
Chapter 1
Pancreas Segmentation in CT and MRI
via Task-Specific Network Design and
Recurrent Neural Contextual Learning

Jinzheng Cai, Le Lu, Fuyong Xing and Lin Yang

Abstract Automatic pancreas segmentation in radiology images, e.g., computed
tomography (CT), and magnetic resonance imaging (MRI), is frequently required by
computer-aided screening, diagnosis, and quantitative assessment. Yet, pancreas is
a challenging abdominal organ to segment due to the high inter-patient anatomical
variability in both shape and volume metrics. Recently, convolutional neural net-
works (CNN) have demonstrated promising performance on accurate segmentation
of pancreas. However, the CNN-based method often suffers from segmentation dis-
continuity for reasons such as noisy image quality and blurry pancreatic boundary.
In this chapter, we first discuss the CNN configurations and training objectives that
lead to the state-of-the-art performance on pancreas segmentation. We then present
a recurrent neural network (RNN) to address the problem of segmentation spatial
inconsistency across adjacent image slices. The RNN takes outputs of the CNN and
refines the segmentation by improving the shape smoothness.
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1.1 Introduction

Detecting unusual volume changes and monitoring abnormal growths in pancreas
using medical images is a critical yet challenging task for computer-aided diagno-
sis (CAD). This would require to delineate pancreas from its surrounding tissues in
radiology images, e.g., computed tomography (CT), and magnetic resonance imag-
ing (MRI) scans. The accurate segmentation of pancreas delivers more reliable and
quantitative representations than the cross section diameter measurement and it may
facilitate the producing of segmentation-based biomarkers, such as volumetric mea-
surements and 3D shape/surface signatures. Moreover, automated rapid and accurate
segmentation of pancreas on the scale of processing thousands of image scans may
facilitate new protocols, findings, and insights for clinical trials. On the other hand,
manual pancreas segmentation is very expensive and sometimes even intractable on
the dataset at a very large scale. To fulfill this practical and important demand, many
efforts have been investigated to significantly boost the segmentation performance
in both CT and MRI modalities.

One major group on the automatic pancreas segmentation in CT images is based
on top-down multi-atlas registration and label fusion (MALF) [11, 17, 26, 27]. Due
to challenges from the high deformable shape and vague boundaries of the pancreas
in CT scans from various patients, the reported segmentation accuracy (measured in
Dice Similarity Coefficient or DSC) is limited in the range from 69.6 ± 16.7% [27]
to 78.5 ± 14.0% [11, 17] under leave-one-patient-out (LOO) evaluation protocol.
On the other hand, bottom-up deep CNN-based pancreas segmentation work [2, 8,
19–21, 30] have revealed promising results and steady performance improvements,
e.g. from 71.8 ± 10.7% [19], 78.0 ± 8.2% [20], to 81.3 ± 6.3% [21] evaluated
using the same NIH 82-patient CT dataset [6, 19] under fourfold cross-validation
(CV).

Deep learning-based approaches appear to demonstrate noticeably higher segmen-
tation accuracies and numerically more stable results (significantly lower in standard
deviation, or std). References [20, 21] are built upon the fully convolutional neural
network (FCN) architecture [13] and its variant [28]. However, [20, 21] both rely on
post-processing with random forest to further refine CNN’s outputs, which cannot
propagate errors back to the CNN model. Similarly, for pancreas segmentation on a
79-patient MRI dataset, [2] achieves 76.1 ± 8.7% in DSC, where graph-based result
fusion is applied. Therefore, an end-to-end trainable deep learning model for pan-
creas segmentation may be more desirable to achieve superior results. Additionally,
deep CNN-based bottom-up pancreas segmentation methods also have significant
advantages on run-time computational efficiency, such as 2∼4h [11] versus 2∼3m
[21] to process a new segmentation case.
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1.2 Convolutional Neural Network for Pancreas
Segmentation

With the goal of obtaining accurate segmentation for objects with complex shape
outlines, many deep learning approaches have been proposed [4, 13, 18, 28, 29]
to report good performances. Specifically, some of these models regularize deep
learning output with appearance constraint that image pixels sharing similar color
and location statistics would probably come from the same object category and this
leads to conditional random field (CRF) post-processing that presented in [4, 29]. On
the other hand, some methods propose to learn localized deep learning features. For
instance, deep supervision is proposed in [12, 28] forcing all convolutional layers to
learn effective and consistent low-level representations, e.g., edge and object bound-
ary. Meanwhile, U-Net architecture [18] makes full use of low-level convolutional
feature maps by projecting them back to the original image size. The dedicated back-
ward propagation combines convolutional layer features of multiple scales, thereby
boosting the accuracy of object segmentation.

1.2.1 Design of Network Architecture

Delineating the pancreas boundary from its surrounding anatomies in CT/MRI scans
is challenging due to its complex visual appearance and ambiguous outlines. For
example, Fig. 1.1 displays an example of the pancreas in CT andMRI images, where
the pancreas shares similar intensity values with other soft tissues and its boundary is
blurry where touching with other abdominal organs. These natures of pancreas seg-
mentation inspire us to combine virtues from both of the holistically nested network
(HNN) [28] andU-Net [18] andwe name the combination P-Net as it is designed task
specifically for pancreas segmentation. In Fig. 1.2, we visually depict the network
architecture of the proposed P-Net and the most correlated networks, i.e. HNN and
U-Net. The P-Net inherits the deep supervisions fromHNN and the skip connections
from U-Net for feature multi-scale aggregation.

Fig. 1.1 Examples of pancreas images in CT and MRI. The ground truth pancreas boundaries are
presented in (b) and (d) delineated in green. Best viewed in color
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Fig. 1.2 Network architecture of several popular CNN models for pancreas segmentation

1.2.2 Design of Model Training Strategy

Apart from the network architecture, the proposed task-specific design also includes
a strategy to train the P-Net from scratch. This is because the CT and MRI modali-
ties demonstrate very different image statistics from natural images. Thus, a direct
transfer of ImageNet [7] pretrained neural network to the medical domain could be
suboptimal. Similarly, to transfer the model from other medical tasks can also be
problematic for P-Net to achieve the optimal pancreas segmentation. During model
training, we also observe gradient-vanishing problem occurs when fine-tune the net-
work from pretrained models. Specifically, the top layers of the network will quickly
capture the hierarchical (conceptual) appearance of pancreas but leaving lower lay-
ers not well tuned as the magnitudes of gradients (backpropagated from the training
error) fastly decreased. To circumvent this problem, we propose to initialize P-Net
from scratch and train the network layer by layer.

To present the training algorithm of P-Net in formal, we denote the number of
steps for layer-by-layer training to be K . Then, the corresponding convolutional and
deconvolutional layers can be represented as {C1, . . . ,CK } and {D1, . . . ,DK }. We
also denote standard network operations as up-sampling to be Up(#), concatenation
to be Concat([·; ·]), and dimension reduction to be R(#). For representation clarity,
we use ◦ to denote the composition of two transformations and use

∏
for multi-

ple transformations. We drop pooling operations between convolutional layers for
simplicity.

First, we define the forward propagation as a combination of convolutional layers

Fk =
K+1−k∏

i=1

Ci. (1.1)

Then in P-Net, the feature map is up-scaled step-by-step util it restores the size of
the original input image. Specifically, when k equals 1, we have

Bk = Fk ◦ Dk , (1.2)

otherwise, the feature map process can be represented as

Bk = Concat([Bk−1 ◦Up(2); Fk ]) ◦ Dk . (1.3)
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At each scale (or step), the segmentation output is

Ŷk = Bk ◦Up (2K−k) ◦ R(1) ◦ Sigmoid , (1.4)

where the feature map Bk is first up-scaled by a factor of 2K−k such that restores the
size of the original input image. Its channel is then be reduced to 1 via R(1), and then
it passes through a sigmoid activation function Sigmoid to produce the segmentation
output at scale (or step) k as Ŷk .

The output Ŷk is a probability map on which the segmentation loss is measured
as

Lk = H (Ŷk ,Y ), (1.5)

where Y is the ground truth label map and H (·, ·) is the loss function, e.g. cross-
entropy loss. Thus, each unit module Bk has its own gradient back propagation path
that starts at the loss Lk and ends at the input image. It introduces deep supervision
to the bottom CNN layers and enables us to train P-Net from swallow to deep. More
specifically, the training of P-Net starts at k = 1 and increase k by 1 when Lk -plot
converges. The final segmentation result Ŷ is a weighted combination of the side
outputs as

Ŷ =
K∑

i=1

ωiŶi, (1.6)

and the overall objective for P-Net is,

L = H (Ŷ ,Y ) +
K∑

i=1

Li, (1.7)

where K = 5 delivers the best for pancreas segmentation. We summarize the train-
ing procedure in Algorithm1 and visually depict the semantic illustration of P-Net
structures at k = 1, k = 2, and k = 5, respectively, in Fig. 1.3.

Discussion: Although the network architecture of P-Net can be extended to pro-
cess 3D inputs [5], we maintain the current 2D architecture in model training and
inference because the 3D version can be computationally expensive while gaining

Fig. 1.3 Semantic illustration of the P-Net training algorithm
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no significant improvement in performance [30]. As a compromise, P-Net takes 3-
connected slices as its input when given the segmentation ground truth mask of the
middle slice. As explained in Sect. 1.3, P-Net is transformed into a lightweighted
3D model with RNN stacked to the end of it, which allows our model to capture
3D imaging information with minor extra computational loads. This is in a similar
spirit to employ RNN to regulate, process and aggregate CNN activations for video
classification and understanding [16].

Result: Ŷ , Ŷ1, Ŷ2, . . ., ŶK
K=5, convolutions: {C1, . . . ,CK }, deconvolutions: {D1, . . . ,DK };
Define: Fk=

∏K+1−k
i=1 Ci;

for k=1:K do
if k==1 then

Bk=Fk ◦ Dk ;
else

Bk=Concat([Bk−1 ◦ Up(2);Fk ]) ◦ Dk ;
end
Ŷk=Bk ◦ Up(2K−k ) ◦ R(1) ◦ Sigmoid;

Lk = H (Ŷk ,Y );

Optimize
∑k

i=1 Li until converge;
end
Ŷ = ∑K

i=1 ωi Ŷi;

L = H (Ŷ ,Y );

Optimize L + ∑K
i=1 Li until converge;

Algorithm 1: The training algorithm of P-Net.

1.2.3 Design of Loss Functions

Loss functions compare the segmented volumetric image (e.g., Ŷ ) with ground truth
annotation (i.e., Y ) and produces segmentation errors for model updating. Cross-
entropy loss is one of themost popular loss functions thatwidely used for foreground–
background segmentation. It is defined as

Lce = − 1

|Y |
∑

j∈Y
[yj log ŷj + (1 − yj) log(1 − ŷj)], (1.8)

where |Y | is the cardinality (or size) of Y representing the number of voxels in the
volumetric image. It can be observed in the formulation of Lce that errors from
every voxel are equally treated. However, it is common in medical volumes that the
anatomy of interest occupies only a very small region of the image. Thus, a direct
use of Lce will probably result in the foreground regions to miss or only partially
detect. To automatically balance the loss between foreground/background classes, a
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class-balanced cross-entropy is designed to remedy this problem. It is defined as

Lcbce = − β

|Y+|
∑

j∈Y+

log ŷj − 1 − β

|Y−|
∑

j∈Y−

log(1 − ŷj), (1.9)

where a class-balancing weight β is introduced on a per-voxel term basis. Specifi-
cally, we define β = |Y−|/|Y | and 1 − β = |Y+|/|Y |, where Y+ and Y− denote the
foreground and background ground truth label sets, respectively.

Apart from Lce and Lcbce, many work directly optimize evaluation metrics, e.g.
Jaccard index and Dice score. In terms of advantages, the Jaccard loss makes proce-
dures of model training and testing consistent and helps to generate threshold-free
probability maps. It is defined as

Ljac = L(Ŷ ,Y ) = 1 − |Y+
⋂

Ŷ+|
|Y+

⋃
Ŷ+|

= 1 −
∑

j∈Y+(yj ∧ ŷj)
∑

j∈Y−(yj ∨ ŷj)
= 1 −

∑
j∈Y+(1 ∧ ŷj)

|Y+| + ∑
j∈Y−(0 ∨ ŷj)

. (1.10)

Practically, ŷj can be relaxed to the value of foreground probability ∈ [0, 1] and Ljac

is then be approximated by

L̃jac = 1 −
∑

f ∈Y+ min(1, ŷf )

|Y+| + ∑
b∈Y− max(0, ŷb)

= 1 −
∑

f ∈Y+ ŷf

|Y+| + ∑
b∈Y− ŷb

. (1.11)

The model is then updated by gradient flows as

∂L̃jac

∂ ŷj
=

⎧
⎪⎪⎨

⎪⎪⎩

− 1
|Y+|+∑

b∈Y− ŷb
, for j ∈ Y+

∑
f ∈Y+ ŷf

(|Y+|+∑
b∈Y− ŷb)2

, for j ∈ Y−
(1.12)

Since the inequality (
∑

j∈Y+ ŷj) < (|Y+| + ∑
j∈Y− ŷj) holds, the Jaccard loss Ljac as-

signs greater gradients to foreground pixels than the background ones, which intrin-
sically balances the foreground and background classes. It empirically works better
than the cross-entropy loss Lce and classed balanced cross-entropy loss Lcbce when
segmenting small-sized objects, e.g., pancreas in CT/MRI images.

1.2.4 Experimental Results

1.2.4.1 Experimental Setup

Datasets and evaluation metrics We use two fully annotated pancreas datasets to
validate the presented methods. The first one is the NIH-CT dataset [6, 19, 20] that
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is publicly available and contains 82 abdominal contrast-enhanced 3D CT scans. We
organize an in-house MRI dataset [2] that consists of 79 abdominal T1-weighted
MRI scans. We treat the CT and MRI datasets as two independent groups and repeat
the experiment on both of them. Results from both groups are evaluated to validate
the generalization of segmentation methods.

In image preprocessing, we use simple morphological operations to find the ab-
domen area and have it extracted from the whole image volume. To generate images
for training, we use ground truth mask to allocate pancreas and then crop a 256×256
sub-image centered at the target pancreas region. The cropped image patch is then
fed for model training. In the data inference phase, we scan testing images with the
256×256 scanning window and fuse outputs together to generate the final segmen-
tation result.

Following the evaluation strategy in [2, 19, 20], we conduct fourfold cross-
validation (CV) for the reported segmentation result. The set of used evaluation met-
rics includes the Dice similarity coefficient (DSC): DSC = 2(|Y+ ∩ Ŷ+|)/(|Y+| +
|Ŷ+|), Jaccard index (JI): JI = (|Y+ ∩ Ŷ+|)/(|Y+ ∪ Ŷ+|), foreground precision: P =
|Ŷ+ ∩ Y+|/|Ŷ+| and foreground recall: R = |Ŷ+ ∩ Y+|/|Y+|.
Network ImplementationWe implement HNN [20], U-Net [18], and the introduced
P-Net for comparison. Especially, lower layers of HNN are transferred from Ima-
geNet [7] pretrained VGG-16 model [24], and the U-Net is initiated from a ssTEM
[18] pretrained model. We note that ssTEM has a very different image statistics
from CT and MRI images. Thus, the HNN and U-Net are two baseline methods that
fine-tuned from other domains and the proposed P-Net is first initialized with Xavier
initialization [9] and then trained from scratch.

Hyperparameters are determined via model selection with the training set. Specif-
ically, the training dataset is first split into a training subset for network parameter
training and a validation subset for hyperparameter selection. Denote the training
accuracy as Acct after model selection, we then combine the training and validation
subsets together to further fine-tune the network until its performance on the valida-
tion subset converges to Acct . Also validated from the validation subset, we observe
the P-Net architecture, which contains 5 unit modules with 64 output channels in
each convolution/deconvolution layer produces the best empirical performance and
meanwhile holds a compact model size. The learning rate (1e-4) together with other
hyperparameters are all fixed for all sets so that changes observed in experiment
results can be traced back to factors of interest.

1.2.4.2 CNN Comparison

Table 1.1 presents segmentation results of different CNN architectures that trained
withLjac. Without loss of generality, we set the output threshold for all CNN outputs
to 0.5. P-Net achieved the best performance on both of the CT and MRI datasets.
Specifically, it marginally outperformed the HNN baseline by 3.7% and 4.8% Dice
scores in CT and MRI segmentation, respectively. In comparison with the U-Net
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Table 1.1 Comparison to different CNN architectures including P-Net, HNN [28] and U-Net [18].
Specifically, the P-Net is trained from scratch while HNN and U-Net are fine-tuned from pretrained
models

Models DSC (%) JI (%) Precision Recall

CT HNN [28] 79.6 ± 7.7
[41.9, 88.0]

66.7 ± 9.40
[26.5, 78.6]

83.4 ± 6.5
[62.0, 94.9]

77.4 ± 11.6
[28.3, 92.6]

U-Net [18] 79.7 ± 7.6
[43.4, 89.3]

66.8 ± 9.60
[27.7, 80.7]

81.3 ± 7.5
[49.6, 97.0]

79.2 ± 11.3
[38.6, 94.1]

P-Net 83.3 ± 5.6
[59.0, 91.0]

71.8 ± 7.70
[41.8, 83.5]

84.5 ± 6.2
[60.7, 96.7]

82.8 ± 8.37
[56.4, 94.6]

MRI HNN [28] 75.9 ± 10.1
[33.0, 86.8]

62.1 ± 11.3
[19.8, 76.6]

84.4 ± 6.4
[61.0, 93.5]

70.6 ± 13.3
[20.7, 88.2]

U-Net [18] 79.9 ± 7.30
[54.8, 90.5]

67.1 ± 9.50
[37.7, 82.6]

83.7 ± 6.9
[64.6, 94.6]

77.3 ± 10.3
[46.1, 94.8]

P-Net 80.7 ± 7.40
[48.8, 90.5]

68.2 ± 9.64
[32.3, 82.7]

84.3 ± 7.6
[55.8, 95.8]

78.3 ± 10.2
[38.6, 95.0]

baseline, P-Net presented 3.6% and 0.8% Dice scores improvements in CT and MRI
segmentation, respectively.

1.2.4.3 Loss Function Comparison

Table 1.2 presents comparison results of the three losses, i.e., the cross-entropy loss
Lce, the class-balanced cross-entropy loss Lcbce [28], and the Jaccard loss Ljac, un-
der fourfold cross-validation with the same P-Net segmentation model. On the CT
dataset,Ljac outperformedLce andLcbce by 0.5%and 0.2%Dice scores, respectively.
On the MRI dataset, also achieved the best performance referring to the Dice score
and Jaccard index. We then evaluate the stability of segmentation performance with
various thresholds. The CNN network usually outputs probabilistic segmentation
maps instead of binary masks and an appropriate probability threshold is required
to obtain the final binarized segmentation outcomes. However, it is often nontriv-
ial to find the optimal probability threshold in practice. Figure1.4 visually depicts
results of our analysis that the probability output maps from the Jaccard loss Ljac

delivered the steadiest segmentation results referring to different output thresholds.
Empirically, the Naïve Lce assigns same penalties on positive and negative pixels
so that the probability threshold should be around 0.5. Meanwhile, Lcbce gives a
higher penalty on positive pixels (due to its scarcity) making the resulted optimal
threshold at a relatively higher value. By contrast, Ljac pushes the foreground pixels
to the probability of 1.0 while remaining to be strongly discriminative against the
background pixels. Thus, the plateau around the optimal segmentation performance
of Ljac would be much wider than Lce and Lcbce so that it could perform stably in a
wide range of thresholds, i.e., [0.05, 0.95] in our experiments.
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Table 1.2 Comparision of loss functions: Lce, Lcbce, and Ljac with P-Net

Loss mean ± stdv. [min, max]

Dice score (%) Jaccard index (%)

CT Lce 83.5 ± 5.6 [59.3, 91.1] 72.0 ± 7.70 [42.2, 83.6]

Lcbce 83.2 ± 5.7 [57.2, 90.3] 71.6 ± 7.80 [40.1, 82.4]

Ljac 83.7 ± 5.4 [58.4, 90.4] 72.3 ± 7.50 [41.3, 82.4]

MRI Lce 80.0 ± 7.60 [50.7, 89.9] 67.3 ± 9.80 [34.0, 81.6]

Lcbce 80.2 ± 7.20 [53.6, 90.5] 67.6 ± 9.50 [36.6, 82.7]
Ljac 80.2 ± 7.90 [51.2, 90.1] 67.6 ± 10.3 [34.4, 82.0]

Fig. 1.4 Plot of the threshold versus Dice score (DSC): the proposed jaccard loss Ljac performs
the steadiest across thresholds in the range of [0.05, 0.95] comparing to the cross-entropy loss Lce
and the class-balanced cross-entropy loss Lcbce. The threshold that selected from validation dataset
is marked as ◦, 	, and 
 for losses Lce, Lcbce, and Ljac, respectively

1.3 Recurrent Neural Network for Contextual Learning

Previous work [2, 20, 30] perform deep 2DCNN segmentation on CT (orMRI) axial
slices independently, not taking the correlation between neighboring images into
consideration. Organ segmentation in 3D volumes can also be performed by directly
taking cropped 3D sub-volumes as input to 3D CNNs [10, 14, 15]. However, even
at the expense of being computationally expensive and prone-to-overfitting [30], the
result of very high segmentation accuracy has not been reported for complexly shaped
organs [14], or small anatomical structures [10]. Despite more demanding memory
requirement, 3D CNN approaches deserve more investigation for future work. On
the other hand, [3, 25] use hybrid CNN-RNN architectures to process/segment sliced
CT (orMRI) images in sequence and present a promising direction to process CT and
MRI segmentations. However, these methods do not apply spatial shape continuity
constrain or regularization to enforce the segmentation consistency among successive
slices. Thus, in this chapter, we present our own research for regulating pancreas
segmentation across 3D slices with recurrent neural network.
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1.4 Recurrent Neural Network

As discussed above, the P-Net processes pancreas segmentation with individual 2D
image slices, delivering remarkable performance on the tested CT andMRI datasets.
However, as shown in the first row of Fig. 1.5, the transition among the resulting CNN
pancreas segmentation regions in the consecutive slices may not be smooth which
often implies boarder failures of segmentations.AdjacentCT/MRI slices are expected
to be correlated with each other thus segmentation results from successive slices
need to be constrained for shape continuity. The model for 3D object segmentation
is required to be able to detect and recover abnormally lost part inside slices (see Ŷτ

in Fig. 1.5).
To achieve this, we concatenate a recurrent neural network (RNN) subnetwork to

the output end of P-Net for modeling inter-slice shape continuity and regularization.
The RNN is originally designed for sequential data analysis and thus naturally meets
the need of processing the ordered image slices. Specifically,we slice theCT (orMRI)
volume into an ordered sequence of 2D images and process to learn the segmentation
shape continuity among neighboring image slices with a typical RNN architecture,
the long short-term memory (LSTM) unit. However, the standard LSTM requires
vectorized input, which will sacrifice the spatial information encoded in the output of
CNN. To circumvent such problem, we utilize the convolutional-LSTM (C-LSTM)
model [23] to preserve the 2D image segmentation layout by CNN. As shown in
Fig. 1.5, Hτ and Cτ are the hidden state and cell output of C-LSTM in respective at
the τ th slice. The current cell output Cτ is computed based on both of the former
cell hidden state Hτ−1 and the current CNN output Ŷτ . Then, Hτ will be calculated
from Cτ and used to produce the next cell output Cτ+1. Contextual information is
propagated from slice τ to τ + 1 through convolutional operations.

The strategy of the C-LSTM based context continuity learning is built upon an
intuitive conditional probability assumption. Segmentation results of the former im-
age slices are encoded in the cell hidden state Hτ−1. Values of Cτ is decided by
taking Hτ−1 and Ŷτ together into consideration. If position pi in Ŷτ is predicted as
pancreatic tissue by the CNN model (e.g. P-Net), and the same position in Hτ−1 are
also encoded as pancreatic tissue, then with high confidence that position pi should
be a pancreatic pixel in Cτ , and vice versa. As a result, C-LSTM not only recovers
missing segmentation parts but also outputs more confident probability maps than
the original CNN subnetwork.

Formally, the C-LSTM unit is formulated,

iτ = σ(Wyi∗Ŷτ + Whi∗hτ−1 + Wci�cτ−1 + bi), (1.13)

fτ = σ(Wyf ∗Ŷτ + Whf ∗hτ−1 + Wcf �cτ−1 + bf ), (1.14)

cτ = fτ�cτ−1+iτ� tanh(Wyc∗Ŷτ+Whc∗hτ−1+bc), (1.15)

oτ = σ(Wyo∗Ŷτ + Who∗hτ−1 + Wco�cτ + bo), (1.16)

hτ = oτ� tanh(cτ ), (1.17)
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Fig. 1.5 Themain construction units of the proposed RNNmodel and its input/output segmentation
sequence. The sequence of CNN outputs is shown in the first row (a–e), is taken as the input of the
bidirectional C-LSTM (g), which is an RNN architecture composed of two layers of C-LSTM (f)
working in opposite directions. The third row (h–l) presents the corresponding output sequence,
which is sharp and clean. Note that the missing pancreatic part in Ŷτ (c), in the green dashed box,
is recovered by shape continuity modeling in Ȳτ (j). For visual clarity, we omit the input Ŷ(·) in the
bidirectional CLSTM (g), which is same as in (f)

where ∗ represents convolution operation, and � denotes the Hadamard product.
Gates iτ , fτ , oτ are the input, forget, and output, respectively, following the origi-
nal definition of C-LSTM. W(·), and b(·) are weights and bias in the corresponding
C-LSTM unit that needs model optimization. Finally, σ(·) and tanh(·) denote the
sigmoid and hyperbolic tangent activation function, respectively.
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1.4.1 Bidirectional Contextual Regularization

Next, we have the contextual learning extended to a bidirectional. For pancreas, as
well as other organs, its shape in the current slice is constrained by slices from not
only its former slices but also the followings. The contextual information to the input
could be doubled if the shape regularization is taken in both directions leading to a
further improvement. Two layers of C-LSTM are stacked working in two opposite
directions as shown inFig. 1.5. Then, outputs of the two layers, one in the τ−-direction
and the other in the τ+-direction, are combined as the final segmentation output,

Ȳτ =
∑

i∈{τ−,τ+}
λioiτ , (1.18)

where i represents the τ− and τ+ directions, and λi is the learned weights when
combining CLSTM outputs from both directions. Thus, the bidirectional design of
shape continuity modeling permits to explicitly enforce the pancreas segmentation
to be spatial smooth and higher order inter-slice regularized.

Lastly, we define the objective of contextual learning based on Jaccard loss as

Lrnn =
T∑

τ=1

Ljac(Ȳτ ,Y ), (1.19)

where T is the length of image sequence processed in each unit, and we empirically
set T = 5 in our experiments.

1.4.2 Experimental Results

Given outputs of P-Net as the best CNN-based segmentation results, the bidirectional
RNN (BiRNN) subnetwork is then stacked to the output end of P-Net and trained end
to end. In each direction, a one-layer CLSTM is implemented with one hidden state
and 3 × 3 convolution filter kernels [23]. Particularly, the number of hidden state is
set to 1 since our shape continuity learning is inherently simplified by processing only
the output probability maps of CNN subnetwork. CNN output Ŷτ ∈ Rd1

1 ×d2
1 ×1, where

d1
1 and d2

1 are the width and height of the input image, provides a highly compacted
representation of the input CT/MRI image for shape learning. Thus, BiRNNwith the
hidden state Hτ ∈ Rd1

1 ×d2
1 ×1 is sufficient to model and capture the shape continuity

regularization among CNN outputs. We notice that BiRNN cannot converge stably
during model training when a larger hidden state is used. In addition, we attempt to
employ BiRNN on the feature maps from CNN’s intermediate layers. However, this
causes the model training process failed to converge. Thus, we mainly focus on the
current design of BiRNN, which emphasizes to learn the inter-slice shape continuity
among the successive segmentation outputs of P-Net.
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Table 1.3 Evaluate pancreas segmentation on the CT dataset. BiRNN refines output of P-Net
providing better performance in both volume measurement (DSC) and surface reconstruction (HD)

Method HD (mm) DSC (%)

P-Net 0.61 ± 0.53 [0.15, 3.48] 83.3 ± 5.6 [59.0, 91.0]

BiRNN 0.54 ± 0.53 [0.12, 3.78] 83.7 ± 5.1 [59.0, 91.0]

Wemodel the segmentation shape continuity as a higher order inter-slice regular-
ization among the CT/MRI axial slices. The average physical slice thickness in CT
andMRI are 2mm and 7mm, respectively. Thus, slight shape change occurs between
two correct segmented slices. Given the measured Hausdorff distance (HD) of neigh-
boring slices in ground truth, the mean ± standard deviation of shape changes in CT
and MRI are 0.35 ± 0.94mm and 2.69 ± 4.45mm, respectively. The drastic shape
changes in MRI volumes indicates that successive MRI image slices are actually
more independent, so that in our implementation, shape continuity learning brings
marginal but consistent performance improvement. The improvement in CT images
is more evident. Specifically, we detect abnormal shape changes in the outputs of
CNN and have them refined by BiRNN.We define abnormal shape change occurs be-
tween two neighboring CT when HD (Ŷτ , Ŷτ−1) >0.5mm, which is decided basing
on the shape change statics in the CT dataset.

Table1.3 illustrates performance with and without shape continuity learning,
where BiRNN boost volume segmentation (i.e., DSC) by 0.4%. More importantly,
the error for pancreatic surface reconstruction (i.e., HD) drops from 0.61 to 0.54mm,
improved by 11.5%. Figure1.7 further shows the segmentation performance differ-
ence statistics, with or without contextual learning in subject-wise. In particular,
those cases with low DSC scores are greatly improved by BiRNN.

Finally, Fig. 1.6 displays examples of output probability maps from all of the
comparative methods, i.e., HNN [28], U-Net [18], P-Net and P-Net+BiRNN, where
the latter one delivers the sharpest and clearest output on both CT and MRI datasets.
More specifically, P-Net presents detailed results that recover the major part of the
pancreas, where both HNN and U-Net suffer from significant lower segmentation
recall.Whenobserving theBiRNNoutputs forCTandMRI,wefinddetailed pancreas
parts in CT have been recovered via shape continuity learning and regularization,
while in MRI, the BiRNN only outputs probability map with the same shape in P-
Net’s output, which is optimal when the inter-slice shape changes drastically in the
MRI dataset. Thus,BiRNNwould help refine pancreas segmentationwith a smoothed
surface in the situation that slice thickness of the 3D scans is reasonably small, e.g.,
<2mm.
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Fig. 1.6 Examples of output probability map: columns from left to right are the input CT/MRI
image and results from HNN [28], U-Net [18], P-Net, and the full CNN-RNN (P-Net+BiRNN)
model, and the ground truth. The CNN-RNNmodel delivers the most clear probability maps which
preserve detailed pancreatic boundaries

1.5 State-of-the-Art Methods for Pancreas Segmentation

We compare selected state-of-the-art methods for pancreas segmentation. Dice score
and Jaccard index are computed and reported in Table 1.4 under fourfold CV. The
method P-Net+BiRNN performs the best on the CT dataset and P-Net achieves the
best result on theMRI dataset. We notice that the current implementation of FCN 3D
[22] is not as effective as its 2D segmentation counterparts, where P-Net+BiRNN
outperforms FCN 3D by a largemargin of 6.9%Dice score. The problem of segment-
ing 3DCT/MRI image volumes within a single inference is muchmore complex than
the 2D CNN approaches where further network architecture exploration as well as
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Fig. 1.7 Comparison of P-Net and P-Net+ BiRNN outputs for all 80 NIH-CT scans and the scans
are sorted left to right using Dice scores of P-Net. Small fluctuations among the well- segmented
cases (on the top right) possibly result from model updating, which can be omitted as noise

Table 1.4 Performance of the state-of-the-art methods for segmentation under fourfold CV. We
show Dice score and Jaccard index in the form of mean ± standard dev. [worst case, best case].
The best results on CT and MRI are highlighted in bold

Method Dice score (%) Jaccard index (%)

CT 3D FCN [22] 76.8 ± 9.4 [43.7, 89.4]

Roth et al. [20] 78.0 ± 8.2 [34.1, 88.6]

Roth et al. [21] 81.3 ± 6.3 [50.6, 88.9] 68.8 ± 8.12 [33.9, 80.1]

Coarse-to-Fine [30] 82.3 ± 5.6 [62.4, 90.8]

CNN+RNN [1] 82.4 ± 6.7 [60.0, 90.1] 70.6 ± 9.00 [42.9, 81.9]

P-Net 83.3 ± 5.6 [59.0, 91.0] 71.8 ± 7.70 [41.8, 83.5]

P-Net+BiRNN 83.7 ± 5.1 [59.0, 91.0] 72.3 ± 7.04 [41.8, 83.5]

MRI Graph-Fusion [2] 76.1 ± 8.70 [47.4, 87.1]

CNN+RNN [1] 80.5 ± 6.70 [59.1, 89.4] 67.9 ± 8.90 [41.9, 80.9]

P-Net 80.7 ± 7.40 [48.8, 90.5] 68.2 ± 9.64 [32.3, 82.7]

more training images are typically required. This is also referred as curse of dimen-
sionality in [19, 30]. In this scenario, we would argue that 2D network architectures
may still be optimal for pancreas segmentation with large inter-slice thicknesses.
We also note that our intuition of developing CNN-RNN combination is orthogonal
to the principles of coarse-to-fine pancreas location and detection [21, 30]. Bet-
ter performance may be achievable with the combination of both methodologies.
Figure1.8 visually depicts examples of reconstructed 3D segmentation results from
the CT dataset.
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(a) DSC: 60% (b) DSC: 65% (c) DSC: 70%

(d) DSC: 70% (e) DSC: 75% (f) DSC: 80%

(g) DSC: 80% (h) DSC: 85% (i) DSC: 90%

Fig. 1.8 3D visualization of pancreas segmentation results where human annotation shown in
yellow and computerized segmentation displayed in green. The DSC are 90%, 75%, and 60% for
three examples from left to right, respectively

1.6 Summary

In this chapter, we present a novel CNN-RNN architecture for pancreas segmentation
in CT and MRI scans via our tailor-made CNN module (P-Net) followed by a bidi-
rectional C-LSTM (BiRNN). It is presented to regularize the segmentation results on
individual image slices. The shape continuity regularization permits to enforce the
pancreas segmentation spatial smoothness explicitly in the axial direction, in analogy
to comprehending into videos by parsing and aggregating successive frames [16].
This may also share some similarity to the human doctor’s way of reading radiology
images. Combined with the proposed Jaccard loss function for model training to
generate the threshold-free segmentation results, our quantitative pancreas segmen-
tation result outperforms the previous state-of-the-art approaches [2, 20, 21, 30] on
both CT andMRI datasets, with noticeable margins. Although the discussion focuses
on pancreas segmentation in this chapter, the approaches would be generalizable to
other organ segmentations in medical image analysis.
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