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Abstract. Classical Floyd-Hoare logic is sound when total pre- and
post-conditions are considered. In the case of partial conditions (pred-
icates) the logic becomes unsound. This situation may be corrected by
introducing additional constraints to the rules of the logic. But such
constraints, in particular, for the sequence and while rules, are rather
complicated. In this paper we propose new simpler rules formulated in a
program algebra extended with the composition of predicate comple-
ment. The obtained logic is called the Complemented Partial Floyd-
Hoare Logic (CPFHL). The predicate component of this logic is related
to three-valued logic. We prove the soundness theorem for CPFHL and
discuss further investigations of the problem. The obtained results can
be useful for software verification.
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1 Introduction

The research presented in this paper1 is devoted to generalization of the classical
Floyd-Hoare logic [2–4] to the case of partial pre- and post-conditions. This
logic is a useful tool for proving partial correctness of sequential programs. It
is based on properties of a Floyd-Hoare triple (assertion) of the form {p}f{q}
which consists of pre- and post-conditions p, q (predicates) and a program f .
This assertion is treated in the following way: when the program’s input data d
satisfies the pre-condition (p(d) is true), and the program terminates on d, the
program’s output (the value f(d)) satisfies the post-condition (q(f(d)) is true).

Although in the classical Floyd-Hoare logic it is assumed that a program
may not terminate and its output may be undefined on a particular input d
(f(d) is undefined), it is also assumed that the pre- and post-conditions p, q
are predicates which are defined on all possible data, i.e. that they are total
predicates.
1 This paper is a refined and extended version of [1].
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Partiality of these predicates can arise naturally, if they are expressed using
operations which can cause errors, nontermination, or non-well-defined behavior.
For example, one may want to consider the Floyd-Hoare triple written in Octave
syntax [5]

{true} a(1)=0 {a(1)==0}
where a(1)=0 denotes the operation of assignment of the value 0 to the 1-st
element of the array (or a more sophisticated key-value map) a, and a(1)==0 is
a predicate stating that the 1-st element of a is zero. Logically, it makes sense to
consider the latter predicate (the truth value of which depends on the content
of a) as partial and assume that it is defined only when a has an element with
index/key 1 (e.g. it is undefined when a has no content). Note that depending
on the rules of the programming language, the assignment operation may be
always well-defined (e.g. if the assignment a(1)=0 automatically allocates the
space for the new value, if it is not allocated), but the post-condition predicate
may be partial, because extraction from a is not always defined in the sense that
it causes an error or another type of abnormal behavior. In particular, a situation
of this kind occurs in Matlab [6] and Octave [5] languages for element insertion
and extraction operations for vectors (these languages and the corresponding
environments are widely used in scientific computing).

In the literature [7] one finds discussions of the ways of emulating partial
predicates and functions in software specifications using total predicates and/or
functions, however, almost all approaches which try to avoid partiality have some
drawbacks which are described in [7–9].

To deal with this issue, in the previous works [10–13] extensions of the clas-
sical Floyd-Hoare logic which allowed one to reason about partial correctness of
sequential programs using Floyd-Hoare triples with partial programs and partial
pre- and post-conditions were investigated.

Here a Floyd-Hoare triple {p}f{q} means that when the program’s input
data d satisfies the pre-condition (p(d) is defined and true), and the program
terminates on d, and the post-condition is defined on the program’s output (the
value q(f(d)) is defined), then the program’s output satisfies the post-condition
(q(f(d)) is true). We call this interpretation of a triple with partial pre- and post-
conditions a weak Floyd-Hoare triple (the reason is that it does not require the
post-condition to be defined, if the pre-condition is defined; one alternative is to
require that the post-condition is defined whenever the pre-condition is defined
which we call the strong Floyd-Hoare triple, but which we do not consider in this
paper). The logic itself will be called Partial Floyd-Hoare Logic (PFHL).

An important fact is that the classical inference system for the Floyd-Hoare
logic for the language WHILE [14] is not sound in the presence of partial pre-
and post-conditions [10]. One reason of this is unsoundness of the sequence rule
when p, q, r are partial predicates:

R SEQ
{p} f {q}, {q} g {r}

{p} f • g {r}



Inference Rules for the Partial Floyd-Hoare Logic 73

where f • g denotes the sequential composition of programs f and g (i.e. g runs
after f on the result of f).

This can be explained on the following simple example in Octave syntax. Let
n be an integer-valued variable. The expression zeros(n,1) evaluates to a n ×
1 vector of zeros. If the variable a contains a vector, the expression length(a)
evaluates to the length of a. The i-th (i = 1,2,. . . ) component can be accessed
using the expression a(i) which raises an error, if the value of i is not a valid
index, e.g. if the length of a is less than the value of i. Assignment is denoted
as =, equality test is denoted as ==, and comparisons are denoted as >=, >.
Then we can assume that the following assertions are valid (in the sense of weak
Floyd-Hoare triples):

{n>=0} a=zeros(n,1) {a(i)==0},
{a(i)==0} m=length(a) {m>0}
We assume that in the first triple the post-condition is undefined, if the length

of a is zero (a is empty), which happens if n is zero. However,

{n>=0} a=zeros(n,1); m=length(a) {m>0}
is not a valid assertion (in sense of weak Floyd-Hoare triples), since if n is zero,
then a is a zero-length vector (is empty) and m is zero.

Because of unsoundness of some rules of the classical inference system in the
presence of partial predicates, new inference systems for Partial Floyd-Hoare
Logic should be constructed. In our previous works we have considered two ideas
of such construction. The first idea consists in restricting the class of assertions
to T -increasing assertions [11]; in this case the rules preserve their validity and no
other changes are required. The second idea consists in introducing constraints
which restrict applicability of the rules of logic. Such a system with constrained
rules was proposed in [10]. In this system the regular sequence rule was replaced
with the following constrained sequence rule:

R SEQ’
{p} f {q}, {q} g {r}

{p} f • g {r} , p |= PC(f • g, r)

where

– f • g denotes the function d �→ g(f(d)) which is the result of sequential
composition of f and g;

– p |= q means that each interpretation of the formula ¬p∨ q (i.e. p → q) never
takes the false value (i.e. it is always either true or undefined);

– PC is the Predicate transformer composition [11] such that PC(f, q) is a
partial predicate r such that for any data d, r(d) = q(f(d)), if f(d) (i.e.
program value) and q(f(d)) (i.e. the value of the predicate q on the result
of f on data d) are defined, and r(d) is undefined otherwise (i.e. if f(d) or
q(f(d)) are undefined).

In a similar way some other rules were modified.
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However, the presence of complicated constraints makes application of such
rules difficult in all but the most trivial cases. Therefore in [11] such constraints
were even called trifling constraints.

Thus, the above mentioned ideas lead to PFHL limitation (T -increasing asser-
tions) or do not lead to practical inference systems (constrained rules). This
implies that further investigation of PFHL is necessary and the inference rules
have to be based on some other ideas.

In this paper we propose an extension of the predicate language with a new
composition called predicate complement. Introduction of this composition per-
mits us to modify the rules in such a way that they become sound and no con-
straints are required. The obtained inference system for PFHL based on extended
program algebra can be useful for software verification.

2 Notation

The symbol →̃ will denote partial functions and → will denote total functions
(e.g. f : A→̃B means that f is a partial function on a set A with values in a set
B; f : A → B means that f is a total function from A to B). We will use the
symbol n−→ for partial functions with finite graph. For f : D→̃D′:

– f(d) ↓ denotes that f is defined on d ∈ D;
– f(d) ↓= d′ denotes that f is defined on d ∈ D and has the value d′ ∈ D′;
– f(d) ↑ denotes that f is undefined on d ∈ D;
– dom(f) = {d ∈ D | f(d) ↓} is the domain of a function (note that there are

different definitions of the domain of a partial function in different branches
of mathematics); we use the convention from recursion theory).

The notation f1(d1) ∼= f2(d2) means the strong equality, i.e. that f1(d1) ↓ if
and only if f2(d2) ↓, and if f1(d1) ↓, then f1(d1) = f2(d2).

We use the following notations for predicate p : D→̃Bool:

– pT = {d | p(d) ↓= T} is the truth domain of a predicate p;
– pF = {d | p(d) ↓= F} is the falsity domain of p.

3 Program Algebras with Predicate Complement

In accordance with the composition-nominative approach [15–18] we consider
program logics which are based on program algebras. Such algebras are con-
structed in the following way:

– first, a set D of data processed by programs is defined; in our case we treat
D as hierarchical nominative data [19];

– then, classes of predicates Pr = D→̃Bool and functions Fn = D→̃D are
defined;

– at last, operations (compositions) over Pr and Fn are specified.
This scheme leads to two-sorted program algebras. In our previous works

[10,11] we considered program algebras with traditional compositions. But the
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problem of defining unconstrained rules requires new compositions. In this paper
we introduce a program algebra extended with a composition of predicate com-
plement.

3.1 Hierarchical Nominative Data

Informally speaking, simple hierarchical nominative data are constructed induc-
tively over sets of basic names V and values A and can be presented as trees,
the arcs of which are labeled by elements of V and leafs are labeled by ele-
ments of A. Here we consider a more complex case in which names can be
presented as sequences of elements of V of the form v1v2. . .vn ∈ V +. Intro-
duction of complex names from V + requires additional restrictions induced by
the principle of unambiguous associative naming. This principle demands that
for any hierarchical nominative data d with complex names for any two paths
(u1, u2, . . . , uk) and (v1, v2, . . . , vl) in d, neither of which is a prefix of another,
the words u1u2 . . . uk and v1v2 . . . vl are incomparable in the sense of the prefix
relation. Such data are also called complex-named data [20]. An example of such
data is [uv �→ 1, w �→ [uw �→ 3]], u, v, w ∈ V . We denote this class of data as
NDCC(V,A). Formal definitions can be found in [19,21].

3.2 Basic Operations on Nominative Data

The basic operations on nominative data are the operations of

– denaming (taking the value of a name),
– naming (assigning a new value to a name),
– overlapping.

We define these operations for the class NDCC(V,A) of nominative data with
complex names and values (d ∈ NDCC(V,A)).

Definition 1 ([19], Denaming). The (associative) denaming is an operation
v ⇒a with a parameter v ∈ V + defined by induction on the length of v:

– if v ∈ V , then v ⇒a (d) ∼=

⎧
⎪⎨

⎪⎩

d(v), if d(v) ↓;
d/v, if d(v) ↑ and d/v 
= ∅;
undefined, if d(v) ↑ and d/v = ∅,

where d/u = [v1 �→ d(v) | d(v) ↓, v = uv1, v1 ∈ V +];
– if v ∈ V +\V , then v ⇒a (d) ∼= v2 ⇒a (v1 ⇒a (d)), where v1 is the first symbol

of v and v2 is the suffix, i.e. v1, v2 are (unique) words such that v = v1v2
and v1 ∈ V .

Definition 2 ([19], Naming). Naming is an unary operation ⇒ v with a
parameter v ∈ V + such that ⇒ v(d) = [v �→ d].



76 I. Ivanov and M. Nikitchenko

Overlapping is a kind of updating operation which updates the values of
names in its first argument with the values of names in its second argument.
For different types of nominative data different overlapping operations can be
considered. Here we will define two kinds of overlapping: global and local over-
lapping. Global (associative or structural) overlapping ∇a updates several values
in the first argument while the local one ∇v

a (with a parameter v ∈ V +) updates
only one value which is associated with the name v.

Global overlapping can be used, e.g. for formalizing procedures calls, while
the local overlapping can be used as a formalization of the assignment operator
in programming languages.

Definition 3 ([19], Global overlapping). This is a binary operation ∇a

defined by induction on the rank of the first argument as follows.
Let NDCCk

(V,A) be the class of data with the rank less of equal to k.
Induction base of the definition. If d1 ∈ NDCC0(V,A), then

d1∇ad2 ∼=
{

d2, if d1 = ∅ and d2 ∈ NDCC(V,A)\A;
undefined, if d1 ∈ A or d2 ∈ A.

Induction step of the definition. Assume that the value d1∇ad2 is already defined
for all d1, d2 such that d1 ∈ NDCCk

(V,A). Let

d1 ∈ NDCCk+1(V,A)\NDCCk
(V,A).

Then d1∇ad2 = d, where d is defined for each name u ∈ V + as follows:

(1) d(u) = d2(u), if u ∈ dom(d2) and u does not have a proper prefix which
belongs to dom(d1);

(2) d(u) = d1(u)∇a(d2/u), if d1(u) is defined and does not belong to A and u
is a proper prefix of some element of dom(d2), where

d2/u = [v1 �→ d2(v) | d2(v) ↓, v = uv1, v1 ∈ V +];
(3) d(u) = d2/u, if d1(u) is defined and belongs to A and u is a proper prefix of

some element of dom(d2);
(4) d(u) = d1(u), if d1(u) is defined and u is not comparable (in the sense of

the prefix relation) with any element of dom(d2);
(5) d(u) ↑, otherwise.

Definition 4 ([19], Local overlapping). This is a binary operation ∇v
a with

a parameter v ∈ V + defined as follows: d1∇v
ad2 ∼= d1∇a(⇒ v(d2)).

3.3 Compositions

Now we define compositions of program algebras over nominative data with
complex names and values.

Let V and A be fixed sets of basic names and values. Denote
PrCC(V,A) = NDCC(V,A)→̃{T, F},
FnCC(V,A) = NDCC(V,A)→̃NDCC(V,A).
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We will assume that T and F do not belong to NDCC(V,A).
We will call the elements of PrCC(V,A) (partial nominative) predicates and

the elements of FnCC(V,A) (partial nominative) functions.
Let us denote by Ū the set of all tuples (u1, u2, . . . , un), n ≥ 1 of complex

names from V + such that whenever i 
= j, ui and uj are incomparable in the
sense of the prefix relation.

In the following definitions d ∈ NDCC(V,A), f, g, f1, . . . , fn ∈ FnCC(V,A),
p, p1, p2 ∈ PrCC(V,A).

Definition 5 (Compositions).

– Composition of superposition into a predicate

Su1,...,un

PCC
: PrCC(V,A) × (FnCC(V,A))n → PrCC(V,A)

with a parameter (u1, . . . , un) ∈ Ū is defined as follows:

Su1,...,un

P (p, f1, . . . , fn)(d) ∼= p(...(d∇u1
a f1(d)) . . . ∇un

a fn(d)).

We will also use the following notation for this composition: Sū
P .

– Composition of superposition into a function

Su1,...,un

F : FnCC(V,A) × (FnCC(V,A))n → FnCC(V,A)

with a parameter (u1, . . . , un) ∈ Ū is defined as follows:

Su1,...,un

F (f, f1, . . . , fn)(d) ∼= f(. . . (d∇u1
a f1(d))...∇un

a fn(d)).

We will also use the following notation for this composition: Sū
F .

– Assignment composition ASu : FnCC(V,A) → FnCC(V,A) with a parameter
u ∈ V + is defined as follows:

(ASu(f))(d) ∼= d∇u
af(d).

– Sequential composition of functions (denoted using the infix notation) • :
FnCC(V,A) × FnCC(V,A) → FnCC(V,A) is defined as follows:

(f • g)(d) ∼= g(f(d)).
– Branching composition IF : PrCC(V,A) × FnCC(V,A) × FnCC(V,A) →

FnCC(V,A) is defined as follows:

IF (p, f, g)(d) =

⎧
⎪⎨

⎪⎩

f(d), if p(d) ↓= T and f(d) ↓;
g(d), if p(d) ↓= F and g(d) ↓;
undefined in other cases.

– Cycle composition WH : PrCC(V,A)×FnCC(V,A) → FnCC(V,A) is defined
as follows:
WH(p, f)(d) ↓= f (n)(d), if there exists n ≥ 0 such that p(f (i))(d) ↓= T for all
i ∈ {0, 1, . . . , n− 1} and p(f (n)p)(d) ↓= F , where f (n) is a n-times sequential
composition of f with itself (f (0) is the identity function), and WH(p, f)(d)
is undefined otherwise.
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– Identity null-ary composition (function) id : FnCC(V,A) (id : NDCC(V,A)
→ NDCC(V,A)) is defined as follows:

id(d) = d.
– Composition of disjunction ∨ : PrCC(V,A) × PrCC(V,A) → PrCC(V,A) is

a composition defined as follows:

(p1 ∨ p2)(d) =

⎧
⎪⎨

⎪⎩

T, if p1(d) ↓= T or p2(d) ↓= T ;
F, if p1(d) ↓= F and p2(d) ↓= F ;
undefined in other cases.

– Composition of negation ¬ : PrCC(V,A) → PrCC(V,A) is a composition
such that

(¬p)(d) =

⎧
⎪⎨

⎪⎩

T, if p(d) ↓= F ;
F, if p(d) ↓= T ;
undefined in other cases.

– Composition of existential quantification over hierarchical data is a unary
composition PrCC(V,A) → PrCC(V,A) with a parameter x ∈ V + such that

(∃x p)(d) =

⎧
⎨

⎩

T, if p(d∇x
ad′) ↓= T for some d′ ∈ NDCC(V,A),

F, if p(d∇x
ad′) ↓= F for all d′ ∈ NDCC(V,A),

undefined in other cases.

– Composition of predicate complement is a composition ∼: PrCC(V,A) →
PrCC(V,A) such that

(∼ p)(d) =

{
T, if p(d) is undefined;
undefined in other cases.

.

Having compositions, we can define a special program algebra investigated
in this paper.

Definition 6. A complemented program algebra over hierarchical nominative
data with complex names and values CPANDCC(V,A) is a two-sorted algebra
CPANDCC(V,A) = (PrCC(V,A), FnCC(V,A);

ASu, id, •, IF,WH,Sū
F , Sū

P ,⇒ v, v ⇒a,∨,¬,∃x,∼),
where v, u, x ∈ V +, ū ∈ Ū .

Derived compositions like conjunction ∧ and universal quantification ∀x are
defined in a traditional way.

Let us discuss briefly predicate compositions of this algebra. Operations
(compositions) ∨, ¬, and ∃x are defined according to the truth tables of Kleene’s
strong logic of indeterminacy [22]. Please note that ∨, ∧ and ¬ on the set of all
partial predicates form a Kleene algebra (a De Morgan algebra which satisfies
the normality axiom) [23].
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In contrast to these compositions, the composition of predicate complement
is more complicated. First, it does not have the monotonicity property, second,
it does not have nice distributivity properties. Even more, it is not computable
in the sense that the set of partial recursive predicates is not closed under this
composition.

Introduction of the composition of predicate complement makes investigation
of the corresponding logics more difficult. In this case methods developed for
three-valued logics can be used.

Nevertheless, the algebra (PrCC(V,A);∨,∧,¬,∼) has certain properties
which make it useful in program partial correctness proofs:

– it can be proven that the algebra (PrCC(V,A);∨,∧,¬,∼) has the same (up to
the names of operations) set of identities as the algebra

({−1, 0, 1};max(·, ·),min(·, ·), x �→ −x, x �→ 1 − |x|);

– all scalar functions of n variables expressible in the latter algebra are non-
expanding maps from {−1, 0, 1}n → {−1, 0, 1} with respect to Chebyshev
distance dist((x1, . . . , xn), (y1, . . . , yn)) = maxn

i=1 |xi − yi|.
Definition 7. A semantic weak Floyd-Hoare triple is a tuple (p, f, q), where
f : D→̃D′, p : D→̃Bool, q : D′→̃Bool for some D,D′ such that for each d ∈ D,
if p(d) ↓= T and f(d) ↓ and q(f(d)) ↓, then q(f(d)) = T .

We will use the following notation:

– {p}f{q} means that (p, f, q) is a semantic weak Floyd-Hoare triple.

Please note that a semantic weak Floyd-Hoare triple induces ternary Floyd-
Hoare composition FH : PrCC(V,A)×FnCC(V,A)×PrCC(V,A) → PrCC(V,A)
[10,11], but in this paper we do not include it into program algebras in order to
not make them overcomplicated.

We start with new inference rules for the sequential composition. These rules
are valid for any set of data D.

4 New Inference Rules for Sequential Composition

Theorem 1. Assume that {p}f{q}, {q}g{r1}, and {∼ q}g{r2}.
Then {p}f • g{r1 ∨ r2}.

Proof. Let d ∈ D. Assume that p(d) ↓= T , (f •g)(d) ↓, and (r1∨r2)((f •g)(d)) ↓.
Then f(d) ↓ and g(f(d)) ↓. Denote d′ = f(d) and d′′ = (f • g)(d) = g(f(d)).
Let us show that (r1 ∨ r2)(d′′) = T .
Suppose that (r1 ∨ r2)(d′′) ↓= F . Then r1(d′′) ↓= F and r2(d′′) ↓= F . We

have that either q(d′) ↓, or q(d′) ↑.
Consider the case when q(d′) ↓. Then q(f(d)) ↓, and since p(d) ↓= T and

{p}f{q}, we have q(f(d)) = q(d′) = T . Then since r1(g(d′)) ∼= r1(d′′) ↓ and
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{q}g{r1}, we have r1(g(d′)) = r1(d′′) = T , but this contradicts the above men-
tioned statement r1(d′′) = F .

Consider the case when q(d′) ↑. Then (∼ q)(d′) ↓= T . Then since r2(g(d′)) ∼=
r2(d′′) ↓ and {∼ q}g{r2}, we have r2(g(d′)) = r2(d′′) = T , but this contradicts
the above mentioned statement r2(d′′) = F .

In both cases we have a contradiction, so (r1 ∨ r2)(d′′) ↓= F is impossible.
But (r1∨r2)(d′′) ∼= (r1∨r2)((f •g)(d)) ↓ by the assumption, so (r1∨r2)(d′′) = T .

��
This result can be used as a semantic foundation of the following uncon-

strained inference rule for sequential composition for the inference system for
Floyd-Hoare logic with partial pre- and post-conditions (which involves the ∼
operation on predicates):

R USEQ
{p} f {q}, {q} g {r1}, {∼ q}g{r2}

{p} f • g {r1 ∨ r2}
In the special case of coinciding r1 and r2, it can be rewritten as:

R SSEQ
{p} f {q}, {q} g {r}, {∼ q}g{r}

{p} f • g {r}
Theorem 1 implies that addition of the rules R USEQ and/or R SSEQ to

the inference system AC proposed in [10,11] (with the proper extension of syntax
of pre- and post-condition predicate formulas to accommodate the symbol of ∼
operation) does not change its soundness.

As an informal example, consider how these rules can be applied in the case
mentioned in the Introduction:

{n>=0} a=zeros(n,1) {a(1)==0},
{a(1)==0} m=length(a) {m>0}.

These two assumptions alone are not sufficient to establish the triple con-
cerning the sequential composition. A missing piece of information is the triple
describing the behavior of the instruction m=length(a) when the predicate
(a(1)==0) is undefined. Under the interpretation assumed in the Introduction,
this undefinedness means that an attempt of evaluation of (a(1)==0) leads to
an abnormal/error state. If a is a defined vector, this happens exactly when a
has zero length (is empty). If a is undefined, then an attempt of evaluation of
length(a) causes an error. Thus we can state that

{∼(a(1)==0)} m=length(a) {m=0},

where ∼ is not a part of Octave syntax, but just a notation to represent the
statement that the expression (a(1)==0) is undefined (causes an abnormal/error
state). Thus by the R USEQ rule:

{n>=0} a=zeros(n,1); m=length(a) {m>0 ∨ m=0}.

Again, here ∨ is not a part of Octave syntax, but a notation to represent the
disjunction of two predicates.
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5 New Inference Rule for Cycle Composition

Let r be a partial predicate on D and f : D→̃D.
Recall that the cycle composition WH(r, f) is defined as follows: it returns

a function in D→̃D such that for each d ∈ D,

WH(r, f)(d) ↓= f (n)(d),

if there exists an integer n ≥ 0 such that r(f (i)(d)) ↓= T for all i = 0, 1, . . . , n−1
and r(f (n)(d)) ↓= F , where f (i) denotes f • f • . . . • f

︸ ︷︷ ︸
i

and f (0) is the identity

function on D (i.e. f (0)(d′) = d′ for all d′ ∈ D);
and WH(r, f)(d) ↑, otherwise.

WH is intended to capture the semantics of the loop of the form while do
in imperative programming languages which support structured programming.
Here r represents the semantics of the loop condition and f represents the seman-
tics of the loop body.

In terms of WH the loop rule for the classical inference system for the Floyd-
Hoare logic with total pre- and post-conditions [14] can be reformulated as fol-
lows [24, p. 15]:

R WH
{r ∧ p} f {p}

{p} WH(r, f) {¬r ∧ p}

Here p represents the loop invariant.
This rule, generally, is not valid in the case of partial pre- and post-conditions,

but can be replaced with a constrained rule [24, p. 16] (R WH ′) in this case.
Applying the approach which we used in the statement and proof of Theorem

1, we can propose an alternative unconstrained rule for the while loop which is
more convenient to apply.

Theorem 2. Assume {r∧p}f{p}, {r∧(∼ p)}f{p}. Then {p}WH(r, f){¬r∧p}.
Proof. Let d ∈ D. Assume that

p(d) ↓= T , WH(r, f)(d) ↓= d′, and (¬r ∧ p)(WH(r, f)(d)) ↓.
Let us show that (¬r ∧ p)(WH(r, f)(d)) = (¬r ∧ p)(d′) = T .
From the definition on WH it follows that there exists an integer n ≥ 0 such

that r(f (i)(d)) ↓= T for all i = 0, 1, . . . , n − 1, and r(f (n)(d)) ↓= F , and

d′ = WH(r, f)(d) = f (n)(d).

If n = 0, then d′ = d, so r(d′) ↓= F and p(d′) ↓= T , whence (¬r∧p)(d′) = T .
Now we will assume that n ≥ 1.
Let us show by induction on i ∈ {0, 1, . . .} that if i ∈ {0, 1, . . . , n − 1}, then

p(f (i)(d)) ↓= T or p(f (i)(d)) ↑.
Base of induction: p(f (0)(d)) ∼= p(d) ↓= T , so the statement holds.
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Inductive step. Assume that i ∈ {0, 1, . . . , n−1}. Assume that p(f (i)(d)) ↓= T
or p(f (i)(d)) ↑. Assume that i + 1 ∈ {0, 1, . . . , n − 1}. Note that r(f (i)(d)) ↓= T
because i < n. Denote d1 = f (i)(d).

Consider the case p(f (i)(d)) ↓= T . Then since r(d1) ↓= T and p(d1) ↓= T ,
we have (r ∧ p)(d1) ↓= T . If p(f(d1)) ↓, then since {r ∧ p}f{p}, we have
p(f (i+1)(d)) ∼= p(f(d1)) ↓= T . Otherwise, p(f(d1)) ↑. In either case, either
p(f (i+1)(d)) ↓= T , or p(f (i+1)(d)) ↑ holds.

Consider the case p(f (i)(d)) ↑. Then p(d1) ↑ and r(d1) ↓= T . Further, (∼
p)(d1) ↓= T , so (r ∧ (∼ p))(d1) ↓= T . Since {r ∧ (∼ p)}f{p}, we have either
p(f (i+1)(d)) ∼= p(f(d1)) ↓= T , or p(f (i+1)(d)) ∼= p(f(d1)) ↑.

In both cases p(f (i+1)(d)) ↓= T or p(f (i+1)(d)) ↑, so the inductive step is
completed.

Since n ≥ 1 by our assumption, the proven statement implies that either
p(f (n−1)(d)) ↓= T , or p(f (n−1)(d)) ↑. We have

(¬r ∧ p)(f (n)(d)) ∼= (¬r ∧ p)(WH(r, f)(d)) ↓.
Moreover, r(f (n)(d)) ↓= F , so (¬r)(f (n)(d)) ↓= T , whence p(f (n)(d)) ↓.

Consider the case p(f (n−1)(d)) ↓= T . We have r(f (n−1)(d)) ↓= T , there-
fore (r ∧ p)(f (n−1)(d)) ↓= T . Then since {r ∧ p}f{p} and p(f(f (n−1)(d))) ∼=
p(f (n)(d)) ↓, we have p(f (n)(d)) = T .

Consider the case p(f (n−1)(d)) ↑. Then because f (n−1)(d) ↓, we have
(∼ p)(f (n−1)(d)) ↓= T . Moreover, we have r(f (n−1)(d)) ↓= T , whence
(r ∧ (∼ p))(f (n−1)(d)) ↓= T . Then because {r ∧ (∼ p)}f{p} and, moreover,
p(f(f (n−1)(d))) ∼= p(f (n)(d)) ↓, we have p(f (n)(d)) = T .

In both cases we have p(f (n)(d)) = T . Since r(f (n)(d)) ↓= F , we have (¬r ∧
p)(WH(r, f)(d)) ∼= (¬r ∧ p)(f (n)(d)) ↓= T . ��

This result can be used as a semantic foundation of the following uncon-
strained inference rule (for the case of partial pre- and post-conditions):

R UWH
{r ∧ p} f {p}, {r ∧ (∼ p)}f{p}

{p} WH(r, f) {¬r ∧ p}

6 Syntax and Interpretation of Complemented Partial
Floyd-Hoare Logic

Algebra CPANDCC(V,A) has strong expressive power that is not required for
our goal: to construct a special program logic. Therefore we restrict syntactically
the class of terms of this algebra. The idea is to consider programs as special
nominative functions (program functions) constructed with the help of compo-
sitions ASx, id, •, IF , WH, Sx̄

F . Functions of other types can be represented
by functional expressions. Formulas represent partial predicates over nominative
data. The signature of the constructed logic is Σ = (V, Ps, FEs, Prgs) where
Ps, FEs, Prgs are sets of predicate, function, and program symbols respectively.

Let us give definitions of the sets of formulas FrΣ , functional expressions
FExΣ , program texts PtΣ , and Floyd-Hoare assertions FHFrΣ .
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The sets FrΣ , FEΣ , and PtΣ are defined inductively (here we use the sym-
bols of compositions, predicates and functions in the purely syntactic sense, i.e.
they are currently not associated with semantics):

1. if ps ∈ Ps, then ps ∈ FrΣ ;
2. if fes ∈ FEs, then fes ∈ FEΣ ;
3. if prgs ∈ Prgs, then prgs ∈ PtΣ ;
4. if Φ, Ψ ∈ FrΣ , then Φ ∨ Ψ , ¬Φ, ∼ Φ, ∃xΦ ∈ FrΣ ;
5. ⇒ v, v ⇒a∈ FEΣ ;
6. if n ≥ 1, Φ ∈ FrΣ , fe1, . . . , fen ∈ FEΣ , and x̄ ∈ Ū , then

Sx̄
P (Φ, fe1, . . . , fen) ∈ FrΣ ;

7. if n ≥ 1, fe, fe1, . . . , fen ∈ FEΣ , and x̄ ∈ Ū , then
Sx̄

F (fe, fe1, . . . , fen) ∈ FEΣ ;
8. if n ≥ 1, prg ∈ PtΣ , fe1, . . . , fen ∈ FEΣ , and x̄ ∈ Ū , then

Sx̄
F (prg, fe1, . . . , fen) ∈ PtΣ ;

9. if x ∈ V + and fe ∈ FEΣ , then ASx(fe) ∈ PtΣ ;
10. id ∈ PtΣ ;
11. if prg1, prg2 ∈ PtΣ , then pr1 • pr2 ∈ PtΣ ;
12. if Φ ∈ FrΣ and prg1, prg2 ∈ PtΣ , then IF (Φ, prg1, prg2) ∈ PtΣ ;
13. if Φ ∈ FrΣ and prg ∈ PtΣ , then WH(Φ, prg) ∈PtΣ .

To avoid syntactical nondeterminism, parentheses can be used.
The set FHFrΣ is the set of all formulas of the form {p}f{q}, where p,

q ∈ FrΣ and f ∈ PtΣ .
Please note that we often use the same notation both for predicates and for

formulas, e.g. depending on the context, p can be treated as a predicate or as a
function; the same concerns functions and functional expressions.

Definition 8. Let Σ = (V, Ps, FEs, Prgs) be a logic signature and A be a
set. Then an interpretation J is a tuple (CPANDCC(V,A), IPs, IFEs, IPrgs),
where IPs : Ps→PrCC(V,A) is an interpretation mapping for predicate symbols,
IFEs : FEs→FnCC(V,A) and IPrs : Prs → FnCC(V,A) are interpretation
mappings for function and program symbols, respectively.

For any interpretation J = (CPANDCC(V,A), IPs, IFEs, IPrgs) we denote
by JFr, JFE , and JPt the formula, function, and program text interpretation
mappings

JFr : FrΣ→PrCC(V,A),

JFE : FEΣ→FnCC(V,A),

JPt : PtΣ→FnCC(V,A),

which are the standard extensions of IPs, IFEs, and IPrgs to FrΣ , FEΣ ,
and PtΣ respectively (defined by structural induction). Also, we denote
by JFHFr the interpretation mapping of Floyd-Hoare assertions JFHFr :
FHFrΣ−→PrCC(V,A) defined as follows:

JFHFr ({p}f{q}) = FH(JFr (p), JP t(f), JFr (q)).
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Here we will not define interpretations explicitly expecting that they are clear
from the context. For any P ∈ FrΣ or P ∈ FHFrΣ we will denote by PJ or
(P )J the predicate that corresponds to P under interpretation J. We will omit
the index J when it is clear from the context.

Definition 9. A formula P ∈ FrΣ or a Floyd-Hoare assertion P ∈ FHFrΣ is
valid (irrefutable) in an interpretation J (denoted as J |= P ), if PF

J = ∅.
Definition 10. A formula P ∈ FrΣ or a Floyd-Hoare assertion P ∈ FHFrΣ

is logically valid (denoted as |= P ), if it is valid in every interpretation.

We will also need special logical truth-consequence and falsity-consequence
relations [10] |=T , |=F ⊆ FrΣ × FrΣ .

Definition 11. A formula Q ∈ FrΣ is a truth-consequence of a formula P ∈
FrΣ in an interpretation J (denoted as PJ |=T Q), if PT

J ⊆ QT
J . A formula

Q ∈ FrΣ is a logical truth-consequence of a formula P ∈ FrΣ (denoted as
P |=T Q), if PJ |=T Q for every interpretation J .

Definition 12. A formula Q ∈ FrΣ is a falsity-consequence of a formula P ∈
FrΣ in an interpretation J (denoted as PJ |=F Q), if PF

J ⊇ QF
J . A formula

Q ∈ FrΣ is a logical falsity-consequence of a formula P ∈ FrΣ (denoted as
P |=F Q), if PJ |=F Q for every interpretation J .

7 Inference System for a Complemented Partial
Floyd-Hoare Logic

To make the program logic CPFHL which we have defined applicable to software
verification problems it is necessary to present an inference system. Such an
inference system could be based on the inference system for the classical Floyd-
Hoare logic with total predicates for the language WHILE [14], but it is known
to be unsound in the case of partial predicates [11] which is considered in the
paper. For this reason we present new inference rules based on program algebras
with the composition of predicate complement. Obtained system will be sound.

We will write �X p to denote that a formula p is derived in some inference
system X. An inference system X is sound, if �X p ⇒ |= p for each formula p,
and is complete, if |= p ⇒ �X p for each p.

Taking into consideration the obtained results we write the following infer-
ence rules (v, x ∈ V +, x̄ ∈ Ū , p, p′, q, q′, r ∈ FrΣ , h, g1, . . . , gn ∈ FEΣ ,
f, g ∈ PtΣ):

R AS {Sx
P (p, h)} ASx(h) {p}

R SKIP {p} id {p}

R SSEQ
{p} f {q}, {q} g {r}, {∼ q}g{r}

{p} f • g {r}
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R IF
{r ∧ p} f {q}, {¬r ∧ p} g {q}

{p} IF (r, f, g) {q}

R UWH
{r ∧ p} f {p}, {r ∧ (∼ p)}f{p}

{p} WH(r, f) {¬r ∧ p}
R SFID {Sx̄

P (p, g1, . . . , gn)}Sx̄
F (id, g1, . . . , gn){p}

R SF
{p}Sx̄

F (id, g1, . . . , gn) • f{q}
{p}Sx̄

F (f, g1, . . . , gn){q}
R CONSTF

{p′} f {q′}
{p} f {q} , p |=T p′, q′ |=F q

Let us make the following comments to these rules:

– rules R AS, R SFID and R SF are the only rules oriented on the class of
nominative data with complex names and values; other rules can be consid-
ered for any class of data D;

– rules R SKIP and R IF are traditional rules for Floyd-Hoare logics; they
do not require any changes;

– rules R SSEQ and R UWH were proposed and investigated in the previous
sections;

– rules R SFID and R SF specify procedure calls;
– consequence rules can be formulated in different forms; here we use the rule

R CONSTF based on special consequence relations |=T and |=F . In the case
of total predicates this rule will be equivalent to traditional consequence rule.

We denote the inference system presented by the above rules as RCN .

Theorem 3. The inference system RCN is sound, i.e. for any Floyd-Hoare
assertion P ∈FHFrΣ we have that

�RCN P ⇒ |= P.

Proof. We prove the theorem by induction on the length of inference of P . Let
J = (CPANDCC(V,A), IPs, IFEs, IPrgs).

– Consider the case when P has the form {Sx
P (p, h)} ASx(h) {p} and P is

inferred in RCN , i.e. �RCN P (q, p ∈ FrΣ , h ∈ FEΣ) by rule R AS.
Given an interpretation J we should prove that J |= {Sx

P (p, h)} ASx(h) {p}.
This means (by the definition of weak Floyd-Hoare triple) that we should
prove the following statement: for any d, d′ ∈ NDCC(V,A) if Sx

P (p, h)J (d) ↓=
T , ASx(h)J (d) ↓= d′, and pJ(d′) ↓ then pJ (d′) = T .
By definition of the composition of superposition into a predicate we have
that Sx

P (p, h)J (d) = pJ(d∇x
ahJ(d)). By definition of assignment composi-

tion we have that ASx(h)J (d) = d∇x
ahJ(d). Since pJ(d∇x

ahJ(d)) = T and
d∇x

ahJ(d) = d′ we obtain that pJ(d′) = T .
– The case when P has the form {p} id {p} i.e. the rule R SKIP is used to

infer P is trivial.
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– The case when P is obtained by rule R SSEQ has been proved in Sect. 4 of
this paper.

– The case when P is obtained by rule R IF is a traditional one.
– The case when P is obtained by rule R UWH has been proved in Sect. 5 of

this paper.
– Consider the case when P is obtained by rule R SFID. It means that P has

the form {Sx̄
P (p, g1, . . . , gn)}Sx̄

F (id, g1, . . . , gn){p} (x̄ = (x1, . . . , xn).
Given an interpretation J we should prove that

J |= {Sx̄
P (p, g1, . . . , gn)}Sx̄

F (id, g1, . . . , gn){p}.
This means (by the definition of weak Floyd-Hoare triple) that we should
prove the following statement:
for any d, d′ ∈ NDCC(V,A) if Sx̄

P (p, g1, . . . , gn)J(d) ↓= T ,
Sx̄

F (id, g1, . . . , gn)J(d) ↓= d′, and pJ(d′) ↓ then pJ(d′) = T .
By the definition of the composition of superposition into a predicate we
have that Sx1,...,xn

P (p, g1, . . . , gn)J (d) = pJ(. . . (d∇x1
a g1J (d)) . . . ∇xn

a gnJ(d)).
Obtained value is equal to T .
By the definition of the composition of superposition into a function we have
that Sx1,...,xn

F (id, g1, . . . , gn)J(d) = idJ (. . . (d∇x1
a g1J(d)) . . . ∇xn

a gnJ(d)) = d′.
Therefore, pJ(d′) ↓= T .

– Consider the case when P is obtained by rule R SF . In this case P has the
form {p}Sx̄

F (f, g1, . . . , gn){q}. Given an interpretation J we should prove that
J |= {p}Sx̄

F (f, g1, . . . , gn){q} under assumption J |= {p}Sx̄
F (id, g1, . . . , gn) •

f{q}. It means that we should prove the following statement:
for any d, d′ ∈ NDCC(V,A) if pJ(d) ↓= T , Sx̄

F (f, g1, . . . , gn)J(d) ↓= d′, and
qJ(d′) ↓ then qJ (d′) = T using inductive hypothesis.
First, let us prove that (Sx̄

F (id, g1, . . . , gn)•f)J (d) ∼= Sx̄
F (f, g1, . . . , gn)J(d) for

any d ∈ NDCC(V,A).
Indeed, (Sx̄

F (id, g1, . . . , gn) • f)J (d) ∼= fJ(Sx̄
F (id, g1, . . . , gn)J (d)) ∼=

∼= fJ (idJ (...(d∇u1
a g1J(d)) . . . ∇un

a gnJ(d))) ∼=
∼= fJ (. . . (d∇u1

a g1J (d)) . . . ∇un
a gnJ (d)) ∼= Sx̄

F (f, g1, . . . , gn)J (d).
Let pJ(d) ↓= T , Sx̄

F (f, g1, . . . , gn)J (d) ↓= d′, and qJ(d′) ↓.
Since (Sx̄

F (id, g1, . . . , gn) • f)J(d) ∼= Sx̄
F (f, g1, . . . , gn)J (d) we have that

(Sx̄
F (id, g1, . . . , gn) • f)J (d) ↓= d′.

Then, by induction hypothesis for {p}Sx̄
F (id, g1, . . . , gn) • f{q} we obtain the

required property qJ(d′) ↓= T .
– Consider the case when P is obtained by rule R CONSTF . It means that

P has the form {p}f{q}. Given an interpretation J we should prove J |=
{p}f{q} under assumptions J |= {p′}f{q′}, pJ |=T p′ and q′

J |=F q.
Indeed, let d ∈ NDCC(V,A). Assume that pJ(d) ↓= T , fJ(d) ↓= d′ and
qJ(d′) ↓ for some d′ ∈ NDCC(V,A). Since pJ |=T p′ we have p′

J (d) ↓= T .
Since fJ(d) ↓= d′ and J |= {p′}f{q′} we have q′

J(d′) = T when q′
J(d′) ↓.

Assume that qJ (d′) = F . Since q′
J |=F q we should have q′

J (d′) = F . We
have a contradiction with q′

J (d′) = T . Therefore, qJ(d′) = T .

��
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In the system RCN new unconventional consequence relations |=T and |=F

were used. Their main semantic properties were studied in [25]. Further inves-
tigation will permit one to substitute these consequence relations by the cor-
responding inference relations �T and �F . A detailed investigation of inference
methods for CPFHL is planned for the forthcoming publications.

8 Conclusion

We have proposed a modified inference system for an extended Floyd-Hoare
logic for partial pre- and post-conditions and partial programs studied in [10,11,
26]. The modifications primarily concern the sequence and while rules and have
been formulated in program algebras extended with the composition of predicate
complement. The addition of these rules does not change the soundness of the
system. Moreover, the new rules have no semantic constraints. The obtained
results can be useful for verification of programs with respect to specifications
which can contain partial operations.

In the future we plan to make detailed comparison of inference systems and
propose new modifications to improve their efficiency.
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