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1  �Introduction

Astaxanthin, known as “super antioxidant,” can be obtained from synthetic and natu-
ral sources. Natural astaxanthin can be found in fishes (salmon), crustaceans (shrimp), 
Phaffia yeast and Paracoccus bacteria, zooplankton (krill), and some microalgae (e.g., 
Haematococcus pluvialis) (Higuera-Ciapara et al. 2006; Ranga Rao et al. 2014). 
H. pluvialis is produced commercially as the richest source of natural astaxanthin 
which has 20 times stronger antioxidant capacity than the synthetic astaxanthin 
(Lorenz 1999; Ranga Rao et al. 2010). Astaxanthin can be extensively applied in 
human nutrition, animal and aquaculture feed, and cosmetics industry.

Astaxanthin has high market value ($2500–7000/kg), and its market potential-
ity is estimated to increase from 280 metric tons, $447 million (in 2014), to 670 
metric tons, $1.1 billion, by 2020 (Koller et al. 2014; Pérez-López et al. 2014; 
Industry Experts 2015). Presently, only <1% of the commercialized quantity is 
produced from H. pluvialis (Koller et  al. 2014), and the interest of producing 
astaxanthin from H. pluvialis is increasing. Different approaches of production 
system have been reported such as photoautotrophic, heterotrophic, mixotrophic, 
indoor, outdoor, open raceway, photobioreactors, batch, fed-batch, two-stage 
mixotrophic, and attached biofilm-based system (Kang et  al. 2005, 2010; 
Kaewpintong et al. 2007; Ranjbar et al. 2008; García-Malea et al. 2009; Issarapayup 
et al. 2009; Li et al. 2011; Han et al. 2013; Wang et al. 2013a, b; Park et al. 2014; 
Zhang et al. 2014).

The astaxanthin accumulation is controlled by various physicochemical factors 
such as temperature (Yoo et al. 2012), pH (Hata et al. 2001), light (Saha et al. 2013; 
Park et al. 2014), salinity (Kobayashi et al. 1993), plant hormones (Yu et al. 2015), 
and nutrient stress (Boussiba et al. 1999; Chekanov et al. 2014). Since wastewater 
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contains (in)organic compounds, it can be a potential asset for different living 
creatures (Rogers et al. 2014). Microalgae have the ability to metabolize and eradi-
cate pollutants, and also they predominate in breaking and separating resistant 
organic molecules from wastewater (Matamoros et al. 2016 a, b). Various bioprod-
ucts have been produced from microalgal biomass harvested during wastewater 
treatment (Woertz et al. 2014). Different investigations have verified the viability of 
utilization of microalgae in the treatment of wastewaters (municipal, agricultural, 
and industrial) (Chinnasamy et al. 2012; Fenton and hUallachain 2012; Dickinson 
et al. 2013; Neveux et al. 2016). Among them, municipal wastewater has the best 
potentiality for microalgae cultivation. Commonly, various culture media (BM, 
BG11, and M1B5) are used for cultivation of H. pluvialis, and for transformation of 
vegetative cells into cyst cells, different chemical additives such as ferric or acetate 
anions are used (Kobayashi et al. 1997; Ruen-ngam et al. 2010; Solovchenko 2013). 
Numerous experiments have been reported on the development of best synthetic 
medium (e.g., Gong and Feng 1997; Fábregas et al. 2000), but, as far as we are 
aware, a limited number of studies are accessible on the likelihood to use wastewa-
ters for H. pluvialis cultivation and astaxanthin accumulation (Kang et al. 2006; Wu 
et al. 2013; Wang 2014; Sato et al. 2015; Ledda et al. 2015; Haque et al. 2016a; Liu 
2018).

Recently, phyco-valorization (nutrient removal from wastewater and simultane-
ous by-product generation by microalgae) has gained great attention (Querques 
et  al. 2015). H. pluvialis was explored for cultivation in diluted primary-treated 
sewage and primary-treated piggery wastewater which demonstrated better growth 
and successful uptake of nitrate and phosphorus (Kang et al. 2006). There are a lot 
of advantages of using wastewater such as reduction of costs and natural resource 
inputs and simultaneously obtainment of high-value bioproducts (Farooq et  al. 
2013), but there are a number of challenges involved too. The main challenges 
include the following:

Harvesting of the algae.
The control of biomass composition is complicated by the selection of the desired 
species.
Bacterial contamination.
Micro-pollutant removal.
The conceivable requirement for external CO2.

In this chapter, H. pluvialis-derived astaxanthin, its application and market 
potential, and culture conditions and nutritional requirements of H. pluvialis cell 
growth and astaxanthin formation have been discussed. The potentiality of microal-
gae cultivation using various wastewater streams and integration of H. pluvialis 
culture in different wastewater streams and nutrient removal and biomass produc-
tion efficiency are also discussed. Furthermore, the challenges associated with cou-
pling H. pluvialis cultivation in wastewaters and possible ways to overcome such 
challenges have been highlighted.
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2  �The Green Microalga H. pluvialis-Derived Astaxanthin

In H. pluvialis, maximum accumulation of astaxanthin can reach up to 5% DW 
(Wayama et al. 2013). Health food supplements consisting astaxanthin from micro-
algae considered as safe and broadly utilized as a nutraceutical supplement (Capelli 
and Cysewski 2013; Yang et al. 2013). H. pluvialis-derived astaxanthin can be used 
for health benefit in dosages from 3.8 to 7.6 mg per day (Yang et al. 2013). Due to 
structure, function, application, and security, H. pluvialis astaxanthin appears to be 
more effective than the synthetic one (Capelli and Cysewski 2013; Pérez-López 
et al. 2014; Shah et al. 2016).

2.1  �Applications of Astaxanthin

Astaxanthin in Medical and Nutraceutical
Many published reports are available on human health and nutraceutical applica-
tions of astaxanthin (Guerin et al. 2003; Chew et al. 2004; Higuera Ciapara et al. 
2006; Palozza et al. 2009; Yuan et al. 2011). It works as an antioxidant (Hussein 
et al. 2006; Liu and Osawa 2007; Ranga Rao et al. 2010), protects peroxidation of 
membrane lipids (Naguib 2000), terminates the induction of inflammation, helps in 
ulcer disease (Liu and Lee 2003), enhances human digestive health (Nishikawa 
et al. 2005; Kamath et al. 2008), and deals with treatment of gastrointestinal pain 
(Andersen et al. 2007; Kupcinskas et al. 2008).

Astaxanthin can be helpful for reduction of risk for heart attacks (Iwamoto et al. 
2000), increment of basal arterial blood flow (Miyawaki et al. 2008), and reduction 
of blood plasma level (Karppi et  al. 2007). It can also reduce the effects of 
Alzheimer’s and neurological disorders; hinder fibrosarcoma growth, cancer cells 
(breast and prostate), and embryonic fibroblasts (Palozza et al. 2009); and improve 
respiratory and sympathetic nervous system (Nagata et  al. 2006) and mammary 
tumor (Nakao et al. 2010).

Astaxanthin also helps to protect the skin from photooxidation by UV induction 
and has antiaging effects (Seki et al. 2001; Yamashita 2002; Tominaga et al. 2012; 
Ranga Rao et al. 2013). In the case of human, astaxanthin can improve semen qual-
ity, pregnancy rate, and sperm velocity (Elgarem et al. 2002; Comhaire et al. 2005) 
and decrease unexplained infertility (Andrisani et al. 2015).

Astaxanthin in Aquatic Animal and Poultry Diet
Haematococcus-derived astaxanthin can provide essential nutrient for body weight 
increment and breeding of economically important fishes such as salmonid, red sea 
bream, rainbow trouts, and shellfish (shrimp). It has been proved as important com-
pound for improvement of pigment in the fish flesh (Torrissen and Naevdal 1984; 
Tolasa et al. 2005). Use of H. pluvialis biomass has shown to enhance egg quality, 
growth, and rate of survival of fish (salmonid, sea bream, and rainbow trout, orna-
mental fish), fry (Arai et  al. 1987; Ako and Tamaru 1999; Sommer et  al. 1991; 
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Choubert and Heinrich 1993; Sheikhzadeh et al. 2012a, b), and shrimp (Arai et al. 
1987; Parisenti et al. 2011). It has been demonstrated that the diet containing H. 
pluvialis improved the growth of adult yellow croaker fish (Li et al. 2014). H. pluvialis 
appeared to be effective in egg yolk coloration, improving egg-laying capacity in 
hen (Elwinger et al. 1997), muscle in meat-producing chicken (Inborr and Lignell 
1997; Inbbor 1998), and fertility and decreasing mortality of chicken (Lignell and 
Inborr 1999, 2000).

2.2  �Market Potential of Astaxanthin

Recently, there has been increasing pattern toward utilizing organic in food, feed, 
and cosmetic products. The interest for H. pluvialis astaxanthin in the international 
market worldwide has been “emerging” as a result of expanding customer attention 
to its medical advantages. Worldwide market for astaxanthin (synthetic and natural) 
is assessed in 2014 at 280 metric tons which is anticipated to achieve by 2020 at 670 
metric tons (Industry Experts 2015; Panis 2015). The market value of astaxanthin is 
about $2500–7000/kg, and in some cases for H. pluvialis astaxanthin, it goes up to 
$15,000/kg (Borowitzka 2013; Koller et al. 2014; Pérez-López et al. 2014; Industry 
Experts 2015). Natural astaxanthin is 3–4 times more expensive than the synthetic 
one (Han et al. 2013). Considering the increasing market potentiality for natural 
astaxanthin for industrial utilization, large-scale production of H. pluvialis has great 
prospects and appealing commercial possibility. However, contemporary market 
requirement for astaxanthin from H. pluvialis is not fulfilled. Once the production 
technology is optimized, the production costs H. pluvialis astaxanthin would be 
comparable to the artificial astaxanthin (Pérez-Lópezetal et al. 2014).

3  �Culture Parameters for H. pluvialis Growth 
and Astaxanthin Production

Improvement of culture conditions is important to accomplish greater yield and 
astaxanthin generation. These conditions have diverse optimum level for cell growth 
and pigment production. Different kinds of media such as BG-11, BBM, OHM, and 
KM1-basal medium (Bischoff and Bold 1963; Rippka et al. 1979; Kobayashi et al. 
1993; Fábregas et al. 2000) are used for cultivation. At nutrient-deficient conditions, 
astaxanthin accumulates inside the cells (Saha et  al. 2013). In nitrogen-deficient 
condition, the production rate of astaxanthin is twice than the limitation of phospho-
rus. Micronutrients (selenium and chromium) play important role to increase yield 
and astaxanthin formation (Tripathi et al. 1999; Fábregas et al. 2000; Domínguez-
Bocanegra et al. 2004). Astaxanthin generation can also be accelerated by incorpo-
rating 0.25–0.5% w/v of NaCl or combining 2.2 mM sodium acetate to the media 
(Sarada et al. 2002b).
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The appropriate temperature for H. pluvialis ranges from 20 to 28 °C (Fan et al. 
1994; Hata et al. 2001; Lababpour et al. 2005; Kang et al. 2010; Yoo et al. 2012; 
Wan et al. 2014a). However, >30 °C temperature triggers a transition from green to 
red stage (Tjahjono et  al. 1994). pH also can significantly have an effect on the 
growth and synthesis of carotenoids. The optimum pH ranges from 7.00 to 7.85 
(Hata et al. 2001; Sarada et al. 2002a). The optimal light irradiation ranges from 40 
to 50 μmol photons m−2  s−1 (Hata et  al. 2001; Chekanov et  al. 2014; Park et  al. 
2014). Optimum light intensity to accomplish better growth rates inclines to be 
greater such as 70 (Zhang et al. 2014), 80 (Saha et al. 2013), 90 (Fan et al. 1994), or 
177 μmol photons m−2 s−1 (Domínguez-Bocanegra et al. 2004). During green stage, 
the regular photoperiod (12:12 or 16: 8  h) is frequently maintained (Saha et  al. 
2013; Park et al. 2014) but higher growth obtained with continuous light (Domínguez-
Bocanegra et al. 2004).

Culture Systems  H. pluvialis can be grown indoor and outdoor and in open or 
closed system; batch, fed-batch, semicontinuous, or continuous system; and photo-
autotrophic, heterotrophic, or mixotrophic modes.

Photoautotrophic Culture  This type of culture is generally performed in ponds/
raceways or photobioreactors. Typically tubular, bubble column and airlift photobio-
reactors are used for cultivation. Since circumstances for maximum cell yield and 
astaxanthin concentration are usually incompatible, a double-step production policy 
is frequently followed for the industrial cultivation. The step one is to maximize 
vegetative growth in optimum conditions (e.g., less light intensity and with nitrogen) 
(Boussiba 2000; Aflalo et al. 2007; Del Rio et al. 2007). Once maximum growth is 
achieved, in the second step, the cells moved to stress situation (e.g., strong light and 
nitrogen limited, pH or salt manipulation, phosphate depletion, etc.). These stress 
conditions either individually or in combination with others can stimulate astaxan-
thin formation (Fábregas et al. 2001; Torzillo et al. 2003; Orosa et al. 2005; He et al. 
2007; Hu et al. 2008; Li et al. 2010; Choi et al. 2011). The biomass production in 
vegetative and red stage varied from 0.01 to 0.5 g L−1 d−1 and 0.01 to 4.8 g L−1 d−1, 
respectively. In terms of astaxanthin production and content, it varied from 0.44 to 
21 mg L−1 d−1 and 0.8 to 4.8% of DW, respectively (Table 1). Attached cultivation 
strategy is utilized in the initiation of astaxanthin formation in H. pluvialis. In this 
system, the biomass and astaxanthin productivities were 2.8- and 2.4-fold greater 
than those of the suspended cultivation system, respectively (Wan et  al. 2014b). 
Additional researches that used the same techniques have shown increased astaxan-
thin production: 124 mg m−2 d−1 (Yin et al. 2015) and 164.5 mg m−2 d−1 (Zhang et al. 
2014). Attached induction system can be a potential way to enhance commercial 
profit and significantly lower cultivation cost (Zhang et al. 2014; Wan et al. 2014b). 
Park et  al. (2014) invented “perfusion culture” system coupling it with stepwise 
increase associated with light intensity. This culture can offer greater cell growth of 
0.18 g L−1 d−1. Under stepwise improved light irradiance (150–450 μE/m2/s), cell 
growth of 12.3 g L−1 can be achieved. This cell growth is usually 3.09 and 1.67 times 
greater than batch and fed-batch processes, respectively (Park et al. 2014).
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Heterotrophic and Mixotrophic Culture  In heterotrophic growth, organic com-
pounds act as carbon and energy for cell propagation and secondary metabolite con-
struction with the absence of light. Different sources of organic carbon have been 
utilized in this culture. It was shown that acetate helped effectively to cyst formation 
and astaxanthin formation (Kobayashi et al. 1991; Kakizono et al. 1992; Orosa et al. 
2000; Hata et al. 2001; Kang et al. 2005). These microalgae can be also cultured 
mixotrophically utilizing acetate or carbohydrates (Kobayashi et  al. 1993). It is 
proved that biomass and astaxanthin accumulation can be improved following this 
culture system. For example, cell density of 0.9–2.65 g L−1 and astaxanthin content 
of 1–2% DW were achieved (Chen et al. 1997; Wang et al. 2003). A sequential, het-
erotrophic-photoautotrophic culture strategy was also investigated. Biomass was 
produced by utilizing heterotrophic culture, but for astaxanthin production, photoau-
totrophic culture was applied under nitrogen depletion, with bicarbonate or CO2 as 
carbon sources. In this system, a superior astaxanthin content (7% DW) was obtained 
which is 3.4-fold higher than heterotrophic induction (Kang et al. 2005).

4  �Wastewater as a Resource for Microalgae Cultivation

Microalgae cultivation and biomass production require huge quantities (for 1 gram 
dry biomass >1 kg water) of water (Burlew 1953; Shen 2014). Wastewater (cheap 
and readily available) provides appropriate atmosphere (pH, dissolved CO2, and 
HCO3 −) and macronutrients (nitrate, ammonia, phosphate) and micronutrients that 
support for microalgal growth (Abdel-Raouf et al. 2012; Ji et al. 2013; Ajayan et al. 
2015; Ding et  al. 2015). Wastewater-grown microalgae biomass can be used to 
extract the accumulated nutrients (Mehta et al. 2015; Gouveia et al. 2016). Three 
nutrients (carbon, nitrogen, and phosphorus) are of most interest during evaluating 
a wastewater for microalgae growth enhancement (Kabra et al. 2014).

4.1  �Macroelements and Microelements

The cell growth and biochemistry of microalgae require the receptiveness of 15–20 
essential elements. The macronutrients consist of C, N, P, H, O, S Mg, K, Na, and 
Ca, and the micronutrients include Fe, Cu, Mn, Zn, Cl, V, Mo, B, Co, and Si (Eyster 
1964). The macroelements are typically utilized as development materials, and the 
microelements are involved in biological reactions (Arnon 1961). Five microele-
ments (Mn, Zn, Cu, Ca, and Fe) are directly associated with microalgal photosyn-
thesis. Microelements (Cl and Mn) play an important role in O2 evolvement. 
The supplementation of macroelements (C, N, and P) with essential microelements 
(Si, Mg, Ca, Fe, P, S, Mn, Zn, Cu, and Co) is needed for continuous microalgae 
growth. In case of application of wastewater for microalgae cultivation, the supply 
of essential microelements such as Si, Mg, Ca, Fe, P, S, Mn, Zn, Cu, and Co rarely 
limits microalgal growth.
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4.2  �Composition of Wastewater

Wastewater is a compound mixture of organic, inorganic, and artificial elements. 
Three quarters of organic carbon in sewage are proteins, carbohydrates, fats, amino 
acids, and volatile acids. The inorganic parts include large amount of calcium, potas-
sium, sodium, magnesium, chlorine, sulfur, phosphate, bicarbonate, ammonium, and 
heavy metals (Lim et al. 2010). Wastewaters from various sources (municipal, 
agricultural, and industrial) can be treated efficiently by microalgae. The typical N:P 
features of different wastewaters and the feasibility of cultivation of microalgae are 
shown in Table 2.

In the wastewater influent, nitrogen is present in the form of ammonia (NH4
+), 

nitrite (NO2
−), or nitrate (NO3

−). Phosphorus is present as phosphates (PO43
−) in 

wastewater. Municipal wastewater contains several heavy metal pollutants such as 
arsenic, cadmium, chromium, copper, lead, mercury, and zinc (European 
Commission on Environment 2002). It contains comparatively lower amounts of 
total N and P (10–100 mg L−1) (Dela Noue et al. 1992). Once the secondary treat-
ment is done, total N and P decrease to 20–40 mg L−1 and 1–10 mg L−1, respectively 
(McGinn et al. 2011), which is very suitable for microalgae growth. The N and P 
ration in municipal wastewater is about 11 to 13 (Christenson and Sims 2011). The 
widely accepted N:P ratio for microalgae growth is 16 (Larsdotter 2006; Christenson 
and Sims 2011; Park et al. 2011; Cai et al. 2013), on the basis of empirical formula 
C106H181O45N16P (Stumm and Morgan 1970). The typical microalgae cell biomass 
contains 6.6% N and 1.3% P in dry weight (Chisti 2013) with a molar N:P ratio of 
11.2, which is similar to that found in wastewater.

Agricultural wastewater derived from animal manure contains N and P concen-
trations of >1000 mg L−1 (Dela Noue et al. 1992). Agricultural runoff consists of 
herbicides, fungicides, and insecticides.

Industrial wastewater contains less N and P compared to agricultural and munici-
pal wastewater. It has high levels of heavy metal pollutants such as Cr, Zn, and Cd 
and organic chemical toxins such as hydrocarbons, biocides, and surfactants 
(Chinnasamy et al. 2010). Textile, tanning, leather, and electroplating and related 
metal processing industry effluent possess considerable amounts of toxic metal ions 
(Salama et al. 2017).

4.3  �Treatment of Wastewaters

Municipal Wastewater Treatment
Increasing urbanization and population expansion have resulted in large quantities 
of municipal wastewaters produced every day. Physical and chemical treatment 
methods are commonly used for removing buoyant, non-buoyant, and dissolved 
organic materials from wastewaters (Ruiz-Marin et al. 2010). Microalgae cultiva-
tion into the municipal wastewater treatment systems for nutrient removal has been 
widely studied. For example, Pittman et al. (2011) reported that Chlorella sp. and 
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Table 2  Comparison between the physicochemical characteristics of wastewaters and a common 
synthetic medium

Properties Unit
Municipal 
wastewater

Concentrated 
municipal 
wastewater

Anaerobic 
digestion 
wastewater

Piggery 
wastewater

Bold’s 
basal 
medium

pH – 8.10 7.28 7.30–7.50 7.97 6.80
Alkalinity 
(total CO3)

mg CO 3/L 272 – – – –

Salinity g/L 1.03 – – – –
TSS mg/L 50 – 59.35–85.26 - -
Conductivity mS/cm 2.29 – – – –
COD mg/L 31 – 1572.45–

2265.37
37,643 –

TOC mg/L 9 180.6 – – –
TIC mg/L – 80.9 – – –
TN mg/L 27 56 537.26–

702.73
2055 41.01

TP mg/L 5.04 15.8 72.62–
111.58

620 53

Microbes
E. coli cfu/100 mL 5.4 × 106 – – – E–
P. aeruginosa cfu/100 mL 0.2 × 106 – – – –
Fecal 
coliforms

cfu/100 mL 6.2 × 106 – – – –

Total 
coliforms

cfu/100 mL 75.0 × 106 – – – –

Metals
Magnesium mg/L 0.088 16.5 23.83–58.26 213 7
Manganese mg/L 0.09 0.4 0.96–1.91 4.1 0.23
Zinc mg/L 0.009 – – 28.9 3.93
Copper mg/L – – 0.31–0.92 10.6 0.63
Calcium mg/L 29 65.6 – 437 7
Cobalt mg/L – – 0.02–0.06 3.8
Iron mg/L 0.12 0.05 6.83–15.35 169.2 4.2
Aluminum mg/L 0.04 0.02 – – –
Sulfate mg/L – 40.4 – – 43.2
Sodium mg/L – 39.5 – 772 68
Potassium mg/L 20 45.7 22.38–68.15 2524 34
Chloride mg/L – – – – 12
Barium mg/L – – 0.74–1.67 – 2.0

Adapted from Salama et al. (2017)

Scenedesmus sp. performed with very high efficiency on nutrient removal in sewage 
wastewater after secondary treated, particularly ammonia, nitrate, and total P, rang-
ing from 80% to 100% removal rates in many cases. Another study indicated that C. 
vulgaris could remove more than 90% of N and 80% of P from primary-treated 
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municipal wastewater (Lau et al. (1995). Dunaliella salina showed the capacity for 
removing nitrate, ammonia, and phosphorous in the range of 45–88% from municipal 
wastewater after a 6-day cultivation (Liu and Yildiz 2018).

Agricultural Wastewater Treatment
Agriculture is another major wastewater-producing sector. Agricultural wastewater 
is frequently derived from livestock production and contains high levels of N and P 
(Wilkie and Mulbry 2002). Generally, livestock manure is often treated and used as 
fertilizer. However, nutrients may not be completely consumed due to the various 
ratios of N:P requiring by the crops. As a result, excess nutrients find their ways to 
the surrounding aquatic systems and cause eutrophication significantly reducing 
water quality (Cai et al. 2013). Piggery wastewater is typically treated with anaero-
bic bacteria for reduction of nutrient. However, the nutrient removal capacity of 
anaerobic bacteria is comparatively lower than microalgae and some cyanobacteria 
(Markou and Georgakakis 2011). As in the case of municipal wastewaters, previous 
researches have also demonstrated that microalgae can significantly assimilate N 
and P from manure-based wastewaters. For example, An et al. (2003) reported that 
80% of nitrate content was effectively removed from piggery wastewater by 
Botryococcus braunii. Moreover, compared with microalgae that were cultivated in 
municipal wastewaters, Wilkie and Mulbry (2002) indicated that higher microalgae 
growth rates and equivalent nutrient removal efficiencies were observed in manure-
added recycling wastewater.

Industrial Wastewater Treatment
The traditional methods of industrial wastewater treatments include electrowinning, 
precipitation, and ion exchange. Since industrial wastewaters contain lower N and P 
contents and greater levels of toxic elements, most microalgae cannot grow well. It 
is necessary to select specific strains that have high metal absorption capacities to 
handle industrial wastewater remediation. So far, only a few strains have been 
explored for metal removal capacity research. One study using carpet mill wastewa-
ter, which has relatively lower toxins and higher N and P contents, reported that 
Botryococcus braunii, Chlorella saccharophila, and Pleurochrysis carterae grew 
well in untreated wastewater with large amounts of biomass generated (Chinnasamy 
et al. 2010).

5  �Integrating H. pluvialis Cultivation in Wastewater 
Treatment and Nutrient Removal

The growth rate of H. pluvialis is slow, and its cultivation is a highly sensitive process 
due to its susceptibility to contamination by other algae and microbes (Orasa et al. 
2000). Generally, BM, BG11, and M1B5 media used for cultivation of H. pluvialis 
and chemical additives such as ferric or acetate anions are added to stress the cells 
(Kobayashi et al. 1997; Ruen-ngam et al. 2010; Solovchenko 2013).
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Although various researches have been performed on the development of optimal 
synthetic growth medium (e.g., Gong and Feng 1997; Fábregas et al. 2000), only 
few studies focused on the possibility to use wastewaters for H. pluvialis and suc-
ceeding astaxanthin production (Table 3). For instance, Kang et al. (2006) reported 
H. pluvialis cultivation in primary-treated wastewater and piggery wastewater. They 
showed that the cell growth rate in primary-treated wastewater was 0.24  day−1, 
which was comparable to 0.23 day−1 in artificial medium; the cells were composed 
of 5.1 and 5.9% astaxanthin content using the two-step process; and the cells yielded 
43 mg L−1 nitrogen and 2.6 mg L−1 phosphorus.

Compared with most microalgal species reported in the literature, H. pluvialis 
attained highest biomass production (27.8 mg L−1 d−1), efficient nutrient removal 
(both nitrogen (93.8%) and phosphorus (97.8%) were removed efficiently), 
and highest lipid accumulation (43%) in unsterilized domestic secondary effluent 
(Wu et al. 2013).

Sato et  al. (2015) reported a new wastewater treatment process that involves 
coagulation, ozonation, and microalgae H. pluvialis cultivation. H. pluvialis grew 
well in the supernatant of coagulated wastewater, and the astaxanthin yield was 
3.26 mg/L, and total phosphorus and nitrogen contents decreased to 99% and 90%, 
respectively.

Table 3  Research highlights on integration of different wastewaters with H. pluvialis

Wastewater 
type

Removal 
efficiency 
of
TN (%)

Removal 
efficiency 
of
TP (%)

Biomass 
production 
g/L

Astaxanthin 
production 
mg/L

Culture 
volume 
(L)

Culture 
days Reference

Primary-
treated 
sewage

100% 100% 0.78 39.7 130 ml 18 Kang 
et al. 
(2006)

Primary-
treated 
piggery 
wastewater

100% 100% 1.43 83.9 130 ml 18 Kang 
et al. 
(2006)

Domestic 
secondary 
effluent

(93.8% 97.8%) 0.20 – 200 ml 20 Wu et al. 
(2013)

Coagulated 
wastewater

90% ± 8% 99% ± 1% 3.26 200 ml 25 Sato et al. 
(2015)

Piggery 
wastewater

99% 98% 1.31 – 300 ml 20 Ledda 
et al. 
(2015)

Bioethanol 
plant 
wastewater

91.7% 100% 4.37 – 2.2 L 16 Haque 
et al. 
(2016b)

Minkery 
wastewater

100% 100% 0.90 67.95 2.25 L 6 Liu 
(2018)
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In another study, wastewater treatment and astaxanthin production were con-
ducted by a primary treatment filtering system: culture and subsequent carotenogen-
esis induction of H. pluvialis on piggery wastewater.

In this study, a drastic reduction in macro- and micronutrient concentration (up 
to 99% for NO3-N and NH4-N, 98% for TP) and astaxanthin accumulation of 1.27% 
on a dry weight were observed (Ledda et al. 2015). This method showed potentiality 
as biological wastewater treatment process since it can combine inorganic waste 
removal without any additives and the simultaneous production of astaxanthin.

Since H. pluvialis can use CO2, CO3, and carbohydrates as carbon sources, its 
production cost can be reduced by utilizing waste sources like flue gasses or waste 
containing carbon and nutrient compounds (Wu et al. 2013).

The required energy and nutrients in auto-, hetero-, and mixotrophic cultivation 
can be recycled from anaerobic digestion. Based on the culture system, carbon 
sources can vary. The recycled CO2 from energy production at anaerobic digestion 
can be used in photoautotrophic cultivation. The required carbon (carbohydrates or 
acetate) can be provided from alternative source in heterotrophic cultivation. These 
carbon sources can be produced from waste (carbohydrate-rich food waste from 
food industry can be used in heterotrophic cultivation) (Wang 2014). In mixotro-
phic cultivation both carbon sources can be utilized. After concurrent extraction of 
astaxanthin and triglycerides, algal cake is used as a feedstock for biogas produc-
tion through anaerobic digestion that helps in the extraction of residual energy 
from this integrated bioprocess (Shah et  al. 2016). The biorefinery strategy is 
shown on Fig. 1.

In a recent study by Haque et al. (2017), high-density (4.37 g/L) H. pluvialis 
culture was obtained using the bioethanol plant waste stream as the growth media 
and resulted in 91.67% total nitrogen and 100% total phosphorous removal. The 
residual microalgal biomass, obtained after astaxanthin extraction (1.109  mg/g 
DW), was characterized as a potential bioenergy feedstock. This production process 
could be environmentally friendly and economically viable, compared to conven-
tional astaxanthin production processes, due to integrating culture in an existing 
bioethanol plant and using the waste product produces in the plant. Culturing H. 
pluvialis in bioethanol wastewater streams can be a greener alternative to conven-
tional media. The maximum vegetative growth of H. pluvialis was obtained in 60× 
diluted thin stillage, and maximum astaxanthin production was obtained in GroAst 
media (60% 60× thin stillage and 40% acetate-rich process condensate). The GroAst 
media appeared to be not only a cheaper media, compared to the chemically synthe-
sized media, but it is also a “greener” sustainable alternative to conventional growth 
media (Haque et al. 2016b).

Minkery wastewater contains extremely high level of ammonia, which is a differ-
ent N source from BBM. H. pluvialis grew well in the appropriately diluted minkery 
wastewater (MW) media, and a higher biomass production was realized as compared 
with conventional culture medium under optimal growth condition. H. pluvialis 
achieved maximum biomass at 1.5% MW cultures, yielding 906.03 ± 34.0 mg L−1, 
with a successful removal of total nitrogen and phosphorus in a 6-day culture. 
The optimal initial cell density and volume ratio between microalgae and MW were 
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also determined to have great help on maximizing the biomass yield. The findings 
support the claim that integration of wastewater into microalgae cultivation has the 
advantages of reducing cultivation costs and natural resource inputs and simultane-
ously obtaining high-value bioproducts (Liu 2018).

Considering the above facts, H. pluvialis can be considered as a promising can-
didate for integrated systems of wastewater treatment and microalgae cultivation 
while producing high-value bioproducts.

6  �Challenges Associated with Growing H. pluvialis 
in Wastewater Streams

Despite the promising features of microalgae, there are huge challenges to overcome 
before this route can be exploited in commercially and environmentally sustainable 
manner. The following points are considered as the most important challenges for the 
cultivation of microalgae in general and H. pluvialis using wastewater:

•	 The cultivation of H. pluvialis in wastewater can be susceptible to contamination 
by fungus, zooplankton (rotifer), protozoans (e.g., amoebas, ciliates), and other 
microalgae due to its relatively slow growth (Han et al. 2013; Orasa et al. 2000).

•	 Abiotic contaminants in wastewater such as CO2, NOx, SOx, O2, and NH3
+ 

and heavy metals can also inhibit microalgae like H. pluvialis growth (Kumar 
et al. 2010).

•	 In case of low concentration of trace mineral nutrients in the wastewater, it can 
result in poor growth, low biomass, and low lipid productivity (Christenson and 
Sims 2011). However, Kang et al. (2007) and Hata et al. (2001) indicated that 
high concentration of nutrients would also cause inhibitory effects on H. pluvia-
lis growth, and thus, the suitable concentration of wastewater must be deter-
mined for H. pluvialis cultivation.

•	 Due to the lack of carbon sources in most domestic wastewater, the growth of the 
microalgae can be inhibited which might eventually affect the treatment of the 
wastewater (Craggs et al. 2011).

•	 High concentration of oxygen in wastewater can induce oxidative damage to 
microalgae cell and inhibit photosynthesis (Christenson and Sims 2011).

•	 The cost and energy demand of harvesting microalgae in general and H. pluvialis 
from wastewater either by flocculation or centrifugation are still very high 
(Razon and Tan 2011; Acién et al. 2012; Shah et al. 2016).

7  �Conclusion and Prospects

This chapter provides perception regarding the recent scientific and technical 
improvement in different areas of H. pluvialis-derived astaxanthin, its application 
and market potential, and culture conditions and nutritional requirements of this 
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microalgal cell growth and astaxanthin formation. It also scans a broader image 
including the potentiality of microalgae cultivation using various wastewater and 
integration of H. pluvialis culture in different wastewater streams and nutrient 
removal and biomass production efficiency to the challenges associated with grow-
ing H. pluvialis in wastewater streams.

Recently the demand from H. pluvialis is increasing. A number of developments 
have been obtained concerning production and processing to achieve astaxanthin 
during the last decade. Still its large-scale cultivation is very expensive for mass 
adoption of natural astaxanthin compared to the synthetic one. H. pluvialis has been 
cultured in different ways. Various studies have been focused on optimization of 
parameters (media, light, pH, temperature, etc.) for maximum growth. For biomass 
accumulation and astaxanthin production, most of these parameters found different.

There is not much can be done to solve this challenges since it is fundamentally 
connected with the whole life cycle of H. pluvialis. We believe that integration of H. 
pluvialis cultivation with wastewater treatment could be a great option to produce 
astaxanthin effectively in large scale. Research in the use of wastewater for cultivat-
ing H. pluvialis is still very limited as compared to research for growing other 
microalgae species. Therefore, further clarifications are needed to prove the feasi-
bility of H. pluvialis-based systems in full scale. A number of wastewater types are 
encouraged to be investigated in Haematococcus cultures. Moreover, the relevant 
optimal production routes and advances in technologies are needed. The improve-
ments in integration processes, harvesting, and extraction technology will contrib-
ute to accelerate the speed of the Haematococcus-derived astaxanthin production 
from laboratory scale to commercial scale. Further study in these areas can have a 
profound influence on the market of natural astaxanthin from H. pluvialis.

The challenges of wastewaters directly for H. pluvialis culture should be addressed 
since they restrict the utilization of the easily accessible and low-cost wastewater. 
There are a number of areas that can improve the integrated H. pluvialis cultivation 
using wastewater for nutrient removal and efficient astaxanthin production. These 
include the following:

Consideration of sterilized wastewater for microalgal cultivation to prevent biotic 
contamination.

Coupling of immobilize or attached cultivation of H. pluvialis in wastewater stream 
to maximize the biomass production.

In cases of low concentration of nutrients, there is a need to supplement these nutri-
ents in wastewater to achieve high productivity.

Bubbling of CO2 can improve algae growth while using domestic wastewater with 
lack of carbon source for H. pluvialis cultivation.

Technological advancement in cost-effective H. pluvialis biomass harvesting from 
large-scale wastewater culture to make it more economically attractive.

Future improvements in these fields can have a thoughtful effect on the commer-
cial implementation of H. pluvialis astaxanthin products. Finally, global microalgae 
industry can be benefited in the near future.
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