . . . sΔ

Ri+1

s1 s2 . . . sΔ

Ri+2

Fig. 3. The structure of the rounds. Three rounds (denoted by Ri, Ri+1, and Ri+2),
each consists of Δ consecutive steps (sj).

r

Entryv1

s1 s2 s3 s4 s5 s6

v2

s1 s2 s3 s4 s5 s6 v3

s1 s2 s3 s4 s5 s6

v4
s1 s2 s3 s4 s5 s6

Fig. 4. Robot r, entered from below, with several neighbors. It can only move to vi in
si, where vi is the ith vertex in the cyclic order starting from the entry vertex of r.

determine that vi is an unvisited vertex). If no such vertices are available, r
switches to Finished state.

Follower: Each Follower robot has to know which robot to follow, i.e. which
robot is its predecessor. We will keep the invariant that for each Follower robot
r in the beginning of its observer round the predecessor r′ of r is in a neighboring
vertex and r′ moves in that round. We will ensure that r is able to determine
the next position of r′ based on that in which step r′ moves away (similarly to
the Leader, r′ has to move to vi in si). In the next observed round of r, r moves
to the previous position of r′ in step sj , where j is the jth neighbor in the cyclic
order from the previous position of r.

There are two special cases. First, if r′ moves in sΔ, r will only notice it in s1
of its next observed round, which will be taken into account. The second special
case, if r′ cannot move anymore, which can only happen if r′ is the leader and
do not have any more unvisited neighboring vertices, r will notice it in s1 of its
next observed round. In this case r switches to Leader state and acts accordingly
in the same round (i.e. r moves to an unvisited neighbor, or switches to Finished
state if there is no unvisited neighboring vertex). For this reason Followers have
to maintain unvisited vertices around them.

None: The robot r placed at the Door is initialized with None state. In this
state the robot does not move and waits for state transition. This transition

200 A. Hideg et al.

can be one of the following: if the neighboring vertex v of r is occupied then r
becomes a Follower of the robot on v, otherwise it becomes a Leader. Before this
state transition the robot must perform the following tasks.

The first task to solve is how the robots know which step they are in. The
first robot is placed in the area in step s1 of the first round. However, if that
robot would move from the Door, the next one would be placed in s2. Based on
its surroundings, the new robot cannot acquire this information and it should
not be provided explicitly when it is placed. If the robots are only allowed to
move from the Door in sΔ the new robot is always placed in s1 of the next
round. This can easily be achieved by not letting the robots in None state to
switch states before sΔ. (Note: the robot at the Door does not have a successor
yet, therefore, it does not have to schedule its movement.).

The second task for robots at the Door is to ensure their role (observer/ob-
served) in each round. When robot r moves from the Door in round Ri a new
robot r′ is placed at the Door immediately. The robot r′ becomes active in step
s1 of round Ri+1, which is the observer round of r. As r′ is initialized as an
observer they would be both observers in Ri+1. To achieve distinct roles, r′

stays inactive in Ri+1 and becomes an observer in Ri+2 again (and r′ observes
r moving in that round).

3.2 Analysis

Lemma 1. The predecessor of the Follower is either in a neighboring vertex v
or it was in v in the previous round. In the latter case the Follower moves to the
previous position of the predecessor, which is v.

Proof. Assume r follows its predecessor r′. Let Ri be the round when r observes
r′ from the Door (r was placed in the previous round). In Ri r′ moves to one of
its neighbors. In Ri+1 r moves to the vertex which is left by r′. After this they
become neighbors again. This argument can also be repeated for the following
rounds. Therefore the claim of the lemma holds. ��
Lemma 2. Each vertex can be considered an unvisited vertex if it is not occupied
in two consecutive rounds.

Proof. There are three cases regarding vertex v: (i) it is occupied, (ii) it is unoc-
cupied, but has been occupied before, or (iii) it is an unvisited vertex (unoccu-
pied, and never been occupied before). In case (i), any robot observing v knows
it is not an unvisited vertex. In case (ii), let r be the last robot that occupied
v, and let Ri be the round in which r moved from v. According to Lemma 1 the
successor of r moves to v in round Ri+1. Consequently, v will not be unoccu-
pied through two consecutive rounds. Therefore, observing v for two consecutive
rounds allows any robot to identify cases (i) and (ii). In any other case vertex v
is an unvisited vertex, i.e. case (iii) holds. ��
Lemma 3. Each robot in Follower state always knows where its predecessor is.

Filling Connected Areas by Silent Robots with Minimum Visibility Range 201

Proof. Using induction, we show that after movement i ≥ 0 a Follower r knows
where its predecessor r′ is.

Induction Start: We show that after movement 0 (i.e. before its first move-
ment), r knows where r′ is.

Movement 0 means r did not move yet, and is still at the Door. Let v be its
only neighboring vertex. Assume a robot is occupying v, as r is in Follower state
(if v had not been occupied, r would became a Leader). We show that the robot
on v must be predecessor r′ of r.

The robots placed at the Door can only move to v. After this movement a
new robot is placed at the Door, whose predecessor is the robot which has moved
to v. If any other robot had moved to v, a new robot would not been placed at
the Door. Therefore, if r is placed at the Door its predecessor is on v.

Inductive Step: We show, if r knows where its predecessor is after movement
i, it will know where it is after movement i + 1.

After movement i robots r and its predecessor r′ are in two neighboring
vertices (v and v′) as r just moved after r′. Therefore, r knows which robot is
to observe. If r′ moves, it can only move during an observed round while r is
observing it. While observing r counts the steps until r′ move to its next vertex
v′′. As assumed, the neighbors of v′ are in a fixed cyclic order, r will know which
is the next vertex v′′ when it moves to v′ (after movement i + 1) and the robot
occupying v′′ will be r′. ��
Lemma 4. Two Followers cannot have the same predecessor.

Proof. When a robot r moves from the Door, only one robot will be placed at a
time, therefore, only one robot can Follow r (and choose it as its predecessor).
According to Lemma 3. each Follower knows where its predecessor is after every
movement and will not change predecessors. As a result r will never be the
predecessor of two (or more) different robots. ��
Lemma 5. The Leader only moves to unvisited vertices.

Proof. As stated in Lemma 2. it is enough to observe each neighboring vertex
for two consecutive rounds to determine whether it is an unvisited vertex or not.
Assume Rj is the observer round of r and Rj+1 is the observed round. In Rj+1,
in which r moves, it already knows which neighbor is unvisited and – if any –
it moves to the first unvisited vertex in the cyclic order of the neighbors in the
corresponding step of Rj+1. ��
Lemma 6. There can be at most one Leader at a time.

Proof. The first robot placed at the Door becomes the Leader. Afterwards, the
Leader only moves to unvisited vertices. If there is no unvisited neighboring
vertex (this can be determined in two rounds), the Leader changes its state
to Finished. After changing the state its successor becomes a new Leader, the
number of Leaders is still one. The condition of becoming a new Leader is that

202 A. Hideg et al.

the old Leader did not move for two consecutive rounds, which implies it has
changed to Finished state (otherwise, the old leader would have moved to an
unvisited vertex).

Lemma 7. No collision can occur during the dispersion.

Proof. The robots in None and Finished states are not allowed to move, there-
fore, it only has to be shown that robots in Follower and Leader state cannot
collide with other robots.

The robots in Follower state are following their predecessor and, according
to Lemma 1, if they are not in neighboring vertices, the successor can only move
to the previous position of the predecessor. As two robots cannot have the same
predecessor (see Lemma 4), it is not possible that multiple Followers would move
to the same vertex at the same time.

The Leader can only move to unvisited vertices (see Lemma 5) and Followers
can only move to the position of its predecessor (i.e. not unvisited vertices), and
as only one Leader is in the system (see Lemma 6), it cannot collide with other
robots.

Therefore, no collision can occur. ��
Lemma 8. Algorithm VCM fills the area (represented by the graph).

Proof. By contradiction, assume some vertices left unoccupied after the algo-
rithm terminated (meaning each robot is in Finished state). Since the graph is
connected and the Door is occupied all of the time, there exists an unoccupied
vertex v having at least one occupied neighbor v′. Let r be the robot on v′,
which is in Finished state. The condition for a robot to switch to Finished state
is to be a Leader and not to have unvisited neighbors. However, according to
Lemma 2, v will be identified as an unvisited vertex by r and r can occupy it.
This contradicts the assumption that v remains unoccupied. ��
Theorem 1. By algorithm VCM an area (represented by a connected graph)
with a single door is filled in O(Δ · n) rounds without collisions by robots with
visibility range of 1 hop and O(Δ) bits of persistent memory.

Proof. After placing the robot at the Door it is in None state, in which the robot
skips one round. In the next round it observes its predecessor moving, then it
moves in the third round. In the same round the next robot will be placed at the
Door. For this reason, the robots are placed in every third round at the Door.
As each round consists of Δ steps it takes 3 · Δ · n = O(Δ · n) steps to place n
robots.

Regarding the memory requirement, the robots require to store the index of
the current step within a round, the unvisited neighbors, the direction of their
predecessor known from the index in which step it moved away (each requiring
at most Δ bits of memory), and some additional information, requiring constant
amount of bits: current state, observer/observed role, entry vertex. As a result,
O(Δ) bits of persistent memory is required for the Virtual Chain Method. ��

Filling Connected Areas by Silent Robots with Minimum Visibility Range 203

4 Multiple Doors

In the Multiple Door Filling, the biggest challenge is how the robots entering
from different Doors avoid collisions. This is usually defined by some sort of pri-
ority order, e.g. in [4], the robots had 2 hops visibility and k different externally
visible colors, where k > 1 is the number of Doors. In [11] the cells could be
entered form different directions in each step.

In the Multiple Door Virtual Chain Method, (MD-VCM) the robots from
each distinct Door will form a distinct chain, which are lead by their Leader
robot. For each Door (for each chain) we introduce distinct time-slots, in which
they can perform their actions. As opposed to the single door case, each step is
substituted by k steps. The new round consists of k · Δ steps. Step si,j within a
round corresponds to the jth step of the chain originating from the ith Door Di,
1 ≤ i ≤ k, 1 ≤ j ≤ Δ. Each robot from Di only performs their actions in si,∗.

Rules for the k-Doors Case: The robots in Finished, Leader, and Follower
state follow the same algorithm as in the original VCM. The actions of the robots
in None state has to be modified, as they are not necessarily placed in first step
of the corresponding chain, e.g., if i < k, the robots entering from Door Di will
move from it in si,Δ, resulting the new robot to be placed at Di in step si+1,Δ

(which is the time-slot of the next Door). To make sure the new robot starts
their actions in step s1,1 of the next round the newly placed robot stays inactive
for k − i steps. The only exceptions to this rule are the robots which has been
initially placed in the first round R1. They know they are the first robots in that
Door if there are no neighboring robots for two rounds. In this case they become
active immediately (not skipping k − i steps) and switch to Leader state in step
si,Δ of the second round.

Note: on a rare occasion it is possible two Doors are neighbors with each-
other. Since we assumed that the degree of each Door vertex is 1 and the graph
is connected, it is only possible for n = 2. In this very special case, the robots at
the Door do not know correctly in which step they were placed there. However,
the filling problem is solved right after both robots are placed.

4.1 Analysis

In the Multiple Door case Lemmas 1, 2, and 3 still hold. In case of Lemmas 4
and 5 it still has to be considered that there are multiple chains in the area.

Lemma 9. In the MD-VCM, each Leader only moves to unvisited vertices and
cannot collide with each other.

Proof. Unlike in Lemma 5 there can be k > 1 robots in the system with Leader
state, meaning that multiple robots can choose the same unvisited vertex as
their destination. However, different leaders (which are from different Doors)
are assigned to different steps. As a result, one of them moves there first, after
which the vertex cannot be considered an unvisited one and the other Leaders
have to choose a new destination.

204 A. Hideg et al.

Lemma 10. The MD-VCM distinct chains cannot cross each other.

Proof. The vertices on the paths of the leaders (the chains) are not unvisited
vertices, since they were already occupied by the leader. Unvisited vertices are
detected by the leaders according to Lemma 2. Because of Lemma 5 the Leaders
only move to unvisited vertices. Consequently, the leaders do not cross other
chains. Each Follower only moves on the path of the Leader of the chain, chains
originating from different Doors are disjoint.

Theorem 2. An area (represented by a connected graph) with a multiple doors
is filled by the MD-VCM in O(k · Δ · n) rounds without collisions by robots with
visibility range of 1 hop and O(Δ · log k) bits of persistent memory.

Proof. Similarly to Theorem1 the robots are placed in each Door in every three
rounds if the chain from that Door is able to move, otherwise no further robots
can be placed at that Door anymore. In the worst case, when a single chain blocks
all the other Doors, a Door is used to cover the area. Consider a graph which is a
simple chain of n vertices whose first k vertices are the Doors D1 . . . Dk. In this
case only the robots placed on Dk can move, the robot in the other Doors are
blocked. This is equivalent to the single door case, in which the running time is
3n rounds, where each round length consists of k · Δ steps, yielding O(k · Δ · n)
runtime.

Regarding the hardware requirements, the robots do not need additional
visibility, nor other equipment. As the round length increases, and the current
step index has to be stored, the memory increases to O(Δ · log k). ��

5 Summary

In this paper, we have presented the Virtual Chain Method for solving the filling
problem in unknown region, represented by an arbitrary connected graph, with
autonomous robots having a minimum visibility range of 1 hop. The robots are
not equipped with communication capabilities, they are working synchronously.
We only assumed that the neighbors of each vertex are arranged in a fixed cyclic
order, which is the same for each robot stepping into that vertex. For the single
door case, the robots need O(Δ) bits of persistent memory, and O(Δ · n) time
steps, where n is the number of vertices of the graph. We have extended this
method to solve the k-door filling problem in O(k · Δ · n) time steps for robots
with memory requirement O(Δ·log k). The Multiple Door Virtual Chain Method
does not add further hardware requirements for the robots. It remains an open
question how the multiplicative factor k can be eliminated in the running time.

Acknowledgment. This work was partly performed in the frame of FIEK 16-1-2016-
0007 project, implemented with the support provided from the National Research,
Development and Innovation Fund of Hungary, financed under the FIEK 16 funding
scheme.

Filling Connected Areas by Silent Robots with Minimum Visibility Range 205

References

1. Albers, S., Kursawe, K., Schuierer, S.: Exploring unknown environments with
obstacles. Algorithmica 32(1), 123–143 (2002)

2. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput.
29(4), 1164–1188 (2000)

3. Augustine, J., Moses Jr., W.K.: Dispersion of mobile robots: a study of memory-
time trade-offs. In: Proceedings of the 19th International Conference on Distributed
Computing and Networking, ICDCN 2018, pp. 1:1–1:10 (2018)

4. Barrameda, E.M., Das, S., Santoro, N.: Deployment of asynchronous robotic sen-
sors in unknown orthogonal environments. In: Fekete, S.P. (ed.) ALGOSENSORS
2008. LNCS, vol. 5389, pp. 125–140. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-92862-1 11

5. Barrameda, E.M., Das, S., Santoro, N.: Uniform dispersal of asynchronous finite-
state mobile robots in presence of holes. In: Flocchini, P., Gao, J., Kranakis, E.,
Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 228–
243. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45346-5 17

6. Brass, P., Cabrera-Mora, F., Gasparri, A., Xiao, J.: Multirobot tree and graph
exploration. IEEE Trans. Robot. 27(4), 707–717 (2011)

7. Bullo, F., Cortés, J., Marttınez, S.: Distributed algorithms for robotic networks.
In: Applied Mathematics Series. Princeton University Press (2009)

8. Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems.
Theoret. Comput. Sci. 399(1), 71–82 (2008)

9. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous
mobile robots with lights. Theoret. Comput. Sci. 609, 171–184 (2016)

10. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious
Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers, San Rafael (2012)

11. Hideg, A., Lukovszki, T.: Uniform dispersal of robots with minimum visibility
range. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.)
ALGOSENSORS 2017. LNCS, vol. 10718, pp. 155–167. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-72751-6 12

12. Hsiang, T.-R., Arkin, E.M., Bender, M.A., Fekete, S.P., Mitchell, J.S.B.: Algo-
rithms for rapidly dispersing robot swarms in unknown environments. In: Boisson-
nat, J.-D., Burdick, J., Goldberg, K., Hutchinson, S. (eds.) Algorithmic Founda-
tions of Robotics V. STAR, vol. 7, pp. 77–93. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-45058-0 6

https://doi.org/10.1007/978-3-540-92862-1_11
https://doi.org/10.1007/978-3-540-92862-1_11
https://doi.org/10.1007/978-3-642-45346-5_17
https://doi.org/10.1007/978-3-319-72751-6_12
https://doi.org/10.1007/978-3-540-45058-0_6
https://doi.org/10.1007/978-3-540-45058-0_6

BSLoc: Base Station ID-Based Telco
Outdoor Localization

Jinhua Lv1, Qinpei Zhao1, Jiangfeng Li1, Yige Zhang1, Xiaolei Di1,
Weixiong Rao1(B), Mingxuan Yuan2, and Jia Zeng2

1 Tongji University, Shanghai, People’s Republic of China
{jhlv,qinpeizhao,lijf,yigezhang,dixl,wxrao}@tongji.edu.cn

2 Huawei Noah’s Ark Lab, Hong Kong, China
{yuan.mingxuan,zeng.jia}@huawei.com

Abstract. Telecommunication (Telco) localization is an important com-
plementary technique of Global Position System (GPS). Traditional
Telco localization approaches requires radio signal strength indicator
(RSSI) of mobile devices with the connected base stations (BSs). Unfor-
tunately, many of real-world signal measurement could miss RSSI val-
ues, and Telco operators typically will not record RSSI information, e.g.,
due to the major departure from current operational practices of Telco
operators [6]. To address this problem, we design a novel BS ID-based
coarse-to-fine Telco localization model, namely BSLoc, which requires
only the connected BS IDs, time and speed information of mobile devices.
BSLoc consists of two layers: (1) a sequence localization model via Hid-
den Markov Model (HMM) to localize the mobile devices with coarse-
grained locations, and (2) a machine learning regression model with engi-
neered features to acquire the fine-grained locations of mobile devices.
Our experiments verify that, on a 2G dataset, BSLoc achieves a median
error 26.0 m, which is almost comparable with two state-of-art RSSI-
based techniques [9] 17.0 m and [20] 20.3 m.

1 Introduction

Recent years witnessed the popularity of location-based applications such as
Google Map, Uber and Wechat on mobile devices. Billions of mobile users make
use of such applications in their daily life, which motivates the development of
outdoor localization techniques. As the most widely used localization technique,
the Global Position System (GPS) still suffers from some shortcomings such
as: (1) hungry energy-consuming, (2) easily blocked by high buildings, and (3)
usually turned off by users due to privacy leakage consideration.

Meanwhile, telecommunication (Telco) localization has been proposed to
localize mobile devices with measurement report (MR) data from Telco net-
works. The MR data can be collected when mobile devices connect to nearby
base stations (BSs). A MR record contains connection information with up to
6 neighboring BSs [3]. Compared with the GPS, telco localization has strong
points as: (1) energy-efficient (2) feasible in most mobile devices (3) better net-
work coverage and being available indoors and underground (4) active when
c© Springer Nature Switzerland AG 2019
S. Gilbert et al. (Eds.): ALGOSENSORS 2018, LNCS 11410, pp. 206–219, 2019.
https://doi.org/10.1007/978-3-030-14094-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14094-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-14094-6_14

BSLoc: Base Station ID-Based Telco Outdoor Localization 207

making calls or mobile broadband (MBB) services. Most existing telco local-
ization studies involve four categories. (i) Measurement-based methods [17] esti-
mate the point-to-point distances or angles from a device to its nearby BSs based
on a radio propagation model, (i) fingerprint-based approaches [4] build a his-
togram of received signal strength indicator (RSSI) for each location grid as its
fingerprint, (iii) machine learning based methods [19,20] learn the relationship
between MR features and locations to predict the position of an individual MR
record (namely single-point localization), and (iv) sequence localization [5,13]
uses sequence-to-sequence models to generate a location sequence from a MR
sequence.

The majority of the localization methods above assume that MR data con-
tains sufficient signal strength information (e.g., RSSI). Nevertheless, a high ratio
of real-world MR records collected from mobile users contain such information
from at most two BSs [13,20]. In the worst case, MR records contain BS IDs
alone even without any signal strength information. Moreover, Telco operators
typically will not record the signal strength information due to (1) the major
departure from current operational practices of Telco operators [6] and (2) extra
storage and computation overhead caused by logging such information [12].

In this paper, when given such MR records above with BS IDs alone, we
design a BS ID-based coarse-to-fine telco localization model, namely BSLoc.
BSLoc consists of two layers. In the first layer, we build a sequence localization
model via Hidden Markov Model (HMM) encouraged by the good performance
of sequence methods [13]. In the second layer, based on the coarse-grained grid
locations by the first layer, we employ a machine learning regression model with
engineered features to obtain fine-grained locations of mobile devices.

Compared with the state-of-the-art BS ID-based techniques, BSLoc offers
three advantages: (1) no need of base station position. The two previous meth-
ods [6,12] exploit the infrastructure information of BSs (e.g., precise position of
BSs) from Telco providers, which can hardly be obtained by individual users, (2)
Map constrained. Perera, et al. [12] computes straight lines by Vironoi as move-
ment path which may falsely depart from real road segments. Instead, BSLoc
leverages road networks for higher localization accuracy. (3) Good performance.
The experimental results verify that our proposed model outperforms the best
competitor by 37.3% in median error.

The rest of this paper is organized as follows. Section 2 first introduces the
problem statement and then gives an overview of our solution. Section 3 gives
the detail of our solution, and Sect. 4 evaluates our solution. Section 5 finally
concludes the paper. Table 1 summarizes some symbols and their meanings used
in this paper.

2 Overview

2.1 Problem Statement

Problem 1. (BS ID-based Telco Localization): BS ID-based Telco localization
problem is to localize a mobile device using its connected BS IDs.

208 J. Lv et al.

Table 1. Mainly used symbols/names and associated meanings

Symbol Meaning Symbol Meaning

BS Base Station RAF Random Forest

HMM Hidden Markov Model RSSI Received Signal Strength Indicator

MR Measurement Report Telco Telecommunication

When a mobile device connects to nearby BSs in a Telco network, the BSs
generate MR records. As shown in Table 2, an example LTE 4G MR record con-
tains a user ID (IMSI: International Mobile Subscriber Identification Number),
connecting time (MRTime), up to 6 nearby BSs (eNodeBID and CellID) and
radio signal strength indicator (RSSI) if any.

Table 2. An example of an LTE 4G MR record

MRTime 2017/5/31 14:12:06 IMSI ***012 Serving eNodeBID 99129 Serving CellID 1

eNodeBID 1 99129 CellID 1 1 RSRP 1 −93.26 RSSI 1 −67.18

eNodeBID 2 99131 CellID 2 4 RSRP 2 −98.44 RSSI 2 −53.65

...

eNodeBID 6 99145 CellID 6 5 RSRP 6 −90.02 RSSI 6 −50.92

Problem 1 essentially localizes mobile devices when the given MR records
contain empty items of RSRP and RSSI. To solve Problem1, we have to tackle
three challenges. (i) The low spatial sensitivity of BS IDs. The coverage radius
of a base station is 0.5–5 km [13], and the switch of connected BSs is rather
infrequent [9], leading to the low spatial sensitivity of BS IDs. (ii) The disparity
of MR records. The collected MR data is unevenly distributed on different areas,
resulting in the difficulty of localization in rarely visited area. (iii) The GPS noise
of MR data. The corresponding GPS labels of the MR data can be far away from
true locations, leading to the difficulty of accurate localization.

To illustrate the above challenges, Fig. 1 shows an example of collected data
from a dataset Jiading Campus. Figure 1(a) is a bicycle trajectory around the
campus. The part of the trajectory highlighted by a black square is about 3 km
but the serving BS did not change. Figure 1(b) dashed by a black square involves
plenty of noisy GPS labels of the MR data, and the area dashed by a black circle
shows some rarely traveled (by two or three trajectories) roads.

2.2 System Overview

In Fig. 2, the proposed localization model contains two following stages. First,
the offline stage is to train historical data (i.e., those MR records together with
associated GPS positions and speed information of mobile devices) to generate a
two-layer machine learning models: Hidden Morkov Model (HMM) and Random

BSLoc: Base Station ID-Based Telco Outdoor Localization 209

Fig. 1. Dataset Jiading Campus

Fig. 2. System overview

Forest (RAF) regression model. In the first layer, we design a sequence localiza-
tion model via HMM. It maps a sequence of observed BS IDs, timestamp, and
speed information to a sequence of coarse-grained grid locations. In the second
layer, we employ the RAF regression model to map the features with respect to
the coarse-grained locations generated by the first layer to the fine-grained GPS
positions.

Next, at the online stage, we takes as input a sequence of receiving BS IDs,
timestamp and speed information to generate the coarse-grained grid locations
as the output, e.g., by using the classic Viterbi algorithm [1]. After that, such
grid location is next feed to the second layer RAF regression model which finally
generates the fine-grained GPS locations.

To enable the proposed model, we need to perform the preprocessing steps.
First, when people are moving along road networks, we adopt a classic map-
matching technique such as [8] to project the GPS positions in our data onto the
digital road network extracted from OpenStreetMap. The purpose is to mitigate
GPS noise. Thus we use the projected GPS points on road networks as the
ground truth of moving positions. Second, we divide the ground map area of
interest into square grids with width cw. A grid location is a spatial index which
refers to an area (cw × cw) in a ground map, and we typically set cw = 30 m

210 J. Lv et al.

to represent the road width. The grid locations are used in the first layer of our
model to generate coarse-grained locations.

3 System Design

In this section, we give the detail of the two models: HMM and RAF regression.

3.1 Hidden Markov Model

We describe the used HMM λ = (S, V,A,B, π) with the following variables:

– S = {s1, s2 . . . sN} is the set of states. In our case, each state represents a
grid position for each MR record, and N indicates the total amount of divided
grid in the area of interest.

– V = v1, v2 . . . vM is the set of observations. In our case, each observation vi
is the set of up to 6 BS IDs appearing inside MR records. The first ID is the
one with the serving base station.

– A = {aij} is the state transition probability distribution, where aij represents
the probability that the grid si at time t is transited to the next one sj at
time t + 1.

– B = {bj(k)} is the probability distribution of observation k in state j, where
bj(k) is the emission probability of vk in the grid sj , i.e., bj(k) = P (vk|sj).

– π = πi is the initial state distribution with πi = P [q1 = Si].

In the HMM model, the key is to learn the probabilities A and B.

Learn Transition Probability: The transition probability measures the prob-
ability of a device moving from a grid location Gj to another Gk with time
interval Δt. We learn transition probability from two parts: transition matrices
from historical trajectories associated with training MR data, and speed con-
straint from mobile phone sensor. The detail transition probability computation
is described in Algorithm 1.

Transition Matrices. We use the statistics of trajectory data to compute tran-
sition probability. We construct transition matrices built by three steps. First,
we convert each GPS point into a triplet 〈TrajID, T ime, Location〉. Second, for
every two points in the same trajectory, we extract a new triplet 〈Δt,Gj , Gk〉
which indicates the transition from grid Gj to Gk with time interval Δt. Third,
triplets with same Δt make a matrix, thus generating multiple matrices with
different Δt. Each entry in a matrix denotes the count of movements from grid
location Gj to Gk with time interval Δt.

Speed Constraint. Based on the velocity vt at time t and velocity vt+1 at time t+1
(vt < vt+1), we heuristically constrain the moving distance inside the interval
dv = [d0, d1] where d0 = vt ∗ Δt and d1 = vt+1 ∗ Δt. However, the velocity infor-
mation is noisy due to the common measurement errors. For example, a mobile
device pauses for 30 s but the velocity value collected from the accelerometer

BSLoc: Base Station ID-Based Telco Outdoor Localization 211

Algorithm 1. Transition probability calculation algorithm
Input: Gt: candidate locations in time t, Gt+1: candidate location in time t + 1,

M : offline computed transition matrices, Δt: time interval between t
and t + 1, vt: speed at t, vt+1: speed at t + 1

Output: transProb: the transition probabilities from t to t + 1
1 M−= mat ∈ M with time interval Δt− = Δt;
2 for each Gt

j in Gt do
3 nj =

∑
Gt+1

k
∈Gt+1 M−[Gt

j][G
t+1
k];

4 for each Gt+1
k in Gt+1 do

5 transProb[Gt
j][G

t+1
k]=

M−[Gt
j][G

t+1
k

]

nj
∗ pspeed, where pspeed=Eq. 1;

6 return transProb;

sensor might still indicate a moving speed (i.e., 2 m/s). Suppose the velocity
noise follow a Gaussian distribution. We set the movement probability as follow:

P (Gk|Gj , vt, vt+1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, distj,k ∈ [d0, d1]

e
− (d−d0)2

2d20 , distj,k ∈ [d0 − k ∗ cw, d0]

e
− (d−d1)2

2d21 , distj,k ∈ [d1, d1 + k ∗ cw]

(1)

In the equation above, distj,k is the distance between two grids Gj and Gk

typically computed by the centroid distance of such grids. The parameter k
restricts the noisy deviations into a certain range, and we empirically set k as
the standard deviation of the trajectory of GPS positions of a given mobile
device.

Emission Probability: Given the observed BS IDs as a feature Ok in a grid
state sj , we compute the emission probability bj(k) by Algorithm 2.

Algorithm 2. Emission probability calculation algorithm
Input: Vk: feature of MR record k, Gj : grid locations
Output: emissionProb: the emission probabilities for observation Vk in grid Gj

1 for each Gj in G do
2 nj = amount of BS IDs in grid Gj ;
3 nij = amount of BS IDs equal to Vk in grid Gj ;
4 emissionProb[Gj] =

nij

nj
∗ wij , where wij = Eq. (2);

5 return emissionProb;

Bayesian Emission Probability. Providing that we observe feature Ok from a
MR record, we first roughly estimate the probability that Ok locates on a grid

212 J. Lv et al.

location Gj . First of all, the training samples indicate the empirical distribution
of the BS IDs in the area of interest. Then according to Bayes’ rule, we formulate
the emission problem as P (Ok|Gj) = P (Ok,Gj)

P (Gj)
. For each grid location Gj , we

count the number of training samples as nj . Similarly we count the number
nkj of training samples with feature Ok in grid Gj . The emission probability
P (Ok|Gj) is then estimated as nkj

nj
, which is proportional to P (Ok,Gj)

P (Gj)
.

Grid Weight Enhancement. Beyond the rough estimation nkj

nj
above, we are

interested in the reliability of the empirical distribution in that grid, and thus
define the weight of grid Gj with observation Ok as wkj :

wkj =
nj

∑
Gk∈G(Ok)

nk
(2)

where nj denotes the number of training samples in grid Gj , and G(Ok) indicates
all those grids containing feature Ok and thus

∑
Gk∈G(Ok)

nk computes the total
amount of training samples in all such grids.

Fig. 3. Example emission probability calculation (from left to right): (a) Example
trajectories on two roads R0, R1; (b) Map division by grids G0 · · · G19; (c) Empirical
distribution on the divided grids

Figure 3 shows an example to compute the emission probability. In this figure,
mobile devices are moving on two intersected roads R0 and R1, and we divide
the map into 4 × 5 = 20 grids G0 · · · G19. Assume that all the 20 gray grids
are with a certain feature (e.g., two BS IDs), i.e., Ok are all inside such 20
grids. In the right-most figure, each pair in the gray grids indicates nij and nj ,
respectively. We then emission probability of O1 locating on G8 is computed as
P (O1|G8) ∗ w1,8 = 3

8 ∗ 8
8+11+55+67+72+80+46+31 ≈ 0.0081.

3.2 Regression Model

Based on the predicted grid locations of HMM model, we use the center of grids
with size of cw × cw as its coarse locations. After that, based on the coarse

BSLoc: Base Station ID-Based Telco Outdoor Localization 213

Table 3. Engineered features

Features Description

pred loc pi’s longitude/latitude from the output of the first layer

obsv pi’s observed BS IDs

speed pi’s speed

last loc pi−1’s longitude/latitude from the output of the first layer

last obsv pi−1’s observed BS IDs

last speed pi−1’s speed

next loc pi+1’s longitude/latitude from the output of the first layer

next obsv pi+1’s observed BS IDs

next speed pi+1’s speed

locations generated by the first layer, we compute the contextual information
such as observed BS IDs, speed and predicted grid locations into feature vectors
in Table 3. The RAF regression model trains the features with the fine-grained
GPS coordinates. Our experiment will validate that the two-layer design per-
forms much better than the approach using the first layer HMM model alone.

We use standard RAF regression model to build the mapping from engineered
features to GPS locations (longitude/latitude pairs). The regression target is
to minimize the total error in the leaves of trees in RAF. We formulate the
regression objective as

S =
T∑

t=1

∑

i∈Lt

D(i) (3)

where T is the number of trees in the forest, Lt is the leaves of a tree in RAF and
D(i) is the squared error of samples in the leave i. During the offline training
stage, the regression target S leads to the minimization of the training error.
Then as the online stage, the trained RAF model predicts GPS locations by
engineered inputs from the first layer.

4 Evaluation

Table 4. Statistics of two data sets

Jiading Campus Siping Campus

Number of samples (4G) 19542 2650

Number of 4G BSs 39 23

Number of samples (2G) 13416 3585

Number of 2G BSs 91 53

214 J. Lv et al.

4.1 Datasets

Our experiments use two data sets collected in Shanghai city: (1): Jiading dataset
is collected from a university campus located in a rural area of the North-west
Shanghai (2): Siping dataset is collected from another university campus in an
urban area of the North-east Shanghai. We developed an Android app to collect
MR records, speed information and associated GPS position to collected the two
data sets above. Specifically, when collecting MR data, we meanwhile turn on
GPS sensors to acquire GPS coordinates.

Table 4 summarizes the two data sets. A piece of sample of the two data sets
is an MR record with a GPS location. Both two data sets are collected with
sampling rate of three seconds. Although the amount of samples and coverage
area of Siping data set are smaller than that in Jiading data set, Siping data set
includes more BSs per unit area due to dense BS deployment in urban Siping
campus than the one in rural Jiading campus.

4.2 Counterparts and Evaluation Metrics

We implement three state-of-art algorithms (the detail refers to Sect. 5): (1) BS
ID-based algorithm Cell* by Leontiadis et al. [6], (2) RSSI-based algorithm NBL
by Margolies et al. [9], and (3) RSSI-based algorithm CCR by Zhu et al. [20].
Our evaluation objectives include:

– How BSLoc can outperform the BS ID-based algorithm Cell*.
– How BSLoc is comparable to the existing RSSI-based algorithms.

We evaluate BSLoc against the three algorithms by the metrics including
Mean, Median and 67% error. The three algorithms compute localization errors
by the distance between predicted locations and true locations except Cell*. Cell*
predicts the path of mobile device, which consists of several road segments. For a
MR record, the localization error is computed as the minimum distance between
its true location and predicted road segment.

4.3 Baseline Study

Fig. 4. Comparison with best competitor for BS ID-based techniques.

Figure 4 shows the comparison of our solution including one layer (L1) and two
layer (L2) design with Cell*. Here, BSLoc only uses the serving BS ID as observa-
tion. From the result, we can see BSLoc(L2) achieves much better accuracy than

BSLoc: Base Station ID-Based Telco Outdoor Localization 215

Cell* and BSLoc(L1) in general. For example, on Jiading 2G dataset, the median
errors (and mean errors) of three algorithms BSLoc(L1), BSLoc(L2) and Cell* are
{80.8 m, 50.3 m, 80.2 m} ({116.0 m, 79.0 m, 171.3 m}), respectively. BSLoc(L2)
achieves 37.3% improvement than Cell* in median error and 53.9% improve-
ment in mean error.

Specially, we find that the former 50% errors of Cell* are often lower than
our BSLoc. The reason is the difference of evaluation metrics. The localization
error of Cell* is computed by the distance between true location and predicted
road segment. In general, both BSLoc(L1) and BSLoc(L2) behave better than
Cell* on the four datasets.

4.4 Comparison with RSSI-Based Methods

Fig. 5. Comparison with latest RSSI-based algorithms.

Figure 5 shows the comparison of BSLoc with the two RSSI-based algorithms
(CCR and NBL). Here, BSLoc uses first two BS IDs as observation. From the
result, we can conclude that BSLoc has comparable performance with NBL
and CCR in general. For example, the median errors (and mean errors) of
three algorithms (NBL, CCR, BSLoc) are {17.0 m, 20.3 m, 26.0 m} ({49.7 m,
30.0 m, 47.7 m}) on Jiading 2G dataset, and {9.4 m, 6.5 m, 13.1 m} ({20.1 m,
26.7 m, 26.3 m}) on Siping 2G dataset respectively. Considering the missing of
the RSSI information, the proposed method has a good performance on both
of the datasets. Since both the other two algorithms depend on the connec-
tion with neighboring BSs. Such neighboring BS IDs can hardly be obtained by
mobile apps in LTE network. The results show our new BS ID-based method
could have comparable performance with RSSI-based techniques with missing
RSSI information.

4.5 Sensitivity Study

In this section, we vary the values of the parameters, which are the grid size and
the extent of missing RSSI information, and study the sensitivity of BSLoc.

Effect of Grid Size: Figure 6(a) gives the experimental results when changing
the grid size cw. A smaller grid size means more precise locations. In this exper-
iment, we test five grid sizes: {15 m, 20 m, 30 m, 50 m, 100 m}. The result shows

216 J. Lv et al.

Fig. 6. Sensitivity study on the dataset Jiading 2G Campus: (a) Effect of grid size (b)
Effect of missing RSSI

that the best grid size for Jiading dataset is between 20 m and 30 m. This is
because a smaller grid size also means less training samples in each grid, leading
to more inaccurate emission probabilities. Thus, the errors become higher when
grid size is smaller than 20 m.

Effect of Missing RSSI: In Fig. 6(b), the performance of our method changes
when adding different percentage of RSSI information. The figure shows that a
higher percentage of RSSI information brings lower localization errors in general.
The experiment validates the enhancement of signal strength information from
base stations.

5 Related Work

In this section, we review the literature work of Telco localization, including
RSSI-based and BS ID-based techniques. The RSSI-based techniques can be
classified into four categories: measurement-based methods [7,11,15,17], finger-
printing methods [4,9,18], machine learning based methods [19,20] and sequence
methods [5,13,16]. The BS ID-based techniques are all BS infrastructure based
methods [6,10,12].

Measurement Based Methods: Measurement based methods employ signal
measurement to estimate the location distance and the angle for telco localiza-
tion. These methods suppose the signal information follows signal propagation
model and estimate the distance/angle from neighboring base stations. Then the
location of mobile device is computed via trilateration. There are a variety of
measurements such as AOA, TOA and RSS [7,11,15,17]. However, the signal
measurements are often noisy in urban areas due to multi-path propagation,
non-line-of-sight propagation and multiple access interference, leading to large
localization errors.

Fingerprinting Methods: Fingerprinting methods locate devices by compar-
ing an input MR record against a fingerprint database which is constructed
during an offline phase. The representative work CellSense [4] first divides the
map area into square grids and then builds a fingerprint database that stores the

BSLoc: Base Station ID-Based Telco Outdoor Localization 217

RSSI histogram for each grid at offline stage. Then at online stage it searches
the K nearest grid neighbors for a given MR record via empirical distribution
and returns the weighted average location. Moreover, a very recent work NBL
[9] builds a Gaussian distribution in each grid for each base station, and achieve
improvement than CellSense. Compared with measurement-based methods, fin-
gerprinting methods lead to much lower localization error.

Machine Learning Based Approaches: Machine learning based methods
build a representative feature on MR records and learn the mapping function
from the built feature to actual location through well-trained models, such as
Random Forest (RaF) and artificial neural network (ANN) [3,20]. For instance,
Zhu et al. [20] first propose a two-layer random forest regression model to learn
the location from the RSSI based features, and achieve good performance with
high accuracy. Huang et al. [3] implement a variety of machine learning based
methods for localization including Random Forest, MLP (Multilayer percep-
tron), XGBoost and etc., which has verified the effectiveness of machine learn-
ing models. In addition, Zhang et al. [19] propose a confidence level-based data
repair method to optimize Telco localization.

Sequence Methods: Sequence methods map a sequence of MR records to a
trajectory of locations. The sequence methods consider the contextual infor-
mation, i.e., time and speed context, yielding more accurate estimations than
single point methods. Mohamed et al. [5] propose a HMM model and employ
Viterbi algorithm to map a sequence of MR records to a trajectory. Ray et al.
[13] employ HMM and particle filtering algorithm to localize a sequence of MR
records. These methods have demonstrated better localization accuracy.

BS ID-Based Methods: BS ID-based methods just take as input the ID of con-
nected base stations (one or two) without signal strength information to locate
mobile devices. Paek et al. [10] matches cell-id sequence with location sequence
by Smith-Waterman algorithm. Leontiadis et al. [6] exploits the location and
azimuth information of connected base station and builds a coverage map for
each base station. The applied A* algorithm searches a path with maximum
likelihood on the generated weighted road network. Perera et al. [12] aims to pro-
vide a realtime localization approach by mathematical computations based on
the connected base station’s location and coverage shape. Nevertheless, mobile
users can hardly obtain such base station information from commercial Telco
providers. It is not hard to find that the performance of both works is not as
good as RSSI-based methods.

6 Conclusions

In this paper, we propose a BS ID-based coarse-to-fine telco localization approach
without signal strength information or position of BSs. The two-layer localization
framework first locates mobile devices in square grids, and next predict a precise
GPS location. Our experiments on two data sets have successfully validated
the advantages of our method over the state-of-art BS ID-based methods, and

218 J. Lv et al.

almost comparable to RSSI-based approaches. As the future, we plan to employ
sequence-to-sequence learning framework [2,14] for more precise localization.

Acknowledgment. This work is partially supported by National Natural Science
Foundation of China (Grant No. 61572365, 61503286, 61702372) and sponsored by
The Fundamental Research Funds for the Central Universities.

References

1. Forney, G.D.: The viterbi algorithm. Proc. IEEE 61(3), 268–278 (1973)
2. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),

1735–1780 (1997)
3. Huang, Y., et al.: Experimental study of telco localization methods. In: 2017 18th

IEEE International Conference on Mobile Data Management, MDM, pp. 299–306.
IEEE (2017)

4. Ibrahim, M., Youssef, M.: CellSense: a probabilistic RSSI-based GSM position-
ing system. In: 2010 IEEE Global Telecommunications Conference, GLOBECOM
2010, pp. 1–5. IEEE (2010)

5. Ibrahim, M., Youssef, M.: A hidden Markov model for localization using low-end
GSM cell phones. In: 2011 IEEE International Conference on Communications,
ICC, pp. 1–5. IEEE (2011)

6. Leontiadis, I., Lima, A., Kwak, H., Stanojevic, R., Wetherall, D., Papagiannaki,
K.: From cells to streets: estimating mobile paths with cellular-side data. In: Pro-
ceedings of the 10th ACM International on Conference on Emerging Networking
Experiments and Technologies, pp. 121–132. ACM (2014)

7. Lopes, L., Viller, E., Ludden, B.: GSM standards activity on location (1999)
8. Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., Huang, Y.: Map-matching for

low-sampling-rate GPS trajectories. In: Proceedings of the 17th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems,
pp. 352–361. ACM (2009)

9. Margolies, R., et al.: Can you find me now? Evaluation of network-based localiza-
tion in a 4G LTE network. In: IEEE Conference on Computer Communications,
INFOCOM 2017, pp. 1–9. IEEE (2017)

10. Paek, J., Kim, K.H., Singh, J.P., Govindan, R.: Energy-efficient positioning for
smartphones using Cell-ID sequence matching. In: Proceedings of the 9th Inter-
national Conference on Mobile Systems, Applications, and Services, pp. 293–306.
ACM (2011)

11. Patwari, N., Ash, J.N., Kyperountas, S., Hero, A.O., Moses, R.L., Correal, N.S.:
Locating the nodes: cooperative localization in wireless sensor networks. IEEE
Signal Process. Mag. 22(4), 54–69 (2005)

12. Perera, K., Bhattacharya, T., Kulik, L., Bailey, J.: Trajectory inference for mobile
devices using connected cell towers. In: Proceedings of the 23rd SIGSPATIAL
International Conference on Advances in Geographic Information Systems, p. 23.
ACM (2015)

13. Ray, A., Deb, S., Monogioudis, P.: Localization of LTE measurement records with
missing information. In: The 35th Annual IEEE International Conference on Com-
puter Communications, IEEE INFOCOM 2016, pp. 1–9. IEEE (2016)

14. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112
(2014)

BSLoc: Base Station ID-Based Telco Outdoor Localization 219

15. Swales, S., Maloney, J., Stevenson, J.: Locating mobile phones and the US wireless
E-911 mandate (1999)

16. Thiagarajan, A., Ravindranath, L., Balakrishnan, H., Madden, S., Girod, L.: Accu-
rate, low-energy trajectory mapping for mobile devices (2011)

17. Vaghefi, R.M., Gholami, M.R., Ström, E.G.: RSS-based sensor localization with
unknown transmit power. In: 2011 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP, pp. 2480–2483. IEEE (2011)

18. Vo, Q.D., De, P.: A survey of fingerprint-based outdoor localization. IEEE Com-
mun. Surv. Tutor. 18(1), 491–506 (2016)

19. Zhang, Y., Rao, W., Yuan, M., Zeng, J., Yang, H.: Confidence model-based data
repair for telco localization. In: 2017 18th IEEE International Conference on Mobile
Data Management, MDM, pp. 186–195. IEEE (2017)

20. Zhu, F., et al.: City-scale localization with telco big data. In: Proceedings of the
25th ACM International on Conference on Information and Knowledge Manage-
ment, pp. 439–448. ACM (2016)

Orientation Estimation Using Filter-Based
Inertial Data Fusion for Posture Recognition

David Segarra1(&), Jessica Caballeros1(&), Wilbert G. Aguilar1,2(&),
Albert Samà3(&), and Daniel Rodríguez-Martín3(&)

1 CICTE Research Center, Universidad de las Fuerzas Armadas ESPE,
Sangolquí, Ecuador

{desegarra,jacaballeros,wgaguilar}@espe.edu.ec
2 GREC Research Group, Universitat Politècnica de Catalunya,

Barcelona, Spain
3 CETPD Research Group, Universitat Politècnica de Catalunya,

Vilanova i la Geltrú, Spain
{albert.sama,daniel.rodriguez-martin}@upc.edu

Abstract. In this article, the Kalman filter, Mahony filter and Madgwick filter
are implemented to estimate the orientation from inertial data, using an IMU
called 9 � 3 of the MoMoPa3 project which contain various sensors including a
gyroscope, an accelerometer and a magnetometer, each one of them, equipped
with three perpendicular axes, in the magnetometer the measurement was
modified to correct the distortions by hard metals, demonstrating improvements
in the accuracy of the orientation estimates. In addition, the Kinovea video
analyzer software is used as reference and gold standard to calculate the Root-
Mean-Square Error (RMSE) with each filter. When comparing the angles esti-
mated by the filters with those obtained from Kinovea, it was observed that one
of the filters was better in performance. The information obtained in this article
can be involved in several fields of science, one of the most important in the
field of medicine, helping to control Parkinson’s disease since it allows to
evaluate and recognize when a patient suffers a fall or presents Freezing of the
gait (FOG).

Keywords: Orientation estimation � IMU � Kalman filter � Madgwick filter �
Mahony filter � Magnetometer distortion

1 Introduction

The life expectancy throughout the world has increased continuously for more than half
a century [1], diseases caused by age or longevity in people has increased, being
Parkinson’s disease considered of special importance. Parkinson’s disease (PD) is a
complex degenerative neurological condition that appears in adulthood and is the
second most common neurodegenerative disease, mainly affecting the motor system
[2–4]. According to the Global Declaration for Parkinson’s Disease, PD affects up to
6.3 million people worldwide [5], Parkinson’s disease is increasingly a public health
challenge in our progressively aging societies.

© Springer Nature Switzerland AG 2019
S. Gilbert et al. (Eds.): ALGOSENSORS 2018, LNCS 11410, pp. 220–233, 2019.
https://doi.org/10.1007/978-3-030-14094-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14094-6_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14094-6_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14094-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-14094-6_15

The main clinical features of Parkinson’s disease are related to body movement
including tremor, spontaneous shaking (mainly in the upper limbs), muscle stiffness
and bradykinesia (slow-moving physical movements) [6], in the advanced phase of the
disease freezing of gait (FOG) is present, which is a disabling symptom and a
movement disorder, and becomes a problem that could cause falls, this can be pre-
vented by identifying when the FOG happens, with that, being able to control and help
the patient by means of auditory signals to not lose coordination and freezing of the
motor system, for this, it is necessary being able to recognize the orientation of the
patient.

When observing the high index affectation of Parkinson’s Disease, the developed
project tries to improve the quality of life of the people who suffer it, raising the
objective of recognizing the freezing of gait (FOG) of the patients, to avoid falls during
this stage, in order to achieve this, first it needs to be able to estimate the orientation of
the individual, for this, inertial sensors, such as, accelerometer, gyroscope and mag-
netometer are used, which together form an Inertial Measurement Unit (IMU). The
device with these characteristics used in this article, was originally created for the
MoMoPa3 project [7], which provides raw data, later this information from the sensors
will be processed and filtered through the use of Kalman filter, Madgwick filter and
Mahony filter to evaluate which filter best estimates the position compared to the angles
obtained by a video analyzer software called Kinovea, each of the filters was imple-
mented in Matlab.

The remaining of this article is organized as follows Sect. 2 describes briefly related
works on orientation estimation with inertial sensors in different fields of science,
Sect. 3 shows each of the filters used, and mathematically what corrections had to be
made before inputting the measured data to the filters as well as how the angles were
calculated from the coordinates given by Kinovea, on Sect. 4 we show the results
obtained with each filter compared to our gold standard and finally in Sect. 5 con-
clusions and future works that could be done are shown.

2 Related Works

The orientation estimation is useful in several areas of research, one of which is to
control unmanned aerial vehicles (UAV) or aerial robots, which allow the autonomous
or semi-autonomous development of missions that cover the defense and security
sectors [8]. In order to guarantee the permanent availability of the control system, it is
essential to have certain instruments and sensors to control the stability of an UAV,
such as the inertial measurement unit or IMU that provides data from the course
followed by the UAV [9].

There are several methods for the estimation of the orientation as in [10] a real-time
system was developed to monitor tremors and detection of falls, because of freezing of
gait (FOG) which is a symptom present in the late stages of Parkinson’s disease. The
system consists of a 3D camera sensor based on the Microsoft Kinect architecture,
which is able to recognize episodes of freezing (a state of inactivity), tremors and fall
incidents. In case of an event, an alert is sent automatically to relatives and health care
providers. This project was developed on an ideal environment, so its operation is

Orientation Estimation Using Filter-Based Inertial Data Fusion for Posture Recognition 221

influenced, depending on the vision range of the Kinect so in a real environment the
algorithm can fail to find obstacles in the range of the visual sensor, where the test
subject is placed, that’s why it is more convenient to use sensors mounted directly on
the patient, as proposed in this article.

Another development of great importance are exoskeletons for rehabilitation, which
are used to assist movements and/or increase the capabilities of the human body [11].
In the article called “Lower-limb wearable exoskeleton” [12], it shows a system to
compensate and evaluate the pathological gait, for applications, in real conditions, as a
methodology of assistance of the problems that affect the mobility of individuals with
neuromotor disorders. The implementation of sensors consists of an inertial measure-
ment unit (IMU) on the foot (below the ankle joint in the orthosis), and a second unit in
the lower bar of the exoskeleton, to achieve the control system of the exoskeleton,
through the information acquired from the estimation of the orientation of each artic-
ulation. In this case, the work developed to obtain the estimation of the orientation of
each articulation, is not robust enough, since it does not present an alternative system to
be able to verify and compare that the estimated orientation is correct, in our project it
is used both invasive and non-invasive sensors to be able to obtain the sensor
orientation.

The determination of the orientation of objects in motion is involved in several
fields of science [13]. In order to obtain relevant data for the estimation of the orien-
tation it is necessary to process the signals received from the inertial measurement unit
(IMU), the advanced methods of signal processing are strongly researched to optimize
the performance of the existing detection hardware [13, 14]. When faced with a
dynamic system, the magnitudes of the vector of parameters to be estimated will vary
with time, which makes the problem more complex, in these cases, recursive estimation
methods are used [15]. Currently there are several methods to manipulate the data,
among the most important are the extended Kalman filter, Madgwick filter and Mahony
filter, in this article each of the filters is implemented and then compared to obtain
which one gives a lower error in the estimation of the orientation. In addition, it is
intended to perform an exact system by using two different processes for the estimation
of the orientation, using Kinovea as a visual sensor and using the IMU as inertial
physical sensors, once the process of acquisition and processing of the data is com-
pleted, it is sought to get an autonomous system to incorporate the algorithm of
orientation estimation, to be used in several applications within the field of health to
detect FOG in Parkinson’s disease.

3 Our Approach

3.1 Sensor

For the development of this research, an inertial measurement unit (IMU) was used. It
is a device used in several fields, since they are effective, small and light. The IMU
used is the same as the work done in [7] called 9 � 3 that has the objective of
evaluating the symptoms of Parkinson’s disease (PD). The 9 � 3 Unit can be used 2 or
3 days working continuously and it independently registers the signals of each of its

222 D. Segarra et al.

sensors. This device has several elements such as: three accelerometers, a gyroscope, a
magnetometer and a barometer to detect small changes in altitude [7].

The signals used for the estimation of the orientation in this work are obtained only
from the inertial sensors integrated in LSM9DS0 [16], which is a 9-axis system
composed of a magnetometer module, a triaxial accelerometer and a triaxial gyroscope
module, these signals are stored on a microSD card, with a sampling rate of 400 Hz.

3.2 Mahony Filter

The notation used to mathematize the filters that we are going to follow is the one
described by Madgwick in [17]. For example: the symbol ^ denotes a normalized
vector, the symbol * means the conjugate of the vector, the operator ⊗ denotes a
quaternion product, ABq̂ means the orientation of frame B with respect to frame A, Av̂ is
a vector in frame A.

Eĥ represents the direction of the magnetic field in the frame of the earth, calculated
by means of the quaternary product of the previous estimation of orientation with the
normalized magnetometer measurement and with the conjugate quaternion of the
previous estimation of orientation, as can be seen in Eq. (1), m is the measure delivered
by the magnetometer.

Eĥt ¼ S
Eq̂� m̂� S

Eq̂
�� � ð1Þ

A quaternion is defined by Eq. (2).

S
Eq̂ ¼ q1 q2 q3 q4½ � ð2Þ

Using the vector Eb̂, which is the normalization of h, the effect of an erroneous
inclination of the measured direction of the earth’s magnetic field can be corrected,
obtaining only components on the x and z axes of the earth, as shown in Eq. (3).

Eb̂t ¼ 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2x þ h2y

q
0 hz

h i
ð3Þ

From Eqs. (4) and (5) the estimated direction of gravity and magnetic field, can be
calculated respectively.

Ev̂ ¼ 2� q2 � q4 � q1 � q3ð Þ; 2� q1 � q2 � q3 � q4ð Þ; q21 � q22 � q23 þ q24
� � ð4Þ

Eŵ ¼
2� b2 � 0:5� q23 � q24

� �þ 2� b4 � q2 � q4 � q1 � q3ð Þ
2� b2 � q2 � q3 � q1 � q4ð Þþ 2� b4 � q1 � q2 � q3 � q4ð Þ
2� b2 � q1 � q3 � q2 � q4ð Þþ 2� b4 � 0:5� q22 � q23

� �
2
4

3
5 ð5Þ

After that the Error is calculated with Eq. (6), which is the result of the sum of the
cross product between the estimated direction and the measured direction of the field
vectors, a is the measure by the accelerometer.

Orientation Estimation Using Filter-Based Inertial Data Fusion for Posture Recognition 223

Eê ¼ a� Ev̂þm� Eŵ ð6Þ

The Mahony filter is used particularly because it allows to correct the bias of the
gyroscope, applying an integral and proportional controller with Eqs. (7) and (8),
where sp is the sample frequency (400 Hz for this work) and ĝk�1 is the measurement
given by the gyroscope.

ik ¼ ik�1 þ Eê� sp ð7Þ

ĝk ¼ ĝk�1 þ kp � Eêþ ki � ik ð8Þ

At last, the quaternion change rate is calculated with Eq. (9) and integrated to
produce the quaternion with Eq. (10), later converted to Euler angles to compare these
measurements with the measurements of angles found in the analysis of Kinovea.

_q ¼ 0:5� S
Eq̂� Eĝt ð9Þ

S
Eq̂k ¼ S

Eq̂k�1 þ _q� sp ð10Þ

3.3 Madgwick Filter

The algorithm of this filter starts by normalizing the values obtained from the
accelerometer and magnetometer, calculating the direction of the magnetic field in the
frame of the earth and the effect of a wrong inclination measurement of the direction of
the magnetic field, to find these values the same equations described in Sect. 3.2 are
used.

This filter is characterized by adding a corrective stage using the gradient de-census
algorithm, as described in [17]. Where the Jacobian is defined by Eqs. (11) and (12).

fb
S
Eq̂;

Eb̂; Sm̂
� � ¼ 2bx 0:5� q23 � q24

� �þ 2bz q2q4 � q1q3ð Þ � mx

2bx q2q3 � q1q4ð Þþ 2bz q1q2 � q3q4ð Þ � my

2bx q1q3 � q2q4ð Þþ 2bz 0:5� q22 � q23
� �� mz

2
4

3
5 ð11Þ

Jb
S
Eq̂;

Eb̂
� � ¼ �2bzq3 2bzq4 �4bxq3 � 2bzq1

�2bxq4 þ 2bzq2 2bxq3 þ 2bzq1 2bxq2 þ 2bzq4
2bxq3 2bxq4 � 4bzq2 2bxq1 � 4bzq3

�4bxq4 þ 2bzq2
2bxq1 þ 2bzq3

2bxq2

2
4

3
5

ð12Þ

Equations (13) and (14) combine the measurements of gravity and the magnetic
field of the Earth, to provide a unique orientation.

fg;b
S
Eq̂;

Sâ; Eb̂; Sm̂
� � ¼ fg S

Eq̂;
Sâ

� �
fb S

Eq̂;
Eb̂; Sm̂

� �� �
ð13Þ

224 D. Segarra et al.

fg;b
S
Eq̂;

Eb̂
� � ¼ f Tg

S
Eq̂
� �

f Tg
S
Eq̂;

Eb̂
� �

" #
ð14Þ

After that, compute rate of change with Eq. (15).

_q ¼ 0:5� S
Eq̂k�1 � Eĝk
� �� b� ST ð15Þ

Where ST is the transpose matrix of the multiplication and normalization of Eqs. (14)
and (15) and b is the proportional controller gain. Finally, the rate of change of
quaternion is integrated as in Sect. 3.2 with Eq. (10), and this result later converted to
Euler angles.

3.4 Kalman Filter

The Kalman filter is widely used to make data combinations with a lot of noise, in this
case, the filter integrates the data given by the gyroscope (with Drift) and with the
combination of the accelerometer and magnetometer, which tend to be quite noisy, an
estimation is performed. and puts each one an appropriate weight from their models to
be able to perform the estimation of the orientation.

The filter implemented in Matlab for this work is the same described in [18], where
the algorithm consists of two important parts: the predictive part and the corrective part.

In the predictive part, the projection of the forward state must be carried out using
the Eq. (16), and then project the error covariance forward with the Eq. (17).

x̂�k ¼ Fx̂k�1 ð16Þ

P�
k ¼ FPk�1F

T þQ ð17Þ

Then, in the corrective part, the calculation of the Kalman gain with the Eq. (18) is
performed, the state update is performed with the measurement zk using the Eq. (19),
and finally the covariance error was updated with Eq. (20), this corrective part we have
to do twice, once to correct by measuring the magnetometer and another to correct by
the accelerometer.

Kk ¼ P�
k H

T HP�
k H

T þR
� ��1 ð18Þ

x̂k ¼ x̂�k þKk zk � Hx̂�k
� � ð19Þ

Pk ¼ I � KkHð ÞP�
k ð20Þ

Where k is the step time; x, state vector, and has the quaternion values; z, input vector;
F, state matrix; B input matrix, H output matrix; state and measurement noise; Q and R
are covariance matrix from the state and the measurement noise, respectively. All this
process is done repetitively.

Orientation Estimation Using Filter-Based Inertial Data Fusion for Posture Recognition 225

3.5 Magnetic Field Measurement with Magnetometer

The magnetic field that the magnetometer measures can be affected by metals that are
around the sensor, this can be by components that are located on the same Printed
Circuit Board (PCB) that the sensor is mounted, by metals found in the battery, or
external metals, for example, the metal structure of the building where the measure-
ments are made.

There’s a way to prove that there are distortions in the measurement, this is done by
moving around the sensor in space in a three-dimensional way, rotating it in angles
from 0 to 360° in each of its axes and combinations, and the data in x, y, and z of the
magnetic field are plotted as if they were point coordinates, a perfect sphere centered on
the point (0, 0, 0) is obtained if there is no any type of interference, however, if there
are distortions by metals that are affecting the sensor, this sphere is no longer centered.

In Fig. 1 we can observe data of how the measurements of the magnetometer used
in this paper are affected by metals, where the sphere is not centered at the origin
(distortion by hard metals).

To correct this problem of hard metals, the following formulas can be used, which
calculate offsets that can be added to the measurements on each axis of the Magne-
tometer measurement.

Offsetx ¼ max Mxð Þþmin Mxð Þ
2

ð21Þ

Offsety ¼
max My

� �þmin My
� �

2
ð22Þ

Offsetz ¼ max Mzð Þþmin Mzð Þ
2

ð23Þ

If we add to the data in Fig. 1 the offsets obtained by Eqs. (21), (22) and (23), we
obtain Fig. 2 where we can see that the sphere is centered on the point (0, 0, 0).

Fig. 1. Magnetic field with distortions due to metals

226 D. Segarra et al.

Another way to check if the measurements obtained are correct is with the module
of each of the components of the magnetic field, this module should be a constant value
and in the range between 0.25 and 0.65 Gauss, with an average of 0.5 Gauss [19]. With
the on-line tool shown in [20] you can enter coordinates, altitude, a date and the
software will give a value of the earth’s magnetic field with those parameters entered,
for example, in Vilanova i la Geltrú, where the tests were performed, when entering the
coordinates of 41.223238 N, 1.733494 E, altitude of 10 m, and the date of October 10,
2017, a magnetic field value of 45.471.7 nT or 0.4547 Gauss is obtained, this is the
value that will be used later to verify that the magnetometer reading is correct.

3.6 Kinovea Angle Measurement

With the use of Kinovea, the tracking of points in a video is possible, from these points
we can obtain data such as acceleration, speed, position and other parameters, this data
is stored in a file that can then be read from Matlab, we are interested in examining the
angle h shown in Fig. 3 but the software does not record angles in the aforementioned
file, because of this, from the coordinates of the points P1 and P2, and use basic
trigonometry and the required angle h can be calculated.

To calculate this angle, the function atan2 is used, this function is the four-quadrant
inverse tangent between the intervals of [−pi, pi] as is shown in Eq. (24).

Fig. 2. Magnetic field with distortions due to metals with offsets applied

Fig. 3. Tracking points of 9 � 3 sensor for angle measurement

Orientation Estimation Using Filter-Based Inertial Data Fusion for Posture Recognition 227

h ¼ atan2 det
P2� P0
P1� P0

� �				
				; P2� P0ð Þ � P1� P0ð Þ

 �
ð24Þ

Where P0 and P1 are the tracking points placed on the device, P0 is the center point, P1
is an outer point and P2 is any point in the same vertical of the point P0.

4 Experimentation and Results

To evaluate the performance of each algorithm, the mean square error (RMSE) is used,
where each Euler angle obtained by the filters is compared to a gold standard which is
obtained from Kinovea.

The experiment consists of taking the sensor used in the MoMoPa3 project in
which the signals of the magnetic field, acceleration and angular velocity are recorded,
these signals are then passed through each one of the filters and the Orientation esti-
mation is achieved.

At the same time that the signals of the IMU are being recorded, a video of the
device is taken through a camera placed with a zenith perspective, this video is then
analyzed image by image through Kinovea and coordinates of tracking points strate-
gically placed in the sensor (green marks and center, see Fig. 4) are saved. Finally,
through basic trigonometry (as show in Sect. 3.6) the angles that the device has
traveled are obtained.

In order to be able to synchronize the data obtained from the IMU, with the data
obtained from Kinovea to calculate the RMSE, the sensor was placed in a vertical
position and then was dropped horizontally, with this, the accelerometer records a peak
of acceleration when the device touches the surface on which it is resting (see Fig. 5).

Fig. 4. Device tracking points (Color figure online)

Fig. 5. Peaks of acceleration for synchronization

228 D. Segarra et al.

4.1 Measurement Correction of Magnetic Field

As seen in Sect. 3.5, a problem regarding the measurement of the magnetic field due to
metal distortions that surround the sensor is present, but this can be corrected applying
the previously explained formulas to obtain offsets and apply them to the original signal.

Some tests were made to find the average value of these offsets that are to be
applied to each measurement on each axis of the Magnetometer and later to be able to
use them with our orientation estimation algorithms. The values found in each test and
an average of all of them can be observed in Table 1.

These average value offsets are added to the raw data signals given by the mag-
netometer: 0.18696 to Mx, 0.04668 to My and −0.54342 to Mz. These values should
not vary much if the sensor is used in the same place as the tests, but if it is moved to a
different location, the new location may contain metals in the structure of the building
that affect the measured magnetic field, or if it is placed next to nearby electronic
devices, the offset values must be recalculated.

In order to verify that these offsets are appropriate, the module of the measurements
of the magnetometer with and without these offset values is obtained, as shown in
Fig. 6(a), the raw data of the magnetometer is outside the range of normal values of the

Table 1. Magnetometer offsets (Gauss)

Test Mx offset My offset Mz offset

1 0.1861 0.0474 −0.5453
2 0.1864 0.0473 −0.5419
3 0.1802 0.0506 −0.5454
4 0.2056 0.0342 −0.5456
5 0.1765 0.0539 −0.5389
Average 0.18696 0.04668 −0.54342

Fig. 6. (a) Raw magnetometer measurements (b) Magnetometer measurements with added
offsets

Orientation Estimation Using Filter-Based Inertial Data Fusion for Posture Recognition 229

earth’s magnetic field (between 0.25 and 0.65 Gauss) and after applying the offset
values (Fig. 6(b)) it is seen that, the measured values, besides being within the range,
are close enough to the magnitude of the magnetic field in Barcelona, which is
approximately 0.4547 Gauss.

4.2 Device Performance Compared to Gold Standard (Kinovea)

The signals obtained from Kinovea and the IMU have different sample frequencies
(Fs), the data from Kinovea has a Fs of 30 Hz, that is 1 sample per image, each second
contains 30 images (30 frames per second), the sampling frequency of IMU is 400 Hz,
so in order to obtain the RMSE an upsampling of the Kinovea data from 30 Hz to
400 Hz had to be performed in order to match the sensor data.

In Table 2 the results obtained for RMSE are summarized for each filter for 5
different tests. The RMSE was calculated from the moment in which the sensor was
dropped to be synchronized with the video, until it is back in a vertical position to the
plane of movement. Then, between the tests, we calculate the average RMSE value for
each filter and we can determine which one works best for our sensor (The MoMoPa3
project sensor). For each test, around 17000 angles were calculated, so, there’s enough
data to prove that the filters work properly.

Table 2 shows that the Kalman filter is the one that has a lower RMSE value
(measured in degrees) with just 2.333° variation from the gold standard, followed up by
the Madgwick filter with 3.47574° and then Mahony with 3.51594°, therefore Mahony
and Madgwick get very similar results, these variations are acceptable for medical use,
but they wouldn’t be suitable in other purposes where an exact estimation is needed,
like military application.

The maximum error that was obtained in the Kalman filter was 5.9523° in test
number 2, while in Madgwick’s filter was 7.6186°, and in Mahony’s it was 7.9391°,
i.e. the Kalman filter was the one with less error in all estimated angles.

Table 2. Root mean square in degrees

Test Nº of angles
tested

Kalman filter
(RMS | min-max)

Madgwick filter
(RMS | min-max)

Mahony filter
(RMS | min-max)

1 16360 1.6704 | 0.0001–
4.6665

3.1136 | 0.0001–
6.4581

3.5683 | 0.0002–
7.9391

2 20356 2.8683 | 0.0007–
5.9523

3.5744 | 0.00009–
7.6186

3.5573 | 0.0001–
6.3006

3 13784 2.7123 | 0.0002–
5.4585

3.6612 | 0.0001–
5.2534

3.6458 | 0.0019–
4.1583

4 18469 2.5317 | 0.00005–
4.3502

3.9126 | 0.0002–
7.3543

3.8167 | 0.0001–
6.6734

5 16696 1.8825 | 0.00006–
4.4998

3.1169 | 0.0002–
4.8514

2.9916 | 0.0001–
4.8533

Average 2.333 | 0.00022–
4.98546

3.47574 | 0.00013–
6.3071

3.51594 | 0.00014–
5.9849

230 D. Segarra et al.

Figure 7 provides an example of a recorded signal, in red the angle estimation
obtained by the Kalman filter is shown and in blue our gold standard, i.e. the angles
computed from the analysis given by Kinovea, one thing to point out is that the red line
seems smoother than the blue one, that’s because of errors of tracking made by
Kinovea, so, the result obtained by the Kalman filter are, in some way, better than the
ones on Kinovea.

Video results are provided on https://www.youtube.com/watch?v=X0SCZ33uQX4.

5 Conclusions and Future Works

There are some ways to get the orientation of a device, robot, vehicle, etc., this could be
done using encoders or inclinometers but these solutions are not feasible for certain
applications such as wearables, as is the sensor used in the Project MoMoPa3, for these
cases, inertial sensors, such as accelerometer, gyroscope and magnetometer are of
better use, but with these, it is not possible to obtain directly an orientation measure-
ment in degrees, for this it is necessary to use certain filters that allow the fusion of the
data and as a result get an estimate of which direction the sensor is oriented.

In this work, a comparison was made between three filters, namely the Kalman
filter, the Madgwick filter and the Mahony filter. The orientation estimation obtained by
them, that is, the angles in which the sensor was positioned, was compared to a gold
standard, the angles calculated from a video analysis performed by the Kinovea soft-
ware, where it was obtained that the filter that gave the best results for the sensor used
was the Kalman filter, followed by the Mahony filter and finally the Madgwick filter.

Before entering the raw data obtained from the inertial sensors of the IMU, a certain
processing must be carried out to each one of them so that, in this way, better results
can be achieved, the magnetometer must correct offsets which are produced due to soft
and hard metals, in addition to certain interferences where the sensor is taking a
measure, the gyroscope must add certain bias due to the problem of drift they have, and

Fig. 7. Comparison between angles obtained with Kalman filter and Kinovea (Color figure
online)

Orientation Estimation Using Filter-Based Inertial Data Fusion for Posture Recognition 231

https://www.youtube.com/watch?v=X0SCZ33uQX4

the accelerometer must ensure that as long as no force is applied to it, values of 1G or
9.8 m/s corresponding to the measure of the acceleration of gravity that exists in the
earth are to be obtained.

As a future work, genetic algorithms can be implemented in order to determine an
adequate gain value for each filter, with this one could find an optimal measure that
gives better results. In addition, with the angles obtained, future research should
consider more the context of the medical field, that is, within the MoMoPa3 project or
other applications that involve diseases that affect the human being, the ways of pre-
venting them or forms of treatment.

References

1. Brynjolfsson, E., Mcafee, A.: Race Against the Machine. Digital Frontier Press, Lexington
(2011)

2. Singh, M., Murthy, V., Ramassamy, C.: Neuroprotective mechanisms of the standardized
extract of Bacopa monniera in a paraquat/diquat-mediated acute toxicity. Neurochem. Int.
62, 530–539 (2013). https://doi.org/10.1016/j.neuint.2013.01.030

3. Bloem, B.R., Hausdorff, J.M., Visser, J.E., Giladi, N.: Falls and freezing of gait in
Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov. Disord. 19
(8), 871–884 (2004)

4. Okuma, Y.: Freezing of gait in Parkinson’s disease. J. Neurol. 253(Supplement 7), vii27–
vii32 (2006)

5. European Parkinson’s Disease Association. http://www.epda.eu.com/about-parkinsons/
symptoms/motor-symptoms/rigidity/

6. Rahmatian, S., Torija, G.: Enfermedad de Parkinson, Últimos Avances en el Tratamiento
(2017)

7. Rodríguez-Martín, D., et al.: A waist-worn inertial measurement unit for long-term
monitoring of Parkinson’s disease patients. Sensors 17, 827 (2017). https://doi.org/10.3390/
s17040827

8. Barrientos, A., Del Cerro, J., Gutiérrez, P., San Martín, R., Martínez, A., Rossi, C.:
Vehículos aéreos no tripulados para uso civil. Tecnología y aplicaciones, pp. 1–29.
Grup. Robótica y Cibernética, Univ. Politécnica Madrid (2009)

9. Benini, A., Mancini, A., Longhi, S.: An IMU/UWB/vision-based extended Kalman filter for
mini-UAV localization in indoor environment using 802.15.4a wireless sensor network.
J. Intell. Robot. Syst. Theory Appl. 70, 461–476 (2013). https://doi.org/10.1007/s10846-
012-9742-1

10. Bigy, A.A.M., Banitsas, K., Badii, A., Cosmas, J.: Recognition of postures and Freezing of
Gait in Parkinson’s disease patients using Microsoft Kinect sensor. In: International
IEEE/EMBS Conference on Neural Engineering, NER, pp. 731–734. IEEE (2015)

11. Chávez Cardona, A.M., Rodríguez Spitia, F., Baradica López, A.: Exoskeletons to enhance
human capabilities and support rehabilitation: a state of the art. Revista Ingeniería
Biomédica. 4, 63–73 (2010)

12. Pons, J., Moreno, J., Brunetti, F., Rocon, E.: Lower-limb wearable exoskeleton. Rehabil.
Robot. 3, 471–498 (2007). https://doi.org/10.5772/5176

13. Sabatini, A.M., Member, S.: Quaternion-based extended Kalman filter for determining
orientation by inertial and magnetic sensing. IEEE Trans. Biomed. Eng. 53, 1346–1356
(2006)

232 D. Segarra et al.

http://dx.doi.org/10.1016/j.neuint.2013.01.030
http://www.epda.eu.com/about-parkinsons/symptoms/motor-symptoms/rigidity/
http://www.epda.eu.com/about-parkinsons/symptoms/motor-symptoms/rigidity/
http://dx.doi.org/10.3390/s17040827
http://dx.doi.org/10.3390/s17040827
http://dx.doi.org/10.1007/s10846-012-9742-1
http://dx.doi.org/10.1007/s10846-012-9742-1
http://dx.doi.org/10.5772/5176

14. Sabatini, A.M.: Inertiel sensing in biomechanics: a survey of computational techniques
bridging motion analysis and personal navigation. Comput. Intell. Mov. Sci. 70–100 (2006).
https://doi.org/10.4018/978-1-59140-836-9

15. González Jiménez, J., Baturone, A.O.: Estimación de la Posición de un Robot Móvil.
Automatica 29, 3–18 (1996)

16. ST-Microelectronics: LSM9DS1 iNEMO inertial module, pp. 1–74. STMicroelectronics,
Ginebra (2013). DocID02476

17. Madgwick, S.O.H.: An efficient orientation filter for inertial and inertial/magnetic sensor
arrays, p. 32. Report x-io and University of Bristol, Bristol, UK (2010). https://doi.org/10.
1109/icorr.2011.5975346

18. Brigante, C.M.N., Abbate, N., Basile, A., Faulisi, A.C., Sessa, S.: Towards miniaturization
of a MEMS-based wearable motion capture system. IEEE Trans. Ind. Electron. 58, 3234–
3241 (2011). https://doi.org/10.1109/TIE.2011.2148671

19. Macmillan, S.: Earth’s magnetic field. Geophys. Geochem. (2013)
20. National Geophysical Data Center: Magnetic Field Calculators. https://www.ngdc.noaa.gov/

geomag-web/#igrfwmm

Orientation Estimation Using Filter-Based Inertial Data Fusion for Posture Recognition 233

http://dx.doi.org/10.4018/978-1-59140-836-9
http://dx.doi.org/10.1109/icorr.2011.5975346
http://dx.doi.org/10.1109/icorr.2011.5975346
http://dx.doi.org/10.1109/TIE.2011.2148671
https://www.ngdc.noaa.gov/geomag-web/#igrfwmm
https://www.ngdc.noaa.gov/geomag-web/#igrfwmm

Author Index

Abdou, Wahabou 159
Adhikary, Ranendu 83, 102
Aguilar, Wilbert G. 220

Bose, Kaustav 83, 102

Caballeros, Jessica 220
Chuangpishit, Huda 62
Corò, Federico 47

D’Angelo, Gianlorenzo 47
Di, Xiaolei 206

Erzin, Adil 118

Forstner, Bertalan 193

Gastineau, Nicolas 159
Georgiou, Konstantinos 62

Hanschke, Lars 131
Hideg, Attila 193

Jung, Daniel 15

Kolb, Christina 15
Kowalski, Dariusz R. 180
Kundu, Manash Kumar 83, 102
Kuo, Tung-Wei 32

Lagutkina, Natalya 118
Li, Jiangfeng 206

Lukovszki, Tamás 193
Lv, Jinhua 206

Madhja, Adelina 145
Mbarek, Nader 159
Miller, Avery 1
Mirek, Jarosław 180

Nikoletseas, Sotiris 145

Pinotti, Cristina M. 47

Rao, Weixiong 206
Renner, Christian 131
Rodríguez-Martín, Daniel 220

Samà, Albert 220
Sau, Buddhadeb 83, 102
Scheideler, Christian 15
Segarra, David 220
Sharma, Preeti 62
Sundermeier, Jannik 15

Togni, Olivier 159

Voudouris, Alexandros A. 145

Yuan, Mingxuan 206

Zeng, Jia 206
Zhang, Yige 206
Zhao, Qinpei 206

	Preface
	Organization
	Contents
	Local Gossip and Neighbour Discovery in Mobile Ad Hoc Radio Networks
	1 Introduction
	1.1 Models and Definitions
	1.2 Related Work

	2 Neighbour Discovery and Local Gossip
	3 Solving Local Gossip
	4 Conclusion and Future Work
	References

	Competitive Routing in Hybrid Communication Networks
	1 Introduction
	1.1 Model
	1.2 Objective
	1.3 Our Contributions
	1.4 Related Work

	2 Preliminaries
	3 General Routing
	4 Routing for Convex Hulls as Hole Abstractions
	4.1 c-Competitive Paths via Convex Hulls
	4.2 Routing Protocol
	4.3 Limitations of Convex Hulls

	5 Computation and Information Dissemination
	5.1 Hypercube and Convex Hull Computation
	5.2 Hole Detection
	5.3 Information Dissemination of Convex Hulls and Hole Rings

	6 Node Movement
	7 Future Work
	A Visualization
	B Omitted Proofs and Lemmas
	C Hypercube Protocol
	References

	On the Approximability and Hardness of the Minimum Connected Dominating Set with Routing Cost Constraint
	1 Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.3 Preliminary
	1.4 Previous Result
	1.5 Our Result and Basic Ideas
	1.6 Relation with the Basic k-Spanner Problem

	2 Two Algorithms for the 1-DR- Problem
	2.1 The First Algorithm
	2.2 The Second Algorithm

	3 Inapproximability Result
	3.1 The MIN-REP Problem
	3.2 The Reduction
	3.3 The Analysis

	A Proof of Lemma 6
	B Reduction from the 1-DR- Problem to Other Related Problems
	References

	On the Maximum Connectivity Improvement Problem
	1 Introduction
	2 Preliminaries
	3 NP-Hardness and Hardness of Approximation
	4 Polynomial-Time Algorithm for Trees
	4.1 Binary Trees
	4.2 General Trees

	5 Polynomial-Time Algorithm for DAG with a Single Source or a Single Sink
	6 Conclusion and Future Works
	References

	Average Case - Worst Case Tradeoffs for Evacuating 2 Robots from the Disk in the Face-to-Face Model
	1 Introduction
	1.1 Related Work
	1.2 Outline of Our Results and Paper Organization

	2 Preliminaries
	2.1 Problem Definition and Main Results
	2.2 Computing Evacuation Times
	2.3 Trajectories' Description

	3 Two Benchmark Algorithms and Motivation
	4 New Evacuation Algorithms
	5 Worst Case Performance Analysis
	6 Average Case Performance Analysis and the Efficient Frontier
	7 Conclusion and Open Problems
	A Appendix
	A.1 Observation3
	A.2 Observation4
	A.3 Lemma4
	A.4 Lemma5
	A.5 Lemma6
	A.6 Theorem6

	References

	Mutual Visibility by Asynchronous Robots on Infinite Grid
	1 Introduction
	1.1 Our Contribution
	1.2 Earlier Works

	2 Model and Definitions
	3 The Algorithm
	3.1 Interior Depletion
	3.2 Symmetric Movements

	4 Conclusion
	References

	Optimal Gathering by Asynchronous Oblivious Robots in Hypercubes
	1 Introduction
	1.1 The Model
	1.2 Related Works

	2 Theoretical Preliminaries
	2.1 Group of Automorphisms
	2.2 Feasibility of Gathering
	2.3 Weber Point
	2.4 Leading Weber Point

	3 The Algorithm
	3.1 2k+1 (k>0) Robots
	3.2 4k (k>0) Robots

	4 Concluding Remarks
	A Proof of Theorem7
	References

	Barrier Coverage Problem in 2D
	1 Introduction
	2 Problem Formulation
	3 Algorithm A
	3.1 Forward Recursion
	3.2 Backward Recursion

	4 Time Complexity
	5 Conclusion
	A Appendix
	References

	Time- and Energy-Aware Task Scheduling in Environmentally-Powered Sensor Networks
	1 Introduction
	1.1 Contributions

	2 Example
	3 Related Work
	4 Task Model
	4.1 Program Flow
	4.2 Constraints
	4.3 Problem Definition and Objective Function

	5 Implementation
	6 Results
	6.1 Example
	6.2 Performance
	6.3 Discussion

	7 Conclusion
	References

	Mobility-Aware, Adaptive Algorithms for Wireless Power Transfer in Ad Hoc Networks
	1 Introduction
	2 Model
	3 The Need for Adaptiveness
	4 Optimization Problems
	5 Adaptive Algorithms and Experimental Evaluation
	6 Conclusion and Possible Extensions
	References

	Distributed Leader Election and Computation of Local Identifiers for Programmable Matter
	1 Introduction
	2 Notation, Definitions and Our Programmable Matter Algorithmic Framework
	3 Leader Election
	4 Assigning k-Local Identifiers to Particles
	4.1 Re-organizing the Particles
	4.2 The k-Local Identifiers

	5 Conclusion
	Appendix A Proof of Theorem1 and Bound on the Complexity of the S-Contraction Algorithm
	Appendix B An Example of Algorithm in Order to Construct a Spanning Tree
	Appendix C Combining the S-Contraction Algorithm with a General Leader Election Algorithm
	Appendix D Coloring the kth Power of Graph
	D.1 Coloring the kth Power of Square Grids
	D.2 Coloring the kth Power of Triangular Grids
	D.3 Coloring the kth Power of King Grid

	References

	Reaching Consensus in Ad-Hoc Diffusion Networks
	1 Introduction
	1.1 Previous Work
	1.2 Related Work in Molecular Communication
	1.3 Our Results
	1.4 Structure of the Paper

	2 Model
	2.1 Network Environment
	2.2 Communication Model
	2.3 Control Variables
	2.4 Rounds and Synchronization
	2.5 (Eventual) Consensus Problem
	2.6 Performance Measure

	3 CONCELLSUS - The Consensus Algorithm in Diffusion Networks
	3.1 Technical Preliminaries
	3.2 The Algorithm
	3.3 Analysis of CONCELLSUS

	4 Extensions of Results
	4.1 Optimizing Round Duration
	4.2 Local Consensus

	5 Conclusions and Open Problems
	References

	Filling Arbitrary Connected Areas by Silent Robots with Minimum Visibility Range
	1 Introduction
	2 Model
	3 Virtual Chain Method
	3.1 Concept
	3.2 Analysis

	4 Multiple Doors
	4.1 Analysis

	5 Summary
	References

	BSLoc: Base Station ID-Based Telco Outdoor Localization
	1 Introduction
	2 Overview
	2.1 Problem Statement
	2.2 System Overview

	3 System Design
	3.1 Hidden Markov Model
	3.2 Regression Model

	4 Evaluation
	4.1 Datasets
	4.2 Counterparts and Evaluation Metrics
	4.3 Baseline Study
	4.4 Comparison with RSSI-Based Methods
	4.5 Sensitivity Study

	5 Related Work
	6 Conclusions
	References

	Orientation Estimation Using Filter-Based Inertial Data Fusion for Posture Recognition
	Abstract
	1 Introduction
	2 Related Works
	3 Our Approach
	3.1 Sensor
	3.2 Mahony Filter
	3.3 Madgwick Filter
	3.4 Kalman Filter
	3.5 Magnetic Field Measurement with Magnetometer
	3.6 Kinovea Angle Measurement

	4 Experimentation and Results
	4.1 Measurement Correction of Magnetic Field
	4.2 Device Performance Compared to Gold Standard (Kinovea)

	5 Conclusions and Future Works
	References

	Author Index

