
Chapter 10
Anisotropic Hybrid Network for
Cross-Dimension Transferable Feature
Learning in 3D Medical Images

Siqi Liu, Daguang Xu, S. Kevin Zhou, Sasa Grbic, Weidong Cai and Dorin
Comaniciu

Abstract While deep convolutional neural networks (CNN) have been success-
fully applied for 2D image analysis, it is still challenging to apply them to 3D
anisotropic volumes, especially when the within-slice resolution is much higher than
the between-slice resolution and when the amount of 3D volumes is relatively small.
On one hand, direct learning of CNN with 3D convolution kernels suffers from the
lack of data and likely ends up with poor generalization; insufficient GPU mem-
ory limits the model size or representational power. On the other hand, applying
2D CNN with generalizable features to 2D slices ignores between-slice informa-
tion. Coupling 2D network with LSTM to further handle the between-slice informa-
tion is not optimal due to the difficulty in LSTM learning. To overcome the above
challenges, 3D anisotropic hybrid network (AH-Net) transfers convolutional fea-
tures learned from 2D images to 3D anisotropic volumes. Such a transfer inherits
the desired strong generalization capability for within-slice information while natu-
rally exploiting between-slice information for more effective modeling.We show the
effectiveness of the 3DAH-Net on two examplemedical image analysis applications,
namely, lesion detection from a digital breast tomosynthesis volume, and liver, and
liver tumor segmentation from a computed tomography volume.
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10.1 Introduction

3D volumetric images (or volumes) are widely used for clinical diagnosis, surgical
planning, and biomedical research. The 3D context information provided by such
volumetric images are important for visualizing and analyzing the object of interest.
However, given the added dimension, it is more time-consuming and sometimes
harder to interpret 3D volumes than 2D images by machines. Many previous studies
use convolutional neural networks (CNN) to extract the representation of structural
patterns of interests in human or animal body tissues.

Due to the special imaging settings, many imaging modalities come with
anisotropic voxels, meaning not all the three dimensions have equal resolutions. For
example, in the 3D volumes of digital breast tomosynthesis (DBT), and sometimes
computed tomography (CT), the image resolution in xy plane/slice (or within-slice
resolution) is more than ten times higher than that of the z resolution (or between-
slice resolution). Thus, the xy slices preserve much more information than the z
dimension. In DBT images, only the spatial information within the xy-plane can be
guaranteed. However, the 3D context between xy slices, even with a slight misalign-
ment, still carries meaningful information for analysis (Fig. 10.1).

Directly applying 3D CNN to such images remains a challenging task due to the
following reasons: (1) It may be hard for a small 3 × 3 × 3 kernel to learn useful
features from anisotropic voxels, because of the different information density along
each dimension. (2) Theoreticallymore features are needed in 3Dnetworks compared
to 2D networks. The capability of 3D networks is bounded by the GPU memory,
constraining both the width and depth of the networks. (3) Unlike 2D computer
vision tasks which nowadays can make use of the backbone networks pretrained

Fig. 10.1 The example anisotropic volumes of DBT and CT are shown in the left column. Such
volumes contain voxels with much higher within-slice resolution rx × ry than the between-slice
resolution rz
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using millions of 2D images [21], 3D tasks mostly have to train from scratch, and
hence suffer from the lack of large 3D datasets. In addition, the high data variations
make the 3D networks harder to be trained. Also, 3D CNNs trained on such small
image datasets with relatively small 3D context are hard to generalize to unseen data.

Besides the traditional 3D networks built with 1 × 1 × 1 and 3 × 3 × 3 kernels,
there are other methods for learning representations from anisotropic voxels. Some
studies process 2D slices separately with 2D networks [14]. Tomake better use of the
3D context, more than one image slice is used as the input for 2D networks [12, 24].
The 2D slices can also be viewed sequentially by combining a fully convolutional
network (FCN) architecture with convolutional LSTM to view the adjacent image
slices as a time series to distill the 3D context from a sequence of abstracted 2D
context [5]. There are also a few studies using anisotropic convolutional kernels to
distribute more learning capability on the xy-plane than on the z-axis [2, 11, 22].

In this chapter, we present the 3D anisotropic hybrid network (AH-Net) [15] to
learn informative features from images with anisotropic resolution. To obtain the 3D
AH-Net, we first train a 2D fully convolutional ResNet [17] which is initialized with
pretrainedweights andusesmultiple 2D image slices as inputs. The feature encoder of
such a 2D network is then transformed into a 3D network by extending the 2D kernel
with one added dimension. Then we add a feature decoder subnetwork to extract the
3D context. The feature decoder consists of anisotropic convolutional blocks with
3 × 3 × 1 and 1 × 1 × 3 convolutions.Different anisotropic convolutional blocks are
combinedwith dense connections [8]. Similar toU-Net [20], we use skip connections
between the feature encoder and the decoder. A pyramid volumetric pooling module
[25] is stacked at the end of the network before the final output layer for extracting
multiscale features. Since AH-Net can make use of 2D networks pretrained with
large 2D general image datasets such as ImageNet [21], it is easier to train as well
as to generalize. The anisotropic convolutional blocks enable it to exploit the 3D
context. With end-to-end inference as a 3D network, AH-Net runs much faster than
the conventional multichannel 2D networks regarding the GPU time required for
processing each 3D volume.

10.2 Related Work

It is hard for conventional 3D neural networks with isotropic 3 × 3 × 3 kernels to
extract robust representations from 3D volumes with anisotropic resolution. The
most intuitive approach is to resample the images to isotropic resolutions [16]. This
would work when the difference between the three dimensions are small, and the
spatial information betweendifferent slices is accurate.When the z resolution ismuch
smaller than the xy resolution, the majority of voxels added by image resampling
are redundant, thus introducing unnecessary extra computational cost. It may also
result in a loss of information if downsampling happens in the xy-direction.

Instead of using 3D networks, some studies deal with the voxel anisotropy using
2D networks. DeepEM3D-Net [24] has only two 3D convolution layers to integrate
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3D information in the early stages and performs 2D convolution for the rest of the
following layers in an FCN. The input to DeepEM3D-Net is a stack of 2D image
slices. The resultant 3D segmentation is obtained by concatenating the 2D output
slices. HDenseNet [12] applies 2D networks on all image slices at first. Then a 3D
DenseUNet is applied to the concatenated 3D output volume to obtain the final result.
Different from our proposed network, HDenseNet does not have shared convolutions
between the 2D and 3D networks. Also, we use anisotropic 3D convolutional blocks
to replace the isotropic 3D convolutions.

A bidirectional convolutional LSTM (BDC-LSTM) and an FCN model are com-
bined to view slices as a time series [5]. BDC-LSTM is trained to exploit the 3D
contexts by applying a series of 2D convolutions on the xy-plane in a recurrent
fashion to interpret 3D contexts while propagating contextual information in the z-
direction. The FCNmodel is used for extracting the initial 2D feature maps which are
used as the inputs to BDC-LSTM. The final output is obtained from the BDC-LSTM
model with a softmax layer. Though the idea of fusing the 2D features to maintain
the between-slice consistency is similar to our proposed method, we believe this can
be achieved with stacked anisotropic convolution blocks, which are easier to train
and to generalize than the convolutional LSTM.

Some studies use 3D convolutional kernels with anisotropic sizes to distribute
more learning capability to the xy-plane. For example, 9 × 9 × 5 convolutions are
used in [2]. However, large convolution kernels would bring higher computational
cost. Two more recent studies [11, 18, 22] use small kernels to simulate the large
anisotropic kernels. The convolution modules in [11] starts with a 3 × 1 × 1 convo-
lution, followed by two 3 × 3 × 3 convolutions. Similar to our work, all the isotropic
convolutions are replaced by 3 × 3 × 1 and 1 × 1 × 3 convolutions in [18, 22]. Sev-
eral possible designs of combining the 3 × 3 × 1 and 1 × 1 × 3 kernels are discussed
in a recent paper [18] that focuses on video learning. Our network is different to the
ones in [18, 22] since we use the anisotropic 3D convolutions only in the feature
decoder while the encoder is locked with pretrained weights transferred from a 2D
network. It allows the proposed AH-Net to use any 2D fully convolutional networks
pretrained on large-scale datasets for initializing the encoder network. In [23], the
authors show that the network with pretrained network could be significantly helpful
to train 3D models for volumetric segmentation.

10.3 Anisotropic Hybrid Network

The AH-Net consists of a feature encoder and a feature decoder. The encoder, trans-
formed from a 2D network, is designed for extracting the deep representations from
2D slices with high resolution. The decoder built with densely connected blocks of
anisotropic convolutions is responsible for exploiting the 3D context andmaintaining
the between-slice consistency. The network training is performed in two stages: the
encoder is learned, then the 3D decoder is added and fine-tuned with the encoder
parameters locked. To perform end-to-end hard-voxel mining, we use the focal loss
(FL) originally designed for object detection [13].
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10.3.1 Learning a Multichannel 2D Feature Encoder

We train a 2D multichannel global convolutional network (MC-GCN) similar to
the architecture proposed in [17] to extract the 2D within-slice features at different
resolutions, as shown in Fig. 10.2. In this chapter, we choose the ResNet50 model
[7] as the backbone network which is initialized by pretraining with the ImageNet
images [21], although other pretrained networks would work similarly. The network
is then fine-tuned with 2D image slices extracted from the 3D volumes. The input

Fig. 10.2 The network architecture for pretraining the 2D encoder network multichannel global
convolutional neural network (MC-GCN). The ResNet50 is used as the backbone network, initial-
ized with ImageNet images. The global convolutional network modules and refinement modules
[17] are added to the encoder network to increase the receptive field during the pretraining as well as
to increase the output response map to the original resolution. Conv K × K/S represents a convo-
lution layer with the kernel size K and the stride size S in each dimension. The upsampling module
(Up) consists of a Conv 1 × 1 projection layer and a bilinear upsampling layer
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to this network is three neighboring slices (treated as RGB channels). Thus, the
entire architecture of the ResNet50 remains unchanged. The multichannel 2D input
could enable the 2D network to fuse the between-slice context at an early stage.
A decoder is added to accompany the encoder to upscale the response map to the
original resolution.We choose the decoder architecture with the global convolutional
networks (GCN) and refinement blocks [17]. The GCN module simulates a large
K × K convolutional kernel by decomposing it into two 1D kernels (1 × K and
K × 1). Two branches containing the 1D kernels permuted in different orders are
merged by summation. The output of eachGCNmodule contains the same number of
output maps as the final outputs. The large kernels simulated byGCNs ensure that the
network has a large receptive field at each feature resolution. Each refinement block
contains two 3 × 3 convolutions with a ReLU activation in the middle. The input of
each refinement block is also added to its output to form a residual connection. At
the end of each encoder resolution level, the features are fed into GCNmodules with
the kernel sizes of 63, 31, 15, 9, 7, 5, respectively. The output features are fed into a
refinement block and summed with the features upsampled from a lower resolution
level. The summed features are fed into another refinement block and upsampledwith
a 1 × 1 convolution and a bilinear upsampling layer. The final output has the same
resolution as the image input. The decoder has only a small number of parameters
with little computational cost. The lightweight decoder makes the encoder features
easier to be transferred to the 3DAH-Net since majority of the feature learning relies
on the encoder network.

10.3.2 Transferring the Learned 2D Net to 3D AH-Net

The architecture of the proposed 3D anisotropic hybrid network (AH-Net) is shown
in Fig. 10.3. After the 2D MC-GCN network converges, we extract the parameters
of its encoder and transfer them to the corresponding encoder layers of AH-Net. The
decoder part of the 2D MC-GCN is discarded and instead, we design a new decoder
for the AH-Net that consists of multiple levels of densely connected blocks, followed
by a pyramid volumetric pooling module. The parameters of the new decoder are
randomly initialized. The input and output of AH-Net are now 3D patches, similar to
other conventional 3D CNN. The transformation of convolution tensors from 2D to
3D is illustrated in Fig. 10.4, which aims to perform 2D convolutions on 3D volumes
slice by slice in the encoder part of AH-Net.

10.3.2.1 Notations

A 2D convolutional tensor is denoted by T i
n×m×h×w, where n, m, h, and w, respec-

tively, represent the number of output channels, the number of input channels, the
height, andwidth of the i th convolution layer. Similarly, a 3Dweight tensor is denoted
by T i

n×m×h×w×d where d is the filter depth. We use P (b,a,c,d)(Ta×b×c×d) to denote
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Fig. 10.3 The architecture of 3D AH-Net. The feature encoder with AH-ResNet blocks is trans-
ferred from the pretrained 2D network with 1 × 1 × 1 and 3 × 3 × 1 convolutions. The features
are then processed with the AH-Net decoders which are designed with 3 × 3 × 1 and 1 × 1 × 3
convolutional blocks. Feature summation is used instead of concatenation as in [4] to support more
feature maps with less memory consumption. The pyramid pooling [25] is used for extracting the
multiscale feature responses. We hide the batch normalization [9] and ReLu layers for brevity. The
weights of the blocks with black borders are transformed from the 2D MC-GCN

Fig. 10.4 Transforming the 2D convolutional weight tensor T 2D to 3D T 3D , wherem and n are the
number of features and channels of a layer, respectively. The first layer weight tensor T 1

64×3×7×7 is
transformed to T 1

64×1×7×7×3. The other convolutional kernels are transformed by adding an extra
dimension

the dimension permutation of a tensor Ta×b×c×d , resulting in a new tensor Tb×a×c×d

with the first and second dimensions switched. P (a,∗,b,c,d)(Ta×b×c×d) adds an identity
dimension between the first and second dimensions of the tensor Ta×b×c×d and gives
Ta×1×b×c×d . We define a convolutional layer as Conv Kx × Ky × Kz/(Sx , Sy, Sz),
where Kx , Ky , and Kz are the kernel sizes; Sx , Sy , and Sz are the stride step size in each
direction. Max pooling layers are denoted by MaxPool Kx × Ky × Kz/(Sx , Sy, Sz).
The stride is omitted when a layer has a stride size of one in all dimensions.
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10.3.2.2 Input Layer Transform

The input layer of the 2DMC-GCN contains a convolutional weight tensor T 1
64×3×7×7

inherited from its ResNet50 backbone network. The 2D convolutional tensor
T 1
64×3×7×7 is transformed into 3D as

P (1,∗,3,4,2)(T 1
64×3×7×7) = T 1

64×1×7×7×3 (10.1)

in order to form a 3D convolution kernel that convolves three neighboring slices. To
keep the output consistent with the 2D network, we only apply stride 2 convolutions
on the xy-plane and stride 1 on the third dimension. This results in the input layer
Conv 7 × 7 × 3/(2, 2, 1). To downsample the z-dimension, we use a MaxPool 1 ×
1 × 2/(1, 1, 2) to fuse every pair of the neighboring slices. An additional MaxPool
3 × 3 × 3/(2, 2, 2) is used to keep the feature resolution consistent with the 2D
network.

10.3.2.3 ResNet Block Transform

All the 2D convolutional tensors T i
n×m×1×1 and T i

n×m×3×3 in the ResNet50 encoder
are transformed as

P (1,2,3,4,∗)(T i
n×m×1×1) = T i

n×m×1×1×1 (10.2)

and
P (1,2,3,4,∗)(T i

n×m×3×3) = T i
n×m×3×3×1. (10.3)

In this way, all the ResNet Conv 3 × 3 × 1 blocks as shown in Fig. 10.3 only per-
form 2D slice-wise convolutions on the 3D volume within the xy-plane. The original
downsampling between ResNet blocks is performed with Conv 1 × 1/(2, 2). How-
ever, in a 3D volume, a Conv 1 × 1 × 1/(2, 2, 2) skips a slice for every step on
the z-dimension. This would miss important information when the image only has
a small number of slices along the z-dimension, especially for detection tasks. We
therefore use a Conv 1 × 1 × 1/(2, 2, 1) followed by aMaxPool 1 × 1 × 2/(1, 1, 2)
to downsample the 3D feature maps between the ResNet blocks as shown in the
AH-Downsample block in Fig. 10.3. This MaxPooling simply takes the maximum
response along the z-direction between two neighboring slices. Unlike the previous
studies that avoided downsampling along the z-direction [11], we find it important for
allowing the use of large and deep networks on 3D data with limited GPU memory.
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10.3.3 Anisotropic Hybrid Decoder

Accompanying to the transformed encoder, an anisotropic 3D decoder subnetwork
is added to exploit the 3D anisotropic image context. In the decoder, anisotropic
convolutional blocks with Conv 1 × 1 × 1, Conv 3 × 3 × 1, and Conv 1 × 1 × 3 are
used. The features are passed into an xy bottleneck block at first with a Conv 3 ×
3 × 1 surrounded by two layers of Conv 1 × 1 × 1. The output is then forwarded to
another bottleneck blockwith a Conv 1 × 1 × 3 in themiddle and summedwith itself
before forwarding to the next block. This anisotropic convolution block decomposes a
3D convolution into 2D and 1D convolutions. It receives the inputs from the previous
layers using a 2D convolution at first, preserving the detailed 2D features. Conv
1 × 1 × 3 mainly fuses the within-slice features to keep the z-dimension output
consistent.

Three anisotropic convolutional blocks are connected as the densely connected
neural network [8] using feature concatenation for each resolution of encoded fea-
tures. Similar toLinkNet [4], the features received fromeach resolution of the encoder
are first projected to match the number of features of the higher encoder feature res-
olution using a Conv 1 × 1 × 1. They are then upsampled using the 3D tri-linear
interpolation and summed with the encoder features from a higher resolution. The
summed features are forwarded to the decoder blocks in the next resolution.

At the end of the decoder network, we add a pyramid volumetric pooling module
[25] to obtain multi-scaled features. The output features of the last decoder block
are first downsampled using four different Maxpooling layers, namely, MaxPool
64 × 64 × 1,MaxPool 32 × 32 × 1,MaxPool 16 × 16 × 1, andMaxPool 8 × 8 × 1
to obtain a feature map pyramid. Conv 1 × 1 × 1 layers are used to project each reso-
lution in the feature pyramid to a single response channel. The response channels are
then interpolated to the original size and concatenated with the features before down-
sampling. The final outputs are obtained by applying a Conv 1 × 1 × 1 projection
layer on the concatenated features.

Training AH-Net using the same learning rate on both the pretrained encoder
and the randomly initialized decoder would make the network difficult to optimize.
To train the 3D AH-Net, all the transferred parameters are locked at first. Only the
decoder parameters are fine-tuned in the optimization. All the parameters can be then
fine-tuned altogether afterward to the entire AH-Net jointly. Though it is optional
to unlock all the parameters for fine-tuning afterward, we did not observe better
performance.

10.4 Experimental Results

To demonstrate the efficacy and efficiency of the proposed 3D AH-net, we conduct
two experiments, namely, lesion detection from a digital breast tomosynthesis (DBT)
volume and liver tumor segmentation froma computed tomography (CT) volume.We
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use ADAM [10] to optimize all the compared networks with β1 = 0.9, β2 = 0.999,
and ε = 10−8.Weuse the initial learning-rate 0.0005 tofine-tune the 2Dmultichannel
GCN. Then, the learning rate is increased to 0.001 to fine-tune the AH-Net after the
2D network is transferred. We find that 3D networks need a larger learning-rate to
converge within a reasonable amount of time. All the networks are implemented in
Pytorch (http://pytorch.org).

10.4.1 Breast Lesion Detection from DBT

We use an in-house database containing 2809 3D DBT volumes acquired from 12
different sites globally. DBT is an advanced form of mammography, which uses low-
doseX-rays to image the breast. Different from 2Dmammography that superimposes
3D information into one 2D image, DBT creates 3D pictures of the breast tissue, and
hence allows radiologists to read these pictures and detect breast cancer more easily,
especially in dense breast tissues. The xy-plane of DBT images has a high spatial
resolution of 0.085mm × 0.085mm which is much larger than the z-dimension
of 1mm. The structures in the z-dimension are not only is compressed during the
imaging process, but the 3D volumetric information also has large variations due to
imaging artifacts.

We have experienced radiologists annotate and validate the lesions in DBT vol-
umes, which might contain zero to several lesions. Each lesion is approximately
annotated with a 3D bounding box. To train the proposed networks as lesion detec-
tion networks, we generate 3D multivariant Gaussian heatmaps that have the same
sizes as the original images as

f (p) =
∑

μi,�i

exp(− 1
2 (p − μi)

T�i(p − μi))√
det(2π�i)

, (10.4)

where p is a 3D coordinate x, y, z; μi is the center coordinate of each lesion 3D
bounding box; and �i is the covariant matrix of the i-th Gaussian determined by the
height, width, and depth of the 3D bounding box. Please note that we do not directly
predict the bounding box coordinates as the general object detection methods such as
Faster RCNN [19] because it is sometimes challenging to define the exact boundary
of a breast lesion. Also, the voxel-wise confidence maps of lesion presence could be
more helpful for clinical decision support than bounding boxes.

We randomly split the database into the training and the testing sets as described
in Table10.1. A volume or a 3D patch is considered positive if at least one lesion is
annotated by the radiologist. We ensure the images from the same patient could only
be found either in the training or the testing set. For training, we extract 256 × 256 ×
32 3D patches. 70% of the training patches are sampled as positives with at least
one lesion included, considering the balance between the voxels within and without

http://pytorch.org
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Table 10.1 The numbers of volumes (#Volumes), lesion-positive volumes (#Positive) and lesions
(#Lesions) in the evaluated DBT dataset

#Volumes #Positives #Lesions

Train 2678 1111 1375

Test 131 58 72

Table 10.2 The number of convolutional layers (#Conv Layers) and model float parameters
(#Parameters), respectively, in 2D-UNet, 3D-UNet, ResNet50, GCN, and AH-Net. ResNet50 is
shown here as a reference to be compared with GCN with a simple decoder added

Network #Conv Layers #Parameters

2D-UNet 15 28,254,528

3D-UNet 15 5,298,768

*ResNet50 53 23,507,904

GCN 94 23,576,758

AH-Net 123 27,085,500

Table 10.3 The GPU inference time (ms) of different networks on a 384 × 256 × 64 volume
computed by averaging 1000 inferences with a NVIDIA GTX 1080Ti

2D U-Net 3D U-Net MC-GCN 3D AH-Net

ms 699.3 2.3 775.2 17.7

a breast lesion. The patches are sampled online asynchronously with the network
training to form the mini-batches.

Along with the proposed networks, we also train 2D and 3D U-Nets with the
identical architecture and parameters [3, 20] as two baseline comparisons. The 2D
U-Net is also trained with input having three input channels. The 3DU-Net is trained
with the same patch sampling strategies as the AH-Net. All the networks are trained
till convergence then the L2 loss function is replaced with the Focal Loss [13] for
hard-voxel mining. The number of convolutional layers and parameters is shown in
Table10.2. Using 2D networks, such as the MC-GCN and the 2D U-Net, to process
3D volumes involves repeatedly feeding duplicated images slices. Thus, they could
be slower than the 3D networks when they are used for processing 3D volumes. We
measure the GPU inference time of four networks by forwarding a 3D DBT volume
of size 384 × 256 × 64 1000 times on an NVIDIA GTX 1080Ti GPU. The time
spent on operations such as volume slicing is not included in the timing. The mean
GPU time (ms) is shown in Table10.3. The GPU inference of AH-Net is 43 times
faster than MC-GCN though AH-Net has more parameters. The speed gain could be
brought mostly by avoiding repetitive convolutions on the same slices required by
multichannel 2D networks.

Non-maximal suppression is performed on the network output map to obtain the
lesion locations. The network responses at the local maximal voxels are considered
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Fig. 10.5 Two example cases that AH-Net could detect the lesions that MC-GCNmissed using the
identical encoder weights

Fig. 10.6 Two example breast lesions that neither MC-GCN nor AH-Net was able to detect

as the confidence scores of the cancerous findings. Figure10.5 shows some visual
comparisons of the network’s output on two example cases that AH-Net could detect
the lesions missed by MC-GCN. Figure10.6 shows two example cases with lesions
surrounded by dense breast tissues that neither MC-GCN nor AH-Net was able to
detect.

By altering a threshold to filter the response values, we can control the balance
between the false positive rate (FPR) and true positive rate (TPR). The lesion detected
by the network is considered a true positive finding if the maximal point resides
in a 3D bounding box annotated by the radiologist. Similarly, if a bounding box
contains a maximal point, we consider it is detected by the network. The maximal
points are otherwise considered as false positive findings. We evaluate the lesion
detection performance by plotting the free response operating characteristic (FROC)
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Fig. 10.7 The free response operating characteristic (FROC) curves regarding the lesion detection
performance

curves, which measures the true positive rate (TPR) against the number of false
positive (#FP) allowed per volume. TPR represents the percentage of lesions that
have been successfully detected by the network. FPR represents the percentage of
lesions that the network predicted that are false positives. As shown in Fig. 10.7,
the proposed AH-Net outperforms both the 2D and 3D U-Net with large margins.
Compared to the performance of the 2D network (multichannel GCN), the 3D AH-
Net generates higher TPR for a majority of thresholds, except the region around 0.05
per volume false positives. It is noticeable that AH-Net also obtains nearly 50% TPR
even when only 0.01 false positive findings are allowed per volume. Interestingly,
the performance of 3D-UNet is slightly worse than that of 2D-UNet, though the DBT
volumes have three dimensions. Thismight be caused by the anisotropic resolution of
DBT images and the limited number of parameters constrained by the GPUmemory.
The FROC numbers are summarized in Table10.4.

Table 10.4 The quantitative metrics of the compared networks on the DBT dataset. True positive
rate (TPR) sampled at five different numbers of false positive (FP) findings allowed are shown in
the first five columns

FP=0.01 FP=0.05 FP=0.10 FP=0.15 FP=0.20 FP=0.25

2D U-Net 0.4238 0.4767 0.5181 0.5723 0.6166 0.6506

3D U-Net 0.2448 0.3877 0.4381 0.5592 0.5738 0.5733

GCN 0.3385 0.6727 0.6727 0.6909 0.7018 0.7272

AH-Net 0.4931 0.6000 0.7272 0.7454 0.7818 0.7818
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10.4.2 Liver and Liver Tumor Segmentation from CT

The second evaluation dataset was obtained from the liver lesion segmentation chal-
lenge in MICCAI 2017 (lits-challenge.com), which contains 131 training and 70
testing 3D contrast-enhanced abdominal CT scans. Liver lesions are one of the com-
monest cancer worldwide. It is estimated that 28920 people will die of liver lesion
and 40710 new cases will be diagnosed in 2017 [1]. Automatic segmentation of
liver and lesion is challenging due to the heterogeneous and diffusive appearance
of both liver and lesions. Also, the number, shape, and location of the lesions vary
a lot among different volumes. The data and ground-truth masks were provided by
various clinical sites around the world. The ground-truth masks contain both liver
and lesion labels. Most CT scans consist of anisotropic resolution: the between-slice
resolution ranges from 0.45 to 6.0mm while the within-slice resolution varies from
0.55 to 1.0mm. All scans cover the abdominal regions but may extend to head and
feet. Other than the liver lesion, other diseases may also exist in these data, which
further increases the task difficulty.

In preprocessing, the abdominal regions are truncated from the CT scans using
the liver center biomarker detected by a reinforcement learning based algorithm [6].
While this step makes the network concentrate on the targeting region, its accuracy
is not critical as we choose a relatively large crop region which usually ranges from
the middle of the lung to the top of the pelvis. The image intensity is truncated to the
range of [−125, 225] HU based on the intensity distribution of liver and lesion in the
training data. Due to the limited number of training data, we applied random rotation
(within ±20 degree in the xy-plane), random scaling (within ±0.2 in all directions),
and random mirror (within xy-plane) to reduce overfitting.

We first train the MC-GCN with pretrained ResNet50 as the backbone network.
The input size of stacked 2D slices is 512 × 512 with three channels. After con-
vergence, the weights of the encoder part of MC-GCN are transformed to the corre-

Table 10.5 The liver lesion segmentation (LITS) challenge results with the dice global (DG)
and dice per case (DPC). Please refer to the challenge leaderboard for the latest results (lits-
challenge.com/#results)

Lesion Liver

Method DG DPC DG DPC

leHealth 0.794 0.702 0.964 0.961

H-DenseNet [12] 0.829 0.686 0.965 0.961

hans.meine 0.796 0.676 0.963 0.960

medical 0.783 0.661 0.951 0.951

deepX 0.820 0.657 0.967 0.963

superAI 0.814 0.674 – –

GCN 0.788 0.593 0.963 0.951

3D AH-Net 0.834 0.634 0.970 0.963
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Fig. 10.8 The example liver lesion segmentation results from 3DAH-Net. The segmented contours
of liver (blue) and liver lesion (pink) are overlaid on three slices viewed from different orientations
(Axial, Coronal and Sagittal). The segmentations are rendered in 3D on the right

Fig. 10.9 Multi-view slices of the example test CT volume 1 of the LITS challenge
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sponding layers of a 3DAH-Net, which is then fine-tuned using 3D patches with size
192 × 192 × 64. The weights of other layers are randomly initialized. In the training
of both networks, the cross-entropy loss is used at the beginning until convergence,
which is then replaced by the Focal Loss for hard-voxel mining [13].

The performance of AH-Net is listed in Table10.5, together with other six top-
ranked submissions retrieved from the LITS challenge leaderboard. These submis-
sions employ various types of neural network architectures: 2D, 3D, 2D–3D hybrid,
and model fusion. Two evaluation metrics are adopted: (1) Dice Global (DG) which
is the dice score combining all the volumes into one; (2) dice per case (DPC) which is
the average of the dice scores of every single case. The dice score between twomasks
is defined as DICE(A,B) = 2|A ∩ B|/(|A| + |B|). Our results achieve the state-of-
the-art performance in three of the four metrics, including the dice global score of the
lesions, dice global, and dice per case score of the livers, which prove the effective-

Fig. 10.10 Multi-view slices of the example test CT volume 2 of the LITS challenge
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ness of AH-Net for segmenting 3D images with diverse anisotropic resolution. Some
example visual results are shown in Fig. 10.8. In Figs. 10.9 and 10.10, we visually
compare the results from MC-GCN and AH-Net on two different volumes acquired
from the LITS challenge. AH-Net generated less false positive areas in the upper and
the lower boundaries of both the lesion and liver.

10.5 Conclusion

In this chapter, we propose the 3D anisotropic hybrid network (3D AH-Net) which
is capable of transferring the convolutional features of 2D images to 3D volumes
with anisotropic resolution. By evaluating the proposed methods on both a large-
scale in-house DBT dataset and a highly competitive open challenge dataset of CT
segmentation, we show our network could obtain the state-of-the-art results. AH-
Net generalizes better than the traditional 3D networks, such as 3D U-Net [3] due to
the features transferred from a 2D network and the anisotropic convolution blocks.
The GPU inference of AH-Net is also much faster than piling the results from a 2D
network. Though AH-Net is designed for anisotropic volumes, we believe it could
also be applied to volumes with resolution closed to being isotropic, such as CT and
MRI.

Disclaimer: This feature is based on research, and is not commercially available.
Due to regulatory reasons, its future availability cannot be guaranteed.
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