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Abstract Deep neural networks have been widely adopted for automatic organ
segmentation from abdominal CT scans. However, the segmentation accuracy of
small organs (e.g., pancreas) or neoplasms (e.g., pancreatic cyst) is sometimes below
satisfaction, arguably because deep networks are easily disrupted by the complex and
variable background regions which occupy a large fraction of the input volume. In
this chapter, we propose two coarse-to-fine mechanisms which use prediction from
the first (coarse) stage to shrink the input region for the second (fine) stage. More
specifically, the two stages in the first method are trained individually in a step-
wise manner, so that the entire input region and the region cropped according to
the bounding box are treated separately. While the second method inserts a saliency
transformation module between the two stages so that the segmentation probability
map from the previous iteration can be repeatedly converted as spatial weights to the
current iteration. In training, it allows joint optimization over the deep networks. In
testing, it propagates multi-stage visual information throughout iterations to improve
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segmentation accuracy. Experiments are performed on several CT datasets, including
NIH pancreas, JHMI multi-organ, and JHMI pancreatic cyst dataset. Our proposed
approach gives strong results in terms of DSC.

3.1 Introduction

This chapter focuses on small organs (e.g., the pancreas) and neoplasms (e.g., pan-
creatic cyst) segmentation from abdominal CT scans, which is an important pre-
requisite for enabling computers to assist human doctors for clinical purposes. This
problem falls into the research area named medical imaging analysis. Recently, great
progress has been brought to this field by the fast development of deep learning, espe-
cially convolutional neural networks [18, 29]. Many conventional methods, such as
the graph-based segmentation approaches [1] or those based on handcrafted local
features [45], have been replaced by deep segmentation networks, which typically
produce higher segmentation accuracy [34, 35, 43, 44, 51].

Segmenting tiny organs, blood vessels, or neoplasms from a CT scan is often
challenging. As the target often occupies a small part of input data (e.g., less than
1.5% in a 2D image, see Fig.3.1), deep segmentation networks such as FCN [29]
and DeepLab [5] can be easily confused by the background region, which may
contain complicated and variable contents. This motivates us to propose coarse-to-
fine approaches, in which the coarse stage provides a rough localization and the fine
stage performs accurate segmentation.

We propose two coarse-to-fine approaches in this chapter. In the first approach,
we use the predicted segmentation mask to shrink the input region. With a relatively
smaller input region (e.g., a bounding box defined by the mask), it is straightfor-
ward to achieve more accurate segmentation. At the training stage, we fix the input
regions generated from the ground-truth annotation, and train two deep segmenta-
tion networks, i.e., a coarse-scaled one and a fine-scaled one, to deal with the entire
input region and the region cropped according to the bounding box, respectively. At
the testing stage, the network parameters remain unchanged, and the coarse-scaled

Fig. 3.1 A typical example NIH Case #001
from the NIH pancreas

segmentation dataset [35]
(best viewed in color). We
highlight the pancreas in red
seen from three different
viewpoints. It is a relatively
small organ with irregular
shape and boundary

corondl view (x-axis)

8

axial view (z-axis) sagittal view (y-axis)
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network was first used to obtain the rough position of the small target, and the fine-
scaled network was executed several times and the segmentation mask was updated
iteratively until convergence. The iterative process can be formulated as a fixed-point
model [23]. This approach can be further extended to segment pancreatic cyst, which
lays the foundation of early diagnosis of pancreatic cancer, where we first find the
pancreas by a coarse-to-fine algorithm, then we localize and segment the cyst based
on the predicted pancreas mask by a separate coarse-to-fine segmentation approach.
Intuitively, the pancreatic cyst is often closely related to the pancreas, and thus seg-
menting the pancreas (relatively easier) may assist the localization and segmentation
of the cyst. A deep supervision [21] strategy is introduced into the original segmen-
tation network, leading to a joint objective function taking both the pancreas and the
cyst into consideration.

In order to embed consistency between training and testing flowcharts, which is
to say, in the training phase to minimize a global energy function in coarse and fine
stages simultaneously, in our second approach, we propose a Recurrent Saliency
Transformation Network (RSTN). The chief innovation is to relate the coarse and
fine stages with a saliency transformation module, which repeatedly transforms the
segmentation probability map from previous iterations as spatial priors in the current
iteration. This brings us twofold advantages over the first method. First, in the train-
ing phase, the coarse-scaled and fine-scaled networks are optimized jointly, so that
the segmentation ability of each of them gets improved. Second, in the testing phase,
the segmentation mask of each iteration is preserved and propagated throughout
iterations, enabling multi-stage visual cues to be incorporated toward more accurate
segmentation. To capture the relationship between the pancreas and its internal cysts,
we also extend this approach to segment pancreas and cyst by two RSTN modules,
which observes strong results. To the best of our knowledge, this idea was not stud-
ied in the computer vision community, as it requires making use of some special
properties of CT scans.

We perform experiments on three CT datasets for small target segmentation.
We show the superiority of our approaches on the NIH pancreas segmentation
dataset [35], JHMI multi-organ dataset, and JHMI pancreatic cyst dataset, which
guarantees its efficiency and reliability in real clinical applications.

This chapter summarizes our previous works [48, 52, 53] and provides more
experimental results. The remainder of this chapter is organized as follows. Section 3.2
briefly reviews related work, Sect. 3.3 describes the proposed step-wise coarse-to-fine
approach, and Sect. 3.4 presents our proposed end-to-end coarse-to-fine approach.
After experiments are shown in Sects.3.5 and 3.6, we draw our conclusions in
Sect.3.8.

3.2 Related Work

Computer-aided diagnosis (CAD) is an important technique which can assist human
doctors in many clinical scenarios. An important prerequisite of CAD is medical
imaging analysis. As a popular and cheap way of medical imaging, contrast-enhanced
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computed tomography (CECT) produces detailed images of internal organs, bones,
soft tissues and blood vessels. It is of great value to automatically segment organs
and/or soft tissues from these CT volumes for further diagnosis [2, 13, 42, 52]. To
capture specific properties of different organs, researchers often design individualized
algorithms for each of them. Typical examples include the the liver [15, 27], the
spleen [28], the kidneys [1, 25], the lungs [16], the pancreas [6, 45], etc. Small organs
(e.g., the pancreas) are often more difficult to segment, partly due to their low contrast
and large anatomical variability in size and (most often irregular) shape, as well as
the complicated and unpredictable background contents. In particular, the internal
neoplasms such as cysts [7] and tumors [49] can further change the anatomical
property of the pancreas, making it even more difficult to recognize both targets.

Compared to the papers cited above which used conventional approaches for
segmentation, the progress of deep learning brought more powerful and efficient
solutions. In particular, convolutional neural networks have been widely applied
to a wide range of vision tasks, such as image classification [14, 18, 39], object
detection [10, 33, 41], and semantic segmentation [5, 29]. Recurrent neural networks,
as a related class of networks, were first designed to process sequential data [11, 38,
40], and later generalized to image classification [24] and scene labeling [32] tasks.
In the area of medical imaging analysis, in particular organ segmentation, these
techniques have been shown to significantly outperform conventional approaches,
e.g., segmenting the liver [8], the lung [12], or the pancreas [3, 36, 37]. Note that
medical images differ from natural images in that data appear in a volumetric form.
To deal with these data, researchers either slice an 3D volume into 2D slices (as in
this work), or train an 3D network directly [17, 30, 31, 47]. In the latter case, limited
GPU memory often leads to patch-based training and testing strategies. The tradeoff
between 2D and 3D approaches is discussed in [20].

By comparison to the entire CT volume, the organs and neoplasm considered in
this chapter often occupy a relatively small area. As deep segmentation networks
such as FCN [29] are less accurate in depicting small targets, researchers proposed
two types of ideas to improve detection and/or segmentation performance. The first
type involved rescaling the image so that the target becomes comparable to the
training samples [46], and the second one considered to focus on a subregion of the
image for each target to obtain higher accuracy in detection [4]. The coarse-to-fine
idea was also well studied in the computer vision area for saliency detection [19] or
semantic segmentation [22, 26]. This chapter focuses on presenting two coarse-to-
fine frameworks for medical image segmentation.

3.3 A Step-Wise Coarse-to-Fine Approach for Medical
Image Segmentation

We investigate the problem of segmenting an organ from abdominal CT scans. Let
an CT image be a 3D volume X of size W x H x L which is annotated with a binary
ground-truth segmentation Y where y; = 1 indicates a foreground voxel. The goal
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of our work is to produce a binary output volume Z of the same dimension. Denote
Y and Z as the set of foreground voxels in the ground-truth and prediction, i.e.,
Y ={i|y;=1}and Z = {i | z; = 1}. The accuracy of segmentation is evaluated
by the Dice-Sgrensen coefficient (DSC): DSC(Y, Z) = 2IY0Zl This metric falls

[Y1+1Z]
in the range of [0, 1] with 1 implying perfect segmentation.

3.3.1 Deep Segmentation Networks

Consider a segmentation model M : Z = f(X; @), where ® denotes the model
parameters, and the loss function is written as £(Z,Y). In the context of a deep
segmentation network, we optimize £ with respect to the network weights © by
gradient backpropagation. As the foreground region is often very small, we fol-
low [31] to design a DSC-loss layer to prevent the model from being heavily biased
toward the background class. We slightly modify the DSC of two voxel sets A and

B, DSC(A, B) = ﬁ;ﬁ?ﬁ', into a loss function between the ground-truth mask Y

and the predicted mask Z, i.e., L(Z,Y) =1 — ;ZXZZT’ZZ‘}; Note that this is a “soft”
definition of DSC, and it is equivalent to the origir{al form if all z;’s are either O or 1.
VLLY) _ o o 2t m S
9z; (Zizi+2i3’i)2

We train 2D deep networks for 3D segmentation.! Each 3D volume X is sliced
along three axes, the coronal, sagittal and axial views, and these 2D slices are denoted
by Xcw wW=1,2,..., W), X, (h=1,2,...,H)and Xp; ( =1,2,..., L),
where the subscripts C, S and A stand for coronal, sagittal and axial, respectively.
On each axis, an individual 2D-FCN [29] on a 16-layer VGGNet [39] is trained
We train three 2D-FCN models M, Mg and M, to perform segmentation through
three views individually (images from three views are quite different). In testing,
the segmentation results from three views are fused via majority voting. Both multi-
slice segmentation (3 neighboring slices are combined as a basic unit in training
and testing) and multi-axis fusion (majority voting over three axes) is performed to
incorporate pseudo-3D information into segmentation.

The gradient computation is straightforward:

3.3.2 Fixed-Point Optimization

The organs and neoplasms investigated in this chapter (e.g., the pancreas) are rela-
tively small. In each 2D slice, the fraction of the foreground pixels is often smaller
than 1.5%. It was observed [35] that deep segmentation networks such as FCN [29]
produce less satisfying results when detecting small organs, arguably because the
network is easily disrupted by the varying contents in the background regions. Much

IPlease see Sect.3.5.3.2 for the comparison to 3D networks.
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Segmentation Using Segmentation Using
the Entire Image the Bounding Box

Input Image

NIH Case #09 DSC = 42.65% DSC = 78.44%

Fig. 3.2 Segmentation results with different input regions (best viewed in color), either using the
entire image or the bounding box (the red frame). Red, green and yellow indicate the prediction,
ground-truth, and overlapped pixels, respectively

more accurate segmentation can be obtained by using a smaller input region around
the region of interest. A typical example is shown in Fig.3.2.

This inspires us to make use of the predicted segmentation mask to shrink
the input region. We introduce a transformation function r (X, Z*) which gener-
ates the input region given the current segmentation Z*. We rewrite the model
as Z =f(r(X,Z*); ©), and the loss function is L (X, Z*); ©),Y). Note that
the segmentation mask (Z or Z*) appears in both the input and output of Z =
f(r(X,Z*); ©). This is a fixed-point model, and we apply the approach described
in [23] for optimization, i.e., finding a steady-state solution for Z.

In training, the ground-truth annotation Y is used as the input mask Z*. We train
two sets of models (each set contains three models for different views) to deal with
different input sizes. The coarse-scaled models are trained on those slices on which
the pancreas occupies at least 100 pixels (approximately 25 mm? in an 2D slice, our
approach is not sensitive to this parameter) so as to prevent the model from being
heavily impacted by the background. For the fine-scaled models, we crop each slice
according to the minimal 2D box covering the pancreas, add a frame around it, and
fill it up with the original image data. The top, bottom, left and right margins of the
frame are random integers sampled from {0, 1, ..., 60}. This strategy, known as data
augmentation, helps to regularize the network and prevent over-fitting.

We initialize both networks using the FCN-8s model [29] pretrained on the Pas-
calVOC image segmentation task. The coarse-scaled model is fine-tuned with a
learning rate of 10~ for 80,000 iterations, and the fine-scaled model undergoes
60,000 iterations with a learning rate of 10~*. Each mini-batch contains one training
sample (an 2D image sliced from an 3D volume).

In testing, we use an iterative process to find a steady-state solution for Z =
f(r(X,Z*); ©). At the beginning, Z* is initialized as the entire 3D volume, and we
compute the coarse segmentation Z©) using the coarse-scaled models. In each of the
following T iterations, we slice the predicted mask Z~1, find the smallest 2D box to
cover all predicted foreground pixels in each slice, add a 30-pixel-wide frame around
it (this is the mean value of the random distribution used in training), and use the
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Algorithm 1 Fixed-Point Model for Segmentation

1: Input: the testing volume X, coarse-scaled models M, Mg and My, fine-scaled models Mg,
Mg and MFA, threshold R, maximal rounds in iteration 7.

2: Initialization: using Mc, Mg and M to generate 7O from X;
3:fort=1,2,...,T do

4:  Using ME, ME and MY to generate Z® from Z(~;

5: if DSC(Z~D,Z®) > R then

6: break;

7:  endif

8: end for

9

: Output: the final segmentation Z* = Z®).

fine-scaled models to compute Z" . The iteration terminates when a fixed number of
iterations 7 is reached, or the the similarity between successive segmentation results
(Z“=Y and Z") is larger than a given threshold R. The similarity is defined as the

=1 _()
inter-iteration DSC, namely d) = DSC(Z"~",Z") = 2Dh

W The testing
stage is illustrated in Fig. 3.3 and described in Algorithm 1.

|nput Vo|ume X Coronal Data w Coronal Result Coarse Z(O)
— C _I_ Segmentation
N L |

Sagittal Data Sagittal Result

B & |

Axial Data Axial Result

: Updated Input Coronal Data Coronal Result Fine Segmentation
| (Image Zoomed in) —»ﬁipMF iS“_ after 1%t iteration Z(V
I Sagittal Data Sagittal Result <]
! e RV
! —E I
Axial Data Axial Result
- i

Fig. 3.3 Tllustration of the testing process (best viewed in color). Only one iteration is shown here.
In practice, there are at most 10 iterations
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3.3.3 Application to Pancreatic Cyst Segmentation

3.3.3.1 Formulation

Let the 3D CT-scanned volume X annotated with ground-truth pancreas segmenta-
tion P* and cyst segmentation C*, and both of them are of the same dimensionality
as X. P* =1 and C; = 1 indicate a foreground voxel of pancreas and cyst, respec-
tively. Denote a cyst segmentation model as M : C = £(X; @), where ® denotes the
model parameters. The loss function can be written as £(C, C*). In a regular deep
neural network such as our baseline, the fully convolutional network (FCN) [29],
we optimize £ with respect to the network weights © via gradient backpropagation.
To deal with small targets, we also follow [31] to compute the DSC-loss function:

L(C,C) = ZZ:XCZ+%CC' The gradient === M(C €) can be easily computed.

The pancreas is a small organ, and the pancreatic cystis even smaller. In our newly
collected dataset, the fraction of the cyst, relative to the entire volume, is often much
smaller than 0.1%. In a very challenging case, the cyst only occupies 0.0015% of
the volume, or around 1.5% of the pancreas. This largely increases the difficulty of
segmentation or even localization. Figure 3.4 shows a representative example where
cyst segmentation fails completely when we take the entire 2D slice as the input.

To deal with this problem, we note that the location of the pancreatic cyst is
highly relevant to the pancreas. Denote the set of voxels of the pancreas as P* =
{i | P* =1}, and similarly, the set of cyst voxels as C* = {i | C} = 1}. Frequently,
a large fraction of C* falls within #* (e.g., [P* N C*|/|C*| > 95% in 121 out of
131 cases in our dataset). Starting from the pancreas mask increases the chance of
accurately segmenting the cyst. Figure 3.4 shows an example of using the ground-
truth pancreas mask to recover the failure case of cyst segmentation.

This inspires us to perform cyst segmentation based on the pancreas region, which
is relatively easy to detect. To this end, we introduce the pancreas mask P as an

Input Image Global Segmentation Local Segmentation

Case #123 DSC = 0.00% DSC = 85.21%

Fig. 3.4 A relatively difficult case in pancreatic cyst segmentation and the results produced by
different input regions, namely using the entire image and the region around the ground-truth
pancreas mask (best viewed in color). The cystic, predicted and overlapping regions are marked by
red, green, and yellow, respectively. For better visualization, the right two figures are zoomed in
with respect to the red frame
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explicit variable of our approach, and append another term to the loss function to
jointly optimize both pancreas and cyst segmentation networks. Mathematically, let
the pancreas segmentation model be Mp : P = fp(X; ©p), and the corresponding
loss term be Lp(P, P*). Based on P, we create a smaller input region by applying a
transformation X' = o[X, P], and feed X' to the next stage. Thus, the cyst segmenta-
tion model can be written as M : C = f¢ (X’; ®C), and we have the corresponding
loss them L (C, C*). To optimize both @p and O, we consider the following loss
function:

L(P,P*,C,C) =2Lp(P,P*) + (1 — 1) Lc(C, C*), 3.1

where A is the balancing parameter defining the weight between either terms.

3.3.3.2 Optimization

We use gradient descent for optimization, which involves computing the gradients
over @p and O¢. Among these, ;’OL géc , and thus we can compute it via standard
backpropagation in a deep neural network. On the other hand, ®p is involved in both

loss terms, and applying the chain rule yields:

0L 0Lp 0Lc 90X OP
— el 3.2
00p 00p + X’ oP 3®p (3-2)

The second term on the right-hand side depends on the definition of X' = o [X, P].
In practice, we define a simple transformation to simplify the computation. The
intensity value (directly related to the Hounsfield units in CT scan) of each voxel is
either preserved or set as 0, and the criterion is whether there exists a nearby voxel
which is likely to fall within the pancreas region:

X =X, xI{3j | P; > 05Ali — jl <t} (3.3)

where ¢ is the threshold which is the farthest distance from a cyst voxel to the
pancreas volume. We set t = 15 in practice, and our approach is not sensitive to

this parameter. With this formulation, i.e., 3); = 0 almost everywhere. Thus, we
have 337](, =0 and M = % This allows us to factorize the optimization into two
dL

stages in both tralnlng and testing. Since 765 and % are individually optimized,
the balancing parameter A in Eq.(3.1) can be ignored. The overall framework is
illustrated in Fig.3.5. In training, we directly set X' = o [X, P*], so that the cyst
segmentation model M receives more reliable supervision. In testing, starting from
X, we compute P, X" and C orderly. Dealing with two stages individually reduces
the computational overheads. It is also possible to formulate the second stage as
multi-label segmentation.
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Cyst |
Pancreas Ground-Truth
Loss Function
Lp(P,P*) )

Pancreas
Ground-Truth Cyst
Loss Function

Le(C,€)

training only

Uoneuawidag

Output Volume for Input Volume Output Volume for
Pancreas Segmentation Pancreas Segmentation for Cyst Segmentation Cyst Segmentation

Input Volume for

Fig. 3.5 The framework of our approach (best viewed in color). Two deep segmentation networks
are stacked, and two loss functions are computed. The predicted pancreas mask is used in trans-
forming the input image for cyst segmentation

3.4 An End-to-End Coarse-to-Fine Approach for Medical
Image Segmentation

The step-wise coarse-to-fine approach is delicately designed for tiny target segmenta-
tion, but lacks global optimization of both the coarse and fine networks in the training
stage. This motivates us to connect these two networks with a saliency transformation
module, which leads to our end-to-end coarse-to-fine approach.

3.4.1 Recurrent Saliency Transformation Network

Following the step-wise coarse-to-fine approach, we also train an individual model
for each of the three viewpoints. Without loss of generality, we consider a 2D slice
along the axial view, denoted by X, ;. Our goal is to infer a binary segmentation mask
Z .1, whichis achieved by first computing a probability map P ; = f[Xa ; 0], where
f[-; 0] is a deep segmentation network with 6 being network parameters, and then
binarizing P4 ; into Z, ; using a fixed threshold of 0.5, i.e., Zx; = I[Pa,; > 0.5].

In order to assist segmentation with the probability map, we introduce Py ; as
a latent variable. We introduce a saliency transformation module, which takes the
probability map to generate an updated input image, i.e., In; = Xa; © g(PAJ; 1]),
and uses the updated input I, ; toreplace X4 ;. Here g[-; n] is the transformation func-
tion with parameters 3, and ® denotes element-wise product, i.e., the transformation
function adds spatial weights to the original input image. Thus, the segmentation
process becomes:

Py =f[Xa; ©g(Pas;n);0]. 34

This is a recurrent neural network. Note that the saliency transformation function
g[-, n] needs to be differentiable so that the entire recurrent network can be optimized
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Fig. 3.6 We formulate our N AT ¥ (o
approach into a recurrent '
network, and unfold it for
optimization and inference G
Al
o =u| mmmp Y
unfolding
G’l
Xl X Xl Xl

in an end-to-end manner. As X ; and P4 ; share the same spatial dimensionality, we
set g[-, n] to be a size-preserved convolution, which allows the weight added to each
pixel to be determined by the segmentation probabilities in a small neighborhood
around it. As we will show in the experimental section (see Fig.3.9), the learned
convolutional kernels are able to extract complementary information to help the next
iteration.

To optimize Eq.(3.4), we unfold the recurrent network into a plain form (see
Fig.3.6). Given an input image X ; and an integer 7" which is the maximal number

of iterations, we update IX?I and PX,)Z, t=0,1,...,T:
WED Wi g(PXj Y n), (3.5)
Py, = £[10:6]. (3.6)

Note that the original input image X, ; does not change, and the parameters 6 and 5
are shared by all iterations. At ¢t = 0, we directly set Ig)l =Xa,-

When segmentation masks PX?Z (t=0,1,..., T — 1) are available for reference,
deep networks benefit considerably from a shrunk input region especially when the

target organ is very small. Thus, we define a cropping function Crop[~; PX?Z], which

takes PY; as the reference map, binarizes it into Z{; =[P, > 0.5], finds the
minimal rectangle covering all the activated pixels, and adds a K -pixel-wide margin
(padding) around it. We fix K to be 20; our algorithm is not sensitive to this parameter.

Finally note that If\ofl, the original input (the entire 2D slice), is much larger than the

cropped inputs IX?I fort > 0. We train two FCNs to deal with such a major difference
ininput data. The first one is named the coarse-scaled segmentation network, which is
used only in the first iteration. The second one, the fine-scaled segmentation network,
takes the charge of all the remaining iterations. We denote their parameters by 6°¢
and 0", respectively. These two FCNs are optimized jointly.
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We compute a DSC-loss term on each probability map PX?I, t=0,1,...,T,and
denote it by L{YA, I PX’), } Here, Y, is the ground-truth segmentation mask, and

LY, P} =1-— % is based on the soft version of DSC [31]. Our goal is to

minimize the overall loss:

T
£=Y"n .L[YX?,, 70, 3.7)

t=0

This leads to joint optimization over all iterations, which involves network parameters
0, 6", and transformation parameters 7. {)\t}tho controls the tradeoff among all loss
terms. Weset2Ag = A; = --- = Ay = 2/ (2T + 1) so as to encourage accurate fine-
scaled segmentation.

3.4.2 Training and Testing

The training phase is aimed at minimizing the loss function £, defined in Eq. (3.7),
which is differentiable with respect to all parameters. In the early training stages,
the coarse-scaled network cannot generate reasonable probability maps. To prevent
the fine-scaled network from being confused by inaccurate input regions, we use the
ground-truth mask Y, ; as the reference map. After a sufficient number of training, we
resume using PX?Z instead of Y, ;. In Sect.3.5.3.1, we will see that this “fine-tuning”
strategy improves segmentation accuracy considerably.

Algorithm 2 The Testing Phase for RSTN
Require: input volume X, viewpoint V = {C, S, A}
Require: parameters 6
Require: 05 and 9,,v eV,
Require: max number of iterations 7', threshold thr;
©0)

t < 0,1

~ X, veV;

PO < f[1: 65| v e vovs

vl

(0) ©0), p0)
P(()) _ PC +P’S; +PA

repeat
t<—t+1;
1) < X, 0 g(Pﬁ{,‘” n), VeV,

,ZO =1[P® > 05];

Pg), <« f[Crop[I(')' Pyjl)] ; 05] veV,Vi,

v,0°
pO) = PPHED 0 _1p0) > 0.5,
until 1 = T or DSC{ZV~D, ZD} > thr

return Z <« Z©.
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Fig. 3.7 Illustration of the training process (best viewed in color). We display an input image along
the axial view which contains 3 neighboring slices. To save space, we only plot the coarse stage
and the first iteration in the fine stage

Due to the limitation in GPU memory, in each mini-batch containing one training
sample, we set 7' to be the maximal integer (not larger than 5) so that we can fit
the entire framework into the GPU memory. The overall framework is illustrated
in Fig.3.7. As a side note, we find that setting 7 = 1 also produces high accuracy,
suggesting that major improvement is brought by joint optimization.

The testing phase follows the flowchart described in Algorithm 2. There are two
minor differences from the training phase. First, as the ground-truth segmentation
mask Y, ; is not available, the probability map PX?I is always taken as the reference
map for image cropping. Second, the number of iterations is no longer limited by the
GPU memory, as the intermediate outputs can be discarded on the way. In practice, we

terminate our algorithm when the similarity of two consecutive predictions, measured

t=1) (@)
by DSC{Z~D, 2"} = Z,EZZ'UZ,—",)+ZZ(‘,,, reaches a threshold thr, or a fixed number (7')

of iterations are executed. We will discuss these parameters in Sect.3.5.3.3.

3.4.3 Application to Pancreatic Cyst Segmentation

We follow Sect.3.3.3 to use a multi-stage approach, which first finds the regular
organ (pancreas), and then locates the neoplasm (cyst) by referring to that organ.
A four-stage strategy is also adopted, i.e., coarse-scaled and fine-scaled pancreas
segmentation, as well as coarse-scaled and fine-scaled cyst segmentation. This can
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be implemented by two RSTN modules, where the first RSTN segments the pan-
creas given the CT images while the second segments the pancreatic cyst given the
pancreas-cropped region.

3.5 Pancreas Segmentation Experiments

3.5.1 Dataset and Evaluation

We evaluate our approach on the NIH pancreas segmentation dataset [35], which
contains 82 contrast-enhanced abdominal CT volumes. The resolution of each scan
is 512 x 512 x L, where L € [181, 466] is the number of slices along the long axis
of the body. The distance between neighboring voxels ranges from 0.5 to 1.0 mm.

Following the standard cross-validation strategy, we split the dataset into 4 fixed
folds, each of which contains approximately the same number of samples. We apply
cross-validation, i.e., training the models on 3 out of 4 subsets and testing them on
the remaining one. We measure the segmentation accuracy by computing the Dice-
Sgrensen coefficient (DSC) for each sample, and report the average and standard
deviation over all 82 cases.

3.5.2 Evaluation of the Step-Wise Coarse-to-Fine Approach

We initialize both networks using the FCN-8s model [29] pretrained on the Pas-
calVOC image segmentation task. The coarse-scaled model is fine-tuned with a
learning rate of 1073 for 80,000 iterations, and the fine-scaled model undergoes
60,000 iterations with a learning rate of 10~*. Each mini-batch contains one training
sample (a 2D image sliced from a 3D volume).

We first evaluate the baseline (coarse-scaled) approach. Using the coarse-scaled
models trained from three different views (i.e., M, Mg and Mj,), we obtain
66.88% £ 11.08%, 71.41% =+ 11.12% and 73.08% + 9.60% average DSC, respec-
tively. Fusing these three models via majority voting yields 75.74 £ 10.47%, sug-
gesting that complementary information is captured by different views. This is used
as the starting point Z©) for the later iterations.

To apply the fixed-point model for segmentation, we first compute d* to observe
the convergence of the iterations. After 10 iterations, the average d ® value over all
samples is 0.9767, the median is 0.9794, and the minimum is 0.9362. These numbers
indicate that the iteration process is generally stable.

Now, we investigate the fixed-point model using the threshold R = 0.95 and
the maximal number of iterations 7 = 10. The average DSC is boosted by 6.63%,
which is impressive given the relatively high baseline (75.74%). This verifies our
hypothesis, i.e., a fine-scaled model depicts a small organ more accurately.
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Table 3.1 Segmentation accuracy (measured by DSC, %) reported by different approaches. We
start from initial (coarse) segmentation Z©, and explore different terminating conditions, including
a fixed number of iterations and a fixed threshold of inter-iteration DSC. The last two lines show
two upper bounds of our approach, i.e., “Best of All Iterations” means that we choose the highest
DSC value over 10 iterations, and “Oracle Bounding Box” corresponds to using the ground-truth
segmentation to generate the bounding box in testing. We also compare our results with the state-
of-the-art [35, 36], demonstrating our advantage over all statistics

Method Mean DSC # iterations Max DSC Min DSC
Roth et al., 71.42 £10.11 - 86.29 23.99
MICCAI’2015 [35]

Roth et al., 78.01 £8.20 - 88.65 34.11
MICCAI’2016 [36]

Coarse segmentation | 75.74 +10.47 - 88.12 39.99
After 1 iteration 82.16 £6.29 1 90.85 54.39
After 2 iterations 82.13 £6.30 2 90.77 57.05
After 3 iterations 82.09 +6.17 3 90.78 58.39
After 5 iterations 82.11 £6.09 5 90.75 62.40
After 10 iterations 82.25+5.73 10 90.76 61.73
After d; > 0.90 82.13 £6.35 1.83+0.47 | 90.85 54.39
After d; > 0.95 82.37 £5.68 2.89+1.75 | 90.85 62.43
After d; > 0.99 82.28 £5.72 9.87+0.73 | 90.77 61.94
Best among all 82.65 £5.47 349+£292 | 90.85 63.02
iterations

Oracle bounding box 83.18 +4.81 - 91.03 65.10

We also summarize the results generated by different terminating conditions in
Table 3.1. We find that performing merely 1 iteration is enough to significantly boost
the segmentation accuracy (+6.42%). However, more iterations help to improve
the accuracy of the worst case, as for some challenging cases (e.g., Case #09, see
Fig.3.8), the missing parts in coarse segmentation are recovered gradually. The best
average accuracy comes from setting R = 0.95. Using a larger threshold (e.g., 0.99)
does not produce accuracy gain, but requires more iterations and, consequently, more
computation at the testing stage. In average, it takes less than 3 iterations to reach
the threshold 0.95. On a modern GPU, we need about 3 min on each testing sample,
comparable to recent work [36], but we report much higher segmentation accuracy
(82.37% vs. 78.01%).

As a diagnostic experiment, we use the ground-truth (oracle) bounding box of
each testing case to generate the input volume. This results in an 83.18% average
accuracy (no iteration is needed in this case). By comparison, we report a comparable
82.37% average accuracy, indicating that our approach has almost reached the upper
bound of the current deep segmentation network.

We also compare our segmentation results with the state-of-the-art approaches.
Using DSC as the evaluation metric, our approach outperforms the recent published
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Input Image Initial Segmentation After 1t Iteration After 2" |teration Final (3 Iterations)
——

DSC = 81.39% DSC = 81.45% DSC = 82.19%
After 1%t Iteration After 2" |teration Final (10 Iterations)

NIH Case #09 DSC = 42.65% DSC = 54.39% DSC = 57.05% DSC = 76.82%

Fig. 3.8 Examples of segmentation results throughout the iteration process (best viewed in color).
We only show a small region covering the pancreas in the axial view. The terminating condition is
d > 0.95. Red, green and yellow indicate the prediction, ground-truth and overlapped regions,
respectively

work [36] significantly. The average accuracy over 82 samples increases remarkably
from 78.01 to 82.37%, and the standard deviation decreases from 8.20 to 5.68%,
implying that our approach is more stable. We also implement a recently published
coarse-to-fine approach [50], and get a 77.89% average accuracy. In particular, [36]
reported 34.11% for the worst case (some previous work [6, 45] reported even lower
numbers), and this number is boosted considerably to 62.43% by our approach.
We point out that these improvements are mainly due to the fine-tuning iterations.
Without it, the average accuracy is 75.74%, and the accuracy on the worst case
is merely 39.99%. Figure 3.8 shows examples on how the segmentation quality is
improved in two challenging cases.

3.5.3 Evaluation of the End-to-End Coarse-to-Fine Approach

3.5.3.1 Different Settings

We initialize the up-sampling layers in FCN-8s model [29] pretrained on Pas-
calVOC [9] with random weights, set the learning rate to be 10~* and run 80,000
iterations. Different options are evaluated, including using different kernel sizes in
saliency transformation, and whether to fine-tune the models using the predicted seg-
mentations as reference maps (see the description in Sect. 3.4.2). Quantitative results
are summarized in Table 3.2.
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Table 3.2 Accuracy (DSC, %) comparison of different settings of our approach. Please see the
texts in Sect. 3.5.3.1 for detailed descriptions of these variants

Model Average Max Min
3 x 3 kernels in saliency transformation (basic 83.47£5.78 | 90.63 57.85
model)

1 x 1 kernels in saliency transformation 82.85£6.68 | 90.40 53.44
5 x 5 kernels in saliency transformation 83.64 £5.29 | 90.35 66.35
Two-layer saliency transformation (3 x 3 kernels) 83.93 £5.43 90.52 64.78
Fine-tuning with noisy data (3 x 3 kernels) 83.99 £5.09 | 90.57 65.05

As the saliency transformation module is implemented by a size-preserved con-
volution (see Sect. 3.4.1), the size of convolutional kernels determines the range that
a pixel can use to judge its saliency. In general, a larger kernel size improves seg-
mentation accuracy (3 x 3 works significantly better than 1 x 1), but we observe the
marginal effect: the improvement of 5 x 5 over 3 x 3 is limited. As we use 7 x 7
kernels, the segmentation accuracy is slightly lower than that of 5 x 5. This may be
caused by the larger number of parameters introduced to this module. Another way
of increasing the receptive field size is to use two convolutional layers with 3 x 3
kernels. This strategy, while containing a smaller number of parameters, works even
better than using one 5 x 5 layer. But, we do not add more layers, as the performance
saturates while computational costs increase.

As described in Sect. 3.4.2, we fine-tune these models with images cropped from
the coarse-scaled segmentation mask. This is to adjust the models to the testing phase,
in which the ground-truth mask is unknown, so that the fine-scaled segmentation
needs to start with, and be able to revise the coarse-scaled segmentation mask. We
use a smaller learning rate (107°) and run another 40,000 iterations. This strategy
not only reports 0.52% overall accuracy gain, but also alleviates over-fitting (see
Sect.3.5.3.3).

In summary, all these variants produce higher accuracy than our step-wise coarse-
to-fine approach (82.37%), which verifies that the major contribution of our end-to-
end approach comes from our recurrent framework which enables joint optimiza-
tion. In the later experiments, we inherit the best variant learned from this section,
including in a large-scale multi-organ dataset (see Sect.3.6). That is to say, we use
two 3 x 3 convolutional layers for saliency transformation, and fine-tune the mod-
els with coarse-scaled segmentation. This setting produces an average accuracy of
84.50%, as shown in Table 3.3.

3.5.3.2 Performance Comparison
‘We show that our end-to-end coarse-to-fine approach works better than the step-wise

coarse-to-fine approach. As shown in Table 3.3, the average improvement over 82
cases is 2.13 £ 2.67%. The standard deviations (5.68% of step-wise approach and



60 Y. Zhou et al.

Table 3.3 Accuracy (DSC, %) comparison between our approach and the state of the art on the
NIH pancreas segmentation dataset [35]

Approach Average Max Min
Roth et al. [35] 71.42 +10.11 86.29 23.99
Roth et al. [36] 78.01 £ 8.20 88.65 34.11
Zhang et al. [50] 77.89 £ 8.52 89.17 43.67
Roth et al. [37] 81.27 £6.27 88.96 50.69
Cai et al. [3] 82.4+6.7 90.1 60.0
Our step-wise 82.37 £5.68 90.85 62.43
approach

Our end-to-end 84.50 +4.97 91.02 62.81
approach

4.97% of end-to-end approach) are mainly caused by the difference in scanning and
labeling qualities. A case-by-case study reveals that our end-to-end approach reports
higher accuracies on 67 out of 82 cases, with the largest advantage being +17.60%
and the largest deficit being merely —3.85%. We analyze the sources of improvement
in Sect.3.5.3.3.

We briefly discuss the advantages and disadvantages of using 3D networks. 3D
networks capture richer contextual information, but also require training more param-
eters. Our 2D approach makes use of 3D contexts more efficiently. At the end of each
iteration, predictions from three views are fused, and thus the saliency transformation
module carries these informations to the next iteration. We implement VNet [31], and
obtain an average accuracy of 83.18% with an 3D ground-truth bounding box pro-
vided for each case. Without the ground-truth, a sliding-window process is required
which is really slow—an average of 5min on a Titan-X Pascal GPU. In compar-
ison, our end-to-end approach needs 1.3 min, slower than our step-wise approach
(0.9 min), but faster than other 2D approaches [35, 36] (2—-3 min).

3.5.3.3 Diagnosis

Joint Optimization and Mutli-stage Cues

Our end-to-end approach enables joint training, which improves both the coarse
and fine stages individually. We denote the two networks trained by our step-wise
approach by I¢ and IF, and similarly, those trained in our approach by J¢ and JF,
respectively. In the coarse stage, IC reports 75.74% and J€ reports 78.23%. In the
fine stage, applying J& on top of the output of I€ gets 83.80%, which is considerably
higher than 82.37% (IF on top of I) but lower than 84.50% (J¥ on top of J°).
Therefore, we conclude that both the coarse-scaled and fine-scaled networks benefit
from joint optimization. A stronger coarse stage provides a better starting point, and
a stronger fine stage improves the upper bound.
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Fig. 3.9 Visualization of how recurrent saliency transformation works in coarse-to-fine segmen-
tation (best viewed in color). Segmentation accuracy is largely improved by making use of the
probability map from the previous iteration to help the current iteration. Note that three weight
maps capture different visual cues, with two of them focused on the foreground region, and the
remaining one focused on the background region

In Fig. 3.9, we visualize how the recurrent network assists segmentation by incor-
porating multi-stage visual cues. Itis interesting to see that in saliency transformation,
different channels deliver complementary information, i.e., two of them focus on the
target organ, and the remaining one adds most weights to the background region.
Similar phenomena happen in the models trained in different viewpoints and dif-
ferent folds. This reveals that except for foreground, background and boundary also
contribute to visual recognition [54].

Convergence

We study convergence, which is a very important criterion to judge the reliability of
our end-to-end approach. We choose the best model reporting an average accuracy
of 84.50%, and record the inter-iteration DSC throughout the testing process: d) =

=1 (@)
DSC{Z0D, 20} = E=Z A

After 1, 2, 3, 5, and 10 iterations, these numbers are 0.9037, 0.9677, 0.9814,
0.9908, and 0.9964 for our approach, and 0.8286,0.9477,0.9661,0.9743,and 0.9774
for our step-wise approach, respectively. Each number reported by our end-to-end
approach is considerably higher than that by the step-wise approach. The better
convergence property provides us with the opportunity to set a more strict terminating
condition, e.g., using thr = 0.99 rather than thr = 0.95.

When the threshold is increased from 0.95 to 0.99 in our end-to-end approach, 80
out of 82 cases converge (in an average of 5.22 iterations), and the average accuracy
is improved from 83.93% to 84.50%. On a Titan-X Pascal GPU, one iteration takes
0.2 min, so using thr = 0.99 requires an average of 1.3 min in each testing case.
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The Over-Fitting Issue

Finally, we investigate the over-fitting issue of our end-to-end approach by making
use of oracle information in the testing process. We use the ground-truth bounding
box on each slice, which is used to crop the input region in every iteration. Note
that annotating a bounding box in each slice is expensive and thus not applicable
in real-world clinical applications. This experiment is aimed at exploring the upper
bound of our segmentation networks under perfect localization.

With oracle information provided, our best model reports 86.37%, which is con-
siderably higher than the number (84.50%) without using oracle information. If we
do not fine-tune the networks using coarse-scaled segmentation (see Table 3.2), the
above numbers are 86.26% and 83.68%, respectively. This is to say, fine-tuning
prevents our model from relying on the ground-truth mask. It not only improves
the average accuracy, but also alleviates over-fitting (the disadvantage of our model
against that with oracle information is decreased by 0.67%).

3.6 JHMI Multi-organ Segmentation Experiments

To verify that our approach can be applied to other organs, the radiologists in our team
collect a large dataset which contains 200 CT scans, 11 abdominal organs and 5 blood
vessels. This corpus took 4 full-time radiologists around 3 months to annotate. To the
best of our knowledge, this dataset is larger and contains more organs than any public
datasets. We choose 5 most challenging targets including the pancreas and a blood
vessel, as well as two kidneys which are relatively easier. Other easy organs such as
the liver are ignored. To the best of our knowledge, some of these organs were never
investigated before, but they are important in diagnosing pancreatic diseases and
detecting the pancreatic cancer at an early stage. We randomly partition the dataset
into fourfold for cross-validation. Each organ is trained and tested individually. When
a pixel is predicted as more than one organs, we choose the one with the largest
confidence score.

Table 3.4 Comparison of coarse-scaled (C) and fine-scaled (F) segmentation by our step-wise
approach and end-to-end approach on our JHMI multi-organ dataset. A fine-scaled accuracy is
indicated by £ if it is lower than the coarse-scaled one. The pancreas segmentation accuracies are
higher than those in Table 3.3, due to the increased number of training samples and the higher
resolution in CT scans

Organ Stepwise-C Stepwise-F End-to-end-C End-to-end-F
adrenal g. 57.38 61.65 60.70 63.76
duodenum 67.42 69.39 71.40 73.42
gallbladder 82.57 £82.12 87.08 87.10
inferior v.c. 71.77 #71.15 79.12 79.69
kidney I. 92.56 92.78 96.08 96.21
kidney r. 94.98 95.39 95.80 95.97
pancreas 83.68 85.79 86.09 87.60
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Results of our two approaches are summarized in Table 3.4. Our end-to-end
approach performs generally better than the step-wise approach. It reports a 4.29%
average improvement over 5 challenging organs (the kidneys excluded). For some
organs, e.g., the gallbladder, we do not observe significant accuracy gain by itera-
tions.

3.7 JHMI Pancreatic Cyst Segmentation Experiments

Finally, we evaluate our approach on a cyst dataset collected by the radiologists in
our team. This dataset contains 131 contrast-enhanced abdominal CT volumes, and
each of them is manually labeled with both pancreas and pancreatic cyst masks. The
resolution of each CT scan is 512 x 512 x L, where L € [358, 1121] is the number
of sampling slices along the long axis of the body. The slice thickness varies from
0.5 to 1.0 mm. We split the dataset into 4 fixed folds, and each of them contains
approximately the same number of samples. We apply cross- validation, i.e., training
our approach on 3 out of 4 folds and testing it on the remaining one. The same
as before, we measure the segmentation accuracy by computing the Dice-Sgrensen
Coefficient (DSC) for each 3D volume. We report the average DSC score together
with other statistics over all 131 testing cases from 4 testing folds.

We report both pancreas and cyst segmentation results in Table 3.5, where we
summarize the results of pancreas segmentation, pancreatic cyst segmentation with-
out pancreas supervision (i.e., two-stage coarse-to-fine approach, w/o deep supervi-
sion), and pancreatic cyst segmentation with pancreas supervision (i.e., four-stage
strategy, w/deep supervision). It is interesting to see that without deep supervision,
our two approaches perform comparably with each other, but with deep supervi-
sion, end-to-end approach works better than the step-wise one. This is because, a
much better pancreas segmentation result (i.e., 83.81% compared with 79.32%) pro-
vides more accurate contextual information for cyst segmentation. In addition, our

Table 3.5 Accuracy (DSC, %) comparison on different targets (pancreas or cyst) and different
approaches. For cyst segmentation, w/o Deep Supervision means directly apply our coarse-to-fine
approaches on cyst segmentation, given the whole CT image, while w/Deep Supervision means
segmenting the pancreas first, and then segmenting the cyst in the input image cropped by the
pancreas region

Target Method Average Max Min

pancreas Step-wise 79.23 £9.72 93.82 69.54
pancreas End-to-end 83.81 £ 10.51 94.34 20.77
cyst Step-wise, w/o deep supervision 60.46 £+ 31.37 95.67 0.00
cyst End-to-end, w/o deep supervision | 60.73 + 32.46 96.50 0.00
cyst Step-wise, w/deep supervision 63.44 £27.71 95.55 0.00
cyst End-to-end, w/deep supervision 67.19 £27.91 96.05 0.00




64 Y. Zhou et al.

approaches yield even better results by adopting a stronger backbone, e.g., under
the setting of Step-Wise, w/Deep Supervision, when we employ DeepLab [5] as
the backbone network in the coarse stage for pancreas segmentation, we can even
achieve 69.38 4= 27.60% in DSC for cyst segmentation.

To the best of our knowledge, pancreatic cyst segmentation has been little studied
previously. A competitor is [7] published in 2016, which combines random walk
and region growth for segmentation. However, it requires the user to annotate the
region of interest (ROI) beforehand, and provide interactive annotations on fore-
ground/background voxels throughout the segmentation process. In comparison, our
approaches can be widely applied to automatic diagnosis, especially for the common
users without professional knowledge in medicine.

3.8 Conclusions

This work is motivated by the difficulty of small target segmentation, which is
required to focus on a local input region. Two coarse-to-fine approaches are proposed,
namely, step-wise coarse-to-fine and end-to-end coarse-to-fine. Step-wise algorithm
is formulated as a fixed-point model taking the segmentation mask as both input
and output. End-to-end algorithm jointly optimize over two networks, and generally
achieves better results compared with the step-wise one.

Our approaches are applied to three datasets for pancreas segmentation, multi-
organ segmentation, and pancreatic cyst segmentation, and outperforms the baseline
(the state-of-the-art) significantly. Confirmed by the radiologists in our team, these
segmentation results are helpful to computer-assisted clinical diagnoses.
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