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33.1 Introduction

Complex network analysis is fundamental to the understand-
ing and modeling of relationships in several domains such as
social networks [1], communication networks [2], biological
networks [3], citation networks [4], cyber-attack networks
[5] etc. Centrality metrics are the most common node-level
metrics and quantify the topological importance of a node
(vertex) with respect to one or more aspects [6]. There are
two major categories of centrality metrics: neighborhood-
based and shortest path-based. While the degree (DEG) and
eigenvector centrality (EVC) metrics are considered repre-
sentative metrics for the neighborhood-based category, the
betweenness (BWC) and closeness (CLC) centrality metrics
are considered representative metrics for the shortest path-
based category. The DEG of a vertex is a measure of the
number of neighbors of the vertex. The EVC of a vertex [7]
is a measure of the degree of the vertex as well as the degrees
of its neighbors. The BWC of a vertex [8] is a measure of the
fraction of the shortest paths between any two vertices that go
through the vertex. The CLC of a vertex [9] is a measure of
the sum of the shortest path distances from the vertex to every
other vertex. For more information about these centrality
metrics, the interested reader is referred to [6–9]. Throughout
the paper, the terms ‘node’ and ‘vertex’, ‘link’ and ‘edge’,
‘network’ and ‘graph’, ‘cluster’ and ‘community’ are used
interchangeably. They mean the same.
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Community detection is a classical problem in complex
network analysis wherein one or more clusters of vertices are
identified based on the topological distribution of the vertices
and the edges connecting the vertices [6]. The primary focus
of the community detection algorithms (e.g., [10]) has been
to determine highly modular communities such that the intra-
cluster density is as high as possible and the inter-cluster
density is as low as possible [11]. With the above approach
for clustering in complex networks, two vertices are likely to
belong to the same cluster only if they have an edge between
them or have a multi-hop shortest path of fewer intermediate
edges. Even within a cluster of high density, it is possible
that vertices significantly differ with respect to the values
for one or more node-level metrics (see Sect. 33.2 for a
motivating example) if the extent of similarity of the vertices
(with respect to one or more node-level metrics) is not the
primary criteria for cluster formation.

Our research objective is to quantify the extent to which
vertices in a complex network are logically clusterable on the
basis of the similarity among the values incurred for one or
more node-level metrics. The nodes in such a logical cluster
need not be connected, but would have very similar values for
the node-level metrics. Identification of such logical clusters
would be very informative for several network domains. For
example: in an organizational network, a logical cluster of
employees with similar profiles (but in different departments)
would help in forming an integration team that could co-
ordinate across departments without any ego differences.
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In a health information network, a quantitative measure
of clusterability of patients with similar health parameters
is critical to decide whether treatment plans need to be
individualized or can be generalized at the cluster-level. The
Hopkins Statistic measure (ranges from 0 to 1) has been
traditionally used to assess the clusterability of a dataset [12].
We use the Hopkins Statistic to assess the similarity-based
clusterability of the vertices in a complex network.

The rest of the paper is organized as follows: Section
33.2 motivates the proposed research for similarity-based
logical clustering with an illustrative example. Section 33.3
illustrates the computation of the Hopkins Statistic on a
coordinate system of the normalized centrality values for the
example graph of Sect. 33.2. Section 33.4 presents the Hop-
kins Statistic values computed for 47 real-world networks
(of diverse degree distributions) and evaluates the logical
clusterability of the vertices on the basis of the similarity with
respect to the neighborhood-based centrality metrics vs. the
shortest path-based centrality metrics. Section 33.5 reviews
related work on similarity assessment and clustering in
complex networks, and highlights our contribution. Section
33.6 concludes the paper and outlines plans for future work.

33.2 Proposed Approach and Example

Our proposed approach to quantitatively assess similarity-
based clusterability is as follows: Let K be the number of
centrality metrics considered for the analysis. We determine
the centrality values of the vertices in the complex network
with respect to each of these metrics. We then individually
normalize the centrality values of the vertices for each met-
ric. The normalization of the centrality values with respect
to a metric is done using the square root of the sum of the
squares of the centrality values. We distribute the vertices
in a K-dimensional coordinate system (wherein the range
for each dimension is from 0 to 1) such that the coordinate
for a vertex is a K-tuple, with an entry for each centrality
metric. We refer to the above distribution as the logical
topology of the vertices. If two vertices have similar values
for the centrality metrics, then they should be closer to each
other in the logical topology. There could exist one or more
logical clusters of such similar vertices so that the Euclidean
distance between vertices within a cluster is much smaller
than the Euclidean distance between vertices in two different
clusters. If the centrality values of the vertices are not similar
to each other, then the vertices could be further away from
each other in the logical topology and such a topology would
not be effectively clusterable. The Hopkins Statistic is an
effective measure to quantify the extent to which vertices
could be clustered based on the similarity of their centrality
values. The larger the Hopkins Statistic, the more effective is
the clusterability of the vertices on the basis of similarity in
their centrality values.

Figure 33.1a presents the communities determined by the
classical Girvan-Newman algorithm [10] on a toy example
graph. We observe the nodes in the individual clusters of Fig.
33.1a to be more connected to each other than to the nodes
in the other clusters (i.e., a larger intra-cluster density and a
lower inter-cluster density). However, from a centrality point
of view, we observe the nodes in the individual clusters to be
much different from each other (see Fig. 33.1b and c). Figure
33.1b and c respectively present a logical clustering of the
vertices based on the similarity of the normalized values of
the DEG and EVC metrics. The vertices within such logical
clusters need not be physically connected to each other (Fig.
33.1b) or even if connected, the logical clusters need not
have a high modularity (Fig. 33.1c), but would have similar
(either identical or very close) values for the centrality metric
considered.

If two or more centrality metrics are to be considered
together for similarity assessment, then we distribute the
vertices in a coordinate system of the normalized centrality
values (ranging from 0 to 1 for each dimension) and assess
the clusterability of the vertices based on their proximity to
each other. Figure 33.1d presents one such distribution of the
vertices based on a coordinate system of the normalized DEG
and EVC values. Though the exact clusters depend on the
clustering algorithm used, we observe vertex 5 to be far away
from the rest of the vertices in the normalized (DEG, EVC)
co-ordinate system and such a conclusion cannot be arrived
at in Fig. 33.1a, b or c. Likewise, vertex 1 gets grouped with
vertices 0, 2 and 3 under the traditional approach (see Fig.
33.1a), but is reasonably far away from them in the (DEG,
EVC) co-ordinate system.

33.3 Hopkins Statistic Measure

We use the Hopkins Statistic measure [12] as the basis to
quantify the similarity-based clusterability of the vertices in a
complex network. The Hopkins Statistic (ranges from 0 to 1)
is traditionally used to assess the clustering tendency of any
dataset. The idea behind the Hopkins Statistic is as follows:
Given a dataset of size n, we pick m samples (constituting the
set X such that m� n) from this dataset as well as generate m
uniformly random samples (constituting the set Y) exhibiting
the same variation as that of the given dataset. We determine
the sums of the distances of the samples in the sets X and
Y to the nearest data points (i.e., one nearest data point for
each sample) in the given dataset. The Hopkins Statistic is
the ratio of the sum of the nearest neighbor distances of
the samples in the set Y to the sum of the nearest neighbor
distances of the samples in the sets X and Y. If the data points
in the given dataset are randomly distributed, then the sums
of the nearest neighbor distances for the samples in the sets
X and Y would be approximately the same, and the Hopkins
Statistic is expected to be 0.5. If the data points in the given
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Fig. 33.1 Example to illustrate
the clustering of the vertices
based on the traditional approach
vs. the normalized
centrality-based coordinate
system. (a) Physical clusters
identified by the traditional
community detection approach.
(b) Logical clustering of the
vertices based on the similarity
with respect to degree centrality.
(c) Logical clustering of the
vertices based on the similarity
with respect to eigenvector
centrality. (d) Distribution of
vertices in the logical topology
respect to degree and eigenvector
centrality metrics

dataset are highly clusterable, then the sum of the nearest
neighbor distances for the samples in the set X would be
very negligible compared to the sum of the nearest neighbor

distances for the samples in the set Y; hence, the Hopkins
Statistic is expected to be close to 1.0 for a highly clusterable
dataset. If the data points in the original dataset are uniformly
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distributed, then the sum of the nearest neighbor distances for
the samples in the set X would be significantly larger than the
sum of the nearest neighbor distances for the samples in the
set Y; the Hopkins Statistic in such a case would be closer
to 0. A value of 0.75 or higher for the Hopkins Statistic
indicates a clustering tendency at the 90% confidence level
[5] [13–15].

We now illustrate the procedure to compute the Hopkins
Statistic measure for the logical topology of the vertices
illustrated in Fig. 33.1d. The distance between two vertices
in the logical topology is computed as the Euclidean distance
between their coordinates (represented by the normalized
centrality values with respect to degree and eigenvector
centrality). There are a total of eight vertices (n = 8) in the
toy example graph of Fig. 33.1. Let the parameter ‘m’ be 5.
That is, we randomly pick five of the eight vertices from the
graph and constitute the set X. Let the five vertices picked
be {0, 3, 4, 6, 7}, and the set X would comprise of their
corresponding (DEG, EVC) values as coordinates: {(0.416,
0.489), (0.416, 0.467), (0.277, 0.264), (0.277, 0.155), (0.277,
0.155)}. From Fig. 33.1b and c, we could identify the range
of the DEG and EVC values to be [0.277, . . . , 0.416] and
[0.155, . . . , 0.489] respectively. While the normalized DEG
values for the vertices in the original dataset are either 0.277
or 0.416, the normalized EVC values do not appear to follow
any particular pattern. Hence, to generate the set Y with five
data points, the DEG values need to be either 0.277 or 0.416
(we randomly choose one of these two values for each data
point) and the EVC values need to be uniform randomly
distributed in the range [0.155, . . . , 0.489]. Accordingly,
the five samples constituting the set Y are generated to
be: {(0.416, 0.168), (0.277, 0.328), (0.416, 0.479), (0.416,
0.183), (0.277, 0.217)}.

Figure 33.2 summarizes all the calculations. The sums
of the nearest distances to a vertex for the samples in
the sets X and Y are respectively 0.122 and 0.276; the
Hopkins Statistic for the (DEG, EVC) coordinate system is
0.276/(0.276 + 0.122) = 0.69. Since it is relatively closer to

0.5, we could conclude that the vertices in the given complex
network graph are not very much clusterable on the basis of
the similarity with respect to the DEG and EVC values.

33.4 Similarity-Based Clusterability
of Real-World Networks

We applied the proposed approach to a suite of 47 real-world
networks of diverse degree distributions and computed the
values for the Hopkins Statistic for the logical topologies
of the vertices with respect to the neighborhood-based DEG
and EVC metrics and the shortest path-based BWC and CLC
metrics. The real-world networks (for more details, refer to
[16]) considered fall under one of these domains (the number
of networks under each category is indicated within the
parentheses): I. Acquaintance network (12), II. Friendship
network (9), III. Co-appearance network (6), Employment
network (4), Citation network (3), Collaboration network
(3), Literature network (3), Biological network (3), Political
network (2), Game network (2), Transportation network (1),
Geographical network (1) and Trade network (1). Table 33.1
presents the Hopkins Statistic values for each network with
respect to the (DEG, EVC) and (BWC, CLC) measures along
with the number of nodes and edges as well as the average
degree (kavg) and spectral radius ratio for node degree [17]
for each of these networks. The spectral radius ratio for node
degree (λsp) is a measure of the variation in node degree.

Figure 33.3 plots the Hopkins Statistic values for the two
coordinate systems/logical topologies: if a data point is be-
low the diagonal line, then the Hopkins Statistic value for the
(DEG, EVC) coordinate system is relatively larger; if a data
point is above the diagonal line, then the Hopkins Statistic
value for the (BWC, CLC) coordinate system is relatively
larger. Table 33.1 highlights the Hopkins Statistic values that
are (overall) relatively larger for a real-world network with
respect to the two coordinate systems. From both Fig. 33.3
and Table 33.1, we could come to the following conclusions:

Fig. 33.2 Calculations for the
Hopkins Statistic for (DEG,
EVC)-Similarity based
Clusterability for the graph of
Fig. 33.1
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Table 33.1 Hopkins statistic
values with respect to the
neighborhood-based (DEG,
EVC) metrics vs. shortest
path-based (BWC, CLC) metrics

The median of the Hopkins Statistic values for the (DEG,
EVC) and (BWC, CLC)-based logical topologies are 0.89
and 0.85 respectively. Hence, majority of the real-world
networks are effectively clusterable with respect to both the
neighborhood and shortest path-based centrality metrics. On
a relative basis: out of the 47 real-world networks, for 29
networks (i.e., for about 60% of the real-world networks):
the (DEG, EVC)-based Hopkins Statistic values are larger.
Also, the Hopkins Statistic values for the (DEG, EVC)-
based logical topologies are relatively closer to 1.0 compared
to the Hopkins Statistic values for the (BWC, CLC)-based
logical topologies. We could thus conclude that real-world
networks are more effectively clusterable with respect to the
neighborhood-based centrality metrics compared to shortest
path-based metrics.

Figure 33.4 plots the distribution of the Spectral radius
ratio for node degree vs. the Hopkins Statistic measure values

for the (DEG, EVC) and (BWC, CLC)-based logical topolo-
gies. We observe for both the coordinate systems, the logical
topologies are more effectively clusterable with increase in
the spectral radius ratio for node degree. This implies: scale-
free networks (larger values for the spectral radius ratio for
node degree) are more effectively clusterable with respect to
both categories of centrality metrics. Whereas, the random
networks (that have lower values for the spectral radius ratio
for node degree) are (relatively) less effectively clusterable
with respect to both categories of centrality metrics, espe-
cially the shortest path-based centrality metrics.

33.5 RelatedWork and Our Contribution

Clustering in complex networks has been traditionally on the
notion of distance between the nodes [13]. Nodes that are
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Fig. 33.3 Comparison of the Hopkins Statistic values for the (DEG,
EVC)-based logical topologies vs. (BWC, CLC)-based logical topolo-
gies of the real-world networks

Fig. 33.4 Spectral radius ratio for node degree vs. the Hopkins statistic
measure values

closer to each other are preferred for being grouped within
a cluster. Various forms of distance measures (Euclidean,
Manhattan, Minkowski, Chebyshev, Mahalanobis, etc) have
been used in the literature [14]. Similarity-based clustering
has been typically considered only for non-network data [15,
18], broadly as a problem in data mining. Given a distribution

of data points, data points that are similar with respect to one
or more parameters tend to be clustered together [19, 20].
The typical approach [19] is to associate a multi-dimensional
vector to each data point, measure the pair-wise similarity
(using functions such as cosine similarity [6], Jaccard Index
[19], SimRank [21], PathSim [22]) or the distances between
the data points (using some distance function), and then
cluster the data points that are similar and closer to each
other. Our research proposes a combination of the above two
approaches. We first determine the values for the centrality
metrics (node-level parameters) of the nodes in a complex
network, then treat the nodes as data points with an asso-
ciated multi-dimensional vector of the normalized values of
the centrality metrics, and finally analyze the clusterability of
these data points.

The proposed Hopkins Statistic-based clusterability
assessment of node similarity could be the first step in
pursuit of developing a network-level similarity index for
complex networks. If the Hopkins Statistic measure is high,
there could exist one or more clusters of similar nodes
(with respect to the centrality metrics) in the network.
Though there could exist two or more such clusters in
the network (with the nodes in one cluster significantly
different from the nodes in the other clusters with respect
to the centrality metrics), a lower value for the Hopkins
Statistic measure is definitely an indication that the nodes
in the logical topology of centrality-based coordinates are
more randomly distributed and not very similar to each other
(i.e., not clusterable). In other words, the computation of the
Hopkins Statistic measure could be used as a prerequisite
step for any algorithm to quantify/assess the network-wide
similarity of all the nodes in the network; there would not be
any need for the algorithm to proceed further with assessing
the network-wide similarity of the nodes if the value for the
Hopkins Statistic measure is low.

33.6 Conclusions and FutureWork

Our high-level contribution in this paper is a proposal to
assess the logical clusterability of the nodes in a network on
the basis of node-level metrics (such as centrality metrics).
We propose to distribute the nodes in a K-dimensional
coordinate system (referred to as the logical topology) of
the normalized centrality values of the vertices (where ‘K’ is
the number of centrality metrics considered and we assign a
dimension for each centrality metric). Two vertices that need
not be physically connected in the complex network could be
very close to each other in the logical topology if they incur
similar values for the centrality metrics. The Hopkins Statis-
tic has been identified as the quantitative measure to assess
the similarity-based clusterability of nodes in such a logical
topology. A lower value for the Hopkins Statistic is definitely
an indication that the nodes do not exhibit similar values for
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the centrality metrics considered. On the other hand, a higher
value for the Hopkins Statistic is an indication that there
could exist one or more clusters of similar vertices in the
network with respect to the centrality metrics considered. We
analyzed a suite of 47 real-world networks of diverse degree
distributions and determined their Hopkins Statistic values
with respect to the neighborhood-based degree and eigenvec-
tor centrality metrics and the shortest path-based between-
ness and closeness centrality metrics. We observed about
60% of the real-world networks to exhibit relatively larger
Hopkins Statistic values with respect to the neighborhood-
based centrality metrics. Also, the Hopkins Statistic mea-
sure values for the neighborhood-based centrality metrics
are relatively closer to 1 compared to the values for the
shortest path-based centrality metrics. As part of future work,
we plan to develop a network-wide node similarity index
(NSI) measure for complex network analysis and test our
hypothesis that a higher Hopkins Statistic is a prerequisite
for a network to exhibit a higher value for the NSI.
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