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Unsupervised Domain Adaptation
of ConvNets for Medical Image
Segmentation via Adversarial Learning

Qi Dou, Cheng Chen, Cheng Ouyang, Hao Chen and Pheng Ann Heng

Abstract Deep convolutional networks (ConvNets) have achieved the state-of-the-
art performance and become the de facto standard for solving a wide variety of
medical image analysis tasks. However, the learned models tend to present degraded
performance when being applied to a new target domain, which is different from the
source domain where the model is trained on. This chapter presents unsupervised
domain adaptation methods using adversarial learning, to generalize the ConvNets
for medical image segmentation tasks. Specifically, we present solutions from two
different perspectives, i.e., feature-level adaptation and pixel-level adaptation. The
first is to utilize feature alignment in latent space, and has been applied to cross-
modality (MRI/CT) cardiac image segmentation. The second is to use image-to-
image transformation in appearance space, andhas been applied to cross-cohortX-ray
images for lung segmentation. Experimental results have validated the effectiveness
of these unsupervised domain adaptation methods with promising performance on
the challenging task.
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5.1 Introduction

Deep convolutional networks (ConvNets) have made wide success in a variety of au-
tomatic medical image analysis tasks, such as anatomical structure segmentation [1,
2], lesion detection [3, 4], cancer diagnosis [5, 6], attributing to the network’s learned
highly representative features. In typical practice, the deep ConvNets are trained and
tested on datasets where all the images come from the same dataset, i.e., samples are
drawn from the same data distribution. However, it has been frequently observed that
domain shift can bring about performance degradation. The ConvNets tend to present
poor results when being applied to new target data, which are acquired using different
protocols, scanners, or modalities [7, 8]. It is crucial to close the performance gap,
for large-scale study or deployment of deep learning models in real-world clinical
practice.

Domain adaptation has been a long-standing topic in machine learning. It is a
very common challenge to investigate the generalization capability of the learning
systems. In medical imaging, some traditional automatic methods also suffer from
similar poor generalization problem. For example, Philipsen et al. [9] have stud-
ied the influence of data distribution variations across chest radiography datasets on
segmentation methods based on k-nearest neighbor classification and active shape
modeling. In recent years, the study of adapting ConvNets have gradually attracted
more attention. In the concept of domain adaptation, the domain of labeled train-
ing data is termed as source domain, and the unseen test data is termed as target
domain. One straightforward solution is transfer learning, i.e., fine-tuning the Con-
vNets learned on source domain with extra labeled data from the target domain.
Remarkably, Ghafoorian et al. [7] investigated on the number of fine-tuned layers to
reduce the required amount of annotations for brain lesion segmentation across MRI
datasets. However, the way of supervised transfer learning (STL) still relies on extra
labeled data, which is quite expensive or sometimes even infeasible to obtain in the
medical field.

Instead, the unsupervised domain adaptation (UDA) methods are more appeal-
ing and feasible, since these scenarios transfer knowledge across domains without
using additional target domain labels. Generally speaking, existing literatures tackle
the unsupervised domain adaptation task based on adversarial learning [10] from
two directions: (1) feature-level adaptation with latent space alignment; (2) pixel-
level adaptation with image-to-image translation. More specifically, for feature-level
adaptation, the source and target inputs are mapped into a shared latent feature space,
such that a classifier learned based on this common space can work for both domains.
For pixel-level adaptation, the images from target domain are transformed into the
appearance of source domain, such that ConvNets trained on source domain can be
used for target images, or vice versa. Detailed literatures within these two solution
directions are described in the next section.

In this chapter, we focus on demonstrating how to conduct unsupervised domain
adaptation of ConvNets on medical image segmentation tasks, with two case studies
as illustrated in Fig. 5.1. One is using feature space alignment for adapting ConvNets
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Fig. 5.1 Illustration of performance degradation of deep learning models on medical images.
a ConvNet trained on source chest X-ray images can perform well on source data (left) but get poor
results on unseen target data (right). b ConvNet trained on cardiac MRI images (left) receives a
complete failure when tested on cardiac CT images (right)

between different modalities of images (i.e., CT and MRI) for cardiac segmentation.
The other is employing pixel space transformation for adapting ConvNets between
different cohorts of chest X-ray images for lung segmentation. Our works related to
this chapter have been published in [11, 12].

5.2 Related Works

Domain adaptation aims to recover the performance degradation caused by any dis-
tribution change occurred after learning a classifier. For deep learning models, this
situation also applies, and it has been an active and fruitful research topic in recent
investigations of deep neural networks. In this section, we review the literatures of
unsupervised domain adaptation methods proposed from two different perspectives,
i.e., feature-level adaptation and pixel-level adaptation.

5.2.1 Feature-Level Adaptation

Onegroupof prior studies onunsuperviseddomain adaptation focusedonaligning the
distributions between domains in the feature space, by minimizing measures of dis-
tance between features extracted from the source and target domains. Pioneer works
tried to minimize the distance between domain statistics. For example, the maximum
mean discrepancy (MMD) was minimized together with a task-specific loss to learn
the domain-invariant and semantic-meaningful features in [13, 14]. The correlations
of layer activations between the domains were aligned in the study of [15]. Later
on, [16] pioneered adversarial feature adaptation where a domain discriminator aims
to classify the source and target representations while a feature generator competes
with the discriminator to produce domain-invariant features. The [17] introduced a
more flexible adversarial learning method with untied weight sharing, which helps
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effective learning in the presence of larger domain shifts. Recent studies [18, 19]
proposed to apply the adversarial learning in other lower dimensional spaces instead
of the high-dimensional feature space for more effective feature alignment.

Effectiveness of the adversarial framework for feature adaptation has also been
validated in medical applications. Kamnitsas et al. [20] made the earliest attempt to
align feature distributions in cross-protocol MRI images with adversarial loss. The
adversarial framework was further extended to cross-modality cardiac segmentation
in [11, 21].Most recently, the adversarial loss was combinedwith a shape prior to im-
prove domain adaptation performance for left atrium segmentation across ultrasound
datasets [22]. In [23], the adaptation for whole-slide images was achieved through
the adversarial training between domains along with a Siamese architecture on the
target domain to add a regularization. Dong et al. [24] discriminated segmentation
predictions of the heart on both source and target X-rays from those ground truth
masks, based on the assumption that segmentation masks should be domain indepen-
dent. Zhang et al. [25] proposed multi-view adversarial training for dataset-invariant
left and right-ventricular coverage estimation in cardiac MRI.

5.2.2 Pixel-Level Adaptation

With the success of generative adversarial networks (GANs) [10] and its powerful
extensions such as CycleGAN [26] for producing realistic images, there exists lines
of researches performing adaptation in pixel-level through image-to-image transfor-
mation. Some methods first trained a ConvNet in source domain, and then trans-
formed the target images into source-like ones, such that the transformed image can
be tested using the pretrained source model [12, 27, 28]. Inversely, other methods
tried to transform the source images into the appearance of target images [29–31].
The transformed target-like images were then used to train a task model which could
perform well in the target domain. For pixel-level adaptation, it is important that the
structural contents of original images are well preserved in the generated images. For
example, Shrivastava et al. [29] used an L1 reconstruction loss to ensure the contents
similarity between the generated target images and original images. Bousmalis et
al. [30] proposed a content similarity loss to force the generated image to preserve
original contents.

In the field of medical image analysis using deep learning, pixel-level domain
adaptation has been more and more frequently explored to generalize learned mod-
els across domains. Zhao et al. [32] combined the annotated vessel structures with
target image style to generate target-like retinal fundus data, then used the synthetic
dataset to train a target domain model. Some CycleGAN-based methods have been
proposed to tackle the cross-cohort or cross-modality domain shift. For the X-ray
segmentation, both [12, 28] translated target X-ray images to resemble the source
images, and directly applied the established source model to segment the generated
source-like images. In [33], a two-stage approach was proposed to first translate CT
images to appear like MRI using CycleGAN, and then used both generated MRI
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and a few real MRI for semi-supervised tumor segmentation. In [34], an end-to-end
synthetic segmentation network was applied for MRI and CT images adaptation,
which combined CycleGAN with a segmentation network.

5.3 Feature-Level Adaptation with Latent Space Alignment

In this section, we present a feature-level unsupervised domain adaptation framework
with adversarial learning, applied to cross-modality cardiac image segmentations. To
transfer the established ConvNet from source domain (MRI) to target domain (CT),
we design a plug-and-play domain adaptation module (DAM)which implicitly maps
the target input data to the feature space of source domain. Furthermore, we construct
a discriminator which is also a ConvNet termed as domain critic module (DCM) to
differentiate the feature distributions of two domains. Adversarial loss is derived to
train the entire domain adaptation framework in an unsupervised manner, by placing
the DAM and DCM into a minimax two-player game. Figure5.2 presents overview
of our method. The details of network architecture, adaptation method, adversarial
loss, training strategies, and experimental results are elaborated in the followings.

5.3.1 Method

5.3.1.1 ConvNet Segmenter Architecture

Given a set of Ns labeled samples {xsi , ysi }Ns

i=1 from the source domain Xs , we conduct
supervised learning to establish a mapping from the input image to the label space
Y s . In our setting, the xsi represents the sample (pixel or patch) of medical images
and ysi is the category of anatomical structures. For the ease of denotation, we omit
the index i in the following, and directly use xs and ys to represent the samples and
labels from the source domain.
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Fig. 5.2 Our proposed feature-level adaptation framework for cross-modality domain adaptation.
The DAM and DCM are optimized via adversarial learning. During inference, the domain router is
used for routing feature maps of different domains
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A segmentation ConvNet is established to implicitly learn the mapping Ms from
input to the label space. The backbone of our segmenter is residual network for pixel-
wise prediction of biomedical images. We employ the dilated residual blocks [35]
to extract representative features from a large receptive field while preserving the
spatial acuity of feature maps. This is for the considerations of our network design
for feature space alignment, because short cut connections are not expected in our
model. More specifically, the image is first input to a Conv layer, then forwarded
to three residual modules (termed as RM, each consisting of two stacked residual
blocks) and downsampled by a factor of 8. Next, another three RMs and one dilated
RM are stacked to form a deep network. To enlarge receptive field for extracting
global semantic features, four dilated convolutional layers are used in RM7 with
a dilation factor of 2. For dense predictions in our segmentation task, we conduct
upsamling at layer Conv10, which is followed by 5×5 convolutions to smooth out
the feature maps. Finally, a softmax layer is used for probability predictions of the
pixels.

The segmentation ConvNet is optimizedwith labeled data from the source domain
by minimizing the hybrid loss Lseg composed of the multi-class cross-entropy loss
and the Dice coefficient loss [36]. Formally, we denote ysi,c for binary label regarding
class c∈C in sample xsi , its probability prediction is p̂

s
i,c, and the label prediction is

ŷsi,c, the source domain segmenter loss function is as follows:

Lseg = −
Ns∑

i=1

∑

c∈C
ws
c · ysi,c log( p̂si,c) − λ

∑

c∈C

∑Ns

i=1 2y
s
i,c ŷ

s
i,c∑Ns

i=1 y
s
i,c y

s
i,c + ∑Ns

i=1 ŷ
s
i,c ŷ

s
i,c

, (5.1)

where the first term is the cross-entropy loss for pixel-wise classification, with ws
c

being a weighting factor to cope with the issue of class imbalance. The second term
is the Dice loss for multiple cardiac structures, which is commonly employed in
biomedical image segmentation problems. We combine the two complementary loss
functions to tackle the challenging cardiac segmentation task. In practice, we also
tried to use only one type of loss, but the performance was not quite high.

5.3.1.2 Plug-and-Play Domain Adaptation Module

After obtaining the ConvNet learned on the source domain, our goal is to generalize
it to a target domain. In transfer learning, the last several layers of the network are
usually fine-tuned for a new task with new label space. The supporting assumption
is that early layers in the network extract low-level features (such as edge filters and
color blobs) which are common for vision tasks. Those upper layers are more task-
specific and learn high-level features for the classifier [37, 38]. In this case, labeled
data from target domain are required to supervise the learning process. Differently,
we use unlabeled data from the target domain, given that labeling dataset is time
consuming and expensive. This is critical in clinical practice where radiologists are
willing to perform image computing on cross-modality data with as less extra anno-
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tation cost as possible. Hence, we propose to adapt the ConvNet with unsupervised
learning.

In our segmenter, the source domain mapping Ms is layer-wise feature extrac-
tors composing stacked transformations of {Ms

l1
, . . . , Ms

ln
}, with the l denoting the

network layer index. Formally, the predictions of labels are obtained by

ŷs = Ms(xs) = Ms
l1:ln (x

s) = Ms
ln ◦ · · · ◦ Ms

l1(x
s). (5.2)

For domain adaptation, the source and target domains share the same label space,
i.e., we segment the same anatomical structures from medical MRI/CT data. Our
hypothesis is that the distribution changes between the cross-modality domains are
primarily low-level characteristics (e.g., gray scale values) rather than high-level
(e.g., geometric structures). The higher layers (such as Ms

ln
) are closely in correlation

with the class labels which can be shared across different domains. In this regard,
we propose to reuse the feature extractors learned in higher layers of the ConvNet,
whereas the earlier layers are updated to conduct distribution mappings in feature
space for our unsupervised domain adaptation.

To perform segmentation on target images xt , we propose a domain adaptation
module M that maps xt to the feature space of the source domain. We denote the
adaptation depth by d, i.e., the layers earlier than and including ld are replaced
by DAM when processing the target domain images. In the meanwhile, the source
model’s upper layers are frozen during domain adaptation learning and reused for
target inference. Formally, the predictions for target domain is

ŷt = Ms
ld+1:ln ◦ M(xt ) = Ms

ln ◦ · · · ◦ Ms
ld+1

◦ M(xt ), (5.3)

whereM(xt ) = Ml1:ld (xt ) = Mld ◦ · · · ◦ Ml1(x
t ) represents the DAMwhich is also

a stacked ConvNet. Overall, we form a flexible plug-and-play domain adaptation
framework. During the test inference, the DAM directly replaces the early d layers
of the model trained on source domain. The images of target domain are processed
and mapped to deep learning feature space of source domain via the DAM. These
adapted features are robust to the cross-modality domain shift, and can be mapped
to the label space using those high-level layers established on source domain. In
practice, the ConvNet configuration of the DAM is identical to {Ms

l1
, . . . , Ms

ld
}. We

initialize the DAM with trained source domain model and fine-tune the parameters
in an unsupervised manner with adversarial loss.

5.3.1.3 Learning with Adversarial Loss

We propose to employ adversarial loss to train our domain adaptation framework in
an unsupervised manner. The spirit of adversarial training roots in GAN, where a
generator model and a discriminator model form a minimax two-player game. The
generator learns to capture the real data distribution; and the discriminator estimates
the probability that a sample comes from the real training data rather than the gen-



100 Q. Dou et al.

erated data. These two models are alternatively optimized and compete with each
other, until the generator can produce real-like samples that the discriminator fails to
differentiate. For our problem, we train the DAM, aiming that the ConvNet can gen-
erate source-like feature maps from target input. Hence, the ConvNet is equivalent
to a generator from GAN’s perspective.

Considering that accurate segmentations come from high-level semantic features,
which in turn rely on fine patterns extracted by early layers, we propose to align
multiple levels of feature maps between source and target domains (see Fig. 5.2).
In practice, we select several layers from the frozen higher layers, and refer their
corresponding feature maps as the set of FH (·) where H ={k, . . . , q} being the set
of selected layer indices. Similarly, we denote the selected feature maps of DAM
by MA(·) with the A being the selected layer set. In this way, the feature space of
target domain is (MA(xt ), FH (xt )) and the (Ms

A(x
s), FH (xs)) is their counterpart

for source domain. Given the distribution of (MA(xt ), FH (xt ))∼Pg , and that of
(Ms

A(x
s), FH (xs))∼Ps , the distance between these two domain distributions which

needs to be minimized is represented as W (Ps,Pg). For stabilized training, we em-
ploy the Wassertein distance [39] between the two distributions as follows:

W (Ps,Pg) = inf
γ∼∏

(Ps ,Pg)
E(x,y)∼γ [‖x − y‖], (5.4)

where
∏

(Ps,Pg) represents the set of all joint distributions γ (x, y)whose marginals
are respectively Ps and Pg .

In adversarial learning, the DAM is pitted against an adversary: a discriminative
model that implicitly estimates theW (Ps,Pg). We refer our discriminator as domain
critic module and denote it byD. Specifically, our constructed DCM consists of sev-
eral stacked residual blocks, as illustrated in Fig. 5.2. In each block, the number of
feature maps is doubled until it reaches 512, while their sizes are decreased. We con-
catenate the multiple levels of feature maps as input to the DCM. This discriminator
would differentiate the complicated feature space between the source and target do-
mains. In this way, our domain adaptation approach not only removes source-specific
patterns in the beginning but also disallows their recovery at higher layers [20]. In
unsupervised learning, we jointly optimize the generatorM (DAM) and the discrim-
inator D (DCM) via adversarial loss. Specifically, with Xt being target set, the loss
for learning the DAM is

min
M

LM(Xt ,D)=−E(MA(xt ),FH (xt ))∼Pg [D(MA(x
t ), FH (xt ))]. (5.5)

Then, with the Xs representing the set of source images, the DCM is optimized via

min
D

LD(Xs, Xt ,M) =
E(MA(xt ),FH (xt ))∼Pg [D(MA(x

t ), FH (xt ))] −
E(Ms

A(xs ),FH (xs ))∼Ps [D(Ms
A(x

s), FH (xs))], s.t. ‖D‖L≤K ,

(5.6)

where K is a constant that applies Lipschitz constraint toD.
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During the alternative updating of M and D, the DCM outputs a more precise
estimation of W (Ps,Pg) between distributions of the feature space from both do-
mains. The updated DAM is more effective to generate source-like feature maps for
conducting cross-modality domain adaptation.

5.3.1.4 Training Strategies

In our setting, the source domain is biomedical cardiac MRI images and the target
domain is CT data. All the volumetric MRI and CT images were resampled to the
voxel spacing of 1×1×1 mm3 and cropped into the size of 256×256×256 center-
ing at the heart region. In preprocessing, we conducted intensity standardization for
each domain, respectively. Augmentations of rotation, zooming, and affine transfor-
mations were employed to combat over fitting. To leverage the spatial information
existing in volumetric data, we sampled consecutive three slices along the coronal
plane and input them to three channels. The label of the intermediate slice is utilized
as the ground truth when training the 2D networks.

We first trained the segmenter on the source domain data in supervised manner
with stochastic gradient descent. TheAdamoptimizerwas employedwith parameters
as batch size of 5, learning rate of 1×10−3 and a stepped decay rate of 0.95 every
1500 iterations. After that, we alternatively optimized the DAM and DCM with the
adversarial loss for unsupervised domain adaptation. Following the heuristic rules
of training WGAN [39], we updated the DAM every 20 times when updating the
DCM. In adversarial learning, we utilized the RMSProp optimizer with a learning
rate of 3 × 10−4 and a stepped decay rate of 0.98 every 100 joint updates, with weight
clipping for the discriminator being 0.03.

5.3.2 Experimental Results

5.3.2.1 Dataset and Evaluation Metrics

We validated our proposed unsupervised domain adaptation method on the pub-
lic dataset of MICCAI 2017 Multi-Modality Whole Heart Segmentation for cross-
modality cardiac segmentation in MRI and CT images [40]. This dataset consists of
unpaired 20 MRI and 20 CT images from 40 patients. The MRI and CT data were
acquired in different clinical centers. The cardiac structures of the imagesweremanu-
ally annotated by radiologists for bothMRI and CT images. Our ConvNet segmenter
aimed to automatically segment four cardiac structures including the ascending aorta
(AA), the left atrium blood cavity (LA-blood), the left ventricle blood cavity (LV-
blood), and the myocardium of the left ventricle (LV-myo). For each modality, we
randomly split the dataset into training (16 subjects) and testing (4 subjects) sets,
which were fixed throughout all experiments.
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For evaluation, we employed two commonly used metrics to quantitatively evalu-
ate the segmentation performance of automatic methods [41]. The DICE coefficient
([%])was employed to assess the agreement between the predicted segmentation and
ground truth for cardiac structures. We also calculated the average surface distance
(ASD[voxel]) to measure the segmentation performance from the perspective of the
boundary. A higher Dice and lower ASD indicate better segmentation performance.
Both metrics are presented in the format of mean±std, which shows the average
performance as well as the cross-subject variations of the results (Table5.1).

5.3.2.2 Experimental Settings

We employed the MRI images as the source domain and the CT dataset as the target
domain. We demonstrated the effectiveness of the proposed unsupervised cross-
modality domain adaptation method with extensive experiments. We designed sev-
eral experiment settings: (1) training and testing the ConvNet segmenter on source
domain (referred as Seg-MRI); (2) training the segmenter from scratch on annotated
target domain data (referred as Seg-CT ); (3) fine-tuning the source domain segmenter
with annotated target domain data, i.e., the supervised transfer learning (referred as
Seg-CT-STL); (4) directly testing the source domain segmenter on target domain
data (referred as Seg-CT-noDA); (5) our proposed unsupervised domain adaptation
method (referred as Seg-CT-UDA).We also comparedwith a previous state-of-the-art
heart segmentation method using ConvNets [42]. Last but not least, we conducted
ablation studies to observe how the adaptation depth would affect the performance.

5.3.2.3 Results of UDA on Cross-Modality Cardiac Images

Table5.1 reports the comparison results of different methods, where we can see that
the proposed unsupervised domain adaptation method is effective by mapping the
feature space of the target CT domain to that of the source MRI domain. Qualitative
results of the segmentations for CT images are presented in Fig. 5.3.

In the experiment setting Seg-MRI, we first evaluate the performance of the source
domain model, which serves as the basis for subsequent domain adaptation proce-
dures. Compared with [42], our ConvNet segmenter reached promising performance
with exceedingDice onLV-blood andLV-myo, aswell as comparableDice onAAand
LA-blood. With this standard segmenter network architecture, we conducted follow-
ing experiments to validate the effectiveness of our unsupervised domain adaptation
framework.

To experimentally explore the potential upper bounds of the segmentation accu-
racy of the cardiac structures from CT data, we implemented two different settings,
i.e., the Seg-CT and Seg-CT-STL. Generally, the segmenter fine-tuned from Seg-MRI
achieved higher Dice and lower ASD than the model trained from scratch, proving
the effectiveness of supervised transfer learning for adapting an established network
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(a) CT Image (b) CT Label (c) Seg-CT-STL (d) Seg-CT (e) Seg-CT-noDA (f) Seg-CT-UDA

Fig. 5.3 Results of different methods for CT image segmentations. Each row presents one typical
example, from left to right: a raw CT slices b ground truth labels c supervised transfer learning d
ConvNets trained from scratch e directly applying MRI segmenter on CT data f our unsupervised
cross-modality domain adaptation results. The structures of AA, LA-blood, LV-blood, and LV-myo
are indicated by yellow, red, green, and blue colors, respectively (best viewed in color)

to a related target domain using additional annotations. Meanwhile, these results are
comparable to [42] on most of the four cardiac structures.

To demonstrate the severe domain shift inherent in cross-modality biomedical
images, we directly applied the segmenter trained on MRI domain to the CT data
without any domain adaptation procedure. Unsurprisingly, the network of Seg-MRI
completely failed on CT images, with average Dice of merely 14.3% across the
structures. As shown in Table5.1, the Seg-CT-noDA only got a Dice of 0.8% for the
LV-blood. The model did not even output any correct predictions for two of the four
testing subjects on the structure of LV-blood (please refer to (e) in Fig. 5.3). This
demonstrates that although the cardiac MRI and CT images share similar high-level
representations and identical label space, the significant difference in their low-level
characteristics makes it extremely difficult for MRI segmenter to extract effective
features for CT.

With our proposed unsupervised domain adaptation method, a great improvement
of the segmentation performance on the target CT data was achieved compared with
the Seg-CT-noDA. More specifically, our Seg-CT-UDA (d = 21)model has increased
the average Dice across four cardiac structures by 43.4%. As presented in Fig. 5.3,
the predicted segmentation masks from Seg-CT-UDA can successfully localize the
cardiac structures and further capture their anatomical shapes. The performance on
segmenting AA is even close to that of Seg-CT-STL. This reflects that the distinct
geometric pattern and the clear boundary of the AA have been successfully captured
by the DCM. In turn, it supervises the DAM to generate similar activation patterns as
the source feature space via adversarial learning. Looking at the other three cardiac
structures (i.e., LA-blood, LV-blood, and LV-myo), the Seg-CT-UDA performances
are not as high as that of AA. The reason is that these anatomical structures are
more challenging, given that they come with either relatively irregular geometrics
or limited intensity contrast with surrounding tissues. The deficiency focused on the
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unclear boundaries between neighboring structures or noise predictions on relatively
homogeneous tissues away from the ROI. This is responsible for the high ASDs
of Seg-CT-UDA, where boundaries are corrupted by noisy outputs. Nevertheless, by
mapping the feature space of target domain to that of the source domain, we obtained
greatly improved and promising segmentations against Seg-CT-noDA with zero data
annotation effort.

5.3.2.4 Ablation Study on Adaptation Depth

We conduct ablation experiments to study the adaptation depth d, which is an impor-
tant hyperparameter in our framework to determine how many layers to be replaced
during the plug-and-play domain adaptation procedure. Intuitively, a shallowerDAM
(i.e., smaller d) might be less capable of learning effective feature mapping function
M across domains than a deeper DAM (i.e., larger d). This is due to the insuffi-
cient capacity of parameters in shallow DAM, as well as the huge domain shift in
feature distributions. Conversely, with an increase in adaptation depth d, DAM be-
comes more powerful for feature mappings, but training a deeper DAM solely with
adversarial gradients would be more challenging.

To experimentally demonstrate how the performance would be affected by d and
search for an optimal d, we repeated the experiments with domain adaptation from
MRI to CT by varying the d = {13, 21, 31}, while maintaining all the other settings
the same. Viewing the examples in Fig. 5.4, Seg-CT-UDA (d=21) model obtained
an approaching ground truth segmentation mask for ascending aorta. The other two
models also produced inspiring results capturing the geometry and boundary char-
acteristics of AA, validating the effectiveness of our unsupervised domain adaptation
method. From Table5.1, we can observe that DAMwith a middle-level of adaptation
depth (d = 21) achieved the highest Dice on three of the four cardiac structures,
exceeding the other two models by a significant margin. For the LA-blood, the three
adaptation depths reached comparable segmentation Dice and ASD, and the d = 31
model was the best. Notably, the model of Seg-CT-UDA (d = 31) overall demon-
strated superiority over the model with adaptation depth d = 13. This shows that
enabling more layers learnable helps to improve the domain adaptation performance
on cross-modality segmentations.

(a) Label (b) d=13 (c) d=21 (d) d=31

Fig. 5.4 Comparison of results using Seg-CT-UDA with different adaptation depths (colors are the
same with Fig. 5.3)
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5.4 Pixel-Level Adaptation with Image-to-Image
Translation

In this section, we present a pixel-level unsupervised domain adaptation framework
with generative adversarial network, applied to cross-cohort X-ray lung segmenta-
tion. Different from feature-level adaptationmethod described in the last section, this
pixel-level adaptation method detaches the segmentation ConvNets from the domain
adaptation process. Given a test image, our framework conducts image-to-image
transformation to generate a source-like image which is directly forwarded to the
established source ConvNet. To enhance the preservation of structural information
during image transformation, we improve CycleGAN with a novel semantic-aware
loss by embedding a nested adversarial learning in semantic label space. Our method
is named as SeUDA, standing for semantic-aware unsupervised domain adaptation,
and Fig. 5.5 presents overview of it. Details of network configurations, adversarial
losses and experimental results will be presented in the followings.

5.4.1 Method

With a set of the source domain images xs ∈Xs and corresponding labels ys ∈Y, we
train a ConvNet, denoted by f s , to segment the input images. For a new set of the
target domain images xt ∈Xt , we aim to adapt the appearance of xt to source image
space Xs , so that the established f s can be directly generalized to the transformed
image.

Fig. 5.5 The overview of our unsupervised domain adaptation framework. Left: the segmentation
DNN learned on source domain; Middle: the SeUDA where the paired generator and discriminator
are indicated with the same color, the blue/green arrows illustrate the data flows from original
images (xt/xs ) to transformed images (xt→s/xs→t ) then back to reconstructed images (x̂ t/x̂ s )
in cycle-consistency loss, the orange part is the discriminator for the semantic-aware adversarial
learning; Right: the inference process of SeUDA given a new target image for testing
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5.4.1.1 ConvNet Segmenter Architecture

To establish a state-of-the-art segmentation network, we make complementary use
of the residual connection, dilated convolution and multi-scale feature fusion. The
backbone of our segmenter is modified ResNet-101. We replace the standard con-
volutional layers in the high-level residual blocks with the dilated convolutions. To
leverage features withmulti-scale receptive fields, we replace the last fully connected
layer with four parallel 3×3 dilated convolutional branches, with a dilation rate of
{6, 12, 18, 24}, respectively. An upsampling layer is added in the end to produce
dense predictions for the segmentation task. We start with 32 feature maps in the
first layer and double the number of feature maps when the spatial size is halved or
the dilation convolutions are utilized. The segmenter is optimized by minimizing the
pixel-wise multi-class cross-entropy loss of the prediction f s(xs) and ground truth
ys with standard stochastic gradient descent.

5.4.1.2 Image Transformation with Semantic-Aware CycleGAN

With the source domain model f s which maps the source input space Xs to the
semantic label space Y, our goal is to make it generally applicable to new target
images.Given that annotatingmedical data is quite expensive,we conduct the domain
adaptation in an unsupervised manner. Specifically, wemap the target images toward
the source image space. The generated new image xt→s appears to be drawn from
Xs while the content and semantic structures remain unchanged. In this way, we can
directly apply the well-established model f s on xt→s without retraining and get the
segmentation result for xt .

To achieve this, we use generative adversarial networks [10], which have made a
wide success for pixel-to-pixel image translation, by constructing a generator Gt→s

and a discriminator Ds . The generator aims to produce realistic transformed im-
age xt→s = Gt→s(xt ). The discriminator competes with the generator by trying to
distinguish between the fake generated data xt→s and the real source data xs . The
GAN corresponds to a minimax two-player game and is optimized via the following
objective:

LGAN(Gt→s,Ds) = Exs [logDs(x
s)] + Ext [log(1 − Ds(Gt→s(x

t )))], (5.7)

where the discriminator tries to maximize this objective to correctly classify the xt→s

and xs , while the generator tries tominimize log(1 − Ds(Gt→s(xt ))) to learn the data
distribution mapping from Xt to Xs .

Cycle-consistency adversarial learning. To achieve domain adaptation with image
transformation, it is crucial that the detailed contents in the original xt are well
preserved in the generated xt→s . Inspired by the CycleGAN [26], we employ the
cycle-consistency loss during the adversarial learning to maintain the contents with
clinical clues of the target images.
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We build a reverse source-to-target generator Gs→t and a target discriminatorDt ,
to bring the transformed image back to the original image. This pair of models are
trained with a same way GAN loss LGAN(Gs→t ,Dt ) following the Eq. (5.7). In this
regard, we derive the cycle-consistency loss which encourages Gs→t (Gt→s(xt ))≈ xt

and Gt→s(Gs→t (xs))≈ xs in the transformation:

Lcyc(Gt→s ,Gs→t ) = Ext [||Gs→t (Gt→s(x
t )) − xt ||1]+Exs [||Gt→s(Gs→t (x

s)) − xs ||1],
(5.8)

where the L1-Norm is employed for reducing blurs in the generated images. This
loss imposes the pixel-level penalty on the distance between the cyclic transformation
result and the input image.

Semantic-aware adversarial learning. The image quality of xt→s and the stability
of Gt→s are crucial for the effectiveness of our method, since we apply the estab-
lished f s to xt→s which is obtained by inputting xt to Gt→s . Therefore, besides the
cycle-consistency loss which composes both generators and constraints the cyclic
input–output consistency, we further try to explicitly enhance the intermediate trans-
formation result xt→s . Specifically, for our segmentation domain adaptation task, we
design a novel semantic-aware loss which aims to prevent the semantic distortion
during the image transformation.

In our unsupervised learning scenario, we establish a nested adversarial learning
module by adding another new discriminator Dm into the system. It distinguishes
between the source domain ground truth lung mask ys and the predicted lung mask
f s(xt→s) obtained by applying the segmenter on the source-like transformed image.
Our underlying hypothesis is that the shape of anatomical structure is consistent
across multicenter medical images. The prediction of f s(xt→s) should follow the
regular semantic structures of the lung to fool theDm , otherwise, the generatorGt→s

would be penalized by the semantic-aware loss:

Lsem(Gt→s,Dm) = Eys [logDm(ys)] + Ext [log(1 − Dm( f s(Gt→s(x
t ))))]. (5.9)

This loss imposes an explicit constraint on the intermediate result of the cyclic trans-
formation. Its gradients can assist the update of the generator Gt→s , which benefits
the stability of the entire adversarial learning procedure.

5.4.1.3 Learning Procedure and Implementation Details

We follow the practice of [26] to configure the generators and discriminators. Specif-
ically, both generators have the same architecture consisting of an encoder (three
convolutions), a transformer (nine residual blocks), and a decoder (two deconvolu-
tions and one convolution). All the three discriminators process 70×70 patches and
produce real/fake predictions via 3 stride-2 and 2 stride-1 convolutional layers. The
overall objective for the generators and discriminators is as follows:
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L(Gs→t ,Gt→s,Ds,Dt ,Dm) = LGAN (Gs→t ,Dt ) + αLGAN (Gt→s,Ds) +
βLcyc(Gt→s,Gs→t ) + λLsem(Gt→s,Dm),

(5.10)
where the {α, β, λ} denote trade-off hyperparameters adjusting the importance of
each component, which is empirically set to be {0.5, 10, 0.5} in our experiments.
The entire framework is optimized to obtain

G∗
s→t ,G∗

t→s = argmin
Gs→tGt→s

max
Ds ,Dt ,Dm

L(Gs→t ,Gt→s,Ds,Dt ,Dm).
(5.11)

The generators {Gt→s,Gs→t } and discriminators {Ds,Dt ,Dm} are optimized al-
together and updated successively. Note that the segmenter f s is not updated in the
process of image transformation. In practice, when training the generative adver-
sarial networks, we followed the strategies of [26] for reducing model oscillation.
Specifically, the negative log likelihood inLGAN was replaced by a least-square loss
to stabilize the training. The discriminator loss was calculated using one image from
a collection of fifty previously generated images rather than the one produced in
the latest training step. We used the Adam optimizer with an initial learning rate of
0.002, which was linearly decayed every 100 epochs. We implemented our proposed
framework on the TensorFlow platform using an Nvidia Titan Xp GPU.

5.4.2 Experimental Results

5.4.2.1 Datasets and Evaluation Metrics

Our unsupervised domain adaptation method was validated on lung segmentations
using two public Chest X-ray datasets, i.e., the Montgomery set (138 cases) [43] and
the JSRT set (247 cases) [44]. Both the datasets are typical X-ray scans collected
in clinical practice, but their image distributions are quite different in terms of the
disease type, intensity, and contrast (see the first and fourth columns in Fig. 5.6a).
The ground truth masks of left and right lungs are provided in both datasets. We
randomly split each dataset into 7:1:2 for training, validation and test sets. All the
imageswere resized to 512×512, and rescaled to [0, 255]. The predictionmaskswere
post-processed with the largest connected-component selection and hole filling.

To quantitatively evaluate our method, we utilized four common segmentation
measurements, i.e., the Dice coefficient ([%]), recall ([%]), precision ([%]) and av-
erage surface distance (ASD)([mm]). The first three metrics are measured based on
the pixel-wise classification accuracy. The ASD assesses the model performance at
boundaries and a lower value indicates better segmentation performance.
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Table 5.2 Quantitative evaluation results of pixel-level domain adaptation methods for right/left
lung segmentations from chest X-ray images

Methods Right lung Left lung

Dice Recall Precision ASD Dice Recall Precision ASD

S-test 95.98 97.98 94.23 2.23 95.23 96.56 94.01 2.45

T-noDA 82.29 98.40 73.38 10.68 76.65 95.06 69.15 11.40

T-HistM
[45]

90.05 92.96 88.05 5.72 91.03 94.35 88.45 4.66

T-FeatDA
[20]

94.85 93.66 96.42 3.26 92.93 91.67 94.46 3.80

T-STL [7] 96.91 98.47 95.46 1.93 95.84 97.48 94.29 2.20

CyUDA 94.09 96.31 92.28 3.88 91.59 92.28 91.70 4.57

SeUDA
(Ours)

95.59 96.55 94.77 2.85 93.42 92.40 94.70 3.51

5.4.2.2 Experimental Settings

In our experiments, the source domain is theMontgomery set and the target domain is
the JSRTset.Wefirst established the segmenter on source trainingdata independently.
Next, we test the segmenter under various settings: (1) testing on source domain (S-
test); (2) directly testing on target data (T-noDA); (3) using histogram matching
to adjust target images before testing (T-HistM); (4) aligning target features with
the source domain as proposed in [20] (T-FeatDA); (5) fine-tuning the model on
labeled target data before testing on JSRT (T-STL); In addition, we investigated the
performance of our proposed domain adaptation method with and w/o the semantic-
aware loss, i.e., SeUDA and CyUDA.

5.4.2.3 Results of UDA on Cross-Cohort Chest X-Ray Images

The comparison results of different methods are listed in Table5.2. We can see that
when directly applying the learned source domain segmenter to target data (T-noDA),
the model performance significantly degraded, indicating that domain shift would
severely impede the generalization performance of DNNs. Specifically, the average
Dice over both lungs dropped from 95.61 to 79.47%, and the average ASD increased
from 2.34 to 11.04 mm.

With our proposed method, we find a remarkable improvement by applying the
source segmenter on transformed target images. Compared with T-noDA, our SeUDA
increased the average Dice by 15.04%. Meanwhile, the ASDs for both lungs were
reduced significantly. Also, our method outperforms the UDA baseline histogram
matching T-HistM with the average dice increased by 3.97% and average ASD de-
creased from 5.19 to 3.18 mm. Compared with the feature-level domain adaptation
method T-FeatDA, our SeUDA can not only obtain higher segmentation performance,
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Ground Truth T-noDA SeUDATarget Image CyUDA SeUDA Source Image

(a) (b)

T-HistM

Fig. 5.6 Typical results for the image transformation and lung segmentation. a Visualization of
image transformation results, from left to right, are the target images in JSRT set, CyUDA trans-
formation results, SeUDA transformation results, and the nearest neighbor of xt→s got from source
set; each row corresponds to one patient. bComparison of segmentation results between the ground
truth, T-noDA, T-HistM, and our proposed SeUDA; each row corresponds to one patient

but also provide intuitive visualization of how the adaptation is achieved. Notably,
the performance of our unsupervised SeUDA is even comparable to the upper bound
of supervised T-STL. In Table5.2, the gaps of Dice are marginal, i.e., 1.32% for right
lung and 2.42% for left lung.

The typical transformed target images can be visualized in Fig. 5.6a, demonstrat-
ing that SeUDA has successfully adapted the appearance of target data to look similar
to source images. In addition, the positions, contents, semantic structures, and clinical
clues are well preserved after transformation. In Fig. 5.6b, we can observe that with-
out domain adaptation, the predicted lung masks are quite cluttered. With histogram
matching, appreciable improvements are obtained but the transformed images cannot
mimic the source images very well. With our SeUDA, the lung areas are accurately
segmented attributing to the good target-to-source appearance transformation.

5.4.2.4 Effectiveness of Semantic-Aware Loss with Ablation Study

We conduct ablation experiments to investigate the contribution of our novel
semantic-aware loss designed for segmentation domain adaptation.We implemented
CyUDA by removing the semantic-aware loss from the SeUDA. One notorious prob-
lem of GANs is that their training would be unstable and sensitive to initialization
states [30, 46]. In this study, we measured the standard deviation (std) of the CyUDA
and SeUDA by running each model for 10 times under different initializations but
with the same hyperparameters.We observed significant lower variability on the seg-
mentation performance across the 10 SeUDAmodels than the 10CyUDAmodels, i.e.,
Dice std: 0.25 versus 2.03%, ASD std: 0.16 versus 1.19 mm. Qualitatively, we ob-
serve that theCyUDA transformed images may suffer from distorted lung boundaries
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in some cases, see the third row in Fig. 5.6a. In contrast, adding the semantic-aware
loss, the transformed images consistently present a high quality. This reveals that the
novel semantic-aware loss contributes to stabilize the image transformation process
and prevent the distortion in structural contents, and hence contributes to boost the
performance of segmentation domain adaptation.

5.5 Discussion

This chapter introduces how to tackle domain adaptation problem in medical imag-
ing from two different perspectives. This is an essential and urgent topic to study
the generalization capability and robustness of ConvNets, given that deep learning
nowadays has become the state of the art for solving image recognition tasks. Re-
solving this issue will help to promote deep learning studies based on large-scale
real-world clinical dataset composing inhomogeneous images [47].

Fine-tuning the ConvNets with a set of new labeled images from the target domain
can improve the model’s performance on target data. However, this straightforward
supervised solution still requires extra efforts from clinicians for constructing the
annotated fine-tune dataset. Unsupervised domain adaptation methods are more ap-
pealing and practical in the long-run, though it is technically challenging at current
stage. Basically, the UDA requires to model and map the underlying distributions
of different domains, either in latent feature space or appearance pixel space. The
insights of adversarial networks fit well into this scope, as which can implicitly learn
how to model, transform, and discriminate the data distributions via highly nonlin-
ear networks. This forms the basis of the situation that adversarial learning has been
frequently investigated for unsupervised domain adaptation tasks.

Feature-level adaptation and pixel-level adaptation are two independent ways to
conduct unsupervised domain adaptation, with ideas from different perspectives.
Feature-level adaptation aims to transform different data sources into a shared latent
space with domain-invariant features, such that a shared classifier can be established
in this common space. The advantage is that the classifier is learned in a high-
quality homogeneous feature space, with reduced confounding factors from scanner
effects. The disadvantage is that the obtained domain-invariant features are unclear
for interpretation and intuitive visualization. Pixel-level adaptation aims to transform
the image appearance from one domain to the other, and use the transformed images
to train or test amodel. The advantage for this streamof solution is thatwe can directly
assess the quality of domain adaptation by observing the transformed images. The
disadvantage is that there may still exist a domain gap between the synthetic images
and real images. It is worth noting that these two independent manners of matching
across domains can be complementary to each other. Jointly taking advantage of
both is feasible and have good potential to present more appealing performance to
narrow the domain gap.
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5.6 Conclusion

In conclusion, this chapter presents unsupervised domain adaptation methods for
medical image segmentation using adversarial learning. Solutions from two different
perspectives are presented, i.e., feature-level adaptation and pixel-level adaptation.
The feature-level adaptation method has been validated on cross-modality (MRI/CT)
cardiac image segmentation. The pixel-level adaptation method has been validated
on cross-cohort X-ray images for lung segmentation. Both application scenarios
of unsupervised domain adaptation have demonstrated highly promising results on
generalizing theConvNets to the unseen target domain. The proposed frameworks are
general and can be extended to other similar scenarios in medical image computing
with domain shift issues.
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