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Preface

This book is the second edition of a series documenting how deep learning and deep
neural networks are being successfully employed within medical image computing.
Looking back to the first edition, published 2 years ago, one can observe how much
this field has grown. As observed later, to better represent the state-of-the-art work,
which surrounds the three core research problems of (1) medical image semantic
segmentation; (2) anatomical or pathological structure detection and localization;
(3) large-scale clinical imaging semantics (often using embedded natural language
text and ontology knowledge) or deep image–text data mining in the “big data, weak
label” theme; tremendous amounts of intriguing and impactful methodological and
application developments are needed to be timely reflected.

The first edition of this series focused more on demonstrating the validity of
using deep learning, especially deep convolutional neural networks, on a range of
key important problems within medical imaging computing. These included
anatomical organ segmentation and high-performance computer-aided disease
detection and diagnosis. The technical contributions in this edition clearly
demonstrate more capable methodological developments, such as novel deep
learning algorithms beyond convolutional neural networks, evaluations using much
larger clinical imaging datasets, and demonstrations of more robust and accurate
empirical performance. These all contribute toward more real and practical solu-
tions for radiology and pathology applications. In particular, many works focus on
exploiting truly large-scale and messy clinical databases, which can allow for more
generalizable deep learning solutions, but at the cost of much greater technical
challenges. These include frequent label noise, annotation inconsistency, and weak
supervisory signals, e.g., unstructured radiologist text reports.

Going forward, we do expect the development of deep learning methods to con-
tinue steadily along with a broader adoption of these solutions into clinical practice.
For example, theflagship conferences in this domain, e.g., IEEEComputerVision and
Pattern Recognition and International Conference on Medical Image Computing and
Computer-Assisted Intervention, have grown rapidly by roughly 30% each year.
Although there are surely many more technical and clinical challenges lying ahead, it
has never been more exciting to contribute to these research efforts as now.
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Organization and Features

This book covers a range of topics in medical imaging from traditional tasks, e.g.,
segmentation, detection, and localization, to large-scale radiological data mining for
deep learning purposes. In the following, we give a brief overview of the contents
of this book.

Part I discusses several recent works on segmentation tasks. Chapter 1 presents a
recurrent neural network to address the problem of spatial discontinuity in segmenting
the pancreas across adjacent image slices. The network takes outputs of the convo-
lutional neural network and refines the segmentation by improving the shape
smoothness. Chapter 2 discusses a recurrent neural network-based method to accu-
rately segment the perimysium in hematoxylin- and eosin-stained whole-slide spec-
imens of muscle biopsies. This will help provide early diagnosis of many muscular
inflammation diseases. Chapter 3 introduces two coarse-to-fine mechanisms for
segmenting small organs, e.g., the pancreas, in which predictions from the first
(coarse) stage are used as the initial region for the second (fine) stage. Chapter 4 further
extends the coarse-to-fine framework of pancreas segmentation using volumetric
image data. It also presents an analysis of the threat of adversarial attacks on the
proposed framework and shows how to defend against the attack. Chapter 5 presents
an unsupervised domain adaptation method using adversarial learning in medical
image segmentation tasks from two different perspectives: feature- and pixel-level
adaptation. This may help train more generalizable deep learning solutions.

Part II exhibits some state-of-the-art solutions to disease/lesion detection and
localization problems. Chapter 6 introduces two state-of-the-art glaucoma detection
methods based on two different network architectures by either utilizing the seg-
mentation information or generating the segmentation of the optic disk and cup.
Chapter 7 presents a unified network for simultaneous disease recognition and
localization in chest X-ray images. Particularly, patches of images are extracted in a
multiple instance learning framework for more accurate disease localization.
Chapter 8 introduces a searching strategy that gradually focuses on lesions by
progressively transforming a bounding volume until a breast lesion is detected,
which not only accelerates the inference time but also increases the detection
accuracy. Chapter 9 discusses the influence of abnormal conditions in the images to
accurately identify vertebrae locations. An automatic vertebra labeling approach is
presented using a deep image-to-image network with message passing and sparsity
regularization techniques. Chapter 10 discusses a solution for learning 3D convo-
lution kernels by transferring convolutional features learned from 2D images to 3D
anisotropic volumes. This is applied to two medical image analysis applications:
lesion detection from a digital breast tomosynthesis volume and liver and liver
tumor segmentation from a computed tomography volume.

Part III explores a variety of problems and applications in medical imaging, e.g.,
image quality control and restoration, image retrieval, image registration, and tumor
growth prediction. Chapter 11 presents an introduction of automated histopathology
image analysis and then discusses several recent deep hashing techniques and their
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applications on content-based histopathology image retrieval. Chapter 12 intro-
duces a two-stream deep convolutional network method for prognostic tumor
growth modeling via volumetric medical imaging observations. Experiments
demonstrate that it outperforms the state-of-the-art mathematical model-based
approach in both accuracy and efficiency. Chapter 13 proposes a deep spatiotem-
poral convolutional neural network to restore low-quality CT perfusion images that
are acquired at reduced tube current, dosage, and spatial resolution. Chapter 14
introduces a new CT image denoising method based on generative adversarial
networks with Wasserstein distance and perceptual similarity for low-dose CT data.
The proposed method is capable of not only reducing the image noise level but also
retaining the critical information at the same time. Chapter 15 discusses an auto-
matic framework to check the quality of cardiac magnetic resonance (CMR) images
(the coverage of left ventricle from CMR images) by using Fisher-discriminative
and dataset-invariant 3D convolutional neural networks. Image-acquisition
parameters are not considered in the model such as imaging device, magnetic
field strength, variations in protocol execution. Chapter 16 introduces a
learning-based image registration method that employs deep neural networks to
estimate plausible registrations. Particularly, agent-based methods for medical
image registration are reviewed together with two applications on rigid-body 3D/3D
and 2D/3D registrations. Chapter 17 explores and compares the use of deep
learning methods in comparison with conventional machine learning classifiers as
well as their ensembles to analyze fMRI scans.

Part IV covers hot topics in large-scale data mining and data synthesis in clinical
settings. Chapter 18 introduces a feasible solution to mine existing imaging
informatics in a hospital environment using both natural language processing and
image processing techniques so as to build large-scale datasets to facilitate
data-hungry deep learning paradigms. Chapter 19 further discusses how to mine
textual data (radiological reports) using deep learning-based natural language
processing techniques and exploits a image–text embedding network for automatic
free-text report generation. Chapter 20 outlines a system to extract the clinical
annotations collected in radiologists’ daily work routine and convert them into
machine learnable formats. Sample applications of such extracted data are dis-
cussed, e.g, lesion retrieval, clustering, and classification. Chapter 21 explores the
problem of synthesizing high-resolution images corresponding to one MRI
modality from a low-resolution image of another MRI modality of the same subject.
A cross-modality dictionary learning scheme is discussed together with a
patch-based globally redundant model based on sparse representations.

Bethesda, USA Le Lu
Bethesda, USA Xiaosong Wang
Adelaide, Australia Gustavo Carneiro
Gainesville, USA Lin Yang
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Chapter 1
Pancreas Segmentation in CT and MRI
via Task-Specific Network Design and
Recurrent Neural Contextual Learning

Jinzheng Cai, Le Lu, Fuyong Xing and Lin Yang

Abstract Automatic pancreas segmentation in radiology images, e.g., computed
tomography (CT), and magnetic resonance imaging (MRI), is frequently required by
computer-aided screening, diagnosis, and quantitative assessment. Yet, pancreas is
a challenging abdominal organ to segment due to the high inter-patient anatomical
variability in both shape and volume metrics. Recently, convolutional neural net-
works (CNN) have demonstrated promising performance on accurate segmentation
of pancreas. However, the CNN-based method often suffers from segmentation dis-
continuity for reasons such as noisy image quality and blurry pancreatic boundary.
In this chapter, we first discuss the CNN configurations and training objectives that
lead to the state-of-the-art performance on pancreas segmentation. We then present
a recurrent neural network (RNN) to address the problem of segmentation spatial
inconsistency across adjacent image slices. The RNN takes outputs of the CNN and
refines the segmentation by improving the shape smoothness.
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1.1 Introduction

Detecting unusual volume changes and monitoring abnormal growths in pancreas
using medical images is a critical yet challenging task for computer-aided diagno-
sis (CAD). This would require to delineate pancreas from its surrounding tissues in
radiology images, e.g., computed tomography (CT), and magnetic resonance imag-
ing (MRI) scans. The accurate segmentation of pancreas delivers more reliable and
quantitative representations than the cross section diameter measurement and it may
facilitate the producing of segmentation-based biomarkers, such as volumetric mea-
surements and 3D shape/surface signatures. Moreover, automated rapid and accurate
segmentation of pancreas on the scale of processing thousands of image scans may
facilitate new protocols, findings, and insights for clinical trials. On the other hand,
manual pancreas segmentation is very expensive and sometimes even intractable on
the dataset at a very large scale. To fulfill this practical and important demand, many
efforts have been investigated to significantly boost the segmentation performance
in both CT and MRI modalities.

One major group on the automatic pancreas segmentation in CT images is based
on top-down multi-atlas registration and label fusion (MALF) [11, 17, 26, 27]. Due
to challenges from the high deformable shape and vague boundaries of the pancreas
in CT scans from various patients, the reported segmentation accuracy (measured in
Dice Similarity Coefficient or DSC) is limited in the range from 69.6 ± 16.7% [27]
to 78.5 ± 14.0% [11, 17] under leave-one-patient-out (LOO) evaluation protocol.
On the other hand, bottom-up deep CNN-based pancreas segmentation work [2, 8,
19–21, 30] have revealed promising results and steady performance improvements,
e.g. from 71.8 ± 10.7% [19], 78.0 ± 8.2% [20], to 81.3 ± 6.3% [21] evaluated
using the same NIH 82-patient CT dataset [6, 19] under fourfold cross-validation
(CV).

Deep learning-based approaches appear to demonstrate noticeably higher segmen-
tation accuracies and numerically more stable results (significantly lower in standard
deviation, or std). References [20, 21] are built upon the fully convolutional neural
network (FCN) architecture [13] and its variant [28]. However, [20, 21] both rely on
post-processing with random forest to further refine CNN’s outputs, which cannot
propagate errors back to the CNN model. Similarly, for pancreas segmentation on a
79-patient MRI dataset, [2] achieves 76.1 ± 8.7% in DSC, where graph-based result
fusion is applied. Therefore, an end-to-end trainable deep learning model for pan-
creas segmentation may be more desirable to achieve superior results. Additionally,
deep CNN-based bottom-up pancreas segmentation methods also have significant
advantages on run-time computational efficiency, such as 2∼4h [11] versus 2∼3m
[21] to process a new segmentation case.
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1.2 Convolutional Neural Network for Pancreas
Segmentation

With the goal of obtaining accurate segmentation for objects with complex shape
outlines, many deep learning approaches have been proposed [4, 13, 18, 28, 29]
to report good performances. Specifically, some of these models regularize deep
learning output with appearance constraint that image pixels sharing similar color
and location statistics would probably come from the same object category and this
leads to conditional random field (CRF) post-processing that presented in [4, 29]. On
the other hand, some methods propose to learn localized deep learning features. For
instance, deep supervision is proposed in [12, 28] forcing all convolutional layers to
learn effective and consistent low-level representations, e.g., edge and object bound-
ary. Meanwhile, U-Net architecture [18] makes full use of low-level convolutional
feature maps by projecting them back to the original image size. The dedicated back-
ward propagation combines convolutional layer features of multiple scales, thereby
boosting the accuracy of object segmentation.

1.2.1 Design of Network Architecture

Delineating the pancreas boundary from its surrounding anatomies in CT/MRI scans
is challenging due to its complex visual appearance and ambiguous outlines. For
example, Fig. 1.1 displays an example of the pancreas in CT andMRI images, where
the pancreas shares similar intensity values with other soft tissues and its boundary is
blurry where touching with other abdominal organs. These natures of pancreas seg-
mentation inspire us to combine virtues from both of the holistically nested network
(HNN) [28] andU-Net [18] andwe name the combination P-Net as it is designed task
specifically for pancreas segmentation. In Fig. 1.2, we visually depict the network
architecture of the proposed P-Net and the most correlated networks, i.e. HNN and
U-Net. The P-Net inherits the deep supervisions fromHNN and the skip connections
from U-Net for feature multi-scale aggregation.

Fig. 1.1 Examples of pancreas images in CT and MRI. The ground truth pancreas boundaries are
presented in (b) and (d) delineated in green. Best viewed in color
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Fig. 1.2 Network architecture of several popular CNN models for pancreas segmentation

1.2.2 Design of Model Training Strategy

Apart from the network architecture, the proposed task-specific design also includes
a strategy to train the P-Net from scratch. This is because the CT and MRI modali-
ties demonstrate very different image statistics from natural images. Thus, a direct
transfer of ImageNet [7] pretrained neural network to the medical domain could be
suboptimal. Similarly, to transfer the model from other medical tasks can also be
problematic for P-Net to achieve the optimal pancreas segmentation. During model
training, we also observe gradient-vanishing problem occurs when fine-tune the net-
work from pretrained models. Specifically, the top layers of the network will quickly
capture the hierarchical (conceptual) appearance of pancreas but leaving lower lay-
ers not well tuned as the magnitudes of gradients (backpropagated from the training
error) fastly decreased. To circumvent this problem, we propose to initialize P-Net
from scratch and train the network layer by layer.

To present the training algorithm of P-Net in formal, we denote the number of
steps for layer-by-layer training to be K . Then, the corresponding convolutional and
deconvolutional layers can be represented as {C1, . . . ,CK } and {D1, . . . ,DK }. We
also denote standard network operations as up-sampling to be Up(#), concatenation
to be Concat([·; ·]), and dimension reduction to be R(#). For representation clarity,
we use ◦ to denote the composition of two transformations and use

∏
for multi-

ple transformations. We drop pooling operations between convolutional layers for
simplicity.

First, we define the forward propagation as a combination of convolutional layers

Fk =
K+1−k∏

i=1

Ci. (1.1)

Then in P-Net, the feature map is up-scaled step-by-step util it restores the size of
the original input image. Specifically, when k equals 1, we have

Bk = Fk ◦ Dk , (1.2)

otherwise, the feature map process can be represented as

Bk = Concat([Bk−1 ◦Up(2); Fk ]) ◦ Dk . (1.3)
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At each scale (or step), the segmentation output is

Ŷk = Bk ◦Up (2K−k) ◦ R(1) ◦ Sigmoid , (1.4)

where the feature map Bk is first up-scaled by a factor of 2K−k such that restores the
size of the original input image. Its channel is then be reduced to 1 via R(1), and then
it passes through a sigmoid activation function Sigmoid to produce the segmentation
output at scale (or step) k as Ŷk .

The output Ŷk is a probability map on which the segmentation loss is measured
as

Lk = H (Ŷk ,Y ), (1.5)

where Y is the ground truth label map and H (·, ·) is the loss function, e.g. cross-
entropy loss. Thus, each unit module Bk has its own gradient back propagation path
that starts at the loss Lk and ends at the input image. It introduces deep supervision
to the bottom CNN layers and enables us to train P-Net from swallow to deep. More
specifically, the training of P-Net starts at k = 1 and increase k by 1 when Lk -plot
converges. The final segmentation result Ŷ is a weighted combination of the side
outputs as

Ŷ =
K∑

i=1

ωiŶi, (1.6)

and the overall objective for P-Net is,

L = H (Ŷ ,Y ) +
K∑

i=1

Li, (1.7)

where K = 5 delivers the best for pancreas segmentation. We summarize the train-
ing procedure in Algorithm1 and visually depict the semantic illustration of P-Net
structures at k = 1, k = 2, and k = 5, respectively, in Fig. 1.3.

Discussion: Although the network architecture of P-Net can be extended to pro-
cess 3D inputs [5], we maintain the current 2D architecture in model training and
inference because the 3D version can be computationally expensive while gaining

Fig. 1.3 Semantic illustration of the P-Net training algorithm
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no significant improvement in performance [30]. As a compromise, P-Net takes 3-
connected slices as its input when given the segmentation ground truth mask of the
middle slice. As explained in Sect. 1.3, P-Net is transformed into a lightweighted
3D model with RNN stacked to the end of it, which allows our model to capture
3D imaging information with minor extra computational loads. This is in a similar
spirit to employ RNN to regulate, process and aggregate CNN activations for video
classification and understanding [16].

Result: Ŷ , Ŷ1, Ŷ2, . . ., ŶK
K=5, convolutions: {C1, . . . ,CK }, deconvolutions: {D1, . . . ,DK };
Define: Fk=

∏K+1−k
i=1 Ci;

for k=1:K do
if k==1 then

Bk=Fk ◦ Dk ;
else

Bk=Concat([Bk−1 ◦ Up(2);Fk ]) ◦ Dk ;
end
Ŷk=Bk ◦ Up(2K−k ) ◦ R(1) ◦ Sigmoid;

Lk = H (Ŷk ,Y );

Optimize
∑k

i=1 Li until converge;
end
Ŷ = ∑K

i=1 ωi Ŷi;

L = H (Ŷ ,Y );

Optimize L + ∑K
i=1 Li until converge;

Algorithm 1: The training algorithm of P-Net.

1.2.3 Design of Loss Functions

Loss functions compare the segmented volumetric image (e.g., Ŷ ) with ground truth
annotation (i.e., Y ) and produces segmentation errors for model updating. Cross-
entropy loss is one of themost popular loss functions thatwidely used for foreground–
background segmentation. It is defined as

Lce = − 1

|Y |
∑

j∈Y
[yj log ŷj + (1 − yj) log(1 − ŷj)], (1.8)

where |Y | is the cardinality (or size) of Y representing the number of voxels in the
volumetric image. It can be observed in the formulation of Lce that errors from
every voxel are equally treated. However, it is common in medical volumes that the
anatomy of interest occupies only a very small region of the image. Thus, a direct
use of Lce will probably result in the foreground regions to miss or only partially
detect. To automatically balance the loss between foreground/background classes, a
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class-balanced cross-entropy is designed to remedy this problem. It is defined as

Lcbce = − β

|Y+|
∑

j∈Y+

log ŷj − 1 − β

|Y−|
∑

j∈Y−

log(1 − ŷj), (1.9)

where a class-balancing weight β is introduced on a per-voxel term basis. Specifi-
cally, we define β = |Y−|/|Y | and 1 − β = |Y+|/|Y |, where Y+ and Y− denote the
foreground and background ground truth label sets, respectively.

Apart from Lce and Lcbce, many work directly optimize evaluation metrics, e.g.
Jaccard index and Dice score. In terms of advantages, the Jaccard loss makes proce-
dures of model training and testing consistent and helps to generate threshold-free
probability maps. It is defined as

Ljac = L(Ŷ ,Y ) = 1 − |Y+
⋂

Ŷ+|
|Y+

⋃
Ŷ+|

= 1 −
∑

j∈Y+(yj ∧ ŷj)
∑

j∈Y−(yj ∨ ŷj)
= 1 −

∑
j∈Y+(1 ∧ ŷj)

|Y+| + ∑
j∈Y−(0 ∨ ŷj)

. (1.10)

Practically, ŷj can be relaxed to the value of foreground probability ∈ [0, 1] and Ljac

is then be approximated by

L̃jac = 1 −
∑

f ∈Y+ min(1, ŷf )

|Y+| + ∑
b∈Y− max(0, ŷb)

= 1 −
∑

f ∈Y+ ŷf

|Y+| + ∑
b∈Y− ŷb

. (1.11)

The model is then updated by gradient flows as

∂L̃jac

∂ ŷj
=

⎧
⎪⎪⎨

⎪⎪⎩

− 1
|Y+|+∑

b∈Y− ŷb
, for j ∈ Y+

∑
f ∈Y+ ŷf

(|Y+|+∑
b∈Y− ŷb)2

, for j ∈ Y−
(1.12)

Since the inequality (
∑

j∈Y+ ŷj) < (|Y+| + ∑
j∈Y− ŷj) holds, the Jaccard loss Ljac as-

signs greater gradients to foreground pixels than the background ones, which intrin-
sically balances the foreground and background classes. It empirically works better
than the cross-entropy loss Lce and classed balanced cross-entropy loss Lcbce when
segmenting small-sized objects, e.g., pancreas in CT/MRI images.

1.2.4 Experimental Results

1.2.4.1 Experimental Setup

Datasets and evaluation metrics We use two fully annotated pancreas datasets to
validate the presented methods. The first one is the NIH-CT dataset [6, 19, 20] that



10 J. Cai et al.

is publicly available and contains 82 abdominal contrast-enhanced 3D CT scans. We
organize an in-house MRI dataset [2] that consists of 79 abdominal T1-weighted
MRI scans. We treat the CT and MRI datasets as two independent groups and repeat
the experiment on both of them. Results from both groups are evaluated to validate
the generalization of segmentation methods.

In image preprocessing, we use simple morphological operations to find the ab-
domen area and have it extracted from the whole image volume. To generate images
for training, we use ground truth mask to allocate pancreas and then crop a 256×256
sub-image centered at the target pancreas region. The cropped image patch is then
fed for model training. In the data inference phase, we scan testing images with the
256×256 scanning window and fuse outputs together to generate the final segmen-
tation result.

Following the evaluation strategy in [2, 19, 20], we conduct fourfold cross-
validation (CV) for the reported segmentation result. The set of used evaluation met-
rics includes the Dice similarity coefficient (DSC): DSC = 2(|Y+ ∩ Ŷ+|)/(|Y+| +
|Ŷ+|), Jaccard index (JI): JI = (|Y+ ∩ Ŷ+|)/(|Y+ ∪ Ŷ+|), foreground precision: P =
|Ŷ+ ∩ Y+|/|Ŷ+| and foreground recall: R = |Ŷ+ ∩ Y+|/|Y+|.
Network ImplementationWe implement HNN [20], U-Net [18], and the introduced
P-Net for comparison. Especially, lower layers of HNN are transferred from Ima-
geNet [7] pretrained VGG-16 model [24], and the U-Net is initiated from a ssTEM
[18] pretrained model. We note that ssTEM has a very different image statistics
from CT and MRI images. Thus, the HNN and U-Net are two baseline methods that
fine-tuned from other domains and the proposed P-Net is first initialized with Xavier
initialization [9] and then trained from scratch.

Hyperparameters are determined via model selection with the training set. Specif-
ically, the training dataset is first split into a training subset for network parameter
training and a validation subset for hyperparameter selection. Denote the training
accuracy as Acct after model selection, we then combine the training and validation
subsets together to further fine-tune the network until its performance on the valida-
tion subset converges to Acct . Also validated from the validation subset, we observe
the P-Net architecture, which contains 5 unit modules with 64 output channels in
each convolution/deconvolution layer produces the best empirical performance and
meanwhile holds a compact model size. The learning rate (1e-4) together with other
hyperparameters are all fixed for all sets so that changes observed in experiment
results can be traced back to factors of interest.

1.2.4.2 CNN Comparison

Table 1.1 presents segmentation results of different CNN architectures that trained
withLjac. Without loss of generality, we set the output threshold for all CNN outputs
to 0.5. P-Net achieved the best performance on both of the CT and MRI datasets.
Specifically, it marginally outperformed the HNN baseline by 3.7% and 4.8% Dice
scores in CT and MRI segmentation, respectively. In comparison with the U-Net
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Table 1.1 Comparison to different CNN architectures including P-Net, HNN [28] and U-Net [18].
Specifically, the P-Net is trained from scratch while HNN and U-Net are fine-tuned from pretrained
models

Models DSC (%) JI (%) Precision Recall

CT HNN [28] 79.6 ± 7.7
[41.9, 88.0]

66.7 ± 9.40
[26.5, 78.6]

83.4 ± 6.5
[62.0, 94.9]

77.4 ± 11.6
[28.3, 92.6]

U-Net [18] 79.7 ± 7.6
[43.4, 89.3]

66.8 ± 9.60
[27.7, 80.7]

81.3 ± 7.5
[49.6, 97.0]

79.2 ± 11.3
[38.6, 94.1]

P-Net 83.3 ± 5.6
[59.0, 91.0]

71.8 ± 7.70
[41.8, 83.5]

84.5 ± 6.2
[60.7, 96.7]

82.8 ± 8.37
[56.4, 94.6]

MRI HNN [28] 75.9 ± 10.1
[33.0, 86.8]

62.1 ± 11.3
[19.8, 76.6]

84.4 ± 6.4
[61.0, 93.5]

70.6 ± 13.3
[20.7, 88.2]

U-Net [18] 79.9 ± 7.30
[54.8, 90.5]

67.1 ± 9.50
[37.7, 82.6]

83.7 ± 6.9
[64.6, 94.6]

77.3 ± 10.3
[46.1, 94.8]

P-Net 80.7 ± 7.40
[48.8, 90.5]

68.2 ± 9.64
[32.3, 82.7]

84.3 ± 7.6
[55.8, 95.8]

78.3 ± 10.2
[38.6, 95.0]

baseline, P-Net presented 3.6% and 0.8% Dice scores improvements in CT and MRI
segmentation, respectively.

1.2.4.3 Loss Function Comparison

Table 1.2 presents comparison results of the three losses, i.e., the cross-entropy loss
Lce, the class-balanced cross-entropy loss Lcbce [28], and the Jaccard loss Ljac, un-
der fourfold cross-validation with the same P-Net segmentation model. On the CT
dataset,Ljac outperformedLce andLcbce by 0.5%and 0.2%Dice scores, respectively.
On the MRI dataset, also achieved the best performance referring to the Dice score
and Jaccard index. We then evaluate the stability of segmentation performance with
various thresholds. The CNN network usually outputs probabilistic segmentation
maps instead of binary masks and an appropriate probability threshold is required
to obtain the final binarized segmentation outcomes. However, it is often nontriv-
ial to find the optimal probability threshold in practice. Figure1.4 visually depicts
results of our analysis that the probability output maps from the Jaccard loss Ljac

delivered the steadiest segmentation results referring to different output thresholds.
Empirically, the Naïve Lce assigns same penalties on positive and negative pixels
so that the probability threshold should be around 0.5. Meanwhile, Lcbce gives a
higher penalty on positive pixels (due to its scarcity) making the resulted optimal
threshold at a relatively higher value. By contrast, Ljac pushes the foreground pixels
to the probability of 1.0 while remaining to be strongly discriminative against the
background pixels. Thus, the plateau around the optimal segmentation performance
of Ljac would be much wider than Lce and Lcbce so that it could perform stably in a
wide range of thresholds, i.e., [0.05, 0.95] in our experiments.
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Table 1.2 Comparision of loss functions: Lce, Lcbce, and Ljac with P-Net

Loss mean ± stdv. [min, max]

Dice score (%) Jaccard index (%)

CT Lce 83.5 ± 5.6 [59.3, 91.1] 72.0 ± 7.70 [42.2, 83.6]

Lcbce 83.2 ± 5.7 [57.2, 90.3] 71.6 ± 7.80 [40.1, 82.4]

Ljac 83.7 ± 5.4 [58.4, 90.4] 72.3 ± 7.50 [41.3, 82.4]

MRI Lce 80.0 ± 7.60 [50.7, 89.9] 67.3 ± 9.80 [34.0, 81.6]

Lcbce 80.2 ± 7.20 [53.6, 90.5] 67.6 ± 9.50 [36.6, 82.7]
Ljac 80.2 ± 7.90 [51.2, 90.1] 67.6 ± 10.3 [34.4, 82.0]

Fig. 1.4 Plot of the threshold versus Dice score (DSC): the proposed jaccard loss Ljac performs
the steadiest across thresholds in the range of [0.05, 0.95] comparing to the cross-entropy loss Lce
and the class-balanced cross-entropy loss Lcbce. The threshold that selected from validation dataset
is marked as ◦, 	, and 
 for losses Lce, Lcbce, and Ljac, respectively

1.3 Recurrent Neural Network for Contextual Learning

Previous work [2, 20, 30] perform deep 2DCNN segmentation on CT (orMRI) axial
slices independently, not taking the correlation between neighboring images into
consideration. Organ segmentation in 3D volumes can also be performed by directly
taking cropped 3D sub-volumes as input to 3D CNNs [10, 14, 15]. However, even
at the expense of being computationally expensive and prone-to-overfitting [30], the
result of very high segmentation accuracy has not been reported for complexly shaped
organs [14], or small anatomical structures [10]. Despite more demanding memory
requirement, 3D CNN approaches deserve more investigation for future work. On
the other hand, [3, 25] use hybrid CNN-RNN architectures to process/segment sliced
CT (orMRI) images in sequence and present a promising direction to process CT and
MRI segmentations. However, these methods do not apply spatial shape continuity
constrain or regularization to enforce the segmentation consistency among successive
slices. Thus, in this chapter, we present our own research for regulating pancreas
segmentation across 3D slices with recurrent neural network.
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1.4 Recurrent Neural Network

As discussed above, the P-Net processes pancreas segmentation with individual 2D
image slices, delivering remarkable performance on the tested CT andMRI datasets.
However, as shown in the first row of Fig. 1.5, the transition among the resulting CNN
pancreas segmentation regions in the consecutive slices may not be smooth which
often implies boarder failures of segmentations.AdjacentCT/MRI slices are expected
to be correlated with each other thus segmentation results from successive slices
need to be constrained for shape continuity. The model for 3D object segmentation
is required to be able to detect and recover abnormally lost part inside slices (see Ŷτ

in Fig. 1.5).
To achieve this, we concatenate a recurrent neural network (RNN) subnetwork to

the output end of P-Net for modeling inter-slice shape continuity and regularization.
The RNN is originally designed for sequential data analysis and thus naturally meets
the need of processing the ordered image slices. Specifically,we slice theCT (orMRI)
volume into an ordered sequence of 2D images and process to learn the segmentation
shape continuity among neighboring image slices with a typical RNN architecture,
the long short-term memory (LSTM) unit. However, the standard LSTM requires
vectorized input, which will sacrifice the spatial information encoded in the output of
CNN. To circumvent such problem, we utilize the convolutional-LSTM (C-LSTM)
model [23] to preserve the 2D image segmentation layout by CNN. As shown in
Fig. 1.5, Hτ and Cτ are the hidden state and cell output of C-LSTM in respective at
the τ th slice. The current cell output Cτ is computed based on both of the former
cell hidden state Hτ−1 and the current CNN output Ŷτ . Then, Hτ will be calculated
from Cτ and used to produce the next cell output Cτ+1. Contextual information is
propagated from slice τ to τ + 1 through convolutional operations.

The strategy of the C-LSTM based context continuity learning is built upon an
intuitive conditional probability assumption. Segmentation results of the former im-
age slices are encoded in the cell hidden state Hτ−1. Values of Cτ is decided by
taking Hτ−1 and Ŷτ together into consideration. If position pi in Ŷτ is predicted as
pancreatic tissue by the CNN model (e.g. P-Net), and the same position in Hτ−1 are
also encoded as pancreatic tissue, then with high confidence that position pi should
be a pancreatic pixel in Cτ , and vice versa. As a result, C-LSTM not only recovers
missing segmentation parts but also outputs more confident probability maps than
the original CNN subnetwork.

Formally, the C-LSTM unit is formulated,

iτ = σ(Wyi∗Ŷτ + Whi∗hτ−1 + Wci�cτ−1 + bi), (1.13)

fτ = σ(Wyf ∗Ŷτ + Whf ∗hτ−1 + Wcf �cτ−1 + bf ), (1.14)

cτ = fτ�cτ−1+iτ� tanh(Wyc∗Ŷτ+Whc∗hτ−1+bc), (1.15)

oτ = σ(Wyo∗Ŷτ + Who∗hτ−1 + Wco�cτ + bo), (1.16)

hτ = oτ� tanh(cτ ), (1.17)
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Fig. 1.5 Themain construction units of the proposed RNNmodel and its input/output segmentation
sequence. The sequence of CNN outputs is shown in the first row (a–e), is taken as the input of the
bidirectional C-LSTM (g), which is an RNN architecture composed of two layers of C-LSTM (f)
working in opposite directions. The third row (h–l) presents the corresponding output sequence,
which is sharp and clean. Note that the missing pancreatic part in Ŷτ (c), in the green dashed box,
is recovered by shape continuity modeling in Ȳτ (j). For visual clarity, we omit the input Ŷ(·) in the
bidirectional CLSTM (g), which is same as in (f)

where ∗ represents convolution operation, and � denotes the Hadamard product.
Gates iτ , fτ , oτ are the input, forget, and output, respectively, following the origi-
nal definition of C-LSTM. W(·), and b(·) are weights and bias in the corresponding
C-LSTM unit that needs model optimization. Finally, σ(·) and tanh(·) denote the
sigmoid and hyperbolic tangent activation function, respectively.
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1.4.1 Bidirectional Contextual Regularization

Next, we have the contextual learning extended to a bidirectional. For pancreas, as
well as other organs, its shape in the current slice is constrained by slices from not
only its former slices but also the followings. The contextual information to the input
could be doubled if the shape regularization is taken in both directions leading to a
further improvement. Two layers of C-LSTM are stacked working in two opposite
directions as shown inFig. 1.5. Then, outputs of the two layers, one in the τ−-direction
and the other in the τ+-direction, are combined as the final segmentation output,

Ȳτ =
∑

i∈{τ−,τ+}
λioiτ , (1.18)

where i represents the τ− and τ+ directions, and λi is the learned weights when
combining CLSTM outputs from both directions. Thus, the bidirectional design of
shape continuity modeling permits to explicitly enforce the pancreas segmentation
to be spatial smooth and higher order inter-slice regularized.

Lastly, we define the objective of contextual learning based on Jaccard loss as

Lrnn =
T∑

τ=1

Ljac(Ȳτ ,Y ), (1.19)

where T is the length of image sequence processed in each unit, and we empirically
set T = 5 in our experiments.

1.4.2 Experimental Results

Given outputs of P-Net as the best CNN-based segmentation results, the bidirectional
RNN (BiRNN) subnetwork is then stacked to the output end of P-Net and trained end
to end. In each direction, a one-layer CLSTM is implemented with one hidden state
and 3 × 3 convolution filter kernels [23]. Particularly, the number of hidden state is
set to 1 since our shape continuity learning is inherently simplified by processing only
the output probability maps of CNN subnetwork. CNN output Ŷτ ∈ Rd1

1 ×d2
1 ×1, where

d1
1 and d2

1 are the width and height of the input image, provides a highly compacted
representation of the input CT/MRI image for shape learning. Thus, BiRNNwith the
hidden state Hτ ∈ Rd1

1 ×d2
1 ×1 is sufficient to model and capture the shape continuity

regularization among CNN outputs. We notice that BiRNN cannot converge stably
during model training when a larger hidden state is used. In addition, we attempt to
employ BiRNN on the feature maps from CNN’s intermediate layers. However, this
causes the model training process failed to converge. Thus, we mainly focus on the
current design of BiRNN, which emphasizes to learn the inter-slice shape continuity
among the successive segmentation outputs of P-Net.
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Table 1.3 Evaluate pancreas segmentation on the CT dataset. BiRNN refines output of P-Net
providing better performance in both volume measurement (DSC) and surface reconstruction (HD)

Method HD (mm) DSC (%)

P-Net 0.61 ± 0.53 [0.15, 3.48] 83.3 ± 5.6 [59.0, 91.0]

BiRNN 0.54 ± 0.53 [0.12, 3.78] 83.7 ± 5.1 [59.0, 91.0]

Wemodel the segmentation shape continuity as a higher order inter-slice regular-
ization among the CT/MRI axial slices. The average physical slice thickness in CT
andMRI are 2mm and 7mm, respectively. Thus, slight shape change occurs between
two correct segmented slices. Given the measured Hausdorff distance (HD) of neigh-
boring slices in ground truth, the mean ± standard deviation of shape changes in CT
and MRI are 0.35 ± 0.94mm and 2.69 ± 4.45mm, respectively. The drastic shape
changes in MRI volumes indicates that successive MRI image slices are actually
more independent, so that in our implementation, shape continuity learning brings
marginal but consistent performance improvement. The improvement in CT images
is more evident. Specifically, we detect abnormal shape changes in the outputs of
CNN and have them refined by BiRNN.We define abnormal shape change occurs be-
tween two neighboring CT when HD (Ŷτ , Ŷτ−1) >0.5mm, which is decided basing
on the shape change statics in the CT dataset.

Table1.3 illustrates performance with and without shape continuity learning,
where BiRNN boost volume segmentation (i.e., DSC) by 0.4%. More importantly,
the error for pancreatic surface reconstruction (i.e., HD) drops from 0.61 to 0.54mm,
improved by 11.5%. Figure1.7 further shows the segmentation performance differ-
ence statistics, with or without contextual learning in subject-wise. In particular,
those cases with low DSC scores are greatly improved by BiRNN.

Finally, Fig. 1.6 displays examples of output probability maps from all of the
comparative methods, i.e., HNN [28], U-Net [18], P-Net and P-Net+BiRNN, where
the latter one delivers the sharpest and clearest output on both CT and MRI datasets.
More specifically, P-Net presents detailed results that recover the major part of the
pancreas, where both HNN and U-Net suffer from significant lower segmentation
recall.Whenobserving theBiRNNoutputs forCTandMRI,wefinddetailed pancreas
parts in CT have been recovered via shape continuity learning and regularization,
while in MRI, the BiRNN only outputs probability map with the same shape in P-
Net’s output, which is optimal when the inter-slice shape changes drastically in the
MRI dataset. Thus,BiRNNwould help refine pancreas segmentationwith a smoothed
surface in the situation that slice thickness of the 3D scans is reasonably small, e.g.,
<2mm.
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Fig. 1.6 Examples of output probability map: columns from left to right are the input CT/MRI
image and results from HNN [28], U-Net [18], P-Net, and the full CNN-RNN (P-Net+BiRNN)
model, and the ground truth. The CNN-RNNmodel delivers the most clear probability maps which
preserve detailed pancreatic boundaries

1.5 State-of-the-Art Methods for Pancreas Segmentation

We compare selected state-of-the-art methods for pancreas segmentation. Dice score
and Jaccard index are computed and reported in Table 1.4 under fourfold CV. The
method P-Net+BiRNN performs the best on the CT dataset and P-Net achieves the
best result on theMRI dataset. We notice that the current implementation of FCN 3D
[22] is not as effective as its 2D segmentation counterparts, where P-Net+BiRNN
outperforms FCN 3D by a largemargin of 6.9%Dice score. The problem of segment-
ing 3DCT/MRI image volumes within a single inference is muchmore complex than
the 2D CNN approaches where further network architecture exploration as well as



18 J. Cai et al.

0 10 20 30 40 50 60 70 80
55

60

65

70

75

80

85

90
D

S
C

 (
%

)

PNet

BiRNN

Fig. 1.7 Comparison of P-Net and P-Net+ BiRNN outputs for all 80 NIH-CT scans and the scans
are sorted left to right using Dice scores of P-Net. Small fluctuations among the well- segmented
cases (on the top right) possibly result from model updating, which can be omitted as noise

Table 1.4 Performance of the state-of-the-art methods for segmentation under fourfold CV. We
show Dice score and Jaccard index in the form of mean ± standard dev. [worst case, best case].
The best results on CT and MRI are highlighted in bold

Method Dice score (%) Jaccard index (%)

CT 3D FCN [22] 76.8 ± 9.4 [43.7, 89.4]

Roth et al. [20] 78.0 ± 8.2 [34.1, 88.6]

Roth et al. [21] 81.3 ± 6.3 [50.6, 88.9] 68.8 ± 8.12 [33.9, 80.1]

Coarse-to-Fine [30] 82.3 ± 5.6 [62.4, 90.8]

CNN+RNN [1] 82.4 ± 6.7 [60.0, 90.1] 70.6 ± 9.00 [42.9, 81.9]

P-Net 83.3 ± 5.6 [59.0, 91.0] 71.8 ± 7.70 [41.8, 83.5]

P-Net+BiRNN 83.7 ± 5.1 [59.0, 91.0] 72.3 ± 7.04 [41.8, 83.5]

MRI Graph-Fusion [2] 76.1 ± 8.70 [47.4, 87.1]

CNN+RNN [1] 80.5 ± 6.70 [59.1, 89.4] 67.9 ± 8.90 [41.9, 80.9]

P-Net 80.7 ± 7.40 [48.8, 90.5] 68.2 ± 9.64 [32.3, 82.7]

more training images are typically required. This is also referred as curse of dimen-
sionality in [19, 30]. In this scenario, we would argue that 2D network architectures
may still be optimal for pancreas segmentation with large inter-slice thicknesses.
We also note that our intuition of developing CNN-RNN combination is orthogonal
to the principles of coarse-to-fine pancreas location and detection [21, 30]. Bet-
ter performance may be achievable with the combination of both methodologies.
Figure1.8 visually depicts examples of reconstructed 3D segmentation results from
the CT dataset.
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(a) DSC: 60% (b) DSC: 65% (c) DSC: 70%

(d) DSC: 70% (e) DSC: 75% (f) DSC: 80%

(g) DSC: 80% (h) DSC: 85% (i) DSC: 90%

Fig. 1.8 3D visualization of pancreas segmentation results where human annotation shown in
yellow and computerized segmentation displayed in green. The DSC are 90%, 75%, and 60% for
three examples from left to right, respectively

1.6 Summary

In this chapter, we present a novel CNN-RNN architecture for pancreas segmentation
in CT and MRI scans via our tailor-made CNN module (P-Net) followed by a bidi-
rectional C-LSTM (BiRNN). It is presented to regularize the segmentation results on
individual image slices. The shape continuity regularization permits to enforce the
pancreas segmentation spatial smoothness explicitly in the axial direction, in analogy
to comprehending into videos by parsing and aggregating successive frames [16].
This may also share some similarity to the human doctor’s way of reading radiology
images. Combined with the proposed Jaccard loss function for model training to
generate the threshold-free segmentation results, our quantitative pancreas segmen-
tation result outperforms the previous state-of-the-art approaches [2, 20, 21, 30] on
both CT andMRI datasets, with noticeable margins. Although the discussion focuses
on pancreas segmentation in this chapter, the approaches would be generalizable to
other organ segmentations in medical image analysis.
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Chapter 2
Deep Learning for Muscle Pathology
Image Analysis

Yuanpu Xie, Fujun Liu, Fuyong Xing and Lin Yang

Abstract Inflammatory myopathy (IM) is a kind of heterogeneous disease that
relates to disorders of muscle functionalities. The identification of IM subtypes is
critical to guide effective patient treatment since each subtype requires distinct ther-
apy. Image analysis of hematoxylin and eosin (H&E)-stained whole-slide specimens
ofmuscle biopsies are considered as a gold standard for effective IMdiagnosis. Accu-
rate segmentation of perimysium plays an important role in early diagnosis of many
muscle inflammation diseases. However, it remains as a challenging task due to the
complex appearance of the perimysium morphology and its ambiguity to the back-
ground area. The muscle perimysium also exhibits strong structure spanned in the
entire tissue, whichmakes it difficult for current local patch-basedmethods to capture
this long-range context information. In this book chapter, we propose a novel spa-
tial clockwork recurrent neural network (spatial CW-RNN) to address those issues.
Besides perimysium segmentation, we also introduce a fully automatic whole-slide
image analysis framework for IM subtype classification using deep convolutional
neural networks (DCNNs).
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2.1 Introduction

Many important morphological properties, such as the distribution of muscle fibers
and their nuclei with respect to the perimysium, are important biomarkers for early
diagnosis of many muscle diseases [1]. To compute these spatial morphological
parameters, accurate and efficient segmentation of perimysium is an essential pre-
requisite. However, muscle perimysium often shares similar appearances to other
structures in the muscle, such as endomysium, epimysium, and blood vessels. The
large variations in staining intensity, global structure, and morphology further com-
plicate the automated segmentation task.

Inflammatory myopathies (IM) are a set of heterogeneous diseases that relate to
disorders ofmuscle functionalities [2]. Based on distinct clinicopathological features,
IM can be classified into three major subtypes: dermatomyositis (DM), polymyositis
(PM), and inclusion body myositis (IBM). The identification of IM subtypes is very
important to guide effective patient treatment since each subtype has a different
prognosis and responds to distinct therapy [3].

In clinic practice, the diagnosis of IM subtypes usually consists of two steps: (1) A
pathologist conducts magnetic resonance imaging (MRI) screening to select regions
of muscle tissues displaying relevant histological features and retrieve a biopsy; (2)
The digitalized image of themuscle biopsy is achieved using thewhole-slide imaging
(WSI) technology and analyzed by a pathologist for subtype diagnosis. Currently,
the diagnosis of whole-slide image is still a manual or, at best, a semiautomated
process, which is labor intensive and prone to errors, leading to high interobserver
variability. In this work, we propose a fully automatic whole-slide image analysis
framework for IM subtype classification using deep convolutional neural networks
(DCNNs) [4–9].

2.2 Muscle Perimysium Segmentation

Enormous efforts have been devoted to utilizing RNN on computer vision tasks.
Francesco [10] applies GRU [11] to sweep the images as one chain-structured data
but along four different directions tomodel the context information. Some pioneering
works [12, 13] that exploit the potentials of multidimensional RNN in semantic
image segmentation have also achieved promising results. However, 2D plain RNN
[12] suffers from the exploding or the vanishing gradient problem for large images,
and 2D LSTM [13] contains much more parameters than 2D RNN, which makes
it inefficient at the runtime, and sometimes over-fit can happen especially when the
amount of training data is limited.

In this chapter, we propose an 2D spatial clockwork RNN which extends the
applicability of chain-structured CW-RNN [14] to 2D image domain for efficient
perimysium segmentation. Our model directly exploits the 2D structure of images
and encodes the global context information among local image patches. Different
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from [12, 13], our model contains a much smaller number of parameters, which
makes it computationally efficient and suitable for medical image segmentation with
limited training data. In our algorithm, instead of conducting an inefficient patch-
wise classification, we integrate the structured regression [15] into the proposed
algorithm. This allows us to use nonoverlapping stride in both training and testing
stages. Extensive experimental results demonstrate the effectiveness and efficiency
of our proposed model. To the best of our knowledge, this is the first work to pro-
pose an 2D spatial CW-RNN that achieves promising results on biomedical image
segmentation.

2.2.1 Recurrent Neural Network

The recurrent neural network (RNN) is one type of neural network that is equipped
with recurrent connections, which enable the network to memorize past input pat-
terns. For the simple RNN (SRNN), at each time step, its current hidden state ht is a
nonlinear transformation of the current input xt and the hidden state ht−1 from the last
step. The output ot is directly connected to ht . Mathematically, those relationships
can be expressed by the following equations:

ht = f (Wxt + Uht−1 + bh), (2.1)

ot = g(Vht + bo), (2.2)

where f (.), g(.) represent the nonlinear activation functions, W and U are weight
matrices connecting input units to hidden units, and hidden units to themselves,
respectively. V is the weight matrix connecting hidden units to the output units. bh
and bo represents the bias terms for the hidden and output layer, respectively.

SRNN is usually trained with a discriminative objective function using the back-
propagation through time (BPTT) algorithm [16]. However, the fact that the com-
puted gradients of SRNN are either exploding or vanishing when T becomes large
hinders the SRNN from learning long-term temporal dependencies. Instead of intro-
ducing gated connections [11, 17] to complicate the model, clockwork RNN (CW-
RNN) [14] addresses the long-term dependency issue by using a clever trick. Specifi-
cally, the hidden units h are partitioned into M modules (hm for i = 1, . . . , M), each
is of size k and associated with a clock (or temporal) period Ti ∈ {T1, . . . , TM }. The
total length of the hidden units is hid = M × k. At each time step t , the neurons in
module i will be updated only when t satisfies (t mod Ti ) = 0. Units corresponding
to slower rates are thus capable of preserving long-term information. In addition,
connections between hidden units are restricted that faster modules can only receive
information from slower ones and not vice versa, this mechanism further reduces the
total number of active weights.
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2.2.1.1 Spatial Clockwork RNN

Since there are no existing sequences presented in static images, the aforementioned
CW-RNN is not directly applicable to our application. Although we can reshape the
tensor containing all the image patches into a chain-structured representation, this
type of simplification are problematic due to the fact that interactions between image
patches are beyond chain. To ameliorate this problem, we extend the CW-RNN to
a two-dimensional domain, in which current state can receive information from its
predecessors in both row and column directions. We denote the time step (r, c) for
each local patch as the coordinate of this image patch at the image grid. In order
for the spatial CW-RNN to process the image, all image patches need to be sorted
to an acyclic sequence. One of the possible sorting strategies is (x1, x2) < (x ′

1, x
′
2)

if ∃ i ∈ {1, 2} such that xi < x ′
i and x j = x ′

j ,∀ j �= i . Without loss of generality, we
define for every current step (r, c), we define its predecessor as the local patches that
are processed by model before it reaches the current position.

Specifically, we maintain one sub-hidden state for both row and column dimen-
sion, denoted as ̂h and ˜h, which are composed together as the hidden states
H = [̂h, ˜h]. Denote respectively the weights matrix connecting the current hid-
den states to its row and column predecessor as ̂U and ˜U , which are split into four
hid × hid block matrices; W connecting the input units to hidden units is parti-
tioned into 2 input_dim × hid blocks columns; the bias bh is also evenly separated

into 2 groups: ̂U =
(

̂U (1,1)
̂U (1,2)

̂U (2,1)
̂U (2,2)

)

, ˜U =
(

˜U (1,1)
˜U (1,2)

˜U (2,1)
˜U (2,2)

)

, W = (

W 1 W 2
)

,

and b = (

b1 b2
)

. Each block matrix ̂U (m,n), ˜U (m,n) are further partitioned into
M × M smaller block matrices with the same size k × k. Wm and bm is parti-

tioned into M blocks columns as well; ̂U (m,n) =
⎛

⎜

⎝

̂U (m,n)

(1,1) · · · ̂U (m,n)

(1,M)

... · · · ...

̂U (m,n)

(M,1) · · · ̂U (m,n)

(M,M)

⎞

⎟

⎠, ˜U (m,n) =

⎛

⎜

⎝

˜U (m,n)

(1,1) · · · ˜U (m,n)

(1,M)

... · · · ...

˜U (m,n)

(M,1) · · · ˜U (m,n)

(M,M)

⎞

⎟

⎠
, Wm = (

Wm
1 · · · Wm

M

)

and bm = (

bm1 · · · bmM
)

. Recall that

each sub-hidden state ̂h and ˜h is partitioned into M module, each runs at spe-
cific temporal rate. Denote i, j ∈ {1, . . . , M} as the modules index, u ∈ {1, 2}
matrix identifier, and (r, c) as the time step. For brief narrative, we define the fol-

lowing general matrix placeholders: H (r,c)
i =

(

̂h(r,c)
i

˜h(r,c)
i

)

, ̂Uu
i j =

(

̂U (u,1)
i j

̂U (u,2)
i j

)

, and

˜Uu
i j =

(

˜U (u,1)
i j

˜U (u,2)
i j

)

. The updating rule for the i th module of ̂h (similar case for ˜h) at

time step (r, c) is given as:



2 Deep Learning for Muscle Pathology Image Analysis 27

̂h(r,c)
i =

⎧

⎪

⎨

⎪

⎩

f (x (r,c)W 1
i +

M
∑

j=i

(

H (r−1,c)
j

̂U1
i j + H (r,c−1)

j
˜U1

i j + b1i

)

) if (r mod Ti ) = 0,

̂h(r−1,c)
i otherwise.

(2.3)

˜h(r,c)
i =

⎧

⎪

⎨

⎪

⎩

f (x (r,c)W 2
i +

M
∑

j=i

(

H (r−1,c)
j

̂U2
i j + H (r,c−1)

j
˜U2

i j + b2i

)

) if (c mod Ti ) = 0,

˜h(r,c−1)
i otherwise.

(2.4)

Note that the aforementioned method only considers the 4-connected neighbor-
hood, namely, every patch only receives information from its left, right, up and lower
adjacent patches. But it is trivial to extend our method to 8-connected neighborhood.
Both of the two cases are evaluated in the experiment part.

2.2.1.2 Structured Prediction

Due to the temporal dependency property of spatial CW-RNN, each local patch only
receives context information from the region spanned by its predecessors. However,
in 2D images, each local patch is surrounded by both its predecessors and postde-
cessors, thus we want the model to be aware of such bidirectional information from
its predecessors and postdecessors at each time step.

To this end, we sweep the input image (or feature map) from four different corners
(upper left, lower left, upper right, lower right) to the opposite corners. For each local
image patch, activations from four directional sweepings are concatenated together
as the full-context representation, which is fed to the successive layers to produce
the final prediction output. The illustration of this process is shown in Fig. 2.1.

Spatial CW-RNN Layer

Test Image

Concatenation Layer

Segmentation Result

I II

III IV

I II III IV

Dense Layer

Fig. 2.1 One exemplar architecture. Spatial CW-RNN and dense layer represents the proposed
spatial clockwork RNN and fully connected layer, respectively. Sweepings in different directions
are illustrated in spatial CW-RNN layer using colorful arrows. Activations from four sweepings are
concatenated together in the concatenation layer as the global context information for each local
patch. The mapping between the output of dense layer and the predicted mask (overlaid on the
original image) for each local patch is illustrated using brown arrows
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Now, we omit the module index i in H (r,c) and define H (r,c)
↘ ,H (r,c)

↙ ,H (r,c)
↗ and

H (r,c)
↖ as the total hidden activations (containing all the modules) for each directional

sweeping at time step (r, c). The output O(r,c) after applying one dense layer to those
concatenated features can be computed as

O(r,c) = f (
∑

d ′
H (r,c)

d ′ Wd ′ + b), (2.5)

where d ′ ∈ {↘,↙,↗,↖} denotes different sweeping direction. Please note that
dense layer is applied individually across all the time step, and local patches corre-
sponding to different time steps share the same weights Wd ′ .

Given a set of training data {(Xi ,Yi )}Ni=1, where N is the total number of training
data, Xi is the i th training image and Yi is the corresponding mask label. Let Ri and
Ci denote the total number of local patches in row and column dimension for the i th
pair of training data. Denote � as the model’s parameter, and ψ as our model. The
objective function defined on {(Xi ,Yi )} is given by

L(ψ(Xi ;�),Yi ) = 1

2

Ri
∑

r=1

Ci
∑

c=1

∥

∥

∥Y (r,c)
i − O(r,c)

i

∥

∥

∥

2

2
, (2.6)

where both of Y (r,c)
i and O(r,c)

i are reshaped into a vector to computed the loss.
Our proposed spatial CW-RNN is inherently capable of capturing semantic infor-

mation in the entire image. Meanwhile, it is totally end-to-end trainable and can be
optimized using standard BPTT algorithm [16]. It takes an input image with any size
and produces the result mask with the same size as the input.

2.2.1.3 Experimental Results and Discussion

Dataset and Implementation Details: The proposed spatial CW-RNN has been exten-
sively evaluated using 348 H&E-stained skeletal muscle microscopy images (each
image roughly contains 300 × 600 pixels). All the images are manually annotated
and double checked by two neuromuscular pathologists. In total, 150 images are cho-
sen for testing and the rest for training. Both qualitative and quantitative experiments
are reported. Perimysium in skeletal muscle images often exhibits large variation in
morphology and image intensity. The inhomogeneous background noise along with
the strong similarity with the thin gap among muscle fibers further complicate the
segmentation task.

The detailed architecture of our method is summarized in Table.2.1. The first
layer is a dense layer, and the next four spatial CW-RNN layers are used to sweep
the input feature map in four different directions. The activations of those four spatial
CW-RNN layers are then concatenated together as the whole context-aware feature
and is then fed to the next consecutive dense layers to get the final output. The
sigmoid activation function is used in the output layer while the ReLu activation
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Table 2.1 The network architecture. D represents the fully connected layer applied individually to
every time step. S represents Spatial CW-RNN, where the arrow indicates the sweeping direction.
The I nputs row specifies the layer ID of each layer’s inputs. Layer 7 takes the concatenation of
the output from layer 3, 4, 5, and 6 as input

Layer ID 1 2 3 4 5 6 7 8

Layer Input Dense S↘ S↙ S↗ S↖ Dense Dense

Size 300 100 384 384 384 384 100 100

Inputs – 1 2 2 2 2 [3, 4, 5, 6] 7

function is used in the other layers. The size of the nonoverlapping patches is set to
10 × 10 × 3.

The model is trained using RMSprop optimizer with a learning rate of 0.003.
To prevent over-fitting, we set the dropout rate to 0.4 and weight decay to 1e − 7
across all layers. M and k in Section are 4 and 48, respectively. Time period is set to
exponential series: Ti = 2i−1.

Evaluation metrics: Denote mi j as the number of pixels of class i labeled as class j ,
ti = ∑

j mi j as the number of pixels of class i . We report six commonly used metrics
based on variations of region intersection over union (IU) and pixel accuracy that is
commonly used in semantic image segmentation and scene parsing evaluation. For
the evaluation metrics, we do not distinguish the perimysium region and the back-
ground, instead, we treat them uniformly as pixel prediction. For all the comparison
methods, we binarize the prediction mask by using a threshold that maximizes the
average F1 score for all the methods.

(1) Mean accuracy (MA): (1/2)
∑

i mii/ti .
(2) Average IU (AIU): (1/2)

∑

i (mii/(ti + ∑

j m ji − mii )).
(3) Weighted IU (WIU) : (1/

∑

i ti )
∑

i (timii/(ti + ∑

j m ji − mii )).
(4) Precision (P), recall (R), and F1 score.

Comparison with Other Works: We compare our method with several variations of
other deep learning based frameworks, e.g., multi-layer perception (MLP), convo-
lutional neural network (CNN). The detailed performance comparison is given in
Table 2.2. SCW-RNN(4) and SCW-RNN(8) denote the proposed method for 4- and
8-connected neighborhood, respectively. CNN-nips is the famous architecture uti-
lized in [18] to segment neuronal membranes, which consists of four convolutional
layers and four max-pooling layers followed by two fully connected layer. This net-
work uses a large input window size (95 × 95) to capture the context information.
We also compare the proposed method with U-NET [19], an end-to-end CNN archi-
tecture. To demonstrate the proposed model’s capability of handling spatial context
information, a plain MLP network that shares similar architecture to our model,
denoted as MLP-10 are considered for comparison as well. We also try a larger
window size (48 × 48) for MLP network, denoted as MLP-48.

As we show in Table 2.2, both versions of the proposed method, SCW-RNN(4)
and SCW-RNN(8), achieve the best overall performance compared with others. It
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Table 2.2 Quantitative comparative results of muscle perimysium segmentation results. T repre-
sents the average running time (measured in second)

P R F1 score MA AIU WIU T

MLP-10 0.768 0.803 0.776 0.883 0.787 0.447 7.36

MLP-48 0.805 0.82 0.804 0.897 0.811 0.453 22.14

U-NET [19] 0.764 0.792 0.761 0.869 0.774 0.442 1.7

CNN-nips [18] 0.834 0.855 0.84 0.916 0.841 0.463 319.8

SCW-RNN(4) 0.854 0.843 0.842 0.909 0.842 0.462 2.6

SCW-RNN(8) 0.836 0.866 0.845 0.918 0.844 0.462 3.6

Testing image Ground truth CNN-nips MLP-48 Ours(8)

Fig. 2.2 Perymisum segmentation results on three challenging skeleton muscle images, which
show strong global structure and demonstrates a lot of appearance similarity between perimysium
(true positive) and endo/epimysium (false positive). Comparing with other methods, our results
show much better global consistency because it can capture global spatial configurations

is obvious that the utilization of more spatial context information in SCW-RNN(8)
leads to performance improvement than SCW-RNN(4), especially in terms of recall
and F1 score. MLP-10, which does not consider such spatial context information
across local patches, produces a lot of false positive evidenced by the low precision
and F1 score. MLP-48, which has a larger receptive field outperforms MLP-10 with
a large margin. CNN-nips, which uses a really large window size (95 × 95), achieves
comparative results as ours, but its running time is almost 100 times slower than our
method. Although for certain architecture, fast scanning can be utilized to remove
redundant computations of convolution operation, it is not applicable to our case,
which conducts patch-wise normalization.U-NET [19],which does not invoke patch-
based testing, is also very efficient, but it produces a much lower F1 score and
AIU than ours, one of the possible reasons is that we do not apply aggressive data
augmentation in all of our experimental settings.
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For quantitative comparison, some challenging images with segmentation results
overlaid on the original image are shown in Fig. 2.2. It can be observed that our
method produces the most accurate results with much better global consistency. This
further provides evidences that the spatial CW-RNN has strong capability to learn
the global context information, which is the key to differentiate perimysium from
endomysium, epimysium, and blood vessels.

2.3 WSI Inflammatory Muscle Disease Subtype
Classification

In this section, we will discuss a fully automatic whole-slide image analysis
framework for IM subtype classification using deep convolutional neural networks
(DCNNs). The proposed framework consists of several key steps: (1) Automatic
localization of diagnose-relevant image regions of interest (ROIs) using prior knowl-
edge; (2) Image region classification with a DCNN and whole-slide image classifi-
cation with a bag of words (BoW) algorithm, which aggregates patch level predic-
tions into whole-slide image-level classification; (3) A two-level result visualization
mechanism that can help interpret the diagnosis procedure and establish appropriate
confidence of decision making. An overview of the proposed framework is shown
in Fig. 2.3.

2.3.1 Methodology

In this section, we begin with introducing the automatic muscle image ROI gener-
ation algorithm via inflammatory cell detection, and then present a deep learning
framework for ROI classification and class-discriminative image region visualiza-
tion. Finally, we discuss how to compute aWSI image level representation via aggre-
gating ROI level features for image classification.

Knowledge Based 
Region ProposalsWSI WSI Level FeaturePatch Level Feature 

Using Deep Learning

DM

PM

IBM

Classifier

Fig. 2.3 An overview of the proposed WSI muscle disease classification framework
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2.3.1.1 Inflammatory Cell Detection via Regression

Inmuscle image analysis,ROIs are the image regions that contain dense inflammatory
cells, it is important to achieve accurate and robust inflammatory cell detections.

Denote T = {(x, y) ∈ X × Y} the training data, where x represents a train-
ing image and y = h ∗ G is the corresponding cell center probability map, where
h(i, j) = 1 if there is a human cell center annotation at pixel location (i, j), oth-
erwise h(i, j) = 0. G denotes a Gaussian kernel with standard deviation σ . Let o
denote the output, and then the loss function can be defined as

L(y, o) = 1

2

h
∑

i=1

w
∑

j=1

(yi j − oi j )2, (2.7)

where h and w denotes the height and width of x , respectively. Please refer to [20]
for more details of the architecture.

2.3.1.2 Inflammatory Cell Detection on Whole Slide Image

In the testing stage, the trained FCN model is applied on WSI images using a two-
level sliding window method. In level I, the WSI is divided into 5,000 × 5,000
nonoverlapping slide tiles, and each time one slide tile is loaded into memory for
processing; In level II, each 5, 000 × 5, 000 slide tile is further divided into 500 ×
500 nonoverlapping image patch tiles, and the image patch tiles are passed to the
trained FCNmodel in a batch mode with a batch size of 20. Both training and testing
are conducted in a machine equipped with an Intel i7 processor and a single Tesla
K40c GPU. It takes 0.5s with CPU to load a 5,000 × 5,000 slide tile into memory
and 4s with GPU to process 20 image patch tiles of size 500 × 500 in batch mode.
in total, it takes around 80 s for inflammatory cell detection on a 10,000 × 10,000
WSI image.

ForWSI image x , let o denote the inflammatory detection result. For ROI proposal
generation, o is divided into a set of 128 × 128 nonoverlapping tiles, and the weight
for i th tile is calculated as

wi =
∑

j∈pi

o j , (2.8)

where pi denotes all pixel coordinates inside grid tile i , and o j denotes the FCN
output value at pixel coordinate j . All image tiles are ranked by the calculated
inflammatory cell density weight w in a nonincreasing order, and the top-k tiles are
used to select ROIs for diagnosis analysis. For each selected tile, a 1024 × 1024
image patch around the tile center is cropped as a ROI for following diagnosis.
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2.3.1.3 ROI Classification

For each WSI image, the selected ROI patches are assigned the same diagnosis
label, i.e., DM, PM, or IBM. In this work, we classify muscle image patches using
the ResNet [9] architecture. There are three reasons for our choice: (1) The short
connections in ResNet make the network easy to train, which is essential for medical
image classification since the available labeled data is scarce; (2) ResNet can achieve
competitive accuracy as other deep learning architectures with fewer parameters; (3)
The last layer of ResNet is a global average pooling layer (GAP) which provides a
direct link between the last convolutional layer and final classification units. TheGAP
layers have been used to localize discriminative image regions for classification [21].

2.3.1.4 Discriminative Image Region Localization

In this framework, the GAP layer in ResNet is used to localize the discriminative
image regions. Denote F ∈ Rn×k×k the activations of the last convolutional map, and
W ∈ RC×n the weights of output layer. For class c, the activation map Mc ∈ Rk×k

can computed as

Mc(x, y) = f (
n

∑

i=1

Wc,i ∗ Fi (x, y)), (2.9)

where f (·) is ReLU function [5].
Several examples of generated class activation mappings (CAMs) on testing

patches can be seen in Fig. 2.4. As we can see, the network puts more weight on
regions with dense inflammatory cells, and this is expected since the main difference
of different muscle disease categories lies in the microenvironment of these regions.
The visualization can help users establish confidence in the trained model since their
results are interpretable.

(a) DM (b) PM (c) IBM

Fig. 2.4 Examples of the generated CAMs for several sample testing patches of three classes
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2.3.1.5 WSI Image Classification

Given aWSI image S, and a set of D-dimensional ROI descriptorsX = [x1, x2, . . . ,
xN ] ∈ R

D×N from S, we aim to aggregate individual ROI representations X into
a single feature vector, f , as S’s representation. One of the most simple yet effec-
tive local descriptor aggregating methods is the BoW model [22]. Given a learned
codebook with M entries, B = [b1,b2, . . . ,bM ] ∈ R

D×M , f ∈ M is computed via
assigning each ROI descriptor xi to the closest dictionary entry B j . The final feature
representation is computed using �2 normalization, f = f/‖f‖2.

2.4 Experimental Results

2.4.1 Dataset

We validate the proposed algorithm on an H&E-stained muscle whole-slide image
dataset, which comprises of 74 individuals (36 DM, 24 PM, and 14 IBM). The whole
slide images, which are captured at a 40X objective, and the diagnosis labels are pre-
pared by the Medical College of Wisconsin Neuromuscular Laboratory (MCWNL).
A threefold cross-validation is used through the experiments. In each time, twofold
are used for training with the rest for testing. All reported results are the average of
the testing accuracies over threefolds.

2.4.2 Implementation Details

Patch level: The top 30 regions that contain the most dense inflammatory cells are
cropped from each WSI as ROIs. The 1,024 × 1,024 patches are resized to 256 ×
256 for deep model training and testing. During training, two data argumentation
strategies are used: (1) Randomly cropped 224 × 224 patches from the original 256
× 256 patch and (2) Horizontal flipping with a probability of 0.5. The optimization
is driven by stochastic gradient descent with momentum 0.95, weight decay 0.005,
batch size 16. The initial learning rate is set as 1e−4, and decreases by a ratio of
0.1 for every 10 epochs. The training is stopped after 60 epochs. Here, an 18-layer
ResNet is used and the detailed implementation can be found in the open-source
code.1

While it is common to use the activations of the last hidden layer in CNN models
as feature representations, the deep learning predictions (softmax outputs) are found
to be effective as patch level representations in [23]. Here both features are studied,
and the t-SNE visualization [24] of both types of features on the testing set are

1https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py.

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
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DM

PM

IBM

DM

PM

IBM

GAP Feature So max Feature

Fig. 2.5 t-SNE visualization of GAP and softmax layer representations in the CNNmodel for three
muscle disease classes

shown in Fig. 2.5. We can see that: (1) Most ROI patches on testing set are separable
regarding different muscle disease classes in both feature spaces; (2) ROI patches of
DM class exhibit more diversity. In this work, the softmax outputs are used as feature
representations due to its more concise clustering patterns, as shown in Fig. 2.5.

WSI image level: TheBoWmethod is used to aggregate ROI level features, which
are the predictions of the trained deep learning model. For BoW aggregating, the
dictionary B is constructed using k-means clustering algorithm on training sets, with
k set as 16. ForWSI image classification, a logistic regressionmodel is trained. Since
the result of k-means clustering varies with different initializations, all experiments
are repeated for 20 times and the average result is reported for robust analysis.

2.4.3 Evaluation of Different WSI Frameworks

In this section, we compare the proposed WSI analysis framework to two other
existing frameworks:

• Training with all image tiles (WSI FM-I). In this framework, the WSI images are
divided into a set of nonoverlapping image tiles with size 1024 × 1024. All image
tiles from one WSI are assigned the same diagnose label (DM, PM, or IBM). The
activations of the GAP layer are used as the image tile’s representations.

• Training with sampling (WSI FM-II). This is proposed in [23] to train CNN with
noisy labels. At the beginning of CNN training, all image tiles are used. Then
after every five epochs, the training data is regenerated. For each WSI image, 30
image tiles are selected using weighted reservoir sampling, where the weight is
calculated as the classification score of the current model. Other configurations
are the same as those in WSI FM-I.

A detailed comparison of muscle disease classification accuracies using different
WSI frameworks is provided in Fig. 2.6. Note that, for each method, classification
results using both GAP and Softmax output features are reported for comparison.We
canobserve that: (1)TheproposedWSI analysis framework significantly outperforms
existing WSI methods on muscle disease classification. This also proves that the
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Fig. 2.6 Comparison of
muscle disease classification
accuracies using different
WSI frameworks
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Table 2.3 Classification accuracies of different whole-slide image analysis frameworks

WSI Methods Aggregating Class. Acc.

WSI FM-I MV 0.6339

BoW (GAP feat.) 0.6889

WSI FM-II [23] MV 0.6739

BoW (GAP feat.) 0.7844

Ours MV 0.8650

BoW (Softmax feat.) 0.9200

proposed ROI generation algorithm is effective in finding diagnostically relevant
image regions. (2) For WSI FM-I and WSI FM-II, GAP feature produces better
WSI classification result; For our method, softmax output feature delivers higher
WSI classification accuracy. It is known that CNN features in deeper layers have
more discriminative power than those in previous layers. However, in WSI FM-I
and FM-II, a large portion of local image patches do not contain diagnostic relevant
information, and these noises might have misled the CNN training and the softmax
features become less indicative for classification in such cases.

Another simple yet effective way for WSI level classification is to use majority
voting of ROI patches. TheWSI classification accuracies of both majority voting and
BoW are listed in Table 2.3. For BoW, only the best results are reported. Compared
with existing WSI analysis methods, our framework using either majority voting or
BoW provides significantly better WSI classification performance.
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Table 2.4 Comparison of different training methods using three deep learning architectures: VGG,
Inception, and ResNet

Architecture Training method MV BoW

Mean Std

VGG [7] Scratch 0.5389 0.5747 0.0296

Finetune Class 0.8378 0.8045 0.0142

Finetune All 0.7833 0.8443 0.0178

Inception [8] Scratch 0.6339 0.5640 0.0295

Finetune Class 0.7422 0.7305 0.0242

Finetune All 0.8517 0.8179 0.0249

ResNet [9] Scratch 0.6467 0.5715 0.0329

Finetune Class 0.8372 0.8075 0.0214

Finetune All 0.8650 0.8903 0.0210

2.4.4 Evaluation of Different Training Methods

In our implementation, the ROI classification model is fine-tuned from a pretrained
ResNet model2 on our muscle dataset. For comparative analysis, two other train-
ing methods are also investigated: (1) Training from scratch and (2) Freezing all
model parameters in the feature layers and only fine-tuning those in classification
layer(s). To this end, we also test these different training methods using two other
popular deep learning architectures: VGG [7] and GoogleNet Inception V3 [8]. The
detailed comparison is illustrated in Table 2.4. Note that in Table 2.4, classification
results of both majority voting and BoW are reported. For BoW, we report the mean
classification accuracy and the standard deviations.

From Table 2.4, we can see that: (1) Fine-tuning-based methods achieve much
better classification results than training from scratch, and fine-tuning all layers
gives better results than only fine-tuning the classification layer(s); and (2) The 18-
layer ResNet (ResNet-18) used in our implementation delivers better classification
accuracy than VGG and GoogleNet Inception V3, which have 2 and 10 times more
parameters than ResNet-18, respectively.

2.4.5 Evaluation of Different Number of ROIs

In this section, we investigate the effects of the number of ROIs on WSI image clas-
sification. Here, we repeat above experiments using three different number of ROIs:
10, 20, and 30. The detailed comparative results are listed in Table 2.5. For different
numbers of ROIs, both majority voting and BoW produce satisfying classification
results on three different deep learning architectures; (2) the ResNet model works
better than VGG and Inception models.

2https://download.pytorch.org/models/resnet18-5c106cde.pth.

https://download.pytorch.org/models/resnet18-5c106cde.pth
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Table 2.5 Comparison of WSI classification accuracies using different number of ROIs on three
deep learning architectures

Architecture # of ROIs MV BoW

Mean Std

VGG [7] 10 0.8917 0.8360 0.0168

20 0.8244 0.8506 0.0193

30 0.7833 0.8443 0.0178

Inception [8] 10 0.8517 0.7857 0.0181

20 0.8111 0.8292 0.0204

30 0.8517 0.8179 0.0249

ResNet [9] 10 0.9194 0.8895 0.0166

20 0.8644 0.8377 0.0180

30 0.8650 0.8903 0.0210

2.4.6 Diagnosis Interpretation and Visualization

In our framework, the diagnosis results can be properly visualized such that the
insight of the working system can be interpreted. To this end, we present a two-level
visualization mechanism: Level (I) The ROIs that the proposed system uses to make
decisions; Level (II) The discriminative image regions in each ROI responsible for
ROI classification.

2.4.6.1 Prediction Explanation

Currently, most deep learning methods work in a black box fashion in medical appli-
cations, which potentially have both high impacts and risks. Proper visualization
will help pathologists or medical doctors better understand the working principle
of the automatic system, with providing visual evidence. One example can be seen
in Fig. 2.7. where the proposed system makes the correct prediction of a DM WSI.
On the left, the ROIs used are overlayed on the original whole-slide image; On the
right, the discriminative image regions within each ROI are highlighted. As we can
see, the proposed system can achieve decent transparency while making diagnostic
predictions.

2.4.6.2 Understand Failure Cases

For medical application researchers, proper visualization can also help identify and
understand failure cases. Figure2.8 shows that a DMWSI is falsely predicted as PM
by the proposed system. By checking the WSI carefully, we find that this is a very
difficult case which has mixed clinic features of both DM and PM. For these cases,
a medical doctor might require more information to make a treatment plan [3].
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Fig. 2.7 An example of the two-level visualization mechanism proposed in our framework. The
proposed system makes the correct prediction of a DM WSI. Left: The ROIs the proposed system
uses to make predictions; Right: Sample results of the discriminative image regions in each ROI
responsible for ROI classifications

Fig. 2.8 An example of the two-level visualization mechanism proposed in our framework. In this
example, the proposed system predicts a DM WSI into PM. Left: The ROIs the proposed system
use to make predictions; Right: Sample results of the discriminative image regions in each ROI
responsible for ROI classifications

We argue that a proper visualization or interpretation mechanism should be one
of the core components of a computer-aided diagnosis (CAD) system. The idea
presented in our framework can be generalized to many other medical applications.

2.5 Summary

In this chapter, we talk about the application of deep learning in muscle perimysium
segmentation and whole-slide image inflammatory muscle disease classification.
First of all, we introduce a formulation of the novel 2D spatial clockwork recurrent
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neural network and pave the way to utilize RNN architecture to process 2D biomed-
ical image data. The proposed spatial CW-RNN is totally end-to-end trainable and
capable of encoding the global context information into the features of each local
image patch, which tremendously improves the performance.

Second, we also present aWSI inflammatory muscle disease classification frame-
work. The proposed method can be directly applied on whole-slide images, and
does not require manual ROI annotations from pathologists. Extensive experiments
demonstrate that the proposed system can provide robust and accurateWSI diagnosis
predictions. Furthermore, we show that the diagnosis results of the proposedmachine
learning system can be properly visualized and are interpretable. The visualization
can not only help the intelligent system researchers identify and understand the fail-
ure cases, but can also establish appropriate confidence in diagnosis. We advocate
that this type of machine learning systems that can present visual evidences along
with the interpretable diagnosis should receive more research interest in the future.
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Chapter 3
2D-Based Coarse-to-Fine Approaches
for Small Target Segmentation in
Abdominal CT Scans

Yuyin Zhou, Qihang Yu, Yan Wang, Lingxi Xie, Wei Shen,
Elliot K. Fishman and Alan L. Yuille

Abstract Deep neural networks have been widely adopted for automatic organ
segmentation from abdominal CT scans. However, the segmentation accuracy of
small organs (e.g., pancreas) or neoplasms (e.g., pancreatic cyst) is sometimes below
satisfaction, arguably because deep networks are easily disrupted by the complex and
variable background regions which occupy a large fraction of the input volume. In
this chapter, we propose two coarse-to-fine mechanisms which use prediction from
the first (coarse) stage to shrink the input region for the second (fine) stage. More
specifically, the two stages in the first method are trained individually in a step-
wise manner, so that the entire input region and the region cropped according to
the bounding box are treated separately. While the second method inserts a saliency
transformation module between the two stages so that the segmentation probability
map from the previous iteration can be repeatedly converted as spatial weights to the
current iteration. In training, it allows joint optimization over the deep networks. In
testing, it propagates multi-stage visual information throughout iterations to improve
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segmentation accuracy. Experiments are performed on several CT datasets, including
NIH pancreas, JHMI multi-organ, and JHMI pancreatic cyst dataset. Our proposed
approach gives strong results in terms of DSC.

3.1 Introduction

This chapter focuses on small organs (e.g., the pancreas) and neoplasms (e.g., pan-
creatic cyst) segmentation from abdominal CT scans, which is an important pre-
requisite for enabling computers to assist human doctors for clinical purposes. This
problem falls into the research area namedmedical imaging analysis. Recently, great
progress has been brought to this field by the fast development of deep learning, espe-
cially convolutional neural networks [18, 29]. Many conventional methods, such as
the graph-based segmentation approaches [1] or those based on handcrafted local
features [45], have been replaced by deep segmentation networks, which typically
produce higher segmentation accuracy [34, 35, 43, 44, 51].

Segmenting tiny organs, blood vessels, or neoplasms from a CT scan is often
challenging. As the target often occupies a small part of input data (e.g., less than
1.5% in a 2D image, see Fig. 3.1), deep segmentation networks such as FCN [29]
and DeepLab [5] can be easily confused by the background region, which may
contain complicated and variable contents. This motivates us to propose coarse-to-
fine approaches, in which the coarse stage provides a rough localization and the fine
stage performs accurate segmentation.

We propose two coarse-to-fine approaches in this chapter. In the first approach,
we use the predicted segmentation mask to shrink the input region. With a relatively
smaller input region (e.g., a bounding box defined by the mask), it is straightfor-
ward to achieve more accurate segmentation. At the training stage, we fix the input
regions generated from the ground-truth annotation, and train two deep segmenta-
tion networks, i.e., a coarse-scaled one and a fine-scaled one, to deal with the entire
input region and the region cropped according to the bounding box, respectively. At
the testing stage, the network parameters remain unchanged, and the coarse-scaled

Fig. 3.1 A typical example
from the NIH pancreas
segmentation dataset [35]
(best viewed in color). We
highlight the pancreas in red
seen from three different
viewpoints. It is a relatively
small organ with irregular
shape and boundary
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network was first used to obtain the rough position of the small target, and the fine-
scaled network was executed several times and the segmentation mask was updated
iteratively until convergence. The iterative process can be formulated as a fixed-point
model [23]. This approach can be further extended to segment pancreatic cyst, which
lays the foundation of early diagnosis of pancreatic cancer, where we first find the
pancreas by a coarse-to-fine algorithm, then we localize and segment the cyst based
on the predicted pancreas mask by a separate coarse-to-fine segmentation approach.
Intuitively, the pancreatic cyst is often closely related to the pancreas, and thus seg-
menting the pancreas (relatively easier) may assist the localization and segmentation
of the cyst. A deep supervision [21] strategy is introduced into the original segmen-
tation network, leading to a joint objective function taking both the pancreas and the
cyst into consideration.

In order to embed consistency between training and testing flowcharts, which is
to say, in the training phase to minimize a global energy function in coarse and fine
stages simultaneously, in our second approach, we propose a Recurrent Saliency
Transformation Network (RSTN). The chief innovation is to relate the coarse and
fine stages with a saliency transformation module, which repeatedly transforms the
segmentation probability map from previous iterations as spatial priors in the current
iteration. This brings us twofold advantages over the first method. First, in the train-
ing phase, the coarse-scaled and fine-scaled networks are optimized jointly, so that
the segmentation ability of each of them gets improved. Second, in the testing phase,
the segmentation mask of each iteration is preserved and propagated throughout
iterations, enabling multi-stage visual cues to be incorporated toward more accurate
segmentation. To capture the relationship between the pancreas and its internal cysts,
we also extend this approach to segment pancreas and cyst by two RSTN modules,
which observes strong results. To the best of our knowledge, this idea was not stud-
ied in the computer vision community, as it requires making use of some special
properties of CT scans.

We perform experiments on three CT datasets for small target segmentation.
We show the superiority of our approaches on the NIH pancreas segmentation
dataset [35], JHMI multi-organ dataset, and JHMI pancreatic cyst dataset, which
guarantees its efficiency and reliability in real clinical applications.

This chapter summarizes our previous works [48, 52, 53] and provides more
experimental results. The remainder of this chapter is organized as follows. Section3.2
briefly reviews relatedwork, Sect. 3.3 describes the proposed step-wise coarse-to-fine
approach, and Sect. 3.4 presents our proposed end-to-end coarse-to-fine approach.
After experiments are shown in Sects. 3.5 and 3.6, we draw our conclusions in
Sect. 3.8.

3.2 Related Work

Computer-aided diagnosis (CAD) is an important technique which can assist human
doctors in many clinical scenarios. An important prerequisite of CAD is medical
imaging analysis. As a popular and cheapway ofmedical imaging, contrast-enhanced
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computed tomography (CECT) produces detailed images of internal organs, bones,
soft tissues and blood vessels. It is of great value to automatically segment organs
and/or soft tissues from these CT volumes for further diagnosis [2, 13, 42, 52]. To
capture specific properties of different organs, researchers often design individualized
algorithms for each of them. Typical examples include the the liver [15, 27], the
spleen [28], the kidneys [1, 25], the lungs [16], the pancreas [6, 45], etc. Small organs
(e.g., the pancreas) are oftenmore difficult to segment, partly due to their low contrast
and large anatomical variability in size and (most often irregular) shape, as well as
the complicated and unpredictable background contents. In particular, the internal
neoplasms such as cysts [7] and tumors [49] can further change the anatomical
property of the pancreas, making it even more difficult to recognize both targets.

Compared to the papers cited above which used conventional approaches for
segmentation, the progress of deep learning brought more powerful and efficient
solutions. In particular, convolutional neural networks have been widely applied
to a wide range of vision tasks, such as image classification [14, 18, 39], object
detection [10, 33, 41], and semantic segmentation [5, 29]. Recurrent neural networks,
as a related class of networks, were first designed to process sequential data [11, 38,
40], and later generalized to image classification [24] and scene labeling [32] tasks.
In the area of medical imaging analysis, in particular organ segmentation, these
techniques have been shown to significantly outperform conventional approaches,
e.g., segmenting the liver [8], the lung [12], or the pancreas [3, 36, 37]. Note that
medical images differ from natural images in that data appear in a volumetric form.
To deal with these data, researchers either slice an 3D volume into 2D slices (as in
this work), or train an 3D network directly [17, 30, 31, 47]. In the latter case, limited
GPU memory often leads to patch-based training and testing strategies. The tradeoff
between 2D and 3D approaches is discussed in [20].

By comparison to the entire CT volume, the organs and neoplasm considered in
this chapter often occupy a relatively small area. As deep segmentation networks
such as FCN [29] are less accurate in depicting small targets, researchers proposed
two types of ideas to improve detection and/or segmentation performance. The first
type involved rescaling the image so that the target becomes comparable to the
training samples [46], and the second one considered to focus on a subregion of the
image for each target to obtain higher accuracy in detection [4]. The coarse-to-fine
idea was also well studied in the computer vision area for saliency detection [19] or
semantic segmentation [22, 26]. This chapter focuses on presenting two coarse-to-
fine frameworks for medical image segmentation.

3.3 A Step-Wise Coarse-to-Fine Approach for Medical
Image Segmentation

We investigate the problem of segmenting an organ from abdominal CT scans. Let
an CT image be a 3D volumeX of sizeW × H × L which is annotated with a binary
ground-truth segmentation Y where yi = 1 indicates a foreground voxel. The goal
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of our work is to produce a binary output volume Z of the same dimension. Denote
Y and Z as the set of foreground voxels in the ground-truth and prediction, i.e.,
Y = {i | yi = 1} and Z = {i | zi = 1}. The accuracy of segmentation is evaluated
by the Dice-Sørensen coefficient (DSC): DSC(Y,Z) = 2×|Y∩Z|

|Y|+|Z| . This metric falls
in the range of [0, 1] with 1 implying perfect segmentation.

3.3.1 Deep Segmentation Networks

Consider a segmentation model M : Z = f(X;�), where � denotes the model
parameters, and the loss function is written as L(Z,Y). In the context of a deep
segmentation network, we optimize L with respect to the network weights � by
gradient backpropagation. As the foreground region is often very small, we fol-
low [31] to design a DSC-loss layer to prevent the model from being heavily biased
toward the background class. We slightly modify the DSC of two voxel sets A and
B, DSC(A,B) = 2×|A∩B|

|A|+|B| , into a loss function between the ground-truth mask Y

and the predicted mask Z, i.e., L(Z,Y) = 1 − 2×∑
i zi yi∑

i zi+
∑

i yi
. Note that this is a “soft”

definition of DSC, and it is equivalent to the original form if all zi ’s are either 0 or 1.

The gradient computation is straightforward: ∂L(Z,Y)

∂z j
= −2 × y j(

∑
i zi+

∑
i yi)−

∑
i zi yi

(
∑

i zi+
∑

i yi)
2 .

We train 2D deep networks for 3D segmentation.1 Each 3D volume X is sliced
along three axes, the coronal, sagittal and axial views, and these 2D slices are denoted
by XC,w (w = 1, 2, . . . ,W ), XS,h (h = 1, 2, . . . , H ) and XA,l (l = 1, 2, . . . , L),
where the subscripts C, S and A stand for coronal, sagittal and axial, respectively.
On each axis, an individual 2D-FCN [29] on a 16-layer VGGNet [39] is trained
We train three 2D-FCN models MC, MS and MA to perform segmentation through
three views individually (images from three views are quite different). In testing,
the segmentation results from three views are fused via majority voting. Both multi-
slice segmentation (3 neighboring slices are combined as a basic unit in training
and testing) and multi-axis fusion (majority voting over three axes) is performed to
incorporate pseudo-3D information into segmentation.

3.3.2 Fixed-Point Optimization

The organs and neoplasms investigated in this chapter (e.g., the pancreas) are rela-
tively small. In each 2D slice, the fraction of the foreground pixels is often smaller
than 1.5%. It was observed [35] that deep segmentation networks such as FCN [29]
produce less satisfying results when detecting small organs, arguably because the
network is easily disrupted by the varying contents in the background regions. Much

1Please see Sect. 3.5.3.2 for the comparison to 3D networks.
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Input Image

NIH Case #09

Segmentation Using
the Entire Image

Segmentation Using
the Bounding Box

Fig. 3.2 Segmentation results with different input regions (best viewed in color), either using the
entire image or the bounding box (the red frame). Red, green and yellow indicate the prediction,
ground-truth, and overlapped pixels, respectively

more accurate segmentation can be obtained by using a smaller input region around
the region of interest. A typical example is shown in Fig. 3.2.

This inspires us to make use of the predicted segmentation mask to shrink
the input region. We introduce a transformation function r(X,Z�) which gener-
ates the input region given the current segmentation Z�. We rewrite the model
as Z = f(r(X,Z�) ;�), and the loss function is L(f(r(X,Z�) ;�) ,Y). Note that
the segmentation mask (Z or Z�) appears in both the input and output of Z =
f(r(X,Z�) ;�). This is a fixed-point model, and we apply the approach described
in [23] for optimization, i.e., finding a steady-state solution for Z.

In training, the ground-truth annotation Y is used as the input mask Z�. We train
two sets of models (each set contains three models for different views) to deal with
different input sizes. The coarse-scaled models are trained on those slices on which
the pancreas occupies at least 100 pixels (approximately 25mm2 in an 2D slice, our
approach is not sensitive to this parameter) so as to prevent the model from being
heavily impacted by the background. For the fine-scaled models, we crop each slice
according to the minimal 2D box covering the pancreas, add a frame around it, and
fill it up with the original image data. The top, bottom, left and right margins of the
frame are random integers sampled from {0, 1, . . . , 60}. This strategy, known as data
augmentation, helps to regularize the network and prevent over-fitting.

We initialize both networks using the FCN-8s model [29] pretrained on the Pas-
calVOC image segmentation task. The coarse-scaled model is fine-tuned with a
learning rate of 10−5 for 80,000 iterations, and the fine-scaled model undergoes
60,000 iterations with a learning rate of 10−4. Each mini-batch contains one training
sample (an 2D image sliced from an 3D volume).

In testing, we use an iterative process to find a steady-state solution for Z =
f(r(X,Z�) ;�). At the beginning, Z� is initialized as the entire 3D volume, and we
compute the coarse segmentationZ(0) using the coarse-scaledmodels. In each of the
following T iterations, we slice the predictedmaskZ(t−1), find the smallest 2D box to
cover all predicted foreground pixels in each slice, add a 30-pixel-wide frame around
it (this is the mean value of the random distribution used in training), and use the
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Algorithm 1 Fixed-Point Model for Segmentation

1: Input: the testing volume X, coarse-scaled models MC, MS and MA, fine-scaled models MF
C,

M
F
S and M

F
A, threshold R, maximal rounds in iteration T .

2: Initialization: using MC,MS and MA to generate Z(0) from X;
3: for t = 1, 2, . . . , T do
4: Using M

F
C,M

F
S and M

F
A to generate Z(t) from Z(t−1);

5: if DSC
(
Z(t−1),Z(t)

)
� R then

6: break;
7: end if
8: end for
9: Output: the final segmentation Z� = Z(t).

fine-scaledmodels to compute Z(t). The iteration terminates when a fixed number of
iterations T is reached, or the the similarity between successive segmentation results
(Z(t−1) and Z(t)) is larger than a given threshold R. The similarity is defined as the

inter-iteration DSC, namely d(t) = DSC
(
Z(t−1),Z(t)

) = 2×∑
i z

(t−1)
i z(t)

i∑
i z

(t−1)
i +∑

i z
(t)
i

. The testing

stage is illustrated in Fig. 3.3 and described in Algorithm 1.

Input Volume Coronal Data

Sagittal Data

Axial Data

Coronal Result

Sagittal Result

Axial Result

Coarse
Segmentation 

Updated Input
(Image Zoomed in)

Coronal Data

Sagittal Data

Axial Data

Coronal Result

Sagittal Result

Axial Result

Fine Segmentation
after 1st iteration 

Fig. 3.3 Illustration of the testing process (best viewed in color). Only one iteration is shown here.
In practice, there are at most 10 iterations
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3.3.3 Application to Pancreatic Cyst Segmentation

3.3.3.1 Formulation

Let the 3D CT-scanned volume X annotated with ground-truth pancreas segmenta-
tion P� and cyst segmentation C�, and both of them are of the same dimensionality
as X. P�

i = 1 and C�
i = 1 indicate a foreground voxel of pancreas and cyst, respec-

tively. Denote a cyst segmentation model asM : C = f(X;�), where � denotes the
model parameters. The loss function can be written as L(C,C�). In a regular deep
neural network such as our baseline, the fully convolutional network (FCN) [29],
we optimizeL with respect to the network weights � via gradient backpropagation.
To deal with small targets, we also follow [31] to compute the DSC-loss function:
L(C,C�) = 2×∑

i CiC�
i∑

i Ci+∑
i C

�
i
. The gradient ∂L(C,C�)

∂C can be easily computed.
The pancreas is a small organ, and the pancreatic cyst is even smaller. In our newly

collected dataset, the fraction of the cyst, relative to the entire volume, is often much
smaller than 0.1%. In a very challenging case, the cyst only occupies 0.0015% of
the volume, or around 1.5% of the pancreas. This largely increases the difficulty of
segmentation or even localization. Figure3.4 shows a representative example where
cyst segmentation fails completely when we take the entire 2D slice as the input.

To deal with this problem, we note that the location of the pancreatic cyst is
highly relevant to the pancreas. Denote the set of voxels of the pancreas as P� ={
i | P�

i = 1
}
, and similarly, the set of cyst voxels as C� = {

i | C�
i = 1

}
. Frequently,

a large fraction of C� falls within P� (e.g., |P� ∩ C�| / |C�| > 95% in 121 out of
131 cases in our dataset). Starting from the pancreas mask increases the chance of
accurately segmenting the cyst. Figure3.4 shows an example of using the ground-
truth pancreas mask to recover the failure case of cyst segmentation.

This inspires us to perform cyst segmentation based on the pancreas region, which
is relatively easy to detect. To this end, we introduce the pancreas mask P as an

Input Image

Case #123

Global Segmentation Local Segmentation

Fig. 3.4 A relatively difficult case in pancreatic cyst segmentation and the results produced by
different input regions, namely using the entire image and the region around the ground-truth
pancreas mask (best viewed in color). The cystic, predicted and overlapping regions are marked by
red, green, and yellow, respectively. For better visualization, the right two figures are zoomed in
with respect to the red frame
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explicit variable of our approach, and append another term to the loss function to
jointly optimize both pancreas and cyst segmentation networks. Mathematically, let
the pancreas segmentation model be MP : P = fP(X;�P), and the corresponding
loss term be LP(P,P�). Based on P, we create a smaller input region by applying a
transformationX′ = σ [X,P], and feedX′ to the next stage. Thus, the cyst segmenta-
tion model can be written asMC : C = fC

(
X′;�C

)
, and we have the corresponding

loss them LC(C,C�). To optimize both �P and �C, we consider the following loss
function:

L
(
P,P�,C,C�

) = λLP
(
P,P�

) + (1 − λ)LC
(
C,C�

)
, (3.1)

where λ is the balancing parameter defining the weight between either terms.

3.3.3.2 Optimization

We use gradient descent for optimization, which involves computing the gradients
over�P and�C. Among these, ∂L

∂�C
= ∂LC

∂�C
, and thus we can compute it via standard

backpropagation in a deep neural network. On the other hand,�P is involved in both
loss terms, and applying the chain rule yields:

∂L
∂�P

= ∂LP

∂�P
+ ∂LC

∂X′ · ∂X′

∂P
· ∂P
∂�P

. (3.2)

The second term on the right-hand side depends on the definition of X′ = σ [X,P].
In practice, we define a simple transformation to simplify the computation. The
intensity value (directly related to the Hounsfield units in CT scan) of each voxel is
either preserved or set as 0, and the criterion is whether there exists a nearby voxel
which is likely to fall within the pancreas region:

X ′
i = Xi × I

{∃ j | Pj > 0.5 ∧ |i − j | < t
}
, (3.3)

where t is the threshold which is the farthest distance from a cyst voxel to the
pancreas volume. We set t = 15 in practice, and our approach is not sensitive to
this parameter. With this formulation, i.e., ∂X ′

i
∂Pj

= 0 almost everywhere. Thus, we

have ∂X′
∂P = 0 and ∂L

∂�P
= ∂LP

∂�P
. This allows us to factorize the optimization into two

stages in both training and testing. Since ∂L
∂�P

and ∂L
∂�C

are individually optimized,
the balancing parameter λ in Eq. (3.1) can be ignored. The overall framework is
illustrated in Fig. 3.5. In training, we directly set X′ = σ [X,P�], so that the cyst
segmentation modelMC receives more reliable supervision. In testing, starting from
X, we compute P, X′ and C orderly. Dealing with two stages individually reduces
the computational overheads. It is also possible to formulate the second stage as
multi-label segmentation.
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Fig. 3.5 The framework of our approach (best viewed in color). Two deep segmentation networks
are stacked, and two loss functions are computed. The predicted pancreas mask is used in trans-
forming the input image for cyst segmentation

3.4 An End-to-End Coarse-to-Fine Approach for Medical
Image Segmentation

The step-wise coarse-to-fine approach is delicately designed for tiny target segmenta-
tion, but lacks global optimization of both the coarse and fine networks in the training
stage. Thismotivates us to connect these two networkswith a saliency transformation
module, which leads to our end-to-end coarse-to-fine approach.

3.4.1 Recurrent Saliency Transformation Network

Following the step-wise coarse-to-fine approach, we also train an individual model
for each of the three viewpoints. Without loss of generality, we consider a 2D slice
along the axial view, denoted byXA,l . Our goal is to infer a binary segmentationmask
ZA,l , which is achieved byfirst computing aprobabilitymapPA,l = f

[
XA,l; θ

]
, where

f[·; θ ] is a deep segmentation network with θ being network parameters, and then
binarizing PA,l into ZA,l using a fixed threshold of 0.5, i.e., ZA,l = I

[
PA,l � 0.5

]
.

In order to assist segmentation with the probability map, we introduce PA,l as
a latent variable. We introduce a saliency transformation module, which takes the
probability map to generate an updated input image, i.e., IA,l = XA,l � g

(
PA,l; η

)
,

and uses the updated input IA,l to replaceXA,l . Here g[·; η] is the transformation func-
tion with parameters η, and� denotes element-wise product, i.e., the transformation
function adds spatial weights to the original input image. Thus, the segmentation
process becomes:

PA,l = f
[
XA,l � g

(
PA,l; η

) ; θ
]
. (3.4)

This is a recurrent neural network. Note that the saliency transformation function
g[·, η] needs to be differentiable so that the entire recurrent network can be optimized
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Fig. 3.6 We formulate our
approach into a recurrent
network, and unfold it for
optimization and inference

in an end-to-end manner. AsXA,l and PA,l share the same spatial dimensionality, we
set g[·, η] to be a size-preserved convolution, which allows the weight added to each
pixel to be determined by the segmentation probabilities in a small neighborhood
around it. As we will show in the experimental section (see Fig. 3.9), the learned
convolutional kernels are able to extract complementary information to help the next
iteration.

To optimize Eq. (3.4), we unfold the recurrent network into a plain form (see
Fig. 3.6). Given an input image XA,l and an integer T which is the maximal number
of iterations, we update I(t)A,l and P(t)

A,l , t = 0, 1, . . . , T :

I(t)A,l = XA,l � g
(
P(t−1)
A,l ; η

)
, (3.5)

P(t)
A,l = f

[
I(t)A,l; θ

]
. (3.6)

Note that the original input image XA,l does not change, and the parameters θ and η

are shared by all iterations. At t = 0, we directly set I(0)A,l = XA,l .

When segmentation masks P(t)
A,l (t = 0, 1, . . . , T − 1) are available for reference,

deep networks benefit considerably from a shrunk input region especially when the

target organ is very small. Thus, we define a cropping function Crop
[
·;P(t)

A,l

]
, which

takes P(t)
A,l as the reference map, binarizes it into Z(t)

A,l = I

[
P(t)
A,l � 0.5

]
, finds the

minimal rectangle covering all the activated pixels, and adds a K -pixel-wide margin
(padding) around it.Wefix K to be 20; our algorithm is not sensitive to this parameter.

Finally note that I(0)A,l , the original input (the entire 2D slice), ismuch larger than the

cropped inputs I(t)A,l for t > 0.We train two FCNs to deal with such amajor difference
in input data. Thefirst one is named the coarse-scaled segmentation network,which is
used only in the first iteration. The second one, the fine-scaled segmentation network,
takes the charge of all the remaining iterations. We denote their parameters by θC

and θF, respectively. These two FCNs are optimized jointly.
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We compute a DSC-loss term on each probability map P(t)
A,l , t = 0, 1, . . . , T , and

denote it by L
{
YA,l ,P

(t)
A,l

}
. Here, YA,l is the ground-truth segmentation mask, and

L{Y,P} = 1 − 2×∑
i Yi Pi∑

i Yi+Pi
is based on the soft version of DSC [31]. Our goal is to

minimize the overall loss:

L =
T∑

t=0

λt · L
{
Y(t)

A,l ,Z
(t)
A,l

}
. (3.7)

This leads to joint optimization over all iterations,which involves network parameters
θC, θF, and transformation parameters η. {λt }Tt=0 controls the tradeoff among all loss
terms.We set 2λ0 = λ1 = · · · = λT = 2/ (2T + 1) so as to encourage accurate fine-
scaled segmentation.

3.4.2 Training and Testing

The training phase is aimed at minimizing the loss functionL, defined in Eq. (3.7),
which is differentiable with respect to all parameters. In the early training stages,
the coarse-scaled network cannot generate reasonable probability maps. To prevent
the fine-scaled network from being confused by inaccurate input regions, we use the
ground-truthmaskYA,l as the referencemap.After a sufficient number of training,we
resume using P(t)

A,l instead ofYA,l . In Sect. 3.5.3.1, we will see that this “fine-tuning”
strategy improves segmentation accuracy considerably.

Algorithm 2 The Testing Phase for RSTN
Require: input volume X, viewpoint V = {C,S,A}
Require: parameters θCv
Require: θFv and ηv, v ∈ V;
Require: max number of iterations T , threshold thr;
t ← 0, I(0)v
← X, v ∈ V;

P(0)
v,l ← f

[
I(0)v,l ; θCv

]
, v ∈ V, ∀l;

P(0) = P(0)
C +P(0)

S +P(0)
A

3 , Z(0) = I
[
P(0) � 0.5

]
;

repeat
t ← t + 1;

I(t)v,l ← Xv,l � g
(
P(t−1)
v,l ; η

)
, v ∈ V, ∀l;

P(t)
v,l ← f

[
Crop

[
I(t)v,l ;P(t−1)

v,l

]
; θFv

]
, v ∈ V, ∀l;

P(t) = P(t)
C +P(t)

S +P(t)
A

3 , Z(t) = I
[
P(t) � 0.5

]
;

until t = T or DSC
{
Z(t−1),Z(t)

}
� thr

return Z ← Z(t).
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Fig. 3.7 Illustration of the training process (best viewed in color). We display an input image along
the axial view which contains 3 neighboring slices. To save space, we only plot the coarse stage
and the first iteration in the fine stage

Due to the limitation in GPUmemory, in each mini-batch containing one training
sample, we set T to be the maximal integer (not larger than 5) so that we can fit
the entire framework into the GPU memory. The overall framework is illustrated
in Fig. 3.7. As a side note, we find that setting T ≡ 1 also produces high accuracy,
suggesting that major improvement is brought by joint optimization.

The testing phase follows the flowchart described in Algorithm 2. There are two
minor differences from the training phase. First, as the ground-truth segmentation
mask YA,l is not available, the probability map P(t)

A,l is always taken as the reference
map for image cropping. Second, the number of iterations is no longer limited by the
GPUmemory, as the intermediate outputs can be discarded on theway. In practice,we
terminate our algorithmwhen the similarity of two consecutive predictions,measured

by DSC
{
Z(t−1),Z(t)

} = 2×∑
i Z

(t−1)
i Z (t)

i∑
i Z

(t−1)
i +Z (t)

i

, reaches a threshold thr, or a fixed number (T )

of iterations are executed. We will discuss these parameters in Sect. 3.5.3.3.

3.4.3 Application to Pancreatic Cyst Segmentation

We follow Sect. 3.3.3 to use a multi-stage approach, which first finds the regular
organ (pancreas), and then locates the neoplasm (cyst) by referring to that organ.
A four-stage strategy is also adopted, i.e., coarse-scaled and fine-scaled pancreas
segmentation, as well as coarse-scaled and fine-scaled cyst segmentation. This can
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be implemented by two RSTN modules, where the first RSTN segments the pan-
creas given the CT images while the second segments the pancreatic cyst given the
pancreas-cropped region.

3.5 Pancreas Segmentation Experiments

3.5.1 Dataset and Evaluation

We evaluate our approach on the NIH pancreas segmentation dataset [35], which
contains 82 contrast-enhanced abdominal CT volumes. The resolution of each scan
is 512 × 512 × L , where L ∈ [181, 466] is the number of slices along the long axis
of the body. The distance between neighboring voxels ranges from 0.5 to 1.0mm.

Following the standard cross-validation strategy, we split the dataset into 4 fixed
folds, each of which contains approximately the same number of samples. We apply
cross-validation, i.e., training the models on 3 out of 4 subsets and testing them on
the remaining one. We measure the segmentation accuracy by computing the Dice-
Sørensen coefficient (DSC) for each sample, and report the average and standard
deviation over all 82 cases.

3.5.2 Evaluation of the Step-Wise Coarse-to-Fine Approach

We initialize both networks using the FCN-8s model [29] pretrained on the Pas-
calVOC image segmentation task. The coarse-scaled model is fine-tuned with a
learning rate of 10−5 for 80,000 iterations, and the fine-scaled model undergoes
60,000 iterations with a learning rate of 10−4. Each mini-batch contains one training
sample (a 2D image sliced from a 3D volume).

We first evaluate the baseline (coarse-scaled) approach. Using the coarse-scaled
models trained from three different views (i.e., MC, MS and MA), we obtain
66.88% ± 11.08%, 71.41% ± 11.12% and 73.08% ± 9.60% average DSC, respec-
tively. Fusing these three models via majority voting yields 75.74 ± 10.47%, sug-
gesting that complementary information is captured by different views. This is used
as the starting point Z(0) for the later iterations.

To apply the fixed-point model for segmentation, we first compute d(t) to observe
the convergence of the iterations. After 10 iterations, the average d(t) value over all
samples is 0.9767, the median is 0.9794, and the minimum is 0.9362. These numbers
indicate that the iteration process is generally stable.

Now, we investigate the fixed-point model using the threshold R = 0.95 and
the maximal number of iterations T = 10. The average DSC is boosted by 6.63%,
which is impressive given the relatively high baseline (75.74%). This verifies our
hypothesis, i.e., a fine-scaled model depicts a small organ more accurately.
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Table 3.1 Segmentation accuracy (measured by DSC, %) reported by different approaches. We
start from initial (coarse) segmentationZ(0), and explore different terminating conditions, including
a fixed number of iterations and a fixed threshold of inter-iteration DSC. The last two lines show
two upper bounds of our approach, i.e., “Best of All Iterations” means that we choose the highest
DSC value over 10 iterations, and “Oracle Bounding Box” corresponds to using the ground-truth
segmentation to generate the bounding box in testing. We also compare our results with the state-
of-the-art [35, 36], demonstrating our advantage over all statistics

Method Mean DSC # iterations Max DSC Min DSC

Roth et al.,
MICCAI’2015 [35]

71.42 ± 10.11 – 86.29 23.99

Roth et al.,
MICCAI’2016 [36]

78.01 ± 8.20 – 88.65 34.11

Coarse segmentation 75.74 ± 10.47 – 88.12 39.99

After 1 iteration 82.16 ± 6.29 1 90.85 54.39

After 2 iterations 82.13 ± 6.30 2 90.77 57.05

After 3 iterations 82.09 ± 6.17 3 90.78 58.39

After 5 iterations 82.11 ± 6.09 5 90.75 62.40

After 10 iterations 82.25 ± 5.73 10 90.76 61.73

After dt > 0.90 82.13 ± 6.35 1.83 ± 0.47 90.85 54.39

After dt > 0.95 82.37 ± 5.68 2.89 ± 1.75 90.85 62.43

After dt > 0.99 82.28 ± 5.72 9.87 ± 0.73 90.77 61.94

Best among all
iterations

82.65 ± 5.47 3.49 ± 2.92 90.85 63.02

Oracle bounding box 83.18 ± 4.81 – 91.03 65.10

We also summarize the results generated by different terminating conditions in
Table3.1. We find that performing merely 1 iteration is enough to significantly boost
the segmentation accuracy (+6.42%). However, more iterations help to improve
the accuracy of the worst case, as for some challenging cases (e.g., Case #09, see
Fig. 3.8), the missing parts in coarse segmentation are recovered gradually. The best
average accuracy comes from setting R = 0.95. Using a larger threshold (e.g., 0.99)
does not produce accuracy gain, but requires more iterations and, consequently, more
computation at the testing stage. In average, it takes less than 3 iterations to reach
the threshold 0.95. On a modern GPU, we need about 3min on each testing sample,
comparable to recent work [36], but we report much higher segmentation accuracy
(82.37% vs. 78.01%).

As a diagnostic experiment, we use the ground-truth (oracle) bounding box of
each testing case to generate the input volume. This results in an 83.18% average
accuracy (no iteration is needed in this case). By comparison, we report a comparable
82.37% average accuracy, indicating that our approach has almost reached the upper
bound of the current deep segmentation network.

We also compare our segmentation results with the state-of-the-art approaches.
Using DSC as the evaluation metric, our approach outperforms the recent published
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Input Image Initial Segmentation After 1st Iteration After 2nd Iteration
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Final ( Iterations)
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Fig. 3.8 Examples of segmentation results throughout the iteration process (best viewed in color).
We only show a small region covering the pancreas in the axial view. The terminating condition is
d(t) � 0.95. Red, green and yellow indicate the prediction, ground-truth and overlapped regions,
respectively

work [36] significantly. The average accuracy over 82 samples increases remarkably
from 78.01 to 82.37%, and the standard deviation decreases from 8.20 to 5.68%,
implying that our approach is more stable. We also implement a recently published
coarse-to-fine approach [50], and get a 77.89% average accuracy. In particular, [36]
reported 34.11% for the worst case (some previous work [6, 45] reported even lower
numbers), and this number is boosted considerably to 62.43% by our approach.
We point out that these improvements are mainly due to the fine-tuning iterations.
Without it, the average accuracy is 75.74%, and the accuracy on the worst case
is merely 39.99%. Figure3.8 shows examples on how the segmentation quality is
improved in two challenging cases.

3.5.3 Evaluation of the End-to-End Coarse-to-Fine Approach

3.5.3.1 Different Settings

We initialize the up-sampling layers in FCN-8s model [29] pretrained on Pas-
calVOC [9] with random weights, set the learning rate to be 10−4 and run 80,000
iterations. Different options are evaluated, including using different kernel sizes in
saliency transformation, and whether to fine-tune the models using the predicted seg-
mentations as reference maps (see the description in Sect. 3.4.2). Quantitative results
are summarized in Table3.2.
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Table 3.2 Accuracy (DSC, %) comparison of different settings of our approach. Please see the
texts in Sect. 3.5.3.1 for detailed descriptions of these variants

Model Average Max Min

3 × 3 kernels in saliency transformation (basic
model)

83.47 ± 5.78 90.63 57.85

1 × 1 kernels in saliency transformation 82.85 ± 6.68 90.40 53.44

5 × 5 kernels in saliency transformation 83.64 ± 5.29 90.35 66.35

Two-layer saliency transformation (3 × 3 kernels) 83.93 ± 5.43 90.52 64.78

Fine-tuning with noisy data (3 × 3 kernels) 83.99 ± 5.09 90.57 65.05

As the saliency transformation module is implemented by a size-preserved con-
volution (see Sect. 3.4.1), the size of convolutional kernels determines the range that
a pixel can use to judge its saliency. In general, a larger kernel size improves seg-
mentation accuracy (3 × 3 works significantly better than 1 × 1), but we observe the
marginal effect: the improvement of 5 × 5 over 3 × 3 is limited. As we use 7 × 7
kernels, the segmentation accuracy is slightly lower than that of 5 × 5. This may be
caused by the larger number of parameters introduced to this module. Another way
of increasing the receptive field size is to use two convolutional layers with 3 × 3
kernels. This strategy, while containing a smaller number of parameters, works even
better than using one 5 × 5 layer. But, we do not add more layers, as the performance
saturates while computational costs increase.

As described in Sect. 3.4.2, we fine-tune these models with images cropped from
the coarse-scaled segmentationmask. This is to adjust themodels to the testing phase,
in which the ground-truth mask is unknown, so that the fine-scaled segmentation
needs to start with, and be able to revise the coarse-scaled segmentation mask. We
use a smaller learning rate (10−6) and run another 40,000 iterations. This strategy
not only reports 0.52% overall accuracy gain, but also alleviates over-fitting (see
Sect. 3.5.3.3).

In summary, all these variants produce higher accuracy than our step-wise coarse-
to-fine approach (82.37%), which verifies that the major contribution of our end-to-
end approach comes from our recurrent framework which enables joint optimiza-
tion. In the later experiments, we inherit the best variant learned from this section,
including in a large-scale multi-organ dataset (see Sect. 3.6). That is to say, we use
two 3 × 3 convolutional layers for saliency transformation, and fine-tune the mod-
els with coarse-scaled segmentation. This setting produces an average accuracy of
84.50%, as shown in Table3.3.

3.5.3.2 Performance Comparison

We show that our end-to-end coarse-to-fine approach works better than the step-wise
coarse-to-fine approach. As shown in Table3.3, the average improvement over 82
cases is 2.13 ± 2.67%. The standard deviations (5.68% of step-wise approach and
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Table 3.3 Accuracy (DSC, %) comparison between our approach and the state of the art on the
NIH pancreas segmentation dataset [35]

Approach Average Max Min

Roth et al. [35] 71.42 ± 10.11 86.29 23.99

Roth et al. [36] 78.01 ± 8.20 88.65 34.11

Zhang et al. [50] 77.89 ± 8.52 89.17 43.67

Roth et al. [37] 81.27 ± 6.27 88.96 50.69

Cai et al. [3] 82.4 ± 6.7 90.1 60.0

Our step-wise
approach

82.37 ± 5.68 90.85 62.43

Our end-to-end
approach

84.50 ± 4.97 91.02 62.81

4.97% of end-to-end approach) are mainly caused by the difference in scanning and
labeling qualities. A case-by-case study reveals that our end-to-end approach reports
higher accuracies on 67 out of 82 cases, with the largest advantage being +17.60%
and the largest deficit beingmerely−3.85%.We analyze the sources of improvement
in Sect. 3.5.3.3.

We briefly discuss the advantages and disadvantages of using 3D networks. 3D
networks capture richer contextual information, but also require trainingmore param-
eters. Our 2D approach makes use of 3D contexts more efficiently. At the end of each
iteration, predictions from three views are fused, and thus the saliency transformation
module carries these informations to the next iteration.We implement VNet [31], and
obtain an average accuracy of 83.18% with an 3D ground-truth bounding box pro-
vided for each case. Without the ground-truth, a sliding-window process is required
which is really slow—an average of 5min on a Titan-X Pascal GPU. In compar-
ison, our end-to-end approach needs 1.3min, slower than our step-wise approach
(0.9min), but faster than other 2D approaches [35, 36] (2–3min).

3.5.3.3 Diagnosis

Joint Optimization and Mutli-stage Cues
Our end-to-end approach enables joint training, which improves both the coarse
and fine stages individually. We denote the two networks trained by our step-wise
approach by I

C and I
F, and similarly, those trained in our approach by J

C and J
F,

respectively. In the coarse stage, IC reports 75.74% and J
C reports 78.23%. In the

fine stage, applying JF on top of the output of IC gets 83.80%, which is considerably
higher than 82.37% (IF on top of IC) but lower than 84.50% (JF on top of JC).
Therefore, we conclude that both the coarse-scaled and fine-scaled networks benefit
from joint optimization. A stronger coarse stage provides a better starting point, and
a stronger fine stage improves the upper bound.
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Fig. 3.9 Visualization of how recurrent saliency transformation works in coarse-to-fine segmen-
tation (best viewed in color). Segmentation accuracy is largely improved by making use of the
probability map from the previous iteration to help the current iteration. Note that three weight
maps capture different visual cues, with two of them focused on the foreground region, and the
remaining one focused on the background region

In Fig. 3.9, we visualize how the recurrent network assists segmentation by incor-
poratingmulti-stage visual cues. It is interesting to see that in saliency transformation,
different channels deliver complementary information, i.e., two of them focus on the
target organ, and the remaining one adds most weights to the background region.
Similar phenomena happen in the models trained in different viewpoints and dif-
ferent folds. This reveals that except for foreground, background and boundary also
contribute to visual recognition [54].

Convergence

We study convergence, which is a very important criterion to judge the reliability of
our end-to-end approach. We choose the best model reporting an average accuracy
of 84.50%, and record the inter-iteration DSC throughout the testing process: d(t) =
DSC

{
Z(t−1),Z(t)

} = 2×∑
i Z

(t−1)
i Z (t)

i∑
i Z

(t−1)
i +Z (t)

i

.

After 1, 2, 3, 5, and 10 iterations, these numbers are 0.9037, 0.9677, 0.9814,
0.9908, and 0.9964 for our approach, and 0.8286, 0.9477, 0.9661, 0.9743, and 0.9774
for our step-wise approach, respectively. Each number reported by our end-to-end
approach is considerably higher than that by the step-wise approach. The better
convergence property provides uswith the opportunity to set amore strict terminating
condition, e.g., using thr = 0.99 rather than thr = 0.95.

When the threshold is increased from 0.95 to 0.99 in our end-to-end approach, 80
out of 82 cases converge (in an average of 5.22 iterations), and the average accuracy
is improved from 83.93% to 84.50%. On a Titan-X Pascal GPU, one iteration takes
0.2min, so using thr = 0.99 requires an average of 1.3min in each testing case.
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The Over-Fitting Issue

Finally, we investigate the over-fitting issue of our end-to-end approach by making
use of oracle information in the testing process. We use the ground-truth bounding
box on each slice, which is used to crop the input region in every iteration. Note
that annotating a bounding box in each slice is expensive and thus not applicable
in real-world clinical applications. This experiment is aimed at exploring the upper
bound of our segmentation networks under perfect localization.

With oracle information provided, our best model reports 86.37%, which is con-
siderably higher than the number (84.50%) without using oracle information. If we
do not fine-tune the networks using coarse-scaled segmentation (see Table3.2), the
above numbers are 86.26% and 83.68%, respectively. This is to say, fine-tuning
prevents our model from relying on the ground-truth mask. It not only improves
the average accuracy, but also alleviates over-fitting (the disadvantage of our model
against that with oracle information is decreased by 0.67%).

3.6 JHMI Multi-organ Segmentation Experiments

To verify that our approach can be applied to other organs, the radiologists in our team
collect a large dataset which contains 200 CT scans, 11 abdominal organs and 5 blood
vessels. This corpus took 4 full-time radiologists around 3months to annotate. To the
best of our knowledge, this dataset is larger and contains more organs than any public
datasets. We choose 5 most challenging targets including the pancreas and a blood
vessel, as well as two kidneys which are relatively easier. Other easy organs such as
the liver are ignored. To the best of our knowledge, some of these organs were never
investigated before, but they are important in diagnosing pancreatic diseases and
detecting the pancreatic cancer at an early stage. We randomly partition the dataset
into fourfold for cross-validation. Each organ is trained and tested individually.When
a pixel is predicted as more than one organs, we choose the one with the largest
confidence score.

Table 3.4 Comparison of coarse-scaled (C) and fine-scaled (F) segmentation by our step-wise
approach and end-to-end approach on our JHMI multi-organ dataset. A fine-scaled accuracy is
indicated by � if it is lower than the coarse-scaled one. The pancreas segmentation accuracies are
higher than those in Table3.3, due to the increased number of training samples and the higher
resolution in CT scans

Organ Stepwise-C Stepwise-F End-to-end-C End-to-end-F

adrenal g. 57.38 61.65 60.70 63.76

duodenum 67.42 69.39 71.40 73.42

gallbladder 82.57 �82.12 87.08 87.10

inferior v.c. 71.77 �71.15 79.12 79.69

kidney l. 92.56 92.78 96.08 96.21

kidney r. 94.98 95.39 95.80 95.97

pancreas 83.68 85.79 86.09 87.60
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Results of our two approaches are summarized in Table 3.4. Our end-to-end
approach performs generally better than the step-wise approach. It reports a 4.29%
average improvement over 5 challenging organs (the kidneys excluded). For some
organs, e.g., the gallbladder, we do not observe significant accuracy gain by itera-
tions.

3.7 JHMI Pancreatic Cyst Segmentation Experiments

Finally, we evaluate our approach on a cyst dataset collected by the radiologists in
our team. This dataset contains 131 contrast-enhanced abdominal CT volumes, and
each of them is manually labeled with both pancreas and pancreatic cyst masks. The
resolution of each CT scan is 512 × 512 × L , where L ∈ [358, 1121] is the number
of sampling slices along the long axis of the body. The slice thickness varies from
0.5 to 1.0mm. We split the dataset into 4 fixed folds, and each of them contains
approximately the same number of samples. We apply cross- validation, i.e., training
our approach on 3 out of 4 folds and testing it on the remaining one. The same
as before, we measure the segmentation accuracy by computing the Dice-Sørensen
Coefficient (DSC) for each 3D volume. We report the average DSC score together
with other statistics over all 131 testing cases from 4 testing folds.

We report both pancreas and cyst segmentation results in Table 3.5, where we
summarize the results of pancreas segmentation, pancreatic cyst segmentation with-
out pancreas supervision (i.e., two-stage coarse-to-fine approach, w/o deep supervi-
sion), and pancreatic cyst segmentation with pancreas supervision (i.e., four-stage
strategy, w/deep supervision). It is interesting to see that without deep supervision,
our two approaches perform comparably with each other, but with deep supervi-
sion, end-to-end approach works better than the step-wise one. This is because, a
much better pancreas segmentation result (i.e., 83.81% compared with 79.32%) pro-
vides more accurate contextual information for cyst segmentation. In addition, our

Table 3.5 Accuracy (DSC, %) comparison on different targets (pancreas or cyst) and different
approaches. For cyst segmentation, w/o Deep Supervision means directly apply our coarse-to-fine
approaches on cyst segmentation, given the whole CT image, while w/Deep Supervision means
segmenting the pancreas first, and then segmenting the cyst in the input image cropped by the
pancreas region

Target Method Average Max Min

pancreas Step-wise 79.23 ± 9.72 93.82 69.54

pancreas End-to-end 83.81 ± 10.51 94.34 20.77

cyst Step-wise, w/o deep supervision 60.46 ± 31.37 95.67 0.00

cyst End-to-end, w/o deep supervision 60.73 ± 32.46 96.50 0.00

cyst Step-wise, w/deep supervision 63.44 ± 27.71 95.55 0.00

cyst End-to-end, w/deep supervision 67.19 ± 27.91 96.05 0.00
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approaches yield even better results by adopting a stronger backbone, e.g., under
the setting of Step-Wise, w/Deep Supervision, when we employ DeepLab [5] as
the backbone network in the coarse stage for pancreas segmentation, we can even
achieve 69.38 ± 27.60% in DSC for cyst segmentation.

To the best of our knowledge, pancreatic cyst segmentation has been little studied
previously. A competitor is [7] published in 2016, which combines random walk
and region growth for segmentation. However, it requires the user to annotate the
region of interest (ROI) beforehand, and provide interactive annotations on fore-
ground/background voxels throughout the segmentation process. In comparison, our
approaches can be widely applied to automatic diagnosis, especially for the common
users without professional knowledge in medicine.

3.8 Conclusions

This work is motivated by the difficulty of small target segmentation, which is
required to focus on a local input region. Two coarse-to-fine approaches are proposed,
namely, step-wise coarse-to-fine and end-to-end coarse-to-fine. Step-wise algorithm
is formulated as a fixed-point model taking the segmentation mask as both input
and output. End-to-end algorithm jointly optimize over two networks, and generally
achieves better results compared with the step-wise one.

Our approaches are applied to three datasets for pancreas segmentation, multi-
organ segmentation, and pancreatic cyst segmentation, and outperforms the baseline
(the state-of-the-art) significantly. Confirmed by the radiologists in our team, these
segmentation results are helpful to computer-assisted clinical diagnoses.
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Chapter 4
Volumetric Medical Image Segmentation:
A 3D Deep Coarse-to-Fine Framework
and Its Adversarial Examples

Yingwei Li, Zhuotun Zhu, Yuyin Zhou, Yingda Xia, Wei Shen,
Elliot K. Fishman and Alan L. Yuille

Abstract Although deep neural networks have been a dominant method for many
2D vision tasks, it is still challenging to apply them to 3D tasks, such as medical
image segmentation, due to the limited amount of annotated 3D data and limited
computational resources. In this chapter, by rethinking the strategy to apply 3D
Convolutional Neural Networks to segment medical images, we propose a novel 3D-
based coarse-to-fine framework to efficiently tackle these challenges. The proposed
3D-based framework outperforms their 2D counterparts by a largemargin since it can
leverage the rich spatial information along all three axes.We further analyze the threat
of adversarial attacks on the proposed framework and show how to defend against
the attack. We conduct experiments on three datasets, the NIH pancreas dataset,
the JHMI pancreas dataset and the JHMI pathological cyst dataset, where the first
two and the last one contain healthy and pathological pancreases, respectively, and

Y. Li and Z. Zhu contribute equally and are ordered alphabetically. The first part of this work
appeared as a conference paper [48], in which Zhuotun Zhu, Yingda Xia, and Wei Shen made
contributions to. The second part was contributed by Yingwei Li, Yuyin Zhou, andWei Shen. Elliot
K. Fishman and Alan L. Yuille oversaw the entire project.

Y. Li · Z. Zhu · Y. Zhou · Y. Xia · W. Shen · A. L. Yuille (B)
Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
e-mail: ayuille1@jhu.edu

Y. Li
e-mail: yingwei.li@jhu.edu

Z. Zhu
e-mail: ztzhu@jhu.edu

Y. Zhou
e-mail: yzhou103@jhu.edu

Y. Xia
e-mail: yxia25@jhu.edu

W. Shen
e-mail: wshen10@jhu.edu

E. K. Fishman
Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
e-mail: efishman@jhmi.edu

© Springer Nature Switzerland AG 2019
L. Lu et al. (eds.), Deep Learning and Convolutional Neural Networks for Medical
Imaging andClinical Informatics, Advances inComputerVision and PatternRecognition,
https://doi.org/10.1007/978-3-030-13969-8_4

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13969-8_4&domain=pdf
mailto:ayuille1@jhu.edu
mailto:yingwei.li@jhu.edu
mailto:ztzhu@jhu.edu
mailto:yzhou103@jhu.edu
mailto:yxia25@jhu.edu
mailto:wshen10@jhu.edu
mailto:efishman@jhmi.edu
https://doi.org/10.1007/978-3-030-13969-8_4


70 Y. Li et al.

achieve the current state of the art in terms of Dice-Sørensen Coefficient (DSC) on
all of them. Especially, on the NIH pancreas dataset, we outperform the previous
best by an average of over 2%, and the worst case is improved by 7% to reach almost
70%, which indicates the reliability of our framework in clinical applications.

4.1 Introduction

Driven by the huge demands for computer-aided diagnosis systems, automatic organ
segmentation from medical images, such as computed tomography (CT) and mag-
netic resonance imaging (MRI), has become an active research topic in both the
medical image processing and computer vision communities. It is a prerequisite step
for many clinical applications, such as diabetes inspection, organic cancer diagnosis,
and surgical planning. Therefore, it is well worth exploring automatic segmentation
systems to accelerate the computer-aided diagnosis in medical image analysis.

In this chapter, we focus on pancreas segmentation from CT scans, one of the
most challenging organ segmentation problems [31, 46]. As shown in Fig. 4.1, the
main difficulties stem from three parts: (1) the small size of the pancreas in the whole
abdominal CT volume; (2) the large variations in texture, location, shape, and size
of the pancreas; (3) the abnormalities, like pancreatic cysts, can alter the appearance
of pancreases a lot.

Following the rapid development of deep neural networks [17, 35] and their
successes in many computer vision tasks, such as semantic segmentation [4, 21],
edge detection [33, 34, 42], and 3D shape retrieval [7, 47], many deep learning-
based methods have been proposed for pancreas segmentation and have achieved
considerable progress [31, 32, 46]. However, these methods are based on 2D fully
convolutional networks (FCNs) [21], which perform segmentation slice by slice
while CT volumes are indeed 3D data. Although these 2D methods use strategies

Fig. 4.1 An illustration of normal pancreases on NIH dataset [31] and abnormal cystic pancreases
on JHMI dataset [45] shown in the first and second rows, respectively. Normal pancreas regions are
masked as red and abnormal pancreas regions are marked as blue. The pancreas usually occupies a
small region in a whole CT scan. Best viewed in color
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to fuse the output from different 2D views to obtain 3D segmentation results, they
inevitably lose some 3D context, which is important for capturing the discriminative
features of the pancreas with respect to background regions.

An obstacle to train 3D deep segmentation networks is that it suffers from the
“out of memory” problem. 2D FCNs can accept a whole 2D slice as input, but 3D
FCNs cannot be fed a whole 3D volume due to the limited GPU memory size. A
common solution is to train 3D FCNs from small sub-volumes and test them in
a sliding-window manner [1, 3, 5, 24, 43], i.e., performing 3D segmentation on
densely and uniformly sampled sub-volumes one by one. Usually, these neighboring
sampled sub-volumes overlap with each other to improve the robustness of the final
3D results. It is worth noting that the overlap size is a trade-off between the segmenta-
tion accuracy and the time cost. Setting a larger/smaller overlap size generally leads
to a better/worse segmentation accuracy but takes more/less time during testing.

To address these issues, we propose a concise and effective framework to train 3D
deep networks for pancreas segmentation, which can simultaneously achieve high
segmentation accuracy and low time cost. Our framework is formulated into a coarse-
to-fine manner. In the training stage, we first train a 3D FCN from the sub-volumes
sampled from an entire CT volume. We call this ResDSN Coarsemodel, which aims
at obtaining the rough location of the target pancreas from the whole CT volume
by making full use of the overall 3D context. Then, we train another 3D FCN from
the sub-volumes sampled only from the ground truth bounding boxes of the target
pancreas. We call this the ResDSN Fine model, which can refine the segmentation
based on the coarse result. In the testing stage, we first apply the coarse model in the
sliding-window manner to a whole CT volume to extract the most probable location
of the pancreas. Since we only need a rough location for the target pancreas in this
step, the overlap size is set to a small value. Afterward, we apply the fine model
in the sliding-window manner to the coarse pancreas region, but by setting a larger
overlap size. Thus, we can efficiently obtain a fine segmentation result and we call
the coarse-to-fine framework by ResDSN C2F.

Note that, the meaning of “coarse-to-fine” in our framework is twofold. First, it
means the input region of interests (RoIs) for the ResDSN Coarse model and the
ResDSN Fine model are different, i.e., a whole CT volume for the former one and
a rough bounding box of the target pancreas for the latter one. We refer to this as
coarse-to-fine RoIs, which is designed to achieve better segmentation performance.
The coarse step removes a large amount of the unrelated background region, then
with a relatively smaller region to be sampled as input, the fine step can much more
easily learn cues which distinguish the pancreas from the local background, i.e.,
exploit local context which makes it easier to obtain a more accurate segmentation
result. Second, it means the overlap sizes used for the ResDSN Coarse model and
the ResDSN Fine model during inference are different, i.e., small and large overlap
sizes for them, respectively. We refer to this as coarse-to-fine overlap sizes, which is
designed for efficient 3D inference.

Recently, it is increasingly realized that deep networks are vulnerable to adversar-
ial examples, i.e., inputs that are almost indistinguishable from natural data which are
imperceptible to a human, but yet classified incorrectly by the network [10, 37, 41].
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This problem is even more serious for medical learning systems, as they may cause
incorrect decisions, which could mislead human doctors. Adversarial examples may
be only a small subset of the space of all medical images, so it is possible that they
will only rarely occur in real datasets. But, even so, they could potentially have major
errors. Analyzing them can help medical imaging researchers to understand more
about their deep network-based model, with the ultimate goal of increasing robust-
ness. In this chapter, we generate 3D adversarial examples by the gradient-based
methods [10, 18] and investigate the threat of these 3D adversarial examples on our
framework. We also show how to defend against these adversarial examples.

The contributions of this chapter can be summarized into two aspects: (1) A novel
3D deep network-based framework which leverages the rich spatial information for
medical image segmentation, which achieves the state-of-the-art performance with
relatively low time cost on segmenting both normal and abnormal pancreases; (2) A
systematic analysis about the threat of 3D adversarial examples on our framework
as well as the adversarial defense methods.

The first part of this work appeared as a conference paper [48], in which Zhuotun
Zhu, Yingda Xia, and Wei Shen made contributions to. The second part was con-
tributed by Yingwei Li, Yuyin Zhou, and Wei Shen. Elliot K. Fishman and Alan L.
Yuille oversaw the entire project. This chapter extends the previous work [48] by
including the analysis about the 3D adversarial attacks and defenses for our frame-
work and more experimental results.

4.2 Related Work

4.2.1 Deep Learning-Based Medical Image Segmentation

The medical image analysis community is facing a revolution brought by the fast
development of deep networks [17, 35]. Deep convolutional neural networks (CNNs)
based methods have dominated the research area of volumetric medical image seg-
mentation in the last few years. Generally speaking, CNN-based methods for vol-
umetric medical image segmentation can be divided into two major categories: 2D
CNNs based and 3D CNNs based.

4.2.1.1 2D CNNs for Medical Image Segmentation

2D CNNs based methods [12, 25, 29, 31, 32, 39, 40] performed volumetric seg-
mentation slice by slice from different views, and then fused the 2D segmentation
results to obtain a 3D Volumetric Segmentation result. In the early stage, the 2D
segmentation-based models were trained from image patches and tested in a patch
by patch manner [31], which is time consuming. Since the introduction of fully con-
volution networks (FCNs) [21], almost all the 2D segmentation methods are built
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upon 2D FCNs to perform holistic slice segmentation during both training and test-
ing. Havaei et al. [12] proposed a two-pathway FCN architecture, which exploited
both local features as well as more global contextual features simultaneously by
the two pathways. Roth et al. [32] performed pancreas segmentation by a holistic
learning approach, which first segment pancreas regions by holistically nested net-
works [42] and then refine them by the boundary maps obtained by robust spatial
aggregation using random forest. The U-Net [29] is one of the most popular FCN
architectures for medical image segmentation, which is a encoder–decoder network,
but with an additional short connection between encoder and decoder paths. Based
on the fact that a pancreas only takes up a small fraction of the whole scan, Zhou
et al. [46] proposed to find the rough pancreas region and then learn an FCN-based
fixed-point model to refine the pancreas region iteratively. Their method is also based
on a coarse-to-fine framework, but it only considered coarse-to-fine RoIs. Besides
coarse-to-fine RoIs, our coarse-to-fine method also takes coarse-to-fine overlap sizes
into account, which is designed specifically for efficient 3D inference.

4.2.1.2 3D CNNs for Medical Image Segmentation

Although 2DCNNs basedmethods achieved considerable progress, they are not opti-
mal for medical image segmentation, as they cannot make full use of the 3D context
encoded in volumetric data. Several 3D CNNs based segmentation methods have
been proposed. The 3D U-Net [5] extended the previous 2D U-Net architecture [29]
by replacing all 2D operations with their 3D counterparts. Based on the architecture
of the 3D U-Net, the V-Net [24] introduced residual structures [13] (short term skip
connection) into each stage of the network. Chen et al. [3] proposed a deep voxel-
wise residual network for 3D brain segmentation. Both I2I-3D [23] and 3D-DSN [6]
included auxiliary supervision via side outputs into their 3D deep networks. Despite
the success of 3D CNNs as a technique for segmenting the target organs, such as
prostate [24] and kidney [5], very few techniques have been developed for leveraging
3D spatial information on the challenging pancreas segmentation. Gibson et al. [8]
proposed the DenseVNet which is, however, constrained to have shallow encoders
due to the computationally demanding dense connections. Roth et al. [30] extended
3D U-Net to segment the pancreas, while obtaining good results, this method has the
following shortcomings, (1) the input of their networks is fixed to 120 × 120 × 120,
which is very computationally demanding due to this large volume size, (2) the rough
pancreas bounding box is resampled to a fixed size as their networks input, which
loses information and flexibility, and cannot deal with the intrinsic large variations of
pancreas in shape and size. Therefore, we propose our 3D coarse-to-fine framework
that works on both normal and abnormal CT data to ensure both low computation
cost and high pancreas segmentation accuracy.
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4.2.2 Adversarial Attacks and Defenses for Medical Image
Segmentation Networks

Deep learning has become increasingly adopted within the medical imaging com-
munity for a wide range of tasks including classification, segmentation, detection,
etc. Though achieving tremendous success in various problems, CNNs have been
demonstrated to be extremely vulnerable to adversarial examples, i.e., images which
are crafted by human-imperceptible perturbations [10, 37, 41]. Xie et al. [41] were
the first to make adversarial examples for semantic segmentation, which is directly
related to medical image segmentation. Paschali et.al. [27] used the code from Xie
et al. [41] and showed that state-of-the-art networks such as Inception [36] and
UNet [28] are still extremely susceptible to adversarial examples for skin lesion
classification and whole brain segmentation. It was also demonstrated that adver-
sarial examples are superior in pushing a network to its limits and evaluating its
robustness in [27]. Additionally, Huang et.al. [14] pointed out that the robustness of
deep learning-based reconstruction techniques for limited angle tomography remains
a concern due to its vulnerability to adversarial examples. This makes the robustness
of neural networks for clinical applications an important unresolved issue.

To alleviate such adversarial effects for clinical applications, we investigate the
application of adversarial training [37] for improving the robustness of deep learning
algorithms in the medical area. Adversarial training was first proposed by Szegedy
et.al. [37] to increase robustness by augmenting training data with adversarial exam-
ples. Madry et.al. [22] further validated that adversarially trained models can be
robust against white-box attacks, i.e., with knowledge of the model parameters. Note
that clinical applications of deep learning require a high level of safety and secu-
rity [14]. Our experiments empirically demonstrate that adversarial training can be
greatly beneficial for improving the robustness of 3D deep learning-based models
against adversarial examples.

4.3 Method

4.3.1 A 3D Coarse-to-Fine Framework for Medical Image
Segmentation

In this section, we elaborate our 3D coarse-to-fine framework, which includes a
coarse stage and a fine stage afterward. We first formulate a segmentation model
that can be generalized to both coarse stage and fine stage. Later in Sects. 4.3.1.1 and
4.3.1.2, we will customize the segmentation model to these two stages, separately.

Wedenote a 3DCTscanvolumebyX. This is associatedwith a human-labeledper-
voxel annotation Y, where both X and Y have sizeW × H × D, which corresponds
to axial, sagittal and coronal views, separately. The ground truth segmentation mask
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Y has a binary value yi , i = 1, . . . ,WHD, at each spatial location i where yi = 1
indicates that xi is a pancreas voxel. Denote a segmentation model by M : P =
f(X;�), where � indicates model parameters and P means the binary prediction
volume. Specifically in a neural networkwith L layers and parameters� = {W,B},
W is a set of weights and B is a set of biases, whereW = {W1,W2, . . . ,WL} and
B = {B1,B2, . . . ,BL}. Given that p(yi |xi ;�) represents the predicted probability
of a voxel xi beingwhat is the labeled class at the final layer of the output, the negative
log-likelihood loss can be formulated as

L = L(X;�) = −
∑

xi∈X
log(p(yi |xi ;�)). (4.1)

It is also known as the cross-entropy loss in our binary segmentation setting. By
thresholding p(yi |xi ;�), we can obtain the binary segmentation mask P.

We also add some auxiliary layers to the neural network, which produces side
outputs under deep supervision [20]. These auxiliary layers form a branch network
and facilitate feature learning at lower layer of the mainstream network. Each branch
network shares the weights of the first d layers from the mainstream network, which
is denoted by �d = {Wd ,Bd} and has its own weights �̂d to output the per-voxel
prediction. Similarly, the loss of an auxiliary network can be formulated as

Ld(X;�d , �̂d) =
∑

xi∈X
− log(p(yi |xi ;�d , �̂d)), (4.2)

which is abbreviated asLd . Finally, stochastic gradient descent is applied tominimize
the negative log-likelihood, which is given by the following regularized objective
function:

Loverall = L +
∑

d∈D
ξdLd + λ

(
‖�‖2 +

∑

d∈D
‖�̂d‖

)2

, (4.3)

where D is a set of branch networks for auxiliary supervisions, ξd balances the
importance of each auxiliary network, and l2 regularization is added to the objective
to prevent the networks fromoverfitting. For notational simplicity, we keep a segmen-
tation model that is obtained from the overall function described in Eq.4.3 denoted
by M : P = f(X;�), where � includes parameters of the mainstream network and
auxiliary networks.

4.3.1.1 Coarse Stage

In the coarse stage, the input of “ResDSN Coarse” is sampled from the whole CT
scan volume denoted by XC, on which the coarse segmentation model MC : PC =
fC

(
XC;�C)

is trained on. All the C superscripts depict the coarse stage. The goal of
this stage is to efficiently produce a rough binary segmentation PC from the complex
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background, which can get rid of regions that are segmented as non-pancreas with
a high confidence to obtain an approximate pancreas volume. Based on this approx-
imate pancreas volume, we can crop from the original input XC with a rectangular
cube derived from PC to obtain a smaller 3D image spaceXF, which is surrounded by
simplified and less variable context compared with XC. The mathematic definition
of XF is formulated as

XF = Crop[XC ⊗ PC;PC,m], (4.4)

where⊗means an element-wise product. The function Crop[X;P,m] denotes crop-
ping X via a rectangular cube that covers all the 1’s voxels of a binary volume P
added by a padding margin m along three axes. Given P, the functional constraint
imposed on X is that they have exactly the same dimensionality in 3D space. The
padding parameter m is empirically determined in experiments, where it is used to
better segment the boundary voxels of pancreas during the fine stage. The Crop oper-
ation acts as a dimensionality reduction to facilitate the fine segmentation, which is
crucial to cut down the consuming time of segmentation. It is well worth noting that
the 3D locations of the rectangular cube which specifies where to crop XF from XC

is recorded to map the fine segmentation results back their positions in the full CT
scan.

4.3.1.2 Fine Stage

In the fine stage, the input of the ConvNet is sampled from the cropped volume XF,
on which we train the fine segmentation model MF : PF = fF

(
XF;�F), where the

F superscripts indicate the fine stage. The goal of this stage is to refine the coarse
segmentation results from previous stage. In practice, PF has the same volumetric
size of XF, which is smaller than the original size of XC.

4.3.1.3 Coarse-to-Fine Segmentation

Our segmentation task is to give a volumetric prediction on every voxel of XC, so
we need to map the PF back to exactly the same size of XC given by

PC2F = DeCrop[PF � PC;XF,XC], (4.5)

where PC2F denotes the final volumetric segmentation, and � means an element-
wise replacement, and DeCrop operation defined on PF,PC,XF and XC is to replace
a predefined rectangular cube inside PC by PF, where the replacement locations are
given by the definition of cropping XF from XC given in Eq.4.4.

All in all, our entire 3D-based coarse-to-fine segmentation framework during
testing is illustrated in Fig. 4.2.
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MF PF PC2FMC PCXC Crop

DeCrop

XF
Sliding with
Small Overlap

Sliding with
Large Overlap

Fig. 4.2 Flowchart of the proposed 3D coarse-to-fine segmentation system in the testing phase. We
first apply “ResDSN Coarse” with a small overlapped sliding window to obtain a rough pancreas
region and then use the “ResDSN Fine” model to refine the results with a large overlapped sliding
window. Best viewed in color

4.3.1.4 Network Architecture

As shown in Fig. 4.3, we provide an illustration of our convolutional network archi-
tecture. Inspired by V-Net [24], 3D U-Net [5], and VoxResNet [3], we have an
encoder path followed by a decoder path each with four resolution steps. The left
part of network acts as a feature extractor to learn higher and higher level of repre-
sentations while the right part of network decompresses compact features into finer
and finer resolution to predict the per-voxel segmentation. The padding and stride of
each layer (Conv, Pooling, DeConv) are carefully designed to make sure the densely
predicted output is the same size as the input.

The encoder subnetwork on the left is divided into different steps that work on
different resolutions. Each step consists of one–two convolutions, where each con-
volution is composed of 3 × 3 × 3 convolution followed by a batch normalization
(BN [15]) and a rectified linear unit (ReLU [26]) to reach better convergence, and
then a max-pooling layer with a kernel size of 2 × 2 × 2 and strides of two to reduce
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Fig. 4.3 Illustration of our 3D convolutional neural network for volumetric segmentation. The
encoder path is the path between “Conv1a” and “Conv4b” while the decoder path is the one
between “DeConv3a” and “Res/Conv1b”. Each convolution or deconvolution layer consists of
one convolution followed by a BatchNorm and a ReLU. To clarify, “Conv1a, 32, 3 × 3 × 3” means
the convolution operation with 32 channels and a kernel size of 3 × 3 × 3. “Pooling 1, max, 2”
means the max-pooling operation with kernel size of 2 × 2 × 2 and a stride of two. Long residual
connections are illustrated by the blue concrete lines. Blocks with the same color mean the same
operations. Best viewed in color
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resolutions and learn more compact features. The downsampling operation imple-
mented by max pooling can reduce the size of the intermediate feature maps while
increasing the size of the receptive fields. Having fewer size of activations makes
it possible to double the number of channels during feature aggregation given the
limited computational resource.

The decoder subnetwork on the right is composed of several steps that operate on
different resolutions as well. Each step has two convolutions with each one followed
by aBatchNorm and aReLU, and afterward, a deconvolutionwith a kernel size of 4 ×
4 × 4 and strides of two are connected to expand the feature maps and finally predict
the segmentation mask at the last layer. The upsampling operation that is carried out
by deconvolution enlarges the resolution between each step, which increases the size
of the intermediate activations so that we need to halve the number of channels due
to the limited memory of the GPU card.

Apart from the left and right subnetworks, we impose a residual connection [13] to
bridge shortcut connections of features between low-level layers and high-level lay-
ers. During the forward phase, the low-level cues extracted by networks are directly
added to the high-level cues, which can help elaborate the fine-scaled segmentation,
e.g., small parts close to the boundary which may be ignored during the feature
aggregation due to the large size of receptive field at high-level layers. As for the
backward phase, the supervision cues at high-level layers can be backpropagated
through the shortcut way via the residual connections. This type of mechanism can
prevent networks fromgradient vanishing and exploding [9], which hampers network
convergence during training.

We have one mainstream loss layer connected from “Res/Conv1b” and another
two auxiliary loss layers connected from “Conv2b” and “Conv3b” to the ground
truth label, respectively. For the mainstream loss in “Res/Conv1b” at the last layer
which has the same size of data flow as one of the inputs, a 1 × 1 × 1 convolution is
followed to reduce the number of channels to the number of label classes which is 2
in our case. As for the two auxiliary loss layers, deconvolution layers are connected
to upsample feature maps to be the same as the input.

The deep supervision imposed by auxiliary losses provides robustness to hyper-
parameters choice, in that the low-level layers are guided by the direct segmentation
loss, leading to faster convergence rate. Throughout this work, we have two auxiliary
branches where the default parameters are ξ1 = 0.2 and ξ2 = 0.4 in Eq.4.3 to control
the importance of deep supervisions compared with the major supervision from the
mainstream loss for all segmentation networks.

As shown in Table4.1, we give the detailed comparisons of network configura-
tions in terms of four aspects: long residual connection, short residual connection,
deep supervision, and loss function. Our backbone network architecture, named as
“ResDSN”, is proposed with different strategies in terms of combinations of long
residual connection and short residual connection compared with VoxResNet [3],
3D HED [23], 3D DSN [6], and MixedResNet [44]. In this table, we also depict
“FResDSN” and “SResDSN”, where “FResDSN” and “SResDSN” are similar to
MixedResNet [44] and VoxResNet [3], respectively. As confirmed by our quanti-
tative experiments in Sect. 4.4.1.5, instead of adding short residual connections to
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Table 4.1 Configurations comparison of different 3D segmentation networks on medical image
analysis. For all the abbreviated phrases, “Long Res” means long residual connection, “Short Res”
means short residual connection, “Deep Super” means deep supervision implemented by auxiliary
loss layers, “Concat” means concatenation, “DSC” means Dice-Sørensen Coefficient and “CE”
means cross-entropy. For residual connection, it has two types: concatenation (“Concat”) or element-
wise sum (“Sum”)

Method Long Res Short Res Deep Super Loss

ResDSN (Ours) Sum No Yes CE

FResDSN Sum Sum Yes CE

SResDSN No Sum Yes CE

3D U-Net [5] Concat No No CE

V-Net [24] Concat Sum No DSC

VoxResNet [3] No Sum Yes CE

MixedResNet [44] Sum Sum Yes CE

3D DSN [6] No No Yes CE

3D HED [23] Concat No Yes CE

the network, e.g., “FResDSN” and “SResDSN”, we only choose the long residual
element-wise sum, which can be more computationally efficient while even per-
forming better than the “FResDSN” architecture which is equipped with both long
and short residual connections. Moreover, ResDSN has noticeable differences with
respect to the V-Net [24] and 3D U-Net [5]. On the one hand, compared with 3D U-
Net and V-Net which concatenate the lower level local features to higher level global
features, we adopt the element-wise sum between these features, which outputs less
number of channels for efficient computation. On the other hand, we introduce deep
supervision via auxiliary losses into the network to yield better convergence.

4.3.2 3D Adversarial Examples

In this section, we discuss how to generate 3D adversarial examples for our segmen-
tation framework as well as the defense method. We follow the notations defined in
Sect. 4.3.1, i.e., X denotes a 3D CT scan volume, Ytrue denotes the corresponding
ground truth label, and L(X;�) denotes the network loss function. To generate the
adversarial example, the goal is to maximize the loss L(X + r;�) for the image
X, under the constraint that the generated adversarial example Xadv = X + r should
look visually similar to the original image X and the corresponding predicted label
Yadv �= Ytrue. By imposing additional constraints such as ||r||∞ ≤ ε, we can restrict
the perturbation to be small enough to be imperceptible to humans.
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4.3.2.1 Attack Methods

As for 3D adversarial attacking, we mainly adopt the gradient-based methods. They
are as follows:

• Fast Gradient Sign Method (FGSM): FGSM [10] is the first member in this
attack family, which finds the adversarial perturbations in the direction of the loss
gradient ∇XL(X;�). The update equation is

Xadv = X + ε · sign(∇XL(X;�)). (4.6)

• Iterative Fast Gradient Sign Method (I-FGSM): An extended iterative version
of FGSM [18], which can be expressed as

Xadv
0 = X (4.7)

Xadv
n+1 = Clipε

X

{
Xadv

n + α · sign(∇XL(Xadv
n ;�))

}
,

where Clipε
X indicates the resulting image are clipped within the ε-ball of the

original image X, n is the iteration number and α is the step size.

4.3.2.2 Defending Against 3D Adversarial Examples

Following [22], defending against adversarial examples can be expressed as a saddle
point problem,which comprises of an innermaximization problem and an outermini-
mization problem.More precisely, our objective for defending against 3D adversarial
examples is formulated as follows:

min
�

ρ(�), where ρ(�) = E(X)∼D

[
max
r∈S

L(X + r;�)

]
. (4.8)

S and D denote the set of allowed perturbations and the data distribution, respec-
tively.

4.4 Experiments

In this section, we demonstrate our experimental results, which consists of two parts.
In the first part, we show the performance of our framework on pancreas segmenta-
tion. We first describe in detail how we conduct training and testing on the coarse
and fine stages, respectively. Then we give the comparison results on three pancreas
datasets: the NIH pancreas dataset [31], the JHMI pathological cyst dataset [45], and
the JHMI pancreas dataset. In the second part, we discuss the adversarial attack and
defense results on our framework.
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4.4.1 Pancreas Segmentation

4.4.1.1 Network Training and Testing

All our experiments were run on a desktop equipped with the NVIDIA TITAN X
(Pascal) GPU and deep neural networks were implemented based on the CAFFE [16]
platform customized to support 3D operations for all necessary layers, e.g., “convo-
lution”, “deconvolution” and “pooling”, etc. For the data preprocessing, we simply
truncated the raw intensity values to be in [−100, 240] and then normalized each raw
CT case to have zero mean and unit variance to decrease the data variance caused by
the physical processes [11] of medical images. As for the data augmentation in the
training phase, unlike sophisticated processing used by others, e.g., elastic deforma-
tion [24, 29], we utilized simple but effective augmentations on all training patches,
i.e., rotation (90◦, 180◦, and 270◦) and flip in all three axes (axial, sagittal and coro-
nal), to increase the number of 3D training samples which can alleviate the scarce
of CT scans with expensive human annotations. Note that different CT cases have
different physical resolutions, but we keep their resolutions unchanged. The input
size of all our networks is denoted by WI × HI × DI , where WI = HI = DI = 64.

For the coarse stage, we randomly sampled 64 × 64 × 64 sub-volumes from the
whole CT scan in the training phase. In this case, a sub-volume can either cover a
portion of pancreas voxels or be cropped from regions with non-pancreas voxels at
all, which acts as a hard negative mining to reduce the false positive. In the testing
phase, a sliding window was carried out to the whole CT volume with a coarse
stepsize that has small overlaps within each neighboring sub-volume. Specifically,
for a testing volume with a size of W × H × D, we have a total number of (� W

WI
 +

n) × (� H
HI

 + n) × (� D
DI

 + n) sub-volumes to be fed into the network and then
combined to obtain the final prediction, where n is a parameter to control the sliding
overlaps that a larger n results in a larger overlap and vice versa. In the coarse stage
for the low time cost concern, we set n = 6 to efficiently locate the rough region of
pancreas XF defined in Eq.4.4 from the whole CT scan XC.

For the fine stage, we randomly cropped 64 × 64 × 64 sub-volumes constrained
to be from the pancreas regions defined by ground truth labels during training. In
this case, a training sub-volume was assured to cover pancreatic voxels, which was
specifically designed to be capable of segmentation refinement. In the testing phase,
we only applied the sliding window on XF with a size of WF × HF × DF . The total
number of sub-volumes to be tested is (�WF

WI
 + n) × (� HF

HI
 + n) × (� DF

DI
 + n). In

the fine stage for the high accuracy performance concern, we set n = 12 to accurately
estimate the pancreatic mask PF from the rough segmentation volumeXF. In the end,
we mapped the PF back to PC to obtain PC2F for the final pancreas segmentation as
given in Eq.4.5, where the mapping location is given by the cropped location of XF

from XC.
After we get the final binary segmentation mask, we denote P andY to be the set

of pancreas voxels in the prediction and ground truth, separately, i.e.,P = {i |pi = 1}
and Y = {i |yi = 1}. The evaluation metric is defined by the Dice-Sørensen Coef-
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ficient (DSC) formulated as DSC(P,Y) = 2×|P∩Y|
|P|+|Y| . This evaluation measurement

ranges in [0, 1] where 1 means a perfect prediction.

4.4.1.2 NIH Pancreas Dataset

We conduct experiments on the NIH pancreas segmentation dataset [31], which
contains 82 contrast-enhanced abdominal CT volumes provided by an experienced
radiologist. The size of CT volumes is 512 × 512 × D, where D ∈ [181, 466] and
their spatial resolutions are w × h × d, where d = 1.0mm and w = h that ranges
from 0.5 to 1.0mm. Data preprocessing and data augmentation were described in
Sect. 4.4.1.1. Note that we did not normalize the spatial resolution into the same
one since we wanted to impose the networks to learn to deal with the variations
between different volumetric cases. Following the training protocol [31], we per-
form fourfold cross-validation in a random split from 82 patients for training and
testing folds, where each testing fold has 21, 21, 20, and 20 cases, respectively. We
trained networks illustrated in Fig. 4.3 by SGD optimizer with a 16 mini-batch, a
0.9 momentum, a base learning rate to be 0.01 via polynomial decay (the power
is 0.9) in a total of 80,000 iterations, and the weight decay 0.0005. Both training
networks in the coarse and fine stages shared the same training parameter settings
except that they took a 64 × 64 × 64 input sampled from different underlying dis-
tributions described in Sect. 4.4.1.1, which included the details of testing settings
as well. We average the score map of overlapped regions from the sliding window
and throw away small isolated predictions whose portions are smaller than 0.2 of
the total prediction, which can remove small false positives. For DSC evaluation, we
report the average with standard deviation, max and min statistics over all 82 testing
cases as shown in Table4.2.

First of all, our overall coarse-to-fine framework outperforms previous state of the
art by nearly 2.2% (Cai et al. [2] and Zhou et al. [46]) in terms of average DSC, which
is a large improvement. The lower standard deviation of DSC shows that our method

Table 4.2 Evaluation of different methods on the NIH dataset. Our proposed framework achieves
state of the art by a large margin compared with previous state of the arts

Method Mean DSC (%) Max DSC (%) Min DSC (%)

ResDSN C2F (Ours) 84.59± 4.86 91.45 69.62

ResDSN Coarse
(Ours)

83.18 ± 6.02 91.33 58.44

Cai et al. [2] 82.4 ± 6.7 90.1 60.0

Zhou et al. [46] 82.37 ± 5.68 90.85 62.43

Dou et al. [6] 82.25 ± 5.91 90.32 62.53

Roth et al. [32] 78.01 ± 8.20 88.65 34.11

Yu et al. [43] 71.96 ± 15.34 89.27 0
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#33 Coarse 58.44% #33 C2F 69.62% #63 Coarse 74.63% #63 C2F 84.87% #74 Coarse 90.84% #74 C2F 91.03%

Fig. 4.4 Examples of segmentation results reported by “ResDSNCoarse” and “ResDSNC2F” on a
same slice in the axial view from NIH case #33, #63 and #74, respectively. Numbers after “Coarse”
or “C2F” mean testing DSC. Red, green, and yellow indicates the ground truth, prediction, and
overlapped regions, respectively. Best viewed in color

is the most stable and robust across all different CT cases. Although the enhancement
of max DSC of our framework is small due to saturation, the improvement of the min
DSC over the second best (Dou et al. [6]) is from 62.53 to 69.62%, which is a more
than 7% advancement. The worst case almost reaches 70%, which is a reasonable
and acceptable segmentation result. After coarse-to-fine, the segmentation result of
the worst case is improved by more than 11% after the 3D-based refinement from
the 3D-based coarse result. The overall average DSC was also improved by 1.41%,
which proves the effectiveness of our framework.1

As shown in Fig. 4.4, we report the segmentation results by “ResDSN Coarse”
and “ResDSN C2F” on the same slice for comparison. Note that yellow regions are
the correctly predicted pancreas. For the NIH case #33, which is the min DSC case
reported by both “ResDSN Coarse” and “ResDSN C2F”, the “ResDSN C2F” suc-
cessfully predict more correct pancreas regions at the bottom, which is obviously
missed by “ResDSN Coarse”. If the coarse segmentation is bad, e.g., case #33 and
#63, our 3D coarse-to-fine can significantly improve the segmentation results by as
much as 10% in DSC. However, if the coarse segmentation is already very good, e.g.,
case #74, our proposed method cannot improve too much. We conclude that our pro-
posed “ResDSN C2F” shows its advancement over 2D methods by aggregating rich
spatial information and is more powerful than other 3D methods on the challenging
pancreas segmentation task.

4.4.1.3 JHMI Pathological Cyst Dataset

We verified our proposed idea on the JHMI pathological cyst dataset [45] of abdom-
inal CT scans as well. Different from the NIH pancreas dataset, which only contains
healthy pancreas, this dataset includes pathological cysts where some can be or can
become cancerous. The pancreatic cancer stage largely influences the morphology
of the pancreas [19] that makes this dataset extremely challenging for considering
the large variants.

1The results are reported by our runs using the same cross-validation splits where the code is
available from their GitHub: https://github.com/yulequan/HeartSeg.

https://github.com/yulequan/HeartSeg
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Table 4.3 Evaluations on the JHMI pathological pancreas

Method Mean DSC (%)

ResDSN C2F (Ours) 80.56± 13.36

ResDSN Coarse (Ours) 77.96 ± 13.36

Zhou et al. [45] 79.23 ± 9.72

This dataset has a total number of 131 contrast-enhanced abdominal CT volumes
with human-labeled pancreas annotations. The size of CT volumes is 512 × 512 ×
D, where D ∈ [358, 1121] that spans awider variety of thickness than one of theNIH
dataset. Following the training protocol [45], we conducted fourfold cross-validation
on this dataset where each testing fold has 33, 33, 32, and 33 cases, respectively. We
trained networks illustrated in Fig. 4.3 in both the coarse and fine stage with the same
training settings as on the NIH except that we trained a total of 300,000 iterations
on this pathological dataset since a pancreas with cysts is more difficult to segment
than a normal case. In the testing phase, we vote the prediction map of overlapped
regions from the sliding window and ignore small isolated pancreas predictions
whose portions are smaller than 0.05 of the total prediction. As shown in Table 4.3,
we compare our framework with only one available published results on this dataset.
“ResDSN C2F” achieves an average 80.56% DSC that consistently outperforms the
2D based coarse-to-fine method [45], which confirms the advantage of leveraging
the rich spatial information along three axes. What’s more, the “ResDSN C2F”
improves the “ResDSN Coarse” by 2.60% in terms of the mean DSC, which is a
remarkable improvement that proves the effectiveness of the proposed 3D coarse-to-
fine framework. Both [45] and our method have multiple failure cases whose testing
DSC is 0, which indicates the segmentation of pathological organs is a more tough
task. Due to these failure cases, we observe a large deviation on this pathological
pancreas dataset compared with results on the NIH healthy pancreas dataset.

4.4.1.4 JHMI Pancreas Dataset

In order to further validate the superiority of our 3D model, We also evaluate
our approach on a large high-quality dataset collected by the radiologists in our
team. This dataset contains 305 contrast-enhanced abdominal CT volumes, and
each of them is manually labeled with pancreas masks. Each CT volume con-
sists of 319 ∼ 1051 slices of 512 × 512 pixels, and have voxel spatial resolution
of ([0.523 ∼ 0.977] × [0.523 ∼ 0.977] × 0.5)mm3. Following the training proto-
col [31], we perform fourfold cross-validation in a random split from all patients
for training and testing folds, where each testing fold has 77, 76, 76, and 76 cases,
respectively. We demonstrate the superiority of our 3D model2 by comparing with
the 2D baseline [46] (see Table4.4).

2The coarse model is used for comparison since it is the basis of our framework.
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Table 4.4 Evaluations on the JHMI pancreas dataset

Method Mean DSC (%) Max DSC (%) Min DSC (%)

ResDSN Coarse (Ours) 87.84± 7.27 95.27 0.07

Zhou et al. [45] 84.99 ± 7.42 93.45 3.76

4.4.1.5 Ablation Study

In this section, we conduct the ablation studies about residual connection, time effi-
ciency and deep supervision to further investigate the effectiveness and efficiency of
our proposed framework for pancreas segmentation.

Residual Connection

We discuss how different combinations of residual connections contribute to the
pancreas segmentation task on the NIH dataset. All the residual connections are
implemented in the element-wise sum and they shared exactly the same deep super-
vision connections, cross-validation splits, data input, training, and testing settings
except that the residual structure is different from each other. As given in Table 4.5,
we compare four configurations of residual connections of 3D-based networks only
in the coarse stage. Themajor differences between our backbone network “ResDSN”
with respect to “FResDSN”, “SResDSN” and “DSN” are depicted in Table 4.1. “Res-
DSN” outperforms other network architectures in terms of average DSC and a small
standard deviation even though the network is not as sophisticated as “FResDSN”,
which is the reason we adopt “ResDSN” for efficiency concerns in the coarse stage.

Time Efficiency

We discuss the time efficiency of the proposed coarse-to-fine framework with a
smaller overlap in the coarse stage for the low consuming time concern while a
larger one in the fine stage for the high prediction accuracy concern. The overlap
size depends on how large we choose n defined in Sect. 4.4.1.1. We choose n = 6
during the coarse stage while n = 12 during the fine stage. Experimental results are
shown in Table4.6. “ResDSN Coarse” is the most efficient while the accuracy is the
worst among three methods, which makes sense that we care more of the efficiency
to obtain a rough pancreas segmentation. “ResDSN Fine” is to use a large overlap

Table 4.5 Evaluation of different residual connections on NIH

Method Mean DSC (%) Max DSC (%) Min DSC (%)

ResDSN Coarse (Ours) 83.18± 6.02 91.33 58.44

FResDSN Coarse 83.11 ± 6.53 91.34 61.97

SResDSN Coarse 82.82 ± 5.97 90.33 62.43

DSN [6] Coarse 82.25 ± 5.91 90.32 62.53
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Table 4.6 Average time cost in the testing phase, where n controls the overlap size of sliding
windows during the inference

Method Mean DSC (%) n Testing time (s)

ResDSN C2F (Ours) 84.59± 4.86 6 and 12 245

ResDSN coarse (Ours) 83.18 ± 6.02 6 111

ResDSN fine (Ours) 83.96 ± 5.65 12 382

Table 4.7 Ablation study of the deep supervision on NIH

Method Mean DSC (%) Max DSC (%) Min DSC (%)

ResDSN C2F (Ours) 84.59± 4.86 91.45 69.62

Res C2F 84.06 ± 6.51 91.72 51.83

on an entire CT scan to do the segmentation which is the most time consuming. In
our coarse-to-fine framework, we combine the two advantages together to propose
“ResDSN C2F” which can achieve the best segmentation results while the average
testing time cost for each case is reduced by 36% from 382 to 245s compared with
“ResDSN Fine”. In comparison, it takes an experienced board-certified Abdominal
Radiologist 20 min for one case, which verifies the clinical use of our framework.

Deep Supervision

Wediscuss how effective of the auxiliary losses to demonstrate the impact of the deep
supervision on our 3D coarse-to-fine framework. Basically, we train our mainstream
networks without any auxiliary losses for both coarse and fine stages, denoted as
“Res C2F”, while keeping all other settings as the same, e.g., cross-validation splits,
data preprocessing and post-processing. As shown in Table4.7, “ResDSN C2F”
outperforms “Res C2F” by 17.79% to a large extent on min DSC and 0.53% better
on average DSC though it’s a little bit worse on max DSC. We conclude that 3D
coarse-to-fine with deep supervisions perform better and especially more stable on
the pancreas segmentation.

4.4.2 Adversarial Attack and Defense

In spite of the success of 3D learning models such as our proposed ResDSN, the
robustness of neural networks for clinical applications remains a concern. In this
section, we first show that our well-trained 3D model can be easily led to failure
under imperceptible adversarial perturbations (see Sect. 4.4.2.1), and then investigate
how to improve the adversarial robustness by employing adversarial training (see
Sect. 4.4.2.2). We evaluate our approach by performing standard fourfold cross-
validation on the JHMI pancreas dataset since this dataset is the largest in scale and
has the best quality (see Sect. 4.4.1.4).



4 Volumetric Medical Image Segmentation: A 3D Deep … 87

4.4.2.1 Robustness Evaluation

To evaluate the robustness of our well-trained 3D model, we attack the ResDSN
Coarse model following the methods in Sect. 4.3.2.1. For both attacking methods,
i.e., FGSM and I-FGSM, we set ε = 0.03� so that the maximum perturbation can
be small enough compared with the range of the truncated intensity value (�).3

Specially in the case of I-FGSM, the total iteration number N and the step size α are
set to be 5 and 0.01�, respectively. Following the test strategy in the coarse stage,
we first compute the loss gradients of the 64 × 64 × 64 sub-volumes4 obtained by a
sliding-window policy, and these gradients are then combined to calculate the final
loss gradient map∇XL(X;�) of each whole CT volume. The combined approach is
also similar as the testing method described in Sect. 4.4.1.3, i.e., taking the average
of loss gradient if a voxel is in the overlapped region. According to Eqs. 4.6 and 4.7,
the overall loss gradient can be used to generate adversarial examples which can then
attack the 3D model for the purpose of robustness evaluation.

4.4.2.2 Defending Against Adversarial Attacks

To improve the adversarial robustness of our 3D segmentation model, we apply
the adversarial training policy as described in Sect. 4.3.2.2. During each training
iteration, Xadv is first randomly sampled in the ε-ball and then updated by I-FGSM
so that L(Xadv;�) can be maximized. Afterward Xadv is fed to the model instead
of X to update the parameter �. Note that we set the same maximum perturbation
ε, iteration number N and step size α as in Sect. 4.4.2.1. Similar to the training
process described in Sect. 4.4.1.2, our model is trained by SGD optimizer with a 128
mini-batch, a 0.9 momentum, a base learning rate to be 0.08 via polynomial decay
(the power is 0.9) in a total of 10, 000 iterations, and the weight decay 0.0005.

4.4.2.3 Results and Discussion

All attack and defense results are summarized in Table4.8. We can see that both
attack methods, i.e., FGSM and I-FGSM, can successfully fool the well-trained 3D
ResDSN into producing incorrect prediction maps. More specifically, the dramatic
performance drop of I-FGSM, i.e., 85.83% (from 87.84 to 2.01%), suggests low
adversarial robustness of the original model. Meanwhile, the maximum performance
drop decreases from 85.83 to 13.11%, indicating that our adversarially trainedmodel
can largely alleviate the adversarial effect and hence improving the robustness of our
3D model. Note that our baseline with “Clean” training has 87.84% accuracy when

3Since the raw intensity values are to be in [−100, 240] during preprocessing (see Sect. 4.4.1.1),
here we set � = 240 − (−100) = 340 accordingly.
4For implementation simplicity and efficiency, we ignored the sub-volumes only containing the
background class when generating adversarial examples.
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Table 4.8 Comparative evaluation of the 3D segmentation model on clean (indicated by “Clean” in
the table) and adversarial examples. Different attack methods, i.e., FGSM and I-FGSM, are used for
generating the adversarial examples. We report the average accuracy and Dice overlap score along
with the % maximum drop in performance on adversarial examples with respect to performance on
clean data

Attack methods Clean (%) FGSM [10] (%) I-FGSM [18] (%) Drop (%)

ResDSN coarse 87.84± 7.27 42.68 2.01 85.83

Adversarially
trained ResDSN
coarse

79.09 ± 12.10 67.58 65.98 13.11

tested on clean images, whereas its counterpart with adversarial training obtains
79.09%. This trade-off between adversarial and clean training has been previously
observed in [38]. We hope this trade-off can be better studied in future research.

We also show a qualitative example in Fig. 4.5. As can be observed from the
illustration, adversarial attacks to naturally trained 3D ResDSN induces many false
positives,whichmakes the corresponding outcomes noisy.On the contrary, the adver-
sarially trained 3D model yields similar performances even after applying I-FGSM.
More specifically, the original averageDice score of 3DResDSN is 89.30%, and after
applying adversarial attack the performance drops to 48.45 and 6.06% with FGSM

Original FGSM I-FGSM
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Fig. 4.5 Qualitative comparison of adversarial examples and their effects on model predictions.
Note that the added perturbation is effectively imperceptible to the human eye, and the difference
between the original image and the adversarial image has been magnified by 5 × (values shifted by
128) for a better visualization. Contrasting with prediction on original images, the crafted examples
are able to successfully fool the models into generating incorrect segmentation maps. Meanwhile,
adversarial training can effectively alleviate such negative influence of adversarial attacks, hence
improving the performance to a reasonable level. Image differences and predictions are zoomed in
from the axial view to better visualize the finer details
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and I-FGSM, respectively. However, when applying the same attack methods to the
adversarially trained model, the performance only drops from 86.41 to 80.32 and
79.56%, respectively. In other words, employing adversarial training decreases the
performance drop from 83.24 to only 6.85%. This promising result clearly indicates
that our adversarially trained model can largely improve the adversarial robustness.

4.5 Conclusion

In this chapter, we proposed a novel 3D network called “ResDSN” integrated with
a coarse-to-fine framework to simultaneously achieve high segmentation accuracy
and low time cost. The backbone network “ResDSN” is carefully designed to only
have long residual connections for efficient inference. In addition, we also analyzed
the threat of adversarial attacks on our framework and showed how to improve the
robustness against the attack. Experimental evidence indicates that our adversarially
trainedmodel can largely improve adversarial robustness than naturally trained ones.

To our best knowledge, the proposed 3D coarse-to-fine framework is one of the
first works to segment the challenging pancreas using 3D networks which leverage
the rich spatial information to achieve the state of the art. We can naturally apply
the proposed idea to other small organs, e.g., spleen, duodenum and gallbladder, etc,
In the future, we will target on error causes that lead to inaccurate segmentation to
make our framework more stable, and extend our 3D coarse-to-fine framework to
cyst segmentation which can cause cancerous tumors, and the very important tumor
segmentation [49] task.
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Chapter 5
Unsupervised Domain Adaptation
of ConvNets for Medical Image
Segmentation via Adversarial Learning

Qi Dou, Cheng Chen, Cheng Ouyang, Hao Chen and Pheng Ann Heng

Abstract Deep convolutional networks (ConvNets) have achieved the state-of-the-
art performance and become the de facto standard for solving a wide variety of
medical image analysis tasks. However, the learned models tend to present degraded
performance when being applied to a new target domain, which is different from the
source domain where the model is trained on. This chapter presents unsupervised
domain adaptation methods using adversarial learning, to generalize the ConvNets
for medical image segmentation tasks. Specifically, we present solutions from two
different perspectives, i.e., feature-level adaptation and pixel-level adaptation. The
first is to utilize feature alignment in latent space, and has been applied to cross-
modality (MRI/CT) cardiac image segmentation. The second is to use image-to-
image transformation in appearance space, andhas been applied to cross-cohortX-ray
images for lung segmentation. Experimental results have validated the effectiveness
of these unsupervised domain adaptation methods with promising performance on
the challenging task.
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5.1 Introduction

Deep convolutional networks (ConvNets) have made wide success in a variety of au-
tomatic medical image analysis tasks, such as anatomical structure segmentation [1,
2], lesion detection [3, 4], cancer diagnosis [5, 6], attributing to the network’s learned
highly representative features. In typical practice, the deep ConvNets are trained and
tested on datasets where all the images come from the same dataset, i.e., samples are
drawn from the same data distribution. However, it has been frequently observed that
domain shift can bring about performance degradation. The ConvNets tend to present
poor results when being applied to new target data, which are acquired using different
protocols, scanners, or modalities [7, 8]. It is crucial to close the performance gap,
for large-scale study or deployment of deep learning models in real-world clinical
practice.

Domain adaptation has been a long-standing topic in machine learning. It is a
very common challenge to investigate the generalization capability of the learning
systems. In medical imaging, some traditional automatic methods also suffer from
similar poor generalization problem. For example, Philipsen et al. [9] have stud-
ied the influence of data distribution variations across chest radiography datasets on
segmentation methods based on k-nearest neighbor classification and active shape
modeling. In recent years, the study of adapting ConvNets have gradually attracted
more attention. In the concept of domain adaptation, the domain of labeled train-
ing data is termed as source domain, and the unseen test data is termed as target
domain. One straightforward solution is transfer learning, i.e., fine-tuning the Con-
vNets learned on source domain with extra labeled data from the target domain.
Remarkably, Ghafoorian et al. [7] investigated on the number of fine-tuned layers to
reduce the required amount of annotations for brain lesion segmentation across MRI
datasets. However, the way of supervised transfer learning (STL) still relies on extra
labeled data, which is quite expensive or sometimes even infeasible to obtain in the
medical field.

Instead, the unsupervised domain adaptation (UDA) methods are more appeal-
ing and feasible, since these scenarios transfer knowledge across domains without
using additional target domain labels. Generally speaking, existing literatures tackle
the unsupervised domain adaptation task based on adversarial learning [10] from
two directions: (1) feature-level adaptation with latent space alignment; (2) pixel-
level adaptation with image-to-image translation. More specifically, for feature-level
adaptation, the source and target inputs are mapped into a shared latent feature space,
such that a classifier learned based on this common space can work for both domains.
For pixel-level adaptation, the images from target domain are transformed into the
appearance of source domain, such that ConvNets trained on source domain can be
used for target images, or vice versa. Detailed literatures within these two solution
directions are described in the next section.

In this chapter, we focus on demonstrating how to conduct unsupervised domain
adaptation of ConvNets on medical image segmentation tasks, with two case studies
as illustrated in Fig. 5.1. One is using feature space alignment for adapting ConvNets
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Fig. 5.1 Illustration of performance degradation of deep learning models on medical images.
a ConvNet trained on source chest X-ray images can perform well on source data (left) but get poor
results on unseen target data (right). b ConvNet trained on cardiac MRI images (left) receives a
complete failure when tested on cardiac CT images (right)

between different modalities of images (i.e., CT and MRI) for cardiac segmentation.
The other is employing pixel space transformation for adapting ConvNets between
different cohorts of chest X-ray images for lung segmentation. Our works related to
this chapter have been published in [11, 12].

5.2 Related Works

Domain adaptation aims to recover the performance degradation caused by any dis-
tribution change occurred after learning a classifier. For deep learning models, this
situation also applies, and it has been an active and fruitful research topic in recent
investigations of deep neural networks. In this section, we review the literatures of
unsupervised domain adaptation methods proposed from two different perspectives,
i.e., feature-level adaptation and pixel-level adaptation.

5.2.1 Feature-Level Adaptation

Onegroupof prior studies onunsuperviseddomain adaptation focusedonaligning the
distributions between domains in the feature space, by minimizing measures of dis-
tance between features extracted from the source and target domains. Pioneer works
tried to minimize the distance between domain statistics. For example, the maximum
mean discrepancy (MMD) was minimized together with a task-specific loss to learn
the domain-invariant and semantic-meaningful features in [13, 14]. The correlations
of layer activations between the domains were aligned in the study of [15]. Later
on, [16] pioneered adversarial feature adaptation where a domain discriminator aims
to classify the source and target representations while a feature generator competes
with the discriminator to produce domain-invariant features. The [17] introduced a
more flexible adversarial learning method with untied weight sharing, which helps
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effective learning in the presence of larger domain shifts. Recent studies [18, 19]
proposed to apply the adversarial learning in other lower dimensional spaces instead
of the high-dimensional feature space for more effective feature alignment.

Effectiveness of the adversarial framework for feature adaptation has also been
validated in medical applications. Kamnitsas et al. [20] made the earliest attempt to
align feature distributions in cross-protocol MRI images with adversarial loss. The
adversarial framework was further extended to cross-modality cardiac segmentation
in [11, 21].Most recently, the adversarial loss was combinedwith a shape prior to im-
prove domain adaptation performance for left atrium segmentation across ultrasound
datasets [22]. In [23], the adaptation for whole-slide images was achieved through
the adversarial training between domains along with a Siamese architecture on the
target domain to add a regularization. Dong et al. [24] discriminated segmentation
predictions of the heart on both source and target X-rays from those ground truth
masks, based on the assumption that segmentation masks should be domain indepen-
dent. Zhang et al. [25] proposed multi-view adversarial training for dataset-invariant
left and right-ventricular coverage estimation in cardiac MRI.

5.2.2 Pixel-Level Adaptation

With the success of generative adversarial networks (GANs) [10] and its powerful
extensions such as CycleGAN [26] for producing realistic images, there exists lines
of researches performing adaptation in pixel-level through image-to-image transfor-
mation. Some methods first trained a ConvNet in source domain, and then trans-
formed the target images into source-like ones, such that the transformed image can
be tested using the pretrained source model [12, 27, 28]. Inversely, other methods
tried to transform the source images into the appearance of target images [29–31].
The transformed target-like images were then used to train a task model which could
perform well in the target domain. For pixel-level adaptation, it is important that the
structural contents of original images are well preserved in the generated images. For
example, Shrivastava et al. [29] used an L1 reconstruction loss to ensure the contents
similarity between the generated target images and original images. Bousmalis et
al. [30] proposed a content similarity loss to force the generated image to preserve
original contents.

In the field of medical image analysis using deep learning, pixel-level domain
adaptation has been more and more frequently explored to generalize learned mod-
els across domains. Zhao et al. [32] combined the annotated vessel structures with
target image style to generate target-like retinal fundus data, then used the synthetic
dataset to train a target domain model. Some CycleGAN-based methods have been
proposed to tackle the cross-cohort or cross-modality domain shift. For the X-ray
segmentation, both [12, 28] translated target X-ray images to resemble the source
images, and directly applied the established source model to segment the generated
source-like images. In [33], a two-stage approach was proposed to first translate CT
images to appear like MRI using CycleGAN, and then used both generated MRI
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and a few real MRI for semi-supervised tumor segmentation. In [34], an end-to-end
synthetic segmentation network was applied for MRI and CT images adaptation,
which combined CycleGAN with a segmentation network.

5.3 Feature-Level Adaptation with Latent Space Alignment

In this section, we present a feature-level unsupervised domain adaptation framework
with adversarial learning, applied to cross-modality cardiac image segmentations. To
transfer the established ConvNet from source domain (MRI) to target domain (CT),
we design a plug-and-play domain adaptation module (DAM)which implicitly maps
the target input data to the feature space of source domain. Furthermore, we construct
a discriminator which is also a ConvNet termed as domain critic module (DCM) to
differentiate the feature distributions of two domains. Adversarial loss is derived to
train the entire domain adaptation framework in an unsupervised manner, by placing
the DAM and DCM into a minimax two-player game. Figure5.2 presents overview
of our method. The details of network architecture, adaptation method, adversarial
loss, training strategies, and experimental results are elaborated in the followings.

5.3.1 Method

5.3.1.1 ConvNet Segmenter Architecture

Given a set of Ns labeled samples {xsi , ysi }Ns

i=1 from the source domain Xs , we conduct
supervised learning to establish a mapping from the input image to the label space
Y s . In our setting, the xsi represents the sample (pixel or patch) of medical images
and ysi is the category of anatomical structures. For the ease of denotation, we omit
the index i in the following, and directly use xs and ys to represent the samples and
labels from the source domain.
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Fig. 5.2 Our proposed feature-level adaptation framework for cross-modality domain adaptation.
The DAM and DCM are optimized via adversarial learning. During inference, the domain router is
used for routing feature maps of different domains
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A segmentation ConvNet is established to implicitly learn the mapping Ms from
input to the label space. The backbone of our segmenter is residual network for pixel-
wise prediction of biomedical images. We employ the dilated residual blocks [35]
to extract representative features from a large receptive field while preserving the
spatial acuity of feature maps. This is for the considerations of our network design
for feature space alignment, because short cut connections are not expected in our
model. More specifically, the image is first input to a Conv layer, then forwarded
to three residual modules (termed as RM, each consisting of two stacked residual
blocks) and downsampled by a factor of 8. Next, another three RMs and one dilated
RM are stacked to form a deep network. To enlarge receptive field for extracting
global semantic features, four dilated convolutional layers are used in RM7 with
a dilation factor of 2. For dense predictions in our segmentation task, we conduct
upsamling at layer Conv10, which is followed by 5×5 convolutions to smooth out
the feature maps. Finally, a softmax layer is used for probability predictions of the
pixels.

The segmentation ConvNet is optimizedwith labeled data from the source domain
by minimizing the hybrid loss Lseg composed of the multi-class cross-entropy loss
and the Dice coefficient loss [36]. Formally, we denote ysi,c for binary label regarding
class c∈C in sample xsi , its probability prediction is p̂

s
i,c, and the label prediction is

ŷsi,c, the source domain segmenter loss function is as follows:

Lseg = −
Ns∑

i=1

∑

c∈C
ws
c · ysi,c log( p̂si,c) − λ

∑

c∈C

∑Ns

i=1 2y
s
i,c ŷ

s
i,c∑Ns

i=1 y
s
i,c y

s
i,c + ∑Ns

i=1 ŷ
s
i,c ŷ

s
i,c

, (5.1)

where the first term is the cross-entropy loss for pixel-wise classification, with ws
c

being a weighting factor to cope with the issue of class imbalance. The second term
is the Dice loss for multiple cardiac structures, which is commonly employed in
biomedical image segmentation problems. We combine the two complementary loss
functions to tackle the challenging cardiac segmentation task. In practice, we also
tried to use only one type of loss, but the performance was not quite high.

5.3.1.2 Plug-and-Play Domain Adaptation Module

After obtaining the ConvNet learned on the source domain, our goal is to generalize
it to a target domain. In transfer learning, the last several layers of the network are
usually fine-tuned for a new task with new label space. The supporting assumption
is that early layers in the network extract low-level features (such as edge filters and
color blobs) which are common for vision tasks. Those upper layers are more task-
specific and learn high-level features for the classifier [37, 38]. In this case, labeled
data from target domain are required to supervise the learning process. Differently,
we use unlabeled data from the target domain, given that labeling dataset is time
consuming and expensive. This is critical in clinical practice where radiologists are
willing to perform image computing on cross-modality data with as less extra anno-
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tation cost as possible. Hence, we propose to adapt the ConvNet with unsupervised
learning.

In our segmenter, the source domain mapping Ms is layer-wise feature extrac-
tors composing stacked transformations of {Ms

l1
, . . . , Ms

ln
}, with the l denoting the

network layer index. Formally, the predictions of labels are obtained by

ŷs = Ms(xs) = Ms
l1:ln (x

s) = Ms
ln ◦ · · · ◦ Ms

l1(x
s). (5.2)

For domain adaptation, the source and target domains share the same label space,
i.e., we segment the same anatomical structures from medical MRI/CT data. Our
hypothesis is that the distribution changes between the cross-modality domains are
primarily low-level characteristics (e.g., gray scale values) rather than high-level
(e.g., geometric structures). The higher layers (such as Ms

ln
) are closely in correlation

with the class labels which can be shared across different domains. In this regard,
we propose to reuse the feature extractors learned in higher layers of the ConvNet,
whereas the earlier layers are updated to conduct distribution mappings in feature
space for our unsupervised domain adaptation.

To perform segmentation on target images xt , we propose a domain adaptation
module M that maps xt to the feature space of the source domain. We denote the
adaptation depth by d, i.e., the layers earlier than and including ld are replaced
by DAM when processing the target domain images. In the meanwhile, the source
model’s upper layers are frozen during domain adaptation learning and reused for
target inference. Formally, the predictions for target domain is

ŷt = Ms
ld+1:ln ◦ M(xt ) = Ms

ln ◦ · · · ◦ Ms
ld+1

◦ M(xt ), (5.3)

whereM(xt ) = Ml1:ld (xt ) = Mld ◦ · · · ◦ Ml1(x
t ) represents the DAMwhich is also

a stacked ConvNet. Overall, we form a flexible plug-and-play domain adaptation
framework. During the test inference, the DAM directly replaces the early d layers
of the model trained on source domain. The images of target domain are processed
and mapped to deep learning feature space of source domain via the DAM. These
adapted features are robust to the cross-modality domain shift, and can be mapped
to the label space using those high-level layers established on source domain. In
practice, the ConvNet configuration of the DAM is identical to {Ms

l1
, . . . , Ms

ld
}. We

initialize the DAM with trained source domain model and fine-tune the parameters
in an unsupervised manner with adversarial loss.

5.3.1.3 Learning with Adversarial Loss

We propose to employ adversarial loss to train our domain adaptation framework in
an unsupervised manner. The spirit of adversarial training roots in GAN, where a
generator model and a discriminator model form a minimax two-player game. The
generator learns to capture the real data distribution; and the discriminator estimates
the probability that a sample comes from the real training data rather than the gen-
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erated data. These two models are alternatively optimized and compete with each
other, until the generator can produce real-like samples that the discriminator fails to
differentiate. For our problem, we train the DAM, aiming that the ConvNet can gen-
erate source-like feature maps from target input. Hence, the ConvNet is equivalent
to a generator from GAN’s perspective.

Considering that accurate segmentations come from high-level semantic features,
which in turn rely on fine patterns extracted by early layers, we propose to align
multiple levels of feature maps between source and target domains (see Fig. 5.2).
In practice, we select several layers from the frozen higher layers, and refer their
corresponding feature maps as the set of FH (·) where H ={k, . . . , q} being the set
of selected layer indices. Similarly, we denote the selected feature maps of DAM
by MA(·) with the A being the selected layer set. In this way, the feature space of
target domain is (MA(xt ), FH (xt )) and the (Ms

A(x
s), FH (xs)) is their counterpart

for source domain. Given the distribution of (MA(xt ), FH (xt ))∼Pg , and that of
(Ms

A(x
s), FH (xs))∼Ps , the distance between these two domain distributions which

needs to be minimized is represented as W (Ps,Pg). For stabilized training, we em-
ploy the Wassertein distance [39] between the two distributions as follows:

W (Ps,Pg) = inf
γ∼∏

(Ps ,Pg)
E(x,y)∼γ [‖x − y‖], (5.4)

where
∏

(Ps,Pg) represents the set of all joint distributions γ (x, y)whose marginals
are respectively Ps and Pg .

In adversarial learning, the DAM is pitted against an adversary: a discriminative
model that implicitly estimates theW (Ps,Pg). We refer our discriminator as domain
critic module and denote it byD. Specifically, our constructed DCM consists of sev-
eral stacked residual blocks, as illustrated in Fig. 5.2. In each block, the number of
feature maps is doubled until it reaches 512, while their sizes are decreased. We con-
catenate the multiple levels of feature maps as input to the DCM. This discriminator
would differentiate the complicated feature space between the source and target do-
mains. In this way, our domain adaptation approach not only removes source-specific
patterns in the beginning but also disallows their recovery at higher layers [20]. In
unsupervised learning, we jointly optimize the generatorM (DAM) and the discrim-
inator D (DCM) via adversarial loss. Specifically, with Xt being target set, the loss
for learning the DAM is

min
M

LM(Xt ,D)=−E(MA(xt ),FH (xt ))∼Pg [D(MA(x
t ), FH (xt ))]. (5.5)

Then, with the Xs representing the set of source images, the DCM is optimized via

min
D

LD(Xs, Xt ,M) =
E(MA(xt ),FH (xt ))∼Pg [D(MA(x

t ), FH (xt ))] −
E(Ms

A(xs ),FH (xs ))∼Ps [D(Ms
A(x

s), FH (xs))], s.t. ‖D‖L≤K ,

(5.6)

where K is a constant that applies Lipschitz constraint toD.
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During the alternative updating of M and D, the DCM outputs a more precise
estimation of W (Ps,Pg) between distributions of the feature space from both do-
mains. The updated DAM is more effective to generate source-like feature maps for
conducting cross-modality domain adaptation.

5.3.1.4 Training Strategies

In our setting, the source domain is biomedical cardiac MRI images and the target
domain is CT data. All the volumetric MRI and CT images were resampled to the
voxel spacing of 1×1×1 mm3 and cropped into the size of 256×256×256 center-
ing at the heart region. In preprocessing, we conducted intensity standardization for
each domain, respectively. Augmentations of rotation, zooming, and affine transfor-
mations were employed to combat over fitting. To leverage the spatial information
existing in volumetric data, we sampled consecutive three slices along the coronal
plane and input them to three channels. The label of the intermediate slice is utilized
as the ground truth when training the 2D networks.

We first trained the segmenter on the source domain data in supervised manner
with stochastic gradient descent. TheAdamoptimizerwas employedwith parameters
as batch size of 5, learning rate of 1×10−3 and a stepped decay rate of 0.95 every
1500 iterations. After that, we alternatively optimized the DAM and DCM with the
adversarial loss for unsupervised domain adaptation. Following the heuristic rules
of training WGAN [39], we updated the DAM every 20 times when updating the
DCM. In adversarial learning, we utilized the RMSProp optimizer with a learning
rate of 3 × 10−4 and a stepped decay rate of 0.98 every 100 joint updates, with weight
clipping for the discriminator being 0.03.

5.3.2 Experimental Results

5.3.2.1 Dataset and Evaluation Metrics

We validated our proposed unsupervised domain adaptation method on the pub-
lic dataset of MICCAI 2017 Multi-Modality Whole Heart Segmentation for cross-
modality cardiac segmentation in MRI and CT images [40]. This dataset consists of
unpaired 20 MRI and 20 CT images from 40 patients. The MRI and CT data were
acquired in different clinical centers. The cardiac structures of the imagesweremanu-
ally annotated by radiologists for bothMRI and CT images. Our ConvNet segmenter
aimed to automatically segment four cardiac structures including the ascending aorta
(AA), the left atrium blood cavity (LA-blood), the left ventricle blood cavity (LV-
blood), and the myocardium of the left ventricle (LV-myo). For each modality, we
randomly split the dataset into training (16 subjects) and testing (4 subjects) sets,
which were fixed throughout all experiments.
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For evaluation, we employed two commonly used metrics to quantitatively evalu-
ate the segmentation performance of automatic methods [41]. The DICE coefficient
([%])was employed to assess the agreement between the predicted segmentation and
ground truth for cardiac structures. We also calculated the average surface distance
(ASD[voxel]) to measure the segmentation performance from the perspective of the
boundary. A higher Dice and lower ASD indicate better segmentation performance.
Both metrics are presented in the format of mean±std, which shows the average
performance as well as the cross-subject variations of the results (Table5.1).

5.3.2.2 Experimental Settings

We employed the MRI images as the source domain and the CT dataset as the target
domain. We demonstrated the effectiveness of the proposed unsupervised cross-
modality domain adaptation method with extensive experiments. We designed sev-
eral experiment settings: (1) training and testing the ConvNet segmenter on source
domain (referred as Seg-MRI); (2) training the segmenter from scratch on annotated
target domain data (referred as Seg-CT ); (3) fine-tuning the source domain segmenter
with annotated target domain data, i.e., the supervised transfer learning (referred as
Seg-CT-STL); (4) directly testing the source domain segmenter on target domain
data (referred as Seg-CT-noDA); (5) our proposed unsupervised domain adaptation
method (referred as Seg-CT-UDA).We also comparedwith a previous state-of-the-art
heart segmentation method using ConvNets [42]. Last but not least, we conducted
ablation studies to observe how the adaptation depth would affect the performance.

5.3.2.3 Results of UDA on Cross-Modality Cardiac Images

Table5.1 reports the comparison results of different methods, where we can see that
the proposed unsupervised domain adaptation method is effective by mapping the
feature space of the target CT domain to that of the source MRI domain. Qualitative
results of the segmentations for CT images are presented in Fig. 5.3.

In the experiment setting Seg-MRI, we first evaluate the performance of the source
domain model, which serves as the basis for subsequent domain adaptation proce-
dures. Compared with [42], our ConvNet segmenter reached promising performance
with exceedingDice onLV-blood andLV-myo, aswell as comparableDice onAAand
LA-blood. With this standard segmenter network architecture, we conducted follow-
ing experiments to validate the effectiveness of our unsupervised domain adaptation
framework.

To experimentally explore the potential upper bounds of the segmentation accu-
racy of the cardiac structures from CT data, we implemented two different settings,
i.e., the Seg-CT and Seg-CT-STL. Generally, the segmenter fine-tuned from Seg-MRI
achieved higher Dice and lower ASD than the model trained from scratch, proving
the effectiveness of supervised transfer learning for adapting an established network
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(a) CT Image (b) CT Label (c) Seg-CT-STL (d) Seg-CT (e) Seg-CT-noDA (f) Seg-CT-UDA

Fig. 5.3 Results of different methods for CT image segmentations. Each row presents one typical
example, from left to right: a raw CT slices b ground truth labels c supervised transfer learning d
ConvNets trained from scratch e directly applying MRI segmenter on CT data f our unsupervised
cross-modality domain adaptation results. The structures of AA, LA-blood, LV-blood, and LV-myo
are indicated by yellow, red, green, and blue colors, respectively (best viewed in color)

to a related target domain using additional annotations. Meanwhile, these results are
comparable to [42] on most of the four cardiac structures.

To demonstrate the severe domain shift inherent in cross-modality biomedical
images, we directly applied the segmenter trained on MRI domain to the CT data
without any domain adaptation procedure. Unsurprisingly, the network of Seg-MRI
completely failed on CT images, with average Dice of merely 14.3% across the
structures. As shown in Table5.1, the Seg-CT-noDA only got a Dice of 0.8% for the
LV-blood. The model did not even output any correct predictions for two of the four
testing subjects on the structure of LV-blood (please refer to (e) in Fig. 5.3). This
demonstrates that although the cardiac MRI and CT images share similar high-level
representations and identical label space, the significant difference in their low-level
characteristics makes it extremely difficult for MRI segmenter to extract effective
features for CT.

With our proposed unsupervised domain adaptation method, a great improvement
of the segmentation performance on the target CT data was achieved compared with
the Seg-CT-noDA. More specifically, our Seg-CT-UDA (d = 21)model has increased
the average Dice across four cardiac structures by 43.4%. As presented in Fig. 5.3,
the predicted segmentation masks from Seg-CT-UDA can successfully localize the
cardiac structures and further capture their anatomical shapes. The performance on
segmenting AA is even close to that of Seg-CT-STL. This reflects that the distinct
geometric pattern and the clear boundary of the AA have been successfully captured
by the DCM. In turn, it supervises the DAM to generate similar activation patterns as
the source feature space via adversarial learning. Looking at the other three cardiac
structures (i.e., LA-blood, LV-blood, and LV-myo), the Seg-CT-UDA performances
are not as high as that of AA. The reason is that these anatomical structures are
more challenging, given that they come with either relatively irregular geometrics
or limited intensity contrast with surrounding tissues. The deficiency focused on the
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unclear boundaries between neighboring structures or noise predictions on relatively
homogeneous tissues away from the ROI. This is responsible for the high ASDs
of Seg-CT-UDA, where boundaries are corrupted by noisy outputs. Nevertheless, by
mapping the feature space of target domain to that of the source domain, we obtained
greatly improved and promising segmentations against Seg-CT-noDA with zero data
annotation effort.

5.3.2.4 Ablation Study on Adaptation Depth

We conduct ablation experiments to study the adaptation depth d, which is an impor-
tant hyperparameter in our framework to determine how many layers to be replaced
during the plug-and-play domain adaptation procedure. Intuitively, a shallowerDAM
(i.e., smaller d) might be less capable of learning effective feature mapping function
M across domains than a deeper DAM (i.e., larger d). This is due to the insuffi-
cient capacity of parameters in shallow DAM, as well as the huge domain shift in
feature distributions. Conversely, with an increase in adaptation depth d, DAM be-
comes more powerful for feature mappings, but training a deeper DAM solely with
adversarial gradients would be more challenging.

To experimentally demonstrate how the performance would be affected by d and
search for an optimal d, we repeated the experiments with domain adaptation from
MRI to CT by varying the d = {13, 21, 31}, while maintaining all the other settings
the same. Viewing the examples in Fig. 5.4, Seg-CT-UDA (d=21) model obtained
an approaching ground truth segmentation mask for ascending aorta. The other two
models also produced inspiring results capturing the geometry and boundary char-
acteristics of AA, validating the effectiveness of our unsupervised domain adaptation
method. From Table5.1, we can observe that DAMwith a middle-level of adaptation
depth (d = 21) achieved the highest Dice on three of the four cardiac structures,
exceeding the other two models by a significant margin. For the LA-blood, the three
adaptation depths reached comparable segmentation Dice and ASD, and the d = 31
model was the best. Notably, the model of Seg-CT-UDA (d = 31) overall demon-
strated superiority over the model with adaptation depth d = 13. This shows that
enabling more layers learnable helps to improve the domain adaptation performance
on cross-modality segmentations.

(a) Label (b) d=13 (c) d=21 (d) d=31

Fig. 5.4 Comparison of results using Seg-CT-UDA with different adaptation depths (colors are the
same with Fig. 5.3)
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5.4 Pixel-Level Adaptation with Image-to-Image
Translation

In this section, we present a pixel-level unsupervised domain adaptation framework
with generative adversarial network, applied to cross-cohort X-ray lung segmenta-
tion. Different from feature-level adaptationmethod described in the last section, this
pixel-level adaptation method detaches the segmentation ConvNets from the domain
adaptation process. Given a test image, our framework conducts image-to-image
transformation to generate a source-like image which is directly forwarded to the
established source ConvNet. To enhance the preservation of structural information
during image transformation, we improve CycleGAN with a novel semantic-aware
loss by embedding a nested adversarial learning in semantic label space. Our method
is named as SeUDA, standing for semantic-aware unsupervised domain adaptation,
and Fig. 5.5 presents overview of it. Details of network configurations, adversarial
losses and experimental results will be presented in the followings.

5.4.1 Method

With a set of the source domain images xs ∈Xs and corresponding labels ys ∈Y, we
train a ConvNet, denoted by f s , to segment the input images. For a new set of the
target domain images xt ∈Xt , we aim to adapt the appearance of xt to source image
space Xs , so that the established f s can be directly generalized to the transformed
image.

Fig. 5.5 The overview of our unsupervised domain adaptation framework. Left: the segmentation
DNN learned on source domain; Middle: the SeUDA where the paired generator and discriminator
are indicated with the same color, the blue/green arrows illustrate the data flows from original
images (xt/xs ) to transformed images (xt→s/xs→t ) then back to reconstructed images (x̂ t/x̂ s )
in cycle-consistency loss, the orange part is the discriminator for the semantic-aware adversarial
learning; Right: the inference process of SeUDA given a new target image for testing
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5.4.1.1 ConvNet Segmenter Architecture

To establish a state-of-the-art segmentation network, we make complementary use
of the residual connection, dilated convolution and multi-scale feature fusion. The
backbone of our segmenter is modified ResNet-101. We replace the standard con-
volutional layers in the high-level residual blocks with the dilated convolutions. To
leverage features withmulti-scale receptive fields, we replace the last fully connected
layer with four parallel 3×3 dilated convolutional branches, with a dilation rate of
{6, 12, 18, 24}, respectively. An upsampling layer is added in the end to produce
dense predictions for the segmentation task. We start with 32 feature maps in the
first layer and double the number of feature maps when the spatial size is halved or
the dilation convolutions are utilized. The segmenter is optimized by minimizing the
pixel-wise multi-class cross-entropy loss of the prediction f s(xs) and ground truth
ys with standard stochastic gradient descent.

5.4.1.2 Image Transformation with Semantic-Aware CycleGAN

With the source domain model f s which maps the source input space Xs to the
semantic label space Y, our goal is to make it generally applicable to new target
images.Given that annotatingmedical data is quite expensive,we conduct the domain
adaptation in an unsupervised manner. Specifically, wemap the target images toward
the source image space. The generated new image xt→s appears to be drawn from
Xs while the content and semantic structures remain unchanged. In this way, we can
directly apply the well-established model f s on xt→s without retraining and get the
segmentation result for xt .

To achieve this, we use generative adversarial networks [10], which have made a
wide success for pixel-to-pixel image translation, by constructing a generator Gt→s

and a discriminator Ds . The generator aims to produce realistic transformed im-
age xt→s = Gt→s(xt ). The discriminator competes with the generator by trying to
distinguish between the fake generated data xt→s and the real source data xs . The
GAN corresponds to a minimax two-player game and is optimized via the following
objective:

LGAN(Gt→s,Ds) = Exs [logDs(x
s)] + Ext [log(1 − Ds(Gt→s(x

t )))], (5.7)

where the discriminator tries to maximize this objective to correctly classify the xt→s

and xs , while the generator tries tominimize log(1 − Ds(Gt→s(xt ))) to learn the data
distribution mapping from Xt to Xs .

Cycle-consistency adversarial learning. To achieve domain adaptation with image
transformation, it is crucial that the detailed contents in the original xt are well
preserved in the generated xt→s . Inspired by the CycleGAN [26], we employ the
cycle-consistency loss during the adversarial learning to maintain the contents with
clinical clues of the target images.
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We build a reverse source-to-target generator Gs→t and a target discriminatorDt ,
to bring the transformed image back to the original image. This pair of models are
trained with a same way GAN loss LGAN(Gs→t ,Dt ) following the Eq. (5.7). In this
regard, we derive the cycle-consistency loss which encourages Gs→t (Gt→s(xt ))≈ xt

and Gt→s(Gs→t (xs))≈ xs in the transformation:

Lcyc(Gt→s ,Gs→t ) = Ext [||Gs→t (Gt→s(x
t )) − xt ||1]+Exs [||Gt→s(Gs→t (x

s)) − xs ||1],
(5.8)

where the L1-Norm is employed for reducing blurs in the generated images. This
loss imposes the pixel-level penalty on the distance between the cyclic transformation
result and the input image.

Semantic-aware adversarial learning. The image quality of xt→s and the stability
of Gt→s are crucial for the effectiveness of our method, since we apply the estab-
lished f s to xt→s which is obtained by inputting xt to Gt→s . Therefore, besides the
cycle-consistency loss which composes both generators and constraints the cyclic
input–output consistency, we further try to explicitly enhance the intermediate trans-
formation result xt→s . Specifically, for our segmentation domain adaptation task, we
design a novel semantic-aware loss which aims to prevent the semantic distortion
during the image transformation.

In our unsupervised learning scenario, we establish a nested adversarial learning
module by adding another new discriminator Dm into the system. It distinguishes
between the source domain ground truth lung mask ys and the predicted lung mask
f s(xt→s) obtained by applying the segmenter on the source-like transformed image.
Our underlying hypothesis is that the shape of anatomical structure is consistent
across multicenter medical images. The prediction of f s(xt→s) should follow the
regular semantic structures of the lung to fool theDm , otherwise, the generatorGt→s

would be penalized by the semantic-aware loss:

Lsem(Gt→s,Dm) = Eys [logDm(ys)] + Ext [log(1 − Dm( f s(Gt→s(x
t ))))]. (5.9)

This loss imposes an explicit constraint on the intermediate result of the cyclic trans-
formation. Its gradients can assist the update of the generator Gt→s , which benefits
the stability of the entire adversarial learning procedure.

5.4.1.3 Learning Procedure and Implementation Details

We follow the practice of [26] to configure the generators and discriminators. Specif-
ically, both generators have the same architecture consisting of an encoder (three
convolutions), a transformer (nine residual blocks), and a decoder (two deconvolu-
tions and one convolution). All the three discriminators process 70×70 patches and
produce real/fake predictions via 3 stride-2 and 2 stride-1 convolutional layers. The
overall objective for the generators and discriminators is as follows:
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L(Gs→t ,Gt→s,Ds,Dt ,Dm) = LGAN (Gs→t ,Dt ) + αLGAN (Gt→s,Ds) +
βLcyc(Gt→s,Gs→t ) + λLsem(Gt→s,Dm),

(5.10)
where the {α, β, λ} denote trade-off hyperparameters adjusting the importance of
each component, which is empirically set to be {0.5, 10, 0.5} in our experiments.
The entire framework is optimized to obtain

G∗
s→t ,G∗

t→s = argmin
Gs→t
Gt→s

max
Ds ,Dt ,Dm

L(Gs→t ,Gt→s,Ds,Dt ,Dm).
(5.11)

The generators {Gt→s,Gs→t } and discriminators {Ds,Dt ,Dm} are optimized al-
together and updated successively. Note that the segmenter f s is not updated in the
process of image transformation. In practice, when training the generative adver-
sarial networks, we followed the strategies of [26] for reducing model oscillation.
Specifically, the negative log likelihood inLGAN was replaced by a least-square loss
to stabilize the training. The discriminator loss was calculated using one image from
a collection of fifty previously generated images rather than the one produced in
the latest training step. We used the Adam optimizer with an initial learning rate of
0.002, which was linearly decayed every 100 epochs. We implemented our proposed
framework on the TensorFlow platform using an Nvidia Titan Xp GPU.

5.4.2 Experimental Results

5.4.2.1 Datasets and Evaluation Metrics

Our unsupervised domain adaptation method was validated on lung segmentations
using two public Chest X-ray datasets, i.e., the Montgomery set (138 cases) [43] and
the JSRT set (247 cases) [44]. Both the datasets are typical X-ray scans collected
in clinical practice, but their image distributions are quite different in terms of the
disease type, intensity, and contrast (see the first and fourth columns in Fig. 5.6a).
The ground truth masks of left and right lungs are provided in both datasets. We
randomly split each dataset into 7:1:2 for training, validation and test sets. All the
imageswere resized to 512×512, and rescaled to [0, 255]. The predictionmaskswere
post-processed with the largest connected-component selection and hole filling.

To quantitatively evaluate our method, we utilized four common segmentation
measurements, i.e., the Dice coefficient ([%]), recall ([%]), precision ([%]) and av-
erage surface distance (ASD)([mm]). The first three metrics are measured based on
the pixel-wise classification accuracy. The ASD assesses the model performance at
boundaries and a lower value indicates better segmentation performance.
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Table 5.2 Quantitative evaluation results of pixel-level domain adaptation methods for right/left
lung segmentations from chest X-ray images

Methods Right lung Left lung

Dice Recall Precision ASD Dice Recall Precision ASD

S-test 95.98 97.98 94.23 2.23 95.23 96.56 94.01 2.45

T-noDA 82.29 98.40 73.38 10.68 76.65 95.06 69.15 11.40

T-HistM
[45]

90.05 92.96 88.05 5.72 91.03 94.35 88.45 4.66

T-FeatDA
[20]

94.85 93.66 96.42 3.26 92.93 91.67 94.46 3.80

T-STL [7] 96.91 98.47 95.46 1.93 95.84 97.48 94.29 2.20

CyUDA 94.09 96.31 92.28 3.88 91.59 92.28 91.70 4.57

SeUDA
(Ours)

95.59 96.55 94.77 2.85 93.42 92.40 94.70 3.51

5.4.2.2 Experimental Settings

In our experiments, the source domain is theMontgomery set and the target domain is
the JSRTset.Wefirst established the segmenter on source trainingdata independently.
Next, we test the segmenter under various settings: (1) testing on source domain (S-
test); (2) directly testing on target data (T-noDA); (3) using histogram matching
to adjust target images before testing (T-HistM); (4) aligning target features with
the source domain as proposed in [20] (T-FeatDA); (5) fine-tuning the model on
labeled target data before testing on JSRT (T-STL); In addition, we investigated the
performance of our proposed domain adaptation method with and w/o the semantic-
aware loss, i.e., SeUDA and CyUDA.

5.4.2.3 Results of UDA on Cross-Cohort Chest X-Ray Images

The comparison results of different methods are listed in Table5.2. We can see that
when directly applying the learned source domain segmenter to target data (T-noDA),
the model performance significantly degraded, indicating that domain shift would
severely impede the generalization performance of DNNs. Specifically, the average
Dice over both lungs dropped from 95.61 to 79.47%, and the average ASD increased
from 2.34 to 11.04 mm.

With our proposed method, we find a remarkable improvement by applying the
source segmenter on transformed target images. Compared with T-noDA, our SeUDA
increased the average Dice by 15.04%. Meanwhile, the ASDs for both lungs were
reduced significantly. Also, our method outperforms the UDA baseline histogram
matching T-HistM with the average dice increased by 3.97% and average ASD de-
creased from 5.19 to 3.18 mm. Compared with the feature-level domain adaptation
method T-FeatDA, our SeUDA can not only obtain higher segmentation performance,
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Ground Truth T-noDA SeUDATarget Image CyUDA SeUDA Source Image

(a) (b)

T-HistM

Fig. 5.6 Typical results for the image transformation and lung segmentation. a Visualization of
image transformation results, from left to right, are the target images in JSRT set, CyUDA trans-
formation results, SeUDA transformation results, and the nearest neighbor of xt→s got from source
set; each row corresponds to one patient. bComparison of segmentation results between the ground
truth, T-noDA, T-HistM, and our proposed SeUDA; each row corresponds to one patient

but also provide intuitive visualization of how the adaptation is achieved. Notably,
the performance of our unsupervised SeUDA is even comparable to the upper bound
of supervised T-STL. In Table5.2, the gaps of Dice are marginal, i.e., 1.32% for right
lung and 2.42% for left lung.

The typical transformed target images can be visualized in Fig. 5.6a, demonstrat-
ing that SeUDA has successfully adapted the appearance of target data to look similar
to source images. In addition, the positions, contents, semantic structures, and clinical
clues are well preserved after transformation. In Fig. 5.6b, we can observe that with-
out domain adaptation, the predicted lung masks are quite cluttered. With histogram
matching, appreciable improvements are obtained but the transformed images cannot
mimic the source images very well. With our SeUDA, the lung areas are accurately
segmented attributing to the good target-to-source appearance transformation.

5.4.2.4 Effectiveness of Semantic-Aware Loss with Ablation Study

We conduct ablation experiments to investigate the contribution of our novel
semantic-aware loss designed for segmentation domain adaptation.We implemented
CyUDA by removing the semantic-aware loss from the SeUDA. One notorious prob-
lem of GANs is that their training would be unstable and sensitive to initialization
states [30, 46]. In this study, we measured the standard deviation (std) of the CyUDA
and SeUDA by running each model for 10 times under different initializations but
with the same hyperparameters.We observed significant lower variability on the seg-
mentation performance across the 10 SeUDAmodels than the 10CyUDAmodels, i.e.,
Dice std: 0.25 versus 2.03%, ASD std: 0.16 versus 1.19 mm. Qualitatively, we ob-
serve that theCyUDA transformed images may suffer from distorted lung boundaries
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in some cases, see the third row in Fig. 5.6a. In contrast, adding the semantic-aware
loss, the transformed images consistently present a high quality. This reveals that the
novel semantic-aware loss contributes to stabilize the image transformation process
and prevent the distortion in structural contents, and hence contributes to boost the
performance of segmentation domain adaptation.

5.5 Discussion

This chapter introduces how to tackle domain adaptation problem in medical imag-
ing from two different perspectives. This is an essential and urgent topic to study
the generalization capability and robustness of ConvNets, given that deep learning
nowadays has become the state of the art for solving image recognition tasks. Re-
solving this issue will help to promote deep learning studies based on large-scale
real-world clinical dataset composing inhomogeneous images [47].

Fine-tuning the ConvNets with a set of new labeled images from the target domain
can improve the model’s performance on target data. However, this straightforward
supervised solution still requires extra efforts from clinicians for constructing the
annotated fine-tune dataset. Unsupervised domain adaptation methods are more ap-
pealing and practical in the long-run, though it is technically challenging at current
stage. Basically, the UDA requires to model and map the underlying distributions
of different domains, either in latent feature space or appearance pixel space. The
insights of adversarial networks fit well into this scope, as which can implicitly learn
how to model, transform, and discriminate the data distributions via highly nonlin-
ear networks. This forms the basis of the situation that adversarial learning has been
frequently investigated for unsupervised domain adaptation tasks.

Feature-level adaptation and pixel-level adaptation are two independent ways to
conduct unsupervised domain adaptation, with ideas from different perspectives.
Feature-level adaptation aims to transform different data sources into a shared latent
space with domain-invariant features, such that a shared classifier can be established
in this common space. The advantage is that the classifier is learned in a high-
quality homogeneous feature space, with reduced confounding factors from scanner
effects. The disadvantage is that the obtained domain-invariant features are unclear
for interpretation and intuitive visualization. Pixel-level adaptation aims to transform
the image appearance from one domain to the other, and use the transformed images
to train or test amodel. The advantage for this streamof solution is thatwe can directly
assess the quality of domain adaptation by observing the transformed images. The
disadvantage is that there may still exist a domain gap between the synthetic images
and real images. It is worth noting that these two independent manners of matching
across domains can be complementary to each other. Jointly taking advantage of
both is feasible and have good potential to present more appealing performance to
narrow the domain gap.
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5.6 Conclusion

In conclusion, this chapter presents unsupervised domain adaptation methods for
medical image segmentation using adversarial learning. Solutions from two different
perspectives are presented, i.e., feature-level adaptation and pixel-level adaptation.
The feature-level adaptation method has been validated on cross-modality (MRI/CT)
cardiac image segmentation. The pixel-level adaptation method has been validated
on cross-cohort X-ray images for lung segmentation. Both application scenarios
of unsupervised domain adaptation have demonstrated highly promising results on
generalizing theConvNets to the unseen target domain. The proposed frameworks are
general and can be extended to other similar scenarios in medical image computing
with domain shift issues.
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Chapter 6
Glaucoma Detection Based on Deep
Learning Network in Fundus Image

Huazhu Fu, Jun Cheng, Yanwu Xu and Jiang Liu

Abstract Glaucoma is a chronic eye disease that leads to irreversible vision loss. In
this chapter, we introduce two state-of-the-art glaucoma detection methods based on
deep learning technique. The first is the multi-label segmentation network, named
M-Net, which solves the optic disc and optic cup segmentation jointly. M-Net con-
tains a multi-scale U-shape convolutional network with the side-output layer to learn
discriminative representations and produces segmentation probability map. Then the
vertical cup to disc ratio (CDR) is calculated based on segmented optic disc and cup
to assess the glaucoma risk. The second network is the disc-aware ensemble network,
named DENet, which integrates the deep hierarchical context of the global fundus
image and the local optic disc region. Four deep streams on different levels and
modules are, respectively, considered as global image stream, segmentation-guided
network, local disc region stream, and disc polar transformation stream. The DENet
produces the glaucoma detection result from the image directly without segmenta-
tion. Finally, we compare two deep learning methods with other related methods on
several glaucoma detection datasets.
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6.1 Introduction

Glaucoma is the leading cause of irreversible blindness worldwide [37]. Vision loss
from glaucoma cannot be reversed, early detection, thus, is essential to preserve
vision and life quality. Clinically, there are three main examinations practiced to
screen glaucoma: intraocular pressure (IOP) measurement, function-based visual
field test, and optic nerve head (ONH) assessment. IOP is an important risk factor but
not specific enough to be an effective detection tool for a great number of glaucoma
patients with normal tension. Function-based visual field testing requires specialized
equipment, which is not widely present in the healthcare clinics. Moreover, the early
glaucoma often does not have visual symptoms. By contrast, ONH assessment is a
convenient way to screen glaucoma, and is widely performed by trained glaucoma
specialists [23, 33]. In the fundus image, vertical cup to disc ratio (CDR) as one
clinical parameter is well accepted and commonly used by clinicians [24], which
is calculated by the ratio of vertical cup diameter (VCD) to vertical disc diameter
(VDD), as shown in Fig. 6.1. In general, a larger CDR suggests a higher risk of
glaucoma and vice versa. However, this manual ONH assessment is time consuming
and costly, and it is also not suitable for large-scale screening. Thus, automated ONH
assessment methods are required.

For automatic screening, segmentation-based method has been proposed first for
CDR measurement, which segments the main structure (e.g., optic disc (OD) and
optic cup (OC)), and then calculates the CDR value to identify the glaucoma cases [2,
6, 25]. Some automated methods measure the disc and cup from 3D optical coher-
ence tomography (OCT) imaging [14, 15, 17]. But, OCT is not easily available due
to its high cost, the fundus image is still referred to bymost clinicians. For example, a
superpixel segmentation method is proposed in [6], which utilizes hand-crafted fea-
tures of superpixel level to extract the OD and OC region. In [8], a CDR assessment
using fundus image is proposed, where a sparse dissimilarity constrained coding
approach is employed to consider both the dissimilarity constraint and the sparsity
constraint from a set of reference discs with known CDRs. The reconstruction coef-
ficients are used to compute the CDR for the testing disc. These segmentation-based
methods rely on the pixel level training data, and are easily affected by pathological
regions and low- contrast quality. In contrast with segmentation-based method, the
learning-based methods provide a direct way to screen the glaucoma from fundus
image by using the various visual features with a learned classifier [3, 10, 34]. The
visual features identify a wider set of image properties, some of which are unrelated
to what clinicians seem to recognize as relevant. For example, Noronha et al. [34]
proposed an automated glaucoma diagnosis method based on higher order spec-
tra cumulants extracted from Radon transform applied on fundus images. Besides,
Acharya et al. [1] proposed a screening method using various features extracted from
Gabor transformapplied ondigital fundus images. The extracted visual features could
exploremore image relevant information, and havemore representation capacity than
clinical measurements. However, most existing methods, both segmentation-based
and learning-based methods, are based on hand-crafted features, which lack suffi-
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Fig. 6.1 Top: the whole fundus image and zoom in normal/glaucoma disc regions, where the
vertical cup to disc ratio (CDR) is calculated by the ratio of vertical cup diameter (VCD) to vertical
disc diameter (VDD). Bottom: the visual fields with normal and glaucoma cases

ciently discriminative representations and are easily affected by pathological regions
and low-contrast quality.

Deep learning techniques have been recently demonstrated to yield highly repre-
sentations that have aided in many computer vision tasks [5, 21, 29]. For example,
Convolutional Neural Networks (CNNs) have obtained the significant improvements
in image classification [26] and object segmentation [36]. For ocular image, the deep
learning system also obtained the high sensitivity and specificity for detecting refer-
able diabetic retinopathy [19]. In works [16, 18, 22, 22, 32], the deep learning
systems achieved the state-of-the-art performances on fundus segmentation tasks.

In this chapter, we introduce two deep learning-based methods for glaucoma
detection in fundus images.1 The first deep network is a multi-label segmentation
network [12], namedM-Net, which solves the optic disc and cup segmentation jointly
into a one-stage framework. InM-Net, the multi-scale layer builds an image pyramid
to fed as a multi-level inputs, while the side-output layer works as the early classifier
to predict the companion local prediction maps for training the early layer. Finally, a
multi-label loss function is utilized to guarantee segmenting optic disc and cup jointly.
For improving the segmentation result further, it also employs a polar transformation
to transfer the original image to the polar coordinate system. The M-Net generates

1Project Page: http://hzfu.github.io/proj_glaucoma_fundus.html.

http://hzfu.github.io/proj_glaucoma_fundus.html
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the OD and OC segmentation maps, and then calculates CDR based on segmented
optic disc and cup to assess the glaucoma risk.

The second network is a disc-aware ensemble network [13], called DENet, which
utilizes four deep streams on different levels and modules. The first is the global
image stream, which represents the global image structure on image level and runs
as a classifier on the fundus image directly. The second steam is a segmentation-
guided network, which localizes the disc region from the fundus image and embeds
the disc-segmentation representation to detect glaucoma. The third steam works on
local disc region to predict the probability from the disc region level. The last stream
focuses on disc region with polar transformation, which enlarges the disc and cup
structure with the geometry operation and improves the performance. Finally, all
the outputs of these four streams are fused to produce the final glaucoma screening
result.

6.2 M-Net: Multi-label Segmentation Network

Figure6.2 shows the framework of the M-Net, including multi-label segmentation
network and the image polar transformation. In this method, the disc region is first
localized by using the automatic disc detection method, and then the original fundus
image is transferred into polar coordinate system based on the polar transformation.
After that, the polar transferred image is fed into the M-Net to predict the multi-label
probability maps for OD and OC regions. Finally, the inverse polar transformation
recovers the segmentation map back to the Cartesian coordinate. The architecture of
M-Net is an end-to-end multi-label deep network, which consists of three main parts.
The first is a multi-scale U-shape convolutional network used to construct an image
multi-scale input and produce a rich hierarchical feature. The second part is side-
output layer that provides deeply supervision. Finally, a multi-label loss function is
utilized to segment OD and OC regions jointly.

6.2.1 Multi-scale U-Shape Network

The U-Net [35] is modified as the main architecture of M-Net, which is an efficient
fully convolutional neural network for the image segmentation. Similar to the U-Net
architecture, M-Net consists of the encoder path (left side) and decoder path (right
side). Each encoder path learns a filter bank to produce a set of encoder feature
maps, and the element-wise rectified-linear nonlinearity (ReLU) activation function
is employed. The decoder path also utilizes the convolution layer to output decoder
feature map. The skip connections transfer the corresponding feature map from
encoder path and concatenate them to up-sampled decoder feature maps.
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Fig. 6.2 The framework ofM-Net, whichmainly includes fundus polar transformation and segmen-
tation network. After optic disc localization, the polar transformation transfer the original fundus
image into the polar coordinate system based on the detected disc center. Then M-Net produces
the multi-label prediction maps for disc and cup regions. The M-Net network includes multi-scale
U-shape network, side-output layer, and multi-label loss. The (De)Convolutional layer parameters
are denoted as “(De)Conv <kernel size, stride>”

The multi-scale input or image pyramid has been demonstrated to improve the
quality of segmentation effectively. Different from the other works, which fed the
multi-scale images tomulti-scream networks separately and combine the final output
map in the last layer [30, 31], the M-Net employs the average pooling layer to
downsample the image naturally and construct a multi-scale input in the encoder
path.

Finally, the high dimensional feature representation at the output of the final
decoder layer is fed to a trainable multi-label classifier. In M-Net, the final classifier
utilizes 1 × 1 convolutional layer with Sigmoid activation to produce the probability
map. For multi-label segmentation, the output is a K channel probability map, where
K is the class number (K = 2 for OD andOC in this work). The predicted probability
map corresponds to the class with maximum probability at each pixel.

The multi-scale U-shape Network has the following advantages: (1) integrating
multi-scale inputs into the decoder layers to avoid the large growth of parameters;
(2) increasing the network width of decoder path.
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6.2.2 Side-Output Layer

M-Net also uses the side-output layer, which acts as a early classifier to provide a
companion local output map [28]. Let W denote the parameters of all the standard
convolutional layers, and there are M side-output layers in the network, where the
corresponding weights are denoted asw = (w(1), . . . ,w(M )). The objective function
of the side-output layer is given as

Lside(W,w) =
M∑

m=1

αmL
(m)

side(W,w(m)), (6.1)

where αm is the loss function fusion weight for each side-output layer (αm = 0.25 in
M-Net),M is the side-output number, and L(m)

side(, ) denotes the multi-label loss of the
m-th side-output layer. An average layer is used directly to combine all side-output
maps as the final prediction map. The main advantages of the side-output layer are:
(1) the side-output layer can be treated as a special short connection between the loss
and early layer, which could relieve gradient vanishing problem and help the early
layer training; (2) the multi-scale output fusion could produce a higher performance;
(3) the side-output layer supervises the output map of each scale to output the better
local result.

6.2.3 Multi-label Loss Function

InM-Net, the OD andOC segmentation are formulated as amulti-label problem. The
existing segmentationmethod usually belongs to themulti-class setting, which labels
each instance to one unique label. By contrast, multi-label focuses an independent
binary classifier for each class, and predicts each instance to multiple binary labels.
Especially for OD and OC segmentation, the disc region overlays the cup pixels,
which means the pixel marked as cup also has the label as disc. Moreover, for the
glaucoma cases, the disc pixels excluded cup region is as a ring shape, which makes
the disc label extremely imbalance to background label under the multi-class setting.
Thus, multi-label method, considering OD and OC as two independent regions, is
more suitable for addressing these issues. InM-Net, a multi-label loss function based
on Dice coefficient is given, which is defined as

Ls = 1 −
K∑

k

2wk
∑N

i p(k,i)g(k,i)∑N
i p2(k,i) + ∑N

i g2(k,i)
, (6.2)

whereN is the pixel number, g(k,i) ∈ {0, 1} and p(k,i) ∈ [0, 1] are ground truth and the
predicted probability for class k, respectively. K is the class number, and

∑
k wk = 1

are the class weights. The multi-label loss function in Eq. (6.2) is equivalent to
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the traditional Dice coefficient by setting K = 1. Note that the Dice loss function
indicates the foreground mask overlapping ratio, and can deals with the imbalance
issue in the pixels of foreground (i.e., OD or OC) region and background. Under the
multi-label setting, the pixel can be labeled as OD or/and OC independently. Thus,
the imbalance issue does not exist between OD and OC. wk in Eq. (6.2) is the trade-
off weight to control the contribution of OD and OC. For glaucoma screening, both
the OD and OC are important, thus it sets wk = 0.5. The multi-label loss function Ls
can be differentiated yielding the gradient as

∂Ls
∂p(k,i)

=
K∑

k

2wk

[
− g(k,i)∑N

i p2(k,i) + ∑N
i g2(k,i)

+ 2p(k,i)
∑N

i p(k,i)g(k,i)

(
∑N

i p2(k,i) + ∑N
i g2(k,i))

2

]
. (6.3)

This loss is efficiently integrated into backpropagation via standard stochastic gra-
dient descent.

6.2.4 Polar Transformation

InM-Net, the pixel-wise polar transformation is applied to transfer the original image
to the polar coordinate. Let p(u, v) denote the point on the original Cartesian plane,
and its corresponding point on polar coordinate system is denoted p′(θ, r), as shown
in Fig. 6.3, where r and θ are the radius and directional angle of the original point
p, respectively. Three parameters are utilized to control the polar transformation: the
disc center O(uo, vo), the polar radius R, and the polar angle φ. The polar transfor-
mation could be formulated as

{
u = uo + r cos(θ + φ),

v = vo + r sin(θ + φ),
(6.4)

and the inverse polar transformation is

⎧
⎨

⎩
r = √

(u − uo)2 + (v − vo)2,

θ = tan−1(
v − vo
u − uo

) − φ.

The height and width of polar image are set as the polar radius R and discretization
2π/s, where s is the stride. The disc polar transformation provides a pixel-wise
representation of the original image in the polar coordinate system, which has the
following properties:

(1) Spatial Constraint: In the fundus image, a useful geometry constraint is that the
OC should be within the OD region, as shown in Fig. 6.3a. But this redial relationship
is hard to implement in the Cartesian coordinate. By contrast, the polar transforma-
tion transfers this redial relationship to a spatial relationship, where the regions of
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Fig. 6.3 Illustration of the mapping from Cartesian coordinate system (a) to the polar coordinate
system (b) by using the polar transformation. The point p(u, v) in Cartesian coordinate corresponds
to the point p′(θ, r) in polar coordinate. (c) and (d) are the corresponding ground truth, where
yellow, red, and black regions denote the optic cup, optic disc, and background, respectively

cup, disc, and background appear the ordered layer structure, as shown in Fig. 6.3d.
This layer-like spatial structure is convenient to use, especially some layer-based
segmentation methods [11, 27] can be employed as the post-processing.
(2) Equivalent Augmentation: Since the polar transformation is a pixel-wise map-
ping, the polar transformation is equivalent to data augmentation. For example, mov-
ing the expansion centerO(uo, vo) is equivalent to the drift cropping transformations
on polar coordinate. Using different transformation radius R is same as augmenting
with the various scaling factor. Thus the data augmentation for deep learning could
be done well during the polar transformation with various parameters.
(3) Balancing Cup Proportion: In the fundus image, the distribution of OC and
background pixels is heavily imbalanced. Even in the cropped ROI, the cup region
still accounts for a low proportion. Using Fig. 6.3c as an example, the cup region
only occupies about 4%. This extremely imbalance proportion easily leads the bias
and overfitting in training the deep model. The polar transformation flat the image
based on OD center, that could enlarge the cup region by using interpolation and
increase the OC proportion. As shown in Fig. 6.3d, the ratio of cup region increases
to 23.4% over the ROI, which is more balanced than that in original fundus image,
which could help avoid the overfitting during the model training and improve the OC
segmentation further.

6.3 DENet: Disc-Aware Ensemble Network

The second glaucoma screening method is Disc-aware Ensemble Network (DENet),
which detects the glaucoma from the fundus image directly by using the classification
way. DENet takes into account both global and local levels of fundus image infor-
mation, as shown in Fig. 6.4. The global image level provides the coarse structure
representation on the whole image, while the local disc region is utilized to learn a
fine representation around the disc region.
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Fig. 6.4 Architecture of DENet, which contains four streams: global image stream produces the
result based on the whole fundus image; the segmentation-guided network detects the optic disc
region and predicts a probability embedded the disc-segmentation representation; disc region stream
works on disc region cropped by disc-segmentation map from segmentation-guided network; disc
polar stream transfers the disc region image into the polar coordinate system. Then these four stream
outputs are fused as the final glaucoma screening result

6.3.1 Global Fundus Image Level

In the DENet, two streams are employed on the global fundus image level. The first
stream is a standard classification network by using Residual Network (ResNet) [20],
which employs the shortcut connection on a Convolutional Neural Network to han-
dle the vanishing gradient problem. DENet utilizes the ResNet-50 as the backbone
network to learn the global representation on the whole fundus image, which con-
sists of five down-sampling blocks, followed by a global max-pooling layer and a
fully connected (FC) layer for glaucoma screening. The input image of this stream
is resized to 224×224 to enable use of pretrained model in [20] as initialization for
this network.

The second global level stream is the segmentation-guided network, which detects
the optic disc region and produces a screening result based on the disc-segmentation
representation. As shown in Fig. 6.4, the main architecture of the segmentation-
guided network is adapted by the U-shape convolutional network (U-Net) [35]. Sim-
ilar to the original U-Net architecture, DENet consists of the encoder path (left side)
and decoder path (right side). A new branch is extended from the saddle layer of
the U-shape network, where the size scale is the smallest (i.e., 40×40) and the num-
ber of channels is the highest (i.e., 512D). The extended branch acts as an implicit
vector with average pooling and flatten layers. Next, it connects two fully connected
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layers to produce a glaucoma classification probability. This pipeline embeds the
segmentation-guided representation through the convolutional filters on decoder path
of the U-shape network. The input image of this stream is resized to 640×640, which
guarantees that the image has enough details to localize disc region accurately.

In the global fundus image level networks, two loss functions are employed. The
first one is the binary cross entropy loss function for glaucoma detection layer. The
other is the Dice coefficient for assessing disc segmentation [9], which is defined as

LDice = 1 − 2
∑N

i pigi∑N
i p2i + ∑N

i g2i
, (6.5)

where N is the pixel number, pi ∈ [0, 1] and gi ∈ {0, 1} denote predicted probability
and binary ground truth label for disc region, respectively. The Dice coefficient loss
function can be differentiated yielding the gradient as

∂LDice
∂pi

= 4pi
∑N

i pigi − 2gi
( ∑N

i p2i + ∑N
i g2i

)
( ∑N

i p2i + ∑N
i g2i

)2 . (6.6)

These two losses are efficiently integrated into backpropagation via standard stochas-
tic gradient descent (SGD).

Note that DENet uses two phases for training the segmentation-guided model.
First, the U-Net for disc detection is trained by pixel-level disc data with Dice coef-
ficient loss. Then the parameters of CNN layers are frozen and the fully connected
layers for the classification task are trained by using glaucoma detection data. The
separate phases train the segmentation-guided model instead of the multitask-based
single-stage training, with the following reasons: (1) Using the disc-segmentation
representation on screening could add diversity of the proposed network. (2) The
pixel-level label data for disc segmentation is more expensive than image-level label
data for glaucoma detection. The separate training stages could employ different
training datasets and configuration (e.g., different batch sizes and image numbers).
(3) The extracted disc region by network influences the follow-up stream, thus the
accuracy of disc detection is more important than classification branch.

6.3.2 Optic Disc Region Level

The second level in DENet is based on the local optic disc region, which is cropped
based on the previous segmentation-guided network. The disc region preserves more
detailed information with high resolution and it is benefited to learn a fine repre-
sentation. Two local streams are employed to learn representations on the local disc
region. The first one is a standard classification network based on ResNet [20] on
the original local disc region, as shown in Fig. 6.4, while the other stream focuses on
the disc polar transformation.
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6.4 Experiments

6.4.1 Implementation

M-Net andDENet are both implementedwithPythonbasedonKeraswithTensorflow
backend. M-Net employs stochastic gradient descent (SGD) for optimizing, and
uses a gradually decreasing learning rate from 0.0001 and a momentum of 0.9. The
transformation radius R is set to R = 400, and the directional angles are divided
into 400 bins, thus the size of transferred polar image is 400 × 400. A two-channel
probability map is produced, and the fixed threshold 0.5 is used to get binary mask
for OD and OC region. Finally, the fitted ellipse fit on largest connected region in
OD/OC mask is used as the final segmentation result.

TheDENet is implemented with Python based on Keras with Tensorflow backend.
The four streams in DENet system are trained separately according to different data
augmentation strategies, which dues to three reasons: (1) The disc local streams are
based on the disc detection result of global image stream. (2) The separate training
stage is convenient to add a new stream into the ensemble network. (3) The separate
training stage could employ different training datasets and configuration for different
stream. For the global image stream and segmentation-guided network, the data
augmentation is done on the training set by random rotations (0/90/180/270 degrees)
and random flips. For the local disc region scream, the data augmentation is done by
random rotations (0/90/180/270 degrees), crop drift (±20 pixels) and random flips.
For the disc polar region, we tune the polar transformation parameters to control the
data augmentation, by polar angle (φ = 0/90/180/270 degrees), polar center drift
(C(uo,vo) ± 20), and polar radius (R = 400 × {0.8, 1}). During training, we employ
stochastic gradient descent (SGD) for optimizing the deepmodel.We use a gradually
decreasing learning rate starting from 0.0001 and a momentum of 0.9. ResNet-50
stream employs pretrained parameters based on ImageNet as initialization, and all
the layers are fine-tuned during the training.

6.4.2 Segmentation Evaluation

We first evaluate the OD and OC segmentation of M-Net. The ORIGA dataset [40]
is used, which contains 650 fundus images with 168 glaucomatous eyes and 482
normal eyes. The 650 images with manual ground truth boundaries are divided into
325 training images (including 73 glaucoma cases) and 325 testing images (including
95 glaucomas) as same as that in [8, 38]. The overlapping error (E) and balanced
accuracy (A) is utilized to evaluate the segmentation performance as

E = 1 − Area(S
⋂

G)

Area(S
⋃

G)
, A = 1

2
(Sen + Spe), (6.7)
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Table 6.1 Performance comparisons (%) of the different methods on ORIGA Dataset. (PT: Polar
Transformation)

Method Edisc Adisc Ecup Acup δE

R-Bend [25] 0.129 – 0.395 – 0.154

ASM [39] 0.148 – 0.313 – 0.107

Superpixel [6] 0.102 0.964 0.264 0.918 0.077

LRR [38] – – 0.244 – 0.078

U-Net [35] 0.115 0.959 0.287 0.901 0.102

Joint U-Net 0.108 0.961 0.285 0.913 0.083

M-Net 0.083 0.972 0.256 0.914 0.078

Joint U-Net +
PT

0.072 0.979 0.251 0.914 0.074

M-Net + PT 0.071 0.983 0.230 0.930 0.071

with

Sen = TP

TP + FN
, Spe = TN

TN + FP
, (6.8)

where S andG denote the segmentedmask and themanual ground truth, respectively.
TP and TN denote the number of true positives and true negatives, respectively, and
FP and FN denote the number of false positives and false negatives, respectively.
Moreover, we also calculate the absolute CDR error δE as evaluation metric, which is
defined as δE = |CDRS − CDRG |, where CDRG and CDRS denote the manual CDR
from trained clinician and by the segmented result, respectively.

We compare the M-Net with the several state-of-the-art segmentation methods,
including relevant-vessel bends (R-Bend) method in [25], active shapemodel (ASM)
method in [39], superpixel-based classification (Superpixel) method in [6], quadratic
divergence regularized SVM (QDSVM) method in [7], and low-rank superpixel rep-
resentation (LRR) method in [38]. Additional, we compare with the U-Net [35]. We
report two outputs of U-Net, the original U-Net for segmenting OC and OD sepa-
rately and U-Net utilized the multi-label loss function (Joint U-Net) for segmenting
OC and OD jointly. We also provide segmentation results with/without the polar
transformation (PT). The performances are shown in Table6.1.

R-Bend [25] provides a parameterization technique based on vessel bends, and
ASM [39] employs the circular Hough transform initialization to segment the OD
and OC regions. These bottom-up methods segment the OD and OC separately,
which do not perform well on the ORIGA dataset. Superpixel method [6] utilizes
superpixel-level classifier to identify the OD and OC regions, which obtains a better
result than the bottom-up methods [25, 39]. The methods LRR [38] and QDSVM [7]
obtain good performances. But, they only focus on individual OD or OC region
segmentation, and could not calculate the CDR value for detecting glaucoma. Joint
U-Net with the multi-label loss constrains the mutual relation of OD and OC regions,
and produces a better result than that in pure U-Net [35]. TheM-Net with multi-scale
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Image GT Superpixel Joint U-Net M-Net M-Net with PT

Fig. 6.5 The visual results of OD and OC segmentation, where the yellow and red region denote
the cup and disc regions, respectively. From the left to right: fundus image, ground truth (GT), Joint
U-Net, the M-Net, and M-Net with polar transformation (PT). The last row shows the failed case

input and side-output layers obtains the higher score than single-scale network and
superpixel method [6], which demonstrates that the multi-scale input and side-output
layers are useful to guide the early layer training.

The polar transformation as one contribution of theM-Net work solves the imbal-
ance issue ofOCandOD region.Onemajor advantage is that the polar transformation
augments the proportion of cup region, and makes the area of the disc/cup and back-
ground more balance. The balanced region helps avoid the overfitting during the
model training and improves the segmentation performance further. In Table6.1,
polar transformation reduces about 0.03 in Joint U-Net and 0.02 in M-Net on Ecup

scores. Note that the performance of Joint U-Net with PT is slightly better than that in
M-Net without PT. It shows that the gains of the polar transformation may be higher
than that using multi-scale input and side-output layers. Finally, the M-Net with PT
obtains the best performance, and outperforms other state-of-the-art methods.

Figure6.5 shows some visual examples of the segmentation results, where the first
two rows are normal eyes and the rest rows are glaucoma cases. For the superpixel
method [6], the segmented OC is smaller than ground truth in glaucoma cases, which
may cause an underestimated CDR. The deep learning methods (e.g., Joint U-Net
and M-Net) obtain more accurate cup boundary, but it easily generates a larger OD.
By contrast, the M-Net with PT can effectively and accurately segment OD and OC
regions. The last row in Fig. 6.5 gives a challenging case for segmentation, where
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the image is blurred and has low contrast for identifying the OC boundary. For this
case, all the methods fail to produce accurate OC segmentation. This issue could
potentially be addressed in future work through the use of more powerful network
or additional image enhancement preprocessing.

6.4.3 Glaucoma Screening Evaluation

In these experiments, we use three glaucoma screening datasets to evaluate the glau-
coma screening performances. The first one is the ORIGA dataset, which is used in
segmentation experiment, including 168 glaucomatous eyes and 482 normal eyes.
The second is the Singapore Chinese Eye Study (SCES) dataset, which consists of
1676 images with 46 glaucoma cases. The third dataset is a population-based study
conducted, which includes a total of 5783 eye images with 113 glaucomatous eyes
and 5670 normal eyes. Because only the ORIGA dataset has the optic disc and cup
ground truth, we use all the 650 images in ORIGA dataset for network training
including disc and cup segmentation and glaucoma screening. Then we employ the
SCES and new collected datasets for screening test. The resolution of the fundus
image in these three datasets are 3072 × 2048, and the size of cropped disc region
is 800 × 800.

For evaluation, the Receiver Operating Characteristic (ROC) curves and the area
under ROC curve (AUC) are reported. Moreover, three evaluation criteria are also
employed to measure performances, as Sensitivity (Sen), Specificity (Spe), and Bal-
anced Accuracy (BAcc):

Sen = TP

TP + FN
,Spe = TN

TN + FP
,BAcc = Sen + Spe

2
,

where TP and TN denotes the number of true positives and true negatives, respec-
tively, and FP and FN denotes the number of false positives and false negatives,
respectively. Tuning the diagnostic thresholds could obtain a series of criteria scores,
and then we use the threshold with highest B-Accuracy score as the final threshold
to report the performance. We compare M-Net and DENet with four state-of-the-
art glaucoma screening baselines: wavelet-based feature method (Wavelet) in [10],
Gabor transformation method (Gabor) in [1], Glaucoma risk index method (GRI)
in [3], and superpixel-based classification method (Superpixel) in [6]. We also addi-
tionally provide the intraocular pressure (IOP) measurement result as the clinical
baseline. The experiment results are reported in Table6.2 and Figs. 6.6 and 6.7.

From the glaucoma screening results, the IOP performs poorly with 0.66 AUC on
the SECS dataset and 0.6233 AUC on the new collected dataset. The energy property
of the wavelet transformed image is utilized in [10], which does not provide enough
discriminative capability for glaucoma screening. By contrast, SRI in [3] fuses mul-
tiple image features (e.g., intensity value, FFT coefficient, and B-spline coefficient)
and obtains the better scores than Wavelet in [10]. The non-deep learning method,
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Fig. 6.6 The ROC curves with AUC scores for glaucoma screening on SCES dataset
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Fig. 6.7 The ROC curves with AUC scores for glaucoma screening on new collected dataset
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Table 6.2 Performance comparisons of the different methods on datasets

SCES dataset New collected dataset

Method AUC B-Acc Sen Spe AUC B-Acc Sen Spe

Airpuff IOP 0.6600 0.6452 0.3696 0.9209 0.6233 0.5991 0.3451 0.8531

Wavelet [10] 0.6591 0.6544 0.7174 0.5914 0.6487 0.6262 0.6283 0.6242

Gabor [1] 0.7594 0.7191 0.9130 0.5252 0.7417 0.7117 0.8053 0.6182

GRI [3] 0.8051 0.7629 0.6957 0.8301 0.7892 0.7121 0.5752 0.8490

Superpixel [6] 0.8265 0.7800 0.7391 0.8209 0.7712 0.7360 0.7257 0.7464

M-Net 0.8998 0.8157 0.7609 0.8706 0.7929 0.7585 0.7522 0.7647

DENet 0.9183 0.8429 0.8478 0.8380 0.8173 0.7495 0.7876 0.7115

Superpixel [6], produces a competitive performance on the SCES dataset (0.8265
AUC) and the new collected dataset (0.7712 AUC), which is better than IOP. In the
deep learning method, M-Net, achieves the higher performances on both datasets,
which demonstrates the capability of deep learning technique. TheDENet obtains the
best performances on the SCES dataset (0.9183 AUC) and the new collected dataset
(0.8173 AUC). It can be seen that without extracting clinical parameters (e.g., CDR),
the visual features could be used for glaucoma screening. One possible reason is that
the clinical parameters are based on what information clinicians currently observe,
while visual features deeply represent a wider set of image properties, some of which
may be unrelated with what clinicians defined explicitly. Hence, visual features gain
more latent image representations, and more discriminative information than clinical
parameters. Moreover, the DENet also outperforms other deep learning based meth-
ods. For example, the deep learning method in [4] provides a glaucoma screening
system by using CNN feature on the disc region directly, which obtained 0.898 AUC
on the SCES dataset. The DENet is comparable to that of the deep system [4], and
is also able to localize the disc region from the whole fundus image.

6.4.4 REFUGE Challenge

Retinal Fundus Glaucoma Challenge2 (REFUGE) in conjunction with MICCAI
2018 conference is a glaucoma challenge, which consists of two tasks, namely optic
cup/disc segmentation and glaucoma classification. We load the model parameters
of MNet and DENet trained on ORIGA dataset directly without any fine-tuning, and
test them on the REFUGE training set. The results are shown in Fig. 6.8.

From the result, theM-Net obtains the better performance than DENet. One of the
main reasons for that is theREFUGE images are centered atmacula,which is different
from the disc-center fundus image inORIGAdataset. The effect of different views on

2https://refuge.grand-challenge.org.

https://refuge.grand-challenge.org
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Fig. 6.8 The ROC curves with AUC scores for glaucoma screening on REFUGE training set

segmentation-based method is much less than that in learning-based method. Based
on this observation,we can conclude thatwhen there has enough training datawith the
similar image distribution, the learning-based method for glaucoma screening could
obtain the better performance. And if the training data has the different distribution
with the target data, the segmentation-based method appears better robustness.

6.5 Conclusion

In this chapter, we have evaluated two kinds of deep learning based method for
automated glaucoma screening, M-Net and DENet. The M-Net is a segmentation-
based method, which solves the OD and OC segmentation jointly into a one-stage
multi-label framework. The DENet is a learning-based method, which integrates
four deep streams on different levels and modules and predicts glaucoma from the
fundus image directly. The experiments on several glaucoma datasets show that the
two methods obtain the satisfied performances. The codes of both M-Net and DENet
details are available.3

3Project Page: http://hzfu.github.io/proj_glaucoma_fundus.html.

http://hzfu.github.io/proj_glaucoma_fundus.html
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Chapter 7
Thoracic Disease Identification
and Localization with Limited
Supervision

Zhe Li, Chong Wang, Mei Han, Yuan Xue, Wei Wei, Li-Jia Li and Li Fei-Fei

Abstract Accurate identification and localization of abnormalities from radiology
images play an integral part in clinical diagnosis and treatment planning. Building a
highly accurate prediction model for these tasks usually requires a large number of
images manually annotated with labels and finding sites of abnormalities. In reality,
however, such annotated data are expensive to acquire, especially the ones with loca-
tion annotations. We need methods that can work well with only a small amount of
location annotations. To address this challenge, we present a unified approach that
simultaneously performs disease identification and localization through the same
underlying model for all images. We demonstrate that our approach can effectively
leverage both class information as well as limited location annotation, and signif-
icantly outperforms the comparative reference baseline in both classification and
localization tasks.
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7.1 Introduction

Automatic image analysis is becomingan increasingly important technique to support
clinical diagnosis and treatment planning. It is usually formulated as a classification
problem where medical imaging abnormalities are identified as different clinical
conditions [4, 26, 27, 29, 35]. In clinical practice, visual evidence that supports
the classification result, such as spatial localization [2] or segmentation [36, 39] of
sites of abnormalities is an indispensable part of clinical diagnosis which provides
interpretation and insights. Therefore, it is of vital importance that the image analysis
method is able to provide both classification results and the associated visual evidence
with high accuracy.

Figure7.1 is an overview of our approach. We focus on chest X-ray image analy-
sis. Our goal is to both classify the clinical conditions and identify the abnormality
locations. A chest X-ray image might contain multiple sites of abnormalities with
monotonous and homogeneous image features. This often leads to the inaccurate
classification of clinical conditions. It is also difficult to identify the sites of abnor-
malities because of their variances in the size and location. For example, as shown
in Fig. 7.2, the presentation of “Atelectasis” (alveoli are deflated down) is usually
limited to local regions of a lung [11] but possible to appear anywhere on both sides

Chest X-ray Image
Localization for 
Cardiomegaly

Atelectasis: 0.7189 
Cardiomegaly: 0.8573 
Consolidation:0.0352 
Edema:0.0219...... Pathology

Diagnosis

Unified diagnosis network

Fig. 7.1 Overview of our chest X-ray image analysis network for thoracic disease diagnosis. The
network reads chest X-ray images and produces prediction scores and localization for the diseases

Cardiomegaly Atelectasis

Fig. 7.2 Examples of chest X-ray images with the disease bounding box. The disease regions are
annotated in the yellow bounding boxes by radiologists
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of lungs; while “Cardiomegaly” (enlarged heart) always covers half of the chest and
is always around the heart.

The lack of large-scale datasets also stalls the advancement of automatic chest
X-ray diagnosis.Wang et al. provides one of the largest publicly available chest x-ray
datasets with disease labels1 along with a small subset with region-level annotations
(bounding boxes) for evaluation [30].2 As we know, the localization annotation is
much more informative than just a single disease label to improve the model per-
formance as demonstrated in [20]. However, getting detailed disease localization
annotation can be difficult and expensive. Thus, designing models that can work
well with only a small amount of localization annotation is a crucial step for the
success of clinical applications.

In this chapter,wepresent a unified approach that simultaneously improves disease
identification and localization with only a small amount of X-ray images containing
disease location information. Figure7.1 demonstrates an example of the output of
our model. Unlike the standard object detection task in computer vision, we do
not strictly predict bounding boxes. Instead, we produce regions that indicate the
diseases, which aligns with the purpose of visualizing and interpreting the disease
better. First, we apply an CNN to the input image so that the model learns the
information of the entire image and implicitly encodes both the class and location
information for the disease [23]. We then slice the image into a patch grid to capture
the local information of the disease. For an image with bounding box annotation, the
learning task becomes a fully supervised problem since the disease label for each
patch can be determined by the overlap between the patch and the bounding box.
For an image with only a disease label, the task is formulated as a multiple-instance
learning (MIL) problem [3]—at least one patch in the image belongs to that disease.
If there is no disease in the image, all patches have to be disease-free. In this way,
we have unified the disease identification and localization into the same underlying
prediction model but with two different loss functions.

We evaluate the model on the aforementioned chest X-ray image dataset provided
in [30]. Our quantitative results show that the proposed model achieves significant
accuracy improvement over the published state of the art on both disease identifi-
cation and localization, despite the limited number of bounding box annotations of
a very small subset of the data. In addition, our qualitative results reveal a strong
correspondence between the radiologist’s annotations and detected disease regions,
which might produce further interpretation and insights of the diseases.

1While abnormalities, findings, clinical conditions, and diseases have distinct meanings in the
medical domain, here, we simply refer to them as diseases and disease labels for the focused
discussion in computer vision.
2The method proposed in [30] did not use the bounding box information for localization training.
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7.2 Related Work

Object detection. Following the R-CNNwork [9], recent progresses has focused on
processing all regions with only one shared CNN [8, 12], and on eliminating explicit
region proposal methods by directly predicting the bounding boxes. In [24], Ren et
al. developed a region proposal network (RPN) that regresses from anchors to regions
of interest (ROIs). However, these approaches could not be easily used for images
without enough annotated bounding boxes. To make the network process images
much faster, Redmon et al. proposed a grid-based object detection network, YOLO,
where an image is partitioned into S × S grid cells, each of which is responsible
to predict the coordinates and confidence scores of B bounding boxes [23]. The
classification and bounding box prediction are formulated into one loss function to
learn jointly. A step forward, Liu et al. partitioned the image into multiple grids with
different sizes proposing a multi-box detector overcoming the weakness in YOLO
and achieved better performance [21]. Similarly, these approaches are not applicable
for the images without bounding boxes annotation. Even so, we still adopt the idea
of handling an image as a group of grid cells and treat each patch as a classification
target.
Medical disease diagnosis. Zhang et al. proposed a dual-attention model using
images and optional texts to make accurate prediction [34]. In [35], Zhang et al. pro-
posed an image-to-text model to establish a direct mapping from medical images to
diagnostic reports. Bothmodels were evaluated on a dataset of bladder cancer images
and corresponding diagnostic reports. Wang et al. took advantage of a large-scale
chest X-ray dataset to formulate the disease diagnosis problem as multi-label classi-
fication, using class-specific image feature transformation [30]. They also applied a
thresholding method to the feature map visualization [33] for each class and derived
the bounding box for each disease. Their qualitative results showed that the model
usually generated much larger bounding box than the ground truth. Hwang et al. [16]
proposed a self-transfer learning framework to learn localization from the globally
pooled class-specific feature maps supervised by image labels. These works have the
same essence with class activation mapping [37] which handles natural images. The
location annotation information was not directly formulated into the loss function in
the none of these works. Feature map pooling-based localization did not effectively
capture the precise disease regions.
Multiple instance learning. Inmultiple instance learning (MIL), an input is a labeled
bag (e.g., an image) with many instances (e.g., image patches) [3]. The label is
assigned at the bag level. Wu et al. assumed each image as a dual-instance example,
including its object proposals and possible text annotations [31]. The framework
achieved convincing performance in vision tasks including classification and image
annotation. In medical imaging domain, Yan et al. utilized a deep MIL framework
for body part recognition [32]. Hou et al. first trained an CNN on image patches
and then an image-level decision fusion model by patch-level prediction histograms
to generate the image-level labels [15]. By ranking the patches and defining three
types of losses for different schemes, Zhu et al. proposed an end-to-end deep multi-
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instance network to achieve mass classification for whole mammogram [38]. We are
building an end-to-end unified model to make great use of both image-level labels
and bounding box annotations effectively.

7.3 Model

Given images with disease labels and limited bounding box information, we aim
to design a unified model that simultaneously produces disease identification and
localization.Wehave formulated two tasks into the sameunderlying predictionmodel
so that (1) it can be jointly trained end to end and (2) two tasks can be mutually
beneficial. The proposed architecture is summarized in Fig. 7.3.

7.3.1 Image Model

Convolutional neural network. As shown in Fig. 7.3a, we use the residual neural
network (ResNet) architecture [13] given its dominant performance in ILSVRC com-
petitions [25]. Our framework can be easily extended to any other advanced CNN
models. The recent version of pre-act-ResNet [14] is used (we call it ResNet-v2 inter-
changeably in this chapter). After removing the final classification layer and global
pooling layer, an input image with shape h × w × c produces a feature tensor with

Image w/o bounding boxes

Image w/ bounding boxes

CNN

ResNet

Conv 
Features

Conv 
Features

Bilinear Interpolation

(a1,b2) (a2,b2)
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Padding=0, Stride=1

(a)
Patch Slicing

(b)

∗
Recognition Network

Patch Scores

C
onv

C
onv

Patch Features

(c)

Label Prediction

Train

Annotated for k
(Eq. 1 )

Non-annotated for k
(Eq. 2 )

Test

Any image for k
(Eq. 2 )

(d)
Formulation

......

Infiltration

Fig. 7.3 Model overview. a The input image is first processed by a CNN. b The patch slicing
layer resizes the convolutional features from the CNN using max-pooling or bilinear interpolation.
c These regions are then passed to a fully convolutional recognition network. d During training,
we use multi-instance learning assumption to formulate two types of images; during testing, the
model predicts both labels and class-specific localizations. The red frame represents the ground
truth bounding box. The green cells represent patches with positive labels, and brown is negative.
Please note during training, for unannotated images, we assume there is at least one positive patch
and the green cells shown in the figure are not deterministic
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shape h′ × w′ × c′ where h, w, and c are the height, width, and number of channels
of the input image respectively while h′ = h

32 , w
′ = w

32 , c
′ = 2048. The output of

this network encodes the images into a set of abstracted feature maps.
Patch slicing. Ourmodel divides the input image into P × P patch grid, and for each
patch, we predict K binary class probabilities, where K is the number of possible
disease types. As the CNN gives c′ input feature maps with the size of h′ × w′, we
down/up sample the input featuremaps to P × P through a patch slicing layer shown
in Fig. 7.3b. Please note that P is an adjustable hyperparameter. In this way, a node in
the same spatial location across all the feature maps corresponds to one patch of the
input image. We upsample the feature maps If their sizes are smaller than expected
patch grid size. Otherwise, we downsample them.

Upsampling. We use a simple bilinear interpolation to upsample the feature maps
to the desired patch grid size. As interpolation is, in essence, a fractionally stridden
convolution, it can be performed in-network for end-to-end learning and is fast and
effective [22]. A deconvolution layer [33] is not necessary to cope with this simple
task.

Downsampling. The bilinear interpolation makes sense for downsampling only
if the scaling factor is close to 1. We use max-pooling to downsample the feature
maps. In general cases, the spatial size of the output volume is a function of the
input width/height (w), the filter (receptive field) size ( f ), the stride (s), and the
amount of zero padding used (p) on the border. The output width/height (o) can be
obtained by w− f +2p

s + 1. To simplify the architecture, we set p = 0 and s = 1, so
that f = w − o + 1.
Fully convolutional recognition network. We follow [22] to use fully convolution
layers as the recognition network. Its structure is shown in Fig. 7.3c. The c′ resized
featuremaps are first convolved by 3 × 3 filters into a smaller set of featuremapswith
c∗ channels, followed by batch normalization [17] and rectified linear units (ReLU)
[10]. Note that the batch normalization also regularizes the model. We set c∗ = 512
to represent patch features. The abstracted feature maps are then passed through a
1 × 1 convolution layer to generate a set of P × P final predictions with K channels.
Each channel gives prediction scores for one class among all the patches, and the
prediction for each class is normalized by a logistic function (sigmoid function) to
[0, 1]. The final output of our network is the P × P × K tensor of predictions. The
image-level label prediction for each class in K is calculated across P × P scores,
which is described in Sect. 7.3.2.

7.3.2 Loss Function

Multi-label classification. Multiple disease types can be often identified in one
chest X-ray image and these disease types are not mutually exclusive. Therefore,
we define a binary classifier for each class/disease type in our model. The binary
classifier outputs the class probability. Note that the binary classifier is not applied
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to the entire image, but to all small patches. We will show how this can translate to
image-level labeling below.
Joint formulation of localization and classification. Since we intend to build K
binary classifiers, we will exemplify just one of them, for example, class k. Note that
K binary classifiers will use the same features and only differ in their last logistic
regression layers. The i th image xi is partitioned into a set M of patches equally,
xi = [xi1, xi2, . . . , xim], where m = |M | = P × P
Images with annotated bounding boxes. As shown in Fig. 7.3d, suppose an image is
annotated with class k and a bounding box. We denote n be the number of patches
covered by the bounding box, where n < m. Let this set beN . Each patch in the set
N as positive for class k and each patch outside the bounding box as negative. Note
that if a patch is covered partially by the bounding box of class k, we still consider
it a positive patch for class k. The bounding box information is not lost. For the j th
patch in the i th image, let pki j be the foreground probability for class k. Since all
patches have their labels, the probability of an image being positive for class k is
defined as

p(yk |xi , bboxki ) =
∏

j∈N
pki j ·

∏

j∈M \N
(1 − pki j ), (7.1)

where yk is the kth network output denoting whether an image is a positive example
of class k. For example, for a class other than k, this image is treated as the negative
sample without a bounding box. We define a patch as positive to class k when it is
overlapped with a ground truth box, and negative otherwise.

Images without annotated bounding boxes. If the i th image is labeled as class k
without any bounding box, we know that there must be at least one patch classified
as k to make this image a positive example of class k. Therefore, the probability of
this image being positive for class k is defined as the image-level score,3

p(yk |xi ) = 1 −
∏

j∈M
(1 − pki j ). (7.2)

At test time, we calculate p(yk |xi ) by Eq.7.2 as the prediction probability for class
k.
Combined loss function. Note that p(yk |xi , bboxki ) and p(yk |xi ) are the image-level
probabilities. The loss function for class k can be expressed as minimizing the neg-
ative log-likelihood of all observations as follows:

3Later on, we notice a similar definition [19] for this multi-instance problem. We argue that our
formulation is in a different context of solving classification and localization in a unified way for
images with limited bounding box annotation. Yet, this related work can be viewed as a successful
validation of our multi-instance learning based formulation.
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Lk = − λbbox

∑

i

ηi p(y
∗
k |xi , bboxki ) log(p(yk |xi , bboxki ))

− λbbox

∑

i

ηi (1 − p(y∗
k |xi , bboxki )) log(1 − p(yk |xi , bboxki ))

−
∑

i

(1 − ηi )p(y
∗
k |xi ) log(p(yk |xi ))

−
∑

i

(1 − ηi )(1 − p(y∗
k |xi )) log(1 − p(yk |xi )), (7.3)

where i is the index of a data sample, ηi is 1 when the i th sample is annotated
with bounding boxes, otherwise 0. λbbox is the factor balancing the contributions
from annotated and unannotated samples. p(y∗

k |xi ) ∈ {0, 1} and p(y∗
k |xi , bboxki ) ∈

{0, 1} are the observed probabilities for class k. Obviously, p(y∗
k |xi , bboxki ) ≡ 1, thus

Eq.7.3 can be rewritten as follows:

Lk = − λbbox

∑

i

ηi log(p(yk |xi , bboxki ))

−
∑

i

(1 − ηi )p(y
∗
k |xi ) log(p(yk |xi ))

−
∑

i

(1 − ηi )(1 − p(y∗
k |xi )) log(1 − p(yk |xi )). (7.4)

In this way, the training is strongly supervised (per patch) by the given bounding
box; it is also supervised by the image-level labels if the bounding boxes are not
available.

To enable end-to-end training across all classes, we sum up the class-wise loss to
define the total loss as

L =
∑

k

Lk . (7.5)

7.3.3 Localization Generation

The full model predicts a probability score for each patch in the input image. We
define a score threshold Ts to distinguish the activated patches against the nonacti-
vated ones. If the probability score pki j is larger than Ts , we consider the j th patch
in the i th image belongs to the localization for class k. We set Ts = 0.5 in this
chapter. Please note that we do not predict strict bounding boxes for the regions of
disease—the combined patches representing the localization information can be a
non-rectangular shape.
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7.3.4 Training

We use ResNet-v2-50 as the image model and select the patch slicing size from
{12, 16, 20}. The model is pre-trained on the ImageNet 1000-class dataset [6] with
Inception [28] preprocessing method where the image is normalized to [−1, 1] and
resized to 299 × 299. We initialize the CNN with the weights from the pre-trained
model, which helps the model converge faster than training from scratch. During
training, we also fine-tune the image model, as we believe the feature distribution
of medical images differs from that of natural images. We set the batch size as 5 to
load the entire model to the GPU, train the model with 500k iterations of minibatch,
and decay the learning rate by 0.1 from 0.001 every 10 epochs of training data. We
add L2 regularization to the loss function to prevent overfitting. We optimize the
model by Adam [18] method with asynchronous training on 5 Nvidia P100 GPUs.
The model is implemented in TensorFlow [1].

Smoothing the image-level scores In Eqs. 7.1 and 7.2, the notation
∏

denotes the
product of a sequence of probability terms ([0, 1]), which often leads to the a product
value of 0 due to the computational underflow if m = |M | is large. The log loss in
Eq.7.3 mitigates this for Eq.7.1, but does not help Eq.7.2, since the log function
cannot directly affect its product term. Tomitigate this effect, we normalize the patch
scores pki j and 1 − pki j from [0, 1] to [0.98, 1] to make sure the image-level scores
p(yk |xi , bboxki ) and p(yk |xi ) smoothly varies within the range of [0, 1]. Since we are
thresholding the image-level scores in the experiments, we found this normalization
works quite well.

Notation pki j and 1 − pki j represent a patch’s (the j th patch of image i) positive
and negative probabilities for class k. Their values are always in [0, 1]. We consider
the problem of numerical underflow as follows. The product terms (

∏
) in Eqs. 7.1

and 7.2 can quickly go to 0 when many of the terms in the product is small due to the
limited precision of float numbers. The log loss in Eq.7.3 mitigates this for Eq.7.1,
but does not help Eq.7.2, since the log function can not directly affect its product
term. This effectively renders Eq.7.2 as a constant value of 1, making it irrelevant
on updating the network parameters. (The contribution of the gradient from Eq.7.2
will be close to 0.) Similar things happen at test time. To do binary classification for
an image, we determine its label by thresholding the image-level score (Eq. 7.2). It
is impossible to find a threshold in [0, 1] to distinguish the image-level scores when
the score (Eq.7.2) is a constant of 1; all the images will be labeled the same.

Fortunately, if we can make sure that the image-level scores p(yk |xi , bboxki )’s
and p(yk |xi ) spread out in [0, 1] instead of congregating at 1, we then can find an
appropriate threshold for the binary classification. To this end, we normalize pki j
and 1 − pki j from [0, 1] to [0.98, 1]. The reason of such choice is as follows. In
the actual system, we often use single-precision floating-point number to represent
real numbers. It can represent a real number as accurate as 7 decimal digits [5]. If
the number of patches in an image, m = 16 × 16, a real number p ∈ [0, 1] should
be larger than around 0.94 (by obtaining p from p256 ≥ 10−7) to make sure that
the pm varies smoothly in [0, 1] with respect to p changes in [0.94, 1]. To be a bit



148 Z. Li et al.

more conservative, we set 0.98 as our lower limit in our experiment. This method
enables valid and efficient training and testing of our method. And in the evaluation,
the number of thresholds can be finite to calculate the AUC scores, as the image-
level probability score is well represented using the values in [0, 1]. A downside of
our approach is that a normalized patch-level probability score does not necessarily
reflect the meaning of probability anymore.
More weights on images with bounding boxes. In Eq.7.4, the parameter λbbox

weighs the contribution from the images with annotated bounding boxes. Since the
amount of such images is limited, and if we treat them equally with the images
without bounding boxes, it often leads to worse performance. We thus increase the
weight for images with bounding boxes to λbbox = 5 by cross-validation.

7.4 Experiments

NIH Chest X-ray dataset [30] consists of 112, 120 frontal-view X-ray images with
14 disease labels (each image can have multi-labels). These labels are obtained by
analyzing the associated radiology reports. The disease labels are expected to have
an accuracy of above 90% [30]. We take the provided labels as ground truth for
training and evaluation in this chapter. Meanwhile, the dataset also contains 984
labeled bounding boxes for 880 images by board-certified radiologists. Note that the
provided bounding boxes correspond to only eight types of disease instances. We
separate the images with provided bounding boxes from the entire dataset. Hence
we have two sets of images called “annotated” (880 images) and “unannotated”
(111, 240 images).

We resize the original 3-channel images from 1024 × 1024 to 512 × 512 pixels
for fast processing. The pixel values in each channel are normalized to [−1, 1]. We
do not apply any data augmentation techniques.

7.4.1 Disease Identification

Weconduct a fivefold cross-validation. For each fold, we have done two experiments.
In the first one, we train the model using 70% of bounding box annotated and 70%
unannotated images to compare the results with the reference model [30] (Table7.1).
Toour knowledge, the referencemodel has the published state-of-the-art performance
of disease identification on this dataset. In the second experiment,we explore twodata
ratio factors of annotated and unannotated images to demonstrate the effectiveness of
the supervision provided by the bounding boxes (Fig. 7.4). We decrease the amount
of images without bounding boxes from 80 to 0% by a step of 20%. And then for
each of those settings, we train our model by adding 80% or none of bounding box
annotated images. For both experiments, the model is always evaluated on the fixed
20% annotated and unannotated images for this fold.
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Table 7.1 AUC scores comparison with the reference baseline model. Results are rounded to two
decimal digits for table readability. Bold values denote better results. The results for the reference
baseline are obtained from the latest update of [30]
Disease Atelectasis Cardiomegaly Consolidation Edema Effusion Emphysema Fibrosis

Baseline 0.70 0.81 0.70 0.81 0.76 0.83 0.79

Ours 0.80 ± 0.00 0.87 ± 0.01 0.80 ± 0.01 0.88 ± 0.01 0.87 ± 0.00 0.91 ± 0.01 0.78 ± 0.02

Disease Hernia Infiltration Mass Nodule Pleural
thickening

Pneumonia Pneumothorax

Baseline 0.87 0.66 0.69 0.67 0.68 0.66 0.80

Ours 0.77 ± 0.03 0.70 ± 0.01 0.83 ± 0.01 0.75 ± 0.01 0.79 ± 0.01 0.67 ± 0.01 0.87 ± 0.01

Evaluationmetrics.We useAUC scores (the area under the ROC4 curve) tomeasure
the performance of our model [7]. A higher AUC score implies a better classifier.
Comparison with the reference model. Table7.1 gives the AUC scores for all
the classes. We compare our results with the reference baseline fairly: we, as the
reference, use ImageNet pretrained ResNet-50,5 after which a convolution layer
follows; both works use 70% images for training and 20% for testing, and we also
conduct a fivefold cross-validation to show the robustness of our model.

Compared to the referencemodel, our proposedmodel achieves betterAUC scores
for most diseases. The overall improvement is remarkable and the standard errors are
small. The large objects, such as “Cardiomegaly”, “Emphysema”, and “Pneumotho-
rax”, are as well recognized as the reference model. Nevertheless, for small objects
like “Mass” and “Nodule”, the performance is significantly improved. Because our
model slices the image into small patches and uses bounding boxes to supervise the
training process, the patch containing small object stands out of all the patches to
represent the complete image. For “Hernia”, there are only 227 (0.2%) samples in the
dataset. These samples are not annotated with bounding boxes. Thus, the standard
error is relatively larger than other diseases.
Bounding box supervision improves classification performances. We consider
using 0% annotated images as our own baseline (right groups in Fig. 7.4). We use
80% annotated images (left groups in Fig. 7.4) to compare with the our own baseline.
We plot the mean performance for the cross-validation in Fig. 7.4, the standard errors
are not plotted but similar to the numbers reported in Table7.1. The number of
80% annotated images is just 704, which is quite small compared to the number
of 20% unannotated images (22, 248). We observe in Fig. 7.4 that for almost all the
disease types, using 80% annotated images to train themodel improves the prediction
performance (by comparing the bars with the same color in two groups for the same
disease). For some disease types, the absolute improvement is significant (>5%).We
believe that this is because all the disease classifiers share the same underlying image
model; a better trained image model using eight disease annotations can improve all

4Here ROC is the Receiver Operating Characteristic, which measures the true positive rate (TPR)
against the false positive rate (FPR) at various threshold settings (200 thresholds in this chapter).
5Using ResNet-v2 [14] shows marginal performance difference for our network compared to
ResNet-v1 [13] used in the reference baseline.
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Fig. 7.4 AUC scores for models trained using different data combinations. Training set: annotated
samples,{left: 80% (704 images), right: 0% (baseline, 0 images)} for each disease type; unannotated
samples, {80% (88, 892), 60% (66, 744), 40% (44, 496), 20% (22, 248), 0% (0)} from left to right
for each disease type. The evaluation set is 20% annotated and unannotated samples which are not
included in the training set. No result for 0% annotated and 0% unannotated images. Using 80%
annotated images and certain amount of unannotated images improves the AUC score compared
to using the same amount of unannotated images (same colored bars in two groups for the same
disease), as the joint model benefits from the strong supervision of the tiny set of bounding box
annotations
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14 classifiers’ performance. Specifically, some diseases, annotated and unannotated,
share similar visual features. For example, “Consolidation” and “Edema” both appear
as fluid accumulation in the lungs, but only “Consolidation” is annotated. The feature
sharing enables supervision for “Consolidation” to improve “Edema” performance
as well.
Bounding box supervision reduces the demand of the training images. Impor-
tantly, it requires less unannotated images to achieve the similar AUC scores by using
a small set of annotated images for training. As denoted with red circles in Fig. 7.4,
taking “Edema” as an example, using 40% (44, 496) unannotated images with 80%
(704) annotated images (45, 200 in total) outperforms the performance of using only
80% (88, 892) unannotated images.
Discussion. Generally, decreasing the amount of unannotated images (from left to
right in each bar group) will degrade AUC scores accordingly in both groups of 0%
and 80% annotated images. Yet as we decrease the amount of unannotated images,
using annotated images for training gives smaller AUC degradation or even improve-
ment. For example, we compare the “Cardiomegaly” AUC degradation for two pairs
of experiments: {annotated: 80%, unannotated: 80 and 20%} and {annotated: 0%,
unannotated: 80 and 20%}. The AUC degradation for the first group is just 0.07
while that for the second group is 0.12 (accuracy degradation from blue to yellow
bar).

When the amount of unannotated images is reduced to 0%, the performance
is significantly degraded. Because under this circumstance, the training set only
contains positive samples for eight disease types and lacks the positive samples of
the other six. Interestingly, “Cardiomegaly” achieves the second best score (AUC =
0.8685, the second green bar in Fig. 7.4) when only annotated images are trained.
The possible reason is that the location of cardiomegaly is always fixed to the heart
covering a large area of the image and the feature distributions for enlarged hearts are
similar to normal ones. Without unannotated samples, the model easily distinguishes
the enlarged hearts from normal ones given supervision from bounding boxes. When
the model sees hearts without annotation, the enlarged ones are disguised and fail
to be recognized. As more unannotated samples are trained, the enlarged hearts are
recognized again by image-level supervision (AUC from 0.8086 to 0.8741).

7.4.2 Disease Localization

Similarly, we conduct a fivefold cross-validation. For each fold, we have done three
experiments. In the first experiment, we investigate the importance of bounding
box supervision by using all the unannotated images and increasing the amount of
annotated images from 0 to 80% by the step of 20% (Fig. 7.5). In the second one, we
fix the amount of annotated images to 80% and increase the amount of unannotated
images from 0 to 100% by the step of 20% to observe whether unannotated images
are able to help annotated images to improve the performance (Fig. 7.7). At last, we
train the model with 80% annotated images and half (50%) unannotated images to
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Fig. 7.5 Disease localization accuracy using IoR where T(IoR) = 0.1. Training set: annotated
samples, {0% (0), 20% (176), 40% (352), 60% (528), 80% (704)} from left to right for each disease
type; unannotated samples, 100% (111, 240 images). The evaluation set is 20% annotated samples
which are not included in the training set. For each disease, the accuracy is increased from left to
right, as we increase the amount of annotated samples, because more annotated samples bring more
bounding box supervision to the joint model

compare localization accuracy with the reference baseline [30] (Table7.2). For each
experiment, the model is always evaluated on the fixed 20% annotated images for
this fold.
Evaluationmetrics.We evaluate the detected regions (which can be non-rectangular
and discrete) against the annotated ground truth (GT) bounding boxes, using two
types of measurement: intersection over union ratio (IoU) and intersection over the
detected region (IoR).6 The localization results are only calculated for those eight
disease typeswith ground truth provided.We define a correct localizationwhen either
IoU > T(IoU) or IoR > T(IoR), where T(*) is the threshold.
Bounding box supervision is necessary for localization. We present the experi-
ments shown in Fig. 7.5. The threshold is set as tolerable as T(IoR) = 0.1 to show
the training data combination effect on the accuracy. Even though the amount of the
complete set of unannotated images is dominant compared with the evaluation set
(111, 240 versus 176), without annotated images (the most left bar in each group),
the model fails to generate accurate localization for most disease types. Because in
this situation, themodel is only supervised by image-level labels and optimized using
probabilistic approximation from patch-level predictions. As we increase the amount
of annotated images gradually from 0 to 80% by the step of 20% (from left to right in
each group), the localization accuracy for each type is increased accordingly. We can

6Note that we treat discrete detected regions as one prediction region, thus IoR is analogous to
intersection over the detected bounding box area ratio (IoBB).
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Fig. 7.6 Disease localization accuracy using IoU where T(IoU) = 0.1. Training set: annotated
samples, {0% (0), 20% (176), 40% (352), 60% (528), 80% (704)} from left to right for each disease
type; unannotated samples, 100% (111, 240 images). The evaluation set is 20% annotated samples
which are not included in the training set. For each disease, the accuracy is increased from left to
right, as we increase the amount of annotated samples, because more annotated samples bring more
bounding box supervision to the joint model

see the necessity of bounding box supervision by observing the localization accuracy
increase. Therefore, the bounding box is necessary to provide accurate localization
results and the accuracy is positively proportional to the amount of annotated images.
We have similar observations when T(*) varies.

Similarly, we investigate the importance of bounding box supervision by using
all the unannotated images and increasing the amount of annotated images from 0
to 80% by the step of 20% (Fig. 7.6). without annotated images (the most left bar in
each group), the model is only supervised by image-level labels and optimized using
probabilistic approximation from patch-level predictions. The results by unannotated
images only are not able to generate accurate localization of disease. As we increase
the amount of annotated images gradually from 0% to 80% by the step of 20%
(from left to right in each group), the localization accuracy for each type is increased
accordingly.
More unannotated data does not always mean better results for localization. In
Fig. 7.7, when we fix the amount of annotated images and increase the amount of
unannotated ones for training (from left to right in each group), the localization accu-
racy does not increase accordingly. Some disease types achieve very high accuracy
(even highest) without any unannotated images (the most left bar in each group),
such as “Pneumonia” and “Cardiomegaly”. Similarly as described in the discussion
of Sect. 7.4.1, unannotated images and too many negative samples degrade the local-
ization performance for these diseases. All disease types experience an accuracy
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Fig. 7.7 Disease localization accuracy using IoR where T(IoR) = 0.1. Training set: annotated
samples, 80% (704 images); unannotated samples, {0% (0), 20% (22, 248), 40% (44, 496), 60%
(66, 744), 80% (88, 892), 100% (111, 240)} from left to right for each disease type. The evaluation
set is 20%annotated sampleswhich are not included in the training set.Using annotated samples only
can produce amodelwhich localizes somediseases.As the amount of unannotated samples increases
in the training set, the localization accuracy is improved and all diseases can be localized. The joint
formulation for both types of samples enables unannotated samples to improve the performance
with weak supervision

increase, a peak score, and then an accuracy fall (from orange to green bar in each
group). Therefore, with bounding box supervision, unannotated images will help to
achieve better results in some cases and it is not necessary to use all of them.

Similarly, we fix the amount of annotated images to 80% and increase the amount
of unannotated images from 0% to 100% by the step of 20% to observe whether
unannotated images are able to help annotated images to improve the performance
(Fig. 7.8). For some diseases, it achieves the best accuracy without any unannotated
images. For most diseases, the accuracy experience an accuracy increase, a peak
score, and then an accuracy fall (from orange to green bar in each group) as we
increase the amount of unannotated images. A possible explanation is that too many
unannotated images overwhelm the strong supervision from the small set of annotated
images. A possible remedy is to lower the weight of unannotated images during
training.
Comparison with the reference model. In each fold, we use 80% annotated images
and 50%unannotated images to train themodel and evaluate the other 20% annotated
images in each fold. Since we use fivefold cross-validation, the complete set of
annotated images has been evaluated to make a relatively fair comparison with the
reference model. In Table7.2, we compare our localization accuracy under varying
T(IoU) with respect to the reference model in [30]. Our model predicts accurate
disease regions, not only for the easy tasks like “Cardiomegaly” but also for the hard
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Fig. 7.8 Disease localization accuracy using IoU where T(IoU) = 0.1. Training set: annotated
samples, 80% (704 images); unannotated samples, {0% (0), 20% (22, 248), 40% (44, 496), 60%
(66, 744), 80% (88, 892), 100% (111, 240)} from left to right for each disease type. The evaluation
set is 20%annotated sampleswhich are not included in the training set.Using annotated samples only
can produce amodelwhich localizes somediseases.As the amount of unannotated samples increases
in the training set, the localization accuracy is improved and all diseases can be localized. The joint
formulation for both types of samples enables unannotated samples to improve the performance
with weak supervision

ones like “Mass” and “Nodule” which have very small regions. When the threshold
increases, our model maintains a large accuracy lead over the reference model. For
example, when evaluated by T(IoU) = 0.6, our “Cardiomegaly” accuracy is still
73.42% while the reference model achieves only 16.03%; our “Mass” accuracy is
14.92% while the reference model fails to detect any “Mass” (0% accuracy). In
clinical practice, a specialist expects as accurate localization as possible so that a
higher threshold is preferred.Hence, ourmodel outperforms the referencemodelwith
a significant improvement with less training data. Please note that as we consider
discrete regions as one predicted region, the detected area and its union with GT
bboxs are usually larger than the reference work which generates multiple bounding
boxes. Thus for some disease types like “Pneumonia”, when the threshold is small,
our result is not as good as the reference.

Similarly, we use 80% annotated images and 50% unannotated images to train
the model and evaluate on the other 20% annotated images in each fold. Comparing
with the reference model [30], our model achieves higher localization accuracy for
various T(IoR) as shown in Table7.3.
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7.4.3 Qualitative Results

Figure7.9 shows exemplary localization results of the unified diagnosis model. The
localization enables the explainability of chest X-ray images. It is intuitive to see that
our model produces accurate localization for the diseases compared with the given
ground truth bounding boxes. Please note for “Infiltration” (third and fourth images
in the third row of Fig. 7.9), both sides of lungs for this patient is infiltrated. Since the
dataset only has one bounding box for one disease per image, it misses annotating
other bounding boxes for the same disease. Ourmodel gives the remedy. Even though
the extra region decreases the IoR/IoU score in the evaluation, but in clinical practice,
it provides the specialist with suspicious candidate regions for further examination.
When the localization results have no ground truth bounding boxes to compare with,
there is also a strong consistency between our results and radiological signs. For
example, our model localizes the enlarged heart region (first and second images in
the second row) which implies “Cardiomegaly”, and the lung peripheries is high-
lighted (fifth and sixth images in the second row) implying “Fibrosis” which is in

Mass

Infiltration

FibrosisCardiomegaly

Effusion

Edema

Atelectasis

PneumothoraxConsolidation

Fig. 7.9 Example localization visualization on the test images. The visualization is generated by
rendering the final output tensor as heatmaps and overlapping on the original images. We list some
thoracic diseases as examples. The left image in each pair is the original chest X-ray image and the
right one is the localization result. All examples are positive for corresponding labels. We also plot
the ground truth bounding boxes in yellow on the results when they are provided in the dataset
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accordance with the radiological sign of the net-like shadowing of lung peripheries.
The “Edema” (first and second images in the fourth row) and “Consolidation” (third
and fourth images in the fourth row) are accurately marked by our model. “Edema”
always appears in an area that is full of small liquid effusions as the example shows.
“Consolidation” is usually a region of compressible lung tissue that has filled with
the liquid which appears as a big white area. The model successfully distinguishes
both diseases which are caused by similar reason.

7.5 Conclusion

Wepropose a unifiedmodel that jointlymodels disease identification and localization
with limited localization annotation data. This is achieved through the same underly-
ing prediction model for both tasks. Quantitative and qualitative results demonstrate
that our method significantly outperforms the state-of-the-art algorithm.
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Chapter 8
Deep Reinforcement Learning for
Detecting Breast Lesions from DCE-MRI

Gabriel Maicas, Andrew P. Bradley, Jacinto C. Nascimento, Ian Reid
and Gustavo Carneiro

Abstract We present a detection model that is capable of accelerating the inference
time of lesion detection from breast dynamically contrast-enhanced magnetic reso-
nance images (DCE-MRI) at state-of-the-art accuracy. In contrast to previous meth-
ods based on computationally expensive exhaustive search strategies, our method
reduces the inference time with a search approach that gradually focuses on lesions
by progressively transforming a bounding volume until the lesion is detected. Such
detection model is trained with reinforcement learning and is modeled by a deep Q-
network (DQN) that iteratively outputs the next transformation to the current bound-
ing volume. We evaluate our proposed approach in a breast MRI data set containing
the T1-weighted and the first DCE-MRI subtraction volume from 117 patients and
a total of 142 lesions. Results show that our proposed reinforcement learning based
detectionmodel reaches a true positive rate (TPR) of 0.8 at around three false positive
detections and a speedup of at least 1.78 times compared to baselines methods.
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8.1 Introduction

Breast cancer is among the most diagnosed cancers in the last few years [1–3], caus-
ing a large number of casualties [4, 5]. To reduce the number of deaths due to breast
cancer, early detection from screening exams [6] has gained importance because the
treatment of smaller tumors is correlated with higher survival rates [7, 8]. Due to its
reduced cost and noninvasiveness, mammography is the most commonly imaging
modality used to assess patients in screening programs. However, mammography
has unsatisfactory results for patients with dense breasts because of its large num-
ber of false positive detections [9–11]. Such high number of false positives is a
relevant limitation because patients that are affected tend to be within the high-risk
group, which are recommended to be included in the screening process from an early
age. Due to their younger age, breasts tend to be denser and mammography is not
a suitable modality [9–11]. Thus, it is recommended that the screening for these
patients includes dynamically contrast-enhanced magnetic resonance images (DCE-
MRI) [12–14], which has been shown to increase the sensitivity and specificity of
breast cancer detection.

Interpreting DCE-MRI volumes is a time-consuming and laborious task due to
the number of volumes and their high dimensionality, yielding high interobserver
variability [15] and errors [16]. Aiming to reduce volume interpretation time, vari-
ability, and mistakes, computer-aided diagnosis (CAD) systems are being developed
to assist radiologists by providing a second opinion. There is evidence that CAD
systems can improve sensitivity and specificity in such framework [17, 18].

The pipeline of CAD systems for breast cancer diagnosis can follow a pre-hoc
or a post-hoc framework [19]. In a pre-hoc system (i.e., those that follow a pre-hoc
pipeline), suspicious regions of interest (ROIs) are first localized in the input volume.
Then, a classifier distinguishes lesions between malignant and nonmalignant (where
nonmalignant lesions can be classified into benign or false positive). The diagnosis
is finally produced by combining such individual lesion classification results. On
the other hand, post-hoc systems (i.e., those that follow a post-hoc pipeline) perform
diagnosis by first classifying the whole input volume into negative (normal or benign
findings) or positive (malignant findings). Only for the positive cases, the method
then localizes the malignant lesions. See Fig. 8.1 for a graphical explanation of the
pipeline of pre-hoc and post-hoc approaches.

Pre-hoc and post-hoc approaches differ not only in the order of each of the stages
involved to perform diagnosis, but in the type of annotations required at its training
stage. While pre-hoc systems require a strongly labeled training set (i.e., the voxel-
wise annotation of each lesion), post-hoc approaches only require weakly labeled
training sets (i.e., volume-level annotation). Although this seems an advantage in
favor of post-hoc approaches, the effect of relying on weakly annotated data sets
results in a reduced lesion localizationperformance accuracy compared to approaches
trained with strongly annotated data sets [19]. This lack of precision to highlight the
malignant lesions is an important limitation since it can prevent such CAD systems
from its adoption in clinical practice. Therefore, the vast majority of CAD systems
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Fig. 8.1 Pre-hoc and post-hoc approaches for breast cancer diagnosis fromDCE-MRI. In a pre-hoc
pipeline, lesions are initially localized in the image and then classified to decide about the volume
diagnosis as positive or negative. In a post-hoc pipeline, the diagnosis is initially computed and,
only for positive cases, malignant lesions are localized

are based on the pre-hoc framework given that their higher true positive and true
negative detections are more effective at helping radiologists improve their diagnosis
performance.

Initial works on fully automated lesion detection methods were based on thresh-
olding the input intensity volume [20]. These methods were improved by two types
of approaches that can capture more of the appearance and shape variability present
in lesions: (1) exhaustive search based on hand-designed features [21] or (2) unsuper-
vised clustering followed by structured learning [22]. Both approaches can capture
more the variability than thresholdingmethods, but are inefficient in terms of running
time complexity given that they need the voxel-wise analysis of the entire volume.

Recently developed deep learning methodologies by the computer vision com-
munity [23–25] can help to reduce the inference time for lesion detection and can
additionally be trained end-to-end for diagnosis [26]. However, the training of these
methods relies on the availability of large strongly labeled data sets, which are not
available for many problems in medical image analysis, and in particular for lesion
detection from breast DCE-MRI. As a consequence, the medical image analysis
community has focused on independently improving the lesion detection and lesion
classification stages. In this work, we focus on reducing the large inference time
required by the expensive search methods used for the lesion detection stage of
pre-hoc systems.

To address the limitations derived from the large inference time and the need for
large training sets, we propose a reinforcement learning method based on deep Q-
network (DQN) [27] for detecting breast masses from DCE-MRI. The DQN models
a policy that indicates how to sequentially transform a large bounding volume such
that after each of the transformation the lesion is better focused, and eventually
be detected. See Fig. 8.2 for an example of how our proposed method, which is
faster than previous detection approaches [21, 22], detects a lesion in a breast DCE-
MRI volume. Compared to recently proposed deep learning methods that can detect
lesions and perform diagnosis, our approach can be trained with small training sets.
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Fig. 8.2 Reinforcement learning based detection model to detect lesions from breast DCE-MRI.
The system begins by analyzing a large percentage of the input volume and sequentially applies
several transformations to the bounding volume until the lesions are tightly targeted

This advantage stems from the fact that the underlying model can be trained with a
potentially infinite number of bounding volumes from the training volumes.

We evaluate the accuracy of our method on a breast DCE-MRI data set containing
117 patients, where 45 are used for training, 13 for validation, and 59 for testing. The
number of lesions present in the training, validation, and testing sets are 57, 15, and
69, respectively. Our results show that our proposed method achieves comparable to
the state-of-the-art detection results at the same time that it is capable of significantly
reducing the processing times by a factor of at least 1.78 times compared with tradi-
tional approaches [21, 22]. More precisely, it can produce a true positive detection
rate of 0.8 at 3.2 false positives per volume.

8.2 Literature Review

The first fully automated methods for breast lesion detection from DCE-MRI were
based on hand-designed features. The method by Vignati et al. [20] detected lesion
candidates by thresholding a normalized input volume. Region and kinetic features
were used to reduce the number of false positive detections, but their method still
yielded a relatively high number of false positives. Aiming to capture the larger
variation present in the lesions, Renz et al. [28] extended [20] by increasing the
number of hand-crafted features used to refine candidates. However, due to the large
enhancement (appearance) variability of lesions, further research required focus on
better search strategies.

Candidate proposal shifted to more complex strategies such as exhaustive search
[21], unsupervised clustering [22], or saliency detection [29]. Two main issues arose
with these search methods: the suboptimality of the hand-crafted features and the
large processing times required for the exhaustive search or clustering analysis. Both
of these limitations were addressed with deep learning methods [30]. For example,
Maicas et al. [31] proposed a multi-scale exhaustive search based on deep learn-
ing that searched for optimal features to classify bounding volumes at different
scales. However, lesion candidate proposal remained a computationally costly pro-
cess. Recently developed object detectors [24, 25, 32] can help to overcome such
large inference time for lesion detection [26]. However, these methods require large
strongly labeled data sets, which are usually not available for breast MRI analysis.
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Aiming to reduce the inference time of traditional approaches but still use optimal
features, two alternatives can overcome the need for large training sets of deep
learning methods: (1) the rapid computation of lesion segmentation maps using a
U-net structure [33] as proposed by [34] and (2) a reinforcement learning based
detection. Caicedo and Lazebnik [35] proposed to localize objects in an image by
using reinforcement learning to train a model that sequentially selects actions to
transform a large initial bounding box until the object is tightly focused. Their idea
has been shown to work relatively well for detecting objects that present consistent
shapes, background, and appearance in computer vision [35] and medical image
analysis communities [36].However, lesions in breastDCE-MRI lack the consistency
in the terms mentioned above, and their small size together with the small training
sets makes the U-net approach challenging.

In this chapter, we focus on developing a detection method based on deep rein-
forcement learning that can speed up the inference time while keeping a state-of-
the-art accuracy for lesion detection from breast DCE-MRI. We base our work on
the approach proposed by Caicedo and Lazebnik [35] than can help to overcome the
lack of the training data by designing an embedding function that can be trained with
a large number of training samples. Using such embedding function, the algorithm
decides at each time step how to optimally transform an initial large bounding vol-
ume to precisely focus a lesion. The algorithm achieves detection results comparable
to the state of the art at running times that are at least 1.78 times faster than baseline
approaches.

8.3 Methods

In this section, we introduce the data set in Sect. 8.3.1, the method to detect lesions
from breast DCE-MRI volumes in Sect. 8.3.2, and the training and inference stages
of our method in Sects. 8.3.3 and 8.3.4, respectively.

8.3.1 Data Set

Let D =
{(

bi , xi , ti , {s( j)i }Mj=1

)
i

}
i∈{1,...,|D|}

be the breast MRI data set. For the i th

patient,bi ∈ {left, right} indicates the left or right breast, xi indicates the first subtrac-
tion volume computed by subtracting the first T1-weighted post-contrast DCE-MRI
volume from the pre-contrast T1-weighted volume, ti is the T1-weighted volume,
and {s( j)i }Mj=1 is the voxel-wise annotation of the j th lesion (out of M total lesions)
present in the volume bi . Due to the increasing interest in ultrafast MRI protocols to
reduce costs [37] and acquisition time [38], our method performs the analysis using
only the first subtraction image. We randomly divide the data set D into training,
validation, and testing sets in a patient-wise manner, such that a patient belongs to
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only one of sets and the testing set contains approximately half of the lesions present
inD.

8.3.2 Detection Method

Our proposed detection method receives as input a breast DCE-MRI volume and
outputs several bounding volumes that contain each of the lesions present in the
input volume. The method is initialized with several large bounding volumes that
are individually transformed by applying a sequence of actions that are decided by a
policy π . To decide the transformation at each inference step, the policy π receives
an embedding of the current bounding volume and outputs the transformation to be
applied. In this case, we model π as a deep Q-network (DQN) [27], which is a neural
network whose outputs indicate how optimal is each of the possible transformations
that can be applied to the current bounding volume.

The input embedding to the DQN is represented by x(v) (with v ∈ R
9 denoting

the three 3-D coordinates of the current bounding volume), and outputs the visual
representation o to be used by the DQN, as follows:

o = f (x(v), θf ), (8.1)

where θf are the parameters of the embedding function f (.). Note that the function
f (.) that computes the representation of the current observation must be able to do
so for bounding volumes extracted from many sizes (scales) and locations. This fact
allows our method to be trained using a large number of samples, extracted from a
relatively small training set. More precisely, the function f (.) is a 3D ResNet [32]
that is trained to classify whether the input volume contains a lesion.

The output of the DQN indicates how optimal is each of the possible transfor-
mations to optimally transform the current bounding volume x(v) until it finds
a lesion. The transformation is selected from the following set of actions: A =
{l+x , l−x , l+y , l−y , l+z , l−z , s+, s−,w}, where l indicates the translation of the current
bounding volume in the positive l+ or negative l− direction in each of the x, y, z axes,
s indicates the scaling the current bounding volume by shrinking s+ or enlarging s−,
and w indicates the trigger action that terminates the search for lesions.

The training process targets the learning of the optimal weights of the policy π ,
which represents the transformation to be applied at each inference step to optimally
find the lesions. During inference, we exploit the learnt policy π , where given the
current bounding volume x(v) at each time step, we apply the transformation given
by the policy π . The policy is exploited until the optimal action is the trigger or a
maximum number of transformations are applied (no lesion detected). See Fig. 8.3
for a diagram of the method.
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Fig. 8.3 Diagram for our method at each time step. For a given observation, we obtain its repre-
sentation, which is the input to the Q-network that will output how optimal is each of the possible
actions (transformations)

8.3.3 Training

Theaimof the trainingphase is to learn the optimalweights θ of theDQNrepresenting
the policyπ that indicates how to transformaboundingvolumeuntil it targets a lesion.
During M epochs and for each volume in the training set in each of the epochs, we
place a large centered bounding volume as the initial observation. During a sequence
of time steps, an action will be selected from the set of actions A.

The selection of the actions depends on the epoch number and follows a modified
ε-greedy strategy: with probability ε the method does exploration and with probabil-
ity 1 − ε the method exploits the current policy. During exploration, with probability
κ a random action from A is chosen, and with probability 1 − κ a random action
from the subset of A that will increase the Dice coefficient from the current to the
transformed bounding volume is chosen. At the beginning of the training phase, we
set ε = 1, and we linearly decrease the value of ε until it reaches 0.1 at the end of
the training phase. The rationale behind this balance of exploration–exploitation is
that at the beginning of the training phase, the policy does not store any information
on how to transform the initial x(v) to detect lesions. Thus, the actions are selected
randomly to explore which actions are best. As the training phase progresses, the
actions are selected according to the current policy, allowing to fine-tune the learnt
knowledge in π .

After an action is applied to transform the current bounding volume from x(vt ) to
x(vt+1), a reward will be yielded indicating how accurate the selected action was in
order to achieve the final goal of lesion detection. The reward for the trigger action
that terminates the search is defined as follows:

r(ot , a, ot+1) =
{

+η if Dice(x(v)t+1, s) ≥ τw

−η otherwise
, (8.2)
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where η is decided experimentally, Dice(., .) measures the Dice coefficient between
the final observation x(v)t+1 and the ground truth lesion, τw establishes a criteria
for the minimum Dice score required to consider a lesion detected, and ot and ot+1

indicate the embedding of x(vt ) and x(vt+1).
For the remaining of the actions a ∈ A, the reward is defined by

r(ot , a, ot+1) = sign(Dice(x(v)t+1, s) − Dice(x(v)t , s)), (8.3)

where the sign(.) function is valued +1 if the parameter is larger than 0 or −1
otherwise. The rationale for the different reward function depending on whether the
action is the trigger is experimental: we found that a higher reward to terminate the
search encourages the algorithm to improve its performance for lesion detection.
In addition, the rationale behind the reward for the translation and scaling actions
is intuitive: a positive reward if the action improved the localization of the lesion,
a negative reward otherwise. Note that the use of the quantification of the reward
improves the learning phase of the algorithm [35].

The aim of the training process is to learn which action should be applied at each
time step of the sequence of actions that will optimally lead from an initial bounding
volume to the detection of a lesion. This is achieved by maximizing the sum of
discounted future rewards obtained during the sequence of applied transformations:

RT =
T∑

t ′=t

γ t ′−t rt ′ , (8.4)

where γ ∈ (0, 1) encourages the algorithm to detect the lesions in the least possible
number of steps and rt ′ is the reward obtained at time step t ′ after applying an action.

Let Q(o, a) represent the action value function that can be interpreted as the
expected sum of discounted future rewards yielded after selecting action a as the
next transformation to be applied to o:

Q(o, a) = E[Rt |ot = o, at = a, π ]. (8.5)

In this context, the optimal action value function represented by Q	(o, a) is the
maximum of the expected sum of discounted future rewards:

Q	(o, a) = max
π

E[Rt |ot = o, at = a, π ]. (8.6)

Note that Q	(o, a) indicates which is the action a that would lead to the highest
sum of future rewards, and therefore the optimal action that should be next chosen
in order to maximize the sum of discounted future rewards.

Thus, the goal of the learning process becomes the estimation of Q	(o, a). In
problems where the observation–action space is relatively small, the optimal Q-
value Q	(o, a) can be estimated using the Bellman equation and the Q-Learning
algorithm [39]:
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Qi+1(ot , at ) = Eot+1

[
rt + γ max

at+1

Q(ot+1, at+1)|ot , at
]
, (8.7)

where t and t + 1 indicate the time (iteration) step.
However, the large observation–action space in our lesion detection task demands

the use of a function approximator. We use the deep Q-network (DQN) [27] as a
function approximator to estimate Q(o, a) for a given observation–action pair. The
DQN can be trained by minimizing a loss that represents the mean squared error of
the Bellman equation [27]:

L(θ t ) = E(ot ,at ,rt ,ot+1) ∼ U (E)

[(
rt + γ max

at+1
Q(ot+1, at+1; θ−

t ) − Q(ot , at ; θ t )
)2]

, (8.8)

where U (E) is a batch of experiences uniformly sampled from an experience replay
memory Et = {e1, . . . , et } and used for any update of the network. This experience
replaymemory stores past tuples et = {ot , at , rt , ot+1} that represent past experiences
of selecting an action at to transform observation ot to observation ot+1 yielding the
reward rt . The loss in (8.8) is computed using the reference of a target value defined
by the target network with weights θ−

t and similar architecture as the DQN. The
weights θ−

t of the target network are constant during each epoch and are updated
with the values of the DQN at the end of every epoch. Note that the goal of the target
network is to stabilize the training of the deep Q-network [27].

8.3.4 Inference

During inference, we exploit the optimal policy θ	 learned as explained in Sect. 8.3.3
along with the embedding function x(v). We apply a sequence of actions that will
transform initial bounding volumes covering different large portions of the input
volume until a lesion is targeted (or a maximum number of steps are reached). At
each time step t, we choose the optimal action:

a	
t = argmax

at
Q(ot , at ; θ 	). (8.9)

We process each initialization individually according to the learnt policy, and thus
according to each of the actions that yield the largest expected sum of future rewards.

8.4 Experiments

In this section, we describe the data set and the experiments performed to assess our
reinforcement learning based detection model. We also present the results obtained
for the experiments.
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8.4.1 Data Set

We evaluate our methods on a breast MRI data set of 117 patients [22]. We form
the training, validation, and testing sets by splitting the data set in a patient-wise
manner [19, 31]. The training set contains 45 patients and 57 lesions, the validation
set contains 13 patients and 15 lesions, and the testing set contains 59 patients and
69 lesions. There are 38, 11, and 46 malignant and 19, 4, and 23 benign lesions in the
training, validation, and testing sets, respectively. All lesions have been confirmed
with a biopsy. Note that although patients suffer from at least one lesion, not all
breasts contain lesions.

For every patient, there is a T1-weighted anatomical volume acquired without fat
suppression, and a DCE-MRI dynamic sequence composed of the first subtraction
volume. The procedure to acquire the dynamic sequence is as follows: (1) an initial
pre-contrast T1-weighted volume is obtained with fat suppression before a contrast
agent is injected into the patient, (2) the first post-contrast T1-weighted volume
is acquired with fat suppression 45 seconds after the contrast agent was injected,
and (3) the first subtraction volume is formed by subtracting the pre-contrast vol-
ume from the post-contrast volume. The acquisition matrices are 512 × 512 for the
T1-weighted anatomical volume and 360 × 360 for the dynamic sequence with a
slice thickness of 1 mm. All images were acquired with a 1.5 Tesla GE Signa HDxt
scanner.

Preprocessing

We exclusively use the T1-weighted volume of each patient to extract the correspond-
ing left and right breast regions. We employ Haytons’ method [40] as in previous
work on this data set [19, 22] to remove the pectoral muscle and automatically sep-
arate the breast region from the chest wall. It is important to note that the pectoral
muscle is removed to reduce the number of false positive detections. Finally, as our
method operates breast-wisely, the breast region is split into the left and right breasts
and resized into a volume of size 100 × 100 × 50.

8.4.2 Experimental Setup

We evaluate the performance of our proposed reinforcement learning based detection
method according to (1) the free response operating curve (FROC) that compares
the true positive rate (TPR) in terms of the number of false positive detections and
(2) the inference time employed per patient in an Intel Core i7 PC with 12 GB of
RAM and a GPU Nvidia Titan X 12 GB. Note that a detected region is considered a
true positive detection only if its Dice coefficient with respect to a lesion is equal or
greater than 0.2 [19, 41].
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The embedding function f (.) is a 3D ResNet [32] of input size 100 × 100 × 50
and is composed of five ResBlocks [42] (with an initial convolutional layer before
each of them), two convolutional layers, and a fully connected layer. The input size to
f (.) is selected such that every lesion is visible in the input volume. The embedding
o is the input to the last convolutional layer of f (.) and is of size 2304. We train f (.)
by randomly selecting 8K positive and 8K negative bounding volumes at different
locations and scales from the training data. A bounding volume is considered positive
if its Dice coefficient with any lesion is larger than 0.6. We set this threshold higher
compared to the criterion to decide whether a detection is positive (at least a Dice
coefficient with respect to a lesion of 0.2) to assure that bounding volumes used for
training the embedding function contain a relatively large portion of the lesion. Note
that the parameters θ f of f (.) are not updated during the training of the DQN.

The policy π that models the DQN is a two-layer perceptron with 512 units
each layer and nine output units corresponding to the nine Q-values, that is, |A|. In
order to train it, we choose a learning rate of 10−6 and use Adam optimizer [43].
The training of the DQN uses the loss function described in (8.8) with γ = 0.9 and
is computed using a mini-batch of 100 experiences uniformly sampled from the
experience replay memory E , containing a maximum of 10K experiences. During
training, the exploration–exploitation balance is guided by ε that is initialized at 1
and linearly decreases until 0.1 in 300 epochs. During exploration a random action
or an action that will increase the Dice coefficient of the current bounding volume
is selected with probability κ = 0.5. We empirically set the reward for the trigger
action as η = 10 if τw = 0.2 or η = −10 otherwise. The inference phase of our
method uses 13 initial bounding volumes. The first one covers 75% of the whole
input volume and is centered. Other eight initializations are of size 50 × 50 × 25
and are placed at each of the eight corners of the input volume. Finally, four other
initializations of size 50 × 50 × 25 are placed at the centered intersections of the
previous eight initializations of size 50 × 50 × 25. During training and inference
phases, amaximumof 20 transformations can be applied to detect a lesion, otherwise,
no lesion is considered detected.

8.4.3 Experimental Results

Figure8.4 and Table8.1 present the results achieved by our proposed reinforcement
learning based detection model. We compare our method against two baselines that
are run on the same data set. We use the detection method proposed in [31] as a
representative for exhaustive search methods. In [31], the authors propose cascade of
three deep learning classifiers at different scales, where at each scale, the algorithm
refines the detections obtained in the previous step. We also compare our results
against another baseline proposed in [22], consisting of an unsupervised clustering
method (mean-shift) to build a graph of contiguous regions to then apply structure
learning to detect which of those clusters represent lesions. Note that in [22], the
authors evaluate their method in the same data set as the one used in the work
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Fig. 8.4 FROC curve for the detection results of our method (labeled as RL-Det) and two baselines.
Since we have detections, but not the probability of detections for each of the bounding volumes, we
run ourmodelwith a different number of initializations (1, 9, and 13—indicated between parenthesis
in the graph) to obtain its FROC representation. The FROC curve for the multi-scale exhaustive
search based on deep learning method (labeled as DL-MSC) is represented by the green curve. The
unsupervised clustering followed by structure learning baseline (labeled as C-SL) is plotted as a
red point

Table 8.1 Detection results in the test set for our proposed reinforcement learning based detection
method (row 1) in terms of the true positive rate (TPR), average number of false positive detections
(FPD), and average inference time per patient. We compare our method against two baselines: (1) a
multi-scale exhaustive search based on deep learning (row 2) [31] and (2) an unsupervised clustering
followed by structure learning method (row 3) [22]

Inference time TPR FPD

Reinforcement
learning detection
(Ours)

92 ± 21 s 0.8 3.2

Deep learning
multi-scale cascade
[31]

164 ± 137 s 0.8 2.8

Clustering + structure
learning [22]

≈3600 s 1.0 4.5

presented in this chapter. However, the patient-wise partition of the data is different
from ours.

Using the paired t-test, we test the significance of the difference in terms of the
inference time per patient between our proposed reinforcement learning based detec-
tion model and the multi-scale exhaustive search based on deep learning approach
in [31], obtaining p ≤ 9 × 10−5. Given such a small p-value, we conclude the sig-
nificant difference between the inference time of both methods. We also present
qualitative results in Fig. 8.5.
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(a)

(b)

(c)

Fig. 8.5 Example of detections by our reinforcement learning based detection model. Images a
and b show a true positive detection. Image c shows a true positive detection (green box and a false
positive detection (red box)

8.5 Discussion

We observe from the results in Fig. 8.4 and Table8.1 that our proposed reinforce-
ment learning based detection model achieves comparable to state-of-the-art lesion
detection results in a significantly reduced inference time compared to the baselines
presented. More precisely, our method is 1.78 times faster than the quicker of the
baselines [31], which is the multi-scale exhaustive search based on deep learning.
We also noted that 90% of the inference time is spent resizing the current bounding
volume to the input size (100 × 100 × 50) of the embedding function. Therefore, the
bottleneck of our reinforcement learning based detection model lies in this resizing
function, which could be optimized, and thus greatly reducing the inference time.

According to the results presented in Table 8.1, we observe that the variability
of our method in terms of inference time is smaller compared to the multi-scale
exhaustive search based on deep learning [31]. We believe this reduced variation is
due to the ability of our reinforcement learning based detection model to focus on the
most salient regions of a given bounding volume,whereas the cascade approach is not
as effective at disregarding noisy bounding volumes that advance to the next detection
scale to be analyzed at a higher resolution, increasing analysis time. Therefore, our
model seems to be more robust to noisy inputs.

Compared to the unsupervised clustering followed by the structure learning base-
line [22], we observe that our method does not achieve a TPR of 1 (Fig. 8.4). How-
ever, we believe that the faster inference time makes our approach more suitable to
be deployed in clinical practice.

8.6 Conclusion and Future Work

In this chapter, we have presented a novel detection method that can increase the
efficiency of the lesion detection stage in pre-hoc systems for breast screening from
MRI. Our model is capable of achieving comparable to state-of-the-art lesion detec-
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tion results frombreastMRI 1.78 times faster than current exhaustive searchmethods.
This speedup is achieved by transforming the initial large bounding volumes with a
sequence of actions until the lesion is detected.We based our detectionmethod on the
DQN trained with reinforcement learning. The DQN receives as input an embedding
of the current bounding volume and outputs the next action that should be applied to
optimally find a lesion.

Future work includes the addition of a larger set of actions to change the aspect
ratio of the initialization. We expect that small lesions can be better detected by
deforming the cube into volumes that capture different sizes in different axes. By
changing the bounding volume aspect ratio, we expect that detected lesions could
be found with higher precision. Such increased flexibility of the bounding volume
would allow us to consider a detection to be positive with a higher minimum Dice
coefficient than 0.2, improving the quality of the detection (and probably the quality
of the final diagnosis of a breast lesion). To achieve a similar TPR with a higher
minimumDice coefficient than 0.2, it might also be necessary to improve the quality
of the embedding function. For example, we suggest that the criteria to consider a
volumepositive in the training of the embedding could be aminimumDice coefficient
of 0.8. Finally, we leave for the future the optimization of the implementation of the
presented algorithm, which could possibly lead to a reduced inference time as well
as the comparison with a breast lesion detector based on the U-net [34].
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34. Dalmış MU, Vreemann S, Kooi T, Mann RM, Karssemeijer N, Gubern-Mérida A (2018) Fully
automated detection of breast cancer in screening MRI using convolutional neural networks. J
Med Imaging 5(1):014502

35. Caicedo JC, Lazebnik S (2015) Active object localization with deep reinforcement learning.
In: Proceedings of the IEEE international conference on computer vision, pp 2488–2496

36. Ghesu FC, Georgescu B, Mansi T, Neumann D, Hornegger J, Comaniciu D (2016) An artificial
agent for anatomical landmark detection in medical images. In: International conference on
medical image computing and computer-assisted intervention, pp 229–237. Springer

37. Mann RM, Kuhl CK, Moy L (2019) Contrast-enhanced MRI for breast cancer screening. J
Magn Reson Imaging

38. van Zelst JC, Vreemann S, Witt HJ, Gubern-Merida A, Dorrius MD, Duvivier K, Lardenoije-
Broker S, Lobbes MB, Loo C, Veldhuis W et al (2018) Multireader study on the diagnostic
accuracy of ultrafast breast magnetic resonance imaging for breast cancer screening. Investig
Radiol 53(10):579–586

39. Sutton RS, Barto AG (1998) Introduction to reinforcement learning, vol 135. MIT press, Cam-
bridge (1998)

40. Hayton P, Brady M, Tarassenko L, Moore N (1997) Analysis of dynamic MR breast images
using a model of contrast enhancement. Med Image Anal 1(3):207–224

41. Dhungel N, Carneiro G, Bradley AP (2015) Automated mass detection in mammograms using
cascaded deep learning and random forests. In: 2015 International conference on digital image
computing: techniques and applications (DICTA), pp 1–8. IEEE

42. Huang G, Sun Y, Liu Z, Sedra D, Weinberger KQ (2016) Deep networks with stochastic depth.
In: European conference on computer vision, pp 646–661. Springer

43. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980

http://arxiv.org/abs/1412.6980


Chapter 9
Automatic Vertebra Labeling in
Large-Scale Medical Images Using Deep
Image-to-Image Network with Message
Passing and Sparsity Regularization

Dong Yang, Tao Xiong and Daguang Xu

Abstract Efficient and accurate vertebra labeling inmedical images is important for
longitudinal assessment, pathological diagnosis, and clinical treatment of the spinal
diseases. In practice, the abnormal conditions in the images increase the difficulties
to accurately identify the vertebrae locations. Such conditions include uncommon
spinal curvature, bright imaging artifacts caused by metal implants, and limited field
of the imaging view, etc. In this chapter, we propose an automatic vertebra localiza-
tion and labelingmethodwith high accuracy and efficiency for medical images. First,
we introduce a deep image-to-image network (DI2IN) which generates the probabil-
ity maps for vertebral centroids. The DI2IN adopts multiple prevailing techniques,
including feature concatenation and deep supervision, to boost its performance. Sec-
ond, a message-passing scheme is used to evolve the probability maps from DI2IN
within multiple iterations, according to the spatial relationship of vertebrae. Finally,
the locations of vertebra are refined and constrained with a learned sparse repre-
sentation. We evaluate the proposed method on two categories of public databases,
3D CT volumes, and 2D X-ray scans, under various pathologies. The experimental
results show that our method outperforms other state-of-the-art methods in terms of
localization accuracy. In order to further boost the performance, we add 1000 extra
3D CT volumes with expert annotation when training the DI2IN for CT images. The
results justify that large databases can improve the generalization capability and the
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performance of the deep neural networks. To the best of our knowledge, it is the first
time that more than 1000 3D CT volumes are utilized for the anatomical landmark
detection and the overall identification rate reaches 90% in spine labeling.

9.1 Introduction

Automatic and accurate landmark positioning and identification, e.g., for human
spine detection and labeling, have been developed as key tools in 2D or 3D medical
imaging, such as computed tomography (CT), magnetic resonance imaging (MRI),
X-ray, etc. General clinical tasks such as pathological diagnosis, surgical planning
[22], and postoperative assessment can benefit from such locate-and-name tool.
Specific applications in human vertebrae detection and labeling include vertebrae
segmentation [11, 32], fracture detection [7], tumor detection, registration [2, 26],
statistical shape analysis [3, 17], etc.However, designing such an automatic and accu-
rate vertebrae detection and labeling framework faces multiple challenges such as
pathological conditions, image artifacts, and limited field-of-view (FOV), as shown
in Fig. 9.1. Pathological conditions can arise from spinal curvature, fractures, defor-
mity, and degeneration, of which spinal shapes are significantly different compared
to normal anatomy. Image artifacts such as surgical metal implants change the image
intensity distribution and greatly alter the appearance of vertebrae. Furthermore,
limited FOVs given by spine-focused scans also add difficulty to the localization
and identification of each vertebra due to the repetitive nature of these vertebrae
and the lack of global spatial and contextual information. In order to address these
challenges, an accurate and efficient spine localization algorithm is required for the
potential clinical usage.

Fig. 9.1 Demonstration of uncommon conditions in CT scans. a Surgical metal implants b Spine
curvature c Limited FOV
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To meet the requirements of both accuracy and efficiency, many approaches have
been presented in the recent decade. Generally, they can be divided into two cate-
gories: conventional machine learning based approaches and deep neural network
based approaches. Schmidt et al. [21] proposed an efficient method for part-based
localization of spine detection which incorporates contextual shape information into
a probabilistic graphic model. Features for detecting parts are learned from the train-
ing database and detected by a multi-class classifier followed by a graphical model.
Their method is evaluated on an MRI database and demonstrates robust detection
even when some of vertebrae are missing in the image. Glocker et al. [8] presents an
algorithm based on the regression forests and probabilistic graphical models. This
two-stage approach is quantitatively evaluated on 200 CT scans, which achieves an
identification rate of 81%. Furthermore, Glocker et al. [9] extends this vertebrae
localization approach to address the challenge in pathological spine CT scans. Their
approach is built on the supervised classification forests and evaluated on a challeng-
ing database of 224 pathological spine CT scans. It obtains an overall mean localiza-
tion error of less than 9mm with an identification rate of 70%, which outperforms
state of the art on pathological cases at that moment. Recently, deep neural networks
(DNN) have been achieving great progress in solving low-level computer vision
tasks such as image classification, scene segmentation, and object detection. DNN
has been highlighted in the research of landmark detection in medical imaging and
demonstrated its outstanding performance compared to the conventional approaches.
Chen et al. [4] proposed a joint learning model with convolutional neural networks
(J-CNN) to effectively localize and identify the vertebrae. This approach, which is
composed of a random forest classifier, a J-CNN and a shape regression model,
improved the identification rate (85%) with a large margin with smaller localiza-
tion errors in the same challenging database [9]. Suzani et al. [25] presented a fast
automatic vertebrae detection and localization approach using deep learning. Their
approach first extracts intensity-based features from the voxels in the CT scans, then
applied a deep neural network on these features to regress the distance between the
center of vertebrae and the reference voxels. It achieves a higher detection rate with
faster inference but suffers from a larger mean error compared to other approaches
[4, 9]. While most approaches are conducted on CT scans, Sun et al. [24] proposed
the method of structured support vector regression for spinal angle estimation and
landmark detection in 2D X-ray images. Their method has strong dependence on the
hand-crafted features.

In order to take the advantage of deep neural networks and overcome the limi-
tations in vertebrae detection, we propose an effective and automatic approach, as
shown in Fig. 9.2, with the following contributions.

(a) Deep Image-to-Image Network for Voxel-Wise Regression

Compared to the approaches that require hand-crafted features from input images,
the proposed deep image-to-image network (DI2IN) performs directly on the 2D
X-ray images or 3D CT volumes and generates the multichannel probability maps
which are associated with different vertebrae. The probability map itself explicitly
indicates the location and type of vertebra. Additionally, the proposed DI2IN does
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Fig. 9.2 Proposed method which consists of three major components: deep image-to-image net-
work (DI2IN), message passing, and shape-based refinement

not adopt any classifier to coarsely remove outliers in preprocessing. By building
the DI2IN in a fully convolutional manner, it is significantly efficient in terms of
computation time, which sets it apart from the sliding window approaches.

(b) Response Enhancement with Message Passing

Although the proposed DI2IN usually provides high confident probability maps,
sometimes it produces few false positives due to the similar appearance of vertebrae.
The anatomical structure of spine provides a strong geometric prior for vertebral
centroids. In order to fully explore suchprior,we introduce amessage-passing scheme
which can communicate information of the neighborhood in space. At first, the
chain-structured graph is constructed based on the prior on vertebra structure. The
graph connection directly defines the neighborhood of each vertebra. Second, for the
neighboring centroids, we learn the convolutional kernels between the probability
maps. At inference, the probability maps from previous step are further convoluted
with the learned kernels to help refine the prediction of neighbors’ probability maps.
The messages are passed via the convolution operations between neighbors. After a
few iterations of message passing, the probability maps converge to a stable state.
The probability maps of vertebrae are enhanced, and the issues, such as missing
response or false positive response, are well compensated.

(c) Joint Refinement using Shape-Based Dictionaries

Given the coordinates of vertebrae, which are the outputs of DI2IN and message
passing, we present a joint refinement approach using dictionary learning and sparse
representation. In detail, we first construct a shape-based dictionary in the refinement,
which embeds the holistic structure of the spine. Instead of learning a shape regression
model [4] or Hidden Markov Model [8] to fit the spinal shape, the shape-based
dictionary is simply built from the coordinates of spines in the training samples. The
refinement can be formulated as an �1-norm optimization problem and solved by
the sparse coding approach in a predefined subspace. This optimization aims to find
the best sparse representation of the coordinates with respect to the dictionary. By
taking the regularity of the spine shape into account, ambiguous predictions and false
positives are removed. Finally, the coordinates from all directions are jointly refined,
which leads to further improvement in performance.

In the previous published version of this chapter [30], we validated our proposed
method in a large-scale CT database. In this chapter version, we extend our work
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with more analysis, results, and implementation details. Several typical failure cases
are well studied and solved with sufficient explanation. In addition, we validate our
method in another large-scale database, 2D chest X-ray scans, which is also chal-
lenging due to similar imaging appearance. The experimental results show that our
method has large potentials for any general applications of the anatomical landmark
location.

The remainder of this chapter is organized as follows: In Sect. 9.2, we present the
details of the proposed approach for vertebrae localization and identification, which
consists of three subsections. In Sect. 9.3, we evaluate the proposed approach on both
2D X-ray and 3D CT databases. Our results are compared with other state-of-the-art
works. Section9.4 presents the conclusion.

9.2 Methodology

9.2.1 The Deep Image-to-Image Network (DI2IN) for Spinal
Centroid Localization

In this section, we present a deep image-to-image network (DI2IN)model, which is a
multilayer fully convolutional neural network [1, 13] for localization of the vertebral
centroids. Figure9.3 shows the configuration of 3DDI2IN used in the 3D CT images

Fig. 9.3 Proposed deep image-to-image network (DI2IN) used in 3D CT images experiments.
The front part is a convolutional encoder–decoder network with feature concatenation, while the
backend is a multi-level deep supervision network. Numbers next to convolutional layers are the
channel numbers
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experiments. The 2D DI2IN used in X-ray experiments has similar structure except
all layers are 2D-based. As can be seen, the deployment of DI2IN is symmetric and
can be considered as a convolutional encoder–decodermodel. DI2IN follows the end-
to-end learning fashion, which also guarantees the efficiency at inference. For such
purpose, the multichannel ground truth data is specially designed using the coordi-
nates of vertebral centroids. The 3D Gaussian distribution Igt = 1

σ
√
2π
e−‖x−μ‖2/2σ 2

is

defined around the positions of the vertebrae in each channel. Vector x ∈ R
3 denotes

the voxel coordinate inside the volume, and vector μ is the ground truth position
of each vertebra. Variance σ 2 is predefined, which controls the size of the Gaussian
distribution. The prediction of each channel Iprediction is corresponding to the unique
vertebral centroid. It shares the same sizewith the input image. Thus, thewhole learn-
ing problem is transformed into a multichannel voxel-wise regression. In the training
process, we use the square loss of

∥
∥Igt − Iprediction

∥
∥
2
in the output layer of each voxel.

The reason that we define the centroid localization as a regression task instead of
classification is that the highly unbalanced labeling of voxels is unavoidable in the
classification approach, which may cause misleading classification accuracy.

The encoder part of the proposed network uses convolution, rectified linear unit
(ReLU), and maximum pooling layers. The pooling layer is vital because it helps to
increase the receptive field of neurons, while reducing the GPU memory consump-
tion at the same time. With larger receptive field, each neuron in different levels
considers richer contextual information, and therefore the relative spatial positions
of the vertebral centroid are better understood. The decoder section consists of con-
volution, ReLU, and upsampling layers. The upsampling layer is implemented as the
bilinear interpolation to amplify and densify the activation. It enables the voxel-wise
end-to-end training scheme. In Fig. 9.3, the convolution filter size is 1 × 1 × 1 at the
final output layer (1 × 1 for 2D images), and 3 × 3 × 3 for other convolution layers
(3 × 3 for 2D images). The filter size of the maximum pooling layers is 2 × 2 × 2
(2 × 2 for 2D images). The stride number in the convolution layer is set to one, so
that each channel remains the same size. The stride number in the pooling layer is
set to two which downsamples the size of feature maps by two in each dimension.
The number of channels in each layer is illustrated next to the convolution layers in
Fig. 9.3. In the upsampling layers, the input feature maps are upsampled by two in all
directions. The network takes a 3DCT image (volume) or 2DX-ray scans as input and
directly outputs probability maps associated with vertebral centroids within different
channels. Our framework computes the probability maps and the center of gravity
positions, which are more efficient than the methods of classification or regression
methods in [4, 25].

Our DI2IN has adopted several popular techniques. We use feature concatena-
tion (skip connection) in the DI2IN, which is similar to the references [14, 18].
The shortcut bridge is built directly from the encoder layers to the decoder layers.
It forwards the feature maps of the encoder, then concatenates them to the corre-
sponding layers of the decoder. The outcome of concatenation is used as input of the
following convolution layers. Based on the design, the high- and low-level features
are clearly combined to gain the benefits of local and global information into the
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network. In [29], the deep supervision in neural network depth monitoring enables
excellent boundary detection and segmentation results. In this work, we introduce
a more complex deep supervision method to improve the performance. Multiple
branches are separated from the middle layers of the decoder in the master network.
They upsample each input feature map to the same size of the image, followed by
several convolution layers to match the channel number of ground truth data. The
supervision happens at the end of each branch i and shares the same ground truth
data in order to calculate the loss item li . The final output is determined by another
convolution of the concatenation of all branches’ outputs and the decoder output. The
total loss ltotal is a sum of the loss from all branches and that from the final output,
as shown in the following equation:

ltotal =
∑

i

li + lfinal. (9.1)

9.2.2 Probability Map Enhancement with Message Passing

Given an input image I , the DI2IN usually generates a probability map P (vi |I ) for
the centroid coordinate vi of vertebra i with a high confidence. The location with
highest probability shall be marked as the prediction of vi . However, the probability
maps from DI2IN are not always perfect, which may result in errors in the vertebra
location prediction. In the worst-case scenario, there are no clear responses in the
corresponding probability maps for few vertebrae because the imaging appearance
of those vertebrae is very similar. In order to handle the issue of the missing response
and reduce the false positive response, we propose a message-passing scheme to
enhance the probability maps from the DI2IN utilizing the spatial relationship of
vertebrae (Fig. 9.4).

The concept of message-passing algorithm, also known as belief propagation, has
been brought up on the graphical models for decades [27]. It is used to compute
marginal distribution of each unobserved nodes (sum-product algorithm) or infer
the mode of joint distribution (max-product algorithm). The algorithm has been
prevailing in the field of computer vision for many applications [12, 15, 19]. The key
idea is to pass mutual information between neighboring nodes for multiple iterations
until convergence and enable the model to reach the global optimization. Similarly,
we introduce a chain-structured graph based on the geometry of spine. Each node i
represents a vertebral centroid, and has at most two neighboring nodes (vertebrae).
We propose the following formulation to update the probability map P (vi |I ) at the
t th iteration of message passing.

Pt+1 (vi |I ) = α ·
∑

j∈∂i m j→i

|∂i | + Pt (vi |I )
Z

(9.2)

= α ·
∑

j∈∂i Pt(v j |I)∗ k(vi |v j)
|∂i | + Pt (vi |I )

Z
, (9.3)



186 D. Yang et al.

Fig. 9.4 a The chain-structuremodel for vertebra centroids shown inCT image; bSeveral iterations
ofmessage passing (landmarks represent vertebra centers): the neighbors’ centroid probabilitymaps
help compensating the missing response of centroids. c Sample appearance of the learned kernels

where ∂i denotes the neighbors of node i in the graph, which is also corresponding
to the adjacent vertebrae. α is a constant to adjust the summation weights between
the passed messages and the previous probability map. Z is another constant for
normalization. The message m j→i is passed from node j to its neighboring node i ,
defined as Pt

(

v j |I
) ∗ k

(

vi |v j
)

. ∗ denotes the convolution operation and the kernel
k

(

vi |v j
)

is learned from the ground truth Gaussian distributions of i and j . The
convolution using the kernels actually shifts the probability map P (vi |I ) toward
P

(

v j |I
)

. If DI2IN provides a confident response at the correct location of vertebra
i , its message would be strong as well around the ground truth location of vertebra
j after convoluting with the learned kernel. The messages from all neighbors are
aggregated to enhance the response. After several iterations of message passing,
the probability maps will converge to a stable state and the issue of the missing
response would be compensated. The locations of vertebrae are determined at the
peak positions of the enhanced probability maps at the moment. The underlying
assumption of message passing is that DI2IN has given the correct and confident
prediction for most vertebrae, which has already been proved in the experiments.
Another advantage of the scheme is that it enables the end-to-end training (or fine-
tuning) together with DI2IN for better optimization when the iteration number is
fixed.

Several recent works have applied the similar message-passing schemes in dif-
ferent applications of the landmark detection. Chu et al. [5] introduced a similar
message-passing method for human pose estimation (or body joint detection). How-
ever, the effectiveness of their implicit passing method may not be clear because it
is conducted between feature maps of different landmarks. Our message passing is
directly applied between the probability maps of vertebrae. It is more intuitive to



9 Automatic Vertebra Labeling in Large-Scale Medical Images Using Deep … 187

understand how the kernel works and justify the quality of messages. Yang et al. [31]
also proposed an analogous message-passing method for human pose estimation.
They used the hand-crafted features, which usually have limitation on generaliza-
tion, to describe the spatial relationship of landmarks. Our method uses the learnable
kernels to describe the geometric relationship of vertebrae. The convolution kernels
enable the pair-wise communication between vertebrae. Payer et al. [16] brought up
a one-time message passing method for the anatomical landmark detection. Their
passing scheme used dot product for message aggregation and mainly for outlier
removal. But in our framework, the missing response is the major issue instead of
noisy probability maps, then the dot product is not applicable for our passing scheme.

9.2.3 Joint Refinement Using Shape-Based Dictionaries

Given the probability maps generated by DI2IN and message-passing enhancement,
it may still generate some outliers or false positives. For example, even though the
DI2IN followed bymessage-passing enhancement outputs quite clear and reasonable
probabilitymaps, there is still false positive as shown inFig. 9.5. Thismight arise from
the low-resolution scans, image artifacts, or lack of global contextual information.
In order to overcome these limitations, localization refinement has been introduced
in many works [4, 8]. In [8], a hidden Markov model (HMM) with hidden states is

Fig. 9.5 Demonstration of two prediction examples in CT images. Only one representative slice
is shown for demonstration purpose. Left: CT image. Middle: Output of one channel from the
network. Right: Overlaid display. The most predicted responses are close to ground truth location.
In the second row, a false positive response exists remotely besides the response at the correct
location
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defined for vertebrae location, appearance likelihoods, and inter-vertebra shape pri-
ors, which could yield a refined localization based on several thousands of candidate
locations from the forest prediction. In [4], a quadratic polynomial curve is proposed
to refine the coordinate in the vertical axis. By optimizing an energy function, the
parameters for the shape regression model are learned to refine the coordinates of
vertebrae. However, this model assumes the shape of the spine could be represented
by a quadratic form. In addition, only coordinates in the vertical axis (head to foot
direction) are refined.

Inspired by dictionary learning and sparse representation [20, 28], we design
a joint refinement using a shape-based dictionary. For illustration purpose, we are
using 3D representation in this section which is used in 3D CT experiments. Given a
predefined shape-based dictionary, the coordinates are refined jointly in all x , y, and z
axes. The refinement itself can be formulated as an �1-norm optimization and solved
by the sparse coding approach. In detail, given the shape-based dictionaryD ∈ R

M×N

and the coordinate prediction v ∈ R
N , we propose a joint refinement algorithm as

shown in Algorithm 1 to solve the sparse coefficient vector a ∈ R
M . Then the refined

coordinate vector is defined as v̂ = Da. Specifically, the shape-based dictionary D
is simply built by the coordinates of vertebrae in training samples. For example, the
notation Dz indicates the shape-based dictionary associated with vertical axis or z
direction. dz,i ∈ R

M , which is a column of Dz , is defined as [zi,1 zi,2 . . . zi,26]T . For
instance, zi,1 denotes the vertical ground truth coordinate of i th sample corresponding
to vertebrae C1. The Dx and Dy denote the dictionaries associated with x and y
directions, respectively. They are both build in the same manner asDz . Similarly, vz,
defined as [vz,1 vz,2 . . . vz,26], is the vertical coordinate of prediction. vx and vy are
defined in the same manner.

In order to address the challenges such as outliers and limited FOV in spinal scans,
we define the original space φ0 and a subspace φ1 in proposed refinement approach.
The original space denotes a set which contains all indexes of 26 vertebrae. In our
case, φ0 contains the indexes from 1 to 26 which are corresponding to vertebra C1 to
S2. Compared to the original space φ0, the subspace φ1 denotes a subset which only
contains the partial indexes ofφ0. Based on the subspaceφ1, we define sub-dictionary
Dφ1 and sub-coordinate vector vφ1 . Intuitively, Dz,φ1 indicates the sub-dictionary
associated with axis z, which is also simply a sub-matrix of Dz,φ0 . Basically, the
optimization problem is solved based on the subspace φ1 instead of the original
space φ0.

The details are demonstrated in Algorithm 1. Taking the shape regularity into
account, we first find the maximum descending subsequence in the coordinate pre-
diction vz via dynamic programming. The reason we choose the vertical axis z to
determine the maximum subsequence instead of vx and vy is the vertical axis of the
human spine naturally demonstrates the most robust geometric shape compared to
x- and y-axes. Based on the subspace φ1 generated in Step 1, we further remove the
indexes of neighboring vertebrae of which distance is too large or too small. Given
the subspace φ1, we define the sub-dictionary and sub-coordinate vector for each
axis, respectively. Then, the �1 norm problem in Step 5 is optimized for x , y, and z
individually based on the same subspace φ1. Finally, all coordinates are refined based
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Fig. 9.6 Maximum errors of vertebra localization before and after the joint shape-based refinement
in 3D CT experiments

on the original space φ0 (i.e., Dz,φ0 and vz,φ0 ). Intuitively, we remove the ambigu-
ous outliers from the preliminary prediction and then jointly refine the coordinates
without these outliers. Based on the subspace, we optimize the refinement problem
to find the best sparse combination in the shape-based sub-dictionary. By taking the
advantage of the original shape-based dictionary, all coordinates are refined jointly
as shown in Fig. 9.6.

Algorithm 1 Joint Refinement using Shape-Based Dictionary

Require: The dictionary Dx,φ0 , Dy,φ0 , and Dz,φ0 ∈ R
M×N , the predicted coordinates vector

vx , vy , and vz , the error threshold ε1 and ε2, and the coefficient λ. M and N indicate the
number of landmarks and size of items in dictionary, respectively.

1: Given the predicted coordinatesvz from theDI2IN andmessage passing, themaximumdescend-
ing subsequence is found via dynamic programming.

2: Add the indexes associated with the maximum descending subsequence into the set φ1.
3: Remove the pair of neighboring indexes if |vz,i − vz, j | ≤ ε1 or |vz,i − vz, j | ≥ ε2, where
i, j ∈ φ1 and |i − j | = 1.

4: Based on the subspace φ1, define the sub-dictionary Dx,φ1 , Dy,φ1 , and Dz,φ1 and the sub-
coordinate predictions vx,φ1 , vy,φ1 , and vz,φ1 .

5: Solve the optimization problem below by �1 norm recovery for the vertical axis z:

min
az

1

2
||vz,φ1 − Dz,φ1az||22 + λ||az||1.

6: Solve the same optimization problem in Step 3 for vx,φ1 and vy,φ1 , respectively.
7: Return the refined coordinate vectors v̂x = Dx,φ0ax , v̂y = Dy,φ0ay and v̂z = Dz,φ0az .
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9.3 Experiments

In this section,we evaluate the performance of the proposed approach on twodifferent
and large databases. Thefirst one has been introduced in [9]which contains 302 spine-
focused 3D CT scans with various pathologies. These unusual appearances include
abnormal curvature, fractures, and bright visual artifacts such as surgical implants in
postoperative cases. In addition, the FOV of each 3D CT scan varies greatly in terms
of vertical cropping. The whole spine is visible only in a few samples. Generally,
most of the 3D CT scan contain 5–15 vertebrae. In particular, in order to boost the
performance of our approach and validate that DNN favors more training data, we
further introduce extra 1000+ 3D CT scans in our experiments. The second database
consists of 1000+ 2D X-ray scans described in [6, 10, 23]. The ground truth of each
database is marked on the center of each vertebra. The location and label of each
ground truth are manually annotated by clinical experts. It should be noted that there
is no overlap between the training and testing samples.

For 3DCTscans, there are twodifferent settings that havebeen adopted in previous
works [4, 9, 25]. The first setting uses 112 scans as training samples and another
112 scans as testing samples in [9, 25]. The second setting uses overall 242 scans as
training samples and the other 60 scans as testing samples in [4, 9]. In order to fairly
compare to other state-of-the-art works [4, 9, 25], we follow the same training and
testing configurations, which are denoted as Set 1 and Set 2 in Tables 9.1 and 9.2,
respectively. For 2D X-Ray scans, we adopt 1170 images as training samples and 50
images as testing samples.

Tables 9.1 and 9.2 summarize the quantitative results in terms of localization
mean error, identification rate defined by [8] on Set 1 and Set 2, and other metrics.
We compare our approach to other results reported in [4, 9, 25] on the 3DCT scans. In
detail, “DI2IN”, “MP”, and “S” denote the deep image-to-image network, message
passing, and shape-based refinement, respectively. “1000” indicates this model is
trained with additional 1000 scans and evaluated on the same testing samples. In
order to show the improvement of the performance, we list the results after each step
for comparison.

Overall, our approach outperforms the state-of-art approaches [4, 9] by 13% and
6% on the same evaluation settings, respectively. For Set 1, the DI2IN itself improves
the Id. Rates by amargin of 6%compared to the approach in [9].Message passing and
shape-based refinement further increase the Id. Rates to 77% and 80%, respectively.
In addition, we have demonstrated that extra 1000 samples boost the performance to
83%. Similarly, the proposed approach also demonstrates better performance in Set 2
compared to [4, 9, 25]. Our approach has achieved Id. Rates of 85%and a localization
mean error of 8.6mm, which is better than the state-of-the-art work [4]. Taking
advantageof extra 1000 samples, the Id.Rates have achieved90%.Furthermore, other
metrics such as standard deviation (Std), median (Med), and maximum (Max) also
intuitively demonstrate the efficiency of our approach. For example, the maximum
errors in both sets are significantly reduced to 42.3 and 37.9mm. Figure9.6 intuitively
illustrates the refinement of proposed shape-based refinement in vertical direction.
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Table 9.1 Comparison of localization errors in mm and identification rates among different meth-
ods for Set 1

Region Method Set 1

Mean Std Id.Rates
(%)

Med Max

All Glocker et al. [9] 12.4 11.2 70 8.8 –

Suzani et al. [25] 18.2 11.4 – – –

Chen et al. [4] – – – – –

DI2IN 13.5 32.0 76 6.7 396.9

DI2IN+MP 11.7 19.7 77 6.8 396.9

DI2IN+MP+S 9.1 7.0 80 7.1 42.3
DI2IN+1000 10.6 21.5 80 5.5 430.4

DI2IN+MP+1000 9.4 16.2 82 6.0 430.4

DI2IN+MP+S+1000 8.5 7.7 83 6.2 59.6

Cervical Glocker et al. [9] 7.0 4.7 80 – –

Suzani et al. [25] 17.1 8.7 – – –

Chen et al. [4] – – – – –

DI2IN+MP+S 6.6 3.9 83 – –

DI2IN+MP+S+1000 5.8 3.9 88 – –

Thoracic Glocker et al. [9] 13.8 11.8 62 – –

Suzani et al. [25] 17.2 11.8 – – –

Chen et al. [4] – – – – –

DI2IN+MP+S 9.9 7.5 74 – –

DI2IN+MP+S+1000 9.5 8.5 78 – –

Lumbar Glocker et al. [9] 14.3 12.3 75 – –

Suzani et al. [25] 20.3 12.2 – – –

Chen et al. [4] – – – – –

DI2IN+MP+S 10.9 9.1 80 – –

DI2IN+MP+S+1000 9.9 9.1 84 – –

As shown in Fig. 9.6, the shape-based refinement takes the shape regularity of spine
into account and removes the false positive coordinates. Specifically, the maximum
error is significantly reduced.

Additionally, in order to demonstrate the robustness of our approach, we extend
our experiments into a 2D X-ray database for training and evaluation. For 2D X-ray
scans, the database [6, 10, 23] is randomly divided into two parts: 1170 scans for
training samples and 50 scans for testing samples. It is the first time by our knowl-
edge to evaluate such an approach on 2DX-ray scan for human vertebrae localization
and identification task. We conducted experiments using the input images with two
different resolutions: 0.70 and 0.35mm. They are both resampled from the origi-
nal database. Due to four times larger input and output data size, the DI2IN used in
0.35mm experiment has less number of filters in the convolution layers comparing to
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Table 9.2 Comparison of localization errors in mm and identification rates among different meth-
ods for Set 2

Region Method Set 2

Mean Std Id.Rates
(%)

Med Max

All Glocker et al. [9] 13.2 17.8 74 – –

Suzani et al. [25] – – – – –

Chen et al. [4] 8.8 13.0 84 – –

DI2IN 13.6 37.5 76 5.9 410.6

DI2IN+MP 10.2 13.9 78 5.7 153.1

DI2IN+MP+S 8.6 7.8 85 5.2 75.1

DI2IN+1000 7.1 11.8 87 4.3 235.9

DI2IN+MP+1000 6.9 8.3 89 4.6 108.7

DI2IN+MP+S+1000 6.4 5.9 90 4.5 37.9

Cervical Glocker et al. [9] 6.8 10.0 89 – –

Suzani et al. [25] – – – – –

Chen et al. [4] 5.1 8.2 92 – –

DI2IN+MP+S 5.6 4.0 92 – –

DI2IN+MP+S+1000 5.2 4.4 93 – –

Thoracic Glocker et al. [9] 17.4 22.3 62 – –

Suzani et al. [25] – – – – –

Chen et al. [4] 11.4 16.5 76 – –

DI2IN+MP+S 9.2 7.9 81 – –

DI2IN+MP+S+1000 6.7 6.2 88 – –

Lumbar Glocker et al. [9] 13.0 12.5 80 – –

Suzani et al. [25] – – – – –

Chen et al. [4] 8.4 8.6 88 – –

DI2IN+MP+S 11.0 10.8 83 – –

DI2IN+MP+S+1000 7.1 7.3 90 – –

the network in 0.70mm experiment, as well as smaller batch size in training. Tables
9.3 and 9.4 demonstrate the performance of each step using our approach in terms
of localization error and identification rates on input images with 0.70 and 0.35mm
resolution, respectively. Because most of vertebrae in X-ray scans belong to the tho-
racic region (T1 − T12), we only present the overall results instead of showing results
in individual region. In detail, the DI2IN itself achieves a localization error of 8.4 and
7.8mm and an identification rate of 80% and 82% on 0.70 and 0.35mm resolution,
respectively.We also introducemessage passing scheme and shape-based refinement
to evaluate the performance. The quality of performance is further improved com-
pared to the DI2IN itself. The identification rate is also greatly improved after the
introduction of message passing and shape-based refinement. Overall, the identifi-
cation rate has been significantly increased by the message passing and refinement
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Table 9.3 Comparison of localization errors in mm and identification rates among different meth-
ods for 0.70mm X-ray set

Region Method 0.7mm

Mean Std Id.Rates
(%)

Med Max

All DI2IN 8.4 14.7 80 3.7 283.4

DI2IN+MP 7.7 9.6 82 3.7 45.9

DI2IN+MP+S 7.1 9.2 88 4.2 44.2

Table 9.4 Comparison of localization errors in mm and identification rates among different meth-
ods for 0.35mm X-ray set

Region Method 0.35mm

Mean Std Id.Rates
(%)

Med Max

All DI2IN 7.8 12.1 82 3.1 114.0

DI2IN+MP 7.4 9.8 84 3.6 57.9

DI2IN+MP+S 6.4 7.8 91 3.0 46.2

and finally reached 91% on higher resolution settings. Our experiment demonstrates
the proposed approach is able to achieve better performance on higher resolution
database. Given more memory allocation and model capacity, our approach could
further improve the quality of landmark detection.

Although our approach has achieved high identification rates on various patholog-
ical cases in both 3D CT scans and 2D X-ray scans, there are still some challenging
cases. As shown in Fig. 9.7, the proposed approach occasionally fails to refine the
coordinates which are jointly offset. This limitation might arise from special patho-
logical cases, limited FOV and low-resolution input images. In our approach, the
underlying assumption is that majority of the vertebra probability maps are con-
fident and well distributed around the true locations, which is guaranteed by the
powerful DI2IN. In order to address this limitation, more sophisticated network will
be further studied in the future. From Fig. 9.8, we can see that vertebrae in tho-
racic region are comparatively harder to locate because those vertebrae share similar
imaging appearance.

All experiments are conducted on a high-performance cluster equipped with an
Intel 3.5 GHzCPU as well as a 12 GBNVIDIATitan XGPU. In order to alleviate the
pressure of memory, experiments on 3D CT scans and X-ray scans are conducted on
a resolution of 4mm, 0.7mm, and 0.35mm, respectively. The size of convolutional
kernel inmessage passing is 23 × 23 × 23 for 3Dvolume and 49 × 49 for 2D images.
The evaluation time of our approach is around three seconds per 3D CT case on
average usingGPU. In order to extract valid information fromnoisy probabilitymaps,
the response maps of DI2IN are compared to a heuristic threshold in an element-wise
manner. Only channels with strong response are considered as valid outputs. Then
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Fig. 9.7 Maximum errors of vertebra localization in challenging CT cases before and after the
message passing and shape-based network refinement

Fig. 9.8 Average localization errors (in mm) of the testing database Set 1 and Set 2 using the
proposed methods with extra 1000 training volumes (line “DI2IN+MP+S+1000” in Tables 9.1
and 9.2). “C” is for cervical vertebrae, “T” is for thoracic vertebrae, “L” is for thoracic vertebrae,
and “S” is for sacral vertebrae

vertebra centroids associated with these channels are identified to be present in the
image. The vertebrae associated with other probability maps are identified as non-
presented in the image. Therefore, we are able to localize and identify all vertebrae
simultaneously in an efficient way.
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9.4 Conclusion

We proposed and validated a novel method for vertebral labeling in medical images.
The experimental results in both 3D CT volumes and 2D X-ray images show that the
proposed method is effective and efficient comparing with the state-of-the-art meth-
ods. In addition, the extra 1000+ training data in 3D CT experiments evidently boost
the performance of the proposed DI2IN, which further acknowledges the importance
of large database for deep neural networks.
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Chapter 10
Anisotropic Hybrid Network for
Cross-Dimension Transferable Feature
Learning in 3D Medical Images

Siqi Liu, Daguang Xu, S. Kevin Zhou, Sasa Grbic, Weidong Cai and Dorin
Comaniciu

Abstract While deep convolutional neural networks (CNN) have been success-
fully applied for 2D image analysis, it is still challenging to apply them to 3D
anisotropic volumes, especially when the within-slice resolution is much higher than
the between-slice resolution and when the amount of 3D volumes is relatively small.
On one hand, direct learning of CNN with 3D convolution kernels suffers from the
lack of data and likely ends up with poor generalization; insufficient GPU mem-
ory limits the model size or representational power. On the other hand, applying
2D CNN with generalizable features to 2D slices ignores between-slice informa-
tion. Coupling 2D network with LSTM to further handle the between-slice informa-
tion is not optimal due to the difficulty in LSTM learning. To overcome the above
challenges, 3D anisotropic hybrid network (AH-Net) transfers convolutional fea-
tures learned from 2D images to 3D anisotropic volumes. Such a transfer inherits
the desired strong generalization capability for within-slice information while natu-
rally exploiting between-slice information for more effective modeling.We show the
effectiveness of the 3DAH-Net on two examplemedical image analysis applications,
namely, lesion detection from a digital breast tomosynthesis volume, and liver, and
liver tumor segmentation from a computed tomography volume.
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10.1 Introduction

3D volumetric images (or volumes) are widely used for clinical diagnosis, surgical
planning, and biomedical research. The 3D context information provided by such
volumetric images are important for visualizing and analyzing the object of interest.
However, given the added dimension, it is more time-consuming and sometimes
harder to interpret 3D volumes than 2D images by machines. Many previous studies
use convolutional neural networks (CNN) to extract the representation of structural
patterns of interests in human or animal body tissues.

Due to the special imaging settings, many imaging modalities come with
anisotropic voxels, meaning not all the three dimensions have equal resolutions. For
example, in the 3D volumes of digital breast tomosynthesis (DBT), and sometimes
computed tomography (CT), the image resolution in xy plane/slice (or within-slice
resolution) is more than ten times higher than that of the z resolution (or between-
slice resolution). Thus, the xy slices preserve much more information than the z
dimension. In DBT images, only the spatial information within the xy-plane can be
guaranteed. However, the 3D context between xy slices, even with a slight misalign-
ment, still carries meaningful information for analysis (Fig. 10.1).

Directly applying 3D CNN to such images remains a challenging task due to the
following reasons: (1) It may be hard for a small 3 × 3 × 3 kernel to learn useful
features from anisotropic voxels, because of the different information density along
each dimension. (2) Theoreticallymore features are needed in 3Dnetworks compared
to 2D networks. The capability of 3D networks is bounded by the GPU memory,
constraining both the width and depth of the networks. (3) Unlike 2D computer
vision tasks which nowadays can make use of the backbone networks pretrained

Fig. 10.1 The example anisotropic volumes of DBT and CT are shown in the left column. Such
volumes contain voxels with much higher within-slice resolution rx × ry than the between-slice
resolution rz
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using millions of 2D images [21], 3D tasks mostly have to train from scratch, and
hence suffer from the lack of large 3D datasets. In addition, the high data variations
make the 3D networks harder to be trained. Also, 3D CNNs trained on such small
image datasets with relatively small 3D context are hard to generalize to unseen data.

Besides the traditional 3D networks built with 1 × 1 × 1 and 3 × 3 × 3 kernels,
there are other methods for learning representations from anisotropic voxels. Some
studies process 2D slices separately with 2D networks [14]. Tomake better use of the
3D context, more than one image slice is used as the input for 2D networks [12, 24].
The 2D slices can also be viewed sequentially by combining a fully convolutional
network (FCN) architecture with convolutional LSTM to view the adjacent image
slices as a time series to distill the 3D context from a sequence of abstracted 2D
context [5]. There are also a few studies using anisotropic convolutional kernels to
distribute more learning capability on the xy-plane than on the z-axis [2, 11, 22].

In this chapter, we present the 3D anisotropic hybrid network (AH-Net) [15] to
learn informative features from images with anisotropic resolution. To obtain the 3D
AH-Net, we first train a 2D fully convolutional ResNet [17] which is initialized with
pretrainedweights andusesmultiple 2D image slices as inputs. The feature encoder of
such a 2D network is then transformed into a 3D network by extending the 2D kernel
with one added dimension. Then we add a feature decoder subnetwork to extract the
3D context. The feature decoder consists of anisotropic convolutional blocks with
3 × 3 × 1 and 1 × 1 × 3 convolutions.Different anisotropic convolutional blocks are
combinedwith dense connections [8]. Similar toU-Net [20], we use skip connections
between the feature encoder and the decoder. A pyramid volumetric pooling module
[25] is stacked at the end of the network before the final output layer for extracting
multiscale features. Since AH-Net can make use of 2D networks pretrained with
large 2D general image datasets such as ImageNet [21], it is easier to train as well
as to generalize. The anisotropic convolutional blocks enable it to exploit the 3D
context. With end-to-end inference as a 3D network, AH-Net runs much faster than
the conventional multichannel 2D networks regarding the GPU time required for
processing each 3D volume.

10.2 Related Work

It is hard for conventional 3D neural networks with isotropic 3 × 3 × 3 kernels to
extract robust representations from 3D volumes with anisotropic resolution. The
most intuitive approach is to resample the images to isotropic resolutions [16]. This
would work when the difference between the three dimensions are small, and the
spatial information betweendifferent slices is accurate.When the z resolution ismuch
smaller than the xy resolution, the majority of voxels added by image resampling
are redundant, thus introducing unnecessary extra computational cost. It may also
result in a loss of information if downsampling happens in the xy-direction.

Instead of using 3D networks, some studies deal with the voxel anisotropy using
2D networks. DeepEM3D-Net [24] has only two 3D convolution layers to integrate
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3D information in the early stages and performs 2D convolution for the rest of the
following layers in an FCN. The input to DeepEM3D-Net is a stack of 2D image
slices. The resultant 3D segmentation is obtained by concatenating the 2D output
slices. HDenseNet [12] applies 2D networks on all image slices at first. Then a 3D
DenseUNet is applied to the concatenated 3D output volume to obtain the final result.
Different from our proposed network, HDenseNet does not have shared convolutions
between the 2D and 3D networks. Also, we use anisotropic 3D convolutional blocks
to replace the isotropic 3D convolutions.

A bidirectional convolutional LSTM (BDC-LSTM) and an FCN model are com-
bined to view slices as a time series [5]. BDC-LSTM is trained to exploit the 3D
contexts by applying a series of 2D convolutions on the xy-plane in a recurrent
fashion to interpret 3D contexts while propagating contextual information in the z-
direction. The FCNmodel is used for extracting the initial 2D feature maps which are
used as the inputs to BDC-LSTM. The final output is obtained from the BDC-LSTM
model with a softmax layer. Though the idea of fusing the 2D features to maintain
the between-slice consistency is similar to our proposed method, we believe this can
be achieved with stacked anisotropic convolution blocks, which are easier to train
and to generalize than the convolutional LSTM.

Some studies use 3D convolutional kernels with anisotropic sizes to distribute
more learning capability to the xy-plane. For example, 9 × 9 × 5 convolutions are
used in [2]. However, large convolution kernels would bring higher computational
cost. Two more recent studies [11, 18, 22] use small kernels to simulate the large
anisotropic kernels. The convolution modules in [11] starts with a 3 × 1 × 1 convo-
lution, followed by two 3 × 3 × 3 convolutions. Similar to our work, all the isotropic
convolutions are replaced by 3 × 3 × 1 and 1 × 1 × 3 convolutions in [18, 22]. Sev-
eral possible designs of combining the 3 × 3 × 1 and 1 × 1 × 3 kernels are discussed
in a recent paper [18] that focuses on video learning. Our network is different to the
ones in [18, 22] since we use the anisotropic 3D convolutions only in the feature
decoder while the encoder is locked with pretrained weights transferred from a 2D
network. It allows the proposed AH-Net to use any 2D fully convolutional networks
pretrained on large-scale datasets for initializing the encoder network. In [23], the
authors show that the network with pretrained network could be significantly helpful
to train 3D models for volumetric segmentation.

10.3 Anisotropic Hybrid Network

The AH-Net consists of a feature encoder and a feature decoder. The encoder, trans-
formed from a 2D network, is designed for extracting the deep representations from
2D slices with high resolution. The decoder built with densely connected blocks of
anisotropic convolutions is responsible for exploiting the 3D context andmaintaining
the between-slice consistency. The network training is performed in two stages: the
encoder is learned, then the 3D decoder is added and fine-tuned with the encoder
parameters locked. To perform end-to-end hard-voxel mining, we use the focal loss
(FL) originally designed for object detection [13].
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10.3.1 Learning a Multichannel 2D Feature Encoder

We train a 2D multichannel global convolutional network (MC-GCN) similar to
the architecture proposed in [17] to extract the 2D within-slice features at different
resolutions, as shown in Fig. 10.2. In this chapter, we choose the ResNet50 model
[7] as the backbone network which is initialized by pretraining with the ImageNet
images [21], although other pretrained networks would work similarly. The network
is then fine-tuned with 2D image slices extracted from the 3D volumes. The input

Fig. 10.2 The network architecture for pretraining the 2D encoder network multichannel global
convolutional neural network (MC-GCN). The ResNet50 is used as the backbone network, initial-
ized with ImageNet images. The global convolutional network modules and refinement modules
[17] are added to the encoder network to increase the receptive field during the pretraining as well as
to increase the output response map to the original resolution. Conv K × K/S represents a convo-
lution layer with the kernel size K and the stride size S in each dimension. The upsampling module
(Up) consists of a Conv 1 × 1 projection layer and a bilinear upsampling layer
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to this network is three neighboring slices (treated as RGB channels). Thus, the
entire architecture of the ResNet50 remains unchanged. The multichannel 2D input
could enable the 2D network to fuse the between-slice context at an early stage.
A decoder is added to accompany the encoder to upscale the response map to the
original resolution.We choose the decoder architecture with the global convolutional
networks (GCN) and refinement blocks [17]. The GCN module simulates a large
K × K convolutional kernel by decomposing it into two 1D kernels (1 × K and
K × 1). Two branches containing the 1D kernels permuted in different orders are
merged by summation. The output of eachGCNmodule contains the same number of
output maps as the final outputs. The large kernels simulated byGCNs ensure that the
network has a large receptive field at each feature resolution. Each refinement block
contains two 3 × 3 convolutions with a ReLU activation in the middle. The input of
each refinement block is also added to its output to form a residual connection. At
the end of each encoder resolution level, the features are fed into GCNmodules with
the kernel sizes of 63, 31, 15, 9, 7, 5, respectively. The output features are fed into a
refinement block and summed with the features upsampled from a lower resolution
level. The summed features are fed into another refinement block and upsampledwith
a 1 × 1 convolution and a bilinear upsampling layer. The final output has the same
resolution as the image input. The decoder has only a small number of parameters
with little computational cost. The lightweight decoder makes the encoder features
easier to be transferred to the 3DAH-Net since majority of the feature learning relies
on the encoder network.

10.3.2 Transferring the Learned 2D Net to 3D AH-Net

The architecture of the proposed 3D anisotropic hybrid network (AH-Net) is shown
in Fig. 10.3. After the 2D MC-GCN network converges, we extract the parameters
of its encoder and transfer them to the corresponding encoder layers of AH-Net. The
decoder part of the 2D MC-GCN is discarded and instead, we design a new decoder
for the AH-Net that consists of multiple levels of densely connected blocks, followed
by a pyramid volumetric pooling module. The parameters of the new decoder are
randomly initialized. The input and output of AH-Net are now 3D patches, similar to
other conventional 3D CNN. The transformation of convolution tensors from 2D to
3D is illustrated in Fig. 10.4, which aims to perform 2D convolutions on 3D volumes
slice by slice in the encoder part of AH-Net.

10.3.2.1 Notations

A 2D convolutional tensor is denoted by T i
n×m×h×w, where n, m, h, and w, respec-

tively, represent the number of output channels, the number of input channels, the
height, andwidth of the i th convolution layer. Similarly, a 3Dweight tensor is denoted
by T i

n×m×h×w×d where d is the filter depth. We use P (b,a,c,d)(Ta×b×c×d) to denote



10 Anisotropic Hybrid Network for Cross-Dimension … 205

Fig. 10.3 The architecture of 3D AH-Net. The feature encoder with AH-ResNet blocks is trans-
ferred from the pretrained 2D network with 1 × 1 × 1 and 3 × 3 × 1 convolutions. The features
are then processed with the AH-Net decoders which are designed with 3 × 3 × 1 and 1 × 1 × 3
convolutional blocks. Feature summation is used instead of concatenation as in [4] to support more
feature maps with less memory consumption. The pyramid pooling [25] is used for extracting the
multiscale feature responses. We hide the batch normalization [9] and ReLu layers for brevity. The
weights of the blocks with black borders are transformed from the 2D MC-GCN

Fig. 10.4 Transforming the 2D convolutional weight tensor T 2D to 3D T 3D , wherem and n are the
number of features and channels of a layer, respectively. The first layer weight tensor T 1

64×3×7×7 is
transformed to T 1

64×1×7×7×3. The other convolutional kernels are transformed by adding an extra
dimension

the dimension permutation of a tensor Ta×b×c×d , resulting in a new tensor Tb×a×c×d

with the first and second dimensions switched. P (a,∗,b,c,d)(Ta×b×c×d) adds an identity
dimension between the first and second dimensions of the tensor Ta×b×c×d and gives
Ta×1×b×c×d . We define a convolutional layer as Conv Kx × Ky × Kz/(Sx , Sy, Sz),
where Kx , Ky , and Kz are the kernel sizes; Sx , Sy , and Sz are the stride step size in each
direction. Max pooling layers are denoted by MaxPool Kx × Ky × Kz/(Sx , Sy, Sz).
The stride is omitted when a layer has a stride size of one in all dimensions.
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10.3.2.2 Input Layer Transform

The input layer of the 2DMC-GCN contains a convolutional weight tensor T 1
64×3×7×7

inherited from its ResNet50 backbone network. The 2D convolutional tensor
T 1
64×3×7×7 is transformed into 3D as

P (1,∗,3,4,2)(T 1
64×3×7×7) = T 1

64×1×7×7×3 (10.1)

in order to form a 3D convolution kernel that convolves three neighboring slices. To
keep the output consistent with the 2D network, we only apply stride 2 convolutions
on the xy-plane and stride 1 on the third dimension. This results in the input layer
Conv 7 × 7 × 3/(2, 2, 1). To downsample the z-dimension, we use a MaxPool 1 ×
1 × 2/(1, 1, 2) to fuse every pair of the neighboring slices. An additional MaxPool
3 × 3 × 3/(2, 2, 2) is used to keep the feature resolution consistent with the 2D
network.

10.3.2.3 ResNet Block Transform

All the 2D convolutional tensors T i
n×m×1×1 and T i

n×m×3×3 in the ResNet50 encoder
are transformed as

P (1,2,3,4,∗)(T i
n×m×1×1) = T i

n×m×1×1×1 (10.2)

and
P (1,2,3,4,∗)(T i

n×m×3×3) = T i
n×m×3×3×1. (10.3)

In this way, all the ResNet Conv 3 × 3 × 1 blocks as shown in Fig. 10.3 only per-
form 2D slice-wise convolutions on the 3D volume within the xy-plane. The original
downsampling between ResNet blocks is performed with Conv 1 × 1/(2, 2). How-
ever, in a 3D volume, a Conv 1 × 1 × 1/(2, 2, 2) skips a slice for every step on
the z-dimension. This would miss important information when the image only has
a small number of slices along the z-dimension, especially for detection tasks. We
therefore use a Conv 1 × 1 × 1/(2, 2, 1) followed by aMaxPool 1 × 1 × 2/(1, 1, 2)
to downsample the 3D feature maps between the ResNet blocks as shown in the
AH-Downsample block in Fig. 10.3. This MaxPooling simply takes the maximum
response along the z-direction between two neighboring slices. Unlike the previous
studies that avoided downsampling along the z-direction [11], we find it important for
allowing the use of large and deep networks on 3D data with limited GPU memory.
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10.3.3 Anisotropic Hybrid Decoder

Accompanying to the transformed encoder, an anisotropic 3D decoder subnetwork
is added to exploit the 3D anisotropic image context. In the decoder, anisotropic
convolutional blocks with Conv 1 × 1 × 1, Conv 3 × 3 × 1, and Conv 1 × 1 × 3 are
used. The features are passed into an xy bottleneck block at first with a Conv 3 ×
3 × 1 surrounded by two layers of Conv 1 × 1 × 1. The output is then forwarded to
another bottleneck blockwith a Conv 1 × 1 × 3 in themiddle and summedwith itself
before forwarding to the next block. This anisotropic convolution block decomposes a
3D convolution into 2D and 1D convolutions. It receives the inputs from the previous
layers using a 2D convolution at first, preserving the detailed 2D features. Conv
1 × 1 × 3 mainly fuses the within-slice features to keep the z-dimension output
consistent.

Three anisotropic convolutional blocks are connected as the densely connected
neural network [8] using feature concatenation for each resolution of encoded fea-
tures. Similar toLinkNet [4], the features received fromeach resolution of the encoder
are first projected to match the number of features of the higher encoder feature res-
olution using a Conv 1 × 1 × 1. They are then upsampled using the 3D tri-linear
interpolation and summed with the encoder features from a higher resolution. The
summed features are forwarded to the decoder blocks in the next resolution.

At the end of the decoder network, we add a pyramid volumetric pooling module
[25] to obtain multi-scaled features. The output features of the last decoder block
are first downsampled using four different Maxpooling layers, namely, MaxPool
64 × 64 × 1,MaxPool 32 × 32 × 1,MaxPool 16 × 16 × 1, andMaxPool 8 × 8 × 1
to obtain a feature map pyramid. Conv 1 × 1 × 1 layers are used to project each reso-
lution in the feature pyramid to a single response channel. The response channels are
then interpolated to the original size and concatenated with the features before down-
sampling. The final outputs are obtained by applying a Conv 1 × 1 × 1 projection
layer on the concatenated features.

Training AH-Net using the same learning rate on both the pretrained encoder
and the randomly initialized decoder would make the network difficult to optimize.
To train the 3D AH-Net, all the transferred parameters are locked at first. Only the
decoder parameters are fine-tuned in the optimization. All the parameters can be then
fine-tuned altogether afterward to the entire AH-Net jointly. Though it is optional
to unlock all the parameters for fine-tuning afterward, we did not observe better
performance.

10.4 Experimental Results

To demonstrate the efficacy and efficiency of the proposed 3D AH-net, we conduct
two experiments, namely, lesion detection from a digital breast tomosynthesis (DBT)
volume and liver tumor segmentation froma computed tomography (CT) volume.We
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use ADAM [10] to optimize all the compared networks with β1 = 0.9, β2 = 0.999,
and ε = 10−8.Weuse the initial learning-rate 0.0005 tofine-tune the 2Dmultichannel
GCN. Then, the learning rate is increased to 0.001 to fine-tune the AH-Net after the
2D network is transferred. We find that 3D networks need a larger learning-rate to
converge within a reasonable amount of time. All the networks are implemented in
Pytorch (http://pytorch.org).

10.4.1 Breast Lesion Detection from DBT

We use an in-house database containing 2809 3D DBT volumes acquired from 12
different sites globally. DBT is an advanced form of mammography, which uses low-
doseX-rays to image the breast. Different from 2Dmammography that superimposes
3D information into one 2D image, DBT creates 3D pictures of the breast tissue, and
hence allows radiologists to read these pictures and detect breast cancer more easily,
especially in dense breast tissues. The xy-plane of DBT images has a high spatial
resolution of 0.085mm × 0.085mm which is much larger than the z-dimension
of 1mm. The structures in the z-dimension are not only is compressed during the
imaging process, but the 3D volumetric information also has large variations due to
imaging artifacts.

We have experienced radiologists annotate and validate the lesions in DBT vol-
umes, which might contain zero to several lesions. Each lesion is approximately
annotated with a 3D bounding box. To train the proposed networks as lesion detec-
tion networks, we generate 3D multivariant Gaussian heatmaps that have the same
sizes as the original images as

f (p) =
∑

μi,�i

exp(− 1
2 (p − μi)

T�i(p − μi))√
det(2π�i)

, (10.4)

where p is a 3D coordinate x, y, z; μi is the center coordinate of each lesion 3D
bounding box; and �i is the covariant matrix of the i-th Gaussian determined by the
height, width, and depth of the 3D bounding box. Please note that we do not directly
predict the bounding box coordinates as the general object detection methods such as
Faster RCNN [19] because it is sometimes challenging to define the exact boundary
of a breast lesion. Also, the voxel-wise confidence maps of lesion presence could be
more helpful for clinical decision support than bounding boxes.

We randomly split the database into the training and the testing sets as described
in Table10.1. A volume or a 3D patch is considered positive if at least one lesion is
annotated by the radiologist. We ensure the images from the same patient could only
be found either in the training or the testing set. For training, we extract 256 × 256 ×
32 3D patches. 70% of the training patches are sampled as positives with at least
one lesion included, considering the balance between the voxels within and without

http://pytorch.org
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Table 10.1 The numbers of volumes (#Volumes), lesion-positive volumes (#Positive) and lesions
(#Lesions) in the evaluated DBT dataset

#Volumes #Positives #Lesions

Train 2678 1111 1375

Test 131 58 72

Table 10.2 The number of convolutional layers (#Conv Layers) and model float parameters
(#Parameters), respectively, in 2D-UNet, 3D-UNet, ResNet50, GCN, and AH-Net. ResNet50 is
shown here as a reference to be compared with GCN with a simple decoder added

Network #Conv Layers #Parameters

2D-UNet 15 28,254,528

3D-UNet 15 5,298,768

*ResNet50 53 23,507,904

GCN 94 23,576,758

AH-Net 123 27,085,500

Table 10.3 The GPU inference time (ms) of different networks on a 384 × 256 × 64 volume
computed by averaging 1000 inferences with a NVIDIA GTX 1080Ti

2D U-Net 3D U-Net MC-GCN 3D AH-Net

ms 699.3 2.3 775.2 17.7

a breast lesion. The patches are sampled online asynchronously with the network
training to form the mini-batches.

Along with the proposed networks, we also train 2D and 3D U-Nets with the
identical architecture and parameters [3, 20] as two baseline comparisons. The 2D
U-Net is also trained with input having three input channels. The 3DU-Net is trained
with the same patch sampling strategies as the AH-Net. All the networks are trained
till convergence then the L2 loss function is replaced with the Focal Loss [13] for
hard-voxel mining. The number of convolutional layers and parameters is shown in
Table10.2. Using 2D networks, such as the MC-GCN and the 2D U-Net, to process
3D volumes involves repeatedly feeding duplicated images slices. Thus, they could
be slower than the 3D networks when they are used for processing 3D volumes. We
measure the GPU inference time of four networks by forwarding a 3D DBT volume
of size 384 × 256 × 64 1000 times on an NVIDIA GTX 1080Ti GPU. The time
spent on operations such as volume slicing is not included in the timing. The mean
GPU time (ms) is shown in Table10.3. The GPU inference of AH-Net is 43 times
faster than MC-GCN though AH-Net has more parameters. The speed gain could be
brought mostly by avoiding repetitive convolutions on the same slices required by
multichannel 2D networks.

Non-maximal suppression is performed on the network output map to obtain the
lesion locations. The network responses at the local maximal voxels are considered
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Fig. 10.5 Two example cases that AH-Net could detect the lesions that MC-GCNmissed using the
identical encoder weights

Fig. 10.6 Two example breast lesions that neither MC-GCN nor AH-Net was able to detect

as the confidence scores of the cancerous findings. Figure10.5 shows some visual
comparisons of the network’s output on two example cases that AH-Net could detect
the lesions missed by MC-GCN. Figure10.6 shows two example cases with lesions
surrounded by dense breast tissues that neither MC-GCN nor AH-Net was able to
detect.

By altering a threshold to filter the response values, we can control the balance
between the false positive rate (FPR) and true positive rate (TPR). The lesion detected
by the network is considered a true positive finding if the maximal point resides
in a 3D bounding box annotated by the radiologist. Similarly, if a bounding box
contains a maximal point, we consider it is detected by the network. The maximal
points are otherwise considered as false positive findings. We evaluate the lesion
detection performance by plotting the free response operating characteristic (FROC)
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Fig. 10.7 The free response operating characteristic (FROC) curves regarding the lesion detection
performance

curves, which measures the true positive rate (TPR) against the number of false
positive (#FP) allowed per volume. TPR represents the percentage of lesions that
have been successfully detected by the network. FPR represents the percentage of
lesions that the network predicted that are false positives. As shown in Fig. 10.7,
the proposed AH-Net outperforms both the 2D and 3D U-Net with large margins.
Compared to the performance of the 2D network (multichannel GCN), the 3D AH-
Net generates higher TPR for a majority of thresholds, except the region around 0.05
per volume false positives. It is noticeable that AH-Net also obtains nearly 50% TPR
even when only 0.01 false positive findings are allowed per volume. Interestingly,
the performance of 3D-UNet is slightly worse than that of 2D-UNet, though the DBT
volumes have three dimensions. Thismight be caused by the anisotropic resolution of
DBT images and the limited number of parameters constrained by the GPUmemory.
The FROC numbers are summarized in Table10.4.

Table 10.4 The quantitative metrics of the compared networks on the DBT dataset. True positive
rate (TPR) sampled at five different numbers of false positive (FP) findings allowed are shown in
the first five columns

FP=0.01 FP=0.05 FP=0.10 FP=0.15 FP=0.20 FP=0.25

2D U-Net 0.4238 0.4767 0.5181 0.5723 0.6166 0.6506

3D U-Net 0.2448 0.3877 0.4381 0.5592 0.5738 0.5733

GCN 0.3385 0.6727 0.6727 0.6909 0.7018 0.7272

AH-Net 0.4931 0.6000 0.7272 0.7454 0.7818 0.7818
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10.4.2 Liver and Liver Tumor Segmentation from CT

The second evaluation dataset was obtained from the liver lesion segmentation chal-
lenge in MICCAI 2017 (lits-challenge.com), which contains 131 training and 70
testing 3D contrast-enhanced abdominal CT scans. Liver lesions are one of the com-
monest cancer worldwide. It is estimated that 28920 people will die of liver lesion
and 40710 new cases will be diagnosed in 2017 [1]. Automatic segmentation of
liver and lesion is challenging due to the heterogeneous and diffusive appearance
of both liver and lesions. Also, the number, shape, and location of the lesions vary
a lot among different volumes. The data and ground-truth masks were provided by
various clinical sites around the world. The ground-truth masks contain both liver
and lesion labels. Most CT scans consist of anisotropic resolution: the between-slice
resolution ranges from 0.45 to 6.0mm while the within-slice resolution varies from
0.55 to 1.0mm. All scans cover the abdominal regions but may extend to head and
feet. Other than the liver lesion, other diseases may also exist in these data, which
further increases the task difficulty.

In preprocessing, the abdominal regions are truncated from the CT scans using
the liver center biomarker detected by a reinforcement learning based algorithm [6].
While this step makes the network concentrate on the targeting region, its accuracy
is not critical as we choose a relatively large crop region which usually ranges from
the middle of the lung to the top of the pelvis. The image intensity is truncated to the
range of [−125, 225] HU based on the intensity distribution of liver and lesion in the
training data. Due to the limited number of training data, we applied random rotation
(within ±20 degree in the xy-plane), random scaling (within ±0.2 in all directions),
and random mirror (within xy-plane) to reduce overfitting.

We first train the MC-GCN with pretrained ResNet50 as the backbone network.
The input size of stacked 2D slices is 512 × 512 with three channels. After con-
vergence, the weights of the encoder part of MC-GCN are transformed to the corre-

Table 10.5 The liver lesion segmentation (LITS) challenge results with the dice global (DG)
and dice per case (DPC). Please refer to the challenge leaderboard for the latest results (lits-
challenge.com/#results)

Lesion Liver

Method DG DPC DG DPC

leHealth 0.794 0.702 0.964 0.961

H-DenseNet [12] 0.829 0.686 0.965 0.961

hans.meine 0.796 0.676 0.963 0.960

medical 0.783 0.661 0.951 0.951

deepX 0.820 0.657 0.967 0.963

superAI 0.814 0.674 – –

GCN 0.788 0.593 0.963 0.951

3D AH-Net 0.834 0.634 0.970 0.963
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Fig. 10.8 The example liver lesion segmentation results from 3DAH-Net. The segmented contours
of liver (blue) and liver lesion (pink) are overlaid on three slices viewed from different orientations
(Axial, Coronal and Sagittal). The segmentations are rendered in 3D on the right

Fig. 10.9 Multi-view slices of the example test CT volume 1 of the LITS challenge
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sponding layers of a 3DAH-Net, which is then fine-tuned using 3D patches with size
192 × 192 × 64. The weights of other layers are randomly initialized. In the training
of both networks, the cross-entropy loss is used at the beginning until convergence,
which is then replaced by the Focal Loss for hard-voxel mining [13].

The performance of AH-Net is listed in Table10.5, together with other six top-
ranked submissions retrieved from the LITS challenge leaderboard. These submis-
sions employ various types of neural network architectures: 2D, 3D, 2D–3D hybrid,
and model fusion. Two evaluation metrics are adopted: (1) Dice Global (DG) which
is the dice score combining all the volumes into one; (2) dice per case (DPC) which is
the average of the dice scores of every single case. The dice score between twomasks
is defined as DICE(A,B) = 2|A ∩ B|/(|A| + |B|). Our results achieve the state-of-
the-art performance in three of the four metrics, including the dice global score of the
lesions, dice global, and dice per case score of the livers, which prove the effective-

Fig. 10.10 Multi-view slices of the example test CT volume 2 of the LITS challenge
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ness of AH-Net for segmenting 3D images with diverse anisotropic resolution. Some
example visual results are shown in Fig. 10.8. In Figs. 10.9 and 10.10, we visually
compare the results from MC-GCN and AH-Net on two different volumes acquired
from the LITS challenge. AH-Net generated less false positive areas in the upper and
the lower boundaries of both the lesion and liver.

10.5 Conclusion

In this chapter, we propose the 3D anisotropic hybrid network (3D AH-Net) which
is capable of transferring the convolutional features of 2D images to 3D volumes
with anisotropic resolution. By evaluating the proposed methods on both a large-
scale in-house DBT dataset and a highly competitive open challenge dataset of CT
segmentation, we show our network could obtain the state-of-the-art results. AH-
Net generalizes better than the traditional 3D networks, such as 3D U-Net [3] due to
the features transferred from a 2D network and the anisotropic convolution blocks.
The GPU inference of AH-Net is also much faster than piling the results from a 2D
network. Though AH-Net is designed for anisotropic volumes, we believe it could
also be applied to volumes with resolution closed to being isotropic, such as CT and
MRI.

Disclaimer: This feature is based on research, and is not commercially available.
Due to regulatory reasons, its future availability cannot be guaranteed.
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Part III
Various Applications



Chapter 11
Deep Hashing and Its Application for
Histopathology Image Analysis

Xiaoshuang Shi and Lin Yang

Abstract Content-based image retrieval (CBIR) has attracted considerable atten-
tion for histopathology image analysis because it can provide more clinical evidence
to support the diagnosis. Hashing is an important tool in CBIR due to the signifi-
cant gain in both computation and storage. Because of the tremendous success of
deep learning, deep hashing simultaneously learning powerful feature representa-
tions and binary codes has achieved promising performance on microscopic images.
This chapter presents several popular deep hashing techniques and their applications
on histopathology images. It starts introducing the automated histopathology image
analysis and explaining the reasons why deep hashing is a significant and urgent need
for data analysis in histopathology images. Then, it specifically discusses three pop-
ular deep hashing techniques and mainly introduces pairwise-based deep hashing.
Finally, it presents their applications on histopathology image analysis.

11.1 Introduction

Histopathology images play a significant role in early disease detection and grading,
such as lung, breast, and brain cancers [1–4]. However, manual assessment is labo-
rious, expensive, time-consuming, and error prone due to high-resolution of images
and subjective assessment of pathologists. To reduce the workload of pathologists
and improve the objectivity of image analysis, computer-aided diagnosis (CAD)
systems including image processing and modern machine learning techniques have
been widely applied to histopathology image computing. Generally, CAD systems
can be roughly classified into two categories: classifier-based CAD and content-
based image retrieval (CBIR) [5–7]. Compared to classifier-based CAD that directly
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provides diagnosis results or grading scores, CBIR can not only be utilized to classify
query images but also retrieve and visualize images with the most similar morpho-
logical profiles [8, 9]. Therefore, CBIR techniques attract considerable attention for
histopathology image analysis [10–14].

Although traditional CBIR systems have exhibited their advantages on provid-
ing pathologists with diagnosis support in visualizing relevant images and diagnosis
information, most of them are suitable for disease diagnosis with only tens or hun-
dreds of images and fail to tackle large-scale data sets due to the computational effi-
ciency and storage costs. However, the large number of annotated medical images
might reduce the semantic gap (the difference between image and label (disease)
description) between images and diagnosis information with modern data-driven
methods [15]. To handle large-scale image data, hashing-based retrieval methods
have becomeattractive [10, 13, 16] because hashing can encode the high-dimensional
data into compact binary codes withmaintaining the similarity among neighbors [17,
18], leading to significant gains in both computation and storage [19–21].

Based on whether employing semantic information, hashing methods can be clas-
sified into two groups: (i) unsupervised hashing that aims to explore the intrinsic
structure of data to maintain the similarity among neighbors without any semantic
information and (ii) supervised hashing that utilizes semantic information to pro-
duce binary codes. Due to the semantic gap, supervised hashing is more preferred
in histopathology image analysis. Because hand-crafted features cannot optimally
represent the image content and maintain the semantic similarity, and deep learning
[22, 23] can automatically learn powerful features from large-scale raw image data,
deep hashing [24–27], which utilizes deep learning architectures to simultaneously
learn feature representations and binary codes of images, achieves better retrieval
and classification accuracy than traditional hashing methods. In this chapter, we will
focus on several popular supervised deep hashing techniques and their applications
to histopathology image analysis.

11.2 Deep Hashing

Based on the usage of semantic information, supervised deep hashing methods can
be roughly grouped into three categories: pointwise, multiwise, and pairwise.

11.2.1 Pointwise-Based Hashing

Pointwise-based hashing formulates the searching problem into a classification prob-
lem to learn binary codes. Their objective functions are usually developed on the basis
of a regression model. One of the most popular objective functions is [20]
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min
B,W,F

∑n
i=1 L(yi,Wbi) + λ ‖W‖2F + υ

∑n
i=1 ‖bi − F(xi)‖22 ,

s.t. bi ∈ {−1, 1}m ,
(11.1)

where bi is the binary vector of the sample xi, yi ∈ R
c is the one-hot vector main-

taining the semantic information of xi, W ∈ R
c×m is one projection matrix, L(·)

is a loss function (least squares, hinge loss, or others), and F(·) represents a non-
linear mapping function, c and m denote the number of classes and binary codes,
respectively.

One early and popular pointwise-based deep hashing method is deep learning of
binary hash codes (DLBHC) [24], which simultaneously learns image representa-
tion and binary codes in a pointwise manner. Because DLBHC utilizes a relaxation
strategy, sigmoid function, to generate binary codes, it might generate accumulated
quantization errors between relaxed and discrete binary matrices, thereby decreasing
the retrieval performance. To address this issue, deep convolutional hashing (DCH)
[26] proposes a novel loss function to jointly learn image features and discrete binary
codes in a pointwise manner. It is [26]

min
W,c

E = ∑Mb
n=1 log

ea
L
yn

∑
j e

aLj
+ γ

2

∑Mb
n=1

∥
∥
∥bn − b̃n

∥
∥
∥
2

2

s.t. b̃n = tanh(aL−1),bn = sgn(b̃n),
(11.2)

where L is the number of layers in the network, Mb is the batch size,W and c stand
for the parameters of the network, yn represents the class membership of xn, aL−1 is
the output of the L-1-th layer, aLj denotes the linear activation of the j-th neuron in
the output layer, bn ∈ {−1, 1}m is a binary vector, andm is the number of bits. In Eq.
(11.2), the first term is to maximize the classification accuracy and the regularization
term is to reduce the accumulated error between relaxed and discrete binary vectors.

11.2.2 Multiwise-Based Hashing

Multiwise (ranking)-based hashing aims to learn hash functions to project originally
high-dimensional data into a binary space and meanwhile maximizes the agreement
of similarity orders over more than two items. Several popular algorithms are triplet
ranking hashing (TRH) [28] that proposes a triplet ranking loss function based on
the pairwise hinge loss, ranking supervision hashing (RSH) [29] that incorporates
the ranking triplet information into a listwise matrix to learn binary codes, ranking
preserving hashing (RPH) [30] that directly optimizes normalized discounted cumu-
lative gain (NDCG) [31] to learn binary codes with high ranking accuracy. These
algorithms cannot learn features and binary codes simultaneously, and later deep
hashing approaches: network in network hashing (NINH) [25], bit-scalable deep
hashing (DRSCH) [32], and triplet-based deep binary embedding (TDBE) [33] uti-
lize the triplet ranking loss function to simultaneously learn feature representations
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and binary codes in order to preserve the similarity orders among originally high-
dimensional data. For example, given training triplets of images in form of I , I+, I−,
where I is more similar to I+ than I−, to find a mapping F(·) to generate binary
codes such that F(I) is more similar to F(I+) than F(I−), the triplet ranking hinge
loss is defined as [25] follows:

l̃triplet(F(I),F(I+),F(I−))

= max
(
0, 1 − (∥

∥F(I) − F(I−)
∥
∥
H

− ∥
∥F(I) − F(I+)

∥
∥
H

))

s.t. F(I),F(I+),F(I−) ∈ {0, 1}m ,

(11.3)

where ‖·‖H denotes Hamming distance.
Deep semantic ranking based hashing (DSRH) [34], adding an adaptive weight

into a triplet hinge loss function, has been proposed to handle themulti-label retrieval
problem. These deep hashing approaches adopt relaxation strategies to learn binary
codes. To further improve the retrieval performance, discrete semantic ranking hash-
ing (DSeRH) [35] directly learns binary codes with preserving similarity orders
among samples.

11.2.3 Pairwise-Based Hashing

Pairwise-based hashing is to utilize the elementwise product of two binary vectors
to preserve the Hamming affinity of data pairs. Among pointwise-, multiwise-, and
pairwise-based deep hashing, pointwise-based hashing learns binary codes by for-
mulating the searching into a classification problem, it usually neglects the similarity
relationship among neighbors. Multiwise-based hashing is time-consuming to con-
struct the triplet loss for large-scale training data, and it is usually difficult to converge
due to its harder optimization problem than that of pointwise- and pairwise-based
hashing. Therefore, pairwise-based hashing is more widely applied to pathology
image analysis than pointwise- and multiwise-based hashing. In this subsection, we
introduce several popular traditional and deep pairwise-based hashing methods.

11.2.3.1 Traditional Pairwise-Based Hashing

Several popular traditional pairwise-based hashing methods are spectral hashing
(SH) [17] maps the original high-dimensional data into a low-dimensional Ham-
ming space with preserving the similarity among neighbors for approximate nearest
neighbors (ANN) search. Inspired by SH, many variants have been developed, such
as multidimensional spectral hashing (MDSH) [36], elastic embedding (EE) [37],
anchor graph hashing (AGH) [19], joint kernel graph hashing (JKGH) [12], etc.
The minimal loss hashing (MLH) [38] utilizes a least-squares model to preserve
the relations of similar pairs and a hinge loss to maintain the relationship of dis-
similar pairs. Semi-supervised hashing (SSH) [16] leverages the Hamming distance
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between pairs and kernel-based supervised hashing (KSH) [19] extends it by using
kernels to explore the nonlinear structure hidden in the data. Compared with linear
algorithms, nonlinear pairwise-based hashing algorithms like binary reconstruction
embedding (BRE) [39] and KSH often generate more effective binary codes because
of the usage of the nonlinear structure hidden in the data. Additionally, many pre-
vious pairwise-based hashing methods usually relax non-differentiable discrete vec-
tors into differential continuous ones and then learn binary codes by thresholding,
thereby generating accumulated quantization errors between discrete and continu-
ous matrices. To address this problem, many discrete hashing methods have been
proposed, such as kernel-based supervised discrete hashing (KSDH) [18], column
sampling based discrete supervised hashing (COSIDISH) [40], asymmetric discrete
graph hashing (ADGH) [21], etc.

In the following, we briefly review four popular pairwise-based hashing algo-
rithms: SH [17], BRE [39], KSH [19], and KSDH [18]. The basic SH formulation
requires the codes in each hash bit to be balanced so that each hash bit has the maxi-
mum information, and different bits aremutually uncorrelated so that the redundancy
among these bits is minimized. Formally, assuming hi = [h1(x), h2(x), . . . , hm(x)],
computed by m hashing functions {h(·)}mi=1, represents the binary codes of the data
point xi, the formulation is written as

min
H

Tr
{
HLHT

}
,

s.t.H ∈ {−1, 1}m×n ,H1n = 0,HHT = nIm,
(11.4)

where 1n ∈ R
n is a column vector with all elements being one and Im ∈ R

m×m is
an identity matrix. The constraint H1n = 0 aims to maximize the information of
each hash bit and the constraint HHT = nIm is to minimize the redundancy among
different hash bits. L = D − S is a Laplacian matrix, D is a diagonal matrix with the
i-th element dii = ∑n

j=1 sij. S ∈ R
n×n is an affinity matrix to characterize the weight

of any two data points, and it is defined as follows:

sij =
{

e
‖xi−xj‖2

2
τ2

{
xi, xj

} ∈ M
0 otherwise,

(11.5)

where τ is a regularization coefficient andM represents the the similar pairs (neigh-
bors in terms of a metric distance or sharing the same label) set. It is difficult to
solve the NP-hard problem in Eq. (11.4). Usually, spectral relaxation (or symmetric
relaxation) is used to relax the discrete matrix H into a continuous matrix followed
by thresholding to compute the final discrete matrix H. However, the spectral relax-
ation usually generates accumulated quantization errors between the discrete matrix
H and its relaxed continuous matrix, thereby significantly decreasing the retrieval
accuracy, especially for large-scale training data [19, 20].

Similar to SH, the goal of BRE is also to project the original high-dimensional data
into a low-dimensional Hamming space, taking advantage of fast nearest neighbor
routines. Specifically, suppose the matrix X = [x1, x2, . . . , xn] ∈ R

d×n represents n
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original data points, and xi (1 ≤ i ≤ n) can be represented by a set of binary codes
[h1(xi), h2(xi), . . . , hm(xi)], where the k-th hashing function is defined as

hk(x) = sgn

(
ns∑

i=1

akiκ(xki, x)

)

, (11.6)

where κ(·) is a kernel function, xki ∈ Xk that represents the anchors selected from
training data for learning the hashing function hk , ns is the number of anchors, and
aki ∈ A that is a projection matrix. Note that in this paper we define that sgn(x) ∈
{−1, 1}, and thus hk(x) ∈ {−1, 1}. Given any two data points xi and xj, BRE aims to
minimize the difference between their Euclidean distance dE and Hamming distance
dH . The formulation is

min
A

∑

(i,j)∈N
(dE(xi, xj) − dH (xi, xj))2, (11.7)

where dE(xi, xj) = 1
2

∥
∥xi − xj

∥
∥2
2, dH (xi, xj) = 1

4m

∑m
k=1

∥
∥hk(xi) − hk(xj)

∥
∥2
2, and N

represents the pair set of training data. To remove the scale of data points, usually the
original data point x is normalized to be unit vector so thatdE ∈ [0, 1]. Equation (11.7)
can be easily extended to a supervised scenario with setting the distance of the same
label pairs to be zero and different label pairs to be a large positive value. It is difficult
to solve the optimization problem in Eq. (11.7) due to the non-differential sgn(·)
function. Although the coordinate-descent algorithm [39] can solve the problem in
Eq. (11.7) with preserving the discrete constraint, it usually consumes high training
costs for large-scale training data.

KSH aims to look for m hashing functions to project the data X ∈ R
n×d into a

Hamming space, in order to obtain the compact representation of each data point and
preserve the similarity of pairs. For n pointsX, the similar pairs (neighbors in terms of
a distance or sharing the same label) are collected in the setM and the dissimilar pairs
(non-neighbors or with different labels) are collected in the set C. Let φ : Rd �→ T be
a kernelmapping from the original space to the kernel space,whereT is a reproducing
kernel Hilbert space (RKHS) with a kernel function κ(x, y) = φ(x)Tφ(y). With ns
points selected from X and a projection matrix A ∈ R

m×ns , the k-th (1 ≤ k ≤ m)

hashing function of KSH is defined as follows:

hk(x) = sgn

⎛

⎝
ns∑

j=1

κ(xj, x)ajk − bk) = sgn(ak κ̄(x)

⎞

⎠ , (11.8)

where x ∈ X and bk = 1
n

∑n
i=1

∑ns
j=1 κ(xj, xi)ajk . Equation (11.8) implies a bal-

anced hashing function constraint that is
∑n

i=1 hk(xi) = 0. Based on Eq. (11.8),
hk(x) ∈ {−1, 1}, KSH attempts to learn the projection matrix A ∈ R

m×ns such that
hk(xi) = hk(xj) if (xi, xj) ∈ M, and hk(xi) �= hk(xj) if (xi, xj) ∈ C. Let the m-bit
hash code of each point x be codem(x) = [h1, h2, . . . , hm]. Then, if (xi, xj) ∈ M,
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codem(xi) ◦ codem(xj) = m; otherwise, codem(xi) ◦ codem(xj) = −m, where ◦ rep-
resents the code inner product. In order to obtain the hashing function, the pairwise
label matrix S ∈ R

n×n is defined as follows:

sij =
⎧
⎨

⎩

1 (xi, xj) ∈ M
−1 (xi, xj) ∈ C
0 otherwise.

(11.9)

Because codem(xi) ◦ codem(xj) ∈ [−m,m] and sij ∈ [−1, 1], KSH learns the projec-
tion matrix by solving the following optimization model:

min
H∈{−1,1}m×n

∥
∥HTH − rS

∥
∥2

F , (11.10)

where H = sgn(AK̄) = [codem(x1), . . . , codem(xn)] ∈ R
m×n denotes the code

matrix produced by hashing functions and K̄ ∈ R
ns×n is a kernel matrix with zero

mean. There is one implied condition: H1n = 0 in Eq. (11.10). This condition max-
imizes the information of each bit.

To learn a discrete matrix and reduce the accumulated quantization error, KSDH
utilizes an asymmetric relaxation to learn binary codes as follows:

min
A,H

∥
∥HTAK̄ − mS

∥
∥2

F ,

s.t. AK̄K̄TAT = nIm, H = sgn(AK̄).
(11.11)

Note that the hashing function H is preserved in the objective function. Usually,
the smaller accumulated quantization error between AK̄ and sgn(AK̄), the smaller
reconstruction error of the objective function. Ideally when HTAK̄ = mS, it is easy
to obtain H = AK̄. The constraint AK̄K̄TAT = nIm is derived from the constraint
HHT = nIm, which enforces m bit hashing codes to be mutually uncorrelated such
that the redundancy among these bits is minimized [17]. In addition, the constraint
AK̄K̄TAT = nIm can also reduce the redundancy among data points [41]. Since
Tr

{
K̄TATHHTAK̄

}
and Tr

{
WTW

}
are constants, the optimization problem in Eq.

(11.11) is equivalent to the following optimization problem:

max
A,H

Tr
{
HWK̄TAT

}
,

s.t. AK̄K̄TAT = nIm,H = sgn(AK̄).
(11.12)

11.2.3.2 Deep Pairwise-Based Hashing

Aforementioned traditional methods produce binary codes after obtaining features
extracted by using GIST [42], HOG [43], SIFT [42], or convolutional neural network
(CNN) [22], which might decrease their retrieval accuracy due to learning features
and binary representations individually. To address this problem, deep hashing net-
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work (DHN) [44] and deep supervised pairwise hashing (DSPH) [45] simultaneously
learn image representations and binary codes by maintaining the relationship of each
pair. To take advantage of the pair labels, DSPH proposes an effective and efficiency
model as follows:

min
B,W,V,θ

J = −∑
sij∈S(sij	ij − log(1 + e	ij )) + η

∑n
i=1

∥
∥bi − WTφ(xi, θ)

∥
∥2
2 ,

s.t. ui = WTφ(xi, θ),	ij = 1
2u

T
i uj,bi ∈ {−1, 1}m ,

(11.13)
where sij ∈ {0, 1} is the pairwise label to denote the similarity relationship between
samples xi and xj, B represents binary codes, φ(xi, θ) denotes the features extracted
by CNN and θ stands for its parameters, andW is a projection matrix in the last layer
of the deep hashing architecture.

Similar to DHN and DSPH, many other deep pairwise-based hashing methods
have been developed to further improve their retrieval performance, like deep super-
vised hashing (DSH) [46] and HashNet [47]. Because these hashing methods focus
on the interclass difference of images but ignore the relevance order of images within
the same classes, pairwise-based deep ranking hashing (PDRH) [27] is proposed to
simultaneously learn feature representations and binary codes by employing a con-
volutional neural network and a pairwise matrix to maintain the interclass difference
and intraclass relevance among images. We introduce PDRH in the following.

Given data X = [x1, x2, . . . , xn] ∈ R
n×d , where n and d are the number of data

points and dimensions, respectively. Suppose these data have c classes, with each
class containing nk (

∑c
k=1 nk = n) data points. Let (xi, xj) ∈ M if xi and xj are in

the same class; otherwise, (xi, xj) ∈ C, where M and C represent the neighbor-pair
and non-neighbor-pair sets, respectively. Assume that a data point x ∈ R

d belongs
to the k-th class and it has different relevance to the data points in the same class,
the relevance list can be written as follows:

r(x,Xk) = {
rk1 , r

k
2 , . . . , r

k
nk

}
, (11.14)

where Xk is a set containing all data points belonging to the k-th class, rkj > 0
represents the relevance of data point xkj to x, and rkj > rkl means that x is more
similar to xkj than that to xkl .

Hashing is to encode the high-dimensional data into a set of compact binary codes.
Specifically, for a data point x, its k-th hashing function is defined as follows:

hk(x) = sgn(f (x)ak + bk), (11.15)

where sgn(·) is amapping function such that sgn(f (x)ak + bk) ∈ {−1, 1}, f (x) ∈ R
p

is a row vector representing p features extracted from x, ak ∈ R
p is a column vector to

project the high-dimensional features into a low-dimensional space and bk is a basis.
In this chapter, we define hk(x) = 1 if f (x)ak + bk ≥ 0; otherwise, hk(x) = −1.
Let m-bit hash codes of x be codem(x) = [h1, h2, . . . , hm], and then it has −m ≤
codem(xi) ◦ codem(xj) ≤ m. For three data points xi, xj, and xk , if xi is more similar
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to xj than xk , there exists codem(xi) ◦ codem(xj) > codem(xi) ◦ codem(xk). In order to
distinguish data points belonging to different classes, let codem(xi) ◦ codem(xj) > 0
when (xi, xj) ∈ M and codem(xi) ◦ codem(xj) < 0 when (xi, xj) ∈ C. Considering
the intraclass relevance of data points, a pairwise matrix S ∈ R

n×n to describe the
relationship of data pairs is defined as follows:

sij =
{
r(xi, xj) (xi, xj) ∈ M,

−γ (xi, xj) ∈ C,
(11.16)

where 0 < r(xi, xj) ≤ m is the relevance between xi and xj, and 0 < γ ≤ m is a
constant. Although the largest γ can be m, empirically, we choose a relatively small
γ in order to loose the constraint of hashing codes. In this paper, we set γ = 1.

Hashing aims to learn compact binary codes to preserve the relations among orig-
inally high-dimensional data. Because codem(x) = [h1, h2, . . . , hm], −m ≤ codem
(xi) ◦ codem(xj) ≤ m, and −γ ≤ sij ≤ rmax, the objective function can be intuitively
written as follows:

min
H

1

4

∥
∥
∥
rmax
m

HHT − S
∥
∥
∥
2

F
, (11.17)

where rmax is the maximum element in S,H = sgn(f (X)A + 1nb),H ∈ {−1, 1}n×m,
A ∈ R

p×m, b ∈ R
m and 1n ∈ R

n is a column vector with all elements being one.
Unfortunately, Eq. (11.17) is non-differential and thus it is difficult to directly

solve. To learn the projection matrix A, H = sgn(f (X)A + 1nb) ∈ {−1, 1}n×m is
relaxed into Y = tanh(f (X)A + 1nb) ∈ [−1, 1]n×m based on the following obser-
vations: (1) [−1, 1]n×m is the closest convex region to the non-convex region
{−1, 1}n×m; (2) Y = tanh(f (X)A + 1nb) is differentiable with respect to A and b,
while H = sgn(f (X)A + 1nb) is non-differentiable due to the non-smooth function
sgn(·). Then Eq. (11.17) can be reformulated as follows:

J1 = min
A,b

1
4

∥
∥ rmax

m YYT − S
∥
∥2
F

,

s.t. Y = tanh(f (X)A + 1nb),
(11.18)

which is a pairwise loss function that preserves the semantic information into Y.
Because a large accumulated quantization error between H and the relaxed Y will
decrease the retrieval accuracy, a quantization loss term J2 = λ1

2 ‖H − Y‖2F is added
into Eq. (11.18) to make the projection matrix A and the vector b reduce the accu-
mulated error, where λ1 is a weight coefficient. Furthermore, because the variance
of the projection matrix A is important to obtain a robust and stable solution, a reg-
ularization loss term J3 = λ2

4

∥
∥ATA − Im

∥
∥2
F is incorporated into Eq. (11.18), where

Im ∈ R
m×m is an identity matrix and λ2 is a regularization coefficient. Therefore,

Eq. (11.18) becomes

J = min
A,b

1
4

∥
∥ rmax

m YYT − S
∥
∥2
F

+ λ1
2 ‖H − Y‖2F + λ2

4

∥
∥AAT − Im

∥
∥2
F ,

s.t. Y = tanh(f (X)A + 1nb),H = sgn(Y),
(11.19)
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Fig. 11.1 The flowchart of PDRH. Binary encoding layer is used to encode the extracted features
obtained from the fully connected layer into binary codes

which is the proposed objective function of PDRH. InEq. (11.19),λ1 ismainly used to
balance the preserved semantic information inY and the accumulated errors between
H and Y, i.e., the larger λ1, the smaller accumulated errors yet the less preserved
semantic information; λ2 is to control the variance of A, and a too large λ2 might
increase the accumulated error and decrease the preserved semantic information.
For clarity, we present the flowchart of PDRH using one CNN architecture and
Eq. (11.19) in Fig. (11.1).

Next, we will show the optimization procedure of the proposed objective function
Eq. (11.19) embedded in a CNN architecture.

Suppose that the proposed network contains L layers with parameters
(
Al,bl

)L
l=1,

whereAl denotes theweight connection between the (l − 1)-th and l-th layers, and bl

represents the bias in the l-th layer. The previous L − 1 layers are provided by a CNN
architecture (please refer to Fig. 11.1). Equation (11.19) is the objective function of
the L-th (binary encoding) layer after the L − 1-th (fully connected) layer, and thus
AL = A and bL = b. The output of the l-th layer is

Zl = σ(Zl−1Al + 1nbl), (11.20)

where σ(·) represents the activation function. Hence, the parameters f (X) and Y in
Eq. (11.19) are equivalent to ZL−1 and ZL in the network, respectively.

To calculate the gradients of the parameters
(
Al,bl

)L
l=1, we need to first calculate

the partial derivatives ∂J
∂AL and ∂J

∂bL in the L-th layer as follows:

∂J

∂AL
= ∂J1

∂ZL

∂ZL

∂AL
+ ∂J2

∂ZL

∂ZL

∂AL
+ ∂J3

∂AL
= ZL−1TL + λ2AL(ALTAL − Im),

(11.21a)
∂J

∂bL
= ∂J1

∂ZL

∂ZL

∂bL
+ ∂J2

∂ZL

∂ZL

∂bL
= 1

n
1nL, (11.21b)

where L = ( rmaxm ( rmaxm ZLZLT − S)ZL + λ1(H − ZL)) 
 (1n1Tm − ZL 
 ZL), and 

denotes elementwise multiplication.
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The partial derivatives ∂J
∂Al and ∂J

∂bl in the l-th (l < L) layer are calculated as
follows:

∂J

∂Al
= ∂J

∂Zl

∂Zl

∂Al
= Zl−1Tl, (11.22a)

∂J

∂bl
= ∂J

∂Zl

∂Zl

∂bl
= 1

n
1nl, (11.22b)

where l = l+1Al+1T 
 σ ′(Zl−1Al + 1nbl), and σ ′(Zl−1Al + 1nbl) denotes the
derivative of Zl .

The parameters
(
Al,bl

)L
l=1 are updated by using the gradient descent algorithm

as follows:

Al = Al − η
∂J

∂Al
, (11.23a)

bl = bl − η
∂J

∂bl
. (11.23b)

11.3 Experimental Results and Discussion

Experiments on an image data set including histopathological skeletal muscle and
lung cancer images are utilized to evaluate some popular hashingmethods. All skele-
tal muscle and lung cancer images are stained with hematoxylin and eosin (H&E).
The skeletal muscle images contain two major classes of idiopathic inflammatory
myopathy (IIM), i.e., polymyositis (PM) and dermatomyositis (DM). The lung can-
cer images are with two types of diseases, i.e., adenocarcinoma (AC) and squamous
cell carcinoma (SC). 5,256 (2,572 PM and 2,678 DM) skeletal muscle images cor-
responding to 41 individual subjects are collected and cropped from the Medical
College of Wisconsin Neuromuscular Laboratory (MCWNL), and 2,904 (1,456 AC
and 1,448 SC) lung cancer images of 42 patients are selected and cropped from
The Cancer Genome Altas (TCGA). Here, all images are randomly partitioned into
training and testing sets with a (approximate) ratio 3:1. Specifically, 6,128 images
including 3,952 (2,010 PM and 1,942 DM) skeletal muscle images and 2,176 (1,092
AC and 1,084 SC) lung cancer images are utilized for training, and the remaining
2,032 (562 PM, 736 DM, 364 AC, and 364 SC) images are used for testing. In all
experiments, the RGB raw images are directly used as input for all deep hashing
methods, and they are wrapped to patches with a size of 128 × 128 before inputting
to the learning pipeline. Moreover, for images in the same class, the Euclidean dis-
tance between any two images is calculated, and then all images are divided into
eight subsets based on the distance. The relevance of the images in the subset with
the smallest distance is eight and that with the largest distance is one. Note that in
practice the relevance can be defined based on the applications.
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Table 11.1 Configuration of the network for input images with the size 128 × 128 × 3. (Note that
the batch normalization followed by the ReLU layer is in the middle of two convolution layers or
the convolution and max-pooling layers.)

Type Filter size/stride Output size

Convolution 3 × 3 × 3 × 32/1 126 × 126 × 32

Convolution 3 × 3 × 32 × 32/1 124 × 124 × 32

Pool 2 × 2/2 62 × 62 × 32

Convolution 3 × 3 × 32 × 64/1 60 × 60 × 64

Convolution 3 × 3 × 64 × 64/1 58 × 58 × 64

Pool 2 × 2/2 29 × 29 × 64

FC – 512

Binary – m

We show PDRH and eight non-deep hashing methods including six non-ranking
hashing algorithms, spectral hashing (SH) [17], KSH [19], COSIDISH [40], SDH
[20], KSDH [18], and ADGH [21], as well as two ranking hashing algorithms RSH
[29] and RPH [30], and two popular deep hashing algorithms, convolutional neural
network hashing (CNNH) [48] and deep learning of binary hash codes (DLBHC)
[24]. For non-deep hashing algorithms, the holistic high-dimensional features are
extracted from thewhole image as the input, i.e., first detecting scale-invariant feature
transform (SIFT) key points from the whole image and then employing SIFT to
extract features around these key points. Then, these features are encoded into 2,000-
dimensional histograms using the bag-of-words (BoW) method [6]. For comparison,
the output of the fully connected layer of PDRH is also used as the input for the
non-deep hashing methods, and these deep learning features are named as DLF. In
PDRH, its three essential parameters are set as γ = 1, λ1 = rmax and λ2 = 0.1. For
fairness, all deep hashing methods utilize the architecture in Table11.1. To evaluate
the performance of hashing algorithms, we employ five main criterion: classification
accuracy, MAP, PR-curve, REL, and NDCG. Given a set of queries, its MAP, REL,
and NDCG scores are calculated as follows:

MAP is the mean of the average precision (AP) for each query. AP is defined as
follows:

AP@q =
∑q

k=1 P(k)δ(k)
∑q

k=1 δ(k)
, (11.24)

where q is the number of top returned samples,P(k) is the precision at cut-off k in the
list, δ(k) = 1 if the sample ranked at k-th position is relevant; otherwise, δ(k) = 0.

REL = 1

q

q∑

i=1

ri, (11.25)

where ri is the relevance of the ith nearest neighbors to the query image.
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NDCG = 1

Z

q∑

i=1

2ri − 1

log(i + 1)
, (11.26)

where Z is a constant to normalize the maximum of NDCG to be one.

11.3.1 Experimental Results

To calculate the retrieval accuracy of various hashing algorithms, we first adopt each
algorithm to encode training and query images into binary codes, and then utilize the
binary codes to calculate the Hamming distance between query and training images.
Next, we can select the nearest training images for each query image based on their
Hamming distance. Finally, we can compute the retrieval accuracy of each query
image based on the corrected selected training images. We calculate the average
value of all query images based on the five criterion and report them in Tables11.2,
11.3, and Figs. 11.2, 11.3, 11.4, 11.5.

Table11.2 shows the average retrieval accuracy of all query images, including
classification accuracy and MAP of various methods, e.g., the non-deep algorithms
SH, KSH, SDH, COSDISH, KSDH, ADGH, RSH, RPH, and deep hashing algo-
rithms CNNH, DLBHC and PDRH, on 8-, 16-, and 32-bit hashing codes. As we
can see, the non-deep hashing algorithms with DLF achieve significantly better per-
formance than that with BoW. Additionally, COSIDISH, KSDH, and ADGH with
DLF outperform the deep hashing algorithms CNNH and DLBHC. PDRH obtains
higher accuracy (97.49%) and MAP (97.49 and 97.33%) than COSIDISH, KSDH,
and ADGH with DLF at 8 bit, and they have similar performance (the difference is
within 0.5%) at 16 and 32 bit.

Figure11.2 displays the PR-curve of various algorithms at 8, 16, and 32 bit. It sug-
gests that with DLF features, the non-deep algorithms, SH, KSH, SDH, COSDISH,
KSDH, and ADGH outperform those with BoW features. At 8 bit, PDRH achieves
better performance than the other algorithms when the recall is smaller than 0.3. At
16 and 32 bit, PDRH can obtain the best retrieval performance among all hashing
algorithms. Figure11.3 presents the precision of various algorithms at all 8, 16, and
32 bits using Hamming radius r = 1, 2 and 3. When r = 1 or 2, PDRH attains the
best precision at 8 and 16 bit. When r = 3, PDRH outperforms other algorithms at
16 and 32 bit.

Table11.3 presents the ranking performance (REL and NDCG) of the proposed
method PDRH and the comparative algorithms with DLF features at 16 bit on 5, 10,
and 50 returned neighbors. PDRH obtains the highest REL score 5.74, 5.74, and 5.76
on 5, 10, and 50 returned neighbors, respectively. Figure11.4 shows the relevance of
above algorithms on 5, 10, 20, 50, and 100 retrieved images at all the three bits. It
further illustrates that PDRH achieves higher REL scores than the other algorithms
on different returned neighbors or bits. Table11.3 also demonstrates that with 16-bit
hashing codes, PDRH, SH+DLF, and RSH+DLF obtain the best NDCG score than
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Table 11.2 Retrieval performance (%) measured as classification accuracy and MAP with the top
100 and 500 returned neighbors, respectively

Method Accuracy MAP (Top 100) MAP (Top 500)

8 16 32 8 16 32 8 16 32

SH [17]+BoW 49.31 63.48 69.73 54.86 65.16 65.38 55.22 57.95 56.16

KSH [19]+BoW 64.22 75.30 77.66 64.19 72.33 73.55 71.09 71.56 73.32

SDH [20]+BoW 66.14 73.67 73.67 66.14 73.67 73.67 66.14 73.67 73.67

COSDISH
[40]+BoW

64.42 69.29 73.08 68.22 70.63 76.26 68.68 71.30 76.44

KSDH [18]+BoW 68.36 66.10 72.83 68.36 66.10 72.83 68.36 66.10 72.83

ADGH [21]+BoW 72.15 71.56 73.57 72.15 71.56 73.57 72.15 71.56 73.57

SH [17]+DLF 85.73 90.26 92.57 87.25 88.86 91.42 83.98 80.08 82.56

KSH [19]+DLF 57.48 92.86 93.65 57.02 91.90 94.40 56.96 93.22 94.16

SDH [20]+DLF 91.68 95.08 94.98 91.68 95.08 94.98 91.68 95.08 94.98

COSDISH
[40]+DLF

96.56 96.70 96.41 96.69 96.70 96.49 96.70 96.70 96.50

KSDH [18]+DLF 96.90 96.15 96.11 96.90 96.15 96.11 96.90 96.15 96.11

ADGH [21]+DLF 96.56 96.70 96.41 96.69 96.70 96.49 96.70 96.70 96.70

RSH [29]+DLF 80.27 80.36 88.63 83.16 81.38 87.65 78.88 74.02 81.33

RPH [30]+DLF 92.22 85.29 94.24 91.56 88.01 95.06 92.39 88.55 94.61

CNNH [48] 92.86 92.32 66.19 88.48 82.57 67.14 92.81 90.01 85.03

DLBHC [24] 94.49 92.13 90.80 82.92 88.30 89.44 90.86 91.50 89.27

PDRH 97.49 96.75 96.65 97.49 96.80 96.66 97.33 96.65 96.52

Fig. 11.2 PR-curve of various algorithms at different number of bits

the others when five images are retrieved. With 10 and 50 images returned, PDRH
achieves the highest NDCG score 0.49 and 0.51, respectively. Figure11.5 shows the
NDCG score of various algorithms on 5, 10, 20, 50, and 100 retrieved images. At
8 bit, PDRH achieves slightly worse score than RSH+DLF, while it significantly
outperforms the others. At 16 bit, PDRH and RSH+DLF achieve similar NDCG
scores on 5, 10, and 20 retrieved images, and PDRH obtains the best score on 50 and
100 returned neighbors. At 32 bit, PDRH outperforms the others on 10, 20, 50, and
100 returned samples.
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Fig. 11.3 Precision versus bit using various algorithms on different Hamming radiuses (@r)

Fig. 11.4 REL with different number of retrieved images

Fig. 11.5 NDCG with different number of retrieved images

11.3.2 Discussion

Based on experimental results in Tables11.2, 11.3, and Figs. 11.2, 11.3, 11.4, 11.5,
we have the following observations:

• Non-deep hashing algorithms SH, KSH, SDH, COSDISH, KSDH, and ADGH
with DLF obtain better retrieval performance including classification accuracy,
MAP, and PR-curve than those with BoW features. PDRH containing a convo-
lutional neural network has powerful ability to extract features from the original
histopathology images with preserving the significant semantic information. By
contrast, BoW explores the intrinsic structure to extract features with maintaining
the significant informationwithout any supervision, and thus it might neglect some
significant semantic information.
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Table 11.3 Ranking performance using REL and NDCG with 16-bit hashing codes on 5, 10, and
50 retrieved images

Method REL NDCG

5 10 50 5 10 50

SH [17]+DLF 5.38 5.38 5.22 0.48 0.48 0.49

KSH [19]+DLF 3.31 3.99 4.62 0.22 0.27 0.34

SDH [20]+DLF 4.32 4.61 4.44 0.25 0.29 0.30

COSDISH [40]+DLF 4.34 4.64 4.47 0.25 0.29 0.30

KSDH [18]+DLF 3.76 3.87 3.82 0.21 0.22 0.28

ADGH [21]+DLF 4.36 4.65 4.57 0.25 0.29 0.29

RSH [29]+DLF 5.38 5.39 5.22 0.48 0.48 0.49

RPH [30]+DLF 4.62 4.68 4.70 0.33 0.35 0.38

PDRH 5.74 5.74 5.76 0.48 0.49 0.51

• Although the non-deep hashing algorithms including the non-ranking and rank-
ing hashing can perform well with DLF features, they usually achieve similar or
inferior performance to PDRH. The main possible reason is that PDRH extracts
features and learns binary representations simultaneously, leading to better and
more stable solutions.

• The non-ranking hashing including KSH, SDH, COSDISH, KSDH, and ADGH
can deliver fair retrieval performance, while their ranking performance, including
REL and NDCG, is relatively poor. This is because their affinity matrices maintain
the interclass difference of images, while they do not consider the similarity order
of images within the same classes.

• Although the ranking hashing algorithms, RSH and RPH, can obtain better rank-
ing performance than most of non-ranking hashing, they usually achieve worse
retrieval performance. This can be attributed to the fact that RSH and RPH focus
on the intraclass difference among images, but they do not emphasize the interclass
difference among images.

11.4 Summary

This chapter presents three types of deep hashing techniques, especially pairwise-
based deep hashing, and their applications on histopathology images. Specifically, it
discusses pointwise-,multiwise-, and pairwise-based deep hashing and analyzes their
differences. Additionally, it introduces one pairwise-based deep hashing method that
can simultaneously extract features fromhistopathology images and learn their binary
representations, with preserving the interclass difference for image classification and
maintaining the intraclass relevance order in the same classes. Finally, this chapter
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shows experimental results of several popular hashing methods on a histopathology
image data set including skeletal muscle and lung cancer images.

Currently, there are still some challenging problems required to address (i) design-
ing a more general deep hashing model to handle more types of histopathology
images; (ii) proposing fast and efficient deep hashing methods to retrieve the most
relevant image patches to one type of diseases from whole-slide images, which usu-
ally contain billions pixels and provide an obstacle for many hashing methods; (iii)
leveraging a small amount of labeled data and large-scale unlabeled data to achieve
deserved retrieval accuracy, because most of current deep hashing methods require
a large amount of labeled images, labeling which is laborious, extensive, and time-
consuming for pathologists; (iv) designing a robust deep hashing model to tackle
histopathology images with noisy labels, because it is error prone to annotate images
due to the subjective assessment of pathologists.
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Chapter 12
Tumor Growth Prediction Using
Convolutional Networks

Ling Zhang, Lu Le, Ronald M. Summers, Electron Kebebew
and Jianhua Yao

Abstract Prognostic tumor growthmodeling via volumetricmedical imaging obser-
vations is a challenging yet important problem in precision and predictive medicine.
It can potentially imply and lead to better outcomes of tumor treatment management
and surgical planning. Traditionally, this problem is tackled through mathemati-
cal modeling. Recent advances of convolutional neural networks (ConvNets) have
demonstrated higher accuracy and efficiency than conventional mathematical models
can be achieved in predicting tumor growth. This indicates that deep learning based
data-driven techniques may have great potentials on addressing such problem. In this
chapter, we first introduce a statistical group learning approach to predict the pattern
of tumor growth that incorporates both the population trend and personalized data,
where deep ConvNet is used to model the voxel-wise spatiotemporal tumor progres-
sion. We then present a two-stream ConvNets which directly model and learn the
two fundamental processes of tumor growth, i.e., cell invasion and mass effect, and
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predict the subsequent involvement regions of a tumor. Experiments on a longitudi-
nal pancreatic tumor data set show that both approaches substantially outperform a
state-of-the-art mathematical model-based approach in both accuracy and efficiency.

12.1 Introduction

The prediction of tumor growth is a very challenging task. It has long been viewed
as a mathematical modeling problem [6, 11, 31]. Medical imaging data provide
noninvasive and in vivo measurements of the tumor over time at a macroscopic
level. For this reason, previous works on image-based tumor growth modeling are
mainly based on the reaction–diffusion equations and on biomechanical models.
Some previous tumor growth models [6, 11, 31] are derived from two or more
longitudinal imaging studies of a specific patient over time. While these methods
yield informative results, most previous tumor growth models are independently
estimated from the target patient without considering the tumor growth pattern of
population trend. Furthermore, the small number of model parameters (e.g., 5 in
[31]) may be insufficient to represent the complex characteristics of tumor growth.

Aside frommathematicalmodelingmethods, the combination of data-driven prin-
ciples and statistical group learning may provide a potential solution to solve these
problems by building a model based on both population trend and personalized clin-
ical characteristics. The only pioneer study in this direction [20] attempts to model
the glioma growth patterns in a classification-based framework. This model learns
tumor growth patterns from selected features at the patient, tumor, and voxel levels,
and achieves a prediction accuracy of 59.8%. However, this study only uses popula-
tion trend of tumor growth without incorporating the history of the patient-specific
tumor growth pattern, and is unable to predict tumor growth at different time points.
Furthermore, this early study only employs hand-crafted low-level features. In fact,
information describing tumor progression may potentially lie in the latent high-level
feature space of tumor imaging, but this has yet to be investigated.

Deep neural networks [16] are high capacity trainable models with a large set
of (∼15M) parameters. By optimizing the massive amount of network parameters
using gradient backpropagation, the network can discover and represent intricate
structures from raw data without any type of feature engineering. In particular, deep
convolutional neural networks (ConvNets) have significantly improved performance
in a variety of traditional medical imaging applications [9]. The basic idea of these
applications is using deep learning to determine the current status of a pixel or
an image (whether it belongs to object boundary/region, or certain category). The
ConvNets have also been successfully used in prediction of future binary labels at
image/patient level, such as survival prediction of patients with brain and lung cancer
[22, 32]. More generally, in artificial intelligence community, ConvNet has shown
its strong ability to predict the next status at image pixel level—as a key component
in AlphaGo [19, 23], fully ConvNets are trained to predict the next move (position



12 Tumor Growth Prediction Using Convolutional Networks 241

Fig. 12.1 Framework of the voxel-wise prediction of tumor growth using statistical group learning

of the 19 × 19 Go game board) of Go player, given the current board status, with an
accuracy of 57%.

In this chapter, we are investigating whether deep ConvNets are capable of pre-
dicting the future status at the pixel/voxel level for medical problem. Our main
objective is to design a deep learning predictive model to predict whether the voxels
in the current time point will become tumor voxels or not at the next time point (cf.
Fig. 12.1).

Wefirst present a statistical group learning framework to predict tumor growth that
incorporates tumor growth patterns derived from population trends and personalized
clinical factors. Our hypothesis is that regions involved in future tumor progression
are predictable by combining visual interpretations of the longitudinal multimodal
imaging information with those from clinical factors. We then present a two-stream
ConvNets which directly represent and learn the two fundamental processes of tumor
growth (cell invasion andmass effect) frommulti-model tumor imaging data atmulti-
ple time points. Quantitative experiments on a pancreatic tumor data set demonstrate
that both methods substantially outperform a state-of-the-art model-based method
[31] in both accuracy and efficiency.

12.2 Group Learning Approach for Tumor Growth
Prediction

In the longitudinal pancreatic tumor data studied in this work, each patient has mul-
timodal imaging data (dual-phase contrast-enhanced CT and FDG-PET [(2-[18F]
Fluoro-2-deoxyglucose positron emission tomography)]) and clinical records at three
time points spanning 3–4 years. We design an integrated training and personalization
and prediction framework illustrated in Fig. 12.2. The imaging data scans of differ-
ent modalities acquired at different time points are first registered, after which the
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Fig. 12.2 Overview of the proposed learning method for predicting tumor growth. The upper part
represents stages of model training (to learn population trend) and personalization and the lower
part formulates the process of (unseen) data prediction

tumors are segmented. Intracellular volume fraction (ICVF) and standardized uptake
value (SUV) [31] are also computed. In the training and personalization stage, all
voxel-wise ConvNets- and location-based features, time intervals, and clinical fac-
tors are extracted from any pairs of two time points (time1/time2 and time2/time3)
from group data (patient 1—patient n) and the pair of time1/time2 from personalized
data (the target patient, denoted as patient n + 1). Next, feature selection, which takes
prior knowledge into account, is used to rank these features from hybrid resources.
The top m-ranked features (m = 1, . . . ,M ) are employed to train SVM models on
group data (to capture population trend). These SVMclassifiers are then personalized
via the time1/time2 pair of the target patient data to determine the optimal feature set
and model parameters (personalization). In the prediction stage, given the data of the
target patient at time2, the imaging and clinical features are fed into the predictive
model to predict and estimate the voxel-wise tumor region at a future time3. Note
that the testing data (i.e., for predicting time3 based on time2 of the target patient)
has never been seen by the predictive model.
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12.2.1 Image Processing and Patch Extraction

To establish the spatial–temporal relationship of tumor growth along different time
points, the multi-model imaging data are registered based on mutual information and
imaging data at different time points are aligned using the tumor center [31]. After
that, three types of information (SUV, ICVF, and tumormask, refer to the left panel in
Fig. 12.3 as an example) related to tumor property are extracted from the multimodal
images and used as a three-channel input to the invasion ConvNet model.

(1) The FDG-PET characterizes regions in the body which are more active and
need more energy to maintain existing tumor cells and to create new tumor cells.
This motivates us to use FDG-PET to measure metabolic rate and incorporate it
in learning the tumor predictive model. SUV is a quantitative measurement of the
metabolic rate [18]. To adapt to the ConvNets model, the SUV values from PET
images are magnified by 100 followed by a cutting window [100 2600] and then
transformed linearly to [0 255].

(2) Tumor grade is one of the most important prognosticators, and is determined
by the proliferation rate of the neoplastic cells [2]. This motivates us to extract the
underlying physiological parameter related to the cell number. ICVF is a represen-
tation of the normalized tumor cell density, and is computed from the registered
dual-phase contrast-enhanced CT:

ICVF = 1 − HUpost_tumor − HUpre_tumor

E[HUpost_blood − HUpre_blood ] × (1 − Hct), (12.1)

where HUpost_tumor , HUpre_tumor , HUpost_blood , and HUpre_blood are the Hounsfield
units of the post- and pre-contrast CT images at the segmented tumor and blood pool

Fig. 12.3 Some examples of positive (center panel) and negative (right panel) training samples.
In the left panel, the pink and green bounding boxes at the current time illustrate the cropping of
a positive sample and a negative sample from multimodal imaging data. Each sample is a three-
channel RGB image formed by the cropped SUV, ICVF, and mask at the current time. The label
of each sample is determined by the location of corresponding bounding box center at the next
time—inside tumor (pink): positive; outside tumor (green): negative
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(aorta), respectively. E[•] represents the mean value. Hct is the hematocrit which
can be obtained from blood samples, thus the ICVF of the tumor is computed using
the ICVF of blood (Hct) as a reference. The resulting ICVF values are magnified by
100 (range between [0 100]) for ConvNets input.

(3) Tumor stage is another important prognosticator, and is determined by the size
and extent of the tumor [2]. Previous studies have used the tumor mask/boundary
to monitor the tumor morphological change and estimate model parameters [6, 12,
25]. In this study, following [31], the tumors are segmented by a semiautomatic level
set algorithm with region competition [34] on the post-contrast CT image to form
tumor masks with binary values (0 or 255).

As illustrated in Fig. 12.1, to train a ConvNet to distinguish between future tumor
and future non-tumor voxels, image patches of size 17 × 17 voxels ×3—centered
at voxels near the tumor region at the current time point—are sampled from four
channels of representations reflecting and modeling the tumor’s physiological sta-
tus. Patches centered inside or outside of tumor regions at the next time point are
labeled as “1” and “0”, serving as positive and negative training samples, respectively.
This patch-based extraction method allows for embedding the context information
surrounding the tumor voxel. The voxel (patch center) sampling range is restricted to
a bounding box of ±15 pixels centered at the tumor center, as the pancreatic tumors
in our data set are<3cm (≈30 pixels) in diameter and are slow growing. To avoid the
classification bias toward the majority class (non-tumor) and to improve the accu-
racy and convergence rate during ConvNet training [15, 35], we create a roughly
balanced training set by proportionally under-sampling the non-tumor patches. A
few examples of positive and negative patches of SUV, ICVF, and mask encoded in
three-channel RGB color images are shown in Fig. 12.3.

12.2.2 Learning a Voxel-Wise Deep Representation

We use AlexNet [15] as our network architecture. AlexNet contains five convolu-
tional (conv1–conv5), three pooling (pool1, pool2, pool5), and two fully connected
layers (fc6–fc7). This network is trained from scratch on all pairs of time points
(time1/time2 and time2/time3) from the group data set. The training is terminated
after a predetermined number of epochs, where the model with the lowest validation
loss is selected as the final network.

The resulting ConvNet is then used to extract the high-level representation of vox-
els/patches. This is achieved by feeding the three-channel SUV-ICVF-mask image
patches into the personalized ConvNet model, where the fc and the output layers can
be treated as the learned deep features. Considering that the high-dimensional deep
image features of the ConvNet fc layers may tend to overwhelm the low number
tumor-level and patient-level features if combined directly, the outputs of the last
layer with two nodes are regarded as the final extracted deep features.
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12.2.3 Learning a Predictive Model with Multi-source
Features

12.2.3.1 Feature Extraction and Selection

A general statistical learning concept is that cues from different sources can provide
complementary information for learning a stronger classifier. Therefore, in addition
to deep features, we extract three other types of features: (1) Time intervals between
two imaging time points, with days as the time unit. (2) Tumor-level features—the
Euclidean distance of the patch center toward its closest tumor surface within the 3D
volume for each voxel. This distance value is positive if the patch center locates inside
the current tumor region and negative otherwise. In addition, the tumor volume is
calculated. (3) Patient-level features, including age, gender, height, and weight. The
SVM RFE technique [10] is adopted to find the most informative features during
the process of model training and personalization. Reflecting the significance of
image-based features for assessing the growth of tumor [31], the two ConvNet-based
features are found to be always selected by the SVM RFE model selection. Finally,
time interval is used as a prior feature, as it is necessary for our task.

12.2.3.2 Predictive Model Training and Personalization, and Testing

Once the feature set has been fully ranked, the first m features (m = [2, 3, . . . , 9])
are each iteratively added to train a set of (seven) SVM classifiers until all features
are included. In each iteration, the SVM classifier is trained on samples from the
group data set, and then personalized on the samples of the personalization data
set. The prediction accuracies are calculated and recorded for all classifiers, where
the accuracy metric (ACC) is defined by ACC = TP+TN

TP+FP+FN+TN . The feature set and
classifier that maximize the prediction ACC are selected.

To better personalize the predictive model from population trend to the target
patient,we optimize an objective functionwhichmeasures the agreement between the
predicted tumor volume and its future ground-truth volumeon the target patient. Todo
so,we first apply the predictivemodel to voxels in the searching neighborhood (tumor
growth zone) of the personalization volume, and later threshold the classification
outputs. The relative volume difference (RVD) between the predicted and ground-
truth tumor volumes are computed. As in [31], the tumor growth zone is set as a
bounding box surrounding the tumor, parametrized with the pixel distances Nx, Ny,
and Nz to the tumor surface in the x-, y-, and z-directions, respectively.

In the testing stage, given the data at time 2 of the target patient, the predictive
model, along with its personalized model parameters, is applied to predict the label
of every voxel in the growth zone at time 3.
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12.2.4 Experiments and Results

Seven patients (five males and two female) with von Hippel–Lindau (VHL) dis-
ease, each with a pancreatic neuroendocrine tumor (PanNET), are studied in this
section. The VHL-associated PanNETs are commonly found to be nonfunction-
ing with malignant (cancer) potential [14], and can often be recognized as well-
demarcated and solid masses through imaging screens [29]. For the natural history
of this kind of tumor, around 60% patients demonstrate nonlinear tumor growth,
20% stable, and 20% decreasing (over a median follow-up duration of 4 years) [27].
Treatments of PanNETs include active surveillance, surgical intervention, and med-
ical treatment. Active surveillance is undertaken if a PanNET does not reach 3 cm
in diameter or a tumor-doubling time <500 days; otherwise, the PanNET should
be resected due to high risk of metastatic disease [14]. Medical treatment (e.g.,
everolimus) is for the intermediate-grade (PanNETs with radiologic documents of
progression within the previous 12 months), advanced or metastatic disease [33].
Therefore, patient-specific prediction of spatial–temporal progression of PanNETs
at earlier stage is desirable, as it will assist in making decision within different treat-
ment strategies to better manage the treatment or surgical planning. In this data set,
the average age, height, and weight of the patients at time 1 were 48.6 ± 13.9 years,
1.70 ± 0.13m, and 88.1 ± 16.7kg, respectively. The time interval between two time
points is 418 ± 142 days (mean ± std.). This data set is obtained from [31].

The ConvNet is trained over 30 epochs. The initial learning rate is 0.001, and is
decreased by a factor of 10 at every tenth epoch.Weight decay andmomentum are set
to 0.0005 and 0.9. A dropout ratio of 0.5 is used to regularize the fc6 and fc7 layers.
Mini-batch size is 256. The image patch size s is set as 17 pixels due to the small
size of the pancreatic tumors. To accommodate the Caffe framework used for our
ConvNet, the original 17 × 17 image patches are upsampled to 256 × 256 patches
via bilinear interpolation. A total of 36,520 positive and 41,999 negative image
patches are extracted from seven patients. AlexNet is run on the Caffe platform [13],
using a NVIDIA GeForce GTX TITAN Z GPU with 12 GB of memory. The SVM
(LIBSVM library [4]) with linear kernel (C = 1) is used for both SVM RFE feature
selection and SVM classifier training. The parameters for the tumor growth zone are
set as Nx = 3, Ny = 3, and Nz = 3 for prediction speed concern, and we note that
the prediction accuracy is not sensitive to variation of these parameters.

We evaluate the proposed method using a leave-one-out cross-validation, which
not only facilitates comparison with the state-of-the-art model-based method [31]
(tumor status at time1 and time2 already known, predict time3) but also more impor-
tantly enables learning both population trend and patient-specific tumor growth pat-
terns. In each of the seven validations, six patients are used as the group training data
to learn the population trend, the time1/time2 of the remaining patient is used as the
personalization data set, and time2/time3 of the remaining patient as the testing set.
We obtain the model’s final performance values by averaging results from the seven
cross-validation folds. The prediction performance is evaluated using measurements
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Day 0 Day 168 Day 720

Statistical Learning Prediction
Recall: 86.9%; Precision: 91.8%;

Dice: 89.3%; RVD: 5.2%

Model-Based Prediction [18]
Recall: 73.9%; Precision: 97.8%;

Dice: 84.2%; RVD: 27.9%

(a) Ground truth of tumor growth at different time points.

(b) Prediction at the third time point (Day 720).

Fig. 12.4 Comparison of the proposed learning-based tumor growth prediction to a state-of-the-art
model-based prediction [31]. a Segmented (ground truth) tumor contours and volumes at different
time points. b Prediction results at the third time point obtained by learning- and model-based
techniques (red: ground-truth boundaries; green: predicted tumor boundaries)

Table 12.1 Performance comparison of our method with previous methods on testing set. Results
are reported as mean ± std. [min, max]

Recall (%) Precision (%) Dice (%) RVD (%)

Ref. [31] 83.2 ± 8.8 [69.4,
91.1]

86.9 ± 8.3 [74.0,
97.8]

84.4 ± 4.0 [79.5,
92.0]

13.9 ± 9.8 [3.6,
25.2]

Ours 87.9 ± 5.0 [81.4,
94.4]

86.0 ± 5.8 [78.7,
94.5]

86.8 ± 3.6 [81.8,
91.3]

7.9 ± 5.4 [2.5, 19.3]

at the third time point by four metrics: recall, precision, Dice coefficient, and RVD
(as defined in [31]).

recall = TPV

Vgt
, precision = TPV

Vpred
, Dice = 2 × TPV

Vgt + Vpred
, (12.2)

where TPV (true positive volume) is the overlapping volume between the predicted
Vpred and the ground-truth tumor volume Vgt .

In the example shown in Fig. 12.4, our method achieves both a higher Dice coeffi-
cient and a lower RVD than the model-based method. Note that the perfect values for
Dice andRVDare 100%and 0%, respectively. As indicated in Table12.1, ourmethod
yields a higher Dice coefficient (86.8 ± 3.6% vs. 84.4 ± 4.0%), and especially a
much lower RVD (7.9 ± 5.4% vs. 13.9 ± 9.8%) than the model-based method [31],
and thus is far more effective in future tumor volume prediction. The model-based
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approach in [31] requires ∼24h for model personalization and ∼21s for simulation
per patient, while our method merely requires 3.5h for training and personalization
and 4.8 ± 2.8min for prediction per patient.

12.3 Convolutional Invasion and Expansion Networks
for Tumor Growth Prediction

Cancer cells originate from the irreversible injuring of respiration of normal cells. Part
of the injured cells could succeed in replacing the lost respiration energy by fermenta-
tion energy, but will therefore convert into undifferentiated and widely growing cells
(cancer cells) [26]. Tumors develop from such abnormal cell/tissue growth, which
is associated with cell invasion and mass effect [8]. Cell invasion is characterized
by the migration and penetration of cohesive groups of tumor cells to surrounding
tissues, and mass effect by the distension and outward pushing of tissues induced by
tumor growth (Fig. 12.5).

We propose to use ConvNets to directly represent and learn the two fundamental
processes of tumor growth (cell invasion and mass effect) from multi-model tumor
imaging data at multiple time points. Our proposed ConvNet architectures are par-
tially inspired by the mixture of policy and value networks for evaluating the next
move/position in game of Go [23], as well as the integration of spatial and temporal
networks for effectively recognizing action in videos [7, 24]. In addition to x- and y-
direction optical flow magnitudes (i.e., two-channel image input) used in [7, 24], we
add the flow orientation information to form a three-channel input, as the optical flow
orientation is crucial to tumor growth estimation. In addition, we apply a personaliza-
tion training step to our networkswhich is necessary and important to patient-specific
tumor growth modeling [5, 18, 30, 31]. Furthermore, we focus on predicting future
labels of tumor mask/segmentation, which is found to be substantially better than
directly predicting and then segmenting future raw images [21].

Fig. 12.5 The two fundamental processes of tumor growth: cell invasion and expansive growth of
tumor cells
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12.3.1 Learning Invasion Network

12.3.1.1 Image Processing and Patch Extraction

As detailed in Sect. 12.2.1, three types of information (SUV, ICVF, and tumor mask,
refer to the left panel in Fig. 12.3 as an example) related to tumor property are
extracted from the multimodal images and used as a three-channel input to the inva-
sion ConvNet model.

12.3.1.2 Network Architecture

Weuse a six-layerConvNet adapted fromAlexNet [15],which includes four convolu-
tional (conv) layers and one fully connected (fc) layer (cf. upper panel in Fig. 12.6).
The inputs are of size 17 × 17 × 3 image patch stacks, where three refers to the
tumor status channels of SUV, ICVF, and tumor mask. All conv layer filters are of
size 3 × 3, with padding and stride of 1. The number of filters from conv1 to conv4
layers are 64, 128, 256, and 512, respectively. Max-pooling is performed over 3 × 3
spatial windows with stride 2 for conv1 and conv4 layers. Local response normal-
ization is used for conv1 and conv2 layers using the same setting as [15]. The fc5
layer contains 256 rectifier units and applies “dropout” to reduce overfitting. All
layers are equipped with the ReLU (rectified linear unit) activation function. The
output layer is composed of two neurons corresponding to the classes future tumor
or non-tumor, and applies a softmax loss function. The invasion ConvNet is trained
on image patch–label pairs from scratch on all pairs of time points (time1/time2 and
time2/time3) from the population data set.
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Fig. 12.6 ConvNet architecture for late fusion of the invasion and expansion networks for predicting
tumor growth
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12.3.2 Learning Expansion Network

12.3.2.1 Image Processing and Patch Extraction

Unlike the invasion network, which performs predictions from static images, the
expansion network accounts for image motion information. Its input images, of
size 17 × 17 × 4, capture expansion motion information between two time points.
Three channels derive from a color-coded three-channel optical flow image, and the
fourth from a tumor growth map between time1 and time2. Such images explicitly
describe the past growing trend of tumor mass, as an image-based approximation of
the underlying biomechanical force exerted by the growing tumor. These patches are
sampled using the same restriction and balancing schemes applied for the invasion
network (Sect. 12.3.1.1).

More specifically, for a pair of consecutive tumor mask images at time1 and time2
(Fig. 12.7a, b), we use the algorithm in [3] for optical flow estimation. The computed
dense optical flow maps are a set of spatially coordinated displacement vector fields,
which capture the displacement movements for all matched pairs of voxels from
time1 to time2. By utilizing the color encoding scheme for flow visualization in
[1, 17], the magnitude and orientation of the vector field can be formed as a three-
channel color image (Fig. 12.7d). As depicted in the color coding map (Fig. 12.7e),
the magnitude and orientation are represented by saturation and hue, respectively.
This is a redundant but expressive visualization for explicitly capturing the motion
dynamics of all corresponding voxels at different time points. Such a representation
is also naturally fit for a ConvNet. The optical flow maps computed between raw CT
image pairs may be noisy due to the inconsistent image appearance of tumors and
surrounding tissues across two time points. Therefore, a binary tumor mask pair is
used to estimate the optical flow as it provides the growing trend of tumor mass. It

Fig. 12.7 An example of color-coded optical flow image (d) generated based on the tumor mask
pair at time 1 (a) and time 2 (b). The flow field color coding map is shown in (e), where hue
indicates orientation and saturation indicates magnitude. In the tumor growth maps (c) and (f),
white indicates the previous tumor region and gray indicates the newly grown tumor region. In c
and d, three non-tumor voxels and their surrounding image patches are highlighted by three colors,
which indicate the colors of these voxels in (d). The blue and red voxels indicate left and right
growing trend and both become tumors at time 3 (f), while the pink voxel indicates very small
motion and is still non-tumor at time 3 (f). Also note that although some voxels show tiny motion
(e.g., lower left location) between time1 and time2, they grow faster from time2 to time3, indicating
the nonlinear growth pattern of tumors
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should be mentioned that both the expansion and shrink motion can be coded in the
three-channel image.

However, such a representation of tumor growth motion has a potential
limitation—both the voxels locate around the tumor center and at background have
very small motion, which may confuse the ConvNet. Therefore, we additionally
provide the past (time1 and time2) locations of tumor by adding a tumor growth
map (Fig. 12.7c) as the 4th input channel. Specifically, voxels belong to the overlap
region of time1 and time2, newly growing (expansion) region, shrink region, and
background are assigned values of 255, 170, 85, and 0, respectively. This strategy
implicitly indicates the probabilities of voxels to be tumor or not in the future.

12.3.2.2 Network Architecture

The expansion subnetwork has the same architecture as its invasion counterpart
(cf. Sect. 12.3.1.2 and lower panel in Fig. 12.6), and is trained to learn from
our motion-based representations and infer the future involvement regions of the
tumor. This network is trained from scratch on different time point configurations
((time1→time2)/time3) of the population data set. In [28], optical flow is used to
predict the future tumor position in a scan, and the future motion of a voxel is directly
predicted by a linear combination of its past motions, which may be oversimplified.
Our main difference is that the prediction is based on the nonlinear ConvNet learning
of 2D motion and tumor growth maps where boundary/morphological information
in a local region surrounding each voxel is maintained.

12.3.3 Fusing Invasion and Expansion Networks

To take advantage of the invasion–expansion information, we study a number ofways
of fusing the invasion and expansion networks. Different fusion strategies result in
significant different number of parameters in the networks.

12.3.3.1 Two-Stream Late Fusion

The two-stream architecture treats the appearance and motion cues separately
and makes the prediction, respectively. The fusion is achieved by averaging deci-
sion/softmax scores of two subnetworks, as shown in Fig. 12.6. This method is
denoted as late fusion. The invasion and expansion subnetworks are trained on all
time–point pairs (time1/time2 and time2/time3) and triplets ((time1→time2)/time3)
of the population data, respectively. Since they are trained independently, late fusion
is not able to learn the voxel-wise correspondences between invasion and expansion
features, i.e., registering appearance and motion cues. For example, what are the
cell density and energy when a local voxel exhibits fast-growing trend? Late fusion
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doubles the number of network parameters compared to invasion or expansion sub-
networks only.

12.3.3.2 One-Stream Early Fusion

In contrast to late fusion,we present an early fusion architecture,which directly stack-
ing the three-channel invasion and four-channel expansion images as a seven-channel
input to the ConvNet. The same network architecture as invasion/expansion network
is used. Different from late fusion, early fusion can only be trained on time2/time3
pairs (without time1/time2 pairs) along with triplets ((time1→time2)/time3) of the
population data. Therefore, less training samples can be used. Early fusion is able
to establish voxel-wise correspondences. However, it leaves the correspondence to
be defined by subsequent layers through learning. As a result, information in the
motion image may not be able to be well captured by the network since there is
more variability in the appearance images (i.e., SUV and ICVF). Early fusion keeps
almost the same number of parameters as a single invasion or expansion network.

12.3.3.3 Two-Stream End-to-End Fusion

To jointly learn the nonlinear static and dynamic tumor information while allocating
enough network capacity to both appearance and motion cues, we introduce a two-
stream end-to-end fusion architecture. As shown in Fig. 12.8, the two subnetworks
are connected by a fusion layer that adds a convolution on top of their conv4 layers.
More specifically, the fusion layer first concatenates the two feature maps generated
by conv4 (afterReLU4) and convolves the stacked datawith 1 × 1 × 512 convolution
filters with padding and stride of 1, then ReLU5 is attached and max-pooling 3 × 3 is
performed. The outputs of the fusion layer are fed into a subsequent fully connected
layer (fc5). As such, the fusion layer is able to learn correspondences of two compact

Fig. 12.8 Two-stream end-to-end fusion of the invasion and expansion networks for predicting
tumor growth. The (convolution) fusion is after the conv4 (ReLU4) layer
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feature maps that minimize a joint loss function. Fusion at ReLU4 instead of fc layer
is because the spatial correspondences between invasion and expansion are already
collapsed at the fc layer; fusion at the last conv layer has been demonstrated to have
higher accuracy in compared to at earlier conv layers [7]. End-to-end framework is
trained on the same time pairs and triplets as early fusion, without time1/time2 pairs
compared to late fusion. End-to-end fusion removes nearly half of the parameters in
the late fusion architecture as only one tower of fc layer is used after fusion.

12.3.4 Personalizing Invasion and Expansion Networks

Predictive model personalization is a key step of model-based tumor growth pre-
diction [5, 18, 30, 31]. In statistical learning, model validation is a natural way to
optimize the pretrained model. Particularly, given tumor status at time1 and time2
already known (predict time3), the model personalization includes two steps. In the
first step, the invasion network is trained on population data and time1/time2 of the
target patient is used as validation. Training is terminated after a predetermined num-
ber (30) of epochs, after which the model snapshot with the lowest validation loss on
the target patient data is selected. Since there are no corresponding validation data
sets for the expansion network, early fusion, and end-to-end fusion, their trainings
are terminated after the empirical number of 20 epochs, in order to reduce the risk
of overfitting.

To better personalize the invasion network to the target patient, we propose a sec-
ond step that optimizes an objective function whichmeasures the agreement between
any predicted tumor volume and its corresponding future ground-truth volume on the
target patient. This is achieved by directly applying the invasion network to voxels
in a tumor growth zone in the personalization volume, and later thresholding the
probability values of classification outputs to reach the best objective function. Dice
coefficient measures the agreement between ground truth and predicted volumes,
and is used as the objective function in this study:

Dice = 2 × TPV

Vpred + Vgt
, (12.3)

where TPV is the true positive volume—the overlapping volume between the pre-
dicted tumor volume Vpred and the ground-truth tumor volume Vgt . The tumor growth
zone is set as a bounding box surrounding the tumor, with pixel distances Nx, Ny,
and Nz from the tumor surface in the x-, y-, and z-directions, respectively. The per-
sonalized threshold of invasion network is also used for expansion network and the
three fusion networks.
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12.3.5 Predicting with Invasion and Expansion Networks

During testing, given the imaging data at time1 and time2 for the target patient,
one of the frameworks, the personalized invasion network, expansion network, late
fusion, early fusion, or end-to-end fusion could be applied to predict the scores for
every voxels in the growth zone at the future time3. The static information from
time2 serves as invasion information, while the motion/change information between
time1 and time2 represents the expansion information. Late fusion and end-to-end
fusion feed the static andmotion information to invasion and expansion subnetworks,
separately, while early fusion concatenates both static and motion information as
input to a one-stream ConvNet.

12.3.6 Experimental Methods and Results

Ten patients (six males and four females) with VHL disease, each with a PanNET,
are studied in this section. In this data set, each patient has three time points of
contrast-enhanced CT and FDG-PET imaging spanning 3 to 4 years, with the time
interval of 405 ± 133 days (average ± std.). The average age of the patients at time1
is 46.9± 13.2 years. The image pixel sizes range between 0.68 × 0.68 × 1 mm3 and
0.98 × 0.98 × 1 mm3 for CT and 2.65 × 2.65 × 1.5 mm3 and 4.25 × 4.25 × 3.27
mm3 for PET. The tumor growth information of all patients is shown in Table12.2.
Most tumors are slow growing, while two are more aggressive and two experience
shrinkage. Some tumors keep a similar growing rate as their past trend, while others
have varying growing rates.

Table 12.2 Tumor information at the first, second, and third time points of ten patients

Patient ID 1st–2nd 2nd–3rd Size (cm3,
3rd)

Days Growth (%) Days Growth (%)

1 384 34.6 804 33.4 2.3

2 363 15.3 363 10.7 1.4

3 378 18.9 372 7.5 0.4

4 364 150.1 364 28.9 3.1

5 426 41.5 420 68.6 3.8

6 372 7.4 360 12.5 6.3

7 384 13.6 378 −3.9 1.6

8 168 18.7 552 18.7 3.2

9 363 16.9 525 34.7 0.3

10 196 −28.9 567 17.7 0.9
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A total of 45,989 positive and 52,996 negative image patches are used for the
invasion network in late fusion, and 23,448 positive and 25,896 negative image
patches for both the invasion network and expansion network in other fusion (i.e.,
early and end to end), extracted from 10 patients. Each image patch is subtracted by
themean image patch over the training set. Data augmentation is not performed since
we could not observe improvements in a pilot study. The following hyperparameters
are used: initial learning rate—0.001, decreased by a factor of 10 at every tenth
epoch; weight decay—0.0005; momentum—0.9; mini-batch size—512. We use an
aggressive dropout ratio of 0.9 to improve generalization. Lower dropout ratios (e.g.,
0.5) do not decrease performance significantly. TheConvNets are implemented using
Caffe platform [13]. The parameters for tumor growth zone are set asNx = 3,Ny = 3,
and Nz = 3 for prediction speed concern. We observe that the prediction accuracy
is not sensitive to the choice of these parameters, e.g., Nx|y|z ≥ 4 results in similar
performance. For the model personalization via Dice coefficient objective function,
we vary themodel thresholding values in the range of [0.05, 0.95] with 0.05 intervals.
The proposed method is tested on a DELL TOWER 7910 workstation with 2.40 GHz
Xeon E5-2620 v3 CPU, 32 GB RAM, and a Nvidia TITAN X Pascal GPU of 12 GB
of memory.

The proposed method is evaluated using leave-one-out cross-validation. In each
of the ten evaluations, nine patients are used as the population training data to learn
the population trend, the time1/time2 of the remaining patient is used as the per-
sonalization data set for invasion network, and time3 of the remaining patient as the
to-be-predicted testing set. We obtain the model’s final performance values by aver-
aging results from the ten cross-validations. The number of parameters in each of the
proposed network is reported, and the prediction performances are evaluated using
measurements at the third time point by recall, precision, Dice coefficient (defined
in Eq. 12.3), and relative volume difference (RVD) as defined in Eq. 12.2.

To establish a benchmark for comparisons, we implement a linear growth model
that assumes that tumors would keep their past growing trend in the future. More
specifically, we first compute the radial expansion/shrink distances on tumor bound-
aries between the first and second time points, and then expand/shrink the tumor
boundary at the second time point to predict the third with the same radial distances.
Furthermore, we compare the accuracy and efficiency of our method with two state-
of-the-art tumor growth prediction methods [31, 36] which have been evaluated on
a subset (seven patients, without patient 4, 7, 10 in Table12.2) of the same data set.

Figure12.9 shows the results of patient 7. In this case, the tumor demonstrates a
nonlinear growth trend, and its size first increases from time1 to time2 but decreases
a little bit from time2 to time3. Therefore, all the personalized predictive models
overpredicted the tumor size (recall is higher than precision). However, our models
especially the two-stream late fusion can still generate promising prediction result.

Table12.3 presents the overall prediction performance on ten patients. Compared
to the baseline linear growth method, all our methods show substantially higher
performance. The performance of invasion and expansion networks is comparable.
Fusion of the two networks can further improve the prediction accuracy, especially
for the RVDmeasure. Two-stream late fusion achieves the highest mean values with
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Fig. 12.9 An example (patient 7) shows the tumor growth prediction by our individual and fusion
networks. a The segmented (ground truth) tumor contours and volumes at different time points.
b The prediction results at the third time point, with red and green, represent ground truth and
predicted tumor boundaries, respectively

Table 12.3 Overall performance on ten patients—baseline linear predictive model, invasion net-
work, expansion network, early fusion, late fusion, and end-to-end fusion. Results are estimated by
the recall, precision, Dice coefficient, and relative volume difference (RVD), and are reported as
mean ± std. [min, max]. The numbers of parameters for each model are provided

Recall (%) Precision (%) Dice (%) RVD (%) #parameters

Linear 84.5 ± 7.0
[73.3, 97.3]

69.5 ± 8.0
[60.7, 82.3]

75.9 ± 5.4
[69.5, 85.0]

23.1 ± 18.5
[5.9, 58.8]

–

Invasion 86.9 ± 9.4
[63.7, 97.0]

83.3 ± 5.6
[74.7, 90.2]

84.6 ± 5.1
[73.0, 90.4]

11.5 ± 11.3
[2.3, 30.0]

8.11M

Expansion 87.6 ± 8.6
[68.3, 96.5]

82.9 ± 7.6
[76.5, 97.2]

84.8 ± 5.4
[73.2, 91.1]

13.8 ± 6.3
[1.0, 23.5]

8.11M

Early fusion 86.4 ± 7.9
[66.6, 94.8]

84.7 ± 5.8
[77.0, 92.7]

85.2 ± 5.2
[73.9, 90.6]

9.2 ± 7.3 [2.4,
19.6]

8.11M

Late fusion 86.9 ± 8.8
[64.0, 95.5]

85.5 ± 4.9
[78.6, 91.3]

85.9 ± 5.6
[72.8, 91.7]

8.1 ± 8.3 [1.0,
24.2]

16.22M

End-to-end 87.5 ± 8.1
[70.0, 96.9]

84.1 ± 5.6
[75.5, 91.3]

85.5 ± 4.8
[76.5, 91.5]

9.0 ± 10.1
[0.3, 26.7]

10.18M
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Table 12.4 Comparison of performance on seven patients—baseline linear predictive model, state-
of-the-art model-based [31], statistical group learning [36], and our models. Results are estimated
by the recall, precision, Dice coefficient, and relative volume difference (RVD), and are reported as
mean± std. [min, max]. EG-IM-FEM* has higher performance than EG-IM, but it has some issues
mentioned by the authors (Sect.VI in [31])

Recall (%) Precision (%) Dice (%) RVD (%)

Linear 84.3 ± 3.4 [78.4,
88.2]

72.6 ± 7.7 [64.3,
82.1]

77.3 ± 5.9 [72.3,
85.1]

16.7 ± 10.8 [5.2,
34.3]

EG-IM [31] 83.2 ± 8.8 [69.4,
91.1]

86.9 ± 8.3 [74.0,
97.8]

84.4 ± 4.0 [79.5,
92.0]

13.9 ± 9.8 [3.6,
25.2]

EG-IM-FEM*
[31]

86.8 ± 5.8 [77.6,
96.1]

86.3 ± 8.2 [72.7,
96.5]

86.1 ± 3.2 [82.8,
91.7]

10.8 ± 11.2 [2.3,
32.3]

Group learning
[36]

87.9 ± 5.0 [81.4,
94.4]

86.0 ± 5.8 [78.7,
94.5]

86.8 ± 3.6 [81.8,
91.3]

7.9 ± 5.4 [2.5,
19.3]

Invasion 88.1 ± 4.6 [81.4,
94.3]

84.4 ± 5.6 [75.0,
90.2]

86.1 ± 3.6 [80.8,
90.4]

6.6 ± 8.5 [2.3,
25.8]

Expansion 90.1 ± 6.3 [79.1,
96.5]

81.9 ± 6.9 [76.5,
96.9]

85.5 ± 3.8 [78.7,
90.5]

14.2 ± 7.6 [1.0,
23.5]

Early fusion 88.2 ± 4.2 [81.9,
94.8]

85.2 ± 6.5 [77.0,
92.7]

86.5 ± 4.0 [80.7,
90.6]

7.5 ± 6.1 [2.5,
19.0]

Late fusion 89.1 ± 4.3 [83.4,
95.5]

84.9 ± 5.2 [78.6,
93.3]

86.8 ± 3.4 [81.8,
91.5]

6.6 ± 7.1 [1.0,
21.5]

End-to-end 88.8 ± 5.9 [79.1,
96.9]

84.8 ± 5.6 [77.8,
91.3]

86.6 ± 4.4 [80.5,
91.5]

6.6 ± 8.3 [0.4,
24.4]

Dice coefficient of 85.9 ± 5.6% and RVD of 8.1 ± 8.3%, but requires nearly twice
of the model parameters compared to early fusion. End-to-end fusion has the second
highest accuracy with much less network parameters than late fusion. Nevertheless,
this suggests that the mechanism of fusion ConvNets leverages the complementary
relationship between static and dynamic tumor information.

Table12.4 compares our methods with two state-of-the-art methods [31, 36] on a
subset (seven patients) of our data. Out of ten patients, three patients (patient 4, 7, and
10 in Table12.2) with aggressive and shrink tumors are not included in the experi-
ment. As a result, the performances on seven patients (Table12.4) are better than that
on ten patients (Table12.3). Our single network can already achieve better accuracy
than the model-based method (i.e., EG-IM) [31], especially the invasion network has
amuch lower/better RVD than [31]. This demonstrates the high effectiveness of Con-
vNets (learning invasion information) in future tumor volume estimation. Network
fusions further improve the accuracy and achieve comparable performance with the
group learningmethod [36], which benefits results from integrating the deep features,
hand-crafted features, and clinical factors into an SVM-based learning framework.
Again, the two-stream late fusion performs the best among the proposed three fusion
architectures, with Dice coefficient of 86.8 ± 3.4% and RVD of 6.6 ± 7.1%.
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The proposed two-stream late fusion ConvNets (our other architectures are even
faster) requires ∼5min for training and personalization, and 15 s for prediction
per patient, on average—significantly faster than the model-based approach in [31]
(∼24h—model personalization; 21 s—simulation), and group learning method in
[36] (∼3.5h—model training and personalization; 4.8min—prediction).

12.4 Summary

In this chapter, we have demonstrated that (1) our statistical group learning method,
which incorporates tumor growth patterns from a population trend and a specific
patient, deep image confidence features, and time interval and clinical factors in a
robust predictive model, is an effective approach for tumor growth prediction; (2)
deep ConvNets can effectively represent and learn both cell invasion and mass effect
in tumor growth prediction. Composite images encoding static and dynamic tumor
information are fed into our ConvNet architectures to predict the future involvement
region of pancreatic tumors. Both methods surpass the state-of-the-art mathematical
model-based method [31] in both speed and accuracy. The invasion and expansion
networks alone predict the tumor growth at higher accuracies than [31], and our
proposed fusion architectures further improve the prediction accuracy. Two-stream
end-to-end fusion might be a trade-off between accuracy and generalization com-
pared with early and late fusions.
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Chapter 13
Deep Spatial-Temporal Convolutional
Neural Networks for Medical Image
Restoration

Yao Xiao, Skylar Stolte, Peng Liu, Yun Liang, Pina Sanelli, Ajay Gupta,
Jana Ivanidze and Ruogu Fang

Abstract Computed tomography perfusion (CTP) facilitates low-cost diagnosis and
treatment of acute stroke. Cine scanning allows users to visualize brain anatomy and
blood flow in virtually live time. However, effective visualization exposes patients
to radiocontrast pharmaceuticals and extended scan times. Higher radiation dosage
exposes patients to potential risks including hair loss, cataract formation, and cancer.
To alleviate these risks, radiation dosage can be reduced along with tube current
and/or X-ray radiation exposure time. However, resulting images may lack sufficient
information or be affected by noise and/or artifacts. In this chapter, we propose a
deep spatial-temporal convolutional neural network to preserve CTP image quality
at reduced tube current, low spatial resolution, and shorter exposure time. This net-
work structure extracts multi-directional features from low-dose and low-resolution
patches at different cross sections of the spatial-temporal data and reconstructs high-
quality CT volumes. We assess the performance of the network concerning image
restoration at different tube currents and multiple resolution scales. The results indi-
cate the ability of our network in restoring high-quality scans from data captured
at as low as 21% of the standard radiation dose. The proposed network achieves
an average improvement of 7% in perfusion maps compared to the state-of-the-art
method.
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13.1 Introduction

Acute stroke is responsible for high rates of death and chronic disability. More than
795,000 people suffer from stroke per year in the United States. Approximately
140,000 of these individuals lose their lives, which amounts to approximately 5% of
all deaths [28]. Stroke afflicts individuals of all ages, but it increases in prevalence
with age. In 2009, two-thirds of inpatients who were being treated for stroke were
older than 65 [10]. The annual cost for stroke-related care in the United States is
estimated at about 34 billion dollars [1].

Acute stroke mandates rapid diagnosis and treatment so that patients can receive
optimal care. Disability 3 months after a stroke is less prevalent in individuals who
received emergency room care within three hours of their initial symptoms [4]. Fur-
ther, identification of the specific type of stroke, hemorrhagic or ischemic, must
be performed quickly to ensure proper treatment as soon as possible. Hemorrhagic
stroke is caused as a fragile blood vessel ruptures, whereas ischemic stroke is caused
by thrombosis or embolism. Computed Tomography (CT) scanning provides rapid
evaluation of the brain and cerebral vasculature; its high detail is particularly useful
in triage of patients with ischemic or hemorrhagic stroke. Clinicians may thus opti-
mize treatment based on the different needs of these patients; for example, ischemic
stroke often requires further imaging of brain tissue hemodynamics. Therefore, these
patients aremore likely to benefit fromCTPerfusion (CTP) to further guide treatment
such as thrombolytic therapy. CTP rapidly sequences cerebrovascular physiology; it
hence enables physicians to monitor blood flow actively.

Clear visualization of brain anatomy and blood flow necessitates radiocontrast
agent injection and repeated CT scans. This comes at the cost of extensive X-ray
radiation exposure to the patient; for instance, a cerebral CTP scan that lasts 40
seconds exposes a patient suffering from acute stroke to radiation that is equivalent
to a year of exposure from natural surroundings [17, 23]. The risk associated with
such a procedure can be particularly expensive—comparatively, chest X-ray equates
to approximately ten days of natural exposure. Acquiring data on the entire brain
by CTP/CT Angiography (CTA) requires a mean dose of 6.8 mSv [24], which is
significantly higher than the radiation acquired from natural background sources.
Annually, natural surroundings expose individuals to approximately 2.4mSv [5].
Repeated cerebral scanning accumulates the radiation exposure to patients; hence, it
influences the development of health risks such as hair loss/epilation [25], cataract
formation [6], and cancer [7, 13]. Due to the convenience and high visualization that
CT scans provide, they are being used with increasing prevalence in medical care.
Use in the United States equates to approximately 80 million CT scans per year.
Therefore, there is an increasing need for solutions that reduce radiation dose while
preserving vital image information.

Researchers have approached radiation dose reduction usingmany differentmeth-
ods; they involve two primary focuses: optimizing CT systems and reducing contrast
dose. Optimizing CT systems consists of shortening temporal sampling frequency
and reducing radiation sources like tube current and the number of beams and recep-
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tors. However, lowering radiation exposure using these methods will increase image
noise and artifacts. Hence, radiologists must balance image quality and patient risk
for effective diagnostic and therapeutic potential. In this paper, we propose a deep
spatial-temporal convolutional neural network for image restoration. As such, we
aim to reduce CTP radiation exposure to patients and maintain high image quality.

Two main components compose this network, including the following: super-
resolution denoising nets (SRDN) and multi-directional conjunction to jointly
address image super-resolution (SR) and denoising. This work offers contributions
which are fivefold: (1) SRDN extracts spatial and temporal features from CTP image
patches; it can thus use this cross section information to represent spatial and tempo-
ral details simultaneously. (2) SRDN performs image SR and denoising conjointly. It
effectively handles CTP images with multi-level noise andmulti-scale resolution. (3)
We achieve high performance on 3D spatiotemporal CTP data through the integra-
tion of multiple SRDNs based on different cross sections into one multi-directional
network. (4) Through extensive experiments, we demonstrate the ability of the pro-
posed network in low-dose CTP images restoration. The proposed network addresses
reduced radiation dose in images collected with low tube current, shorten exposure
time, and poor spatial resolution. The experiment results provide comparable image
quality and accuracy to images obtained at standard clinical doses. (5) We generate
perfusion maps showcasing cerebral blood flow (CBF) and cerebral blood volume
(CBV). These maps show that our method provides comparable results to the state-
of-the-art method.

Our proposed network can restore images using three types of limited data at the
same time, including the following: data using low tube current, decreased temporal
sampling rate, and poor spatial resolution. Previously, no work had simultaneously
addressed these data limitations within one deep learning structure. Our network
yields an average of 21% improvement in peak signal-to-noise ratio (PSNR) com-
pared to low-dose scans using state-of-the-art approaches, despite its use of 20% to
40% lower tube currents. Therefore, a deep learning approach has high potential in
reducing CTP radiation exposure.

13.2 Related Work

Researchers have devoted themselves to seeking solutions for reducing the radiation
exposure of CTP imaging. The development of low-dose CTP protocols is essential
to reduce the health risks of excessive radiation exposure to the patients. Below, we
summarize several methods of accomplishing this by adjusting different acquisition
parameters such as tube current, temporal sampling frequency, and spatial resolution.
However, those parameters aremeticulously related to the quality of the reconstructed
CTP images, especially for generating perfusionmaps for treatment decisions. In this
section,we introduce several dose reduction approaches and themethods for restoring
the quality of the reconstructed CTP images; the later of this section combines image
processing strategies and deep learning approaches.
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13.2.1 Radiation Dose Reduction

There are three types of radiation dose reduction approaches for CTP imaging,
namely the tube current, spatial resolution, and X-ray exposure time. The radia-
tion dose and the tube current is linear related; for example, in order to reduce 50%
radiation dose, we will need to lower the tube current to 50% of the original value.
However, CTP sequences scanned by low tube currents will have high image noise
and artifacts, as image noise and the square root of tube current have an inverse
proportional relationship. Methods for reducing the image noise and artifacts is nec-
essary for radiation dose reduction and image quality preservation. Current studies
demonstrate that it is possible and effective to maintain image quality at reduced tube
currents [14, 18]. In [29], a study of the pediatric abdomen, pelvis, and chest CT
examinations demonstrate that a 50% dose reduction can still maintain diagnostic
quality. Similar to the decrements of the tube current, the reduction in X-ray exposure
time regarding the scanning time intervals between frames will reduce the radiation
correspondingly, as the time for patients undergoing radiation exposure is reduced.
Low-dose CT scans result in low spatial resolution. Thus, recovering spatial resolu-
tion from these scans could allow the overall X-ray radiation exposure to patients to
be reduced.

13.2.2 Image Restoration

Image restoration is the operation of estimating the clean and original images from
the low-quality observations by reducing the noise and recovering the resolution loss.
The process of image restoration can be performed in two domains: the frequency
domain and the imagedomain.Themost conventional technique for image restoration
is deconvolution, which is an inverse process for generating low-quality images. It
operates in the frequency domain after applying the Fourier transform and the point
spread function and undoes the resolution loss caused by the degrading factors. The
consequence of the deconvolution by direct inversion of the point spread function
is shown as a poor matrix condition number, which amplifies noise and creates
imperfect reconstructed images.

In recent years, deep learningmethods emerging flourishingly in various computer
vision tasks, including image classification [11] and object detection [9], and have
dramatically improved the performance of these systems. These approaches have
also achieved significant improvement in image restoration [3, 27]. Convolutional
neural network (CNN), one of the most esteemed deep learning architectures, shows
promising results for image-based problems. CNN structures are usually composed
of several convolutional layers with activation layers, followed by one or more fully
connected layers. The purpose of CNN architecture design is for utilizing image
structures via local connections, weights sharing, and nonlinearity. Another benefit
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of CNN is that they are easier to train and have fewer parameters than fully connected
networks with the same number of hidden units.

Image Super-Resolution aims at restoring HR images from the observed LR
images.By using different portions of theLR images, or separate images, SRmethods
intend to approximate what the HR image may look alike. Deep learning models are
recently widely used for image SR problems [8, 15, 19, 21]. However, most of the
SR frameworks focus on 2D images, as involving the temporal dimension is more
challenging, especially in CTP imaging.

Image Denoising aims at recovering the clean image from an observed noisy
image. One of the main challenges for image denoising is to identify the noise
and remove it accurately. Deep learning-based methods [16, 30] have shown many
advantages in learning the mapping of the low-quality images to the high-quality
images, which they accomplish using multi-layer CNNs that are trained on tens of
thousands of samples. However, the paired training data are usually scarce in the
medical field. Hence, an effective learning-based model is desired.

13.2.3 Spatial-Temporal Architecture

In our previous work, we proposed STAR [26] for low-dose CTP image super-
resolution. It preserves image quality at reduced scanning time and leading to radi-
ation reduction to only one-third of the original level. STAR is an image-based dose
reduction approach that focuses on super-resolution only. Through this work, we
found that features extracted from both spatial and temporal directions improve SR
performance. The integration of multiple single-directional networks (SDNs) can
boost the performance of SR for the spatiotemporal CTP data. The experimental
results show that the proposed basic model of SDN improves both spatial and tem-
poral resolution, while the multi-directional conjoint network further enhances the
SR results—comparing favorably with only temporal or only spatial SR. However,
this work only addresses the low spatial and temporal resolutions, missing the impor-
tant noise issue in low-dose CTP.

In this chapter,wepropose a deep spatial-temporal network forCTP image restora-
tion and radiation reduction. This network structure integrates several SRDNs at dif-
ferent cross sections for both image super-resolution and denoising simultaneously.
The structure of the proposed spatial-temporal network is explained in Sect. 13.3. In
Sect. 13.4,we provide the experiment platform setup and describe the data acquisition
method and the preprocessing procedures. In Sect. 13.5, we detail the experiments
and results. Finally, Sect. 13.6 concludes the paper.
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13.3 Methodology

In this section, we propose our deep learning approach for low-dose CTP image
restoration. In Sect. 13.3.1, we introduce how the spatial-temporal patches were
generated. Then, in Sect. 13.3.2, we describe our deep spatial-temporal network
structure with multiple cross-sectional inputs.

13.3.1 Spatial-Temporal Patches

Thedata acquired fromoneCTP scanning is stored as a sequence of slices.We convert
the sequence by concatenating the slices into a 3D matrix. The three dimensions of
this matrix are X , Y , and T , where X and Y represent the spatial dimensions of
the 2D slices and T indicates the temporal dimension of the sequence. The input
2D LR patches are then generated based on these three dimensions for the deep
spatial-temporal network, including use in both image restoration tasks: image super-
resolution and image denoising.

Our 2D patches include three directional combinations: X × Y , X × T , and Y ×
T . In our super-resolution task, we create 2D LR patches through down-sampling
on the spatial and the temporal directions. For example, we simulate two times
longer scanning intervals by removing every other pixel along the T direction. In
our denoising task, we add spectrum Gaussian noise on the entire CTP volume to
model images that are produced with lower tube current. A complete description of
noise simulation and data preprocessing can be found in Sect. 13.4.3. Our resulting
noise models represent 2D patches along each of the three cross sections used. On
the combined denoising and SR task, we begin with the noisy images and create
LR patches as described above. Finally, the respective input patches are feed into
the proposed network structure—the relevant original CTP volume slices serve as
ground truth. During training, the network learns the spatial-temporal details that
map the LR and/or noisy patches to their original patches. By using these features,
the network generates HR and/or denoised output images during testing.

13.3.2 Deep Spatial-Temporal Network

Our proposed deep spatial-temporal network is a convolutional-based end-to-end
architecture for image restoration. The network structure is shown in Fig. 13.1.
As described in Sect. 13.3.1, we utilize three cross sections as input. Each cross
section input is passed through an SRDN network and combined by a conjoint layer
for the final high-quality output. The conjoint layer is a simple average function
that calculates the mean value of the outputs from the three SRDN pathways. The
combination of the various features extracted from different directions of the CTP
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Fig. 13.1 Deep spatial-temporal network architecture. It takes low-quality inputs from three cross
sections: XY, XT, and YT. Each cross section goes through one SRDN, and the outputs of each
SRDNmeet in a conjoint layer to provide the final high-quality outputs of the deep spatial-temporal
network

Fig. 13.2 Kernel regulation
block (KR-block)
architecture. It comprises
two 1× 1 convolution
components for computation
reduction, one 7× 7
convolution layer, and one
3× 3 convolution module
for regularizing the features
extracted by the preceding
large size kernels

volume is beneficial to enhance the capability of the network inference and generality.
Since multi-directional inputs provide different perspectives of the 3D data, they
cannotmerely be regarded as feedingmore training data intomulti-networks. Instead,
they complement each other to encode the sparse features through the network.

As mentioned before, there is an SRDN that corresponds to each cross section
input. SRDN is an end-to-end structure that learns from pair-wise LR/noisy patches
with their original images and outputs high-quality CT images based on low-quality
input images while testing. The main functional part of SRDN is built by stacking
four modularized Kernel Regulation Blocks (KR-Block). The structure of KR-Block
is shown in Fig. 13.2. The design of our KR-Block is inspired by GoogLeNet [22],
which has a combination of kernels of varying sizes. Specifically, KR-Block com-
prises two 1× 1 convolutional layers, one 7× 7 convolutional layer, and one 3× 3
convolutional layer for regulating the features extracted by the 7× 7 convolutional
layer. The combination of large and small filters is to balance the extraction of sub-
tle and edge features. Moreover, the KR-Block is embedded with skip connections,
which allow reference to the feature mapping from previous layers and boost the
network performance.
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SeveralKR-blocks are cascaded to perform feature regulation,mapping, and trans-
formation. Residual learning is performed by skip connections, which connect the
outputs of two adjacent KR-blocks. The use of skip connections between KR-blocks
leads to faster and more stable training. Using a shortcut between input and the end
of the network is to allow the original input information better assisted final image
reconstruction. It is because the input data contains significant real pixel informa-
tion that can be taken as a prior, thus relaxing the network inference difficulty. The
convolutional layers before the last layer have 128 filters with a size of 3× 3. We
utilize a deconvolutional layer with a filter size of 3× 3 as our last layer.

13.4 Platform and Data Acquisition

13.4.1 Computational Platform

The proposed network structure is building on top of deep learning framework Caffe
[12].All experiments are conductedbyaGPUworkstation that contains fourNVIDIA
PASCAL xp GPUs. We use MATLAB (Version R2016b) for data preprocessing and
post-analysis, as it is an efficient programming language for matrix-based image
processing.

13.4.2 Datasets

We evaluate the proposed method on 23 stroke patients’ CTP sequences. All CTP
sequences are scanned using the same acute stroke protocol for patients fromAugust
2007 to June 2010 usingGELightspeed or Pro-16 scanners (General ElectricMedical
Systems, Milwaukee, WI). The scanners are in cine 4i scanning mode and perform
45s acquisitions at one rotation per second using 80 kVp and 190 mAs. Approxi-
mately 45 mL of non-ionic iodinated contrast was administered intravenously at 5
mL/s using a power injector with a 5 s delay. The thickness of the brain region at the
z-axis is 20mm for each sequence. Each sequence has four slices along the z-axis,
where each slice is 5 mm thick (cross-plane resolution). The brain region has 0.43
spatial resolution (in-plane resolution) on the xy-plane. The slices within one CTP
sequence are intensity normalized and co-registered over time. The entire volume
size of one patient is 512× 512× 4× 119, where 512 is the height and width of each
CT slice, 4 is the number of slices on the z-axis, and 119 is the number of frames in
the CTP sequence. In this paper, we only select one slice along the z-axis; thus the
size of resulting the CTP volume is 512 × 512 × 119, denoted as X × Y × T .

We randomly split the patients into three groups: 12 patients for training, 4 patients
for validation, and 7 patients for testing. As each patient has 119 slices, the training,
validation, and testing sets resulted in 1428, 476, and 833 images in XY cross section
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(the spatial direction), respectfully. We only maintain brain regions in the images for
the other two cross sections, XT and YT, or about 300 pixels for the X and the Y
directions. Therefore for these cross sections, we estimate that we have 3600 images
for training, 1200 for validation, and 2100 for testing.We use the patch-basedmethod
in this paper, so the images are further cropped into patches of size 41 × 41 with a
stride of 21, which resulted in 822,528 and 274,176 patches in XY cross section and
75,600 patches and 25,200 patches in XT and YT cross sections, respectively, for
training and validation.

13.4.3 Low Radiation Dose Simulation and Data
Preprocessing

Below, we explain three methods that are commonly used to simulate low radiation
doseCTP images, including the following: decreasing the tube current, shortening the
time that the patient is exposed to X-ray radiation, and lowering the spatial resolution
of the imaging system.

• Low Tube Current We simulated low-dose conditions by adding spatially corre-
lated noise, specifically Gaussian noise, to the original high-dose CT images. Our
procedure followed that described in [2], and the original volumes were scanned at
tube current I0 = 190mAs. Accordingly, tube current I and noise standard devia-
tion σ follow an inverse relationship, in which the Gaussian noise level is modified
to model the desired tube current using the equation:

σ = K ×
√
1

I
− 1

I0
(13.1)

where K = 103.09mA
1
2 is computed based on phantom studies. We model three

noise levels in our study using images generated at corresponding tube currents:
40, 60, and 80 mAs.

• Shorter X-ray Exposure Time To simulate shortened exposure of patients to
X-ray radiation, we remove frames from the original CTP volumes at specified
intervals. We down-sample the original CTP volumes at two times shorter S2 and
three times shorter S3, then compare these volumes to that at the original sampling
rate. For example, we generate a temporal sampling rate that is two times shorter
by using a down-sampled version of the original CTP volume which has had every
other frame removed. Finally, we use bicubic interpolation to restore all volumes
to the original volume size.

• Low Spatial Resolution We likewise model CT images with a low spatial reso-
lution by decreasing the spatial sampling rate that is used to observe the image
volume. For instance, we sample every other pixel grid-wise in the high radiation
dose volumes to yield images that are down-sampled to half of the original spatial
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sampling rate. Our low-resolution (LR) images represent two scales Si : two times
down-sampled S2, and three times down-sampled S3. Similar to the temporal case,
we return the LR images to the original image size using the bicubic method.

The inputs for our proposed network include the following directional cross sec-
tions: XY, XT, andYT.We detail the image patches that we use at these cross sections
in Sect. 13.3.1, whichwe preprocess accordingly: (1)We addGaussian noise or apply
spatial/temporal down-sampling to the original CT volumes individually to denois-
ing or super-resolution cases, respectively. (2) We add the noise and then apply the
down-sampling in sequence for combined denoising and super-resolution tasks.

13.5 Experiments and Results

We train the proposed network using low-quality images from 12 patients’ different
cross sections. Then, we use seven patients to test the performance of our model and
report the average results. In our study, we test each of the cross sections, including
the following: spatial only (XY), temporal only (XT andYT), and the combination of
spatial and temporal dimensions. For the XT and YT cross sections, we concatenate
the 2D images into 3D volumes and calculate the performance based on the spatial
(XY) direction.

13.5.1 Evaluation Metrics

We evaluate the experiment performance according to structural similarity (SSIM)
index and PSNR. SSIM compares two images using terms for luminance l(x, y),
s(x, y), contrast c(x, y), and structure s(x, y), where x and y are two images. We
calculate SSIM based on the following equations:

SSIM(x,y) = [l(x, y) · c(x, y) · s(x, y)] (13.2)

l(x, y) = 2μxμy + c1
μ2

x + μ2
y + c1

, c(x, y) = 2σxσy + c2
σ 2
x + σ 2

y + c2
, s(x, y) = 2σx y + c3

σ 2
x + σ 2

y + c3
(13.3)

where μx , μy , σx , σy , σxy are the local means, standard deviations, and cross-
covariance for images x and y. The value of c1, c2, and c3 are set as 6.5025, 58.5225,
and 29.26125.

PSNR relates the maximum intensity in the ground truth image, Imax , and the
power of the corrupting noise σ . The corrupting noise defines the root mean square
error (MSE) between the enhanced and ground truth images, and it plays a role in
representation fidelity.

PSNR = 20 log10
Imax

σ
(13.4)
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13.5.2 Spatial-Temporal Super-Resolution and Denoising

We run denoising and SR experiments by training our network on low-dose and
low-resolution inputs. Figure13.3 shows the PSNR comparison among multi-scale
expected patch log likelihood (MS-EPLL) [20], spatiotemporal architecture for
super-resolution (STAR) [26], and the proposed network. Our results display the
average performance for each method over the output of seven patients’ 833 slices.
The STAR and our proposed methods both include spatial SR (XY direction) and
temporal SR (XT and YT directions) separately and jointly. In training and testing
stages, we down-sample the noisy images and rescale them back to size using bicu-
bic interpolation. The resulting LR image has fewer discontinuities and is smoother
along edges, but image artifacts are also enlarged.

Figure 13.3 compares the denoising performance at three levels of tube current
(40, 60, and 80mAs) and the SR performance at two down-sampling scales (down-
sampled to 1/2 and to 1/3). For the SR experiments, we down-sample along the
spatial dimension and the temporal dimension for different spatial-temporal cross
sections. In this figure, we highlight the highest PSNR value of the results from our
proposed network under different down-sampling rates and noise levels. STAR and
the proposed network both outperform the MS-EPLL method. The conjoint model
of the proposed network achieves the highest performance for two times down-
sampling at all noise levels and the proposedmethod’s temporal onlymodel performs
best for three times down-sampling at all noise level cases. Our proposed network
performs superiorly in low-dose CT images that also have poor spatial and temporal
resolutions. The proposed network structure yields an average improvement of 8.08

Fig. 13.3 Average PSNR comparison of seven patients’ 833 CTP slices for different conditions.
In this figure, three methods are compared: MS-EPLL [20], STAR [26], and the proposed network.
The conditions include three types of tube current (40, 60, 80 mAs) and two kinds of SR scales
(S2: down-sampling to 1/2, S3: down-sampling to 1/3). LR means the low-resolution inputs after
down-sampling from the noise image. The best results are highlighted for different scenarios. mAs
is the unit for tube current–time product
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Fig. 13.4 Performance comparison of perfusion maps (CBF and CBV) regions for patient #21
when reducing the tube current to 80 mAs with down-sample rate of two (two times low spatial
and two times shorter exposure time). The notation for each column is as follows: GT: the ground
truth images, NS: the simulated low-dose images by adding spectrum Gaussian noise, LR: the LR
inputs that are further down-sampled on NS images, MS-EPLL: the restoration results from MS-
EPLL method (spatial only), STAR-S: the reconstruction result of STAR, the spatial only model,
STAR-T: the reconstruction result of STAR, the temporal only model, STAR-C: the reconstruction
result of STAR, the conjoint model (spatial+temporal), Proposed-S: the reconstruction result of the
proposed network structure, the spatial only model, Proposed-T: the reconstruction result of the
proposed network, the temporal only model, Proposed-C: the reconstruction result of the proposed
network, the conjoint model (spatial+temporal). The table below is the quantitative evaluation
regarding PSNR and SSIM corresponded to the images above. The best performance among all
methods is highlighted with bold font

dB compared to the LR inputs and 4 dB compared to the MS-EPLL method. The
proposed network achieves an average 1.1% improvement for the joint denoising
and SR task than the state-of-the-art method (STAR’s conjoint model). These results
indicate that the proposed network performs well on the low tube current and low-
resolution images. The performance particularly holds for temporal direction; thus,
the radiation exposure time can be reduced asCTPvolumes containmore information
that is related to the down-sampled slices to reconstruct CT frames.

Doctors use perfusion maps, as opposed to CTP frames, to diagnose patients due
to their ability to show hemodynamic changes during blood flow. Therefore, we
emphasize performance in perfusion map generation for optimal clinical relevance.
Figure13.4 compares the region of interest on the perfusionmaps of patient #21when
different models are used. From left to right, different columns represent the follow-
ing: GT: the ground truth images, NS: the simulated low-dose images by adding spec-
trumGaussian noise, LR: the LR inputs that are further down-sampled onNS images,
MS-EPLL: the restoration results from MS-EPLL method (spatial only), STAR-S:
the reconstruction result of STAR, the spatial only model, STAR-T: the reconstruc-
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tion result of STAR, the temporal only model, STAR-C: the reconstruction result of
STAR, the conjoint model (spatial + temporal), Proposed-S: the reconstruction result
of the proposed network structure, the spatial only model, Proposed-T: the recon-
struction result of the proposed network, the temporal only model, Proposed-C: the
reconstruction result of the proposed network, the conjointmodel (spatial+temporal).

Figure 13.4 shows that the proposed network generates perfusion maps that are
significantly closer to the ground truth image as compared to MS-EPLL and STAR
models. Our network’s spatiotemporal structure preserves details in the region of
interest (ROI). We calculate the PSNR and SSIM values for the perfusion maps,
as listed in the form below the figure. On average, our proposed network yields a
45% higher PSNR value over the LR inputs and a 7% improvement over the STAR-
conjoint method (state-of-the-art). MS-EPLL fails to address super-low-dose cases,
as it produces perfusion maps that are of lower quality than the LR images. In SSIM
comparisons, the proposed network’s conjoint model achieves the highest value in
all the cases as well as an average 6% SSIM value than the state-of-the-art model.
Thus, these results support that our method is more robust for joint denoising and
SR issues.

13.6 Conclusion

In this paper, we propose a novel multi-directional deep spatial-temporal framework
to restore low radiation dose CTP images for diagnosis and treatment of stroke. It
outputs high-resolution and low-noise images based on inputs that are scanned at
lower tube current, shorter times of radiation exposure, and lower spatial resolution.
Our framework jointly addresses image denoising and super-resolution tasks. With
proper training, the CNN-based SRDN handles prior and data fidelity terms through
a sequence of filter-based KR-Blocks. Each component within this block offers a
distinct ability to deal with image noise and resolution problems simultaneously.

Our proposed network achieves superior reconstruction results for a mix of low-
resolution and noise conditions based on feature extraction for both the spatial and
temporal domains. As such, the network successfully reconstructs high-quality CT
volumes based on low-dose and low-resolution patch inputs. The results of our exper-
iments support that our framework can maintain diagnostic image quality while CT
scanning conditions are reduced from the commercial standard as follows: tube cur-
rent, X-ray radiation exposure time, and spatial resolution reduced to 21%, 1/3,
and 1/3, respectively. Therefore, our approach effectively and efficiently reduces the
radiation exposure in CTP imaging. In future work, we will extend our methodology
to reduce radiation dose in multimodal imaging. Specifically, we will holistically
combine low-dose non-contrast CT, CTA, and CTP images.
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Chapter 14
Generative Low-Dose CT Image
Denoising

Qingsong Yang, Pingkun Yan, Yanbo Zhang, Hengyong Yu, Yongyi Shi,
Xuanqin Mou, Mannudeep K. Kalra, Yi Zhang, Ling Sun and Ge Wang

Abstract The continuous development and extensive use of CT in medical practice
have raised a public concern over the associated radiation dose to patients. Reducing
the radiation dose may lead to increased noise and artifacts, which can adversely
affect radiologists’ judgment and confidence. Hence, advanced image reconstruc-
tion from low-dose CT data is needed to improve the diagnostic performance, which
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is a challenging problem due to its ill-posed nature. Over the past years, various
low-dose CT methods have produced impressive results. However, most of the al-
gorithms developed for this application, including the recently popularized deep
learning techniques, aim for minimizing the mean squared error (MSE) between a
denoised CT image and the ground truth under generic penalties. Although the peak
signal-to-noise ratio (PSNR) is improved, MSE- or weighted-MSE-based methods
can compromise the visibility of important structural details after aggressive denois-
ing. This paper introduces a newCT image denoisingmethod based on the generative
adversarial network (GAN) withWasserstein distance and perceptual similarity. The
Wasserstein distance is a key concept of the optimal transport theory, and promises to
improve the performance of GAN. The perceptual loss suppresses noise by compar-
ing the perceptual features of a denoised output against those of the ground truth in an
established feature space, while the GAN focuses more on migrating the data noise
distribution from strong to weak statistically. Therefore, our proposed method trans-
fers our knowledge of visual perception to the image denoising task and is capable
of not only reducing the image noise level but also trying to keep the critical infor-
mation at the same time. Promising results have been obtained in our experiments
with clinical CT images.

14.1 Introduction

X-ray computed tomography (CT) is one of the most important imaging modalities
in modern hospitals and clinics. However, there is a potential radiation risk to the
patient since X-rays could cause genetic damage and induce cancer in a probability
related to the radiation dose [6, 11]. Lowering the radiation dose increases the noise
and artifacts in reconstructed images, which can compromise diagnostic information.
Hence, extensive efforts have been made to design better image reconstruction or
image processing methods for low-dose CT (LDCT). These methods generally fall
into three categories: (a) sinogram filtration before reconstruction [30, 41, 42], (b) it-
erative reconstruction [5, 20], and (c) image post-processing after reconstruction [10,
16, 29].

Over the past decade, researchers were dedicated to developing new iterative algo-
rithms (IR) for LDCT image reconstruction. Generally, those algorithms optimize an
objective function that incorporates an accurate system model [12, 27], a statistical
noise model [15, 33, 43], and prior information in the image domain. Popular image
priors include total variation (TV) and its variants [28, 35, 38], as well as dictionary
learning [45, 47]. These iterative reconstruction algorithms greatly improved image
quality but they may still lose some details and suffer from remaining artifacts. Also,
they require a high computational cost, which is a bottleneck in practical applications.

On the other hand, sinogram pre-filtration and image post-processing are compu-
tationally efficient compared to iterative reconstruction.Noise characteristicwaswell
modeled in the sinogram domain for sinogram-domain filtration. However, sinogram
data of commercial scanners are not readily available to users, and these methods
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may suffer from resolution loss and edge blurring. Sinogram data need to be carefully
processed; otherwise, artifacts may be induced in the reconstructed images.

Differently from sinogram denoising, image post-processing directly operates on
an image. Many efforts were made in the image domain to reduce LDCT noise and
suppress artifacts. For example, the nonlocal means (NLM) method was adapted
for CT image denoising [29]. Inspired by compressed sensing methods, an adapted
K-SVD method was proposed [10] to reduce artifacts in CT images. The block-
matching 3D (BM3D) algorithm was used for image restoration in several CT imag-
ing tasks [16, 23].With such image post-processing, image quality improvement was
clear but oversmoothing and/or residual errors were often observed in the processed
images. These issues are difficult to address, given the nonuniform distribution of
CT image noise.

The recent explosive development of deep neural networks suggests new thinking
and huge potential for the medical imaging field [39, 40]. As an example, the LDCT
denoising problem can be solved using deep learning techniques. Specifically, the
convolutional neural network (CNN) for image super-resolution [14] was recently
adapted for low-dose CT image denoising [8], with a significant performance gain.
Then, more complex networks were proposed to handle the LDCT denoising prob-
lem such as the RED-CNN in [9] and the wavelet network in [24]. The wavelet
network adopted the shortcut connections introduced by the U-net [34] directly and
the RED-CNN [27] replaced the pooling/unpooling layers of U-net with convolu-
tion/deconvolution pairs.

Despite the impressive denoising results with these innovative network structures,
they fall into a category of an end-to-end network that typically uses themean squared
error (MSE) between the network output and the ground truth as the loss function.
As revealed by the recent work [22, 26], this per-pixel MSE is often associated with
oversmoothed edges and loss of details. As an algorithm tries to minimize per-pixel
MSE, it overlooks subtle image textures/signatures critical for human perception. It
is reasonable to assume that CT images distribute over some manifolds. From that
point of view, the MSE-based approach tends to take the mean of high-resolution
patches using the Euclidean distance rather than the geodesic distance. Therefore, in
addition to the blurring effect, artifacts are also possible such as nonuniform biases.

To tackle the above problems, here we propose to use a generative adversarial
network (WGAN) [4] with the Wasserstein distance as the discrepancy measure
between distributions and a perceptual loss that computes the difference between
images in an established feature space [22, 26].

The use of WGAN is to encourage that denoised CT images share the same
distribution as that of normal-dose CT (NDCT) images. In the GAN framework, a
generative network G and a discriminator network D are coupled tightly and trained
simultaneously. While the G network is trained to produce realistic images G(z)
from a random vector z, the D network is trained to discriminate between real and
generated images [17, 18]. GANs have been used inmany applications such as single
image super-resolution [22], art creation [7, 48], and image transformation [21]. In
the field of medical imaging, Nie et al. [31] proposed to use GAN to estimate CT
image from its corresponding MR image. Wolterink et al. [44] are the first to apply
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GAN network for cardiac CT image denoising. AndYu et al. [46] used GANnetwork
to handle the de-aliasing problem for fast CS-MRI. Promising results were achieved
in these works. We will discuss and compare the results of those two networks in
Sect. 14.3 since the proposed network is closely related with their works.

Despite its success in these areas, GANs still suffer from a remarkable difficulty
in training [3, 17]. In the original GAN [18], D and G are trained by solving the
following minimax problem:

min
G

max
D

LGAN(D,G) = Ex∼Pr [logD(x)] + Ez∼Pz [log (1 − D(G(z)))], (14.1)

where E(·) denotes the expectation operator, Pr and Pz are the real data distribution
and the noisy data distribution. The generator G transforms a noisy sample to mimic
a real sample, which defines a data distribution, denoted by Pg . When D is trained
to become an optimal discriminator for a fixed G, the minimization search for G is
equivalent to minimizing the Jensen–Shannon (JS) divergence of Pr and Pg , which
will lead to vanished gradient on the generator G [3] and G will stop updating as the
training continues.

Consequently, Arjovsky et al. [4] proposed to use the Earth-Mover (EM) dis-
tance or Wasserstein metric between the generated image samples and real data for
GAN, which is referred to as WGAN, because the EM distance is continuous and
differentiable almost everywhere under some mild assumptions while neither KL
nor JS divergence is. After that, an improved WGAN with gradient penalty was
proposed [19] to accelerate the convergence.

The rationale behind the perceptual loss is twofold. First, when a person compares
two images, the perception is not performed pixel-by-pixel. Human vision actually
extracts and compares features from images [32]. Therefore, instead of using pixel-
wise MSE, we employ another pretrained deep CNN (the famous VGG [36]) for
feature extraction and compare the denoised output against the ground truth in terms
of the extracted features. Second, from a mathematical point of view, CT images are
not uniformly distributed in a high-dimensional Euclidean space. They reside more
likely in a low-dimensional manifold. With MSE, we are not measuring the intrinsic
similarity between the images, but just their superficial differences in the brute-force
Euclidean distance. By comparing images according to their intrinsic structures, we
should project them onto a manifold and calculate the geodesic distance instead.
Therefore, the use of the perceptual loss for WGAN should facilitate producing
results with not only lower noise but also sharper details.

In particular, we treat the LDCT denoising problem as a transformation from
LDCT to NDCT images. WGAN provides a good distance estimation between the
denoised LDCT and NDCT image distributions. Meanwhile, the VGG-based per-
ceptual loss tends to keep the image content after denoising. The rest of this paper
is organized as follows. The proposed method is described in Sect. 14.2. The exper-
iments and results are presented in Sect. 14.3. Finally, relevant issues are discussed
and a conclusion is drawn in Sect. 14.4.
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14.2 Methods

14.2.1 Noise Reduction Model

Let z ∈ R
N×N denote a LDCT image and x ∈ R

N×N denote the correspondingNDCT
image. The goal of the denoising process is to seek a function G that maps LDCT z
to NDCT x:

G : z → x. (14.2)

On the other hand, we can also take z as a sample from the LDCT image distribution
PL and x from the NDCT distribution or the real distribution Pr . The denoising
function G maps samples from PL into a certain distribution Pg . By varying the
function G, we aim to change Pg to make it close to Pr . In this way, we treat the
denoising operator as moving one data distribution to another.

Typically, noise inX-ray photonmeasurements can be simplymodeled as the com-
bination of Poisson quantum noise and Gaussian electronic noise. On the contrary,
in the reconstructed images, the noise model is usually complicated and nonuni-
formly distributed across the whole image. Thus, there is no clear clue that indicates
how data distributions of NDCT and LDCT images are related to each other, which
makes it difficult to denoise LDCT images using traditional methods. However, this
uncertainty of noise model can be ignored in deep learning denoising because a deep
neural network itself can efficiently learn high-level features and a representation of
data distribution from modest-sized image patches through a neural network.

14.2.2 WGAN

Compared to the original GAN network, WGAN uses the Wasserstein distance in-
stead of the JS divergence to compare data distributions. It solves the following
minimax problem to obtain both D and G [19]:

min
G

max
D

LWGAN(D,G) = −Ex[D(x)] + Ez[D(G(z))]
+ λEx̂[(||∇x̂D(x̂)||2 − 1)2], (14.3)

where the first two terms perform a Wasserstein distance estimation, the last term is
the gradient penalty term for network regularization, x̂ is uniformly sampled along
straight lines connecting pairs of generated and real samples, and λ is a constant
weighting parameter. Compared to the original GAN, WGAN removes the log func-
tion in the losses and also drops the last sigmoid layer in the implementation of
the discriminator D. Specifically, the networks D and G are trained alternatively by
fixing one and updating the other.
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14.2.3 Perceptual Loss

While the WGAN network encourages that the generator transforms the data distri-
bution from high-noise to a low-noise version, another part of the loss function is
added for the network to keep image details or information content. Typically, amean
squared error (MSE) loss function is used, which tries to minimize the pixel-wise
error between a denoised patch G(z) and a NDCT image patch x as [8, 9]

LMSE(G) = E(x,z)

[
1

N 2
||G (z) − x||2F

]
, (14.4)

where || · ||F denotes the Frobenius norm. However, the MSE loss can potentially
generate blurry images and cause the distortion or loss of details. Thus, instead of
using a MSE measure, we apply a perceptual loss function defined in a feature space

LPerceptual(G) = E(x,z)

[
1

whd
||φ(G(z)) − φ(x)||2F

]
, (14.5)

where φ is a feature extractor, and w, h, and d stand for the width, height, and depth
of the feature space, respectively. In our implementation, we adopt the well-known
pretrained VGG-19 network [36] as the feature extractor. Since the pretrained VGG
network takes color images as input while CT images are in grayscale, we duplicated
the CT images tomake RGB channels before they are fed into the VGG network. The
VGG-19 network contains 16 convolutional layers followed by three fully connected
layers. The output of the sixteenth convolutional layer is the feature extracted by the
VGG network and used in the perceptual loss function,

LVGG(G) = E(x,z)

[
1

whd
||VGG(G(z)) − VGG(x)||2F

]
. (14.6)

For convenience, we call the perceptual loss computed by VGG network VGG loss.
Combining Eqs. (14.3) and (14.6) together, we get the overall joint loss function

expressed as
min
G

max
D

LWGAN(D,G) + λ1LVGG(G), (14.7)

where λ1 is a weighting parameter to control the trade-off between the WGAN
adversarial loss and the VGG perceptual loss.

14.2.4 Network Structures

The overall view of the proposed network structure is shown in Fig. 14.1. For con-
venience, we name this network WGAN-VGG. It consists of three parts. The first
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Fig. 14.1 The overall structure of the proposed WGAN-VGG network. In Part 1, n stands for the
number of convolutional kernels and s for convolutional stride. So, n32s1 means the convolutional
layer has 32 kernels with stride 1

part is the generator G, which is a convolutional neural network (CNN) of eight con-
volutional layers. Following the common practice in the deep learning community
[37], small 3 × 3 kernels were used in each convolutional layer. Due to the stacking
structure, such a network can cover a large enough receptive field efficiently. Each
of the first seven hidden layers of G has 32 filters. The last layer generates only one
feature map with a single 3 × 3 filter, which is also the output of G. We use rectified
linear unit (ReLU) as the activation function.

The second part of the network is the perceptual loss calculator, which is real-
ized by the pretrained VGG network [36]. A denoised output image G(z) from the
generator G and the ground-truth image x are fed into the pretrained VGG network
for feature extraction. Then, the objective loss is computed using the extracted fea-
tures from a specified layer according to Eq. (14.6). The reconstruction error is then
backpropagated to update the weights of G only, while keeping the VGG parameters
intact.

The third part of the network is the discriminator D. As shown in Fig. 14.2, D
has six convolutional layers with the structure inspired by others’ work [22, 26, 36].
The first two convolutional layers have 64 filters, then followed by two convolutional
layers of 128 filters, and the last two convolutional layers have 256 filters. Following
the same logic as in G, all the convolutional layers in D have a small 3 × 3 kernel
size. After the six convolutional layers, there are two fully connected layers, of which
the first has 1024 outputs and the other has a single output. Following the practice in
[4], there is no sigmoid cross-entropy layer at the end of D.

The network is trained using image patches and applied on entire images. The
details are provided in Sect. 14.3 on experiments.
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Fig. 14.2 The structure of the discriminator network. n and s have the same meaning as in Fig. 14.1

Table 14.1 Summary of all
trained networks: their loss
functions and trainable
networks

Network Loss

CNN-MSE minG LMSE(G)

WGAN-MSE minG maxD LWGAN(G,D) +
λ2LMSE(G)

CNN-VGG minG LVGG(G)

WGAN-VGG minG maxD LWGAN(G,D) +
λ1LVGG(G)

WGAN minG maxD LWGAN(G,D)

GAN minG maxD LGAN(G,D)

14.2.5 Other Networks

For comparison, we also trained four other networks.

• CNN-MSE with only MSE loss,
• CNN-VGG with only VGG loss,
• WGAN-MSE with MSE loss in the WGAN framework,
• WGAN with no other additive losses, and
• Original GAN.

All the trained networks are summarized in Table14.1.

14.3 Experiments

14.3.1 Experimental Datasets

We used a real clinical dataset authorized for “the 2016 NIH-AAPM-Mayo Clinic
Low Dose CT Grand Challenge” by Mayo Clinic for the training and evaluation of
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the proposed networks [1]. The dataset contains 10 anonymous patients’ normal-dose
abdominal CT images and simulated quarter-dose CT images. In our experiments,
we randomly extracted 100,096 pairs of image patches from 4,000 CT images as our
training inputs and labels. The patch size is 64 × 64. Also, we extracted 5,056 pairs of
patches from another 2,000 images for validation.When choosing the image patches,
we excluded image patches that were mostly air. For comparison, we implemented
a state-of-the-art 3D dictionary learning reconstruction technique as a representative
IR algorithm [45, 47]. The dictionary learning reconstruction was performed from
the LDCT projection data provided by Mayo Clinic.

14.3.2 Network Training

In our experiments, all the networks were optimized using Adam algorithm [25].
The optimization procedure for WGAN-VGG network is shown in Fig. 14.3. The
mini-batch size was 128. The hyperparameters for Adam were set as α = 1e −
5, β1 = 0.5, β2 = 0.9, andwe chose λ = 10 as suggested in [19], λ1 = 0.1, λ2 = 0.1
according to our experimental experience. The optimization processes for WGAN-
MSE and WGAN are similar except that line 12 was changed to the corresponding
loss function, and for CNN-MSE and CNN-VGG, lines 2–10 were removed and line
12 was changed according to their loss functions.

The networks were implemented in Python with the Tensorflow library [2]. A
NVIDIA Titan XP GPU was used in this study.

14.3.3 Network Convergence

To visualize the convergence of the networks, we calculated the MSE loss and VGG
loss over the 5,056 image patches for validation according to Eqs. (14.4) and (14.6)
after each epoch. Figure14.4 shows the averaged MSE and VGG losses, respec-
tively, versus the number of epochs for the five networks. Even though these two loss
functions were not used at the same time for a given network, we still want to see
how their values change during the training. In the two figures, both the MSE and
VGG losses decreased initially, which indicates that the two metrics are positively
correlated. However, the loss values of the networks in terms of MSE are increas-
ing in the following order: CNN-MSE<WGAN-MSE<WGAN-VGG<CNN-VGG
(Fig. 14.4a), yet the VGG loss is in the opposite order (Fig. 14.4b). The MSE and
VGG losses ofGANnetwork are oscillating in the converging process.WGAN-VGG
and CNN-VGG have very close VGG loss values, while their MSE losses are quite
different. On the other hand,WGANperturbed the convergence asmeasured byMSE
but smoothly converged in terms of VGG loss. These observations suggest that the
two metrics have different focuses when being used by the networks. The difference
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Fig. 14.3 Optimization procedure of WGAN-VGG network

Fig. 14.4 Plots of validation loss versus the number of epochs during the training of the five
networks. a MSE loss convergence, b VGG loss convergence, and c Wasserstein estimation con-
vergence
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between MSE and VGG losses will be further revealed in the output images of the
generators.

In order to show the convergence ofWGANpart, we plotted the estimatedWasser-
stein values defined as | − E[D(x)] + E[D(G(z))]| in Eq. (14.3). It can be observed in
Fig. 14.4c that increasing the number of epochs did reduce the W-distance, although
the decay rate becomes smaller. For the WGAN-VGG curve, the introduction of
VGG loss has helped to improve the perception/visibility at a cost of a compromised
loss measure. For the WGAN and WGAN-MSE curves, we would like to note that
what we computed is a surrogate for the W-distance which has not been normalized
by the total number of pixels, and if we had done such a normalization the curves
would have gone down closely to zero after 100 epochs.

14.3.4 Denoising Results

To show the denoising effect of the selected networks, we took two representative
slices as shown in Figs. 14.5 and 14.7. And Figs. 14.6 and 14.8 are the zoomed
regions-of-interest (ROIs)marked by the red rectangles in Figs. 14.5 and 14.7. All the
networks demonstrated certain denoising capabilities. However, CNN-MSE blurred
the images and introduced waxy artifacts as expected, which are easily observed in
the zoomed ROIs in Figs. 14.6e and 14.8e. WGAN-MSE was able to improve the
result of CNN-MSE by avoiding oversmooth but minor streak artifacts can still be
observed especially compared to CNN-VGG and WGAN-VGG. Meanwhile, using
WGANorGANalone generated stronger noise (Figs. 14.6g and 14.8g) than the other
networks enhanced a few white structures in the WGAN/GAN generated images,
which are originated from the low-dose streak artifact in LDCT images, while on
the contrary the CNN-VGG and WGAN-VGG images are visually more similar to
the NDCT images. This is because the VGG loss used in CNN-VGG and WGAN-
VGG is computed in a feature space that is trained previously on a very large natural
image dataset [13]. By using VGG loss, we transferred the knowledge of human
perception that is embedded in VGG network to CT image quality evaluation. The
performance of using WGAN or GAN alone is not acceptable because it only maps
the data distribution from LDCT to NDCT but does not guarantee the image content
correspondence. As for the lesion detection in these two slices, all the networks
enhance the lesion visibility compared to the original noisy low-dose FBP images as
noise is reduced by different approaches.

As for iterative reconstruction technique, the reconstruction results depend greatly
on the choices of the regularization parameters. The implemented dictionary learning
reconstruction (DictRecon) result gave the most aggressive noise reduction effect
compared to the network outputs as a result of strong regularization. However, it
oversmoothed some fine structures. For example, in Fig. 14.8, the vessel pointed by
the green arrow was smeared out while it is easily identifiable in NDCT as well as
WGAN-VGG images. Yet, as an iterative reconstruction method, DictRecon has its
advantage over post-processing method. As pointed by the red arrow in Fig. 14.8,
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(a) Full Dose FBP (b) Quarter Dose FBP (c) DictRecon

(d) GAN (e) CNN-MSE (f) CNN-VGG

(g) WGAN (h) WGAN-MSE (i) WGAN-VGG

Fig. 14.5 Transverse CT images of the abdomen demonstrate a low attenuation liver lesion (in
the red box) and a cystic lesion in the upper pole of the left kidney (in the blue box) This display
window is [–160, 240]HU

there is a bright spot which can be seen in DictRecon and NDCT images, but is not
observable in LDCT and network processed images. Since the WGAN-VGG image
is generated from LDCT image, in which this bright spot is not easily observed, it
is reasonable that we do not see the bright spot in the images processed by neural
networks. In other words, we do not want the network to generate structure that does
not exist in the original images. In short, the proposedWGAN-VGGnetwork is a post-
processing method and information that is lost during the FBP reconstruction cannot
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Fig. 14.6 Zoomed ROI of the red rectangle in Fig. 14.5. The low attenuation liver lesion within the
dashed circle represents metastasis. The lesion is difficult to assess on quarter-dose FBP recon (b)
due to high-noise content. This display window is [–160, 240]HU

easily be recovered, which is one limitation for all the post-processing methods. On
the other hand, as an iterative reconstruction method, DictRecon algorithm generates
images from rawdata,which hasmore information than the post-processingmethods.

14.3.5 Quantitative Analysis

For quantitative analysis, we calculated the peak-to-noise ratio (PSNR) and structural
similarity (SSIM). The summary data are in Table14.2. CNN-MSE ranks the first in
terms of PSNR, whileWGAN is the worst. Since PSNR is equivalent to the per-pixel
loss, it is not surprising that CNN-MSE, which was trained to minimize MSE loss,
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(a) Full Dose FBP (b) Quarter Dose FBP (c) DictRecon

(d) GAN (e) CNN-MSE (f) CNN-VGG

(g) WGAN (h) WGAN-MSE (i) WGAN-VGG

Fig. 14.7 Transverse CT images of the abdomen demonstrate small low attenuation liver lesions.
The display window is [–160, 240]HU

outperformed the networks trained to minimize other feature-based loss. It is worth
noting that these quantitative results are in decent agreement with Fig. 14.4, in which
CNN-MSE has the smallest MSE loss and WGAN has the largest. The reason why
WGAN ranks the worst in PSNR and SSIM is because it does not include either
MSE or VGG regularization. DictRecon achieves the best SSIM and a high PSNR.
However, it has the problem of image blurring and leads to blocky and waxy artifacts
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(a) Full Dose FBP (b) Quarter Dose FBP (c) DictRecon

(d) GAN (e) CNN-MSE (f) CNN-VGG

(g) WGAN (h) WGAN-MSE (i) WGAN-VGG

Fig. 14.8 Zoomed ROI of the red rectangle in Fig. 14.7 demonstrates the two attenuation liver
lesions in the red and blue circles. The display window is [–160, 240]HU

in the resultant images. This indicates that PSNR and SSIM may not be sufficient in
evaluating image quality.

In the reviewing process, we found two papers using similar network structures.
In [44], Wolterink et al. trained three networks, i.e., GAN, CNN-MSE, and GAN-
MSE for cardiac CT denoising. Their quantitative PSNR results are consistent with
our counterpart results. And Yu et al. [46] used GAN-VGG to handle the de-aliasing
problem for fast CS-MRI. Their results are also consistent with ours. Interestingly,
despite the high PSNRs obtained by MSE-based networks, the authors in the two
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Table 14.2 Quantitative results associated with different network outputs for Figs. 14.5 and 14.7

Figure14.5 Figure14.7

PSNR SSIM PSNR SSIM

LDCT 19.7904 0.7496 18.4519 0.6471

CNN-MSE 24.4894 0.7966 23.2649 0.7022

WGAN-MSE 24.0637 0.8090 22.7255 0.7122

CNN-VGG 23.2322 0.7926 22.0950 0.6972

WGAN-VGG 23.3942 0.7923 22.1620 0.6949

WGAN 22.0168 0.7745 20.9051 0.6759

‘1 GAN 21.8676 0.7581 21.0042 0.6632

DictRecon 24.2516 0.8148 24.0992 0.7631

papers all claim that GAN and VGG loss based networks have better image quality
and diagnostic information.

To gain more insight into the output images from different approaches, we inspect
the statistical properties by calculating the mean CT numbers (Hounsfield Units) and
standard deviations (SDs) of two flat regions in Figs. 14.5 and 14.7 (marked by the
blue rectangles). In an ideal scenario, a noise reduction algorithm should achieve
mean and SD to the gold standard as close as possible. In our experiments, the NDCT
FBP images were used as gold standard because they have the best image quality in
this dataset. As shown in Table14.3, both CNN-MSE and DictRecon produced much
smaller SDs compared to NDCT, which indicates they oversmoothed the images and
supports our visual observation. On the contrary, WGAN produced the closest SDs
yet smaller mean values, which means it can reduce noise to the same level as NDCT
but it compromised the information content. On the other hand, the proposedWGAN-
VGG has outperformed CNN-VGG, WGAN-MSE, and other selected methods in
terms of mean CT numbers, SDs, and most importantly visual impression.

In addition, we performed a blind reader study on 10 groups of images. Each group
contains the same image slice but processed by different methods. NDCT and LDCT
images are also included for reference, which are the only two labeled images in each
group. Two radiologists were asked to independently score each image in terms of
noise suppression and artifact reduction on a five-point scale (1=unacceptable and
5=excellent), except for the NDCT and LDCT images, which are the references. In
addition, they were asked to give an overall image quality score for all the images.
The mean and standard deviation values of the scores from the two radiologists were
then obtained as the final evaluation results, which are shown in Table14.4. It can
be seen that CNN-MSE and DictRecon give the best noise suppression scores while
the proposedWGAN-VGG outperforms the other methods for artifact reduction and
overall quality improvement. Also, *-VGG networks provide higher scores than *-
MSE networks in terms of artifact reduction and overall quality but lower scores for
noise suppression. This indicates that MSE loss based networks are good at noise
suppression at a loss of image details, resulting in an image quality degradation for
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Table 14.3 Statistical properties of the blue rectangle areas in Figs. 14.5 and 14.7. The values are
in Hounsfield Unit (HU)

Figure14.5 Figure14.7

Mean SD Mean SD

NDCT 9 36 118 38

LDCT 11 74 118 66

CNN-MSE 12 18 120 15

WGAN-MSE 9 28 115 25

CNN-VGG 4 30 104 28

WGAN-VGG 9 31 111 29

WGAN 23 37 135 33

GAN 8 35 110 32

DictRecon 4 11 111 13

Table 14.4 Subjective quality scores (mean± sd) for different algorithms
NDCT LDCT CNN-

MSE
CNN-
VGG

WGAN-
MSE

WGAN-
VGG

WGAN GAN DictRecon

Noise
suppres-
sion

– – 4.35 ±
0.24

3.10 ±
0.23

3.55 ±
0.25

3.20 ± 0.25 2.90 ±
0.26

3.00 ±
0.21

4.65± 0.20

Artifact
reduc-
tion

– – 1.70 ±
0.28

2.85 ±
0.32

3.05 ±
0.27

3.45± 0.25 2.90 ±
0.28

3.05 ±
0.27

2.05 ± 0.27

Overall
quality

3.95 ±
0.20

1.35 ±
0.16

2.15 ±
0.25

3.05 ±
0.20

3.30 ±
0.21

3.70± 0.15 3.05 ±
0.22

3.10 ±
0.21

2.05 ± 0.36

diagnosis. Meanwhile, the networks using WGAN give better overall image quality
than the networks using CNN, which supports the use of WGAN for CT image
denoising.

14.4 Discussions and Conclusion

The most important motivation for this paper is to approach the gold standard NDCT
images as much as possible. As described above, the feasibility and merits of GAN
have been investigated for this purpose with the Wasserstein distance and the VGG
loss. The difference between using the MSE and VGG losses is rather significant.
Despite the fact that networks with MSE would offer higher values for traditional
figures of merit, VGG loss based networks seem desirable for better visual image
quality with more details and less artifacts.

The experimental results have demonstrated that using WGAN helps to improve
image quality and statistical properties. Comparing the images of CNN-MSE and
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WGAN-MSE, we can see that theWGAN framework helped to avoid oversmoothing
effect typically suffered by MSE-based image generators. Although CNN-VGG and
WGAN-VGGvisually share a similar result, the quantitative analysis showsWGAN-
VGGenjoys higher PSNRs andmore faithful statistical properties of denoised images
relative to those ofNDCT images. However, usingWGAN/GANalone reduced noise
but at the expense of losing critical features. The resultant images do not showa strong
noise reduction. Quantitatively, the associated PSNR and SSIM increased modestly
compared to LDCT but they are much lower than what the other networks produced.
Theoretically,WGAN/GAN network is based on generative model andmay generate
images that look natural yet cause a severe distortion for medical diagnostics. This
is why an additive loss function such as MSE and VGG loss should be added to
guarantee the image content remains the same.

It should be noted that the experimental data contain only one noise setting.
Networks should be retrained or retuned for different data to adapt for different noise
properties. Especially, networks with WGAN are trying to minimize the distance
between two probability distributions. Thus, their trained parameters have to be
adjusted for new datasets. Meanwhile, since the loss function of WGAN-VGG is
a mixture of feature domain distance and the GAN adversarial loss, they should
be carefully balanced for different datasets to reduce the amount of image content
alternation.

The denoising network is a typical end-to-end operation, in which the input is an
LDCT imagewhile the target is anNDCT image.Althoughwehave generated images
visually similar to NDCT counterparts in the WGAN-VGG network, we recognize
that these generated images are still not as good as NDCT images. Moreover, noise
still exists in NDCT images. Thus, it is possible that VGGnetwork has captured these
noise features andkept them in the denoised images. This could be a commonproblem
for all the denoising networks. How to outperform the so-called gold standard NDCT
images is an interesting open question. Moreover, image post-denoising methods
also suffer from the information loss during the FBP reconstruction process. These
phenomena are observed in comparison with DictRecon result. A better way to
incorporate the strong fitting capability of neural network and the data completeness
of CT data is to design a network that maps directly from raw projection to the final
CT images, which could be the next step of our work.

In conclusion, we have proposed a contemporary deep neural network that uses a
WGAN frameworkwith perceptual loss function for LDCT image denoising. Instead
of focusing on the design of a complex network structure, we have dedicated our
effort to combine synergistic loss functions that guide the denoising process so that
the resultant denoised results are as close to the gold standard as possible. Our exper-
iment results with real clinical images have shown that the proposed WGAN-VGG
network can effectively solve the well-known oversmoothing problem and generate
images with reduced noise and increased contrast for improved lesion detection. In
the future, we plan to incorporate the WGAN-VGG network with more complicated
generators such as the networks reported in [9, 24] and extend these networks for
image reconstruction from raw data by making a neural network counterpart of the
FBP process.
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Chapter 15
Image Quality Assessment for Population
Cardiac Magnetic Resonance Imaging

Le Zhang, Marco Pereañez, Stefan K. Piechnik, Stefan Neubauer,
Steffen E. Petersen and Alejandro F. Frangi

Abstract Cardiac magnetic resonance (CMR) images play a growing role in diag-
nostic imaging of cardiovascular diseases. MRI is arguably the most comprehensive
imagingmodality for noninvasive and nonionizing imaging of the heart and great ves-
sels and, hence,most suited for population imaging cohorts. Ensuring full coverage of
the left ventricle (LV) is a basic criterion of CMR image quality. Complete LV cover-
age, from base to apex, precedes accurate cardiac volume and functional assessment.
Incomplete coverage of the LV is identified through visual inspection, which is time-
consuming and usually done retrospectively in large imaging cohorts. In this chapter,
we propose a novel automaticmethod to check the coverage of LV fromCMR images
by using Fisher discriminative and dataset invariance (FDDI) three-dimensional (3D)
convolutional neural networks (CNN) independently of image-acquisition parame-
ters, such as imaging device,magnetic field strength, variations in protocol execution,
etc. The proposed model is trained on multiple cohorts of different provenance to
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learn the appearance and identify missing basal and apical slices. To address this, a
two-stage framework is proposed. First, the FDDI 3D CNN extracts high-level fea-
tures in the common representation from different CMR datasets using adversarial
approach; then these image features are used to detect missing basal and apical slices.
Compared with the traditional 3D CNN strategy, the proposed FDDI 3D CNN can
minimize the within-class scatter and maximize the between-class scatter, which can
be adapted to other CMR image data for LV coverage assessment.

15.1 Introduction

Left Ventricular (LV) cardiac anatomy and function arewidely used for diagnosis and
monitoring disease progression in cardiology and to assess the patient’s response to
cardiac surgery and interventional procedures. Cardiac ultrasound (US) and cardiac
magnetic resonance (CMR) imaging are arguably the most widespread techniques
for clinical diagnostic imaging of the heart. For population imaging studies, how-
ever, CMR remains the modality of choice and provides a one-stop-shop access to
cardiac anatomy and function noninvasively [24]. The quantification of LV anatomy
and function from large population imaging studies or patient cohorts from large
clinical trials requires automatic image quality assessment and image analysis tools.
A basic criterion for cardiac image quality is LV coverage and detection of missing
apical and basal CMR slices [15]. Due to insufficient radiographer’s experience in
planning a scan, natural cardiac muscle contraction, breathing motion, and imperfect
triggering, CMR can display incomplete LV coverage, which hampers quantitative
LV characterization and diagnostic accuracy [26]. For example, missing basal slices
has an important impact on LV volume calculation and several derived LV func-
tional measures like ejection fraction and cardiac output. Even if scout images are
acquired to center the LV in view and minimize this problem, incomplete coverage
can result at any point throughout the cardiac cycle due to patient breathing and
cardiac motion. Automatic quality assessment is important in large-scale population
imaging studies, where data is acquired across different imaging sites, by staff of
variable experience and without systematic checks by experienced physicians for
quality before images get stored for future analysis. In addition, data are acquired
from subjects with a diverse constitution and, with strict time constraints on scanner
availability [5, 31]. Image quality assessment is traditionally performed to radio-
graphers who assure that patients do not leave the scanner without diagnostically
interpretable data. However, there are limits to their human attention and, with CMR
examinations becoming cheaper and increasingly commissioned, some centers may
reach inadequate scanning loads to maintain consistent standards. Quality assess-
ment is of particular importance in large-scale population imaging studies, where
data is acquired across different imaging sites before core lab analysis, where large
volumes of data may be stored unchecked by experienced staff before actual analysis
is attempted [5, 31]. Automatic methods for these repetitive quality assurance tasks
provide the required consistency and reliability.
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Few guidelines exist, clinical or otherwise, that objectively establish what consti-
tutes a goodmedical image and a good CMR study [8]. To ensure consistent quantifi-
cation of CMR data, automatic assessment of complete LV coverage is the first step.
LV coverage is still assessed by visual inspection of CMR image sequences, which
is subjective, repetitive, error-prone, and time-consuming [1]. Automatic coverage
assessment is required to promptly intervene and correct data acquisition, and/or dis-
card images with incomplete LV coverage whose analysis would otherwise impair
any aggregated statistics over the cohort. The most common causes of incomplete
LV coverage are the lack of basal slices (no atrial chamber visible in end-systole,
hence no certainty that the base of the heart is covered completely), and the lack of
the apical slice (LV cavity still visible at end-systole) [15]. Although technological
developments in MRI hardware and pulse sequences have led over the years to faster
CMR acquisitions, full heart imaging and motion compensation remain challenging.
In the UK Biobank’s CMR protocol, for instance, incomplete heart coverage is the
reason for flagging 4% of all CMR examinations as unreliable or non-analyzable
image data [2]. While 4% may seem to be a small proportion, the challenge is to
automatically sift through the entire database to identify and exclude those cases
from further quantitative analysis. Methods for objective detection of basal and api-
cal imaging planes are relevant, as their absence affects diagnostic accuracy, as well
as anatomical and functional LV quantification.

In the field of video processing, automatic image quality assessment (AIQA)
is a well-developed corpus of techniques usually concerned with detecting image
distortions characteristic of multimedia communications [27, 32]. These distortions
are generally very different to those affecting medical imagery. No-reference-based
image quality assessment (NR-IQA) [10, 22] is relevant for medical imaging data
sincewhile it is easy to get access to abundant data sets ofmixedquality, it is infeasible
to collect data without some level of image degradation or artifacts. Usually, in
practical CMR image processing applications, there are no perfect versions of the
incomplete LV coverage images, and only the image to be assessed is available to
us. While the assessment tries to highlight the differences of our assessed dataset
regarding a hypothetical high-quality image [14]. The final image quality is estimated
solely based upon characteristics of the assessed image.

In medical image analysis, it is sometimes convenient or necessary to infer an
image in one modality from another for image quality assessment purposes. One
major challenge of slice pose estimation for CMR comes from differences between
data sources, which are tissue appearance and/or spatial resolution of images sourced
from different physical acquisition principles or parameters. Such differences make
it difficult to generalize algorithms trained on specific datasets to other data sources.
This is problematic not only when the source and target datasets are different, but
more so, when the target dataset contains no labels. In all such scenarios, it is highly
desirable to learn a discriminative classifier or other predictor in the presence of a shift
between training and test distributions, which is called dataset invariance. The gen-
eral approach of achieving dataset adaptation has been explored under many facets.
Among the existing cross-dataset learningworks, dataset adaptation has been adopted
for reidentification hoping labeled data from a source dataset can provide transferable
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Fig. 15.1 Top: a typical two-chamber view cardiac MRI with eight slices fully covered from base
to apex and SAX view volume with whole coverage (slice 1 is the basal slice); bottom: a typical
two-chamber view cardiac MRI with eight slices incompletely covered from base to apex and SAX
view volume with missing basal slice (slice 1 is not the basal slice). In each rectangle, from top to
bottom, rows correspond to adjacent axial slices

identity-discriminative information for a target dataset. Reference [11] explored the
possibility of generating multimodal images from single-modality imagery. Refer-
ences [18, 20] employed multitask metric learning models to benefit the target task.
However, these works are focused mainly on linear assumptions.

In this chapter, we focus on the analysis of short axis (SA) cine MRI although
the technique could be generalized to long axis images too. We aim to identify
missing apical slices (MAS) and/or basal slices (MBS) in 3D cardiac MRI volumes
(Fig. 15.1). In previous work, we used a 2D CNN constructed on single-slice images
and processed them sequentially [34]. However, this solution ignores contextual
information contained across slices providing inferior performance compared to a 3D
analysis. We assume that 3D CNNs can easily and effectively deal with within-class
variability and between-class similarity, which are important sources of detection
error [3].We seek to learn a feature representation that achieves reliable classification
results evenwith small numbers of training data or iterations.Meanwhile, to dealwith
the problem where there is no labeled data for a target dataset, one hopes to transfer
knowledge from amodel trained on sufficient labeled data of a source dataset sharing
the same feature space, but with a differentmarginal distribution, we present a dataset
invariance model for any cross-dataset basal/apical slice estimation problem in CMR
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volumes. To solve these problems, we address incomplete LV coverage detection
using a Fisher discriminative and dataset invariance (FDDI) 3D CNN, which utilizes
3D convolution kernels and exploits the spatial contextual information in volumetric
data and integrate adversarial feature learning by building an end-to-end architecture
of CNNs and transferring nonlinear representations from a labeled source dataset to
a target dataset where labels are nonexistent. The proposed FDDI 3D CNN uses the
Fisher discriminant criterion [33] on the fully connected layer to make the features
discriminative and insensitive to geometric structural variations.

To the best of our knowledge, this is the first work tackling the problem of auto-
matic detection ofmissing apical andbasal slices inCMRand evaluating the proposed
approach on a very extensive and challenging population imaging dataset. Besides
introducing a novel FDDI 3D CNN architecture, we propose an effective cascaded
detection strategy for incomplete coverage identification. The first stage classifies
the image representations. We train two separate FDDI 3D CNN classifiers to detect
the absence of basal and apical slices. The second stage is the quality verification.We
combine the classification results from stage 1 to determine the kind of incomplete
coverage found on the image.

15.2 Full LV Coverage Detection Method

15.2.1 Problem Formulation

We formulate our problem as two tasks:
(1) Datasets invariance: given a set of 3D images V s = [Vs

1, . . . ,V
s
N ] ∈

R
m×n×zs×Ns

of modality Ms in the source dataset, and V t = [Vt
1, . . . ,V

t
N ] ∈

R
m×n×zt×Nt

of modality Mt in the target dataset. m, n are the dimensions of axial
view of the image, and zs and zt denotes the size of image along the z-axis, while
Ns and Nt are the number of elements in source and target datasets, respectively.
Our goal is to build mappings between the source (training-time) and the target (test-
time) datasets, so that reducing the difference between the source and target dataset
distributions.

(2) Missing Slice Detection: We use a vector s to represent pixel values in each
slice. A 3D cardiac MRI volume V with full coverage with z slices can be described
as

V = [s1, s2, . . . , sz] . (15.1)

Each cardiac volume, V = [sp, . . . , sq], p ≤ q ∈ [1, z], can have a different num-
ber of slices, or have the same number of slices but cover a different portion of the
LV (Fig. 15.2).

To guarantee accurate cardiac volumetry and functional measurements [15], full
LV coverage is a basic requirement [21]. To address this problem, we propose a two-
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Fig. 15.2 Schematic LV shapes showing blood pool (light gray) and myocardium (dark gray) for
different slices from apex to base. Slice 1 (left) shows LVOT, which identifies the basal slice

stage detection system that first computes intensity representations by an FDDI 3D
CNN model and then detects missing slices based on the computed representations.
In the first stage, we propose an FDDI 3D CNN to encode the spatial contextual
information and hierarchically extract high-level features on multiple cohorts of dif-
ferent provenance to learn the appearance, which represent intensity representations.
In the second stage, the missing basal and apical planes prediction is verified by the
learned representations from the results of the first stage.

15.2.2 Dataset Invariance 3D Intensity Representations

Which 3D intensity representations?Our dataset invariance intensity representations
are represented as a feature distribution matrix, which integrates information about
the LV shape and size across dataset. We detect incomplete LV coverage by image
classification using the distribution matrix. We define two classes—MAS (missing
apical slice) and MBS (missing basal slice).

Given a particular describable visual representation, we can formalize our notion
of 3D intensity representations based on Eq. (15.1). For example, if we are looking
at the volume from base to apex, MAS and MBS can be formalized as

{
VMBS = [sq, . . . , sn],
VMAS = [s1, . . . , sp], (15.2)

where p, q ∈ (1, n), s1 is the basal slice, and sn is the apical slice. Our intensity
representations classifiers can be thought of functions f (·) mapping 3D stacks V
to real value pi. Positive value of pi indicates the presence or strength of the ith
representation, while negative values indicate its absence. Considering our intensity
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representations, if we define V1 and V2 as the MBS and non-MBS samples, respec-
tively, the representation function fMBS (·) can mapV1 to a positive value andV2 to a
negative value. This is a binary classification function. Our 3D intensity representa-
tion classifiers are trained on the UKBiobank dataset as they provide reliable ground
truth labels based on visual inspection and manual annotation.

Dataset Invariance: Inspired by adversarial learning (AL) [7] and dataset adapta-
tion (DA) [30] for cross-dataset transfer, we propose a dataset-invariant adversarial
learning model, which extends the DA formulation into an AL strategy, and per-
forms them jointly in a unified framework. An overview of our method is depicted in
Fig. 15.3a. Given a set of slices {xsk}Nk=1 with slice position labels {ysk}Nk=1 for training,
since dataset adversarial learning satisfies a dataset adaptation mechanism, to learn
a model that can generalize well from one dataset to another, we minimize source
and target representation distances through alternating minimax between two loss
functions: one is the dataset discriminator loss

L k
d = Ld (Gdisc(Gconv(Vs;Wd ,bd ), dk)

= −
∑
i

1 [od = dk ] log(Gdisc(Gconv(Vs;Wf ,bf );Wd ,bd ), dk),
(15.3)

which classifies whether an image is drawn from the source or the target dataset.
od indicates the output of the dataset classifier for the kth image, Wd ,bd are the
parameters used for the computation of the dataset prediction output of the network,
which corresponds to the dataset invariance layers; Wf ,bf are the representation
parameters of the neural network feature extractor, which corresponds to the feature
extraction layers; dk denotes the dataset that the example slice k is drawn from. The
other is the source and target mapping invariant loss

L k
f = Lf (Gconf (Gconv(Vs;Wf ,bf );Wd ,bd ), dk)

= −
∑
d

1

D
log(Gconf (Gconv(Vs;Wf ,bf );Wd ,bd ), dk),

(15.4)

which is optimized with a constrained adversarial objective by computing the cross-
entropy between the output predicted dataset labels, and a uniform distribution over
dataset labels. D indicates the number of input channels. Gconv(·) is a convolution
layer function that maps an example into a new representation;Gsigm(·) is a label pre-
diction layer function; Gdisc(·) and Gconf (·) are the dataset prediction and invariance
layer functions.
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(a)

(b)

Fig. 15.3 The whole assessment framework. a The proposed architecture includes a deep feature
extractor and a missing slice predictor (green) as the first branch, which together form a standard
feed-forward architecture. Dataset Invariance is achieved by adding a dataset classifier (yellow)
connected to the feature extractor as the second branch; b the framework of our LV coverage
assessment process
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15.2.3 Fisher Discriminative 3D CNN Model

In this subsection, we propose an FD3D CNN (shown in Fig. 15.6c) to extract high-
level features, which represent 3D intensity representations. Our FD3D CNN model
is designed by adding a new Fisher discriminative fully connected layer, F2, that
uses the output of the previous layer, F1, as input. The new layer is then stacked onto
a conventional 3D CNN. To maximize the inter-class distances between the learned
features while minimizing the intra-class distances of the learned features, we train
the newly added Fisher discriminative layer F2 on CNN features based on a Fisher
discriminant criterion [33].

To process our main task of the missing slice detection, and boost the discrimina-
tive power of 3D CNN learned features, we impose a Fisher discrimination criterion
[33] on them. Given the 3D input data Vt

i where i is the representation class, with
i = {1, 2}, corresponding toMAS andMBS; the superscript t inVt

i indicates whether
the representation is positive or negative, i.e., t = {0, 1}; Vt

i = [
vti,1, v

t
i,2, . . . , v

t
i,C

]
,

vti,j is the input data of jth sample from class i, for j = 1, 2, . . . ,C. We denote Ft
i,j

to be the features in the fully connected layer of the 3D CNN for class i and jth
sample. Using the Fisher criterion, discrimination is achieved by minimizing the
within-class scatter of Ft , denoted by Sw(Ft), and maximizing the between-class
scatter of Ft , denoted by Sb(Ft). Sw(Ft) and Sb(Ft) are defined as

Sw(Ft) =
I∑

i=1

∑
Ft
i,j∈t

(Ft
i,j − mt

i)(F
t
i,j − mt

i)
T , (15.5)

Sb(Ft) =
I∑

i=1

ni(mt
i − mi)(mt

i − mi)
T , (15.6)

wheremt
i andm

t are the mean vectors of Ft
i and F

t , respectively, and ni is the number
of samples from class i. The Fisher discriminant regularization termΦ(Ft) is defined
as tr(Sw(Ft)) − tr(Sb(Ft)). To obtain a discriminative classification result with deep
learned features, we propose to modify the objective function of DID3DCNNmodel
by inserting a Fisher discriminant regularization term:

J(W,b) = argmin
W,b

1

I

I∑
i=1

1 [od = dk ] log(Gdisc(Gconv(V
s,t
i,j ;Wf ,bf );Wy,by), yk)

+ 1

2
λ

(∥∥Wf

∥∥2
2 + ∥∥Wy

∥∥2
2

)
+ 1

2
η(tr(Sw(Ft)) − tr(Sb(Ft))),

(15.7)
where J is our new cost function which can minimize the within-class scatter and
maximize the between-class scatter. The output activation a(Vt

i,j;W,b) = 1/(1 +
e−WVt

i,j−b) is typically restricted to the open interval (0, 1) by using a logistic sigmoid,
which is parametrized by W and b on the jth training sample. ‖W‖22 is a penalty
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term to the loss function that prevents the weights from getting too large, and helps
preventing overfitting. The weights in each layer can be adjusted toward the target
classes and let the input data close to the corresponding classeswhenwe have no large
dataset or small number of iteration. Here, λ, η ∈ [0, 1] are two trade-off parameters
that control the relative importance of each term and usually chosen by experiments,
which could be different based on different databases and network structures.

To obtain a dataset invariance and discriminative classification result with deep
learned features, we propose to modify the objective function of 3D CNN model by
combining Eqs. (15.4) and (15.7):

J∗(W, b) = argmin
W,b

1

I

I∑
i=1

1
[
od = dk

]
log(Gdisc(Gconv(V

s,t
i,j ;Wf , bf );Wy,by), yk )

−
∑
d

1

D
log(Gconf (Gconv(Vs;Wf ,bf );Wd ,bd ), dk )

+ 1

2
η(tr(Sw(Ft)) − tr(Sb(F

t))) + 1

2
λ

(∥∥Wf
∥∥2
2 + ∥∥Wy

∥∥2
2 + ‖Wd‖22

)
.

(15.8)

All the losses are readily implemented in standard deep learning frameworks,
and after setting learning rates properly so that Eq. (15.3) only updates Wd ,bd and
Eq. (15.4) only updates Wf ,bf , the updates can be performed via standard back-
propagation [16]. Together, these updates ensure that we learn a representation that
is dataset-invariant.Our keyproblem is to calculate the error of the output units,which
is consisted of the output errors from the two sub-functions J∗(W,b). To update the
parameters Wt

i and bti , we first calculate the error δ
L,t
i (L is the output layer) of the

output layer with forward propagation, then we adopt the back-propagation method
[12] to calculate the error δ

l,t
i (l < L) for other layers. The partial derivatives of the

overall cost function J∗(W,b) regarding Wt and bt are

∂J∗(W,b)

∂Wl,t
=

C∑
t=0

∑
Ft∈t

∂J(Wt,bt)
∂Wl,t

+ η

C∑
t=0

∑
Ft∈t

∂Φ(Ft)

∂W
, (15.9)

∂J∗(W,b)

∂bl,t
=

C∑
t=0

∑
Ft∈t

∂J(Wt,bt)
∂bl,t

+ η

C∑
t=0

∑
Ft∈t

∂Φ(Ft)

∂b
. (15.10)

In this stage, we use the 3D CNNmodel with the architecture in Table15.1. Algo-
rithm 1 gives the pseudocode to train this new network. In our 3D CNN implemen-
tation, a rectifier linear unit (ReLU) [17] is utilized as nonlinear activation function
in the C and F1 layers.
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Algorithm 1: FDDI 3D CNN Training
Input: the input–target pairs (vti,j , y

t), corresponding jth pairs from class i, t indicates the
positive or negative sample; η.

Output: DID3D CNN weight and biases, respectively,W = [W1,t,W2,t, . . . ,Wl,t] and
b = [b1,t,b2,t, . . . ,bl,t].

begin
InitializeWt

i,j and bti,j
while stopping criterion has not been met do

(1) CalculateWf and Wd for dataset invariance using the Eqs. (15.3) and (15.4)
iteratively.
(2) CalculateWf and Wy for representation classifier optimization.
(3) Update Wf and Wy using Fisher discriminant Φ(Ft) = tr(Sw(Ft)) − tr(Sb(Ft)).
(4) Update Wt

i,j and bti,j with Eqs. (15.9) and (15.10).

end
return Wt

i,j and b
t
i,j until the values of J

∗(W,b) in successive iterations are close enough or
the maximum number of iterations is reached.
end begin

Table 15.1 The architecture of the FDDI 3D CNN model

Layer Kernel size Stride Output size Feature volumes

Input – – 120 × 120 × 3 1

C1 7 × 7 × 2 1 114 × 114 × 2 16

M1 2 × 2 × 1 2 57 × 57 × 2 16

C2 13 × 13 × 2 1 45 × 45 × 1 16

M2 3 × 3 × 1 1 15 × 15 × 1 16

C3 10 × 10 × 1 1 6 × 6 × 1 64

M3 2 × 2 × 1 1 3 × 3 × 1 64

F1 – 1 1 × 1 × 1 256

F2 – 1 1 × 1 × 1 256

F3 – 1 1 × 1 × 1 256

F4 – 1 1 × 1 × 1 128

Note F1 and F2 belong to the missing slice detection branch and F2 is the Fisher discriminant layer;
F3 and F4 belong to the dataset invariance branch

15.3 Materials and Metrics

15.3.1 CMR Acquisition Protocol and Annotation

UK Biobank CMR Protocol: UK Biobank’s CMR acquisitions are performed on
a clinical wide-bore 1.5T scanner (MAGNETOM Aera, Syngo Platform VD13A,
Siemens Healthcare, Erlangen, Germany), and include piloting, sagittal, transverse,
and coronal partial coverage of the chest and abdomen [25]. For measuring car-
diac function, three long axis cines are acquired (viz. horizontal long axis—HLA,
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vertical long axis—VLA, and left ventricular outflow tract—LVOT in both sagit-
tal and coronal views). In addition, a complete short axis (SA) stack is acquired.
All acquisitions use balanced steady-state free precession (bSSFP) MRI sequences,
attempting full coverage of the left ventricle (LV) and right ventricle (RV) [23]. In
this work, we will focus on the SA bSSFP cine CMR data. To date, over 18,800
volunteers have been scanned. The voxel and matrix size of these CMR images are,
respectively, 1.8 × 1.8 × 8.0mm3, and 208 × 187 with, approximately, 10 slices per
volume. Each volumetric sequence contains about 50 cardiac phases.

Gold-standard image quality annotations: quality-scored cardiac MRI data is
available for circa 5,000 volunteers of the UK Biobank (UKBB) imaging resource.
Following visual inspection, manual annotation was carried out with a simple three-
grade quality score [2]: (1) optimal quality for diagnosis, (2) sub-optimal quality yet
analyzable, and (3) bad quality and diagnostically unusable. In 5,065 SA cine CMR
from the same number of volunteers, 4,361 sequences correspond quality score 1,
additional 527 sequences have a quality score 2, and the remaining 177 sequences
have quality score 3. All datasets with optimal quality (score 1) had full coverage of
the heart from base (LVOT existing) to apex (LV cavity still visible at end-systole).
This data was used to construct the ground truth classes for our experiments. Note
that having full coverage should not be confused with having the top/bottom slices
corresponding exactly to base/apex.

15.3.2 Training and Testing Set Definitions

Training set: To create a training dataset for learning intensity representations, we
extract the 3 topmost slices as negative samples for MBS detection and the three
bottommost slices as negative samples forMASdetection. To create positive samples,
we choose three-slice blocks each starting from themiddle slice toward the base/apex
for MBS/MAS detection training, respectively. We created the training set from
images with optimal quality with exclusively full coverage.

(1) Dataset Invariance: We validated the proposed FDDI model on three target
datasets: UKBB, DETERMINE1 and MESA.2 To prevent overfitting due to insuffi-
cient target data, and to improve the detection rate of our algorithm, we employ data
augmentation techniques to artificially enlarge the target datasets. For this purpose,
we chose a set of realistic rotations, scaling factors, and correspondingmirror images,
and applied them to theMRI images. The set of rotations chosen were−45◦ and 45◦,
and the scaling factors 0.75 and 1.25. This increased the number of training samples
by a factor of eight. After data augmentation, we had 2400, and 2384 sequences
for DETERMINE and MESA datasets, and 845,000 stacks of 2D CMR slices from
3,380 sequences each with 50 cardiac phases, with quality score 1 for UKBB dataset.
These augmented data is used for experiments in Sect. IV-A, B, and C. We set aside

1http://www.cardiacatlas.org/studies/determine/.
2http://www.cardiacatlas.org/studies/mesa/.

http://www.cardiacatlas.org/studies/determine/
http://www.cardiacatlas.org/studies/mesa/
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Fig. 15.4 The process of training data origination. Top row: 3D stacks extraction for missing basal
slice detection; bottom row: 3D stacks extraction for missing apical slice detection

981 sequences and the data with quality score 2, 3 for later use in Sect. IV-D. To
the best of our knowledge, this is the largest annotated dataset available to date for
automatic CMR quality assessment (Fig. 15.4).

(2) Missing Slice Identification: We train using three-slice stacks (or triplets) to
model 3D context. The average number of slices per image volume is around 10,
and during training, we extract 4 triplets (two samples containing the base/apex
and two samples without the base/apex). To maximize inter-class separation, it is
wise to avoid intersection between training samples, for example, if we use four-
slice stacks (for a 10-slice volume), there will be a 2-slice overlap between both the
basal positive/negative examples and the apical region. By choosing the proposed
slice triplets, we ensure there is no overlap and increase the discriminative power
of the FDDI 3D CNN. Another important observation that supports the choice of
slice triplets is that a CMR scan volume is not actually acquired at once but each
slice is collected over several cardiac cycles leading to some degree of slice-to-
slice misalignment. This effect is minimized when considering only slice triplets in
contrast to, on the other extreme, using the full 3D volume.

Testing set: We extract every three adjacent slices from top to bottom for each
volume and apply these triplets into the intensity representation classifiers. Data with
known MBS/MAS are created by manually removing the 3 topmost/bottommost
slices, respectively, from images with optimal quality as in the training set.
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During training and testing, three-slice stacks are the input to the proposed FDDI
3D CNN. The scores of the output layer can be interpreted as likelihoods that the
triplets correspond to normal LV volumes or to either missing basal/apical triplets.
Our deep learning methods process images with 3D small blocks (120 × 120 × 3),
which are cropped centered on the images to extract specific regions of interest. The
parameter setting of block size is detailed in Sect. 15.4.1.

15.3.3 Learning Performance Metrics

To evaluate the learning process we use established classification metrics: pre-
cision, sensitivity and error rate as Precision = TP/(TP + FP),Sensitivity =
TP/(TP + FN ),Error Rate = (FP + FN )/N , where TP, FP, and FN are the num-
bers of the true positive, false positive and false negative samples, respectively, and
N represents the number of subjects in the test set.

15.4 Experiments and Results

We experimented to characterize the performance of our FDDI 3D CNN learning
framework. The error (cost) functions used in learning are in the range [0, 1]. In all
experiments, the learning process was terminated when the Standard Deviation (SD)
of the error function over the last five iterations was smaller than σ = 0.01.

15.4.1 Hyper Parameter Selection on UK Biobank

A 3D CNN demands a suitable receptive field (i.e., input size) to achieve fine dis-
crimination. Automatically choosing an optimal size for the input model is time-
consuming, which makes it best suited for discriminative learning. Specifically,
we compared three block size configurations, i.e., 120 × 120 × 3 (which removes
redundant background information based on the central point of original images),
180 × 180 × 3 (which is the original size as we extracted and resized from the UK
Biobank), and 80 × 80 × 3, which mostly contains the LV part at the center. We
tested sizes smaller than the original block size of the classification model because
we wanted to validate whether a larger input block with more contextual infor-
mation can enhance the discrimination capability of the model. The results under
these settings are shown in Table15.2. With block size 80 × 80 × 3, the MAS/MBS
detection precision rate reached 89.01 and 88.36%. The detection performance was
improved to the precision rate of 91.81 and 90.73% under block size 120 × 120 × 3,
demonstrating that increasing contextual information can enhance the discrimination
capability of 3D CNN. When non-block was employed, the detection precision rate
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Table 15.2 Performance versus block size

Block size Precision Sensitivity

MAS (%) MBS (%) MAS (%) MBS (%)

80 × 80 × 3 89.01 88.36 88.24 87.94

120 × 120 × 3 91.81 90.73 90.92 90.25

180 × 180 × 3 90.12 89.78 89.63 88.92

decreased to 90.12 and 89.78% for MAS/MBS detection. This may be because too
much redundant contextual information clutters the actual LV signature, and hence
degrades detection performance. Based on these experiments, we set the block size
to 120 × 120 × 3, and then achieve optimal detection performance.

LeCun et al. [29] and Salah et al. [28] used CNN to recognize handwritten digital
numbers with different numbers of training samples on the MNIST dataset. Their
results illustrate that when reducing training samples, the recognition rate of the
algorithm drops sharply. Differences between data source make it difficult to gener-
alize algorithms trained on specific datasets to other data sources. To demonstrate the
behavior of the fisher discriminant criterion, we experimented with different num-
bers of training samples by increasing the training data from 10,000 to 800,000 in
multiples of 10,000 as in Fig. 15.5 and compared the performance of the conventional
3D CNN and Fisher discriminative 3D CNN, respectively, tested on 45,000 UKB
samples. We found that the two networks achieve poor results with less than 20,000
samples. We used the improvement, which is defined as (1 − ERD/ERT) × 100 to
benchmark our method against traditional 3D CNNs, where ERD and ERT are the
error rates of our Fisher discriminative 3D CNN and traditional 3D CNN, respec-
tively. For 40,000 training samples, our method improves the conventional 3D CNN
error rate by around 29.1% for MBS detection. When the number of training sam-
ples is larger than 40,000, our method can still improve the test result with better
performance compared to traditional 3D CNN. The error rates of MAS/MBS repre-
sentation learning are shown in Fig. 15.5. The data in the figure illustrates that our
proposed method achieves comparable results with less training data compared to
conventional 3D CNNs. We chose 80% of the 845,000 training samples and tested
with the remaining 20% samples. The results are shown in Table15.3. Even when
trained with fewer iterations, our method can achieve better results compared to
traditional 3D CNN.

With sufficient training samples and iterations, most machine learning methods
can improve their accuracy at a higher computational cost. However, we usually want
to obtain a trained network in the shortest time possible. This is especially important
in population imaging as new datasets can become available and retraining might be
required. It is also a desirable feature during algorithmic development as finding an
optimal architecturemay requiremultiple training procedures for different parameter
settings. We illustrated that our Fisher discriminative 3D CNN has a better error
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Fig. 15.5 Error rates and improvements for increasingly larger training sets: a MBS detection; b
MAS detection
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Table 15.3 Error rates versus learning epochs

Error rate (%)

Epochs Traditional 3D CNN
(MBS/MAS)

Discriminative 3D CNN
(MBS/MAS)

Improvement (%)
(MBS/MAS)

1 32.4/30.7 28.8/27.4 11.1/10.8

10 25.4/24.2 19.2/17.6 24.4/27.3

20 19.2/18.7 11.3/10.8 41.1/42.2

30 12.7/13.1 8.3/8.6 34.6/34.4

40 6.3/5.6 4.9/4.6 22.2/17.9

(a) Sample volumes for MBS testing with their automatic quality (AQ) and visual quality (VQ)

(b) Sample volumes for MAS testing with their automatic quality (AQ) and visual quality (VQ)

Fig. 15.6 Sample test volumes and their automatic quality (AQ) and visual quality (VQ) for MBS
detection (top row) or MAS detection (bottom row) are shown. The left seven samples in each row
show consistent between AQ and VQ, which means our algorithm gives the accurate prediction;
the right two samples in each row show the wrong quality prediction

reduction performance as a function of the number of training samples and iterations
than other competing techniques.

Typical classification results using the proposed fisher discriminative 3D CNN
architecture are shown in Fig. 15.6. A few basal stacks (top row) and apical stacks
(bottom row) in the test datasets with their automatic quality (AQ) or corresponding
posterior probability values are shown. High score values on the stack correspond to
the likelihood of being correct basal or apical triplets. The basal slices with existing
LVOT indicate higher probability values of being correctly classified. This shows that
the training has captured the LVOT as a prominent feature in the correctly positioned
basal slices.
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15.4.2 Dataset Adversarial Learning Performance

In a second experiment, we evaluated the generalization of the performance of our
full LV coverage detection system on independent datasets. We assessed the sensi-
tivity of our system to moderate changes in imaging conditions, scanner vendors,
image resolution, etc. To this effect, we evaluate the performance of the missing slice
detection task with and without dataset invariance (adaptation vs. non-adaptation),
by transferring object intensity representation classifiers from the UKBB to MESA
and DETERMINE. To fully evaluate the effectiveness of the proposed dataset adver-
sarial learning method, we conduct comprehensive comparison of our approach with
several state-of-the-art (related) approaches for cross datasets slice detection:

• 2D CNN: Metric Classification with 2D CNN [34].
• DI2D CNN: 2D CNN with dataset invariance [6].
• 3D CNN: Metric Classification with 3D CNN [13].
• FD3D CNN: Metric Classification with fisher discriminative 3D CNN.
• FDDI 3D CNN: Discriminative 3D CNN with dataset invariance.

To evaluate performance on MESA and DETERMINE, we manually generated
annotations as follows: we checked one slice above and below the detected basal
slice to confirm the slice is the basal and record true or false, ditto for apex. This
dataset comprises 2400 cardiac MRI volumes after data augmentation. 6 to 12 SAX
images were obtained from the atrioventricular ring to the apex. Gold-standard full
LV coverage was obtained by an experienced reader (LZ) and checked visually
by inspecting slices from base to apex. The original volumes are used for full LV
coverage detection and triplets of top and bottom slices are used, respectively, as
negative examples forMBS andMAS. Positive examples ofMBS/MAS are obtained
by manually removing the 3 topmost/bottommost slices. This dataset is used as test
set on the different methods.

We compared our framework with non-adaption methods: 2D CNN, 3D CNN,
and FD3D CNN, and the adaptation methods: DI2D CNN and FDDI 3D CNN. In
particular, we chose the CNN architecture in [34] for conventional 2D CNN, and the
3D approach in [13] for 3D CNN and FD3D CNN metrics with non-adaptation, and
the dataset adversarial learning architecture in [35] for both two adaption methods.
For the methods with no adaptation, we train the networks only on UKBB dataset
and test on the target datasets; for the methods with adaptation, we train the networks
on both source and target datasets. Tables15.4 and 15.5 show the precision and sen-
sitivity for missing basal/apical slice of the adaptation and non-adaptation methods
on MESA and DETERMINE, respectively. For both test datasets, the best improve-
ments are the result of combining both of these features. For MESA the precision
rate was increased by 29%, and for DETERMINE best improvements are of 22%.
We also list the results obtained using handcrafted features [19]. The basal slice is
identified by these steps: (1) Choose the middle slice image as the start image, and
process each image sequentially in the basal direction. (2) Apply the optimal thresh-
old method to convert the ROI to a binary image. (3) Identify the binary object with
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Table 15.4 Cross-dataset performance comparison of different learning models with learned and
handcrafted visual representations on MESA

Method Precision (%) Sensitivity (%)

MAS MBS MBS ∨ MAS MAS MBS MBS ∨ MAS

FDDI 3D
CNN

88.37 ±0.31 89.14 ±0.34 88.59 ±0.38 87.95 ±0.41 89.03 ±0.38 88.42 ±0.40

FD3D CNN 86.32 ±0.29 86.91 ±0.27 85.63 ±0.32 84.92 ±0.25 85.48 ±0.28 85.67 ±0.29

3D CNN 79.65 ±0.21 80.12 ±0.26 80.09 ±0.28 78.51 ±0.23 79.647
±0.27

79.37 ±0.26

DI2D CNN 87.12 ±0.43 87.68 ±0.44 87.42 ±0.42 86.25 ±0.46 88.34 ±0.41 86.89 ±0.45

2D CNN 62.38 ±0.39 65.42 ±0.37 66.75 ±0.37 63.21 ±0.38 63.83 ±0.35 64.71 ±0.37

Lu et al. [19] 32.74 ±1.42 38.69 ±1.65 52.12 ±1.58 58.42 ±1.12 63.48 ±1.37 59.74 ±1.59

Table 15.5 Cross-dataset performance comparison of different learning models with learned and
handcrafted visual representations on DETERMINE

Method Precision (%) Sensitivity (%)

MAS MBS MBS ∨ MAS MAS MBS MBS ∨ MAS

FDDI 3D
CNN

89.64 ±0.28 89.78 ±0.29 89.42 ±0.26 88.36 ±0.28 89.63 ±0.30 89.79 ±0.29

FD3D CNN 85.69 ±0.23 86.60 ±0.22 86.13 ±0.21 85.46 ±0.24 86.05 ±0.22 85.71 ±0.23

3D CNN 78.45 ±0.23 79.86 ±0.27 80.27 ±0.26 79.59 ±0.21 80.12 ±0.22 79.69 ±0.27

DI2D CNN 88.42 ±0.46 88.91 ±0.48 88.64 ±0.42 87.29 ±0.39 88.47 ±0.41 88.58 ±0.46

2D CNN 69.65 ±0.49 71.42 ±0.42 71.87 ±0.44 69.32 ±0.41 69.76 ±0.43 69.83 ±0.44

Lu et al. [19] 33.68 ±1.37 40.12 ±1.42 54.29 ±1.26 58.31 ±1.14 62.73 ±1.39 61.57 ±1.58

blood pool, which shows a shape of ellipse. (4) Calculate the length of the major axis
L of the ellipse that has the same normalized second central moments as the binary
object. (5) If the ratio of current to preceding L is larger than a predefined threshold
(e.g., >1.2 in this work), then a basal slice is identified; otherwise, the basal slice
is missing. We use the similar method to identify the apical slice. We process each
image sequentially from base to apex. If the ratio of the current to the preceding
L is smaller than a predefined threshold (e.g., <0.2 in this work), an apical slice is
detected; otherwise, the apical slice is missing. We employed this feature extraction
procedure for prediction. The proposed FDDI 3D CNN shows the best precision and
sensitivity figures in each representation classifier, and the full LV coverage detection
performance.



318 L. Zhang et al.

Table 15.6 Confusion matrix of the expert cardiologist (VQ1) and cardiac image expert’s visual
(VQ2) results. Gray numbers indicate number and ratio of correct estimates

15.4.3 Intra-rater Agreement of Full LV Coverage Detection

To contextualize the results of the automatic full LV coverage assessment, we com-
pared it to intra-rater full LV coverage detection rate by expert readers. Intra-rater
agreement [9] of human experts was evaluated by reassessing a subset of 200 ran-
dom CMR datasets. To ensure robustness of the results, the designed FDDI3D CNN
was trained three times with 800,000 samples with random parameter initialization
and was evaluated against visual quality assessment by an expert cardiologist on the
MESA and DETERMINE datasets. The inter-observer agreement for full LV cov-
erage was evaluated as the mean absolute error (MAE) between the automatic (AQ)
and the expert’s visual (VQ) results. The confusion matrix of the proposed network
for MESA and DETERMINE, AQ versus VQ is presented in Table15.6a, b. A few
test samples with their corresponding VQ and AQ are depicted in Fig. 15.6.

According to the confusion matrix, among the 200 reassessment samples, there
were only nine samples inMESAand eight inDETERMINEwith inconsistent quality
between AQ and VQ, most of which were further confirmed with the consultant
cardiologist who graded the CMR to be outliers of the original labeling process.
Distribution quality levels in this randomly selected subset was compared to the
original data using Pearson’s χ2 goodness-of-fit test to confirm that it represents the
original data distribution (p-value > 0.05). Reassessed samples demonstrated a high
agreement with the original qualities (Cohen’s κ = 0.76, p-value < 0.05).

15.4.4 Implementation Considerations

The experiments here reported were conducted using the ConvNet library [4] on an
Intel Xeon E5-1620 v3@3.50 GHzmachine runningWindows 10 with 32 GB RAM
andNvidia Quadro K620 GPU. The networks were optimized using gradient descent
method [16] with these hyperparameters: learning rate = 0.01, momentum = 0.9,
drop-out rate= 0.1. The trainable weights were randomly initialized from aGaussian
distribution (μ = 0, σ = 0.01) and updated with standard back-propagation. The
models converged in about 6h when training with 800,000 volumes with size 120 ×
120 × 3. Testing was fast and could process each volume in 3 s.
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15.5 Conclusion

In this paper, we tackled the problem of detecting incomplete LV coverage in large
population imaging databases. We illustrated the concept by proposing a discrimi-
native 3D CNN tested on CMR data from the UK Biobank. Our FDDI 3D CNN is
proposed by adding a new Fisher discriminative fully connected layer into the net-
work, which achieved a significant improvement in intensity representation. Learned
representation classifiers are computed on the candidates to corresponding quality
categories. We also validated our model by training with UKBB pilot datasets and
cross-evaluating it inCMRdata fromData ScienceBowlCardiacChallenge. The pro-
posed model shows a high consistency with human perception and becomes superior
compared to the state-of-the-art methods, showing its high potential. Our proposed
FDDI 3D CNN can also be easily applied and boost the results for other detection
and segmentation tasks in medical image analysis.
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Chapter 16
Agent-Based Methods for Medical Image
Registration

Shun Miao and Rui Liao

Abstract Medical imaging registration is a critical step in a wide spectrum of
medical applications from diagnosis to therapy and has been an extensively stud-
ied research field. Prior to the popularity of deep learning, image registration was
commonly performed by optimizing an image matching metric as a cost function
in search for the optimal registration. However, the optimization task is known to
be challenging due to (1) the non-convex nature of the matching metric over the
registration parameter space and (2) the lack of effective approaches for robust opti-
mization. With the latest advance in deep learning and artificial intelligence, the field
of medical image registration had a major paradigm shift, whereby learning-based
image registration methods are developed to employ deep neural networks to ana-
lyze images in order to estimate plausible registrations. Among the latest advances
in learning-based registration methods, agent-based methods have been shown to
be effective in both 3-D/3-D and 2-D/3-D registrations with significant robustness
advantage over conventional optimization-based methods. In this chapter, we give an
overview of agent-based methods for medical image registration and its two appli-
cations on rigid-body 3-D/3-D and 2-D/3-D registrations.

16.1 Introduction

The goal of medical image registration is to recover correspondences between two
medical images acquired from (1) different patients, (2) the same patient at differ-
ent time, or (3) different modalities, e.g., fluoroscopy, computed tomography (CT),
magnetic resonance imaging (MRI), positron emission tomography (PET), etc. The
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images are brought into the same coordinate system via various transformation mod-
els, e.g., rigid-body, affine, parametric splines, and dense motion fields [25]. The
aligned images could then provide complementary information for decision-making,
enable longitudinal change analysis, or guide minimally invasive therapy [9, 16].

Based on the dimensionality of the images to be registered, medical image regis-
tration tasks mainly fall into two categories: (1) 3-D/3-D image registration, where
the two images to be registered are both 3-D imaging modalities, and (2) 2-D/3-
D image registration, which aims at registering an intraoperative 2-D image with
a preoperative 3-D image. Since the two categories of medical image registration
tasks have fundamental similarities, they can often be formulated and solved with
the same framework. Among different image registration frameworks, parametric
image registration is the most widely adopted one, which uses parametric transfor-
mation models to describe the registration, and searches the optimal parameters of
the transformation model to spatially align the two images. It can be applied to solve
both 3-D/3-D and 2-D/3-D image registration. The parametric transformation model
is applied to one 3-D image to align it with the other image, which can be a 3-D or
2-D image for 3-D/3-D and 2-D/3-D registration, respectively.

As deep learning is rapidly revolutionizing artificial intelligence and resulting
in new state of the art for various computer vision tasks, the field of medical image
registration also had amajor paradigm shift toward deep learning, whereby deep neu-
ral networks are employed to analyze the images in order to perform registrations.
Among the latest advances in learning-based registration methods, the agent-based
methods, first introduced in [15, 20], have been shown to be effective in parametric
3-D/3-D and 2-D/3-D registration with significant robustness advantage over con-
ventional optimization-based methods. In this chapter, we describe the agent-based
registrationmethods, demonstrate two use cases of them, one on 3-D/3-D registration
and one on 2-D/3-D registration, and compare them with conventional optimization-
based parametric image registration methods.

The remainder of the chapter is organized as follows: Sect. 16.2 gives an overview
of the background of medical image registration and discusses related works.
Section16.3 describes the agent-based method for parametric image registration.
In Sects. 16.4 and 16.5 , we apply the agent-based method on rigid-body 3-D/3-D
and 2-D/3-D registration problems, respectively, and compare its results with state-
of-the-art methods. Section16.6 discusses the advantages and disadvantages of the
agent-based method.

16.2 Background

In this section, we give an overview of parametric image registration and discuss the
recent advance in deep learning-based image registration. We also give backgrounds
of deep reinforcement learning (DRL) and the special Euclidean group SE(3), which
are used by the agent-based methods described in Sect. 16.3.
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16.2.1 Parametric Image Registration

Medical image registration has been an active research area formore than twodecades
[18, 23]. Parametric image registration is the most widely adopted 3-D/3-D image
registration framework, which formulates image registration as a searching prob-
lem. It uses a parametric transformation model (e.g., rigid-body transformation) to
describe the state of image registration, defines a generic matching metric to mea-
sure the similarity of the image pairs to be registered, and performs optimization to
search for the optimal transformations to maximize the matching metric [26]. In 2-
D/3-D registration, the same parametric image registration framework is also widely
adopted, but is referred to as intensity-based registration, where the registration state
is also described by a transformation of the 3-D image, and the similarity metric is
calculated on the 2-D image and a 2-D projection image of the 3-D image, referred
to as digitally reconstructed radiography (DRR).

Since parametric image registration has been conventionally solved using opti-
mization techniques (therefore often referred to as optimization-based registration),
the success of the registration heavily depends on the global optimization of the
matching metric. Popular matching metrics are mostly based on low level measure-
ments, e.g., sum of squared distance (SSD), mutual information (MI) [17], cross-
correlation (CC) [11], gradient correlation (GC) [3], etc. These metrics compare
images directly at the pixel level without understanding the higher level structures.
As a result, on images with a low signal-to-noise ratio (SNR) and/or severe image
artifacts, they often have numerous local maxima, which makes it extremely chal-
lenging to locate the global solution using mathematical optimization strategy, e.g.,
Powell’s method, Nelder–Mead, BFGS, CMA-ES.

16.2.2 Image Registration Using Deep Learning

While deep learning has achieved state-of-the-art performance in image segmenta-
tion, image recognition, and image classification, deep learning-based image reg-
istration is still an emerging field of research. Unsupervised learning using deep
learning was proposed in [28] to extract features for deformable registration. How-
ever, these features are extracted separately from the image pairs and therefore cannot
be guaranteed to be optimal for registration purpose. A deep learning-based regres-
sion approach was presented in [21] to solve 2-D/3-D registration for device tracking
from 2-D X-ray images. Optical flow estimation between 2-D RGB images has been
proposed using convolutional neural network (CNN) via supervised learning in [4].
The agent-based registration methods described in this chapter were first introduced
in [15, 20], where 3-D/3-D and 2-D/3-D registrations are formulated as Markov
decision process (MDP) and is solved using DRL techniques with a single-agent and
multi-agent setup, respectively.
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16.2.3 Deep Reinforcement Learning

In reinforcement learning (RL) [10], the agent learns to perform certain tasks through
a reward system, via successive trial and errors. While RL has been widely studied
in game theory, control, operations research, robotics, etc., it is only with the recent
breakthroughs in (DRL), which combine RL with deep learning, that it could be
applied to more complex problems, reaching human-level performances (e.g., Atari
game [22] and Go [27]). In [2] an active detection model for localizing objects
in 2-D RGB images is trained using DRL. Similarly, a detection agent is trained
using DRL for localizing landmarks in 3-D CT images in [5]. However, one of
the main challenges in DRL is the training process, which can be extremely time-
consuming. Guided policy search [14] and imitation learning [12] were proposed
for more efficient RL via improved policy/data sampling, which however were not
directly applicable to the end-to-end trainable DRL framework. The agent-based
image registration method described in this chapter adopts the DRL framework, but
it trains the agent via deep supervised learning (DSL) to avoid the need of heavy
environment exploration in order to improve training efficiency.

16.2.4 Special Euclidean Group SE(3)

Special Euclidean group SE(3) is the set of 4 × 4 matrices corresponding to trans-
lations and rotations. The tangent space of SE(3) is described using the Lie algebra
se(3), which has six generators corresponding to the derivatives of translation and
rotation along/around each of the standard axes. An element of se(3) is then repre-
sented by multiples of the generators

δ = (u, v) ∈ R
6 (16.1)

δ× = u1G1 + u2G2 + u3G3+
v1G4 + v2G5 + v3G6 ∈ se(3), (16.2)

where (G1,G2,G3) are the translation generators, and (G4,G5,G6) are the rota-
tion generators. Matrix exponential and logarithm can be taken to convert elements
between SE(3) and se(3).

T = exp(δ×) ∈ SE(3). (16.3)

16.3 Agent-Based Image Registration

In this section, we describe the agent-based image registration formulation. We start
with formulating image registration problems as an MDP in Sect. 16.3.1, followed
by Sects. 16.3.2–16.3.4 defining the action space, reward system, and the agent’s
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observation of the environment. In Sect. 16.3.5, we further show that with the reward
system used, the neural network can be learned by DSL, which greatly reduces
training complexity comparing to DRL. In Sect. 16.3.6, we describe a multi-agent
extension of the agent-based registration method.

16.3.1 Image Registration as an MDP

In 3-D/3-D registration, there are a floating (or moving) 3-D image, denoted as
If : R3 �→ R, and a reference image, denoted as Ir : R3 �→ R. The floating and ref-
erence images can be of different 3-D image modalities (e.g., CT, MRI, Ultrasound,
etc.). The goal of rigid-body3-D/3-D registration is to estimate the optimal rigid-body
transformation T : R3 �→ R

3 that spatially aligns the floating image with the refer-
ence image. In 2-D/3-D registration, there is also a floating 3-D image, If : R3 �→ R,
which is usually CT or cone-bean computed tomography (CBCT), and a reference
2-D X-ray image Ir : R2 �→ R. The goal of rigid-body 2-D/3-D is to estimate the
optimal rigid-body transformation T that spatially aligns the projection of the 3-D
floating image with the 2-D reference image. The projection of CT or CBCT can be
calculated by DRR.

Since both 3-D/3-D and 2-D/3-D image registrations aim to estimate the trans-
formation T , agent-based registration methods cast the problem of finding T as an
MDP, which is defined by a five-tuple {T ,A,P·(·),R·(·), γ }, where T is the set of
possible states (i.e., transformations in SE(3)), A is the set of actions (i.e., modifi-
cation of the transformation), PA(T ) is the state obtained by taking action A in state
T , RA(T ) is the reward received by taking action A in state T , and γ is the discount
factor that controls the importance of future rewards. The agent chooses the action
to perform following a policy, denoted as π(·), which is a function that takes the
current environment state as input and returns an action. With the action space A
and the reward scheme R·(·) defined (detailed definitions in Sects. 16.3.2 and 16.3.3),
starting from a state T , the expected total reward that will be collected with a policy
π can be written as

V π (T ) =
∑

t

γ t−1rt, (16.4)

where ri are the rewards collected following the policy π . The core problem of MDP
is to find the policy π∗(·) to maximize the expected total reward:

π∗ = argmax
π

V π (T ), ∀T ∈ T . (16.5)

For convenience, RL algorithms introduce an action-value function, Q(T ,A), which
is a function of a state-action pair and returns a real value. The optimal action-value
function Q∗(T ,A) means the expected total reward received by an agent starting in
T , picking action A, and behaving optimally afterward. Q∗(T ,A) is an indication for
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how good it is for an agent to pick action Awhile being in state T . The optimal policy
π∗ can then be obtained by maximizing the optimal action-value function Q∗(T ,A):

π∗(T ) = argmax
A

Q∗(T ,A). (16.6)

The main goal of the popular Q-learning algorithm is to estimate the optimal
action-value function, from which the optimal policy can be derived. In DRL, with
an assumption that the action space is discrete, the optimal action-value function
Q∗(T ,A) is modeled by a neural network, referred to as Q-network. The Q-network
takes the agent’s observation of the environment (detailed definition in Sect. 16.3.4)
and the state T as input, and outputs N = |A| scalars corresponding to the values of
Q∗(T ,A) of each action in the discrete action space A.

The agent-based image registration method described in this chapter adopts the
DRL framework. The action space, reward mechanism, and the agent’s observation
of the environment are critical components and need to be designed carefully, which
we will detail in the next sections.

16.3.2 Action Space

Action space defines possible actions that the agent is allowed to take during an
MDP to alter the state. It affects the complexity of the optimal action-value function
to be learned and therefore needs to be carefully defined. To this end, a concept of
agent coordinate system is first introduced, which is the coordinate system where the
actions are defined and performed. The agent coordinate system can be described by a
transformation E, from the image coordinate system to the agent coordinate system.
The registration transformation T can then be described in the agent coordinate
system, written as E ◦ T . Since the DRL framework requires discrete actions, the
action space is defined as a set of small movements in the tangent space of SE(3)
at E ◦ T , parameterized by se(3). Specifically, the action space contains 12 actions
of positive and negative movements along the 6 generators of se(3), which can be
written as

A = {−λ1G1, λ1G1, . . . ,−λ6G6, λ6G6}, (16.7)

where λi is the step size for the action along the generator Gi. Performance of an
action A ∈ A is represented as

PA(T ) = E−1 ◦ exp(A) ◦ E ◦ T . (16.8)

Since the actions need relatively small step size in order to achieve high accuracy,
λ1,2,3 are set to be 1 to get a step size of 1mm in translation, and λ4,5,6 are set to
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be π/180 = 0.0174 to get a step size of 1◦ in rotation. Such small step sizes allow
the agent to reach a relatively accurate registration (with up to 1mm and 1◦ errors in
translation and rotation).

16.3.3 Reward System

In a standard MDP, the optimization target is a long-term reward, i.e., an accumula-
tion of discounted future reward, due to the difficulty of forging a reward system that
directly associates the immediate reward with the long-term goal. For image registra-
tion, however, one can define a distance-based reward system such that the immediate
reward is tied with the improvement of the registration. The reward scheme is defined
as the reduction of the geodesic distance to the ground truth transformation described
in the agent coordinate system:

RA(T ) = D(E ◦ T ,E ◦ Tg) − D(E ◦ T ′,E ◦ Tg), (16.9)

where T and T ′ are transformations before and after the action, Tg is the ground truth
transformation, and D(·, ·) denotes the geodesic distance of two transformations on
SE(3) [7]:

D(T1,T2) = ‖ log(T2 ◦ T−1
1 )‖F

= (
2‖u‖22 + ‖v‖22

) 1
2 ,

(16.10)

where log(·) takes T2 ◦ T−1
1 ∈ SE(3) into se(3), u and v are rotation and translation

coefficients of log(T2 ◦ T−1
1 ) as described in Eq. 16.1. Because the units for rotation

and translation are radian and mm, the distance impact of rotation is too small com-
paring to translation. To balance the impacts of rotation and translation, the rotation
coefficients v are scaled by 180/π (i.e., change the unit from radian to mm).

16.3.4 Agent Observation

In DRL, the agent draws an observation of the environment in the current state and
feeds it into Q-network to estimate the optimal action-value function. For image
registration, the observation needs to (1) contain visual cue of the alignment of the
floating and reference images, and (2) have a fixed size since it’s used as the input of
a neural network. A region of interest (ROI) of fixed size extracted from overlapping
areas of the two images meets these requirements and is therefore used as the agent’s
observation. The location and orientation of the ROI are defined based on the origin
and the axes of the agent coordinate system.

The origin of the agent coordinate system is typically selected to be located on the
object of interest in the reference image, for both 3-D/3-D and 2-D/3-D registrations,
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Fig. 16.1 Agent’s
observation in 3-D/3-D
registration

Fig. 16.2 Agent’s
observation in 2-D/3-D
registration

in order to attend the agent to the important structures. However, the orientation of
the agent coordinate system needs to be defined in slightly different ways in 3-D/3-
D and 2-D/3-D registrations. In 3-D/3-D registration, the orientation of the agent
coordinate system is simply aligned with the patient’s orientation (left, anterior, and
head). The ROI is then defined as a 3-D box centered on the origin and aligned with
the three axes, and is extracted from both the reference and floating images as shown
in Fig. 16.1. In 2-D/3-D registration, the orientation of the agent coordinate system is
defined based on the X-ray projection geometry to make the action learnable (more
discussions in Sect. 16.5). The ROI is defined as a 2-D box in the projected images,
centered on the projection of the origin of the agent coordinate system and aligned
with the projection of the axes of the agent coordinate system. The ROI is extracted
from both the reference X-ray image and the DRR (i.e., floating image projected
with transformation T ), as shown in Fig. 16.2.
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16.3.5 Learning Policy with Supervised Learning

The core problem in MDP is to find a policy that guides the decision process of the
agent. In [22, 27], the policy learning process is formulated as a DRL problem, where
the optimal action-value functionQ∗(T ,A) is approximated by a neural network and
learned following the Bellman equation as an iterative update. However, unguided
exploration of the agent and iterative update of action-value function can result in a
low training efficiency, as the agent has to try many combinations before reaching
an effective policy. In agent-based registration, since the distance-based reward ties
the immediate reward directly with the improvement of the registration, the optimal
action-value function can be calculated following a greedy registration path where
actions are taken to maximize the immediate reward. In this setup, the action-value
function can be calculated recursively following the supervised greedy path:

Q(Sk ,Ak) = RAk (Sk) + γQ(Sk+1,Ak+1), (16.11)

where

Ak = argmax
A′ RA′(Sk).

The agent terminates successfully when the distance to the ground truth transforma-
tion, D(Tt,Tg), is less than 0.5. Upon successful termination, the agent receives a
bonus reward (e.g., 10). Interestingly, it can be shown that if the agent is allowed to
take continuous actions in the 6-D transformation parameter space with small steps
(e.g., 1mm and 1◦), Eq. 16.11 is the optimal action-value function Q∗(S,A) (readers
are referred to [15] for proof).

As described in Sect. 16.3.1, a deep neural network is used to model Q∗(S,A).
The loss function used to train the network is

Loss =
M∑

k=1

12∑

i=1

‖yi − Q∗(Tk ,Ai)‖2, (16.12)

where yi is the ith (i = 1 . . . 12) output of the network for the kth sample among M
training samples. Since the ground truth value ofQ∗(S,A) can be pre-calculated, the
network can be trained via DSL.

Using DSL to learnQ∗(S,A) has twomajor advantages over using DRL. First, the
ground truth Q∗(S,A) is given analytically without iterative estimation so that the
network could be trained much more efficiently and with a more stable convergence
property. Second, calculating Eq.16.11 does not require the exploration history of
the agent, meaning that the state space and action space can be randomly sampled
without memory replay, which lowersmemory requirements. The advantage of using
DSL is demonstrated in [15] in a 2-D/2-D registration toy problem, where the agent-
based registration is used to register 2-D slices extracted from CT and CBCT. The
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Fig. 16.3 Success rates
achieved at different training
steps for DSL and DRL

same network architecture and training meta-parameters are used for DSL and DRL.
The training progress curve (Fig. 16.3) shows that DSL is significantly more efficient
than DRL.

16.3.6 Multi-agent System

When a single agent is used for registration, the location of the ROI (i.e., the origin
of the agent coordinate system) will need to be placed on the object of interest, which
typically requires manual input or additional object detection steps. The selection
of location can be avoided by using a multi-agent system introduced in [20], which
provides auto attention and adaptively chooses the most reliable ROIs during regis-
tration. Specifically, scanning window can be used to create ROIs on the reference
image, and each ROI is associated with one agent who observes it. If the scanning
window using 1 pixel as its step size and the agents observing different ROIs follow
the same policy, the network can be efficiently trained using a dilated fully convolu-
tional network (FCN) (Please refer to [20] for details of the dilated FCN training).

During registration, the FCN is applied to produce a dense reward map, which
contains estimated rewards for agents with scanning window ROIs from the input
images. The reward map is denoted as Ri(A), where i is the index of the agent and
A ∈ A is the action. For every agent, the maximum reward is calculated and the
action associated with it is selected:

R̂i = max
A∈A

Ri(A),

Ai = argmax
A∈A

Ri(A).
(16.13)

Since R̂i is the anticipated reward of its selected action Ai, it represents the agent’s
confidence in the action. With the confidence map, one can design a mechanism to
select agents with high confidence (e.g., in [20], agents are selected by thresholding
with confidence scores). After the agents are selected, actions from the selected
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agents are further aggregated by L2 chordal mean to obtain the final actions:

Â = arg min
A∈SE(3)

∑

i∈I
‖Ai − A‖2F , (16.14)

where I denotes the set of selected agents. The L2 chordal mean can be solved
globally in close form as described in [7]. Intuitively, the aggregated action is the
action with the smallest meaning distance to the selected actions on SE(3).

16.4 Agent-Based 3-D/3-D Image Registration

In this section, we introduce an application of the agent-based method on solving
3-D/3-D image registration problems.Wefirst detail the implementation of the agent-
based 3-D/3-D image registration in Sect. 16.4.1. This is followed by Sect. 16.4.2,
which describes experiments and results on two 3-D/3-D registration tasks.

16.4.1 Implementation

A single-agent setting is used for 3-D/3-D registration, mainly because the mem-
ory consumption required by the multi-agent system is unaffordable with modern
GPU RAM (i.e., 16GB) on 3-D images. The ROI of the observation has a size of
64×64×64 voxels and is manually placed on the object of interest. For memory
efficiency, the subtraction of the ROIs from the floating and reference images is used
as the input of the network. The ROI size is relatively small comparing to the size
of a typical CT image (e.g., 512×512×512), which is mainly due to the limitation
of GPU memory. However, the size of the network input is of critical importance
for practical use. For a combined robustness and accuracy, a hierarchical strategy
based on attention is employed, where two separate networks are trained, both using
64×64×64 volumes as the input but with different resolutions and FOVs. The first
network is trained for coarse alignment using down-sampled volumes with a lower
resolution but larger FOV, helping the agent to gain global anatomical understanding
and thus able to perform robust alignment of the object without being trapped into
local optimum even when the initial displacement is large. The second CNN uses
a high-resolution volume with a limited FOV and focuses on aligning the object as
accurately as possible despite the limited FOV.

The same network architecture and meta-parameters for both coarse and fine
registration. The network consists of 5 convolutional layers followed by three
fully connected layers. The convolutional layers use 8, 32, 32, 128, 128 filters, all
with 3×3×3 kernels. The first two convolutional layers are each followed by a
max-pooling layer with stride 2. The three fully connected layers have 512, 512,
and 64 activation neurons, and the output has 12 nodes corresponding to the 12



334 S. Miao and R. Liao

Fig. 16.4 Examples of saliency maps and attention of focus

actions. Each layer is followed by a nonlinear rectified layer, and batch normal-
ization is applied to each layer. During training, each training pair is augmented
64,000 times, leading to more than 5M training data for each data-split. To train
the CNN for coarse registration, rigid-body perturbation is randomly generated
within [±30mm,±30mm,±30mm,±30◦,±30◦,±30◦] for E2, and [±30mm,
±30mm,±150mm,±30◦,±30◦,±30◦] for E1 to cover the large FOV in the head-
foot direction in spine CT. To train the CNN for refinement registration, rigid-body
perturbation range is reduced to [±5mm,±5mm,±5mm,±5◦,±5◦,±5◦].

The registration task is then performed as follows. First, the agent applies the
first CNN to roughly align the object using N1 (empirically set to 200) sequential
actions. Then, a saliency map � is generated by computing the derivative of the
sum of the network’s outputs with respect to pixels of the input ROI via back-
propagation. � indicates the importance of a given pixel in influencing the outcome
of the CNN network in the first step of coarse registration. The most influencing
pixels are selected via thresholding using 95th percentile. Their geometrical mean
weighted by their importance is then calculated as the center of the ROI (marked
by the blue rectangle box in Fig. 16.4) for the second step of refined registration.
Finally, the ROI is extracted from the high-resolution volume, and starting from the
final position obtained in the first step, the agent applies the second CNN with N2

(empirically set to100) sequential actions.
Training of the neural network requires reference and floating image pairs with

a random initial transformation T and a known ground truth transformation Tg . The
initial transformation is obtained by randomly perturbing ground truth transforma-
tion Tg within a given range. Since aligned image pair with known Tg are not easily
obtainable in themedical domain, a large number of initial transformations need to be
generated for each aligned pair available to fully exploit the information. Denser sam-
pling at transformations close to the ground truth transformation is also performed
for finer training of the network close to the solution. Furthermore, each aligned pairs
are also geometrically co-deformed by randomly generated affine transformations
TA:

TA = I +

⎡

⎢⎢⎣

c11 c12 c13 0
c21 c22 c23 0
c31 c32 c33 0
0 0 0 1

⎤

⎥⎥⎦ , (16.15)
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where I is the 4×4 identity matrix and all the elements in [cij]i=1,2,3,j=1,2,3 for
shearing are independently and sampled within a given range, to cover possible
anatomical variations among patients in sizes and shapes.

16.4.2 Experiments and Results

The agent-based 3-D/3-D image registrationmethod is evaluated on two 3-Dmedical
image registration tasks: 1. (Spine) registering spine in CT and CBCT, where the
main challenge is that CT has a much larger FOV than CBCT, leading to many local
optima in the registration space due to the repetitive nature of the spine (Fig. 16.5b).
2. (Cardiac) registering heart in CT and CBCT, where the main challenge is the poor
quality of CBCT with severe streaking artifacts and weak soft tissue contrast at the
boundary of the object to be registered, i.e., the epicardium (Fig. 16.5c).

16.4.2.1 Experiment Setup

Registration accuracy of Spine is measured by 3-D target registration error (TRE) of
manually annotated spine landmarks. Success rate is evaluated by TRE ≤ 10mm.
Registration accuracy of Cardiac is measured by the average mesh-to-mesh distance
(MMD) of the segmented epicardium meshes. Success rate is evaluated by MMD ≤
20mm. Spine landmarks and epicardium segmentations are performed by experts.
Iterative closest point registration [1] followed by visual inspection and manual
editing whenever necessary is performed to provide the ground truth alignment.

Fivefold cross-validation is performed for both Spine and Cardiac. For each data-
split, there are 82 pairs for training and 5 pairs for testing for Spine, and 92 pairs for
training and 5 pairs for testing for Cardiac. Each test pair is randomly de-aligned

Fig. 16.5 a Overlay of spine CT (gray) and CBCT (yellow) volumes before (left) and after (right)
registration, with large differences in FOVs. b Correct overlay of CT and CBCT (left) versus wrong
overlay by shift of one vertebra of CBCT (right). The shift is shown by the movement of the dark
object in CBCT, while the change in spine overlay is barely noticeable. c Cardiac CT (left) and
CBCT (right) volumes, with weak soft tissue contrasts and severe streaking artifacts in the CBCT
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10 times using rigid-body perturbation within the same range as those used for
generating the training data, resulting in 5 × 10 × 5 × 2 = 500 test cases.

Three state-of-the-art 3-D image registration methods are applied to the same
tasks for comparison. ITK: ITK registration [8], where MI computed based on 50
bins for the histogram is used as the matching metric, and optimization is obtained
usingmulti-resolution optimizer based on a variant of gradient descent.Quasi-global
Search (QS): [19], where 2-D anatomy targeted projections are generated to surro-
gate the original 3-D image, allowing for a large number of matching metric eval-
uations, approximating global search. Semantic registration (SR): [24], where the
target organ is segmented from CT and a probability map is calculated from CBCT
volumes using probability boosting tree (PBT) [24]. The segmentation and probabil-
ity map are then used to iteratively register the two images. 600 CT and 393 CBCT
volumes are used for training for epicardium segmentation, and 82 CT and 82 CBCT
volumes are used for training for spine segmentation.

16.4.2.2 Results

The hierarchical registration introduced in Sect. 16.4.1 is applied for Spine. The
effectiveness of using saliency map to attend the agent to the object of interest is
demonstrated in Fig. 16.4. The median error is reduced from 3.4mm after applying
the first CNN to 2.5mm after applying the second CNN. For Cardiac, the MMD is
noticeable even for ground truth transformation due to the large, nonrigid deformation
between CT and CBCT. Therefore, the refinement step is not necessary and is not
applied/evaluated.

Quantitative results are summarized in Table16.1. It is clear that the agent-based
method is able to perform robust 3-D/3-D registration. Specifically, for Spine, the
agent could reliably overcome localmaxima and is not confused by the highly similar
appearance of the neighboring vertebrae. Furthermore, the agent is robust to interfer-
ing objects and artifacts, as highlighted by the green arrows in Fig. 16.6 (from left to
right: kidney, black background outside the image, and the deployed stent grafts). For
Cardiac, the agent is able to learn the registration cues from raw high-dimensional
training data, despite the low signal-to-noise ratio of the object to be registered. The
results demonstrate that while the action of the agent is limited to a set of local
movements for each step, thus making the training of the network easier compared
to one-shot decision (regression), the contextual understanding and overall strategy
of the agent is indeed global, helping the agent avoid local optimum and achieve
robust registration.

Contrary to the proposed method, ITK and QS failed frequently in challenging
cases, leading to relatively low success rates. While SR is more robust than ITK and
QS, it required a significantly larger number of training examples than the agent-
based method, and the performance deteriorated significantly when the number of



16 Agent-Based Methods for Medical Image Registration 337

Table 16.1 Comparison of registration results (#1 and #2 results are marked in red and blue)

Methods Spine (TRE mm) Heart (MMD mm)

Success 10th 50th 90th Success 10th 50th 90th

Ground
truth

N/A 0.8 0.9 1.2 N/A 2.1 4.0 5.9

Initial
position

N/A 35.5 73.9 116.2 N/A 9.2 22.8 30.5

ITK [8] 12% 1.9 77.3 130.4 14% 14.9 34.9 47.6

QS [19] 20%
1.6

60.9 136.2 14% 16.2 35.9 58.7

SR [24] 24% 3.0 34.9 71.0 72% 7.6 15.3 30.6

Agent-
based 92%

1.7
2.5 3.8 100% 3.2 4.8 6.9

Fig. 16.6 Registration examples shown as the difference between the reference and floating images,
before (upper row) and after (lower row) registration. The mesh overlay before and after registration
is shown for the epicardium use case Cardiac

training samples is limited as in Spine. The limitation comes from the fact that
SR does not inherently treat image registration as a problem of establishing the
correspondence, but rather segments the objects from the two images separately,
followed by a standard iterative optimization scheme that is prone to local optimum.

16.5 Agent-Based 2-D/3-D Image Registration

In this section, we introduce an application of the agent-based method on solving 2-
D/3-D image registration problems. In Sect. 16.4.1,we give implementation details of
the agent-based 2-D/3-D image registration. In Sect. 16.4.2, we present experiments
and results on a clinical application of spine 2-D/3-D registration.
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16.5.1 Implementation

The selection of the agent coordinate system is critical for agent-based 2-D/3-D
registration, as it determines if the optimal policy is learnable. To make the policy
learnable, the agent coordinate system needs to account for the X-ray projection
geometry such that each action is associated with a specific appearance change of
the DRR that is largely independent of the projection geometry. Specifically, the
transformation T is described in the image coordinate system, which has its origin at
the upper left corner of the image, its (x, y) axes along the image edges, and its z axes
perpendicular to the image (illustrated in Fig. 16.2). The agent coordinate system has
the same orientation as the image coordinate system, which provides an action space
where the translation actions cause 2-D shift and zooming of the DRR, and rotation
actions cause rotation of object in the DRR around the agent’s origin. Therefore, the
image appearance change of the DRR for a given action is largely independent of the
underlying X-ray projection geometry, which makes the registration policy learnable
without knowing the X-ray projection geometry.

The multi-agent system described in Sect. 16.3.6 is used for 2-D/3-D registra-
tion. Densely overlapping ROIs are automatically generated using scanning window.
Specifically, the X-ray image is first resampled to a fixed pixel spacing of 1mm.
ROIs of size 64×64 scan through the resampled image with 1 pixel step size. The
Q-network is modeled by a CNN, and CNNs of the agents observing such densely
overlapping ROIs are modeled by a corresponding dilated FCN during both training
and deployment of the agents. Table16.2 shows the network configurations for both
the CNN and its corresponding dilated FCN. Figure16.7 shows examples of con-
fidence maps produced by the dilated FCN. It shows a strong correlation between
the confidence score R̂i and the quality of the corresponding ROI: the confidence
score is high on spine (i.e., good visual cue for registration) and low on soft tissue;
when severe occlusion is presented due to medical devices, the occluded area has
low confidence scores.

A threshold on the confidence score R̂i is then used to only select agents with
confidences above the threshold for further action aggregation. To determine the
threshold, the behavior of the confidence score is analyzed on the validation data.
Actions are categorized into correct and wrong, based on their impact on the reg-
istration (i.e., increase or decrease the distance to the ground truth). We choose a
confidence threshold to make the correct rate of selected actions above 95%. To
avoid the scenario that too few agents are selected for a given test image, if less than
10%of the agentsmeet this threshold, the top 10% agents will still be selected regard-
less of their confidence scores. Actions of the selected agents are then aggregated as
described in Sect. 16.3.6 and applied iteratively during registration.



16 Agent-Based Methods for Medical Image Registration 339

Table 16.2 Layer configurations for encoder/decoder CNNs and their equivalent dilated FCNs.
Parameters for convolutional layers are written as m × n × f , where n × m is the convolution
kernel size, and f is the number of feature maps. sk indicates that the layer has input stride k,
and dk indicates that the filter kernel is dilated k times. All convolutional layers have zero padding.
SELU activation function is applied after all layers except for the input and output layers. The
column “Output size” specifies the output sizes for CNN

Layer name Output size Single-agent
CNN

Multi-agent FCN

Encoder input 61×61 – –

conv1 59×59 3×3×32 3×3×32

conv2 57×57 3×3×32 3×3×32

conv3 27×27 3×3×64, s2 3×3×64, d2

conv4 25×25 3×3×64 3×3×64, d2

conv5 11×11 3×3×128, s2 3×3×128, d4

conv6 9×9 3×3×128 3×3×128, d4

conv7 3×3 3×3×256, s2 3×3×256, d8

fc1 1×1 1024 3×3×1024, d8

fc2 1×1 1024 1×1×1024, d8

Output 1×1 128 1×1×128, d8

Decoder input 1×1 – –

fc1 1×1 1024 3×3×1024, d8

fc2 1×1 1024 1×1×1024, d8

Output 1×1 6 1×1×6, d8

Fig. 16.7 Confidence map of densely overlapping ROIs within the image. Color of each pixel
indicates the confidence value from the ROI centered on this pixel
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Fig. 16.8 Example X-ray images (top row) and DRRs (bottom row). The first four X-ray images
are clinical data from spine surgery, which contain various highly opaque metal objects and have
very different FOVs. The last three X-ray images are from CBCT data, which have a relatively low
SNR due to a very small dynamic range

16.5.2 Experiments and Results

The agent-based 2-D/3-D registration is evaluated on a clinical application of 2-D/3-
D registration during minimally invasive spine surgery, which aims at registering
spine in 3-D CBCT and two X-ray images acquired from different angles. This is
a challenging problem because surgical objects like screws and guide wires can be
presented separately in the 3-D and 2-D images, creating severe image artifacts and
occlusion of the target object (examples are shown in Fig. 16.8).

16.5.2.1 Experiment Setup

During minimally invasive spine surgery, the initial pose offset between the CBCT
and the X-ray images can be up to 20mm in translation and 10◦ in rotation. There-
fore, to train the agents to perform registration starting from within this range, the
X-ray/DRR pairs used for training have random rotation offset up to 10◦, and trans-
lation offset up to 20mm. The training data are generated from 77 CBCT data sets,
where each CBCT data set consists of one CBCT and ∼350 X-ray images used for
reconstructing the CBCT. From each CBCT data set, we extract 350 X-ray/DRR
pairs. Since the number of CBCTs is limited, we also generate pairs of synthetic
X-ray image and DRR from 160 CTs as additional training data, where 200 pairs
are generated from each CT. In total, the training data consist of 58,950 data, i.e.,
26,950 CBCT data and 32,000 synthetic data.

Multi-agent training efficiency is analyzed using CNN and dilated FCN. In the
training of CNN, random ROIs are extracted from the X-ray and DRR as the CNN
input, and ground truth rewards are calculated and used as supervision. Curves for the
training loss and correct action rate usingCNN-based and dilated FCN-based training
are shown in Fig. 16.9. FCN-based training finished in 17 hours, with a testing loss of
∼0.13 and a testing correct action rate of∼90%. In comparison, CNN-based training
after 17 hours reaches a test loss of ∼0.22 and a testing correct action rate of ∼80%,
which is close to the performance of FCN-based method after 2 hours of training.
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Fig. 16.9 Comparison of training speed using CNN-based training and dilated FCN-based training

Both the single-agent system and multi-agent system are evaluated for compar-
ison, referred to as agt-s and agt-m, respectively. To apply agent-based 2-D/3-D
registration with two X-ray images, in every step, one action is obtained from each
X-ray image, and the obtained actions are applied sequentially. A combination of
agt-m and an optimization-based method is also evaluated, referred to as agt-m-opt,
where optimization of GC using BOBYQA optimizer is applied starting from the
result of agt-m. The agent-based method is compared with popular optimization-
based methods. Multiple similarity measures were evaluated in [3] using CMA-ES
optimizer for spine 2-D/3-D registration, and GC and GO were reported to achieve
the best performance. Therefore, CMA-ES optimization of GO andGC are evaluated
as the baselines, referred to as ES-GO and ES-GC, respectively. Registration error is
measured by TRE, calculated as the root mean square error (RMSE) of the locations
of seven anatomical landmarks located on spine vertebrae.

Testing is first performed on 116 CBCT data sets via threefold cross-validation
(77 used for training and 39 used for testing). The typical size of the CBCT data is
512 × 512 × 389 with a pixel spacing of 0.486mm. On each data set, 10 pairs of
X-ray images that are >60◦ apart (common practice for spine surgery) are randomly
selected, and 2-D/3-D registration is performed on each pair, starting from a pertur-
bation of the ground truth transformation within 20mm translation and 10◦ rotation,
leading to 1,160 test cases.

To evaluate agent-based 2-D/3-D registration in a real clinical setup, one trained
model is blindly selected from the threefold cross-validation onCBCTdata and tested
on 28 clinical data sets collected fromminimally invasive spine surgery. Each data set
contains a CBCT acquired before the surgery and two X-ray images acquired during
the surgery. Ground truth registration is manually annotated by experts. On each data
set, 20 perturbations of the ground truth transformation are randomly generated as
starting positions for 2-D/3-D registration, leading to 560 test cases.
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Table 16.3 Experiment results on bi-plane 2-D/3-D registration on 1,160 test cases from116CBCT
data sets, and 560 test cases from 28 clinical data sets. Gross failure rate (GFR) accounts for test
cases with TRE > 10mm. Median, 75th percentile and 95th percentile TREs are reported

Method GFR (%) Median
(mm)

Percentile (mm) Run time

75% 95%

CBCT data Start 93.4 19.4 23.2 27.8 –

ES-GC 32.2 1.67 22.1 44.1 18.7 s

ES-GO 34.3 1.81 21.0 38.6 33.9 s

agt-s 17.2 5.30 8.13 23.3 0.5 s

agt-m 4.1 3.59 5.30 8.98 2.1 s

agt-m-opt 2.1 1.19 1.76 4.38 2.6 s

Clinical
data

Start 95.4% 20.4 23.1 26.8 –

ES-GC 49.3 8.79 26.5 55.6 20.4 s

ES-GO 42.1 3.18 29.0 84.6 35.8 s

agt-s 45.7 8.42 14.2 26.4 0.6 s

agt-m 6.8 4.97 7.36 10.3 2.1 s

agt-m-opt 6.1 1.99 2.76 10.8 2.7 s

16.5.2.2 Results

Experiment results are summarized in Table16.3. The two optimization-based meth-
ods, ES-GO and ES-GC, result in relatively high gross failure rate (account for TRE
> 10mm, which is about 1/2 of vertebrae and considered to be grossly off). This is
mainly due to the low image quality (e.g., low SNR, image artifacts in CBCT, etc.),
which leads to a highly non-convex optimization problem using low level similarity
measures like CC and CC. In comparison, agt-m achieve a much lower gross failure
rate, demonstrating the robustness advantage of the agent-based method. Compari-
son of agt-s and agt-m shows that the multi-agent strategy can noticeably improve
robustness by aggregating information from most confident agents. The comparison
ofmedian TRE shows that while the agent-basedmethod provides low failure rate, its
accuracy is lower than that of optimization-based methods. This is primarily due to
the discrete actions of 1mm and 1◦, and location information loss during stride in the
Q-network. By applying opt-local to refine the result of agt-m, apt-m-opt achieved
both low failure rate and high accuracy.

Experiment results on clinical data are summarized in Table16.3. Higher TREs
are reported for all methods on clinical data than that on the CBCT data, primarily
due to three reasons: (1) The ground truth registration for clinical data is manually
annotated, which could bear 1∼2mm error. (2) The complexity of clinical data is
much higher than the CBCT data (i.e., artifacts and occlusion caused by surgical
devices, varying imaging FOVs, etc.). (3) For agent-based methods, the agent is
trained without using any real clinical data from spine surgery. Due to the increased
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complexity, the heuristically selected ROI used in agt-s (i.e., center of the image)
become even less reliable. As a result, the robustness of agt-s degrades significantly
comparing to that on the CBCT data. The multi-agent system, agt-m, in contrast,
achieves a much higher robustness than agt-s, even though the individual agent
is trained without using any clinical data from spine surgery, demonstrating the
effectiveness of the multi-agent strategy in dealing with complex scenarios.

16.6 Discussion

In this chapter, we have described the agent-based image registration method, and
demonstrated its performance on two use cases, a rigid-body 3-D/3-D registration
and a rigid-body 2-D/3-D registration. Although both use cases in this chapter are
rigid-body registration, the method itself is a generic framework for registration that
can be applied to other parametric registration problems as well, given an action
space designed according to the parametric transformation space. For example, in
[13], agent-based registration is adopted for nonrigid image registration using a
statistical deformationmodel and achieves promising results.However, one challenge
associated with more complex transformationmodel is the higher degree of freedom,
which exponentially increases the size of the action space and hence the complexity
of training. This can possibly be solved by decoupling the action space to sub-spaces
and allowing independent policy learning (e.g., in B-Spline transformation, allow
each control point to have its own action space, instead of having one action space
that moves all control points.).

Comparing agent-based registration with its conventional optimization-based
counterpart, the main advantage of agent-based method is the larger capture range
and higher robustness. This is mainly because the policy is learned from observ-
ing de-aligned image pairs, allowing the policy to capture more complex rules than
the maximization of a heuristically defined similarity metric used in conventional
optimization-based methods. The capture range can be controlled by the offset sam-
pling range used in training data generation. Specifically, to have a large capture
range, image pairs with large registration offsets need to be used to train the network,
and networks with stronger modeling power may be needed in order to capture the
registration rule with increased complexity.

One limitation of the agent-based image registration method is the discrete action
space, which imposes trade-offs between registration efficiency and accuracy. Using
larger step sizes improves registration efficiency, since fewer actions and Q-network
inferences are needed in order to complete the registration. However, since minimum
movement of the agent is limited by the action step sizes, smaller step sizes are needed
in order to achieve a high accuracy. One possible solution to achieve both high
efficiency and accuracy is multi-scale action learning, where agents with different
step sizes (from coarse to fine) are trained. During registration, they are applied
hierarchically to perform coarse to fine registration. Similarmethod has been adopted
in landmark detection to achieve real-time performance [6].
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Chapter 17
Deep Learning for Functional Brain
Connectivity: Are We There Yet?

Harish RaviPrakash, Arjun Watane, Sachin Jambawalikar and Ulas Bagci

Abstract The detection of behavioral disorders rooted in neurological structure and
function is an important research goal for neuroimaging communities. Recently, deep
learning has been used successfully in diagnosis and segmentation applications using
anatomical magnetic resonance imaging (MRI). One of the reasons for its popularity
is that with repeated nonlinear transformations, the algorithm is capable of learning
complex patterns in the data. Another advantage is that the feature selection step
commonly used with machine learning algorithms in neuroimaging applications is
eliminated which could lead to less bias in the result. However, there has been little
progress in the application of these black-box approaches to functional MRI (fMRI).
In this study, we explore the use of deep learning methods in comparison with con-
ventional machine learning classifiers as well as their ensembles to analyze fMRI
scans. We compare the benefits of deep learning against an ensemble of classical
machine learning classifiers with a suitable feature selection strategy. Specifically,
we focus on a clinically important problem of Attention Deficit Hyperactivity Dis-
order (ADHD). Functional connectivity information is extracted from fMRI scans
of ADHD and control patients (ADHD-200), and analysis is performed by applying
a decision fusion of various classifiers—the support vector machine, support vec-
tor regression, elastic net, and random forest. We selectively include features by a
nonparametric rankingmethod for feature selection. After initial classification is per-
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formed, the decisions are summed in various permutations for an ensemble classifier,
and the final results are compared with the deep learning-based results. We achieved
a maximum accuracy of 93.93% on the KKI dataset (a subset of the ADHD-200) and
also identified significantly different connections in the brain between ADHD and
control subjects. In the blind testing with different subsets of the target data (Peking-
1), we achieved a maximum accuracy of 72.9%. In contrast, the deep learning-based
approaches yielded a maximum accuracy of 70.5% on the Peking-1 dataset and
67.74% on the complete ADHD-200 dataset, significantly inferior to the classifier
ensemble approach. With more data being made publicly available, deep learning in
fMRI may show a strong potential but as of now deep learning does not provide a
magical solution for fMRI-based diagnosis.

17.1 Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common neu-
rological brain disorders in children, affecting approximately 5.4 million children
in the United States alone [1]. Diagnosed children may suffer from learning diffi-
culties, behavioral abnormalities, disobedience or aggression toward authority. Its
effects may be detrimental to their health, education, and social skills [2]. Their cog-
nitive impulsivity and emotional liability may indicate a greater likelihood of the
progression to adult antisocial behavior and violent impulse-control disorders [3].

Recently, there has been a lot of effort to discover the underlying cause of this
disorder; however, at present there is no standardized biological measure to diagnose
ADHD. Instead, physicians and psychologists still rely on behavioral symptoms
reported by parents and teachers to aid in identifying the disorder. ADHD screening
includes subjective behavioral observations of inattention, impulsiveness, and hyper-
activity.When asked to identify these symptoms, however, a personmay be subject to
confirmation bias, which is the tendency to interpret any evidence as a confirmation
of one’s belief. For example, a mother or teacher may identify a student with poor
grades as “distracted”. As a result, the diagnosis may be inaccurate, especially if a
parent or teacher believes the child has ADHD prior to examination. This may lead
to inaccurate or overdiagnosis of the disorder [4]. To develop an objective and effec-
tive diagnostic method for ADHD, scientists collect and analyze genetic, imaging,
physiologic, and cognitive data. Among them, radiologic imaging of brain structure
and function is promising due to the non-invasive nature of the imaging. Addition-
ally, the availability of automated machine learning methods revealing imaging and
brain connectivity-based features that identify ADHD subjects and/or affected brain
regions to some extent, complements the radiological imaging approach.

An imaging modality that has potential to identify neural patterns is Functional
Magnetic Resonance Imaging (fMRI), which measures signal changes in the brain
due to neural activity.During increases of neural activity, there is an increaseddemand
for oxygen in the localized neurological area. The vascular system compensates for
this by increasing the amount of oxygenated blood in the area. fMRI measures the
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ratio of oxygenated hemoglobin versus deoxygenated hemoglobin to create a func-
tional activity measurement over time. This data can then be utilized to compare
functional brain activity differences between normal versus neuropathological sub-
jects [5].

Artificial intelligence and deep learning are the buzzwords in the computer vision
industry just like cryptocurrency to online transactions. The popularity of these
approaches has spread at the rate of knots and they have found application in almost
every field, from computer science [6] to chemical engineering [7], civil engineer-
ing [8] tomedicine [9].With the high success rate of deep learning, the expectation of
its contribution to fMRI data is high. However, when dealing with more challenging
tasks, simple or complex deep learning networks are unable to generate satisfactory
results on their own. They are generally combined with other classical statistical
methods, machine learning paradigms or with other deep neural networks. One such
task is the goal of mastering the game of chess. DeepMind recently proposed an
algorithm [10] that combines deep learning and Monte Carlo tree search to learn
the game of chess. Similarly, in the segmentation of pancreas from MRI images,
Cai et al. proposed to use a graph-based decision fusion to combine the results of
different deep learning algorithms [11]. fMRI based diagnosis/prediction is another
such challenging task. To solve this problem, following along the lines of Silver
et al. of combining different machine learning paradigms [10], in this chapter, we
present an ensemble classifier approach to boost diagnostic accuracy by identifying
specific functional differences in ADHD brains using fMRI connectivity informa-
tion. We also compare and contrast the proposed approach to standard deep learning
models applied on the same imaging data to observe whether standard deep learning
approaches are as of yet capable of tackling the ADHD diagnosis problem using
fMRI.

17.2 Related Work

Feature selection and dimensionality reduction have been popular in image-based
classification. They have been used for both cognitive state and disease classifica-
tion [12, 13]. Machine learning and network graph analysis approaches have been
used extensively in resting-state fMRI-based disease diagnosis problems. In resting-
state fMRI analysis of Alzheimer’s patients, for instance, network graph theory was
shown to be promising [14, 15]. Machine learning classifiers were used effectively
in classification of autism [16] and ADHD patients [17], as well as in identify-
ing biomarkers for amyotrophic lateral sclerosis (ALS) [18]. Chu et al. studied the
importance of feature selection and sample size on classification using anatomical
MR images [19]. Authors found that with increasing sample size, feature selection
plays a lesser role and the impact of feature selection is dependent on the classifier
chosen.

The classifier ensemble approach has been shown to achievemore accurate results
compared to a single classifier. Cabral et al. found that a group of classifiers is
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able to decode visual stimuli from fMRI data at a higher accuracy than when using
an individual classifier alone [20]. Furthermore, Richiardi et al. used decision tree
ensembles for brain decoding of fMRI connectivity [21]. In a study by Kuncheva
and Rodriguez, various brain patterns associated with different visual stimuli were
identified by using a large number of ensembles [22].

Deep Learning Approaches

In recent years, deep learning has gained popularity due to its ability to generate
high-level feature representations of the data. In medical imaging, deep learning has
been met with great successes in several different tasks. For instance, segmentation
of the left atrium in cardiac images [23], lung in CT images [24], anatomical brain
regions in MRI [25], mandible in CT skull images [26], deep learning was shown to
achieve state-of-the-art results. Deep learning has also received remarkably accurate
results for detection and classification tasks such as IPMN classification in pancreatic
cancer [27], lung nodule detection [28], disease classification in brain MRI [29].
While deep learning with brain images has received great attention, most works have
used MRI [29, 30] and diffusion imaging [31, 32].

The application of fMRI with deep learning approaches has also begun to receive
more attention in the past few years. Wen et al. used Convolutional Neural Networks
(CNN) to identify the association between visual tasks and neural activity using fMRI
recorded data [33]. Horikawa andKamitani performed object recognition tasks using
fMRI recordings and deep neural networks [34]. Toward a better diagnosis model,
Li et al. proposed using the fMRI images as input to a 3D convolutional network to
classify [35] and identify biomarkers [36] in Autism Spectrum Disorder data. In a
study on Alzheimer’s data, Yan et al. used dynamic functional connectivity matrices
as input to a bidirectional Long Short-Term Memory network for mild cognitive
impairment diagnosis [37]. A sliding window approach is used to generate the mean
fMRI image in a study by Li et al. [35] and dynamic functional connectivity in a
study by Yan et al. [37]. However, at present, there is no known optimal method to
identify the best window length and stride for the sliding window approach. These
studies use empirically determined parameters, mostly based on previous works.

There has been limited work in directly comparing deep learning and classical
machine learning algorithms. Sabuncu et al. in their recent work, compared deep
learning to kernel regression in the task of fluid intelligence prediction and found
that deep learning did not outperform the classical regression approach but had strong
future potential [38]. Along similar lines, we propose to compare the deep learning
and standard classifiers in the disease diagnosis task. We use a generic feed-forward
1D convolutional network, a standard auto-encoder, and a recently published network
designed to work with connectome data.
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17.3 Methods

In this study, we test the effect of feature selection on the sample size using ADHD
fMRI data and a novel ensemble classifier, thereby negating the impact of classifier-
dependent feature selection boost. The ensembles that were used include combina-
tions of Support Vector Machines (SVM), Support Vector Regression (SVR), Elastic
Nets (EN), and Random Forest (RF) decision trees. For SVR, the final classification
is based on a threshold on the regression output.

The ADHD-200 dataset [39] consists of multi-site data with patients compris-
ing typically developing children and ADHD-diagnosed children. The demographic
details of the data used in this study can be found in Table 17.1.

17.3.1 fMRI Preprocessing and Feature Extraction

The recorded fMRI data must be preprocessed in order to minimize inter-scan differ-
ences and center the focus of the analysis on only the relevant structures. For all our
fMRI experiments, we use the preprocessed fMRI data released by the ADHD-200
competition organizers. The preprocessing is done using the AFNI [40] and FSL [41]
tools and computed on the Athena computer clusters. The Athena functional data
preprocessing pipeline includes (1) removal of the first four EPI volumes; (2) slice
timing correction; (3) deobliquing of the dataset; (4) reorientation; (5) motion cor-
rection to the first image of the time series; (6) masking to exclude non-cortical
structures (skull and neck stripping); (7) averaging of the volumes to create a mean
image; (8) co-registering the fMRI to its corresponding T1 image; (9) writing fMRI
data and mean image into a template space; (10) down-sampling the WM and CSF
masks (from the anatomical preprocessing that occurs in parallel but not used for
our experiments); (11) time-course extraction for theWM and CSF; (12) regressing

Table 17.1 ADHD-200 dataset

Site ADHD Control

# Subjects Age (Mean ± Std.) # Subjects Age (Mean ± Std.)

KKI 22 10.25 ± 1.27 61 10.21 ± 1.56

NeuroIMAGE 25 17.32 ± 2.57 23 16.68 ± 2.90

NYU 118 12.16 ± 3.14 98 11.26 ± 2.66

OHSU 37 8.88 ± 1.21 42 8.77 ± 1.03

Peking1 24 11.19 ± 1.62 61 11.26 ± 2.31

Peking2 35 11.62 ± 1.79 32 12.58 ± 1.76

Peking3 19 13.20 ± 0.95 23 13.28 ± 1.35

Total 280 11.61 ± 2.88 340 11.64 ± 2.97
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out WM, CSF, and motion time courses; (13) band-pass filtering voxel timecourses
to exclude frequencies not implicated in functional connectivity; and (14) blurring
of the filtered and unfiltered data using a 6-mm FWHM Gaussian filter.

For feature extraction, a toolbox provided by University College London, known
as Statistical Parametric Mapping (SPM), is used in the analysis of the brain fMRI
data sequences. Since the data has already been preprocessed to control for any
unwanted variability and unnecessary structures within the scans, SPM is used to
extract features. The chosen feature extraction method is a region of interest (ROI)
correlation matrix consisting of the correlation coefficients of the activity between
structures of the brain. The automated anatomical labeling (AAL) atlas is used to par-
cellate the volumes into 116 substructures, and the correlation coefficients between
the structures’ level of activity are calculated. From these connectivity matrices, the
upper right triangle is extracted, and there are 6670 correlations which serve as the
features used in the classification of ADHD versus non-ADHD subjects.

17.3.2 Ensemble Classification Approach

Figure17.1 represents the proposed pipeline for ADHD classification. The input to
this pipeline is the preprocessed fMRI ROI connectivity matrix, i.e., functional cor-
relation between pairs of brain regions. First, the upper right triangle of the fMRI
connectivity matrices is extracted. Then, these features, the ROI functional correla-
tion features, are ranked. Next, the top n features are selected for classification. A
tenfold cross-validation approach is performed on all subjects. Finally, the ensemble
classifier outputs the final predicted diagnosis of the test subjects.

Fig. 17.1 The overall ensemble classification pipeline
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Feature Selection

A fundamental problem in machine learning in medical imaging applications is that
of redundant information. That is, the dimensionality of the data (the number of
pixels and voxels) far outnumbers the amount of data that is helpful in identifying a
specific class such as a disorder or disease. Therefore, feature selection algorithms
have been optimized in order to improve classification performance by throwing
out non-informative features and including only significant features as part of the
training and testing data.

Recent studies have shown that in a cluster-wise analysis of fMRI, there is almost
a 70% false-positive rate [42]. Thus, identifying valuable features are important in
order to improve specificity and sensitivity, and ultimately, the accuracy performance.
Especially when considering the complexities and commonalities between brains,
many redundant and extraneous features are reported. As a result, they usually dimin-
ish the performance of a classifier. Thus, an important component of our method is to
utilize features that are significantly different between ADHD and Control subjects.
We utilize the Wilcoxon rank sum t-test to identify significant features for ranking.

Wilcoxon Rank Sum t-Test

In order to rank the features, the Wilcoxon rank sum t-test is performed on each
feature of the ADHD set versus the Control set. The Wilcoxon rank sum t-test is
a nonparametric statistical method, and it is ideal in identifying when a feature is
significantly different between the populations, because which means that it does not
assume that the populations are normally distributed. Based on the z-score that is
produced by Eq. 17.1, the p-value is calculated. Normally, any feature with p-value
less than 0.05 is considered significant. In this study, numerous tests are conducted
by ranking the features by p-value from lowest to highest and then selecting a varied
amount of the top-n significant features for each experiment:

z = T1 − n1(n1+n2+1)
2√

n1n2(n1+n2+1)
12

, (17.1)

where T1 is the test statistic, and n1, n2 are the sample sizes.

17.3.3 Deep Learning Models

We adopt brainNetCNN [32], which has been previously used with structural con-
nectivity matrices, and train the model with functional connectivity matrices. In
brainNetCNN, three new layers were introduced:
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Fig. 17.2 brainNetCNN network for ADHD diagnosis. E2E: edge-to-edge, E2N: edge-to-node,
and N2G: node-to-graph

Table 17.2 Network design parameters

BrainNetCNN

Layer Filter Size

2D Conv (E2E) 16

2D Conv (E2N) 64

2D Conv (N2G) 64

Dense 2

1DConvNet

Layer Filter Size

1D Conv 32, 64, 64, 64

Dense 64, 2

Auto-encoder

Layer Filter Size

1D Conv 1024, 512, 1024, 6670

Global Hyperparameters Value

BrainNetCNN & 1DConvNet

Loss Binary Cross-Entropy

Optimizer SGD

Learning Rate 0.01

Dropout 0.5

Learning Rate decay 0.0001

Auto-encoder

Loss Mean Squared Error

Optimizer SGD

Learning Rate 0.2

Learning Rate decay 0.0001

i. Edge-to-edge (E2E) layer: Generates a filtered adjacency matrix by combining
edges between shared nodes. This works similar to a convolutional layer with a
cross-shaped filter.

ii. Edge-to-node (E2N) layer: Unlike the E2E layer, here, 1D spatial convolutions
are applied separately row-wise and column-wise, and then combined to generate
a vector of node responses.

iii. Node-to-graph (N2G) layer: Generates a weighted combination of nodes by
performing 1D spatial convolutions.

We modify this architecture to perform classification instead of regression, which
was the task in the original work. The network architecture is shown in Fig. 17.2 and
design parameters can be found in Table17.2.

We also test the performance of a 1D convolutional filters-based architecture,
1DConvNet, for ADHD diagnosis using the 6670 dimension connectivity feature
vector as input. The network is designed with four 1D convolutional layers and two
fully connected (Dense) layers. The network architecture is shown in Fig. 17.3 and
design parameters can be found in Table17.2.
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Fig. 17.3 1DConvNet architecture for ADHD diagnosis

Fig. 17.4 Auto-encoder network to reconstruct connectivity features. Features from bottleneck
layer fed to SVM for classification

Finally, we also test the popular auto-encoder architecture. This can be described
as consecutive Dense layers with the objective being to reconstruct the input. The
bottleneck layer is used as the feature representation and SVM is applied to perform
classification. The network architecture is shown in Fig. 17.4 and design parameters
can be found in Table17.2. Two different training strategies are employed:

(E1) Models are trained using all available data, i.e., multi-site data, and tenfold
cross-validation is performed (no distinction of data from site A, site B, etc.).

(E2) Models are trained using all data sites except one, which is used as a test set.
In this approach, a tenfold cross-validation is applied to the training data and
the trained model from each fold is saved. The final classification on test data
is based on a majority voting of the ensemble of trained models, i.e., majority
decision of the 10 trained models.

The abovementioned training strategies are employed to test the power of the
model (E1) and generalization capability of the model (E2).
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17.4 Results

17.4.1 Independent Classifiers

The Wilcoxon rank sum t-test is used to compare each connectivity correlations’
difference in distributions between the ADHD and Control subject sets. There are
several significantly different (p-value < 0.05) fMRI features amongst the ADHD
and Control sets. While there are nearly 400 activity correlation coefficients between
structures’ that reported a p-value < 0.05, Table17.3 reports the top 10 significant
features from the fMRI data.

The independent classifier results for KKI dataset and NYU datasets are graphed
in Figs. 17.5 and 17.6. In KKI, SVM/SVR does better than EN while in NYU, EN
does better than SVM. These observations show that there is no single classifier that
is superior in diagnosis of ADHD, and suggest a need for an ensemble of classifiers
to collectively output diagnoses.

17.4.2 Ensemble Classifiers

Between a total of four classifiers and keeping the feature selection method results
independent of each other, various combinations of majority voting predictions are
evaluated. Since there are a large number of possible combinations (24), the combi-
nations are incrementally and intuitively decided to save time and to understand if
combining different classifier predictions improves performance. It is observed that
the performance of SVM and SVR are comparable across all datasets. Hence, only

Table 17.3 Top-10 functional connectivity regions contributing to classification/diagnosis. L: left,
R: right

fMRI features

ROI Hemi Hemi ROI

Superior parietal R. L. Orbital middle frontal gyrus

Rolandic operculum R. L. Cerebellum crus II

Rolandic operculum R. L. Cerebellum lobule IV, V

Insula R. L. Lingual gyrus

Cuneus R. L. Fusiform gyrus

Superior occipital L. R. Cerebellum crus II

Inferior parietal L. L. Supramarginal gyrus

Precuneus L. L. Inferior temporal gyrus

Middle temporal gyrus L. Vermis lobule 9

Precuneus L. Vermis lobule 7



17 Deep Learning for Functional Brain Connectivity: Are We There Yet? 357

Fig. 17.5 Independent classifiers on fMRI features selected through the Wilcoxon rank sum t-test
on KKI dataset. Maximum accuracy is 93.97% from the SVR classifier

Fig. 17.6 Independent classifiers on fMRI features selected through the Wilcoxon rank sum t-test
on NYU dataset. Maximum accuracy is 75.290 from the EN and RF classifiers

combinations involving SVM are tested, and SVR is used only for the final ensemble
classifier that combined EN, SVM, RF, and SVR. In Fig. 17.7, the performance of
the different classifier combinations can be seen. The results for these two datasets,
where the best performing classifiers are different, show the benefit of combining
the different classifiers to create an ensemble classifier.

Figure17.8 shows the results of the ensemble classifier approach using the
Wilcoxon rank sum feature ranking approach for the different datasets. For all
datasets, with the top-50 ranked features, i.e., network connections, selected, a clas-
sification accuracy of 70% or more is achieved.

In Fig. 17.9, the top significant connections identified inTable17.3 aremapped and
visualized using BrainNet Viewer [43]. Few of the identified regions have been iden-
tified in previous works. Increased spikes in the rolandic region have been previously
identified in ADHD patients [44]. Decreased activations in cerebellar regions [45]
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Fig. 17.7 Different combinations of classifiers tested on the NYU and KKI datasets

Fig. 17.8 Accuracy of the proposed ensemble classifier approach with varying number of ranked
features selected, on the individual datasets of the ADHD-200 dataset

as well as structural changes in the vermis region of the cerebellum [46] have been
found in ADHD patients. Decreased activation was also found in the bilateral tem-
poral cortex [45, 47]. Structural deficits and decreased functional activations were
found in different studies [48, 49].

17.4.3 Deep Learning Classifiers

BrainNetCNN, 1DConvNet, and Auto-Encoder models are trained to convergence
for both training strategies E1 and E2. For the Auto-encoder architecture, the SVM
is trained using the Radial basis function. The performance of these different models
is graphed in Fig. 17.10a, b. The precision and sensitivity of the models for E1,
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Fig. 17.9 The significant functional connection correlation features listed in Table17.3 for KKI
dataset

represented as “ALL” in Fig. 17.10a, b show that the 1DConvNet architecture works
best. For E2, BrainNetCNN has better precision and sensitivity in comparison to the
other deep learning models.

BrainNetCNN is able to better learn the topological structure in the connectivity
matrices. 1DConvNet could perform better with fine-tuning for the network with
part of the testing-site dataset. However, in comparison to the proposed ensemble
approach, the performance is considerably lower.

To directly compare the generalization capabilities of deep learning approaches
against the proposed ensemble classifier approach, we test their performance on
the multi-site data classification task where the models are trained on data from all
but one site and tested on the remaining site. The results are shown in Fig. 17.11.
As can be seen from Fig. 17.11a, b, neither the deep learning-based approaches nor
the ensemble classifier has high sensitivity and specificity. However, the ensemble
classifier performs better than all the deep learning approaches.

To further complete the analysis, we compare the deep learning algorithms against
the ensemble classifier when more data is available, i.e., the all data task. As seen in
Fig. 17.12, the ensemble classifier has a balanced performance with over 60% sensi-
tivity, specificity, and accuracy. However, the 1DConvNet outperforms the ensemble
classifier in both sensitivity and accuracy. This shows the promise of deep learning
algorithms in fMRI based disease diagnosis with the availability of larger datasets.
The limitation of classical classifiers with mixed site data is also observable.
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Fig. 17.10 a Precision and b sensitivity of BrainNetCNN, 1DConvNet, and auto-encoder algo-
rithms at all data and multi-site data classification

17.5 Discussion and Conclusions

In this study, we tested different standard deep learning approaches to the fMRI
based ADHD diagnosis task and compared the results to our proposed feature selec-
tion and ensemble classifier approach. The best performing deep learning-based
approach was 1DConvNet with an accuracy of 67.7% and sensitivity of 76.9% on
the E1 training strategy. This compares favorably against the classical classifiers
based ensemble approach which had an accuracy of 60.6% and sensitivity of 67.3%.
However, when testing the generalizability of the approaches to unseen data from
different datasets, the proposed ensemble classifier approach outperformed the deep
learning approaches.
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Fig. 17.11 a Sensitivity, b specificity, and c accuracy of BrainNetCNN, 1DConvNet, and auto-
encoder and proposed ensemble classifier algorithms for multi-site data classification
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Fig. 17.12 Comparison of BrainNetCNN, 1DConvNet, and auto-encoder and ensemble classifier
algorithms at all data classification task

With the ensemble classifier approach, single datasets can be easily analyzed and
classified. This is not possiblewith the deep learning approaches as it needsmore than
the few hundred input matrices that each dataset has to train to convergence without
overfitting. These results indicate that the deep learning algorithms need a lot more
data to outperform classical classifiers. Data augmentation in the form of generating
more realistic and similar fMRI data using generative adversarial networks [50] is a
possible approach to overcome this lack of data problem.

Another challenge is the interpretability task. With the ensemble classifier
approach, it is a relatively easy task to trace back to the top features used and these
can then be used as potential biomarkers. With deep learning approaches, the inter-
pretability becomes more challenging with deeper networks. Standard convolutional
layers make use of spatial locality with their filter design, but with a connectivity
matrix, this might be hard to interpret. Use of heat maps is a common approach
and can be incorporated into these networks to identify the contributing functional
connections.

A single fMRI scan comprises spatiotemporal information of millions of voxels.
This very large amount of data within a single scan makes analysis very challenging
even for deep learning methods, since they run the risk of overfitting to the limited
scans available. A solution to this problem is the generation of functional connectivity
matrices but this leads to loss of spatiotemporal information which could mean a
loss of deterministic complex patterns that deep learning algorithms are very good
at identifying.

Additionally, the static functional connectivity may not capture the true signal
characteristicswhichmight be needed by the deep networks to converge to an optimal
solution. Dynamic functional connectivity-based approach is a possible direction as
shown by Yan et al. [37]. However, the lack of a standardized approach toward
generation of the optimal windows can affect the performance. Alternately, the time-
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series data can be used directly with long short-term memory modules to model the
signal characteristics from the different brain regions.

Thoughmulti-site data serves to boost the amount of available data, it bringswith it
another problemwhich is of different noise levels.At each site,with different scanners
and protocols used, the noise in the recording is different. These different noise levels,
when mixed (i.e., multi-site data), could add confusion to the interpretation of the
connectivity matrices.

With larger publicly available datasets like the Human Connectome Project
(HCP) [51] and OpenNeuro [52], deep networks will become more feasible and
with use of additional phenotypic features, the application to disease diagnosis is a
viable path. Li et al. showed the potential of using the fMRI images, despite their
low resolution, for biomarker identification in autism [36] and this could be a poten-
tial direction. We have tested a few of the basic deep learning algorithms, but with
different network configurations and inputs (4D image, time-series signals, dynamic
functional connectivity matrix), deep learning could potentially improve diagno-
sis. However, the deep learning methodology is not yet the gold-standard approach
toward stand-alone modality fMRI classification.
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Chapter 18
ChestX-ray: Hospital-Scale Chest X-ray
Database and Benchmarks on Weakly
Supervised Classification and
Localization of Common Thorax Diseases

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri
and Ronald M. Summers

Abstract The chest X-ray is one of the most commonly accessible radiological
examinations for screening and diagnosis ofmany lung diseases. A tremendous num-
ber of X-ray imaging studies accompanied by radiological reports are accumulated
and stored in many modern hospitals’ picture archiving and communication systems
(PACS). On the other side, it is still an open question how this type of hospital-size
knowledge database containing invaluable imaging informatics (i.e., loosely labeled)
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can be used to facilitate the data-hungry deep learning paradigms in building truly
large-scale high-precision computer-aided diagnosis (CAD) systems. In this chapter,
we present a chest X-ray database, namely, “ChestX-ray”, which comprises 121,120
frontal-view X-ray images of 30,805 unique patients with the text-mined eight dis-
ease image labels (where each image can have multi-labels), from the associated
radiological reports using natural language processing. Importantly, we demonstrate
that these commonly occurring thoracic diseases can be detected and even spatially
located via a unified weakly supervised multi-label image classification and disease
localization framework, which is validated using our proposed dataset. Although
the initial quantitative results are promising as reported, deep convolutional neural
network-based “reading chest X-rays” (i.e., recognizing and locating the common
disease patterns trained with only image-level labels) remains a strenuous task for
fully automated high-precision CAD systems.

18.1 Introduction

Rapid and tremendous progress has occurred in a range of computer vision prob-
lems using deep learning and large-scale annotated image datasets [12, 24, 26, 37].
Drastically improved quantitative performances in object recognition, detection, and
segmentation are demonstrated in comparison to previous shallow methodologies
built upon handcrafted image features. Deep neural network representations fur-
ther make the joint language and vision learning tasks more feasible to solve, in
image captioning [21, 22, 32, 46, 47], visual question answering [1, 45, 49, 53]
and knowledge-guided transfer learning [3, 33], and so on. However, the intrigu-
ing and strongly observable performance gaps of the current state-of-the-art object
detection and segmentation methods, evaluated between using PASCAL VOC [12]
and employingMicrosoft (MS) COCO [26], demonstrate that there is still significant
room for performance improvement when underlying challenges (represented by dif-
ferent datasets) become greater. For example, MS COCO is composed of 80 object
categories from 200k images, with 1.2M instances (350k are people) where every
instance is segmented and many instances are small objects. Comparing to PASCAL
VOC of only 20 classes and 11,530 images containing 27,450 annotated objects with
bounding boxes (B-Box), the top competing object detection approaches achieve in
0.413 in MS COCO versus 0.884 in PASCAL VOC under mean average precision
(mAP).

Deep learning yields similar rises in performance in the medical image analysis
domain for object (often human anatomical or pathological structures in radiology
imaging) detection and segmentation tasks. Recent notable work includes (but do
not limit to) an overview review on the future promise of deep learning [13] and
a collection of important medical applications on lymph node and interstitial lung
disease detection and classification [36, 42]; cerebral microbleed detection [10]; pul-
monary nodule detection in CT images [39]; automated pancreas segmentation [35];
cell image segmentation and tracking [34]; predicting spinal radiological scores [19];
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and extensions of multi-modal imaging segmentation [15, 28]. The main limitation
is that all proposed methods are evaluated on some small to middle-scale problems
of (at most) several hundred patients. It remains unclear how well the current deep
learning techniques will scale up to tens of thousands of patient studies.

In the era of deep learning in computer vision, research efforts on building various
annotated image datasets [1, 12, 21, 23, 26, 32, 37, 53] with different characteris-
tics play indispensably important roles on the better definition of the forthcoming
problems, challenges, and subsequently possible technological progresses. Particu-
larly, here we focus on the relationship and joint learning of image (chest X-rays)
and text (X-ray reports). The previous representative image caption generation work
[22, 47] utilize Flickr8K, Flickr30K [51], and MS COCO [26] datasets that hold
8,000, 31,000, and 123,000 images, respectively, and every image is annotated by
five sentences via Amazon Mechanical Turk (AMT). The text generally describes
annotator’s attention of objects and activity occurring on an image in a straight-
forward manner. Region-level ImageNet pre-trained convolutional neural networks
(CNN) based detectors are used to parse an input image and output a list of attributes
or “visually grounded high-level concepts” (including objects, actions, scenes, and so
on) in [22, 49]. Visual question answering (VQA) requires more detailed parsing and
complex reasoning on the image contents to answer the paired natural language ques-
tions. A new dataset containing 250k natural images, 760k questions and 10M text
answers [1] is provided to address this new challenge. Additionally, databases such
as “Flickr30k Entities” [32], “Visual7W” [53], and “Visual Genome” [21, 23] (as
detailed as 94,000 images and 4,100,000 region-grounded captions) are introduced
to construct and learn the spatially dense and increasingly difficult semantic links
between textual descriptions and image regions through the object-level grounding.

Though one could argue that the high-level analogy exists between image caption
generation, visual question answering and imaging-based disease diagnosis [40, 41],
there are three factors making truly large-scale medical image-based diagnosis (e.g.,
involving tens of thousands of patients) tremendously more formidable. 1, Generic,
open-ended image-level anatomy and pathology labels cannot be obtained through
crowdsourcing, such as AMT, which is prohibitively implausible for non-medically
trained annotators. Therefore, we exploit to mine the per-image (possibly multiple)
common thoracic pathology labels from the image-attached chest X-ray radiologi-
cal reports using natural language processing (NLP) techniques. Radiologists tend to
writemore abstract and complex logical reasoning sentences than the plain describing
texts in [26, 51]. 2, The spatial dimensions of a chest X-ray are usually 2000 × 3000
pixels. Local pathological image regions can show hugely varying sizes or extents
but often very small comparing to the full image scale. Figure18.1 shows eight illus-
trative examples and the actual pathological findings are often significantly smaller
(thus harder to detect). Fully dense annotation of region-level bounding boxes (for
grounding the pathological findings) would normally be needed in computer vision
datasets [23, 32, 53] but may be completely nonviable for the time being. Conse-
quently,we formulate and verify aweakly supervisedmulti-label image classification
and disease localization framework to address this difficulty. 3, So far, all image cap-
tioning and VQA techniques in computer vision strongly depend on the ImageNet
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Fig. 18.1 Eight common thoracic diseases observed in chest X-rays that validate a challenging
task of fully automated diagnosis

pre-trained deep CNN models which already perform very well in a large number
of object classes and serves a good baseline for further model fine-tuning. However,
this situation does not apply to the medical image diagnosis domain. Thus, we have
to learn the deep image recognition and localization models while constructing the
weakly labeled medical image database.

To tackle these issues, we propose a chest X-ray database, which comprises
112,120 frontal-view X-ray images of 30,805 (collected from the year of 1992 to
2015) unique patients with the text-mined eight common disease labels (extended to
14 disease labels later), mined from the text radiological reports via NLP techniques.
In particular, we demonstrate that these commonly occurred thoracic diseases can be
detected and even spatially located via a unifiedweakly supervisedmulti-label image
classification and disease localization formulation. Our initial quantitative results are
promising. However, developing fully automated deep learning-based “reading chest
X-rays” systems is still an arduous journey to be exploited. Details of accessing the
ChestX-ray dataset can be found via the website.1

18.1.1 Recent Advances

There have been recent efforts on creating openly available annotated medical image
databases [35, 36, 48, 50] with the studied patient numbers ranging from a few

1https://nihcc.app.box.com/v/ChestXray-NIHCC.

https://nihcc.app.box.com/v/ChestXray-NIHCC
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hundreds to two thousands. Particularly for chest X-rays, the largest public dataset
is OpenI [29] that contains 3,955 radiology reports from the Indiana Network for
Patient Care and 7,470 associated chest x-rays from the hospitals’ picture archiving
and communication system (PACS). This database is utilized in [41] as a problem
of caption generation but no quantitative disease detection results are reported. Our
newly proposed chest X-ray database is at least one order of magnitude larger than
OpenI [29] (Refer to Table18.1). To achieve the better clinical relevance, we focus to
exploit the quantitative performance on weakly supervised multi-label image clas-
sification and disease localization of common thoracic diseases, in analogy to the
intermediate step of “detecting attributes” in [49] or “visual grounding” for [21, 32,
53].

18.2 Database Construction

First, we discuss the approach for building a hospital-scale chest X-ray image
database, namely, “ChestX-ray8”, mined from our institute’s PACS system. First, we
short-list eight common thoracic pathology keywords that are frequently observed
and diagnosed, i.e., atelectasis, cardiomegaly, effusion, infiltration, mass, nodule,
pneumonia, and pneumothorax (Fig. 18.1), based on radiologists’ feedback. Given
those eight text keywords, we search the PACS system to pull out all the related
radiological reports (together with images) as our target corpus. A variety of natu-
ral language processing (NLP) techniques are adopted for detecting the pathology
keywords and removal of negation and uncertainty. Each radiological report will be
either linkedwith one ormore keywords ormarkedwith “Normal” as the background
category. As a result, the ChestX-ray8 database is composed of 112,120 frontal-view
X-ray images (from 30,805 patients) and each image is labeled with one or multiple
pathology keywords or “Normal” otherwise. Figure18.2 illustrates the correlation
of the resulted keywords. It reveals some connections between different pathologies,
which agree with radiologists’ domain knowledge, e.g., infiltration is often associ-
ated with atelectasis and effusion. To some extent, this is similar with understanding
the interactions and relationships among objects or concepts in natural images [23].

18.2.1 Disease Label Mining

Overall, our approach produces labels using the reports in two passes. In the first iter-
ation, we detected all the disease concepts in the corpus. Themain body of each chest
X-ray report is generally structured as “Comparison”, “Indication”, “Findings”, and
“Impression” sections. Here, we focus on detecting disease concepts in the Find-
ings and Impression sections. If a report contains neither of these two sections, the
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Fig. 18.2 The circular diagram shows the proportions of images with multi-labels in each of eight
pathology classes and the labels’ co-occurrence statistics

full-length report will then be considered. In the second pass, we code the reports as
“Normal” if they do not contain any diseases (not limited to 8 predefined pathologies).

Stage 1: Pathology Entity Extraction

We mine the radiology reports for disease concepts using two tools, DNorm [25]
and MetaMap [2]. DNorm is a machine learning method for disease recognition and
normalization. It maps every mention of keywords in a report to a unique concept
ID in the Systematized Nomenclature of Medicine–Clinical Terms (or SNOMED-
CT), which is a standardized vocabulary of clinical terminology for the electronic
exchange of clinical health information.

MetaMap is another prominent tool to detect bio-concepts from the biomedi-
cal text corpus. Different from DNorm, it is an ontology-based approach for the
detection of Unified Medical Language System® (UMLS®) Metathesaurus. In this
work, we only consider the semantic types of Diseases or Syndromes and Findings
(namely, “dsyn” and “fndg”, respectively). To maximize the recall of our automatic
disease detection, we merge the results of DNorm and MetaMap. Table18.1 (in the
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Table 18.1 Total number (#) and # of overlap (Ov.) of the corpus in both OpenI and ChestX-ray8
datasets

Item # OpenI Ov. ChestX-ray8 Ov.

Report 2,435 – 108,948 –

Annotations 2,435 – – –

Atelectasis 315 122 5,789 3,286

Cardiomegaly 345 100 1,010 475

Effusion 153 94 6,331 4,017

Infiltration 60 45 10,317 4,698

Mass 15 4 6,046 3,432

Nodule 106 18 1,971 1,041

Pneumonia 40 15 1,062 703

Pneumothorax 22 11 2,793 1,403

Normal 1,379 0 84,312 0

supplementary material) shows the corresponding SNOMED-CT concepts that are
relevant to the eight target diseases (these mappings are developed by searching the
disease names in the UMLS®terminology service,2 and verified by a board-certified
radiologist.

Stage 2: Negation and Uncertainty Detection

The disease detection algorithm locates every keyword mentioned in the radiology
report no matter if it is truly present or negated. To eliminate the noisy labeling, we
need to rule out those negated pathological statements and, more importantly, uncer-
tain mentions of findings and diseases, e.g., “suggesting obstructive lung disease”.

Although many text processing systems (such as [5]) can handle the nega-
tion/uncertainty detection problem, most of them exploit regular expressions on
the text directly. One of the disadvantages to use regular expressions for nega-
tion/uncertainty detection is that they cannot capture various syntactic constructions
for multiple subjects. For example, in the phrase of “clear of A and B”, the reg-
ular expression can capture “A” as a negation but not “B”, particularly when both
“A” and “B” are long and complex noun phrases (“clear of focal airspace disease,
pneumothorax, or pleural effusion” in Fig. 18.3).

To overcome this complication, we handcraft a number of novel rules of nega-
tion/uncertainty defined on the syntactic level in this work. More specifically, we
utilize the syntactic dependency information because it is close to the semantic rela-
tionship betweenwords and thus has become prevalent in biomedical text processing.
We defined our rules on the dependency graph, by utilizing the dependency label and
direction information between words.

2https://uts.nlm.nih.gov/metathesaurus.html.

https://uts.nlm.nih.gov/metathesaurus.html
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... clear of focal airspace disease , pneumothorax , or pleural effusion
prep of (CCProcessed)

prep of (CCProcessed)

prep of

conj or

conj or

Fig. 18.3 The dependency graph of text: “clear of focal airspace disease, pneumothorax, or pleural
effusion”

As the first step of preprocessing, we split and tokenize the reports into sentences
using NLTK [4]. Next we parse each sentence by the Bllip parser [6] using David
McClosky’s biomedical model [27]. The syntactic dependencies are then obtained
from “CCProcessed” dependencies output by applying Stanford dependencies con-
verter [7] on the parse tree. The “CCProcessed” representation propagates conjunct
dependencies thus simplifies coordination. As a result, we can use fewer rules to
match more complex constructions. For an example as shown in Fig. 18.3, we could
use “clear → prep_of → DISEASE” to detect three negations from the text 〈neg,
focal airspace disease〉, 〈neg, pneumothorax〉, and 〈neg, pleural effusion〉.

Furthermore, we label a radiology report as “normal” if it meets one of the fol-
lowing criteria:

• If there is no disease detected in the report. Note that here we not only consider
eight diseases of interest in this paper, but all diseases detected in the reports.

• If the report contains text-mined concepts of “normal” or “normal size” (CUIs
C0205307 and C0332506 in the SNOMED-CT concepts, respectively).

18.2.2 Evaluation on Mined Disease Labels

To validate our method, we perform the following experiments. Given the fact that no
gold-standard labels exist for our dataset, we resort to some existing annotated cor-
pora as an alternative. Using the OpenI API [29], we retrieve a total of 3,851 unique
radiology reports where each OpenI report is assigned with its key findings/disease
names by human annotators [8]. Given our focus on the eight diseases, a subset of
OpenI reports and their human annotations are used as the gold standard for evaluat-
ing our method. Table18.1 summarizes the statistics of the subset of OpenI [18, 29]
reports. Table18.2 shows the results of our method using OpenI, measured in preci-
sion (P), recall (R), and F1-score. Higher precision of 0.90, higher recall of 0.91, and
higher F1-score of 0.90 are achieved compared to the existing MetaMap approach
(with NegEx enabled). For all diseases, our method obtains higher precisions, par-
ticularly in “pneumothorax” (0.90 vs. 0.32) and “infiltration” (0.74 vs. 0.25). This
indicates that the usage of negation and uncertainty detection on syntactic level suc-
cessfully removes false positive cases. More importantly, the higher precisions meet
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Table 18.2 Evaluation of image labeling results on OpenI dataset. Performance is reported using
P, R, F1-score

Disease MetaMap Our method

P R F P R F

Atelectasis 0.95 0.95 0.95 0.99 0.85 0.91

Cardiomegaly 0.99 0.83 0.90 1.00 0.79 0.88

Effusion 0.74 0.90 0.81 0.93 0.82 0.87

Infiltration 0.25 0.98 0.39 0.74 0.87 0.80

Mass 0.59 0.67 0.62 0.75 0.40 0.52

Nodule 0.95 0.65 0.77 0.96 0.62 0.75

Normal 0.93 0.90 0.91 0.87 0.99 0.93

Pneumonia 0.58 0.93 0.71 0.66 0.93 0.77

Pneumothorax 0.32 0.82 0.46 0.90 0.82 0.86

Total 0.84 0.88 0.86 0.90 0.91 0.90

our expectation to generate a Chest X-ray corpus with accurate semantic labels, to
lay a solid foundation for the later processes.

18.2.3 Chest X-ray Image Processing and Hand-Labeled
Ground Truth

Comparing to the popular ImageNet classification problem, significantly smaller
spatial extents ofmany diseases inside the typical X-ray image dimensions of 3000 ×
2000 pixels impose challenges in both the capacity of computing hardware and
the design of deep learning paradigm. In ChestX-ray8, X-rays images are directly
extracted from the DICOM file and resized as 1024 × 1024 bitmap images without
significantly losing the detail contents, compared with image sizes of 512 × 512 in
OpenI dataset. Their intensity ranges are rescaled using the default window settings
stored in the DICOM header files.

As part of the ChestX-ray8 database, a small number of images with pathology
are provided with hand-labeled bounding boxes (B-Boxes), which can be used as the
ground truth to evaluate the disease localization performance. Furthermore, it could
also be adopted for one/low-shot learning setup [14], in which only one or several
samples are needed to initialize the learning and the system will then evolve by itself
with more unlabeled data. We leave this as future work.

In our labeling process, we first select 200 instances for each pathology (1,600
instances total), consisting of 983 images. Given an image and a disease keyword, a
board-certified radiologist identified only the corresponding disease instance in the
image and labeled it with a B-Box. The B-Box is then outputted as an XML file.
If one image contains multiple disease instances, each disease instance is labeled
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separately and stored into individual XML files. As an application of the proposed
ChestX-ray8 database and benchmarking, we will demonstrate the detection and
localization of thoracic diseases in the following.

18.3 Applications on Constructed Database

Reading and diagnosing Chest X-ray images may be an entry-level task for radiol-
ogists but, in fact, it is a complex reasoning problem which often requires careful
observation and good knowledge of anatomical principles, physiology, and pathol-
ogy. Such factors increase the difficulty of developing a consistent and automated
technique for reading chest X-ray images while simultaneously considering all com-
mon thoracic diseases.

As the main application of ChestX-ray8 dataset, we present a unified weakly
supervised multi-label image classification and pathology localization framework,
which can detect the presence of multiple pathologies and subsequently generate
bounding boxes around the corresponding pathologies. In detail, we tailor deep
convolutional neural network (DCNN) architectures for weakly supervised object
localization, by considering large image capacity, various multi-label CNN losses,
and different pooling strategies.

18.3.1 Classification and Localization Framework

Our goal is to first detect if one or multiple pathologies are presented in each X-ray
image and later we can locate them using the activation and weights extracted from
the network. We tackle this problem by training a multi-label DCNN classification
model. Figure18.4 illustrates the DCNN architecture we adapted, with similarity to
several previous weakly supervised object localization methods [11, 17, 30, 52].
As shown in Fig. 18.4, we perform the network surgery on the pre-trained models
(using ImageNet [9, 38]), e.g., AlexNet [24], GoogLeNet [44], VGGNet-16 [43], and
ResNet-50 [16], by leaving out the fully connected layers and the final classification
layers. Instead, we insert a transition layer, a global pooling layer, a prediction layer,
and a loss layer in the end (after the last convolutional layer). In a similar fashion
as described in [52], a combination of deep activations from transition layer (a set
of spatial image features) and the weights of prediction inner-product layer (trained
feature weighting) can enable us to find the plausible spatial locations of diseases.
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Fig. 18.4 The overall flowchart of our unified DCNN framework and disease localization process

Multi-label Classification

There are several options of image-label representation and the choices of multi-
label classification loss functions. Here, we define an eight-dimensional label vector
y = [y1, . . . , yc, . . . , yC], yc ∈ {0, 1},C = 8 for each image. yc indicates the pres-
ence with respect to according pathology in the image while an all-zero vector
[0, 0, 0, 0, 0, 0, 0, 0] represents the status of “Normal” (no pathology is found in
the scope of any of 8 disease categories as listed). This definition transits the multi-
label classification problem into a regression-like loss setting.

Transition Layer: Due to the large variety of pre-trained DCNN architectures we
adopt, a transition layer is usually required to transform the activations from previous
layers into a uniform dimension of output, S × S × D, S ∈ {8, 16, 32}. D represents
the dimension of features at spatial location (i, j), i, j ∈ {1, . . . , S}, which can be
varied in different model settings, e.g., D = 1024 for GoogLeNet and D = 2048 for
ResNet. The transition layer helps pass down the weights from pre-trained DCNN
models in a standard form, which is critical for using this layer’s activations to further
generate the heatmap in pathology localization step.

Multi-label Loss Layer: We first experiment three standard loss functions for the
regression task instead of using the softmax loss for traditional multi-class classi-
fication model, i.e., hinge loss (HL), Euclidean loss (EL), and cross-entropy loss
(CEL). However, we find that the model has difficulty learning positive instances
(images with pathologies) and the image labels are rather sparse, meaning there are
extensively more “0’s” than “1’s”. This is due to our one-hot-like image labeling
strategy and the unbalanced numbers of pathology and “Normal” classes. Therefore,
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we introduce the positive/negative balancing factor βP, βN to enforce the learning of
positive examples. For example, the weighted CEL (W-CEL) is defined as follows,

LW–CEL(f (x), y) =
βP

∑

yc=1

− ln(f (xc)) + βN

∑

yc=0

− ln(1 − f (xc)), (18.1)

where βP is set to |P|+|N |
|P| while βN is set to |P|+|N |

|N | . |P| and |N | are the total number
of “1’s” and “0’s” in a batch of image labels.

Disease Localization via Heatmap

In ourmulti-label image classification network, the global pooling and the predication
layer are designed not only to be part of the DCNN for classification but also to
generate the likelihood map of pathologies, namely, a heatmap. The location with a
peak in the heatmap generally corresponds to the presence of disease pattern with a
high probability. The upper part of Fig. 18.4 demonstrates the process of producing
this heatmap. By performing a global pooling after the transition layer, the weights
learned in the prediction layer can function as the weights of spatial maps from the
transition layer. Therefore, we can produce weighted spatial activation maps for each
disease class (with a size of S × S × C) by multiplying the activation from transition
layer (with a size of S × S × D) and the weights of prediction layer (with a size of
D × C).

The pooling layer plays an important role that chooses what information to be
passed down. Besides the conventional max pooling and average pooling, we also
utilize the log-sum-exp (LSE) pooling proposed in [31]. The LSE pooled value xp is
defined as

xp = 1

r
· log

⎡

⎣ 1

S
·

∑

(i,j)∈S
exp(r · xij)

⎤

⎦ , (18.2)

where xij is the activation value at (i, j), (i, j) is one location in the pooling region S,
and S = s × s is the total number of locations inS. By controlling the hyperparameter
r, the pooled value ranges from themaximum inS (when r → ∞) to average (r → 0).
It serves as an adjustable option betweenmax pooling and average pooling. Since the
LSE function suffers from overflow/underflow problems, the following equivalent is
used while implementing the LSE pooling layer in our own DCNN architecture,

xp = x∗ + 1

r
· log

⎡

⎣ 1

S
·

∑

(i,j)∈S
exp(r · (xij − x∗)

⎤

⎦ , (18.3)

where x∗ = max{|xij|, (i, j) ∈ S}.
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Bounding Box Generation: The heatmap produced from our multi-label classifica-
tion framework indicates the approximate spatial location of one particular thoracic
disease class each time. Due to the simplicity of intensity distributions in these result-
ing heatmaps, applying an ad hoc thresholding-based B-Box generation method for
this task is found to be sufficient. The intensities in heatmaps are first normalized to
[0, 255] and then thresholded by {60, 180} individually. Finally, B-Boxes are gener-
ated to cover the isolated regions in the resulting binary maps.

18.4 Evaluations

Data: We evaluate and validate the unified disease classification and localization
framework using the proposed ChestX-ray database. For the pathology classification
and localization task, we randomly shuffled the entire dataset into three subgroups
for CNN fine-tuning via stochastic gradient descent (SGD): i.e., training (70%),
validation (10%) and testing (20%).We only report the 8 thoracic disease recognition
performance on the testing set in our experiments. Furthermore, for the 983 images
with 1,600 annotatedB-Boxes of pathologies, these boxes are only used as the ground
truth to evaluate the disease localization accuracy in testing (not for training purpose).

CNN Setting: Our multi-label CNN architecture is implemented using Caffe frame-
work [20]. The ImageNet pre-trained models, i.e., AlexNet [24], GoogLeNet
[44], VGGNet-16 [43], and ResNet-50 [16], are obtained from the Caffe model
zoo. Our unified DCNN takes the weights from those models and only the transition
layers and prediction layers are trained from scratch.

Due to the large image size and the limit of GPU memory, it is necessary to
reduce the image batch_size to load the entire model and keep activations in GPU
while we increase the iter_size to accumulate the gradients for more iterations. The
combination of both may vary in different CNN models but we set batch_size ×
iter_size = 80 as a constant. Furthermore, the total training iterations are customized
for different CNNmodels to prevent overfitting. More complex models like ResNet-
50 actually take less iterations (e.g., 10000 iterations) to reach the convergence. The
DCNN models are trained using a Dev-Box Linux server with 4 Titan X GPUs.

Multi-label Disease Classification: Fig. 18.5 demonstrates the multi-label classifi-
cation ROC curves on eight pathology classes by initializing the DCNN framework
with four different pre-trained models of AlexNet, GoogLeNet, VGG, and ResNet-
50. The corresponding area under curve (AUC) values are given in Table18.3. The
quantitative performance varies greatly, in which the model based on ResNet-50
achieves the best results. The “Cardiomegaly” (AUC = 0.8141) and “Pneumoth-
orax” (AUC = 0.7891) classes are consistently well recognized compared to other
groupswhile the detection ratios can be relatively lower for pathologieswhich contain
small objects, e.g., “Mass” (AUC = 0.5609) and “Nodule” classes. Mass is difficult
to detect due to its huge within-class appearance variation. The lower performance
on “Pneumonia” (AUC = 0.6333) is probably because of lack of total instances in
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Fig. 18.5 A comparison of multi-label classification performance with different model initializa-
tions

our patient population (less than 1% X-rays labeled as Pneumonia). This finding
is consistent with the comparison on object detection performance, degrading from
PASCAL VOC [12] to MS COCO [26] where many small annotated objects appear.
Next, we examine the influence of different pooling strategies when using ResNet-
50 to initialize the DCNN framework. As discussed above, three types of pooling
schemes are experimented: average looping, LSE pooling, and max pooling. The
hyperparameter r in LSE pooling varies in {0.1, 0.5, 1, 5, 8, 10, 12}. As illustrated
in Fig. 18.6, average pooling and max pooling achieve approximately equivalent per-
formance in this classification task. The performance of LSE pooling starts to decline
first when r starts to increase and reaches the bottomwhen r = 5. Then it reaches the
overall best performance around r = 10. LSE pooling behaves like a weighed pool-
ing method or a transition scheme between average and max pooling under different
r values. Overall, LSE pooling (r = 10) reports the best performance (consistently
higher than mean and max pooling).
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Table 18.3 AUCs of ROC curves for multi-label classification in different DCNN model setting
(At: Atelectasis; Ca: Cardiomegaly; Ef: Effusion; In: Infiltration; Ma: Mass; No: Nodule; Pa:
Pneumonia; Px: Pneumothorax)

Setting At Ca Ef In Ma No Pa Px

Initialization with different pre-trained models

AlexNet 0.6458 0.6925 0.6642 0.6041 0.5644 0.6487 0.5493 0.7425

GoogLeNet 0.6307 0.7056 0.6876 0.6088 0.5363 0.5579 0.5990 0.7824

VGGNet-16 0.6281 0.7084 0.6502 0.5896 0.5103 0.6556 0.5100 0.7516

ResNet-50 0.7069 0.8141 0.7362 0.6128 0.5609 0.7164 0.6333 0.7891

Different multi-label loss functions

CEL 0.7064 0.7262 0.7351 0.6084 0.5530 0.6545 0.5164 0.7665

W-CEL 0.7069 0.8141 0.7362 0.6128 0.5609 0.7164 0.6333 0.7891

Fig. 18.6 A comparison of
multi-label classification
performance with different
pooling strategies

Last,we demonstrate the performance improvement by using the positive/negative
instances balanced loss functions (Eq.18.1). As shown in Table18.3, the weighted
loss (W-CEL) provides better overall performance than CEL, especially for those
classes with relative fewer positive instances, e.g., AUC for “Cardiomegaly” is
increased from 0.7262 to 0.8141 and from 0.5164 to 0.6333 for “Pneumonia”.

Disease Localization: Leveraging the fine-tuned DCNN models for multi-label dis-
ease classification, we can calculate the disease heatmaps using the activations of
the transition layer and the weights from the prediction layer, and even generate the
B-Boxes for each pathology candidate. The computed bounding boxes are evalu-
ated against the hand-annotated ground truth (GT) boxes (included in ChestX-ray8).
Although the total number of B-Box annotations (1,600 instances) is relatively small
compared to the entire dataset, it may be still sufficient to get a reasonable estimate on
how the proposed framework performs on the weakly supervised disease localization
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Table 18.4 Pathology localization accuracy and average false positive number for eight disease
classes (At: Atelectasis; Ca: Cardiomegaly; Ef : Effusion; In: Infiltration;Ma: Mass; No: Nodule;
Pa: Pneumonia; Px: Pneumothorax)

T(IoBB) At Ca Ef In Ma No Pa Px

T(IoBB) = 0.1

Acc. 0.7277 0.9931 0.7124 0.7886 0.4352 0.1645 0.7500 0.4591

AFP 0.8323 0.3506 0.7998 0.5589 0.6423 0.6047 0.9055 0.4776

T(IoBB) = 0.25 (Two times larger on both x- and y-axes than ground truth B-Boxes)

Acc. 0.5500 0.9794 0.5424 0.5772 0.2823 0.0506 0.5583 0.3469

AFP 0.9167 0.4553 0.8598 0.6077 0.6707 0.6158 0.9614 0.5000

T(IoBB) = 0.5

Acc. 0.2833 0.8767 0.3333 0.4227 0.1411 0.0126 0.3833 0.1836

AFP 1.0203 0.5630 0.9268 0.6585 0.6941 0.6189 1.0132 0.5285

T(IoBB) = 0.75

Acc. 0.1666 0.7260 0.2418 0.3252 0.1176 0.0126 0.2583 0.1020

AFP 1.0619 0.6616 0.9603 0.6921 0.7043 0.6199 1.0569 0.5396

T(IoBB) = 0.9

Acc. 0.1333 0.6849 0.2091 0.2520 0.0588 0.0126 0.2416 0.0816

AFP 1.0752 0.7226 0.9797 0.7124 0.7144 0.6199 1.0732 0.5437

task. To examine the accuracy of computerized B-Boxes versus the GTB-Boxes, two
types of measurement are used, i.e., the standard intersection over union ratio (IoU)
or the Intersection over the detected B-Box area ratio (IoBB) (similar to area of preci-
sion or purity). Due to the relatively low spatial resolution of heatmaps (32 × 32) in
contrast to the original image dimensions (1024 × 1024), the computed B-Boxes are
often larger than the according GT B-Boxes. Therefore, we define a correct local-
ization by requiring either IoU > T (IoU ) or IoBB > T (IoBB). Refer to the sup-
plementary material for localization performance under varying T (IoU ). Table18.4
illustrates the localization accuracy (Acc.) and average false positive (AFP) num-
ber for each disease type, with T (IoBB) ∈ {0.1, 0.25, 0.5, 0.75, 0.9}. Please refer to
the supplementary material for qualitative exemplary disease localization results for
each of 8 pathology classes.

18.5 Extension to 14 Common Thorax Disease Labels

To further complete the list of common thorax diseases in Chest X-ray, we expand
the disease categories to include six more common diseases (i.e., consolidation,
edema, emphysema, fibrosis, pleural thickening, and hernia) and update the NLP
mined labels. The statistics of ChestX-ray14 dataset are illustrated in Table18.5 and
Fig. 18.7. The bounding boxes for Pathologies are unchanged in this extension.
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Table 18.5 Total number (#) and # of overlap of the corpus in ChestX-ray8 and ChestX-ray14
datasets. PT: Pleural Thickening

Item # ChestX-ray8 Overlap ChestX-ray14 Overlap

Report 108,948 – 112,120 –

Atelectasis 5,789 3,286 11,535 7,323

Cardiomegaly 1,010 475 2,772 1,678

Effusion 6,331 4,017 13,307 9,348

Infiltration 10,317 4,698 19,871 10,319

Mass 6,046 3,432 5,746 2,138

Nodule 1,971 1,041 6,323 3,617

Pneumonia 1,062 703 1,353 1,046

Pneumothorax 2,793 1,403 5,298 3,099

Consolidation – – 4,667 3,353

Edema – – 2,303 1,669

Emphysema – – 2,516 1,621

Fibrosis – – 1,686 959

PT – – 3,385 2,258

Hernia – – 227 117

No findings 84,312 0 60,412 0

18.5.1 Evaluation of NLP Mined Labels

To validate our method, we perform the following experiments. First, we resort to
some existing annotated corpora as an alternative, i.e., OpenI dataset. Furthermore,
we annotated clinical reports suitable for evaluating finding recognition systems. We
randomly selected 900 reports and asked two annotators to mark the above 14 types
of findings. Each report was annotated by two annotators independently and then
agreements are reached for conflicts.

Table18.6 shows the results of our method using OpenI and our proposed dataset,
measured in precision (P), recall (R), and F1-score.Much higher precision, recall and
F1-scores are achieved compared to the existing MetaMap approach (with NegEx
enabled). This indicates that the usage of negation and uncertainty detection on
syntactic level successfully removes false positive cases.

18.5.2 Benchmark Results

In a similar fashion to the experiment on ChestX-ray8, we evaluate and validate the
unified disease classification and localization framework on ChestX-ray14 database.
In total, 112,120 frontal-view X-ray images are used, of which 51,708 images con-



386 X. Wang et al.

Table 18.6 Evaluation of image labeling results on OpenI and ChestX-ray14 dataset. Performance
is reported using P, R, F1-score. PT: Pleural Thickening

Disease MetaMap Our method

Precision Recall F1-score Precision Recall F1-score

OpenI

Atelectasis 87.3 96.5 91.7 88.7 96.5 92.4

Cardiomegaly 100.0 85.5 92.2 100.0 85.5 92.2

Effusion 90.3 87.5 88.9 96.6 87.5 91.8

Infiltration 68.0 100.0 81.0 81.0 100.0 89.5

Mass 100.0 66.7 80.0 100.0 66.7 80.0

Nodule 86.7 65.0 74.3 82.4 70.0 75.7

Pneumonia 40.0 80.0 53.3 44.4 80.0 57.1

Pneumothorax 80.0 57.1 66.7 80.0 57.1 66.7

Consolidation 16.3 87.5 27.5 77.8 87.5 82.4

Edema 66.7 90.9 76.9 76.9 90.9 83.3

Emphysema 94.1 64.0 76.2 94.1 64.0 76.2

Fibrosis 100.0 100.0 100.0 100.0 100.0 100.0

PT 100.0 75.0 85.7 100.0 75.0 85.7

Hernia 100.0 100.0 100.0 100.0 100.0 100.0

Total 77.2 84.6 80.7 89.8 85.0 87.3

ChestX-ray14

Atelectasis 88.6 98.1 93.1 96.6 97.3 96.9

Cardiomegaly 94.1 95.7 94.9 96.7 95.7 96.2

Effusion 87.7 99.6 93.3 94.8 99.2 97.0

Infiltration 69.7 90.0 78.6 95.9 85.6 90.4

Mass 85.1 92.5 88.7 92.5 92.5 92.5

Nodule 78.4 92.3 84.8 84.5 92.3 88.2

Pneumonia 73.8 87.3 80.0 88.9 87.3 88.1

Pneumothorax 87.4 100.0 93.3 94.3 98.8 96.5

Consolidation 72.8 98.3 83.7 95.2 98.3 96.7

Edema 72.1 93.9 81.6 96.9 93.9 95.43

Emphysema 97.6 93.2 95.3 100.0 90.9 95.2

Fibrosis 84.6 100.0 91.7 91.7 100.0 95.7

PT 85.1 97.6 90.9 97.6 97.6 97.6

Hernia 66.7 100.0 80.0 100.0 100.0 100.0

Total 82.8 95.5 88.7 94.4 94.4 94.4
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Fig. 18.7 The circular diagram shows the proportions of images with multi-labels in each of 14
pathology classes and the labels’ co-occurrence statistics

Table 18.7 AUCs of ROC curves for multi-label classification for ChestX-ray14 using published
data split. PT: Pleural Thickening

ResNet-50 ChestX-ray8 ChestX-ray14

Atelectasis 0.7069 0.7003

Cardiomegaly 0.8141 0.8100

Effusion 0.7362 0.7585

Infiltration 0.6128 0.6614

Mass 0.5609 0.6933

Nodule 0.7164 0.6687

Pneumonia 0.6333 0.6580

Pneumothorax 0.7891 0.7993

Consolidation – 0.7032

Edema – 0.8052

Emphysema – 0.8330

Fibrosis – 0.7859

PT – 0.6835

Hernia – 0.8717
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Fig. 18.8 Multi-label
classification performance
on ChestX-ray14 with
ImageNet pre-trained
ResNet

tain one or more pathologies. The remaining 60,412 images do not contain the listed
14 disease findings. For the pathology classification and localization task, we ran-
domly shuffled the entire dataset into three subgroups on the patient level for CNN
fine-tuning via stochastic gradient descent (SGD): i.e., training (∼70%), validation
(∼10%), and testing (∼20%). All images from the same patient will only appear in
one of the three sets.3 We report the 14 thoracic disease recognition performance on
the published testing set in comparison with the counterpart based on ChestX-ray8,
shown in Table18.7 and Fig. 18.8.

Since the annotated B-Boxes of pathologies are unchanged, we only test the
localization performance on the original eight categories. Results measured by the
Intersection over the detected B-Box area ratio (IoBB) (similar to area of precision
or purity) are demonstrated in Table18.8.

18.6 Summary

Constructing hospital-scale radiology image databases with computerized diagnos-
tic performance benchmarks has not been addressed until this work. We attempt
to build a “machine–human annotated” comprehensive chest X-ray database that
presents the realistic clinical and methodological challenges of handling at least tens
of thousands of patients (somewhat similar to “ImageNet” in natural images). We
also conduct extensive quantitative performance benchmarking on eight common
thoracic pathology classification and weakly supervised localization using ChestX-
ray database. The main goal is to initiate future efforts by promoting public datasets

3Data split files could be downloaded via https://nihcc.app.box.com/v/ChestXray-NIHCC.

https://nihcc.app.box.com/v/ChestXray-NIHCC
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Table 18.8 Pathology localization accuracy and average false positive number for ChestX-ray14
(At: Atelectasis; Ca: Cardiomegaly; Ef : Effusion; In: Infiltration; Ma: Mass; No: Nodule; Pa:
Pneumonia; Px: Pneumothorax)

T(IoBB) At Ca Ef In Ma No Pa Px

T(IoBB) = 0.1

Acc. 0.6222 1 0.7974 0.9106 0.5882 0.1519 0.8583 0.5204

AFP 0.8293 0.1768 0.6148 0.4919 0.3933 0.4685 0.4360 0.4543

T(IoBB) = 0.25 (Two times larger on both x- and y-axes than ground truth B-Boxes)

Acc. 0.3944 0.9863 0.6339 0.7967 0.4588 0.0506 0.7083 0.3367

AFP 0.9319 0.2042 0.6880 0.5447 0.4288 0.4786 0.4959 0.4857

T(IoBB) = 0.5

Acc. 0.1944 0.9452 0.4183 0.6504 0.3058 0 0.4833 0.2653

AFP 0.9979 0.2785 0.7652 0.6006 0.4604 0.4827 0.5630 0.5030

T(IoBB) = 0.75

Acc. 0.0889 0.8151 0.2287 0.4390 0.1647 0 0.2917 0.1735

AFP 1.0285 0.4045 0.8222 0.6697 0.4827 0.4827 0.6169 0.5243

T(IoBB) = 0.9

Acc. 0.0722 0.6507 0.1373 0.3577 0.0941 0 0.2333 0.1224

AFP 1.0356 0.4837 0.8445 0.7043 0.4939 0.4827 0.6331 0.5346

in this important domain. Building truly large-scale, fully automated high-precision
medical diagnosis systems remains a strenuous task. ChestX-ray can enable the data-
hungry deep neural network paradigms to create clinically meaningful applications,
including common disease pattern mining, disease correlation analysis, automated
radiological report generation, etc. For future work, ChestX-ray will be extended
to cover more disease classes and integrated with other clinical information, e.g.,
follow-up studies across time and patient history.
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Chapter 19
Automatic Classification and Reporting
of Multiple Common Thorax Diseases
Using Chest Radiographs

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu and Ronald M. Summers

Abstract Chest X-rays are one of the most common radiological examinations in
daily clinical routines. Reporting thorax diseases using chest X-rays is often an
entry-level task for radiologist trainees. Yet, reading a chest X-ray image remains
a challenging job for learning-oriented machine intelligence, due to (1) shortage of
large-scale machine-learnable medical image datasets, and (2) lack of techniques
that can mimic the high-level reasoning of human radiologists that requires years of
knowledge accumulation and professional training. In this paper, we show the clin-
ical free-text radiological reports that accompany X-ray images in hospital picture
and archiving communication systems can be utilized as a priori knowledge for tack-
ling these two key problems. We propose a novel text-image embedding network
(TieNet) for extracting the distinctive image and text representations. Multi-level
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attention models are integrated into an end-to-end trainable CNN-RNN architec-
ture for highlighting the meaningful text words and image regions. We first apply
TieNet to classify the chest X-rays by using both image features and text embed-
dings extracted from associated reports. The proposed auto-annotation framework
achieves high accuracy (over 0.9 on average in AUCs) in assigning disease labels for
our hand-label evaluation dataset. Furthermore, we transform the TieNet into a chest
X-ray reporting system. It simulates the reporting process and can output disease
classification and a preliminary report together, with X-ray images being the only
input. The classification results are significantly improved (6% increase on average
in AUCs) compared to the state-of-the-art baseline on an unseen and hand-labeled
dataset (OpenI).

19.1 Introduction

In the last decade, challenging tasks in computer vision have gone through differ-
ent stages, from sole image classification to multi-category multi-instance classifi-
cation/detection/segmentation to more complex cognitive tasks that involve under-
standing and describing the relationships of object instances inside the images or
videos. The rapid and significant performance improvement is partly driven by pub-
licly accessible of the large-scale image and video datasets with quality annotations,
e.g., ImageNet [8], PASCAL VOC [10], MS COCO [22], and Visual Genome [18]
datasets. In particular, ImageNet pre-trained deep Convolutional Neural Network
(CNN) models [15, 19, 21] has become an essential basis (indeed an advantage)
for many higher level tasks, e.g., recurrent neural network (RNN) based image cap-
tioning [11, 17, 30, 34], Visual Question Answering [27, 36, 38, 42], and instance
relationship extraction [6, 14, 16].

On the contrary, there are few publicly available large-scale image datasets in
the medical image domain. Conventional means of annotating natural images, e.g.,
crowdsourcing, cannot be applied to medical images due to the fact that these tasks
often require years of professional training anddomainknowledge.On the other hand,
radiological raw data (e.g., images, clinical annotations, and radiological reports)
have been accumulated in many hospitals’ picture archiving and communication
systems (PACS) for decades. The main challenge is how to transform those retro-
spective radiological data into a machine-learnable format. Accomplishing this with
chest X-rays represents a major milestone in the medical imaging community [35].

Different from current deep learning models, radiologists routinely observe mul-
tiple findings when they read medical images and compile radiological reports. One
main reason is that these findings are often correlated. For instance, liver metastases
can spread to regional lymph nodes or other body parts. By obtaining and main-
taining a holistic picture of relevant clinical findings, a radiologist will be able to
make a more accurate diagnosis. To our best knowledge, developing a universal or
multi-purpose CAD framework, which is capable of detecting multiple disease types
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Fig. 19.1 Overview of the automated chest X-ray reporting framework. Multi-level attention are
introduced

in a seamless fashion, is still a challenging task. However, such a framework is a
crucial part to build an automatic radiological diagnosis and reporting system.

Toward this end, we investigate how free-text radiological reports can be exploited
as a priori knowledge using an innovative text-image embedding network. We apply
this novel system in two different scenarios. We first introduce a new framework for
auto-annotation of the chest X-rays by using both images features and text embed-
dings extracted from associated reports. Multi-level attention models are integrated
into an end-to-end trainable CNN-RNN architecture for highlighting the meaning-
ful text words and image regions. In addition, we convert the proposed annotation
framework into a chest X-ray reporting system (as shown in Fig. 19.1). The system
stimulates the real-world reporting process by outputting disease classification and
generating a preliminary report spontaneously. The text embedding learned from the
retrospective reports is integrated into the model as a priori knowledge and the joint
learning framework boosts the performance in both tasks in comparison to previous
state of the art.

In this chapter, we discussed four key aspects of automated reporting: (1) We
introduced the text-image embedding network, which is a multi-purpose end-to-
end trainable multi-task CNN-RNN framework. (2) We show how raw report data,
together with paired image, can be utilized to produce meaningful attention-based
image and text representations using the proposed TieNet. Raw reports are not that
convenient for publicly sharing due to the difficulty of PHI anonymization while
attention-encode sentence embedding is a feasible solution for sharing associated
diagnosis info for each image. (3) We outline how the developed text and image
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embeddings are able to boost the auto-annotation framework and achieve extremely
high accuracy for chest X-ray labeling. (4) Finally, we present a novel image classifi-
cation frameworkwhich takes images as the sole input, but uses the paired text-image
representations from training as a prior knowledge injection, in order to produce
improved classification scores and preliminary report generations.

Importantly, we validate our approach on three different datasets and the TieNet
improves the image classification result (6% increase on average in area under the
curve (AUC) for all disease categories) in comparison to the state of the art on
an unseen and hand-labeled dataset (OpenI [7]) from other institutes. Our multi-
task training scheme can help not only the image classification but also the report
generation by producing reports with higher BLEU scores than the baseline method.

19.2 Previous Works in CAD

Computer-aided detection (CADe) and diagnosis (CADx) have long been a major
research focus inmedical image processing [5]. In recent years, deep learningmodels
start to outperform conventional statistical learning approaches in various tasks,
such as automated classification of skin lesions [9], detection of liver lesions [4],
and detection of pathological-image findings [40]. However, current CADe methods
typically target one particular type of disease or lesion, such as lung nodules, colon
polyps or lymph nodes [24].

Wang et al. [35] provide a recent and prominent exception, where they introduced
a large-scale chest X-ray dataset by processing images and their paired radiological
reports (extracted from their institutional PACS database) with natural language
processing (NLP) techniques. The publicly available dataset contains 112, 120 front-
view chest X-ray images of 30, 805 unique patients. However, radiological reports
contain richer information than simple disease binary labels, e.g., disease location
and severity, which should be exploited in order to fully leverage existing PACS
datasets. Thus, we differ from Wang et al.’s approach by leveraging this rich text
information in order to produce an enhanced system for chest X-ray CADx.

In vision of visual captioning, our work is closest to [27, 29, 33, 37, 38]. Xu et al.
[37] first introduced the sequence-to-sequencemodel and spatial attentionmodel into
the image captioning task. They conditioned the long short-term memory (LSTM)
decoder on different parts of the input image during each decoding step, and the
attention signal was determined by the previous hidden state and CNN features.
Vinyals et al. [33] cast the syntactical parsing problem as a sequence-to-sequence
learning task by linearizing the parsing tree. Pederoli et al. [29] allowed a direct
association between captionwords and image regions.More recently, multi-attention
models [27, 38] extract salient regions and words from both image and text and then
combine them together for better representations of the pair. In medical imaging
domain, Shin et al. [32] proposed to correlate the entire image or saliency regionswith
MeSH terms. Promising results [41] are also reported in summarizing the findings in
pathology images using task-oriented reports in the training. The difference between
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our model and theirs lies in that we employ multi-attention models with a mixture of
image and text features in order to provide more salient and meaningful embeddings
for the image classification and report generation task. Apart from visual attention,
text-based attention has also been increasingly applied in deep learning for NLP [2,
26, 31]. It attempts to relieve one potential problem that the traditional encoder–
decoder framework faces, which is that the input is long or very information-rich
and selective encoding is not possible. The attention mechanism attempts to ease
the above problems by allowing the decoder to refer back to the input sequence
[23, 25, 39]. To this end, our work closely follows the one used in [23] where they
extracted an interpretable sentence embedding by introducing self-attention. Our
model paired both the attention-based image and text representation from training
as a prior knowledge injection to produce improved classification scores.

19.3 Multi-level Attention in a Unified Framework

The radiological report is a summary of all the clinical findings and impressions
determined during examination of a radiography study. A sample report is shown in
Fig. 19.1. It usually contains richer information than just disease keywords, but also
may consist of negation and uncertainty statements. In the “findings” section, a list of
normal and abnormal observations will be listed for each part of the body examined
in the image. Attributes of the disease patterns, e.g., specific location and severity,
will also be noted. Furthermore, critical diagnosis information is often presented in
the “impression” section by considering all findings, patient history, and previous
studies. Suspicious findings may cause recommendations for additional or follow-up
imaging studies. As such, reports consist of a challengingmixture of information and
a key for machine learning is extracting useful parts for particular applications. In
addition to mining the disease keywords [35] as a summarization of the radiological
reports, wewant to learn a text embedding to capture the richer information contained
in raw reports. Multiple levels of attentionmechanisms are introduced here; Fig. 19.2
illustrates the proposed text-image embedding network. First, we discuss two kinds
of attention we develop and integrate, i.e., attention-encoded text embedding (AETE,
attention on textual information) and saliency weighted global average pooling (SW-
GAP, attention on image spatial information). Then, we presented a basic end-to-
end trainable CNN-RNN architecture and an enhanced version with afore-discussed
attention mechanisms integrated. Finally, we outline the joint learning loss function
used to optimize the framework.

19.3.1 AETE: Attention on Text

To compute a global text representation, we use an approach that closely follows
the one used in [23]. More specifically, we use attention to combine the most salient
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Fig. 19.2 Framework of the proposed chest X-ray auto-annotation and reporting framework.Multi-
level attention are introduced to produce saliency-encoded text and image embeddings
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portions of the RNN hidden states. LetH = (h1, . . . ,hT ) be the dh × T matrix of all
the hidden states. The attention mechanism outputs a r × T matrix of weights G as

G = softmax(Ws2 tanh(Ws1 H)), (19.1)

where r is the number of global attention we want to extract from the sentence, and
Ws1 andWs2 are s-by-dh and r-by-smatrices, respectively. s is a hyperparameter gov-
erning the dimensionality, and therefore maximum rank, of the attention-producing
process.

With the attention calculated,we compute an r × dh embeddingmatrix,M = GH,
which in essence executes r weighted sums across the T hidden states, aggregating
them together into r representations. Each row of G, denoted gi (i ∈ {1 . . . r}), indi-
cates how much each hidden state contributes to the final embedded representation
of M. We can thus draw a heat map for each row of the embedding matrix M (see
Fig. 19.5 for examples). This way of visualization gives hints on what is encoded in
each part of the embedding, adding an extra layer of interpretation.

To provide a final global text embedding of the sentences in the report, the AETE
executes max-over-r pooling acrossM, producing an embedding vector X̂AETE with
size dh.

19.3.2 SW-GAP: Attention on Image

In addition to using attention to provide a more meaningful text embedding, our goal
is also to produce improved visual embeddings for classification. For this purpose, we
re-use the attention mechanism, G, except that we perform a max-over-r operation,
producing a sequence of saliency values, gt(t = 1, . . . ,T ), for each word,wt . These
saliency values are used to weight and select the spatial attention maps, at , generated
at each time point:

aws(x, y) =
∑

t

at(x, y) ∗ gt . (19.2)

This map is encoded with all spatial saliency regions guided by the text attention. We
use this map to highlight the spatial regions ofXwith more meaningful information:

X̂SW−GAP(c) =
∑

(x,y)

aws(x, y) ∗ X(x, y, c), (19.3)

where x, y ∈ {1 . . .D} and X̂SW−GAP is a 1-by-C vector representing the global visual
information, guided by both text- and visual-based attention. The lower part of
Fig. 19.2 illustrates an example of such pooling strategy.
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19.3.3 Overall CNN-RNN Model

As shown in Fig. 19.2, our end-to-end trainable CNN-RNN model takes an image I
and a sequence of 1-of-V encoded words:

S = {w1, . . . ,wT },wt ∈ R
V , (19.4)

wherewt is a vector standing for a dw-dimensional word embedding for the t-th word
in the report, V is the size of the vocabulary, and T is the length of the report. The
initial CNN component uses layers borrowed from ImageNet pre-trained models for
image classification, e.g., ResNet-50 (from Conv1 to Res5c).

The CNN component additionally includes a convolutional layer (transition layer)
to manipulate the spatial grid size and feature dimension.

Our RNN is based off of Xu et al.’s visual image spatial attention model [37] for
image captioning. The convolutional activations from the transition layer, denoted as
X, initialize the RNN’s hidden state, ht , where a fully connected embedding, φ(X),
maps the size dX transition layer activations to the LSTM state space of dimension
dh. In addition, X is also used as one of the RNN’s input. However, following Xu
et al. [37], our sequence-to-sequence model includes a deterministic and soft visual
spatial attention, at , that is multiplied element-wise to X before the latter is inputted
to the RNN. At each time step, the RNN also outputs the subsequent attention map,
at+1.

In addition to the soft-weighted visual features, the RNN also accepts the current
word at each time step as input. We adopt standard LSTM units [13] for the RNN.
The transition to the next hidden state can then be denoted as

ht = LSTM ([wt, at,X],ht−1). (19.5)

The LSTM produces the report by generating one word at each time step conditioned
on a context vector, i.e., the previous hidden state ht , the previously generated words
wt , and the convolutional features ofXwhose dimension isD × D × C. HereD = 16
and C = 1024 denote the spatial and channel dimensions, respectively. Once the
model is trained, reports for a new image can be generated by sequentially sampling
wt ∼ p(wt|ht) and updating the state using Eq.19.5.

The end-to-end trainable CNN-RNNmodel provides a powerful means to process
both text and images. However, our goal is also to obtain an interpretable global text
and visual embedding for the purposes of classification. For this reason, we introduce
two key enhancements in the form of the AETE and SW-GAP.
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19.3.4 Joint Learning

With global representations computed for both the image and report, these must
be combined together to produce the final classification. To accomplish this, we
concatenate the two forms of representations X̂ = [X̂AETE; X̂SW−GAP] and use a final
fully connected layer to produce the output formulti-label classification. The intuition
behind our model is that the connection between the CNN and RNN network will
benefit the training of both because the image activations can be adjusted for the text
embedding task and salient image features could be extracted by pooling based on
high text saliency.

In a similar fashion asWang et al. [35], we define anM -dimensional disease label
vector y = [y1, . . . , ym, . . . , yM ], ym ∈ {0, 1} for each case and M = 15 indicates
the number of classes. ym indicates the presence with respect to a pathology or “no
finding” (of listed disease categories) in the image. Here, we adopt the NLP-mined
labels provided by [35] as the “ground truth” during the training.

The instance numbers for different disease categories are highly unbalanced, from
hundreds to tens of thousands. In addition to the positive/negative balancing intro-
duced in [35], we add weights to instances associated with different categories,

Lm(f (I ,S), y) = βP

∑

ym=1

− ln(f (I ,S)) · λm

+ βN

∑

ym=0

− ln(1 − f (I ,S)) · λm, (19.6)

where βP = |N |
|P|+|N | and βN = |P|

|P|+|N | . |P| and |N | are the total number of images
with at least one disease and with no diseases, respectively. λm = (Q − Qm)/Q is a
set of precomputed class-wised weights, where Q and Qm are the total number of
images and the number of images that have disease label m. λm will be larger if the
number of instances from class m is small.

Because the TieNet can also generate text reports, we also optimize the RNN
generative model loss [37], LR. Thus, the overall loss is composed of two parts, the
sigmoid cross-entropy loss LM for the multi-label classification and the loss LR from
the RNN generative model [37],

Loverall = αLM + (1 − α)LR, (19.7)

where α is added to balance the large difference between the two loss types.
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19.4 Applications

19.4.1 Annotation of Chest X-Ray Images

One straightforward application of the TieNet is the auto-annotation task to mine
image classification labels. By omitting the generation of sequential words, we accu-
mulate and back-propagate only the classification loss for better text-image embed-
dings in image classification. Here, we use the NLP-mined disease labels as “ground
truth” in the training. Indeed, we want to learn a mapping between the input image–
report pairs and the image labels. The report texts often contain more easy-to-learn
features than the image side. The contribution of both sources to the final classifica-
tion prediction should be balanced via either controlling the feature dimensions or
drop-off partial of the “easy-to-learn” data during training.

19.4.2 Automatic Reporting of Thorax Diseases

For a more difficult but real-world scenario, we transform the image-text embedding
network to serve as a unified system of image classification and report generation
when only the unseen image is available. During the training, both image and report
are fed and two separate losses are computed as stated above, i.e., the loss for image
classification and the loss for sequence-to-sequence modeling. While testing, only
the image is required as the input. The generated text contained the learned text
embedding recorded in the LSTMunits and later used in the final image classification
task. The generative model we integrated into the text-image embedding network is
the key to associate an image with its attention encoded text embedding.

19.5 Experiments

19.5.1 Datasets for Evaluation

I. ChestX-ray14 [35]
ChestX-ray14 is a recently released benchmark dataset for common thorax disease
classification and localization. It consists of 14 disease labels that can be observed in
chest X-ray, i.e., atelectasis, cardiomegaly, effusion, infiltration, mass, nodule, pneu-
monia, pneumothorax, consolidation, edema, emphysema, fibrosis, pleural thicken-
ing, and hernia. The NLP-mined labels are used as “ground truth” for model training
and testing throughout the experiments. We adopt the patient-level data splits pub-
lished with the data.1

1https://nihcc.app.box.com/v/ChestXray-NIHCC.

https://nihcc.app.box.com/v/ChestXray-NIHCC
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II. Hand-labeled
In addition to NLP-mined labels, we randomly select 900 reports from the testing set
and have two radiologists to annotate the 14 categories of findings for the evaluation
purpose. A trial set of 30 reports was first used to synchronize the criterion of anno-
tation between two annotators. Then, each report was independently annotated by
two annotators. In this paper, we used the inter-rater agreement (IRA) to measure the
consistency between two observers. The resulting Cohen’s kappa is 84.3%. After-
ward, the final decision was adjudicated between two observers on the inconsistent
cases.

III. OpenI [7]
is a publicly available radiography dataset collected from multiple institutes by Indi-
ana University. Using the OpenI API, we retrieved 3,851 unique radiology reports
and 7,784 associated frontal/lateral images where each OpenI report was annotated
with key concepts (MeSH words) including body parts, findings, and diagnoses. For
consistency, we use the same 14 categories of findings as above in the experiments.
In our experiments, only 3,643 unique front-view images and corresponding reports
are selected and evaluated.

19.5.2 Report Vocabulary

We use all 15,472 unique words in the training set that appear at least twice. Words
that appear less frequently are replaced by a special out-of-vocabulary token, and the
start and the end of the reports are marked with a special 〈START〉 and 〈END〉 token.
The pre-trained word embedding vectors was learned on PubMed articles using the
gensim word2vec implementation with the dimensionality set to 200.2 The word
embedding vectors will be evolved along with other LSTM parameters.

19.5.3 Evaluation Metrics

To compare previous state-of-the-art works, we choose different evaluation metrics
for different tasks so as to maintain consistency with data as reported in the previous
works. Receiver operating curves (ROC) are plotted for each disease category to
measure the image classification performance and afterward, Areas Under Curve
(AUC) are computed, which reflect the overall performance as a summary of different
operating points. To assess the quality of generated text report, BLEU scores [28],
METEOR [3], and ROUGE-L [20] are computed between the original reports and
the generated ones. Those measures reflect the word overlapping statistics between

2https://radimrehurek.com/gensim/models/word2vec.html.

https://radimrehurek.com/gensim/models/word2vec.html
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two text corpora. However, we believe their capabilities are limited for showing the
actual accuracy of disease words (together with their attributes) overlapping between
two text corpora.

19.5.4 Details on Training

The LSTMmodel contains a 256-dimensional cell and s = 2000 inWs1 andWs2 for
generating the attention weightsG. During training, we use 0.5 dropout on the MLP
and 0.0001 for L2 regularization. We use Adam optimizer with a mini-batch size of
32 and a constant learning rate of 0.001.

In addition, our self-attention LSTM has a hidden layer with 350 units.We choose
the matrix embedding to have five rows (the r), and a coefficient of 1 for the penal-
ization term. All the models are trained until convergence is achieved and the hyper-
parameters for testing is selected according to the corresponding best validation set
performance.

Our text-image embedding network is implemented based on TensorFlow [1]
and Tensorpack.3 The ImageNet pre-trained model, i.e., ResNet-50 [12] is obtained
from the Caffe model zoo and converted into the TensorFlow compatible format.
The proposed network takes the weights from the pre-trained model and fixes them
during the training. Other layers in the network are trained from scratch. In a similar
fashion as introduced in [35], we reduce the size of mini-batch to fit the entire model
in each GPU while we accumulate the gradients for a number of iterations and also
across a number of GPUs for better training performance. The DCNN models are
trained using a Dev-Box Linux server with 4 Titan X GPUs.

19.5.5 Evaluation on Image Annotation

Figure19.3 illustrates the ROC curves for the image classification performance with
three different inputs evaluated on three different testing sets, i.e., ChestX-ray14
testing set (ChestX-ray14), the hand-labeled set (Hand-labeled) and the OpenI set
(OpenI). Separate curves are plotted for each disease categories and “No finding”.
Here, two different auto-annotation frameworks are trained by using different inputs,
i.e., taking reports only (R) and taking image–report pairs (I+R) as inputs.When only
the reports are used, the frameworkwill not have the saliencyweighted global average
pooling path. In such way, we can get a sense of how the features from text path and
image path individually contribute to the final classification prediction.

We train the proposed auto-annotation framework using the training and validation
sets from the ChestX-ray14 dataset and test it on all three testing sets, i.e., ChestX-
ray14, hand-labeled and OpenI. Table19.1 shows the AUC values for each class

3https://github.com/ppwwyyxx/tensorpack/.

https://github.com/ppwwyyxx/tensorpack/
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Fig. 19.3 A comparison of classification performance using ROC curves with different testing
inputs, i.e., report (R), image+report (I+R), and image+generative report (I+GR)
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computed from the ROC curves shown in Fig. 19.3. The auto-annotation framework
achieves high performance on both ChestX-ray14 and Hand-labeled, i.e., over 0.87
in AUC with reports alone as the input and over 0.90 in AUC with image–report
pairs on sample number weighted average (#wAVG). The combination of image
and report demonstrates the supreme advantage in this task. In addition, the auto-
annotation framework trained on ChestX-ray14 performed equivalently on OpenI.
It indicates that the model trained on a large-scale image dataset could easily be
generalized to the unseen data from other institutes. The model trained solely based
on images could also be generalized well to the datasets from other sources. In this
case, both the proposed method and the one in [35] are able to perform equally well
on all three testing sets.

19.5.6 Evaluation on Classification and Automated Reporting

When the TieNet is switched to an automatic disease classification and reporting
system, it takes a single image as the input and is capable of outputting a multi-label
prediction and corresponding radiological report together. The ROC curves on the
right in Fig. 19.3 and Table19.1 show the image classification performance produced
by the multi-purpose reporting system. The AUCs from our TieNet (I+GR) demon-
strate the consistent improvement in AUCs (2.3–5.7% on #wAVG for all the disease
categories) across all three datasets. The multi-label classification framework [35]
serves as a baseline model that also takes solely the images. Furthermore, the perfor-
mance improvement achieved on the Hand-labeled and OpenI datasets (with ground
truth image labels) is even larger than the performance gain on ChestX-ray14 (with
NLP-mined labels). It indicates that the TieNet is able to learn more meaningful and
richer text embeddings directly from the raw reports and correct the inconsistency
between embedded features and erroneous mined labels.

Table19.2 shows that the generated reports from our proposed system obtain
higher scores in all evaluationmetrics in comparison to the baseline image captioning
model [37]. It may be because the gradients from RNN are back-propagated to the

Table 19.2 Evaluation of generated reports in ChestX-ray14 testing set using BLEU, METEOR,
and ROUGE-L

Captioning [37] TieNet I+GR

BLEU-1 0.2391 0.2860

BLEU-2 0.1248 0.1597

BLEU-3 0.0861 0.1038

BLEU-4 0.0658 0.0736

METEOR 0.1024 0.1076

ROUGE-L 0.1988 0.2263
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CNN part and the adjustment of image features from Transition layer will benefit
the report generation task.

Figures19.4 and 19.5 illustrate 8 sample results from the proposed automatic
classification and reporting system. Original images are shown along with the clas-
sification predications, original reports, and generated reports. Text-attended words
are also highlighted over the generated reports. If looking at generated reports alone,
we find that they all read well. However, the described diseases may not truly appear
in the images. For example, “Atelectasis” is correctly recognized in sample A but
“Effusion” is missed. “Effusion” (not too far from the negation word “without”) is
erroneously highlighted in sample B but the system is still able to correctly classify
the image as “No finding”. In sample D, the generated report misses “Mass” while it
states right about the metastasis in the lung. One promising finding is that the false
predictions (“Mass” and “Consolidation”) in sample C can actually be observed in
the image (verified by a radiologist) but somehow were not noted in the original
report, which indicates our proposed network can to some extent associate the image
appearance with the text description.

19.6 Summary

Automatically extracting the machine-learnable annotation from the retrospective
data remains a challenging task, amongwhich images and reports are twomain useful
sources. Here, we proposed a novel text-image embedding network integrated with
multi-level attention models. TieNet is implemented in an end-to-end CNN-RNN
architecture for learning a blend of distinctive image and text representations. Then,
we demonstrate and discuss the pros and cons of including radiological reports in
both auto-annotation and reporting tasks. While significant improvements have been
achieved in multi-label disease classification, there is still much space to improve
the quality of generated reports. For future work, we will extend TieNet to include
multipleRNNs for learning not only diseasewords but also their attributes and further
correlate them and image findings with the description in the generated reports.
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Chapter 20
Deep Lesion Graph in the Wild:
Relationship Learning and Organization
of Significant Radiology Image Findings
in a Diverse Large-Scale Lesion Database

Ke Yan, Xiaosong Wang, Le Lu, Ling Zhang, Adam P. Harrison,
Mohammadhadi Bagheri and Ronald M. Summers

Abstract Radiologists in their daily work routinely find and annotate significant
abnormalities on a large number of radiology images. Such abnormalities, or lesions,
have collected over years and stored in hospitals’ picture archiving and communica-
tion systems. However, they are basically unsorted and lack semantic annotations like
type and location. In this paper, we aim to organize and explore them by learning a
deep feature representation for each lesion. A large-scale and comprehensive dataset,
DeepLesion, is introduced for this task. DeepLesion contains bounding boxes and
size measurements of over 32K lesions. To model their similarity relationship, we
leverage multiple supervision information including types, self-supervised location
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coordinates, and sizes. They require littlemanual annotation effort but describe useful
attributes of the lesions. Then, a triplet network is utilized to learn lesion embeddings
with a sequential sampling strategy to depict their hierarchical similarity structure.
Experiments show promising qualitative and quantitative results on lesion retrieval,
clustering, and classification. The learned embeddings can be further employed to
build a lesion graph for various clinically useful applications. An algorithm for intra-
patient lesion matching is proposed and validated with experiments.

20.1 Introduction

Large-scale datasets with diverse images and dense annotations [10, 13, 23] play an
important role in computer vision and image understanding, but often come at the
cost of vast amounts of labeling. In computer vision, this cost has spurred efforts to
exploit weak labels [6, 20, 53], e.g., the enormous amount of weak labels generated
every day on the web. A similar situation exists in the medical imaging domain,
except that annotations are even more time-consuming and require extensive clinical
training, which precludes approaches like crowdsourcing. Fortunately, like web data
in computer vision, a vast, loosely labeled, and largely untappeddata source does exist
in the form of hospital picture archiving and communication systems (PACS). These
archives house patient images and accompanying radiological reports, markings, and
measurements performed during clinical duties. However, data is typically unsorted,
unorganized, and unusable in standard supervised machine learning approaches.
Developing means to fully exploit PACS radiology database becomes a major goal
within the field of medical imaging.

This work contributes to this goal of developing an approach to usefully mine,
organize, and learn the relationships between lesions found within computed tomog-
raphy (CT) images in PACS. Lesion detection, characterization, and retrieval are
an important task in radiology [12, 22, 24, 48]. The latest methods based on deep
learning and convolutional neural networks (CNNs) have achieved significantly bet-
ter results than conventional handcrafted image features [16, 24]. However, large
amounts of training data with high-quality labels are often needed. To address this
challenge, we develop a system designed to exploit the routine markings and mea-
surements of significant findings that radiologists frequently perform [11]. These
archived measurements are potentially highly useful sources of data for computer-
aided medical image analysis systems. However, they are basically unsorted and
lack semantic labels, e.g., lung nodule, mediastinal lymph node. As such, they are
a challenging source of data to use, requiring sophisticated approaches to be able to
leverage them.

We take a feature embedding and similarity graph approach to address this problem
[52]. First, we present a new dataset: DeepLesion,1 which was collected from the
PACS of the National Institute of Health Clinical Center. It contains 32,120 axial CT

1Available at https://nihcc.box.com/v/DeepLesion.

https://nihcc.box.com/v/DeepLesion


20 Deep Lesion Graph in the Wild: Relationship Learning … 415

Fig. 20.1 The proposed framework. Using a triplet network, we learn a feature embedding for
each lesion in our comprehensive DeepLesion dataset. Training samples A–E are selected with a
sequential sampling strategy so as to make the embeddings respects similarity in type, location, and
size

slices from10,594CT imaging studies of 4,427 unique patients. There are one to three
lesions in each image with accompanying bounding boxes and size measurements.
The lesions are diverse but unorganized. Our goal is to understand them and discover
their relationships. In other words, can we organize them so that we are able to
(1) know their type and location; (2) find similar lesions in different patients, i.e.,
content-based lesion retrieval; and (3) find similar lesions in the same patient, i.e.,
lesion instance matching for disease tracking?

As Fig. 20.1 illustrates, the above problems can be addressed by learning feature
representations for each lesion that keeps a proper similarity relationship, i.e., lesions
with similar attributes should have similar embeddings. To reduce annotation work-
load and leverage the intrinsic structure within CT volumes, we use three weak cues
to describe each lesion: type, location, and size. Lesion types are obtained by prop-
agating the labels of a small amount of seed samples to the entire dataset, producing
pseudo-labels. The 3D relative body location is obtained from a self-supervised body
part regression algorithm. Size is directly obtained by the radiological marking. We
then define the similarity relationship between lesions based on a hierarchical combi-
nation of the cues. A triplet network with a sequential sampling strategy is utilized to
learn the embeddings. We also apply a multi-scale multi-crop architecture to exploit
both context and detail of the lesions, as well as an iterative refinement strategy to
refine the noisy lesion-type pseudo-labels.

Qualitative and quantitative experimental results demonstrate the efficacy of our
framework for several highly important applications. (1), We show excellent perfor-
mance on content-based lesion retrieval [22, 30, 44, 49]. Effective solutions to this
problem can help identify similar case histories, better understand rare disorders,
and ultimately improve patient care [24]. We show that our embeddings can be used
to find lesions similar in type, location, and size. Most importantly, the embeddings
can match lesions with semantically similar body structures that are not specified in
the training labels. (2), The embeddings are also successfully applied in intra-patient
lesion matching. Patients under therapy typically undergo CT examinations (studies)
at intervals to assess the effect of treatments. Comparing lesions in follow-up studies
with their corresponding ones in previous studies constitutes a major part of a radiol-
ogist’s workload [27]. We provide an automated tool for lesion matching which can
significantly save time, especially for patients with multiple follow-up studies [33].
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20.2 Related Work

DeepMetric Learning: Metric learning can be beneficial whenever we want to keep
certain similarity relationship between samples [2]. The Siamese network [3] is a
seminal work in deep metric learning, which minimizes the distance between a pair
of samples with the same label and pushes samples with different labels apart. It was
improved by the triplet network [31], which considers relative distances. The triplet
network requires three samples to compute a loss: an anchor A, a positive sample
P with the same label as A, and a negative sample N with a different label. The
network learns embeddings that respect the following distance relationship:

‖ f (A) − f (P)‖22 + m < ‖ f (A) − f (N )‖22, (20.1)

where f is the embedding function to be learned and m is a predefined margin.
Various improvements to the standard triplet network have been proposed [5, 38–40,
54]. Three key aspects in these methods are how to define similarity between images,
how to sample images for comparison, and how to compute the loss function. Zhang
et al. [54] generalized the sampling strategy and triplet loss for multiple labels with
hierarchical structures or shared attributes. Son et al. [39] employed label hierarchy
to learn object embeddings for tracking, where object class is a high-level label and
detection timestamp is low level. Our sequential sampling strategy shares the similar
spirit with them, but we lack well-defined supervision cues in the dataset, so we
proposed strategies to leverage weak cues, e.g., self-supervised body part regressor
and iterative refinement.

Lesion Management: Great efforts have been devoted to lesion detection [43,
48, 50], classification [7, 12], segmentation [4, 42], and retrieval [22, 30, 44, 49].
Recently, CNNs have become the method of choice over handcrafted features due to
the former’s superior performance [16, 24, 35, 41]. Our work is in line with content-
based medical image retrieval, which has been surveyed in detail by [22]. Existing
methods generally focus on one type of lesion (e.g., lung lesion or mammographic
mass) and learn the similarity relationship based on manually annotated labels [44,
49] or radiology reports [30]. To the best of our knowledge, nowork has been done on
learning deep lesion embeddings on a large comprehensive dataset with weak cues.
Taking a different approach, [17, 46] cluster images or lesions to discover concepts
in unlabeled large-scale datasets. However, they did not leverage multiple cues to
explicitly model the semantic relationship between lesions. Several existing works
on intra-patient lesion matching focus on detecting follow-up lesions and matching
them pixel by pixel [18, 28, 36, 45], which generally requires organ segmentation
or time-consuming nonrigid volumetric registration. Besides, they are designed for
certain types of lesions, whereas our lesion embedding can be used to match all kinds
of lesions.
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20.3 Dataset

The DeepLesion dataset2 consists of over 32K clinically significant findings mined
from a major institute’s PACS. To the best of our knowledge, this dataset is the first
to automatically extract lesions from challenging PACS sources. Importantly, the
workflow described here can be readily scaled up and applied tomultiple institutional
PACS, providing a means for truly massive scales of data.

Radiologists routinely annotate clinically meaningful findings in medical images
using arrows, lines, diameters or segmentations. These images, called “bookmarked
images”, have been collected over close to two decades in our institute’s PACS.
Without loss of generality, we study one type of bookmark in CT images: lesion
diameters. As part of the RECIST guidelines [11], which is the standard in tracking
lesion progression in the clinic, lesion diameters consist of two lines: one measuring
the longest diameter and the second measuring its longest perpendicular diameter
in the plane of measurement. We extract the lesion diameter coordinates from the
PACS server and convert them into corresponding positions on the image plane. After
removing some erroneous annotations, we obtain 32,120 axial CT slices (mostly 512
× 512) from 10,594 studies of 4,427 unique patients. There are one to three lesions in
each image, adding up to 32,735 lesions altogether. We generate a box tightly around
the two diameters and add a 5-pixel padding in each direction to capture the lesion’s
full spatial extent. Samples of the lesions and bounding boxes are in Fig. 20.2. More
introduction of the dataset can be found in [51].

To provide an overview of the DeepLesion dataset, we draw a scatter map to show
the distribution of the types and relative body locations of the lesions in Fig. 20.2.
From the lesion types and sample images, one can see that the relative body locations
of the lesions are consistent with their actual physical positions, proving the validity
of the location information used in the paper, particularly the self-supervised body
part regressor. Some lesion types like bone and soft tissue have widespread locations.
Neighboring types such as lung/mediastinum and abdomen/liver/kidney have large
overlap in location due to inter-subject variabilities. Besides, we can clearly see the
considerable diversity of DeepLesion.

Figure20.3 illustrates the approach to obtain the location and size of a lesion. In
order to locate a lesion in the body, we first obtain the mask of the body in the axial
slice, and then compute the relative position (0–1) of the lesion center to get the x-
and y-coordinates. As for z, the self-supervised body part regressor (SSBR) is used.

The 12-bit CT intensity range is rescaled to floating-point numbers in [0, 255]
using a single windowing covering the intensity ranges in lungs, soft tissues, and
bones. Each image is resized so that the spacing is 1mm/pixel. For each lesion, we
crop a patchwith 50mmpadding around its bounding box.To encode 3D information,
we use three neighboring slices (interpolated at 2mm slice intervals) to compose a
three-channel image. No data augmentation was used.

2https://nihcc.box.com/v/DeepLesion.

https://nihcc.box.com/v/DeepLesion
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Fig. 20.2 Visualization of the DeepLesion dataset (test set). The x- and y-axes of the scatter map
correspond to the x- and z-coordinates of the relative body location of each lesion, respectively.
Therefore, this map is similar to a frontal view of the human body. Colors indicate the manually
labeled lesion types. Sample lesions are exhibited to show the great diversity of DeepLesion, includ-
ing a lung nodule; b lung cyst; c costophrenic sulcus (lung) mass/fluid; d breast mass; e liver lesion;
f renal mass; g large abdominal mass; h posterior thigh mass; i iliac sclerotic lesion; j perirectal
lymph node (LN); k pelvic mass; l periportal LN; m omental mass; n peripancreatic lesion; o
splenic lesion; p subcutaneous/skin nodule; q ground-glass opacity; r axillary LN; s subcarinal LN;
t vertebral body metastasis; u thyroid nodule; v neck mass
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Fig. 20.3 Location and size
of a sample lesion. The red
lines are the long and short
diameters annotated by
radiologists during their
daily work. The green box is
the bounding box calculated
from the diameters. The
yellow dot is the center of
the bounding box. The blue
lines indicate the relative x-
and y-coordinates of the
lesion. The z-coordinate is
predicted by SSBR. Best
viewed in color

Long diameter = 78.6 mm
Short diameter = 58.8 mm

z = 0.59 (from SSBR)
x = 0.28, y = 0.53 (relative)

20.4 Method

In this section, we describe our framework that extracts supervision cues from
DeepLesion, learns lesion embeddings, and finally does lesion retrieval and match-
ing.

20.4.1 Supervision Cues

Supervision information, or cues, are key in defining the similarity relationship
between lesions. Because it is prohibitively time-consuming to manually annotate
all lesions in a PACS-based dataset like DeepLesion, a different approach must be
employed. Here we use the cues of lesion type, relative body location, and size.

Size information (lengths of long and short lesion diameters) has been annotated
by radiologists and ranges from 0.2 to 343mm with a median of 15.6mm. They
are significant indicators of patients’ conditions according to the RECIST guideline
[11]. For example, larger lymph nodes are considered lesions while those with short
diameters < 10mm are treated as normal [11]. While size can be obtained directly
from radiologists’ markings, type and relative body location require more complex
approaches.

Lesion Type: Among all 32,735 lesions, we randomly select 30% and manually
label them into eight types: lung, abdomen, mediastinum, liver, pelvis, soft tissue,
kidney, and bone. These are coarse-scale attributes of the lesions. An experienced
radiologist verified the labels. Themediastinum classmainly consists of lymph nodes
in the chest. Abdomen lesions are miscellaneous ones that are not in liver or kidney.
The soft tissue class contains lesions in the muscle, skin, fat, etc. Among the labeled
samples, we randomly select 25% as training seeds to predict pseudo-labels, 25% as
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the validation set, and the other 50% as the test set. There is no patient-level overlap
between all subsets.

The type of lesion is related to its location, but the latter information cannot replace
the former because some lesion types like bone and soft tissue have widespread
locations. Neighboring types such as lung/mediastinum and abdomen/liver/kidney
are hard to classify solely by location. The challenge with using PACS data is that
there are no annotated class labels for each lesion in DeepLesion. Therefore, we use
labeled seed samples to train a classifier and apply it to all unlabeled samples to get
their pseudo-labels [21]. Details on the classifier are provided in Sect. 20.4.2.2.

Relative Body Location: Relative body location is an important and clinically rel-
evant cue in lesion characterization. While the x and y coordinates of a lesion are
easy to acquire in axial CT slices, the z coordinate (e.g., 0–1 from head to toe) is
not as straightforward to find. The slice indices in the volume cannot be used to
compute z because CT volumes often have different scan ranges (start, end), not to
mention variabilities in body lengths and organ layouts. For this reason, we use the
self-supervised body part regressor (SSBR), which provides a relative z coordinate
based on context appearance.

SSBR operates on the intuition that volumetric medical images are intrinsically
structured, where the position and appearance of organs are relatively aligned. The
superior–inferior slice order can be leveraged to learn an appearance-based z. SSBR
randomly picks m equidistant slices from a volume, denoted j, j + k, . . . , j +
k(m − 1), where j and k are randomly determined. They are passed through a CNN
to get a score s for each slice, which is optimized using the following loss function:

LSSBR = Lorder + Ldist;
Lorder = −

∑m−2

i=0
log h

(
s j+k(i+1) − s j+ki

);
Ldist =

∑m−3

i=0
g(�i+1 − �i ),

�i = s j+k(i+1) − s j+ki ,

(20.2)

where h is the sigmoid function, and g is the smooth L1 loss [15]. Lorder requires
slices with larger indices to have larger scores. Ldist makes the difference between
two slice scores proportional to their physical distance. The order loss and distance
loss terms collaborate to push each slice score toward the correct direction relative
to other slices. After convergence, slices scores are normalized to [0, 1] to obtain the
z coordinates without having to know which score corresponds to which body part.
The framework of SSBR is shown in Fig. 20.4.

In DeepLesion, some CT volumes are zoomed in on a portion of the body, e.g.,
only the left half is shown. To handle them, we train SSBR on random crops of the
axial slices. Besides, SSBR does not perform well on body parts that are rare in the
training set, e.g., head and legs. Therefore, we train SSBR on all data first to detect
hard volumes by examining the correlation coefficient (r ) between slice indices and
slice scores, where lower r often indicates rare body parts in the volume. Then, SSBR
is trained again on a resampled training set with hard volumes oversampled.
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Fig. 20.4 Framework of the self-supervised body part regressor (SSBR)

20.4.2 Learning Lesion Embeddings

To learn lesion embeddings, we employ a triplet network with sequential sampling,
as illustrated in Fig. 20.1.

20.4.2.1 Sequential Sampling

Similar to [39, 54], we leverage multiple cues to describe the relationship between
samples. A naïve strategy would be to treat all cues equally, where similarity can
be calculated by, for instance, averaging the similarity of each cue. Another strategy
assumes a hierarchical structure exists in the cues. Some high-level cues should be
given higher priority. This strategy applies to our task, because intuitively lesions of
the same type should be clustered together first. Within each type, we hope lesions
that are closer in location to be closer in the feature space. If two lesions are similar
in both type and location, they can be further ranked by size. This is a conditional
ranking scheme.

To this end, we adopt a sequential sampling strategy to select a sequence of
lesions following the hierarchical relationship above. As depicted in Fig. 20.1, an
anchor lesion A is randomly chosen first. Then, we look for lesions with similar
type, location, and size with A and randomly pick B from the candidates. Likewise,
C is a lesion with similar type and location but dissimilar size; D is similar in
type but dissimilar in location (its size is not considered); E has a different type (its
location and size are not considered). Here, two lesions are similar in type if they have
the same pseudo-label; they are similar in location (size) if the Euclidean distance
between their location (size) vectors is smaller than a threshold Tlow, whereas they
are dissimilar if the distance is larger than Thigh. We do not use hard triplet mining as
in [29, 31] because of the noisy cues. Figure20.5 presents some examples of lesion
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Fig. 20.5 Sample training sequences. Each row is a sequence. Columns 1–5 are examples of lesions
A–E in Fig. 20.1, respectively

sequences. Note that there is label noise in the fourth row, where lesion D does not
have the same type with A–C (soft tissue versus pelvis).

A selected sequence can be decomposed into three triplets: ABC , ACD, and
ADE . However, they are not equal, because we hope two lesions with dissimilar
types to be farther apart than two with dissimilar locations, followed by size. Hence,
we apply larger margins to higher level triplets [5, 54]. Our loss function is defined
as

L = 1

2S

S∑

i=1

[
max(0, d2

AB − d2
AC + m1) (20.3)

+max(0, d2
AC − d2

AD + m2)

+max(0, d2
AD − d2

AE + m3)
]
.

m3 > m2 > m1 > 0 are the hierarchical margins; S is the number of sequences in
eachmini-batch; di j is the Euclidean distance between two samples in the embedding
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Fig. 20.6 Network architecture of the proposed triplet network

space. The idea in sequential sampling resembles that of SSBR (Eq.20.2): ranking
a series of samples to make them self-organize and move to the right place in the
feature space.

20.4.2.2 Network Architecture and Training Strategy

VGG-16 [37] is adopted as the backbone of the triplet network. As illustrated in
Fig. 20.6, we input the 50mm-padded lesion patch, then combine feature maps from
four stages of VGG-16 to get a multi-scale feature representation with different
padding sizes [14, 19]. Because of the variable sizes of the lesions, region of interest
(ROI) pooling layers [15] are used to pool the featuremaps to 5 × 5 × num_channel
separately. For conv2_2, conv3_3, and conv4_3, the ROI is the bounding box of
the lesion in the patch to focus on its details. For conv5_3, the ROI is the entire
patch to capture the context of the lesion [14, 19]. Each pooled feature map is then
passed through a fully connected layer (FC), an L2 normalization layer (L2), and
concatenated together. The final embedding is obtained after another round of FC
and L2 normalization layers.

To get the initial embedding of each lesion, we use ImageNet [10] pretrained
weights to initialize the convolutional layers, modify the output size of the ROI
pooling layers to 1 × 1 × num_channel, and remove the FC layers in Fig. 20.6 to
get a 1408D feature vector. We use the labeled seed samples to train an 8-class
RBF-kernel support vector machine (SVM) classifier and apply it to the unlabeled
training samples to get their pseudo-labels. We also tried semi-supervised classifica-
tion methods [1, 56] and achieved comparable accuracy. Seed samples were not used
to train the triplet network. We then sample sequences according to Sect. 20.4.2.1
and train the triplet network until convergence. With the learned embeddings, we are
able to retrain the initial classifier to get cleaner pseudo-labels, and then fine-tune
the triplet network with a lower learning rate [46]. In our experiments, this iterative
refinement improves performance.

20.4.3 Lesion Retrieval and Matching

The lesion graph can be constructed after the embeddings are learned. It can be used
to directly achieve content-based lesion retrieval by finding nearest neighbors of
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query lesions. However, intra-patient lesion matching requires additional techniques
to accomplish.

We assume that lesions in all studies have been detected by other lesion detec-
tion algorithms [43] or marked by radiologists, which is the case in DeepLesion.
In this section, our goal is to match the same lesion instances and group them for
each patient. Potential challenges include appearance changes between studies due
to lesion growth/shrinkage, movement of organs or measurement positions, and dif-
ferent contrast phases. Note that for one patient not all lesions occur in each study
because the scan ranges vary and radiologists only mark a few target lesions. In
addition, one CT study often contains multiple series (volumes) that are scanned at
the same time point but differ in image filters, contrast phases, etc. To address these
challenges, we design the lesion matching algorithm described in Algorithm1.

The basic idea is to build an intra-patient lesion graph and remove the edges
connecting different lesion instances. The Euclidean distance of lesion embeddings
is adopted as the similarity measurement. First, lesion instances from different series
within the same study are merged if their distance is smaller than T1. They are then
treated as one lesion with embeddings averaged. Second, we consider lesions in
all studies of the same patient. If the distance between two lesions is larger than
T2 (T2 > T1), they are not similar and their edge is removed. After this step, one
lesion in study 1 may still connect to multiple lesions in study 2 if they look similar,
so we only keep the edge with the minimum distance and exclude the others. Finally,
the remaining edges are used to extract the matched lesion groups.

Algorithm 1 Intra-patient lesion matching
Input: Lesions of the same patient represented by their embeddings; the study index s of each

lesion; intra-study threshold T1; inter-study threshold T2.
Output: Matched lesion groups.
1: Compute an intra-patient lesion graphG = 〈V,E〉, where V are nodes (lesions) and E are edges.

Denote di j as the Euclidean distance between nodes i, j .
2: Merge nodes i and j if si = s j and di j < T1.
3: Threshold: E ← E − D,D = {〈i, j〉 ∈ E|di j > T2}.
4: Exclusion: E ← E − C,C = {〈i, j〉 | 〈i, j〉 ∈ E, 〈i, k〉 ∈ E, s j = sk , and di j ≥ dik}.
5: Extraction: Each node group with edge connections is considered as a matched lesion group.

20.5 Experiments

Our experiments aim to show that the learned lesion embeddings can be used to
produce a semanticallymeaningful similarity graph for content-based lesion retrieval
and intra-patient lesion matching.
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20.5.1 Implementation Details

We empirically choose the hierarchical margins in Eq.20.3 to be m1 = 0.1,m2 =
0.2,m3 = 0.4. The maximum value of each dimension of the locations and sizes is
normalized to 1. When selecting sequences for training, the similarity thresholds for
location and size are Tlow = 0.02, Thigh = 0.1. We use S = 24 sequences per mini-
batch. The network is trained using stochastic gradient descent (SGD)with a learning
rate of 0.002,which is reduced to 0.0002 in iteration 2K.After convergence (generally
in 3K iterations), we do iterative refinement by updating the pseudo-labels and fine-
tuning the network with a learning rate of 0.0002. This refinement is performed only
once because we find that more iterations only addmarginal accuracy improvements.
For lesion matching, the intra-study threshold T1 is 0.1, and we vary the inter-study
threshold T2 to compute the precision–recall curve.

To train SSBR, we randomly pick 800 unlabeled CT volumes of 420 subjects
from DeepLesion. Each axial slice in the volumes is resized to 128 × 128 pixels. No
further preprocessing or data augmentation was performed. In each mini-batch, we
randomly select 256 slices from 32 volumes (8 equidistant slices in each volume, see
Eq.20.2) for training. The network is trained using stochastic gradient descent with
a learning rate of 0.002. It generally converges in 1.5K iterations.

The sample lesions in Fig. 20.2 can be used to qualitatively evaluate the learned
slice scores, or z-coordinates. We also conducted a preliminary experiment to quan-
titatively assess SSBR. A test set including 18,195 slices subsampled from 260
volumes of 140 new subjects is collected. They are manually labeled as one of the
three classes: chest (5903 slices), abdomen (6744), or pelvis (5548). The abdomen
class starts from the upper border of the liver and ends at the upper border of the
ilium. Then, we set two thresholds on the slice scores to classify them to the three
classes. The classification accuracy is 95.99%, with all classification errors appear-
ing at transition regions (chest–abdomen, abdomen–pelvis) partially because of their
ambiguity. The result proves the effectiveness of SSBR. More importantly, SSBR
is trained on unlabeled volumes that are abundant in every hospital’s database, thus
zero annotation effort is needed.

20.5.2 Content-Based Lesion Retrieval

First, we qualitatively investigate the learned lesion embeddings in Fig. 20.7, which
shows the Barnes–Hut t-SNE visualization [25] of the 1024D embedding and some
sample lesions. The visualization is applied to our manually labeled test set, where
we have lesion-type ground truth. As we can see, there is a clear correlation between
data clusters and lesion types. It is interesting to find that some types are split into
several clusters. For example, lung lesions are separated to left lung and right lung,
and so are kidney lesions. Bone lesions are split into three small clusters, which are
found to be mainly chest, abdomen, and pelvis ones, respectively. Abdomen, liver,
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Fig. 20.7 t-SNE visualization of the lesion embeddings on the test set (4,927 samples) of DeepLe-
sion. Colors indicate the manually labeled lesion types. We also split the samples to 128 clusters
using K-means and show three random lesions in 12 representative clusters. We did not choose to
show closest samples because they are very similar. Best viewed in color

and kidney lesions are close both in real-world location and in the feature space.
These observations demonstrate the embeddings are organized by both type and
location. The sample lesions in Fig. 20.7 are roughly similar in type, location, and
size. Two exceptions are the location variability of the example lesions in the pelvis
and soft tissue, which is not surprising considering the large intra-class variance of
these two groups and that these examples are randomly chosen.

Figure20.8 displays several retrieval results using the lesion embeddings. They
are ranked by their Euclidean distance with the query one.We find that the top results
are mostly the same lesion instances of the same patient, as shown in the first row of
Fig. 20.8. It suggests the potential of the proposed embedding on lesion matching,
which will be further evaluated in the following section. To better exhibit the ability
of the embedding in finding semantically similar lesions, rows 2–4 of Fig. 20.8 depict
retrieved lesions from different patients. Spiculated nodules in the right lung and left
para-aortic lymph nodes are retrieved in rows 2 and 3, respectively. Row 4 depicts
lesions located on the tail of the pancreas, and also some failure cases marked in red.
Note that our type labels used in supervision are too coarse to describe either abdomen
lymph nodes or pancreas lesions (both are covered in the abdomen class). However,
the framework naturally clusters lesions from the same body structures together
due to similarity in type, location, size, and appearance, thus discovering these sub-
types. Although appearance is not used as supervision information, it is intrinsically
considered by the CNN-based feature extraction architecture and strengthened by
the multi-scale strategy. To explicitly distinguish sub-types and enhance the seman-
tic information in the embeddings, we can either enrich the type labels by mining
knowledge from radiology reports [9, 34, 47, 55], or integrate training samples from
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Fig. 20.8 Examples of query lesions (first column) and the top-9 retrieved lesions on the test set
of DeepLesion. In the first row, the blue dashed box marks the lesion from a different patient than
the query one, whereas the other nine are all from the same patient. In rows 2–4, we constrain that
the query and all retrieved lesions must come from different patients. Red dashed boxes indicate
incorrect results, see text

other medical image datasets with more specialized annotations [8, 32]. These new
labels may be incomplete or noisy, which fits the setting of our system.

Quantitative experimental results on lesion retrieval, clustering, and classifica-
tion are listed in Table20.1. For retrieval, the three supervision cues are thoroughly
inspected. Because location and size (all normalized to 0–1) are continuous labels,
we define an evaluation criterion called average retrieval error (ARE):

ARE = 1

K

K∑

i=1

‖tQ − tRi ‖2, (20.4)

where tQ is the location or size of the query lesion and tRi is that of the i th retrieved
lesion among the top-K . On the other hand, the ARE of lesion type is simply 1 −
precision. Clustering and classification accuracy are evaluated only on lesion type.
Purity and normalized mutual information (NMI) of clustering are defined in [26].
The multi-scale ImageNet feature is computed by replacing the 5× 5 ROI pooling
to 1× 1 and removing the FC layers.

In Table20.1, the middle part compares the results of applying different supervi-
sion information to train the triplet network. Importantly, when location and size are
added as supervision cues, our network performs best on lesion-type retrieval—even
better than when only lesion type is used as the cue. This indicates that location
and size provide important supplementary information in learning similarity embed-
dings, possibly making the embeddings more organized and acting as regularizers.
The bottom part of the table shows the results of ablation studies, which demon-
strate the effectiveness of multi-scale features and iterative refinement, highlighting
the importance of combining visual features from different context levels. When
only coarse-scale features (conv5, conv4) are used, location ARE is slightly better
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Table 20.1 Evaluation results on the test set (4,927 samples) of DeepLesion. For retrieval, we
compute the average retrieval error (%) in type, location, and size of the top-5 retrieved lesions
compared to the query one. For clustering, lesions are clustered to eight groups using K-means to
calculate the purity and NMI (%). For classification, we train an eight-way softmax classifier on the
seed labeled samples and apply it on the test set. The CNN in each method was trained five times
using different random seeds. Mean results and standard deviations are reported

Feature rep-
resentation

Average retrieval error Clustering Classification

Type Location Size Purity NMI Accuracy

Baseline:
Multi-scale
ImageNet
feature

15.2 9.6 6.9 58.7 35.8 86.2

Baseline:
Location
feature

22.4 2.5 8.8 51.6 32.6 59.7

Triplet with
type

8.8±0.2 10.8±0.2 5.7±0.1 84.7±2.8 71.5±1.7 89.5±0.3

Triplet with
location

13.0±0.1 6.5±0.1 6.2±0.1 61.1±4.4 39.5±4.3 87.8±0.5

Triplet with
type +
location

8.7±0.2 7.2±0.1 6.0±0.1 81.3±4.7 68.0±2.4 89.9±0.3

Triplet with
type +
location +
size

8.5±0.1 7.2±0.0 5.1±0.0 86.0±3.9 72.4±4.6 90.5±0.2

w/o
Multi-scale
feature:
conv5

11.5±0.2 7.1±0.1 6.3±0.0 79.8±0.6 64.8±1.2 86.6±0.4

w/Multi-
scale
feature:
conv5 +
conv4

9.7±0.2 7.0±0.0 5.4±0.1 82.4±3.3 67.9±2.2 89.0±0.6

w/o
Iterative
refinement

8.7±0.2 7.3±0.0 5.2±0.1 85.4±2.8 69.8±2.0 90.2±0.2

because location mainly relies on high-level context information. However, fusing
fine-level features (conv3, conv2) significantly improves type and size prediction,
which indicates that details are important in these aspects. We also inspected the
confusion matrix for lesion classification (Fig. 20.9). The most confusing types are
mediastinum/lung lesions, and abdomen/liver/kidney lesions, since some of them are
similar in both appearance and location.
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Fig. 20.9 The confusion
matrix of lesion
classification

20.5.3 Intra-patient Lesion Matching

We manually grouped 1313 lesions from 103 patients in DeepLesion to 593 groups
for evaluation. Each group contains instances of the same lesion across time. There
are 1–11 lesions per group. Precision and recall are defined according to [26], where
a true positive decision assigns two lesions of the same instance to the same group,
and a false positive decision assigns two lesions of different instances to the same
group, etc. As presented in Fig. 20.10, our proposed embedding achieves the highest
area under the curve (AUC). The location feature does not perform well because
different lesion instances may be close to each other in location. This problem can
be mitigated by combining location with appearance and using multi-scale features
(accomplished in our triplet network). Our algorithm does not require any annotation

Fig. 20.10 Precision–recall
curves of various methods on
the intra-patient lesion
matching task using
DeepLesion. The area under
curve (AUC) values are
shown in the legends

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Multi-scale ImageNet feature, AUC=0.931
Location feature, AUC=0.766
w/o Multi-scale feature, AUC=0.914
w/o Iterative refinement, AUC=0.948
Triplet with type, AUC=0.840
Triplet with location, AUC=0.958
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Proposed, AUC=0.959
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1 1 1
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Study 1                           Study 2                           Study 3                          Study 4                          Study 5

Fig. 20.11 All lesions of a sample patient in DeepLesion. Lesions in each study (CT examination)
are listed in a column. Not all lesions occur in each study, because the scan ranges of each study vary
and radiologists only mark a few target lesions. We group the same lesion instances to sequences.
Four sequences are found and marked in the figure, where the numbers on the connections represent
the lesion IDs

of matched lesions for training. It is appearance-based and needs no registration or
organ mask, thus is fast.

To provide an intuitive illustration of the lesion matching task, we show lesions
of a sample patient in Fig. 20.11, with their lesion graph in Fig. 20.12 and the final
extracted lesion sequences in Fig. 20.13. We show that the lesion graph and Algo-
rithm1 in the paper can be used to accurately match lesions in multiple studies.

20.6 Conclusion and Future Work

In this paper, we present a large-scale and comprehensive dataset, DeepLesion,which
contains significant radiology image findings mined from PACS. Lesion embeddings
are learned with a triplet network to model their similarity relationship in type,
location, and size. The only manual efforts needed are the class labels of some seed
images. Promising results are obtained in content-based lesion retrieval and intra-
patient lesionmatching. The framework can be used as a generic lesion search engine,
classifier, andmatching tool. After being classified or retrieved by our system, lesions
can be further processed by other specialist systems trained on data of a certain type.
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Fig. 20.12 The intra-patient lesion graph of the patient in Fig. 20.11. For clarity, the lesions in
Fig. 20.11 are replaced by nodes in this figure. The numbers on the edges are the Euclidean distances
between nodes. We only show small distances in the figure. Red, thick edges indicate smaller
distances. Note that some edges may overlap with other edges or nodes
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Fig. 20.13 The final lesion sequences found by processing the lesion graph in Fig. 20.12 using
Algorithm1. They are the same as the ground truth in Fig. 20.11
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In the future, we plan to incorporate more fine-grained semantic information (e.g.,
from radiology reports, other specialized datasets, or active learning). For example,
radiology reports contain rich semantic information about the lesions, such as their
type, location, and other attributes. Bymining these information, we can train a more
fine-grained, accurate, and clinically meaningful lesion retrieval and classification
algorithm, meanwhile using minimal manual annotation effort.
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Chapter 21
Simultaneous Super-Resolution
and Cross-Modality Synthesis in
Magnetic Resonance Imaging

Yawen Huang, Ling Shao and Alejandro F. Frangi

Abstract Multi-modality magnetic resonance imaging (MRI) has enabled signif-
icant progress to both clinical diagnosis and medical research. Applications range
from differential diagnosis to novel insights into disease mechanisms and pheno-
types. However, there exist many practical scenarios where acquiring high-quality
multi-modality MRI is restricted, for instance, owing to limited scanning time. This
imposes constraints on multi-modality MRI processing tools, e.g., segmentation and
registration. Such limitations are not only recurrent in prospective data acquisition
but also when dealing with existing databases with either missing or low-quality
imaging data. In this work, we explore the problem of synthesizing high-resolution
images corresponding to one MRI modality from a low-resolution image of another
MRImodality of the same subject. This is achieved by introducing the cross-modality
dictionary learning scheme and a patch-based globally redundant model based on
sparse representations.We use high-frequencymulti-modality image features to train
dictionary pairs, which are robust, compact, and correlated in this multimodal fea-
ture space. A feature clustering step is integrated into the reconstruction framework
speeding up the search involved in the reconstruction process. Images are partitioned
into a set of overlapping patches to maintain the consistency between neighboring
pixels and increase speed further. Extensive experimental validations on two multi-
modality databases of real brain MR images show that the proposed method outper-
forms state-of-the-art algorithms in two challenging tasks: image super-resolution
and simultaneous SR and cross-modality synthesis. Ourmethodwas assessed on both
healthy subjects and patients suffering from schizophrenia with excellent results.
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21.1 Introduction

Magnetic Resonance Imaging (MRI) has advanced both clinical diagnosis and
biomedical research in the neurosciences. MRI has widely been used given its non-
invasiveness and the versatility associated with multi-modality imaging protocols
that unravel both brain structure and function. Each MRI sequence (hereafter called
an MRI modality) is based upon different image contrast mechanisms that relate to
complementary properties of brain tissue structure and function and help to unravel
anatomical differences and physiologic alterations of brain tissue in health and dis-
ease [1]. For instance, T1-weighted (T1-w) images highlight the differences of lon-
gitudinal relaxation time in brain tissue, while T2-weighted (T2-w) images reflect
transverse relaxation time, and proton density-weighted (PD-w) images depend on
the levels of hydrogen protons within the volume of interest. Tissues with high fat
content (e.g., white matter) appear bright and compartments filled with water (e.g.,
cerebral spinal fluid or CSF) appear dark in T1-w MRI. This is particularly good
to depict anatomy. Conversely, in T2-w MRI, compartments filled with water (e.g.,
CSF) appear bright and those with high fat tissue content (e.g., white matter) appear
dark. This is useful for depicting pathology as several lesions (e.g., edema, tumor,
infarction, inflammation, and infections) are associatedwith increasedwater content.
Several other contrast mechanisms associated to water diffusion, tissue perfusion,
etc.

Despite these benefits, acquiring a full battery ofMRImodalities faces constraints
associated with increased scanning costs, limited availability of scanning time, and
patient comfort, among others. Also, asMRI technologies improve, enhanced resolu-
tion or new contrast mechanisms can be utilized. However, in longitudinal imaging
cohorts, its benefits will not be available retrospectively for earlier time points in
the study, imposing a natural limitation on the dataset. This brings an additional
complexity to image analysis and interpretation as the imaging protocol can change.
Finally, many reasons can lead to incomplete records for a subject who took part
in a large imaging study owing to imaging artifacts, acquisition errors, and lost or
corrupted datasets. In all such scenarios, it would be desirable to have a mechanism
to synthesize the high-resolution missing data in a different modality with the avail-
able MRI modality. However, most of the existing methods tackling this problem
either focuses on image super-resolution (SR) or cross-modality synthesis, but not
on solving both problems jointly.

Image SR aims to reconstruct a high-resolution (HR) image from a low-resolution
(LR) counterpart. It is an underdetermined inverse problem since a multiplicity of
solutions exist for the LR input. To solve such a problem, solution space is often
constrained by involving strong prior information. In the early years of studies, some
simple interpolation-based smooth methods [2–5] were proposed to zoom up LR
images. However, Van Ouwerkerk [6] pointed out that such interpolation methods
cannot recover detailed information lost in the down-sampling procedure, and even
may blur sharp edges. SR techniques were then proposed [7–13], which take the
degradation model (e.g., blurring, noise, and down-sampling effects) into account,
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to reconstruct the image with much higher accuracy. Such methods estimate the HR
image by learning co-occurrence priors between the LR and HR image pairs [10].
For instance, Freeman et al. [14] presented a learning-based approach to estimate an
HR image from an LR input via Markov network and Bayesian belief propagation.
Although the resolution can generally be improved effectively, corners, edges, and
ridges are still blurred. Based on such a strategy, Sun et al. [15] addressed the above
problem by a computationally intensive process of analysis of millions of LR-HR
patch pairs. Neighbor embedding was then proposed for single-image SR [12]. This
consists of projecting the local geometry from the LR feature space onto the HR
feature space to estimate the HR embedding. Although a small dataset was used in
the training process (partly to solve the massive computational load), results were
confined to the small number of neighbors. To adequately recover the general image
structure and its details, nonlocal means (NL means) [16, 17] was presented to
reconstruct the HR image with noise suppression exploiting image self-similarities.
However, for strong denoising levels, images are visually over-smooth. Recently,
sparse representations were exploited for solving the SR problem. For example,
Yang et al. [10] adopted a joint dictionary learning framework for mapping LR and
HR image pairs into a common representation space. Rueda et al. [13] took advantage
of this model and applied it to address the SR problem in brain MRI. A common
drawback shared by both methods is that they only consider local image information
in the image synthesis leading to suboptimal reconstructions.

In parallel to the SR technique, researchers have been developing methods to
solve the problem of cross-modality image synthesis [18, 18–20]. This problem can
be tackled either by transforming MRI intensities across modalities or by synthe-
sizing tissue contrast in the target domain based on patches of the source domain.
Histogram matching is a simple way of transforming image intensities from one
modality into another or to normalize histogram ranges across subjects [21–25].
Applications such as segmentation and registration can benefit from histogram nor-
malization and/or transformation to reduce the dependency of the results to intensity
variations across individuals or imaging protocols. Although this method is widely
used in neuroimaging (e.g., [21–25]), it has demonstrated its weakness for converting
data with inconsistent intensities and apparent errors [26]. An alternative approach to
reconstruct a target MRI modality from a source MRI modality (or more generally,
from any other imaging modality) is the example-based image synthesis [26]. In this
approach, two dictionaries are independently trained on corresponding patches from
registered image pairs of the source and target modalities, respectively. Then the
target image is synthesized from the source data based on a reconstruction algorithm
that links the patches to reconstruct the source image to the corresponding patches in
the target dictionary. Such approaches have also been applied with very promising
results to the related problems of label fusion [27] and image hallucination [11]. The
procedure to reconstruct the target image imposes that the same code that optimally
reconstructs the source patches from the source dictionarymust be applied directly to
reconstruct the target patches from the target dictionary based on a mapping learned
from a set of image pairs. To do so, the most common procedure is to train two
dictionaries via random sampling of the registered image patches from two domains
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and build the correspondence between patches of twomodalities. Such methods con-
catenate both domains according to the intensities of the paired patches, leading to
two separate dictionary learning processes in their respective modalities. In this con-
text, the joint representation of the two domains (juxtaposing the two independently
computed codes) is suboptimal regarding a jointly learned code that exploits the
cross-modality correlations. In addition, example-based methods rely on the given
cross-modality exemplar pairs and do not capture the rich variability in image texture
across a population of subjects. According to the similarity measurement between
training and test data of the same modality, Ye et al. [28] proposed a patch-based
modality propagation method. Through global search, the input patch was compared
against the training patches in the dataset. Several nearest neighbors with similar
properties were picked from the source domain and corresponding patches in the
target modality used for image synthesis. In [29], a pseudo-CT synthesis algorithm
was proposed, which aims at generating CT-like images from T1-w/T2-w inputs,
using multi-atlas registration and tissue contrast fusion. Nguyen et al. [30] proposed
a location-sensitive deep network method to integrate image intensities and spatial
information into a deep network for cross-modality image synthesis. To verify the
effectiveness of synthesized data, Tulder et al. used restricted Boltzmannmachines to
learn abstract representations from training data for synthesizing the missing image
sequences. More recently, a nonlinear regression-based image synthesis approach
[31] was proposed to predict the intensities in the target modality. While training,
this method used registered image pairs from source and target modalities to learn a
random forest regressor for regressing the target modality data. Besides these meth-
ods, Vemulapalli et al. proposed an unsupervised approach which relaxed needing
registered image pairs during training, to deal with the synthesis problem.

In this work, we present a novel MRI simultaneous super-resolution and cross-
modality synthesis (SiSCS) method for reconstructing the HR version of the target
modality based on anLR image of the sourcemodalitywhile treating each 3Dvolume
as a stack of 2D images. We simultaneously train a cross-modality dictionary pair
based on registered patches of the LR source modality and the HR target modality.
For an accurate image synthesis, the sparse codes of the LR source modality should
be the same as those of the HR ground truth on the premise of high correlation
between the paired LR source data and HR target data. We map high-frequency (HF)
features of the registered image pairs between source and target modalities into a
common feature space to fit the style-specific local structures and resolutions. We
introduce patch-based global redundancy, consisting of cross-modal matching and
self-similarity, to enhance the quality of image reconstruction based on sparse repre-
sentations. Prior papers such as [32, 33] and follow-up studies [16, 17, 34, 35] have
shown that self-similar image properties were used for enabling exact local image
reconstruction. However, classical NL means [36] are computationally expensive.
To overcome such problem, we present an integrated clustering algorithm into the
original redundancy framework for making the data of the same class correlated and
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speeding up the similarity measure from each subclass. In addition, we set patches
as the unit to preserve the intrinsic neighbor information of pixels and reduce the
computational cost.

In summary, our method offers these four contributions: (1) We normalize the
vectors of dictionary pairs in an HF feature space (rather than in the original image
space) to a unified range to achieve intensity consistent learning. (2) A novel cross-
modality dictionary learning based on a compact representation of HF features in
both domains is proposed to derive co-occurrence prior. (3) Simultaneous estimation
of the dictionaries corresponding to both modalities leads to matched representations
for a given sparse code. (4) Sparse code pre-clustering provides a globally redundant
reconstruction scheme incorporated into the local reconstruction model, enhances
the robustness of the synthesis, and speeds up code search. Extensive experiments
on a public dataset of brain MR images show that the proposed method achieves a
competitive performance compared to other state-of-the-art algorithms. To the best
of our knowledge, this work is the first to undertake SR reconstruction of an arbitrary
target MRI modality from an available source MRI LR modality.

The rest of this work is organized as follows. The second part reviews the basis
of super-resolution and dictionary learning techniques. The novel SiSCS method
and experimental setup are presented in the third and fourth parts, respectively. The
fourth part presents a comprehensive experimental evaluation of our technique in
brain MRI. Finally, conclusions are provided in the fifth part.

21.2 Background

21.2.1 Image Degradation Model

SR image reconstruction, understood as an inverse problem, attempts to recover an
HR image in matrix formXH from an LR inputXL . A degradation model (Fig. 21.1)
is assumed as prior information to solving this inverse problem. In its simplest form,
the source LR image XL is modeled as a blurred and down-sampled counterpart of
its HR image XH by

XL = BS(XH ), (21.1)

where B and S represent the blurring and down-sampling operators, respectively
[6].

Fig. 21.1 The degradation
model
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21.2.2 Dictionary Learning

Dictionary learning has been successfully applied to a number of problems in image
processing [20, 37], such as image restoration [38–40], denoising [32, 34, 36], and
enhancement [10, 39, 41]. In image reconstruction based on dictionary learning, an
image is normally treated as the combination of many patches [10, 32, 38–40] and
denoted as X = [x1, x2, . . . , xN ] ∈ R

k×N . An image is approximated as X ≈ �A,
where X is the target matrix being approximated, � = [

φ1,φ2, . . . ,φK

] ∈ R
k×K

denotes a projection dictionary with K atoms, and A = [α1,α2, . . . ,αN ] ∈ R
K×N

is a set of N K -dimensional sparse codes of X with ‖A‖0 � K . Representing Eq.
(21.1) for sparse reconstruction of XL regarding �L can be achieved by

XL ≈ �LA = BS(�HA), (21.2)

where �L and �H denotes an LR dictionary and an HR dictionary, respectively. For
each image, the sparse decomposition is obtained by solving

min
A

‖A‖0 s.t. X = �A (or ‖X − �A‖p ≤ ε), (21.3)

where ‖·‖0 controls the number of nonzero elements inA, and ε is used for managing
the reconstruction errors. As shown in [42], the minimization problem as stated in
Eq. (21.3) is an NP-hard problem under the l0-normwith the l1-norm to obtain a near-
optimal solution [43]. The estimation is then accomplished by minimizing a least
squares problem with a quadratic constraint, whose Lagrange multiplier formulation
is

< �,A >= argmin
�,A

‖X − �A‖22 + λ ‖A‖1 , (21.4)

where λ is a regularization factor trading-off the parametric sparsity and the recon-
struction error of the solution.

21.3 Method

The proposed SiSCS method computes an estimation of an HR version of a target
MRI modality based on an LR version of a source MRI modality using jointly
learned dictionary. SR reconstruction in this work is inspired in earlier work on
brain hallucination [11], with an assumption that an HR image can be reconstructed
from the LR input with helped by another HR image using dictionaries of paired
data in a sparse representation framework [26, 44]. In this work, we partition the
images in the training database into a set of overlapping image patches. These image
patches are built simultaneously on the source and target spaces by registered source–
target image pairs. We propose a cross-modality dictionary learning that enforces the
computation of joint sparse codes. Instead of working with the original data of the
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Fig. 21.2 Illustration of the
SiSCS model. Step 1:
Feature collection. Step 2:
Cross-modality dictionary
learning. Step 3: Globally
redundant synthesis
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paired patches, we choose an HF representation of the data in the gradient domain,
so the sparse codes promote a high correlation between the two modalities regarding
the LR and HR, respectively. In brief, given the test image in matrix form Xt (with
modality M1), the proposed method will synthesize an SR image Yt with modality
M2 fromXt through a patch-based global redundant reconstruction model regarding
the learned cross-modality dictionary pair. The entire framework of SiSCS model is
summarized in Fig. 21.2.

21.3.1 Data Description

Let X = {X1,X2, . . . ,Xm} be m training images of modality M1 in the source
domain, and Y = {Y1,Y2, . . . ,Ym} be m training images of modality M2 in the
target domain. We denote cross-modality image pairs as {Xi ,Yi }, while Xi and
Yi are registered. In this work, we consider the LR input and HR output and
define the observed LR counterparts based on the HR images in X as Eq. (21.1).
X = {X1,X2, . . . ,Xm} is then updated as XL = {

XL
1 ,XL

2 , . . . ,XL
m

}
, and cross-

modality image pairs can be rewritten as {XL
i ,Yi }. After that, we build our algorithm

based on these data.
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21.3.2 Gradient Feature Representation

A mapping is constructed between each pair of LR and HR images based on HF
edges and texture features. This feature scheme is reasonable from the perceptual
viewpoint since humans are more sensitive to changes in HF content [12]. It has
been shown that HF feature representations of LR images are arguably the most
important for forecasting the missing HF components of HR images [10]. Such kind
of feature representation also makes the sparse codes of paired data that possess the
same information close to each other [12, 14, 26]. To achieve this, researchers have
suggested using a high-pass filter [14]. In this context, we define a feature operator F
to perform feature extraction for the LR image set. For this purpose, we follow [12]
and adopt the first-order and second-order gradients to represent features of each LR
image XL

i . The derivatives are then defined as [10, 12]

f 11 = [−1, 0, 1] , f 21 = [−1, 0, 1]T
f 12 = [−2,−1, 0, 1, 2] , f 22 = [−2,−1, 0, 1, 2]T ,

where each LR image results in four filtered images involving horizontal and vertical
gradients for both orders byF ∗ XL ,with∗ respecting the convolutionoperator andF
takes the form of one of the following operators: f 11 , f 21 , f 12 , f 22 . We then denote the
features of LR images asXF

i = F ∗ XL
i . On the other hand, for the HR image set, we

capture theirHF features through directly removing the corresponding low-frequency
information, which can be done by subtracting themean value of HR data forYi [12],
i.e.,YF

i = Yi − mean(Yi ). Further, images are treated as the collection of n patches
and denoted as the matrices X = [

xL1 , xL2 , . . . , xLn
]
and Y = [

y1, y2, . . . , yn
]
, and

the corresponding HF features can be represented as XF = [
xF1 , xF2 , . . . , xFn

]
and

YF = [
yF1 , yF2 , . . . , yFn

]
in the source and target domains, respectively.

21.3.3 Cross-Modality Dictionary Learning

Following the dictionary learning procedure described in the second part, instead
of considering the relationship between two sets of training data, we can learn two
independent dictionaries [11] regarding the source domain and the target domain:

�X = arg min
�X ,AX

∥∥XF − �XAX
∥∥2

2 + λ
∥∥AX

∥∥
1 ,

�Y = arg min
�Y ,AY

∥∥YF − �YAY
∥∥2

2 + λ
∥∥AY

∥∥
1 .

(21.5)

However, such a strategy is time-consuming and results in two sets of independent
sparse codes. To solve a similar problem, Yang et al. [10] explored an image SR
method that uses joint dictionary learning to correlate the sparse codes of LR data
with those corresponding HR data. This is done by mapping LR and HR patch pairs
into a common space to enforce the sparse codes of paireddata possess the samevalue.
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Based on this method, we develop a cross-modality dictionary learning algorithm
using the features of registered patch pairs to build the mapping relationship for
highly dissimilar training data. To proceed with the synthesis, a dictionary pair �X

and �Y should be simultaneously trained from data relating both modalities and
resolutions. For doing this, we first capture the HF features of both sets and then
project them into a common space to achieve an effective correlation. Once the LR
and HR patch pairs are incorporated in the feature space, we proceed with the joint
dictionary learning. However, such a strategy fails to consider different modalities
involving inconsistent intensity scales in the feature space. To solve this problem, we
introduce a normalization function so we can handle dissimilar features within the
same range. The maximum l2-norm values are then computed for both feature sets:

σX = max
{∥∥xFi

∥
∥
2

}
, σY = max

{∥∥yFi
∥
∥
2

}
. (21.6)

Once σX and σY are obtained, we use them for intensity normalization of all
patch features, i.e.,

x̂Fi = xFi
σX

, ŷFi = yFi
σY

. (21.7)

To maximize the correlation between normalized feature pairs in both modalities,
we map them into a common high-dimensional space and propose a cross-modality
dictionary learningmethod to simultaneously train two dictionaries for both datasets,
leading to

arg min
�X ,�Y ,A

1

P

∥∥∥X̂F − �XA
∥∥∥
2

2
+ 1

Q

∥∥∥ŶF − �YA
∥∥∥
2

2

+λ(
1

P
+ 1

Q
) ‖A‖1 s.t.

∥∥�X

i

∥∥2

2 ≤ 1,
∥∥∥�Y

i

∥∥∥
2

2
≤ 1,

(21.8)

where 1
P and 1

Q are the regularization parameters for balancing two error terms, and P
and Q represent the sizes of LR andHR patches, respectively. The above formulation
is convex regarding each dictionary (or sparse codes) assuming the other one fixed.
Constructing �X and �Y is achieved by alternating the computation of the sparse
codes and the update of the dictionary pairs. We summarize the training part of our
SiSCS method in Algorithm 1.

21.3.4 Clustering-Based Globally Redundant Codes

Once �X and �Y have been obtained from Eq. (21.8), we seek to reconstruct a test
image Xt by sparsely representing the normalized features of Xt and �X . This is
done by solving Eq. (21.4) as

argmin
At

∥
∥∥X̂t − �XAt

∥
∥∥
2

2
+ λ

∥∥At
∥∥
1 , (21.9)
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Algorithm 1: SiSCS Training
Input: Training data X and Y, parameters λ, μ, h, γ .

1 Down sample and blur X by Eq. (21.1) to obtain XL .
2 Extract HF features and treat images as patches: XF , YF .
3 Normalize patches by Eq. (21.7).

4 Initialize �X
0 , �

Y

0 , A0.
5 while not converged do
6 Update Ai+1 by sparse coding in Eq. (21.8) with �X

i and �Y

i fixed.

7 Update �X
i+1 and �Y

i+1 by dictionary learning in Eq. (21.8) with Ai+1.
8 end
Output: �X , �Y .

where each patch of Xt is treated as its feature representation and normalized fol-
lowing Eq. (21.7) regarding LR and M1 modality by X̂t = F ∗Xt

σX , and At indicates

the sparse coefficients of X̂t . The estimated sparse codes can be directly used to
synthesize the imageYt of our desired modalityM2 and HR by a linear combination
of elements in the dictionary �Y , namely, Yt = �YAt .

Integrating nonlocal reconstruction was successfully explored in [16, 33, 34].
Nonlocal reconstruction method recognizes that images often display repetitive pat-
terns across the image field, and that at each location the local texture resembles a
weighted combination of the local textures at other locations [33]. We then assume
there exist patches in Xt and X that resemble the j th patch Xt

j of the test image.
Groups of similar patches based on self- and cross-modal are identified. Then non-
local means (NL means) [17, 33] is applied to synthesize each target patch, which is
reconstructed as a weighted average of all similar patches. Each neighboring patch is
weighed inversely proportionally to its distance to the reference patch in the source
image [17]. The patch similarity calculations and global search involved in establish-
ing the set of similar patches is computationally intensive. To speed up computing
the distance between the reference patch and each patch in the training database, we
perform a two-stage search that eliminates grossly dissimilar patches first, and then
refines with a local search. This multi-level search is more robust to noise and also
addresses the problem of searches leading to very few retrievals due to less repeti-
tive patterns. The first level search is carried out using K-means clustering using as
input the sparse codes of the source patch and based on the Euclidean distance (cf.
Fig. 21.3).

Let � be the collection of the normalized HF features collected from X̂t and
X̂F . Then, we assume that they provide with s observations {k1,k2, . . . ,ks} leading
to s coefficients

{
αk1 ,αk2 , . . . ,αks

}
from which we wish to generate K clusters{

ψ1,ψ2, . . . ,ψK

}
. The clusters are computed as
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Fig. 21.3 Example of the clustering-based global redundancymodel including cross-modal match-
ing and self-similarity. For each reference patch in the test image, groups of similar patches including
cross-modal matching and self-similarity can be found based on K-means clustering

arg min
{ψc}K

c=1

K∑

c=1

∑

ki∈ψc

∥∥αki − δc
∥∥2

,

δc = 1

ψc

∑

αki ∈ψc

αki ,

(21.10)

where δc is the mean vector for cth cluster
{
ψc

}K
c=1. We pool the patches (other than

the one to be synthesized) from the reference image with those in the training set
as this has particular advantages when the reference image is abnormal or when the
database is small.With the experiments reported with the IXI database, we found this
is used in less than 2.76% of the subjects. In those cases, the nonlocal self-similarity
has a stronger influence that the cross-subject self-similarity. This clustering yields
a representative NL mean patch. We estimate the sparse codes for the j th patch of
the test image as the weighted average of the sparse codes αx associated with the
corresponding cluster ψc via

α̂
t
j =

∑

αki ∈ψc

�αt
j ,αki

αki , (21.11)

where α̂
t
j is the optimized sparse codes, αki denotes the sparse codes of ki within the

corresponding cluster, and �αt
j ,αki

is the weight for computing the level of similarity
to be inversely proportional to the Euclidean distance between αt

j and αki , where

�αt
j ,αki

= 1

μ
exp

⎧
⎪⎨

⎪⎩
−

∥
∥∥αt

j − αki

∥
∥∥
2

2

h2

⎫
⎪⎬

⎪⎭
, (21.12)
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with �αt
j ,αki

satisfying 0 ≤ �αt
j ,αki

≤ 1 and
∑

�αt
j ,αki

= 1, μ being a normalization
constant, and h being a scalar. Similar to the NL means method, the coefficient with
higher similarity to αt

j will have a larger weight on average (an example is shown in
Fig. 21.3). Vectors within the cluster ψc contains not only test items but also training
components. The conventional nonlocal method (e.g., NLmeans) cannot express the
complex structures in MR images. In this scenario, our global redundancy approach
can efficiently adapt to different structures. Therefore, the local sparse representation
model in Eq. (21.9) that meets the complementary function to those of Eq. (21.11)
will be modified as

argmin
At ′

∥∥∥X̂t − �XAt
∥∥∥
2

2
+ λ

∥∥At
∥∥
1 + γ

∥∥∥At − Ât
∥∥∥
2
, (21.13)

where γ is a tunable regularization parameter. Finally, we update the synthesized
image via Yt = �YAt ′

. As with most of the super-resolution methods [6, 10], the
contents of an LR test image beside the HF components are first preserved by extract-
ing the features of each patch and then added the subtracted mean values back into
the reconstructed SR version. Considering the domain-specific information, we use
the proposed globally redundant information to replace the original mean values
from each patch of the test image. Then, we generate the target image by adding the
pseudo-mean values into the obtained HF components. The pseudocode for cross-
modality synthesis is shown in Algorithm 2.

Algorithm 2: SiSCS Synthesis

Input: Test image Xt , dictionary pairs �X , �Y .
1 Extract features, divide patches and normalize: X̂t .
2 Initialize At

0.
3 while not converged do
4 Update At

i+1 by Eq. (21.9).
5 Perform clustering by Eq. (21.10).

6 Update At
′
i+1 using Eq. (21.13).

7 end

8 Compute Yt
i+1 ← �YAt

′
i+1.

Output: Synthesized image Yt .

21.4 Experiments

To evaluate the performance of the proposedmethod, two scenarios were considered:
(1) MR image super-resolution; (2) simultaneous SR and cross-modality synthesis.
We evaluated our model on two datasets: IXI1 (containing 578 256×256×p MR

1http://brain-development.org/ixi-dataset/.

http://brain-development.org/ixi-dataset/
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healthy subjects) and NAMIC2 (including 19 128×128×q subjects, ten are normal
controls and nine are schizophrenic). In our experiment, we applied leave-one-out
cross-validation where removing the testing image from the entire dataset and learn
on the remaining ones. For the experimental settings, we first sliced each 3D volume
as the 2D stacks and then treated the 2D slices asmany patches of 5×5 pixels size.We
randomly sampled 100,000 patch pairs for training the cross-modality dictionary pair.
The regularization parameters h, γ were set to be 16 and 0.1, respectively. We took
the factor of dictionary size and sparsity regularization parameter into consideration
and fixed the dictionary size to 1024 and λ = 0.15 based on the quantitative analysis
in Sects. 21.4.1 and 21.4.2. The parameter K of the K-means was fixed to 10 to
guarantee each cluster had enough candidates. Finally, we adopt thewidely used peak
signal-to-noise ratio (PSNR) in decibels (dB) and structural similarity index (SSIM)
[45] for illustrating the effectiveness of different methods. PSNR is employed to
measure the quantitative evaluation of reconstruction of lossy compression codecs,
which is defined as

PSNR(s, t) = 10 log10

(
MAX2mn

∑m
i

∑n
j [s(i, j) − t (i, j)]2

)

, (21.14)

where MAX denotes the maximum pixel value, m and n are the sizes of the synthe-
sized image s and its ground truth t , and s(i, j) and t (i, j) represent the pixels of s
and t at positions i and j , respectively. SSIM is a metric for measuring the perceived
visual image quality [45]. SSIM is calculated:

SSIM(s, t) = (2μsμt + c1)(2σst + c2)

(μ2
s + μ2

t + c1)(σ 2
s + σ 2

t + c2)
, (21.15)

whereμs andμt are themean values in s and t ; σs and σt are their standard deviations;
σst is the covariance of s and t ; and c1 = (k1L)2 and c2 = (k2L)2 with L , the image
intensity dynamic range, and k1 = 0.01, k2 = 0.03 [45].

21.4.1 Dictionary Size

Larger dictionaries can yield higher accuracy at the price of more calculations. In
this experiment, we randomly picked 10 PD-w subjects to test the influence of four
dictionary sizes (viz. 256, 512, 1024, and 2048) on both SR and simultaneous SR
and cross-modality synthesis (PD-w→T2-w). Table21.1 specifies relevant times for
training dictionaries of different sizes, and the averaged PSNRs and SSIMs for image
reconstructions using different dictionaries. From Table21.1, we can see that a larger
dictionary contributes a better estimation with larger PSNRs and SSIMs at a higher

2http://hdl.handle.net/1926/1687.

http://hdl.handle.net/1926/1687
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Table 21.1 Effects of dictionary size on sr reconstruction and simultaneous super-resolution and
cross-modality synthesis

Dictionary
size

256 512 1024 2048

Cost (min) 8.51 12.96 18.68 28.77

SR PSNR (dB) 45.29 45.35 45.43 45.62
SSIM 0.9865 0.9867 0.9867 0.9872

SiSCS PSNR (dB) 39.54 39.55 39.57 40.00
SSIM 0.8995 0.8995 0.8996 0.8997

computation cost. We selected the size 1024 to yield a good image quality within
acceptable computational time.

21.4.2 Sparsity

In Eq. (21.4), λ plays an important role in the sparse representation as it is used for
controlling the sparsity of the results. Empirically, λ is suitable from 0 to 0.85 [5, 26]
for maintaining the model stability. In this section, we assess how λ influences the
results through quantifiably measuring the PSNRs and SSIMs of the reconstructed
image for different λs. To evaluate this, we utilized the same test data reported in
Sect. 21.4.1 and fixed the dictionary size to 1024. The experimental results are listed
in Table21.2. As shown, λ ∈ [0.15, 0.45] yielded better performance, especially
when λ = 0.15, the results on both scenarios achieve the highest PSNRs and SSIMs
among all reconstructions. To comprehensively analyze the most suitable sparsity
value for our algorithm, we computed the elapsed time for λ ∈ [0.10, 0.85] and
show the results in Table21.2. As λ increased, the computational cost decreased, and
the quality of reconstruction declined. Therefore, we chose no larger value; rather,
a smaller λ was selected for achieving better results. We finally chose a sparsity
parameter of 0.15.

Table 21.2 Error measures of SR resolution and simultaneous super-resolution and cross-modality
synthesis for different sparsity values

λ 0.10 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85

Cost (min) 12.55 11.06 10.97 10.34 9.17 8.13 8.10 8.02 8.25

SR PSNR(dB) 47.41 49.85 49.80 46.47 40.82 36.93 36.92 36.90 36.90

SSIM 0.9935 0.9962 0.9960 0.9932 0.9831 0.9429 0.9429 0.9428 0.9428

SiSCS PSNR(dB) 39.36 39.39 39.32 37.62 35.46 34.95 34.95 34.94 34.93

SSIM 0.9066 0.9077 0.9076 0.9055 0.8667 0.8500 0.8500 0.8499 0.8498
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21.4.3 MRI Super-Resolution

First,we evaluated the performance of our clustering-basedglobal redundancy frame-
work for MR image SR on all PD-w subjects of IXI dataset. Generally, LR images
can be generated by first blurring the HR images with a 2D Gaussian kernel with
standard deviation 1.6 and then down-sampling the blurred images by scaling factor
2 in both horizontal and vertical directions. To ensure the one-to-one correspondence
for each extracted LR-HR patch pair, we further up-sampled the LR images by factor
of 2 using bi-cubic interpolation (making the SR problemmore challenging) and then
extracted patches from them. This ensures that samplings from the same locations
of both domains indicate the same tissue information. Based on the extracted patch
pairs, we can train the corresponding dictionaries. Finally, we inputted an LR coun-
terpart of the test image for reconstructing its HR image via the proposed model with
a scaling factor of 2. To show the performance of our approach, we compared our
results with these methods: nearest-neighbor interpolation (nearest), bi-cubic inter-
polation (Bi-cubic), nonlocal MRI up-sampling (NLM) [17], and single-image SR
(SSR) of brain MRI [13]. For all experiments, we tuned parameters in the character-
istics of each method and demonstrated their best results among overall records by
PSNRs and SSIMs.

Figure21.4 presents a comparison between the SR reconstructed PD-w slices
based on different methods. Top row shows the axial views of the SR results for
a subject. In the second and third rows, we zoom in two specific regions for bet-
ter visualization. The last row provides PSNRs and SSIMs for each listed method.
The proposed method outperforms all other methods displaying the highest PSNR
and SSIM. Although NLM yields a cleaner image with noise lower than bi-cubic
interpolation, its effectiveness is nearly the same as bi-cubic. Figure21.5 provides
quantitative results on all PD-w subjects of IXI dataset. Our method achieved the
highest PSNR and SSIM compared to other methods.

HR ground truth (PSNR, SSIM) Bicubic (35.82, 0.9321)Nearest (35.08, 0.9101) NLM (35.82, 0.9322) SiSCS (36.90, 0.9713)SSR (35.87, 0.9407)

LR PD-w Input

HR ground truth (PSNR, SSIM) Bicubic (35.82, 0.9321)Nearest (35.08, 0.9101) NLM (35.82, 0.9322) SiSCS (36.90, 0.9713)SSR (35.87, 0.9407)

LR PD-w Input

Fig. 21.4 Comparison of the SR results with ground truth
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Fig. 21.5 Boxplots of error measures (PSNRs, SSIMs) for SR reconstructions with different
methods

21.4.4 Simultaneous Super-Resolution and Cross-Modality
Synthesis

We then addressed the problem of simultaneous super-resolution and cross-modality
synthesis by evaluating our SiSCSmodel on both IXI and NAMIC datasets. First, we
used PD-w and T2-w subjects from IXI for synthesizing HRT2-w image considering
LR PD-w acquisition from the same subject and vice versa. Second, generating HR
T2-w image from LR PD-w input based on the preprocessed data (i.e., performing
skull strapping and bias corrections3) and vice versa. Third, we considered the gen-
eration of T1-w image based on T2-w input and vice versa. We conducted the first
two sets of experiments on the IXI dataset, while the third one was explored on the
NAMIC dataset. The representative and state-of-the-art synthesis methods including
MR image example-based contrast synthesis (MIMECS) [26] approach, Vemula-
palli’s supervised method (V-s) [46] and Vemulapalli’s unsupervised method (V-us)
[46] were employed to compare with our SiSCS. However, Vemulapalli’s methods
are limited by single cross-modality synthesis used in the NAMIC dataset. There-
fore, original data (without degradation processing) were used in all Vemulapalli’s
methods. All existing synthesis approaches must preprocess the data first. In our
algorithm, such preprocessing is unnecessary and can be exchangeable which can
be validated in the first set of experiments. The benefits of performing preprocessing
are reflected in the reduction of the interference by non-desired tissue compartments,
as the skull. However, such processes also bring problems, for instance, the lack of
tissue contrast due to the imprecise skull stripping.

For the first two sets of experiments, we evaluated our algorithm and compared
with MIMECS while displaying results in Fig. 21.6 for visual inspection. For each
scenario, we applied the proposed method on IXI from the PD-w and T2-w subjects
and reported the quantitative results in Fig. 21.8. Our algorithm performs consistently
across the whole dataset, reaching the best performance for almost all subjects. We

3Following [28, 46], all the experiments data were skull stripped, linear registered and/or inhomo-
geneity corrected.
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Input PD-w image + pre Input PD-w image T2-w ground truth + pre T2-w ground truth MIMECS T2-w + pre
(PSNR: 30.43, SSIM: 0.7300)

SiSCS T2-w + pre
(PSNR: 33.77, SSIM: 0.8442)

SiSCS
(PSNR: 36.26, SSIM: 0.8852)

Fig. 21.6 Axial views of synthesized HR T2-w examples based on the LR PD-w inputs using
different methods (zoom in for details)

Input T1-w T2-w ground truth MIMECS T2-w V-us T2-w SiSCS T2-wV-s T2-w

Input T2-w T1-w ground truth MIMECS T1-w V-us T1-w SiSCS T1-wV-s T1-w

Input T1-w T2-w ground truth MIMECS T2-w V-us T2-w SiSCS T2-wV-s T2-w

Input T2-w T1-w ground truth MIMECS T1-w V-us T1-w SiSCS T1-wV-s T1-w

Fig. 21.7 Visual comparison of synthesized results using different methods on the NAMIC dataset
(zoom in for details)

Fig. 21.8 Overall performance comparison between the proposed method and MIMECS on the
IXI dataset
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Fig. 21.9 Synthesis performance comparison between SiSCS and other state-of-the-art methods
on the NAMIC dataset

Ground Truth MIMECS V-us SiSCS-H SiSCSV-sGround Truth MIMECS V-us SiSCS-H SiSCSV-s

Fig. 21.10 Synthesis result of a pathological case comparison between SiSCS and other state-of-
the-art methods

evaluated SiSCS and relevant methods in the third scenario, allowing us to com-
prehensively compare the performance of the proposed method in both healthy and
pathological cases with the recently published algorithms. The advantage of SiSCS
over other methods is shown in Fig. 21.7, and the close-up views of the selected
parts are also provided for better visualization. The overall performance comparison
is given in Fig. 21.9. From Fig. 21.9, we can see that SiSCS is always better than
MIMECS and Vemulapalli’s approaches. This demonstrates the effectiveness of our
simultaneous SR and cross-modality technique.

The following experiments show synthesized images of schizophrenic patients
[47]. We carry out simultaneous SR and synthesis in two different learning scenar-
ios: a) dictionary learning based on healthy subjects (denoted by SiSCS-H), and b)
dictionary learning based on both healthy and schizophrenic (denoted by SiSCS)
cases. In both scenarios, we report synthesis results corresponding to schizophrenia
cases only. Figure21.10 provides visual results of various synthesis methods of an
illustrative patient. Table21.3 summarizes key quantitative performancemetrics over
the total set of nine schizophrenic subjects. Both visual and quantitative results show
that, compared to earlier methods, our approach provides the best results. Our exper-
iments also show that SiSCS-H is outperformed by SiSCS trained on both control
and pathologic cases and tested using cross-validation.
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Table 21.3 Average assessment measures for image synthesis of nine pathological cases

Case MIMECS V-us V-s SiSCS-H SiSCS

T1->T2 PSNR (dB) 22.95 23.87 26.69 24.86 27.03
SSIM 0.8698 0.8701 0.8895 0.8712 0.8912

T2->T1 PSNR (dB) 27.38 27.47 29.12 27.91 30.01
SSIM 0.9000 0.9002 0.9087 0.9003 0.9177

21.5 Conclusion

We present a novel approach to simultaneous super-resolution and cross-modality
synthesis (SiSCS) in brain MRI. SiSCS first learns a cross-modality dictionary in
a high-frequency space. Then, SiSCS reconstructs the target image using a patch-
based cross-modal estimation model with a nonlocal sparse image representation.
We conducted extensive experimental assessment of our technique in both health
and schizophrenic subjects. Across experiments, both on PSNR and SSIM met-
rics, SiSCS outperformed three major contending techniques. Experiments showed
consistent outperformance across super-resolution and joint super-resolution and
cross-modality synthesis, respectively. In our experiments, we showed that dictio-
nary learning for synthesis of schizophrenic images requires that pathological sets
are included.
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