
Material Appearance Transfer with Visual
Cortex Image

Hiroaki Kotera(&)

Kotera Imaging Laboratory, Chiba 266-0032, Japan
hiroimage@asahi.email.ne.jp

Abstract. Material perception is a current hot topic. Recently a basic research
on SHITSUKAN (material perception) has advanced under MEXT (Ministry of
Education, Culture, Sports, Science and Technology) in Japan. It is expected to
bring innovation for not only traditional craft, ceramic or plastic arts but also
more realistic picture displays on 4K/8K HD TVs and VR/CG world. The
material perception is said as a phenomenon that our brain feels from retinal
images. Now, the analysis is progressing what features of optical images are
more strongly related to the stimulus inside the visual cortex of V1–V5.
BRDF model describes the Specular and Diffusion components of optical

surface reflection which carry “gloss” and “texture” appearance and used to
adjust or modify material appearances.
Different from BRDF or other models, this paper tries to transfer a material

color appearance from one to another images. First, the retinal image is con-
verted to visual cortex image based on LPT (Log-Polar Transform). Since LPT
samples the retinal image higher rate at the fovea but lower rate at the periph-
erals, the color information gathers to central areas in the visual cortex. After the
LPT, PCM (Principal Component Matching) is applied to make the color
matching between source and target images. Using the joint LPT-PCM model, a
material color appearance of target image is transferred to source image without
any priori informations on the target.

Keywords: Material appearance � Color transfer � Visual cortex �
Principal component

1 Background

Human observers can recognize material property at a glance through our sensory
organ. Without touching materials, we can tell whether they would feel hard or soft,
rough or smooth, wet or dry.

The material perception is said as a perceptual phenomenon of feeling or sensation
that our brain perceives from optical image projected onto retina. Though, it’s hard to
untangle what information of the retinal image stimulates the visual cortex and how it
induces the material feeling in our brain. The mechanism of INNER VSION in brain is
still a black box at present [1].

As a framework for material perception, Tsumura initiated the skin color appear-
ance and proposed the concept of appearance delivering system [2].
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In Brain Information Science research on SHITSUKAN by MEXT in Japan, the first
stage (2010–2014, led by Dr. H. Komatsu) has just finished and the second stage
(2015–2019 led by Dr. S. Nishida) stepped forward into “multi-dimensional” material
perception and now is approaching to the final goal.

In spite of the complexity in material appearance mechanism, human sensations
such as “gloss/mat”, “transparent/translucent”, “metal/cloth” are controllable by an
intuitive but a smart technique.

For instance, Motoyoshi and Nishida et al. [3] noticed the “gloss” perception
appears when the luminance histogram is skewed. If it’s stretched smoothly to the
higher luminance, the object looks “glossy” but looks “mat”, if compressed to the
lower.

Sawayama and Nishida [4] developed “wet” filter by a combination of exponent-
shaped TRC and boosted color saturation. It’s very interesting any “skew” in the image
features induces a sensational material perception. The finding of “skew” effect seems
heuristic and intuitive. However, the mechanism why and how such sensations as
“gloss” or “wet” are activated by the “skew” effect in INNER VISION is not still
untangled yet.

On the other hand, many R&D for practical applications are making steady pro-
gresses in private enterprises. As a typical successful example, a specular reflection
control algorithm based on BRDF (Bidirectional Reflectance Distribution Function) is
implemented in LSI chip and mounted on next generation 4K HD TV “REGZA” [5].

2 Color Transfer Model Between Images

Since the material perceptions such as gloss or clarity are related to a variety of factors
[6], it’s hard to specify the cause of perceptual feeling to a single factor. Nevertheless,
trials on material or textual appearances transfer between CG images [7] or 3D objects
[8] are reported. Especially, color appearance plays an important role in the material
perception. The color transfer model [9] tried to change the color atmosphere of source
scene A into that of target scene B, where the clustered color distribution of A is
roughly matched with that of B. There, the use of vision-based lab color space [10]
attracted interest.

2.1 lab Color Transfer Model

The lab is known as an orthogonal luminance-chrominance color space simply
transformed from RGB by the following Step1 and Step2 and the color distribution of
source image is changed to match with that of target (reference) image by the scaling
process in Step3 and the color atmosphere of target is transferred to the source via the
inverse transform in Step4 as follows
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Step1: RGB to LMS cone response transform

L
M
S

2
4

3
5 ¼

0:381 0:578 0:040
0:197 0:724 0:078
0:024 0:129 0:844

2
4

3
5

R
G
B

2
4

3
5 ð1Þ

Step2: LMS to lab transform with orthogonal luminance l and chrominance ab
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Step3: Scaling of lab around the mean values {�l �a �b} by the ratio of standardde-
viation to make match the color distributions between source and target images.

l0 ¼ ðrlDST
�
rlORGÞ l��lð Þ

a0 ¼ ðraDST
�
raORGÞ a� �að Þ

b0 ¼ ðrbDST
.
rbORGÞ b� �b

� � ð3Þ

Where, rlORG and raDST denote the standard deviation of luminance l for the source
image and that of chrominance a for the target image, and so on.
Step4: Inverse transform l0a0b0½ � ) L0M0S0½ � ) R0G0B0½ �.
Finally, the scaled l0a0b0 source image with the color distribution matched to the
target image is displayed on sRGB monitor.

2.2 PCM Color Transfer Model

Prior to lab model, the author et al. developed PCM (Principal Component Matchng)
method [11, 12] for transferring the color atmosphere from one scene to another as
illustrated in Fig. 1. The lab model works well between the scenes with color similarity
but not for the scenes with color dissimilarity and often fails. While, PCM model works
almost stable between the scenes with color dissimilarities and advanced toward
automatic scene color interchange [13–15].

In our basic object-to-object PCM model a vector X in a color cluster is projected
onto a vector Y in PC space by Hotelling Transform as

Y ¼ A X � lð Þ ð4Þ

Where, l denotes the mean vector and the matrix A is formed by the set of eigen
vectors {e1 e2 e3} of covariance matrix RX as

A ¼ e1 e2 e3½ � ð5Þ
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The covariance matrix RY of {Y} is diagonalized in terms of A and RX with the
elements composed of the eigen values {k1 k2 k3} of RX as

RY ¼ A RXð ÞAt ¼
k1 0 0
0 k2 0
0 0 k3

2
4

3
5 ð6Þ

Thus the color vectors in source and target images are mapped to the same PC
space and the following equations are formed to make match a source vector YORG to a
target vector YDST through the scaling matrix S as follows.

YDST ¼ ADSTðXDST � lDSTÞ and YORG ¼ AORGðXORG � lORGÞ ð7Þ

YDST ¼ S � YORG ð8Þ
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Fig. 1. Concept of PCM color transfer model between images
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Solving (7) and (8), we get the following relation between a source color XORG and
a target color XDST to be transferred and matched.

XDST � lDST ¼ MPCMðXORG � lORGÞ ð10Þ

The matching matrix MPCM is given by

MPCM ¼ A�1
DST

� �
Sð Þ AORGð Þ ð11Þ

Where, AORG and ADST denote the eigen matrices for the source color cluster and
the target color cluster. In the scaling matrix S, k1ORG means the 1st eigenvalue of the
source and k2DST the 2nd eigenvalue of the target, etc. These are obtained from each
covariance matrix.

In general, the PCM model works better than lab even for the scenes with color
dissimilarities, because of using the statistical characteristics of covariance matrix.

Figure 2 shows a successful example in both lab and PCM models for the images
with color similarity. While, in case of Fig. 3, lab failes to change the color atmosphere
of A into that of B due to their color dissimilarities, but works well in PCM.

Fig. 2. Successful example in color transfer between images with color similarity
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3 Color Transfer by Spectral Decomposition of Covariance

Following the labmodel, a variety of improved or alternative color transfer models have
been reported. As a basic drawback in labmodel, Pitié et al. [16] pointed out that it’s not
based on the statistical covariance but only on the mean values and variances in the
major lab axes. Hence PCM model is better than lab because of using the statistical
covariance matrix RX with the Hotelling transform onto the PC space. At the same time,
Pitie suggested to make use of orthogonal spectral decomposition paying the attention to
the Hermitian (Self adjoint) property of symmetric matrix RX with real eigenvalues.

3.1 Eigen Value Decomposition (EVD) of Covariance

In general, the covariance matrix R in a clustered color distribution of image is a real
symmetric matrix. The square root of R for source and target images is decomposed by
eigenvalues as

R1=2
ORG ¼ A�1

ORGD
1=2
ORGAORG and R1=2

DST ¼ A�1
DSTD

1=2
DSTADST ð12Þ

AORG and ADST denote the eigen matrices for source and target images. DORG and
DDST are given by the diagonal matrices with the entries of their eigen values
respectively.

Fig. 3. Comparison in lab vs. PCM models for images with color dissimilarity
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Now, the color matching matrix MEigen corresponding to Eq. (11) is given by

MEigen ¼R1=2
DSTR

�1=2
ORG

¼ A�1
DSTD

1=2
DSTADST

� �
A�1
ORGD

1=2
ORGAORG

� ��1

¼ A�1
DSTD

1=2
DSTADST

� �
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ORGD
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� �
ð14Þ

3.2 Singular Value Decomposition (SVD)

A m � n Matrix R is decomposed by SVD as the product of matrices U, V, and W

R ¼ UWV ð15Þ

Where, U and V are m � m and n � n orthogonal matrices. If R is a m � n
rectangular matrix of rank-r, matrix W is composed of r � r diagonal matrix with the
singular values as its entries and the remaining small null matrices.

Because the covariance R is a 3 � 3 real symmetric matrix, the singular values
equal to the eigenvalues and SVD equals EVD in Eq. (12).

3.3 Cholesky Decomposition

Cholesky, a compact spectral decomposition method, decomposes the covariance R as
a simple product of lower triangular matrix and its transpose as follows.

RORG ¼ LORGLT
ORG for LORG ¼ Chol RORG½ �T : T ¼ transpose

RDST ¼ LDSTLT
DST for LDST ¼ Chol RDST½ �T

ð16Þ

Where, Chol[*] denotes the Cholesky decomposition. The lower triangular matrix
L is obtained by the iteration just like as Gaussian elimination method (details omitted).

The color matching matrix MChol to transfer the color atmosphere of target image
into the source is given by

MChol ¼ LDST LORGð Þ�1 ð17Þ
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4 Color Transfer by PCM After Mapping to Visual Cortex

4.1 Retina to Visual Cortex Mapping by Log Polar Transform

The PCM model works well to transfer the color atmosphere between the images even
with color dissimilarities. However, any human visual characteristic has not been taken
into account. In this paper, a striking feature in the spatial color distributions in our
visual cortex image is introduced to improve the performance in PCM.

The mapping to visual cortex from retina is mathematically described by
Schwartz’s complex Logarithmic Polar Transform (LPT) [17].

The complex vector z pointing a pixel located at (x, y) in the retina is transformed to
a new vector log (z) by LPT as follows.

z ¼ xþ jy ¼ qejh ; q ¼ zj j and h ¼ tan�1 y=xð Þ
log zð Þ ¼ uþ jv ¼ log qð Þþ j h ; j ¼

ffiffiffiffiffiffiffi
�1

p ð18Þ

The retinal image is sampled at spatially-variant resolution on the polar coordinate
(q, h), that is, in the radial direction, fine in the fovea but coarser towards peripheral
according to the logarithm of q, while in the angle direction, at a constant pitch Dh and
stored to the coordinate (u, v) in the striate cortex V1. Figure 4 illustrates a sketch how
the retinal image is sampled, stored in the striate cortex, and played back to retina.

Fig. 4. Outline of Spatially-variant Mapping to Visual Cortex from Retina
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4.2 Discrete Log Polar Transform

In the discrete LPT system, (q, h) is digitized to R number of rings and S number of
sectors. The striate cortex image is stored in the new Cartesian coordinates (u, v) as

u; vð ÞD q uð Þ; h vð Þf g
q uð Þ ¼ q0a

u for q� q0; u ¼ 1; 2; � � � ;R
a ¼ exp log qmax=q0ð Þ=R½ �
h vð Þ ¼ vDh ¼ 2p=Sð Þv for v ¼ 1; 2; � � � ; S

ð19Þ

q0 denotes the radius of blind spot and q � q0 prevents for the points near origin
not to be mapped to the negative infinite-point. This regulation is called CBS (Central
Blind Spot) model. Figure 5 illustrates how the image “sunflower” is sampled in LPT
lattice and transformed to striate cortex image, then stored in the coordinates (u, v).

The height h(u) and width w(u) of an unit cell between u + 1 and u are given by the
following equations. Hence the area a(u) of unit cell increases exponentially with u.

h uð Þ ¼ q uþ 1ð Þ � q uð Þ ¼ q0 a� 1ð Þau

w uð Þ ¼ 1
2

2p=Sð Þ q uþ 1ð Þþ q uð Þf g ¼ p=Sð Þ 1þ að Þauq0
a uð Þ ¼ h uð Þw uð Þ ¼ pq20 a2 � 1

� �
a2uS�1

ð20Þ

As sensed in Fig. 5, the color is sampled finer in the center but coarser towards
peripheral. The pixels in the yellow petals occupy larger area than peripheral. This

Fig. 5. Image “sunflower” sampled in LPT lattice, transformed and stored in Striate Cortex
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spatially-variant characteristics to collect the color information on the viewpoint must
be reflected in the population density in the color distribution of striate cortex image.

Figure 6 is another example for a pink rose “cherry shell”. It shows how the color
distribution is concentrated on the pinkish petal area around at the central viewpoint in
the striate cortex image. Hence it’ll be better for applying PCM not on the original but
on the striate cortex image after LPT to perform the color matching more effective for
the object of attention.

Now the basic PCM matrixMPCM in Eq. (11) is applied to the covariance after LPT
and we get newly the following color transfer matrix.

MLPTPCM ¼ LPTA�1
DST

� �
LPTSð Þ LPTAORGð Þ

LPTS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LPTk1DST=LPTk1ORG

p
0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LPTk2DST=LPTk2ORG

p
0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LPTk3DST=LPTk3ORG

p

2
64

3
75

ð21Þ

Figure 7 illustrates the color transfer process in LPTPCM model. In this sample,
both the source image A and target image B are first transformed to the visual cortex
images by LPT, then the clustered color distribution in cortex image A is transformed
to match with that of cortex image by PCM. As a result, the material appearance of
greenish transparent wine glass B looks to be transferred to that of gold mask image A.

Since the original images A and B have color dissimilarity, it’s a hard to make the
color matching only by the single use of basic PCM. While, by just placing LPT before
PCM, the feeling of greenish wine glass B is well conveyed to that of gold mask A.

Fig. 6. Spatially-variant color concentration effect in striate cortex image by LPT
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5 Experimental Results and Discussions

The performance of proposed LPTPCM model is compared with the other methods
mentioned in Sect. 3. Figure 8 shows the results for the same images used in Fig. 7.
The lab model fails for such images with color dissimilarity. The source image colors
remain almost unchanged. Eigenvalue and Cholesky decomposition methods reflect the
greenish target colors a little bit, but look unnatural. In the basic PCM model, the black
in eyes and the green in mask face seem to have replaced unnatural. Any mismatches in
the directions of PC axes might occur. While, LPTPCM model worked successful for
transferring the color atmosphere of wine glass to that of gold mask.

Fig. 7. Improved LPTPCM color transfer model

Fig. 8. Performance of LPTPCM model in comparison with other methods
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Figure 9 shows another example for color transfer between three glass vases with
different patterns. As well, lab was hardly function remaining the source colors almost
unchanged. Though Eigenvalue and Cholesky decomposition methods showed certain
effects, a partial color mixing happened between the source B and target A as shown in
B to A color matching. PCM and LPTPCM looks like a neck and neck. But looking
carefully, LPTPCM gives a little bit better impression than PCM due to conveying the
clean textures in the target.

Figure 10 is a comparison in PCM and LPTPCM for handcraft pots. Both achieved
the expected results. It’s hard to tell which is better. How to make a quantitative
evaluation is left behind as a future challenge.

On the other hand, Fig. 11 shows a result for color transfer between the images
with heterogeneous textures. (a) tried to transfer the color atmosphere of “greenish
wine glass” to that of “reddish Porsche”, where only LPTPCM was successful.

Fig. 9. Example for color transfer between three glass vases with different patterns
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Fig. 10. Almost neck and neck results in PCM vs. LPCPCM for handcraft pots

Fig. 11. A result for color transfer between the images with heterogeneous textures
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Figure 12 shows the performance between PCM vs. LPTPCM in case of changing
the target image B to the gold mask or handcraft pot B. In the upper case of gold mask
target, LPTPCM clearly reflects the feeling of the target, but in the lower case of green
pot target, it’s hard to tell which is better, maybe, depending on personal preference.

For the sake of simplicity, the basic PCM is applied assuming a single clustered
image. In the case of multi-clustered image, any segmentation is needed for separeting
the colored objects to each cluster then the oblect-to-object PCM is performed. But, it’s
hard to find the corresponding pair of objects particularly in the case of dissimilar color
images [12–14]. Hence, the proposed model is not universal but limited to the images
handled as a single cluster. Also, it should be noted on the margin of image back-
ground. Figure 13 shows how the results in PCM differes by the margin of background,
because the white margins influence on the image color clusters. As clearly seen,
LPTPCM is insensitive to the margins and robust than PCM. The reason why comes
from that LPT mimics the retina to/from cortex imaging called Foveation.

Fig. 12. Comparisons in PCM vs. LPTPCM for changing the target images

Fig. 13. Comparisons in PCM vs. LPTPCM for the different margin of image background
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6 Conclusions

This paper challenged to apply the scene color transfer methods to the material
appearance transfer. The proposed LPTPCM model is a joint LPT-PCM algorithm.
Prior to PCM (Principal Component Matching), the source A and Target B retinal
images are transformed to striate cortex images by LPT (Log-Polar-Transform). The
key is to make use of color concentration characteristics on the central viewpoint of
striate cortex by LPT. The performance of conventional PCM is significantly enhanced
by the cooperation with LPT. The proposed model transfers the color atmosphere of
target image B to that of source image A without any a priori information or optical
measurement for the material properties. The question is how to evaluate the trans-
formed image is perceptually acceptable or not. Any quantitative quality measure is
hoped to be developed and is left behind as a future work.
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