
1Fast Modular Squaring with AVX512IFMA

Nir Drucker and Shay Gueron

1.1 Introduction

The Multiply and Accumulate (MAC) operation consumes
three inputs a, b, c, and computes a = a + b · c. It
is a fundamental step in many floating-point and integer
computations. Examples are dot product calculations, matrix
multiplications, and modular arithmetic. Modern processors
offer instructions for performing MAC over floating-point
inputs, e.g., AMD Bulldozer’s Fused Multiply-Add (FMA),
and Intel’s Single Instruction Multiple Data (SIMD)-FMA
(starting with the microarchitecture Codename Haswell).
Here, we focus on Intel’s AVX512IFMA instructions [1] that
compute MAC on unsigned integers.

The AVX512IFMA instructions are defined, but are not
yet widely available. However, a demonstration of their
capabilities is already given in [11], showing a 2x potential
speedup for 1024-bit integer multiplication (and more for
larger operands). Another example is [6], where we showed a
6x potential speedup over OpenSSL’s Montgomery Multipli-
cation (MM). Additional code examples [5, 10] contributed
to OpenSSL, include optimized 1024/1536/2048-bit MM.
These demonstrations did not optimize modular squaring
specifically; rather, they used a multiplication routine for
squaring as well. Here, we show how to use the AVX512-
IFMA instructions for optimizing modular squaring. Our
developments build on top of the AMS optimization of [7]
(other squaring methods can be found in [4, 9, 13]).

This work was done prior to joining Amazon.

N. Drucker · S. Gueron (�)
University of Haifa, Haifa, Israel

Amazon Web Services Inc, Seattle, WA, USA
e-mail: shay@math.haifa.ac.il

The paper is organized as follows. Section 1.2 discusses
some preliminaries. Section 1.3 deals with implementing
the AMS algorithm with the AVX512IFMA instructions. In
Sect. 1.4, we propose a potential improvement to the defini-
tion of AVX512IFMA. Finally, we show our experimental
results in Sect. 1.5, and provide our conclusions in Sect. 1.6.

1.2 Preliminaries and Notation

Hereafter, we use lower case letters to represent scalars (64-
bit integers), and upper case letters to represent 512-bit wide
register. We denote zero extension of a 64 bits variable x by
ZE(x).

1.2.1 The AVX512IFMA Instructions

Intel’s Software Developer Manual [1] introduces two
instructions called AVX512IFMA: VPMADD52LUQ and
VPMADD52HUQ. Their functionality is illustrated in
Algorithm 1.1. These instructions multiply eight 52-bit
unsigned integers residing in wide 512-bit registers, produce
the low (VPMADD52LUQ) and high (VPMADD52HUQ)
halves of the 104-bit products, and add the results to 64-
bit accumulators (i.e., SIMD elements), placing them in
the destination register. They are designed for supporting
big number multiplications, when the inputs are stored in
a “redundant representation” using radix 252 (as explained
in [8]).

The AVX512IFMA instructions build on the existence of
other instructions called SIMD-FMA, which are designed to
support IEEE standard Floating-Point Arithmetic [12]. The
SIMD-FMA instructions handle double-precision floating-
point numbers (x[63 : 0]), where the bits are viewed as: (a)

© Springer Nature Switzerland AG 2019
S. Latifi (ed.), 16th International Conference on Information Technology-New Generations (ITNG 2019),
Advances in Intelligent Systems and Computing 800,
https://doi.org/10.1007/978-3-030-14070-0_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14070-0_1&domain=pdf
mailto:shay@math.haifa.ac.il
https://doi.org/10.1007/978-3-030-14070-0_1


4 N. Drucker and S. Gueron

Algorithm 1.1 DST = VPMADD52(A,B,C) [1]
Inputs: A,B,C (512-bit wide registers)
Outputs: DST (a 512-bit wide register)

1: procedure VPMADD52LUQ(A, B, C)
2: for j := 0 to 7 do
3: i := j × 64
4: TMP[127 : 0] := ZE(B[i+51:i]) × ZE(C[i+51:i])
5: DST[i+63:i] := A[i+63:i] + ZE(TMP[51 : 0])
6: procedure VPMADD52HUQ(A, B, C)
7: for j := 0 to 7 do
8: i := j × 64
9: TMP[127 : 0] := ZE(B[i+51:i]) × ZE(C[i+51:i])
10: DST[i+63:i] := A[i+63:i] + ZE(TMP[103 : 52])

fraction x[51 : 0] (53 bits where only 52 bits are explicitly
stored); (b) exponent x[62 : 52]; (c) sign bit x[63].

1.2.2 Almost MontgomeryMultiplication

MM is an efficient technique for computing modular multi-
plications [14]. Let t be a positive integer, k an odd modulus
and 0 ≤ a, b < k integers. We denote the MM by
MM(a, b) = a·b·2−t (mod k), where 2t is theMontgomery
parameter. A variant of MM, called Almost Montgomery
Multiplication (AMM) [7], is defined as follows. Let k and
t be defined as above, and 0 ≤ a, b < B integers, then
AMM(a, b) is an integer U that satisfies: (1) U (mod m) =
a · b · 2−t (mod k); (2) U ≤ B.

The advantage of AMM over MM is that the former
does not require a (conditional) “final reduction” step. This
allows using the output of one invocation as the input to a
subsequent invocation. The relation between AMM and MM
is the following. If 0 ≤ a, b < B, RR = 22t (mod k) ,a′ =
AMM(a,RR), b′ = AMM(b,RR) , u′ = AMM(a′, b′)
and u = AMM(u′, 1), then u = a · b (mod k).

1.3 Implementing AMSwith AVX512IFMA

One of the common squaring algorithms [4] is the following.
Let A = ∑n

i=0 Biai be an n digits integer in base B, ai ≥ 0.
Then,

A2 =
n∑

i=0

n∑

j=0

Bi+j aiaj

=
n∑

i=0

B2ia2i + 2
n∑

i=0

n∑

j=i+1

Bi+j aiaj

(1.1)

where the last multiplication by 2 can be carried out by
a series of left shift operations [9]. This reduces about
half of the single-precision multiplications (compared to

regular multiplication). Additional improvement is achieved
by using vectorization. For example, [8] shows squaring
implementations that use Intel’s Advanced Vector Extensions
(AVX) and AVX2 instructions. In these implementations,
integers are stored in a “redundant representation” with
radix B = 228 (each of the n digits is placed in a 32-bit
container, padded from above with 4 zero bits). Each of the
AVX2 256-bit wide registers (ymm) can hold up to eight 32-
bit containers. This allows for (left) shifting of 8 digits in
parallel, without losing their carry bit.

Algorithm 1.2 describes an implementation of AMS=
AMM(a,a) that uses the AVX512IFMA instructions. Let the
input (a), the modulus (m) and the result (x) be n-digit
integers in radix B = 252, where each digit is placed in a
64-bit container (padded with 12 zero bits from above). Let
z = �n/8� be the total number of wide registers needed
for holding an n-digit number, and denote k0 = −m−1

(mod 252). The final step of Algorithm 1.2 returns the result
to the radix B = 252 format, by rearranging the carry bits.
An illustration of a simple AMS flow is given in Fig. 1.1
that shows how ∼20% of the VPMADD52 calls (left as blank
spaces in the figure) are saved, compared to an AMM. The
algorithm applies the left shift optimization of [9] to the
AVX512IFMA AMM implementation of [11]. This can be
done through either Eq. 1.1 (perform all MAC calculations
and then shift the result by one), or according to:

Algorithm 1.2 x = AMS52(a, m, k0)
Inputs: a,m (n-digit unsigned integers), k0 (52-bit unsigned inte-
ger)
Outputs: x (n-digit unsigned integers)

1: procedure MULA[L/H]PART(i)
2: Xi := VPMADD52[L/H]UQ(Xi , Acurr , Ai )
3: for j := i + 1 to z do
4: T := VPMADD52[L/H]UQ(ZERO, Acurr , Aj )
5: Xj := Xj + (T � 1)

1: procedure AMS52(a, m, k0)
2: load a into A0 . . . Az and m into M0 . . . Mz

3: zero(X0 . . . Xz, ZERO)
4: for i := 0 to z do
5: for j := 0 to min{8, n − (8 · i)} do
6: Acurr = broadcast(a[8 · i + j ])
7: MulALPart(i)
8: y[127 : 0] := k0 · X0[63 : 0]
9: Y := broadcast(y[52 : 0])
10: for l := 0 to z do
11: Xl := VPMADD52LUQ(Xl , Ml , Y )
12: x0 := X0[63 : 0] 	 52
13: X := X 	 64
14: X0[63 : 0] = X0[63 : 0] + x0
15: MulAHPart(i)
16: for l := 0 to z do
17: Xl := VPMADD52HUQ(Xl , Ml , Y )
18: FixRedundantRepresentation(X)
19: return X



1 Fast Modular Squaring with AVX512IFMA 5

Fig. 1.1 Flow illustration of
x =SQR(a, m, k0), where a,m

and x are 16-digit operands, each
one is accommodated in two
zmm registers

A2 =
n∑

i=0

B2ia2i +
n∑

i=0

n∑

j=i+1

Bi+j aia
′
j (1.2)

where a′ = a � 1. An efficient implementation of
the first approach requires to accommodate a,m, and x in
wide registers (not in memory), while an implementation
of the second approach requires accommodating a′ in wide
registers as well. Consequently, the AVX512, which has only
32 wide registers, can hold n-digit integers up to n ≤ 85 with
the first approach, or up to n ≤ 64 with the second approach.
For example, 4096-bit modular squaring (part of a 4096-bit
exponentiation, e.g., for Paillier encryption) has n = 80-
digits operands (written in radix B = 252). It requires 40
wide registers with the second approach (but there are not
enough). With the first approach, only 30 wide registers are
needed (there are 32). This situation seems better, but in
practice, it is not good enough.

Performing left shifting of an n-digit number requires
some extra wide registers. These are not necessarily available
for use with the above two approaches. Thus, we propose
Algorithm 1.2, that is based on the following identity:

A2 =
n∑

i=0

B2ia2i +
n∑

i=0

n∑

j=i+1

2(Bi+j aiaj ) (1.3)

Here, the left shifts are performed on-the-fly, and free some
wide registers for supporting other operations.

Identifying an additional bottleneck On-the-fly left shift-
ing can be implemented in three ways, but unfortunately, all
three do not go along well with the AVX512IFMA archi-
tecture. The first alternative is to multiply, accumulate and
shift the result. This may double shift some of the previously
accumulated data. The second alternative is to shift one of the



6 N. Drucker and S. Gueron

VPMADD52’s input operands. This may lead to a set carry bit
in position 53, which would be (erroneously) ignored during
the multiplication (see Algorithm 1.1). The third alternative
splits the MAC operation, to inject the shift between. This is
not feasible with the atomic operation of VPMADD52, but can
be resolved by performing the Multiply-Shift-Accumulate
operation in two steps, with an extra temporary (zeroed) wide
register. Indeed, Algorithm 1.2, MulA[L/H]Part (steps 4, 5)
executes this flow.

1.4 Is Using Radix 251 Better?

In this section, we discuss the selection of the radix. The
AVX512IFMA instructions leverage hardware that is needed
anyhow, for the FMA unit (floating-point operations need 53-
bit multiplication for a 106-bit mantissa). Obviously, given
AVX512IFMA, it is natural to work with radix B = 252.
Using a larger radix (e.g., B = 258) could be better in
theory, but will incur too many costly conversions to allow
for using VPMADD52. We also note that no native SIMD
instructions for a larger radix are available. A smaller radix
(e.g., 251) is, however, possible to choose. This allows to
cut about half of the serialized instructions in steps 3–5 of
MulA[L/H ]Part , by left shifting one of the operands be-
fore the
multiplication.

Algorithm 1.3 is a modification of Algorithm 1.2, op-
erating in radix 251. While it avoids the shift operations
before the VPMADD52LUQ, it still needs to perform the
shifting before the VPMADD52HUQ instruction. For exam-
ple, Let a, b, c1, c2 be 51-bit integers. After performing
c1 = VPMADD52LUQ(0, a, b) = (a × b)[51 : 0] and
c2 = VPMADD52HUQ(0, a, b) = (a × b)[102 : 52],
c1 and c2 are no longer in (pure) radix 251. Propagating
the carry bit in c1 can be delayed to step 22 of Algo-
rithm 1.3. In contrary, c2 must be shifted prior to the ac-
cumulation step. As we show in Sect. 1.5, Algorithm 1.3
does not lead to faster squaring, with the current architecture.
This suggests a possible improvement to the architectural
definition.

1.4.1 A Possible Improvement
for AVX512IFMA

Algorithm 1.3 offers better parallelization compared to Al-
gorithm 1.2, but still includes serialized steps (e.g., the
function MulHighPart). A completely parallelized algorithm
requires hardware support. To this end, we suggest a new
instruction that we call Fused Multiply-Shift-Add (FMSA),
and describe in Algorithm 1.4. It shifts the multiplication

Algorithm 1.3 x = AMS51(a, m, k0)
Inputs: a,m (n-digit unsigned integers), k0 (52-bit unsigned inte-
ger)
Outputs: x (n-digit unsigned integers)

1: procedure MULHIGHPART(SRC1, SRC2, DEST)
2: TMP := VPMADD52HUQ(ZERO, SRC1, SRC2)
3: DEST := DEST + (TMP � 1)

1: procedure AMS51(a, m, k0)
2: load a into A0 . . . Az and m into M0 . . . Mz

3: zero(X0 . . . Xz, ZERO)
4: for i := 0 to z do
5: for j := 0 to min{8, n − (8 · i)} do
6: Acurr = broadcast(a[8 · i + j ])
7: Ashif ted = Acurr � 1
8: Xi := VPMADD52LUQ(Xi , Acurr , Ai )
9: for j := i + 1 to z do
10: Xi := VPMADD52LUQ(Xi , Ashif ted , Ai )

11: y[127 : 0] := k0 · X0[63 : 0]
12: Y := broadcast(y[51 : 0])
13: for l := 0 to z do
14: Xl := VPMADD52LUQ(Xl , Ml , Y )
15: x0 := X0[63 : 0] 	 51
16: X := X 	 64
17: X0[63 : 0] = X0[63 : 0] + x0
18: MulAHighPart(Xi , Acurr , Ai )
19: for l := i + 1 to z do
20: MulAHighPart(Xl , Ashif ted , Al)

21: for l := 0 to z do
22: MulAHighPart(Xl , Ml , Y )
23: FixRedundantRepresentation(X)
24: return X

Algorithm 1.4 DST=FMSA(A,B,C,imm8)
1: for j := 0 to 7 do
2: i := j*64
3: TMP[127 : 0] := ZE(B[i+51:i]) × ZE(C[i+51:i])
4: DST[i+63:i] := A[i+63:i] +

ZE(TMP[103 : 52] � imm8)

result by an immediate value (imm8) before accumulating
it. This instruction can be based on the same hardware
that supports FMA (just as AVX512IFMA). Note that when
imm8 = 0 then this instruction is exactly VPMADD52HUQ.

1.5 Results

1.5.1 Results for the Current Architecture

This section provides our performance results. For this study,
we wrote new optimized code for all the algorithms discussed
above, and measured them with the following methodology.

Currently, there are only a limited series of processors
with VPMADD52, which we currently don’t have. Therefore,
to predict the potential improvement on future Intel
architectures we used the Intel Software Developer Emulator



1 Fast Modular Squaring with AVX512IFMA 7

(SDE) [3]. This tool allows us to count the number of
instructions executed during each of the tested functions.
We marked the start/end boundaries of each function with
“SSC marks” 1 and 2, respectively. This is done by executing
“movl ssc_mark, %ebx; .byte 0x64, 0x67,
0x90” and invoking the SDE with the flags “-start_ssc_mark
1 -stop_ssc_mark 2 -mix -cnl”. The rationale is that a
reduced number of instructions typically indicates improved
performance that will be observed on a real processor
(although the exact relation between the instructions count
and the eventual cycles count is not known in advanced).

Our measurements show that the overall number of in-
structions in our AMM and AMS implementations (in radix
252) is almost identical. However, the number of occur-
rences per instruction varies between the two algorithms. The
most noticeable change was for the VPADDQ, VPMADD52,
VPSLLQ, and VPXORQ instructions. Let uAMS /uAMM be the
number of occurrences of the instruction u in AMS/AMM
code, and let tAMM be the total number of instructions in
the AMM code. We write ru = (uAMS − uAMM)/tAMM .
Table 1.1 compares the ru values for different u and operands
sizes. It shows that reducing the number of VPMADD52
instructions is achieved through increasing the number of
other instruction (e.g., VPADDQ, VPSLLQ, and VPXORQ).

To assess the impact of the above trade-off, we note
that the latency of VPADDQ, VPSLLQ, and VPXORQ is 1
cycle, the throughput of VPADDQ and VPXORQ is 0.33
cycles, and the throughput of VPSLLQ is 1 cycle [2]. By
comparison, we can expect that the latency/throughput of
a future VPMADD52 would be similar to VPMADDWD (i.e.,
5/1), or to VFMA* (i.e., 4/0.5). It appears that trading one
VPMADD52 for 4 other instructions (which is worse than the
trade-off we have to our AMS implementation) could still be
faster than the AMM implementation.

To study the effects at the higher scale of the modular
exponentiation code, we define the following notation. Let
uModExpAMS /uModExp be the number of occurrences of the
instruction u in the modular exponentiation code, with and
without AMS, respectively, and let tModExp be the overall
number of instructions in this code (w/o AMS). We write
su = (uModExpAMS − uModExp)/tModExp. Table 1.2 shows
the values su.

Table 1.1 Values of ru for different u instructions and different
operands sizes

Size VPADDQ VPMADD52 VPSLLQ VPXORQ

1024 0.06 −0.05 0.06 0.06

1536 0.13 −0.07 0.07 0.07

2048 0.05 −0.09 0.08 0.08

3072 0.05 −0.13 0.15 0.15

4096 0.12 −0.12 0.12 0.12

Table 1.2 Values of su for different instructions (u) and different
operands sizes

Size VPADDQ VPMADD52 VPSLLQ VPXORQ

1024 0.01 −0.01 0.02 0.01

1536 0.02 −0.01 0.02 0.02

2048 0.02 −0.03 0.02 0.02

3072 0.04 −0.04 0.04 0.04

Table 1.3 Values of wAMM
u , wAMS

u , and w
ModExp
u for different in-

structions (u) and different operands sizes

Function name VPADDQ VPMADD52 VPSLLQ VPXORQ

AMM3072 0.32 0.01 0.32 0.32

AMM4080 0.28 0.01 0.28 0.28

AMM4096 0.28 0.01 0.28 0.27

AMS3072 0.07 0.00 0.09 0.07

AMS4080 0.07 0.00 0.10 0.07

AMS4096 0.08 0.01 0.10 0.06

ModExp3072 0.05 0.00 0.06 0.05

We use the following notation for evaluating the radix
251 technique. Let uAMS51/uAMM51/uModExpAMS51 be the
number of occurrences of the instruction u in radix 251 code.
We write

wAMM
u = (uAMM − uAMM51)/tAMM

wAMS
u = (uAMS − uAMS51)/tAMS

w
ModExp
u = (uModExpAMS − uModExpAMS51)/tModExp

Table 1.3 shows the values wAMM
u , wAMS

u , and w
ModExp
u .

Here, we see that the number of VPMADD52 instructions is
almost unchanged, but the number of VPADDQ, VPXORQ,
and VPSLLQ was increased. Therefore, we predict that
implementations with operands in radix 251 will be slower
than those in radix 252.

1.5.2 A “what if” Question: The Potential
of FMSA

Table 1.4 is similar to Table 1.3, where we replace the in-
structions in the MulHighPart with only one VPMADD52HUQ
instruction, emulating our new FMSA instruction. Here, the
added number of VPADDQ, VPSLLQ, and VPXORQ instruc-
tions is no longer needed, and the full power of our AMS can
be seen.



8 N. Drucker and S. Gueron

Table 1.4 Values of wAMM
u , wAMS

u , and w
ModExp
u , when using the

FMSA instruction, for different instructions (u) and different operands
sizes

Function name VPADDQ VPMADD52 VPSLLQ VPXORQ

AMM3072 0.00 0.01 0.00 0.00

AMM4080 0.00 0.01 0.00 0.00

AMM4096 0.00 0.01 0.00 −0.01

AMS3072 −0.03 0.00 −0.09 −0.10

AMS4080 −0.10 0.00 −0.08 −0.10

AMS4096 −0.10 0.01 −0.08 −0.11

ModExp3072 −0.04 0.00 −0.03 −0.04

1.6 Conclusion

This paper showed a method to use Intel’s new AVX512-
IFMA instructions, for optimizing software that computes
AMS on modern processor architectures. Section 1.5 moti-
vates our prediction that the proposed implementation would
further improve the implementations of modular exponentia-
tion described in [7]. As a future research we are aiming on
measuring our code on a real processor once it will be widely
available.

In addition, we analyzed the hypothetical benefit of using
a different radix: 251 instead of 252. This can significantly
improve the AMS algorithm (only) if a new instruction,
which we call FMSA, is also added to the architecture. We
note that FMSA requires only a small tweak over the current
AVX512IFMA, and no new hardware.

Acknowledgements This research was supported by: The Israel Sci-
ence Foundation (grant No. 1018/16); The Center for Cyber Law and
Policy at the University of Haifa in conjunction with the Israel National
Cyber Directorate in the Prime Ministers Office.

References

1. Intel ® 64 and IA-32 Architectures Software Developers Manual,
Sept 2015

2. Intel ® 64 and IA-32 Architectures Optimization Reference Man-
ual, June 2016

3. Intel® Software Development Emulator, version 8.12.0. https://
software.intel.com/en-us/articles/intel-software-development-
emulator, Jan 2017

4. Brent, R.P., Zimmermann, P.: Modern Computer Arithmetic,
vol. 18. Cambridge University Press, Leiden (2010)

5. Drucker, N., Gueron, S.: [openssl patch] Fast 1536-bit modular
exponentiation with the new VPMADD52 instructions. http://
openssl.6102.n7.nabble.com/openssl-org-4032-PATCH-Fast-
1536-bit-modular-exponentiation-with-the-new-VPMADD52-
instructions-td60082.html, Sept 2015

6. Drucker, N., Gueron, S.: Paillier-encrypted databases with fast
aggregated queries. In: 2017 14th IEEE Annual Consumer Com-
munications Networking Conference (CCNC), Las Vegas, pp. 848–
853, Jan 2017

7. Gueron, S.: Efficient software implementations of modular expo-
nentiation. J. Cryptogr. Eng. 2(1), 31–43 (2012)

8. Gueron, S., Krasnov, V.: Software implementation of modular
exponentiation, using advanced vector instructions architectures.
WAIFI 12, 119–135 (2012)

9. Gueron, S., Krasnov, V.: Speeding up big-numbers squaring. In:
2012 Ninth International Conference on Information Technology:
New Generations (ITNG), Las Vegas, pp. 821–823. IEEE (2012)

10. Gueron, S., Krasnov, V.: [openssl patch] Fast modular exponentia-
tion with the new VPMADD52 instructions. https://rt.openssl.org/
Ticket/Display.html?id=3590, Nov 2014

11. Gueron, S., Krasnov, V.: Accelerating big integer arithmetic
using intel IFMA extensions. In: 2016 IEEE 23rd Symposium on
Computer Arithmetic (ARITH), Silicon Valley, pp. 32–38. IEEE
(2016)

12. IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE
Std 754–1985 (1985)

13. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of
Applied Cryptography. CRC Press, Boca Raton/London/New York
(1996)

14. Montgomery, P.L.: Modular multiplication without trial division.
Math. Comput. 44(170), 519–521 (1985)

https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator
http://openssl.6102.n7.nabble.com/openssl-org-4032-PATCH-Fast-1536-bit-modular-exponentiation-with-the-new-VPMADD52-instructions-td60082.html
http://openssl.6102.n7.nabble.com/openssl-org-4032-PATCH-Fast-1536-bit-modular-exponentiation-with-the-new-VPMADD52-instructions-td60082.html
http://openssl.6102.n7.nabble.com/openssl-org-4032-PATCH-Fast-1536-bit-modular-exponentiation-with-the-new-VPMADD52-instructions-td60082.html
http://openssl.6102.n7.nabble.com/openssl-org-4032-PATCH-Fast-1536-bit-modular-exponentiation-with-the-new-VPMADD52-instructions-td60082.html
https://rt.openssl.org/Ticket/Display.html?id=3590
https://rt.openssl.org/Ticket/Display.html?id=3590

	1 Fast Modular Squaring with AVX512IFMA
	1.1 Introduction
	1.2 Preliminaries and Notation
	1.2.1 The AVX512IFMA Instructions
	1.2.2 Almost Montgomery Multiplication

	1.3 Implementing AMS with AVX512IFMA
	1.4 Is Using Radix 251 Better?
	1.4.1 A Possible Improvement for AVX512IFMA

	1.5 Results
	1.5.1 Results for the Current Architecture
	1.5.2 A ``what if'' Question: The Potential of FMSA

	1.6 Conclusion
	References


