
Proving Program Properties
as First-Order Satisfiability

Salvador Lucas(B)

DSIC, Universitat Politècnica de València, Valencia, Spain
slucas@dsic.upv.es

http://slucas.webs.upv.es/

Abstract. Program semantics can often be expressed as a (many-
sorted) first-order theory S, and program properties as sentences ϕ which
are intended to hold in the canonical model of such a theory, which is
often incomputable. Recently, we have shown that properties ϕ expressed
as the existential closure of a boolean combination of atoms can be dis-
proved by just finding a model of S and the negation ¬ϕ of ϕ. Fur-
thermore, this idea works quite well in practice due to the existence of
powerful tools for the automatic generation of models for (many-sorted)
first-order theories. In this paper we extend our previous results to arbi-
trary properties, expressed as sentences without any special restriction.
Consequently, one can prove a program property ϕ by just finding a
model of an appropriate theory (including S and possibly something
else) and an appropriate first-order formula related to ϕ. Beyond its pos-
sible theoretical interest, we show that our results can also be of practical
use in several respects.

Keywords: First-order logic · Logical models · Program analysis

1 Introduction

Given a first-order theory S and a sentence ϕ, finding a model A of S ∪{¬ϕ}, i.e.,
such that A |= S ∪{¬ϕ} holds, shows indeed that ϕ is not a logical consequence
of S: there is at least one model of S (e.g., A) which does not satisfy ϕ (as it
satisfies ¬ϕ). Provability of ϕ in S, i.e., S � ϕ, implies (by correctness of the
proof calculus) that ϕ is a logical consequence of S (written S |= ϕ). Thus,
A |= S ∪ {¬ϕ} disproves ϕ regarding S; this can be written ¬(S � ϕ) by using
some metalevel notation. In general, this does not allow us to conclude that ¬ϕ
is proved, i.e., S � ¬ϕ, or is a logical consequence of S, i.e., S |= ¬ϕ. What can
be concluded about ¬ϕ regarding S from the fact that A |= S∪{¬ϕ} holds? Can
this be advantageously used in a ‘logic-based’ approach to program analysis?

In [14], some answers to these questions are given: a sentence ϕ which is an
Existentially Closed Boolean Combination of Atoms (ECBCA for short) does not

Partially supported by the EU (FEDER), projects TIN2015-69175-C4-1-R, and GV
PROMETEOII/2015/013.

c© Springer Nature Switzerland AG 2019
F. Mesnard and P. J. Stuckey (Eds.): LOPSTR 2018, LNCS 11408, pp. 3–21, 2019.
https://doi.org/10.1007/978-3-030-13838-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13838-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-13838-7_1

4 S. Lucas

hold in the initial model IS of a theory S consisting of a set of ground atoms
if we find a model A of S ∪ {¬ϕ} [14, Corollary 2]. This is useful in program
analysis when considering programs P that are given a theory P representing
its operational semantics so that the execution of P is described as a set IP

of (ground) atoms A which can be proved from P (i.e., IP is the initial model
of P in the usual first-order sense; in the following, we often refer to it as its
canonical model [11, Sect. 1.5]). Actually, rather than being logical consequences
of P , the intended meaning of first-order sentences ϕ that represent properties
of P is that they hold in the initial model of P , see [4, Chap. 4], for instance.

In [14,16] we applied this approach to prove computational properties of
rewriting-based systems in practice. This includes Term Rewriting Systems
(TRSs [1]) and more general rewriting-based formalisms [3,9,18,19].

Example 1. Consider the following TRS R with the well-known rules defining
the addition and product of natural numbers in Peano’s notation:

add(0, x) → x (1)
add(s(x), y) → s(add(x, y)) (2)

mul(0, x) → 0 (3)
mul(s(x), y) → add(y,mul(x, y)) (4)

The associated theory R is the following:

(∀x) x →∗ x

(∀x, y, z) x → y ∧ y →∗ z ⇒ x →∗ z

(∀x, y) x → y ⇒ s(x) → s(y)

(∀x, y, z) x → y ⇒ add(x, z) → add(y, z)

(∀x, y, z) x → y ⇒ add(z, x) → add(z, y)

(∀x, y, z) x → y ⇒ mul(x, z) → mul(y, z)

(∀x, y, z) x → y ⇒ mul(z, x) → mul(z, y)

(∀x) add(0, x) → x

(∀x, y) add(s(x), y) → s(add(x, y))

(∀x) mul(0, x) → 0

(∀x, y) mul(s(x), y) → add(y,mul(x, y))

The first sentence in the first column represents reflexivity of many-step rewrit-
ing, with predicate symbol →∗; the second sentence shows how one-step rewrit-
ing, with predicate symbol →, contributes to →∗. The next sentences describe
the propagation of rewriting steps to (arguments of) symbols s, add and mul.
The second column describes the rules of R. More details can be found in [14,
Sect. 4]. In the initial or least Herbrand model IR of R, → and →∗ are inter-
preted as the sets (→)IR and (→∗)IR of all pairs (s, t) of ground terms s and t
such that s →R t and s →∗

R t, respectively. Now, we can express the property
“the double of some natural number can be an odd number” as an ECBCA:

(∃x)(∃y)(∃z) add(x, x) →∗ z ∧ s(mul(s(s(0)), y)) →∗ z (5)

With the automatic model generator Mace4 [17] we find a model of R ∪ {¬(5)}
with domain A = {0, 1}. Function symbols are interpreted as follows: 0A = 0;

Proving Program Properties as First-Order Satisfiability 5

sA(x) = 1 − x; addA(x, y) returns 0 if x = y and 1 otherwise; mulA(x, y) returns
1 if x = y = 1 and 0 otherwise. Predicates → and →∗ are both interpreted as
the Aphequality. Thus, we have proved that (5) does not hold for R.

Our approach in [14] relies on the notion of preservation of a formula under
homomorphisms h between interpretations. Roughly speaking, a homomorphism
h preserves a formula ϕ if ϕ is satisfied in the target interpretation of h whenever
ϕ is satisfied in its domain interpretation [11, Sect. 2.4]. Homomorphisms pre-
serve ECBCA [11, Theorem 2.4.3(a)]; the results in [14] rely on this fact. In this
paper we extend [14] to deal with more general program properties. Homomor-
phisms preserve other first-order sentences if further requirements are imposed:
(i) positive sentences (where connective ‘¬’ is absent) are preserved under surjec-
tive homomorphisms and (ii) arbitrary sentences are preserved under embeddings
[11, Theorem 2.4.3]. In contrast to [14] (and [11]), here we focus on many-sorted
logic [23] (see Sect. 2). This has an important advantage: since homomorphisms in
many-sorted logic with set of sorts S are actually a family hs of homomorphisms
between components of sort s for each s ∈ S, the preservation requirements for
hs depend on the specific quantification of variables x : s for such a sort. In
Sect. 3 we provide a unique preservation theorem that subsumes the results in
[14], and even improves [11]. Section 4 investigates how to guarantee surjectiv-
ity of homomorphisms. Section 5 shows several application examples taken from
Table 1, which shows some properties of rewriting-based systems that could not
be captured in [14] but we are able to handle now. Here, t(x) is a term with vari-
ables x (or just t if it is ground), C (and D) are the constructor (resp. defined)
symbols in the TRS, and Λ→ is topmost rewriting. Section 6 discusses the pos-
sibility of providing more information about disproved properties by means of
refutation witnesses, i.e., (counter)examples of sentences which are synthesized
from the models that are used to disprove the property. Section 7 shows how to
deal with completely general sentences by means of a simple example. Section 8
discusses some related work. Section 9 concludes.

Table 1. Some properties about rewriting-based systems

Property ϕ

Ground reducible (∀x) (∃y) t(x) → y

Completely defined symbol f (∀x)(∃y) f(x1, . . . , xk) → y

Completely defined TRS (∀x)(∃y)∧
f∈D f(x1, . . . , xar(f)) → yf

Productive (∀x)(∃y) ∨
c∈C x →∗ c(y1, . . . , yk)

Nonterminating (∃x)(∀n ∈ N)(∃y) x →n y

Inf initely root-reducible (∃x)(∀n ∈ N)(∃y) x(→∗ ◦ Λ→)ny

Normalizing term (∃x) (t →∗ x ∧ ¬(∃y) x → y)

Normalizing TRS (WN) (∀x)(∃y) (x →∗ y ∧ ¬(∃z) y → z)

Locally confluent (WCR) (∀x, y, z) x → y ∧ x → z ⇒ (∃u) x →∗ u ∧ z →∗ u

Conf luent (CR) (∀x, y, z) x →∗ y ∧ x →∗ z ⇒ (∃u) x →∗ u ∧ z →∗ u

6 S. Lucas

2 Many-Sorted First-Order Logic

Given a set of sorts S, a (many-sorted) signature (with predicates) Ω = (S,Σ,Π)
consists of a set of sorts S, an S∗×S-indexed family of sets Σ = {Σw,s}(w,s)∈S∗×S

containing function symbols f ∈ Σs1···sk,s, with a rank declaration f : s1 · · · sk →
s (constant symbols c have rank declaration c : λ → s, where λ denotes the
empty sequence), and an S+-indexed family of sets Π = {Πw}w∈S+ of ranked
predicates P : w. Given an S-sorted set X = {Xs | s ∈ S} of mutually disjoint
sets of variables (which are also disjoint from Σ), the set TΣ(X)s of terms of
sort s is the least set such that Xs ⊆ TΣ(X)s and for each f : s1 . . . sk → s and
ti ∈ TΣ(X)si

, 1 ≤ i ≤ k, f(t1, . . . , tk) ∈ TΣ(X)s. If X = ∅, we write TΣ rather
than TΣ(∅) for the set of ground terms. The set TΣ(X) of many-sorted terms is
TΣ(X) =

⋃
s∈S TΣ(X)s. For w = s1 · · · sn ∈ S+, we write TΣ(X)w rather than

TΣ(X)s1
× · · · × TΣ(X)sn

and even write t ∈ TΣ(X)w rather than ti ∈ TΣ(X)si

for each 1 ≤ i ≤ n. The formulas ϕ ∈ FormΩ of a signature Ω are built up from
atoms P (t) with P ∈ Πw and t ∈ TΣ(X)w, logic connectives (¬, ∧, and also
∨, ⇒,...) and quantifiers (∀ and ∃) in the usual way. A closed formula, i.e., one
whose variables are all universally or existentially quantified, is called a sentence.
In the following, substitutions σ are assumed to be S-sorted mappings such that
for all sorts s ∈ S, we have σ(x) ∈ TΣ(X)s.

An Ω-structure A consists of (i) a family {As | s ∈ S} of sets called the
carriers or domains together with (ii) a function fA

w,s ∈ Aw → As for each
f ∈ Σw,s (Aw is a one point set when w = λ and hence Aw → As is isomorphic
to As), and (iii) an assignment to each P ∈ Πw of a subset PA

w ⊆ Aw; if the
identity predicate = : ss is in Πss, then (=)A

s s = {(a, a) | a ∈ As}, i.e.,
= : ss is interpreted as the identity on As.

Let A and A′ be Ω-structures. An Ω-homomorphism h : A → A′ is an S-
sorted function h = {hs : As → A′

s | s ∈ S} such that for each f ∈ Σw,s and P ∈
Πw with w = s1, . . . , sk, (i) hs(fA

w,s(a1, . . . , ak)) = fA′
w,s(hs1(a1), . . . , hsk

(ak))
and (ii) if a ∈ PA

w , then h(a) ∈ PA′
w . Given an S-sorted valuation mapping

α : X → A, the evaluation mapping []αA : TΣ(X) → A is the unique (S,Σ)-
homomorphism extending α. Finally, []αA : FormΩ → Bool is given by:

1. [P (t1, . . . , tn)]αA = true (with P ∈ Πw) if and only if ([t1]αA, . . . , [tn]αA) ∈ PA
w ;

2. [¬ϕ]αA = true if and only if [ϕ]αA = false;
3. [ϕ ∧ ψ]αA = true if and only if [ϕ]αA = true and [ψ]αA = true; and
4. [(∀x : s) ϕ]αA = true if and only if for all a ∈ As, [ϕ]α[x�→a]

A = true.

A valuation α ∈ X → A satisfies ϕ in A (written A |= ϕ [α]) if [ϕ]αA = true. We
then say that ϕ is satisfiable. If A |= ϕ [α] for all valuations α, we write A |= ϕ
and say that A is a model of ϕ or that ϕ is true in A. We say that A is a model
of a set of sentences S ⊆ FormΩ (written A |= S) if for all ϕ ∈ S, A |= ϕ. Given
a sentence ϕ, we write S |= ϕ iff A |= ϕ holds for all models A of S.

Proving Program Properties as First-Order Satisfiability 7

3 Preservation of Many-Sorted First-Order Sentences

Every set S of ground atoms has an initial model IS (or just I if no confusion
arises) which consists of the usual (many-sorted) Herbrand Domain of ground
terms modulo the equivalence ∼ generated by the equations in S. There is a
unique homomorphism h : I → A from I to any model A of S [9, Sect. 3.2]. In
the following, h refers to such a homomorphism. If S contains no equation, then
I is the (many-sorted) Least Herbrand Model of S and Is is TΣs for each sort
s ∈ S. In the following, we consider sentences in prenex form as follows:

(Q1x1 : s1) · · · (Qkxk : sk)
m∨

i=1

ni∧

j=1

Lij (6)

where (i) for all 1 ≤ i ≤ m and 1 ≤ j ≤ ni, Lij are literals, i.e., Lij = Aij

or Lij = ¬Aij for some atom Aij (in the first case, we say that Lij is positive;
otherwise, it is negative), (ii) x1, . . . , xk for some k ≥ 0 are the variables occur-
ring in those literals (of sorts s1, . . . , sk, respectively), and (iii) Q1, . . . , Qk are
universal/existential quantifiers. A sentence ϕ (equivalent to) (6) is said to be
positive if all literals are.

Theorem 1. Let Ω be a signature, S be a set of ground atoms, ϕ be a sentence
(6), and A be a model of S such that (a) for all q, 1 ≤ q ≤ k, if Qq = ∀ then hsq

is surjective1 and (b) for all negative literals Lij = ¬P (t), with P ∈ Πw, and
substitutions σ, if h(σ(t)) ∈ PA then σ(t) ∈ P I . Then, IS |= ϕ =⇒ A |= ϕ.

In order to achieve condition (b) in Theorem 1, given P ∈ Πw, let N(P) =
Iw −P I be the complement of the (Herbrand) interpretation of P . Let N (P) =
{¬P (t) | t ∈ N(P)} (cf. Reiter’s Closed World Assumption [20]). In general,
N (P) is infinite and incomputable. In some simple cases, though, we can provide
a finite description of N (P) for the required predicates P (see Sect. 7).

Proposition 1. Let Ω be a signature, S be a set of ground atoms, ϕ be a sen-
tence (6), A be a model of S, and N =

⋃
Lij=¬P (t) N (P) be such that A |= N .

Let Lij = ¬P (t) be a negative literal and σ be a substitution. If h(σ(t)) ∈ PA,
then σ(t) ∈ P I .

Consider a theory S and let S
 be the set of ground atoms obtained as the
deductive closure of S, i.e., the set of atoms P (t1, . . . , tn) for each n-ary predicate
symbol P and ground terms t1, . . . , tn, such that S � P (t1, . . . , tn). The following
result is the basis of the practical applications discussed in the following sections.

Corollary 1 (Semantic criterion). Let Ω be a signature, S0 be a theory, S =
S

0 , ϕ be a sentence (6), and A be a model of S0 such that (a) for all q, 1 ≤ q ≤ k,

if Qq = ∀ then hsq
is surjective and (b) for all negative literals Lij = ¬P (t),

with P ∈ Πw and substitutions σ, if h(σ(t)) ∈ PA then σ(t) ∈ P I . If A |= ¬ϕ,
then IS |= ¬ϕ.
1 A mapping f : A → B is surjective if for all b ∈ B there is a ∈ A such that f(a) = b.

8 S. Lucas

In the following, we will not distinguish between theories S and their ground
deductive closure S
; we rather use S in both cases.

Remark 1 (Proofs by satisfiability). We can prove an arbitrary sentence ϕ valid
in IS by satisfiability in some model A of S. First define ϕ as the negation ¬ϕ
of ϕ. Then, find an appropriate structure A satisfying (a) and (b) (with regard
to ϕ) and such that A |= S ∪ {¬ϕ}. By Corollary 1, I |= ¬ϕ holds. Since ¬ϕ is
equivalent to ϕ, I |= ϕ holds.

Models A to be used in Corollary 1 can be automatically generated from the
theory S and sentence ϕ by using a tool like AGES [10] or Mace4. In the following
section, we investigate how to ensure surjectivity when required in Corollary 1.

4 Surjective Homomorphisms

Given Ω = (S,Σ,Π), s ∈ S and T ⊆ TΣs, consider the following sentences:

(∀x : s)
∨

t∈T

x = t (7)

∧

t,u∈T,t�=u

¬(t = u) (8)

In the following, we write (7)s to make sort s referred in (7) explicit. We do the
same in similar formulas below.

Proposition 2. Let Ω be a signature, S be a theory, A be a model of S, s ∈ S,
and T ⊆ TΣs. (a) If T �= ∅ and A |= (7)s, then hs is surjective and |As| ≤ |T |.
(b) If As �= ∅ and A |= (8), then |As| ≥ |T |.

In view of Proposition 2(a), denote (7)s as SuHT
s (Ω) (or just SuHT

s or SuHT if
no confusion arises). Whenever T is finite, Proposition 2(a) imposes that the
interpretation domain As for sort s is finite. This is appropriate for tools like
Mace4 which generate structures with finite domains only. However, the choice
of T in Proposition 2, when used together with a theory S imposing further
requirements on symbols, can be crucial for Corollary 1 to succeed. Restricting
the attention to finite domains can also be a drawback. In the following, we
investigate a different approach which avoids any choice of terms T and is valid
for infinite structures as well. Consider the following sentence:

(∀x : s)(∃n : Nat) terms(x, n) (9)

where Nat is a new sort, to be interpreted as the set N of natural numbers, and
terms : sNat is a new predicate for each s ∈ S. The intended meaning of (9)s is

Proving Program Properties as First-Order Satisfiability 9

that, for all x ∈ As, there is t ∈ TΣs of height at most n such that x = tA. We
substantiate this, for each sort s ∈ S, by means of two (families of) formulas:

(∀x : s)(∀n : Nat) terms(x, 0) ⇒
∨

c∈Σλ,s

x = c (10)

(∀x : s)(∀n : Nat)(∃m : Nat) (n > 0 ∧ terms(x, n)) ⇒

n > m ∧

⎛

⎜
⎜
⎜
⎜
⎜
⎝

terms(x,m)∨
∨

f ∈ Σw,s

w ∈ S+

(∃y : w)

(

x = f(y) ∧
∧

si∈w

termssi
(yi,m)

)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(11)

Thus, by (10)s, values x satisfying terms(x, 0) will be represented by some con-
stant symbol c of sort s. Similarly, by (11)s, values x satisfying terms(x, n) for
some n > 0 will be represented by some ground term s of height m for some
m < n, or by a term t = f(t1, . . . , tk), where f has rank w → s for some w ∈ S+

and t1, . . . , tk have height m at most.
The set K(s) of s-relevant sorts is the least set satisfying: (i) s ∈ K(s) and

(ii) if f ∈ Σs1···sk,s′ and s′ ∈ K(s), then {s1, . . . , sn} ⊆ K(s). Let ΩNat,s =
(SNat , ΣNat ,ΠNat,K (s)) be an extension of Ω where SNat = S ∪ {Nat}, ΣNat

extends Σ with a new constant 0 : λ → Nat , and ΠNat,K(s) extends Π with
> : Nat Nat and a predicate terms′ : s′ Nat for each s′ ∈ K(s). We let

SuHs = {(9)s′ , (10)s′ , (11)s′ | s′ ∈ K(s)} (12)

Proposition 3. Let Ω be a signature, S be a theory, s ∈ S, and A be an ΩNat,s-
structure which is a model of S. Assume that ANat = N, 0A = 0, and m >A

n ⇔ m >N n for all m, n ∈ ANat . If A |= SuHs, then hs′ is surjective for all
s′ ∈ K(s).

Given an extension Ω′ of a signature Ω, every Ω′-structure A′ defines an Ω-
structure A: just take As = A′

s for all s ∈ S, and then fA
w,s = fA′

w,s and PA
w = PA′

w

for all w ∈ S∗, s ∈ S, f ∈ Σw,s, and P ∈ Πw. Thus, Proposition 3 is used to
guarantee surjectivity of h : TΣs′ → As′ , rather than h : TΣNat s′ → As′ .

5 Examples of Application with Positive Sentences

In this section we exemplify the use of Corollary 1 together with the approach
in Sect. 4 to deal with positive sentences (6), i.e., all literals are positive.

10 S. Lucas

5.1 Complete Definedness and Commutativity

Consider the following Maude specification (hopefully self-explained, but see [5])
for the arithmetic operations in Example 1 together with function head, which
returns the head of a list of natural numbers:

mod ExAddMulHead is
sorts N LN . *** Sorts for numbers and lists of numbers
op Z : -> N . op suc : N -> N . ops add mul : N N -> N .
op head : LN -> N . op nil : -> LN . op cons : N LN -> LN .
vars x y : N . var xs : LN .
rl add(Z,x) => x . rl add(suc(x),y) => suc(add(x,y)) .
rl mul(Z,x) => Z . rl mul(suc(x),y) => add(y,mul(x,y)) .
rl head(cons(x,xs)) => x .

endm

(1) Complete definedness. We claim head to be completely defined as follows:

(∀xs : LN)(∃x : N) head(xs) → x (13)

We disprove (13) by using Corollary 1. Due to the universal quantification
of xs in (13), we need to ensure that hLN : TΣLN → ALN is surjective for any
structure A we may use. We use Proposition 3. Since K(LN) = {N, LN} due
to cons, whose first argument is of sort N, SuHLN consists of the following
sentences:

(∀x : N)(∃n : Nat) termN(x, n) (9)N
(∀x : N) termN(x, 0) ⇒ x = Z (10)N
(∀x : N)(∀n : Nat)(∃m : Nat)(∃y : N)(∃z : N)(∃ys : LN) (11)N

n > 0 ∧ termN(x, n) ⇒ n > m ∧ [termN(x, m) ∨
(termN(y, m) ∧ termN(z, m) ∧ termLN(ys, m) ∧

(x = suc(y) ∨ x = add(y, z) ∨ x = mul(y, z) ∨ x = head(ys)))]
(∀xs : LN)(∃n : Nat) termLN(xs, n) (9)LN
(∀xs : LN) termLN(xs, 0) ⇒ xs = nil (10)LN
(∀xs : LN)(∀n : Nat)(∃m : Nat)(∃y : N)(∃ys : LN) (11)LN

n > 0 ∧ termN(x, n) ⇒ n > m ∧ [termN(x, m) ∨
(termN(y, m) ∧ termLN(ys, m) ∧ xs = cons(y, ys))]

We obtain a model A of ExAddMulHead∪SuHLN ∪{¬(13)} with AGES. Sorts
are interpreted as follows: AN = ALN = {−1, 0} and ANat = N. For function
symbols:

ZA = −1 nilA = 0 sucA(x) = x addA(x, y) = 0
mulA(x, y) = 0 consA(x, xs) = −1 headA(xs) = −xs − 1

For predicates, x →A
N y ⇔ x ≥ y ∧ x ≥ 0, x →A

LN y ⇔ x = y = −1,
and both x(→∗

N)
Ay and x(→∗

LN)
Ay are true. We can check surjectivity of

hs : TΣs → As (for s ∈ {N, LN}). For instance, we have:

[Z]A = −1 [add(Z, Z)]A = 0 for sort N
[cons(Z, nil)]A = −1 [nil]A = 0 for sort LN

Proving Program Properties as First-Order Satisfiability 11

(2) Commutativity. It is well-known that both add and mul as defined by the
rules of R in Example 1 are commutative on ground terms, i.e., for all ground
terms s and t, add(s, t) =R add(t, s) and mul(s, t) =R mul(t, s), where =R is
the equational theory induced by the rules
 → r in R treated as equations

 = r. Actually, by using Birkhoff’s theorem and the fact that R is confluent,
we can rephrase commutativity of add as joinability as follows:

(∀x)(∀y)(∃z) add(x, y) →∗ z ∧ add(y, x) →∗ z (14)

Remark 2. Proving commutativity of add and mul when defined by R in Example
1 by using Corollary 1 is possible (see Remark 1) but unlikely. We should first
define ϕ as ¬(14), i.e., ϕ is

(∃x)(∃y)(∀z) ¬(add(x, y) →∗ z) ∨ ¬(add(y, x) →∗ z) (15)

Since (15) contains two negative literals, Corollary 1 requires the use of N (→∗).

Since head is not completely defined, add and mul are not commutative in
ExAddMulHead. We prove this fact by disproving the sorted version of (14), i.e.,

(∀x : N)(∀y : N)(∃z : N) add(x, y) →∗ z ∧ add(y, x) →∗ z (16)

Due to the universal quantification of x and y in (16), we need to ensure that
hN : TΣN → AN is surjective. Since K(N) = {N, LN} due to head, we have SuHN =
SuHLN as above. AGES obtain a model A of ExAddMulHead ∪ SuHN ∪ {¬(16)} as
follows: AN = {0, 1}, ALN = {−1, 0} and ANat = N. Also,

ZA = 1 nilA = −1 sucA(x) = x addA(x, y) = y
mulA(x, y) = x consA(x, xs) = x − 1 headA(xs) = xs + 1

x →A
N y ⇔ x = y x(→∗

N)
Ay ⇔ x = y x →A

LN y ⇔ x = y x(→∗
LN)

Ay ⇔ true

5.2 Top-Termination

A TRS R is top-terminating if no infinitary reduction sequence performs
infinitely many rewrites at topmost position Λ [7]. From a computational point of
view, top-termination is important in the semantic description of lazy languages
as it is an important ingredient to guarantee that every initial expression has an
infinite normal form [7,8]. Accordingly, given a dummy sort S, the negation of

(∃x : S)(∀n ∈ N)(∃y : S) x(→∗ ◦ Λ→)ny (17)

(which claims for the existence of a term with infinitely many rewriting steps
at top) captures top-termination. We introduce a new predicate →�,Λ for the

composition →∗ ◦ Λ→ of the many-step rewriting relation →∗ (defined as usual,
i.e., by the whole theory R associated to R) and topmost rewriting Λ→ defined

12 S. Lucas

by a theory RΛ = {(∀x : S)

Λ→ r |
 → r ∈ R}. Sequences s →n

�,Λ t meaning
that s →�,Λ-reduces into t in n + 1 →�,Λ-steps are defined as follows:

(∀x, y, z : S) x →∗ y ∧ y
Λ→ z ⇒ x →0

�,Λ z (18)

(∀x, y, z : S)(∀n ∈ N) x →0
�,Λ y ∧ y →n

�,Λ z ⇒ x →n+1
�,Λ z (19)

Overall, the sentence ϕ to be disproved is:

(∃x : S)(∀n : Nat)(∃y : S) x →n
�,Λ y (20)

Remark 3. We use N in (17) but Nat in (20). Indeed, (17) is not a valid sentence
because N is not first-order axiomatizable, see, e.g. [11, Sect. 2.2]. This is con-
sistent with the well-known fact that termination (or top-termination) cannot
be encoded in first-order logic [22, Sect. 5.1.4]. We can use (20) together with
Corollary 1 provided that Nat is interpreted as N. This is possible with AGES.

Example 2. Consider the following (nonterminating) TRS R [8, Sect. 9.5]:

non → f(g, f(non, g)) (21)
g → a (22)

f(a, x) → a (23)
f(b, b) → b (24)
f(b, a) → b (25)

The associated theory RtopT is RtopT = R∪RΛ ∪{(18), (19)}, where RΛ is

non
Λ→ f(g, f(non, g)) (26)

g
Λ→ a (27)

(∀x : S) f(b, x) Λ→ b (28)

f(b, b) Λ→ b (29)

f(b, a) Λ→ b (30)

Note that (20) only requires that the homomorphism mapping terms of sort
Nat to N is surjective, which is automatically achieved by AGES. The structure
A with AS = {−1, 0, 1}, ANat = N, function symbols interpreted by: aA = 1,
bA = 1, gA = 0, nonA = −1, and fA(x) = 0; and predicate symbols as follows:

x →A y ⇔ y ≥ x ∧ x + y ≥ −1 x(→∗)Ay ⇔ y ≥ x

x(Λ→)Ay ⇔ y > x x(→n
�,Λ)Ay ⇔ y > x + n

is a model of RtopT ∪ {¬(20)} and proves top-termination of R.

Proving Program Properties as First-Order Satisfiability 13

6 Refutation Witnesses

In logic, a witness for an existentially quantified sentence (∃x)ϕ(x) is a spe-
cific value b to be substituted by x in ϕ(x) so that ϕ(b) is true (see, e.g., [2, p.
81]). Similarly, we can think of a value b such that ¬ϕ(b) holds as a witness of
(∃x)¬ϕ(x) or as a refutation witness for (∀x)ϕ(x); we can also think of b as a
counterexample to (∀x)ϕ(x) [13, p. 284]. Note, however, that witnesses that are
given as values b belonging to an interpretation domain A can be meaningless
for the user who is acquainted with the first-order language Ω but not so much
with abstract values from A (which is often automatically synthesized by using
some tool). Users can be happier to deal with terms t which are somehow con-
nected to witnesses b by a homomorphism, so that tA = b. Corollary 1 permits
a refutation of ϕ by finding a model A of ¬ϕ to conclude that I |= ¬ϕ. We
want to obtain instances of ϕ to better understand unsatisfiability of ϕ. In this
section we investigate this problem.

The negation ¬(6) of (6), i.e., of (Q1x1 : s1) · · · (Qkxk : sk)
∨m

i=1

∧ni

j=1 Lij is

(Q1x1 : s1) · · · (Qkxk : sk)
m∧

i=1

ni∨

j=1

¬Lij(x1, . . . , xk) (31)

where Qi is ∀ whenever Qi is ∃ and Qi is ∃ whenever Qi is ∀. We assume η ≤ k
universal quantifiers in (31) with indices U = {υ1, . . . , υη} ⊆ {1, . . . , k} and
hence k−η existential quantifiers with indices E = {ε1, . . . , εk−η} = {1, . . . , k}−
U . In the following η denotes k − η. For each ε ∈ E, we let Uε = {υ ∈ U |
υ < ε} be the (possibly empty) set of indices of universally quantified variables
in (31) occurring before xε in the quantification prefix of (31). Let ηε = |Uε|.
Note that Uε1 ⊆ Uε2 ⊆ · · · ⊆ Uεη . Let U∃ be the set of indices of universally
quantified variables occurring before some existentially quantified variable in
the quantification prefix of (31). Note that U∃ is empty whenever υ1 > εk−η

(no existential quantification after a universal quantification); otherwise, U∃ =
{υ1, . . . , υ∃} for some υ∃ ≤ υη. Accordingly, U∀ = U −U∃ = {εη +1, . . . , k} is the
set of indices of universally quantified variables occurring after all existentially
quantified variables in the quantification prefix of (31). Note that U∀ is empty
whenever ε1 > υη (no universal quantification after an existential quantification).

Most theorem provers transform sentences into universally quantified formu-
las by Skolemization (see, e.g., [12]). Thus, if k > η, i.e., (31) contains existential
quantifiers, we need to introduce Skolem function symbols skε : wε → sε for each
ε ∈ E, where wε is the (possibly empty) sequence of ηε sorts indexed by Uε. Note
that skε is a constant if ηε = 0. The Skolem normal form of (31) is

(∀xυ1 : sυ1) · · · (∀xυη
: sυη

)
m∧

i=1

ni∨

j=1

¬Lij(e1, . . . , ek) (32)

where for all 1 ≤ q ≤ k, (i) eq ≡ xq if q ∈ U and (ii) eq ≡ skq(x ηq
) if q ∈ E,

where x ηq
is the sequence of variables xν1 , . . . , xνηq

. If E �= ∅ (i.e., (31) and

14 S. Lucas

(32) differ), then (32) is a sentence of an extended signature Ωsk = (S,Σsk,Π)
where Σsk extends Σ with skolem functions. Since (32) logically implies (31) [2,
Sect. 19.2], every model A of (33) is a model of (32) as well.

Definition 1 (Set of refutation witnesses). Using the notation developed
in the previous paragraphs, let A be an Ωsk-structure such that hsq

is surjective
for all q ∈ U∃ ∪ E. The Ωsk-sentence (32) is given a set of refutation witnesses
Φ consisting of Ω-sentences φα for each valuation α of the variables xυ1 , . . . , xυ∃
indexed by U∃; each φα is (nondeterministically) defined as follows:

(∀xεη+1 : sεη+1) · · · (∀xk : sk)
m∧

i=1

ni∨

j=1

¬Lij(e′
1, . . . , e

′
k) (33)

where for all 1 ≤ q ≤ k, (i) e′
q ≡ xq if q ∈ U∀ and (ii) e′

q ≡ t if q ∈ U∃ ∪ E and
t ∈ TΣsq

is such that [t]A = [eq]αA.

Note that, in Definition 1 we could emphfail to find the necessary terms t ∈ TΣsq

if hsq
is not surjective. Note also that, whenever E is empty, Φ is a singleton

consisting of (33) which coincides with (32). We have the following:

Proposition 4. For every Ωsk-structure A, A |= (33) if and only if A |= Φ.

Refutation witnesses are built from symbols in the original signature Ω only. We
can use them as more intuitive counterexamples to the refuted property ϕ.

Proposition 5. Let Ω be a signature, S be a theory, ϕ be a sentence (6), and
A be a model of S such that for all negative literals Lij = ¬P (t) with P ∈ Πw

and substitutions σ, if h(σ(t)) ∈ PA then σ(t) ∈ P I . For all φ ∈ Φ, I |= φ.

Corollary 2. If (6) is positive, then for all refutation witnesses φ ∈ Φ, I |= φ.

Example 3. Consider ExAddMulHead in Sect. 5. The refutation of (13) using
AGES actually proceeds by skolemization of the negation of (13), i.e., of

(∃xs : LN)(∀x : N) ¬(head(xs) → x) (34)

With regard to (34), we have E = {1}, U∃ = ∅ and U∀ = {2}, where 1 and
2 refer to variables xs and x, respectively. Accordingly, υ∃ = 0. The only sort
involved in the variables indexed by U∃ ∪ E is LN. Since variables of sort LN are
universally quantified in (13), the application of Corollary 1 in Sect. 5 already
required surjectivity of hLN. The Skolem normal form of (34) is:

(∀x : N) ¬(head(skxs) → x) (35)

where skxs is a new constant of sort LN. The structure A computed by AGES
is actually a model of R ∪ SuHLN ∪ {(36)}, for SuHLN in Sect. 5. For skxs, we
have skA

xs = 0. There is a single (empty) valuation α of variables indexed by
U∃ (which is empty). Hence, Φ = {φα} is a singleton. According to Definition
1, since [nil]A = 0 = [skxs]A, the following sentence could be associated to the
refutation witness φα: (∀x : N) ¬(head(nil) → x).

Proving Program Properties as First-Order Satisfiability 15

Example 4. With regard to the computation of refutation witnesses for R in
Example 2, we start with the negation of (17), i.e.,

(∀x : S)(∃n : Nat)(∀y : S) ¬(x(→∗ ◦ Λ→)ny) (36)

We have E = {2}, U∃ = {1} and U∀ = {3}. The Skolem normal form of (36) is

(∀x : S)(∀y : S) ¬(x(→∗ ◦ Λ→)skn(x)y) (37)

where skn : S → Nat is a new (monadic) function symbol. Since the sorts for
variables indexed by U∃∪E are S and Nat , we require surjectivity of hS and hNat .
This is achieved by using SuHS and interpreting Nat as N as done in AGES. The
structure A in Example 2 is a model of RtopT ∪SuHS∪{(38)}. The interpretation
obtained for skn is

skA
n (x) = 1 − x

Now we can compute refutation witnesses for (37). Since Uε = {1} is a singleton
whose index refers to a variable x of sort S and AS = {−1, 0, 1}, we have to deal
with three valuation functions for the only variable x to be considered:

α−1(x) = −1 α0(x) = 0 α1(x) = 1

We have Φ = {φα−1 , φα0 , φα1}, where φα−1 is (∀y : S)¬(non(→∗ ◦ Λ→)2y), φα0 is

(∀y : S)¬(g(→∗ ◦ Λ→)1y), and φα1 is (∀y : S)¬(a(→∗ ◦ Λ→)0y).
Note that, since fA(x) = 0, we could also write φα0 as (∀y : S) ¬(f(t)(→∗ ◦ Λ→)1y)
for every ground term t. This gives additional, complementary information.

7 Example of Application with General Sentences

Consider a well-known example of a locally confluent but nonconfluent TRS R:

b → a b → c c → b c → d

Example 5 (Local confluence of R). Local confluence corresponds to ϕWCR in
Table 1. As explained in Remark 1, we start with ϕWCR = ¬ϕWCR i.e.,

(∃x, y, z : S)(∀u : S) (x → y ∧ x → z ∧ ¬(x →∗ u)) ∨ (x → y ∧ x → z ∧ ¬(z →∗ u)) (38)

Due to the universal quantifier, hS : TΣS → AS must be surjective. We can
achieve this by adding the following sentence SuHT

S for T = {a, b, c, d}:

(∀x : S) x = a ∨ x = b ∨ x = c ∨ x = d (39)

Due to the negative literals ¬(x →∗ u) and ¬(z →∗ u), we consider N , repre-
senting the forbidden many-step rewriting steps, explicitly given by:

N = {¬(a →∗ b), ¬(a →∗ c), ¬(a →∗ d), ¬(d →∗ a), ¬(d →∗ b), ¬(d →∗ c) }

16 S. Lucas

We apply Corollary 1 to prove that ¬ϕWCR (i.e., ϕWCR) holds by obtaining
a model of R ∪ SuHT

S ∪ N ∪ {ϕWCR} with Mace4.2 The structure has domain
AS = {0, 1, 2, 3}; constants are interpreted as follows: aA = 0, bA = 1, cA = 3,
and dA = 2. With regard to predicate symbols, we have:

x →A y = {(1, 0), (1, 3), (3, 1), (3, 2)} x(→∗)Ay = {(1, x), (3, x) | x ∈ AS}

This proves R locally confluent.

Example 6 (Nonconfluence of R). In order to disprove confluence of R, which
is represented by ϕCR in Table 1, we first write ϕCR in the form (6), i.e.,

(∀x, y, z : S)(∃u : S) ¬(x →∗ y) ∨ ¬(x →∗ z) ∨ (y →∗ u ∧ z →∗ u) (40)

Due to the universal quantification and negative literals, we use SuHT
S and N as

in Example 5. We obtain a model A of R∪SuHT
S ∪N ∪{¬ϕCR} with Mace4. The

domain is AS = {0, 1, 2} and symbols are interpreted by: aA = 0, bA = cA = 1,
dA = 2, x →A y ⇔ x = 1, and x(→∗)Ay ⇔ x = y ∨ x = 1. This proves
nonconfluence of R. With regard to the refutation witnesses, ¬ϕCR is

(∃x, y, z : S)(∀u : S) x →∗ y ∧ x →∗ z ∧ ¬(y →∗ u ∧ z →∗ u) (41)

and its Skolem normal form is

(∀u : S) skx →∗ sky ∧ skx →∗ skz ∧ ¬(sky →∗ u ∧ skz →∗ u) (42)

Mace4 yields skA
x = 1, skA

y = 0 and skA
z = 2; Φ consists of a single sentence; e.g.,

(∀u : S) b →∗ a ∧ b →∗ d ∧ ¬(a →∗ u ∧ d →∗ u) (43)

but also: (∀u : S) c →∗ a∧ c →∗ d∧ ¬(a →∗ u ∧ d →∗ u). Indeed, they represent
the two possible cases of nonconfluent behavior in R.

Example 7 (Normalizing TRS). R is not terminating, but we can prove it nor-
malizing (i.e., every term has a normal form) by disproving ϕWN , for ϕWN in
Table 1. Therefore, ϕWN is (∃x : S)(∀y : S)(∃z : S) (¬(x →∗ y) ∨ y → z). We
guarantee surjectivity by using SuHT

S in Example 5; we also use N in Example
5. Mace4 obtains a model A of R ∪ SuHT

S ∪ N ∪ {ϕWN } with AS = {0, 1, 2},
aA = 0, bA = cA = 1, dA = 2, x →A y ⇔ x = 1, and x(→∗)Ay ⇔ x = y ∨x = 1.

8 Related Work

In [14, Sect. 6] we already compared our approach to existing techniques and tools
for the so-called First-Order Theory of Rewriting [6], which applies to restricted
classes of TRSs and formulas. In [16], we show that our semantic approach is
practical when applied to arbitrary (Conditional) TRSs.
2 This proves R ground locally confluent, i.e., variables in ϕWCR refer to ground terms

only; since R is a ground TRS, local confluence and ground local confluence coincide.

Proving Program Properties as First-Order Satisfiability 17

McCune’s Prover9/Mace4 are popular automated systems for theorem prov-
ing in first-order and equational logic. Given a theory S and a goal or statement
ϕ, Prover9 tries to prove that S � ϕ holds. The generator of models Mace4 com-
plements Prover9 as follows: “If the statement is the denial of some conjecture,
any structures found by Mace4 are counterexamples to the conjecture”.3 Accord-
ingly, the user introduces ϕ in the goal section of Mace4, but the system seeks
a model of S ∪ {¬ϕ}. Indeed, as discussed in Sect. 1, if A |= S ∪ {¬ϕ} holds,
then S � ϕ does not hold. But, unless ϕ is an ECBCA, this does not necessarily
mean that ϕ does not hold of a program P with S = P ! Consider the following
‘misleading’ session with Mace4 that ‘disproves’ commutativity of the addition.

Example 8. Consider R in Example 1. Mace4 obtains a model A of R∪{¬(14)}
with domain A = {0, 1}, and function and predicate symbols as follows: 0A = 0,

sA(x) = x, addA(x, y) =
{

1 if x = 0 ∧ y = 1
0 otherwise , mulA(x, y) = 0, and →A and

(→∗)A both interpreted as the equality. Additionally, Mace4 also displays the
following: c1A = 0 and c2A = 1. These c1 and c2 are new Skolem symbols (but
unexpected for most users!). In practice, Mace4 finds a model for the Skolem
normal form of ¬(14), which is

(∀z) ¬(add(c1, c2) →∗ z ∧ add(c2, c1) →∗ z) (44)

Indeed, A is a model of R∪{(45)}. But we should not conclude (as suggested by
the aforementioned sentences in Mace4 manual) that add is not commutative!

The problem in Example 8 is that h : IR → A is not surjective. For instance,
no ground term t ∈ TΣ satisfies tA = 1; note that c1, c2 /∈ Σ. Since prov-
ing validity in IS is not the main purpose of Mace4, no warning in its doc-
umentation prevents the prospective user to give credit to the ‘refutation’ of
(ground) commutativity for the addition computed by Mace4. We believe that
our work is helpful to clarify the use of such tools, and even improve it by adding
(for instance) sentences reinforcing surjectivity to avoid the problem discussed
above. For instance, Mace4 obtains no model of R ∪ SuHT ∪ {(45)} with, e.g.,
T = {0, s(0)}.

Proofs by Satisfiability vs. Theorem Proving. In order to further clarify
the differences between our approach and the use of first-order theorem proving
tools, consider the CTRS R in [14, Example 1], consisting of the rules

b → a (45)
a → b ⇐ c → b (46)

3 https://www.cs.unm.edu/∼mccune/prover9/manual/2009-11A/mace4.html.

https://www.cs.unm.edu/~mccune/prover9/manual/2009-11A/mace4.html

18 S. Lucas

Its associated Horn theory R is:

(∀x) x →∗ x (47)
(∀x, y, z) x → y ∧ y →∗ z ⇒ x →∗ z (48)

b → a (49)
c →∗ b ⇒ a → b (50)

We consider some simple tests regarding goals b → a and a → b and their
negations. We tried such four goals with the following theorem provers: Alt-Ergo,4

Prover9/Mace4, PDL-tableau,5 and Princess6 (most of them with a web-interface).
Besides attempting a proof of each goal with respect to R, tools Alt-Ergo, Mace4,
and Princess can also generate models of the negation of the tested goal when
the proof attempt fails. The following table summarizes the results of our test:

Goal Alt-Ergo Mace4 PDL-tableau Princess

ϕ IR |= ϕ R	ϕ A|=¬ϕ R	ϕ A|=¬ϕ R	ϕ A|=¬ϕ R	ϕ A|=¬ϕ

1 b → a true Y N Y N Y – Y N

2 ¬(b → a) false N Y N Y N – N Y

3 a → b false N Y N Y N – N Y

4 ¬(a → b) true N Y N Y N – N Y

Goal ¬(a → b) in row 4 is not directly proved by any tool. Indeed, since ¬(a → b)
is not a logical consequence of R (see [14, Example 2]), R � ¬(a → b) does not
hold. Our satisfiability approach can be used to formally prove that R cannot
reduce a into b, i.e., that IR |= ¬(a → b) (or a �→R b) holds: from row 3 we
see that A |= ¬(a → b) holds for the models A of R computed by some of the
tools. By Corollary 1, the desired conclusion a �→R b follows. Note also that
row 4 reports on the ability of some tools to obtain models of a → b. However,
Corollary 1 cannot be used to conclude that a →R b holds (which is obviously
wrong): since ϕ in row 4 is a negative literal, condition (b) in Corollary 1 must
be fulfilled before being able to conclude IR |= a → b from A |= a → b for some
model A of R. But this is not the case in our test set.

Although Remark 1 explains how an arbitrary program property ϕ can be
proved by using Corollary 1 (see also Sect. 7), from a practical point of view we
better think of our approach as complementary to the use of first-order proof
techniques and tools. Provability of ϕ (i.e., S � ϕ) implies that IS |= ϕ holds.
Thus, as usual, a proof of ϕ with respect to S implies that a program P with
S = P has property ϕ. However, as discussed above, showing that S � ϕ or
S � ¬ϕ holds is often impossible. We can try to prove IS |= ¬ϕ by using
Corollary 1, though. For positive sentences ϕ, this is often affordable.
4 https://alt-ergo.ocamlpro.com/.
5 http://www.cs.man.ac.uk/∼schmidt/pdl-tableau/.
6 http://www.philipp.ruemmer.org/princess.shtml.

https://alt-ergo.ocamlpro.com/
http://www.cs.man.ac.uk/~schmidt/pdl-tableau/
http://www.philipp.ruemmer.org/princess.shtml

Proving Program Properties as First-Order Satisfiability 19

9 Conclusions and Future Work

We have shown how to prove properties ϕ of computational systems whose
semantics can be given as a first-order theory S. Our proofs by satisfiability
proceed (see Remark 1) by just finding a model A of S ∪ Z ∪ {ϕ} where Z
is an auxiliary theory representing the requirements (a) and (b) in Corollary
1 (referred to ¬ϕ), so that A |= S ∪ Z ∪ {ϕ} implies IS |= ϕ. Surjectivity of
the interpretation homomorphisms (requirement (a) in Corollary 1) is ensured
if Z includes the appropriate theory SuH (see Sect. 4); and requirement (b),
for dealing with negative literals, is fulfilled if Z includes N in Proposition 1.
Our results properly subsume the ones in [14], which concern existentially closed
boolean combinations of atoms only. We have also introduced the notion of refu-
tation witness which is useful to obtain counterexamples by using the symbols
in the first-order language rather than values of the computed model.

From a theoretical point of view, the idea of proving program properties as
satisfiability (see Remark 1) is appealing as it emphasizes the role of abstrac-
tion (introduced by semantic structures) in theorem proving and logic-based
program analysis. However, the requirement of surjectivity of the interpretation
homomorphisms and the use of theories N with negative information about some
of the predicates introduce additional difficulties in the model generation pro-
cess. Investigating methods for the practical implementation of our techniques,
and also finding specific areas of application where our approach can be useful
(as done in [16], for instance) is an interesting subject for future work.

Also, our research suggests that further investigation on the generation of
models for many-sorted theories that combines the use of finite and infinite
domains is necessary. For instance, [15] explains how to generate such models
by interpreting the sort, function, and predicate symbols by using linear algebra
techniques. This is implemented in AGES. Domains are defined as the solutions
of matrix inequalities, possibly restricted to an underlying set of values (e.g., Z);
thus, finite and infinite domains can be obtained as particular cases of the same
technique. Since piecewise definitions are allowed, we could eventually provide
fully detailed descriptions of functions and predicates by just adding more pieces
to the interpretations. However, such a flexibility is expensive. In contrast, Mace4
is based on a different principle (similar to [12]) and it is really fast, but only
finite domains can be generated. This is a problem, for instance, when using
Proposition 3 to guarantee surjectivity of homomorphisms hs : TΣs → As. Even
though As is finite, we still need to be able to interpret Nat as N, which is
not possible with Mace4. For this reason, the examples in Sect. 5 (where the
computed structures A have finite domains for the ‘proper’ sorts N, LN, and S,
and only Nat is interpreted as an infinite set) could not be handled with Mace4,
or with similar tools that are able to deal with sorts (e.g., SEM [24] or the work
in [21]) but which generate finite domains only.

Acknowledgements. I thank the anonymous referees for their comments and sug-
gestions. I also thank Philipp Rümmer and Mohamed Iguernlala for their clarifying
remarks about the use of Princess and Alt-Ergo, respectively.

20 S. Lucas

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
New York (1998)

2. Boolos, G.S., Burgess, J.P., Jeffrey, R.C.: Computability and Logic, 4th edn. Cam-
bridge University Press, Cambridge (2002)

3. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theoret. Comput. Sci. 351(1), 386–414 (2006)

4. Clark, K.L.: Predicate logic as a computational formalism. Ph.D. thesis, Research
Monograph 79/59 TOC, Department of Computing, Imperial College of Science,
and Technology, University of London, December 1979

5. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

6. Dauchet, M., Tison, S.: The theory of ground rewrite systems is decidable. In:
Proceedings of LICS 1990, pp. 242–248. IEEE Press (1990)

7. Dershowitz, N., Kaplan, S., Plaisted, D.: Rewrite, rewrite, rewrite, rewrite, rewrite,
. . . Theoret. Comput. Sci. 83, 71–96 (1991)

8. Endrullis, J., Hendriks, D.: Lazy productivity via termination. Theoret. Comput.
Sci. 412, 3203–3225 (2011)

9. Goguen, J.A., Meseguer, J.: Models and equality for logical programming. In:
Ehrig, H., Kowalski, R., Levi, G., Montanari, U. (eds.) TAPSOFT 1987. LNCS, vol.
250, pp. 1–22. Springer, Heidelberg (1987). https://doi.org/10.1007/BFb0014969

10. Gutiérrez, R., Lucas, S., Reinoso, P.: A tool for the automatic generation of logical
models of order-sorted first-order theories. In: Proceedings of PROLE 2016, pp.
215–230 (2016). Tool available at http://zenon.dsic.upv.es/ages/

11. Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)
12. Kim, S., Zhang, H.: ModGen: theorem proving by model generation. In: Proceed-

ings of AAAI 1994, pp. 162–167. AAAI Press/MIT Press (1994)
13. Kleene, S.C.: Mathematical Logic. Wiley, Hoboken (1967). (Dover 2002)
14. Lucas, S.: Analysis of rewriting-based systems as first-order theories. In: Fioravanti,

F., Gallagher, J.P. (eds.) LOPSTR 2017. LNCS, vol. 10855, pp. 180–197. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94460-9 11

15. Lucas, S., Gutiérrez, R.: Automatic synthesis of logical models for order-sorted
first-order theories. J. Autom. Reason. 60(4), 465–501 (2018)

16. Lucas, S., Gutiérrez, R.: Use of logical models for proving infeasibility in term
rewriting. Inf. Process. Lett. 136, 90–95 (2018)

17. McCune, W.: Prover9 and Mace4 (2005–2010). http://www.cs.unm.edu/∼mccune/
prover9/

18. Meseguer, J.: Twenty years of rewriting logic. J. Logic Algebraic Program. 81,
721–781 (2012)

19. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, New York (2002).
https://doi.org/10.1007/978-1-4757-3661-8

20. Reiter, R.: On closed world data bases. In: Logic and Data Bases, pp. 119–140.
Plenum Press, New York (1978)

21. Reger, G., Suda, M., Voronkov, A.: Finding finite models in multi-sorted first-
order logic. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp.
323–341. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2 20

https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/BFb0014969
http://zenon.dsic.upv.es/ages/
https://doi.org/10.1007/978-3-319-94460-9_11
http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/
https://doi.org/10.1007/978-1-4757-3661-8
https://doi.org/10.1007/978-3-319-40970-2_20

Proving Program Properties as First-Order Satisfiability 21

22. Shapiro, S.: Foundations Without Foundationalism: A Case for Second-Order
Logic. Clarendon Press, Oxford (1991)

23. Wang, H.: Logic of many-sorted theories. J. Symbolic Logic 17(2), 105–116 (1952)
24. Zhang, J., Zhang, H.: Generating models by SEM. In: McRobbie, M.A., Slaney,

J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 308–312. Springer, New York (1996)

	Proving Program Properties as First-Order Satisfiability
	1 Introduction
	2 Many-Sorted First-Order Logic
	3 Preservation of Many-Sorted First-Order Sentences
	4 Surjective Homomorphisms
	5 Examples of Application with Positive Sentences
	5.1 Complete Definedness and Commutativity
	5.2 Top-Termination

	6 Refutation Witnesses
	7 Example of Application with General Sentences
	8 Related Work
	9 Conclusions and Future Work
	References

