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Abstract. Granulometry, by characterizing the distribution of object
sizes, is a powerful tool for the analysis of binary images. It may, for
example, extract pertinent features in the context of texture classifica-
tion. The granulometry is similar to a sieving process that filters image
details of increasing sizes. Its computation classically relies on morpho-
logical openings, i.e. the sequence of an erosion followed by a dilation for
each ball radius.

It is well known that a distance map can be described as an “ero-
sion transform” that summarizes the erosions with the balls of all radii.
Using a Steiner formula, we show how a vector of parameters measured
on an eroded contour can be extrapolated to the measures of the dilation.
Instead of completing the openings from the distance map by computing
a dilation for each ball size, we can estimate their cardinality from the
area, perimeter and Euler-Poincaré characteristic of each erosion. We
extract these measures for all radii at once from an asymmetric distance
map. The result is a fast streaming algorithm that provides an estimate
of the granulometry distribution, in a single scan of the image and with
very limited memory footprint.
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1 Preliminaries

In this paper, we consider images defined on the discrete square grid Z
2. A binary

image A, or simply, a point set, is a subset of Z2 and its complement is the set
of grid points not in A: A = Z

2 \ A. Either A or A must be finite. A grayscale
image is a mapping from a finite rectangular domain of Z2 to N.

1.1 Morphology Operators on Binary Sets

Definition 1 (Erosion, dilation). The erosion and dilation of the set A by
B, referred to as the structuring element, respectively denoted by εB (A) and
δB (A), are the sets:

εB (A) = {p : (B)p ⊆ A}, δB (A) =
⋃

p∈B

(A)p (1)

where (B)p denotes the translation of B by p: (B)p = {p + q : q ∈ B}.
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Fig. 1. Openings with the sequence of increasing disks depicted in Fig. 2.

Fig. 2. Increasing sequence of disks of the octagonal distance used as structuring ele-
ments for morphological openings.

Definition 2 (Opening). The opening of A by B, denoted by γB(A), is the
erosion of A with B followed by the dilation with B:

γB(A) = δB (εB (A)) . (2)

γB(A) can be seen as the union of all translated images (B)p included in A,
where the details of A smaller than B are deleted:

γB(A) =
⋃

p:(B)p⊂A

(B)p ⊂ A.

Definition 3 (Granulometry). An opening-based granulometry on A is a
family of openings of A with a sequence of structuring elements Br:

(γBr
(A), r ∈ N∗) (3)

with B1 = {O} and ∀r ≥ 0, Br+1 = γBr
(Br+1). Obviously, γB1(A) = A.

A granulometry acts on an image like a sequence of sieves, the value r specifies
the size of details to be suppressed. For the sake of simplicity, we write γr instead
of γBr

when the sequence of Br is clear from the context. Figure 1 pictures a
family of openings with the increasing sequence of disks shown in Fig. 2.

Definition 4 (Granulometry function, pattern spectrum). Given a
sequence of sets Br, the granulometry function on A, GA, maps a positive r
with the cardinality of γr(A) and the pattern spectrum maps r with the cardi-
nality of γr(A) \ γr+1(A):

∀r > 1,GA(r) = |γr(X))| , (4)
∀r > 1,PSA(r) = |γr(X))| − |γr+1(X))| . (5)
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Fig. 3. Granulometric spectrum of the sample image shown in Fig. 1a

Figure 3 depicts the granulometric spectrum corresponding to the sequence
of morphological openings pictured in Fig. 1.

In the following, we will use distance disks B<(p, r) =
{
q : d(q, p) < r

}
of

some distance d as structuring elements for the opening. This definition and
properties of distances imply that B<(p, 0) = ∅ and B<(p, 1) = {p}.

Definition 5 (Distance transform). The distance transform DTA of the set
A is the function that maps each point p to its distance from the complement of
A and, equivalently, to the radius of the largest disk of center p included in A:

DTA(p) = min
{
d(q, p) : q ∈ A

}
(6)

= max
{
r : B<(p, r) ⊂ A

}
. (7)

It is clear from Eq. (7) that DTA(p) ≥ r ⇐⇒ B<(p, r) ⊂ A ⇐⇒ p ∈
εB(O,r) (A). Consequently, the erosion of A with B<(O, r) can be obtained by
thresholding DTA, i.e., DTA summarizes all erosions of A with B<(O, r),∀r.

A Neighborhood Sequence (NS) distance is a distance which disks are pro-
duced by dilations with a few neighborhoods, typically the 4-neighborhood N4

and the 8-neighborhood N8, arranged in a sequence N(r): B<(O, r + 1) =
δNN(r) (B<(O, r)). The 2D NS distance produced by the strict alternation
between N4 and N8 is called the octagonal distance (see Fig. 2). A so-called
“translated” NS distance transform with asymmetric disks produced by trans-
lated neighborhoods N ′

4 and N ′
8, as shown in Fig. 4c, was described previously

[6,7]. It was proven that those distance transforms are equivalent in terms of
included disks as in Eq. (7) [7]. An efficient implementation of the translated NS
distance transform that requires a single scan of the image and whose memory
requirements are limited to a single line of image was described in [6].

Definition 6 (Opening function). Consider d, a distance or pseudo-distance,
e.g., asymmetric. The opening function, or opening transform, OTA of the set
X is a function that maps each point p to the radius of the largest opening disk
of d included in X that contains p:

OTA(p) = max
{
r : ∃q,B()< (q, r) ⊂ A, p ∈ B()< (q, r)} . (8)
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Fig. 4. Opening transform OTA, distance transform DTA and translated distance
transform DT′

A of a binary image A. All use the octagonal distance. Thresholding
DTA and DT′

A results in equal sets up to a translation. Delimited shapes correspond
to pixels whose value is 3 or more. Section 2 describes how the area and perimeter of
these shapes are linked.

Equivalently, OTA(p) is the smallest parameter r for which p is filtered out
by the morphological opening of the image:

OTA(p) = min
{
r : p �∈ γr(X)}. (9)

1.2 Computation of the Granulometry Function

Morphological Openings. A simple algorithm consists in computing morpholog-
ical openings for each structuring element Br. Even with an efficient implemen-
tation of the opening operator, say linear with the size of the image domain N ,
the order of complexity is O(RN), also linear with the maximal radius R. If
the structuring elements are chosen to be the disks of a distance, a speedup is
achieved by computing the distance transform, that provides all the erosions at
once. However, a dilation still has to be performed for each r and the order of
complexity remains the same.

Opening Function. The granulometry function can be easily deduced from the
opening function which it is simply the histogram.

∀r > 0, fA(r) = Card ({p : OTA(p) = r}) (10)

However, despite the similarity between the distance and opening transforms
DTA and OTA, as in Eqs. (7) and (8), there is no linear time algorithm to
compute the latter (except for special cases [11]).

In principle, it suffices to fill each disk B()< (p, r) with its radius (given in
the distance map) while keeping the maximal radius when several disks overlap.
Because disks overlap, each pixel is visited more than once which increases the
computational cost. In order to reduce the computation, we can observe that
non maximal disks do not need to be filled since they are, by definition, included
in larger disks. It is then enough to fill the maximal disks obtained in the medial
axis MATA (or CMBA, center of maximal balls) [1]. The number of overlaps
decreases without reaching 0, in general.
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2 Estimation of the Pattern Spectrum from the Distance
Transform

In this section we propose a method whose purpose is to estimate the pattern
spectrum from the distance transform without actually computing the opening
transform nor dilations of the distance transform. For a given r, the eroded image
by the ball of radius r, εr(A), is simply the result of binarizing the distance map
with threshold r. Instead of actually dilating εr(A), the measures on the opening
γr(A), i.e. the dilated of εr(A), are extrapolated from those of εr(A).

After first exposing the linear behavior of the Steiner’s formula in Sect. 2.1,
we present a continuous interpolation of binary images based on 2 × 2 cells
where a version of Steiner’s formula can be adapted to our problem in Sect. 2.2.
Section 2.3 shows how measures in the distance transform can be extracted from
2 × 2 local configurations (as in [3,4]), taking advantage of both the additive
property and the continuous model. Finally, Sect. 2.4 presents the algorithm.

2.1 Rationale

Steiner’s formula for a convex K and a Euclidean ball of radius B(r) links the
area and perimeter of the dilated convex δB(r) (K) with the area A and perimeter
P of K and B(r) [10]. In the 2D case:

A(δB(r) (K)) = A(K) + rP(K) + A(B(r)), (11)
P(δB(r) (K)) = P(K) + P (B(r)). (12)

Federer later extended this result to non convex compacts and introduced the
notion of reach, i.e., the maximal value of r for which Steiner’s formula holds [2].
A further generalization to erosions was stated by Matheron: Steiner’s formula
holds for non convex compacts K and the erosion with B(r) if and only if K
is the mathematical opening of a compact with B(r) [5]. This is equivalent to
the notion a negative reach. If, equivalently to considering the erosion of K, we
consider the dilation of its complement, K = R

2 \ K, then, by duality of the
erosion and dilation:

A(δB(r)

(
K

)
) = A(K) + rP(K) − A(B(r)), (13)

P(δB(r)

(
K

)
) = P(K) − P (B(r)) (14)

where, by convention, ∀K,A(K) = −A(K).
For any compact, or complement of a compact, equal to an opening with

B(r), we build a vector of characteristics
(A,P, χ

)T with positive area A, χ = 1
for compacts and negative area and χ = −1 for complements. Then

⎛

⎝
A′

P ′

χ

⎞

⎠ =

⎛

⎝
1 r πr2

0 1 2πr
0 0 1

⎞

⎠

⎛

⎝
A
P
χ

⎞

⎠ (15)
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where
(A′,P ′, χ

)T is the corresponding vector of characteristics of the set dilated
by B(r). Consider now a composite shape K, an opening with B(r). We treat K
as a mixture of its outer and inner contours and build a vector of characteristics(A,P, χ

)T where A is the area of K, i.e., the sum of the areas of the interiors
of outer contours minus the areas of the interiors of the inner contours, P the
total perimeter, and χ is the count of outer minus inner contours. It is clear
that

(A,P, χ
)T is the sum of the vectors of characteristics of the contours. If

the contours do not merge by dilation with K, then, by linearity, Eq. (15) holds.

2.2 Continuous Model

Let A be a binary image. Every 2 × 2 configuration of points of A is mapped to
its convex hull CA(k, l) = conv({(k, l), (k +1, l), (k, l +1), (k +1, l +1)}∩A). We
define A, the continuous interpolation of A, as the union of all CA(k, l):

A =
⋃

k,l

CA(k, l) =
⋃

k,l

conv({(k, l), (k + 1, l), (k, l + 1), (k + 1, l + 1)} ∩ A). (16)

It is clear that A is the Gauss discretization of A: A = A∩Z
2. Figure 5 pictures

two binary images, their continuous interpolation, inner and outer contours.
Consider P , the polygon with edges ei , 1 ≤ i ≤ n, obtained by an opening

with the line segment L = [O,O + v]. Then

A(δL (P )) = A(P ) +
1
2

n∑

i=1

|det(ei ,v)| (17)

whether P is an outer or inner contour. In the former case, δL (P ) contains 2
more edges of directions v and −v than P . In the latter case, areas are negative
and the dilated contour contains two less edges of directions v and −v than P .

Practically, for neighborhood sequence distances, each structuring element,
namely the 4- and 8-neighborhood, combine two dilations with orthogonal vec-
tors, respectively (−1, 1) and (1, 1) on one hand and (0, 2) and (2, 0) on the other
hand. Let ν0(A) (resp. ν1(A)) be the number of horizontal and vertical (resp.
diagonal) vectors. For each continuous analogue of a contour (outer or inner),
we build a vector of characteristics V (A) =

(A(A), ν0(A), ν1(A), χ(A)
)T where

A(A) > 0 and χS(A) = 1 for outer contours, A(A) < 0 and χS(A) = −1 for
inner contours. Then, a dilation of A with N4 (resp. N8) corresponds to the
matrix product of MN4 (resp. MN8) with V (A) where:

MN4 =

⎛

⎜⎜⎝

1 1 1 2
0 1 0 0
0 0 1 4
0 0 0 1

⎞

⎟⎟⎠ , MN8 =

⎛

⎜⎜⎝

1 1 2 4
0 1 0 8
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ . (18)

Let B be a disk produced by m 4-neighborhoods and n 8-neighborhoods,
then for each contour K of εB (A):

V (δB (K)) = (MN4)
m(MN8)

nV (K) (19)
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Fig. 5. Each line presents a binary image (left), its continuous interpolation (second
column), its outer (third column) and inner (right) contours. Their vectors of character-
istics are, from (b) to (d) and (f) to (h): Va = (22, 10, 18, 0)T , Vb = (34, 8, 10, 1)T , Vc =
(−12, 2, 8, −1)T , Vd = (50, 10, 18, 0)T , Ve = (54, 8, 14, 1)T and Vf = (−4, 2, 4, −1)T

with Va = Vb + Vc and Vd = Ve + Vf . Each shape on the first row is the eroded of
the shape underneath with the 4-neighborhood or its continuous interpolation, and
conversely, each shape on the second row is the dilated of the shape above with the
4-neighborhood or its continuous interpolation. Thus, Vd = MN4Va, Ve = MN4Vb and
Vf = MN4Vc, with MN4 from Eq. (18).

because the dilated contour δB (K) is an opening with B. Like in the previous
section, Eq. (19) holds for a mixture of contours if the contours do not merge
during the dilation, otherwise some quantities may be counted multiple times.
For example, parameter vectors measured on the opening transform (Fig. 4a and
Table 2 left) are correctly extrapolated from parameter vectors measured on the
distance transform (Fig. 4c and Table 2 right). For instance, for radius 3:

MN4 · MN8 · (
5/2 2 3 1

)T =
(
59/2 10 7 1

)T
.

2.3 Local Configurations

For an arbitrary image A, the following quantities are measured on it continuous
analogue A: the area A(A), the number of horizontal and vertical elementary
edges ν0(A), the count of diagonal elementary edges ν1(A) and the difference
between the number of outer and inner contours, i.e., the Euler-Poincaré char-
acteristic χ(A). For these four measures, the additivity property hold:

∀μ ∈ {A, ν0, ν1, χ
}
,∀A,B, μ(A ∪ B) = μ(A) + μ(B) − μ(A ∩ B). (20)

As a consequence, A, ν0, ν1 and χ can be evaluated on A from the examina-
tion of subsets of A and their intersections. We divide A along elementary grid
cells, according to its definition in Eq. (16). Then
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μ(A) = +
∑

k,l

μ(CA(k, l))

−
∑

k,l

μ(CA(k, l) ∩ CA(k + 1, l)) + μ(CA(k, l) ∩ CA(k, l + 1))

+
∑

k,l

μ(CA(k, l) ∩ CA(k + 1, l) ∩ CA(k, l + 1) ∩ CA(k + 1, l + 1)).

Note that each CA(k, l) determines the intersections with its neighbors, e.g.,
CA(k, l) ∩ CA(k + 1, l) = CA(k, l) ∩ conv({(k + 1, l), (k + 1, l + 1)}). We chose to
include in the measures associated to each CA(k, l), the shares of the intersections
with its neighbors, equally distributed (see Fig. 6). This avoids a separate count
for measures on CA(k, l) and on their intersections.

By convention, CA(k, l) is associated with the configuration index 201A(k, l)+
211A(k + 1, l) + 221A(k, l + 1) + 231A(k + 1, l + 1), where 1A is the indicator
function of the set A. Table 1 presents the 16 possible configurations and their
contributions to measures.

Fig. 6. Total contribution to the Euler-Poincaré characteristic in a grid cell including
the shares of intersections with neighbor cells. Left. the cell contribution to the Euler-
Poincaré characteristic for itself is 1. The intersection is non-empty in the four edges.
The contribution of each one is −1, shared by two cells. The intersection is non-empty
in three vertices. The contribution of each one is 1, shared by four cells. The global
measure for the cell is then χ = 1−4× 1

2
+3× 1

4
= − 1

4
. Middle. χ = 1−3× 1

2
+2× 1

4
= 0.

Right. χ = 1 − 2 × 1
2
+ 1 × 1

4
= 1

4
.

Table 1. Contributions of the 16 local configurations to image measures.
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2.4 Algorithm

The measures µε = (A, ν0, ν1, χ) have now to be computed for each erosion of
A with B<(O, r), i.e., in each binarization of DT′

A (or DTA) with threshold r.
Each local configuration CA(k, l) is determined by a 2 × 2 patch in DT′

A

and the threshold r. The multiple choices of r generate at most 5 configurations
according to how r compares to the values of the 4 pixels. To avoid iterating over
all values of r, Algorithm 1 enumerates the 5 possible values of the configuration
index c(r) and update the first differences of µε, dµε : r �→ µε(r) − µε(r − 1).
Let v contains the 4 values of the patch in increasing order of weights of the
configuration index and σ be the reciprocal permutation of the ranks of elements
of v in increasing order i.e., ∀i ∈ [0, 2], v(σi) ≤ v(σi+1). Starting with r = 0
and c(r) = 15, c(r) is decreased by 2σi each time r exceeds some v(σi). For
each interval [r1, r2) of r, dµε(r1) (resp. dµε(r2)) has to be increased (resp.
decreased) with the value of μc. These computation are performed in the first
loop of Algorithm 1. An algorithm similar in principle was presented by Snidaro
and Foresti [9], although limited to measuring the Euler-Poincaré characteristic.

The second loop of Algorithm 1 simultaneously accumulates dµε(r) in µε(r),
computes the matrix for the dilation with the disk B<(O, r) using either MN4 or

Algorithm 1. Simultaneous extraction of measures for all binarization
thresholds.
Input: K × L asymmetric distance transform DT′

A

Output: Estimated measures on morphological openings µ̂(r)
1 begin
2 for (k, l) ∈ K × L do
3 v ← (DT′

A(k − 1, l − 1),DT′
A(k, l − 1),DT′

A(k − 1, l),DT′
A(k, l))

4 determine σ, such that v(σi) ≤ v(σi+1), ∀i ∈ [0, 2]
5 c ← 15; r ← 0 // initial configuration index and threshold

6 for i ← 0 to 3 do
// μc: contribution of v binarized at threshold r

7 dµε(r) ← dµε(r) + μc

8 r ← v(σi) + 1 // next threshold

9 dµε(r) ← dµε(r) − μc

10 c ← c − 2σt // update configuration index

11

12 end

13 end
14 M = I4 // identity matrix

15 for r = 1 to max(DT′
A) do

16 µε(r) ← µε(r − 1) + dµε(r)
17 µ̂(r) ← M · µε ({p : DT′

A(p) ≥ r})
18 M = M · MN(r)

19 end

20 end
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Table 2. Parameter vectors measured (left) on the opening transform depicted in
Fig. 4a, (right) on the distance transforms shown in Figs. 4b and c. The number of pixels
# is deduced from the other four values and Pick’s theorem [8]: # = A + ν1+ν2

2
+ χ.

MN8 according to which neighborhood is used for a specific radius and, finally,
extrapolates the result vector of measures µ̂γ(r) from µε(r).

The overall time complexity of the method, including the asymmetric dis-
tance transform [6], is of order O(KL + R), where KL is the number of pixels
and R the maximal radius. The space complexity is of order O(K + R), as its
only needs one line of K pixels for the distance transform, two lines of pixels
and an array of size R for the extraction of vectors of characteristics. Moreover,
the examination of 2 × 2 image patches can be merged with the single scan of
the distance transform, leading to a streaming algorithm where computations
are performed continuously while the data is input.

3 Results and Discussion

The method was tested on sections of tomographic reconstructions of composite
materials and compared to the results of a morphological granulometry. Figure 8
shows an example of such an image. Numerical results are presented in Table 3
and pictured in Fig. 7. On this class of images, discrepancies on the pixel count
are low (at most 2.25 %). They attain at most 13.33 % on the count of vertical and
horizontal segments. Higher disparities appear on the Euler-Poincaré character-
istic. This quantity measures the difference between the number of components
and holes. It is highly sensitive to merging contours, which occur frequently in
images with a high count of touching components like the one displayed in Fig. 8.
Note that the pixel count is the only relevant measure here for granulometry.
The other quantities are only displayed for completeness.

The source code of the complete method is available at https://github.com/
nnormand/DGtalTools-contrib.git.

https://github.com/nnormand/DGtalTools-contrib.git
https://github.com/nnormand/DGtalTools-contrib.git
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Table 3. Values #, ν0, ν1 and χ measured on the actual openings of the image in Fig. 8
and the corresponding estimated values, #̂, ν̂0, ν̂1 and χ̂, obtained from a translated
distance map.

r # #̂ ν0 ν̂0 μ1 μ̂1 χ χ̂

1 430033 430033 77442 77442 60168 60168 −333 −333

2 424083 424443 67596 67680 63763 62646 122 1386

3 408971 414309 80018 90682 52185 49706 1401 5288

4 382211 384196 67154 72648 59853 56763 2342 5545

5 133233 133896 29324 30332 15325 14700 1216 1790

6 1774 1814 270 296 209 219 14 18

7 0 0 0 0 0 0 0 0

Fig. 7. Measured and estimated granulometry parameters

Fig. 8. Tomographic section of a composite material (orthogonal to fibers) and its
openings (r = 2 to 6).
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4 Conclusion and Future Works

This article describes a method for computing an estimation of the granulo-
metric spectrum of a binary image by extrapolating parameters measured on
the distance transform with a neighborhood-sequence distance. The algorithmic
structure makes the method fit for very large amounts of data, or continuously
acquired data. The time complexity of the algorithm is linear with the number
of pixels for the distance transform, linear with the maximal disk radius for the
measure extrapolation. Its space complexity is very low: not more that the result
size (the vector of estimated parameters) and two lines of image.

The collision of contours during dilation is the sole reason why the number
of pixels can be overestimated. A preliminary analysis shows that such collisions
can be identified by saddle points in the distance transform. Further investigation
is needed both to upper bound the pixel count error and conclude if and how
the effects of contour merging can be neutralized or at least mitigated.

References

1. Coeurjolly, D.: Fast and accurate approximation of digital shape thickness distri-
bution in arbitrary dimension. Comput. Vis. Image Underst. 116(12), 1159–1167
(2012). ISSN 1077–3142

2. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93(3), 418–491 (1959)
3. Guderlei, R., Klenk, S., Mayer, J., Schmidt, V., Spodarev, E.: Algorithms for the

computation of the Minkowski functionals of deterministic and random polycon-
vex sets. Image Vis. Comput. 25(4), 464–474 (2007). International Symposium on
Mathematical Morphology 2005. ISSN 0262–8856

4. Klenk, S., Schmidt, V., Spodarev, E.: A new algorithmic approach to the computa-
tion of Minkowski functionals of polyconvex sets. Comput. Geom. 34(3), 127–148
(2006). ISSN 0925–7721

5. Matheron, G.: La formule de Steiner pour les érosions. J. Appl. Probab. 15(1),
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