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Volumetric Medical Image Segmentation:
A 3D Deep Coarse-to-Fine Framework
and Its Adversarial Examples
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Elliot K. Fishman and Alan L. Yuille

Abstract Although deep neural networks have been a dominant method for many
2D vision tasks, it is still challenging to apply them to 3D tasks, such as medical
image segmentation, due to the limited amount of annotated 3D data and limited
computational resources. In this chapter, by rethinking the strategy to apply 3D
Convolutional Neural Networks to segment medical images, we propose a novel 3D-
based coarse-to-fine framework to efficiently tackle these challenges. The proposed
3D-based framework outperforms their 2D counterparts by a largemargin since it can
leverage the rich spatial information along all three axes.We further analyze the threat
of adversarial attacks on the proposed framework and show how to defend against
the attack. We conduct experiments on three datasets, the NIH pancreas dataset,
the JHMI pancreas dataset and the JHMI pathological cyst dataset, where the first
two and the last one contain healthy and pathological pancreases, respectively, and
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achieve the current state of the art in terms of Dice-Sørensen Coefficient (DSC) on
all of them. Especially, on the NIH pancreas dataset, we outperform the previous
best by an average of over 2%, and the worst case is improved by 7% to reach almost
70%, which indicates the reliability of our framework in clinical applications.

4.1 Introduction

Driven by the huge demands for computer-aided diagnosis systems, automatic organ
segmentation from medical images, such as computed tomography (CT) and mag-
netic resonance imaging (MRI), has become an active research topic in both the
medical image processing and computer vision communities. It is a prerequisite step
for many clinical applications, such as diabetes inspection, organic cancer diagnosis,
and surgical planning. Therefore, it is well worth exploring automatic segmentation
systems to accelerate the computer-aided diagnosis in medical image analysis.

In this chapter, we focus on pancreas segmentation from CT scans, one of the
most challenging organ segmentation problems [31, 46]. As shown in Fig. 4.1, the
main difficulties stem from three parts: (1) the small size of the pancreas in the whole
abdominal CT volume; (2) the large variations in texture, location, shape, and size
of the pancreas; (3) the abnormalities, like pancreatic cysts, can alter the appearance
of pancreases a lot.

Following the rapid development of deep neural networks [17, 35] and their
successes in many computer vision tasks, such as semantic segmentation [4, 21],
edge detection [33, 34, 42], and 3D shape retrieval [7, 47], many deep learning-
based methods have been proposed for pancreas segmentation and have achieved
considerable progress [31, 32, 46]. However, these methods are based on 2D fully
convolutional networks (FCNs) [21], which perform segmentation slice by slice
while CT volumes are indeed 3D data. Although these 2D methods use strategies

Fig. 4.1 An illustration of normal pancreases on NIH dataset [31] and abnormal cystic pancreases
on JHMI dataset [45] shown in the first and second rows, respectively. Normal pancreas regions are
masked as red and abnormal pancreas regions are marked as blue. The pancreas usually occupies a
small region in a whole CT scan. Best viewed in color
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to fuse the output from different 2D views to obtain 3D segmentation results, they
inevitably lose some 3D context, which is important for capturing the discriminative
features of the pancreas with respect to background regions.

An obstacle to train 3D deep segmentation networks is that it suffers from the
“out of memory” problem. 2D FCNs can accept a whole 2D slice as input, but 3D
FCNs cannot be fed a whole 3D volume due to the limited GPU memory size. A
common solution is to train 3D FCNs from small sub-volumes and test them in
a sliding-window manner [1, 3, 5, 24, 43], i.e., performing 3D segmentation on
densely and uniformly sampled sub-volumes one by one. Usually, these neighboring
sampled sub-volumes overlap with each other to improve the robustness of the final
3D results. It is worth noting that the overlap size is a trade-off between the segmenta-
tion accuracy and the time cost. Setting a larger/smaller overlap size generally leads
to a better/worse segmentation accuracy but takes more/less time during testing.

To address these issues, we propose a concise and effective framework to train 3D
deep networks for pancreas segmentation, which can simultaneously achieve high
segmentation accuracy and low time cost. Our framework is formulated into a coarse-
to-fine manner. In the training stage, we first train a 3D FCN from the sub-volumes
sampled from an entire CT volume. We call this ResDSN Coarsemodel, which aims
at obtaining the rough location of the target pancreas from the whole CT volume
by making full use of the overall 3D context. Then, we train another 3D FCN from
the sub-volumes sampled only from the ground truth bounding boxes of the target
pancreas. We call this the ResDSN Fine model, which can refine the segmentation
based on the coarse result. In the testing stage, we first apply the coarse model in the
sliding-window manner to a whole CT volume to extract the most probable location
of the pancreas. Since we only need a rough location for the target pancreas in this
step, the overlap size is set to a small value. Afterward, we apply the fine model
in the sliding-window manner to the coarse pancreas region, but by setting a larger
overlap size. Thus, we can efficiently obtain a fine segmentation result and we call
the coarse-to-fine framework by ResDSN C2F.

Note that, the meaning of “coarse-to-fine” in our framework is twofold. First, it
means the input region of interests (RoIs) for the ResDSN Coarse model and the
ResDSN Fine model are different, i.e., a whole CT volume for the former one and
a rough bounding box of the target pancreas for the latter one. We refer to this as
coarse-to-fine RoIs, which is designed to achieve better segmentation performance.
The coarse step removes a large amount of the unrelated background region, then
with a relatively smaller region to be sampled as input, the fine step can much more
easily learn cues which distinguish the pancreas from the local background, i.e.,
exploit local context which makes it easier to obtain a more accurate segmentation
result. Second, it means the overlap sizes used for the ResDSN Coarse model and
the ResDSN Fine model during inference are different, i.e., small and large overlap
sizes for them, respectively. We refer to this as coarse-to-fine overlap sizes, which is
designed for efficient 3D inference.

Recently, it is increasingly realized that deep networks are vulnerable to adversar-
ial examples, i.e., inputs that are almost indistinguishable from natural data which are
imperceptible to a human, but yet classified incorrectly by the network [10, 37, 41].
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This problem is even more serious for medical learning systems, as they may cause
incorrect decisions, which could mislead human doctors. Adversarial examples may
be only a small subset of the space of all medical images, so it is possible that they
will only rarely occur in real datasets. But, even so, they could potentially have major
errors. Analyzing them can help medical imaging researchers to understand more
about their deep network-based model, with the ultimate goal of increasing robust-
ness. In this chapter, we generate 3D adversarial examples by the gradient-based
methods [10, 18] and investigate the threat of these 3D adversarial examples on our
framework. We also show how to defend against these adversarial examples.

The contributions of this chapter can be summarized into two aspects: (1) A novel
3D deep network-based framework which leverages the rich spatial information for
medical image segmentation, which achieves the state-of-the-art performance with
relatively low time cost on segmenting both normal and abnormal pancreases; (2) A
systematic analysis about the threat of 3D adversarial examples on our framework
as well as the adversarial defense methods.

The first part of this work appeared as a conference paper [48], in which Zhuotun
Zhu, Yingda Xia, and Wei Shen made contributions to. The second part was con-
tributed by Yingwei Li, Yuyin Zhou, and Wei Shen. Elliot K. Fishman and Alan L.
Yuille oversaw the entire project. This chapter extends the previous work [48] by
including the analysis about the 3D adversarial attacks and defenses for our frame-
work and more experimental results.

4.2 Related Work

4.2.1 Deep Learning-Based Medical Image Segmentation

The medical image analysis community is facing a revolution brought by the fast
development of deep networks [17, 35]. Deep convolutional neural networks (CNNs)
based methods have dominated the research area of volumetric medical image seg-
mentation in the last few years. Generally speaking, CNN-based methods for vol-
umetric medical image segmentation can be divided into two major categories: 2D
CNNs based and 3D CNNs based.

4.2.1.1 2D CNNs for Medical Image Segmentation

2D CNNs based methods [12, 25, 29, 31, 32, 39, 40] performed volumetric seg-
mentation slice by slice from different views, and then fused the 2D segmentation
results to obtain a 3D Volumetric Segmentation result. In the early stage, the 2D
segmentation-based models were trained from image patches and tested in a patch
by patch manner [31], which is time consuming. Since the introduction of fully con-
volution networks (FCNs) [21], almost all the 2D segmentation methods are built
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upon 2D FCNs to perform holistic slice segmentation during both training and test-
ing. Havaei et al. [12] proposed a two-pathway FCN architecture, which exploited
both local features as well as more global contextual features simultaneously by
the two pathways. Roth et al. [32] performed pancreas segmentation by a holistic
learning approach, which first segment pancreas regions by holistically nested net-
works [42] and then refine them by the boundary maps obtained by robust spatial
aggregation using random forest. The U-Net [29] is one of the most popular FCN
architectures for medical image segmentation, which is a encoder–decoder network,
but with an additional short connection between encoder and decoder paths. Based
on the fact that a pancreas only takes up a small fraction of the whole scan, Zhou
et al. [46] proposed to find the rough pancreas region and then learn an FCN-based
fixed-point model to refine the pancreas region iteratively. Their method is also based
on a coarse-to-fine framework, but it only considered coarse-to-fine RoIs. Besides
coarse-to-fine RoIs, our coarse-to-fine method also takes coarse-to-fine overlap sizes
into account, which is designed specifically for efficient 3D inference.

4.2.1.2 3D CNNs for Medical Image Segmentation

Although 2DCNNs basedmethods achieved considerable progress, they are not opti-
mal for medical image segmentation, as they cannot make full use of the 3D context
encoded in volumetric data. Several 3D CNNs based segmentation methods have
been proposed. The 3D U-Net [5] extended the previous 2D U-Net architecture [29]
by replacing all 2D operations with their 3D counterparts. Based on the architecture
of the 3D U-Net, the V-Net [24] introduced residual structures [13] (short term skip
connection) into each stage of the network. Chen et al. [3] proposed a deep voxel-
wise residual network for 3D brain segmentation. Both I2I-3D [23] and 3D-DSN [6]
included auxiliary supervision via side outputs into their 3D deep networks. Despite
the success of 3D CNNs as a technique for segmenting the target organs, such as
prostate [24] and kidney [5], very few techniques have been developed for leveraging
3D spatial information on the challenging pancreas segmentation. Gibson et al. [8]
proposed the DenseVNet which is, however, constrained to have shallow encoders
due to the computationally demanding dense connections. Roth et al. [30] extended
3D U-Net to segment the pancreas, while obtaining good results, this method has the
following shortcomings, (1) the input of their networks is fixed to 120 × 120 × 120,
which is very computationally demanding due to this large volume size, (2) the rough
pancreas bounding box is resampled to a fixed size as their networks input, which
loses information and flexibility, and cannot deal with the intrinsic large variations of
pancreas in shape and size. Therefore, we propose our 3D coarse-to-fine framework
that works on both normal and abnormal CT data to ensure both low computation
cost and high pancreas segmentation accuracy.
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4.2.2 Adversarial Attacks and Defenses for Medical Image
Segmentation Networks

Deep learning has become increasingly adopted within the medical imaging com-
munity for a wide range of tasks including classification, segmentation, detection,
etc. Though achieving tremendous success in various problems, CNNs have been
demonstrated to be extremely vulnerable to adversarial examples, i.e., images which
are crafted by human-imperceptible perturbations [10, 37, 41]. Xie et al. [41] were
the first to make adversarial examples for semantic segmentation, which is directly
related to medical image segmentation. Paschali et.al. [27] used the code from Xie
et al. [41] and showed that state-of-the-art networks such as Inception [36] and
UNet [28] are still extremely susceptible to adversarial examples for skin lesion
classification and whole brain segmentation. It was also demonstrated that adver-
sarial examples are superior in pushing a network to its limits and evaluating its
robustness in [27]. Additionally, Huang et.al. [14] pointed out that the robustness of
deep learning-based reconstruction techniques for limited angle tomography remains
a concern due to its vulnerability to adversarial examples. This makes the robustness
of neural networks for clinical applications an important unresolved issue.

To alleviate such adversarial effects for clinical applications, we investigate the
application of adversarial training [37] for improving the robustness of deep learning
algorithms in the medical area. Adversarial training was first proposed by Szegedy
et.al. [37] to increase robustness by augmenting training data with adversarial exam-
ples. Madry et.al. [22] further validated that adversarially trained models can be
robust against white-box attacks, i.e., with knowledge of the model parameters. Note
that clinical applications of deep learning require a high level of safety and secu-
rity [14]. Our experiments empirically demonstrate that adversarial training can be
greatly beneficial for improving the robustness of 3D deep learning-based models
against adversarial examples.

4.3 Method

4.3.1 A 3D Coarse-to-Fine Framework for Medical Image
Segmentation

In this section, we elaborate our 3D coarse-to-fine framework, which includes a
coarse stage and a fine stage afterward. We first formulate a segmentation model
that can be generalized to both coarse stage and fine stage. Later in Sects. 4.3.1.1 and
4.3.1.2, we will customize the segmentation model to these two stages, separately.

Wedenote a 3DCTscanvolumebyX. This is associatedwith a human-labeledper-
voxel annotation Y, where both X and Y have sizeW × H × D, which corresponds
to axial, sagittal and coronal views, separately. The ground truth segmentation mask
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Y has a binary value yi , i = 1, . . . ,WHD, at each spatial location i where yi = 1
indicates that xi is a pancreas voxel. Denote a segmentation model by M : P =
f(X;�), where � indicates model parameters and P means the binary prediction
volume. Specifically in a neural networkwith L layers and parameters� = {W,B},
W is a set of weights and B is a set of biases, whereW = {W1,W2, . . . ,WL} and
B = {B1,B2, . . . ,BL}. Given that p(yi |xi ;�) represents the predicted probability
of a voxel xi beingwhat is the labeled class at the final layer of the output, the negative
log-likelihood loss can be formulated as

L = L(X;�) = −
∑

xi∈X
log(p(yi |xi ;�)). (4.1)

It is also known as the cross-entropy loss in our binary segmentation setting. By
thresholding p(yi |xi ;�), we can obtain the binary segmentation mask P.

We also add some auxiliary layers to the neural network, which produces side
outputs under deep supervision [20]. These auxiliary layers form a branch network
and facilitate feature learning at lower layer of the mainstream network. Each branch
network shares the weights of the first d layers from the mainstream network, which
is denoted by �d = {Wd ,Bd} and has its own weights �̂d to output the per-voxel
prediction. Similarly, the loss of an auxiliary network can be formulated as

Ld(X;�d , �̂d) =
∑

xi∈X
− log(p(yi |xi ;�d , �̂d)), (4.2)

which is abbreviated asLd . Finally, stochastic gradient descent is applied tominimize
the negative log-likelihood, which is given by the following regularized objective
function:

Loverall = L +
∑

d∈D
ξdLd + λ

(
‖�‖2 +

∑

d∈D
‖�̂d‖

)2

, (4.3)

where D is a set of branch networks for auxiliary supervisions, ξd balances the
importance of each auxiliary network, and l2 regularization is added to the objective
to prevent the networks fromoverfitting. For notational simplicity, we keep a segmen-
tation model that is obtained from the overall function described in Eq.4.3 denoted
by M : P = f(X;�), where � includes parameters of the mainstream network and
auxiliary networks.

4.3.1.1 Coarse Stage

In the coarse stage, the input of “ResDSN Coarse” is sampled from the whole CT
scan volume denoted by XC, on which the coarse segmentation model MC : PC =
fC

(
XC;�C)

is trained on. All the C superscripts depict the coarse stage. The goal of
this stage is to efficiently produce a rough binary segmentation PC from the complex
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background, which can get rid of regions that are segmented as non-pancreas with
a high confidence to obtain an approximate pancreas volume. Based on this approx-
imate pancreas volume, we can crop from the original input XC with a rectangular
cube derived from PC to obtain a smaller 3D image spaceXF, which is surrounded by
simplified and less variable context compared with XC. The mathematic definition
of XF is formulated as

XF = Crop[XC ⊗ PC;PC,m], (4.4)

where⊗means an element-wise product. The function Crop[X;P,m] denotes crop-
ping X via a rectangular cube that covers all the 1’s voxels of a binary volume P
added by a padding margin m along three axes. Given P, the functional constraint
imposed on X is that they have exactly the same dimensionality in 3D space. The
padding parameter m is empirically determined in experiments, where it is used to
better segment the boundary voxels of pancreas during the fine stage. The Crop oper-
ation acts as a dimensionality reduction to facilitate the fine segmentation, which is
crucial to cut down the consuming time of segmentation. It is well worth noting that
the 3D locations of the rectangular cube which specifies where to crop XF from XC

is recorded to map the fine segmentation results back their positions in the full CT
scan.

4.3.1.2 Fine Stage

In the fine stage, the input of the ConvNet is sampled from the cropped volume XF,
on which we train the fine segmentation model MF : PF = fF

(
XF;�F), where the

F superscripts indicate the fine stage. The goal of this stage is to refine the coarse
segmentation results from previous stage. In practice, PF has the same volumetric
size of XF, which is smaller than the original size of XC.

4.3.1.3 Coarse-to-Fine Segmentation

Our segmentation task is to give a volumetric prediction on every voxel of XC, so
we need to map the PF back to exactly the same size of XC given by

PC2F = DeCrop[PF � PC;XF,XC], (4.5)

where PC2F denotes the final volumetric segmentation, and � means an element-
wise replacement, and DeCrop operation defined on PF,PC,XF and XC is to replace
a predefined rectangular cube inside PC by PF, where the replacement locations are
given by the definition of cropping XF from XC given in Eq.4.4.

All in all, our entire 3D-based coarse-to-fine segmentation framework during
testing is illustrated in Fig. 4.2.
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MF PF PC2FMC PCXC Crop

DeCrop

XF
Sliding with
Small Overlap

Sliding with
Large Overlap

Fig. 4.2 Flowchart of the proposed 3D coarse-to-fine segmentation system in the testing phase. We
first apply “ResDSN Coarse” with a small overlapped sliding window to obtain a rough pancreas
region and then use the “ResDSN Fine” model to refine the results with a large overlapped sliding
window. Best viewed in color

4.3.1.4 Network Architecture

As shown in Fig. 4.3, we provide an illustration of our convolutional network archi-
tecture. Inspired by V-Net [24], 3D U-Net [5], and VoxResNet [3], we have an
encoder path followed by a decoder path each with four resolution steps. The left
part of network acts as a feature extractor to learn higher and higher level of repre-
sentations while the right part of network decompresses compact features into finer
and finer resolution to predict the per-voxel segmentation. The padding and stride of
each layer (Conv, Pooling, DeConv) are carefully designed to make sure the densely
predicted output is the same size as the input.

The encoder subnetwork on the left is divided into different steps that work on
different resolutions. Each step consists of one–two convolutions, where each con-
volution is composed of 3 × 3 × 3 convolution followed by a batch normalization
(BN [15]) and a rectified linear unit (ReLU [26]) to reach better convergence, and
then a max-pooling layer with a kernel size of 2 × 2 × 2 and strides of two to reduce
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Fig. 4.3 Illustration of our 3D convolutional neural network for volumetric segmentation. The
encoder path is the path between “Conv1a” and “Conv4b” while the decoder path is the one
between “DeConv3a” and “Res/Conv1b”. Each convolution or deconvolution layer consists of
one convolution followed by a BatchNorm and a ReLU. To clarify, “Conv1a, 32, 3 × 3 × 3” means
the convolution operation with 32 channels and a kernel size of 3 × 3 × 3. “Pooling 1, max, 2”
means the max-pooling operation with kernel size of 2 × 2 × 2 and a stride of two. Long residual
connections are illustrated by the blue concrete lines. Blocks with the same color mean the same
operations. Best viewed in color
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resolutions and learn more compact features. The downsampling operation imple-
mented by max pooling can reduce the size of the intermediate feature maps while
increasing the size of the receptive fields. Having fewer size of activations makes
it possible to double the number of channels during feature aggregation given the
limited computational resource.

The decoder subnetwork on the right is composed of several steps that operate on
different resolutions as well. Each step has two convolutions with each one followed
by aBatchNorm and aReLU, and afterward, a deconvolutionwith a kernel size of 4 ×
4 × 4 and strides of two are connected to expand the feature maps and finally predict
the segmentation mask at the last layer. The upsampling operation that is carried out
by deconvolution enlarges the resolution between each step, which increases the size
of the intermediate activations so that we need to halve the number of channels due
to the limited memory of the GPU card.

Apart from the left and right subnetworks, we impose a residual connection [13] to
bridge shortcut connections of features between low-level layers and high-level lay-
ers. During the forward phase, the low-level cues extracted by networks are directly
added to the high-level cues, which can help elaborate the fine-scaled segmentation,
e.g., small parts close to the boundary which may be ignored during the feature
aggregation due to the large size of receptive field at high-level layers. As for the
backward phase, the supervision cues at high-level layers can be backpropagated
through the shortcut way via the residual connections. This type of mechanism can
prevent networks fromgradient vanishing and exploding [9], which hampers network
convergence during training.

We have one mainstream loss layer connected from “Res/Conv1b” and another
two auxiliary loss layers connected from “Conv2b” and “Conv3b” to the ground
truth label, respectively. For the mainstream loss in “Res/Conv1b” at the last layer
which has the same size of data flow as one of the inputs, a 1 × 1 × 1 convolution is
followed to reduce the number of channels to the number of label classes which is 2
in our case. As for the two auxiliary loss layers, deconvolution layers are connected
to upsample feature maps to be the same as the input.

The deep supervision imposed by auxiliary losses provides robustness to hyper-
parameters choice, in that the low-level layers are guided by the direct segmentation
loss, leading to faster convergence rate. Throughout this work, we have two auxiliary
branches where the default parameters are ξ1 = 0.2 and ξ2 = 0.4 in Eq.4.3 to control
the importance of deep supervisions compared with the major supervision from the
mainstream loss for all segmentation networks.

As shown in Table4.1, we give the detailed comparisons of network configura-
tions in terms of four aspects: long residual connection, short residual connection,
deep supervision, and loss function. Our backbone network architecture, named as
“ResDSN”, is proposed with different strategies in terms of combinations of long
residual connection and short residual connection compared with VoxResNet [3],
3D HED [23], 3D DSN [6], and MixedResNet [44]. In this table, we also depict
“FResDSN” and “SResDSN”, where “FResDSN” and “SResDSN” are similar to
MixedResNet [44] and VoxResNet [3], respectively. As confirmed by our quanti-
tative experiments in Sect. 4.4.1.5, instead of adding short residual connections to
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Table 4.1 Configurations comparison of different 3D segmentation networks on medical image
analysis. For all the abbreviated phrases, “Long Res” means long residual connection, “Short Res”
means short residual connection, “Deep Super” means deep supervision implemented by auxiliary
loss layers, “Concat” means concatenation, “DSC” means Dice-Sørensen Coefficient and “CE”
means cross-entropy. For residual connection, it has two types: concatenation (“Concat”) or element-
wise sum (“Sum”)

Method Long Res Short Res Deep Super Loss

ResDSN (Ours) Sum No Yes CE

FResDSN Sum Sum Yes CE

SResDSN No Sum Yes CE

3D U-Net [5] Concat No No CE

V-Net [24] Concat Sum No DSC

VoxResNet [3] No Sum Yes CE

MixedResNet [44] Sum Sum Yes CE

3D DSN [6] No No Yes CE

3D HED [23] Concat No Yes CE

the network, e.g., “FResDSN” and “SResDSN”, we only choose the long residual
element-wise sum, which can be more computationally efficient while even per-
forming better than the “FResDSN” architecture which is equipped with both long
and short residual connections. Moreover, ResDSN has noticeable differences with
respect to the V-Net [24] and 3D U-Net [5]. On the one hand, compared with 3D U-
Net and V-Net which concatenate the lower level local features to higher level global
features, we adopt the element-wise sum between these features, which outputs less
number of channels for efficient computation. On the other hand, we introduce deep
supervision via auxiliary losses into the network to yield better convergence.

4.3.2 3D Adversarial Examples

In this section, we discuss how to generate 3D adversarial examples for our segmen-
tation framework as well as the defense method. We follow the notations defined in
Sect. 4.3.1, i.e., X denotes a 3D CT scan volume, Ytrue denotes the corresponding
ground truth label, and L(X;�) denotes the network loss function. To generate the
adversarial example, the goal is to maximize the loss L(X + r;�) for the image
X, under the constraint that the generated adversarial example Xadv = X + r should
look visually similar to the original image X and the corresponding predicted label
Yadv �= Ytrue. By imposing additional constraints such as ||r||∞ ≤ ε, we can restrict
the perturbation to be small enough to be imperceptible to humans.
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4.3.2.1 Attack Methods

As for 3D adversarial attacking, we mainly adopt the gradient-based methods. They
are as follows:

• Fast Gradient Sign Method (FGSM): FGSM [10] is the first member in this
attack family, which finds the adversarial perturbations in the direction of the loss
gradient ∇XL(X;�). The update equation is

Xadv = X + ε · sign(∇XL(X;�)). (4.6)

• Iterative Fast Gradient Sign Method (I-FGSM): An extended iterative version
of FGSM [18], which can be expressed as

Xadv
0 = X (4.7)

Xadv
n+1 = Clipε

X

{
Xadv

n + α · sign(∇XL(Xadv
n ;�))

}
,

where Clipε
X indicates the resulting image are clipped within the ε-ball of the

original image X, n is the iteration number and α is the step size.

4.3.2.2 Defending Against 3D Adversarial Examples

Following [22], defending against adversarial examples can be expressed as a saddle
point problem,which comprises of an innermaximization problem and an outermini-
mization problem.More precisely, our objective for defending against 3D adversarial
examples is formulated as follows:

min
�

ρ(�), where ρ(�) = E(X)∼D

[
max
r∈S

L(X + r;�)

]
. (4.8)

S and D denote the set of allowed perturbations and the data distribution, respec-
tively.

4.4 Experiments

In this section, we demonstrate our experimental results, which consists of two parts.
In the first part, we show the performance of our framework on pancreas segmenta-
tion. We first describe in detail how we conduct training and testing on the coarse
and fine stages, respectively. Then we give the comparison results on three pancreas
datasets: the NIH pancreas dataset [31], the JHMI pathological cyst dataset [45], and
the JHMI pancreas dataset. In the second part, we discuss the adversarial attack and
defense results on our framework.



4 Volumetric Medical Image Segmentation: A 3D Deep … 81

4.4.1 Pancreas Segmentation

4.4.1.1 Network Training and Testing

All our experiments were run on a desktop equipped with the NVIDIA TITAN X
(Pascal) GPU and deep neural networks were implemented based on the CAFFE [16]
platform customized to support 3D operations for all necessary layers, e.g., “convo-
lution”, “deconvolution” and “pooling”, etc. For the data preprocessing, we simply
truncated the raw intensity values to be in [−100, 240] and then normalized each raw
CT case to have zero mean and unit variance to decrease the data variance caused by
the physical processes [11] of medical images. As for the data augmentation in the
training phase, unlike sophisticated processing used by others, e.g., elastic deforma-
tion [24, 29], we utilized simple but effective augmentations on all training patches,
i.e., rotation (90◦, 180◦, and 270◦) and flip in all three axes (axial, sagittal and coro-
nal), to increase the number of 3D training samples which can alleviate the scarce
of CT scans with expensive human annotations. Note that different CT cases have
different physical resolutions, but we keep their resolutions unchanged. The input
size of all our networks is denoted by WI × HI × DI , where WI = HI = DI = 64.

For the coarse stage, we randomly sampled 64 × 64 × 64 sub-volumes from the
whole CT scan in the training phase. In this case, a sub-volume can either cover a
portion of pancreas voxels or be cropped from regions with non-pancreas voxels at
all, which acts as a hard negative mining to reduce the false positive. In the testing
phase, a sliding window was carried out to the whole CT volume with a coarse
stepsize that has small overlaps within each neighboring sub-volume. Specifically,
for a testing volume with a size of W × H × D, we have a total number of (� W

WI
 +

n) × (� H
HI

 + n) × (� D
DI

 + n) sub-volumes to be fed into the network and then
combined to obtain the final prediction, where n is a parameter to control the sliding
overlaps that a larger n results in a larger overlap and vice versa. In the coarse stage
for the low time cost concern, we set n = 6 to efficiently locate the rough region of
pancreas XF defined in Eq.4.4 from the whole CT scan XC.

For the fine stage, we randomly cropped 64 × 64 × 64 sub-volumes constrained
to be from the pancreas regions defined by ground truth labels during training. In
this case, a training sub-volume was assured to cover pancreatic voxels, which was
specifically designed to be capable of segmentation refinement. In the testing phase,
we only applied the sliding window on XF with a size of WF × HF × DF . The total
number of sub-volumes to be tested is (�WF

WI
 + n) × (� HF

HI
 + n) × (� DF

DI
 + n). In

the fine stage for the high accuracy performance concern, we set n = 12 to accurately
estimate the pancreatic mask PF from the rough segmentation volumeXF. In the end,
we mapped the PF back to PC to obtain PC2F for the final pancreas segmentation as
given in Eq.4.5, where the mapping location is given by the cropped location of XF

from XC.
After we get the final binary segmentation mask, we denote P andY to be the set

of pancreas voxels in the prediction and ground truth, separately, i.e.,P = {i |pi = 1}
and Y = {i |yi = 1}. The evaluation metric is defined by the Dice-Sørensen Coef-
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ficient (DSC) formulated as DSC(P,Y) = 2×|P∩Y|
|P|+|Y| . This evaluation measurement

ranges in [0, 1] where 1 means a perfect prediction.

4.4.1.2 NIH Pancreas Dataset

We conduct experiments on the NIH pancreas segmentation dataset [31], which
contains 82 contrast-enhanced abdominal CT volumes provided by an experienced
radiologist. The size of CT volumes is 512 × 512 × D, where D ∈ [181, 466] and
their spatial resolutions are w × h × d, where d = 1.0mm and w = h that ranges
from 0.5 to 1.0mm. Data preprocessing and data augmentation were described in
Sect. 4.4.1.1. Note that we did not normalize the spatial resolution into the same
one since we wanted to impose the networks to learn to deal with the variations
between different volumetric cases. Following the training protocol [31], we per-
form fourfold cross-validation in a random split from 82 patients for training and
testing folds, where each testing fold has 21, 21, 20, and 20 cases, respectively. We
trained networks illustrated in Fig. 4.3 by SGD optimizer with a 16 mini-batch, a
0.9 momentum, a base learning rate to be 0.01 via polynomial decay (the power
is 0.9) in a total of 80,000 iterations, and the weight decay 0.0005. Both training
networks in the coarse and fine stages shared the same training parameter settings
except that they took a 64 × 64 × 64 input sampled from different underlying dis-
tributions described in Sect. 4.4.1.1, which included the details of testing settings
as well. We average the score map of overlapped regions from the sliding window
and throw away small isolated predictions whose portions are smaller than 0.2 of
the total prediction, which can remove small false positives. For DSC evaluation, we
report the average with standard deviation, max and min statistics over all 82 testing
cases as shown in Table4.2.

First of all, our overall coarse-to-fine framework outperforms previous state of the
art by nearly 2.2% (Cai et al. [2] and Zhou et al. [46]) in terms of average DSC, which
is a large improvement. The lower standard deviation of DSC shows that our method

Table 4.2 Evaluation of different methods on the NIH dataset. Our proposed framework achieves
state of the art by a large margin compared with previous state of the arts

Method Mean DSC (%) Max DSC (%) Min DSC (%)

ResDSN C2F (Ours) 84.59± 4.86 91.45 69.62

ResDSN Coarse
(Ours)

83.18 ± 6.02 91.33 58.44

Cai et al. [2] 82.4 ± 6.7 90.1 60.0

Zhou et al. [46] 82.37 ± 5.68 90.85 62.43

Dou et al. [6] 82.25 ± 5.91 90.32 62.53

Roth et al. [32] 78.01 ± 8.20 88.65 34.11

Yu et al. [43] 71.96 ± 15.34 89.27 0
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#33 Coarse 58.44% #33 C2F 69.62% #63 Coarse 74.63% #63 C2F 84.87% #74 Coarse 90.84% #74 C2F 91.03%

Fig. 4.4 Examples of segmentation results reported by “ResDSNCoarse” and “ResDSNC2F” on a
same slice in the axial view from NIH case #33, #63 and #74, respectively. Numbers after “Coarse”
or “C2F” mean testing DSC. Red, green, and yellow indicates the ground truth, prediction, and
overlapped regions, respectively. Best viewed in color

is the most stable and robust across all different CT cases. Although the enhancement
of max DSC of our framework is small due to saturation, the improvement of the min
DSC over the second best (Dou et al. [6]) is from 62.53 to 69.62%, which is a more
than 7% advancement. The worst case almost reaches 70%, which is a reasonable
and acceptable segmentation result. After coarse-to-fine, the segmentation result of
the worst case is improved by more than 11% after the 3D-based refinement from
the 3D-based coarse result. The overall average DSC was also improved by 1.41%,
which proves the effectiveness of our framework.1

As shown in Fig. 4.4, we report the segmentation results by “ResDSN Coarse”
and “ResDSN C2F” on the same slice for comparison. Note that yellow regions are
the correctly predicted pancreas. For the NIH case #33, which is the min DSC case
reported by both “ResDSN Coarse” and “ResDSN C2F”, the “ResDSN C2F” suc-
cessfully predict more correct pancreas regions at the bottom, which is obviously
missed by “ResDSN Coarse”. If the coarse segmentation is bad, e.g., case #33 and
#63, our 3D coarse-to-fine can significantly improve the segmentation results by as
much as 10% in DSC. However, if the coarse segmentation is already very good, e.g.,
case #74, our proposed method cannot improve too much. We conclude that our pro-
posed “ResDSN C2F” shows its advancement over 2D methods by aggregating rich
spatial information and is more powerful than other 3D methods on the challenging
pancreas segmentation task.

4.4.1.3 JHMI Pathological Cyst Dataset

We verified our proposed idea on the JHMI pathological cyst dataset [45] of abdom-
inal CT scans as well. Different from the NIH pancreas dataset, which only contains
healthy pancreas, this dataset includes pathological cysts where some can be or can
become cancerous. The pancreatic cancer stage largely influences the morphology
of the pancreas [19] that makes this dataset extremely challenging for considering
the large variants.

1The results are reported by our runs using the same cross-validation splits where the code is
available from their GitHub: https://github.com/yulequan/HeartSeg.

https://github.com/yulequan/HeartSeg
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Table 4.3 Evaluations on the JHMI pathological pancreas

Method Mean DSC (%)

ResDSN C2F (Ours) 80.56± 13.36

ResDSN Coarse (Ours) 77.96 ± 13.36

Zhou et al. [45] 79.23 ± 9.72

This dataset has a total number of 131 contrast-enhanced abdominal CT volumes
with human-labeled pancreas annotations. The size of CT volumes is 512 × 512 ×
D, where D ∈ [358, 1121] that spans awider variety of thickness than one of theNIH
dataset. Following the training protocol [45], we conducted fourfold cross-validation
on this dataset where each testing fold has 33, 33, 32, and 33 cases, respectively. We
trained networks illustrated in Fig. 4.3 in both the coarse and fine stage with the same
training settings as on the NIH except that we trained a total of 300,000 iterations
on this pathological dataset since a pancreas with cysts is more difficult to segment
than a normal case. In the testing phase, we vote the prediction map of overlapped
regions from the sliding window and ignore small isolated pancreas predictions
whose portions are smaller than 0.05 of the total prediction. As shown in Table 4.3,
we compare our framework with only one available published results on this dataset.
“ResDSN C2F” achieves an average 80.56% DSC that consistently outperforms the
2D based coarse-to-fine method [45], which confirms the advantage of leveraging
the rich spatial information along three axes. What’s more, the “ResDSN C2F”
improves the “ResDSN Coarse” by 2.60% in terms of the mean DSC, which is a
remarkable improvement that proves the effectiveness of the proposed 3D coarse-to-
fine framework. Both [45] and our method have multiple failure cases whose testing
DSC is 0, which indicates the segmentation of pathological organs is a more tough
task. Due to these failure cases, we observe a large deviation on this pathological
pancreas dataset compared with results on the NIH healthy pancreas dataset.

4.4.1.4 JHMI Pancreas Dataset

In order to further validate the superiority of our 3D model, We also evaluate
our approach on a large high-quality dataset collected by the radiologists in our
team. This dataset contains 305 contrast-enhanced abdominal CT volumes, and
each of them is manually labeled with pancreas masks. Each CT volume con-
sists of 319 ∼ 1051 slices of 512 × 512 pixels, and have voxel spatial resolution
of ([0.523 ∼ 0.977] × [0.523 ∼ 0.977] × 0.5)mm3. Following the training proto-
col [31], we perform fourfold cross-validation in a random split from all patients
for training and testing folds, where each testing fold has 77, 76, 76, and 76 cases,
respectively. We demonstrate the superiority of our 3D model2 by comparing with
the 2D baseline [46] (see Table4.4).

2The coarse model is used for comparison since it is the basis of our framework.
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Table 4.4 Evaluations on the JHMI pancreas dataset

Method Mean DSC (%) Max DSC (%) Min DSC (%)

ResDSN Coarse (Ours) 87.84± 7.27 95.27 0.07

Zhou et al. [45] 84.99 ± 7.42 93.45 3.76

4.4.1.5 Ablation Study

In this section, we conduct the ablation studies about residual connection, time effi-
ciency and deep supervision to further investigate the effectiveness and efficiency of
our proposed framework for pancreas segmentation.

Residual Connection

We discuss how different combinations of residual connections contribute to the
pancreas segmentation task on the NIH dataset. All the residual connections are
implemented in the element-wise sum and they shared exactly the same deep super-
vision connections, cross-validation splits, data input, training, and testing settings
except that the residual structure is different from each other. As given in Table 4.5,
we compare four configurations of residual connections of 3D-based networks only
in the coarse stage. Themajor differences between our backbone network “ResDSN”
with respect to “FResDSN”, “SResDSN” and “DSN” are depicted in Table 4.1. “Res-
DSN” outperforms other network architectures in terms of average DSC and a small
standard deviation even though the network is not as sophisticated as “FResDSN”,
which is the reason we adopt “ResDSN” for efficiency concerns in the coarse stage.

Time Efficiency

We discuss the time efficiency of the proposed coarse-to-fine framework with a
smaller overlap in the coarse stage for the low consuming time concern while a
larger one in the fine stage for the high prediction accuracy concern. The overlap
size depends on how large we choose n defined in Sect. 4.4.1.1. We choose n = 6
during the coarse stage while n = 12 during the fine stage. Experimental results are
shown in Table4.6. “ResDSN Coarse” is the most efficient while the accuracy is the
worst among three methods, which makes sense that we care more of the efficiency
to obtain a rough pancreas segmentation. “ResDSN Fine” is to use a large overlap

Table 4.5 Evaluation of different residual connections on NIH

Method Mean DSC (%) Max DSC (%) Min DSC (%)

ResDSN Coarse (Ours) 83.18± 6.02 91.33 58.44

FResDSN Coarse 83.11 ± 6.53 91.34 61.97

SResDSN Coarse 82.82 ± 5.97 90.33 62.43

DSN [6] Coarse 82.25 ± 5.91 90.32 62.53
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Table 4.6 Average time cost in the testing phase, where n controls the overlap size of sliding
windows during the inference

Method Mean DSC (%) n Testing time (s)

ResDSN C2F (Ours) 84.59± 4.86 6 and 12 245

ResDSN coarse (Ours) 83.18 ± 6.02 6 111

ResDSN fine (Ours) 83.96 ± 5.65 12 382

Table 4.7 Ablation study of the deep supervision on NIH

Method Mean DSC (%) Max DSC (%) Min DSC (%)

ResDSN C2F (Ours) 84.59± 4.86 91.45 69.62

Res C2F 84.06 ± 6.51 91.72 51.83

on an entire CT scan to do the segmentation which is the most time consuming. In
our coarse-to-fine framework, we combine the two advantages together to propose
“ResDSN C2F” which can achieve the best segmentation results while the average
testing time cost for each case is reduced by 36% from 382 to 245s compared with
“ResDSN Fine”. In comparison, it takes an experienced board-certified Abdominal
Radiologist 20 min for one case, which verifies the clinical use of our framework.

Deep Supervision

Wediscuss how effective of the auxiliary losses to demonstrate the impact of the deep
supervision on our 3D coarse-to-fine framework. Basically, we train our mainstream
networks without any auxiliary losses for both coarse and fine stages, denoted as
“Res C2F”, while keeping all other settings as the same, e.g., cross-validation splits,
data preprocessing and post-processing. As shown in Table4.7, “ResDSN C2F”
outperforms “Res C2F” by 17.79% to a large extent on min DSC and 0.53% better
on average DSC though it’s a little bit worse on max DSC. We conclude that 3D
coarse-to-fine with deep supervisions perform better and especially more stable on
the pancreas segmentation.

4.4.2 Adversarial Attack and Defense

In spite of the success of 3D learning models such as our proposed ResDSN, the
robustness of neural networks for clinical applications remains a concern. In this
section, we first show that our well-trained 3D model can be easily led to failure
under imperceptible adversarial perturbations (see Sect. 4.4.2.1), and then investigate
how to improve the adversarial robustness by employing adversarial training (see
Sect. 4.4.2.2). We evaluate our approach by performing standard fourfold cross-
validation on the JHMI pancreas dataset since this dataset is the largest in scale and
has the best quality (see Sect. 4.4.1.4).
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4.4.2.1 Robustness Evaluation

To evaluate the robustness of our well-trained 3D model, we attack the ResDSN
Coarse model following the methods in Sect. 4.3.2.1. For both attacking methods,
i.e., FGSM and I-FGSM, we set ε = 0.03� so that the maximum perturbation can
be small enough compared with the range of the truncated intensity value (�).3

Specially in the case of I-FGSM, the total iteration number N and the step size α are
set to be 5 and 0.01�, respectively. Following the test strategy in the coarse stage,
we first compute the loss gradients of the 64 × 64 × 64 sub-volumes4 obtained by a
sliding-window policy, and these gradients are then combined to calculate the final
loss gradient map∇XL(X;�) of each whole CT volume. The combined approach is
also similar as the testing method described in Sect. 4.4.1.3, i.e., taking the average
of loss gradient if a voxel is in the overlapped region. According to Eqs. 4.6 and 4.7,
the overall loss gradient can be used to generate adversarial examples which can then
attack the 3D model for the purpose of robustness evaluation.

4.4.2.2 Defending Against Adversarial Attacks

To improve the adversarial robustness of our 3D segmentation model, we apply
the adversarial training policy as described in Sect. 4.3.2.2. During each training
iteration, Xadv is first randomly sampled in the ε-ball and then updated by I-FGSM
so that L(Xadv;�) can be maximized. Afterward Xadv is fed to the model instead
of X to update the parameter �. Note that we set the same maximum perturbation
ε, iteration number N and step size α as in Sect. 4.4.2.1. Similar to the training
process described in Sect. 4.4.1.2, our model is trained by SGD optimizer with a 128
mini-batch, a 0.9 momentum, a base learning rate to be 0.08 via polynomial decay
(the power is 0.9) in a total of 10, 000 iterations, and the weight decay 0.0005.

4.4.2.3 Results and Discussion

All attack and defense results are summarized in Table4.8. We can see that both
attack methods, i.e., FGSM and I-FGSM, can successfully fool the well-trained 3D
ResDSN into producing incorrect prediction maps. More specifically, the dramatic
performance drop of I-FGSM, i.e., 85.83% (from 87.84 to 2.01%), suggests low
adversarial robustness of the original model. Meanwhile, the maximum performance
drop decreases from 85.83 to 13.11%, indicating that our adversarially trainedmodel
can largely alleviate the adversarial effect and hence improving the robustness of our
3D model. Note that our baseline with “Clean” training has 87.84% accuracy when

3Since the raw intensity values are to be in [−100, 240] during preprocessing (see Sect. 4.4.1.1),
here we set � = 240 − (−100) = 340 accordingly.
4For implementation simplicity and efficiency, we ignored the sub-volumes only containing the
background class when generating adversarial examples.
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Table 4.8 Comparative evaluation of the 3D segmentation model on clean (indicated by “Clean” in
the table) and adversarial examples. Different attack methods, i.e., FGSM and I-FGSM, are used for
generating the adversarial examples. We report the average accuracy and Dice overlap score along
with the % maximum drop in performance on adversarial examples with respect to performance on
clean data

Attack methods Clean (%) FGSM [10] (%) I-FGSM [18] (%) Drop (%)

ResDSN coarse 87.84± 7.27 42.68 2.01 85.83

Adversarially
trained ResDSN
coarse

79.09 ± 12.10 67.58 65.98 13.11

tested on clean images, whereas its counterpart with adversarial training obtains
79.09%. This trade-off between adversarial and clean training has been previously
observed in [38]. We hope this trade-off can be better studied in future research.

We also show a qualitative example in Fig. 4.5. As can be observed from the
illustration, adversarial attacks to naturally trained 3D ResDSN induces many false
positives,whichmakes the corresponding outcomes noisy.On the contrary, the adver-
sarially trained 3D model yields similar performances even after applying I-FGSM.
More specifically, the original averageDice score of 3DResDSN is 89.30%, and after
applying adversarial attack the performance drops to 48.45 and 6.06% with FGSM

Original FGSM I-FGSM
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Fig. 4.5 Qualitative comparison of adversarial examples and their effects on model predictions.
Note that the added perturbation is effectively imperceptible to the human eye, and the difference
between the original image and the adversarial image has been magnified by 5 × (values shifted by
128) for a better visualization. Contrasting with prediction on original images, the crafted examples
are able to successfully fool the models into generating incorrect segmentation maps. Meanwhile,
adversarial training can effectively alleviate such negative influence of adversarial attacks, hence
improving the performance to a reasonable level. Image differences and predictions are zoomed in
from the axial view to better visualize the finer details
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and I-FGSM, respectively. However, when applying the same attack methods to the
adversarially trained model, the performance only drops from 86.41 to 80.32 and
79.56%, respectively. In other words, employing adversarial training decreases the
performance drop from 83.24 to only 6.85%. This promising result clearly indicates
that our adversarially trained model can largely improve the adversarial robustness.

4.5 Conclusion

In this chapter, we proposed a novel 3D network called “ResDSN” integrated with
a coarse-to-fine framework to simultaneously achieve high segmentation accuracy
and low time cost. The backbone network “ResDSN” is carefully designed to only
have long residual connections for efficient inference. In addition, we also analyzed
the threat of adversarial attacks on our framework and showed how to improve the
robustness against the attack. Experimental evidence indicates that our adversarially
trainedmodel can largely improve adversarial robustness than naturally trained ones.

To our best knowledge, the proposed 3D coarse-to-fine framework is one of the
first works to segment the challenging pancreas using 3D networks which leverage
the rich spatial information to achieve the state of the art. We can naturally apply
the proposed idea to other small organs, e.g., spleen, duodenum and gallbladder, etc,
In the future, we will target on error causes that lead to inaccurate segmentation to
make our framework more stable, and extend our 3D coarse-to-fine framework to
cyst segmentation which can cause cancerous tumors, and the very important tumor
segmentation [49] task.
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