
Chapter 6
Identification of Soil-Structure Systems

S. Farid Ghahari, Fariba Abazarsa and Ertugrul Taciroglu

Abstract Structures interact with soil under seismic excitations through both iner-
tial and kinematic effects. These soil-structure interaction (SSI) effects are often
significant and system identification methods can be used to characterize and quan-
tify them. However, system identification of soil-structure systems is fraught with
difficulties. SSI renders it virtually impossible to directly measure the earthquake
input motions for a soil-structure system due to kinematic interaction effects, which
is the term used for denoting the differences between the soil motions at the free
field and the foundation, in the absence of superstructure mass. Moreover, because
of disproportional distribution of damping in a soil-structure system, normal modes
are no longer able to decompose the overall system’s equations of motion. Addi-
tionally, while some structures may remain linearly elastic even under high levels
of vibration, soil behaves nonlinearly even under weak ground motions. Through
work spanning the past decade various new methods of system identification have
been devised appropriate for soil-structure systems—some of which, incidentally,
are by the authors of the present article. This chapter provides an overview of the
said techniques along with several application examples.

Keywords Soil-structure interaction · Blind identification · Output-only
identification · Response data

6.1 Introduction

Soil-Structure Interaction (SSI) has been well studied for more than 40 years (e.g.,
[1–3]). SSI can be classified into two distinct effects—namely, kinematic and iner-
tial [4]. Even in the absence of a superstructure, a massless foundation experiences
different movement during an earthquake—called the Foundation Input Motion
(FIM)—from the Free-Field Motion (FFM), which would have been recorded at
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Fig. 6.1 Soil-foundation-structure interaction (courtesy of Mojtaba Mahsuli)

the same site if the foundation was not there (see Fig. 6.1 left and middle). This
effect is termed as the Kinematic Interaction (KI), and is due to the stiffness differ-
ences between the foundation and its surrounding soil. FIM is dependent on both the
foundation and soil properties, and the wave fields. For example, “base-slab aver-
aging” is a major source of KI in surface foundation systems where the foundation
slab experiences an average of inclined and incoherent waves [5–7]. For embedded
and piled foundations, base-slab averaging is accompanied with embedment effects,
which renders FIM to be further different from FFM [8–11]. Dynamic response of
the structure inserts force and moments to the base and causes the foundation to
have a different response from FIM. This effect is referred to as Inertial Interaction
(II) (Fig. 6.1 right). Due to its inertia, the vibrating structure effectively acts as a
wave propagating source and alters the wave field around it. Consequently, motions
recorded around/near the structure cannot be assumed as the free-field even if KI
effects are negligible.

One approach to analyze SFSI effects is to create and analyze a complete Finite
Element (FE) model of the full system wherein the soil medium is represented as
a semi-infinite domain (see, for example, [12]). In this method of analysis, which
is usually referred to as the “direct method,” the region of the soil containing the
structure is modeled up to an artificial boundary where special provisions are made
in order to avoid reflections of the outbound waves (see, for example, [13]). Because
superposition is not required, material nonlinearities in both the soil domain and the
structure can be considered; thus, this is a quite general approach to SSI analysis.
Nevertheless, the directmethod is typically avoided in engineering practice due to the
labor-intensive finite element model development, and the high computational cost
associated with carrying out successive simulations under multiple input motions.
The primary alternative approach is the so-called “substructure method,” wherein
the SSI problem is broken down into three distinct parts, which are combined to
formulate the complete solution as follows: (i) estimation of FIMs (Fig. 6.2a), (ii)
determination of soil-foundation Impedance Functions (IFs) (Fig. 6.2b), and (iii)
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(a) (b)

(c) (d)

Fig. 6.2 A schematic presentation of the substructure method: a soil-structure response problem,
b evaluation of FIMs, c evaluation of impedance function, and d analysis of structure on compliant
base subjected to FIMs [22]

dynamic analysis of the structure supported on a compliant base represented by the
IF and subjected to the FIMs (Fig. 6.2c).

System Identification (SI) is at the heart of Structural Health Monitoring (SHM).
Seismic Structural Health Monitoring (S2HM) is more challenging, because tradi-
tional Operational Modal Analysis (OMA) techniques (e.g., [14–16]) cannot be used
for seismic signals, as they assume various statistical properties on signals, which
are not valid for earthquake excitations (see, for example, [17]).

According to the substructure method described above, S2HM becomes even
more challenging for SSI systems, because FFMs cannot be used as input exci-
tations anymore, and FIMs are physically unmeasurable. Therefore, Input-Output
(IO) identification methods (e.g., [18]) are no longer applicable. Moreover, the IFs
are frequency- and amplitude-dependent (see, for example, [19, 20]). IFs also have a
(radiation) damping term, which renders themode shapes of the overall dynamic sys-
tem complex-valued [21]. Through work spanning the past decade—by the authors,
their collaborators and as well as other colleagues—various new methods of sys-
tem identification have been devised that can handle soil-structure systems. In what
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Table 6.1 Input-output pairs
for identifying modal
properties associated with
different conditions of base
fixity [28]

System Input Output

Flexible base ug ug + u f + hθ + u

Pseudo-flexible base ug + u f ug + u f + hθ + u

Fixed base ug + u f + hθ ug + u f + hθ + u

follows, the said techniques are reviewed and several application examples are pro-
vided.

6.2 Identification of SSI Systems

One of the first well-instrumented structures is the Millikan Library, for which SSI
effects were incidentally observed to be quite important. As such, research efforts
on identification of soil-foundation systems from their seismic responses (e.g., [23])
are almost contemporary with system identification of buildings (e.g., [24]). A full
history of identification studies on this well-known building can be found in [25].
However, the studies initiated by Luco [26] and Safak [27] and later continued by
Stewart and Fenves [28] and Safak [29] on identifying and quantifying SSI effects
are generally deemed as the pioneering works in this field. They mathematically
showed that depending to the type of input motion used in an Input-Output (IO)
identification strategy, various idealizations of a soil-structure-foundation system
could be identified as presented in Table 6.1. According to their definitions, the
“flexible base” system could be identified if KI is negligible and FFM (ug) is used
as input excitation. Otherwise, using various combinations of signals recorded at the
foundation (u f : sway and/or θ : rocking) will result in the identification of systems
with fictitious boundary conditions called “pseudo-flexible base” or “fixed base”
systems. It is obvious that KI could be present in many cases. Also, the motions
recorded close to the buildings could be affected by the waves emitted from the
vibrating building—which, in fact, can be detected in the results presented by [28,
30]. Therefore, utilization of IO techniques for identifying soil-foundation-structure
systems is rife with potential errors.

6.2.1 Blind Modal Identification (BMID) Techniques

6.2.1.1 Theoretical Background

Because of the unavailability of true input motions that can be used to identify
flexible base systems using IO methods, and due to the inherent limitation of classic
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Output-Only (OO) identification techniques, Ghahari et al. [31] developed a newOO
identification method based on a class of Blind Source Separation (BSS) techniques
[32], which can be used for non-stationary seismic data. Thismethod takes advantage
of the non-stationarity of seismic signals, indeed, and is based on the assumption
that there are points in the time-frequency plane where the modes are disjoint. The
details of the method are briefly reviewed next.

The governing equations of motion for a Multi-Degree-Of-Freedom (MDOF)
system with nd DOFs, which is excited by a unidirectional (scalar) FIM, can be
expressed as follows

Mẍ(t) + Cẋ(t) +Kx(t) � −Mlẍg(t) (6.1)

whereM,C, andK are the constant nd ×nd mass, damping, and stiffness matrices of
the system, respectively. The vector x(t) contains relative displacement responses of
the system at all DOFs; ẍg(t) is a scalar time-signal, which represents the (unknown)
FIM; and l is the influence vector [33]. In practical cases, the absolute acceleration
of the structure is recorded, which is

ẍt (t) � ẍ(t) + lẍg(t). (6.2)

By assuming a proportional damping matrix, the absolute acceleration response
can be expressed in modal space as

ẍt (t) � �q̈(t) (6.3)

where � is an nd × nd real-valued mode shape matrix whose i-th column (φi ) is the
i-th mode shape; and q̈(t) is a vector that contains the absolute acceleration modal
coordinates.

The Cohen-class Spatial Time-Frequency Distribution (STFD) [34] of responses
can be calculated as

Dẍt ẍt (t, f ) � +∞∫
−∞

h(τ )
+∞∫
−∞

g(s − t)z
(
s +

τ

2

)
zH

(
s − τ

2

)
dse−2π j f τdτ (6.4)

where z(t) is the analytic assocaite of ẍt (t), and the functions h and g are smoothing
functions that reduce the spurious inference terms [35]. The superscript H denotes a
Hermitian transpose. This specific time-frequency distribution is called the smoothed
pseudo Wigner-Ville distribution, which is available through a MATLAB [36] tool-
box freely available at http://tftb.nongnu.org/ [37]. Calculating the STFD of both
sides of Eq. (6.3) yields

Dẍt ẍt (t, f ) � �Dq̈q̈(t, f )�T (6.5)

http://tftb.nongnu.org/
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Considering the STFD definition provided in Eq. (6.4), and by assuming that it
is an ideal time-frequency distribution tool by which the interference-terms are not
produced, the Time-Frequency (TF) points can now be classified into three differ-
ent groups based on the localization of modal coordinates observed in earthquake
engineering:

• Single Auto-Term TF Point (SATFP): At these points, only one mode is present;
thus, Dq̈q̈(t, f ) matrices are diagonal with only one non-zero diagonal element.

• Multiple Auto-Term TF Point (MATFP): At these points, several modes are
present; thus, Dq̈q̈(t, f ) matrices have non-zero diagonal and off-diagonal ele-
ments.

• Cross-Term TF Point (CTTFP): At these points, the cross-TFDs of modal coordi-
nates are non-zero, while their corresponding auto-TFDs are zero. Thus,Dq̈q̈(t, f )
matrices are off-diagonal.

As will be discussed in subsequent subsections, SATFPs play an important role in
the BMID techniques. While there are various procedures to find these points from
Dẍt ẍt (t, f ) matrcies, the proper formula and consequently identification procedure
are dependent on the number of available measurements/sensors and the number of
contributing modes.

6.2.1.2 Over-determined Case

Let’s assume that the number of active modes (nm) is smaller than the number of
sensors (nr )—i.e., nm ≤ nr ≤ nd . This case is dubbed the over-determined case. For
a moment let us assume that we know the SATFPs corresponding to the i-th mode,
so we have

Dẍt ẍt (ti , fi ) � φi Dq̈i q̈i (ti , fi )φ
H
i (6.6)

where Dq̈i q̈i (ti , fi ) is i-th mode’s auto-TFD and the i-th diagonal element of
Dq̈q̈(t, f ). Equation (6.6) shows that an Eigenvalue Decomposition (EVD) can be
used to extract φi and Dq̈i q̈i (ti , fi ) from Dẍt ẍt (ti , fi ). However, Dq̈q̈(ti , fi ) is rank-
deficient, and thus, � can’t be uniquely determined. Moreover, external criteria are
needed to specify the true auto-terms of each source signal and to decide which
mode’s auto-term should be used for EVD. The difference between the number of
modes and the number of sensors poses further difficulties for EVD. Belouchrani
and Amin [32] showed that it is necessary and sufficient to use all of the auto-
terms simultaneously, without knowing to which source they belong. Hence, a Joint
Approximate Diagonalization (JAD) technique is employed instead of EVD [38].

Because the JADalgorithm is restricted to finding a unitary diagonalizingmatrix, a
preprocessing step called whitening ẍt (t) � Wẍt (t) is carried out where the whiten-
ing matrix is obtained from the correlation matrix of ẍt (t) at zero lag. The whitening
process reduces the determination of the nr × nm mode shape matrix � to that of a
unitary nm × nm matrix U, that is



6 Identification of Soil-Structure Systems 145

Dẍt ẍt (t, f ) � UDq̈q̈(t, f )UH . (6.7)

Now, any whitened STFD-matrix is diagonal when stated in the basis of the
columns of the matrix U. As mentioned previously, this unknown unitary matrix
can be identified through a Joint Approximate Diagonalization of Dẍt ẍt (t, f ) at the
SATFPs. After the identification of U, the mode shape matrix, and the modal coor-
dinates q̈(t), may be recovered as follows

� � W#U, (6.8)

q̈(t) � UHWẍt (t) (6.9)

where the superscript # denotes a Moore-Penrose pseudo-inverse. Once the modal
coordinates are recovered, natural frequencies and damping ratios can be identified
by cross-solving for the modal coordinates, as they have the same input excitations
and only differ by a factor. Details of this process are omitted here for the sake of
brevity and can be found in [31].

There are various criteria that can be used for identifying the SATFPs from
Dẍt ẍt (t, f ). However, at each SATFP, each STFD matrix is of rank one—or at least,
each matrix has one significantly large eigenvalue compared to its other eigenvalues.
Therefore, the following criterion may be used to deselect the Non-SATFPs [39],

∣∣∣∣
λmax [Dẍt ẍt (t, f )]

||Dẍt ẍt (t, f )||F − 1

∣∣∣∣ > ε (6.10)

where ||.||F denotes the Frobenius norm, ε is a small positive scalar (typically, 0.001)
and λmax [.] represents the largest eigenvalue of its argument matrix. Note that in this
new criterion, the STFDmatrix of the original data (as opposed to that of thewhitened
data) is used.

To verify the method, a 5-DOF shear building is placed on top of a sway-rocking
foundation. Mass-proportional damping with 10% first mode damping is considered
for the entire system. The response of the system is simulated under a horizontal
accelerogram recorded in El Centro Array #9 during the Imperial Valley earthquake,
1940. As an illustration, TFD of the roof response is shown in Fig. 6.3a. Figure 6.3b
displays the time variation of Modal Assurance Criterion (MAC) values between
the identified and exact mode shapes in various 10-second time windows. While the
method is very successful, this figure shows how themethod is able to take advantage
of the non-stationary nature of ground motions to identify Mode 4 in a short time
window.

The identified natural frequencies and damping ratios are shown in Table 6.2
along with exact values. As seen, neglecting minor errors in damping ratios which
are accepted, the method is very successful.
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Fig. 6.3 a TFD of the roof response, and b time variation of MAC index

Table 6.2 Comparison of the identified and analytical modal properties

Mode 1 2 3 4 5 6 7

Exact fn (Hz) 0.91 2.45 3.87 4.91 5.43 7.57 10.97

ξ (%) 10.00 3.70 2.34 1.85 1.67 1.20 0.83

Identified fn (Hz) 0.90 2.43 3.86 4.81 5.30 7.59 10.96

ξ (%) 8.02 3.76 2.29 1.83 1.59 1.21 0.83

6.2.1.3 Torsionally Coupled Buildings

The method presented in the last section can be easily extended to buildings that
exhibit lateral-torsional coupling [40] because modal superposition is still valid.
However, the identification of natural frequencies and damping ratios from the recov-
ered modal coordinates is more challenging than the unidirectional case. In [40] it
was shown that if we use the cross-relation between close modes, we are able to
identify modal properties with acceptable accuracy.

To examine the performance of this method, we applied it to the earthquake data
recorded at the three-story Hilltop Medical building (CSMIP Station No. 58506)
during the 1989 Loma Prieta earthquake. The building’s instrumentation layout is
shown in Fig. 6.4.While the building has a symmetrical plan, its torsionalmovements
have been reported in the literature [41]. Here, we apply our identification technique
to the first 40 s of the recorded responses of the 2nd, 3rd, and roof floors (ground
floor response signals are excluded due to low levels of motion). Table 6.3 displays
the identified natural frequencies and damping ratios versus those identified from
similar data sets using a completely different method [42]. While we do not expect
to see identical results, they are quite similar.

6.2.1.4 Multiple Support Excitation

Along the path towards more complex problems, the BMID method was extended
to the analysis of bridge structures under multiple support excitations [43]. Again,
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Fig. 6.4 Instrumentation layout of CSMIP station 58506

Table 6.3 Comparison between identified natural frequencies and damping ratios with others’
results

Mode 1 2 3 4 5 6

Exact fn (Hz) 1.35 1.64 2.27 3.76 4.75 5.58

ξ (%) 8.4 4.8 1.4 4.8 5.3 –

[42] fn (Hz) 1.30 1.61 2.22 3.83 4.61 5.38

ξ (%) 8.4 4.5 4.6 7.2 6.2 7.9

the first step—i.e., modal decomposition—is not affected by this extension, but the
identification of natural frequencies and damping ratios is a challenging task.

Let’s assume that the modal coordinates (in the absolute acceleration sense) are
already identified. The i-th modal coordinate can be written as a superposition of i-th
modal coordinates under each support excitation, q̈ t

i [k] � ∑ng
l�1 q̈

t,l
i [k], where ng is

the number of support excitations and

q̈ t,l
i [k] � Ai q̈

t,l
i [k − 1] + Bi q̈

t,l
i [k − 2] + βl

i Ci ẍgl[k] + βl
i Di ẍgl[k − 1] (6.11)

where

Ai � 2e−ξiωni
t cos(ωdi
t), (6.12)
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Bi � −e−2ξiωni
t , (6.13)

Ci � 2ξiωni
t, (6.14)

Di � ωni
te−ξiωni T

[
ωni

ωdi

(
1 − 2ξ 2

i

)
sin(ωdi
t) − 2ξicos(ωdi
t)

]
, (6.15)

where 
t is sampling time; and ξi , ωni , and ωdi � ωni
√(

1 − ξ 2
i

)
respec-

tively denote the damping ratio, and the undamped and damped natural fre-
quencies of the i-th mode. We can determine the unknown parameters x �[
ξ1, . . . , ξn, ωn1, . . . , ωnn, β

1
1 , . . . , β

1
n , . . . , β

ng
n , ẍg1, . . . , ẍgng

]
by solving the fol-

lowing minimization problem

min
x

||G(x)||22 (6.16)

where G(x) is the difference between the recovered modal coordinates and their
counterparts calculated using Eq. (6.11) for all times and modes stacked in a single
vector. As long as the number of equations (N × nm) is greater than the number
of unknowns (nm + nm + ng × nm + ng × N ), the optimization problem will have a
solution, but it will be highly non-convex. Based on this reason, we limit our cases to
the those in which the input motions experienced by the bridge supports differ only
by a time delay.

For validation, the proposed approach was applied to experimental data collected
on a 1:50 scale bridge shown in Fig. 6.5 [44]. To excite the test model, an artificially
generated time-history displacement was used. For considering the wave passage
effects, the input motion was applied with a 7 ms phase-delay at each pier from left
to right (there are 5 piers) and the response was recorded at the three middle masses.
The identified input excitation is compared with the exact one applied in Fig. 6.6a.
As seen, they are very close to each other. To obtain the phase delay, we carried out
optimization for a range of delays and determined the one that yields the minimum
residual norm, which is shown in Fig. 6.6b. The values of this optimal phase delay
is around the 7 ms used by Norman and Crewe.

6.2.1.5 Under-determined Case

As mentioned earlier, the main assumption in BMID is that the number of modes
is smaller than the number of measured responses. In this section, we extend the
method to the so-called under-determined cases, for which nm ≥ nr [45].

The first change takes place in the SATFP selection step. We replace EVD with
Singular Value Decomposition (SVD) and select points for which the following
metric is very close to 1 [46]
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(a) experiment testbed (b) The model bridge 

Fig. 6.5 The scaled bridge model under test

Fig. 6.6 Identification results

C(t, f ) � maxi {σi [Dẍt ẍt (t, f )]}∑
i {σi [Dẍt ẍt (t, f )]} (6.17)

where σi [.] denotes the singular value of its argument matrix. Now, suppose that
there are two SATFPs (t1, f1) and (t2, f2) that are related to k-th mode. We would
then have,

Dẍt ẍt (t1, f1) � φk Dq̈k q̈k (t1, f1)φ
T
k , (6.18)

Dẍt ẍt (t2, f2) � φk Dq̈k q̈k (t2, f2)φ
T
k . (6.19)

As seen,Dẍt ẍt (t1, f1) andDẍt ẍt (t2, f2) have the same eigenvectors (corresponding
to the largest eigenvalue). That is, the STFD matrices of response signals at all
SATFPs corresponding to the same mode have the same eigenvector. Therefore, a
clustering approach can be used to categorize the principal eigenvectors of the STFD
matrices of the response signals at all SATFPs into nm groups. For this a “k-means”
clustering can be used. This clustering is a partitioning method through which data
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(here, a set of eigenvectors) are grouped into k mutually exclusive clusters. To do
so, a distance measure, here MAC, is used and the k-means approach partitions the
eigenvectors into clusters in which the vectors within each cluster are both as close
to each other as possible and as far from those vectors that belong to other clusters
as possible.

Once the mode shapes are identified, modal coordinates’ TFDs are recovered
through the following approach—as mode shape inversion does not work for the
under-determined cases.

Assume that there exists a point
(
t ′, f ′) at which p modes are present where

p < nm . If these p modes are labeled with indices α1, α2, . . . , αp, then Eq. (6.5) can
be rewritten at this time-frequency point as

Dẍt ẍt
(
t ′, f ′) � �̃D ˜̈q ˜̈q

(
t ′, f ′)�̃T

(6.20)

where

�̃ �
[
φα1

, . . . ,φαp

]
, (6.21)

˜̈q(t) �
[ ˜̈qα1(t), . . . , ˜̈qαp (t)

]T
. (6.22)

Since the matrix D ˜̈q ˜̈q
(
t ′, f ′) is full rank, a projector onto the orthogonal compli-

ment of Dẍt ẍt
(
t ′, f ′) can be defined as

P � I − VVT (6.23)

where I is an nr × nr identity matrix, and V is an nr × p matrix formed by the p
principal singular vectors of Dẍt ẍt

(
t ′, f ′). It can be shown that [47]

Pφi � 0 ∀ i ∈ {
α1, α2, . . . , αp

}
, (6.24)

Pφi �� 0 ∀ i /∈ {
α1, α2, . . . , αp

}
. (6.25)

Thus, by considering the noise effects and the calculation errors,
{
α1, α2, . . . , αp

}
can be obtained as the p modes that have the smallest ||Pφi ||. This process can be
employed at all time-frequency points to detect their present modes. Then, the modal
coordinates’ TFDs can be easily recovered as the diagonal elements of the following
matrix,

D ˜̈q ˜̈q
(
t ′, f ′) � �̃

#
Dẍt ẍt

(
t ′, f ′)�̃#T

. (6.26)

By recovering the modal coordinates’ TFDs, natural frequencies can be identified
as those frequencies that have the highest time-marginal energy, and damping ratios
can be identified using the free-vibration portion of the TFD.
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To demonstrate the performance of the proposed method, we identify the modal
properties of a 10-story shear building from its simulated responses under the hor-
izontal accelerogram recorded at the El Centro Array #9 during the 1940 Imperial
Valley earthquake. We carry out identification under incomplete instrumentation in
which the responses recorded at the 2nd, 4th, 5th, 6th, and 10th stories are used.
Figure 6.7 shows the identified mode shapes (green and red) versus the exact (gray)
ones. The figure also displays the mode shapes corresponding to all SATFPs in each
cluster. Note that the second estimation is obtained by finding the centroid of the
clusters after removing elements with low silhouette indices. As seen, the mode
shapes are identified very accurately. By using the proposed recovering technique,
the modal coordinates’ TFDs are also recovered and are displayed in Fig. 6.8 for two
modes. The exact TFDs calculated by using the exact modal coordinates are also
shown for comparison, showing almost perfect reconstruction.

6.2.1.6 Extended BMID

Tensor decomposition is a powerful tool, which recently attracted attention in sys-
tem identification applications [48]. The authors employed Parallel Factor Decom-

Fig. 6.7 Clustered (gray), exact (black), first estimation (red), and second estimation (green) of the
mode shapes (color figure online)
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Fig. 6.8 Comparison between the auto-TFDs of the exact and the recovered modal coordinates

position (PARAFAC) [49] to decompose the third-order tensor constructed using
STFD matrices selected at SATFPs to identify the mode shapes and modal coordi-
nates’ TFDs [50]. The method—dubbed as the eXtended BMID (XBMID)—is able
to handle both over-determined and underdetermined cases efficiently. The distinct
decomposition procedure as well as the original BMID method are briefly described
here.

First, the STFD matrices at selected SATFPs are stacked together to construct a

third-order tensor as
[
D̃ẍt

]
i jk

� [Dẍt ẍt (tk, fk)]i j where i, j � 1, . . . , nr and k �
1, . . . , nK , where nK is the total number of SATFPs. Then, a new matrix is defined
as

[
Dq̈

]
kr

� [
Dq̈q̈(tk, fk)

]
rr

where r � 1, . . . , nm . Per Eq. (6.5), each element of[
D̃ẍt

]
i jk

can be expressed as

[
D̃ẍt

]
i jk

�
nm∑
r�1

[�]ir [�] jr
[
Dq̈

]
kr

. (6.27)

The equation above implies that D̃ẍt can be decomposed into nm rank-one tensors
and that the mode shape matrix can be identified in this manner. To do so, the tensor

D̃ẍt can be expressed as a generalizedSTFDmatrix as
[
Dẍt

]
(i−1)nr+ j,k

�
[
D̃ẍt

]
i jk
. The
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Khatri-Rao representation of this n2r × nK matrix, which is equivalent to Eq. (6.27)
is given as

Dẍt � (� � �)DT
q̈ (6.28)

where � is the Khatri-Rao product operator. The SVD of Dẍt is simply,

Dẍt ≈ U�VT (6.29)

whereU andV are n2r ×nm and nK ×nm column-wise, respectively;� is an nm ×nm
positive-definite diagonal matrix. Equations (6.28) and (6.29) imply that there exist
an nm × nm non-singular unknown matrix F such that

� � � � U�F, (6.30)

Dq̈ � VF−T . (6.31)

By computing the matrix F—whose details can be found in the paper by [50]—,
the mode shape matrix � and modal coordinates’ TFDs at selected SATFPs,Dq̈, can
be easily estimated, while the approach presented in the last section could be also
used to recover the modal coordinates’ TFDs at all time-frequency points.

The XBMID is the most complete version of the BMID and has been verified,
validated, and applied to various real-life case studies (see, for example, [25, 51,
52]). Figure 6.9 shows a scaled 10-story structure, which was constructed and tested
at Iran’s International Institute of Earthquake Engineering and Seismology (IIEES).
Data from those tests are used to validate the XBMID technique. The structure was
excited under various types of ground motions (Fig. 6.10) and the identified mode
shapes are verified through comparing results with those identified by an IO method,
ERA/OKID [18]. As seen in Table 6.4, MAC indices for almost all modes and all
shake table tests are close to 1.

6.2.1.7 Non-classical Damping

As mentioned at the beginning of this chapter, non-classical damping is an attribute
that is encountered in the identification of SSI systems, due to the concentrated damp-
ing source provided by the soil-foundation system that the superstructure interacts
with. The studies on modal identification in the presence of non-classical damping
are quite limited (see, for example, [53, 54]). This is primarily due to inherent com-
plexities of the problem. Specifically, imperfections and measurement noise could
themselves result in complex-valued mode shapes; and modal damping ratios are
always highly uncertain due to their low observability in recorded data even for
systems with classical damping. Nevertheless, the authors have developed a special
version of XBMID that is able to identify modal properties of a system with non-
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Fig. 6.9 a IIEES test structure; b distribution of additional masses; c beam-column; d column-base
connection

Fig. 6.10 a Displacement and b acceleration time histories of the ground motions
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Fig. 6.11 Comparison between exact (a) and identified (b) mode shapes

classical damping from earthquake-induced responses [55]. The main innovation of
this improvement is described in what follows.

According to the modal superposition rule, it can be shown that the absolute
acceleration of a system with non-classical damping can be expressed as

ẍt (t) � �q(t) + �∗q∗(t) (6.32)

where � � [
φ1 · · · φnm

]
and q̈(t) � q̈R(t) + i q̈I (t) � [

q1(t) · · · qnm (t)
]T

are
the complex-valued mode shape matrix and the modal coordinate vector, respec-
tively. The redundant complex-conjugate term can be eliminated by converting the
acceleration response signals to their analytic forms, because modal coordinates are
themselves analytic signals. That is,

˜̈xt (t) � �q̈(t). (6.33)

Now, by calculating the STFD of both sides of the equation above, we have

D ˜̈xt ˜̈xt (t, f ) � �Dq̈q̈(t, f )�H , (6.34)

which is similar to Eq. (6.5), except for the fact that the conventional matrix transpose
is replaced with a Hermitian Transpose. So, a complex-valued non-unitary Joint
Approximate Diagonalization (JAD) (e.g., [56]) can be employed to identify the
mode shapes from D ˜̈xt ˜̈xt (t, f ) at the SATFPs. To verify the proposed method, mode
shapes of a 5-story shear-building model that has a non-classical damping source are
identified from its responses simulated using ground accelerations. The identified
complex-valued mode shapes are displayed in Fig. 6.11 via polar plots along with
their exact (analytically computed) counterparts. As seen, the method is able to
successfully identify the system’s complex-valued mode shapes.
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6.2.2 Model-Based Identification Techniques

Although BMID techniques were shown to be successful in the identification of
systems forwhich input excitation is not available, especially SSI systems, they suffer
from various critical issues. First, they are modal methods, and thus, they are limited
to linear-elastic systems, whereas soil behavior is typically quite nonlinear even
under weak excitations. Second, the performance of BMID techniques (generally all
modal identification methods) is highly sensitive to the number of sensors. Model-
based identification techniques are appealing alternatives to modal methods, which
are especially fruitful for SSI systems. Typically models serve as implicit sources of
information and enable reduction of the number of sensors. Model-based techniques,
by definition, employ model updating techniques (see, for example, [57]). That is, a
preliminary numerical model of a structure/system is created and manipulated such
that it exhibits a close response to what is measured in real-life.

While the identified mode shapes and natural frequencies (i.e., frequency domain
data) can be used as input in model updating studies (e.g., [25, 58–60]), the essential
benefit of model-based methods in the identification of SSI systems is their ability
to work entirely in the time-domain, which enables direct consideration of nonlinear
behavior.

6.2.2.1 Simple Models

SSI systems are composed of two substructures, (i) the superstructure, and (ii) the
soil-foundation system. The former is manmade, so it could be analytically or numer-
ically molded with acceptable accuracy, while the latter is not easily modeled due
to the complexities of soil nonlinearities and SSI phenomena. As such, and due to
the fact that SSI is usually significant in lower vibration modes [26], one idea that
has been employed in prior studies is to represent the superstructure with a simple
model that has only a few parameters (e.g., [61]), so that the more-complex soil-
foundation system and the unknown FIMs can be identified from available data. For
example, a Timoshenko beam model has been used to represent the superstructure,
which exhibits both shear and flexural deformations as well as rotary inertia (e.g.,
see [62]). The authors have developed a technique along this line for identification
of SSI systems [63], which is summarized next.

Consider a Timoshenko beam on a sway-rocking soil-foundation system as shown
in Fig. 6.12, and assume that we have measured the response of the system at three
locations, which incidentally is the most common building instrumentation scenario
in theUS (foundation sway, and horizontal motion at themid-height, and roof levels).
The Fourier amplitude (denoted by an overbar) of the absolute acceleration of this
model at the normalized height z̃ under a horizontal FIM is given by
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Fig. 6.12 Timoshenko beam
model of a soil-structure
system

ẍ
t
(z̃, ω) �

⎡
⎣

nm∑
j�1

Wj (z̃)
L∗

j

m∗
j

Hj (ω) + 1

⎤
⎦üg(ω) (6.35)

whereWj (z̃) is the j-th translational mode shape, and üg(ω) is the Fourier amplitude
of the horizontal FIM. L∗

j and m∗
j are respectively the generalized influence factor

and mass, and Hj (ω) is

Hj (ω) � −ω2

ω2
j − ω2 + 2iξ jω jω

(6.36)

where ξ j and ω j are j th flexible-base mode’s damping ratio and natural frequency,
respectively. Consequently, the absolute acceleration of the mid-height and the roof
levels can be predicted by the foundation sway response signal ẍ

t
b(ω) as

ẍ
t
(z̃, ω) �

[∑n
j�1 Wj (z̃)

L∗
j

m∗
j
Hj (ω) + 1

]
[∑n

j�1 Wj (0)
L∗

j

m∗
j
Hj (ω) + 1

] ẍ tb(ω). (6.37)

So, all unknown parameters of both the superstructure and the soil-foundation
system can be identified byminimizing themisfit between the predicted and recorded
mid-height and roof levels responses in a least-squares sense without the need to
measure/record FIMs. The updating parameters are those controlling the behavior
of the Timoshenko beam s � √

E I/GAsL2 and b � ρAL4/E I , parameters of
the soil-foundation system kR � KRL/E I and kT � KT L/GAs , and the modal
damping ratios ξ1, . . . , ξnm , where L denotes the building’s height, ρ is the mass
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Fig. 6.13 The Millikan
Library

density, A is the cross-sectional area, I is the area moment of inertia, and E and
G are the Young’s and shear moduli, respectively. As � k A is the effective cross-
sectional area of the superstructure model with the correction factor being k � 0.85
for rectangular sections. KT and KR (see, Fig. 6.12) are the sway and rocking soil-
foundation stiffnesses.

To verify the proposed identification approach, we use real earthquake data
recorded on the Millikan Library (Fig. 6.13) along the North-South (NS) direction
during the 2002 Yorba Linda earthquake. Figure 6.14a presents a comparison of the
recorded signals at mid-height and roof levels and those predicted by the identified
model (Fig. 6.12). As seen, the model is successful in representing a real-life soil-
structure system. The blind prediction of other floors’ responses that are not used in
the identification process, is also very accurate, as seen in Fig. 6.14b.

6.2.2.2 Finite Element Models

Thanks to ever-advancing computational capabilities, Finite Element (FE) analy-
ses of complex large-scale structures are becoming routine tasks. This is crucial
for identification purposes, because a given model has to be analyzed many times
during iterations of model-based identification procedures. Time-domain output-
only FE model updating methods that are based on Bayesian filtering techniques
have attracted significant attention recently due to their superior performances (see,
for example, [64, 65]). In these techniques, the prior probability distributions of
unknown parameters of an FE model, along with the unknown input excitations are
updated iteratively through information collected through the measurements (see,
Fig. 6.15). The probabilistic framework of these methods makes the possibility to
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(a) direct prediction (b) blind prediction 

Fig. 6.14 Comparison between recorded (blue) and predicted (red) absolute acceleration (color
figure online)

Fig. 6.15 Schematic presentation of the sequential Bayesian FE model updating method [66]

quantify uncertainties associated with the estimation. The details of these methods
can be found in the mentioned above references. Herein, we present a few practical
applications.

The first example shows the application of the method to the FE model of the
Millikan Library [25] and Yorba Linda earthquake [67]. Figure 6.16 displays the pre-
dicted (using the identified model parameters and FIM) versus measured responses
at two floors. As seen, the predictions are quite accurate.
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Fig. 6.16 Comparison between recorded (green) and predicted (red) absolute acceleration
responses [67] (color figure online)

Fig. 6.17 FE model of the Golden Gate Bridge (GGB) with available instrumentation channels
indicated by arrows (circles indicate channels considered as input excitations)

The next example is the application of the method to a very large-scale problem
involving the Golden Gate Bridge (GGB) under multiple unknown FIMs (Fig. 6.17).
We simulated the response of this model using data recorded at the foundation levels
(sensors are marked with circles in figure) during the 2014 South Napa earthquake,
and subsequently identified various unknown parameters of the model as well as the
input excitations. Figure 6.18 displays the exact and the identified FIMs at the base
of the twomain towers (South tower: CH31, 32, 33; North tower: CH16, 17, 18). The
results displayed in this figure indicate that the method works very well. However,
it should be kept in mind that these methods are very expensive computationally,
because the unknown FIMs are identified along with the system’s parameters, which
makes the computational burden extremely high, especially because the superstruc-
ture’s geometric nonlinearities were considered.

If the system’s parameters are the main interest, then it is more favorable to utilize
an output-only FEmodel updatingmethodwherein the unknown FIMs do not have to
be identified simultaneously, in order to keep the computational expenses low. This
can be done using aCross-Relation (CR) technique [68] provided thatwe have at least
two neighboring instrumented buildings (Fig. 6.19). It is easy to show that following
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Fig. 6.18 Comparison between the exact and the identified FIMs for GGB

cross-relation can be written between measured responses (e.g., those recorded at
the roof levels of the two buildings)

{
ysin αẍ1
1 + xcosα ÿ1

1

}
∗ h2 −

{
ysin β ẍ2
2 + xcosβ ÿ2

2

}
∗ h1 ≈ 0, (6.38)

{
ycosαẍ1
1 + x− sin α ÿ1

1

}
∗ h2 −

{
ycosβ ẍ2
2 + x− sin β ÿ2

2

}
∗ h1 ≈ 0, (6.39)

where, for example, ysin αẍ1
1 stands for the response of Building 1 in its local y-

direction under the input excitation sin α ẍ1, in which ẍ1, ÿ1, ẍ2, and ÿ2 are the
recorded responses in local x- and y-directions of Buildings 1 and 2, respectively.
Also, h1 � hx

1 ∗ hy
1 and h2 � hx

2 ∗ hy
2 where h

j
i is the impulse response function of

Building i along the j-direction, and ∗ denotes a linear convolution. The approximate
equal sign is used in the equation above to indicate that there is measurement noise.
Based on the equations above, we can identify the parameters of two buildings’ FE
models by minimizing the left-hand sides of Eqs. (6.38) and (6.39).



6 Identification of Soil-Structure Systems 163

Fig. 6.19 Two nearby
instrumented buildings under
a bidirectional seismic
excitation

Table 6.5 Identified mean errors and COVs for the cross-relation method verification study

Parameters Ky(1) Kx (1) Ky(2) Kx (2) α(1) β(1) α(2) β(2)

Final error (%) 0.02 3.65 0.15 0.17 1.61 – 1.85 –

Final COV (%) 0.06 1.75 0.02 0.06 0.48 17.59 0.11 12.74

Figure 6.20 displays the results of a verification study on two buildings whose
responses are numerically simulated under bi-directional ground accelerations and
polluted by random noise. The stiffnesses of the soil-foundation rocking springs at
the bottom of buildings along with the Rayleigh damping (αM+βK) coefficients are
attempted to be identified through the proposed cross-relation approach. Table 6.5
presents the final relative errors in the identified values along with their Coefficients-
of-Variation (COVs). As seen, while we assumed an initial 50% error in the system
parameters at the beginning of the identification, the method yields negligible final
errors. Also, the COVs indicate that the estimated values are highly reliable.

6.3 Conclusions

This chapter reviewed the most recent developments in the identification of soil-
structure systems from seismic responses. This identification task is a challenging
one due to the typically short length of recorded seismic data, the non-stationary
nature of input excitations, and the potential nonlinearities of soil-structure systems.
More importantly, soil-structure interaction renders it virtually impossible to directly
measure the earthquake input motions. So, identification tasks must be carried out
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Fig. 6.20 Verification study
for the cross-relation method

in an output-only mode, but the classical output-only identification techniques are
typically based on specific statistical assumptions regarding the unknown external
forces (e.g., white with zero-mean), which are no longer valid for the seismic case.
Through work spanning the past decade—by the authors, their collaborators, as
well as other colleagues—various new methods of system identification have been
devised to tackle these soil-structure identification problems. Within the category
of modal methods, a particularly fruitful class of methods comprised Blind Modal
Identification (BMID) techniques, which were reviewed from their genesis to their
most recent versions. Model-based techniques were also presented through which
various limitations of BMID methods are removed or relaxed, albeit by increasing
the computational costs and the labor involved in the development of initial models.
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