
Fred Mesnard
Peter J. Stuckey (Eds.)

 123

LN
CS

 1
14

08

28th International Symposium, LOPSTR 2018
Frankfurt/Main, Germany, September 4–6, 2018
Revised Selected Papers

Logic-Based
Program Synthesis
and Transformation

Lecture Notes in Computer Science 11408

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Fred Mesnard • Peter J. Stuckey (Eds.)

Logic-Based
Program Synthesis
and Transformation
28th International Symposium, LOPSTR 2018
Frankfurt/Main, Germany, September 4–6, 2018
Revised Selected Papers

123

Editors
Fred Mesnard
University of Reunion Island
Sainte-Clotilde, France

Peter J. Stuckey
Monash University
Melbourne, VIC, Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-13837-0 ISBN 978-3-030-13838-7 (eBook)
https://doi.org/10.1007/978-3-030-13838-7

Library of Congress Control Number: 2019932012

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-13838-7

Preface

This volume contains a selection of the papers presented at LOPSTR 2018, the 28th
International Symposium on Logic-Based Program Synthesis and Transformation held
during September 4–6, 2018 at the the Goethe University Frankfurt am Main,
Germany. It was co-located with PPDP 2018, the 20th International ACM SIGPLAN
Symposium on Principles and Practice of Declarative Programming, and WFLP 2018,
the 26th International Workshop on Functional and Logic Programming. The
co-location of these related conferences has occurred several times and has been
stimulating and cross-fertilizing.

Previous LOPSTR symposia were held in Namur (2017), Edinburgh (2016),
Siena (2015), Canterbury (2014), Madrid (2013 and 2002), Leuven (2012 and 1997),
Odense (2011), Hagenberg (2010), Coimbra (2009), Valencia (2008), Lyngby (2007),
Venice (2006 and 1999), London (2005 and 2000), Verona (2004), Uppsala (2003),
Paphos (2001), Manchester (1998, 1992, and 1991), Stockholm (1996), Arnhem (1995),
Pisa (1994), and Louvain-la-Neuve (1993). More information about the symposium
can be found at: http://ppdp-lopstr-18.cs.uni-frankfurt.de/lopstr18.html.

The aim of the LOPSTR series is to stimulate and promote international research
and collaboration on logic-based program development. LOPSTR is open to contri-
butions on all aspects of logic-based program development, all stages of the software
life cycle, and issues of both programming-in-the-small and programming-in-the-large.
LOPSTR traditionally solicits contributions, in any language paradigm, in the areas of
synthesis, specification, transformation, analysis and verification, specialization, testing
and certification, composition, program/model manipulation, optimization, transfor-
mational techniques in software engineering, inversion, applications, and tools.
LOPSTR has a reputation for being a lively, friendly forum that allows for the pre-
sentation and discussion of both finished work and work in progress. Formal pro-
ceedings are produced only after the symposium so that authors can incorporate the
feedback from the conference presentation and discussion.

In response to the calls for papers, 29 contributions were submitted from ten
countries. The Program Committee accepted seven full papers for immediate inclusion
in the formal proceedings, and four more papers presented at the symposium were
accepted after a revision and another round of reviewing. Each submission was
reviewed by at least three Program Committee members or external referees. The paper
“Proving Program Properties as First-Order Satisfiability” by Salvador Lucas won the
best paper award, sponsored by Springer. In addition to the 11 contributed papers, this
volume includes the abstracts of the invited talks by three outstanding speakers:
Philippa Gardner (Imperial College London, UK) and Jorge A. Navas (SRI Interna-
tional, USA), whose talks were shared with PPDP, and Laure Gonnord (University of
Lyon 1, France), whose talk was shared with WFLP. We also had two invited tutorials:
Fabio Fioravanti (University of Chieti-Pescara, Italy) presented “The VeriMAP System

http://ppdp-lopstr-18.cs.uni-frankfurt.de/lopstr18.html

for Program Transformation and Verification” and Manuel Hermenegildo (IMDEA
Software Institute and Technical University of Madrid, Spain) summarized “25 Years
of Ciao.”

We want to thank the Program Committee members, who worked diligently to
produce high-quality reviews for the submitted papers, as well as all the external
reviewers involved in the paper selection. We are very grateful to the local organizer,
David Sabel, and his team for the great job they did in managing the symposium. Many
thanks also to Peter Thiemann, the Program Committee chair of PPDP, and Josep Silva,
the Program Committee chair of WFLP, with whom we interacted for coordinating the
events. We would also like to thank Andrei Voronkov for his excellent EasyChair
system that automates many of the tasks involved in chairing a conference.

Special thanks go to the invited speakers and to all the authors who submitted and
presented their papers at LOPSTR 2018. We also thank our sponsors, the Goethe
University Frankfurt am Main, the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation), and Springer for their cooperation and support in the organi-
zation of the symposium.

January 2019 Fred Mesnard
Peter J. Stuckey

VI Preface

Organization

Program Committee

Elvira Albert Universidad Complutense de Madrid, Spain
Sandrine Blazy University of Rennes 1 - IRISA, France
Mats Carlsson SICS, Sweden
Agostino Dovier Università degli Studi di Udine, Italy
Wlodek Drabent IPI PAN Warszawa, Poland
Gregory Duck National University of Singapore, Singapore
Maurizio Gabbrielli University of Bologna, Italy
Juergen Giesl RWTH Aachen University, Germany
Michael Hanus CAU Kiel, Germany
Salvador Lucas Universitat Politècnica de València, Spain
Fred Mesnard Université de La Réunion, France
Etienne Payet Université de La Réunion, France
Alberto Pettorossi Università di Roma Tor Vergata, Italy
Vitor Santos Costa University of Porto, Portugal
Tom Schrijvers Katholieke Universiteit Leuven, Belgium
Julien Signoles CEA LIST, France
Harald Sondergaard The University of Melbourne, Australia
Fausto Spoto University of Verona, Italy
Peter Stuckey The University of Melbourne, Australia
Markus Triska Vienna University of Technology, Austria
Wim Vanhoof University of Namur, Belgium
German Vidal Universitat Politècnica de València, Spain

Additional Reviewers

Gomez-Zamalloa, Miguel
Gordillo, Pablo
Maurica, Fonenantsoa
Schubert, Aleksy

Villanueva, Alicia
Yamada, Akihisa
Yoshimizu, Akira

Abstracts of Invited Talks

Formal Methods for JavaScript

Philippa Gardner

Imperial College London, UK
pg@doc.ic.ac.uk

Abstract. We present a novel, unified approach to the development of com-
positional symbolic execution tools, which bridges the gap between traditional
symbolic execution and compositional program reasoning based on separation
logic. We apply our approach to JavaScript, providing support for full verifi-
cation, whole-program symbolic testing, and automatic compositional testing
based on bi-abduction.

Constrained Horn Clauses for Verification

Jorge Navas

SRI International, USA
Jorge.Navas@sri.com

Abstract. Developing scalable software verification tools is a very difficult task.
First, due to the undecidability of the verification problem, these tools, must be
highly tuned and engineered to provide reasonable efficiency and precision
trade-offs. Second, different programming languages come with very diverse
assortments of syntactic and semantic features. Third, the diverse encoding
of the verification problem makes the integration with other powerful solvers
and verifiers difficult. This talk presents SeaHorn – an open source automated
Constrained Horn clause-based reasoning framework. SeaHorn combines
advanced automated solving techniques based on Satisfiability Modulo Theory
(SMT) and Abstract Interpretation. SeaHorn is built on top of LLVM using its
front-end(s) to deal with the idiosyncrasies of the syntax and it highly benefits
from LLVM optimizations to reduce the verification effort. SeaHorn uses
Constrained Horn clauses (CHC) which are a uniform way to formally represent
a broad variety of transition systems while allowing many encoding styles of
verification conditions. Moreover, the recent popularity of CHC as an inter-
mediate language for verification engines makes it possible to interface SeaHorn
with a variety of new and emerging tools. All of these features make SeaHorn a
versatile and highly customizable tool which allows researchers to easily build
or experiment with new verification techniques.

Experiences in Designing Scalable Static
Analyses

Laure Gonnord

University of Lyon 1, France
Laure.Gonnord@univ-lyon1.fr

Abstract. Proving the absence of bugs in a given software (problem which has
been known to be intrinsically hard since Turing and Cook) is not the only
challenge in software development. Indeed, the ever growing complexity of
software increases the need for more trustable optimisations. Solving these two
problems (reliability, optimisation) implies the development of safe (without
false negative answers) and efficient (wrt memory and time) analyses, yet pre-
cise enough (with few false positive answers). In this talk I will present some
experiences in the design of scalable static analyses inside compilers, and try to
make a synthesis about the general framework we, together with my coauthors,
used to develop them. I will also show some experimental evidence of the
impact of this work on real-world compilers, as well as future perspective for
this area of research.

Abstracts of Invited Tutorials

The VeriMAP System for Program
Transformation and Verification

Fabio Fioravanti

University of Chieti-Pescara, Italy
fioravanti@unich.it

Abstract. Constrained Horn Clauses (CHC) are becoming very popular for
representing programs and verification problems, and several tools have been
developed for checking their satisfiability. In this tutorial we will survey recent
work on satisfiability-preserving transformation techniques for CHC and we will
show how the VeriMAP system can be used effectively to (i) generate CHC
verification conditions from the programming language semantics, (ii) prove
safety properties of imperative programs manipulating integers and arrays,
(iii) prove relational program properties, such as program equivalence and
non-interference, (iv) check the satisfiability of CHC with inductively-defined
data structures (e.g. lists and trees), (v) prove safety and controllability prop-
erties of time-aware business processes.

25 Years of Ciao

Manuel Hermenegildo

IMDEA Software Institute and Technical University of Madrid, Spain
herme@fi.upm.es

Abstract. Ciao is a logic-based, multi-paradigm programming language which
has pioneered over the years many interesting language- and programming
environment-related concepts. An example is the notion of programming lan-
guages as modular language-building tools rather than closed designs. Another
is the idea of dynamic languages that can optionally and gradually offer formal
guarantees, which is also a solution for the classic dichotomy between dynamic
and static typing: Ciao has many dynamic features (e.g., dynamically typed,
dynamic program modification) but includes an assertion language for (op-
tionally) declaring program properties and powerful tools for static inference
and static/dynamic checking of such assertions, testing, documentation, etc. We
will provide a hands-on overview of these features, concentrating on the novel
aspects, the motivations behind their design and implementation, their evolution
over time, and, specially, their use. In particular, we will show how the system
can be used not only as a programming tool and as a language design tool, but
also as a general-purpose program analysis and verification tool, based on the
technique of translating program semantics (ranging from source to bytecode,
LLVM, or assembly) into Horn-clause representation, and idea which Ciao also
introduced early on. Finally, we will present some recent work in areas such as
scalability, incrementality, or static vs. dynamic costs, as well as some future
plans and ideas.

Contents

Analysis of Term Rewriting

Proving Program Properties as First-Order Satisfiability 3
Salvador Lucas

Guided Unfoldings for Finding Loops in Standard Term Rewriting 22
Étienne Payet

Homeomorphic Embedding Modulo Combinations of Associativity
and Commutativity Axioms . 38

María Alpuente, Angel Cuenca-Ortega, Santiago Escobar,
and José Meseguer

Logic-Based Distributed/Concurrent Programming

Multiparty Classical Choreographies . 59
Marco Carbone, Luís Cruz-Filipe, Fabrizio Montesi,
and Agata Murawska

A Pragmatic, Scalable Approach to Correct-by-Construction Process
Composition Using Classical Linear Logic Inference 77

Petros Papapanagiotou and Jacques Fleuriot

Confluence of CHR Revisited: Invariants and Modulo Equivalence 94
Henning Christiansen and Maja H. Kirkeby

Analysis of Logic Programming

Compiling Control as Offline Partial Deduction . 115
Vincent Nys and Danny De Schreye

Predicate Specialization for Definitional Higher-Order Logic Programs 132
Antonis Troumpoukis and Angelos Charalambidis

An Assertion Language for Slicing Constraint Logic Languages 148
Moreno Falaschi and Carlos Olarte

Program Analysis

Eliminating Unstable Tests in Floating-Point Programs 169
Laura Titolo, César A. Muñoz, Marco A. Feliú,
and Mariano M. Moscato

Multivariant Assertion-Based Guidance in Abstract Interpretation 184
Isabel Garcia-Contreras, Jose F. Morales, and Manuel V. Hermenegildo

Author Index . 203

XX Contents

Analysis of Term Rewriting

Proving Program Properties
as First-Order Satisfiability

Salvador Lucas(B)

DSIC, Universitat Politècnica de València, Valencia, Spain
slucas@dsic.upv.es

http://slucas.webs.upv.es/

Abstract. Program semantics can often be expressed as a (many-
sorted) first-order theory S, and program properties as sentences ϕ which
are intended to hold in the canonical model of such a theory, which is
often incomputable. Recently, we have shown that properties ϕ expressed
as the existential closure of a boolean combination of atoms can be dis-
proved by just finding a model of S and the negation ¬ϕ of ϕ. Fur-
thermore, this idea works quite well in practice due to the existence of
powerful tools for the automatic generation of models for (many-sorted)
first-order theories. In this paper we extend our previous results to arbi-
trary properties, expressed as sentences without any special restriction.
Consequently, one can prove a program property ϕ by just finding a
model of an appropriate theory (including S and possibly something
else) and an appropriate first-order formula related to ϕ. Beyond its pos-
sible theoretical interest, we show that our results can also be of practical
use in several respects.

Keywords: First-order logic · Logical models · Program analysis

1 Introduction

Given a first-order theory S and a sentence ϕ, finding a model A of S ∪{¬ϕ}, i.e.,
such that A |= S ∪{¬ϕ} holds, shows indeed that ϕ is not a logical consequence
of S: there is at least one model of S (e.g., A) which does not satisfy ϕ (as it
satisfies ¬ϕ). Provability of ϕ in S, i.e., S � ϕ, implies (by correctness of the
proof calculus) that ϕ is a logical consequence of S (written S |= ϕ). Thus,
A |= S ∪ {¬ϕ} disproves ϕ regarding S; this can be written ¬(S � ϕ) by using
some metalevel notation. In general, this does not allow us to conclude that ¬ϕ
is proved, i.e., S � ¬ϕ, or is a logical consequence of S, i.e., S |= ¬ϕ. What can
be concluded about ¬ϕ regarding S from the fact that A |= S∪{¬ϕ} holds? Can
this be advantageously used in a ‘logic-based’ approach to program analysis?

In [14], some answers to these questions are given: a sentence ϕ which is an
Existentially Closed Boolean Combination of Atoms (ECBCA for short) does not

Partially supported by the EU (FEDER), projects TIN2015-69175-C4-1-R, and GV
PROMETEOII/2015/013.

c© Springer Nature Switzerland AG 2019
F. Mesnard and P. J. Stuckey (Eds.): LOPSTR 2018, LNCS 11408, pp. 3–21, 2019.
https://doi.org/10.1007/978-3-030-13838-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13838-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-13838-7_1

4 S. Lucas

hold in the initial model IS of a theory S consisting of a set of ground atoms
if we find a model A of S ∪ {¬ϕ} [14, Corollary 2]. This is useful in program
analysis when considering programs P that are given a theory P representing
its operational semantics so that the execution of P is described as a set IP

of (ground) atoms A which can be proved from P (i.e., IP is the initial model
of P in the usual first-order sense; in the following, we often refer to it as its
canonical model [11, Sect. 1.5]). Actually, rather than being logical consequences
of P , the intended meaning of first-order sentences ϕ that represent properties
of P is that they hold in the initial model of P , see [4, Chap. 4], for instance.

In [14,16] we applied this approach to prove computational properties of
rewriting-based systems in practice. This includes Term Rewriting Systems
(TRSs [1]) and more general rewriting-based formalisms [3,9,18,19].

Example 1. Consider the following TRS R with the well-known rules defining
the addition and product of natural numbers in Peano’s notation:

add(0, x) → x (1)
add(s(x), y) → s(add(x, y)) (2)

mul(0, x) → 0 (3)
mul(s(x), y) → add(y,mul(x, y)) (4)

The associated theory R is the following:

(∀x) x →∗ x

(∀x, y, z) x → y ∧ y →∗ z ⇒ x →∗ z

(∀x, y) x → y ⇒ s(x) → s(y)

(∀x, y, z) x → y ⇒ add(x, z) → add(y, z)

(∀x, y, z) x → y ⇒ add(z, x) → add(z, y)

(∀x, y, z) x → y ⇒ mul(x, z) → mul(y, z)

(∀x, y, z) x → y ⇒ mul(z, x) → mul(z, y)

(∀x) add(0, x) → x

(∀x, y) add(s(x), y) → s(add(x, y))

(∀x) mul(0, x) → 0

(∀x, y) mul(s(x), y) → add(y,mul(x, y))

The first sentence in the first column represents reflexivity of many-step rewrit-
ing, with predicate symbol →∗; the second sentence shows how one-step rewrit-
ing, with predicate symbol →, contributes to →∗. The next sentences describe
the propagation of rewriting steps to (arguments of) symbols s, add and mul.
The second column describes the rules of R. More details can be found in [14,
Sect. 4]. In the initial or least Herbrand model IR of R, → and →∗ are inter-
preted as the sets (→)IR and (→∗)IR of all pairs (s, t) of ground terms s and t
such that s →R t and s →∗

R t, respectively. Now, we can express the property
“the double of some natural number can be an odd number” as an ECBCA:

(∃x)(∃y)(∃z) add(x, x) →∗ z ∧ s(mul(s(s(0)), y)) →∗ z (5)

With the automatic model generator Mace4 [17] we find a model of R ∪ {¬(5)}
with domain A = {0, 1}. Function symbols are interpreted as follows: 0A = 0;

Proving Program Properties as First-Order Satisfiability 5

sA(x) = 1 − x; addA(x, y) returns 0 if x = y and 1 otherwise; mulA(x, y) returns
1 if x = y = 1 and 0 otherwise. Predicates → and →∗ are both interpreted as
the Aphequality. Thus, we have proved that (5) does not hold for R.

Our approach in [14] relies on the notion of preservation of a formula under
homomorphisms h between interpretations. Roughly speaking, a homomorphism
h preserves a formula ϕ if ϕ is satisfied in the target interpretation of h whenever
ϕ is satisfied in its domain interpretation [11, Sect. 2.4]. Homomorphisms pre-
serve ECBCA [11, Theorem 2.4.3(a)]; the results in [14] rely on this fact. In this
paper we extend [14] to deal with more general program properties. Homomor-
phisms preserve other first-order sentences if further requirements are imposed:
(i) positive sentences (where connective ‘¬’ is absent) are preserved under surjec-
tive homomorphisms and (ii) arbitrary sentences are preserved under embeddings
[11, Theorem 2.4.3]. In contrast to [14] (and [11]), here we focus on many-sorted
logic [23] (see Sect. 2). This has an important advantage: since homomorphisms in
many-sorted logic with set of sorts S are actually a family hs of homomorphisms
between components of sort s for each s ∈ S, the preservation requirements for
hs depend on the specific quantification of variables x : s for such a sort. In
Sect. 3 we provide a unique preservation theorem that subsumes the results in
[14], and even improves [11]. Section 4 investigates how to guarantee surjectiv-
ity of homomorphisms. Section 5 shows several application examples taken from
Table 1, which shows some properties of rewriting-based systems that could not
be captured in [14] but we are able to handle now. Here, t(x) is a term with vari-
ables x (or just t if it is ground), C (and D) are the constructor (resp. defined)
symbols in the TRS, and Λ→ is topmost rewriting. Section 6 discusses the pos-
sibility of providing more information about disproved properties by means of
refutation witnesses, i.e., (counter)examples of sentences which are synthesized
from the models that are used to disprove the property. Section 7 shows how to
deal with completely general sentences by means of a simple example. Section 8
discusses some related work. Section 9 concludes.

Table 1. Some properties about rewriting-based systems

Property ϕ

Ground reducible (∀x) (∃y) t(x) → y

Completely defined symbol f (∀x)(∃y) f(x1, . . . , xk) → y

Completely defined TRS (∀x)(∃y)∧
f∈D f(x1, . . . , xar(f)) → yf

Productive (∀x)(∃y) ∨
c∈C x →∗ c(y1, . . . , yk)

Nonterminating (∃x)(∀n ∈ N)(∃y) x →n y

Inf initely root-reducible (∃x)(∀n ∈ N)(∃y) x(→∗ ◦ Λ→)ny

Normalizing term (∃x) (t →∗ x ∧ ¬(∃y) x → y)

Normalizing TRS (WN) (∀x)(∃y) (x →∗ y ∧ ¬(∃z) y → z)

Locally confluent (WCR) (∀x, y, z) x → y ∧ x → z ⇒ (∃u) x →∗ u ∧ z →∗ u

Conf luent (CR) (∀x, y, z) x →∗ y ∧ x →∗ z ⇒ (∃u) x →∗ u ∧ z →∗ u

6 S. Lucas

2 Many-Sorted First-Order Logic

Given a set of sorts S, a (many-sorted) signature (with predicates) Ω = (S,Σ,Π)
consists of a set of sorts S, an S∗×S-indexed family of sets Σ = {Σw,s}(w,s)∈S∗×S

containing function symbols f ∈ Σs1···sk,s, with a rank declaration f : s1 · · · sk →
s (constant symbols c have rank declaration c : λ → s, where λ denotes the
empty sequence), and an S+-indexed family of sets Π = {Πw}w∈S+ of ranked
predicates P : w. Given an S-sorted set X = {Xs | s ∈ S} of mutually disjoint
sets of variables (which are also disjoint from Σ), the set TΣ(X)s of terms of
sort s is the least set such that Xs ⊆ TΣ(X)s and for each f : s1 . . . sk → s and
ti ∈ TΣ(X)si

, 1 ≤ i ≤ k, f(t1, . . . , tk) ∈ TΣ(X)s. If X = ∅, we write TΣ rather
than TΣ(∅) for the set of ground terms. The set TΣ(X) of many-sorted terms is
TΣ(X) =

⋃
s∈S TΣ(X)s. For w = s1 · · · sn ∈ S+, we write TΣ(X)w rather than

TΣ(X)s1
× · · · × TΣ(X)sn

and even write t ∈ TΣ(X)w rather than ti ∈ TΣ(X)si

for each 1 ≤ i ≤ n. The formulas ϕ ∈ FormΩ of a signature Ω are built up from
atoms P (t) with P ∈ Πw and t ∈ TΣ(X)w, logic connectives (¬, ∧, and also
∨, ⇒,...) and quantifiers (∀ and ∃) in the usual way. A closed formula, i.e., one
whose variables are all universally or existentially quantified, is called a sentence.
In the following, substitutions σ are assumed to be S-sorted mappings such that
for all sorts s ∈ S, we have σ(x) ∈ TΣ(X)s.

An Ω-structure A consists of (i) a family {As | s ∈ S} of sets called the
carriers or domains together with (ii) a function fA

w,s ∈ Aw → As for each
f ∈ Σw,s (Aw is a one point set when w = λ and hence Aw → As is isomorphic
to As), and (iii) an assignment to each P ∈ Πw of a subset PA

w ⊆ Aw; if the
identity predicate = : ss is in Πss, then (=)A

s s = {(a, a) | a ∈ As}, i.e.,
= : ss is interpreted as the identity on As.

Let A and A′ be Ω-structures. An Ω-homomorphism h : A → A′ is an S-
sorted function h = {hs : As → A′

s | s ∈ S} such that for each f ∈ Σw,s and P ∈
Πw with w = s1, . . . , sk, (i) hs(fA

w,s(a1, . . . , ak)) = fA′
w,s(hs1(a1), . . . , hsk

(ak))
and (ii) if a ∈ PA

w , then h(a) ∈ PA′
w . Given an S-sorted valuation mapping

α : X → A, the evaluation mapping []αA : TΣ(X) → A is the unique (S,Σ)-
homomorphism extending α. Finally, []αA : FormΩ → Bool is given by:

1. [P (t1, . . . , tn)]αA = true (with P ∈ Πw) if and only if ([t1]αA, . . . , [tn]αA) ∈ PA
w ;

2. [¬ϕ]αA = true if and only if [ϕ]αA = false;
3. [ϕ ∧ ψ]αA = true if and only if [ϕ]αA = true and [ψ]αA = true; and
4. [(∀x : s) ϕ]αA = true if and only if for all a ∈ As, [ϕ]α[x�→a]

A = true.

A valuation α ∈ X → A satisfies ϕ in A (written A |= ϕ [α]) if [ϕ]αA = true. We
then say that ϕ is satisfiable. If A |= ϕ [α] for all valuations α, we write A |= ϕ
and say that A is a model of ϕ or that ϕ is true in A. We say that A is a model
of a set of sentences S ⊆ FormΩ (written A |= S) if for all ϕ ∈ S, A |= ϕ. Given
a sentence ϕ, we write S |= ϕ iff A |= ϕ holds for all models A of S.

Proving Program Properties as First-Order Satisfiability 7

3 Preservation of Many-Sorted First-Order Sentences

Every set S of ground atoms has an initial model IS (or just I if no confusion
arises) which consists of the usual (many-sorted) Herbrand Domain of ground
terms modulo the equivalence ∼ generated by the equations in S. There is a
unique homomorphism h : I → A from I to any model A of S [9, Sect. 3.2]. In
the following, h refers to such a homomorphism. If S contains no equation, then
I is the (many-sorted) Least Herbrand Model of S and Is is TΣs for each sort
s ∈ S. In the following, we consider sentences in prenex form as follows:

(Q1x1 : s1) · · · (Qkxk : sk)
m∨

i=1

ni∧

j=1

Lij (6)

where (i) for all 1 ≤ i ≤ m and 1 ≤ j ≤ ni, Lij are literals, i.e., Lij = Aij

or Lij = ¬Aij for some atom Aij (in the first case, we say that Lij is positive;
otherwise, it is negative), (ii) x1, . . . , xk for some k ≥ 0 are the variables occur-
ring in those literals (of sorts s1, . . . , sk, respectively), and (iii) Q1, . . . , Qk are
universal/existential quantifiers. A sentence ϕ (equivalent to) (6) is said to be
positive if all literals are.

Theorem 1. Let Ω be a signature, S be a set of ground atoms, ϕ be a sentence
(6), and A be a model of S such that (a) for all q, 1 ≤ q ≤ k, if Qq = ∀ then hsq

is surjective1 and (b) for all negative literals Lij = ¬P (t), with P ∈ Πw, and
substitutions σ, if h(σ(t)) ∈ PA then σ(t) ∈ P I . Then, IS |= ϕ =⇒ A |= ϕ.

In order to achieve condition (b) in Theorem 1, given P ∈ Πw, let N(P) =
Iw −P I be the complement of the (Herbrand) interpretation of P . Let N (P) =
{¬P (t) | t ∈ N(P)} (cf. Reiter’s Closed World Assumption [20]). In general,
N (P) is infinite and incomputable. In some simple cases, though, we can provide
a finite description of N (P) for the required predicates P (see Sect. 7).

Proposition 1. Let Ω be a signature, S be a set of ground atoms, ϕ be a sen-
tence (6), A be a model of S, and N =

⋃
Lij=¬P (t) N (P) be such that A |= N .

Let Lij = ¬P (t) be a negative literal and σ be a substitution. If h(σ(t)) ∈ PA,
then σ(t) ∈ P I .

Consider a theory S and let S be the set of ground atoms obtained as the
deductive closure of S, i.e., the set of atoms P (t1, . . . , tn) for each n-ary predicate
symbol P and ground terms t1, . . . , tn, such that S � P (t1, . . . , tn). The following
result is the basis of the practical applications discussed in the following sections.

Corollary 1 (Semantic criterion). Let Ω be a signature, S0 be a theory, S =
S
0 , ϕ be a sentence (6), and A be a model of S0 such that (a) for all q, 1 ≤ q ≤ k,

if Qq = ∀ then hsq
is surjective and (b) for all negative literals Lij = ¬P (t),

with P ∈ Πw and substitutions σ, if h(σ(t)) ∈ PA then σ(t) ∈ P I . If A |= ¬ϕ,
then IS |= ¬ϕ.
1 A mapping f : A → B is surjective if for all b ∈ B there is a ∈ A such that f(a) = b.

8 S. Lucas

In the following, we will not distinguish between theories S and their ground
deductive closure S; we rather use S in both cases.

Remark 1 (Proofs by satisfiability). We can prove an arbitrary sentence ϕ valid
in IS by satisfiability in some model A of S. First define ϕ as the negation ¬ϕ
of ϕ. Then, find an appropriate structure A satisfying (a) and (b) (with regard
to ϕ) and such that A |= S ∪ {¬ϕ}. By Corollary 1, I |= ¬ϕ holds. Since ¬ϕ is
equivalent to ϕ, I |= ϕ holds.

Models A to be used in Corollary 1 can be automatically generated from the
theory S and sentence ϕ by using a tool like AGES [10] or Mace4. In the following
section, we investigate how to ensure surjectivity when required in Corollary 1.

4 Surjective Homomorphisms

Given Ω = (S,Σ,Π), s ∈ S and T ⊆ TΣs, consider the following sentences:

(∀x : s)
∨

t∈T

x = t (7)

∧

t,u∈T,t�=u

¬(t = u) (8)

In the following, we write (7)s to make sort s referred in (7) explicit. We do the
same in similar formulas below.

Proposition 2. Let Ω be a signature, S be a theory, A be a model of S, s ∈ S,
and T ⊆ TΣs. (a) If T �= ∅ and A |= (7)s, then hs is surjective and |As| ≤ |T |.
(b) If As �= ∅ and A |= (8), then |As| ≥ |T |.

In view of Proposition 2(a), denote (7)s as SuHT
s (Ω) (or just SuHT

s or SuHT if
no confusion arises). Whenever T is finite, Proposition 2(a) imposes that the
interpretation domain As for sort s is finite. This is appropriate for tools like
Mace4 which generate structures with finite domains only. However, the choice
of T in Proposition 2, when used together with a theory S imposing further
requirements on symbols, can be crucial for Corollary 1 to succeed. Restricting
the attention to finite domains can also be a drawback. In the following, we
investigate a different approach which avoids any choice of terms T and is valid
for infinite structures as well. Consider the following sentence:

(∀x : s)(∃n : Nat) terms(x, n) (9)

where Nat is a new sort, to be interpreted as the set N of natural numbers, and
terms : sNat is a new predicate for each s ∈ S. The intended meaning of (9)s is

Proving Program Properties as First-Order Satisfiability 9

that, for all x ∈ As, there is t ∈ TΣs of height at most n such that x = tA. We
substantiate this, for each sort s ∈ S, by means of two (families of) formulas:

(∀x : s)(∀n : Nat) terms(x, 0) ⇒
∨

c∈Σλ,s

x = c (10)

(∀x : s)(∀n : Nat)(∃m : Nat) (n > 0 ∧ terms(x, n)) ⇒

n > m ∧

⎛

⎜
⎜
⎜
⎜
⎜
⎝

terms(x,m)∨
∨

f ∈ Σw,s

w ∈ S+

(∃y : w)

(

x = f(y) ∧
∧

si∈w

termssi
(yi,m)

)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(11)

Thus, by (10)s, values x satisfying terms(x, 0) will be represented by some con-
stant symbol c of sort s. Similarly, by (11)s, values x satisfying terms(x, n) for
some n > 0 will be represented by some ground term s of height m for some
m < n, or by a term t = f(t1, . . . , tk), where f has rank w → s for some w ∈ S+

and t1, . . . , tk have height m at most.
The set K(s) of s-relevant sorts is the least set satisfying: (i) s ∈ K(s) and

(ii) if f ∈ Σs1···sk,s′ and s′ ∈ K(s), then {s1, . . . , sn} ⊆ K(s). Let ΩNat,s =
(SNat , ΣNat ,ΠNat,K (s)) be an extension of Ω where SNat = S ∪ {Nat}, ΣNat

extends Σ with a new constant 0 : λ → Nat , and ΠNat,K(s) extends Π with
> : Nat Nat and a predicate terms′ : s′ Nat for each s′ ∈ K(s). We let

SuHs = {(9)s′ , (10)s′ , (11)s′ | s′ ∈ K(s)} (12)

Proposition 3. Let Ω be a signature, S be a theory, s ∈ S, and A be an ΩNat,s-
structure which is a model of S. Assume that ANat = N, 0A = 0, and m >A

n ⇔ m >N n for all m, n ∈ ANat . If A |= SuHs, then hs′ is surjective for all
s′ ∈ K(s).

Given an extension Ω′ of a signature Ω, every Ω′-structure A′ defines an Ω-
structure A: just take As = A′

s for all s ∈ S, and then fA
w,s = fA′

w,s and PA
w = PA′

w

for all w ∈ S∗, s ∈ S, f ∈ Σw,s, and P ∈ Πw. Thus, Proposition 3 is used to
guarantee surjectivity of h : TΣs′ → As′ , rather than h : TΣNat s′ → As′ .

5 Examples of Application with Positive Sentences

In this section we exemplify the use of Corollary 1 together with the approach
in Sect. 4 to deal with positive sentences (6), i.e., all literals are positive.

10 S. Lucas

5.1 Complete Definedness and Commutativity

Consider the following Maude specification (hopefully self-explained, but see [5])
for the arithmetic operations in Example 1 together with function head, which
returns the head of a list of natural numbers:

mod ExAddMulHead is
sorts N LN . *** Sorts for numbers and lists of numbers
op Z : -> N . op suc : N -> N . ops add mul : N N -> N .
op head : LN -> N . op nil : -> LN . op cons : N LN -> LN .
vars x y : N . var xs : LN .
rl add(Z,x) => x . rl add(suc(x),y) => suc(add(x,y)) .
rl mul(Z,x) => Z . rl mul(suc(x),y) => add(y,mul(x,y)) .
rl head(cons(x,xs)) => x .

endm

(1) Complete definedness. We claim head to be completely defined as follows:

(∀xs : LN)(∃x : N) head(xs) → x (13)

We disprove (13) by using Corollary 1. Due to the universal quantification
of xs in (13), we need to ensure that hLN : TΣLN → ALN is surjective for any
structure A we may use. We use Proposition 3. Since K(LN) = {N, LN} due
to cons, whose first argument is of sort N, SuHLN consists of the following
sentences:

(∀x : N)(∃n : Nat) termN(x, n) (9)N
(∀x : N) termN(x, 0) ⇒ x = Z (10)N
(∀x : N)(∀n : Nat)(∃m : Nat)(∃y : N)(∃z : N)(∃ys : LN) (11)N

n > 0 ∧ termN(x, n) ⇒ n > m ∧ [termN(x, m) ∨
(termN(y, m) ∧ termN(z, m) ∧ termLN(ys, m) ∧

(x = suc(y) ∨ x = add(y, z) ∨ x = mul(y, z) ∨ x = head(ys)))]
(∀xs : LN)(∃n : Nat) termLN(xs, n) (9)LN
(∀xs : LN) termLN(xs, 0) ⇒ xs = nil (10)LN
(∀xs : LN)(∀n : Nat)(∃m : Nat)(∃y : N)(∃ys : LN) (11)LN

n > 0 ∧ termN(x, n) ⇒ n > m ∧ [termN(x, m) ∨
(termN(y, m) ∧ termLN(ys, m) ∧ xs = cons(y, ys))]

We obtain a model A of ExAddMulHead∪SuHLN ∪{¬(13)} with AGES. Sorts
are interpreted as follows: AN = ALN = {−1, 0} and ANat = N. For function
symbols:

ZA = −1 nilA = 0 sucA(x) = x addA(x, y) = 0
mulA(x, y) = 0 consA(x, xs) = −1 headA(xs) = −xs − 1

For predicates, x →A
N y ⇔ x ≥ y ∧ x ≥ 0, x →A

LN y ⇔ x = y = −1,
and both x(→∗

N)
Ay and x(→∗

LN)
Ay are true. We can check surjectivity of

hs : TΣs → As (for s ∈ {N, LN}). For instance, we have:

[Z]A = −1 [add(Z, Z)]A = 0 for sort N
[cons(Z, nil)]A = −1 [nil]A = 0 for sort LN

Proving Program Properties as First-Order Satisfiability 11

(2) Commutativity. It is well-known that both add and mul as defined by the
rules of R in Example 1 are commutative on ground terms, i.e., for all ground
terms s and t, add(s, t) =R add(t, s) and mul(s, t) =R mul(t, s), where =R is
the equational theory induced by the rules
 → r in R treated as equations

 = r. Actually, by using Birkhoff’s theorem and the fact that R is confluent,
we can rephrase commutativity of add as joinability as follows:

(∀x)(∀y)(∃z) add(x, y) →∗ z ∧ add(y, x) →∗ z (14)

Remark 2. Proving commutativity of add and mul when defined by R in Example
1 by using Corollary 1 is possible (see Remark 1) but unlikely. We should first
define ϕ as ¬(14), i.e., ϕ is

(∃x)(∃y)(∀z) ¬(add(x, y) →∗ z) ∨ ¬(add(y, x) →∗ z) (15)

Since (15) contains two negative literals, Corollary 1 requires the use of N (→∗).

Since head is not completely defined, add and mul are not commutative in
ExAddMulHead. We prove this fact by disproving the sorted version of (14), i.e.,

(∀x : N)(∀y : N)(∃z : N) add(x, y) →∗ z ∧ add(y, x) →∗ z (16)

Due to the universal quantification of x and y in (16), we need to ensure that
hN : TΣN → AN is surjective. Since K(N) = {N, LN} due to head, we have SuHN =
SuHLN as above. AGES obtain a model A of ExAddMulHead ∪ SuHN ∪ {¬(16)} as
follows: AN = {0, 1}, ALN = {−1, 0} and ANat = N. Also,

ZA = 1 nilA = −1 sucA(x) = x addA(x, y) = y
mulA(x, y) = x consA(x, xs) = x − 1 headA(xs) = xs + 1

x →A
N y ⇔ x = y x(→∗

N)
Ay ⇔ x = y x →A

LN y ⇔ x = y x(→∗
LN)

Ay ⇔ true

5.2 Top-Termination

A TRS R is top-terminating if no infinitary reduction sequence performs
infinitely many rewrites at topmost position Λ [7]. From a computational point of
view, top-termination is important in the semantic description of lazy languages
as it is an important ingredient to guarantee that every initial expression has an
infinite normal form [7,8]. Accordingly, given a dummy sort S, the negation of

(∃x : S)(∀n ∈ N)(∃y : S) x(→∗ ◦ Λ→)ny (17)

(which claims for the existence of a term with infinitely many rewriting steps
at top) captures top-termination. We introduce a new predicate →�,Λ for the

composition →∗ ◦ Λ→ of the many-step rewriting relation →∗ (defined as usual,
i.e., by the whole theory R associated to R) and topmost rewriting Λ→ defined

12 S. Lucas

by a theory RΛ = {(∀x : S)

Λ→ r |
 → r ∈ R}. Sequences s →n

�,Λ t meaning
that s →�,Λ-reduces into t in n + 1 →�,Λ-steps are defined as follows:

(∀x, y, z : S) x →∗ y ∧ y
Λ→ z ⇒ x →0

�,Λ z (18)

(∀x, y, z : S)(∀n ∈ N) x →0
�,Λ y ∧ y →n

�,Λ z ⇒ x →n+1
�,Λ z (19)

Overall, the sentence ϕ to be disproved is:

(∃x : S)(∀n : Nat)(∃y : S) x →n
�,Λ y (20)

Remark 3. We use N in (17) but Nat in (20). Indeed, (17) is not a valid sentence
because N is not first-order axiomatizable, see, e.g. [11, Sect. 2.2]. This is con-
sistent with the well-known fact that termination (or top-termination) cannot
be encoded in first-order logic [22, Sect. 5.1.4]. We can use (20) together with
Corollary 1 provided that Nat is interpreted as N. This is possible with AGES.

Example 2. Consider the following (nonterminating) TRS R [8, Sect. 9.5]:

non → f(g, f(non, g)) (21)
g → a (22)

f(a, x) → a (23)
f(b, b) → b (24)
f(b, a) → b (25)

The associated theory RtopT is RtopT = R∪RΛ ∪{(18), (19)}, where RΛ is

non
Λ→ f(g, f(non, g)) (26)

g
Λ→ a (27)

(∀x : S) f(b, x) Λ→ b (28)

f(b, b) Λ→ b (29)

f(b, a) Λ→ b (30)

Note that (20) only requires that the homomorphism mapping terms of sort
Nat to N is surjective, which is automatically achieved by AGES. The structure
A with AS = {−1, 0, 1}, ANat = N, function symbols interpreted by: aA = 1,
bA = 1, gA = 0, nonA = −1, and fA(x) = 0; and predicate symbols as follows:

x →A y ⇔ y ≥ x ∧ x + y ≥ −1 x(→∗)Ay ⇔ y ≥ x

x(Λ→)Ay ⇔ y > x x(→n
�,Λ)Ay ⇔ y > x + n

is a model of RtopT ∪ {¬(20)} and proves top-termination of R.

Proving Program Properties as First-Order Satisfiability 13

6 Refutation Witnesses

In logic, a witness for an existentially quantified sentence (∃x)ϕ(x) is a spe-
cific value b to be substituted by x in ϕ(x) so that ϕ(b) is true (see, e.g., [2, p.
81]). Similarly, we can think of a value b such that ¬ϕ(b) holds as a witness of
(∃x)¬ϕ(x) or as a refutation witness for (∀x)ϕ(x); we can also think of b as a
counterexample to (∀x)ϕ(x) [13, p. 284]. Note, however, that witnesses that are
given as values b belonging to an interpretation domain A can be meaningless
for the user who is acquainted with the first-order language Ω but not so much
with abstract values from A (which is often automatically synthesized by using
some tool). Users can be happier to deal with terms t which are somehow con-
nected to witnesses b by a homomorphism, so that tA = b. Corollary 1 permits
a refutation of ϕ by finding a model A of ¬ϕ to conclude that I |= ¬ϕ. We
want to obtain instances of ϕ to better understand unsatisfiability of ϕ. In this
section we investigate this problem.

The negation ¬(6) of (6), i.e., of (Q1x1 : s1) · · · (Qkxk : sk)
∨m

i=1

∧ni

j=1 Lij is

(Q1x1 : s1) · · · (Qkxk : sk)
m∧

i=1

ni∨

j=1

¬Lij(x1, . . . , xk) (31)

where Qi is ∀ whenever Qi is ∃ and Qi is ∃ whenever Qi is ∀. We assume η ≤ k
universal quantifiers in (31) with indices U = {υ1, . . . , υη} ⊆ {1, . . . , k} and
hence k−η existential quantifiers with indices E = {ε1, . . . , εk−η} = {1, . . . , k}−
U . In the following η denotes k − η. For each ε ∈ E, we let Uε = {υ ∈ U |
υ < ε} be the (possibly empty) set of indices of universally quantified variables
in (31) occurring before xε in the quantification prefix of (31). Let ηε = |Uε|.
Note that Uε1 ⊆ Uε2 ⊆ · · · ⊆ Uεη . Let U∃ be the set of indices of universally
quantified variables occurring before some existentially quantified variable in
the quantification prefix of (31). Note that U∃ is empty whenever υ1 > εk−η

(no existential quantification after a universal quantification); otherwise, U∃ =
{υ1, . . . , υ∃} for some υ∃ ≤ υη. Accordingly, U∀ = U −U∃ = {εη +1, . . . , k} is the
set of indices of universally quantified variables occurring after all existentially
quantified variables in the quantification prefix of (31). Note that U∀ is empty
whenever ε1 > υη (no universal quantification after an existential quantification).

Most theorem provers transform sentences into universally quantified formu-
las by Skolemization (see, e.g., [12]). Thus, if k > η, i.e., (31) contains existential
quantifiers, we need to introduce Skolem function symbols skε : wε → sε for each
ε ∈ E, where wε is the (possibly empty) sequence of ηε sorts indexed by Uε. Note
that skε is a constant if ηε = 0. The Skolem normal form of (31) is

(∀xυ1 : sυ1) · · · (∀xυη
: sυη

)
m∧

i=1

ni∨

j=1

¬Lij(e1, . . . , ek) (32)

where for all 1 ≤ q ≤ k, (i) eq ≡ xq if q ∈ U and (ii) eq ≡ skq(x ηq
) if q ∈ E,

where x ηq
is the sequence of variables xν1 , . . . , xνηq

. If E �= ∅ (i.e., (31) and

14 S. Lucas

(32) differ), then (32) is a sentence of an extended signature Ωsk = (S,Σsk,Π)
where Σsk extends Σ with skolem functions. Since (32) logically implies (31) [2,
Sect. 19.2], every model A of (33) is a model of (32) as well.

Definition 1 (Set of refutation witnesses). Using the notation developed
in the previous paragraphs, let A be an Ωsk-structure such that hsq

is surjective
for all q ∈ U∃ ∪ E. The Ωsk-sentence (32) is given a set of refutation witnesses
Φ consisting of Ω-sentences φα for each valuation α of the variables xυ1 , . . . , xυ∃
indexed by U∃; each φα is (nondeterministically) defined as follows:

(∀xεη+1 : sεη+1) · · · (∀xk : sk)
m∧

i=1

ni∨

j=1

¬Lij(e′
1, . . . , e

′
k) (33)

where for all 1 ≤ q ≤ k, (i) e′
q ≡ xq if q ∈ U∀ and (ii) e′

q ≡ t if q ∈ U∃ ∪ E and
t ∈ TΣsq

is such that [t]A = [eq]αA.

Note that, in Definition 1 we could emphfail to find the necessary terms t ∈ TΣsq

if hsq
is not surjective. Note also that, whenever E is empty, Φ is a singleton

consisting of (33) which coincides with (32). We have the following:

Proposition 4. For every Ωsk-structure A, A |= (33) if and only if A |= Φ.

Refutation witnesses are built from symbols in the original signature Ω only. We
can use them as more intuitive counterexamples to the refuted property ϕ.

Proposition 5. Let Ω be a signature, S be a theory, ϕ be a sentence (6), and
A be a model of S such that for all negative literals Lij = ¬P (t) with P ∈ Πw

and substitutions σ, if h(σ(t)) ∈ PA then σ(t) ∈ P I . For all φ ∈ Φ, I |= φ.

Corollary 2. If (6) is positive, then for all refutation witnesses φ ∈ Φ, I |= φ.

Example 3. Consider ExAddMulHead in Sect. 5. The refutation of (13) using
AGES actually proceeds by skolemization of the negation of (13), i.e., of

(∃xs : LN)(∀x : N) ¬(head(xs) → x) (34)

With regard to (34), we have E = {1}, U∃ = ∅ and U∀ = {2}, where 1 and
2 refer to variables xs and x, respectively. Accordingly, υ∃ = 0. The only sort
involved in the variables indexed by U∃ ∪ E is LN. Since variables of sort LN are
universally quantified in (13), the application of Corollary 1 in Sect. 5 already
required surjectivity of hLN. The Skolem normal form of (34) is:

(∀x : N) ¬(head(skxs) → x) (35)

where skxs is a new constant of sort LN. The structure A computed by AGES
is actually a model of R ∪ SuHLN ∪ {(36)}, for SuHLN in Sect. 5. For skxs, we
have skA

xs = 0. There is a single (empty) valuation α of variables indexed by
U∃ (which is empty). Hence, Φ = {φα} is a singleton. According to Definition
1, since [nil]A = 0 = [skxs]A, the following sentence could be associated to the
refutation witness φα: (∀x : N) ¬(head(nil) → x).

Proving Program Properties as First-Order Satisfiability 15

Example 4. With regard to the computation of refutation witnesses for R in
Example 2, we start with the negation of (17), i.e.,

(∀x : S)(∃n : Nat)(∀y : S) ¬(x(→∗ ◦ Λ→)ny) (36)

We have E = {2}, U∃ = {1} and U∀ = {3}. The Skolem normal form of (36) is

(∀x : S)(∀y : S) ¬(x(→∗ ◦ Λ→)skn(x)y) (37)

where skn : S → Nat is a new (monadic) function symbol. Since the sorts for
variables indexed by U∃∪E are S and Nat , we require surjectivity of hS and hNat .
This is achieved by using SuHS and interpreting Nat as N as done in AGES. The
structure A in Example 2 is a model of RtopT ∪SuHS∪{(38)}. The interpretation
obtained for skn is

skA
n (x) = 1 − x

Now we can compute refutation witnesses for (37). Since Uε = {1} is a singleton
whose index refers to a variable x of sort S and AS = {−1, 0, 1}, we have to deal
with three valuation functions for the only variable x to be considered:

α−1(x) = −1 α0(x) = 0 α1(x) = 1

We have Φ = {φα−1 , φα0 , φα1}, where φα−1 is (∀y : S)¬(non(→∗ ◦ Λ→)2y), φα0 is

(∀y : S)¬(g(→∗ ◦ Λ→)1y), and φα1 is (∀y : S)¬(a(→∗ ◦ Λ→)0y).
Note that, since fA(x) = 0, we could also write φα0 as (∀y : S) ¬(f(t)(→∗ ◦ Λ→)1y)
for every ground term t. This gives additional, complementary information.

7 Example of Application with General Sentences

Consider a well-known example of a locally confluent but nonconfluent TRS R:

b → a b → c c → b c → d

Example 5 (Local confluence of R). Local confluence corresponds to ϕWCR in
Table 1. As explained in Remark 1, we start with ϕWCR = ¬ϕWCR i.e.,

(∃x, y, z : S)(∀u : S) (x → y ∧ x → z ∧ ¬(x →∗ u)) ∨ (x → y ∧ x → z ∧ ¬(z →∗ u)) (38)

Due to the universal quantifier, hS : TΣS → AS must be surjective. We can
achieve this by adding the following sentence SuHT

S for T = {a, b, c, d}:

(∀x : S) x = a ∨ x = b ∨ x = c ∨ x = d (39)

Due to the negative literals ¬(x →∗ u) and ¬(z →∗ u), we consider N , repre-
senting the forbidden many-step rewriting steps, explicitly given by:

N = {¬(a →∗ b), ¬(a →∗ c), ¬(a →∗ d), ¬(d →∗ a), ¬(d →∗ b), ¬(d →∗ c) }

16 S. Lucas

We apply Corollary 1 to prove that ¬ϕWCR (i.e., ϕWCR) holds by obtaining
a model of R ∪ SuHT

S ∪ N ∪ {ϕWCR} with Mace4.2 The structure has domain
AS = {0, 1, 2, 3}; constants are interpreted as follows: aA = 0, bA = 1, cA = 3,
and dA = 2. With regard to predicate symbols, we have:

x →A y = {(1, 0), (1, 3), (3, 1), (3, 2)} x(→∗)Ay = {(1, x), (3, x) | x ∈ AS}

This proves R locally confluent.

Example 6 (Nonconfluence of R). In order to disprove confluence of R, which
is represented by ϕCR in Table 1, we first write ϕCR in the form (6), i.e.,

(∀x, y, z : S)(∃u : S) ¬(x →∗ y) ∨ ¬(x →∗ z) ∨ (y →∗ u ∧ z →∗ u) (40)

Due to the universal quantification and negative literals, we use SuHT
S and N as

in Example 5. We obtain a model A of R∪SuHT
S ∪N ∪{¬ϕCR} with Mace4. The

domain is AS = {0, 1, 2} and symbols are interpreted by: aA = 0, bA = cA = 1,
dA = 2, x →A y ⇔ x = 1, and x(→∗)Ay ⇔ x = y ∨ x = 1. This proves
nonconfluence of R. With regard to the refutation witnesses, ¬ϕCR is

(∃x, y, z : S)(∀u : S) x →∗ y ∧ x →∗ z ∧ ¬(y →∗ u ∧ z →∗ u) (41)

and its Skolem normal form is

(∀u : S) skx →∗ sky ∧ skx →∗ skz ∧ ¬(sky →∗ u ∧ skz →∗ u) (42)

Mace4 yields skA
x = 1, skA

y = 0 and skA
z = 2; Φ consists of a single sentence; e.g.,

(∀u : S) b →∗ a ∧ b →∗ d ∧ ¬(a →∗ u ∧ d →∗ u) (43)

but also: (∀u : S) c →∗ a∧ c →∗ d∧ ¬(a →∗ u ∧ d →∗ u). Indeed, they represent
the two possible cases of nonconfluent behavior in R.

Example 7 (Normalizing TRS). R is not terminating, but we can prove it nor-
malizing (i.e., every term has a normal form) by disproving ϕWN , for ϕWN in
Table 1. Therefore, ϕWN is (∃x : S)(∀y : S)(∃z : S) (¬(x →∗ y) ∨ y → z). We
guarantee surjectivity by using SuHT

S in Example 5; we also use N in Example
5. Mace4 obtains a model A of R ∪ SuHT

S ∪ N ∪ {ϕWN } with AS = {0, 1, 2},
aA = 0, bA = cA = 1, dA = 2, x →A y ⇔ x = 1, and x(→∗)Ay ⇔ x = y ∨x = 1.

8 Related Work

In [14, Sect. 6] we already compared our approach to existing techniques and tools
for the so-called First-Order Theory of Rewriting [6], which applies to restricted
classes of TRSs and formulas. In [16], we show that our semantic approach is
practical when applied to arbitrary (Conditional) TRSs.
2 This proves R ground locally confluent, i.e., variables in ϕWCR refer to ground terms

only; since R is a ground TRS, local confluence and ground local confluence coincide.

Proving Program Properties as First-Order Satisfiability 17

McCune’s Prover9/Mace4 are popular automated systems for theorem prov-
ing in first-order and equational logic. Given a theory S and a goal or statement
ϕ, Prover9 tries to prove that S � ϕ holds. The generator of models Mace4 com-
plements Prover9 as follows: “If the statement is the denial of some conjecture,
any structures found by Mace4 are counterexamples to the conjecture”.3 Accord-
ingly, the user introduces ϕ in the goal section of Mace4, but the system seeks
a model of S ∪ {¬ϕ}. Indeed, as discussed in Sect. 1, if A |= S ∪ {¬ϕ} holds,
then S � ϕ does not hold. But, unless ϕ is an ECBCA, this does not necessarily
mean that ϕ does not hold of a program P with S = P ! Consider the following
‘misleading’ session with Mace4 that ‘disproves’ commutativity of the addition.

Example 8. Consider R in Example 1. Mace4 obtains a model A of R∪{¬(14)}
with domain A = {0, 1}, and function and predicate symbols as follows: 0A = 0,

sA(x) = x, addA(x, y) =
{

1 if x = 0 ∧ y = 1
0 otherwise , mulA(x, y) = 0, and →A and

(→∗)A both interpreted as the equality. Additionally, Mace4 also displays the
following: c1A = 0 and c2A = 1. These c1 and c2 are new Skolem symbols (but
unexpected for most users!). In practice, Mace4 finds a model for the Skolem
normal form of ¬(14), which is

(∀z) ¬(add(c1, c2) →∗ z ∧ add(c2, c1) →∗ z) (44)

Indeed, A is a model of R∪{(45)}. But we should not conclude (as suggested by
the aforementioned sentences in Mace4 manual) that add is not commutative!

The problem in Example 8 is that h : IR → A is not surjective. For instance,
no ground term t ∈ TΣ satisfies tA = 1; note that c1, c2 /∈ Σ. Since prov-
ing validity in IS is not the main purpose of Mace4, no warning in its doc-
umentation prevents the prospective user to give credit to the ‘refutation’ of
(ground) commutativity for the addition computed by Mace4. We believe that
our work is helpful to clarify the use of such tools, and even improve it by adding
(for instance) sentences reinforcing surjectivity to avoid the problem discussed
above. For instance, Mace4 obtains no model of R ∪ SuHT ∪ {(45)} with, e.g.,
T = {0, s(0)}.

Proofs by Satisfiability vs. Theorem Proving. In order to further clarify
the differences between our approach and the use of first-order theorem proving
tools, consider the CTRS R in [14, Example 1], consisting of the rules

b → a (45)
a → b ⇐ c → b (46)

3 https://www.cs.unm.edu/∼mccune/prover9/manual/2009-11A/mace4.html.

https://www.cs.unm.edu/~mccune/prover9/manual/2009-11A/mace4.html

18 S. Lucas

Its associated Horn theory R is:

(∀x) x →∗ x (47)
(∀x, y, z) x → y ∧ y →∗ z ⇒ x →∗ z (48)

b → a (49)
c →∗ b ⇒ a → b (50)

We consider some simple tests regarding goals b → a and a → b and their
negations. We tried such four goals with the following theorem provers: Alt-Ergo,4

Prover9/Mace4, PDL-tableau,5 and Princess6 (most of them with a web-interface).
Besides attempting a proof of each goal with respect to R, tools Alt-Ergo, Mace4,
and Princess can also generate models of the negation of the tested goal when
the proof attempt fails. The following table summarizes the results of our test:

Goal Alt-Ergo Mace4 PDL-tableau Princess

ϕ IR |= ϕ R	ϕ A|=¬ϕ R	ϕ A|=¬ϕ R	ϕ A|=¬ϕ R	ϕ A|=¬ϕ

1 b → a true Y N Y N Y – Y N

2 ¬(b → a) false N Y N Y N – N Y

3 a → b false N Y N Y N – N Y

4 ¬(a → b) true N Y N Y N – N Y

Goal ¬(a → b) in row 4 is not directly proved by any tool. Indeed, since ¬(a → b)
is not a logical consequence of R (see [14, Example 2]), R � ¬(a → b) does not
hold. Our satisfiability approach can be used to formally prove that R cannot
reduce a into b, i.e., that IR |= ¬(a → b) (or a �→R b) holds: from row 3 we
see that A |= ¬(a → b) holds for the models A of R computed by some of the
tools. By Corollary 1, the desired conclusion a �→R b follows. Note also that
row 4 reports on the ability of some tools to obtain models of a → b. However,
Corollary 1 cannot be used to conclude that a →R b holds (which is obviously
wrong): since ϕ in row 4 is a negative literal, condition (b) in Corollary 1 must
be fulfilled before being able to conclude IR |= a → b from A |= a → b for some
model A of R. But this is not the case in our test set.

Although Remark 1 explains how an arbitrary program property ϕ can be
proved by using Corollary 1 (see also Sect. 7), from a practical point of view we
better think of our approach as complementary to the use of first-order proof
techniques and tools. Provability of ϕ (i.e., S � ϕ) implies that IS |= ϕ holds.
Thus, as usual, a proof of ϕ with respect to S implies that a program P with
S = P has property ϕ. However, as discussed above, showing that S � ϕ or
S � ¬ϕ holds is often impossible. We can try to prove IS |= ¬ϕ by using
Corollary 1, though. For positive sentences ϕ, this is often affordable.
4 https://alt-ergo.ocamlpro.com/.
5 http://www.cs.man.ac.uk/∼schmidt/pdl-tableau/.
6 http://www.philipp.ruemmer.org/princess.shtml.

https://alt-ergo.ocamlpro.com/
http://www.cs.man.ac.uk/~schmidt/pdl-tableau/
http://www.philipp.ruemmer.org/princess.shtml

Proving Program Properties as First-Order Satisfiability 19

9 Conclusions and Future Work

We have shown how to prove properties ϕ of computational systems whose
semantics can be given as a first-order theory S. Our proofs by satisfiability
proceed (see Remark 1) by just finding a model A of S ∪ Z ∪ {ϕ} where Z
is an auxiliary theory representing the requirements (a) and (b) in Corollary
1 (referred to ¬ϕ), so that A |= S ∪ Z ∪ {ϕ} implies IS |= ϕ. Surjectivity of
the interpretation homomorphisms (requirement (a) in Corollary 1) is ensured
if Z includes the appropriate theory SuH (see Sect. 4); and requirement (b),
for dealing with negative literals, is fulfilled if Z includes N in Proposition 1.
Our results properly subsume the ones in [14], which concern existentially closed
boolean combinations of atoms only. We have also introduced the notion of refu-
tation witness which is useful to obtain counterexamples by using the symbols
in the first-order language rather than values of the computed model.

From a theoretical point of view, the idea of proving program properties as
satisfiability (see Remark 1) is appealing as it emphasizes the role of abstrac-
tion (introduced by semantic structures) in theorem proving and logic-based
program analysis. However, the requirement of surjectivity of the interpretation
homomorphisms and the use of theories N with negative information about some
of the predicates introduce additional difficulties in the model generation pro-
cess. Investigating methods for the practical implementation of our techniques,
and also finding specific areas of application where our approach can be useful
(as done in [16], for instance) is an interesting subject for future work.

Also, our research suggests that further investigation on the generation of
models for many-sorted theories that combines the use of finite and infinite
domains is necessary. For instance, [15] explains how to generate such models
by interpreting the sort, function, and predicate symbols by using linear algebra
techniques. This is implemented in AGES. Domains are defined as the solutions
of matrix inequalities, possibly restricted to an underlying set of values (e.g., Z);
thus, finite and infinite domains can be obtained as particular cases of the same
technique. Since piecewise definitions are allowed, we could eventually provide
fully detailed descriptions of functions and predicates by just adding more pieces
to the interpretations. However, such a flexibility is expensive. In contrast, Mace4
is based on a different principle (similar to [12]) and it is really fast, but only
finite domains can be generated. This is a problem, for instance, when using
Proposition 3 to guarantee surjectivity of homomorphisms hs : TΣs → As. Even
though As is finite, we still need to be able to interpret Nat as N, which is
not possible with Mace4. For this reason, the examples in Sect. 5 (where the
computed structures A have finite domains for the ‘proper’ sorts N, LN, and S,
and only Nat is interpreted as an infinite set) could not be handled with Mace4,
or with similar tools that are able to deal with sorts (e.g., SEM [24] or the work
in [21]) but which generate finite domains only.

Acknowledgements. I thank the anonymous referees for their comments and sug-
gestions. I also thank Philipp Rümmer and Mohamed Iguernlala for their clarifying
remarks about the use of Princess and Alt-Ergo, respectively.

20 S. Lucas

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
New York (1998)

2. Boolos, G.S., Burgess, J.P., Jeffrey, R.C.: Computability and Logic, 4th edn. Cam-
bridge University Press, Cambridge (2002)

3. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theoret. Comput. Sci. 351(1), 386–414 (2006)

4. Clark, K.L.: Predicate logic as a computational formalism. Ph.D. thesis, Research
Monograph 79/59 TOC, Department of Computing, Imperial College of Science,
and Technology, University of London, December 1979

5. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

6. Dauchet, M., Tison, S.: The theory of ground rewrite systems is decidable. In:
Proceedings of LICS 1990, pp. 242–248. IEEE Press (1990)

7. Dershowitz, N., Kaplan, S., Plaisted, D.: Rewrite, rewrite, rewrite, rewrite, rewrite,
. . . Theoret. Comput. Sci. 83, 71–96 (1991)

8. Endrullis, J., Hendriks, D.: Lazy productivity via termination. Theoret. Comput.
Sci. 412, 3203–3225 (2011)

9. Goguen, J.A., Meseguer, J.: Models and equality for logical programming. In:
Ehrig, H., Kowalski, R., Levi, G., Montanari, U. (eds.) TAPSOFT 1987. LNCS, vol.
250, pp. 1–22. Springer, Heidelberg (1987). https://doi.org/10.1007/BFb0014969

10. Gutiérrez, R., Lucas, S., Reinoso, P.: A tool for the automatic generation of logical
models of order-sorted first-order theories. In: Proceedings of PROLE 2016, pp.
215–230 (2016). Tool available at http://zenon.dsic.upv.es/ages/

11. Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)
12. Kim, S., Zhang, H.: ModGen: theorem proving by model generation. In: Proceed-

ings of AAAI 1994, pp. 162–167. AAAI Press/MIT Press (1994)
13. Kleene, S.C.: Mathematical Logic. Wiley, Hoboken (1967). (Dover 2002)
14. Lucas, S.: Analysis of rewriting-based systems as first-order theories. In: Fioravanti,

F., Gallagher, J.P. (eds.) LOPSTR 2017. LNCS, vol. 10855, pp. 180–197. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94460-9 11

15. Lucas, S., Gutiérrez, R.: Automatic synthesis of logical models for order-sorted
first-order theories. J. Autom. Reason. 60(4), 465–501 (2018)

16. Lucas, S., Gutiérrez, R.: Use of logical models for proving infeasibility in term
rewriting. Inf. Process. Lett. 136, 90–95 (2018)

17. McCune, W.: Prover9 and Mace4 (2005–2010). http://www.cs.unm.edu/∼mccune/
prover9/

18. Meseguer, J.: Twenty years of rewriting logic. J. Logic Algebraic Program. 81,
721–781 (2012)

19. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, New York (2002).
https://doi.org/10.1007/978-1-4757-3661-8

20. Reiter, R.: On closed world data bases. In: Logic and Data Bases, pp. 119–140.
Plenum Press, New York (1978)

21. Reger, G., Suda, M., Voronkov, A.: Finding finite models in multi-sorted first-
order logic. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp.
323–341. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2 20

https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/BFb0014969
http://zenon.dsic.upv.es/ages/
https://doi.org/10.1007/978-3-319-94460-9_11
http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/
https://doi.org/10.1007/978-1-4757-3661-8
https://doi.org/10.1007/978-3-319-40970-2_20

Proving Program Properties as First-Order Satisfiability 21

22. Shapiro, S.: Foundations Without Foundationalism: A Case for Second-Order
Logic. Clarendon Press, Oxford (1991)

23. Wang, H.: Logic of many-sorted theories. J. Symbolic Logic 17(2), 105–116 (1952)
24. Zhang, J., Zhang, H.: Generating models by SEM. In: McRobbie, M.A., Slaney,

J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 308–312. Springer, New York (1996)

Guided Unfoldings for Finding Loops
in Standard Term Rewriting

Étienne Payet(B)

LIM, Université de La Réunion, Saint-Denis, France
etienne.payet@univ-reunion.fr

Abstract. In this paper, we reconsider the unfolding-based technique
that we have introduced previously for detecting loops in standard term
rewriting. We modify it by guiding the unfolding process, using disagree-
ment pairs in rewrite rules. This results in a partial computation of the
unfoldings, whereas the original technique consists of a thorough com-
putation followed by a mechanism for eliminating some rules. We have
implemented this new approach in our tool NTI and conducted successful
experiments on a large set of term rewrite systems.

Keywords: Term rewrite systems · Dependency pairs ·
Non-termination · Loop · Unfolding

1 Introduction

In [13], we have introduced a technique for finding loops (a periodic, special form
of non-termination) in standard term rewriting. It consists of unfolding the term
rewrite system (TRS) R under analysis and of performing a semi-unification [10]
test on the unfolded rules for detecting loops. The unfolding operator UR which
is applied processes both forwards and backwards and considers every subterm
of the rules to unfold, including variable subterms.

Example 1. Let R be the TRS consisting of the following rules (x is a variable):

R1 = f(s(0), s(1), x)
︸ ︷︷ ︸

l

→ f(x, x, x)
︸ ︷︷ ︸

r

R2 = h→ 0 R3 = h→ 1.

Note that R is a variation of a well-known example by Toyama [18]. Unfolding
the subterm 0 of l backwards with the rule R2, we get the unfolded rule U1 =
f(s(h), s(1), x)→ f(x, x, x). Unfolding the subterm x (a variable) of l backwards
with R2, we get U2 = f(s(0), s(1), h)→ f(0, 0, 0). Unfolding the first (from the left)
occurrence of x in r forwards with R2, we get U3 = f(s(0), s(1), h)→ f(0, h, h). We
have {U1, U2, U3} ⊆ UR(R). Now, if we unfold the subterm 1 of U1 backwards
with R3, we get f(s(h), s(h), x)→ f(x, x, x), which is an element of UR(UR(R)).
The left-hand side l1 of this rule semi-unifies with its right-hand side r1 i.e.,
l1θ1θ2 = r1θ1 for the substitutions θ1 = {x/s(h)} and θ2 = {}. Therefore,
c© Springer Nature Switzerland AG 2019
F. Mesnard and P. J. Stuckey (Eds.): LOPSTR 2018, LNCS 11408, pp. 22–37, 2019.
https://doi.org/10.1007/978-3-030-13838-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13838-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-13838-7_2

Guided Unfoldings for Finding Loops in Standard Term Rewriting 23

lθ1 = f(s(h), s(h), s(h)) loops with respect to R because it can be rewritten to
itself using the rules of R (the redex is underlined at each step):

f(s(h), s(h), s(h))→
R2

f(s(0), s(h), s(h))→
R3

f(s(0), s(1), s(h)) →
R1

f(s(h), s(h), s(h)).

Iterative applications of the operator UR result in a combinatorial explosion
which significantly limits the approach. In order to reduce it, a mechanism is
introduced in [13] for eliminating unfolded rules which are estimated as useless
for detecting loops. Moreover, in practice, three analyses are run in parallel (in
different threads): one with forward unfoldings only, one with backward unfold-
ings only and one with forward and backward unfoldings together.

So, the technique of [13] roughly consists in computing all the rules of UR(R),
UR(UR(R)), . . . and removing some useless ones, until the semi-unification test
succeeds on an unfolded rule or a time limit is reached. Therefore, this approach
corresponds to a breadth-first search for a loop, as the successive iterations of
UR are computed thoroughly, one after the other. However, it is not always
necessary to compute all the elements of each iteration of UR. For instance,
in Example 1 above, U2 and U3 do not lead to an unfolded rule satisfying the
semi-unification criterion. This is detected by the eliminating mechanism of [13],
but only after these two rules are generated. In order to avoid the generation
of these useless rules, one can notice that l and r differ at the first argument
of f: in l, the first argument is s(0) while in r it is x. We say that 〈s(0), x〉 is a
disagreement pair of l and r. Hence, one can first concentrate on resolving this
disagreement, unfolding this pair only, and then, once this is resolved, apply the
same process to another disagreement pair.

Example 2 (Example 1 continued). There are two ways to resolve the disagree-
ment pair 〈s(0), x〉 of l and r (i.e., make it disappear).

The first way consists in unifying s(0) and x, i.e., in computing R1θ where θ is
the substitution {x/s(0)}, which gives V0 = f(s(0), s(1), s(0))→ f(s(0), s(0), s(0)).
The left-hand side of V0 does not semi-unify with its right-hand side.

The other way is to unfold s(0) or x. We decide not to unfold variable sub-
terms, hence we select s(0). As it occurs in the left-hand side of R1, we unfold
it backwards. The only possibility is to use R2, which results in

V1 = f(s(h), s(1), x)→ f(x, x, x).

Note that this approach only generates two rules (V0 and V1) at the first iteration
of the unfolding operator. In comparison, the approach of [13] produces 14 rules
(before elimination), as all the subterms of R1 are considered for unfolding.

Hence, the disagreement pair 〈s(0), x〉 has been replaced with the disagree-
ment pair 〈s(h), x〉 in V1. Unifying s(h) and x i.e., computing V1θ

′ where θ′

is the substitution {x/s(h)}, we get V ′
1 = f(s(h), s(1), s(h))→ f(s(h), s(h), s(h)).

So, the disagreement 〈s(0), x〉 is solved: it has been replaced with 〈s(h), s(h)〉.
Now, 〈1, h〉 is a disagreement pair in V ′

1 (here we mean the second occur-
rence of h in the right-hand side of V ′

1). Unfolding 1 backwards with R3, we
get W = f(s(h), s(h), s(h))→ f(s(h), s(h), s(h)) and unfolding h forwards with

24 É. Payet

R3, we get W ′ = f(s(h), s(1), s(h))→ f(s(h), s(1), s(h)). The semi-unification
test succeeds on both rules: we get the looping terms f(s(h), s(h), s(h)) and
f(s(h), s(1), s(h)) from W and W ′, respectively.

In the approach sketched in Example 2, the iterations of UR are not thor-
oughly computed because only some selected disagreement pairs are considered
for unfolding, unlike in our previous approach [13] which tries to unfold all the
subterms in rules. Hence, now the unfoldings are guided by disagreement pairs.
In this paper, we formally describe the intuitions presented above (Sects. 3–5).
We also report experiments on a large set of rewrite systems from the TPBD [17]
(Sect. 6). The results we get in practice with the new approach are better than
those obtained with the approach of [13] and we do not need to perform several
analyses in parallel, nor to unfold variable subterms, unlike [13].

2 Preliminaries

If Y is an operator from a set E to itself, then for any e ∈ E we let

(Y ↑ 0)(e) = e and ∀n ∈ N : (Y ↑ n + 1)(e) = Y
(

(Y ↑ n)(e)
)

.

We refer to [4] for the basics of rewriting. From now on, we fix a finite
signature F together with an infinite countable set V of variables with F∩V = ∅.
Elements of F (symbols) are denoted by f, g, h, 0, 1, . . . and elements of V by
x, y, z, . . . The set of terms over F ∪ V is denoted by T (F ,V). For any t ∈
T (F ,V), we let root(t) denote the root symbol of t: root(t) = f if t = f(t1, . . . , tm)
and root(t) = ⊥ if t ∈ V, where ⊥ is a new symbol not occurring in F and V.
We let Var(t) denote the set of variables occurring in t and Pos(t) the set of
positions of t. For any p ∈ Pos(t), we write t|p to denote the subterm of t at
position p and t[p ← s] to denote the term obtained from t by replacing t|p with
a term s. For any p, q ∈ Pos(t), we write p ≤ q iff p is a prefix of q and we write
p < q iff p ≤ q and p �= q. We also define the set of non-variable positions of t
which either are a prefix of p or include p as a prefix:

NPos(t, p) = {q ∈ Pos(t) | q ≤ p ∨ p ≤ q, t|q �∈ V}.

A disagreement position of terms s and t is a position p ∈ Pos(s) ∩ Pos(t)
such that root(s|p) �= root(t|p) and, for every q < p, root(s|q) = root(t|q). The
set of disagreement positions of s and t is denoted as DPos(s, t). A disagreement
pair of s and t is an ordered pair 〈s|p, t|p〉 where p ∈ DPos(s, t).

Example 3. Let s = f(s(0), s(1), y), t = f(x, x, x), p1 = 1, p2 = 2 and p3 = 3.
Then, {p1, p2} ⊆ DPos(s, t) and 〈s|p1 , t|p1〉 = 〈s(0), x〉 and 〈s|p2 , t|p2〉 = 〈s(1), x〉
are disagreement pairs of s and t. However, p3 �∈ DPos(s, t) because 〈s|p3 , t|p3〉 =
〈y, x〉 and root(y) = root(x) = ⊥.

We write substitutions as sets of the form {x1/t1, . . . , xn/tn} denoting that
for each 1 ≤ i ≤ n, variable xi is mapped to term ti (note that xi may occur in ti).

Guided Unfoldings for Finding Loops in Standard Term Rewriting 25

The empty substitution (identity) is denoted by id . The application of a substi-
tution θ to a syntactic object o is denoted by oθ. We let mgu(s, t) denote the
(up to variable renaming) most general unifier of terms s and t. We say that s
semi-unifies with t when sθ1θ2 = tθ1 for some substitutions θ1 and θ2.

A rewrite rule (or rule) over F ∪ V has the form l → r with l, r ∈ T (F ,V),
l �∈ V and Var(r) ⊆ Var(l). A term rewriting system (TRS) over F ∪ V is a
finite set of rewrite rules over F ∪ V. Given a TRS R and some terms s and
t, we write s→

R
t if there is a rewrite rule l → r in R, a substitution θ and

p ∈ Pos(s) such that s|p = lθ and t = s[p ← rθ]. We let +→
R

(resp. ∗→
R

) denote

the transitive (resp. reflexive and transitive) closure of →
R

. We say that a term

t is non-terminating with respect to (w.r.t.) R when there exist infinitely many
terms t1, t2, . . . such that t →

R
t1 →

R
t2 →

R
· · · . We say that R is non-terminating

if there exists a non-terminating term w.r.t. it. A term t loops w.r.t. R when
t

+→
R

C[tθ] for some context C and substitution θ. Then t
+→
R

C[tθ] is called a loop

for R. We say that R is looping when it admits a loop. If a term loops w.r.t. R
then it is non-terminating w.r.t. R.

The unfolding operators that we define in Sect. 3 of this paper use narrowing.
We say that a term s narrows forwards (resp. backwards) to a term t w.r.t. a
TRS R when there exists a non-variable position p of s and a rule l → r of R
renamed with new variables not previously met such that t = s[p ← r]θ (resp.
t = s[p ← l]θ) where θ = mgu(s|p, l) (resp. θ = mgu(s|p, r)).

We refer to [3] for details on dependency pairs. The defined symbols of a TRS
R over F ∪ V are DR = {root(l) | l → r ∈ R}. For every f ∈ F we let f# be a
fresh tuple symbol with the same arity as f. The set of tuple symbols is denoted
as F#. The notations and definitions above with terms over F ∪V are naturally
extended to terms over (F ∪F#)∪V. Elements of F ∪F# are denoted as f, g, . . .
If t = f(t1, . . . , tm) ∈ T (F ,V), we let t# denote the term f#(t1, . . . , tm), and we
call t# an F#-term. An F#-rule is a rule whose left-hand and right-hand sides
are F#-terms. The set of dependency pairs of R is

{l# → t# | l → r ∈ R, t is a subterm of r, root(t) ∈ DR}.

A sequence s1 → t1, . . . , sn → tn of dependency pairs of R is an R-chain if there
exists a substitution σ such that tiσ

∗→
R

si+1σ holds for every two consecutive

pairs si → ti and si+1 → ti+1 in the sequence.

Theorem 1 ([3]). R is non-terminating iff there exists an infinite R-chain.

The dependency graph of R is the graph whose nodes are the dependency
pairs of R and there is an arc from s→ t to u → v iff s→ t, u → v is an R-
chain. This graph is not computable in general since it is undecidable whether
two dependency pairs of R form an R-chain. Hence, for automation, one con-
structs an estimated graph containing all the arcs of the real graph. This is
done by computing connectable terms, which form a superset of those terms

26 É. Payet

s, t where sσ
∗→
R

tσ holds for some substitution σ. The approximation uses the

transformations cap and ren where, for any t ∈ T (F ∪ F#,V), cap(t) (resp.
ren(t)) results from replacing all subterms of t with defined root symbol (resp.
all variable occurrences in t) by different new variables not previously met. More
formally:

cap(x) = x if x ∈ V

cap(f(t1, . . . , tm)) =
{

a new variable not previously met if f ∈ DR
f(cap(t1), . . . ,cap(tm)) if f �∈ DR

ren(x) = a new variable not previously met
if x is an occurrence of a variable

ren(f(t1, . . . , tm)) = f(ren(t1), . . . ,ren(tm))

A term s is connectable to a term t if ren(cap(s)) unifies with t. An F#-rule
l → r is connectable to an F#-rule s→ t if r is connectable to s. The estimated
dependency graph of R is denoted as DG(R). Its nodes are the dependency pairs
of R and there is an arc from N to N ′ iff N is connectable to N ′. We let SCC (R)
denote the set of strongly connected components of DG(R) that contain at least
one arc. Hence, a strongly connected component consisting of a unique node is
in SCC (R) only if there is an arc from the node to itself.

Example 4. Let R be the TRS of Example 1. We have SCC (R) = {C} where C
consists of the node N = f#(s(0), s(1), x)→ f#(x, x, x) and of the arc (N,N).

Example 5. Let R′ = {f(0)→ f(1), f(2)→ f(0), 1→ 0}. We have SCC (R′) =
{C′} where C′ consists of the nodes N1 = f#(0)→ f#(1) and N2 = f#(2)→ f#(0)
and of the arcs {N1, N2} × {N1, N2} \ {(N2, N2)}. The strongly connected com-
ponent of DG(R′) which consists of the unique node f#(0)→ 1# does not belong
to SCC (R′) because it has no arc.

Finite sequences are written as [e1, . . . , en]. We let :: denote the concate-
nation operator over finite sequences. A path in DG(R) is a finite sequence
[N1, N2, . . . , Nn] of nodes where, for each 1 ≤ i < n, there is an arc from Ni

to Ni+1. When there is also an arc from Nn to N1, the path is called a cycle.
It is called a simple cycle if, moreover, there is no repetition of nodes (modulo
variable renaming).

3 Guided Unfoldings

In the sequel of this paper, we let R denote a TRS over F ∪ V.
While the method sketched in Example 2 can be applied directly to the TRS

R under analysis, we use a refinement based on the estimated dependency graph
of R. The cycles in DG(R) are over-approximations of the infinite R-chains i.e.,
any infinite R-chain corresponds to a cycle in the graph but some cycles in the
graph may not correspond to any R-chain. Moreover, by Theorem 1, if we find

Guided Unfoldings for Finding Loops in Standard Term Rewriting 27

an infinite R-chain then we have proved that R is non-terminating. Hence, we
concentrate on the cycles in DG(R). We try to solve them, i.e., to find out if
they correspond to any infinite R-chain. This is done by iteratively unfolding
the F#-rules of the cycles. If the semi-unification test succeeds on one of the
generated unfolded rules, then we have found a loop.

Definition 1 (Syntactic loop). A syntactic loop in R is a finite sequence
[N1, . . . , Nn] of distinct (modulo variable renaming) F#-rules where, for each
1 ≤ i < n, Ni is connectable to Ni+1 and Nn is connectable to N1. We identify
syntactic loops consisting of the same (modulo variable renaming) elements, not
necessarily in the same order.

Note that the simple cycles in DG(R) are syntactic loops. For any C ∈
SCC (R), we let s-cycles(C) denote the set of simple cycles in C. We also let

s-cycles(R) = ∪C∈SCC (R) s-cycles(C)

be the set of simple cycles in R. The rules of any simple cycle in R are assumed
to be pairwise variable disjoint.

Example 6 (Examples 4 and 5 continued). We have

s-cycles(R) = {[N]} and s-cycles(R′) = {[N1], [N1, N2]}

with, in s-cycles(R′), [N1, N2] = [N2, N1].

The operators we use for unfolding an F#-rule R at a disagreement position
p are defined as follows. They are guided by a given term u and they only
work on the non-variable subterms of R. They unify a subterm of R with a
subterm of u, see (1) in Definitions 2–3. This corresponds to what we did in
Example 2 for generating V ′

1 from V1, but in the definitions below we do not
only consider p, we consider all its prefixes. The operators also unfold R using
narrowing, see (2) in Definitions 2–3: there, l′ → r′ � R means that l′ → r′ is a
new occurrence of a rule of R that contains new variables not previously met.
This corresponds to what we did in Example 2 for generating V1 from R1. In
contrast to (1), the positions that are greater than p are also considered in (2); for
instance in Example 2, we unfolded the inner subterm 0 of the disagreement pair
component s(0).

Definition 2 (Forward guided unfoldings). Let l → r be an F#-rule, s be
an F#-term and p ∈ DPos(r, s). The forward unfoldings of l → r at position p,
guided by s and w.r.t. R are

FR(l → r, s, p) =
{

U

∣

∣

∣

∣

q ∈ NPos(r, p), q ≤ p
θ = mgu(r|q, s|q), U = (l → r)θ

}(1)

∪
{

U

∣

∣

∣

∣

q ∈ NPos(r, p), l′ → r′ � R
θ = mgu(r|q, l′), U = (l → r[q ← r′])θ

}(2)

.

28 É. Payet

Definition 3 (Backward guided unfoldings). Let s→ t be an F#-rule, r
be an F#-term and p ∈ DPos(r, s). The backward unfoldings of s→ t at position
p, guided by r and w.r.t. R are

BR(s→ t, r, p) =
{

U

∣

∣

∣

∣

q ∈ NPos(s, p), q ≤ p
θ = mgu(r|q, s|q), U = (s→ t)θ

}(1)

∪
{

U

∣

∣

∣

∣

q ∈ NPos(s, p), l′ → r′ � R
θ = mgu(s|q, r′), U = (s[q ← l′]→ t)θ

}(2)

.

Example 7 (Examples 4 and 6 continued). [N] is a simple cycle in R with

N = f#(s(0), s(1), x)
︸ ︷︷ ︸

s

→ f#(x, x, x)
︸ ︷︷ ︸

t

.

Let r = t. Then p = 1 ∈ DPos(r, s). Moreover, q = 1.1 ∈ NPos(s, p) because
p ≤ q and s|q = 0 is not a variable. Let l′ → r′ = h→ 0 ∈ R. We have id =
mgu(s|q, r′). Hence, by (2) in Definition 3, we have

U1 = f#(s(h), s(1), x)
︸ ︷︷ ︸

s1

→ f#(x, x, x)
︸ ︷︷ ︸

t1

∈ BR(N, r, p).

Let r1 = t1. Then, p = 1 ∈ DPos(r1, s1). Moreover, p ∈ NPos(s1, p) with
s1|p = s(h), p ≤ p and r1|p = x. As {x/s(h)} = mgu(r1|p, s1|p), by (1) in
Definition 3 we have

U ′
1 = f#(s(h), s(1), s(h))

︸ ︷︷ ︸

s′
1

→ f#(s(h), s(h), s(h))
︸ ︷︷ ︸

t′
1

∈ BR(U1, r1, p).

Let r′
1 = t′1. Then, p′ = 2.1 ∈ DPos(r′

1, s
′
1) with p′ ∈ NPos(s′

1, p
′). Let l′′ → r′′ =

h→ 1 ∈ R. We have id = mgu(s′
1|p′ , r′′). Hence, by (2) in Definition 3, we have

U
′′
1 = f#(s(h), s(h), s(h))→ f#(s(h), s(h), s(h)) ∈ BR(U ′

1, r
′
1, p

′).

Our approach consists of iteratively unfolding syntactic loops using the fol-
lowing operator.

Definition 4 (Guided unfoldings). Let X be a set of syntactic loops of R.
The guided unfoldings of X w.r.t. R are defined as

GU R(X) =
{

L ::[U] :: L′
∣

∣

∣

∣

L ::[l → r, s→ t] :: L′ ∈ X, θ = mgu(r, s)
U = (l → t)θ, L ::[U] :: L′ is a syntactic loop

}(1)

∪
⎧

⎨

⎩

L ::[U, s→ t] :: L′

∣

∣

∣

∣

∣

∣

L ::[l → r, s→ t] :: L′ ∈ X
p ∈ DPos(r, s), U ∈ FR(l → r, s, p)
L ::[U, s→ t] :: L′ is a syntactic loop

⎫

⎬

⎭

(2)

∪

Guided Unfoldings for Finding Loops in Standard Term Rewriting 29

⎧

⎨

⎩

L ::[l → r, U] :: L′

∣

∣

∣

∣

∣

∣

L ::[l → r, s→ t] :: L′ ∈ X
p ∈ DPos(r, s), U ∈ BR(s→ t, r, p)
L ::[l → r, U] :: L′ is a syntactic loop

⎫

⎬

⎭

(3)

∪

⎧

⎨

⎩

[U]

∣

∣

∣

∣

∣

∣

[l → r] ∈ X, p ∈ DPos(r, l)
U ∈ FR(l → r, l, p) ∪ BR(l → r, r, p)
[U] is a syntactic loop

⎫

⎬

⎭

(4)

.

The general idea is to compress the syntactic loops into singletons by iterated
applications of this operator. The semi-unification criterion can then be applied
to these singletons, see Theorem 2 below. Compression takes place in case (1) of
Definition 4: when the right-hand side of a rule unifies with the left-hand side
of its successor, then both rules are merged. When merging two successive rules
is not possible yet, the operators FR and BR are applied to try to transform
the rules into mergeable ones, see cases (2) and (3). Once a syntactic loop has
been compressed to a singleton, we keep on unfolding (case (4)) to try reaching
a compressed form satisfying the semi-unification criterion. Note that after an
unfolding step, we might get a sequence which is not a syntactic loop: the newly
generated rule U might be identical to another rule in the sequence or it might
not be connectable to its predecessor or successor. So, (1)–(4) require that the
generated sequence is a syntactic loop.

The guided unfolding semantics is defined as follows, in the style of [1,13].
Definition 5 (Guided unfolding semantics). The guided unfolding seman-
tics of R is the limit of the unfolding process described in Definition 4, starting
from the simple cycles in R: gunf (R) = ∪n∈N gunf (R, n) where, for all n ∈ N,

gunf (R, n) = (GU R ↑ n)(s-cycles(R)).

This semantics is very similar to the overlap closure [7] of R (denoted by
OC(R)). A difference is that for computing gunf (R) one starts from dependency
pairs of R (s-cycles(R)), whereas for computing OC(R) one starts directly from
the rules of R. In case (1) of Definition 4, we merge two unfolded rules. Sim-
ilarly, for computing OC(R) one overlaps closures with closures. However, in
cases (2)–(4) the operators FR and BR narrow an unfolded rule with a rule of
R, not with another unfolded rule, unlike in the computation of OC(R).

Example 8. By Example 7 and (4) in Definition 4, we have [U
′′
1] ∈ gunf (R, 3).

Example 9. Let R = {f(0)→ g(1), g(1)→ f(0)}. Then, SCC (R) = {C} where
C consists of the nodes N1 = f#(0)→ g#(1) and N2 = g#(1)→ f#(0) and of
the arcs (N1, N2) and (N2, N1). Moreover, s-cycles(R) = {[N1, N2]}. As id =
mgu(g#(1), g#(1)) and (f#(0)→ f#(0))id = f#(0)→ f#(0), by (1) in Definition 4
we have [f#(0)→ f#(0)] ∈ gunf (R, 1).

Proposition 1. For any n ∈ N and [s# → t#] ∈ gunf (R, n) there exists some
context C such that s

+→
R

C[t].

Proof. For some context C, we have s→ C[t] ∈ unf (R) where unf (R) is the
unfolding semantics defined in [13]. So, by Prop. 3.12 of [13], s

+→
R

C[t].

30 É. Payet

4 Inferring Terms that Loop

As in [13], we use semi-unification [10] for detecting loops. Semi-unification
encompasses both matching and unification, and a polynomial-time algorithm
for it can be found in [8].

Theorem 2. For any n ∈ N, if there exist [s# → t#] ∈ gunf (R, n) and some
substitutions θ1 and θ2 such that sθ1θ2 = tθ1, then the term sθ1 loops w.r.t. R.

Proof. By Proposition 1, s
+→
R

C[t] for some context C. Since →
R

is stable, we have

sθ1
+→
R

C[t]θ1 i.e., sθ1
+→
R

Cθ1[tθ1] i.e., sθ1
+→
R

Cθ1[sθ1θ2].

Hence, sθ1 loops w.r.t. R.

Example 10 (Example 8 continued). We have

[f#(s(h), s(h), s(h))→ f#(s(h), s(h), s(h))
︸ ︷︷ ︸

U
′′
1

] ∈ gunf (R, 3)

with f(s(h), s(h), s(h))θ1θ2 = f(s(h), s(h), s(h))θ1 for θ1 = θ2 = id . Consequently,
f(s(h), s(h), s(h))θ1 = f(s(h), s(h), s(h)) loops w.r.t. R.

Example 11 (Example 9 continued). [f#(0)→ f#(0)] ∈ gunf (R, 1) with f(0)θ1θ2
= f(0)θ1 for θ1 = θ2 = id . Hence, f(0)θ1 = f(0) loops w.r.t. R.

The substitutions θ1 and θ2 that we use in the next example are more sophis-
ticated than in Examples 10 and 11.

Example 12. Let R = {f(g(x, 0), y)→ f(g(0, x), h(y))}. Then, SCC (R) = {C}
where C consists of the node N = f#(g(x, 0), y)→ f#(g(0, x), h(y)) and of the
arc (N,N). Moreover, s-cycles(R) = {[N]} hence [N] ∈ gunf (R, 0). Therefore,
as f(g(x, 0), y)θ1θ2 = f(g(0, x), h(y))θ1 for θ1 = {x/0} and θ2 = {y/h(y)}, by
Theorem 2 we have that f(g(x, 0), y)θ1 = f(g(0, 0), y) loops w.r.t. R.

We do not have an example where semi-unification is necessary for detecting
a loop. In every example that we have considered, matching or unification were
enough. However, semi-unification sometimes allows us to detect loops earlier in
the unfolding process than with matching and unification. This is important in
practice, because the number of unfolded rules can grow rapidly from iteration
to iteration.

Example 13 (Example 12 continued). Semi-unification allows us to detect a loop
at iteration 0 of GU R. But a loop can also be detected at iteration 1 using
matching. Indeed, we have

N = f#(g(x, 0), y)
︸ ︷︷ ︸

l

→ f#(g(0, x), h(y))
︸ ︷︷ ︸

r

Guided Unfoldings for Finding Loops in Standard Term Rewriting 31

with p = 1.1 ∈ DPos(r, l). Hence,

U = f#(g(0, 0), y)
︸ ︷︷ ︸

s#

→ f#(g(0, 0), h(y))
︸ ︷︷ ︸

t#

∈ FR(l → r, l, p).

So, by (4) in Definition 4, we have [U] ∈ gunf (R, 1). Notice that sθ = t for
θ = {y/h(y)}, so s matches t. Moreover, by Theorem 2, s = f(g(0, 0), y) loops
w.r.t. R (take θ1 = id and θ2 = θ).

5 Further Comparisons with the Approach of [13]

The approach that we have presented in [13] relies on an unfolding operator
UR (where R is the TRS under analysis) which is also based on forward and
backward narrowing (as FR and BR herein). But, unlike the technique that we
have presented above, it directly unfolds the rules (not the dependency pairs)
of R and it does not compute any SCC. Moreover, it consists of a thorough
computation of the iterations of UR followed by a mechanism for eliminating
rules that cannot be further unfolded to a rule l → r where l semi-unifies with r.
Such rules are said to be root-useless. The set of root-useless rules is an overap-
proximation of the set of useless rules (rules that cannot contribute to detecting
a loop), hence the elimination technique of [13] may remove some rules which
are actually useful for detecting a loop. Our non-termination analyser which is
based on [13] uses a time limit. It stops whenever it has detected a loop within
the limit (then it answers NO, standing for No, this TRS does not terminate as
in the Termination Competition [15]) or when the limit has been reached (then
it answers TIME OUT) or when no more unfolded rule could be generated at
some point within the limit ((UR ↑ n)(R) = ∅ for some n). In the last situation,
either the TRS under analysis is not looping (it is terminating or non-looping
non-terminating) or it is looping but a loop for it cannot be captured by the
approach (for instance, the elimination mechanism has removed all the useful
rules). In such a situation, our analyser answers DON’T KNOW.

Example 14. Consider the terminating TRS R = {0→ 1}. As the left-hand
(resp. right-hand) side of the rule of R cannot be narrowed backwards (resp.
forwards) with R then we have (UR ↑ 1)(R) = ∅.

In contrast, the approach that we have presented in Sects. 3–4 above avoids
the generation of some rules by only unfolding disagreement pairs. Currently,
in terms of loop detection power, we do not have any theoretical comparison
between this new technique and that of [13]. Our new non-termination analyser
also uses a time limit and answers NO, TIME OUT or DON’T KNOW when
no more unfolded rules are generated at some point (gunf (R, n) = ∅ for some
n, as in Example 14). Moreover, it allows the user to fix a selection strategy of
disagreement pairs: in Definition 4, the conditions p ∈ DPos(r, s) (cases (2)–(3))
and p ∈ DPos(r, l) (case (4)) are replaced with p ∈ selectR(l → r, s→ t) and
p ∈ selectR(l → r, l → r) respectively, where selectR can be one of the following
functions.

32 É. Payet

Selection of all the pairs: select allR(l → r, s→ t) = DPos(r, s).
Leftmost selection: if DPos(r, s) = ∅ then select lmR(l → r, s→ t) = ∅, oth-

erwise select lmR(l → r, s→ t) = {p} where p is the leftmost disagreement
position of r and s.

Leftmost selection with non-empty unfoldings:

select lmneR(l → r, s→ t) = {p}
where p is the leftmost disagreement position of r and s such that

FR(l → r, s, p) ∪ BR(s→ t, r, p) �= ∅.

If such a position p does not exist then select lmneR(l → r, s→ t) = ∅.

Example 15. Let R = {f(s(0), s(1), z)→ f(x, y, z)} and l = f#(s(0), s(1), z) and
r = f#(x, y, z). Then, we have select allR(l → r, l → r) = DPos(r, l) = {1, 2}.
Moreover, 1 is the leftmost disagreement position of r and l because r|1 = x
occurs to the left of r|2 = y in r and l|1 = s(0) occurs to the left of l|2 = s(1) in
l. Therefore, we have select lmR(l → r, l → r) = {1}.

Example 16. Let R = {f(x, x)→ f(g(x), h(x)), h(x)→ g(x)}. Then, SCC (R) =
{C} where C consists of the node N = l → r = f#(x, x)→ f#(g(x), h(x)) and
of the arc (N,N). Then, DPos(r, l) = {1, 2} and select lmR(N,N) = {1}. As
FR(N, l, 1) ∪ BR(N, r, 1) = ∅ and FR(N, l, 2) ∪ BR(N, r, 2) �= ∅ (for instance,
f#(x, x)→ f#(g(x), g(x)) ∈ FR(N, l, 2) is obtained from narrowing r|2 = h(x)
forwards with h(x)→ g(x)), then select lmneR(N,N) = {2}.

As the approach of [13], and depending on the strategy used for selecting
disagreement pairs, our new technique is not complete in the sense that it may
miss some loop witnesses.

Example 17 (Example 16 continued). We have gunf (R, 0) = s-cycles(R) =
{[N]}. As l does not semi-unify with r, no loop is detected from gunf (R, 0), so we
go on and compute gunf (R, 1). Only case (4) of Definition 4 is applicable to [N].
First, suppose that selectR = select lmR. Then, selectR(N,N) = {1} and, as
FR(N, l, 1) ∪ BR(N, r, 1) = ∅, case (4) does not produce any rule. Consequently,
we have gunf (R, 1) = ∅, hence no loop is detected for R. Now, suppose that
selectR = select lmneR. Then, selectR(N,N) = {2}. Narrowing r|2 = h(x)
forwards with h(x)→ g(x), we get the rule N ′ = f#(x, x)→ f#(g(x), g(x)) which
is an element of FR(N, l, 2). Hence, [N ′] ∈ gunf (R, 1). As in N ′ we have that
f(x, x) semi-unifies with f(g(x), g(x)) (take θ1 = id and θ2 = {x/g(x)}), then
f(x, x) loops w.r.t. R. This loop is also detected by the approach of [13].

6 Experiments

We have implemented the technique of this paper in our analyser NTI1 (Non-
Termination Inference). For our experiments, we have extracted from the direc-
tory TRS_Standard of the TPBD [17] all the valid rewrite systems2 that were
1 http://lim.univ-reunion.fr/staff/epayet/Research/NTI/NTI.html.
2 Surprisingly, the subdirectory Transformed CSR 04 contains 60 files where a pair
l→ r with Var(r) �⊆ Var(l) occurs. These pairs are not valid rewrite rules.

http://lim.univ-reunion.fr/staff/epayet/Research/NTI/NTI.html

Guided Unfoldings for Finding Loops in Standard Term Rewriting 33

either proved looping or unproved3 during the Termination Competition 2017
(TC’17) [15]. Otherwise stated, we removed from TRS_Standard all the non-
valid TRSs and all the TRSs that were proved terminating or non-looping non-
terminating by a tool participating in the competition. We ended up with a set
S of 333 rewrite systems. We let L (resp. U) be the subset of S consisting of all
the systems that were proved looping (resp. that were unproved) during TC’17.
Some characteristics of L and U are reported in Table 1. Note that the complete
set of simple cycles of a TRS may be really huge, hence NTI only computes a
subset of it. The simple cycle characteristics given in Table 1 relate to the subsets
computed by NTI.

Table 1. Some characteristics of the analysed TRSs. Sizes are in number of rules. In
square brackets, we report the number of TRSs with the corresponding min or max.

S = L � U (333 TRSs) L (173 TRSs) U (160 TRSs)

Min Max Average Min Max Average

TRS size 1 [17] 104 [1] 11.08 1 [9] 837 [1] 64.78

Number of SCCs 1 [101] 12 [1] 1.95 1 [70] 130 [1] 6.14

SCC size 1 [96] 192 [1] 4.44 1 [54] 473 [1] 10.79

Number of simple cycles 1 [47] 185 [1] 8.55 2 [15] 1,176 [1] 69.02

Simple cycle size 1 [157] 9 [2] 2.23 1 [157] 9 [4] 2.21

Number of symbols 1 [4] 66 [1] 9.09 2 [7] 259 [1] 24.14

Symbol arity 0 [153] 5 [2] 1.07 0 [150] 12 [2] 1.94

Number of defined symbols 1 [28] 58 [1] 5.21 1 [15] 132 [2] 17.19

Defined symbol arity 0 [74] 5 [2] 1.38 0 [28] 12 [2] 2.27

We have run our new approach (NTI’18) and that of [13] (NTI’08) on the
TRSs of S. The results are reported in Tables 2 and 3. We used an Intel 2-core
i5 at 2 GHz with 8 GB of RAM and the time limit fixed for a proof was 120 s.
For every selection strategy, NTI’18 issues more successful proofs (NO) and gen-
erates less unfolded rules than NTI’08. Moreover, as it avoids the generation of
some rules instead of computing all the unfolding and then eliminating some
rules (as NTI’08 does), its times are better. At the bottom of the tables, we give
the numbers of TRSs proved looping by both approaches and by one approach
only. NTI’18 succeeds on all the TRSs of L on which NTI’08 succeeds, but it
fails on one TRS of U on which NTI’08 succeeds. This is due to our simplified
computation of the set of simple cycles: our algorithm does not generate the
cycle that would allow NTI’18 to succeed and NTI’18 times out, trying to unfold
syntactic loops from which it cannot detect anything. Another point to note
is that the implementation of the new approach does not need to run several

3 By unproved we mean that no tool succeeded in proving that these TRSs were
terminating or non-terminating (all the tools failed on these TRSs).

34 É. Payet

analyses in parallel to achieve the results presented in Tables 2 and 3. One single
thread of computation is enough. On the contrary, for the approach of [13], 3
parallel threads are necessary: one with forward unfoldings only, one with back-
ward unfoldings only and one with forward and backward unfoldings together.
The results get worse if NTI’08 only runs one thread performing forward and
backward unfoldings together. In Tables 2 and 3, we report in square brackets
the number of successes of NTI’08 when it only runs one thread performing both
forward and backward unfoldings.

Table 2. Analysis results on the TRSs of L.

L (173 TRSs) NTI’08 NTI’18

select all select lm select lmne

NO 152 [149] 157 157 158

DON’T KNOW 0 0 1 0

TIME OUT 21 16 15 15

Time 2,966 s 2,194 s 1,890 s 1,889 s

Generated rules 11,167,976 9,030,962 8,857,421 8,860,560

NO(NTI′08) ∩ NO(NTI′18) 152 151 152

NO(NTI′08) \ NO(NTI′18) 0 1 0

NO(NTI′18) \ NO(NTI′08) 5 6 6

Table 3. Analysis results on the TRSs of U .

U (160 TRSs) NTI’08 NTI’18

select all select lm select lmne

NO 4 [3] 6 6 6

DON’T KNOW 0 0 1 0

TIME OUT 156 154 153 154

Time 18,742 s 18,563 s 18,414 s 18,534 s

Generated rules 64,011,002 53,134,334 61,245,705 63,300,604

NO(NTI′08) ∩ NO(NTI′18) 3 3 3

NO(NTI′08) \ NO(NTI′18) 1 1 1

NO(NTI′18) \ NO(NTI′08) 3 3 3

Four tools participated in the category TRS Standard of TC’17: AProVE [2,5],
MU-TERM [11], NaTT [12] and WANDA [9]. The numbers of TRSs proved loop-
ing by each of them during the competition is reported in Table 4. An important
point to note here is that the time limit fixed in TC’17 was 300s, whereas in
our experiments with NTI’18 and NTI’08 it was 120s. Moreover, the machine we

Guided Unfoldings for Finding Loops in Standard Term Rewriting 35

Table 4. Number of successes (NO) on L and U obtained during TC’17 and those
obtained by NTI during our experiments.

S = L � U (333 TRSs) TC’17 (time limit = 300 s) (time limit = 120 s)

AProVE MU-TERM NaTT WANDA NTI’08 NTI′18 (select lmne)

L (173 TRSs) 172 81 109 0 152 158

U (160 TRSs) 0 0 0 0 4 6

used (an Intel 2-core i5 at 2 GHz with 8 GB of RAM) is much less powerful than
the machine used during TC’17 (the StarExec platform [14] running on an Intel
Xeon E5-2609 at 2.4 GHz with 129 GB of RAM). All the tools of TC’17 failed on
all the rewrite systems of U . In contrast, NTI’18 (resp. NTI’08) finds a loop for 6
(resp. 4) of them. Regarding L, AProVE was able to prove loopingness of 172 out
of 173 TRSs. The only TRS of L on which AProVE failed4 was proved looping
by NaTT. In comparison, our approach succeeds on 158 systems of L, less than
AProVE but more than the other tools of TC’17. Similarly to our approach,
AProVE handles the SCCs of the estimated dependency graph independently,
but it first performs a termination analysis. The non-termination analysis is
then only applied to those SCCs that could not be proved terminating. On the
contrary, NTI only performs non-termination proofs. If an SCC is terminating,
it cannot prove it and keeps on trying a non-termination proof, unnecessarily
generating unfolded rules at the expense of the analysis of the other SCCs. The
loop detection techniques implemented in AProVE and NTI’18 are based on the
idea of searching for loops by forward and backward narrowing of dependency
pairs and by using semi-unification to detect potential loops. This idea has been
presented in [6] where heuristics are used to select forward or backward narrow-
ing. Note that in constrast, the technique that we present herein does not use
any heuristics and proceeds both forwards and backwards.

7 Conclusion

We have reconsidered and modified the unfolding-based technique of [13] for
detecting loops in standard term rewriting. The new approach uses disagreement
pairs for guiding the unfoldings, which now are only partially computed, whereas
the technique of [13] consists of a thorough computation followed by a mechanism
for eliminating some rules. Two theoretical questions remain open: in terms of
loop detection, is an approach more powerful than the other and does semi-
unification subsume matching and unification?

We have implemented the new approach in our tool NTI and compared it
to [13] on a set of 333 rewrite systems. The new results are better (better times,
more successful proofs, less unfolded rules). Moreover, the approach compares
well to the tools that participated in TC’17. However, the number of generated

4 Ex6 15 AEL02 FR.xml in the directory TRS Standard/Transformed CSR 04.

36 É. Payet

rules is still important. In an attempt to reduce it, during our experiments we
added the elimination mechanism of [13] to the new approach, but the results
we recorded were not satisfactory (an equivalent, slightly smaller, number of
generated rules but, due to the computational overhead, bigger times and less
successes); hence, we removed it. Termination analysis may help to reduce the
number of unfolded rules by detecting terminating SCCs in the estimated depen-
dency graph i.e., SCCs on which it is useless to try a non-termination proof. In
other words, we could use termination analysis as an elimination mechanism.
Several efficient and powerful termination analysers have been implemented so
far [16] and one of them could be called by NTI. A final idea to improve our
approach would be to consider more sophisticated strategies for selecting dis-
agreement pairs.

Acknowledgements. The author thanks the anonymous reviewers for their many
helpful comments and constructive criticisms. He also thanks Fred Mesnard for pre-
senting the paper at the symposium.

References

1. Alpuente, M., Falaschi, M., Moreno, G., Vidal, G.: Safe folding/unfolding with
conditional narrowing. In: Hanus, M., Heering, J., Meinke, K. (eds.) ALP/HOA
-1997. LNCS, vol. 1298, pp. 1–15. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0026999

2. AProVE Web site. http://aprove.informatik.rwth-aachen.de/
3. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor.

Comput. Sci. 236, 133–178 (2000)
4. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,

Cambridge (1998)
5. Giesl, J., et al.: Analyzing program termination and complexity automatically with

AProVE. J. Autom. Reason. 58(1), 3–31 (2017)
6. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termina-

tion of higher-order functions. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI),
vol. 3717, pp. 216–231. Springer, Heidelberg (2005). https://doi.org/10.1007/
11559306 12

7. Guttag, J.V., Kapur, D., Musser, D.R.: On proving uniform termination and
restricted termination of rewriting systems. SIAM J. Comput. 12(1), 189–214
(1983)

8. Kapur, D., Musser, D., Narendran, P., Stillman, J.: Semi-unification. Theor. Com-
put. Sci. 81(2), 169–187 (1991)

9. Kop, C.: WANDA - A higher-order termination tool. http://wandahot.sourceforge.
net

10. Lankford, D.S., Musser, D.R.: A finite termination criterion. Unpublished Draft,
USC Information Sciences Institute, Marina Del Rey, CA (1978)

11. MU-TERM Web site. http://zenon.dsic.upv.es/muterm/
12. NaTT - The Nagoya Termination Tool. https://www.trs.css.i.nagoya-u.ac.jp/

NaTT/
13. Payet, É.: Loop detection in term rewriting using the eliminating unfoldings. Theor.

Comput. Sci. 403(2–3), 307–327 (2008)

https://doi.org/10.1007/BFb0026999
https://doi.org/10.1007/BFb0026999
http://aprove.informatik.rwth-aachen.de/
https://doi.org/10.1007/11559306_12
https://doi.org/10.1007/11559306_12
http://wandahot.sourceforge.net
http://wandahot.sourceforge.net
http://zenon.dsic.upv.es/muterm/
https://www.trs.css.i.nagoya-u.ac.jp/NaTT/
https://www.trs.css.i.nagoya-u.ac.jp/NaTT/

Guided Unfoldings for Finding Loops in Standard Term Rewriting 37

14. StarExec - A cross-community solver execution and benchmark library service.
http://www.starexec.org/

15. The Annual International Termination Competition. http://termination-portal.
org/wiki/Termination Competition

16. Termination Portal – An (incomplete) overview of existing tools for termination
analysis. http://termination-portal.org/wiki/Category:Tools

17. Termination Problems Data Base. http://termination-portal.org/wiki/TPDB
18. Toyama, Y.: Counterexamples to the termination for the direct sum of term rewrit-

ing systems. Inf. Process. Lett. 25(3), 141–143 (1987)

http://www.starexec.org/
http://termination-portal.org/wiki/Termination_Competition
http://termination-portal.org/wiki/Termination_Competition
http://termination-portal.org/wiki/Category:Tools
http://termination-portal.org/wiki/TPDB

Homeomorphic Embedding Modulo
Combinations of Associativity
and Commutativity Axioms

Maŕıa Alpuente1, Angel Cuenca-Ortega1,3, Santiago Escobar1(B),
and José Meseguer2

1 DSIC-ELP, Universitat Politècnica de València, Valencia, Spain
{alpuente,acuenca,sescobar}@dsic.upv.es

2 University of Illinois at Urbana-Champaign, Urbana, IL, USA
meseguer@illinois.edu

3 Universidad de Guayaquil, Guayaquil, Ecuador
angel.cuencao@ug.edu.ec

Abstract. The Homeomorphic Embedding relation has been amply
used for defining termination criteria of symbolic methods for pro-
gram analysis, transformation, and verification. However, homeomor-
phic embedding has never been investigated in the context of order-
sorted rewrite theories that support symbolic execution methods modulo
equational axioms. This paper generalizes the symbolic homeomorphic
embedding relation to order–sorted rewrite theories that may contain
various combinations of associativity and/or commutativity axioms for
different binary operators. We systematically measure the performance of
increasingly efficient formulations of the homeomorphic embedding rela-
tion modulo associativity and commutativity axioms. From our experi-
mental results, we conclude that our most efficient version indeed pays
off in practice.

1 Introduction

Homeomorphic Embedding is a control mechanism that is commonly used to
ensure termination of symbolic methods and program optimization techniques.
Homeomorphic embedding is a structural preorder relation under which a term
t′ is greater than (i.e., it embeds) another term t represented by t � t′ if t can be
obtained from t′ by deleting some symbols of t′. For instance, v = s(0 + s(X)) ∗
s(X + Y) embeds u = s(X) ∗ s(Y). The usefulness of homeomorphic embedding
for ensuring termination is given by the following well-known property of well-
quasi-orderings: given a finite signature, for every infinite sequence of terms

This work has been partially supported by the EU (FEDER) and the Spanish MINECO
under grant TIN 2015-69175-C4-1-R, and by Generalitat Valenciana under grant
PROMETEOII/2015/013. Jose Meseguer was partially supported by NRL under con-
tract number N00173-17-1-G002. Angel Cuenca-Ortega has been supported by the
SENESCYT, Ecuador (scholarship program 2013).

c© Springer Nature Switzerland AG 2019
F. Mesnard and P. J. Stuckey (Eds.): LOPSTR 2018, LNCS 11408, pp. 38–55, 2019.
https://doi.org/10.1007/978-3-030-13838-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13838-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-13838-7_3

Homeomorphic Embedding Modulo Combinations 39

t1, t2, . . . , there exist i < j such that ti � tj . Therefore, if we iteratively compute
a sequence t1, t2, . . . , tn, we can guarantee finiteness of the sequence by using the
embedding as a whistle: whenever a new expression tn+1 is to be added to the
sequence, we first check whether tn+1 embeds any of the expressions that are
already in the sequence. If that is the case, the computation must be stopped
because the whistle (�) signals (potential) non-termination. Otherwise, tn+1 can
be safely added to the sequence and the computation proceeds.

In [2], an extension of homeomorphic embedding modulo equational axioms,
such as associativity and commutativity, was defined as a key component of the
symbolic partial evaluator Victoria. Unfortunately, the formulation in [2] was
done with a concern for simplicity in mind and degrades the tool performance
because the proposed implementation of equational homeomorphic embedding
did not scale well to realistic problems. This was not unexpected since other
equational problems (such as equational matching, equational unification, or
equational least general generalization) are typically much more involved than
their corresponding “syntactic” counterparts, and achieving efficient implemen-
tations has required years of significant investigation.

Our Contribution. In this paper, we introduce four different formulations
of homeomorphic embedding modulo axioms in rewrite theories that may con-
tain sorts, subsort polymorphism, overloading, and rewriting with (conditional)
rules and equations modulo a set B of equational axioms, and we compare their
performance. We propose an equational homeomorphic embedding formulation
�sml

B that runs up to 5 orders of magnitude faster than the original definition of
�B in [2]. For this improvement in performance, we take advantage of Maude’s
powerful capabilities such as the efficiency of deterministic computations with
equations versus non-deterministic computations with rewriting rules, or the
use of non-strict definitions of the boolean operators versus more speculative
standard boolean definitions [5].

Plan of the Paper. After some preliminaries in Sect. 2, Sect. 3 recalls the home-
omorphic equational embedding relation of [2] that extends the “syntactically
simpler” homeomorphic embedding on nonground terms to the order-sorted case
modulo equational axioms. Section 4 provides two goal-driven formulations for
equational homeomorphic embedding: first, a calculus for embeddability goals
that directly handles the algebraic axioms in the deduction system, and then
a reachability oriented characterization that cuts down the search space by
taking advantage of pattern matching modulo associativity and commutativity
axioms. Section 5 is concerned with an efficient meta-level formulation of equa-
tional homeomorphic embedding that relies on the classical flattening transfor-
mation that canonizes terms w.r.t. associativity and/or commutativity axioms
(for instance, 1 + (2 + 3) gets flattened to +(1, 2, 3)). An improvement of the
algorithm is also achieved by replacing the classical boolean operators by short-
circuit, strategic versions of these operators. We provide an experimental perfor-
mance evaluation of the proposed formulations showing that we can efficiently
deal with realistic embedding problems modulo axioms.

40 M. Alpuente et al.

2 Preliminaries

We introduce some key concepts of order-sorted rewriting logic theories, see [5]
for further details.

Given an order-sorted signature Σ, with a finite poset of sorts (S,≤), we
consider an S-sorted family X = {Xs}s∈S of disjoint variable sets. TΣ(X)s and
TΣ s denote the sets of terms and ground terms of sorts s, respectively. We also
write TΣ(X) and TΣ for the corresponding term algebras. In order to simplify
the presentation, we often disregard sorts when no confusion can arise. A position
p in a term t is represented by a sequence of natural numbers (Λ denotes the
empty sequence, i.e., the root position). t|p denotes the subterm of t at position
p, and t[u]p denotes the result of replacing the subterm t|p by the term u. A
substitution σ is a sorted mapping from a finite subset of X to TΣ(X). The
application of a substitution σ to a term t is called an instance of t and is denoted
by tσ.

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X)s for some
sort s ∈ S. Given Σ and a set E of Σ-equations, order-sorted equational logic
induces a congruence relation =E on terms t, t′ ∈ TΣ(X) (see [4]). An equational
theory (Σ,E) is a pair with Σ being an order-sorted signature and E a set of
Σ-equations. A substitution θ is more (or equally) general than σ modulo E,
denoted by θ ≤E σ, if there is a substitution γ such that σ =E θγ, i.e., for
all x ∈ X , xσ =E xθγ. A substitution σ is called a renaming if σ = {X1 �→
Y1, . . . , Xn �→ Yn}, the sorts of Xi and Yi coincide, and variables Y1, . . . , Yn are
pairwise distinct. The renaming substitution σ is a renaming for expression E if
(V ar(E) − {X, . . . , Xn}) ∩ {Y1, . . . , Yn} = ∅.

A rewrite theory is a triple R = (Σ,E,R), where (Σ,E) is the equational
theory modulo that we rewrite and R is a set of rewrite rules. Rules are of
the form l → r where terms l, r ∈ TΣ(X)s for some sort s are respectively
called the left-hand side (or lhs) and the right-hand side (or rhs) of the rule and
V ar(r) ⊆ V ar(l). Let → ⊆ A × A be a binary relation on a set A. We denote
its transitive closure by →+, and its reflexive and transitive closure by →∗. We
define the relation →R,E on TΣ(X) by t →p,R,E t′ (or simply t →R,E t′) iff
there is a non-variable position p ∈ PosΣ(t), a rule l → r in R, and a substitution
σ such that t|p =E lσ and t′ = t[rσ]p.

2.1 Pure Homeomorphic Embedding

The pure (syntactic) homeomorphic embedding relation known from term alge-
bra [10] was introduced by Dershowitz for variable-arity symbols in [6] and for
fixed-arity symbols in [7]. In the following, we consider only fixed-arity symbols.

Definition 1 (Homeomorphic embedding, Dershowitz [7]). The homeo-
morphic embedding relation � over TΣ is defined as follows, with n ≥ 0:

∃i ∈ {1, . . . , n} : s � ti
s � f(t1, . . . , tn)

∀i ∈ {1, . . . , n} : si
� ti

f(s1, . . . , sn) � f (t1, . . . , tn)

Homeomorphic Embedding Modulo Combinations 41

Roughly speaking, the left inference rule deletes subterms, while the right
inference rule deletes context. We write s � t if s is derivable from t using the
above rules. When s � t, we say that s is (syntactically) embedded in t (or t
syntactically embeds s). Note that ≡ ⊆ �, where ≡ denotes syntactic identity.

A well-quasi ordering � is a transitive and reflexive binary relation such that,
for any infinite sequence of terms t1, t2, . . . with a finite number of operators,
there exist j, k with j < k and tj � tk.

Theorem 1 (Tree Theorem, Kruskal [10]). The embedding relation � is a
well-quasi-ordering on TΣ.

The derivability relation given by � is mechanized in [14] by introducing
the following term rewriting system Emb(Σ) as follows: t � t′ if and only if
t′ →∗

Emb(Σ) t.

Definition 2 (Homeomorphic embedding rewrite rules, Middeldorp
[14]). Let Σ be a signature. The homeomorphic embedding can be decided by
a rewrite theory Emb(Σ) = (Σ, ∅, R) such that R consists of rewrite rules of the
form f(X1, · · · ,Xn) → Xi where f ∈ Σ is a function symbol of arity n ≥ 1 and
i ∈ {1, · · · , n}.

Definition 1 can be applied to terms of TΣ(X) by simply regarding the vari-
ables in terms as constants. However, this definition cannot be used when exis-
tentially quantified variables are considered. The following definition from [11,15]
adapts the pure (syntactic) homeomorphic embedding from [6] by adding a sim-
ple treatment of logical variables where all variables are treated as if they were
identical, which is enough for many symbolic methods such as the partial eval-
uation of [2]. Some extensions of � dealing with varyadic symbols and infinite
signatures are investigated in [12].

Definition 3 (Variable-extended homeomorphic embedding, Leuschel
[11]). The extended homeomorphic embedding relation � over TΣ(X) is defined
in Fig. 1, where the Variable inference rule allows dealing with free (unsorted)
variables in terms, while the Diving and Coupling inference rules are equal to
the pure (syntactic) homeomorphic embedding definition.

Variable Diving Coupling

x�y
∃i∈{1,...,n} : s� ti

s� f (t1,...,tn)
∀i∈{1,...,n} : si� ti

f (s1,...,sn)� f (t1,...,tn)

Fig. 1. Variable-extended homeomorphic embedding

The extended embedding relation � is a well-quasi-ordering on the set of
terms TΣ(X) [11,15]. An alternative characterization without the hassle of
explicitly handling variables can be proved as follows.

42 M. Alpuente et al.

Lemma 1 (Variable-less characterization of �). Given a signature Σ, let
Σ� be an extension of Σ with a new constant �, and let t� denote the (ground)
instance of t where all variables have been replaced by �. Given terms t1 and t2,
t1 � t2 iff t�1 � t�2 iff t�1

� t�2.

Moreover, Lemma 1 above allows the variable-extended relation � of Defi-
nition 3 to be mechanized in a way similar to the rewriting relation →∗

Emb(Σ)

used in Definition 2 for the embedding � of Definition 1: t1 � t2 if and only if
t�2 →∗

Emb(Σ�) t�1. By abuse of notation, from now on, we will indistinctly consider
either terms with variables or ground terms with �, whenever one formulation is
simpler than the other.

3 Homeomorphic Embedding Modulo Equational Axioms

The following definition given in [2] extends the “syntactically simpler” homeo-
morphic embedding relation on nonground terms to the order-sorted case modulo
a set of axioms B. The (order-sorted) relation �B is called B–embedding (or
embedding modulo B). We define v

ren= Bv′ iff there is a renaming substitution
σ for v′ such that v =B v′σ.

Definition 4 ((Order-sorted) homeomorphic embedding modulo B).
We define the B–embedding relation �B (or embedding modulo B) as (ren= B).(�).
(ren= B).

Example 1. Consider the following rewrite theory (written in Maude syntax)
that defines the signature of natural numbers, with sort Nat and constructor
operators 0, and suc for sort Nat. We also define the associative and commutative
addition operator symbol _+_.

fmod NAT is sort Nat .

op 0 : -> Nat .

op suc : Nat -> Nat .

op _+_ : Nat Nat -> Nat [assoc comm] .

endfm

We have +(1,X:Nat) �B +(Y :Nat,+(1, 3)) because +(Y :Nat,+(1, 3)) is equal
to +(1,+(Y :Nat, 3)) modulo AC, and +(1,X:Nat) � +(1,+(Y :Nat, 3)).

The following result extends Kruskal’s Tree Theorem for the equational theo-
ries considered in this paper. We have to restrict it to the class of finite equational
theories in order to prove the result. B is called class-finite if all B-equivalence
classes are finite. This includes the class of permutative equational theories. An
equational theory E is permutative if for all terms t, t′, the fact that t =E t′

implies that the terms t and t′ contain the same symbols with the same number
of occurrences [9]. Permutative theories include any theory with any combination
of symbols obeying any combination of associativity and commutativity axioms.

Homeomorphic Embedding Modulo Combinations 43

Theorem 2. For class-finite theories, the embedding relation �B is a well-quasi
ordering of the set TΣ(X) for finite Σ, that is, �B is a quasi-order.

Function symbols with variable arity are sometimes seen as associative oper-
ators. Let us briefly discuss the homeomorphic embedding modulo axioms �B

of Definition 4 in comparison to the variadic extension of Definition 1 as given
in [6]:

Example 2. Consider a variadic version of the addition symbol + of Exam-
ple 1 that allows any number of natural numbers to be used as arguments;
for instance, +(1, 2, 3). On the one hand, whereas +(1) ��B

+(1, 2, 3), with B consisting of the associativity and commutativity axioms
for the operator + (actually, +(1) is ill-formed). On the other hand, we have
both and +(1, 2) �B +(1, 0, 3, 2). This is because any
well-formed term that consists of the addition (in any order) of the constants
0, 1, 2, and 3 (for instance, +(+(1, 0),+(3, 2)) can be given a flat repre-
sentation +(1, 0, 2, 3). Note that there are many other equivalent terms, e.g.,
+(+(1, 2),+(3, 0)) or +(+(1,+(3, 2)), 0), all of which are represented by the
flattened term +(0, 1, 2, 3). Actually, because of the associativity and commuta-
tivity of symbol +, flattened terms like +(1, 0, 2, 3) can be further simplified into
a single1 canonical representative +(0, 1, 2, 3), hence also +(1, 2) �B +(0, 1, 2, 3).
A more detailed explanation of flat terms can be found in Sect. 5. However, note
that +(2, 1) �B +(1, 0, 3, 2) but because the does not
consider the commutativity of symbol +.

Roughly speaking, in the worst case, the homeomorphic embedding modulo
axioms of Definition 4, t �B t′, amounts to considering all the elements in the
B-equivalence classes of t and t′ and then checking for standard homeomorphic
embedding, u � u′, every pair u and u′ of such terms, one term from each
class. According to Definition 2, checking u � u′ essentially boils down to the
reachability analysis given by u′ →∗

Emb(Σ) u. Unfortunately, the enumeration
of all terms in a B-equivalence class is impractical, as shown in the following
example.

Example 3. Consider the AC binary symbol + of Example 1 and the terms t =
+(1, 2) and t′ = +(2,+(3, 1)). The AC-equivalence class of t contains two terms
whereas the AC-equivalence class of t′ contains 12 terms. This implies computing
24 reachability problems u′ →∗

Emb(Σ) u in order to decide t �AC t′, in the
worst case. Moreover, we know a priori that half of these reachability tests will
fail (those in which 1 and 2 occur in different order in u′ and u; for instance
u′ = +(1,+(2, 3)) and u = +(2, 1).

1 Maude uses a term lexicographic order for the arguments of flattened terms [8].

44 M. Alpuente et al.

A more effective rewriting characterization of �B can be achieved by
lifting Definition 2 to the order-sorted and modulo case in a natural way.
However, ill-formed terms can be produced by näıvely applying the rules
f(X1, . . . , Xn) → Xi of Definition 2 to typed (i.e., order-sorted) terms. For exam-
ple, “(0 ≤ 1) or true” → “0 or true”.

In the order-sorted context we can overcome this drawback as follows. Assume
that Σ has no ad-hoc overloading. We can extend Σ to a new signature ΣU

by adding a new top sort U that is bigger than all other sorts. For each f :
A1, . . . , An → A in Σ, we add the rules f(X1:U , . . . , Xn:U) → Xi:U , 1 ≤ i ≤ n.
In this way, rewriting with →∗

Emb(ΣU),B becomes a relation between well-formed
ΣU -terms, see [2].

Definition 5. ((Order-sorted) homeomorphic embedding rewrite rules
modulo B [2]). Let Σ be an order-sorted signature and B be a set of axioms.
Let us introduce the following signature transformation Σ � (f : s1 . . . sn →
s) �→ (f : U n... U → U) ∈ Σu, where U conceptually represents a universal
supersort of all sorts in Σ. Also, for any Σ-term t, tu leaves the term t unchanged
but regards all its variable as unsorted (i.e., of sort U). We define the TRS
Emb(Σ) that consists of all rewrite rules f(X1:U , . . . , Xn:U) → Xi:U for each
f : A1, . . . , An → A in Σ and i ∈ {1, . . . , n}.

In the sequel, we consider equational theories B that may contain any com-
bination of associativity and/or commutativity axioms for any binary symbol
in the signature. Also, for the sake of simplicity we often omit sorts when no
confusion can arise.

Proposition 1. Given Σ, B, and t, t′ in TΣ(X), t �B t′ iff (t′u)� →∗

Emb((ΣU)�),B(tu)�.

Example 4. Consider the order-sorted signature for natural numbers of
Example 1. Let us represent by sort U in Maude the unique (top) sort of the
transformed signature:

fmod NAT-U is sort U .

op 0 : -> U .

op suc : U -> U .

op _+_ : U U -> U [assoc comm] .

endfm

Likewise, the terms expressed in Σ must also be transformed to be expressed
as ΣU -terms. For instance, given the Σ-terms t = X:Nat2 and t′ = suc(Y:Nat),
the corresponding ΣU -terms are t = X:U and suc(Y:U), respectively.

The associated TRS Emb(Σ) contains the following two rules:
+(X1:U,X2:U) → X1:U and +(X1:U,X2:U) → X2:U . However, since the rules
of Emb(Σ) are applied modulo the commutativity of symbol +, in practice, we
can get rid of either of the two rules above since only one is required in Maude.
2 The expression X:S represents an explicit definition of a variable X of sort S in

Maude.

Homeomorphic Embedding Modulo Combinations 45

Example 5. Following Example 3, instead of comparing pairwisely all terms in
the equivalence classes of t and t′, we choose Emb(Σ) to contain just the
rewrite rule +(X1:U,X2:U) → X2:U , we use it to prove the rewrite step
+(2,+(3, 1)) →Emb(Σ),B +(2, 1), and finally we check that +(2, 1) =B +(1, 2),
with B = {A,C}. However, there are six alternative rewriting steps stemming
from the initial term +(2,+(3, 1)), all of which result from applying the very
same rewrite rule above to the term (modulo AC), five of which are useless for
proving the considered embedding (the selected redex is underlined):

+(2, +(3, 1)) →Emb(Σ),B +(2, 1) +(2, +(3, 1)) →Emb(Σ),B 1

+(2, +(3, 1)) →Emb(Σ),B +(2, 3) +(2, +(3, 1)) →Emb(Σ),B 2

+(2, +(3, 1)) →Emb(Σ),B +(3, 1) +(2, +(3, 1)) →Emb(Σ),B 3

For a term with k addends, we have (2k) − 2 rewriting steps. This leads to a
huge combinatorial explosion when considering the complete rewrite search tree.

Moreover, there are three problems with Definition 5. First, the intrinsic non-
determinism of the rules may unnecessarily produce an extremely large search
space. Second, as shown in Example 5, this intrinsic non-determinism in the
presence of axioms is intolerable, that is, unfeasible to handle. Third, the asso-
ciated reachability problems do not scale up to complex embedding problems so
that a suitable search strategy must be introduced. We address these problems
stepwisely in the sequel.

4 Goal-Driven Homeomorphic Embedding Modulo B

The formulation of homeomorphic embedding as a reachability problem by using
the rewrite rules of Definition 5 generates a blind search that does not take
advantage of the actual terms t and t′ being compared for embedding. In this
section, we provide a more refined formulation of homeomorphic embedding
modulo axioms that is goal driven in the sense that, given an embedding problem
(or goal), t �B t′, it inductively processes the terms t and t′ in a top-down
manner.

First, we introduce in the following section a calculus that extends the home-
omorphic embedding relation of Definition 3 to the order-sorted equational case.

4.1 An Homeomorphic Embedding Calculus Modulo B

Let us introduce a calculus for embeddability goals t �gd
B t′ that directly handles

in the deduction system the algebraic axioms of B, with B being any combination
of A and/or C axioms for the theory operators. Roughly speaking, this is achieved
by specializing w.r.t. B the coupling rule of Definition 3.

Definition 6. (Goal-driven homeomorphic embedding modulo B). The
homeomorphic embedding relation modulo B is defined as the smallest relation
that satisfies the inference rules of Definition 3 together with the new inference

46 M. Alpuente et al.

rules given in Fig. 2: (i) the three inference rules (Variable, Diving, and Cou-
pling) of Definition 3 for any function symbol; (ii) one extra coupling rule for
the case of a commutative symbol with or without associativity (CouplingC);
(iii) two extra coupling rules for the case of an associative symbol with or with-
out commutativity (CouplingA); and (iv) two extra coupling rules for the case of
an associative-commutative symbol (CouplingAC).

CouplingC
s0 �gd

B t1 ∧ s1 �gd
B t0

f (s0,s1) �gd
B f (t0, t1)

CouplingA
f (s0,s1) �gd

B t0 ∧ s2 �gd
B t1

f (s0, f (s1,s2)) �gd
B f (t0, t1)

s0 �gd
B f (t0, t1) ∧ s1 �gd

B t2

f (s0,s1) �gd
B f (t0, f (t1, t2))

CouplingAC
f (s0,s1) �gd

B t1 ∧ s2 �gd
B t0

f (s0, f (s1,s2)) �gd
B f (t0, t1)

s1 �gd
B f (t0, t1) ∧ s0 �gd

B t2

f (s0,s1) �gd
B f (t0, f (t1, t2))

Fig. 2. Extra coupling rules for A, C, AC symbols

Proposition 2. Given Σ and B, for terms t and t′ in TΣ(X), t �B t′ iff
t �gd

B t′.

Example 6. Consider the binary symbol + obeying associativity and commuta-
tivity axioms, and the terms t = +(1, 2) and t′ = +(2,+(3, 1)) of Example 5. We
can prove t �gd

B t′ by

1�gd
B 1

1�gd
B +(3,1)

2 �gd
B 2

+(1, 2) �gd
B +(2,+(3, 1))

We can also prove a more complex embedding goal by first using the right
inference rule for AC of Fig. 2 and then the generic Coupling and Diving inference
rules.

2�gd
B

2

2�gd
B

+(4,2)
3�gd

B 3

+(2,3)�gd
B +(+(4,2),3)

1 �gd
B 1

+(1,+(2, 3)) �gd
B +(+(4, 2),+(3, 1))

It is immediate to see that, when the size of the involved terms t and t′ grows, the
improvement in performance of �gd

B w.r.t. �B can be significant (just compare
these two embedding proofs with the corresponding search trees for �B).

Homeomorphic Embedding Modulo Combinations 47

4.2 Reachability-Based, Goal-Driven Homeomorphic Embedding
Formulation

Let us provide a more operational goal-driven characterization of the home-
omorphic embedding modulo B. We formalize it in the reachability style of
Definition 5. The main challenge here is how to generate a suitable rewrite the-
ory Rrogd(Σ,B) that can decide embedding modulo B by running a reachability
goal.

Definition 7 (Goal-driven homeomorphic embedding rewrite rules
modulo B). Given Σ and B, we define the TRS Rrogd(Σ,B) as follows.

1. We include in Rrogd(Σ,B) a rewrite rule of the form u �rogd
B v → true for

each (particular instance of the) inference rules of the form
u�gd

B v
given Def-

inition 6 (e.g., the Variable Inference Rule from Definition 3 or the Coupling
Inference Rule from Definition 3, for the case of a constant symbol c).

2. We include in Rrogd(Σ,B) a rewrite rule of the form u �rogd
B v → u1 �rogd

B

v1 ∧ · · · ∧ uk �rogd
B vk for each (particular instance of the) inference rules of

the form u1�gd
B v1∧···∧uk�gd

B vk

u�gd
B v

given in Definition 6.

Proposition 3. Given Σ, B, and terms t, t′, t �gd
B t′ iff (t �rogd

B

t′) →∗
Rrogd(Σ,B),B true.

Example 7. Consider the binary symbol + of Example 1. According to Defini-
tion 6, there are twelve inference rules for �gd

B :

Variable Diving Coupling

x�gd
B y

x �gd
B t1

x �gd
B suc(t1) 0�gd

B 0

x �gd
B t1

x �gd
B +(t1,t2)

t1 �gd
B t′

1

suc(t1)�gd
B suc(t′

1)
x �gd

B t2

x �gd
B +(t1,t2)

t1 �gd
B t′

1 ∧ t2 �gd
B t′

2

+(t1,t2)�gd
B +(t′

1,t′
2)

CouplingC CouplingA CouplingAC

t1 �gd
B t′

2 ∧ t2 �gd
B t′

1

+(t1,t2)�gd
B +(t′

1,t′
2)

+(t0,t1)�gd
B t′

1 ∧ t2 �gd
B t′

2

+(t0,+(t1,t2))�gd
B +(t′

1,t′
2)

+(t0,t1)�gd
B t′

2 ∧ t2 �gd
B t′

1

+(t0,+(t1,t2))�gd
B +(t′

1,t′
2)

t1 �gd
B +(t′

0,t′
1) ∧ t2 �gd

B t′
2

+(t1,t2)�gd
B +(t′

0,+(t′
1,t′

2))

t2 �gd
B +(t′

0,t′
1) ∧ t1 �gd

B t′
2

+(t1,t2)�gd
B +(t′

0,+(t′
1,t′

2))

However, the corresponding TRS Rrogd(Σ,B) only contains six rewrite rules
because, due to pattern matching modulo associativity and commutativity in
rewriting logic, the other rules are redundant:

(Diving) x �rogd
B suc(T1) → x �rogd

B T1

x �rogd
B + (T1, T2) → x �rogd

B T1

(Coupling) � �rogd
B � → true

0 �rogd
B 0 → true

suc(T1) �rogd
B suc (T ′

1) → T1 �rogd
B T ′

1

(Coupling∅,C,A,AC) +(T1, T2) �rogd
B + (T ′

1, T
′
2) → T1 �rogd

B T ′
1 ∧ T2 �rogd

B T ′
2

48 M. Alpuente et al.

For example, the rewrite sequence proving +(1,+(2, 3)) �rogd
B +(+(4, 2),

+(3, 1)) is:

+(1,+(2, 3)) �rogd
B + (+(4, 2),+(3, 1))

→Rrogd(Σ,B),B +(2, 3)) �rogd
B +(+(4, 2), 3) ∧ 1 �rogd

B 1

→Rrogd(Σ,B),B 2 �rogd
B +(4, 2) ∧ 3 �rogd

B 3

→Rrogd(Σ,B),B 2 �rogd
B 2

→Rrogd(Σ,B),B true

Although the improvement in performance achieved by using the rewrit-
ing relation →Rrogd(Σ,B),B versus the rewriting relation →∗

Emb(Σ),B is impor-

tant, the search space is still huge since the expression +(1,+(2, 3)) �gd
B

+(+(4, 2),+(3, 1)) matches the left-hand side +(T1, T2) �gd
B +(T ′

1, T
′
2) in many

different ways (e.g., {T1 �→ 1, T2 �→ +(2, 3), . . .}, {T1 �→ 2, T2 �→ +(1, 3), . . .},
{T1 �→ 3, T2 �→ +(1, 2), . . .}).

In the following section, we further optimize the calculus of homeomorphic
embedding modulo axioms by considering equational (deterministic) normaliza-
tion (thus avoiding search) and by exploiting the meta-level features of Maude
(thus avoiding any theory generation).

5 Meta-Level Deterministic Goal-Driven Homeomorphic
Embedding Modulo B

The meta-level representation of terms in Maude [5, Chapter 14] works with
flattened versions of the terms that are rooted by poly-variadic versions of the
associative (or associative-commutative) symbols. For instance, given an asso-
ciative (or associative-commutative) symbol f with n arguments and n ≥ 2,
flattened terms rooted by f are canonical forms w.r.t. the set of rules given by
the following rule schema

f(x1, . . . , f(t1, . . . , tn), . . . , xm) → f(x1, . . . , t1, . . . , tn, . . . , xm) n,m ≥ 2

Given an associative (or associative-commutative) symbol f and a term
f(t1, . . . , tn), we call f -alien terms (or simply alien terms) those terms among
the t1, . . . , tn that are not rooted by f . In the following, we implicitly consider
that all terms are in B-canonical form.

In the sequel, a variable x of sort s is meta-represented as x̄ = ’x:s and
a non-variable term t = f(t1, . . . , tn), with n ≥ 0, is meta-represented as t̄ =
’f [t̄1, . . . , t̄n].

Definition 8 (Meta-level homeomorphic embedding modulo B). The
meta-level homeomorphic embedding modulo B, �ml

B , is defined for term meta-
representations by means of the equational theory Eml of Fig. 3, where the aux-
iliary meta-level functions any and all implement the existential and universal

Homeomorphic Embedding Modulo Combinations 49

� �ml
B � = true

F [TermList] �ml
B � = false

T �ml
B F [TermList] = any(T,TermList) if root(T) �= F

F [TermList1] �ml
B F [TermList2] = any(F [TermList1],TermList2)

or all(TermList1,TermList2)
F [U,V] �ml

B F [X ,Y] = any(F [U,V], [X ,Y]) if F isC
or(U �ml

B X and V �ml
B Y)

or (U �ml
B Y and V �ml

B X)
F [TermList1] �ml

B F [TermList2] = any(F [TermList1],TermList2) if F is A
or all_A(TermList1,TermList2)

F [TermList1] �ml
B F [TermList2] = any(F [TermList1],TermList2) if F is AC

or all_AC(TermList1,TermList2)

any(U,nil) = false
any(U,V : L) =U �ml

B V or any(U,L)

all(nil,nil) = true
all(nil,U : L) = false
all(U : L,nil) = false

all(U : L1,V : L2) =U �ml
B V and all(L1,L2)

all_A(nil,L) = true
all_A(U : L,nil) = false

all_A(U : L1,V : L2) = (U �ml
B V and all_A(L1,L2)) or all_A(U : L1,L2))

all_AC(nil,L) = true
all_AC(U : L1,L2) = all_AC_Aux(U : L1,L2,L2)

all_AC_Aux(U : L1,nil,L3) = false
all_AC_Aux(U : L1,V : L2,L3) = (U �ml

B V and all_AC(L1, remove (V,L3)))
or all_AC_Aux(U : L1,L2,L3))

remove(U,nil) = nil
remove(U,V : L) = ifU =V then L else V : remove (U,L)

Fig. 3. Meta-level homeomorphic embedding modulo axioms

tests in the Diving and Coupling inference rules of Fig. 1, and we introduce two
new meta-level functions all A and all AC that implement existential tests that
are specific to A and AC symbols. For the sake of readability, these new existen-
tial tests are also formulated (for ordinary terms instead of meta-level terms) as
the inference rules CouplingA and CouplingAC of Fig. 4.

CouplingA
∃ j ∈ {1, . . . ,m−n+1} : s1 �ml

B t j ∧ f (s2, . . . ,sn) �ml
B f t j+1, . . . , tm

)∧∀k < j : s1 ��ml
B tk

f (s1, . . . ,sn) �ml
B f (t1, . . . , tm)

CouplingAC
∃ j ∈ {1, . . . ,m} : s1 �ml

B t j ∧ f (s2, . . . ,sn) �ml
B f t1, . . . , t j−1, t j+1, . . . , tm

)

f (s1, . . . ,sn) �ml
B f (t1, . . . , tm)

Fig. 4. Coupling rule for associativity-commutativity functions

50 M. Alpuente et al.

Example 8. Given the embedding problem for +(1,+(2, 3)) and +(+(4, 2),
+(3, 1)), the corresponding call to the meta-level homeomorphic embedding �ml

B

of Definition 8 is ’+[’1, ’2, ’3] �ml
B ’+[’4, ’2, ’3, ’1].

Proposition 4. Given Σ, B, and terms t and t′, t �gd
B t′ iff (t �ml

B t′)!Eml,B =
true.

Finally, a further optimized version of Definition 8 can be easily defined by
replacing the Boolean conjunction (and) and disjunction (or) operators with the
computationally more efficient Maude Boolean operators and-then and or-else
that avoid evaluating the second argument when the result of evaluating the first
one suffices to compute the result.

Definition 9. (Strategic meta-level deterministic embedding modulo
B). We define �sml

B as the strategic version of relation �ml
B that is obtained

by replacing the Boolean operators and and or with the and-then operator for
short-circuit version of conjunction and the or-else operator for short-circuit
disjunction [5, Chapter 9.1], respectively.

6 Experiments

We have implemented in Maude all four equational homeomorphic embedding
formulations �B , �rogd

B , �ml
B , and �sml

B of previous sections. The implementation
consists of approximately 250 function definitions (2.2K lines of Maude source
code) and is publicly available online3. In this section, we provide an experi-
mental comparison of the four equational homeomorphic embedding implemen-
tations by running a significant number of equational embedding goals. In order
to compare the performance of the different implementations in the worst pos-
sible scenario, all benchmarked goals return false, which ensures that the whole
search space for each goal has been completely explored, while the execution
times for succeeding goals whimsically depend on the particular node of the
search tree where success is found.

We tested our implementations on a 3.3 GHz Intel Xeon E5-1660 with 64 GB
of RAM running Maude v2.7.1, and we considered the average of ten executions
for each test. We have chosen four representative programs: (i) KMP, the classical
KMP string pattern matcher [3]; (ii) NatList, a Maude implementation of lists of
natural numbers; (iii) Maze, a non-deterministic Maude specification that defines
a maze game in which multiple players must reach a given exit point by walking
or jumping, where colliding players are eliminated from the game [1]; and (iv)
Dekker, a Maude specification that models a faulty version of Dekker’s protocol,
one of the earliest solutions to the mutual exclusion problem that appeared in
[5]. As testing benchmarks we considered a set of representative embeddability
problems for the four programs that are generated during the execution of the
partial evaluator Victoria [2].

3 At http://safe-tools.dsic.upv.es/embedding/.

http://safe-tools.dsic.upv.es/embedding/

Homeomorphic Embedding Modulo Combinations 51

Table 1. Size of generated theories for näıve and goal-driven definitions vs. meta-level
definitions

Benchmark � Axioms �B �rogd
B �ml

B , �sml
B

∅ A C AC �E �R GT (ms) �E �R GT (ms) �E �R GT (ms)

Kmp 9 0 0 0 0 15 1 0 57 2 21 0 0

NatList 5 1 1 2 0 10 1 0 26 1 21 0 0

Maze 5 1 0 1 0 36 7 0 787 15 21 0 0

Dekker 16 1 0 2 0 59 8 0 823 18 21 0 0

Table 2. Performance of equational homeomorphic embedding implementations

Benchmark � Symbols Size �B �rogd
B �ml

B �sml
B

A AC T1 T2 Time (ms) Time (ms) Time (ms) Time (ms)

Kmp 0 0 5 5 10 6 1 1

10 150 125 4 1

100 TO TO 280 95

500 TO TO 714 460

NatList 1 2 5 5 2508 2892 1 1

10 840310 640540 1 1

100 TO TO 8 2

500 TO TO 60 5

Maze 1 1 5 5 40 25 1 1

10 TO 20790 4 1

100 TO TO 256 2

500 TO TO 19808 10

Dekker 1 1 5 5 50 40 1 1

10 111468 110517 2 1

100 TO TO 5 3

500 TO TO 20 13

Tables 1, 2, and 3 analyze different aspects of the implementation. In Table 1,
we compare the size of the generated rewrite theories for the näıve and the goal-
driven definitions versus the meta-level definitions. For both, �ml

B and �sml
B ,

there are the same number (21) of generated equations (�E), whereas the num-
ber of generated rules (�R) is zero because both definitions are purely equational
(deterministic) and just differ in the version of the boolean operators being used.
As for the generated rewrite theories for computing �B and �rogd

B , they contain
no equations, while the number of generated rules increases with the complexity
of the program (that heavily depends on the equational axioms that the func-
tion symbols obey). The number of generated rules is much bigger for �rogd

B

52 M. Alpuente et al.

Table 3. Performance of equational homeomorphic embedding implementations w.r.t.
axiom entanglement for the NatList example

T1 T2 �B �rogd
B �ml

B �sml
B

Size � Symbols Size � Symbols Time
(ms)

Time
(ms)

Time
(ms)

Time
(ms)

OT FT ∅ C A AC OT FT ∅ C A AC

5 5 5 0 0 0 100 100 100 0 0 0 165 70 1 1

5 5 3 2 0 0 100 100 50 50 0 0 TO 38 60 35

5 2 4 0 1 0 100 2 50 0 50 0 TO TO 108035 3

5 2 4 0 0 1 100 2 50 0 0 50 TO TO 42800 4

5 3 8 0 1 2 100 3 50 0 25 25 TO TO 22796 5

5 5 5 0 0 0 500 500 500 0 0 0 48339 34000 12 4

5 5 3 2 0 0 500 500 250 250 0 0 TO 2183 6350 2005

5 2 4 0 1 0 500 2 250 0 250 0 TO TO TO 30

5 2 4 0 0 1 500 2 250 0 0 250 TO TO TO 27

5 3 8 0 1 2 500 3 250 0 125 125 TO TO TO 50

than for �B (for instance, �rogd
B is encoded by 823 rules for the Dekker program

versus the 59 rules of �B). Columns ∅, A, C, and AC summarize the number
of free, associative, commutative, and associative-commutative symbols, respec-
tively, for each benchmark program. The generation times (GT) are negligible
for all rewrite theories.

For all benchmarks T1 �α
B T2 in Table 2, we have fixed to five the size of

T1 that is measured in the depth of (the non-flattened version of) the term. As
for T2, we have considered terms with increasing depths: five, ten, one hundred,
and five hundred. The � Symbols column records the number of A (resp. AC)
symbols occurring in the benchmarked goals.

The figures in Table 2 confirm our expectations regarding �B and �rogd
B

that the search space is huge and increases exponentially with the size of T2
(discussed for �B in Example 5 and for �rogd

B in Example 6). Actually, when the
size of T2 is 100 (and beyond) a given timeout (represented by TO in the tables)
is reached that is set for 3.6e+6 ms (1 h). The reader can also check that the
more A, C, and AC symbols occur in the original program signature, the bigger
the execution times. An odd exception is the Maze example, where the timeout
is already reached for the size 10 of T2 even if the number of equational axioms is
comparable to the other programs. This is because the AC-normalized, flattened
version of the terms is much smaller than the original term size for the NatList
and Dekker benchmarks but not for Maze, where the flattened and original terms
have similar size. On the other hand, our experiments demonstrate that both
�ml

B and �sml
B bring impressive speedups, with �sml

B working outstandingly well
in practice even for really complex terms.

Homeomorphic Embedding Modulo Combinations 53

The reader may wonder how big the impact is having A, C, or AC operators.
In order to compare the relevance of these symbols, in Table 3 we fix one single
benchmark program (NatList) that contains all three kinds of operators: two
associative operators (list concatenation ; and natural division /), a commuta-
tive (natural pairing) operator (||), and two associative-commutative arithmetic
operators (+,*). With regard to the size of the considered terms, we confront
the size of the original term (OT) versus the size of its flattened version (FT);
e.g., 500 versus 2 for the size of T2 in the last row.

We have included the execution times of �B and �rogd
B for completeness, but

they do not reveal a dramatic improvement of �rogd
B with respect to �B for the

benchmarked (false) goals, contrary to what we initially expected. This means
that �rogd

B cannot be generally used in real applications due to the risk of intol-
erable embedding test times, even if �rogd

B may be far less wasteful than �B for
succeeding goals, as discussed in Sect. 4. For �ml

B and �sml
B , the figures show that

the more A and AC operators comparatively occur in the problem, the bigger
the improvement achieved. This is due to the following: (i) these two embed-
ding definitions manipulate flattened meta-level terms; (ii) they are equationally
defined, which has a much better performance in Maude than doing search; and
(iii) our definitions are highly optimized for lists (that obey associativity) and
sets (that obey both associativity and commutativity).

Homeomorphic embedding has been extensively used in Prolog for different
purposes, such as termination analysis and partial deduction.

102 103 104
101

102

103

104

105

302 432
1057

27938

92022

15 35
65

95

150

Term size

T
im

e
(m

s)

Prolog �
Maude �sml

/0

Fig. 5. Comparison of � vs. �sml
∅ for NatList

In Fig. 5, we have compared
on a logarithmic scale our best
embedding definition, �sml

B , with
a standard meta-level Prolog4

implementation of the (syntac-
tic) pure homeomorphic embed-
ding � of Definition 3.

We chose the NatList exam-
ple and terms T1 and T2 that
do not contain symbols obeying
equational axioms as this is the
only case that can be handled by
the syntactic Prolog implementa-
tion. Our experiments show that
our refined deterministic formu-
lation �sml

B (i.e. without search)
outperforms the Prolog version
so no penalty is incurred when syntactic embeddability tests are run in our
equational implementation.

4 To avoid any bias, we took the Prolog code for the homeomorphic embedding of the
Ecce system [13] that is available at https://github.com/leuschel/ecce, and we run
it in SWI-Prolog 7.6.3.

https://github.com/leuschel/ecce

54 M. Alpuente et al.

7 Concluding Remarks

Homeomorphic embedding has been extensively used in Prolog but it has never
been investigated in the context of expressive rule-based languages like Maude,
CafeOBJ, OBJ, ASF+SDF, and ELAN that support symbolic reasoning meth-
ods modulo equational axioms. We have introduced a new equational definition
of homeomorphic embedding with a remarkably good performance for theories
with symbols having any combination of associativity and commutativity. We
have also compared different definitions of embedding identifying some key con-
clusions: (i) definitions of equational homeomorphic embedding based on (non-
deterministic) search in Maude perform dramatically worse than their equational
counterparts and are not feasible in practice, (ii) definitions of equational home-
omorphic embedding based on generated theories perform dramatically worse
than meta-level definitions; and (iii) the flattened meta-representation of terms
is crucial for homeomorphic embedding definitions dealing with A and AC oper-
ators to pay off in practice. As future work, we plan to extend our results to
the case when the equational theory B may contain the identity axiom, which
is non-trivial since B is not class-finite.

References

1. Alpuente, M., Ballis, D., Frechina, F., Sapiña, J.: Exploring conditional rewriting
logic computations. J. Symbolic Comput. 69, 3–39 (2015)

2. Alpuente, M., Cuenca-Ortega, A., Escobar, S., Meseguer, J.: Partial evaluation of
order-sorted equational programs modulo axioms. In: Hermenegildo, M.V., Lopez-
Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 3–20. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63139-4 1

3. Alpuente, M., Falaschi, M., Vidal, G.: Partial evaluation of functional logic pro-
grams. ACM TOPLAS 20(4), 768–844 (1998)

4. Bouhoula, A., Jouannaud, J.-P., Meseguer, J.: Specification and proof in member-
ship equational logic. Theor. Comput. Sci. 236(1–2), 35–132 (2000)

5. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

6. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science. Volume B: Formal Models and Semantics,
pp. 243–320. Elsevier, Amsterdam (1990)

7. Dershowitz, N.: A note on simplification orderings. Inf. Process. Lett. 9(5), 212–215
(1979)

8. Eker, S.: Single elementary associative-commutative matching. J. Autom. Reason-
ing 28(1), 35–51 (2002)

9. Bürckert, H.J., Herold, A., Schmidt-Schau, M.: On equational theories, unification,
and (un)decidability. J. Symbolic Comput. 8(1–2), 3–49 (1989)

10. Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.
Trans. Am. Math. Soc. 95, 210–225 (1960)

11. Leuschel, M.: On the power of homeomorphic embedding for online termination.
In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 230–245. Springer, Heidelberg
(1998). https://doi.org/10.1007/3-540-49727-7 14

https://doi.org/10.1007/978-3-319-63139-4_1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/3-540-49727-7_14

Homeomorphic Embedding Modulo Combinations 55

12. Leuschel, M.: Homeomorphic embedding for online termination of symbolic meth-
ods. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of
Computation. LNCS, vol. 2566, pp. 379–403. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-36377-7 17

13. Leuschel, M., Martens, B., De Schreye, D.: Controlling generalization and polyvari-
ance in partial deduction of normal logic programs. ACM TOPLAS 20(1), 208–258
(1998)

14. Middeldorp, A., Gramlich, B.: Simple termination is difficult. Appl. Algebra Eng.
Commun. Comput. 6(2), 115–128 (1995)

15. Sørensen, M.H., Glück, R.: An algorithm of generalization in positive supercom-
pilation. In: Lloyd, J.W. (ed.) Proceedings of International Symposium on Logic
Programming, ILPS 1995, pp. 465–479. MIT Press, Cambridge (1995)

https://doi.org/10.1007/3-540-36377-7_17
https://doi.org/10.1007/3-540-36377-7_17

Logic-Based Distributed/Concurrent
Programming

Multiparty Classical Choreographies

Marco Carbone1(B), Lúıs Cruz-Filipe2, Fabrizio Montesi2,
and Agata Murawska1

1 IT University of Copenhagen, Copenhagen, Denmark
{carbonem,agmu}@itu.dk

2 University of Southern Denmark, Odense, Denmark
{lcf,fmontesi}@imada.sdu.dk

Abstract. We present Multiparty Classical Choreographies (MCC),
a language model where global descriptions of communicating sys-
tems (choreographies) implement typed multiparty sessions. Typing is
achieved by generalising classical linear logic to judgements that explic-
itly record parallelism by means of hypersequents. Our approach unifies
different lines of work on choreographies and processes with multiparty
sessions, as well as their connection to linear logic. Thus, results devel-
oped in one context are carried over to the others. Key novelties of MCC
include support for server invocation in choreographies, as well as logic-
driven compilation of choreographies with replicated processes.

1 Introduction

Choreographic Programming [17] is a programming paradigm where programs,
called choreographies, define the intended communication behaviour of a sys-
tem based on message passing, using an “Alice and Bob” notation, rather than
the behaviour of each endpoint. Choreographies are useful for several reasons:
they give a succinct description, or blueprint, of the intended behaviour of a
whole system, making the implementation less error-prone. Then, correct-by-
construction distributed implementations can be synthesised automatically by
means of projection, a compilation algorithm that generates the code for each
endpoint described in the choreography [6,8]. Reversely, it is often possible to
obtain a choreography from an endpoint implementation by means of extraction,
providing a precise blueprint of a distributed system.

Choreographic programming has a deep relationship with the proof theory
of linear logic [9]. Specifically, choreographic programs can be seen as terms
describing the reduction steps of cut elimination in linear logic (choreographies
as cut reductions). The key advantage of this result is that it provides a logical
reconstruction of two useful translations, one from choreographies to processes
(projection, or synthesis) and another from processes to choreographies (extrac-
tion) – this is obtained by exploiting the correspondence between intuitionistic
linear logic and a variant of the π-calculus [4]. These translations can be used
to keep process implementations aligned with the desired communication flows
given as choreographies, whenever code changes are applied to any of the two.
c© Springer Nature Switzerland AG 2019
F. Mesnard and P. J. Stuckey (Eds.): LOPSTR 2018, LNCS 11408, pp. 59–76, 2019.
https://doi.org/10.1007/978-3-030-13838-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13838-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-13838-7_4

60 M. Carbone et al.

This kind of alignment is a desirable property in practice, e.g., it is the basis of
the Testable Architecture development lifecycle for web services [14].

Unfortunately, the logical reconstruction of choreographies in [9] covers only
the multiplicative-additive fragment of intuitionistic linear logic, limiting its
practical applicability to simple scenarios. The aim of this paper is to push
the boundaries of this approach towards more realistic scenarios with sophis-
ticated features. In this article, we define a model, strictly related to classical
linear logic, that allows for replicated services, and multiparty sessions.

Reaching our aim is challenging for both design and technical reasons. In the
multiplicative-additive fragment of linear logic considered in [9], all reductions
intuitively match choreographic terms explored in previous works on choreogra-
phies, i.e., communication of a channel and branch selection [8]. This is not
the case for the exponential fragment, which yields reductions never considered
before in choreographies, e.g., explicit garbage collection of services and server
cloning (see kill and clone operations). To bridge this gap, we exploit the fact
that these operations occur naturally in the process language and, through the
logic, can be reflected to choreographic primitives for management of services as
explicit resources that can be duplicated, used, or destroyed. We show that the
reductions for these terms correspond to the principal cut reductions for expo-
nentials in classical linear logic. Typing guarantees that resource management is
safe, e.g., no destroyed resource is ever used again.

In [9], all sessions (protocols) have exactly two participants. This works well
in intuitionistic linear logic, where sequents are two-sided: two processes can be
connected if one “provides” a behaviour and the other “needs” it. This is verified
by checking identity of types, respectively between a type on the right-hand side
of the sequent of the first process and a type of the left-hand side of the sequent
for the second. To date, it is still unclear how identity for two-sided sequents
can be generalised to multiparty sessions, where a session can have multiple
participants and thus we need to check compatibility of multiple types. Instead,
this topic has been investigated in the setting of classical linear logic, where
multiparty compatibility is captured by coherence, a generalisation of duality
[10]. Therefore, our formulation of Multiparty Classical Choreographies (MCC)
is based on classical linear logic. In order to bridge choreographies to multiparty
sessions, we introduce a new session environment, which records the types of
multiparty communications performed by a choreography as global types [13].
The manipulation of the session environment reveals that typing a choreography
with multiparty sessions corresponds to building the coherence proofs for typing
its sessions. Since a proof of coherence is the type compatibility check required
by the multiparty version of cut in classical linear logic, our result generalises the
choreographies as cut reductions approach to the multiparty case as one would
expect, providing further evidence of the robustness of this idea. The final result
of our efforts is an expressive calculus for programming choreographies with
multiparty sessions and services, which supports both projection and extraction
operations for all typable programs.

Multiparty Classical Choreographies 61

2 Preview

We start by introducing MCC informally, focusing on modelling a protocol
inspired by OpenID [20], where a client authenticates through a third-party
identity provider. MCC offers a way of specifying protocols in terms of global
types. For example, our variant of OpenID can be specified by the global type G:

u → rp(String); u → ip(String); u → ip(PWD); ip → rp.case(u → rp(String); G1, G2)

This protocol concerns three endpoints (often called roles in literature)
denoted by u (user), rp (relaying party) and ip (identity provider). The user
starts by sending its login string to both rp and ip. Then, it sends its password
to ip which will either confirm or reject u’s authentication to rp. If the authen-
tication is successful then the user will send an evaluation of the authentication
service to rp, and then complete as the unspecified protocol G1. Otherwise, if the
password is wrong, then the protocol continues as G2. The specification given
by the global type G can be used by a programmer during an implementation.
In MCC, we could give an implementation in terms of the choreography:

u starts rp, ip; // u starts protocol with rp and ip

u(useru) → rp(userrp); // u sends its login to rp
u(loginu) → ip(loginip); // u sends its login to ip
u(pwdu) → ip(pwdip); // u authenticates with ip

ip → rp.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

inl : u′ starts s; // u′ starts protocol with s
u′(repu′) → s(reps); // u′ sends report to s
s(acks) → u′(acku′); // s acknowledges to u′

u(repu) → rp(reprp); P, // u sends report to rp
inr : Q // authentication fails

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Each line is commented with an explanation of the performed action. We
observe that two different protocols are started. The first line starts the OpenID
protocol between u, rp and ip described above. Moreover, after branching, the
choreography starts another session between the user (named u′) and a server s
that is used for reviewing the authentication service given by ip. In this case, the
protocol used is G′ = u′ → s(String); s → u′(String);G3, for some unspecified
G3. We leave undefined the case in which the identity provider receives a wrong
password (term Q).

In this work, we show how a choreography that follows a protocol such as G
can be expressed as a proof in a proof theory strictly related to classical linear
logic. Moreover, thanks to proof transformations, the choreography above can
be projected into a parallel composition of endpoint processes, each running
a different endpoint. As an example, the endpoint process for the user would
correspond to the process Pu, defined as

useu; u(useru); u(loginu); u(pwdu); useu′; u′(repu′); u′(acku′); u(repu); R

62 M. Carbone et al.

which mimics the behaviour of u and u′ specified in the choreography. Operator
use is used to start a session, while the other two operators utilised above are
for in-session communication. Similarly, we can have the endpoint processes for
rp, ip and s:

Prp = srv rp; rp(userrp); rp.case(rp(reprp); R1, Q1)
Pip = srv ip; ip(loginip); ip(pwdip); R2 Ps = srv s; s(reps); s(acks); R3

3 GCP with Hypersequents

In this section, we present the action fragment of MCC, where we only consider
local actions, e.g., inputs or outputs. The action fragment is a variant of Globally-
governed Classical Processes (GCP) [7] whose typing rules use hypersequents.
In the remainder, we denote a vector of endpoints x1, . . . , xn as x̃ or (xi)i.

Syntax. The action fragment is a generalisation of Classical Processes [22] that
supports multiparty session types. As hinted in Sect. 2, when writing a program
in our language, we do not identify sessions via channel names, but rather we
name sessions’ endpoints. Each process owns a single endpoint of a session it
participates in. The complete syntax is given by the following grammar:

P :: = xA → y link | use x;P client

| P | Q parallel | srv y;P server

| (ν x̃ : G)P restriction | kill x | P server kill

| x(x′); (P | Q) send | clone x(x′);P server clone

| y(y′);P receive

| close[x] close session

| wait[y];P receive close | y.case(P, Q) branching

| x.inl;P left selection | x.(inl : P, inr : Q) general selection

| x.inr;Q right selection | xũ.case() empty choice

With a few exceptions, the terms above are identical to those of GCP. For
space restriction reasons, we only discuss the key differences. Parallel and restric-
tion constructs form a single term (νx̃ : G)(P | Q) in the original GCP. The
link process xA → y is a forwarder from x to y. We further allow the general
selection x.(inl : P, inr : Q), denoting a process that non-deterministically selects
a left or a right branch. For services, an endpoint x may kill all servers by exe-
cuting the action killx | P , or duplicate them by means of clonex(x′);P – these
operations were silent in the original GCP. In cloning, the new server copies are
replicated at fresh endpoints, ready to engage in a session with new endpoint x′.
More generally, we follow the convention of [22], denoting the result of refreshing
names in Q by Q′ (changing each x ∈ fv(Q) into a fresh x′).

Multiparty Classical Choreographies 63

Types. Types, used to ensure proper behaviour of endpoints, are defined as:

A:: = A ⊗ B output | A � B input G:: = x̃ → y(G);H (⊗ �)

| A ⊕ B selection | A&B choice | x → ỹ.case(G, H) (⊕&)

| !A server | ?A client | !x → ỹ(G) (!?)

| 1 close | ⊥ wait | x̃ → y (1⊥)

| 0 false | � empty | x → ỹ.case() (0�)

| X variable | X⊥ dual variable | xA → y (axiom)

In the multiparty setting, types can be split into local types A, which specify
behaviours of a single process, and global types G, which describe interaction
within sessions (and choreography actions). Again, most global types correspond
to pairs of local types, the exception being the global axiom type, describing a
linking session (restricted by typing to type variables and their duals). Local
type operators are based on connectives from classical linear logic – thus, A ⊗ B
is the type of a process that outputs an endpoint of type A and continues with
type B, whereas A�B is the type of a process that receives endpoints of type A
and is itself ready to continue as B. The corresponding global type x̃ → y(G);H
types the interaction where each of the processes owning an endpoint xi sends
their new endpoint to y. Type 0 is justified by the necessity of having a type
dual to �, while the rule 0� is essential for the definition of coherence. Type
variables are used to represent concrete datatypes. It is worth noting that the
logic formulas in our type system enjoy the usual notion of duality, where a
formula’s dual is obtained by recursively replacing each connective by the other
one in the same row in the table above. For example, the dual of !(A ⊗ 0) is
?(A⊥

��), where A⊥ is the dual of formula A.

Typing. We type our terms in judgements of the form Σ � P ◦◦ Ψ , where: (i)
Σ is a set of session typings of the form (xi)i :G; (ii) P is a process; and, (iii) Ψ is
a hypersequent, a set of classical linear logic sequents. Intuitively, Σ � P ◦◦ Ψ
reads as “Ψ types P under the session protocols described in Σ.”

Given a judgment Σ � P ◦◦ Ψ | � Γ, x : A, checking whether x is available –
not engaged in a session – is implicitly done by verifying that x does not occur
in the domain of Σ. Note that names cannot occur more than once in Σ: each
endpoint x may only belong to (at most) one session G. Hypersequents Ψ1, Ψ2

and sets of sessions Σ1, Σ2 can only be joined if their domains do not intersect.
Moreover, we use indexing in different ways:

(
Σi � Pi

◦◦ Ψi

)
i

denotes several
judgements Σ1 � P1

◦◦ Ψ1, . . . , Σn � Pn
◦◦ Ψn; indexed pairs (xi :Ai)i are

a set of pairs x1 :A1, . . . , xn :An; and, finally, (� Γi)i denotes the hypersequent
� Γ1 | . . . | � Γn.

In order to separate restriction and parallel (reasons for this separation will
be explained in Sect. 4), we split the classical linear logic Cut rule into two:

(Σi � Pi
◦◦ Ψi |
Γi, xi :Ai)i G � (xi :Ai)i

(Σi)i, (xi)i :G � (Pi)i
◦◦ (Ψi |
Γi, xi :Ai)i

Conn
Σ, (xi)i :G � P ◦◦ Ψ | (
Γi, xi :Ai)i

Σ � (ν x̃ : G)P ◦◦ Ψ |
 (Γi)i
Scope

64 M. Carbone et al.

Rule Conn is used for merging proofs that provide coherent types (we address
coherence below), but without removing them from the environment. Since such
types need to remain in the conclusion of the rule, we need to use hypersequents.
The sequents involved in a session get merged once a Scope rule is applied. This
hypersequent presentation is similar to a classical linear logic variant of [9] with
sessions explicitly remembered in a separate context Σ.

Coherence is a generalisation of duality [7] to more than two parties: when
describing a multiparty session, simple duality of types does not suffice to talk
about their compatibility. In Fig. 1, we report the rules defining the coherence
relation �. We do not describe these here in detail, as they remain unchanged
compared to the original GCP presentation, with the exception of the axiom
rule which is only applicable to atomic types in our system.

G � (xi :Ai)i, y :C H � Γ, (xi :Bi)i, y :D

x̃ → y(G);H � Γ, (xi :Ai ⊗ Bi)i, y :C D
⊗

x̃ → y � (xi :1)i, y :⊥ 1⊥

G1 � Γ, x :A, (yi :Ci)i G2 � Γ, x :B, (yi :Di)i

x → ỹ.case(G1, G2) � Γ, x :A ⊕ B, (yi :Ci & Di)i
⊕&

G � x :A, (yi :Bi)i

!x → ỹ(G) � x :?A, (yi : !Bi)i
!?

x → ỹ.case() � Γ , x :0, (yi :�)i
0� A� = X or A = X⊥

xA → y � x : A, y : A⊥ Axiom

Fig. 1. Coherence rules.

A = X or A = X⊥

· � xA → y ◦◦ �x :A, y :A⊥ Ax
Σ1 � P ◦◦ Ψ1 | �Γ1, x′ :A Σ2 � Q ◦◦ Ψ2 | �Γ2, x :B

Σ1, Σ2 � x(x′); (P | Q) ◦◦ Ψ1 | Ψ2 | �Γ1, Γ2, x :A ⊗ B
⊗

Σ � P ◦◦ Ψ | �Γ, y′ :A, y :B

Σ � y(y′);P ◦◦ Ψ | �Γ, y :A B

Σ � P ◦◦ Ψ | �Γ

Σ � wait[y];P ◦◦ Ψ | �Γ, y :⊥ ⊥

· � close[x] ◦◦ �x :1
1

(no rule for 0)

vars(Γ) = ũ

· � xũ.case() ◦◦ �Γ, x :� �

Σ � P ◦◦ Ψ | �Γ, x :A

Σ � x.inl;P ◦◦ Ψ | �Γ, x :A ⊕ B
⊕1

Σ � Q ◦◦ Ψ | �Γ, x :B

Σ � x.inr;Q ◦◦ Ψ | �Γ, x :A ⊕ B
⊕2

Σ � P ◦◦ Ψ | �Γ, x :A Σ � Q ◦◦ Ψ | �Γ, x :B

Σ � x.(inl : P, inr : Q) ◦◦ Ψ | �Γ, x :A ⊕ B
⊕ · � P ◦◦ �?Γ, y :A

· � srv y;P ◦◦ �?Γ, y : !A
!

Σ � P ◦◦ Ψ | �Γ, y :A Σ � Q ◦◦ Ψ | �Γ, y :B

Σ � y.case(P, Q) ◦◦ Ψ | �Γ, y :A & B
&

Σ � P ◦◦ Ψ | �Γ, x :A

Σ � use x;P ◦◦ Ψ | �Γ, x :?A
?

Σ � P ◦◦ Ψ | �Γ

Σ � kill x | P ◦◦ Ψ | �Γ, x :?A
Weaken

Σ � P ◦◦ Ψ | �Γ, x :?A, x′ :?A

Σ � clone x(x′);P ◦◦ Ψ | �Γ, x :?A
Contract

Fig. 2. Rules for the action fragment.

The remaining typing rules for the action fragment, presented in Fig. 2 are
identical to those of GCP with the exception that a context in GCP may be

Multiparty Classical Choreographies 65

distributed among several sequents here. For example, rule ⊗ takes two sequents
� Γ1, x

′ : A and � Γ2, x : B from two different hypersequents, and merges them
into � Γ1, Γ2, x :A⊗B, as in classical linear logic. However, elements of Γ1 and Γ2

may be connected through Σ1 and Σ2 to other parts of Ψ1 and Ψ2 respectively (as
a result of previously applied Conn). Note that the rules of this fragment work
only with processes not engaged in any session, since the endpoints explicitly
mentioned in proof terms cannot occur in the domain of Σ: this is an implicit
check in all rules of Fig. 2. Rule � introduces a single sequent Γ, x : �, allowing
for any Γ . The proof term xũ.case() keeps track of the endpoints introduced in
Γ : it ensures that all endpoints in the typing are mentioned in the proof term,
which is useful when defining semantics. In this article, we restrict the axiom to
only type variables (see Sect. 6).

Semantics. The semantics of the action fragment is almost identical to that
of standard GCP. It is obtained from cases of the proof of cut elimination:
the principal cases describe reductions (−→), while the permutations of rule
applications give rise to the rules for structural equivalence (≡), reported in
Fig. 3. Note that as we are interested only in commuting conversions of typable
programs, there are certain cases where the correct equivalence can be found
only by looking at the typing derivation which contains information that is not
part of the process term. Under ≡, parallel distributes safely over case (because
only the actions of one branch are going to be executed). A similar mechanism
can be found in the original presentation of Classical Processes [22], and was

(P̃ | Q) | S̃ ≡ P̃ | (Q | S̃)

(x(x′); (P | Q)) | S̃ ≡ x(x′); ((P | S̃) | Q)

(x(x′); (P | Q)) | S̃ ≡ x(x′); (P | (Q | S̃))

y(y′);P | Q̃ ≡ y(y′); (P | Q̃)

wait[y];P | Q̃ ≡ wait[y]; (P | Q̃)

x.inl;P | Q̃ ≡ x.inl; (P | Q̃)

x.inr;Q | Q̃ ≡ x.inr; (P | Q̃)

x.(inl : P, inr : Q) | S̃ ≡
x.(inl : P | S̃, inr : Q | S̃)

y.case(P, Q) | S̃ ≡ y.case(P | S̃, Q | S̃)

use x;P | Q̃ ≡ use x; (P | Q̃)

kill x | P | Q̃ ≡ kill x | (P | Q̃)

clone x(x′);P | Q̃ ≡ clone x(x′); (P | Q̃)

(νx̃ :G) (P | Q̃) ≡ (νx̃ : G)P | Q̃

(νx̃ :G) (νỹ :H)P ≡ (νỹ :H) (νx̃ :G)P

(νw̃ :G) (x(x′); (P | Q)) ≡
x(x′); ((νw̃ :G)P | Q) ∃i.wi ∈ fv(P)

)

(νw̃ :G) (x(x′); (P | Q)) ≡
x(x′); (P | (νw̃ :G)Q) ∃i.wi ∈ fv(Q)

)

(νw̃ :G) (y(y′);P) ≡ y(y′); (νw̃ :G)P

(νw̃ :G) (x.inl;P) ≡ x.inl; (νw̃ :G)P

(νw̃ :G) (x.inr;Q) ≡ x.inr; (νw̃ :G)Q

(νw̃ :G) (x.(inl : P, inr : Q)) ≡
x.(inl : (νw̃ :G)P, inr : (νw̃ :G)Q)

(νw̃ :G) (y.case(P, Q)) ≡
y.case((νw̃ :G)P, (νw̃ :G)Q)

(νw̃ :G) (use x;P) ≡ use x; (νw̃ :G)P

(νw̃ :G) (kill x | P) ≡ kill x | (νw̃ :G)P

(νw̃ :G) (clone x(x′);P) ≡ clone x(x′); (νw̃ :G)P

(νx̃ :G) (srv y;P | Q̃) ≡ srv y; (νx̃ :G) (P | Q̃)

(νz̃z :G) (xũ,z.case() | Q̃) ≡ xũ,ṽ.case() where ṽ = vars(Q̃) \ z̃

Fig. 3. Equivalences for commuting the action fragment with Conn and Scope. All rules
assume that both sides of the equation are typable in the same context.

66 M. Carbone et al.

Fig. 4. Semantics for the action fragment.

later demonstrated to correspond to a bisimulation law in [1]. The semantics
of the action fragment of our calculus is presented in Fig. 4. Notice that the
β-reductions are coordinated by a global type, as they correspond to multiple
parties communicating.1 The reduction rules for server killing and cloning may
look strange because both kill and clone remain in the proof term after reduction.
This is because of the corresponding reduction in classical linear logic, where it
is necessary to use weakening and contraction (corresponding to kill and clone
respectively) also after reduction. As a consequence, we get them as proof terms.

4 Extending GCP with Choreographies

In order to obtain full MCC, we extend the action fragment presented in the
previous section with choreography terms (interactions).

Syntax. Unlike a process in the action fragment, a choreography, which describes
a global view of the communications of a process, will own all of the endpoints of

1 It may be surprising that some of the rules also include a restriction to a vector z̃,
and a session using a vector of processes S̃, whose shape we do not inspect. This
follows from the shape of coherence rules: rules such as ⊗ � , ⊕ & and 0� contain
an additional context Γ , captured here by z̃.

Multiparty Classical Choreographies 67

the sessions it describes. We call the fragment of MCC with choreography terms
the interaction fragment. Formally, MCC syntax is extended as follows:

P :: = . . . as in the action fragment . . . | x starts ỹ;P server accept/request

| z ← yB → x;P link | x kills ˜y(Q);P server kill

| x̃(x̃′) → y(y′);P communication | x clones ỹ(x′, ỹ′);P server clone

| x̃ closes y;P session close

| x → ỹ.inl(P ;Q1, . . . , Qn) left selection | x → ỹ.(inl : P, inr : Q) general selection

| x → ỹ.inr(P1, . . . , Pn;Q) right selection

The link term z ← yB → x;P gives the choreographic view of an axiom
connected to some other process P through endpoints x and y. A linear inter-
action x̃(x̃′) → y(y′);P denotes a communication from endpoints x̃ to the
endpoint y, where a new session with endpoints x̃′,y′ is created. The chore-
ography x̃ closes y;P closes a session between endpoints x̃, y. When it comes
to branching, we have two choreographic terms denoting left and right selec-
tion: x → ỹ.inl(P ;Q1, . . . , Qn) and x → ỹ.inr(P1, . . . , Pn;Q). A third term, x →
ỹ.(inl : P, inr : Q), is used for non-deterministic choice. In MCC, we can model
non-linear behaviour: this is done with the terms x starts ỹ;P , x kills ˜y(Q);P and
x clones ỹ(x′, ỹ′);P . The first term features a client x starting a new session with
servers ỹ, while the second term is used by endpoint x to shut down servers ỹ.
Finally, we have a term for cloning servers so that they can be used by different
clients in different sessions.

Typing. Figure 5 details the rules for typing choreography terms. Each of these
rules combines two rules from the action fragment simulating their reduction,
where the conclusion of a rule corresponds to the redex and the premise to
the reductum. Unlike process rules, the choreography rules now also look at Σ
to check that the interactions described conform to the types of the ongoing
sessions. In rule C1⊥, we close a session (removed from Σ) and terminate all
processes involved in it. Rule C⊗ � types the creation of a new session with
protocol G, created among endpoints z̃ and w; this session is stored in Σ, while
the process types are updated as in rules ⊗ and � above. The remaining rules
in the linear fragment are similarly understood. Exponentials give rise to three
rules, all of them combining ! with another rule. In rule C!?, process x invokes the
services provided by ỹ, creating a new session among these processes with type
G. Rule C!w combines ! with Weaken: here the processes providing the service
are simply removed from the context. Finally, rule C!C combines ! with Contract,
allowing a service to be duplicated.

Reduction Semantics. Figure 6 gives the reductions for the interaction fragment.
From a proof-theoretical perspective, these reductions correspond to proof trans-
formations of C rules from Fig. 5 followed by a structural Scope rule; the trans-
formation removes the C rule and pushes Scope higher up in the proof tree.

68 M. Carbone et al.

Fig. 5. Rules for the interaction fragment.

Remark 1 (Server Cloning). The reduction rule for a server cloning choreogra-
phy must clone all of the doubled endpoints. Looking at the typing rule C!C on
Fig. 5, cloned variables uj are all of the endpoints mentioned in (?Γi)i, and u′

j

are corresponding endpoints from (?Γ ′
i)i. To make the search for these variables

syntactic, one could do an endpoint projection, as described in the next section,
and look at the appropriate subterm of the Conn rule which connects yi and x.
The uj are then the free variables of this subterm, excluding yi.

Structural Equivalence. The reductions given earlier require that programs are
written in the very specific form given in their left-hand side. Formally, this is
achieved by closing −→ under structural equivalence: if P ≡ P ′, P ′ −→ Q′

and Q′ ≡ Q, then P −→ Q. The equivalences for the interaction part are
given in Fig. 7. As in the action fragment, we are only interested in commuting

Multiparty Classical Choreographies 69

conversions of typable programs, and therefore rely on typing derivations for find-
ing the correct equivalence. Besides the commuting conversions, we also have the
usual structural equivalence rules where parallel composition under restriction,

(νx, y : xX → y) (w ← yX⊥ → x;P) −→ P{w/x}

(νx, y : xX⊥ → y) (w ← yX → x;P) −→ P{w/x}

(νx̃, y, z̃ : x̃ → y(G);H) x̃(x̃′) → y(y′);P
) −→ (νx̃′, y′ : G{x̃′/x̃, y′/y}) (νx̃, y, z̃ : H)P

(νx̃, y : x̃ → y) (x̃ closes y;P) −→ P

(νx, ỹ, z̃ : x → ỹ.case(G, H)) (x → ỹ.inl(P ;Q1, . . . , Qn)) −→ (νx, ỹ, z̃ : G)P

(νx, ỹ, z̃ : x → ỹ.case(G, H)) (x → ỹ.inr(P1, . . . , Pn;Q)) −→ (νx, ỹ, z̃ : H)Q

(νx, ỹ, z̃ : x → ỹ.case(G, H)) (x → ỹ.(inl : P, inr : Q)) −→ (νx, ỹ, z̃ : G)P

(νx, ỹ, z̃ : x → ỹ.case(G, H)) (x → ỹ.(inl : P, inr : Q)) −→ (νx, ỹ, z̃ : H)Q

(νx, ỹ : !x → ỹ(G)) (x starts ỹ;P) −→ (νx, ỹ : G)P

(νx, ỹ : !x → ỹ(G)) x kills ˜y(Q);P −→ (killuj)j | P (∀vi ∈ fv(Qi).vi �= yi ⇒ ∃j.vi = uj)

(νx, ỹ : !x → ỹ(G)) x clones ỹ(x′, ỹ′);P
) −→

(cloneuj(u′
j))j ; (νx, ỹ : !x → ỹ(G)) (νx′, ỹ′ : !x′ → ỹ′(G{x′/x, ỹ′/ỹ}))P (see Remark 1)

Fig. 6. Semantics for the interaction fragment.

w ← yB → x;P | Q̃ ≡ w ← yB → x; (P | Q̃)

x̃(x̃′) → y(y′);P | Q̃ ≡ x̃(x̃′) → y(y′); (P | Q̃)

x̃ closes y;P | Q̃ ≡ x̃ closes y; (P | Q̃)

x → ỹ.inl(P ;Q1, . . . , Qn) | S̃ ≡ x → ỹ.inl((P | S̃);Q1, . . . , Qn)

x → ỹ.inl(P ;Q1, . . . , Qn) | S̃ ≡ x → ỹ.inl((P | S̃); (Q1, . . . , (Qi | S̃), . . . , Qn))

x → ỹ.inr(P1, . . . , Pn;Q) | S̃ ≡ x → ỹ.inr(P1, . . . , Pn; (Q | S̃))

x → ỹ.inr(P1, . . . , Pn;Q) | S̃ ≡ x → ỹ.inr((P1, . . . , (Pi | S̃), . . . , Pn); (Q | S̃))

x starts ỹ;P | Q̃ ≡ x starts ỹ; (P | Q̃)

x kills ˜y(Q);P | S̃ ≡ x kills ˜y(Q); (P | S̃)

x clones ỹ(x′, ỹ′);P | Q̃ ≡ x clones ỹ(x′, ỹ′); (P | Q̃)

(νw̃ :G) (x̃(x̃′) → y(y′);P) ≡ x̃(x̃′) → y(y′); (νw̃ :G)P

(νw̃ :G) (x̃ closes y;P) ≡ x̃ closes y; (νw̃ :G)P

(νw̃ :G) (x → ỹ.inl(P ;Q1, . . . , Qn)) ≡ x → ỹ.inl((νw̃ :G)P ;Q1, . . . , Qn)

(νw̃ :G) (x → ỹ.inl(P ;Q1, . . . , Qn)) ≡ x → ỹ.inl((νw̃ :G)P ;Q1, . . . , (νw̃ :G)Qi, . . . , Qn)

(νw̃ :G) (x → ỹ.inr(P1, . . . , Pn;Q)) ≡ x → ỹ.inr(P1, . . . , Pn; (νw̃ :G)Q)

(νw̃ :G) (x → ỹ.inr(P1, . . . , Pn;Q)) ≡ x → ỹ.inr(P1, . . . , (νw̃ :G)Pi, . . . , Pn; (νw̃ :G)Q)

(νw̃ :G) (x.(inl : P, inr : Q)) ≡ x.(inl : (νw̃ :G)P, inr : (νw̃ :G)Q)

(νw̃ :G) (x starts ỹ;P) ≡ x starts ỹ; (νw̃ :G)P

(νw̃ :G) (x kills ˜y(Q);P) ≡ x kills ˜yi(Qi); (νw̃ :G)P

(νw̃ :G) (x clones ỹ(x′, ỹ′);P) ≡ x clones ỹ(x′, ỹ′); (νw̃ :G)P

(νz̃ :G) (x clones ỹ(x′, ỹ′);P | Q̃) ≡ x clones ỹ(x′, ỹ′); (νz̃ :G) (P | Q̃)

Fig. 7. Equivalences for commuting C-rules with Conn and Scope. All rules assume
that both sides are typable in the same context.

70 M. Carbone et al.

linking process and global type for linking sessions are all symmetric. Further-
more, the order of restrictions can be swapped.

xA → y ≡ yA⊥ → x

(νw̃, y, x, z̃ : G) P̃ | R | Q | S̃ ≡ (νw̃, x, y, z̃ : G) P̃ | Q | R | S̃

(νz, w̃ : H) (νx, ỹ : G)P | R̃ | Q̃ ≡ (νx, ỹ : G) (νz, w̃ : H)P | Q̃ | R̃

Properties. We finish the presentation of MCC by establishing the expected
meta-theoretic properties of the system. As structural congruence is typing-
based, subject congruence is a property holding by construction:

Theorem 1 (Subject Congruence). Σ � P ◦◦ Ψ and P ≡ Q implies that
Σ � Q ◦◦ Ψ .

Proof. By induction on the proof that P ≡ Q. In [5], it is explained how the
rules for structural equivalence were derived, making this proof straightforward.

Moreover, our reductions preserve typing since they are proof transformations.

Theorem 2 (Subject Reduction). Σ � P ◦◦ Ψ and P −→ Q implies
Σ � Q ◦◦ Ψ .

Proof. By induction on the proof that P −→ Q. In [5], it is explained how the
semantics of MCC were designed in order to make this proof straightforward.

Finally, we can show that MCC is deadlock-free, since the top-level Scope appli-
cation can be pushed up the derivation. In case the top-level Scope application
is next to an application of Conn, either the choreography can reduce directly or
both rules can be pushed up. Proof-theoretically, this procedure can be viewed
as MCC’s equivalent of the Principal Lemma of Cut Elimination.

Theorem 3 (Deadlock-freedom). If P begins with a restriction and Σ �
P ◦◦ Ψ , then there exists Q such that P −→ Q.

Proof (Sketch). Our proof idea is similar to that of Theorem 3 in [9]. We apply
induction on the size of the proof of Σ � P ◦◦ Ψ . If a rule from Fig. 4 or
Fig. 6 is applicable (corresponding to a proof where an application of Conn and
an application of Scope meet), then the thesis immediately holds.

Otherwise, we apply commuting conversions from Fig. 3 or Fig. 7, “pushing”
the top-level Scope application up in the derivation (and, if it is preceded by an
application of Conn, “pushing” also that application). This results in a smaller
proof of Σ � P ◦◦ Ψ , to which the induction hypothesis can be applied.

Multiparty Classical Choreographies 71

5 Projection and Extraction

As suggested by the previous sections, interactions can be implemented in two
ways: as a single choreography term, or as multiple process terms appearing
in different behaviours composed in parallel. In this section, we formally show
that choreography interactions can be projected to process implementations, and
symmetrically, process implementations can be extracted to choreographies. We
do this by transforming proofs (derivations in the typing system), similarly to
the way we defined equivalences and reductions for MCC.

We start by defining the principal transformations for projection and extrac-
tion, a set of equivalences that require proof terms to have a special shape. We
report such transformations in Fig. 8: they perform extraction if read from left
to right, while they perform projection if read from right to left. The extraction
relation requires access to the list of open sessions Σ to ensure that we have
all the endpoints participating in the session to extract a choreography from.
The first two rules deal with axioms: the parallel composition (rule Conn) of an
axiom with a process P can be expressed by rule CAx and vice-versa. On the
third line, we show how to transform the parallel composition of an output (⊗)
and an input (�) into a C⊗ � . Similarly, x̃ closes y;P is the choreographic rep-
resentation of the term (close[xi])i | wait[y];P . Each branching operation (left,
right, non-deterministic) has a representative in both fragments with straight-
forward transformations. A server srv y;Q can either be used by a client, killed
or cloned. In the first two cases, such interactions trivially correspond to the
choreographic terms x starts ỹ; (P | Q̃) and x kills ˜y(Q);P . In the case of cloning,
we create the interaction term x clones ỹ(x′, ỹ′); (P | (srv yi;Qi)i | (srv y′

i;Q
′
i)i),

which shows how the choreographic cloning x clones ỹ(x′, ỹ′); must be followed
by two instances of the server that is cloned. Note that these transformations
are derived by applying similar techniques as those of cut elimination. Concrete
derivations, here omitted, are straightforward: an example can be found in [5].

Fig. 8. Extraction (⇀) and projection (↽).

72 M. Carbone et al.

Remark 2. In order to project/extract an arbitrary well-typed term, given the
strict format required by the transformations in Fig. 8, we will sometimes have
to perform rewriting of terms in accordance with the commuting conversions to
reach an expected shape. In particular, we note that when projecting, we must
first project the subterms (we start from the leaves of a proof), step by step
moving down to the main term. In contrast, when extracting, we must proceed
from the root of the proof towards the leaves.

Note that our example in Sect. 2 does not provide an exact projection: in
order to improve readability, we have removed all parallels that follow output
operations, which would be introduced by the translation presented above. This
is not problematic, since the outputs in the example are just basic types.

Properties. In the sequel, we write P
x̃−→extr P ′ whenever it is possible to apply

one of the transformations in Fig. 8 to (a term equivalent to) term P from left
to right, where x̃ are the endpoints involved in the transformation. Similarly, we
write P

x̃−→proj P ′ whenever it is possible to apply a transformation from Fig. 8
to (a term equivalent to) term P from right to left. We also write P =⇒extr P ′

(P =⇒proj P ′) if there is a finite sequence of applications of −→extr (−→proj) and
P ′ cannot be further transformed. We then have the following results:

Theorem 4 (Type Preservation). If P
x̃−→extr Q and Σ � P ◦◦ Ψ , then

Σ � Q ◦◦ Ψ , and if Q
x̃−→proj P and Σ � Q ◦◦ Ψ , then Σ � P ◦◦ Ψ .

Proof. By induction on the proof that P
x̃−→extr Q or Q

x̃−→proj P . In [5], we
explain how the rules for projection and extraction were derived from the typing
rules to ensure that the proof of this result is straightforward.

Theorem 5 (Admissibility of Conn and C-rules). Let P be a proof term
such that � P ◦◦ �Γ . Then,

– there exists P ′ such that P =⇒extr P ′ and P ′ is Conn-free;
– there exists P ′ such that P =⇒proj P ′ and P ′ is free from C-rules.

Proof (Sketch). The idea is similar to the proof of Theorem 4.4.1 in [17]: by
applying commuting conversions we can always rewrite P such that one of the
rules in Fig. 8 is applicable, thus eliminating the outermost application of Conn
(in the case of extraction) or the innermost application of a C-rule (in the case
of projection). See also Remarks 2 and 3.

Remark 3. The theorem above is only applicable to judgments of the form �
P ◦◦ �Γ . This is because of the commuting conversion of the server rule

(νx̃x :G) (srv y;P | Q̃) ≡ srv y; (νx̃x :G) (P | Q̃)

where we can only permute Conn and Scope together. This conversion is needed
to rearrange certain proofs into the format required by the transformations in
Fig. 8. Note that any judgement Σ � P ◦◦ Ψ can always be transformed into
this format, by repeatedly applying rule Scope to all elements in Σ.

Multiparty Classical Choreographies 73

As a consequence of the admissibility of Conn, every program can be rewritten
into a (non-unique) process containing only process terms by applying the rules
in Fig. 8 from right to left until no longer possible. Conversely, because of admis-
sibility of C-rules, every program can be rewritten into a maximal choreographic
form by applying the same rules from left to right until no longer possible.

We conclude this section with our main theorem that shows the correspon-
dence between the two fragments with respect to their semantics. In order to do
that, we annotate our semantics with the endpoints where the reduction takes
place. This is denoted by P −→x̃ Q and P −→•x̃ Q where the first relation
is a reduction in the action fragment, while the second is a reduction in the
interaction fragment. The sequence rev(x̃) is obtained by reversing x̃.

Theorem 6 (Correspondence). Let P be a proof term such that Σ � P ◦◦ Ψ .
Then,

– P −→x̃ Q implies that there exists P ′ s.t. P
x̃−→extr P ′ and P ′ −→•x̃ Q;

– P −→•x̃ Q implies that there exists P ′ s.t. P
rev(x̃)−→ proj P ′ and P ′ −→x̃ Q.

Proof. This proof follows the same strategy as that of Theorem 6 in [9].

6 Related Work and Discussion

Related Work. The principle of choreographies as cut reductions was introduced
in [9]. As discussed in Sect. 1, that system cannot capture services or multi-
party sessions. Another difference is that it is based on intuitionistic linear logic,
whereas ours on classical linear logic – in particular, on Classical Processes [22].

Switching to classical linear logic is not a mere change of appearance. It is
what allows us to reuse the logical understanding of multiparty sessions in linear
logic as coherence proofs, introduced in [10] and later extended to polymorphism
in [7]. These works did not consider choreographic programs, and thus do not
offer a global view on how different sessions are composed, as we do in this paper.

Extracting choreographies from compositions of process code is well-known
to be a hard problem. In [15], choreographies that abstract from the exchanged
values and computation are extracted from communicating finite-state machines.
The authors of [11] present an efficient algorithm for extracting concrete choreo-
graphic programs with asynchronous messaging. These works do not consider the
composition of multiple sessions, multiparty sessions, and services, as in MCC.
However, they can both deal with infinite behaviour (through loops or recur-
sion), which we do not address. An interesting direction for this feature would
be to integrate structural recursion for classical linear logic [16].

Our approach can be seen as a principled reconstruction of previous works
on choreographic programming. The first work that typed choreographies using
multiparty session types is [8]. The idea of mixing choreographies with processes
using multiparty session types is from [19]. None of these consider extraction.

74 M. Carbone et al.

Discussion. For the sake of clarity, our presentation of MCC adopts simplifica-
tions that may limit the model expressivity. Below, we discuss some key points
as well as possible extensions based on certain developments in this research line.

Non-determinism. We introduced non-determinism in a straightforward way,
i.e., our non-deterministic rules in both action and interaction fragments require
for each branch to have the same type, as done for standard session typing.
However, this solution breaks the property of confluence that we commonly
have in logics. In order to preserve confluence, we would have to extend MCC
with the non-deterministic linear types from [3].

η-expansion. GCP in [7] allows for the axiom to be of any type A. This requires
heavily using η-expansions for transforming axioms into processes with commu-
nication actions. It is straightforward to do this in the action fragment of MCC.
However, given the way choreographies work, we can only define an axiom for
binary sessions in the interaction fragment. As a consequence, in order to apply
extraction to a process where an axiom is engaged in a multiparty session with
several endpoints, we would need to first use η-expansions to transform such
axiom into an ordinary process. In the opposite direction, we would never be
able to project a process containing an axiom from a choreography, unless it is
part of a binary session. We leave further investigation of this as future work.

Annotated Types. The original version of GCP [7] comes with an extension
called MCP, where an endpoint type A is annotated with names of endpoints
which it will be in a session with. In this way, endpoint types become more
expressive, since it is possible to specify with whom each endpoint has to commu-
nicate, without having to use a global type (coherence proof) during execution.
We claim that this extension is straightforward for our presentation of MCC.

Polymorphism. As in GCP [7], we can easily add polymorphic types to MCC.
However, for simplifying the presentation of this work, we have decided to leave it
out, even though adding the GCP rules to the action fragment is straightforward.
In the case of the interaction fragment, we obtain the following rule:

X �∈ fv(Ψ, Γ, (Γi)i)

Σ, (x, ỹ, ũ) :G{A/X} � P{A/X} ◦◦ Ψ |
Γ, x :B{A/X} | (
Γi, yi :Bi{A/X})i
Σ, (x, ỹ, ũ) :x → ỹ.(X)G � x[A] → ỹ(X);P ◦◦ Ψ |
Γ, x :∃X.B | (
Γi, yi :∀X.Bi)i

C∃∀

Above we have added to the syntax of global types the term x → ỹ.(X)G,
denoting a session where an endpoint x is supposed to send a type to endpoints
ỹ. At choreography level, endpoint x realises the abstraction of the global type
sending the actual type A. When it comes to extraction and projection, we would
have to add the following transformation:

x[A];P | (yi(X);Qi)i | S̃ � x[A] → ỹ(X);
(
P | Q̃ | S̃

)

where x[A];P and yi(X);Qi are action fragment terms (as those of GCP).

Multiparty Classical Choreographies 75

Other Extensions. By importing the functional stratification from [21], we
could obtain a monadic integration of choreographies with functions. The cal-
culus of classical higher-order processes [18] could be of inspiration for adding
code mobility to MCC, by adding higher-order types. Types for manifest shar-
ing in [2] may lead us to global specifications of sharing in choreographies. And
the asynchronous interpretation of cut reductions in [12] might give us an asyn-
chronous implementation of choreographies in MCC. We leave an exploration
of these extensions to future work. Hopefully, the shared foundations of linear
logic will make it possible to build on these pre-existing technical developments
following the same idea of choreographies as cut reductions.

References

1. Atkey, R.: Observed communication semantics for classical processes. In: Yang,
H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 56–82. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54434-1 3

2. Balzer, S., Pfenning, F.: Manifest sharing with session types. PACMPL 1(ICFP),
37:1–37:29 (2017)

3. Caires, L., Pérez, J.A.: Linearity, control effects, and behavioral types. In: Yang,
H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 229–259. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54434-1 9

4. Caires, Lúıs, Pfenning, Frank: Session types as intuitionistic linear propositions. In:
Gastin, Paul, Laroussinie, François (eds.) CONCUR 2010. LNCS, vol. 6269, pp.
222–236. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-
4 16

5. Carbone, M., Cruz-Filipe, L., Montesi, F., Murawska, A.: Multiparty classical
choreographies. CoRR, abs/1808.05088 (2018)

6. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-
gramming for web services. ACM TOPLAS 34(2), 8 (2012)

7. Carbone, M., Lindley, S., Montesi, F., Schürmann, C., Wadler, P.: Coherence gen-
eralises duality: a logical explanation of multiparty session types. In: CONCUR,
LIPIcs, vol. 59 , pp. 33:1–33:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2016)

8. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: POPL, pp. 263–274 (2013)

9. Carbone, M., Montesi, F., Schürmann, C.: Choreographies, logically. Distrib. Com-
put. 31(1), 51–67 (2018)

10. Carbone, M., Montesi, F., Schürmann, C., Yoshida, N.: Multiparty session types
as coherence proofs. Acta Inf. 54(3), 243–269 (2017). Also: CONCUR 2015

11. Cruz-Filipe, L., Larsen, K.S., Montesi, F.: The paths to choreography extraction.
In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 424–
440. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7 25

12. DeYoung, H., Caires, L., Pfenning, F., Toninho, B.: Cut reduction in linear logic as
asynchronous session-typed communication. In: CSL, LIPIcs, vol. 16, pp. 228–242.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

13. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 91–967 (2016)

14. JBoss Community and Red Hat. Testable Architecture. http://www.jboss.org/
savara/

https://doi.org/10.1007/978-3-662-54434-1_3
https://doi.org/10.1007/978-3-662-54434-1_9
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-662-54458-7_25
http://www.jboss.org/savara/
http://www.jboss.org/savara/

76 M. Carbone et al.

15. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: POPL, pp. 221–232. ACM (2015)

16. Lindley, S., Morris, J.G.: Talking bananas: structural recursion for session types.
In: ICFP, pp. 434–447. ACM (2016)

17. Montesi, F.: Choreographic Programming. Ph.D. thesis, IT University of Copen-
hagen (2013). http://www.itu.dk/people/fabr/papers/phd/thesis.pdf

18. Montesi, F.: Classical higher-order processes. In: Bouajjani, A., Silva, A. (eds.)
FORTE 2017. LNCS, vol. 10321, pp. 171–178. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-60225-7 12

19. Montesi, F., Yoshida, N.: Compositional choreographies. In: D’Argenio, P.R.,
Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 425–439. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40184-8 30

20. OpenID. OpenID specifications. http://openid.net/developers/specs/
21. Toninho, B., Caires, L., Pfenning, F.: Higher-order processes, functions, and ses-

sions: a monadic integration. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013.
LNCS, vol. 7792, pp. 350–369. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37036-6 20

22. Wadler, P.: Propositions as sessions. J. Funct. Program. 24(2–3), 384–418 (2014)

http://www.itu.dk/people/fabr/papers/phd/thesis.pdf
https://doi.org/10.1007/978-3-319-60225-7_12
https://doi.org/10.1007/978-3-319-60225-7_12
https://doi.org/10.1007/978-3-642-40184-8_30
http://openid.net/developers/specs/
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1007/978-3-642-37036-6_20

A Pragmatic, Scalable Approach
to Correct-by-Construction Process

Composition Using Classical Linear Logic
Inference

Petros Papapanagiotou(B) and Jacques Fleuriot

School of Informatics, University of Edinburgh, 10 Crichton Street,
Edinburgh EH8 9AB, UK

{ppapapan,jdf}@inf.ed.ac.uk

Abstract. The need for rigorous process composition is encountered
in many situations pertaining to the development and analysis of com-
plex systems. We discuss the use of Classical Linear Logic (CLL) for
correct-by-construction resource-based process composition, with guar-
anteed deadlock freedom, systematic resource accounting, and concurrent
execution. We introduce algorithms to automate the necessary inference
steps for binary compositions of processes in parallel, conditionally, and
in sequence. We combine decision procedures and heuristics to achieve
intuitive and practically useful compositions in an applied setting.

Keywords: Process modelling · Composition ·
Correct by construction · Workflow · Linear logic

1 Introduction

The ideas behind process modelling and composition are common across a vari-
ety of domains, including program synthesis, software architecture, multi-agent
systems, web services, and business processes. Although the concept of a “pro-
cess” takes a variety of names – such as agent, role, action, activity, and service
– across these domains, in essence, it always captures the idea of an abstract,
functional unit. Process composition then involves the combination and connec-
tion of these units to create systems that can perform more complex tasks. We
typically call the resulting model a (process) workflow. Viewed from this stand-
point, resource-based process composition then captures a structured model of
the resource flow across the components, focusing on the resources that are
created, consumed, or passed from one process to another within the system.

Workflows have proven useful tools for the design and implementation of
complex systems by providing a balance between an intuitive abstract model,
typically in diagrammatic form, and a concrete implementation through pro-
cess automation. Evidence can be found, for example, in the modelling of clinical

c© Springer Nature Switzerland AG 2019
F. Mesnard and P. J. Stuckey (Eds.): LOPSTR 2018, LNCS 11408, pp. 77–93, 2019.
https://doi.org/10.1007/978-3-030-13838-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13838-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-13838-7_5

78 P. Papapanagiotou and J. Fleuriot

care pathways where workflows can be both understandable by healthcare stake-
holders and yet remain amenable to formal analysis [10,15].

A scalable approach towards establishing trust in the correctness of the mod-
elled system is that of correct-by-construction engineering [12,26]. In general, this
refers to the construction of systems in a way that guarantees correctness proper-
ties about them at design time. In this spirit, we have developed the WorkflowFM
system for correct-by-construction process composition [21]. It relies on Classical
Linear Logic (see Sect. 2.1) to rigorously compose abstract process specifications
in a way that:

1. systematically accounts for resources and exceptions;
2. prevents deadlocks;
3. results in a concrete workflow where processes are executed concurrently.

From the specific point of view of program synthesis, these benefits can be
interpreted as (1) no memory leaks or missing data, (2) no deadlocks, hanging
threads, or loops, and (3) parallel, asynchronous (non-blocking) execution.

The inference is performed within the proof assistant HOL Light, which offers
systematic guarantees of correctness for every inference step [11]. The logical
model can be translated through a process calculus to a concrete workflow imple-
mentation in a host programming language.

There are numerous aspects to and components in the WorkflowFM system,
including, for instance, the diagrammatic interface (as shown in Fig. 1), the code
translator, the execution engine, the process calculus correspondence, and the
architecture that brings it all together [21]. In this particular paper we focus on
the proof procedures that make such resource-based process compositions feasi-
ble and accessible. These are essential for creating meaningful workflow models
with the correctness-by-construction properties highlighted above, but without
the need for tedious manual CLL reasoning. Instead, the user can use high level
composition actions triggered by simple, intuitive mouse gestures and without
the need to understand the underlying proof, which is guaranteed to be correct
thanks to the rigorous environment of HOL Light.

It is worth emphasizing that our work largely aims at tackling pragmatic
challenges in real applications as opposed to establishing theoretical facts. We
rely on existing formalisms, such as the proofs-as-processes theory described
below, in our attempt to exploit its benefits in real world scenarios. As a result,
the vast majority of our design decisions are driven by practical experience and
the different cases we have encountered in our projects.

Table 1 is a list of some of our case studies in the healthcare and manufac-
turing domain that have driven the development of WorkflowFM. It includes an
indication of the size of each case study based on (1) the number of (atomic)
component processes, (2) the number of different types of resources involved in
the inputs and outputs of the various processes (see Sect. 3), (3) the number of
binary composition actions performed to construct the workflows (see Sect. 4),
and (4) the total number of composed workflows.

All of these case studies are models of actual workflows, built based on data
from real-world scenarios and input from domain experts such as clinical teams

A Pragmatic, Scalable Approach to Correct-by-Construction 79

Table 1. Sample case studies and an indication of their size.

Case study theme Processes Resource types Actions Workflows

Patient handovers 9 16 13 2

Tracheostomy care pathway 33 47 32 3

HIV care pathways 128 129 121 13

Pen manufacturing (ongoing) 42 45 60 20

Total 212 237 226 38

and managers of manufacturing facilities. The results have been useful towards
process improvement in their respective organisations, including a better qual-
itative understanding based on the abstract model and quantitative analytics
obtained from the concrete implementation. As a result, we are confident that
the evidence and experience we accumulated from these case studies are represen-
tative of the requirements and needs of real applications and that the approach
and algorithms presented in this paper can offer significant value.

We note that the presentation accompanying this paper is available online1.

2 Background

The systematic accounting of resources in our approach can be demonstrated
through a hypothetical example from the healthcare domain [21]. Assume a
process DeliverDrug that corresponds to the delivery of a drug to a patient by
a nurse. Such a process requires information about the Patient, the Dosage of
the drug, and some reserved NurseT ime for the nurse to deliver the drug. The
possible outcomes are that either the patient is Treated or that the drug Failed.
In the latter case, we would like to apply the Reassess process, which, given some
allocated clinician time (ClinT ime) results in the patient being Reassessed. A
graphical representation of these 2 processes, where dashed edges denote the
optional outcomes of DeliverDrug, is shown at the top of Fig. 1.

If we were to compose the 2 processes in a workflow where the drug failure
is always handled by Reassess, what would be the specification (or specifically
the output) of the composite process?

Given the workflow representation in Fig. 1, one may be inclined to simply
connect the Failed edge of DeliverDrug to the corresponding edge of Reassess,
leading to an overall output of either Treated or Reassessed. However, this
would be erroneous, as the input ClinT ime, is consumed in the composite pro-
cess even if Reassess is never used. Using our CLL-based approach, the workflow
output is either Reassessed which occurs if the drug failed, or Treated coupled
with the unused ClinT ime, as shown at the bottom of Fig. 1 [21].

Systematically accounting for such unused resources is non-trivial, especially
considering larger workflows with tens or hundreds of processes and many dif-
ferent outcomes. The CLL inference rules enforce this by default and the proof
1 https://github.com/PetrosPapapa/Presentations/raw/master/LOPSTR2018.pdf.

https://github.com/PetrosPapapa/Presentations/raw/master/LOPSTR2018.pdf

80 P. Papapanagiotou and J. Fleuriot

Fig. 1. The visualisation of the DeliverDrug and Reassess processes (top) and their
sequential composition. The auxiliary triangle helps properly display the output.

reflects the level of reasoning required to achieve this. In addition, the pro-
cess code generated from this synthesis is fully asynchronous and deadlock-free,
and relies on the existence of concrete implementations of DeliverDrug and
Reassess.

2.1 Classical Linear Logic

Linear Logic, as proposed by Girard [9], is a refinement to classical logic where
the rules of contraction and weakening are limited to the modalities ! and ?.
Propositions thus resemble resources that cannot be ignored or copied arbitrarily.

In this work, we use a one-sided sequent calculus version of the multiplica-
tive additive fragment of propositional CLL without units (MALL). Although
there exist process translations of full CLL and even first-order CLL, the MALL
fragment allows enough expressiveness while keeping the reasoning complexity
at a manageable level (MALL is PSPACE-complete whereas full CLL is unde-
cidable [14]). The inference rules for MALL are presented in Fig. 2.

� A⊥, A
Id

� Γ, C � Δ, C⊥

� Γ, Δ
Cut

� Γ, A � Δ, B

� Γ, Δ, A ⊗ B
⊗

� Γ, A⊥, B⊥

� Γ, (A ⊗ B)⊥

� Γ, A

� Γ, A ⊕ B
⊕L

� Γ, B

� Γ, A ⊕ B
⊕R

� Γ, A⊥ � Γ, B⊥

� Γ, (A ⊕ B)⊥
&

Fig. 2. One-sided sequent calculus versions of the CLL inference rules.

In this version of MALL, linear negation (·⊥) is defined as a syntactic oper-
ator with no inference rules, so that both A and A⊥ are considered atomic
formulas. The de Morgan style equations in Fig. 3 provide a syntactic equiv-
alence of formulas involving negation [27]. This allows us to use syntactically
equivalent formulas, such as A⊥ ` B⊥ and (A ⊗ B)⊥ interchangeably. In fact,

A Pragmatic, Scalable Approach to Correct-by-Construction 81

in the proofs presented in this paper we choose to present formulas containing
⊗ and ⊕ over their counterparts ` and & due to the polarity restrictions we
introduce in Sect. 3.

(A⊥)⊥ ≡ A (A ⊗ B)⊥ ≡ A⊥ B⊥ (A ⊕ B)⊥ ≡ A⊥ & B⊥

(A B)⊥ ≡ A⊥ ⊗ B⊥ (A & B)⊥ ≡ A⊥ ⊕ B⊥

Fig. 3. The equations used to define linear negation for MALL.

In the 90s, Abramsky, Bellin and Scott developed the so-called proofs-as-
processes paradigm [2,4]. It involved a correspondence between CLL inference
and concurrent processes in the π-calculus [18]. They proved that cut-elimination
in a CLL proof corresponds to reductions in the π-calculus translation, which
in turn correspond to communication between concurrent processes. As a result,
π-calculus terms constructed via CLL proofs are inherently free of deadlocks.

The implications of the proofs-as-processes correspondence have been the
subject of recent research in concurrent programming by Wadler [28], Pfenning
et al. [3,5,25], Dardha [7,8] and others. Essentially, each CLL inference step
can be translated to an executable workflow, with automatically generated code
to appropriately connect the component processes. As a result, the CLL proofs
have a direct correspondence to the “piping”, so to speak, that realises the
appropriate resource flow between the available processes, such that it does not
introduce deadlocks, accounts for all resources explicitly, and maximizes run-
time concurrency. The current paper examines CLL inference and we take the
correspondence to deadlock-free processes for granted.

2.2 Related Work

Diagrammatic languages such as BPMN [20] are commonly used for the descrip-
tion of workflows in different organisations. However, they typically lack rigour
and have limited potential for formal verification [23]. Execution languages such
as BPEL [19] and process calculi such as Petri Nets [1] are often used for work-
flow management in a formal way and our CLL approach could potentially be
adapted to work with these. Linear logic has been used in the context of web ser-
vice composition [22], but in a way that diverges significantly from the original
theory and compromises the validity of the results. Finally, the way the resource
flow is managed through our CLL-based processes is reminiscent of monad-like
structures such as Haskell’s arrows2. One of the key differences is the lack of
support for optional resources, which is non-trivial as we show in this paper.

2 https://www.haskell.org/arrows.

https://www.haskell.org/arrows

82 P. Papapanagiotou and J. Fleuriot

3 Process Specification

Since CLL propositions can naturally represent resources, CLL sequents can be
used to represent processes, with each literal representing a type of resource that
is involved in that process. These abstract types can have a concrete realisation
in the host programming language, from primitive to complicated objects.

Our approach to resource-based composition is to construct CLL specifica-
tions of abstract processes based on their inputs (and preconditions) and outputs
(and effects), also referred to as IOPEs. This is standard practice in various pro-
cess formalisms, including WSDL for web services [6], OWL-S for Semantic Web
services [16], PDDL for actions in automated planning [17], etc.

The symmetry of linear negation as shown in Fig. 3 can be used to assign a
polarity to each CLL connective in order to distinctly specify input and output
resources. We choose to treat negated literals, `, and & as inputs, and positive
literals, ⊗, and ⊕ as outputs, with the following intuitive interpretation:

– Multiplicative conjunction (tensor ⊗) indicates a pair of parallel outputs.
– Additive disjunction (plus ⊕) indicates exclusively optional outputs (alterna-

tive outputs or exceptions).
– Multiplicative disjunction (par `) indicates a pair of simultaneous inputs.
– Additive conjunction (with &) indicates exclusively optional input.

Based on this, a process can be specified as a CLL sequent consisting of a
list of input formulas and a single output formula. In this, the order of the
literals does not matter, so long as they obey the polarity restrictions (all but
exactly one are negative). In practice, we treat sequents as multisets of literals
and manage them using particular multiset reasoning techniques in HOL Light.
The description of these techniques is beyond the scope of this paper.

The polarity restrictions imposed on our process specifications match the
specification of Laurent’s Polarized Linear Logic (LLP) [13], and has a proven
logical equivalence to the full MALL. Moreover, these restrictions match the
programming language paradigm of a function that can have multiple input
arguments and returns a single (possibly composite) result.

4 Process Composition

Using CLL process specifications as assumptions, we can produce a composite
process specification using forward inference. Each of the CLL inference rules
represent a logically legal way to manipulate and compose such specifications.

The axiom � A,A⊥ represents the so-called axiom buffer, a process that
receives a resource of type A and outputs the same resource unaffected.

Unary inference rules, such as the ⊕L rule, correspond to manipulations of a
single process specification. For example, the ⊕L rule (see Fig. 2) takes a process
P specified by � Γ,A, i.e. a process with some inputs Γ and an output A,
and produces a process � Γ,A ⊕ B, i.e. a process with the same inputs Γ and

A Pragmatic, Scalable Approach to Correct-by-Construction 83

output either A or B. Note that, in practice, the produced composite process is
a transformation of P and thus will always produce A and never B.

Binary inference rules, such as the ⊗ rule, correspond to binary process
composition. The ⊗ rule in particular (see Fig. 2) takes a process P specified
by � Γ,A and another process Q specified by � Δ,B and composes them, so
that the resulting process � Γ,Δ,A ⊗ B has all their inputs Γ and Δ and a
simultaneous output A⊗B. Notably, the Cut rule corresponds to the composition
of 2 processes in sequence, where one consumes a resource A given by the other.

Naturally, these manipulations and compositions are primitive and restricted.
Constructing meaningful compositions requires several rule applications and,
therefore, doing this manually would be a very tedious and impractical task.
Our work focuses on creating high level actions that use CLL inference to auto-
matically produce binary process compositions that are correct-by-construction
based on the guarantees described above. More specifically, we introduce actions
for parallel (TENSOR), conditional (WITH), and sequential composition (JOIN).

Since we are using forward inference, there are infinitely many ways to apply
the CLL rules and therefore infinite possible compositions. We are interested in
producing compositions that are intuitive for the user. It is practically impossible
to produce a formal definition of what these compositions should be. Instead,
as explained earlier, we rely on practical experience and user feedback from the
various case studies for workflow modelling (see Table 1).

Based on this, we have introduced a set of what can be viewed as unit tests for
our composition actions, which describe the expected and logically valid results of
example compositions. As we explore increasingly complex examples in practice,
we augment our test set and ensure our algorithms satisfy them. Selected unit
tests for the WITH and JOIN actions are shown in Tables 2 and 3 respectively.
Moreover, as a general principle, our algorithms try to maximize resource usage,
i.e. involve as many resources as possible, and minimize the number of rule
applications to keep the corresponding process code more compact.

For example, row 3 of Table 3 indicates that a process with output A ⊕ B
when composed with a process specified by � A⊥, B should produce a process
with output B. As we discuss in Sect. 8.3, a different CLL derivation for the
same scenario could lead to a process with output B ⊕ B. This result is unnec-
essarily more complicated, and its complexity will propagate to all subsequent
compositions which will have to deal with 2 options of a type B output. The
unit test therefore ensures that the algorithm always leads to a minimal result.

All our algorithms are implemented within the Higher Order Logic proof
tactic system of HOL Light. As a result, the names of some methods have the
TAC suffix, which is conventionally used when naming HOL Light tactics.

5 Auxiliary Processes

During composition, we often need to construct auxiliary processes that manip-
ulate the structure of a CLL type in particular ways. We have identified 2 types
of such processes: buffers and filters.

84 P. Papapanagiotou and J. Fleuriot

Table 2. Examples of the expected result of the WITH action between X⊥ of a process
P and Y ⊥ of a process Q.

P Q Result

� X⊥, Z � Y ⊥, Z � (X ⊕ Y)⊥, Z

� X⊥, Z � Y ⊥,W � (X ⊕ Y)⊥, A⊥, B⊥, Z ⊕ W

� X⊥, A⊥, B⊥, Z � Y ⊥, Z � (X ⊕ Y)⊥, Z ⊕ (Z ⊗ A ⊗ B)

� X⊥, A⊥, Z � Y ⊥, B⊥,W � (X ⊕ Y)⊥, A⊥, B⊥, (Z ⊗ B) ⊕ (W ⊗ A)

� X⊥, A⊥, C⊥, Z � Y ⊥, B⊥,W � (X ⊕ Y)⊥, A⊥, B⊥, C⊥, (Z ⊗ B) ⊕ (W ⊗ A ⊗ C)

� X⊥, A⊥, C⊥, Z � Y ⊥, B⊥, C⊥,W � (X ⊕ Y)⊥, A⊥, B⊥, C⊥, (Z ⊗ B) ⊕ (W ⊗ A)

� X⊥, A⊥, C⊥, C⊥, Z � Y ⊥, B⊥, C⊥,W � (X ⊕ Y)⊥, A⊥, B⊥, C⊥, C⊥, (Z ⊗ B) ⊕ (W ⊗ A ⊗ C)

� X⊥, A ⊗ B � Y ⊥, B ⊗ A � (X ⊕ Y)⊥, A ⊗ B

� X⊥, A⊥, Z ⊗ A � Y ⊥, Z � (X ⊕ Y)⊥, A⊥, Z ⊗ A

� X⊥, A⊥, A ⊗ Z � Y ⊥, Z � (X ⊕ Y)⊥, A⊥, A ⊗ Z

� X⊥, A⊥, Z ⊕ (Z ⊗ A)� Y ⊥, Z � (X ⊕ Y)⊥, A⊥, Z ⊕ (Z ⊗ A)

Buffers: Similarly to the axiom buffer introduced in the previous section, com-
posite buffers (or simply buffers) can carry any composite resource without
affecting it. This is useful when a process is unable to handle the entire type
on its own, and some resources need to be simply buffered through. For exam-
ple, if a process needs to handle a resource of type A⊗B, but only has an input
of type A⊥, then B will be handled by a buffer.

More formally, buffers are processes specified by � A⊥, A, where A is arbi-
trarily complex. Such lemmas are always provable in CLL for any formula A.
We have introduced an automatic procedure BUFFER TAC that can accomplish
this, but omit the implementation details in the interest of space and in favour
of the more interesting composition procedures that follow.

We also introduce the concept of a parallel buffer, defined as a process �
A⊥

1 , A⊥
2 , ..., A⊥

n , A1 ⊗ A2 ⊗ ... ⊗ An. Such buffers are useful when composing
processes with an optional output (see Sect. 8.3). Their construction can also be
easily automated with a decision procedure we call PARBUF TAC.

Filters: Often during process composition by proof, resources need to match
exactly for the proof to proceed. In some cases, composite resources may not
match exactly, but may be manipulated using the CLL inference rules so that
they end up matching. For example, the term A ⊗ B does not directly match
B ⊗ A. However, both terms intuitively represent resources A and B in parallel.
This intuition is reflected formally to the commutativity property of ⊗, which is
easily provable in CLL: � (A ⊗ B)⊥, B ⊗ A. We can then use the Cut rule with
this property to convert an output of type A⊗B to B ⊗A (similarly for inputs).

We call such lemmas that are useful for converting CLL types to logically
equivalent ones, filters. In essence, a filter is any provable CLL lemma that pre-
serves our polarity restrictions. We prove such lemmas automatically using the
proof strategies developed by Tammet [24]. We call such lemmas that are useful
for converting CLL types to logically equivalent ones, filters. In essence, a filter

A Pragmatic, Scalable Approach to Correct-by-Construction 85

is any provable CLL lemma that preserves our polarity restrictions. We prove
such lemmas automatically using the proof strategies developed by Tammet [24].

We give some examples of how filters are used to match terms as we go
through them below. However, as a general rule the reader may assume that, for
the remainder of this paper, by “equal” or“matching” terms we refer to terms
that are equal modulo the use of filters.

A main consequence of this is that our algorithms often attempt to match
literals that do not match. For example, the attempt to compose � A⊥, B in
sequence with � C⊥,D⊥, E would generate and try to prove 2 false conjectures
� B⊥, C and � B⊥,D in an effort to match the output B with any of the 2
inputs C⊥ and D⊥ before failing3. This highlights the need for an efficient proof
procedure for filters, with an emphasis on early failure.

Table 3. Examples of the expected result of the JOIN action between a process P and
a process Q. Column Pr. gives the priority parameter (see Sect. 8.4).

P Pr. Q Selected input Result

� X⊥, A � A⊥, Y A⊥ � X⊥, Y

� X⊥, A ⊗ B L � A⊥, Y A⊥ � X⊥, Y ⊗ B

� X⊥, A ⊕ B L � A⊥, B A⊥ � X⊥, B

� X⊥, A ⊗ B ⊗ C L � A⊥, Y A⊥ � X⊥, Y ⊗ B ⊗ C

� X⊥, A ⊕ B L � A⊥, C⊥, Y A⊥ � X⊥, C⊥, Y ⊕ (C ⊗ B)

� X⊥, A ⊕ B R � B⊥, C⊥, Y B⊥ � X⊥, C⊥, (C ⊗ A) ⊕ Y

� X⊥, A ⊕ B L � (B ⊕ A)⊥, Y (B ⊕ A)⊥ � X⊥, Y

� X⊥, A ⊕ (B ⊗ C) L � (B ⊕ A)⊥, Y (B ⊕ A)⊥ � X⊥, Y ⊕ (B ⊗ C)

� X⊥, A ⊕ (B ⊗ C) RL � (B ⊕ A)⊥, Y (B ⊕ A)⊥ � X⊥, A ⊕ (Y ⊗ C)

� X⊥, A ⊕ B L � (C ⊕ A ⊕ D)⊥, Y (C ⊕ A ⊕ D)⊥ � X⊥, Y ⊕ B

� X⊥, C ⊕ (A ⊗ B) L � C⊥, A ⊗ B C⊥ � X⊥, A ⊗ B

� X⊥, C ⊕ (A ⊗ B) L � C⊥, B ⊗ A C⊥ � X⊥, B ⊗ A

� X⊥, C ⊕ (A ⊗ (B ⊕ D)) L � C⊥, (B ⊕ D) ⊗ A C⊥ � X⊥, (B ⊕ D) ⊗ A

� X⊥, C ⊕ (A ⊗ B) L � C⊥, Y ⊕ (B ⊗ A) C⊥ � X⊥, Y ⊕ (B ⊗ A)

� X⊥, C ⊕ (A ⊗ B) L � C⊥, (B ⊗ A) ⊕ Y C⊥ � X⊥, (B ⊗ A) ⊕ Y

� X⊥, (A ⊗ B) ⊕ C R � C⊥, Y ⊕ (B ⊗ A) C⊥ � X⊥, Y ⊕ (B ⊗ A)

� X⊥, (A ⊗ B) ⊕ C R � C⊥, (B ⊗ A) ⊕ Y C⊥ � X⊥, (B ⊗ A) ⊕ Y

� X⊥, C ⊕ (A ⊗ B) L � C⊥, Y ⊕ (B ⊗ A) C⊥ � X⊥, Y ⊕ (B ⊗ A)

6 Parallel Composition - The TENSOR Action

The TENSOR action corresponds to the parallel composition of two processes so
that their outputs are provided in parallel. It trivially relies on the tensor (⊗)

3 In practice, the user will have to select a matching input to attempt such a compo-
sition (see Sect. 8).

86 P. Papapanagiotou and J. Fleuriot

inference rule. Assuming 2 processes, � A⊥, C⊥,D and � B⊥, E, the TENSOR
action will perform the following composition:

� A⊥, C⊥, D � B⊥, E

� A⊥, B⊥, C⊥, D ⊗ E
⊗

7 Conditional Composition - The WITH Action

The WITH action corresponds to the conditional composition of two processes.
This type of composition is useful in cases where each of the components of an
optional output of a process needs to be handled by a different receiving process.

For example, assume a process S has an optional output A ⊕ C where C
is an exception. We want A to be handled by some process P, for example
specified by � A⊥, B⊥,X, while another process Q specified by � C⊥, Y plays
the role of the exception handler for exception C. For this to happen, we need
to compose P and Q together using the WITH action so that we can cnostruct
an input that matches the output type A ⊕ C from S. This composition can be
viewed as the construction of an if-then statement where if A is provided then
P will be executed (assuming B is also provided), and if C is provided then Q
will be executed in a mutually exclusive choice. The generated proof tree for this
particular example is the following:

� A⊥, B⊥,X
P

� A⊥, B⊥,X ⊕ (Y ⊗ B)
⊕L

� C⊥, Y
Q � B⊥, B

Id

� C⊥, B⊥, Y ⊗ B
⊗

� C⊥, B⊥,X ⊕ (Y ⊗ B)
⊕R

� (A ⊕ C)⊥, B⊥,X ⊕ (Y ⊗ B)
&

(1)

The WITH action fundamentally relies on the & rule of CLL. The following
derivation allows us to compose 2 processes that also have different outputs X
and Y :

� Γ,A⊥,X

� Γ,A⊥,X ⊕ Y
⊕L

� Γ,C⊥, Y

� Γ,C⊥,X ⊕ Y
⊕R

� Γ, (A ⊕ C)⊥,X ⊕ Y
&

(2)

The particularity of the & rule is that the context Γ , i.e. all the inputs except
the ones involved in the WITH action, must be the same for both the involved
processes. In practice, this means we need to account for unused inputs. In the
example above, P apart from input A⊥ has another input B⊥ which is missing
from Q. In the conditional composition of P and Q, if exception C occurs, the
provided B will not be consumed since P will not be invoked. In this case, we
use a buffer to let B pass through together with the output Y of Q.

More generally, in order to apply the & rule to 2 processes P and Q, we need
to minimally adjust their contexts ΓP and ΓQ (i.e. their respective multisets of
inputs excluding the ones that will be used in the rule) so that they end up being
the same Γ = ΓP ∪ ΓQ. By “minimal” adjustment we mean that we only add

A Pragmatic, Scalable Approach to Correct-by-Construction 87

the inputs that are “missing” from either side, i.e. the multiset ΔP = ΓQ \ ΓP

for P and ΔQ = ΓP \ ΓQ for Q, and no more.
In the previous example in (1), exculding the inputs A⊥ and C⊥ used in

the rule, we obtain ΔQ = ΓP \ ΓQ = {B⊥} \ {} = {B⊥}. We then construct
a parallel buffer (see Sect. 5) of type ⊗Δ⊥

Q
4 (converting all inputs in ΔQ to an

output; in this example only one input) using PARBUF TAC. In the example, this is
an atomic B buffer. The parallel composition between this buffer and Q results in
the process � ΓQ,ΔQ, C⊥, Y ⊗(⊗Δ⊥

Q). The same calculation for P yields ΔP = ∅
so no change is required for P.

Since ΓP �ΔP = ΓQ �ΔQ = Γ (where � denotes multiset union), the & rule
is now applicable and derivation (2) yields the following process:

� Γ, (A ⊕ C)⊥,
(
X ⊗ (⊗Δ⊥

P)
) ⊕ (

Y ⊗ (⊗Δ⊥
Q)

)
(3)

The output Y of Q has now been paired with the buffered resources ΔQ.
Finally, we consider the special case where the following holds:

(
X ⊗ (⊗Δ⊥

P)
)

=
(
Y ⊗ (⊗Δ⊥

Q)
)

= G (4)

In this case, the output of the composition in (3) will be G ⊕ G. Instead we
can apply the & directly without derivation (2), yielding the simpler output G.

Note that, as discussed in Sect. 5, (4) above does not strictly require equal-
ity. The special case can also be applied if we can prove and use the filter
� (

X ⊗ (⊗Δ⊥
P)

)⊥
,
(
Y ⊗ (⊗Δ⊥

P)
)
.

These results and the complexity underlying their construction demonstrate
the non-trivial effort needed to adhere to CLL’s systematic management of
resources and, more specifically, its systematic accounting of unused resources.
These properties, however, are essential guarantees of correct resource manage-
ment offered by construction in our process compositions.

8 Sequential Composition - The JOIN Action

The JOIN action reflects the connection of two processes in sequence, i.e. where
(some of) the outputs of a process are connected to (some of) the corresponding
inputs of another. More generally, we want to compose a process P with specifi-
cation � Γ,X, i.e. with some (multiset of) inputs Γ and output X in sequence
with a process Q with specification � Δ,C⊥, Y , i.e. with an input C⊥, output
Y , and (possibly) more inputs in context Δ. We also assume the user selects a
subterm A of X in P and a matching subterm A of the input C⊥ in Q.

The strategy of the algorithm behind the JOIN action is to construct a new
input for Q based on the chosen C⊥ such that it directly matches the output X
of P (and prioritizing the output selection A). This will enable the application
of the Cut rule, which requires the cut literal to match exactly. In what follows,
we present how different cases for X are handled.

4 ⊗{a1, ..., an}⊥ = a⊥
1 ⊗ ... ⊗ a⊥

n .

88 P. Papapanagiotou and J. Fleuriot

8.1 Atomic or Matching Output

If X is atomic, a straighforward use of the Cut rule is sufficient to connect the
two processes. For example, the JOIN action between � A⊥, B⊥,X and � X⊥, Z
results in the following proof:

� A⊥, B⊥, X
P � X⊥, Z

Q

� A⊥, B⊥, Z
Cut

The same approach can be applied more generally for any non-atomic X as
long as a matching input of type X⊥ (including via filtering) is selected in Q.

8.2 Parallel Output

If X is a parallel output, such as B ⊗ C, we need to manipulate process Q so
that it can receive an input of type (B ⊗ C)⊥.

If Q has both inputs B⊥ and C⊥, then we can use the ` rule to combine them.
For example, the generated proof tree of the JOIN action between � A⊥,D⊥, B⊗
C and � B⊥, C⊥, E⊥, Y is the following:

� A⊥, D⊥, B ⊗ C
P

� B⊥, C⊥, E⊥, Y
Q

� (B ⊗ C)⊥, E⊥, Y
`

� A⊥, D⊥, E⊥, Y
Cut

As previously mentioned, the JOIN action attempts to connect the output
of P to Q maximally, i.e. both B and C, regardless of the user choice. The user
may, however, want to only connect one of the two resources. We have currently
implemented this approach as it is the most commonly used in practice, but are
investigating ways to enable better control by the user.

If Q has only one of the two inputs, for example B⊥, i.e. Q is of the form
� Δ,B⊥, Y and C⊥ �∈ Δ, then C must be buffered. In this case, we use the
following derivation:

� Δ,B⊥, Y
Q

BUFFER TAC....
� C⊥, C

� Δ,B⊥, C⊥, Y ⊗ C
⊗

� Δ, (B ⊗ C)⊥, Y ⊗ C
`

(5)

We use BUFFER TAC from Sect. 5 to prove the buffer of C.
Depending on the use of the ⊗ rule in (5), the resulting output could be

either Y ⊗ C or C ⊗ Y . We generally try to match the form of P’s output, so in
this case we would choose Y ⊗ C to match B ⊗ C. Our algorithm keeps track of
this orientation through the orient parameter (see Sect. 8.4).

A Pragmatic, Scalable Approach to Correct-by-Construction 89

8.3 Optional Output

If X is an optional output, such as B ⊕ C, then we need to manipulate process
Q to synthesize an input (B ⊕ C)⊥. Assume Q can handle B (symmetrically
for C) and thus has specification � Δ,B⊥, Y . We construct a parallel buffer
(using PARBUF TAC, see Sect. 5) of type (⊗Δ⊥) ⊗ C (converting all inputs in Δ
to outputs). We then apply derivation (2) as follows:

� Δ, B⊥, Y
Q

� Δ, B⊥, Y ⊕ (
(⊗Δ⊥) ⊗ C

) ⊕L

PARBUF TAC....
� Δ, C⊥, (⊗Δ⊥) ⊗ C

� Δ, C⊥, Y ⊕ (
(⊗Δ⊥) ⊗ C

) ⊕R

� Δ, (B ⊕ C)⊥, Y ⊕ (
(⊗Δ⊥) ⊗ C

) &
(6)

Similarly to the WITH action, the particular structure of the & rule ensures
the systematic management of unused resources. In the example above, if C is
received then Q will never be executed. As a result, any resources in Δ will remain
unused and need to be buffered together with C. This is the reason behind the
type (⊗Δ⊥) ⊗ C of the constructed buffer (as opposed to plainly using type C).

The proof tree of an example of the JOIN action between process P specified
by � A⊥,D⊥, B ⊕ C and process Q specified by � B⊥, E⊥, Y is shown below:

� A⊥, D⊥, B ⊕ C
P

� B⊥, E⊥, Y
Q

� B⊥, E⊥, Y ⊕ (C ⊗ E)
⊕L

� C⊥, C
Id � E⊥, E

Id

� C⊥, E⊥, C ⊗ E
⊗

� C⊥, E⊥, Y ⊕ (C ⊗ E)
⊕R

� (B ⊕ C)⊥, E⊥, Y ⊕ (C ⊗ E)
&

� A⊥, D⊥, E⊥, Y ⊕ (C ⊗ E)
Cut

It is interesting to consider a couple of special cases.
Case 1: If � Δ,C⊥, Y is a parallel buffer, (6) can be simplified as follows:

� Δ,B⊥, Y
Q

PARBUF TAC....
� Δ,C⊥, Y

� Δ, (B ⊕ C)⊥, Y
&

(7)

This may occur, for example, if Δ = ∅ and Y = C. Such cases arise in
processes used to recover from an exception. For instance, a recovery process
� Exception⊥, Resource can convert an output Resource⊕Exception to simply
Resource (which either was there in the first place, or was produced through
the recovery process).

90 P. Papapanagiotou and J. Fleuriot

Case 2: If Y = D⊕E for some D and E such that � Δ,C⊥,D (or symmetri-
cally � Δ,C⊥, E) is a parallel buffer, then we can apply the following derivation:

� Δ,B⊥,D ⊕ E
Q

PARBUF TAC....
� Δ,C⊥,D

� Δ,C⊥,D ⊕ E
⊕L

� Δ, (B ⊕ C)⊥,D ⊕ E
&

(8)

This may occur, for example, if Δ = ∅ and Y = C ⊕E. The recovery process
above may itself throw an exception: � Exception⊥, Resource ⊕ Failed. This
will convert output Resource ⊕ Exception to Resource ⊕ Failed (either we had
the Resource from the beginning, or we recovered and still got a Resource, or
the recovery process failed) instead of (Resource ⊕ Failed) ⊕ Resource.

Table 4. Examples of how the priority parameter can affect the behaviour of
INPUT TAC. The selected subterms and the output of Q are highlighted in bold.

Target Priority Q Result of INPUT TAC

X = A ⊗ (A ⊕ B) Left � A⊥,Y � X⊥,Y ⊗ (A ⊕ B)

X = A ⊗ (A ⊕ B) Right; Left � A⊥,Y � X⊥, A ⊗ (Y ⊕ B)

X = A ⊕ (B ⊗ C) Left � (B ⊕ A)⊥,Y � X⊥,Y ⊕ (B ⊗ C)

X = A ⊕ (B ⊗ C) Right; Left � (B ⊕ A)⊥,Y � X⊥, A ⊕ (Y ⊗ C)

8.4 Putting It All Together

In the general case, the output X of P can be a complex combination of mul-
tiple parallel and optional outputs. For that reason, we apply the above proof
strategies in a recursive, bottom-up way, prioritizing the user selections. We call
the algorithm that produces the appropriate input X⊥ (or equivalent) from Q
“INPUT TAC” and it has the following arguments (see Algorithm 1):

– sel: optional term corresponding to the user selected input C⊥ of Q.
– priority: a list representing the path of the user selected subterm A in the

syntax tree of the output X of P. For example, if the user selects B in the
output (A ⊗ B) ⊕ C, the priority is [Left; Right].

– orient: our latest path (left or right) in the syntax tree of X so that we add
the corresponding buffers on the same side (see Sect. 8.2).

– inputs: a list of inputs of Q. We remove used inputs from this to avoid reuse.
– target: the input term we are trying to construct. This is initially set to X,

but may take values that are subterms of X in recursive calls.
– proc: the CLL specification of Q as it evolves.

The priority parameter is useful when more than one subterms of the out-
put either (a) are the same or (b) have the same matching input in Q. Table 4
shows examples of how different priorities change the result of INPUT TAC.

A Pragmatic, Scalable Approach to Correct-by-Construction 91

Algorithm 1. Derives a new process specification from the given “proc” such that
it includes an input of type “target”.

1: function INPUT TAC(sel, priority, orient, inputs, target, proc)
2: Try to match target with sel (if provided) or one of the inputs

3: if it matches then return proc

4: else if target is atomic then
5: if priority �= None then fail � we couldn’t match the user selected output
6: else Create a target buffer using (5) depending on orient

7: end if

8: else if target is L ⊗ R then
9: if priority = Left then

10: proc’ = INPUT TAC(sel, tail(priority), orient, inputs, L, proc)
11: proc = INPUT TAC(None, None, Right, inputs - {L}, R, proc’)
12: else
13: proc’ = INPUT TAC(sel, tail(priority), orient, inputs, R, proc)
14: proc = INPUT TAC(None, None, Left, inputs - {R}, L, proc’)
15: end if
16: Use the ` rule to create the (L ⊗ R)⊥ input

17: else if target is L ⊕ R then
18: if priority = Left then
19: proc = INPUT TAC(sel, tail(priority), orient, inputs, L, proc)
20: Try derivation (7) orElse Try derivation (8) orElse Use derivation (6)
21: else if priority = Right then
22: proc = INPUT TAC(sel, tail(priority), orient, inputs, R, proc)
23: Try derivation (7) orElse Try derivation (8) orElse Use derivation (6)
24: else
25: Try as if priority = Left orElse Try as if priority = Right

26: else Create a target buffer using (5) depending on orient

27: end if
28: end if
29: return proc

30: end function

9 Conclusion

CLL’s inherent properties make it an ideal language to reason about resources.
CLL sequents (under polarity restrictions) can be viewed as resource-based spec-
ifications of processes. The CLL inference rules then describe the logically legal,
but primitive ways to manipulate and compose such processes.

We presented algorithms that allow intuitive composition in parallel, condi-
tionally, and in sequence. We call these composition actions TENSOR, WITH, and
JOIN respectively, and they are implemented in HOL Light. We analysed how
each action functions in different cases and examples.

As a result of the rigorous usage of CLL inference rules, the constructed com-
positions have guaranteed resource accounting, so that no resources disappear
or are created out of nowhere. The proofs-as-processes paradigm and its recent

92 P. Papapanagiotou and J. Fleuriot

evolutions allow the extraction of process calculus terms from these proofs, for
concurrent and guaranteed deadlock-free execution.

In the future, we intend to work towards relaxing identified limitations along 2
main lines: (a) functionality, by incorporating and dealing with increasingly more
complex specifications including those requiring formulation of more complex
filters, and (b) expressiveness, by extending the fragment of CLL we are using
while keeping a balance in terms of efficiency.

Through this work, it is made obvious that intuitive process compositions
in CLL require complex applications of a large number of inference rules. Our
algorithms automate the appropriate deductions and alleviate this burden from
the user. We have tied these with the diagrammatic interface of WorkflowFM [21],
so that the user is not required to know or understand CLL or theorem proving,
but merely sees inputs and outputs represented graphically. They can then obtain
intuitive process compositions with the aforementioned correctness guarantees
with a few simple clicks.

Acknowledgements. This work was supported by the “DigiFlow: Digitizing Indus-
trial Workflow, Monitoring and Optimization” Innovation Activity funded by EIT Dig-
ital. We would like to thank the attendants of the LOPSTR conference, 4–6 September
2018, in Frankfurt, Germany for their insightful comments that helped improve this
paper.

References

1. Van der Aalst, W.M.: The application of petri nets to workflow management. J.
Circ. Syst. Comput. 8(01), 21–66 (1998)

2. Abramsky, S.: Proofs as processes. Theoret. Comput. Sci. 135(1), 5–9 (1994)
3. Acay, C., Pfenning, F.: Refinements for session typed concurrency (2016)
4. Bellin, G., Scott, P.: On the π-calculus and linear logic. TCS 135(1), 11–65 (1994)
5. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:

Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 16

6. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services descrip-
tion language (WSDL) 1.1 (2001)

7. Dardha, O., Gay, S.J.: A new linear logic for deadlock-free session-typed processes.
In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp. 91–109.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89366-2 5

8. Dardha, O., Pérez, J.A.: Comparing deadlock-free session typed processes. In: Pro-
ceedings of the 22th International Workshop on Expressiveness in Concurrency
EXPRESS/SOS, pp. 1–15 (2015)

9. Girard, J.Y.: Linear logic: its syntax and semantics. In: Girard, J.Y., Lafont, Y.,
Regnier, L. (eds.) Advances in Linear Logic. No. 222 in London Mathematical
Society Lecture Notes. Cambridge University Press, Cambridge (1995)

10. Gooch, P., Roudsari, A.: Computerization of workflows, guidelines and care path-
ways: a review of implementation challenges for process-oriented health information
systems. J. Am. Med. Inform. Assoc. 18(6), 738–748 (2011)

11. Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0031814

https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-319-89366-2_5
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1007/BFb0031814

A Pragmatic, Scalable Approach to Correct-by-Construction 93

12. Kezadri Hamiaz, M., Pantel, M., Thirioux, X., Combemale, B.: Correct-by-
construction model driven engineering composition operators. Formal Aspects
Comput. 28(3), 409–440 (2016)

13. Laurent, O.: Etude de la polarisation en logique. Ph.D. thesis, Université de la
Méditerranée-Aix-Marseille II (2002)

14. Lincoln, P., Mitchell, J., Scedrov, A., Shankar, N.: Decision problems for proposi-
tional linear logic. Ann. Pure Appl. Logic 56(1), 239–311 (1992)

15. Manataki, A., Fleuriot, J., Papapanagiotou, P.: A workflow-driven formal meth-
ods approach to the generation of structured checklists for intrahospital patient
transfers. J. Biomed. Health Inform. 21(4), 1156–1162 (2017)

16. Martin, D., et al.: OWL-S: Semantic markup for web services (2004)
17. McDermott, D., et al.: PDDL-the planning domain definition language (1998)
18. Milner, R.: Communicating and Mobile Systems: The π-calculus. Cambridge Uni-

versity Press, Cambridge (1999)
19. OASIS: Web Services Business Process Execution Language, version 2.0, OASIS

Standard (2007). http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
20. Object Management Group: Business Process Model and Notation (BPMN), ver-

sion 2.0 (2011). http://www.omg.org/spec/BPMN/2.0/PDF
21. Papapanagiotou, P., Fleuriot, J.: WorkflowFM: a logic-based framework for formal

process specification and composition. In: de Moura, L. (ed.) CADE 2017. LNCS
(LNAI), vol. 10395, pp. 357–370. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63046-5 22

22. Rao, J., Küngas, P., Matskin, M.: Composition of semantic web services using
linear logic theorem proving. Inf. Syst. 31(4–5), 340–360 (2006)

23. Szpyrka, M., Nalepa, G.J., Lig ↪eza, A., Kluza, K.: Proposal of formal verification
of selected BPMN models with Alvis Modeling Language. In: Brazier, F.M.T.,
Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica, C. (eds.) Intelligent Distributed
Computing V. Studies in Computational Intelligence, vol. 382, pp. 249–255.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24013-3 26

24. Tammet, T.: Proof strategies in linear logic. J. Autom. Reasoning 12(3), 273–304
(1994)

25. Toninho, B., Caires, L., Pfenning, F.: Dependent session types via intuitionistic
linear type theory. In: 13th International ACM SIGPLAN Symposium on Principles
and Practices of Declarative Programming PPDP 2011, pp. 161–172. ACM (2011)

26. Tounsi, I., Hadj Kacem, M., Hadj Kacem, A.: Building correct by construction
SOA design patterns: modeling and refinement. In: Drira, K. (ed.) ECSA 2013.
LNCS, vol. 7957, pp. 33–44. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39031-9 4

27. Troelstra, A.S.: Lectures on Linear Logic. CSLI Lecture Notes 29, Stanford (1992)
28. Wadler, P.: Propositions as sessions. In: Proceedings of the 17th ACM SIGPLAN

International Conference on Functional Programming, pp. 273–286. ACM (2012)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://www.omg.org/spec/BPMN/2.0/PDF
https://doi.org/10.1007/978-3-319-63046-5_22
https://doi.org/10.1007/978-3-319-63046-5_22
https://doi.org/10.1007/978-3-642-24013-3_26
https://doi.org/10.1007/978-3-642-39031-9_4
https://doi.org/10.1007/978-3-642-39031-9_4

Confluence of CHR Revisited: Invariants
and Modulo Equivalence

Henning Christiansen(B) and Maja H. Kirkeby(B)

Computer Science, Roskilde University, Roskilde, Denmark
{henning,majaht}@ruc.dk

Abstract. Abstract simulation of one transition system by another is
introduced as a means to simulate a potentially infinite class of similar
transition sequences within a single transition sequence. This is useful
for proving confluence under invariants of a given system, as it may
reduce the number of proof cases to consider from infinity to a finite
number. The classical confluence results for Constraint HThe invariant
is formalizedandling Rules (CHR) can be explained in this way, using
CHR as a simulation of itself. Using an abstract simulation based on
a ground representation, we extend these results to include confluence
under invariant and modulo equivalence, which have not been done in a
satisfactory way before.

Keywords: Constraint Handling Rules · Confluence ·
Confluence modulo equivalence · Invariants · Observable confluence

1 Introduction

Confluence of a transition system means that any two alternative transition
sequences from a given state can be extended to reach a common state. Proving
confluence of nondeterministic systems may be important for correctness proofs
and it anticipates parallel implementations and application order optimizations.
Confluence modulo equivalence generalizes this so that these “common states”
need not be identical, but only equivalent according to an equivalence relation.
This allows for redundant data representations (e.g., sets as lists) and procedures
that search for an optimal solution to a problem, when any of two equally good
solutions can be accepted (e.g., the Viterbi algorithm analyzed for confluence
modulo equivalence in [8]).

We introduce a notion of abstract simulation of one system, the object sys-
tem, by another, the meta level system, and show how proofs of confluence (under
invariant, modulo equivalence) for an object system may be expressed within a
meta level system. This may reduce the number of proof cases to be considered,

This work is supported by The Danish Council for Independent Research, Natural
Sciences, grant no. DFF 4181-00442.

c© Springer Nature Switzerland AG 2019
F. Mesnard and P. J. Stuckey (Eds.): LOPSTR 2018, LNCS 11408, pp. 94–111, 2019.
https://doi.org/10.1007/978-3-030-13838-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13838-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-13838-7_6

Confluence of CHR Revisited: Invariants and Modulo Equivalence 95

often from infinity to a finite number. We apply this to the programming lan-
guage of Constraint Handling Rules, CHR [14–16], giving a clearer exposition of
existing results and extending them for invariants and modulo equivalence.

By nature, invariants and state equivalences are meta level properties that
in general cannot be expressed in its own system: the state itself is implicit and
properties such as groundness (or certain arguments restricted to be uninstanti-
ated variables) cannot be expressed in a logic-based semantics for CHR. Using
abstract simulation we can add the necessary enhanced expressibility to the
meta level, and the ground representation of logic programs, that was studied
in-depth in the late 1980s and -90s in the context of meta-programming in logic
(e.g., [5,18,19]), comes in readily as a well-suited and natural choice for this. The
following minimalist example motivates both invariant and state equivalence for
CHR.

Example 1 ([7,8]). The following CHR program, consisting of a single rule, col-
lects a number of separate items into a set represented as a list of items.

set(L), item(A) <=> set([A|L]).

This rule will apply repeatedly, replacing constraints matched by the left hand
side by the one indicated to the right. The query

?- item(a), item(b), set([]).

may lead to two different final states, {set([a,b])} and {set([b,a])}, both
representing the same set. Thus, the program is not confluent, but it may be
confluent modulo an equivalence that disregards the order of the list-elements.
Confluence modulo equivalence still requires an invariant that excludes more
than one set/1 constraint, as otherwise, an element may go to an arbitrary of
those.

1.1 Related Work

Some applications of our abstract simulations may be seen as special cases of
abstract interpretation [10]. This goes for the re-formulation of the classical
confluence results for CHR, but when invariants are introduced, this is not obvi-
ous; a detailed argument is given in Sect. 5. It is related to symbolic execution
and constraint logic programming [22], where reasoning takes place on compact
abstract representations parameterized in suitable ways, rather than checking
multitudes of concrete instances. Bisimulation [26], which has been applied in
many contexts, indicates a tighter relationship between states and transitions of
two systems than the abstract simulation: when a state s0 is simulated by an
abstract state s′

0 and there is a transition s0 → s1, bisimulation would require
the existence of an abstract transition s′

0 →′ s′
1, which may not be case as

demonstrated by Example 6.
Previous results on confluence of CHR programs, e.g., [1–3], mainly refer to

a logic-based semantics, which is well-suited for showing program properties,
but it does not comply with typical implementations [20,28] and applies only

96 H. Christiansen and M. H. Kirkeby

for a small subset of CHR programs. Other works [7,8] suggest an alternative
operational semantics that lifts these limitations, including the ability to handle
Prolog-style built-in predicates such as var/1, etc. To compare with earlier work
and for simplicity, the present paper refers to the logic-based semantics.

As long as invariants and modulo equivalence are not considered, the logic-
based semantics allows for elegant confluence proofs based on Newman’s Lemma
(Lemma 1, below). A finite set of critical pairs can be defined, whose joinabil-
ity ensures confluence for terminating programs. Duck et al. [13] proposed a
generalization of this approach to confluence under invariant, called observable
confluence; no practically relevant methods were suggested, and (as the authors
point out) even a simple invariant such as groundness explodes into infinitely
many cases.

Confluence modulo equivalence was introduced and motivated for CHR
by [7], also arguing that invariants are important for specifying meaningful
equivalences. An in-depth theoretical analysis, including the use of a ground
representation, is given by [8] in relation the alternative semantics mentioned
above. However, it has not been related to abstract simulations, and the pro-
posal for a detailed language of meta level constraints in the present paper is new.
Repeating the motivations of [7,8] in the context of the logic-based semantics,
[17] suggested to handle confluence modulo equivalence along the lines of [13],
thus inheriting the problems of infinitely many proof case pointed out above.

An approach to show confluence of a transition system, by producing a map-
ping into another confluent system, is described by [11] and extended to conflu-
ence modulo equivalence by [23]; the relationship between such two systems is
different from the abstract simulations introduced in the present paper. Conflu-
ence, including modulo equivalence, has been studied since the first half of the
20th century in a variety of contexts; see, e.g., [8,21] for overview.

1.2 Contributions

We introduce abstract simulation as a setting for proofs of confluence for general
transitions systems and demonstrate this specifically for CHR. We recast classi-
cal results (without invariant and equivalence), showing that they are essentially
based on a simulation of CHR’s logic-based semantics by itself, and we can pin-
point, why it does not generalize for invariants (see Example 4, p. 9).

These results are extended for invariants and modulo equivalence, using an
abstract simulation; it is based on a ground meta level representation and suit-
able meta level constraints to reason about it.

1.3 Overview

Sections 2 and 3 introduce basic concepts of confluence plus our notion of abstract
simulation. Section 4 gives syntax and semantics of CHR along with a discussion
of how much nondeterminism to include in a semantics used when considering
confluence. Section 5 re-explains the classical results in terms of abstract sim-
ulation. Section 6 extends these results for invariants and modulo equivalence;

Confluence of CHR Revisited: Invariants and Modulo Equivalence 97

proofs can be found in an extended report [6]. The concluding Sect. 7 gives a
summary and explains briefly how standard mechanisms, used to prevent loops
by CHR’s propagation rules, can be added.

2 Basic Concepts, Confluence, Invariants
and Equivalences

A transition system D = 〈S, →〉 consists of a set of states S, and a transition is
an element of → : S ×S, written s0 → s1 or, alternatively, s1 ← s0. A transition
sequence or path is a chain of transitions s0 → s1 → · · · → sn where n ≥ 0;
if such a path exists, we write s0

∗→ sn. A state s0 is final (or normal form)
whenever �s1 s0 → s1, and D is terminating whenever every path is finite.
To anticipate the application for logic programming systems, a given transition
system may have a special final state called failure.

An invariant I for D = 〈S, →〉 is a subset I ⊆ S such that

s0 ∈ I ∧ s0 → s1 ⇒ s1 ∈ I.

We write a fact s ∈ I as I(s) and refer to s as an I state. The restriction of D to

I is the transition system 〈I,
I→〉 where

I→ is the restriction of → to I. A set of
allowed initial states S′ ⊆ S defines an invariant of those states reachable from
some s ∈ S′, i.e., reachable(S′) = {s′ | s ∈ S′ ∧ s

∗→ s′}. A (state) equivalence is
an equivalence relation over S, typically denoted ≈. In the context of an invariant
I, the relations ≈ and → are understood to be restricted to I.

The following α and β corners1 were introduced in [7,8], being implicit in [21].
An α corner is a structure s1 ← s0 → s2, where s0, s1, s2 ∈ S and the indicated
relationships hold; s0 is called a common ancestor and s1, s2 wing states. A
β corner is a structure s1 ≈ s0 → s2, where s0, s1, s2 ∈ S and the indicated
relationships hold. In the context of an invariant I, the different types of corners
are defined only for I states.

Two states s1, s2 are joinable (modulo ≈) whenever there exist paths s1
∗→ s′

1

and s2
∗→ s′

2 with s′
1 = s′

2 (s′
1 ≈ s′

2). A corner s1Rel s0 → s2 is joinable (modulo
≈) when s1, s2 are joinable (modulo ≈); Rel ∈ {← ,≈}.

A transition system D = 〈S, →〉 is confluent (modulo ≈) whenever

s1
∗← s0

∗→ s2 ⇒ s1 and s2 are joinable (modulo ≈).

It is locally confluent (modulo equivalence ≈) whenever all its α (α and β)
corners are joinable. The following properties are fundamental.

Lemma 1 (Newman [25]). A terminating transition system (under invariant
I) is confluent if and only if it is locally confluent.

1 In recent literature within term rewriting, the terms peaks and cliffs have been used
for α and β corners, respectively.

98 H. Christiansen and M. H. Kirkeby

Lemma 2 (Huet [21]). A terminating transition system (under invariant I) is
confluent modulo ≈ if and only if it is locally confluent modulo ≈.

These properties reduce proofs of confluence (mod. equiv.) for terminating sys-
tems to proofs of the simpler property of local confluence (mod. equiv.), but
still, this may leave an infinite number of corners to be examined.

3 Abstract Simulation

Consider two transition systems, DO = 〈SO, →O〉 and DM = 〈SM , →M 〉,
referred to as object and meta level systems. A replacement is a (perhaps par-
tial) function ρ : SM → SO; the application of ρ to some s ∈ SM is written sρ.
For any structure f(s1, . . . sn) with states s1, . . . sn of DM (a transition, a tuple,
etc.), replacements apply in a compositional way, f(s1, . . . sn)ρ = f(s1ρ, . . . snρ).
For a family of replacements P = {ρi}i∈Inx , the covering (or concretization) of
a structure f(s1, . . . sn) is defined as

[[f(s1, . . . sn)]]MO = {f(s1, . . . sn)ρ | ρ ∈ P}.

Notice that P is left implicit in this notation, as in the context of given object
and meta level systems, there will be one and only one replacement family.

Definition 1. An abstract simulation of DO by DM with possible invariants
IO, resp., IM , and equivalences ≈O, resp., ≈M , is defined by a family of replace-
ments P = {ρi}i∈Inx which satisfies the following conditions.

s0 →M s1 ⇒ ∀ρ ∈ P : s0ρ →O s1ρ ∨ s0ρ = s1ρ

IM (s) ⇒ ∀ρ ∈ P : IO(sρ)
s0 ≈M s1 ⇒ ∀ρ ∈ P : s0ρ ≈O s1ρ

Notice that an abstract simulation does not necessarily cover all object level
states, transitions, etc.

Example 2. Let A = {a1, a2, . . .}, B = {b1, b2, . . .} and C = {c1, c2, . . .} be sets
of states, and O and M the following transition systems.

O = 〈A ∪ B ∪ C, {ai →O bi | i = 1, 2, . . .} ∪ {ai →O ci | i = 1, 2, . . .}〉
M = 〈{a, b, c}, {a →M b, a →M c}〉

Assume equivalences b ≈Mc and bi ≈O ci, for all i. Then the family of replace-
ments P = {ρi}i=1,2,..., where aρi = ai, bρi = bi and cρi = ci, defines a simula-
tion of O by M . It appears that O and M are not confluent, cf. the non-joinable
corners b1 ←O a1 →O c1 and b ←M a →M c, but both are confluent modulo
≈O (≈M).

Confluence of CHR Revisited: Invariants and Modulo Equivalence 99

A meta level structure m covers an object structure k whenever k ∈ [[m]]MO .
When [[m]]MO = ∅, m is inconsistent. When [[m′]]MO ⊆ [[m]]MO , m′ is a sub-
state/subcorner, etc. of m, depending on the inherent type of m. When DO

and DM both include failure, it is required that [[failure]]MO = {failure}. A given
meta level state S is mixed whenever [[S]]MO includes both failure and non-failure
states. Transitions are only allowed from consistent and neither failed nor mixed
states.

The following is a consequence of the definitions.

Lemma 3. An object level corner, which is covered by a joinable (mod. equiv.)
meta level corner, is joinable (mod. equiv.).

When doing confluence proofs, we may search for a small set of critical meta level
corners,2 whose joinability guarantees joinability of any object level corner, i.e.,
any other object level corner not covered by one of these is seen to be joinable
in other ways. For term rewriting systems, e.g., [4], and previous work on CHR,
such critical sets have been defined by explicit constructions.

We introduce a mechanism for splitting a meta level corner Λ into a set
of corners, which together covers the same set of object corners as Λ. This is
useful when Λ in itself is not joinable, but each of the new corners are. In some
cases, splitting is necessary for proving confluence under an invariant as shown
in Sect. 5 and exemplified in Examples 4 and 6.

Definition 2. Let s be a meta level state (or corner). A set of states (or corners)
{si}i∈Inx is a splitting of s whenever

⋃
i∈Inx [[si]]MO = [[s]]MO . A corner (set of

corners) is split joinable (mod. equiv.) if it (each of its corners) is joinable
(mod. equiv.), inconsistent, or has a splitting into a set of split joinable (mod.
equiv.) corners.

Corollary 1. An object level corner, which is covered by a split joinable (mod.
equiv.) meta level corner, is joinable (mod. equiv.).

4 Constraint Handling Rules

Most actual implementations of CHR are fully deterministic, i.e., for a given
query, there is at most one answer state (alternatively, the program is non-
terminating). In this light, it may be discussed whether confluence is an inter-
esting property, and if so, to what extent the applied semantics should be non-
deterministic. Our thesis is the following: choice of next constraints to be tried
and which rule to be used should be nondeterministic. Thus a confluent pro-
gram can be understood by the programmer without considering the detailed
control mechanisms in the used implementation; this also anticipates parallel
implementations. We see only little interest in considering confluence for the

2 In the literature, the term critical pair is used for the pair of wing states of our
critical corners.

100 H. Christiansen and M. H. Kirkeby

so-called refined CHR semantics [12] in which only very little nondeterminism is
retained.

Similarly to [7,8], we remove w.l.o.g. two redundancies from the logic-based
semantics [1,16]: global variables and the two-component constraint store.

– Global variables are those in the original query. Traditionally they are kept as
a separate state-component, such that values bound to them can be reported
to the user at the end. The same effect can be obtained by a constraint
global/2 that does not appear in any rule, but may be used in the original
query: writing ?- p(X) as ?- p(X), global(’X’,X), means that the value
of the variable named ’X’ can be read out as the second argument of this
constraint in a final state.

– We avoid separating the constraint store into query and active parts, as the
transition sequences with or without this separation are essentially the same.

4.1 Syntax

Standard first-order notions of variables, terms, predicates atoms, etc. are
assumed. Two disjoint sets of constraint predicates are assumed, user constraints
and built-in constraints; the actual set of built-ins may vary depending on the
application. We use the generalized simpagation form [16] to capture all rules of
CHR. A rule is a structure of the form

H1\H2 <=> G|C

where H1\H2 is the head of the rule, H1 and H2 being sequences, not both
empty, of user constraints; G is the guard which is a conjunction of built-in
constraints; and C is the body which is a sequence of constraints of either sort.
When H2 is empty, the rule is a simplification, which may be written H1 <=>
G|C; when H2 is empty, it is a propagation, which may be written H2 ==> G|C;
any other rule is a simpagation; when G = true, (G|) may be left out. The head
variables of a rule are those appearing in the head, any other variable is local.
The following notion is convenient when defining the CHR semantics and its
meta level simulation.

Definition 3. A pre-application of a rule r = (H1\H2 <=>G|C) is of the form
(H ′

1\H
′
2 <=>G′|C ′)σ where r′ = (H ′

1\H
′
2 <=>G′|C ′) is a variant of r with fresh

variables and σ is a substitution to the head variables of r′, where, for no variable
x, xσ contains a local variable of r′.

The operator � refers to union of multisets, so that, e.g., {a, a}�{a} = {a, a, a};
for difference of multisets, we use standard notation for set difference, assuming
it takes into account the number of copies, e.g., {a, a} \ {a} = {a}.

Confluence of CHR Revisited: Invariants and Modulo Equivalence 101

4.2 The Logic-Based Operational Semantics for CHR

The semantics presented here is essentially identical to the one used by [1] and
the so-called abstract operational semantics ωt of [16], taking into account the
simplifications explained above. Following [27], we define a state as an equiva-
lence class, abstracting away the specific variables used and the different ways
the same logical meaning can be expressed by different conjunctions of built-ins.3

A logical theory B is assumed for the built-in predicates.
A state representation (s.repr.) is a pair 〈S,B〉, where the constraint store

S is a multiset of constraint atoms and the built-in store B is a conjunction of
built-ins; any s.repr. with an unsatisfiable built-in store is considered identical
to failure. Two s.repr.s 〈S,B〉 and 〈S′, B′〉 are variants whenever, either4

– they are both failure, or
– there is a renaming substitution ρ such that

B |= ∀(Bρ → ∃(Sρ = S′ ∧ B′)) ∧ B |= ∀(B′ → ∃(Sρ = S′ ∧ Bρ))

A state is an equivalence class of s.repr.s under the variant relationship. For
simplicity of notation, we typically indicate a state by one of its s.repr.s.

A rule application w.r.t. to a non-failure state 〈S,B〉 is a pre-application
H1\H2 <=> G|C for which B |= B → ∃LG, where L is the list of its local
variables. There are two sorts of transitions, by rule application and by built-in.

〈H1 � H2 � S,B〉 →logic 〈H1 � C � S,G ∧ B〉
when there exists a rule application H1\H2<=>G|C,

〈{b} � S,B〉 →logic 〈S, b ∧ B〉 for a built-in b.

5 Confluence Under the Logic-Based Semantics
Re-Explained, and Why Invariants Are Difficult

Here we explain the results of [1,2], also summarized in [16], using abstract
simulation. Object and meta level systems coincide and are given by a CHR
program under the logic-based semantics. Two rules give rise to a critical corner
if a state can be constructed in which one rule consumes constraints that the
other one needs to be applied; in that case, rule applications do not commute
and a specific proof of joinability must be considered. We anticipate the re-use
of the construction, when invariants are introduced: in a pre-corner, the guards
are not necessarily satisfied (but may be so in the context of an invariant).

3 Raiser et al. [27] defined “state” similarly to what we call state representation, and
they defined an operational semantics over equivalence classes of such states. We
have taken the natural step of promoting such equivalence classes to be our states.

4 An equation between multisets should be understood as an equation between suitable
permutations of their elements.

102 H. Christiansen and M. H. Kirkeby

Definition 4. Consider two rules r : H1\H2 <=>G|C and r′ : H ′
1\H

′
2 <=>G′|C ′

renamed apart, and let A and A′ be non-empty sets of constraints such that
A ⊆ H2, A′ ⊆ H ′

1 � H ′
2 and B |= ∃(A=A′). In that case, let

H̄ = (H1�H2�H ′
1�H ′

2) \ A

s0 = 〈H̄, (G∧G′∧A=A′)〉
s = 〈H̄\H2�C, (G∧G′∧A=A′)〉
s′ = 〈H̄\H ′

2�C ′, (G∧G′∧A=A′)〉

When s �= s′, s0 is a critical, common ancestor state, and s ←logic s0 →logic s′

is a critical α pre-corner; the constraints A (or A′) is called the overlap of r and
r′. When, furthermore, B |= ∃(G ∧ G′ ∧ A=A′), it is a critical α corner.

The simulation is given by the following cover function.

[[〈S,B〉]]logiclogic = {〈S � S+, B ∧ B+〉 |
S+ is a multiset of user and built-in constraints,
B+ is a conjunction of built-ins }

[[〈S,B〉 →logic 〈S′, B′〉]]logiclogic = {(〈S � S+, B ∧ B+〉 →logic 〈S′ � S+, B′ ∧ B+〉) |
S+ is a multiset of user and built-in constraints,
B+ is a conjunction of built-ins, ∃(B∧B+) holds}

It is easy to check that this definition satisfies the conditions for being an abstract
simulation given in Sect. 3, relying on monotonicity : B |= B ∧ B+ → ∃LG.

It can be shown that any corner not covered by a critical corner (Definition 4)
is trivially joinable, see the extended report [6]. Thus, according to Lemmas 1
and 3, the program under investigation is confluent whenever it is terminating
and this set of critical corners is joinable. The set of critical corners is finite and
that allows for automatic confluence proofs by checking the critical corners, one
by one, e.g., [24].

Example 3. Consider the one-rule set-program of Example 1, ignoring invariant
and state equivalence. There are two critical corners, given by the two ways, the
rule can overlap with itself:

〈{item(X1), set(L), item(X2)}, true〉

〈{set([X1|L]), item(X2)}, true〉

〈{item(X1), set([X2|L])}, true〉

logic

logic

〈{set(L1), item(X), set(L2)}, true〉

〈{set([X|L1]), set(L2)}, true〉

〈{set(L1), set([X|L2])}, true〉

logic

logic

None of these corners are joinable, so the program is not confluent.

The simulation defined above, relying on monotonicity, do not generalize well
for confluence under invariant, referred to as “observable confluence” in [13].

Confluence of CHR Revisited: Invariants and Modulo Equivalence 103

Example 4. Consider the CHR program consisting of the following four rules.

r1: p(X) <=> q(X) r3: q(X) <=> X>0 | r(X)
r2: p(X) <=> r(X) r4: r(X) <=> X<-0 | q(X)

It is not confluent as its single critical corner q(X)← p(X) → r(X) is not
joinable (the built-in stores are true and thus omitted). However, adding the
invariant “reachable from an initial state p(n) where n is an integer” makes it
confluent. We indicate the set of all non-trivial object level corners as follows,
with the dashed transitions proving each of them joinable.

p(0)

q(0) r(0)

r1 r2
r4

p(1)

q(1) r(1)

r1 r2
r3

p(2)

q(2) r(2)

r1 r2
r3

· · · · · ·
p(-1)

q(-1) r(-1)

r1 r2
r4

These object corners and their proofs of joinability obviously fall in two
groups of similar shapes, but there is no way to construct a finite set (of, say,
one or two elements) that covers all object corners. In other words, the smallest
set of meta level corners that covers this set is the set itself. This was also
noticed in [13] that used a construction that essentially reduces to the abstract
simulation shown above.

The abstract simulation given by [[−]]logiclogic of Definition 4 above defines an
abstract interpretation, whose abstract domain is the complete lattice of CHR
states ordered by the substate relationship (Sect. 3). Referring to Example 4,
for instance the join of the infinite set of states {〈p(t), b〉 | t is a term, b is a
conjunction of built-ins } is 〈p(X), true〉. When the grounding invariant is intro-
duced, the join operator is not complete; an attempt to join, say, 〈p(0), true〉
and 〈p(1), true〉 would not satisfy the invariant.5

6 Invariants and Modulo Equivalence

A program is typically developed with an intended set of queries in mind, giving
rise to a state invariant, which may make an otherwise non-confluent program
observably confluent (mod. equiv.). We can indicate a few general patterns of
invariants and their possible effect on confluence.

– Elimination of non-joinable critical corners that do not cover any object cor-
ner satisfying the invariant. This was shown in Example 4 above, and is also
demonstrated in the continuation of Example 3 (Example 7, below): “only
one set constraint allowed”.

5 Such an attempt might be 〈p(X), (X=0 ∨ X=1)〉; notice that X is a variable, thus
breaking the invariant.

104 H. Christiansen and M. H. Kirkeby

– Making it possible to apply a given rule, which otherwise could not apply,
e.g., providing a “missing” head constraint or enforcing guard satisfaction:
1. “if a state contains p(something), it also contains q(the-same-

something)”,
2. “if a state contains p(something), this something is a constant > 1”.

An invariant of type 1 ensures confluence mod. equiv. of a version of the
Viterbi algorithm [8]; an invariant of type 2 is indicated in Example 4 and
formalized in Example 6, below.

As shown in Example 4 above, invariants block for a direct re-use CHR’s
logical semantics as its own meta-level and, accordingly, existing methods and
confluence checkers. In some cases, it is possible to eliminate invariants by pro-
gram transformations, so that rules apply exactly when the invariant and the
original rule guards are satisfied; this means that the transformed program is
confluent if and only if the original one is confluent under the invariant.

Example 5. Reconsidering the program of Example 4, the following is an exam-
ple of such a transformed program; the constants a and b are introduced as
representations of positive, resp., non-positive integers.

p(a) <=> q(a). p(a) <=> r(a). p(a) <=> r(a).
p(b) <=> q(b). p(b) <=> r(b). r(b) <=> q(b).

Such program transformations become more complex when the guards describe
more involved dependencies between the head variables. More importantly,
invariants that exclude certain constraints in a state cannot be expressed in this
way, for example “only one set constraint allowed” (Examples 3 and 7). Thus
we refrain from pursuing a transformational approach. To obtain a maximum
degree of generality, we introduce a meta level formalization of CHR’s opera-
tional semantics that include representations as explicit data objects of states
and their components, possibly parameterized by constrained meta variables.

6.1 The Choice of a Ground Representation

Invariants and state equivalences are inherently meta level statements, as they
are about states, and may refer to notions inexpressible at the object level, e.g.,
that some part being ground or a variable. Earlier work on meta-interpreters
for logic programs, e.g., [5,18,19], offers the desired expressibility in terms of
a ground representation. Any object term, formula, etc. is named by a ground
meta level term. Variables are named by special constants, say X by ’X’, and any
other symbol by a function symbol written the same way; e.g., the non-ground
object level atom p(A) is named by the ground meta level term p(’A’). For any
such ground meta level term mt, we indicate the object it names as [[mt]]Gr . For
example, [[p(’A’)]]Gr = p(A) and [[p(’A’) ∧ ’A’>2]]Gr = (p(A) ∧ A>2).

For a given object entity e, we define its lifting to the meta level by (1)
selecting a meta level term that names e, and (2) replacing variable names in it
consistently by fresh meta level variables. For example, p(X) ∧ X>2 is lifted to

Confluence of CHR Revisited: Invariants and Modulo Equivalence 105

p(x) ∧ x>2, where X and x are object, resp., meta variables. By virtue of this
overloaded syntax, we may read such an entity e (implicitly) as its lifting.

A collection of meta level constraints is assumed whose meanings are given by
a theory M. We start defining meta level states without detailed assumptions
about M, that are postponed to Definition 6 below. We assume object level
built-in theory B, invariant Ilogic and state equivalence ≈logic .

Definition 5. A constrained meta level term is a structure of the form
(mt where M), where mt is a meta level term and M a conjunction of M
constraints. We define

[M] = {σ | M |= Mσ},

[[mt where M]]meta
logic = {[[mtσ]]Gr | σ ∈ [M]}.

A meta level state representation (s.repr.) is a constrained meta level term
st where M for which [[st where M]]meta

logic is a set of object level states. Two
meta level s.repr.s SR1, SR2 are variants whenever each object level s.repr. in
[[SR1]]meta

logic is a variant of some object level s.repr. in [[SR2]]meta
logic and vice versa.

A meta level state is an equivalence class of meta level s.repr.s under the variant
relationship. For structures of meta level states (transitions, corners, etc.), we
apply the following convention, where f may represent any such structure.

[[f(mt1 where M1, . . . ,mtn where Mn)]]meta
logic

= [[f(mt1, . . . ,mtn) where M1 ∧ . . . ∧ Mn]]meta
logic

Meta level invariant Imeta
logic and equivalence ≈meta

logic are defined as follows.

– Imeta
logic (S) whenever Ilogic(s) for all s ∈ [[S]]meta

logic .
– S1 ≈meta

logic S2 whenever s1 ≈logic s2 for all (s1, s2) ∈ [[(S1, S2)]]meta
logic .

As before, we may indicate a meta level state by a representation of it.

Definition 6. The theory M includes at least the following constraints.

– = /2 with its usual meaning of syntactic identity,
– Type constraints type /2. For example type(var,x) is true in M whenever

x is the name of an object level variable; var is an example of a type, and
we introduce more types below when we need them.

– Modal constraints ..
� F and ..

� F defined to be true in M whenever B |=
[[F]]Gr , resp., B |= [[¬F]]Gr .

– We define two constraints inv and equiv such that inv(Σ) is true in M
whenever [[Σ]]Gr is an Ilogic state (representation) of the logical semantics,
and equiv(Σ1, Σ2) whenever [[(Σ1, Σ2)]]Gr is a pair of states (representations)
(s1, s2) of the logical semantics such that s1 ≈logic s2.

– freshVars(L,T) is true in M whenever L is a list of all different variables
names, none of which occur in the term T ; freshVars(L1,L2,T) abbreviates
freshVars(L12,T)) where L12 is the concat. of L1 and L2.

106 H. Christiansen and M. H. Kirkeby

Definitions 5 and 6 comprise the first steps towards a simulation of the logic-
based semantics, and we continue with the last part, the transition relation.

Definition 7. Consider a (lifted version of a) pre-application H1\H2 <=> G|C
with local variables L and a consistent meta level state (S where M) with
S = 〈H1�H2�S+, B+〉 and

M |= M → (
inv(S) ∧ ..

� B+ ∧ ..
� (B+→∃LG) ∧ freshVars(L,S)

)
.

Then the following is a meta level transition by rule application.

S where M −→meta
logic 〈H1�C�S+, G∧B+〉 where M

Consider a (lifted version of a) built-in b of B and a consistent meta level state
(S where M) with S = 〈{b}�S+, B+〉 and

M |= M → (
inv(S) ∧ ..

� B+
)
.

Then the following is a meta level transition by built-in.

〈{b}�S+, B+〉 where M −→meta
logic 〈S+, b∧B+〉 where M

Notice that for both sorts of transitions, the implication of ..
� B+ excludes tran-

sitions from failed and mixed states. For built-in transitions, the resulting states
may be non-failed, failed or mixed.

Lemma 4. For a given CHR program with Ilogic and ≈logic, the definitions
of meta level states and transitions −→meta

logic , Imeta
logic and ≈meta

logic , together with
[[−]]meta

logic comprise an abstract simulation of the logic-based semantics.

Transitions are not possible from a mixed or failed meta level state, but modal
constraints are useful for restricting to the relevant substate, such that transi-
tions are known to exists. This is expressed by the following propositions that
are immediate consequences of the definitions.

Proposition 1. Let r : H1\H2 <=> G|C be a (lifted version of a) pre-
application with local variables L and Σ = (〈S,B〉 where M) a meta level state
with H1�H2 ⊆ S. Whenever the meta level state Σ

..
� = (〈S,B〉 where M ∧M̂)

is consistent, with M̂ = inv(〈S,B〉) ∧ ..
� B ∧ ..

� (B→∃LG) ∧ freshVars(L,Σ),
there exists a meta level rule application by r,

Σ
..
� −→meta

logic 〈S\H2�C,B∧G〉 where M ∧ M̂.

Furthermore, Σ
..
� is the greatest substate of Σ to which r can apply.

Proposition 2. Let b be a (lifted version of a) built-in and Σ = (〈S,B〉 where

M) a meta level state with b ∈ S. When Σ
..
� = (〈S,B〉 where M∧M̂) is cons-

istent, with
̂
M

..
� = inv(〈S,B〉)∧ ..

� B∧ ..
� (B→b), there is a meta level trans.,

Σ
..
� −→meta

logic 〈S\{b}, B ∧ b〉 where M ∧ ̂
M

..
� .

Confluence of CHR Revisited: Invariants and Modulo Equivalence 107

Whenever Σ
..
� = (〈S,B〉 where M ∧ ̂

M
..
�) is consistent, with

̂
M

..
� =

inv(〈S,B〉) ∧ ..
� B ∧ ..

� (B→b), there is a meta level transition by b,

Σ
..
� −→meta

logic 〈S\{b}, B ∧ b〉 where M ∧ ̂
M

..
� .

The state Σ
..
� (resp. Σ

..
�) is the greatest substate of Σ for which the meta level

transition by b leads to a non-failure and non-mixed (resp. failed) state.

With Propositions 1 and 2 in mind, we define meta level critical corners from
the critical corners of Definition 4.

Definition 8. Let 〈S1, B1〉 ←logic 〈S0, B0〉 →logic 〈S2, B2〉 be a (lifted version
of a) critical α pre-corner given by Definition 4, in which the leftmost (rightmost)
rule application has local variables L1 (L2) and guard G1 (G2). Assume S+ and
B+ are fresh meta level variables and let, for i = 0, 1, 2,

Σi = 〈Si�S+, Bi∧B+〉
M = inv(Σ0) ∧ ..

� B0 ∧ ..
� (B0∧B+→∃L1G1) ∧ ..

� (B0∧B+→∃L2G2) ∧
freshVars(L1,L2,Σ)

When (Σ0 where M) is consistent, the following is a critical meta level α
corner.

(Σ1 where M) ←−meta
logic (Σ0 where M) −→meta

logic (Σ2 where M)

Example 6. (Continuing Example 4) The invariant is formalized at the meta
level as states of the form 〈{pred(n)}, true〉 where type(int,n) where pred
is one of p, q and r. Below is shown the non-joinable critical meta level corner
generated by Definition 8. It is split-joinable as demonstrated by its splitting
into two corners; each shown joinable by the indicated dotted transition. Let M
stand for the meta-level constraint type(int,n), M1 for M∧ ..

� n≤0 and M2 for
M∧ ..

� n>0.

〈p(n), true〉
whereM

〈q(n), true〉
whereM

〈r(n), true〉
whereM

r1 r2

〈p(n), true〉
whereM1

〈q(n), true〉
whereM1

〈r(n), true〉
whereM1

r1 r2

r4

〈p(n), true〉
whereM2

〈q(n), true〉
whereM2

〈r(n), true〉
whereM2

r1 r2

r3

According to Lemma 5 shown below, the program is confluent.

When, furthermore, a state equivalence ≈logic is assumed, we need also show
joinability of β corners, i.e., those composed by an equivalence and a transition.

Definition 9. Let H\H ′ <=>G|C be a (lifted version of a) variant of a rule
with local variables L. Assume S+, B+ and Σ1 are fresh meta-variables, and let

Σ0 = 〈H�H ′�S+, B+〉 Σ2 = 〈H�C�S+, G∧B+〉
M = inv(Σ0) ∧ ..

� B ∧ ..
� (B→∃LG) ∧ freshVars(L,Σ0) ∧ equiv(Σ0, Σ1)

108 H. Christiansen and M. H. Kirkeby

When (Σ0 where M) is consistent, the following is a critical meta level β
corner by rule application.

(Σ1 where M) ≈meta
logic (Σ0 where M) −→meta

logic (Σ2 where M)

Let b be a (lifted version of a) built-in atom whose arguments are fresh variables.
Assume S+, B+ and Σ1 are fresh meta-variables, and let

Σ0 = 〈{b}�S+, B+〉 Σ2 = 〈S+, b∧B+〉
M = inv(Σ0) ∧ ..

� B ∧ freshVars(L,Σ0) ∧ equiv(Σ0, Σ1)

When (Σ0 where M) is consistent, the following is a critical meta level β
corner by built-in.

(Σ1 where M) ≈meta
logic (Σ0 where M) −→meta

logic (Σ2 where M)

Lemma 5. Let a terminating CHR program Π with invariant Ilogic (and state
quivalence ≈logic) be given. Then Π is confluent (modulo ≈logic) if and only if
its set of critical corners (Definitions 8–9) is split-joinable w.r.t. Imeta

logic (modulo
≈meta

logic).

Example 7. (Cont. Example 3;adapted from [8]). The invariant is formalized at
the meta level as states of the form

〈{set(L)}�S, true〉 where type(constList,L)∧type(constItems,S);

we assume types const for all constants, constList for all lists of such, and
constItems for sets of constraints of the form item(c) where c is a constant.

The state equivalence is formalized at the meta level as the relationships
of states of the following form, where perm(L1,L2) means that L1 and L2 are
lists being permutations of each other; and M≈ stands for type(constList,L1)∧
type(constList,L1)∧perm(L1,L2)∧type(constItems,S),
〈{set(L1)}�S, true〉 where M≈ ≈meta

logic 〈{set(L2)}�S, true〉 where M≈

The critical object level corner with two set constraints in the states does not give
rise to a critical meta level corner as the invariant is not satisfied. The other one is
shown here, including (with dotted arrows) its proof of joinability modulo equiv-
alence; Mα stands for type(const,x1) ∧ type(constList,L) ∧ type(const,x2) ∧
type(constItems,S).

〈{item(x1), set(L), item(x2)}	S, true〉 where Mα

〈{set([x1|L]), item(x2)}	S, true〉 where Mα 〈{item(x1), set([x2|L]), }	S, true〉 where Mα

〈{set([x2,x1|L])}	S, true〉 where Mα 〈{set([x1,x2|L])}	S, true〉 where Mα

We consider the following critical meta level β corner. Mβ stands
for type(const,x)∧type(constList,L1)∧type(constList,L2)∧perm(L1,L2)∧type
(constItems,S).

Confluence of CHR Revisited: Invariants and Modulo Equivalence 109

〈{item(x), set(L1)}	S, true〉 where Mβ

〈{item(x), set(L2)}	S, true〉 where Mβ 〈{set([x|L1])}	S, true〉 where Mβ

〈{set([x|L2])}	S, true〉 where Mβ

All critical corners are joinable modulo equivalence, and since the program is
obviously terminating, Lemma 5 gives that the program is confluent mod. equiv.

7 Conclusion

We generalized the critical pair approach using a meta level simulation to prove
confluence under invariant and modulo equivalence for Constraint Handling
Rules. We have demonstrated how this principle makes it possible to express
natural invariants and equivalences, that cannot be expressed in CHR itself, in
a formal way at the meta level, anticipating machine supported proofs using
a meta level constraint solver, based on a ground representation. A constraint
solver is currently under development, partly inspired by [5]. Depending on the
complexity of the invariants and equivalences – and of the CHR programs under
investigation – it may be difficult to obtain a complete solver.

For simplicity of notation, we did not include mechanisms to prevent loops
caused by propagation rules; [8] has included this in a meta level representation
for the Prolog based semantics, and is easily adapted for the logic based seman-
tics exposed in the present paper. For comparison with earlier work on confluence
for CHR, we used here a logic-based CHR semantics, which has nice theoreti-
cal properties, but is incompatible with standard implementations of CHR and
applies only for a limited set of programs. In [9], we have defined meta level
constraints and a simulation for an alternative CHR semantics [7,8] that reflects
CHR’s Prolog based implementation, including a correct handling of Prolog’s
non-logical devices (e.g., var/1, nonvar/2, is/2) and runtime errors.

The abstract simulations used for the classical CHR confluence results are spe-
cial cases of abstract interpretations, but when invariants are introduced – or when
considering full CHR including Prolog-style non-logical devices, cf. [9] – this cor-
respondence does not hold. The concept of abstract simulations and their use for
proving confluence (mod. equiv.) seem obvious to investigate for a large variety of
rewrite based systems, e.g., constrained term rewriting, conditional term rewrit-
ing, interactive theorem provers, and rule-based specifications of abstract algo-
rithms.

Acknowledgement. We thank the anonymous reviewers for their insightful com-
ments, suggesting to compare with a transformational approach, cf. Example 5, and
helping us to clarify the relationship between abstract simulation and abstract inter-
pretation.

110 H. Christiansen and M. H. Kirkeby

References

1. Abdennadher, S.: Operational semantics and confluence of constraint propaga-
tion rules. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 252–266. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0017444

2. Abdennadher, S., Frühwirth, T., Meuss, H.: On confluence of constraint han-
dling rules. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 1–15. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61551-2 62

3. Abdennadher, S., Frühwirth, T.W., Meuss, H.: Confluence and semantics of con-
straint simplification rules. Constraints 4(2), 133–165 (1999)

4. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press,
Cambridge (1999)

5. Christiansen, H.: Automated reasoning with a constraint-based metainterpreter.
J. Logic Program. 37(1–3), 213–254 (1998)

6. Christiansen, H., Kirkeby, M.: Confluence of CHR revisited: invariants and mod-
ulo equivalence. [Extended version with proofs], Computer Science Research
Report, vol. 153. Roskilde University, October 2018. https://forskning.ruc.dk/files/
63000759/ChrKir LOPSTR2018 ExtReport.pdf

7. Christiansen, H., Kirkeby, M.H.: Confluence modulo equivalence in constraint han-
dling rules. In: Proietti, M., Seki, H. (eds.) LOPSTR 2014. LNCS, vol. 8981, pp.
41–58. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17822-6 3

8. Christiansen, H., Kirkeby, M.H.: On proving confluence modulo equivalence for
constraint handling rules. Formal Aspects Comput. 29(1), 57–95 (2017)

9. Christiansen, H., Kirkeby, M.H.: Towards a constraint solver for proving confluence
with invariant and equivalence of realistic CHR programs. In: WFLP, LNCS, vol.
11285 (2018, to appear)

10. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. POPL 1977,
238–252 (1977)

11. Curien, P.-L., Ghelli, G.: On confluence for weakly normalizing systems. In: Book,
R.V. (ed.) RTA 1991. LNCS, vol. 488, pp. 215–225. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-53904-2 98

12. Duck, G.J., Stuckey, P.J., de la Banda, M.G., Holzbaur, C.: The refined operational
semantics of constraint handling rules. In: Demoen, B., Lifschitz, V. (eds.) ICLP
2004. LNCS, vol. 3132, pp. 90–104. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27775-0 7

13. Duck, G.J., Stuckey, P.J., Sulzmann, M.: Observable confluence for constraint han-
dling rules. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 224–
239. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74610-2 16

14. Frühwirth, T.W.: User-defined constraint handling. In: ICLP 1993, pp. 837–838.
MIT Press (1993)

15. Frühwirth, T.W.: Theory and practice of constraint handling rules. J. Logic Pro-
gram. 37(1–3), 95–138 (1998)

16. Frühwirth, T.W.: Constraint Handling Rules. Cambridge University Press,
New York (2009)

17. Gall, D., Frühwirth, T.: Confluence modulo equivalence with invariants in con-
straint handling rules. In: Gallagher, J.P., Sulzmann, M. (eds.) FLOPS 2018.
LNCS, vol. 10818, pp. 116–131. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-90686-7 8

https://doi.org/10.1007/BFb0017444
https://doi.org/10.1007/3-540-61551-2_62
https://forskning.ruc.dk/files/63000759/ChrKir_LOPSTR2018_ExtReport.pdf
https://forskning.ruc.dk/files/63000759/ChrKir_LOPSTR2018_ExtReport.pdf
https://doi.org/10.1007/978-3-319-17822-6_3
https://doi.org/10.1007/3-540-53904-2_98
https://doi.org/10.1007/978-3-540-27775-0_7
https://doi.org/10.1007/978-3-540-27775-0_7
https://doi.org/10.1007/978-3-540-74610-2_16
https://doi.org/10.1007/978-3-319-90686-7_8
https://doi.org/10.1007/978-3-319-90686-7_8

Confluence of CHR Revisited: Invariants and Modulo Equivalence 111

18. Hill, P., Gallagher, J.: Meta-programming in logic programming. In: Handbook
of Logic in Artificial Intelligence and Logic Programming, pp. 421–497. Oxford
Science Publications, Oxford University Press (1994)

19. Hill, P.M., Lloyd, J.W.: Analysis of meta-programs. In: Meta-Programming in
Logic Programming, pp. 23–51. The MIT Press (1988)

20. Holzbaur, C., Frühwirth, T.W.: A PROLOG constraint handling rules compiler
and runtime system. Appl. Artif. Intell. 14(4), 369–388 (2000)

21. Huet, G.P.: Confluent reductions: abstract properties and applications to term
rewriting systems. J. ACM 27(4), 797–821 (1980)

22. Jaffar, J., Lassez, J.: Constraint logic programming. In: Symposium on Principles
of Programming Languages. POPL 1987, pp. 111–119. ACM Press (1987)

23. Kirkeby, M.H., Christiansen, H.: Confluence and convergence modulo equivalence
in probabilistically terminating reduction systems. Int. J. Approximate Reasoning
105, 217–228 (2019)

24. Langbein, J., Raiser, F., Frühwirth, T.W.: A state equivalence and confluence
checker for CHRs. In: Proceedings of the International Workshop on Constraint
Handling Rules, Report CW 588, pp. 1–8. Katholieke Universiteit Leuven, Belgium
(2010)

25. Newman, M.: On theories with a combinatorial definition of “equivalence”. Ann.
Math. 43(2), 223–243 (1942)

26. Park, D.M.R.: Concurrency and automata on infinite sequences. In: Proceedings
of the Theoretical Computer Science, 5th GI-Conference, pp. 167–183 (1981)

27. Raiser, F., Betz, H., Frühwirth, T.W.: Equivalence of CHR states revisited. In:
Proceedings of the International Workshop on Constraint Handling Rules, Report
CW 555, pp. 33–48. Katholieke Universiteit Leuven, Belgium (2009)

28. Schrijvers, T., Demoen, B.: The K.U.Leuven CHR system: Implementation and
Application. In: Workshop on Constraint Handling Rules: Selected Contributions,
pp. 1–5. Ulmer Informatik-Berichte, Nr. 2004–01 (2004)

Analysis of Logic Programming

Compiling Control as Offline
Partial Deduction

Vincent Nys(B) and Danny De Schreye

KU Leuven, Leuven, Belgium
{vincent.nys,danny.deschreye}@kuleuven.be

Abstract. We present a new approach to a technique known as com-
piling control, whose aim is to compile away special mechanisms for
non-standard atom selection in logic programs. It has previously been
conjectured that compiling control could be implemented as an instance
of the first Futamura projection, in which an interpreter is specialized
for an input program. However, the exact nature of such an interpreter
and of the required technique for specialization were never specified. In
this work, we propose a Prolog meta-interpreter which applies the desired
non-standard selection rule and which is amenable to specialization using
offline partial deduction. After the initial analysis phase of compiling con-
trol, we collect annotations to specialize the interpreter using the Logen
system for offline partial deduction. We also show that the result of the
specialization is equivalent to the program obtained using the traditional
approach to compiling control. In this way, we simplify the synthesis step.

Keywords: Compiling control · Offline partial deduction ·
Coroutines · First Futamura projection

1 Introduction

Compiling control is a program transformation technique which aims to com-
pile the runtime behavior of pure logic programs executed under a non-standard
selection rule to logic programs which are totally equivalent under the standard,
left-to-right selection rule of Prolog. It was originally presented in [1,2]. The tech-
nique is designed to work in two phases. In a first phase, the computation flow of
the program, executed under the non-standard rule, is analyzed, resulting in a
symbolic evaluation tree that captures the entire flow. In a second phase, from the
symbolic evaluation tree, a new logic program is synthesized. The technique was
formalized and proven correct under certain technical conditions, but it possessed
certain drawbacks. Most importantly, it was an ad hoc solution. Because of this,
showing that the analysis phase of the transformation was complete for a specific
program required a manual proof by induction. However, since the original pre-
sentation of compiling control, several frameworks have been developed which
provide a more formal perspective on the two phases of compiling control and
whose general correctness results can be reused. Most notably, abstract interpre-
tation [3] and partial deduction [4,5]. In [6], we showed that the technique could
c© Springer Nature Switzerland AG 2019
F. Mesnard and P. J. Stuckey (Eds.): LOPSTR 2018, LNCS 11408, pp. 115–131, 2019.
https://doi.org/10.1007/978-3-030-13838-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13838-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-13838-7_7

116 V. Nys and D. De Schreye

in some cases be reformulated and formalized using abstract conjunctive par-
tial deduction, a framework proposed in [7] which integrates the aforementioned
frameworks. In addition, we proposed a new abstraction, multi, to analyze com-
putations with unboundedly growing goals. This allowed us to analyze a diverse
set of well-known programs and to compile these into programs executed under
the standard selection rule. Unfortunately, the multi abstraction also broke an
explicit assumption of the abstract conjunctive partial deduction framework. In
the current work, we propose a different perspective. We show that the synthesis
obtained using the previously published approach can also be obtained by apply-
ing the first Futamura projection, in which program specialization is applied to
an interpreter and an input program. Such an approach has been speculated
upon in the past, but the current work is the first that demonstrates that this is
indeed feasible. It is not an instance of the abstract conjunctive partial deduction
framework, but rather a standard offline partial deduction, which implies that
no changes to the abstract conjunctive partial deduction framework are neces-
sary to relax the aforementioned assumption which is not met. Based on our
experiments, there are no programs which can be compiled using the classical
approach but not the approach presented here.

The idea of applying the first Futamura projection to obtain a more struc-
tured representation of control flow can also be found in [8], where Java bytecode
is decompiled to Prolog. The notion of modelling and analyzing the execution of
a (PIC) program as a logic program and partially evaluating that can be found
in [9]. This is akin to what we do, though we abstractly analyze the program to
be executed itself, which is already a logic program, and partially evaluate the
interpreter. Other examples of specialization of logic program interpreters, also
using the Logen system, are provided in [10].

We will first give a brief introduction to the first Futamura projection and to
offline partial deduction in Sect. 2. Then, we will provide a motivating example.
We will explain the notation and operations shown in the motivating example by
introducing our abstract domain in Sect. 4. We will use the abstract domain to
express the scope of the technique in Sect. 5. Next, in Sect. 6, we will round out
the analysis for the first example program. We will also show a simple meta-
interpreter which, using information obtained from the analysis, can be config-
ured to implement the desired non-standard selection rule. Once the basic idea
has been illustrated, we will show the most interesting parts of the analysis of
a more complex program, as well as extensions to the meta-interpreter required
to run this program in a satisfactory way in Sect. 8. In Sect. 9, we will show how
the meta-interpreter can be specialized using the Logen system for offline par-
tial deduction. Then, in Sect. 10, we will show that the obtained specialization is
indeed equivalent to the “classical” synthesis. We wrap up with a discussion and
with avenues for future work. A set of example programs along with correspond-
ing analyses and syntheses using both techniques is available as an electronic
appendix at https://perswww.kuleuven.be/˜u0055408/cc-as-opd.html.

https://perswww.kuleuven.be/~u0055408/cc-as-opd.html

Compiling Control as Offline Partial Deduction 117

2 Preliminaries

In [11], Futamura showed that partially evaluating an interpreter for a language
l1 (written in language l2) for a “source program” (in l1) yields an “object
program” (in l2) with the semantics of the source program, as run by the inter-
preter. That is, partially evaluating an interpreter for a source program is an act
of compiling.

This is expressed by the following equation: int(s, r) = α(int, s)(r). Here,
int is the function encoded by the interpreter. Its arguments s and r are the
“static” and “runtime” inputs, i.e. inputs which remain constant and which may
vary between executions, respectively. In the setting of partial evaluation of an
interpreter, the “static” input is the program to be interpreted, whereas the
“runtime” input is the input to the interpreted program. The function α is the
partial evaluation function: it specializes its first argument for the static input.
In this setting, this produces a program which takes the runtime inputs, so r,
and behaves as the interpreter would when also given s. Therefore α(int, s) is
the compiled version of the source program which Futamura calls the “object
program”. The observation that a compiled program can be obtained through
specialization of an interpreter is known as the first Futamura projection [12].

Partial deduction is a technique for logic program specialization originally
introduced in [4] and formalized in [13]. The idea behind partial deduction is to
compute a set of derivation trees for some top level goal A such that all expected
queries instantiate A. The computations represented by the branches of these
trees can then be collected into logical implications, referred to as “resultants”.
These are then encoded as logic program clauses, so that a program is obtained
which is equivalent to the original program for all queries which instantiate A,
but not necessarily for other queries.

An important notion is “closedness”. Under closedness, all atoms in a partial
deduction are instances of an atom in the root of a derivation tree. This implies
that a goal is never reduced to a goal that has not been specialized and that
completeness is ensured. Because the set of all roots of trees is denoted A, this
is also referred to as A-closedness.

There are two broad approaches for dealing with the issue of control [14].
In “online partial deduction”, control is tackled during the specialization phase
itself. That is, the construction of SLDNF-trees is monitored and unfolding con-
tinues as long as there is evidence that interesting computations are performed.

Offline partial deduction is different in that control decisions are taken before
the specialization phase. These are then cast in the form of program annotations
for the specializer. During the specialization phase, unfolding proceeds in a left-
to-right fashion. Broadly speaking, depending on the annotation of a call, it
may be unfolded, it may be treated as an instance of a specialized atom or it
may be kept residual. Given the annotations, specialization is straightforward.
Annotations can be written manually, but can also be derived automatically in
a separate phase. This phase is referred to as a “binding-time analysis” and is
performed before the static input is available.

118 V. Nys and D. De Schreye

The above concepts and techniques can be generalized to “conjunctive partial
deduction”. In conjunctive partial deduction, the roots and leaves of derivation
trees need not be atoms, but can also be conjunctions. This adds a layer of
complexity: While partial deduction splits up conjunctions into atoms before
starting new SLDNF-trees, conjunctive partial deduction has more options for
splitting them into subconjunctions.

3 Running Example: Permutation Sort

To introduce the essential components of compiling control, we will use a moti-
vating example. The following is a Prolog implementation of permutation sort,
which sorts a list by permuting it and then checking if the permutation is ordered
correctly.
permsort(X,Y) :- perm(X,Y), ord(Y).
perm([],[]).
perm([X|Y],[U|V]) :- select(U,[X|Y],W), perm(W,V).
ord([]).
ord([X]).
ord([X,Y|Z]) :- X =< Y, ord([Y|Z]).

While this sorting program clearly expresses the declarative perspective on
sorting as creating an ordered permutation, its naive implementation is prob-
lematic. Its efficiency can be improved by using a different selection rule. Infor-
mally, such a selection rule interleaves calls which build the permutation with
calls which check for the correct ordering of elements. Specifically, as soon as the
first two elements of the permutation have been generated, their ordering can
be checked. Figures 1 and 2 can be considered as symbolic derivation trees rep-
resenting a computation under this more efficient selection rule. In these figures,
a value ai, where i is a natural number, stands for any term, whereas a value gj ,
where j is also a natural number, stands for a ground term. When an atom is
underlined once, we consider the effects of resolving said atom. If it is underlined
twice, we treat it as a built-in. The reader is not intended to understand every

1 : permsort(g1, a1)

2 : perm(g1, a1), ord(a1)

4 : select(a2, [g2|g3], a4),
perm(a4, a3), ord([a2|a3])

5 : perm(g5, a3), ord([g4|a3])
a2 = g4
a4 = g5

3 : ord([])

�

a1 = []
g1 = []

g1 = [g2|g3]
a1 = [a2|a3]

Fig. 1. First analysis tree for permutation sort

Compiling Control as Offline Partial Deduction 119

aspect of the two trees at this point. They are only intended to give an idea of
the type of computation the synthesized program should execute. In the follow-
ing sections, we will provide formal underpinnings for the data and operations
in these symbolic trees and will explain how they can be used to synthesize a
program which simulates the program with the desired selection rule.

4 Abstract Domain

The trees shown in Sect. 3 constitute the analysis phase of compiling control,
which is a form of abstract interpretation. This abstract interpretation remains
entirely the same as in [6]. We reproduce the key points here.

As any abstract interpretation, the analysis phase is based on an abstract
domain, whose elements represent sets of concrete values with specific properties.
The fundamental building blocks of the abstract domain are two types of abstract
variables, ai and gj . An abstract variable ai represents the set of all concrete
values, whereas a variable gj represents all ground concrete values. The union of
these two sets is denoted AV arP .

5 : perm(g1, a1), ord([g2|a1])

7 : select(a2, [g3|g4], a4),
perm(a4, a3), ord([g2, a2|a3])

8 : perm(g6, a3), ord([g2, g5|a3])

9 : perm(g6, a3), g2 ≤ g5, ord([g5|a3])

5 : perm(g6, a3), ord([g5|a3])

a2 = g5
a4 = g6

6 : ord([g2])

�

a1 = []
g1 = []

g1 = [g3|g4]
a1 = [a2|a3]

Fig. 2. Second analysis tree for permutation sort

Abstract counterparts to concrete program constants are included in the
abstract domain. These represent the singleton sets consisting of the correspond-
ing concrete constants. This is why, in the example in Sect. 3, the empty list []
occurs as an argument. From these abstract variables and abstract constants,
abstract terms, abstract atoms and abstract conjunctions are constructed, yield-
ing the sets ATermP , AAtomP and AConAtomP . Example members of these
sets are [g2|g3], permsort(g1, a1) and perm(g1, a1), ord(a1), respectively. If an
abstract term, atom or conjunction contains some ai or gj several times (i.e. the
occurrences have the same subscript), then the represented concrete term, atom

120 V. Nys and D. De Schreye

or conjunction contains the same subterm at every position corresponding to the
positions of ai or gj . For instance, in the second node in the running example,
the result of the permutation operation, a1, must be ordered. Note that two
abstract variables ai and gj , when i = j, are not assumed to be aliased.

Let ATermP/≈, AAtomP/≈ and AConAtomP/≈ denote the sets of equiva-
lence classes of abstract terms, abstract atoms and abstract conjunctions, respec-
tively. Equivalence of abstract terms (or atoms or conjunctions) is based on
abstract substitutions, which are finite sets of ordered pairs in AV arP ×ATermP

and whose application instantiates abstract variables in a way that is analogous
to how applying substitutions in the concrete domain instantiate concrete vari-
ables. Two abstract terms (or atoms or conjunctions) A and B are equivalent,
denoted A ≈ B, if and only if there are abstract substitutions θ1 and θ2 such
that Aθ1 = B and Bθ2 = A.

The abstract domain, ADomP , is the union of AV arP , ATermP/≈
AAtomP/≈ and AConAtomP/≈ (leaving aside the multi abstraction until
Sect. 8). Note that we will refer to an equivalence class by taking a represen-
tative. For instance, we write permsort(g1, a1) when we mean “all abstract
atoms equivalent to permsort(g1, a1)” and assume that the intended meaning
is clear from the context. Finally, let DomP be the concrete domain and let
γ : ADomP → 2DomP be the concretization function, which maps elements of
the abstract domain to their concrete denotation. For example, the denotation
of permsort(g1, a1) is an infinite set of concrete atoms with predicate symbol
permsort, with a ground first argument and any kind of second argument.

5 Instantiation

In general, abstract interpretation requires a “widening” operator to achieve
termination. A widening operator replaces one abstract value with another, more
general abstract value, which can come at the cost of accuracy of the analysis.
For our abstract domain, depth-k abstraction is such a type of widening. Depth-k
abstraction entails that any abstract values whose term depth exceeds a certain
limit k are replaced with more general terms. For instance, if only one level of
term nesting is allowed and the atom ord([g1, g2|a1]) is computed, this term must
be generalized. The most specific term which does not exceed the nesting limit is
ord([g1|a2]). If such a widening were applied in the running example, the resulting
synthesis would not simulate the desired selection rule. In general, applying
depth-k abstraction may affect the correctness of the technique, depending on
the program and the level of nesting which is allowed. In what follows, we will
assume that depth-k abstraction is not required for termination.

The abstract domain is also tied to the selection rule. We assume that the
selection rule is an instantiation based selection rule, which is defined as follows:

Definition (instantiation-based selection rule). An instantiation-based selection
rule for P is a strict partial order < on AAtomP/≈, such that γ(s1) ⊂ γ(s2)
implies s2 ć s1, where ⊂ denotes strict set inclusion.

Compiling Control as Offline Partial Deduction 121

An instantiation-based selection rule expresses which atom is selected from an
abstract conjunction. Our technique requires that an instantiation-based selec-
tion rule can completely specify the desired control flow. This is formalized as
follows.

Definition (complete instantiation-based selection rule). An instantiation-
based selection rule for a program P is complete if, for each A ∈ AConP/≈,
there exists an abstract atom b in A, such that ∀c ∈ A : c �≈ b ⇒ b < c.

Definition (selection by a complete instantiation-based selection rule). Let A ∈
AConAtomP/≈. Then, the abstract atom selected from A by < is the leftmost
abstract atom b, such that ∀c ∈ A : c �≈ b ⇒ b < c.

In the running example, a complete instantiation-based selection rule
contains a pair (ord([g1, g2|a1]), perm(g1, a1)). There is no aliasing between
the elements. That is, this ordered pair has the same meaning as
(ord([g1, g2|a1]), perm(g3, a2)).

We assume that fully evaluated abstract atoms are dealt with in left-to-
right order. We also assume that fully evaluated abstract atoms which can be
fully evaluated are selected before those which can be unfolded.1 Under the
assumption that more instantiated atoms are always ordered before less instan-
tiated ones, we will represent < by its generating set, Preprior. The selec-
tion rule < itself is inferred from Preprior using the assumptions about fully
evaluated abstract atoms and the fact that < is transitive. For our running
example, formally, Preprior contains the pairs perm(g1, a1) < ord([g1|a1]) and
ord([g1, g2|a1]) < perm(g1, a1).

6 The Analysis Phase

The analysis consists of a number of abstract derivation trees whose roots
are all in a finite set A of abstract conjunctions. The first of these conjunc-
tions is the abstract conjunction representing the intended call pattern, e.g.
permsort(g1, a1). The leaves of these trees are also in A, or they are empty.
Atoms underlined once are selected by the non-standard selection rule and an
abstraction of resolution is applied to them. Atoms underlined twice represent
atoms which, in a concrete computation, are selected, but an abstraction of
resolution is not applied to them. Instead, these atoms are considered to be
completely executed and the result of this execution is collected in a set of out-
put bindings. That is, the evaluation of such atoms is not interleaved with that
of other atoms and we are therefore only interested in the effects they have on
the remaining atoms.

1 Both assumptions pertaining to fully evaluated atoms are strictly for notational
convenience.

122 V. Nys and D. De Schreye

7 A Suitable Meta-interpreter

If each abstract conjunction in Figs. 1 and 2 is assigned the number in front of the
conjunction as an identifier and the empty goal is assigned the atom “empty”,
a simple meta-interpreter can run permutation sort under the desired selection
rule.
compute(Gs) :- mi(Gs,1).
mi([],_).
mi([G|Gs],State) :-

selected_index(State,Idx),
divide_goals([G|Gs],Idx,Before,Selected,After),
mi_clause(Selected,Body,RuleIdx),
state_transition(State,NewState,RuleIdx),
append(Before,Body,NewGsA),
append(NewGsA,After,NewGs),
mi(NewGs,NewState).

mi([G|Gs],State) :-
selected_index(State,Idx),
divide_goals([G|Gs],Idx,Before,Selected,After),
mi_full_eval(Selected,FullAIIdx),
call(Selected),
state_transition(State,NewState,FullAIIdx),
append(Before,After,NewGs),
mi(NewGs,NewState).

divide_goals(Goals,Idx,Before,Selected,After) :-
length(Before,Idx),
append(Before,[Selected|After],Goals).
Here, mi/2 is the meta-interpretation predicate. It takes a concrete con-

junction and a state. The initial call is compute([permsort(G,A)]) where G is
instantiated to a ground value and A can be any value. The mi clause/3 pred-
icate encodes clauses as a head, a list of body atoms and a unique identifier
for the clause. The mi full eval/2 predicate identifies fully evaluated goals, e.g.
mi full eval(select(X,Y,Z), fullai1) to remove an element X from a list Y ,
which yields Z. The selected index/2 predicate supplies the index of the atom
to be selected in a particular state. The meta-interpreter itself does not inspect
groundness or aliasing characteristics of conjunctions. Such characteristics are
derived during the analysis phase. The state transition/3 predicate expresses
which states are directly reachable from which other states and which rules cause
the transitions. The full code is in the electronic appendix.

7.1 Instantiation of the First Futamura Projection

Using Logen, the interpreter can be specialized for mi([permsort(X,Y)], 1). We
cannot express to Logen that X will be instantiated to a ground value, but
the control flow is already encoded in selected index/2 and state transition/3.

Compiling Control as Offline Partial Deduction 123

Therefore, the result of the specialization will still be a compiled program with
the desired control flow.

With regard to the equation int(s, r) = α(int, s)(r), the vector s is described
in [11] as “a source program and information needed for syntax analysis and
semantic analysis”. As such, the selection rule is a component of s in addition
to the source program, P . Because the program should work for multiple input
queries, a program’s top-level goal is considered a runtime input. However, a
top-level goal instantiated by all runtime top-level goals is a static input. Hence,
such a goal is a component of s, even if P is not intended to be run with this goal
directly. This is what allows logic programs to be specialized for certain top-level
calls. Groundness characteristics of the query pattern can also be considered as
static information. This is not done in partial deduction of pure logic programs,
but we have to take it into account for our approach.

To this end, the compiling control analysis can be encoded as a component
of s. Because it provides all required information about the static inputs to the
meta-interpreter, there is no need to provide those as direct inputs to the evalu-
ator as well. However, it does not necessarily contain enough information about
predicates not involved in the coroutining control flow. That is, certain predi-
cates may be fully evaluated during the analysis phase even if their definition
is part of the source program, so the source program is also a component of s.
The analysis completely specifies the local and global control for a conjunctive
partial deduction of P under the semantics implemented by int. In light of the
first Futamura projection, an offline partial evaluation of the interpreter must
then produce a program equivalent to that produced by the synthesis step [6].2

In other words, the “classical” synthesis step can be seen as a problem-specific
shortcut to the outcome of the first Futamura projection.

8 Programs Requiring the multi Abstraction: Primes

The application of compiling control can be recast as an abstract conjunctive
partial deduction [7] in the case of permutation sort. However, this does not
hold for every program with an instantiation-based selection rule. This is due to
the generation of abstract conjunctions of arbitrary length in some programs.
Conjunctive partial deduction can deal with conjunctions of arbitrary length by
splitting goals to obtain an A-closed set. In our context, however, this would
cause a loss of important information regarding aliasing between subconjunc-
tions. The finite analysis of some coroutining programs therefore requires an
addition to the abstract domain, known as the multi abstraction.

The formal details of this abstraction are quite elaborate. In brief, the con-
cretization of an abstract conjunction containing a multi abstraction contains an
infinite number of concrete conjunctions of arbitrary length, but with a structure

2 We use “partial evaluation” rather than “partial deduction” for impure logic
programs.

124 V. Nys and D. De Schreye

which follows a constrained pattern, expressed as a conjunction.3 It is easier to
illustrate the multi through an example first and to indicate the role each com-
ponent plays rather than to define it beforehand. Here, we will use the following
primes generator as an example:
primes(N,Primes) :-

integers(2,I),sift(I,Primes),length(Primes,N)
integers(N,[]).
integers(N,[N|I]) :- plus(N,1,M),integers(M,I).
sift([N|Ints],[N|Primes]) :-

filter(N,Ints,F),sift(F,Primes).
sift([],[]).
filter(N,[M|I],F) :- divides(N,M), filter(N,I,F).
filter(N,[M|I],[M|F]) :-

does_not_divide(N,M), filter(N,I,F).
filter(N,[],[]).
length([],0).
length([H|T],N) :- minus(N,1,M),length(T,M).

This program is run with a top-level call primes(N,P), where N ∈ N.
Rather than list Preprior here in full, we will describe it in terms of a

set KA = {integers(g1, a1), sift(a1, a2), filter(g1, a1, a2), length(a1, g1)}. Two
rules are sufficient to perform all the comparisons needed to complete the analysis
phase: ∀x ∈ KA : x ć integers(g1, a1) and ∀x ∈ AAtomP/≈ : (∃y ∈ KA :
γ(x) ⊂ γ(y)) ⇒ ∀y ∈ KA : x < y (where ⊂ denotes the strict subset relation).

With the resulting order < and without further abstraction, the abstract
analysis leads to the introduction of abstract conjunctions with an arbitrary
number of filter/3 abstract atoms which are aliased in a consistent manner.
Given that A must be finite and that the first argument of primes/2 can
be an arbitrarily large number, adding a conjunction to A for every possi-
ble number of filters is not an option. Instead, we abstract away the pre-
cise number of filters by replacing the filter/3 abstract atoms with a multi
abstraction, which represents any strictly positive natural number of filters.
multi(filter(gid,i,1, aid,i,1, aid,i,2), {aid,1,1 = a1}, {aid,i+1,1 = aid,i,2}, {aid,L,2 =
a2}), for example, denotes the following set of abstract conjunctions:
{filter(gf1 , a1, a2), filter(gf1 , a1, af1) ∧ filter(gf2 , af1 , a2), filter(gf1 , a1, af1) ∧
filter(gf2 , af1 , af2) ∧ filter(gf3 , af2 , a2), . . .} where every fN is a unique index
which does not occur for that variable type in the conjunction that the set
member is part of. The first element of the multi abstraction is the conjunctive
pattern. In the pattern, id represents an identifier unique to this multi. This is
required as a single abstract conjunction can contain several multi abstractions,
which need to be distinguished from one another, but whose variables can also be
aliased in some cases. The i is symbolic and is not used in the pattern itself, but
in the remaining arguments to multi, which are sets of constaints. The numeric

3 In the most recent work on the analysis [6], we have assumed the pattern of a multi
to be a conjunction. Known examples of other patterns are artificial. One is provided
in the appendix.

Compiling Control as Offline Partial Deduction 125

index plays the same part as a regular abstract variable subscript, i.e. to indi-
cate aliasing within an occurrence of the pattern. The second argument to multi,
which is called Init, is a set of constraints which expresses the aliasing applied
to certain variables in the first represented instance of the conjunctive pattern.
Here, the symbolic i is replaced with 1 to indicate this. The third argument,
Consecutive, expresses aliasing between consecutive occurrences of the pattern.
The fourth, Final, expresses aliasing applied to variables in the last represented
instance of the pattern. Here, the symbolic i is replaced with L (which stands
for “last”) to indicate this. When an instance of the pattern becomes eligible
for abstract resolution, a case split is applied to the multi abstraction. The
underlying intuition is that it represents either one or multiple occurrences of
its pattern. For a more formal and detailed account of the multi abstraction, we
refer to [6].

A specification of the control flow using selected index/2 is no longer pos-
sible if the multi abstraction is required for analysis: in two different con-
crete instances of an abstract conjunction containing multi, the concrete atoms
selected for resolution can be at different index positions. The solution, then, is
to transform the program so that this is no longer the case. Transforming the
interpreted program P into a different purely logical program which can be dealt
with—at least through a simple transformation—is not an option. It is, however,
possible to generalize the SLD-based execution mechanism implemented by the
meta-interpreter in a way which still allows the results of partial deduction to be
applied. The idea behind this is to introduce an additional operation, grouping,
which transforms atoms into arguments of an atom with a special predicate
symbol, cmulti. This operation does not affect the results of the program in any
way, but strengthens the correspondence between the abstract analysis and a
concrete execution. In this way, the length of concrete conjunctions also becomes
bounded.

8.1 An Extended Meta-interpreter

The key modification to the meta-interpreter is the addition of the following
clauses:
mi([G|Gs],State) :-

selected_index(State,Idx),
divide_goals([G|Gs],Idx,Before,

cmulti([building_block(Patt1)]),
After),

state_transition(State,NewState,one),
append(Patt1,After,NewGsA),
append(Before,NewGsA,NewGs),
mi(NewGs,NewState).

mi([G|Gs],State) :-
selected_index(State,Idx),
divide_goals([G|Gs],Idx,Before,

cmulti([building_block(Patt1),

126 V. Nys and D. De Schreye

building_block(Patt2)|BBs]),
After),

state_transition(State,NewState,many),
append(Before,Patt1,NewGsA),
append(NewGsA,[cmulti([building_block(Patt2)|BBs])],NewGsB),
append(NewGsB,After,NewGs),
mi(NewGs,NewState).

mi([G|Gs],State) :-
grouping(State,NextState,Groupings),
apply_groupings([G|Gs],Groupings,NewGs),
mi(NewGs,NextState).
The first two of these clauses extract atoms from a concrete counterpart to a

multi abstraction. The third one is the one which introduces the concrete coun-
terpart to the multi abstraction during interpretation. It uses apply groupings/3
to group certain concrete conjunctions in a concrete cmulti structure. The
code for this operation is quite long, but it is sufficient to know that the
second argument to apply groupings/3 specifies, for a given state, which sub-
conjunctions of the overall goal should be considered instantiations of a multi
abstraction. This information is available from the abstract interpretation and
is encoded using the grouping/3 predicate, which states which atom indices
are grouped during the transition from one state to the next. For example,
grouping(54, 55, [[(2, 3), (3, 4)]]) expresses that, in a concrete instance of the tran-
sition from state 54 to state 55, the atoms at index positions 2 (that is, from index
position 2 to right before index 3) and 3 (that is, from index position 3 to right
before index position 4) instantiate a multi and can be grouped together. Each
instance of the pattern of the multi is further wrapped inside a building block
structure to easily extract a single instance of the pattern from the cmulti at a
later point in the program. Code for the full meta-interpreter and the encoded
primes generator, along with instructions on how to generate the analysis, is in
the electronic appendix. In the following sections, we show how a specialization
of the meta-interpreter can be obtained using Logen.

9 Specialization Using Logen

Logen is driven by annotations. Specifically, filter declarations and clause annota-
tions. Filter declarations associate arguments of predicates with so-called “bind-
ing types”. A binding type can be a binding time, e.g. “static” or “dynamic”, but
it can also restrict the structure of the argument. Clause annotations indicate
how every call in a clause body should be treated during unfolding. For more
detail, we refer to [15,16].

Our filter declarations require the following binding types: “static”,
“dynamic”, “nonvar”, “struct” and “list”. The first two simply express whether
or not an argument will be known at specialization time. The third expresses
that an argument has some outermost structure during specialization. The fourth
can specify an argument’s functor and the binding types of its arguments.

Compiling Control as Offline Partial Deduction 127

The last binding type is for closed lists, i.e. lists whose length is bounded. A
binding type can also be a disjunction, in which case an argument is considered
to be an instance of the first applicable disjunct. The purpose of binding types is
this: before a call to a predicate with certain binding types is specialized, the call
is generalized and is used as the root of a partial derivation tree. The binding
types determine to which extent the call is generalized. A static argument is not
generalized, whereas a dynamic one is replaced with a variable.

All clause annotations for the current work can be written using the follow-
ing strategies: “unfold”, “call”, “rescall” and “memo”. The first means that an
atom should be resolved. The second means that a call should be executed at
specialization time, while the third means that it should be executed at runtime.
The last one means that it should not be unfolded further, but that it should be
used as the root for a new derivation tree.

9.1 Simple Meta-interpreter

For the simple meta-interpreter, we start from the naive program annotation
performed by Logen. This annotates every predicate call as “unfold” and every
builtin call as “call”. We change the recursive call to mi/2 from “unfold” to
“memo”, so that it may be specialized separately. This can be seen as starting
a new tree in partial deduction and adding the root of this tree to the set of
analyzed conjunctions A. If the default option, “unfold”, is used, new deriva-
tion trees are not started and the set of analyzed conjunctions A is not closed.
Furthermore, we annotate the call to call/1 as “rescall”. Calls to call/1 apply
to atoms which, in the abstract analysis, are underlined twice and which we
consider residual. The “rescall” annotation expresses precisely the idea that a
call should simply be executed when the program is run. The “call” annotation
should not be used, as this executes the call during specialization time instead
of during program execution. The most important filters are as follows:

– compute(struct(permsort,[dynamic,dynamic]))
We specify as much information about the top-level call as possible. We
cannot specify that the arguments to the call will have certain ground-
ness characteristics, but this is not necessary as the selected index/2 and
state transition/3 predicates are based on this information.

– mi(type(list(nonvar)),static)
Neither the goal, which is represented as a list, nor its elements should be
abstracted to variables in the root of a derivation tree. We also keep track of
the state index and do not generalize it.

The arguments of other filters can be left dynamic: some values will be known
at specialization time, but if the calls to an annotated predicate are never used
as the root of a derivation tree (and they are not, because they never have the
“memo” annotation), annotating them as “static” has no impact on the partial
deduction.

128 V. Nys and D. De Schreye

9.2 Extended Meta-interpreter

For the extended meta-interpreter, the reasoning behind the clause annotations
remains mostly the same. However, a crucial change must be applied to deal
with the case split on the multi abstraction during specialization. During partial
evaluation, some information regarding the structure of the multi abstraction is
necessarily generalized away. To the best of our knowledge, we cannot use filter
declarations to preserve info from the abstract analysis about the internal struc-
ture of a concrete multi and generalize calls so that A is closed. The problem is
that the specialization procedure must generalize over concrete lists of arbitrary
length. This can only be done using a variable, which means that information
regarding the contents of the list is lost. Specifically, it becomes impossible to use
append operations to build a conjunction at specialization time if some of the
appended elements are free variables. However, we can re-encode the required
information into the call annotations. We modify and annotate the interpreter
as follows.
logen(mi/2,mi([B|C],A)) :-

logen(unfold,selected_index(A,D)),
logen(unfold,extracted_patt_one(A,Patt1)),
logen(unfold,

divide_goal(
[B|C],D,E,
cmulti([building_block(Patt1)]),F)),

logen(unfold,state_transition(A,J,one)),
...
logen(memo,mi(L,J)).

logen(mi/2,mi([B|C],A)) :-
logen(unfold,selected_index(A,D)),
logen(unfold,

extracted_patts_many(A,Patt1,
[building_block(Patt2)|BBs])),

logen(unfold,
divide_goal(

[B|C],D,E,
cmulti([building_block(Patt1),

building_block(Patt2)|BBs]),F)),
logen(unfold,state_transition(A,M,many)),
...
logen(memo,mi(P,M)).

Here, extracted patt one(State, Patt) defines the structure of the pattern
extracted from a multi abstraction when a single subconjunction is unfolded. Its
counterpart, extracted patts many(State, Patt, Patts), defines the structure of
the extracted pattern and the remaining, non-extracted patterns. Neither pred-
icate affects the correctness of the meta-interpreter. We have included an anno-
tated version of the meta-interpreter without these extra steps in the electronic
appendix for comparison.

Compiling Control as Offline Partial Deduction 129

The filter declarations remain mostly the same. However, goals now consist
of program-specific atoms and universal cmulti/1 atoms. To reflect this, we use
the following filter declaration for mi/2:
mi(type(

list(
(struct(cmulti,

[struct('.',
[struct(building_block,[type(list(nonvar))]),
dynamic])]) ;

nonvar))),
static)

This preserves as much information about each conjunct as possible, as the
disjunction (indicated by ;) is not commutative. While this solution is somewhat
ad hoc, it can easily be applied to all examples that we are aware of. Furthermore,
theoretical work on Logen [16] mentions the possibility of using custom binding
types. It is possible that a custom binding type for the multi abstraction could
help us avoid the above workaround.

10 Equivalence with the Classical Approach

The programs produced by Logen appear quite different from the syntheses
obtained using the classical approach. To bring them together, we applied the
ECCE online specializer to both resulting programs, because it can smooth away
some differences through several post-processing steps. The resulting programs
produce identical answer sets and display identical finite failure behavior.4 Fur-
thermore, while they retain some surface differences, they produce their answers
after a nearly identical number of inferences. This demonstrates that both ver-
sions implement the same control flow and have nearly identical runtime perfor-
mance. For instance, the sum total of the number of inferences required to find
all solutions to the 10-queens problem with one approach deviates less than 3.5%
from the number of inferences required with the other approach. More exhaus-
tive benchmarks can be found in the electronic appendix. Therefore empirical
evidence strongly points to both approaches being equivalent.

The compile-time performance for both approaches can safely be said to be
nearly identical. The reason for this is that the analysis phase, which is the most
expensive phase, is common to both approaches.

11 Discussion

We have shown that compiling control can be regarded as a specialization of a
specific meta-interpreter for logic programs. This is an application of the first

4 With the exception of the postprocessed classical synthesis of the prime sieve. This
suggests a bug in ECCE, but the numbers before postprocessing are still within
16.5%.

130 V. Nys and D. De Schreye

Futamura projection, which answers a question which has long remained open.
We have also provided a software pipeline which applies this idea in practice. We
have restricted ourselves here to programs for which depth-k abstraction is not
required, as there is currently no hard-and-fast rule to ascertain whether depth-k
abstraction affects the eventual program flow. It would be useful to develop such
a rule to further extend the set of programs which can be analyzed correctly
in an automated way. It is also possible to apply a counterpart to the multi
abstraction for terms which contain an arbitrary amount of nesting, but which
have a predictable, repeating structure. Finally, we plan to investigate a variant
of the multi abstraction whose pattern is not a conjunction, but a disjunction
of conjunctions.

References

1. Bruynooghe, M., Schreye, D.D., Krekels, B.: Compiling control. In: Proceedings
of the 1986 Symposium on Logic Programming, Salt Lake City, 22–25 September
1986, pp. 70–77. IEEE-CS (1986)

2. Bruynooghe, M., Schreye, D.D., Krekels, B.: Compiling control. J. Log. Program.
6(1&2), 135–162 (1989)

3. Bruynooghe, M.: A practical framework for the abstract interpretation of logic
programs. J. Log. Program. 10(2), 91–124 (1991)

4. Komorowski, H.J.: A specification of an abstract Prolog machine and its application
to partial evaluation. Ph.D. thesis, VTT Grafiska (1981)

5. Gallagher, J.P.: Transforming logic programs by specialising interpreters. In: ECAI,
vol. I, pp. 313–326 (1986)

6. Nys, V., De Schreye, D.: Abstract conjunctive partial deduction for the analysis
and compilation of coroutines. Formal Aspects Comput. 29(1), 125–153 (2017)

7. Leuschel, M.: A framework for the integration of partial evaluation and abstract
interpretation of logic programs. ACM Trans. Program. Lang. Syst. 26(3), 413–463
(2004)

8. Gómez-Zamalloa, M., Albert, E., Puebla, G.: Decompilation of Java bytecode to
prolog by partial evaluation. Inf. Softw. Technol. 51(10), 1409–1427 (2009)

9. Henriksen, K.S., Gallagher, J.P.: Abstract interpretation of PIC programs through
logic programming. In: Sixth IEEE International Workshop on Source Code Anal-
ysis and Manipulation (SCAM 2006), 27–29 September 2006, Philadelphia, pp.
184–196. IEEE Computer Society (2006)

10. Leuschel, M., Craig, S.J., Bruynooghe, M., Vanhoof, W.: Specialising interpreters
using offline partial deduction. In: Bruynooghe, M., Lau, K.-K. (eds.) Program
Development in Computational Logic: A Decade of Research Advances in Logic-
Based Program Development. LNCS, vol. 3049, pp. 340–375. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-25951-0 11

11. Futamura, Y.: Partial evaluation of computation process-an approach to a
compiler-compiler. Higher-Order Symb. Comput. 12(4), 381–391 (1999)

12. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial evaluation and automatic program
generation. In: Prentice Hall International Series in Computer Science. Prentice
Hall (1993)

13. Lloyd, J.W., Shepherdson, J.C.: Partial evaluation in logic programming. J. Log.
Program. 11(3&4), 217–242 (1991)

https://doi.org/10.1007/978-3-540-25951-0_11

Compiling Control as Offline Partial Deduction 131

14. Leuschel, M., Bruynooghe, M.: Logic program specialisation through partial deduc-
tion: control issues. TPLP 2(4–5), 461–515 (2002)

15. Leuschel, M., Jørgensen, J., Vanhoof, W., Bruynooghe, M.: Offline specialisation
in prolog using a hand-written compiler generator. CoRR cs.PL/0208009 (2002)

16. Craig, S.-J., Gallagher, J.P., Leuschel, M., Henriksen, K.S.: Fully automatic
binding-time analysis for prolog. In: Etalle, S. (ed.) LOPSTR 2004. LNCS, vol.
3573, pp. 53–68. Springer, Heidelberg (2005). https://doi.org/10.1007/11506676 4

https://doi.org/10.1007/11506676_4

Predicate Specialization for Definitional
Higher-Order Logic Programs

Antonis Troumpoukis1 and Angelos Charalambidis2(B)

1 Department of Informatics and Telecommunications,
University of Athens, Athens, Greece

antru@di.uoa.gr
2 Institute of Informatics and Telecommunications,

NCSR “Demokritos”, Athens, Greece
acharal@iit.demokritos.gr

Abstract. Higher-order logic programming is an interesting extension
of traditional logic programming that allows predicates to appear as
arguments and variables to be used where predicates typically occur.
Higher-order characteristics are indeed desirable but on the other hand
they are also usually more expensive to support. In this paper we pro-
pose a program specialization technique based on partial evaluation that
can be applied to a modest but useful class of higher-order logic pro-
grams and can transform them into first-order programs without intro-
ducing additional data structures. The resulting first-order programs can
be executed by conventional logic programming interpreters and benefit
from other optimizations that might be available. We provide an imple-
mentation and experimental results that suggest the efficiency of the
transformation.

1 Introduction

Higher-order logic programming has been long studied as an interesting extension
of traditional first-order logic programming and various approaches exist with
different features and semantics [2,4,12]. Typically, higher-order logic programs
are allowed to define predicates that accept other predicates as arguments and
variables can appear in places where predicate constants typically occur. Higher-
order logic programs enjoy similar merits as their functional counterparts. The
support of higher-order features however, usually comes with a price, and the
efficient implementation in either logic or functional programming is a non-
straightforward task.

The use of higher-order constructs is a standard feature in every functional
language in contrast to the logic programming languages. As a result, there exists
a plethora of optimizations that target specifically the efficient implementation of
such features. A popular direction is to remove higher-order structures altogether
by transforming higher-order programs into equivalent first-order ones, with the
hope that the execution of the latter will be much more efficient. Reynolds, in his
seminal paper [17], proposed a defunctionalization algorithm that is complete,
c© Springer Nature Switzerland AG 2019
F. Mesnard and P. J. Stuckey (Eds.): LOPSTR 2018, LNCS 11408, pp. 132–147, 2019.
https://doi.org/10.1007/978-3-030-13838-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13838-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-13838-7_8

Predicate Specialization for Definitional Higher-Order Logic Programs 133

i.e. it succeeds to remove all higher-order parameters from an arbitrary functional
program. There is however a tradeoff; his algorithm requires the introduction of
data structures in order to compensate for the inherent loss of expressivity [7].
Other approaches [5,13,14] have been proposed that do not use data structures,
but share the limitation that are not complete.

In the logic programming context there exist many transformation algorithms
with the purpose of creating more efficient programs. Partial evaluation algo-
rithms [6,9,11], for example, can be used to obtain a more efficient program by
iteratively unfolding logic clauses. Most of the proposals, however, focus on first-
order logic programs. Proposals that can be applied to higher-order programs
are limited. The prominent technique that targets higher-order logic programs
proposed in [4,21] and adopted from Hilog. It employs the Reynolds’ defunc-
tionalization adapted for logic programs. As a consequence it naturally suffers
from the same shortcomings of the original technique: the resulting programs are
not natural and the conventional logic programming interpreters fail to identify
potential optimizations without specialized tuning [18].

In this paper, we propose a partial evaluation technique that can be applied to
higher-order logic programs. The technique propagates only higher-order argu-
ments and avoids to change the structure of the original program. Moreover, it
differs from Reynolds’ style defunctionalization approaches as it does not rely
on any type of data structures. As a result, the technique will only guarantee to
remove the higher-order arguments in a well-defined subset of higher-order logic
programs. The main contributions of the present paper are the following:

1. We propose a technique based on the abstract framework of partial evalua-
tion that targets higher-order arguments. We have identified a well-defined
fragment of higher-order logic programming that the technique terminates
and produces a logic program without higher-order arguments.

2. We provide an implementation of the proposed technique and we experimen-
tally assess its performance. We also compare it with the Reynolds’ defunc-
tionalization implemented in Hilog. Moreover, we experiment with the ability
of combining this technique with the well-known tabling optimization.

The rest of the paper is organized as follows. In Sect. 2 we give an intuitive
overview of our method using a simple example. In Sect. 3 we formally define the
fragment of the higher-order logic programs we will use. Section 4 describes the
abstract framework of partial evaluation and Sect. 5 introduces the details of our
method. Section 6 discusses some implementation issues and Sect. 7 discusses the
performance of our transformation on various experiments. Lastly, we compare
our method with related approaches in Sect. 8 and we conclude the paper with
possible future work.

2 A Simple Example

We start with an introductory example so as to give an informal description of
our technique. We borrow an example from the area of knowledge representation
which deals with the expression of user preferences [3].

134 A. Troumpoukis and A. Charalambidis

The following program selects the most preferred tuples T out of a given unary
relation R, based on a binary preference predicate P. The preference predicate
given two tuples it succeeds if the first tuple is more preferred than the second.

winnow(P,R,T) :- R(T), not bypassed(P,R,T).
bypassed(P,R,T) :- R(Z), P(Z,T).

The program contains predicate variables (for example, P and R), that is variables
that can occur in places where predicates typically occur.

Assume that we have a unary predicate movie which corresponds to a relation
of movies and a binary predicate pref which given two movies succeeds if the
first argument has a higher ranking than the second one. Now, suppose that we
issue the query:

?- winnow(pref,movie,T).

We expect as answers the most “preferred” movies, that is all movies with the
highest ranking.

In the following, we will show how we can create a first-order version of
the original program specialized for this specific query. Notice that the atom
winnow(pref,movie,T), that makes up our given query, does not contain any
free predicate variables, but on the contrary, all of its predicate variables are
substituted with predicate names. Therefore, we can specialize every program
clause that defines winnow by substituting its predicate variables with the cor-
responding predicate names. By doing so, we get a program where our query
yields the same results as to those in the original program:

winnow(pref,movie,T) :- movie(T), not bypassed(pref,movie,T).
bypassed(P,R,T) :- R(Z), P(Z,T).

We can continue this specialization process by observing that in the body of
this newly constructed clause there exists the atom bypassed(pref,movie,T),
in which all predicate variables are again substituted with predicate names.
Therefore, we can specialize the second clause of the program accordingly:

winnow(pref,movie,T) :- movie(T), not bypassed(pref,movie,T).
bypassed(pref,movie,T) :- movie(Z), pref(Z,T).

There are no more predicate specializations to be performed and the transfor-
mation stops. Notice that the resulting program does not contain any predicate
variables, but it is not a valid first-order one. Therefore, we have to perform a
simple rewriting in order to remove all unnecessary predicate names that appear
as arguments.

winnow1(T) :- movie(T), not bypassed2(T).
bypassed2(T) :- movie(Z), pref(Z,T).

Due to this renaming process, instead of the initial query, the user now has to
issue the query ?- winnow1(T). Comparing the final first-order program with
the original one it is easy to observe that no additional data structures were

Predicate Specialization for Definitional Higher-Order Logic Programs 135

introduced during the first-order transformation, a characteristic that leads to
performance improvement (ref. Sect. 7).

This technique, however, cannot be applied in every higher-order logic pro-
gram. Notice that the resulting program of the previous example does not contain
any predicate variables. This holds due to the fact that in the original program,
every predicate variable that appears in the body of a clause it also appears in
the head of this clause. By restricting ourselves to programs that have this prop-
erty we ensure that the transformation outputs a first-order program. Moreover,
the transformation in this example terminates because the set of the special-
ization atoms (i.e. winnow(pref,movie,T) and bypassed(pref,movie,T)) is
finite, which is not the case in every higher-order logic program. To solve this,
we need to keep the set specialization atoms finite. This is achieved in two ways.
Firstly, we ignore all first-order arguments in every specialization atom, meaning
that in a query of the form ?- winnow(pref,movie,m_001), we will specialize
the program with respect to the atom winnow(pref,movie,T). Secondly, we
impose one more program restriction; we focus in programs where the higher-
order arguments are either variables or predicate names. Since the set of all
predicate names is finite and since we ignore all first-order values, the set of
specialization atoms is also finite and as a result the algorithm is ensured to
terminate.

3 Higher-Order Logic Programs

In this section we define the higher-order language of our interest. We begin with
the syntax of the language H we use throughout the paper. H is based on a simple
type system with two base types: o, the boolean domain, and ι, the domain of
data objects. The composite types are partitioned into three classes: functional
(assigned to function symbols), predicate (assigned to predicate symbols) and
argument (assigned to parameters of predicates).

Definition 1. A type can either be functional, argument, or predicate, denoted
by σ, ρ and π respectively and defined as:

σ ..= ι | (ι → σ)
π ..= o | (ρ → π)
ρ ..= ι | π

Definition 2. The alphabet of the language H consists of the following:

1. Predicate variables of every predicate type π (denoted by capital letters such
as P,Q,R, . . .).

2. Individual variables of type ι (denoted by capital letters such as X,Y,Z, . . .).
3. Predicate constants of every predicate type π (denoted by lowercase letters

such as p, q, r, . . .).
4. Individual constants of type ι (denoted by lowercase letters such as a, b, c, . . .).
5. Function symbols of every functional type σ �= ι (denoted by lowercase letters

such as f, g, h, . . .).

136 A. Troumpoukis and A. Charalambidis

6. The inverse implication constant ←, the negation constant ∼, the comma, the
left and right parentheses, and the equality constant ≈ for comparing terms
of type ι.

The set consisting of the predicate variables and the individual variables of
H will be called the set of argument variables of H. Argument variables will be
usually denoted by V and its subscripted versions.

Definition 3. The set of expressions of H is defined as follows:

– Every predicate variable (resp. predicate constant) of type π is an expression
of type π; every individual variable (resp. individual constant) of type ι is an
expression of type ι;

– if f is an n-ary function symbol and E1, . . . ,En are expressions of type ι then
(f E1 · · ·En) is an expression of type ι;

– if E is an expression of type ρ1 → · · · ρn → o and Ei an expression of type ρi
for i ∈ {1, . . . , n} then (E E1 · · · En) is an expression of type o.

– if E1,E2 are expressions of type ι, then (E1 ≈ E2) is an expression of type o.

We will omit parentheses when no confusion arises. Expressions of type o will
often be referred to as atoms. We write vars(E) to denote the set of all variables
in E. We say that Ei is the i-th argument of an atom E E1 · · · En. A ground
expression E is an expression where vars(E) is the empty set.

Definition 4. A clause is a formula

p V1 · · ·Vn ← L1, . . . , Lm,∼ Lm+1, . . . ,∼ Lm+k

where p is a predicate constant of type ρ1 → · · · → ρn → o, V1, . . . ,Vn are dis-
tinct variables of types ρ1, . . . , ρn respectively, and L1, . . . , Lm+k are expressions
of type o, such that every predicate argument of Li is either variable or ground.
A program P of the higher-order language H is a finite set of program clauses.

The syntax of programs given in Definition 4 differs slightly from the usual
Prolog-like syntax that we have used in Sect. 2. However, one can easily verify
that we can rewrite every program from the former syntax to the latter. For
instance, we could use the constant ≈ in order to eliminate individual constants
that appear in the head of a clause that uses the Prolog-like syntax.

Example 1. Consider the following program in Prolog-like syntax, in which we
have three predicate definitions, namely p : ι → o, q : ι → ι → o, and r : (ι →
o) → (ι → o) → (ι → ι) → o.

p(a).
q(X,X).
r(P,Q,f(X)) :- P(X),Q(Y).

In our more formal notation, these clauses can be rewritten as:

p X ← (X ≈ a).
q X Y ← (X ≈ Y).
r P Q Z ← (Z ≈ f(X)), (P X), (Q Y).

Notice that all clauses are now valid H clauses.

Predicate Specialization for Definitional Higher-Order Logic Programs 137

Notice that in a H program, all arguments of predicate type are either vari-
ables or predicate names, which as discussed in Sect. 2 leads to the termination
of our technique. However, in a H program all head predicate variables to be dis-
tinct. That implies that checking for equality between predicates (higher-order
unification) is forbidden. In other words, the higher-order parameters can be used
in ways similar to functional programming, namely either invoked or passed as
arguments. We decided to impose this restriction because equality between pred-
icates is treated differently in various higher-order languages [2,4,12]. Moreover,
in Sect. 2, we briefly discussed that the reason why our technique can produce a
first-order program is due to the following property:

Definition 5. A clause will be called definitional iff every predicate variable
that appears in the body appears also as a formal parameter of the clause. A
definitional program is a finite set of definitional clauses.

Example 2. Consider the following program in Prolog-like syntax:

p(Q,Q) :- Q(a).
q(X) :- R(a,X).

This program does not belong to our fragment, because the first clause is a non-
H clause and the second clause is a non-definitional clause. Regarding the first
clause, the predicate variable Q appears twice in the head, therefore the formal
parameters are not distinct. Regarding the second clause, the predicate variable
R that appears in the body, does not appear in the head of the clause.

We extend the well-known notion of substitution to apply to H programs.

Definition 6. A substitution θ is a finite set {V1/E1, . . . ,Vn/En} where the
Vi’s are different argument variables and each Ei is a term having the same type
as Vi. We write dom(θ) = {V1, . . . ,Vn} to denote the domain of θ.

Definition 7. Let θ be a substitution and E be an expression. Then, Eθ is an
expression obtained from E as follows:

– Eθ = E if E is a predicate constant or individual constant;
– Vθ = θ(V) if V ∈ dom(θ); otherwise, Vθ = V;
– (f E1 · · ·En)θ = (f E1θ · · ·Enθ);
– (E E1 · · · En)θ = (Eθ E1θ · · · Enθ);
– (E1 ≈ E2)θ = (E1θ ≈ E2θ);
– (L1, . . . , Lm,∼ Lm+1, . . . ,∼ Ln)θ = (L1θ, . . . , Lmθ,∼ (Lm+1θ), . . . ,∼ (Lnθ)).

Let θ be a substitution and E an expression. Then, Eθ is called an instance of E.

4 Partial Evaluation of Logic Programs

Partial evaluation [8] is a program optimization that specializes a given program
according to a specific set of input data, such that the new program is more effi-
cient than the original and both programs behave in the same way according to

138 A. Troumpoukis and A. Charalambidis

the given data. In the context of logic programming [6,9,11], a partial evalua-
tion algorithm takes a program P and a goal G and produces a new program P′

such that P ∪ {G} and P′ ∪ {G} are semantically equivalent. In Fig. 1 we illus-
trate a basic scheme that aims to describe every partial evaluation algorithm in
logic programming, which is based in similar ones in the literature [6,9]. Notice
that this general algorithm depends on two operations, namely Unfold and
Abstract, which can be implemented differently in several partial evaluation
systems.

1: Input: a program P and a goal G
2: Output: a specialized program P′

3: S := {A : A is an atom of G}
4: repeat
5: S′ := S
6: P′ := Unfold(P, S)
7: S := S ∪ {A : A is an atom that appears in a body of a clause in P′}
8: S := Abstract(S)
9: until S′ = S (modulo variable renaming)
10: return P′

Fig. 1. Basic algorithm for partial evaluation.

Firstly, the algorithm uses an unfolding rule [19] in order to construct a
finite and possibly incomplete proof tree for every atom in the set S and then
creates a program P′ such that every clause of it is constructed from all root-to-
leaf derivations of these proof trees. This part of the process is referred as the
local control of partial evaluation. There are many possible unfolding rules, some
of which being more useful for a particular application than others. Examples
include determinate, leftmost non-determinate, loop-preventing or depth-bound
unfolding strategies [6,9]. In some cases though, taking a simple approach which
performs no unfolding at all, or in other words by using one-step unfolding
strategy , may result in useful program optimizations. In such a case, Unfold
exports a program that is constructed by finding the clauses that unify with
each atom in S and then by specializing these clauses accordingly, using simple
variable substitutions.

Secondly, the algorithm uses an Abstract operation, which calculates a
finite abstraction of the set S. We say that S′ is an abstraction of S if every atom
of S is an instance of some atom in S′, and there does not exist two atoms in
S′ that have a common instance in S′. This operation is used to keep the size
of the set of atoms S finite, which will ensure the termination of the algorithm.
This part of the process is referred as the global control of partial evaluation.
Examples of abstraction operators include the use of a most specific generalizer
and a finite bound in the size of S [9], or by exploiting a distinction between
static and dynamic arguments for every atom in S [10].

A partial evaluation algorithm should ensure termination in both levels of
control. Firstly, we have the local termination problem, which is the problem of

Predicate Specialization for Definitional Higher-Order Logic Programs 139

the non-termination of the unfolding rule, and the global termination problem
which is the problem of the non-termination of the iteration process (i.e. the
repeat loop in the algorithm). As we stated earlier, the global termination prob-
lem is solved by keeping the set S finite through a finite abstraction operation.
Regarding the local termination problem, one possible solution is ensuring that
all constructed proof trees are finite. The one-step unfolding rule is by definition
a strategy that can ensure local termination.

5 Predicate Specialization

In the following, we define our technique using the standard framework of par-
tial evaluation (ref. Sect. 4), by specifying its local and global control strategies
(namely Unfold and Abstract operations). In particular, we will use a one-
step unfolding rule and an abstraction operation which generalizes all individual
(i.e. non-predicate) arguments from all atoms of the partial evaluation.

Definition 8. Let P be a program and S be a set of atoms. Then,

Unfold(P,S) =

⎧
⎨

⎩
p E1 · · ·En ← Bθ :

(p E1 · · ·En) ∈ S,
(p V1 · · ·Vn ← B) ∈ P,
θ = {V1/E1, . . . ,Vn/En}

⎫
⎬

⎭

Definition 9. Let S be a set of atoms. Then,

Abstract(S) =
{
p E′

1 · · ·E′
n : (p E1 · · ·En) ∈ S

}

where E′
i = Ei if Ei is of predicate type, otherwise E′

i = Vi, where Vi is a fresh
variable of the same type as of Ei.

In the following, we will show some properties of our transformation. Firstly
we will need the following lemma:

Lemma 1. Let P be a program, S be a (possibly infinite) set of atoms. Then:

1. If S is finite, then Unfold(P,S) is finite.
2. Abstract(S) is a finite abstraction of S.
3. If every element of S does not contain any free predicate variables, then every

atom of Unfold(P,S) does not contain any free predicate variables.

Proof. 1. Obvious from the construction of Unfold(P,S).
2. Every predicate argument of every atom that appears in P is either a variable

or a predicate name, therefore Abstract(S) is finite.
3. Suppose that Unfold(P,S) contains an atom A that contains a free predicate

variable V. If A appears in the head of a clause, then from the construction of
Unfold(P,S), S must contain A. If A appears in the body of a clause, then
since P is definitional, V also appears in the head of this clause. In any case,
S must contain an atom that contains the free predicate variable V.

140 A. Troumpoukis and A. Charalambidis

The first part of the lemma ensures local termination and the second part of the
lemma ensures global termination. The third part identifies that the transforma-
tion to first-order succeeds, provided that the program belongs to our fragment
and the initial goal does not contain free higher-order variables. In the following
corollaries, by Φ we denote the algorithm of Fig. 1 combined with the operations
in Definitions 8 and 9.

Corollary 1. Let P be a H program and G an goal. Then, the computation of
Φ(P,G) terminates in a finite number of steps.

Corollary 2. Let P be a definitional program and G an goal that does not con-
tain any free predicate variables. Then, the output of Φ(P,G) does not contain
any free predicate variables.

The result of Φ is neither a valid H program since it contains predicate names
as arguments in the heads, nor a valid first-order program since some symbols
appear both as arguments and as predicate symbols. Therefore, we must apply
a simple renaming [6, Sect. 3] in order to construct a valid first-order output. In
our case, at the end of the partial evaluation algorithm, every atom p E1 · · ·En

of S is renamed into p′ V1 · · ·Vm, where p′ is a fresh predicate symbol and
{V1 · · ·Vm} = vars(p E1 · · ·En). Moreover, all instances of every atom of S in
the resulting program are renamed accordingly.

6 Implementation

We have developed a prototype implementation1 of our predicate specialization
technique. Instead of developing a tailor-made higher-order language only for the
purpose of demonstrating the benefits of the transformation, we build upon an
existing higher-order logic programming language. The source programs in have
to be written in the higher-order language Hilog [4], a mature and well-known
language with a stable implementation within the XSB system [20].

A feature that we need and is not supported in Hilog though, is the use
of types. Our algorithm needs types not only for deciding whether the input
program belongs to our fragment, but also for the abstraction operation in Defi-
nition 9. Since the process of extending Hilog with types is outside of the scope of
this paper, we assume that the input programs are well-typed and accompanied
with type annotations for all predicates that contain predicate arguments.

The fragment that we discussed in Sect. 3 consists of programs that the only
elements that can appear as predicate arguments are variables and predicate
constants. However, most higher-order languages (and Hilog among them) allow
more complex expressions to appear as predicate arguments. One such example
is the use of partial applications, i.e., the ability to apply a predicate to only
some of its arguments. Consider the following simple program.

1 The implementation of the transformation is open source and can be accessed at
http://bitbucket.org/antru/firstify.

http://bitbucket.org/antru/firstify

Predicate Specialization for Definitional Higher-Order Logic Programs 141

conj2(P,Q,X) :- P(X),Q(X).
conj3(P,Q,R,X) :- conj2(P,conj2(Q,R),X).

In the second clause the expression conj2(Q,R) is a partial application where
only the first two arguments are defined. A partial application effectively pro-
duces a new relation and therefore typically occur in higher-order arguments.

In the implementation we are able to handle programs that make a lim-
ited use of complex predicate expressions, as a syntactic sugar for our initial
fragment. In particular, we allow non-variable and non-constant predicate argu-
ments in an expression of the form p E1 · · ·En that appears in the body of a
clause q V1 · · ·Vm ← B only if p and q do not belong in the same cycle in the
predicate dependency graph.2 The transformation in this case is also ensured to
terminate (because due to the form of the program all predicate variables of a
predicate that depends on itself have to be specialized only with predicate names
and therefore the set of all possible specialization atoms will remain finite). As
we mentioned earlier, this class of programs has the same expressive power as our
initial fragment. For example, the aforementioned logic program is equivalent to
the following program that does not use any partial applications.

conj2(P,Q,X) :- P(X),Q(X).
conj31(P,Q,R,X) :- conj22(P,Q,R,X).
conj22(P,Q,R,X) :- P(X),conj2(Q,R,X).

Interestingly, we can use our algorithm to convert a program of the extended
fragment into its equivalent H program. This can be done by initializing the
transformation process with the top predicate (here conj3(P,Q,R,X)).

7 Experiments

In this section we present some experiments to illustrate that our technique can
lead to the improvement of the execution runtime of higher-order logic programs.

We have tested our method with a set of benchmarks that include the com-
putation of the transitive closure of a chain of elements, a k-ary disjunction and
k-ary conjunction of k relations (for k = 5, 10), the computation of the shortest
path programs of a directed acyclic graph and a set of programs that deal with
preference representation [3]. The higher-order program is expressed in Hilog and
executed using the Hilog module of XSB. XSB essentially transforms Hilog pro-
grams into first-order programs using the techniques and optimizations described
in [18], and it also uses an optimized WAM instruction set to efficiently execute
Hilog. The measurements obtained include these optimizations. We compare
them with the execution of the Prolog programs produced by the our predicate
specialization technique. Apart from XSB3, we also consider for the execution

2 An edge from the predicate p to predicate q in the predicate dependency graph
means that there exists a clause that p appears in the head and p appears in the
body of the same clause.

3 version 3.7, cf. http://xsb.sourceforge.net/.

http://xsb.sourceforge.net/

142 A. Troumpoukis and A. Charalambidis

of the specialized program in other Prolog engines. The Prolog engines that we
use are SWI-Prolog4, and YAP5. Every program is executed several times, each
time with a predefined set of facts. All data has been artificially generated.

In addition to the standard execution for Hilog and Prolog code, we also per-
form a tabled execution of both the higher-order and the first-order programs in
XSB. Tabling is a standard optimization technique that is widely used in Prolog
systems. In this optimization, a re-evaluation of a tabled predicate is avoided by
memorizing (i.e. remembering) its answers. The XSB system is known for its
elaborate and efficient implementation of tabling for first-order logic programs.
For higher-order Hilog programs however, XSB’s tabling mechanism may not be
as effective as it is for first-order ones. The reason is that in order to table any
Hilog predicate one has to table all Hilog code. This may lead to high memory
consumption, and can be problematic for large-scale program development. We
decided to table all predicates of the first-order programs as well, despite the
fact that it might have been possible to make a more efficient use of tabling in
this case. The idea behind this decision is to enable us to draw a fair comparison
between tabled Hilog and tabled Prolog.

Table 1. Experiment results. All execution times are in seconds.

Program Hilog Prolog Hilog Prolog Program size

xsb xsb swi yap xsb+tab. xsb+tab. h.o. f.o. Facts

closure 1744.829 17.426 15.813 8.782 16.980 17.067 3 3 1000–8000

closure 1000 12.132 0.801 0.609 0.372 0.872 0.672 3 3 1000

closure 2000 91.284 2.884 2.644 1.332 2.944 3.004 3 3 2000

closure 4000 709.356 11.336 10.918 5.464 10.812 11.076 3 3 4000

closure 6000 2365.728 25.536 23.459 13.532 25.236 25.548 3 3 6000

closure 8000 5545.644 46.576 41.433 23.208 45.036 45.036 3 3 8000

conj5 9.887 1.090 0.026 0.010 2.918 0.571 3 6 1000–8000

genconj(5) 9.921 1.101 0.028 0.011 2.031 0.573 4 4 1000–8000

conj10 21.676 2.414 0.023 0.015 11.741 1.276 3 11 1000–8000

genconj(10) 21.580 2.415 0.039 0.013 9.618 1.275 4 4 1000–8000

union5 0.035 0.028 0.030 0.023 0.037 0.038 4 10 1000–8000

genunion(5) 0.034 0.030 0.025 0.021 0.050 0.042 5 5 1000–8000

union10 0.063 0.062 0.046 0.036 0.075 0.065 4 20 1000–8000

genunion(10) 0.062 0.079 0.054 0.035 0.091 0.104 5 5 1000–8000

path dag 971.326 679.557 975.027 54.156 0.001 0.001 6 6 10–80

path naive 5.725 4.248 6.661 0.407 0.021 0.016 6 6 10–80

winnow 0.147 0.130 0.117 0.039 1.107 1.115 3 3 1000–10000

w(2) 3.920 3.257 3.844 0.527 0.168 0.213 10 12 100–2000

w(3) 129.457 107.183 122.556 21.103 0.119 0.123 10 12 100–2000

wt(2) 4.146 3.288 3.857 0.530 0.144 0.219 11 13 100–2000

wt(3) 130.540 108.048 126.876 21.360 0.100 0.119 11 13 100–2000

4 version 7.2.3, cf. http://www.swi-prolog.org/.
5 version 6.2.2, cf. http://www.dcc.fc.up.pt/∼vsc/Yap/.

http://www.swi-prolog.org/
http://www.dcc.fc.up.pt/~vsc/Yap/

Predicate Specialization for Definitional Higher-Order Logic Programs 143

Table 1 summarizes the experimental results. The average execution time is
depicted in seconds for each program and for each engine. The execution time
is measured using the standard time/1 predicate. Apart from the execution
time, the table also contains the number of the (non-fact) clauses of the original
higher-order program, the number of the (non-fact) clauses of the resulting first-
order program after the transformation, and the ranges of the number of the
corresponding facts. We do not show the runtime of each transformation from
the higher-order to first-order since the execution of process was negligible (e.g.
less than 0.01 s in all cases).

Firstly, we observe that the first-order programs are in general much faster
than the higher-order ones. Even in the context of XSB which offers a native
support of Hilog, the Prolog code is in almost all cases faster than the Hilog
code. Especially in the transitive closure and the k-ary conjunction, we have
an improvement by one or more of orders of magnitude. In most programs in
our experiment, we noticed that the ratio between the execution time of Prolog
code and the execution time of Hilog code does not change much if we increase
the number of facts, with the exception of the transitive closure benchmark, in
which the more we increase the number of facts, the more this ratio decreases.
The most important advantage of executing standard Prolog though, is that it
allows us to choose from a wide range of available Prolog engines. From the three
Prolog engines that we used, YAP is the most performant one. Therefore, we can
get a further decrease in execution times by simply choosing a different Prolog
engine, a fact that is not possible if we want to execute Hilog code directly.

As we stated earlier, tabling is another standard optimization technique that
is widely used in Prolog systems. Tabling was very effective in many cases in
the experiment, especially in the preference operations (winnow, w and wt) and
in the path programs (notice the dramatic decrease in the execution times for
the path dag benchmark). It seems that the performance of this optimization
offers the same performance gain for both Hilog and Prolog code, since the
execution times are in most cases similar. A notable exception is that of the
k-ary conjunction benchmark, in which the tabled Prolog code is 5 to 10 times
faster than that of the tabled Hilog code. Also, the fact that we table all Hilog
and Prolog code did not have much negative effect in our experiment after all,
because (with the sole exception of the winnow benchmark) the tabled executions
are not slower than their non-tabled counterparts.

Finally, consider the programs that deal with the k-ary conjunction and
disjunction, i.e. the pairs conj5 – genconj(5), conj10 – genconj(10), union5 –
genunion(5) and union10 – genunion(10). Both programs of each of these pairs
are making the same computation, with the former expressed in a non-recursive
way and the latter in a recursive way. These programs differ also in the size of
their first order counterparts. The first-order form of the non-recursive version
has more clauses than the first-order form of the recursive version. We observe
that both the higher-order and the first-order versions of the same computation
have similar execution times, even though the first-order versions have different
numbers of clauses. As a result, an increase on the size of the first-order program
did not produce any overhead in the overall program execution time.

144 A. Troumpoukis and A. Charalambidis

8 Related Work

The proposed predicate specialization is closely connected with related work on
partial evaluation of logic programs [6,9,11]. More specifically, the proposed tech-
nique is a special form of partial evaluation which targets higher-order arguments
and uses a simple one-step unfolding rule to propagate the constant higher-order
arguments without changing the structure of the original program. Consequently,
first-order programs remain unchanged. To the extend of our knowledge, partial
evaluation techniques have not been previously applied directly to higher-order
logic programming with the purpose to produce a simpler first-order program.

Other techniques, however, have been proposed that focus on the removal of
higher-order parameters in logic programs. Warren, in one of the early papers
that tackle similar issues [21], proposed that simple higher-order structures are
non-essential and can be easily encoded as first-order logic programs. The key
idea is that every higher-order argument in the program can be encoded as a
symbol utilizing its name and a special apply predicate should be introduced
to distinguish between different higher-order calls. A very similar approach has
been employed in Hilog [4]; a language that offers a higher-order syntax with
first-order semantics. A Hilog program is transformed into an equivalent first-
order one using a transformation similar to Warren’s technique [21]. Actually,
these techniques are closely related to Reynolds’ defunctionalization [17] that
has been originally proposed to remove higher-order arguments in functional
programs. These techniques are designed to be applied in arbitrary programs in
comparison to our approach. In order to achieve this they require data struc-
tures in the resulting program. However, on a theoretical view this imposes the
requirement that the target language should support data structures even if the
source language does not support that. This is apparent when considering Dat-
alog; transforming a higher-order Datalog program will result into a first-order
Prolog program. On a more practical point, the generic data structures intro-
duced during the defunctionalization render the efficient implementation of these
programs challenging. The wrapping of the higher-order calls with the generic
apply predicate makes it cumbersome to utilize the optimizations in first-order
programs such as indexing and tabling. In comparison, our technique produce
more natural programs that do not suffer for this phenomenon. Moreover, it
does not introduce any data structures and as a result a higher-order Datalog
program will be transformed into a first-order one amenable to more efficient
implementation.

In order to remedy the shortcomings of defunctionalization there have been
proposed some techniques to improve the performance of the transformed pro-
grams. [18] proposed a compile-time optimization of the classical Hilog encoding
that eliminates some partial applications using a family of apply predicates thus
increasing the number of the predicates in the encoded program, which leads to a
more efficient execution. The original first-order encoding of Hilog as well as this
optimization are included in the XSB system [20]. In the context of functional-
logic programming, there exist some mixed approaches that consider defunction-
alization together with partial evaluation for functional-logic programs [1,16],

Predicate Specialization for Definitional Higher-Order Logic Programs 145

where a partial evaluation process is applied in a defunctionalized functional-
logic program. Even though these approaches can usually offer a substantial
performance improvement, the resulting programs still use a Reynolds’ style
encoding; for instance, the performance gain of the optimizations offered by
XSB is not sufficient when compared to the technique presented in this paper,
as presented in Sect. 7.

The process of eliminating higher-order functions is being studied exten-
sively in the functional programming domain. Apart from defunctionalization,
there exist some approaches that do not introduce additional data structures
while removing higher-order functions. These techniques include the higher-order
removal method of [5], the firstification technique of [14] and the firstify algo-
rithm of [13]. The removal of higher-order values here is achieved without intro-
ducing additional data structures, so the practical outcome is that the resulting
programs can be executed in a more efficient way than the original ones. The
basic operation of these transformation methods is function specialization, which
involves generating a new function in which the function-type arguments of the
original definition are eliminated. A predicate specialization operation is also
the core operation in our approach, so in this point these approaches are similar
to ours. The remaining operations that can be found in those approaches (e.g.
simplification rules, inlining, eta-abstractions etc.), are either inapplicable to our
domain or not needed for our program transformation. Contrary to Reynolds’
defunctionalization, these higher-order removal techniques [5,13,14] are not com-
plete, meaning that they do not remove all higher-order values from a functional
program, and therefore the resulting programs are not always first order. This
phenomenon would happen in our case as well if we considered the full power
of higher-order programming. However, because of the fact that we focus on a
smaller but still useful class of higher-order logic programs, we are sure that the
output of our transformation technique will produce a valid first-order program
for every program that belongs to our fragment.

9 Conclusions and Future Work

In this paper we presented a program transformation technique that reduces
higher-order programs into first-order ones through argument specialization. The
transformation does not introduce additional data structures and therefore the
resulting programs can be executed efficiently in any standard Prolog system. We
do not consider the full power of higher-order logic programming, but we focus
on a modest but useful class of programs; in these programs we do not allow
partial applications or existential predicate variables in the body of a clause.

In our actual implementation we considered a slightly broader class than the
fragment discussed before; we allowed a limited use of partial applications in the
case of predicates that do not belong to the same cycle in the predicate depen-
dency graph. This extension however does not increase the expressive power of
the language. An interesting open question that arises is whether this technique
can be used as a first-order reduction method only for programs that belong to

146 A. Troumpoukis and A. Charalambidis

our fragment (or a fragment that have the same expressive power as ours) or if
it can be used for a wider class of programs that are more expressive than our
fragment. Moreover, any expansion of the supported class would be desirable,
even if it has the same expressivity as our current fragment.

Until now, we have used and evaluated our transformation technique only
as an optimization method for performance improvement. However, in the func-
tional programming domain, such techniques have been used in additional appli-
cations, such as program analysis [13] and implementation of debuggers [15].
Therefore, an interesting aspect for future investigation would be the search of
similar or completely new applications of our higher-order removal technique in
the logic programming domain.

Acknowledgements. We would like to thank the anonymous reviewers for providing
constructive comments on our original submission.

References

1. Albert, E., Hanus, M., Vidal, G.: A practical partial evaluation scheme for multi-
paradigm declarative languages. J. Funct. Logic Program. 2002 (2002)

2. Charalambidis, A., Handjopoulos, K., Rondogiannis, P., Wadge, W.W.: Exten-
sional higher-order logic programming. ACM Trans. Comput. Logic 14(3), 21
(2013)

3. Charalambidis, A., Rondogiannis, P., Troumpoukis, A.: Higher-order logic pro-
gramming: an expressive language for representing qualitative preferences. Sci.
Comput. Program. 155, 173–197 (2018)

4. Chen, W., Kifer, M., Warren, D.S.: HiLog: a foundation for higher-order logic
programming. J. Logic Program. 15(3), 187–230 (1993)

5. Chin, W., Darlington, J.: A higher-order removal method. Lisp Symbolic Comput.
9(4), 287–322 (1996)

6. Gallagher, J.P.: Tutorial on specialisation of logic programs. In: Proceedings of the
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, PEPM 1993, Copenhagen, Denmark, 14–16 June 1993, pp. 88–98
(1993)

7. Jones, N.D.: The expressive power of higher-order types or, life without CONS. J.
Funct. Program. 11(1), 5–94 (2001)

8. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice Hall, Upper Saddle River (1993)

9. Leuschel, M.: Logic program specialisation. In: Partial Evaluation - Practice and
Theory, DIKU 1998 International Summer School, Copenhagen, Denmark, June
29–July 10 1998, pp. 155–188 (1998)

10. Leuschel, M., Vidal, G.: Fast offline partial evaluation of logic programs. Inf. Com-
put. 235, 70–97 (2014)

11. Lloyd, J.W., Shepherdson, J.C.: Partial evaluation in logic programming. J. Log.
Program. 11(3&4), 217–242 (1991)

12. Miller, D., Nadathur, G.: Programming with Higher-Order Logic, 1st edn. Cam-
bridge University Press, New York (2012)

13. Mitchell, N., Runciman, C.: Losing functions without gaining data: another look
at defunctionalisation. In: Proceedings of the 2nd ACM SIGPLAN Symposium
on Haskell, Haskell 2009, Edinburgh, Scotland, UK, 3 September 2009, pp. 13–24
(2009)

Predicate Specialization for Definitional Higher-Order Logic Programs 147

14. Nelan, G.: Firstification. Ph.D. thesis, Arizona State University (1991)
15. Pope, B.J., Naish, L.: Specialisation of higher-order functions for debugging. Electr.

Notes Theor. Comput. Sci. 64, 277–291 (2002)
16. Ramos, J.G., Silva, J., Vidal, G.: Fast narrowing-driven partial evaluation for

inductively sequential programs. In: Proceedings of the 10th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2005, Tallinn, Estonia,
26–28 September 2005, pp. 228–239 (2005)

17. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
In: Proceedings of the 25th ACM National Conference, pp. 717–740. ACM (1972)

18. Sagonas, K., Warren, D.S.: Efficient execution of HiLog in WAM-based prolog
implementations. In: Proceedings of the 12th International Conference on Logic
Programming, Tokyo, Japan, 13–16 June 1995, pp. 349–363 (1995)

19. Shepherdson, J.C.: Unfold/fold transformations of logic programs. Math. Struct.
Comput. Sci. 2(2), 143–157 (1992)

20. Swift, T., Warren, D.S.: XSB: extending prolog with tabled logic programming.
TPLP 12(1–2), 157–187 (2012)

21. Warren, D.H.: Higher-order extensions to prolog-are they needed. Machine Intell.
10, 441–454 (1982)

An Assertion Language for Slicing
Constraint Logic Languages

Moreno Falaschi1(B) and Carlos Olarte2

1 Department of Information Engineering and Mathematics,
Università di Siena, Siena, Italy
moreno.falaschi@unisi.it

2 ECT, Universidade Federal do Rio Grande do Norte, Natal, Brazil
carlos.olarte@gmail.com

Abstract. Constraint Logic Programming (CLP) is a language scheme
for combining two declarative paradigms: constraint solving and logic
programming. Concurrent Constraint Programming (CCP) is a declara-
tive model for concurrency where agents interact by telling and asking
constraints in a shared store. In a previous paper, we developed a frame-
work for dynamic slicing of CCP where the user first identifies that a
(partial) computation is wrong. Then, she marks (selects) some parts of
the final state corresponding to the data (constraints) and processes that
she wants to study more deeply. An automatic process of slicing begins,
and the partial computation is “depurated” by removing irrelevant infor-
mation. In this paper we give two major contributions. First, we extend
the framework to CLP, thus generalizing the previous work. Second, we
provide an assertion language suitable for both, CCP and CLP, which
allows the user to specify some properties of the computations in her
program. If a state in a computation does not satisfy an assertion then
some “wrong” information is identified and an automatic slicing process
can start. We thus make one step further towards automatizing the slic-
ing process. We show that our framework can be integrated with the
previous semi-automatic one, giving the user more choices and flexibil-
ity. We show by means of examples and experiments the usefulness of
our approach.

Keywords: Concurrent Constraint Programming ·
Constraint Logic Programming · Dynamic slicing · Debugging ·
Assertion language

1 Introduction

Constraint Logic Programming (CLP) is a language scheme [20] for combining
two declarative paradigms: constraint solving and logic programming (see an
overview in [19]). Concurrent Constraint Programming (CCP) [28] (see a survey
in [25]) combines concurrency primitives with the ability to deal with constraints,
and hence, with partial information. The notion of concurrency is based upon the
c© Springer Nature Switzerland AG 2019
F. Mesnard and P. J. Stuckey (Eds.): LOPSTR 2018, LNCS 11408, pp. 148–165, 2019.
https://doi.org/10.1007/978-3-030-13838-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13838-7_9&domain=pdf
http://orcid.org/0000-0002-6659-3828
http://orcid.org/0000-0002-7264-7773
https://doi.org/10.1007/978-3-030-13838-7_9

An Assertion Language for Slicing Constraint Logic Languages 149

shared-variables communication model. CCP is intended for reasoning, modeling
and programming concurrent agents (or processes) that interact with each other
and their environment by posting and asking information in a medium, a so-
called store. CCP is a very flexible model and has been applied to an increasing
number of different fields such as probabilistic and stochastic, timed and mobile
systems [9,26], and more recently to social networks with spatial and epistemic
behaviors [25], as well as modeling of biological systems [6,10,11,24].

One crucial problem with constraint logic languages is to define appropri-
ate debugging tools. Various techniques and several frameworks have been pro-
posed for debugging these languages. Abstract interpretation techniques have
been considered (e.g. in [12,13,16,17]) as well as (abstract) declarative debug-
gers following the seminal work of Shapiro [30]. However, these techniques are
approximated (case of abstract interpretation) or it can be difficult to apply
them when dealing with complex programs (case of declarative debugging) as
the user should answer to too many questions.

In this paper we follow a technique inspired by slicing. Slicing was introduced
in some pioneer works by Weiser [33]. It was originally defined as a static tech-
nique, independent of any particular input of the program. Then, the technique
was extended by introducing the so called dynamic program slicing [22]. This
technique is useful for simplifying the debugging process, by selecting a portion
of the program containing the faulty code. Dynamic program slicing has been
applied to several programming paradigms (see [21] for a survey). In the con-
text of constraint logic languages, we defined a tool [15] able to interact with
the user and filter, in a given computation, the information which is relevant to
a particular observation or result. In other words, the programmer could mark
(select) the information (constraints, agents or atoms) that she is interested to
check in a particular computation that she suspects to be wrong. Then, a corre-
sponding depurated partial computation is obtained automatically, where only
the information relevant to the marked parts is present.

In a previous paper [15] we presented the first formal framework for debugging
CCP via dynamic slicing. In this paper we give two major contributions. First, we
extend our framework to CLP. Second, we introduce an assertion language which
is integrated within the slicing process for automatizing it further. The extension
to CLP is not immediate, as while for CCP programs non-deterministic choices
give rise to one single computation, in CLP all computations corresponding
to different non-deterministic choices can be followed and can lead to different
solutions. Hence, some rethinking of the framework is necessary. We show that
it is possible to define a transformation from CLP programs to CCP programs,
which allows us to show that the set of observables of a CLP program and of
its translation to a CCP program correspond. This result also shows that the
computations in the two languages are pretty similar and the framework for
CCP can be extended to deal with CLP programs.

Our framework [15] consists of three main steps. First the standard oper-
ational semantics of the sliced language is extended to an enriched semantics
that adds to the standard semantics the needed meta-information for the slicer.

150 M. Falaschi and C. Olarte

Second, we consider several analyses of the faulty situation based on the program
wrong behavior, including causality, variable dependencies, unexpected behav-
iors and store inconsistencies. This second step was left to the user’s respon-
sibility: the user had to examine the final state of the faulty computation and
manually mark/select a subset of constraints that she wants to study further.
The third step is an automatic marking algorithm that removes the information
not relevant to derive the constraints selected in the second step. This algo-
rithm is flexible and applicable to timed extensions of CCP [27]. Here, for CLP
programs we introduce also the possibility to mark atoms, besides constraints.

We believe that the second step above, namely identifying the right state and
the relevant information to be marked, can be difficult for the user and we believe
that it is possible to improve automatization of this step. Hence, one major
contribution of this paper is to introduce a specialized assertion language which
allows the user to state properties of the computations in her program. If a state
in a computation does not satisfy an assertion then some “wrong” information
is identified and an automatic slicing process can start. We show that assertions
can be integrated in our previous semi-automatic framework [15], giving the
user more choices and flexibility. The assertion language is a good companion to
the already implemented tool for the slicing of CCP programs to automatically
detect (possibly) wrong behaviors and stop the computation when needed. The
framework can also be applied to timed variants of CCP.

Organization and Contributions. Section 2 describes CCP and CLP and their
operational semantics. We introduce a translation from CLP to CCP programs
and prove a correspondence theorem between successful computations. In Sect. 3
we recall the slicing technique for CCP [15] and extend it to CLP. The extension
of our framework to CLP is our first contribution. As a second major contri-
bution, in Sect. 4 we present our specialized assertion language and describe its
main operators and functionalities. In Sect. 4.2 we show some examples to illus-
trate the expressiveness of our extension, and the integration into the former
tool. Within our examples we show how to automatically debug a biochemical
system specified in timed CCP and one classical search problem in CLP. Finally,
Sect. 5 discusses some related work and concludes.

2 Constraint Logic Languages

In this section we define an operational semantics suitable for both, CLP [19]
and CCP programs [28]. We start by defining CCP programs and then we obtain
CLP by restricting the set of CCP operators.

Processes in CCP interact with each other by telling and asking constraints
(pieces of information) in a common store of partial information. The type of
constraints is not fixed but parametric in a constraint system (CS), a central
notion for both CCP and CLP. Intuitively, a CS provides a signature from which
constraints can be built from basic tokens (e.g., predicate symbols), and two
basic operations: conjunction � (e.g., x �= y � x > 5) and variable hiding ∃ (e.g.,
∃x.y = f(x)). As usual, ∃x.c binds x in c. The CS defines also an entailment

An Assertion Language for Slicing Constraint Logic Languages 151

relation (|=) specifying inter-dependencies between constraints: c |= d means that
the information d can be deduced from the information c (e.g., x > 42 |= x > 37).
We shall use C to denote the set of constraints with typical elements c, c′, d, d′....
We assume that there exist t, f ∈ C, such that for any c ∈ C, c |= t and
f |= C. The reader may refer to [25] for different formalizations and examples of
constraint systems.

The Language of CCP Processes. In process calculi, the language of pro-
cesses in CCP is given by a small number of primitive operators or combi-
nators. Processes are built from constraints in the underlying constraint and:

P,Q :: = skip | tell(c) | ∑

i∈I

ask (ci) then Pi | P ‖ Q | (localx)P | p(x)

The process skip represents inaction. The process tell(c) adds c to the cur-
rent store d producing the new store c � d. Given a non-empty finite set of
indexes I, the process

∑

i∈I

ask (ci) then Pi non-deterministically chooses Pk

for execution if the store entails ck. The chosen alternative, if any, precludes the
others. This provides a powerful synchronization mechanism based on constraint
entailment. When I is a singleton, we shall omit the “

∑
” and we simply write

ask (c) then P .
The process P ‖ Q represents the parallel (interleaved) execution of P and

Q and (localx)P behaves as P and binds the variable x to be local to it.
Given a process definition p(y) Δ= P , where all free variables of P are in the

set of pairwise distinct variables y, the process p(x) evolves into P [x/y]. A CCP
program takes the form D.P where D is a set of process definitions and P is a
process.

The Structural Operational Semantics (SOS) of CCP is given by the transi-
tion relation γ −→ γ′ satisfying the rules in Fig. 1. Here we follow the formulation
in [14] where the local variables created by the program appear explicitly in the
transition system and parallel composition of agents is identified by a multiset of
agents. More precisely, a configuration γ is a triple of the form (X;Γ ; c), where c
is a constraint representing the store, Γ is a multiset of processes, and X is a set
of hidden (local) variables of c and Γ . The multiset Γ = P1, P2, . . . , Pn represents
the process P1 ‖ P2 ‖ · · · ‖ Pn. We shall indistinguishably use both notations
to denote parallel composition. Moreover, processes are quotiented by a struc-
tural congruence relation ∼= satisfying: (STR1) P ∼= Q if P and Q differ only
by a renaming of bound variables (alpha conversion); (STR2) P ‖ Q ∼= Q ‖ P ;
(STR3) P ‖ (Q ‖ R) ∼= (P ‖ Q) ‖ R; (STR4) P ‖ skip ∼= P . We denote by −→∗

the reflexive and transitive closure of a binary relation −→.

Definition 1 (Observables and traces). A trace γ1γ2γ3 · · · is a sequence of
configurations s.t. γ1 −→ γ2 −→ γ3 · · · . We shall use π, π′ to denote traces and
π(i) to denote the i-th element in π. If (X;Γ ; d) −→∗ (X ′;Γ ′; d′) and ∃X ′.d′ |= c
we write (X;Γ ; d) ⇓c. If X = ∅ and d = t we simply write Γ ⇓c.

Intuitively, if P is a process then P ⇓c says that P can reach a store d strong
enough to entail c, i.e., c is an output of P . Note that the variables in X ′ above
are hidden from d′ since the information about them is not observable.

152 M. Falaschi and C. Olarte

(X; tell(c), Γ ; d) −→ (X; skip, Γ ; c � d)
RTELL

d |= ck k ∈ I

(X;
∑

i∈I

ask (ci) then Pi, Γ ; d) −→ (X;Pk, Γ ; d)
RSUM

x /∈ X ∪ fv(d) ∪ fv(Γ)
(X; (localx)P, Γ ; d) −→ (X ∪ {x};P, Γ ; d)

RLOC

p(y) Δ= P ∈ D
(X; p(x), Γ ; d) −→ (X;P [x/y], Γ ; d)

RCALL

(X;Γ ; c) ∼= (X ′;Γ ′; c′) −→ (Y ′;Δ′; d′) ∼= (Y ;Δ; d)
(X;Γ ; c) −→ (Y ;Δ; d)

REQUIV

Fig. 1. Operational semantics for CCP calculi

2.1 The Language of CLP

A CLP program [20] is a finite set of rules of the form

p(x) ← A1, . . . , An

where A1, . . . An, with n ≥ 0, are literals, i.e. either atoms or constraints in the
underlying constraint system C, and p(x) is an atom. An atom has the form
p(t1, . . . , tm), where p is a user defined predicate symbol and the ti are terms
from the constraint domain.

The top-down operational semantics is given by derivations from goals [20].
A configuration takes the form (Γ ; c) where Γ (a goal) is a multiset of literals
and c is a constraint (the current store). The reduction relation is as follows.

Definition 2 (Semantics of CLP [20]). Let H be a CLP program. A con-
figuration γ = (L1, ..., Li, ...Ln; c) reduces to ψ, notation γ −→CLP (H) ψ, by
selecting and removing a literal Li and then:

1. If Li is a constraint d and d � c �= f, then γ −→CLP (H) (L1, ..., Ln; c � d).
2. If Li is a constraint d and d� c = f (i.e., the conjunction of c and d is incon-

sistent), then γ −→CLP (H) (�; f) where � represents the empty multiset.
3. If Li is an atom p(t1, ..., tk), then γ −→CLP (H) (L1, ..., Li−1,Δ, Li+1..., Ln; c)

where one of the definitions for p, p(s1, ..., sk) ← A1, . . . , An, is selected and
Δ = A1, . . . , An, s1 = t1, ..., sk = tk.

A computation from a goal G is a (possibly infinite) sequence γ1 =
(G; t) −→CLP (H) γ2 −→CLP (H) · · · . We say that a computation finishes if the
last configuration γn cannot be reduced, i.e., γn = (�; c). In this case, if c = f

then the derivation fails otherwise we say that it succeeds.

Given a goal with free variables x = var(G), we shall also use the notation
G ⇓H

c to denote that there is a successful computation (G; t) −→∗
CLP (H) (�; d)

s.t. ∃x.d |= c. We note that the free variables of a goal are progressively “instan-
tiated” during computations by adding new constraints. Finally, the answers of a
goal G, notation G ⇓H is the set {∃var(c)\var(G)(c) | (G; t) −→∗

CLP (H) (�; c), c �=
f} where “\” denotes set difference.

An Assertion Language for Slicing Constraint Logic Languages 153

From CLP to CCP. CCP is a very general paradigm that extends both Con-
current Logic Programming and Constraint Logic Programming [23]. However,
in CLP, we have to consider non-determinism of the type “don’t know” [29],
which means that each predicate call can be reduced by using each rule which
defines such a predicate. This is different from the kind of non-determinism in
CCP, where the choice operator selects randomly one of the choices whose ask
guard is entailed by the constraints in the current store (see RSUM in Fig. 1).

It turns out that by restricting the syntax of CCP and giving an alternative
interpretation to non-deterministic choices, we can have an encoding of CLP pro-
grams as CCP agents. More precisely, we shall remove the synchronization oper-
ator and we shall consider only blind choices of the form Q =

∑

i∈I

ask (t) then Pi.

Note that c |= t for any c and then, the choices in Q are not guarded/constrained.
Hence, any of the Pi can be executed regardless of the current store. This mimics
the behavior of CLP predicates (see (3) in Definition 2), but with a different kind
of non-determinism. The next definition formalizes this idea.

Definition 3 (Translation). Let C be a const. system, H be a CLP program
and G be a goal. We define the set of CCP process definitions [[H]] = D as follows.
For each user defined predicate symbol p of arity j and 1..m defined rules of the
form p(ti1, ..., t

i
j) ← Ai

1, . . . , A
i
ni

, we add to D the following process definition

p(x1, ..., xj)
Δ= ask (t) then ((local z1)

∏
D1 ‖ [[A1

1]] ‖ · · · ‖ [[A1
n1

]])
+... + ask (t) then ((local zm)

∏
Dm ‖ [[Am

1]] ‖ · · · ‖ [[Am
nm

]])
where zi = var(ti1, ..., t

i
j) ∪ var(Ai

1, ..., A
i
ni

), Di is the set of constraints {x1 =
ti1, ..., xj = tij},

∏
Di means tell(x1 = ti1) ‖ · · · ‖ tell(xj = tij) and literals

are translated as [[A(t)]] = A(t) (case of atoms) and [[c]] = tell(c) (case of con-
straints). Moreover, we translate the goal [[A1, ..., An]] as [[A1]] ‖ · · · ‖ [[An]].

The head p(x) of a definition p(x) Δ= P in CCP can only have variables while
a head of a CLP rule p(t) ← B may have arbitrary terms with (free) variables.
Moreover, in CLP, each call to a predicate returns a variant with distinct new
variables (renaming the parameters of the predicate) [20]. These two features of
CLP can be encoded in CCP by first introducing local variables ((local zi) in
the above definition) and then, using constraints (Di) to establish the connection
between the formal and the actual parameters of the process definition.

Consider for instance this simple CLP program dealing with lists:
p([] , []) .
p([H1 | L1] , [H2 | L2]) :- c(H1,H2), p(L1,L2) .

and its translation

p(x, y) Δ= ask (t) then (tell(x = []) ‖ tell(y = []))
+ask (t) then (localX) (

∏
D ‖ c(H1,H2) ‖ p(L1, L2))

where D = {x = [H1|L1], y = [H2|L2]} and X = {H1,H2, L1, L2}. Note that
the CCP process p(la, lb) can lead to 2 possible outcomes:

– Using the first branch, the store becomes la = [] � lb = [].

154 M. Falaschi and C. Olarte

– In the second branch, due to rule RLOC, four local distinct variables are
created (say h1, h2, l1, l2), the store becomes la = [h1|l1] � lb = [h2|l2] �
c(h1, h2) and the process p(l1, l2) is executed on this new store.

These CCP executions match exactly the behavior of the CLP goal p(LA, LB).
We emphasize that one execution of a CCP program will give rise to a single

computation (due to the kind of non-determinism in CCP) while the CLP com-
putation model characterizes the set of all possible successful derivations and
corresponding answers. In other terms, for a given initial goal G, the CLP model
defines the full set of answer constraints for G, while the CCP translation will
compute only one of them, as only one possible derivation will be followed.

Theorem 1 (Adequacy). Let C be a constraint system, c ∈ C, H be a CLP
program and G be a goal. Then, G ⇓H

c iff [[G]] ⇓c.

3 Slicing CCP and CLP Programs

Dynamic slicing is a technique that helps the user to debug her program by
simplifying a partial execution trace, thus depurating it from parts which are
irrelevant to find the bug. It can also help to highlight parts of the programs
which have been wrongly ignored by the execution of a wrong piece of code.
In [15] we defined a slicing technique for CCP programs that consisted of three
main steps:

S1 Generating a (finite) trace of the program. For that, a new semantics is
needed in order to generate the (meta) information needed for the slicer.

S2 Marking the final store, to select some of the constraints that, according to
the wrong behavior detected, should or should not be in the final store.

S3 Computing the trace slice, to select the processes and constraints that were
relevant to produce the (marked) final store.

We shall briefly recall the step S1 in [15] which remains the same here. Steps
S2 and S3 need further adjustments to deal with CLP programs. In particular,
we shall allow the user to select processes (literals in the CLP terminology)
in order to start the slicing. Moreover, in Sect. 4, we provide further tools to
automatize the slicing process.

Enriched Semantics (Step S1). The slicing process requires some extra infor-
mation from the execution of the processes. More precisely, (1) in each opera-
tional step γ → γ′, we need to highlight the process that was reduced; and (2)
the constraints accumulated in the store must reflect, exactly, the contribution
of each process to the store. In order to solve (1) and (2), we introduced in
[15] the enriched semantics that extracts the needed meta information for the
slicer. Roughly, we identify the parallel composition Q = P1 ‖ · · · ‖ Pn with the
sequence ΓQ = P1 : i1, · · · , Pn : in where ij ∈ N is a unique identifier for Pj . The
use of indexes allow us to distinguish, e.g., the three different occurrences of P in
“Γ1, P : i, Γ2, P :j, (ask (c) then P) :k”. The enriched semantics uses transitions

An Assertion Language for Slicing Constraint Logic Languages 155

with labels of the form
[i]k−−→ where i is the identifier of the reduced process and

k can be either ⊥ (undefined) or a natural number indicating the branch chosen
in a non-deterministic choice (Rule R′

SUM). This allows us to identify, unequivo-
cally, the selected alternative in an execution. Finally, the store in the enriched
semantics is not a constraint (as in Fig. 1) but a set of (atomic) constraints where
{d1, · · · , dn} represents the store d1 � · · · � dn. For that, the rule of tell(c) first
decomposes c in its atomic components before adding them to the store.

Marking the Store (Step S2). In [15] we identified several alternatives for
marking the final store in order to indicate the information that is relevant to
the slice that the programmer wants to recompute. Let us suppose that the final
configuration in a partial computation is (X;Γ ;S). The user has to select a
subset Ssliced of the final store S that may explain the (wrong) behavior of the
program. Ssliced can be chosen based on the following criteria:

1. Causality: the user identifies, according to her knowledge, a subset S′ ⊆
S that needs to be explained (i.e., we need to identify the processes that
produced S′).

2. Variable Dependencies: The user may identify a set of relevant variables V ⊆
freeV ars(S) and then, we mark Ssliced = {c ∈ S | vars(c) ∩ V �= ∅}.

3. Unexpected behaviors : there is a constraint c entailed from the final store
that is not expected from the intended behavior of the program. Then, one
would be interested in the following marking Ssliced =

⋃{S′ ⊆ S | ⊔
S′ |=

c and S′ is set minimal}, where “S′ is set minimal” means that for any S′′ ⊂
S′, S′′ �|= c.

4. Inconsistent output : The final store should be consistent with respect to a
given specification (constraint) c, i.e., S in conjunction with c must not
be inconsistent. In this case, we have Ssliced =

⋃{S′ ⊆ S | ⊔
S′ � c |=

f and S′ is set minimal}.

For the analysis of CLP programs, it is important also to mark literals (i.e.,
calls to procedures in CCP). In particular, the programmer may find that a
particular goal p(x) is not correct if the parameter x does not satisfy certain
conditions/constraints. Hence, we shall consider also markings on the set of
processes, i.e., the marking can be also a subset Γsliced ⊆ Γ .

Trace Slice (Step S3). Starting from the pair γsliced = (Ssliced, Γsliced) denot-
ing the user’s marking, we define a backward slicing step. Roughly, this step
allows us to eliminate from the execution trace all the information not related
to γsliced. For that, the fresh constant symbol • is used to denote an “irrelevant”
constraint or process. Then, for instance, “c � •” results from a constraint c � d
where d is irrelevant. Similarly in processes as, e.g., ask (c) then (P ‖ •) + •. A
replacement is either a pair of the shape [T/i] or [T/c]. In the first (resp. second)
case, the process with identifier i (resp. constraint c) is replaced with T . We
shall use θ to denote a set of replacements and we call these sets as “replacing
substitutions”. The composition of replacing substitutions θ1 and θ2 is given by
the set union of θ1 and θ2, and is denoted as θ1 ◦ θ2.

156 M. Falaschi and C. Olarte

Input: - a trace γ0

[i1]k1−−−−→ · · ·
[in]kn−−−−−→ γn where γi = (Xi;Γi;Si)

- a marking (Ssliced, Γsliced) s.t. Ssliced ⊆ Sn and Γsliced ⊆ Γn

Output: a sliced trace γ′
0 −→ · · · −→ γ′

n
1 begin
2 let θ = {[•/i] | P : i ∈ Γn \ Γs} in

3 γ′
n ← (Xn ∩ vars(Ssliced, Γsliced);Γnθ;Ssliced);

4 for l= n − 1 to 0 do
5 let〈θ′, c〉 = sliceProcess(γl, γl+1, il+1, kl+1, θ, Sl) in
6 Ssliced ← Ssliced ∪ Sminimal(Sl, c)

7 θ ← θ′ ◦ θ

8 γ′
l ← (Xl ∩ vars(Ssliced, Γsliced) ; Γlθ ; Sl ∩ Ssliced)

9 end

10 end

Algorithm 1. Trace Slicer. Sminimal(S, c) = ∅ if c = t; otherwise,
Sminimal(S, c) =

⋃{S′ ⊆ S | ⊔
S′ |= c and S′ is set minimal}.

Algorithm 1 extends the one in [15] to deal with the marking on processes
(Γsliced). The last configuration (γ′

n in line 3) means that we only observe the
local variables of interest, i.e., those in vars(Ssliced, Γsliced) as well as the relevant
processes (Γsliced) and constraints (Ssliced). The algorithm backwardly computes
the slicing by accumulating replacing pairs in θ (line 7). The new replacing
substitutions are computed by the function sliceProcess that returns both, a
replacement substitution and a constraint needed in the case of ask agents as
explained below.

1 Function sliceProcess(γ, ψ, i, k, θ, S)
2 let γ = (Xγ ;Γ, P : i, Γ ′;Sγ) and ψ = (Xψ;Γ, ΓQ, Γ ′;Sψ) in
3 match P with
4 case tell(c) do
5 let c′ = sliceConstraints(Xγ , Xψ, Sγ , Sψ, S) in

6 if c′ = • or c′ = ∃x.• then return 〈[•/i], t〉 else return 〈[tell(c′)/i], t〉;
7 case

∑
ask (cl) then Ql do

8 if ΓQθ = • then return 〈[•/i], t〉 else return
〈[ask (ck) then (ΓQθ) + • / i], ck〉;

9 case (local x)Q do
10 let {x′} = Xψ \ Xγ in

11 if ΓQ[x′/x]θ = • then return 〈[•/i], t〉 else return

〈[(local x′)ΓQ[x′/x]θ/i], t〉;
12 case p(y) do
13 if ΓQθ = • then return 〈[•/i], t〉 else return 〈∅, t〉;
14 end

15 end
16 Function sliceConstraints(Xγ , Xψ, Sγ , Sψ, S)
17 let Sc = Sψ \ Sγ and θ = ∅ in
18 foreach ca ∈ Sc \ S do θ ← θ ◦ [•/ca] ;
19 return ∃Xψ\Xγ .

⊔
Scθ

20 end

Algorithm 2. Slicing processes and constraints

Marking Algorithms. Let us explain how the function sliceProcess works.
Consider for instance the process Q = (ask (c′) then P)+(ask (c) then tell(d�
e)) and assume that we are backwardly slicing the trace · · · γ [i]2−−→ · · · ψ [j]−→ ρ · · ·

An Assertion Language for Slicing Constraint Logic Languages 157

where Q (identified with i) is reduced in γ by choosing the second branch and,
in ψ, the tell agent tell(d � e) (identified by j) is executed. Assume that the
configuration ρ has already been sliced and d was considered irrelevant and
removed (see Sl ∩ Ssliced in line 8 of Algorithm 1). The procedure sliceProcess
is applied to ψ and it determines that only e is relevant in tell(d�e). Hence, the
replacement [tell(•�e)/j] is returned (see line 7 in Algorithm1). The procedure
is then applied to γ. We already know that the ask agent Q is (partially) relevant
since tell(d�e)θ �= • (i.e., the selected branch does contribute to the final result).
Thus, the replacement [• + ask (c) then tell(• � e)/i] is accumulated in order
to show that the first branch is irrelevant. Moreover, since the entailment of c
was necessary for the reduction, the procedure returns also the constraint c (line
5 of Algorithm 1) and the constraints needed to entail c are added to the set of
relevant constraints (line 6 of Algorithm1).

Example 1. Consider the following (wrong) CLP program:
length([],0).
length([A | L],M) :- M = N, length(L, N).

The translation to CCP is similar to the example in Sect. 2.1. An excerpt of a
possible trace for the execution of the goal length([10,20], Ans). is
[0 ; length([10,20],Ans) ; t] -->

[0 ; ask() ... + ask() ... ; t] ->

[0 ; local ... ; t] ->

[H1 L1 N1 M1 ; [10,20]= [H1|L1] || Ans=N1 || N1=M1 || length(L1, M1) ; t] ->

...

[... H2 L2 N2 M2 ; [20]=[H2 | L2] || M1=N2 || N2=M2 || length(L2, M2) ; [10,20]= [H1|L1], Ans=N1, N1=M1] ->

[... H2 L2 N2 M2 ; M1=N2 || N2=M2 || length(L2, M2) ; [10,20]= [H1|L1], Ans=N1, N1=M1, [20]=[H2 | L2]] ->

...

[... H2 L2 N2 M2 ; M2=0 ; [10,20]= [H1|L1], Ans=N1, N1=M1, [20]=[H2 | L2], M1=N2, N2=M2, L2=[]] ->

[... H2 L2 N2 M2 ; [10,20]= [H1|L1], Ans=N1, N1=M1, [20]=[H2 | L2], M1=N2, N2=M2, L2=[], M2=0]

Here, we can see how the calls to the process definition length are unfolded
and, in each state, new constraints are added. Those constraint relate, e.g., the
variable Ans and the local variables created in each invocation (e.g., M1 and M2).

In the last configuration, it is possible to mark only the equalities dealing with
numerical expressions (i.e., Ans=N1,N1=M1,M1=N2,N2=M2,M2=0) and the result-
ing trace will abstract away from all the constraints and processes dealing with
equalities on lists:
[0 ; length([10,20],Ans) ; t] -->

[0 ; * + ask() ... ; t] ->

[0 ; local ... ; t] ->

[N1 M1 ; * || Ans=N1 || N1=M1 || length(L1, M1) ; t] ->

[N1 M1 ; Ans=N1 || N1=M1 || length(L1, M1) ;] ->

[N1 M1 ; N1=M1 || length(L1, M1) ; Ans=N1] ->

[N1 M1 ; length(L1, M1) ; Ans=N1, N1=M1] ->

...

The fourth line should be useful to discover that Ans cannot be equal to M1 (the
parameter used in the second invocation to length).

4 An Assertion Language for Logic Programs

The declarative flavor of programming with constraints in CCP and CLP allows
the user to reason about (partial) invariants that must hold during the execu-
tion of her programs. In this section we give a simple yet powerful language of

158 M. Falaschi and C. Olarte

assertion to state such invariants. Then, we give a step further in automatizing
the process of debugging.

Definition 4 (Assertion Language). Assertions are built from:
F :: = pos(c) | neg(c) | cons(c) | icons(c) | F ⊕ F | p(x)[F] | p(x)〈F 〉
where c is a constraint (c ∈ C), p(·) is a process name and ⊕ ∈ {∧,∨,→}.

The first four constructs deal with partial assertions about the current store.
These constructs check, respectively, whether the constraint c: (1) is entailed,
(2) is not entailed, (3) is consistent wrt the current store or (4) leads to an
inconsistency when added to the current store. Assertions of the form F ⊕ F
have the usual meaning. The assertions p(x)[F] states that all instances of the
form p(t) in the current configuration must satisfy the assertion F . The assertions
p(x)〈F 〉 is similar to the previous one but it checks for the existence of an instance
p(t) that satisfies the assertion F .

Let π(i) = (Xi;Γi;Si). We shall use store(π(i)) to denote the constraint
∃Xi.

⊔
Si and procs(π(i)) to denote the sequence of processes Γi. The semantics

for assertions is formalized next.

Definition 5 (Semantics). Let π be a sequence of configurations and F be an
assertion. We inductively define π, i |=F F (read as π satisfies the formula F at
position i) as:

– π, i |=F pos(c) if store(π(i)) |= c.
– π, i |=F neg(c) if store(π(i)) �|= c.
– π, i |=F cons(c) if store(π(i)) � c �|= f.
– π, i |=F icons(c) if store(π(i)) � c |= f.
– π, i |=F F ∧ G if π, i |=F F and π, i |=F G.
– π, i |=F F ∨ G if π, i |=F F or π, i |=F G.
– π, i |=F F → G if π, i |=F F implies π, i |=F G.
– π, i |=F p(x)[F] if for all p(t) ∈ procs(π(i)), π, i |=F F [t/x].
– π, i |=F p(x)〈F 〉 if there exists p(t) ∈ procs(π(i)), π, i |=F F [t/x].

If it is not the case that π, i |=F F , then we say that F does not hold at π(i) and
we write π(i) �|=F F .

The above definition is quite standard and reflects the intuitions given above.
Moreover, let us define ∼ F as ∼ pos(c) = neg(c) (and vice-versa), ∼ cons(c) =
icons(c) (and vice-versa), ∼ (F ⊕F) as usual and ∼ p(x)[F (x)] = p(x)〈∼ F (x)〉
(and vice-versa). Note that, π(i) |=F F iff π(i) �|=F∼ F .

Example 2. Assume that the store in π(1) is S = x ∈ 0..10. Then,

– π, 1 |=F cons(x = 5), i.e., the store is consistent wrt the specification x = 5.
– π, 1 �|=F icons(x = 5), i.e., the store is not inconsistent wrt the specification

x = 5.
– π, 1 �|=F pos(x = 5), i.e., the store is not “strong enough” in order to satisfy

the specification x = 5.

An Assertion Language for Slicing Constraint Logic Languages 159

– π, 1 |=F neg(x = 5), i.e., store is “consistent enough” to guarantee that it is
not the case that x = 5.

Note that π, i |=F pos(c) implies π, i |=F cons(c). However, the other direction is
in general not true (as shown above). We note that CCP and CLP are monotonic
in the sense that when the store c evolves into d, it must be the case that d |= c
(i.e., information is monotonically accumulated). Hence, π, i |= pos(c) implies
π, i+j |= pos(c). Finally, if the store becomes inconsistent, cons(c) does not hold
for any c. Temporal [23] and linear [14] variants of CCP remove such restriction
on monotonicity.

Checking assertions amounts, roughly, to testing the entailment relation in
the underlying constraint system. Checking entailments is the basic operation
CCP agents perform. Hence, from the implementation point of view, verification
of assertions does not introduce a significant extra computational cost.

Example 3 (Conditional assertions). Let us introduce some patterns of asser-
tions useful for verification.

– Conditional constraints: The assertion pos(c) → F checks for F only if c can
be deduced from the store. For instance, the assertion pos(c) → neg(d) says
that d must not be deduced when the store implies c.

– Conditional predicates: Let G = p(x)〈cons(t)〉. The assertion G → F states
that F must be verified whenever there is a call/goal of the form p(t) in the
context. Moreover, (∼ G) → F verifies F when there are no calls of the form
p(t) in the context.

4.1 Dynamic Slicing with Assertions

Assertions allow the user to specify conditions that her program must satisfy
during execution. If this is not the case, the program should stop and start the
debugging process. In fact, the assertions may help to give a suitable marking
pair (Ssliced, Γsliced) for the step S2 of our algorithm as follows.

Definition 6. Let F be an assertion, π be a partial computation, n > 0 and
assume that π, n �|=F F , i.e., π(n) fails to establish the assertion F . Let π(n) =
(X;Γ ;S). As testing hypotheses, we define symp(π, F, n) = (Ssl, Γsl) where

1. If F = pos(c) then Ssl = {d ∈ S | vars(d) ∩ vars(c) �= ∅}, Γsl = ∅.
2. If F = neg(c) then Ssl =

⋃{S′ ⊆ S | ⊔
S′ |= c and S′ is set min.}, Γsl = ∅

3. If F = cons(c) then Ssl =
⋃{S′ ⊆ S | ⊔

S′ � c |= f and S′ is set minimal},
Γsl = ∅.

4. If F = icons(c) Ssl = {d ∈ S | vars(d) ∩ vars(c) �= ∅} and Γsl = ∅.
5. If F = F1 ∧ F2 then symp(π, F1, n) ∪ symp(π, F2, n).
6. If F = F1 ∨ F2 then symp(π, F1, n) ∩ symp(π, F2, n).
7. If F = F1 → F2 then symp(π,∼ F1, n) ∪ symp(π, F2, n).
8. If F = p(x)[F1] then Ssl = ∅ and Γsl = {p(t) ∈ Γ | π, n �|=F F1[t/x]}.
9. If F = p(x)〈F1〉 then Ssl = {d ∈ S | vars(d) ∩ vars(F1) �= ∅}, Γsl =

{p(t) ∈ Γ}

160 M. Falaschi and C. Olarte

Let us give some intuitions about the above definition. Consider a (partial)
computation π of length n where π(n) �|=F F . In the case (1) above, c must be
entailed but the current store is not strong enough to do it. A good guess is to
start examining the processes that added constraints using the same variables as
in c. It may be the case that such processes should have added more information
to entail c as expected in the specification F . Similarly for the case (4): c in
conjunction with the current store should be inconsistent but it is not. Then,
more information on the common variables should have been added. In the case
(2), c should not be entailed but the store indeed entails c. In this case, we mark
the set of constraints that entails c. The case (3) is similar. In cases (5) to (7)
we use ∪ and ∩ respectively for point-wise union and intersection in the pair
(Ssl, Γsl). These cases are self-explanatory (e.g., if F1 ∧ F2 fails, we collect the
failure information of either F1 or F2). In (8), we mark all the calls that do not
satisfy the expected assertion F (x). In (9), if F fails, it means that either (a)
there are no calls of the shape p(t) in the context or (b) none of the calls p(t)
satisfy F1. For (a), similarly to the case (1), a good guess is to examine the
processes that added constraints with common variables to F1 and see which
one should have added more information to entail F1. As for (b), we also select
all the calls of the form p(t) from the context. The reader may compare these
definitions with the information selected in Step S2 in Sect. 3, regarding possibly
wrong behavior.

Classification of Assertions. As we explained in Sect. 2.1, computations in CLP
can succeed or fail and the answers to a goal is the set of constraints obtained
from successful computations. Hence, according to the kind of assertion, it is
important to determine when the assertions in Definition 4 must stop or not the
computation to start the debugging process. For that, we introduce the following
classification:

– post-conditions, post(F) assertions: assertions that are meant to be ver-
ified only when an answer is found. This kind of assertions are used to test
the “quality” of the answers wrt the specification. In this case, the slicing
process begins only when an answer is computed and it does not satisfy one
of the assertions. Note that assertions of the form p(x)[F (x)] and p(x)〈F (x)〉
are irrelevant as post-conditions since the set of goals in an answer must be
empty.

– path invariants, inv(F) assertions: assertions that are meant to hold along
the whole computation. Then, not satisfying an invariant must be understood
as a symptom of an error and the computation must stop. We note that
due to monotonicity, only assertions of the form neg(c) and cons(c) can be
used to stop the computation (note that if the current configuration fails to
satisfy neg(c), then any successor state will also fail to satisfy that assertion).
Constraints of the form pos(c), icons(c) can be only checked when the answer
is found since, not satisfying those conditions in the partial computation, does
not imply that the final state will not satisfy them.

An Assertion Language for Slicing Constraint Logic Languages 161

4.2 Experiments

We conclude this section with a series of examples showing the use of assertions.
Examples 4 and 5 deal with CLP programs while Examples 6 and 7 with CCP
programs.

Example 4. The debugger can automatically start and produce the same mark-
ing in Example 1 with the following (invariant) assertion:
length([A | L],M) :- M = N, length(L, N), inv(pos(M>0)).

Example 5. Consider the following CLP program (written in GNU-Prolog with
integer finite domains) for solving the well known problem of posing N queens
on a N × N chessboard in such a way that they do not attack each other.
queens(N, Queens) :- length(Queens, N), fd_domain(Queens,1,N),

constrain(Queens), fd_labeling(Queens,[]).
constrain(Queens) :-fd_all_different(Queens), diagonal(Queens).
diagonal([]).
diagonal([Q|Queens]):-secure(Q, 1, Queens), diagonal(Queens).
secure(_,_,[]).
secure(X,D,[Q|Queens]) :- doesnotattack(X,Q,D),D1 is D+1, secure(X,D1,Queens).
doesnotattack(X,Y,D) :- X + D #\= Y,Y + X #\= D.

The program contains one mistake, which causes the introduction of a few addi-
tional and not correct solutions, e.g., [1,5,4,3,2] for the goal queens(5,X).
The user now has two possible strategies: either she lets the interpreter compute
the solutions, one by one and then, when she sees a wrong solution she uses the
slicer for marking manually the final store to get the sliced computation; or she
can define an assertion to be verified. In this particular case, any solution must
satisfy that the difference between two consecutive positions in the list must
be greater than 1. Hence, the user can introduce the following post-condition
assertion:
secure(X,D,[Q|Queens]) :- doesnotattack(X,Q,D),D1 is D+1, secure(X,D1,Queens),

post(cons(Q #\= X+1)).

Now the slicer stops as soon as the constraint X #\= Q+1 becomes inconsis-
tent with the store in a successful computation (e.g., the assertion fails on the
–partial– assignment “5,4”) and an automatic slicing is performed.

Example 6. In [15] we presented a compelling example of slicing for a timed
CCP program modeling the synchronization of events in musical rhythmic pat-
terns. As shown in Example 2 at http://subsell.logic.at/slicer/, the slicer for
CCP was able to sufficiently abstract away from irrelevant processes and con-
straints to highlight the problem in a faulty program. However, the process
of stopping the computation to start the debugging was left to the user. The
property that failed in the program can be naturally expressed as an assertion.
Namely, in the whole computation, if the constraint beat is present (representing
a sound in the musical rhythm), the constraint stop cannot be present (repre-
senting the end of the rhythm). This can be written as the conditional assertion
pos(beat) → neg(stop). Following Definition 6, the constraints marked in the
wrong computation are the same we considered in [15], thus automatizing com-
pletely the process of identifying the wrong computation.

http://subsell.logic.at/slicer/

162 M. Falaschi and C. Olarte

Example 7. Example 3 in the URL above illustrates the use of timed CCP for
the specification of biochemical systems (we invite the reader to compare in the
website the sliced and non-sliced traces). Roughly, in that model, constraints of
the form Mdm2 (resp. Mdm2A) state that the protein Mdm2 is present (resp. absent).
The model includes activation (and inhibition) of biological rules modeled as
processes (omitting some details) of the form ask (Mdm2A) then next tell(Mdm2)
modeling that “if Mdm2 is absent now, then it must be present in the next time-
unit”. The interaction of many of these rules makes the model trickier since
rules may “compete” for resources and then, we can wrongly observe at the
same time-unit that Mdm2 is both present and absent. An assertion of the form
(pos(Mdm2A) → neg(Mdm2))∧ (pos(Mdm2) → neg(Mdm2A)) will automatically stop
the computation and produce the same marking we used to depurate the program
in the website.

5 Related Work and Conclusions

Related Work. Assertions for automatizing a slicing process have been previ-
ously introduced in [4] for the functional logic language Maude. The language
they consider as well as the type of assertions are completely different from
ours. They do not have constraints, and deal with functional and equational
computations. Another previous work [31] introduced static and dynamic slicing
for CLP programs. However, [31] essentially aims at identifying the parts of a
goal which do not share variables, to divide the program in slices which do not
interact. Our approach considers more situations, not only variable dependen-
cies, but also other kinds of wrong behaviors. Moreover we have assertions, and
hence an automatic slicing mechanism not considered in [31]. The well known
debugging box model of Prolog [32] introduces a tool for observing the evolu-
tion of atoms during their reduction in the search tree. We believe that our
methodology might be integrated with the box model and may extend some of
its features. For instance, the box model makes basic simplifications by asking
the user to specify which predicates she wants to observe. In our case, one entire
computational path is simplified automatically by considering the marked infor-
mation and identifying the constraints and the atoms which are relevant for such
information.

Conclusions and Future Work. In this paper we have first extended a pre-
vious framework for dynamic slicing of (timed) CCP programs to the case of
CLP programs. We considered a slightly different marking mechanism, extended
to atoms besides constraints. Don’t know non-determinism in CLP requires a
different identification of the computations of interest wrt CCP. We considered
different modalities specified by the user for selecting successful computations
rather than all possible partial computations. As another contribution of this
paper, in order to automatize the slicing process, we have introduced an asser-
tion language. This language is rather flexible and allows one to specify different
types of assertions that can be applied to successful computations or to all

An Assertion Language for Slicing Constraint Logic Languages 163

possible partial computations. When assertions are not satisfied by a state of a
selected computation then an automatic slicing of such computation can start.

We implemented a prototype of the slicer in Maude and showed its use in
debugging several programs. We are currently extending the tool to deal with
CLP don’t know non-determinism. Being CLP a generalization of logic program-
ming, our extended implementation could be also eventually used to analyze
Prolog programs. Integrating the kind of assertions proposed here with already
implemented debugging mechanisms in Prolog is an interesting future direction.
We also plan to add more advanced graphical tools to our prototype, as well
as to study the integration of our framework with other debugging techniques
such as the box model and declarative or approximated debuggers [2,18]. We
also want to investigate the relation of our technique with dynamic testing (e.g.
concolic techniques) and extend the assertion language with temporal operators,
e.g. the past operator (�) for expressing the relation between two consecutive
states. Another future topic of investigation is a static version of our framework
in order to try to compare and possibly integrate it with analyses and semi auto-
matic corrections based on different formal techniques, and other programming
paradigms [1,3,5,7,8].

Acknowledgments. We thank the anonymous reviewers for their detailed and very
useful criticisms and recommendations that helped us to improve our paper. The work
of Olarte was supported by CNPq and by CAPES, Colciencias, and INRIA via the STIC
AmSud project EPIC (Proc. No 88881.117603/2016-01), and the project CLASSIC.

References

1. Alpuente, M., Ballis, D., Baggi, M., Falaschi, M.: A fold/unfold transformation
framework for rewrite theories extended to CCT. In: Proceedings of PEPM 2010,
pp. 43–52. ACM (2010)

2. Alpuente, M., Ballis, D., Correa, F., Falaschi, M.: An integrated framework for the
diagnosis and correction of rule-based programs. Theor. Comput. Sci. 411(47),
4055–4101 (2010)

3. Alpuente, M., Ballis, D., Falaschi, M., Romero, D.: A semi-automatic methodology
for repairing faulty web sites. In: Proceedings of SEFM 2006, pp. 31–40. IEEE
(2006)

4. Alpuente, M., Ballis, D., Frechina, F., Sapiña, J.: Debugging maude programs via
runtime assertion checking and trace slicing. J. Log. Algebr. Meth. Program. 85,
707–736 (2016)

5. Alpuente, M., Falaschi, M., Moreno, G., Vidal, G.: A transformation system for
lazy functional logic programs. In: Middeldorp, A., Sato, T. (eds.) FLOPS 1999.
LNCS, vol. 1722, pp. 147–162. Springer, Heidelberg (1999). https://doi.org/10.
1007/10705424 10

6. Bernini, A., Brodo, L., Degano, P., Falaschi, M., Hermith, D.: Process calculi for
biological processes. Nat. Comput. 17(2), 345–373 (2018)

7. Bodei, C., Brodo, L., Bruni, R.: Static detection of logic flaws in service-oriented
applications. In: Degano, P., Viganò, L. (eds.) ARSPA-WITS 2009. LNCS, vol.
5511, pp. 70–87. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
03459-6 5

https://doi.org/10.1007/10705424_10
https://doi.org/10.1007/10705424_10
https://doi.org/10.1007/978-3-642-03459-6_5
https://doi.org/10.1007/978-3-642-03459-6_5

164 M. Falaschi and C. Olarte

8. Bodei, C., Brodo, L., Bruni, R., Chiarugi, D.: A flat process calculus for nested
membrane interactions. Sci. Ann. Comp. Sci. 24(1), 91–136 (2014)

9. Brodo, L.: On the expressiveness of the π-calculus and the mobile ambients.
In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp. 44–59.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17796-5 3

10. Chiarugi, D., Falaschi, M., Hermith, D., Olarte, C., Torella, L.: Modelling non-
Markovian dynamics in biochemical reactions. BMC Syst. Biol. 9(S–3), S8 (2015)

11. Chiarugi, D., Falaschi, M., Olarte, C., Palamidessi, C.: Compositional modelling of
signalling pathways in timed concurrent constraint programming. In: Proceedings
of ACM BCB 2010, pp. 414–417. ACM, New York (2010)

12. Codish, M., Falaschi, M., Marriott, K.: Suspension analyses for concurrent logic
programs. TOPLAS 16(3), 649–686 (1994)

13. Comini, M., Titolo, L., Villanueva, A.: Abstract diagnosis for timed concurrent
constraint programs. TPLP 11(4–5), 487–502 (2011)

14. Fages, F., Ruet, P., Soliman, S.: Linear concurrent constraint programming: oper-
ational and phase semantics. Inf. Comput. 165(1), 14–41 (2001)

15. Falaschi, M., Gabbrielli, M., Olarte, C., Palamidessi, C.: Slicing concurrent con-
straint programs. In: Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016.
LNCS, vol. 10184, pp. 76–93. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63139-4 5

16. Falaschi, M., Olarte, C., Palamidessi, C.: A framework for abstract interpretation
of timed concurrent constraint programs. In: Proceedings of PPDP 2009, pp. 207–
218. ACM (2009)

17. Falaschi, M., Olarte, C., Palamidessi, C.: Abstract interpretation of temporal con-
current constraint programs. TPLP 15(3), 312–357 (2015)

18. Falaschi, M., Olarte, C., Palamidessi, C., Valencia, F.: Declarative diagnosis of
temporal concurrent constraint programs. In: Dahl, V., Niemelä, I. (eds.) ICLP
2007. LNCS, vol. 4670, pp. 271–285. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74610-2 19

19. Jaffar, J., Maher, M.: Constraint logic programming: a survey. J. Log. Program.
19–20(Supplement 1), 503–581 (1994)

20. Jaffar, J., Maher, M.J., Marriott, K., Stuckey, P.J.: The semantics of constraint
logic programs. J. Log. Program. 37(1–3), 1–46 (1998)

21. Josep, S.: A vocabulary of program slicing-based techniques. ACM Comput. Surv.
44(3), 12:1–12:41 (2012)

22. Korel, B., Laski, J.: Dynamic program slicing. Inf. Process. Lett. 29(3), 155–163
(1988)

23. Nielsen, M., Palamidessi, C., Valencia, F.D.: Temporal concurrent constraint pro-
gramming: denotation, logic and applications. Nord. J. Comput. 9(1), 145–188
(2002)

24. Olarte, C., Chiarugi, D., Falaschi, M., Hermith, D.: A proof theoretic view of
spatial and temporal dependencies in biochemical systems. Theor. Comput. Sci.
641, 25–42 (2016)

25. Olarte, C., Rueda, C., Valencia, F.D.: Models and emerging trends of concurrent
constraint programming. Constraints 18(4), 535–578 (2013)

26. Olarte, C., Valencia, F.D.: Universal concurrent constraint programing: symbolic
semantics and applications to security. In: Proceedings of SAC 2008, pp. 145–150.
ACM (2008)

27. Saraswat, V.A., Jagadeesan, R., Gupta, V.: Timed default concurrent constraint
programming. J. Symb. Comput. 22(5/6), 475–520 (1996)

https://doi.org/10.1007/978-3-642-17796-5_3
https://doi.org/10.1007/978-3-319-63139-4_5
https://doi.org/10.1007/978-3-319-63139-4_5
https://doi.org/10.1007/978-3-540-74610-2_19
https://doi.org/10.1007/978-3-540-74610-2_19

An Assertion Language for Slicing Constraint Logic Languages 165

28. Saraswat, V.A., Rinard, M.C., Panangaden, P.: Semantic foundations of concurrent
constraint programming. In: Wise, D.S. (ed.) POPL, pp. 333–352. ACM Press, New
York (1991)

29. Shapiro, E.: The family of concurrent logic programming languages. ACM Comput.
Surv. 21(3), 413–510 (1989)

30. Shapiro, E.Y.: Algorithmic Program DeBugging. MIT Press, Cambridge (1983)
31. Szilágyi, G., Gyimóthy, T., Maluszyński, J.: Static and dynamic slicing of con-

straint logic programs. Autom. Softw. Eng. 9(1), 41–65 (2002)
32. Clocksin, W.F., Mellish, C.S.: Programming in Prolog. Springer, Heidelberg (1981).

https://doi.org/10.1007/978-3-642-96661-3
33. Weiser, M.: Program slicing. IEEE Trans. Soft. Eng. 10(4), 352–357 (1984)

https://doi.org/10.1007/978-3-642-96661-3

Program Analysis

Eliminating Unstable Tests
in Floating-Point Programs

Laura Titolo1(B), César A. Muñoz2(B), Marco A. Feliú1,
and Mariano M. Moscato1

1 National Institute of Aerospace, Hampton, USA
{laura.titolo,marco.feliu,mariano.moscato}@nianet.org

2 NASA Langley Research Center, Hampton, USA
cesar.a.munoz@nasa.gov

Abstract. Round-off errors arising from the difference between real
numbers and their floating-point representation cause the control flow
of conditional floating-point statements to deviate from the ideal flow of
the real-number computation. This problem, which is called test insta-
bility, may result in a significant difference between the computation
of a floating-point program and the expected output in real arithmetic.
In this paper, a formally proven program transformation is proposed
to detect and correct the effects of unstable tests. The output of this
transformation is a floating-point program that is guaranteed to return
either the result of the original floating-point program when it can be
assured that both its real and its floating-point flows agree or a warning
when these flows may diverge. The proposed approach is illustrated with
the transformation of the core computation of a polygon containment
algorithm developed at NASA that is used in a geofencing system for
unmanned aircraft systems.

Keywords: Floating-point numbers · Round-off error ·
Program transformation · Test instability · Formal verification

1 Introduction

Floating-point numbers are widely used to represent real numbers in computer
programs since they offer a good trade-off between efficiency and precision. The
round-off error of a floating-point expression is the difference between the ideal
computation in real arithmetic and the actual floating-point computation. These
round-off errors accumulate during numerical computations. Besides having a
direct effect on the result of mathematical operations, round-off errors may sig-
nificantly impact the control flow of a program. This happens when the guard
of a conditional statement contains a floating-point expression whose round-off

Research by the first, the third, and the fourth authors was supported by the National
Aeronautics and Space Administration under NASA/NIA Cooperative Agreement
NNL09AA00A.

c© Springer Nature Switzerland AG 2019
F. Mesnard and P. J. Stuckey (Eds.): LOPSTR 2018, LNCS 11408, pp. 169–183, 2019.
https://doi.org/10.1007/978-3-030-13838-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13838-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-13838-7_10

170 L. Titolo et al.

error makes the actual Boolean value of the guard differ from the value that
would be obtained assuming real arithmetic. In this case, the conditional state-
ment is called an unstable test. Unstable tests are an inherent feature of floating-
point programs. In general, it is not possible to completely avoid them. How-
ever, it is possible to mitigate their effect by transforming the original program
into another program that conservatively (and soundly) detects and corrects
unstable tests.

This paper presents a program transformation technique to transform a given
program into a new one that returns either the same result of the original pro-
gram or a warning when the real and floating-point flows may diverge. This
transformation is parametric with respect to two Boolean abstractions that take
into consideration the round-off error in the expressions occurring in the guard.
The transformation replaces the unstable conditions with more restrictive con-
ditions that are guaranteed to preserve the control flow of stable tests. The
correctness of the proposed transformation is formally verified in the Prototype
Verification System (PVS) [16].

The remainder of the paper is organized as follows. Section 2 provides tech-
nical background on floating-point numbers and round-off errors. The proposed
program transformation technique is presented in Sect. 3. Section 4 illustrates
this technique by transforming the core logic of an algorithm for polygon con-
tainment that is part of a geofencing system developed by NASA. Section 5
discusses related work and Sect. 6 concludes the paper.

2 Round-Off Errors and Unstable Tests

A floating-point number can be formalized as a pair of integers (m, e) ∈ Z

2,
where m is called the significand and e the exponent of the float [1,10]. A
floating-point format f is defined as a pair of integers (p, emin), where p is
called the precision and emin is called the minimal exponent. For instance, IEEE
single and double precision floating-point numbers are specified by the formats
(24, 149) and (53, 1074), respectively. A canonical float is a float such that is
either a normal or subnormal. A normal float is a float such that the significand
cannot be multiplied by the radix and still fit in the format. A subnormal float is
a float having the minimal exponent such that its significand can be multiplied
by the radix and still fit in the format. Henceforth, F will denote the set of
floating-point numbers in canonical form and the expression ṽ will denote a
floating-point number (m, e) in F. A conversion function R : F → R is defined to
refer to the real number represented by a given float, i.e., R((m, e)) = m · βe .

The expression Ff (r) denotes the floating-point number in format f closest
to r . The format f will be omitted when clear from the context. Let ṽ be a
floating-point number that represents a real number r , the difference |R(ṽ) − r |
is called the round-off error (or rounding error) of ṽ with respect to r .

Eliminating Unstable Tests in Floating-Point Programs 171

2.1 Unstable Tests

Given a set ˜Ω of pre-defined floating-point operations, the corresponding set Ω of
operations over real numbers, a finite set V of variables representing real values,
and a finite set ˜

V of variables representing floating-point values, where V and ˜

V

are disjoint, the sets A and ˜

A of arithmetic expressions over real numbers and
over floating-point numbers, respectively, are defined by the following grammar.

A ::= d | x | op(A, . . . ,A), ˜A ::= d̃ | x̃ | õp(˜A, . . . , ˜A),

where A ∈ A, d ∈ R, x ∈ V, op ∈ Ω, ˜A ∈ ˜

A, d̃ ∈ F, x̃ ∈ ˜

V, õp ∈ ˜Ω. It is assumed
that there is a function χr : ˜

V → V that associates to each floating-point variable
x̃ a variable x ∈ V representing the real value of x̃. The function RA : ˜

A → A

converts an arithmetic expression on floating-point numbers to an arithmetic
expression on real numbers. It is defined by simply replacing each floating-point
operation with the corresponding one on real numbers and by applying R and
χr to floating-point values and variables, respectively.

Boolean expressions are defined by the following grammar.

B ::= true | false | B ∧ B | B ∨ B |¬ B | A < A | A = A | ˜A < ˜A | ˜A = ˜A,

where A ∈ A and ˜A ∈
˜

A. The conjunction ∧, disjunction ∨, negation ¬,
true, and false have the usual classical logic meaning. The symbols B and ˜

B

denote the domain of Boolean expressions over real and floating-point num-
bers, respectively. The function RB : ˜

B → B converts a Boolean expression
on floating-point numbers to a Boolean expression on real numbers. Given a
variable assignment σ : V → R, evalB(σ,B) ∈ {true, false} denotes the evalua-
tion of the real Boolean expression B. Similarly, given ˜B ∈ ˜

B and σ̃ : ˜

V → F,
˜eval

˜B
(σ̃, ˜B) ∈ {true, false} denotes the evaluation of the floating-point Boolean

expression ˜B.
The expression language considered in this paper contains binary and n-ary

conditionals, let expressions, arithmetic expressions, and a warning exceptional
statement. Given a set Σ of function symbols, the syntax of program expressions
in S is given by the following grammar.

S ::=˜A | if ˜B then S else S | if ˜B then S [elsif ˜B then S]ni=1 else S

| let x̃ = ˜A in S | warning ,
(2.1)

where ˜A ∈ ˜

A, ˜B ∈ ˜

B, x̃ ∈ ˜

V, and n ∈ N

>0. The notation [elsif ˜B then S]ni=1 denotes
a list of n elsif branches.

A program is a function declaration of the form f̃(x̃1, . . . , x̃m) = S , where
x̃1, . . . , x̃m are pairwise distinct variables in ˜

V and all free variables appearing
in S are in {x̃1, . . . , x̃m}. The natural number m is called the arity of f̃ . The set
of programs is denoted as P.

When if-then-else guards contain floating-point expressions, the output of
the considered program is not only directly influenced by rounding errors, but
also by the error of taking the incorrect branch in the case of unstable tests.

172 L. Titolo et al.

Definition 1 (Conditional Instability). A function declaration f̃ (̃x1,. . . ,
x̃n) = S is said to have an unstable conditional when its body contains a con-
ditional statement of the form if φ̃ then S1 else S2 and there exist two assign-
ments σ̃ : {x̃1, . . . , x̃n} → F and σ : {χr (x̃1), . . . , χr (x̃n)} → R such that for all
i ∈ {1, . . . , n}, σ(χr (x̃i)) = R(σ̃(x̃i)) and evalB(σ,RB(φ̃)) ≠ ˜eval

˜B
(σ̃, φ̃). Other-

wise, the conditional expression is said to be stable.

In other words, a conditional statement (or test) φ̃ is unstable when there exists
an assignment from the free variables x̃i in φ̃ to F such that φ̃ evaluates to a
different Boolean value with respect to its real valued counterpart RB(φ̃). In
these cases, the program is said to follow an unstable path, otherwise, when the
flows coincide, it is said to follow a stable path.

2.2 Floating-Point Denotational Semantics

This section presents a compositional denotational semantics for the expres-
sion language of Formula (2.1) that models both real and floating-point path
conditions and outputs. This semantics is a modification of the one introduced
in [13,21]. The proposed semantics collects for each combination of real and
floating-point program paths: the real and floating-point path conditions, two
symbolic expressions representing the value of the output assuming the use of
real and floating-point arithmetic, respectively, and a flag indicating if the ele-
ment refers to either a stable or an unstable path. This information is stored in
a conditional tuple.

Definition 2 (Conditional Tuple). A conditional tuple is an expression of
the form 〈η, η̃〉t ↠ (r, r̃), where η ∈ B, η̃ ∈ ˜

B, r ∈ A ∪ {�u}, r̃ ∈ ˜

A ∪ {�u}, and
t ∈ {s,u}.
Intuitively, 〈η, η̃〉t ↠ (r, r̃) indicates that if the condition η ∧ η̃ is satisfied,
the output of the ideal real-valued implementation of the program is r and the
output of the floating-point execution is r̃. The sub-index t is used to mark by
construction whether a conditional tuple corresponds to an unstable path, when
t = u, or to a stable path, when t = s. The element �u represents the output
of the warning construct. Let C be the set of all conditional error bounds, and
C := ℘(C) be the domain formed by sets of conditional error bounds.

An environment is defined as a function mapping a variable to a set of con-
ditional tuples, i.e., Env : ˜

V → C. The empty environment is denoted as �Env

and maps every variable to the empty set ∅.
Given ν ∈ Env , the semantics of program expressions is defined in Fig. 1 as a

function E : S × Env → C that returns the set of conditional tuples representing
the possible real and floating-point computations and their corresponding path
conditions. The operator ⊔ denotes the least upper bound of the domain of
conditional error bounds.

The semantics of a variable x̃ ∈ ˜

V consists of two cases. If x̃ belongs to the
environment, then the variable has been previously bound to a program expres-
sion S through a let-expression. In this case, the semantics of x̃ is exactly the

Eliminating Unstable Tests in Floating-Point Programs 173

d̃ ν true, true s R d̃ , d̃

warning ν true, true s u, u

x̃ ν
true, true s χr x̃ , x̃ if ν x̃

ν x̃ otherwise

op Ai
n
i 1 ν

n

i 1

φi,
n

i 1

φ̃i s op ri
n
i 1,op r̃i

n
i 1 1 i n

φi, φ̃i s ri, r̃i Ai ν ,
n

i 1

φi false,
n

i 1

φ̃i false

let x̃ A in S ν S ν x̃ A ν

if B then S1 else S2 ν S1 ν RB B ,B S2 ν RB B , B

φ2, φ̃1 u r2, r̃1 φ1, φ̃1 s r1, r̃1 S1 ν ,

φ2, φ̃2 s r2, r̃2 S2 ν RB B ,B

φ1, φ̃2 u r1, r̃2 φ1, φ̃1 s r1, r̃1 S1 ν ,

φ2, φ̃2 s r2, r̃2 S2 ν RB B , B

if B1 then S1 elsif Bi then Si
n 1
i 2 else Sn ν

n 1

i 1
Si ν Bi

i 1
j 1 Bj ,R Bi

i 1
j 1 R Bj

Sn ν n 1
j 1 Bj , n 1

j 1 R Bj

ηi, η̃j u ri, r̃j i, j 1, . . . , n 1 , i j, ηi, η̃i s ri, r̃i Si ν ,

ηj , η̃j s rj , r̃j Sj ν Bj
j 1
k 1 Bk,R Bi

i 1
k 1 R Bk

ηi, η̃n u ri, r̃n i 1, . . . , n 1 , ηi, η̃i s ri, r̃i Si ν ,

ηn, η̃n s rn, r̃n Sn ν n 1
k 1 Bk,R Bi

i 1
k 1 R Bk

ηn, η̃i u rn, r̃i i 1, . . . , n 1 , ηi, η̃i s ri, r̃i Si ν ,

ηn, η̃n s rn, r̃n Sn ν Bi
i 1
k 1 Bk, n 1

k 1 R Bk

Fig. 1. Semantics of a program expression.

semantics of S . If x̃ does not belong to the environment, then x̃ is a parameter
of the function. Here, a new conditional error bound is added with a placeholder
χr (x̃) representing the real value of x̃. The semantics of a floating-point arith-
metic operation õp is computed by composing the semantics of its operands.
The real and floating-point values are obtained by applying the correspond-
ing arithmetic operation to the values of the operands. The new conditions are
obtained as the combination of the conditions of the operands. The semantics
of the expression let x̃ = ˜A in S updates the current environment by associating
with variable x̃ the semantics of expression ˜A.

174 L. Titolo et al.

The semantics of the conditional if ˜B then S1 else S2 uses an auxiliary
operator ⇓.

Definition 3 (Condition propagation operator). Given b ∈ B and b̃ ∈ ˜

B,
〈φ, φ̃〉t ↠ (r, r̃) ⇓(b,b̃)= 〈φ ∧ b, φ̃ ∧ b̃〉t ↠ (r, r̃) if φ ∧ b ∧ φ̃ ∧ b̃ �⇒ false, otherwise
it is undefined. The definition of ⇓ naturally extends to sets of conditional tuples:
given C ∈ C, C ⇓(b,b̃)=

⋃

c∈C c ⇓(b,b̃).

The semantics of S1 and S2 are enriched with the information about the fact that
real and floating-point control flows match, i.e., both ˜B and RB(˜B) have the same
value. In addition, new conditional tuples are built to model the unstable cases
when real and floating-point control flows do not coincide and, therefore, real
and floating-point computations diverge. For example, if ˜B is satisfied but RB(˜B)
is not, the then branch is taken in the floating-point computation, but the else
would have been taken in the real one. In this case, the real condition and its
corresponding output are taken from the semantics of S2, while the floating-
point condition and its corresponding output are taken from the semantics
of S1. The condition (¬RB(˜B), ˜B) is propagated in order to model that ˜B holds
but RB(˜B) does not. The conditional tuples representing this case are marked
with u.

Similarly, the semantics of an n-ary conditional is composed of stable and
unstable cases. The stable cases are built from the semantics of all the program
sub-expressions Si by enriching them with the information stating that the cor-
respondent guard and its real counter-part hold and all the previous guards and
their real counterparts do not hold. All the unstable combinations are built by
combining the real parts of the semantics of a program expression Si and the
floating-point contributions of a different program expression Sj . In addition, the
operator ⇓ is used to propagate the information that the real guard of Si and
the floating-point guard of Sj hold, while the guards of the previous branches
do not hold.

3 Program Transformation

In this section, a program transformation is proposed for detecting when round-
off errors affect the evaluation of floating-point conditionals and for ensuring
that when the floating-point control flow diverges from the real one a warning
is issued. The proposed transformation takes into account round-off errors by
abstracting the Boolean expressions in the guards of the original program. This
is done by means of two Boolean abstractions β+, β− : ˜

B →
˜

B.
Given φ̃ ∈ ˜B , let fv(φ̃) be the set of free variables in φ̃. For all σ : {χr (x̃) |

x̃ ∈ fv(φ̃)} → R, σ̃ : fv(φ̃) → F, and x̃ ∈ fv(φ̃) such that R(σ̃(x̃)) = σ(χr (x̃)), β+

and β− satisfy the following properties.

1. ˜eval
˜B
(σ̃, β+(φ̃)) ⇒ ˜eval

˜B
(σ̃, φ̃) ∧ evalB(σ,RB(φ̃)).

2. ˜eval
˜B
(σ̃, β−(φ̃)) ⇒ ˜eval

˜B
(σ̃,¬ φ̃) ∧ evalB(σ,¬ RB(φ̃)).

Eliminating Unstable Tests in Floating-Point Programs 175

Property 1 states that for all floating-point Boolean expressions φ̃, β+(φ̃) implies
both φ̃ and its real counterpart. Symmetrically, Property 2 ensures that β−(φ̃)
implies both the negation of φ̃ and the negation of its real counterpart.

Example 1. The Boolean abstractions β+ and β− can be instantiated as follows
for conjunctions and disjunction of sign tests. Properties 1 and 2 are formally
proven in PVS to hold for the following definitions of β+ and β−. Let ẽxpr ∈ ˜

A

and ε ∈ F such that |ẽxpr − RA(ẽxpr)| ≤ ε.

β+(ẽxpr ≤ 0) = ẽxpr ≤ −ε β−(ẽxpr ≤ 0) = ẽxpr > ε

β+(ẽxpr ≥ 0) = ẽxpr ≥ ε β−(ẽxpr ≥ 0) = ẽxpr < −ε

β+(ẽxpr < 0) = ẽxpr < −ε β−(ẽxpr < 0) = ẽxpr ≥ ε

β+(ẽxpr > 0) = ẽxpr > ε β−(ẽxpr > 0) = ẽxpr ≤ −ε

β+(φ̃1 ∧ φ̃2) = β+(φ̃1) ∧ β+(φ̃2) β−(φ̃1 ∧ φ̃2) = β−(φ̃1) ∨ β−(φ̃2)

β+(φ̃1 ∨ φ̃2) = β+(φ̃1) ∨ β+(φ̃2) β−(φ̃1 ∨ φ̃2) = β−(φ̃1) ∧ β−(φ̃2)

β+(¬ φ̃) = β−(φ̃) β−(¬ φ̃) = β+(φ̃)

The abstractions performed for sign tests are not correct for generic inequalities
of the form a ≤ b. In this case, to compensate for the round-off errors of both
expressions, additional floating-point operations must be performed. Thus, the
round-off error generated by such operations needs to be considered as well to
obtain a sound approximation. The naive application of this strategy leads to
a non-terminating transformation. The design of an effective approximation for
these generic inequalities is left as future work.

The program transformation is defined as follows.

Definition 4 (Program Transformation). Let f̃(x̃1, . . . , x̃n) = S ∈ P be a
floating-point program that does not contain any warning statements, the trans-
formed program is defined as f̃(x̃1, . . . , x̃n) = τ(S) where τ is defined as follows.

τ(Ã) = Ã

τ(if φ̃ then S1 else S2) =

if β+(φ̃) then τ(S1) elseif β−(φ̃) then τ(S2) else warning

τ(if φ̃1 then S1 [elsif φ̃i then Si]n−1
i=2 else Sn) =

if β+(φ̃1) then τ(S1) [elsif β+(φ̃i) ∧
∧i−1

j=1 β−(φ̃j) then τ(Si)]n−1
i=2

elsif
∧n−1

j=1 β−(φ̃j) then τ(Sn)

else warning

τ(let x̃ = Ã in S) =let x̃ = Ã in τ(S)

176 L. Titolo et al.

In the case of the binary conditional statement, the then branch of the trans-
formed program is taken when β+(φ̃) is satisfied. By Property 1, this means
that in the original program both φ̃ and R(φ̃) hold and, thus, the then branch
is taken in both real and floating-point control flows. Similarly, the else branch
of the transformed program is taken when β−(φ̃) holds. This means, by Prop-
erty 2, that in the original program the else branch is taken in both real and
floating-point control flows. In the case real and floating-flows diverge, neither
β+(φ̃) nor β−(φ̃) is satisfied and a warning is returned.

In the case of the n-ary conditional statements, the guard φ̃i of the i-th
branch is replaced by the conjunction of β+(φ̃i) and β−(φ̃j) for all the previous
branches j < i. By properties 1 and 2, it follows that the transformed program
takes the i-th branch only when the same branch is taken in both real and
floating-point control flows of the original program. Additionally, a warning is
issued by the transformed program when real and floating-point control flows of
the original program differ.

The following theorem states the correctness of the program transformation
τ . If the transformed program τ(P) returns an output r̃ different from warning ,
then the original program follows a stable path and returns the floating-point
output r̃. Furthermore, in the case the original program presents an unstable
behavior, the transformed program returns warning .

Theorem 1 (Program Transformation Correctness). Given f̃(x̃1,. . . ,
x̃n) = S ∈ P, σ : {χr (x̃1) . . . χr (x̃n)} → R, and σ̃ : {x̃1 . . . x̃n} → F, such that
for all i ∈ {1, . . . , n}, R(σ̃(x̃i)) = σ(χr (x̃i)):

1. for all 〈η′, η̃′〉t′ ↠ (r′, r̃′) ∈ E�τ(S)�
�Env

such that r̃ ≠�u, there exists 〈η, η̃〉s ↠
(r, r̃) ∈ E�S�

�Env
such that ˜eval

˜B
(σ̃, η̃′) ⇒ evalB(σ, η) ∧ ˜eval

˜B
(σ̃, η̃) and r̃ = r̃′;

2. for all 〈η, η̃〉u ↠ (r, r̃)∈ E�S�
�Env

, there exists 〈η′,η̃′〉t′ ↠ (r′,�u)∈ E�τ(S)�
�Env

such that evalB(σ, η) ∧ ˜eval
˜B
(σ̃, η̃) ⇒ ˜eval

˜B
(σ̃, η̃′).

The program transformation defined in Definition 4 has been formalized and
Theorem 1 has been proven correct in PVS.1

It is important to remark that the intended semantics of the floating-point
transformed program is the real-valued semantics of the original one, i.e., the
real-valued semantics of the transformed program is irrelevant. Therefore, even
if the transformed program presents unstable tests, Theorem 1 ensures that its
floating-point control flow preserves the control flow of stable tests in the original
program.

Example 2. Consider the program eps line, which is part of the ACCoRD conflict
detection and resolution algorithm [11]. This function is used to compute an
implicitly coordinated horizontal resolution direction for the aircraft involved in
a pair-wise conflict.

eps line(ṽx, ṽy, s̃x, s̃y) = if ẽxpr > 0 then 1 elsif ẽxpr < 0 then −1 else 0,

1 This formalization is available at https://shemesh.larc.nasa.gov/fm/PRECiSA.

https://shemesh.larc.nasa.gov/fm/PRECiSA

Eliminating Unstable Tests in Floating-Point Programs 177

where ẽxpr = (s̃x ∗ ṽy) − (s̃y ∗ ṽx) and ṽx, ṽy, s̃x, s̃y are floating-point variables.
For example, if the values of such variables are assumed to lie in the range
[−100, 100], the tool PRECiSA [13,21] can be used to compute the round-off
error estimation ε = 6.4801497501321145 × 10−12 for ẽxpr . PRECiSA is a tool
that over-approximates the round-off error of floating-point programs. It is fully
automatic and generates PVS proof certificates that guarantee the correctness of
the error estimations with respect to the floating-point IEEE-754 standard. The
following program is obtained by using the transformation τ with the Boolean
approximations of Example 1.

τ(eps line(ṽx, ṽy, s̃x, s̃y)) = if ẽxpr > ε then 1 elsif ẽxpr < −ε then −1
elsif ẽxpr ≥ ε ∧ ẽxpr ≤ −ε then 0 else warning

The condition ẽxpr ≥ ε ∧ ẽxpr ≤ −ε never holds since ε is a positive number.
Therefore, the transformed program never returns 0. Indeed, when ẽxpr is close
to 0, the test is unstable. The transformed program detects these unstable cases
and returns a warning.

4 Case Study: PolyCARP Algorithm

PolyCARP2 (Algorithms for Computations with Polygons) [14,15] is a suite
of algorithms for geo-containment applications. One of the main applications
of PolyCARP is to provide geofencing capabilities to unmanned aerial systems
(UAS), i.e., detecting whether a UAS is inside or outside a given geographical
region, which is modeled using a 2D polygon with a minimum and a maximum
altitude. Another application of PolyCARP is the detection of weather cells,
modeled as moving polygons, along an aircraft trajectory.

A core piece of logic in PolyCARP is the polygon containment algorithm,
i.e., the algorithm that checks whether or not a point lies in the interior of a
polygon. Algorithms for polygon containment have to be carefully implemented
since numerical errors may lead to wrong answers, even in cases where the point
is far from the boundaries of the polygon. PolyCARP uses several techniques to
detect if a point is contained in a polygon. One of these techniques relies on the
computation of the winding number. This number corresponds to the number of
times the polygon winds around a point p.

Consider two consecutive vertices v and v′ of the polygon in the Cartesian
plane with the point p as the origin. The function winding number edge checks in
which quadrants v and v′ are located and counts how many axes are crossed by
the edge (v, v′). If v and v′ belong to the same quadrant, the contribution of the
edge to the winding number is 0 since no axis is crossed. If v and v′ lie in adjacent
quadrants, the contribution is 1 (respectively −1) if moving from v to v′ along
the edge is in counterclockwise (respectively clockwise) direction. In the case v
and v′ are in opposite quadrants, the determinant is computed for checking the
direction of the edge. If it is counterclockwise the contribution is 2, otherwise
2 PolyCARP is available at https://github.com/nasa/polycarp.

https://github.com/nasa/polycarp

178 L. Titolo et al.

it is −2. The winding number is obtained as the sum of the contributions of all
the edges of the polygon. If the result is 0 or 4, the point is inside the polygon,
otherwise, it is outside.

winding number edge(vx, vy, v′
x, v′

y, px, py) =

let tx = vx − px in let ty = vy − py in let nx = v′
x − px in let ny = v′

y − py in

if same quad then 0
elsif adj quad ctrclock then 1
elsif adj quad clock then −1
elsif det pos then 2
else −2

where

same quad =
(tx ≥ 0 ∧ ty ≥ 0 ∧ nx ≥ 0 ∧ ny ≥ 0) ∨ (tx ≤ 0 ∧ ty ≥ 0 ∧ nx ≤ 0 ∧ ny ≥ 0) ∨
(tx ≥ 0 ∧ ty ≤ 0 ∧ nx ≥ 0 ∧ ny ≤ 0) ∨ (tx ≤ 0 ∧ ty ≤ 0 ∧ nx ≤ 0 ∧ ny ≤ 0)

adj quad ctrclock =
(tx ≥ 0 ∧ ty ≤ 0 ∧ nx ≥ 0 ∧ ny ≥ 0) ∨ (tx ≥ 0 ∧ ty ≥ 0 ∧ nx ≤ 0 ∧ ny ≥ 0) ∨
(tx ≤ 0 ∧ ty ≥ 0 ∧ nx ≤ 0 ∧ ny ≤ 0) ∨ (tx ≤ 0 ∧ ty ≤ 0 ∧ nx ≥ 0 ∧ ny ≤ 0),

adj quad clock =
(tx ≥ 0 ∧ ty ≥ 0 ∧ nx ≥ 0 ∧ ny ≤ 0) ∨ (tx ≤ 0 ∧ ty ≥ 0 ∧ nx ≤ 0 ∧ ny ≥ 0) ∨
(tx ≤ 0 ∧ ty ≤ 0 ∧ nx ≤ 0 ∧ ny ≥ 0) ∨ (tx ≥ 0 ∧ ty ≤ 0 ∧ nx ≤ 0 ∧ ny ≤ 0),

det pos = (nx − tx) ∗ ty − (ny − ty) ∗ tx ≤ 0.

The function winding number edge has been verified in PVS using real arith-
metic. However, due to floating-point errors, taking the incorrect branch for one
of the edges in the computation of the winding number may result in an incor-
rect conclusion about the position of the point with respect to the polygon. In
order to overcome this problem, the transformation τ of Definition 4 is applied
to the function winding number edge resulting in the following function. Given
initial bounds for the input variables, PRECiSA [13,21] can be used to compute
the round-off error estimations for nx, ny, tx, ty and the determinant, which are
denoted εtx , εty , εnx

, εny
, and εdet, respectively.

τ(winding number edge(vx, vy, v′
x, v′

y, px, py)) =

let tx = vx − px in let ty = vy − py in let nx = v′
x − px in let ny = v′

y − py in

if same quadβ then 0

elsif adj quad ctrclockβ then 1

elsif adj quad clockβ then −1

elsif det posβ then 2

Eliminating Unstable Tests in Floating-Point Programs 179

elsif original elseβ else −2
else warning ,

where

same quadβ
= β+(same quad) = (tx ≥ εtx ∧ ty ≥ εty ∧ nx ≥ εnx

∧ ny ≥ εny
) ∨

(tx ≤ −εtx ∧ ty ≥ εty ∧ nx ≤ −εnx
∧ ny ≥ εny

) ∨
(tx ≥ εtx ∧ ty ≤ −εty ∧ nx ≥ εnx

∧ ny ≤ −εny
) ∨

(tx ≤ −εtx ∧ ty ≤ −εty ∧ nx ≤−εnx
∧ ny ≤−εny

),

adj quad ctrclockβ
= β+(adj quad counterclock) ∧ β−(same quad),

adj quad clockβ
= β+(adj quad clock) ∧ β−(adj quad ctrclock) ∧

β−(same quad),

det posβ
= (nx − tx) ∗ ty − (ny − ty) ∗ tx ≤ −εdet ∧ β−(adj quad clock) ∧

β−(adj quad ctrclock) ∧ β−(same quad),

original elseβ
= (nx − tx) ∗ ty − (ny − ty) ∗ tx > εdet ∧ β−(adj quad clock) ∧

β−(adj quad ctrclock) ∧ β−(same quad),

β−(same quad) = (tx < −εtx ∨ ty < −εty ∨ nx < −εnx
∨ ny < −εny

) ∧
(tx > εtx ∨ ty < −εty ∨ nx > εnx

∨ ny < −εny
) ∧

(tx < −εtx ∨ ty > εty ∨ nx < −εnx
∨ ny > εny

) ∧
(tx > εtx ∨ ty > εty ∨ nx > εnx

∨ ny > εny
),

β+(adj quad ctrclock) = (tx ≥ εtx ∧ ty ≤ −εty ∧ nx ≥ εnx
∧ ny ≥ εny

) ∨
(tx ≥ εtx ∧ ty ≥ εty ∧ nx ≤ −εnx

∧ ny ≥ εny
) ∨

(tx ≤ −εtx ∧ ty ≥ εty ∧ nx ≤ −εnx
∧ ny ≤ −εny

) ∨
(tx ≤ −εtx ∧ ty ≤ −εty ∧ nx ≥ εnx

∧ ny ≤ −εny
),

β−(adj quad ctrclock) = (tx < −εtx ∨ ty > εty ∨ nx < −εnx
∨ ny < −εny

) ∧
(tx < −εtx ∨ ty < −εty ∨ nx > εnx

∨ ny < −εny
) ∧

(tx > εtx ∨ ty < −εty ∨ nx > εnx
∨ ny > εny

) ∧
(tx > εtx ∨ ty > εty ∨ nx < −εnx

∨ ny > εny
),

β+(adj quad clock) = (tx ≥ εtx ∧ ty ≥ εty ∧ nx ≥ εnx
∧ ny ≤ −εny

) ∨
(tx ≤ −εtx ∧ ty ≥ εty ∧ nx ≤ −εnx

∧ ny ≥ εny
) ∨

(tx ≤ −εtx ∧ ty ≤ −εty ∧ nx ≤ −εnx
∧ ny ≥ εny

) ∨
(tx ≥ εtx ∧ ty ≤ −εty ∧ nx ≤ −εnx

∧ ny ≤ −εny
),

180 L. Titolo et al.

β−(adj quad clock) = (tx < −εtx ∨ ty < −εty ∨ nx < −εnx
∨ ny > εny

) ∧
(tx > εtx ∨ ty < −εty ∨ nx > εnx

∨ ny < −εny
) ∧

(tx > εtx ∨ ty > εty ∨ nx > εnx
∨ ny < −εny

) ∧
(tx < −εtx ∨ ty > εty ∨ nx > εnx

∨ ny > εny
).

Consider a polygonal geofence and a set of randomly generated points in the
square that circumscribes it. For each edge of the polygon and each generated
point, the original function winding number edge is executed by using both exact
real arithmetic and double-precision floating-point arithmetic. Additionally, the
transformed function τ(winding number edge) is executed with double-precision
floating-point arithmetic. For these randomly generated points, both the original
and the transformed program return the same result. However, the closer the
generated point is to the border of the polygon, the more likely is for the original
program to take an unstable path. By considering a set of randomly generated
points very close to the edges of the polygon, the transformed program always
returns a warning, showing that these are the cases for which the floating-point
computation may diverge from the real one. Since an over-approximation of
the round-off error is used, not all the generated warnings reflect an actual
problem. In fact, false warnings occur when the compensated error computed
by the abstraction is larger than the round-off error that actually occurs in the
computation. The amount of false warnings converges to the 50% of the number
of total warnings as the distance to the edge decreases.

5 Related Work

Recently, several program transformations have been proposed with the aim of
improving accuracy and efficiency of floating-point computations. It is possible
to distinguish two kinds of approaches: precision allocation tools and program
optimization ones. Precision allocation (or tuning) tools aim at selecting the
lowest floating-point precision that is necessary to achieve a desired accuracy.
This approach avoids using more precision than needed and improves the per-
formance of the program. Rosa [8,9] uses a compilation algorithm that, from an
ideal real-valued implementation, produces a finite-precision version (if it exists)
that is guaranteed to meet the desired overall precision. Rosa soundly deals with
unstable tests and with bounded loops. Similarly, FPTuner [3] implements a rig-
orous approach to precision allocation of mixed-precision arithmetic expressions.
Precimonius [18] is a dynamic tool able to identify parts of a program that can
be performed at a lower precision. It generates a transformed program where
each floating-point variable is typed to the lowest precision necessary to meet
a set of given accuracy and performance constraints. Hence, the transformed
program uses variables of lower precision and performs better than the original
program.

Program optimization tools aim at improving the accuracy of floating-point
programs by rewriting arithmetic expressions in equivalent ones with a lower
accumulated round-off error. Herbie [17] is a tool that automatically improves

Eliminating Unstable Tests in Floating-Point Programs 181

the accuracy of floating-point programs though a heuristic search. Herbie detects
the expressions where rounding-errors occur and it applies a series of rewriting
and simplification rules. It generates a set of transformed programs that are
equivalent to the original one but potentially more accurate. The rewriting and
simplification process is then applied recursively to the generated transformed
programs until the most accurate program is obtained. CoHD [19] is a source-to-
source transformer for C code that automatically compensates for the round-off
errors of some basic floating-point operations. SyHD [20] is a C code optimizer
that explores a set of programs generated by CoDH and selects the one with the
best accuracy and computation-time trade-off. The tool Sardana [12], given a
Lustre [2] program, produces a set of equivalent programs with simplified arith-
metic expressions. Then, it selects the ones for which a better accuracy bound
can be proved. Salsa [4] combines Sardana with techniques for intra-procedure [5]
and inter-procedure [6,7] program transformation in order to improve the accu-
racy of a target variable in larger pieces of code containing assignments and
control structures. To the best of the authors’ knowledge, the program transfor-
mation proposed in this work is the only approach that addresses the problem
of conditional instability for floating-point programs.

6 Conclusion

This paper presents a formally verified program transformation to detect insta-
bility in floating-point programs. The transformed program is guaranteed to
return a warning when real and floating-point flows may diverge. Otherwise,
it behaves as the original program when real and floating-point control flows
coincide. The proposed approach is parametric with respect to two Boolean
expression abstractions that return more restrictive Boolean conditions using an
over-approximation of the round-off error occurring in the guard. These abstrac-
tions cause a loss of precision since the guards occurring in the transformed
program are more restrictive and, therefore, some stable original traces may be
lost in the transformed program. This leads to the possibility of having false
instability warnings. However, it is ensured that all the unstable paths of the
original program are detected.

This transformation has been formalized and formally proven correct in the
interactive theorem prover PVS. The PVS tool PVSio can be used to execute
the program transformation. However, a full integration with PRECiSA is the
missing step to compute the round-off error approximations and to make the
presented approach fully automatic.

The program transformation presented in this paper is the first step towards
the much broader goal of improving the quality and reliability of floating-point
programs. Future work includes the extension of the formalization to a more
expressive language where conditionals are allowed inside Boolean expressions
and function calls and loops are supported. This extension is not straightforward
since it involves several changes in the formalization. In fact, in such setting, the
evaluation of the expressions in the guards can also present unstable behav-
iors. Additionally, an extensive experimental evaluation is needed in order to

182 L. Titolo et al.

assess the quality of the approach and its applicability to real-world applications.
Another interesting future direction is the integration of the proposed approach
with tools such as Salsa [4] and Herbie [17]. This integration will improve the
accuracy of the mathematical expressions used inside a program and, at the
same time, prevent unstable tests that may cause unexpected behaviors.

References

1. Boldo, S., Muñoz, C.: A high-level formalization of floating-point numbers in PVS.
Technical report CR-2006-214298, NASA (2006)

2. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: LUSTRE: a declarative language
for real-time programming. In: Conference Record of the 14th ACM Symposium
on Principles of Programming Languages, POPL 1987, pp. 178–188. ACM (1987)

3. Chiang, W., Baranowski, M., Briggs, I., Solovyev, A., Gopalakrishnan, G.,
Rakamarić, Z.: Rigorous floating-point mixed-precision tuning. In: Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, pp. 300–315. ACM (2017)

4. Damouche, N., Martel, M.: Salsa: an automatic tool to improve the numerical
accuracy of programs. In: 6th Workshop on Automated Formal Methods, AFM
2017 (2017)

5. Damouche, N., Martel, M., Chapoutot, A.: Optimizing the accuracy of a rocket
trajectory simulation by program transformation. In: Proceedings of the 12th ACM
International Conference on Computing Frontiers (CF 2015), pp. 40:1–40:2. ACM
(2015)

6. Damouche, N., Martel, M., Chapoutot, A.: Improving the numerical accuracy of
programs by automatic transformation. Int. J. Softw. Tools Technol. Transf. 19(4),
427–448 (2017)

7. Damouche, N., Martel, M., Chapoutot, A.: Numerical accuracy improvement by
interprocedural program transformation. In: Proceedings of the 20th International
Workshop on Software and Compilers for Embedded Systems, SCOPES 2017, pp.
1–10. ACM (2017)

8. Darulova, E., Kuncak, V.: Sound compilation of reals. In: Proceedings of the 41st
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2014, pp. 235–248. ACM (2014)

9. Darulova, E., Kuncak, V.: Towards a compiler for reals. ACM Trans. Program.
Lang. Syst. 39(2), 8:1–8:28 (2017)

10. Daumas, M., Rideau, L., Théry, L.: A generic library for floating-point numbers and
its application to exact computing. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs
2001. LNCS, vol. 2152, pp. 169–184. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44755-5 13

11. Dowek, G., Muñoz, C., Carreño, V.: Provably safe coordinated strategy for dis-
tributed conflict resolution. In: Proceedings of the AIAA Guidance Navigation,
and Control Conference and Exhibit 2005, AIAA-2005-6047 (2005)

12. Ioualalen, A., Martel, M.: Synthesizing accurate floating-point formulas. In: 24th
International Conference on Application-Specific Systems, Architectures and Pro-
cessors, ASAP 2013, pp. 113–116. IEEE Computer Society (2013)

13. Moscato, M., Titolo, L., Dutle, A., Muñoz, C.A.: Automatic estimation of verified
floating-point round-off errors via static analysis. In: Tonetta, S., Schoitsch, E.,
Bitsch, F. (eds.) SAFECOMP 2017. LNCS, vol. 10488, pp. 213–229. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66266-4 14

https://doi.org/10.1007/3-540-44755-5_13
https://doi.org/10.1007/3-540-44755-5_13
https://doi.org/10.1007/978-3-319-66266-4_14

Eliminating Unstable Tests in Floating-Point Programs 183

14. Narkawicz, A., Hagen, G.: Algorithms for collision detection between a point and a
moving polygon, with applications to aircraft weather avoidance. In: Proceedings
of the AIAA Aviation Conference (2016)

15. Narkawicz, A., Muñoz, C., Dutle, A.: The MINERVA software development pro-
cess. In: 6th Workshop on Automated Formal Methods, AFM 2017 (2017)

16. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217

17. Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automatically improv-
ing accuracy for floating point expressions. In: Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2015, pp. 1–11. ACM (2015)

18. Rubio-González, C., et al.: Precimonious: tuning assistant for floating-point preci-
sion. In: International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2013, p. 27. ACM (2013)

19. Thévenoux, L., Langlois, P., Martel, M.: Automatic source-to-source error com-
pensation of floating-point programs. In: 18th IEEE International Conference on
Computational Science and Engineering, CSE 2015, pp. 9–16. IEEE Computer
Society (2015)

20. Thévenoux, L., Langlois, P., Martel, M.: Automatic source-to-source error compen-
sation of floating-point programs: code synthesis to optimize accuracy and time.
Concurr. Comput. Pract. Exp. 29(7), e3953 (2017)

21. Titolo, L., Feliú, M.A., Moscato, M., Muñoz, C.A.: An abstract interpretation
framework for the round-off error analysis of floating-point programs. In: Dillig, I.,
Palsberg, J. (eds.) VMCAI 2018. LNCS, vol. 10747, pp. 516–537. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-73721-8 24

https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/978-3-319-73721-8_24

Multivariant Assertion-Based Guidance
in Abstract Interpretation

Isabel Garcia-Contreras1,2(B), Jose F. Morales1(B),
and Manuel V. Hermenegildo1,2(B)

1 IMDEA Software Institute, Madrid, Spain
{isabel.garcia,josef.morales,manuel.hermenegildo}@imdea.org

2 Universidad Politécnica de Madrid (UPM), Madrid, Spain

Abstract. Approximations during program analysis are a necessary
evil, as they ensure essential properties, such as soundness and termi-
nation of the analysis, but they also imply not always producing use-
ful results. Automatic techniques have been studied to prevent preci-
sion loss, typically at the expense of larger resource consumption. In
both cases (i.e., when analysis produces inaccurate results and when
resource consumption is too high), it is necessary to have some means
for users to provide information to guide analysis and thus improve pre-
cision and/or performance. We present techniques for supporting within
an abstract interpretation framework a rich set of assertions that can deal
with multivariance/context-sensitivity, and can handle different run-time
semantics for those assertions that cannot be discharged at compile time.
We show how the proposed approach can be applied to both improving
precision and accelerating analysis. We also provide some formal results
on the effects of such assertions on the analysis results.

Keywords: Program analysis · Multivariance · Context sensitivity ·
Abstract interpretation · Assertions · Static analysis · User guidance

1 Introduction

Abstract Interpretation [6] is a well-established technique for performing static
analyses to determine properties of programs. It allows inferring at compile-
time and in finite time information that is guaranteed to hold for all program
executions corresponding to all possible sets of inputs to the program. Rea-
soning about these generally infinite sets of inputs and program paths requires
(safe) approximations –computing over abstract domains– to ensure termination
and soundness. If such approximations are not carefully designed, the informa-
tion reported by the analyzer may not be accurate enough to be useful for the

Research partially funded by Spanish MINECO grant TIN2015-67522-C3-1-R
TRACES, the Madrid M141047003 N-GREENS program, and Spanish MECD grant
FPU16/04811. We thank the anonymous reviewers for their useful comments.

c© Springer Nature Switzerland AG 2019
F. Mesnard and P. J. Stuckey (Eds.): LOPSTR 2018, LNCS 11408, pp. 184–201, 2019.
https://doi.org/10.1007/978-3-030-13838-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13838-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-13838-7_11

Multivariant Assertion-Based Guidance in Abstract Interpretation 185

intended application, such as, e.g., performing optimizations or verifying proper-
ties. Similarly, although abstract interpretation-based analyzers are guaranteed
to terminate, this does not necessarily imply that they do so in acceptable time
or space, i.e., their resource usage may be higher than desirable.

Much work has been done towards improving both the accuracy and effi-
ciency of analyzers through the design of automatic analysis techniques that
include clever abstract domains, widening and narrowing techniques [1,28,29],
and sophisticated fixpoint algorithms [3,15,21,26]. Despite these advances, there
are still cases where it is necessary for the user to provide input to the analyzer
to guide the process in order to regain accuracy, prevent imprecision from prop-
agating, and improve analyzer performance [5,8]. Interestingly, there is compar-
atively little information on these aspects of analyzers, perhaps because they are
perceived as internal or analyzer implementation-specific.

In this paper we focus on techniques that provide a means for the programmer
to be able to optionally annotate program parts in which precision needs to be
recovered. Examples are the entry and trust declarations of CiaoPP [5,24] and
the known facts of Astrée [7,8] (see Sect. 6 for more related work). Such user
annotations allow dealing with program constructs for which the analysis is
not complete or the source is only partially available. However, as mentioned
before, there is little information in the literature on these assertions beyond a
sentence or two in the user manuals or some examples of use in demo sessions.
In particular, no precise descriptions exist on how these assertions affect the
analysis process and its results.

We clarify these points by proposing a user-guided multivariant fixpoint algo-
rithm that makes use of information contained in different kinds of assertions,
and provide formal results on the influence of such assertions on the analysis. We
also extend the semantics of the assertions to control if precision can be relaxed,
and also to deal with both the cases in which the program execution will and
will not incorporate run-time tests for unverified assertions. Note that almost
all current abstract interpretation systems assume in their semantics that the
run-time checks will be run. However, due to efficiency considerations, assertion
checking in often turned off in production code, specially for complex properties
[16]. To the best of our knowledge this is the first precise description of how
such annotations are processed within a standard parametric and multivariant
fixpoint algorithm, and of their effects on analysis results.

2 Preliminaries

Program Analysis with Abstract Interpretation. Our approach is based
on abstract interpretation [6], a technique in which execution of the program is
simulated on an abstract domain (Dα) which is simpler than the actual, concrete
domain (D). Although not strictly required, we assume that Dα has a lattice
structure with meet (�), join (�), and less than (�) operators. Abstract val-
ues and sets of concrete values are related via a pair of monotonic mappings
〈α, γ〉: abstraction α : D → Dα, and concretization γ : Dα → D, which form

186 I. Garcia-Contreras et al.

a Galois connection. A description (or abstract value) d ∈ Dα approximates a
concrete value c ∈ D if α(c) � d where � is the partial ordering on Dα. Concrete
operations on D values are (over-)approximated by corresponding abstract oper-
ations on Dα values. The key result for abstract interpretation is that it guaran-
tees that the analysis terminates, provided that Dα meets some conditions (such
as finite ascending chains) and that the results are safe approximations of the
concrete semantics (provided Dα safely approximates the concrete values and
operations).

Intermediate Representation. For generality, we formulate our analysis to
work on a block-level intermediate representation of the program, encoded using
Constrained Horn clauses (CHC). A definite CHC program, or program, is a
finite sequence of clauses. A clause is of the form H:-B1, . . . , Bn where H, the
head, is an atom, and B1, . . . , Bn is the body, a possibly empty finite conjunc-
tion of atoms. Atoms are also called literals. We will refer to the head and the
body of a clause cl with cl.head and cl.body respectively. An atom is of the form
p(V1, . . . , Vn). It is normalized if the V1, . . . , Vn are all distinct variables. Nor-
malized atoms are also called predicate descriptors. Each maximal set of clauses
in the program with the same descriptor as head (modulo variable renaming)
defines a predicate (or procedure). Body literals can be predicate descriptors,
which represent calls to the corresponding predicates, or constraints. A con-
straint is a finite conjunction of built-in relations for some background theory.
We assume that all non-builtin atoms are normalized. This is not restrictive since
programs can always be put in this form, and it simplifies the presentation of
the algorithm. However, in the examples we use non-normalized programs. The
encoding of program semantics in CHC depends on the source language and is
beyond the scope of the paper. It is trivial for (C)LP programs, and also well
studied for several types of imperative programs and compilation levels (e.g.,
bytecode, llvm-IR, or ISA – see [2,9,11,12,17,20,23]).

Concrete Semantics. The concrete semantics that we abstract is that of Con-
straint Logic Programs – (C)LP [19]. In particular, we use the constraint exten-
sion of top-down, left-to-right SLD-resolution, which, given a query (initial state),
returns the answers (exit states) computed for it by the program. A query is a
pair G : θ with G a (non-empty) conjunction of atoms and θ a constraint. Exe-
cuting (answering) a query with respect to a CHC program consists on deter-
mining whether the query is a logical consequence of the program and for which
constraints (answers). However, since we are interested in abstracting the calls
and answers (states) that occur at different points in the program, we base our
semantics on the well-known notion of generalized and trees [4]. The concrete
semantics of a program P for a given set of queries Q, �P �Q, is then the set of
generalized and trees that result from the execution of the queries in Q for P .
Each node 〈G, θc, θs〉 in the generalized and tree represents a call to a predicate
G (an atom), with the constraint (state) for that call, θc, and the correspond-
ing success constraint θs (answer). The calling context(G,P,Q) of a predicate
given by the predicate descriptor G defined in P for a set of queries Q is the set
{θc | ∃T ∈ �P �Q s.t. ∃〈G′, θ′c, θ′s〉 in T ∧ ∃σ, σ(G′) = G, σ(θ′c) = θc}, where σ

Multivariant Assertion-Based Guidance in Abstract Interpretation 187

is a renaming substitution, i.e., a substitution that replaces each variable in the
term it is applied to with distinct, fresh variables. We use σ(X) to denote the
application of σ to X. We denote by answers(P,Q) the set of success constraints
computed by P for queries Q.

Goal-Dependent Abstract Interpretation. We use goal-dependent abstract
interpretation, in particular a simplified version (PLAI-simp) of the PLAI algo-
rithm [21,22], which is essentially an efficient abstraction of the generalized and
trees semantics, parametric on the abstract domain. It takes as input a program
P , an abstract domain Dα, and a set of abstract initial queries Qα = {Gi:λi},
where Gi is a normalized atom, and λi ∈ Dα is abstract constraint. The algo-
rithm computes a set of triples A = {〈G1, λ

c
1, λ

s
1〉, . . . , 〈Gn, λc

n, λs
n〉}. In each

〈Gi, λ
c
i , λ

s
i 〉 triple, Gi is a normalized atom, and λc

i and λs
i , elements of Dα,

are, respectively, abstract call and success constraints. The set of triples for a
predicate cover all the concrete call and success constraints that appear during
execution of the initial queries from γ(Qα), see Definition 2.

As usual, ⊥ denotes the abstract constraint such that γ(⊥) = ∅. A tuple
〈Gj , λ

c
j ,⊥〉 indicates that all calls to predicate Gj with any constraint θ ∈ γ(λc

j)
either fail or loop, i.e., they do not produce any success constraints. A repre-
sents the (possibly infinite) set of nodes of the generalized and trees for the
queries represented in Qα to P . In addition, A is multivariant on calls, namely,
it may contain more than one triple for the same predicate descriptor G with
different abstract call constraints. The PLAI algorithm provides guarantees on
termination and correctness (see Theorem 1 for a more precise formulation).

Assertions. Assertions allow stating conditions on the state (current constraint
store) that hold or must hold at certain points of program execution. We use
for concreteness a subset of the syntax of the pred assertions of [5,14,24], which
allow describing sets of preconditions and conditional postconditions on the state
for a given predicate. These assertions are instrumental for many purposes, e.g.
expressing the results of analysis, providing specifications, and documenting [13,
14,25]. A pred assertion is of the form:

:- [Status] pred Head [: Pre] [=> Post].
where Head is a predicate descriptor (i.e., a normalized atom) that denotes the
predicate that the assertion applies to, and Pre and Post are conjunctions of
property literals, i.e., literals corresponding to predicates meeting certain condi-
tions which make them amenable to checking, such as being decidable for any
input [24]. Pre expresses properties that hold when Head is called, namely, at
least one Pre must hold for each call to Head . Post states properties that hold
if Head is called in a state compatible with Pre and the call succeeds. Both Pre
and Post can be empty conjunctions (meaning true), and in that case they can
be omitted. Status is a qualifier of the meaning of the assertion. Here we con-
sider: trust, the assertion represents an actual behavior of the predicate that
the analyzer will assume to be correct; check, the assertion expresses properties
that must hold at run-time, i.e., that the analyzer should prove or else generate
run-time checks for (we will return to this in Sect. 4). check is the default status
of assertions.

188 I. Garcia-Contreras et al.

Example 1. The following assertions describe different behaviors of the pow pred-
icate that computes P = XN: (1) is stating that if the exponent of a power is an
even number, the result (P) is non-negative, (2) states that if the base is a
non-negative number and the exponent is a natural number the result P also is
non-negative:

�

1 :- pred pow(X,N,P) : (int(X), even(N)) => P ≥ 0. % (1)
2 :- pred pow(X,N,P) : (X ≥ 0, nat(N)) => P ≥ 0. % (2)
3 pow(_, 0, 1).
4 pow(X, N, P) :- N > 0,
5 N1 is N - 1, pow(X, N1, P0), P is X * P0.

� �

Here, for simplicity we assume that the properties even/1, int/1, nat/1, and
≥ are built-in properties handled natively by the abstract domain.

In addition to predicate assertions we also consider program-point assertions.
They can appear in the places in a program in which a literal (statement)
can be added and are expressed using literals corresponding to their Status,
i.e., trust(Cond) and check(Cond). They imply that whenever the execution
reaches a state originated at the program point in which the assertion appears,
Cond (should) hold. Example 2 illustrates their use. Program-point assertions
can be translated to pred assertions,1 so without loss of generality we will limit
the discussion to pred assertions.

Definition 1 (Meaning of a Set of Assertions for a Predicate). Given
a predicate represented by a normalized atom Head, and a corresponding set of
assertions {a1 . . . an}, with ai = “:- pred Head : Prei => Post i.” the set of
assertion conditions for Head is {C0, C1, . . . , Cn}, with:

Ci =
{
calls(Head ,

∨n
j=1 Prej) i = 0

success(Head ,Prei,Post i) i = 1..n

where calls(Head ,Pre)2 states conditions on all concrete calls to the predicate
described by Head , and success(Head ,Prej ,Postj) describes conditions on the
success constraints produced by calls to Head if Prej is satisfied.

The assertion conditions for the assertions in Example 1 are:
⎧⎨
⎩

calls(pow(X,N,P), ((int(X), even(N)) ∨ (X ≥ 0, nat(N)))),
success(pow(X,N,P), (int(X), even(N)), (P ≥ 0)),
success(pow(X,N,P), (X ≥ 0, nat(N)), (P ≥ 0))

⎫⎬
⎭

Uses of Assertions. We show examples of the use assertions to guide analysis.

Example 2. Regaining precision during analysis. If we analyze the following pro-
gram with a simple (non-relational) intervals domain, the information inferred

1 E.g., we can replace line 4 in Example 2, by “assrt aux(Z),”, and add a predicate to
the program, assrt aux()., with an assertion “:- pred assrt aux(Z) : Z = 2.”.

2 We denote the calling conditions with calls (plural) for historic reasons, and to
avoid confusion with the higher order predicate in Prolog call/2.

Multivariant Assertion-Based Guidance in Abstract Interpretation 189

for Z would be “any integer” (line 3), whereas it can be seen that it is Z = 2
for any X and Y. We provide the information to the analyzer with an assertion
(line 4). The analyzer will trust this information even if it cannot be inferred
with this domain (because it cannot represent relations between variables).

�

1 p(Y) :- % (Y > 0)
2 X is Y + 2, % (X > 2, Y > 0)
3 Z is X - Y, % (int(Z), X > 2, Y > 0)
4 trust(Z = 2), % (Z = 2, X > 2, Y > 0)
5 % implementation continues

� �

Example 3. Speeding up analysis. Very precise domains suffer less from loss of
precision and are useful for proving complex properties, but can be very costly.
In some cases less precise information in enough, e.g., this code extracted from
LPdoc, the Ciao documentation generator, html escape is a predicate that takes
a string of characters and transforms it to html:

�

1 :- trust pred html_escape(S0, S) => (string(S0), string(S)).
2 html_escape("‘‘"||S0, "“"||S) :- !, html_escape(S0, S).
3 html_escape("’’"||S0, "”"||S) :- !, html_escape(S0, S).
4 html_escape([34|S0], """||S) :- !, html_escape(S0, S).
5 html_escape([39|S0], "'"||S) :- !, html_escape(S0, S).
6 % ...
7 html_escape([X|S0], [X|S]) :- !, character_code(X), html_escape(S0,

S).
8 html_escape([],[]).
9

10 % string(Str) :- list(Str, int).
� �

Analyses based on regular term languages, as, e.g. eterms [28] infer precise
regular types with subtyping, which is often costly. In this example it would be
equivalent to computing an accurate regular language that over-approximates
the HTML text encoding. The trust assertion provides a general invariant that
the analyzer will take instead of inferring a more complex type.

Example 4. Defining abstract usage or specifications of libraries or dynamic
predicates. When sources are not available, or cannot be analyzed, assertions
can provide the missing abstract semantics. The following code illustrate the
use of an assertion to describe the behavior of predicate receive in a sockets

library that is written in C. The assertion in this case transcribes what is stated
in natural language in the documentation of the library. Note that if no annota-
tions were made, the analyzer would have to assume the most general abstraction
(�) for the library arguments.

�

1 :- module(sockets, []).
2

3 :- export(receive/2).
4 :- pred receive(S, M) : (socket(S), var(M)) => list(M, utf8).
5 % receive is written in C

� �

190 I. Garcia-Contreras et al.

Example 5. (Re)defining the language semantics for abstract domains. trust

assertions are also a useful tool for defining the meaning (transfer function)
of the basic operations of the language. In this example we define some basic
properties of the product predicate in a simple types-style abstract domain:

�

1 :- trust pred ’*’(A, B, C) : (int(A), int(B)) => int(C).
2 :- trust pred ’*’(A, B, C) : (flt(A), int(B)) => flt(C).
3 :- trust pred ’*’(A, B, C) : (int(A), flt(B)) => flt(C).
4 :- trust pred ’*’(A, B, C) : (flt(A), flt(B)) => flt(C).

� �

The semantics of bytecodes or machine instructions can be specified for each
domain after transformation into CHCs. Assertions allow representing behaviors
for the same predicate for different call descriptions (multivariance).

3 Basic Fixpoint Algorithm

We first present a basic, non-guided algorithm to be used as starting point –see
Fig. 1. PLAI-simp is essentially the PLAI algorithm [22], but omitting some opti-
mizations that are independent from the issues related with the guidance. The
algorithm is parametric on the abstract domain Dα, given by implementing the
domain-dependent operations �,�,�, abs call, abs proceed, abs generalize,
abs project, and abs extend (which will be described later), and transfer func-
tions for program built-ins, that abstract the meaning of the basic operations
of the language. These operations are assumed to be monotonic and to cor-
rectly over-approximate their correspondent concrete version. As stated before,
the goal of the analyzer is to capture the behavior of each procedure (function
or predicate) in the program with a set A of triples 〈G,λc, λs〉, where G is a
normalized atom and λc and λs are, respectively, the abstract call and success
constraints, elements of Dα. For conciseness, we denote looking up in A with a
partial function a : Atom ∗ Dα �→ Dα, where λs = a[G,λc] iff 〈G,λc, λs〉 ∈ A,
and modify the value of a for (G,λc), denoted with a[G,λc] ← λs′

by removing
〈G,λc, 〉 from A and inserting 〈G,λc, λs′〉. In A there may be more than one
triple with the same G, capturing multivariance, but only one for each λc during
the algorithm’s execution or in the final results.

Operation of the Algorithm. Analysis proceeds from the initial abstract
queries Qα assuming ⊥ as under-approximation of their success constraint. The
algorithm iterates over possibly incomplete results (in A), recomputing them
with any newly inferred information, until a global fixpoint is reached (con-
trolled by flag changes). First, the set of captured call patterns and the clauses
whose head applies (i.e., there exists a renaming σ s.t. G = σ(cl.head)) is stored
in W . Then, each clause is solved with the following process. An “abstract unifi-
cation” (abs call) is made, which performs the abstract parameter passing. It
includes renaming the variables, abstracting the parameter values (via function
α), and extending the abstract constraint to all variables present in the head and
the body of the clause. To abstractly execute a clause the function solve body

abstractly executes each of the literals of the body. This implies, for each literal,
projecting the abstract constraint onto the variables of the literal (abs project)

Multivariant Assertion-Based Guidance in Abstract Interpretation 191

Fig. 1. Baseline fixpoint analysis algorithm (PLAI-simp).

Fig. 2. Pseudocode for solving a literal.

and generalizing it if necessary (abs generalize) before calling solve. Gener-
alization is necessary to ensure termination since we support multivariance and
infinite domains. Lastly, after returning from solve (returning from the literal
call), abs extend propagates the information given by λs (success abstract con-
straint over the variables of L) to the constraint of the variables of the clause
λt. The solve function executes abstractly a literal (Fig. 2). Depending on the
nature of the literal, different actions will be performed. For built-in operations,
the corresponding transfer function (fα) is applied. For predicates defined in the
program, the answer is first looked up in A. If there is already a computed tuple
that matches the abstract call, the previously inferred result is taken. Else (no
stored tuple matches the abstract call), an entry with that call pattern and ⊥
as success value is added. This will trigger the analysis of this call in the next

192 I. Garcia-Contreras et al.

Fig. 3. Factorial program and a possible analysis result.

iteration of the loop. Once a body is processed, the actions of abs call have to be
undone in abs proceed, which performs the “abstract return” from the clause.
It projects the temporary abstract constraint (used to solve the body) back to the
variables in the head of the clause and renames the resulting abstract constraint
back to the variables of the analyzed head. The result is then abstractly general-
ized with the previous results (either from other clauses that also unify or from
previous results of the processed clause), and it is compared with the previous
result to check whether the fixpoint was reached. Termination is ensured even
in the case of domains with infinite ascending chains because abs generalize

includes performing a widening if needed, in addition to the join operation �.
This process is repeated for all the tuples of the analysis until the analysis results
are the same in two consecutive iterations.

Figure 3 shows a factorial program and an analysis result A for Qα =
{fact(X,R) : �} with an abstract domain that keeps information about signs
for each of the program variables with values of the lattice shown. For example,
the first tuple in A states that fact(X,R) may be called with any possible input
and, if it succeeds, X will be an integer and R will be a positive number.

We define analysis results to be correct if the abstract call constraints cover
all the call constraints (and, respectively, the abstract success constraints cover
all the success constraints) which appear during the concrete execution of the
initial queries in Q. Formally:

Definition 2 (Correct analysis). Given a program P and initial queries Q,
an analysis result A is correct for P,Q if:

– ∀G, θc ∈ calling context(G,P,Q) ∃〈G,λc, λs〉 ∈ A s.t. θc ∈ γ(λc).
– ∀〈G,λc, λs〉 ∈ A,∀θc ∈ γ(λc) if θs ∈ answers(P, {G : θc}) then θs ∈ γ(λs).

We recall the result from [22], adapted to the notation used in this paper.

Theorem 1. Correctness of PLAI. Consider a program P and a set of initial
abstract queries Qα. Let Q be the set of concrete queries: Q = {G : θ | θ ∈
γ(λ) ∧ G : λ ∈ Qα}. The analysis result A = {〈G1, λ

c
1, λ

s
1〉, . . . , 〈Gn, λc

n, λs
n〉} for

P with Qα is correct for P,Q.

Multivariant Assertion-Based Guidance in Abstract Interpretation 193

4 Adding Assertion-Based Guidance to the Algorithm

We now address how to apply the guidance provided by the user in the analysis
algorithm. But before that we make some observations related to the run-time
behavior of assertions.

Run-Time Semantics of Assertions. Most systems make assumptions dur-
ing analysis with respect to the run-time semantics of assertions: for exam-
ple, Astrée assumes that they are always run, while CiaoPP assumes conserva-
tively that they may not be (because in general they may in fact be disabled
by the user). In order to offer the user the flexibility of expressing these dif-
ferent situations we introduce a new status for assertions, sample-check, as
well as a corresponding program-point assertion, sample-check(Cond). This
sample-check status indicates that the properties in these assertions may or
may not be checked during execution, i.e., run-time checking can be turned on or
off (or done intermittently) for them. In contrast, for check assertions (provided
that they have not been discharged statically) run-time checks must always be
performed. Table 1 summarizes this behavior with respect to whether run-time
testing will be performed and whether the analysis can “trust” the information
in the assertion, depending on its status. The information in trust assertions is
used by the analyzer but they are never checked at run time. check assertions
are also checked at run time and the execution will not pass beyond that point
if the conditions are not met.3 This means that check assertions can also be
“trusted,” in a similar way to trust assertions, because execution only proceeds
beyond them if they hold. Finally, sample-check assertions may or may not be
checked at run-time (e.g., for efficiency reasons) and thus they cannot be used
as trusts during analysis.

Table 1. Usage of assertions during analysis.

Status Use in analyzer Run-time test (if not discharged at compile-time)

trust Yes No

check Yes Yes

sample-check No Optional

Correctly Applying Guidance. We recall some definitions (adapted from [25])
which are instrumental to correctly approximate the properties of the assertions
during the guidance.

Definition 3 (Set of Calls for which a Property Formula Trivially Suc-
ceeds (Trivial Success Set)). Given a conjunction L of property literals and
the definitions for each of these properties in P , we define the trivial success set
of L in P as:

TS(L,P) = {θ|V ar(L) s.t. ∃θ′ ∈ answers(P, {L : θ}), θ |= θ′}
3 This strict run-time semantics for check assertions was used in [27].

194 I. Garcia-Contreras et al.

where θ|V ar(L) above denotes the projection of θ onto the variables of L, and
|= denotes that θ′ is a more general constraint than θ (entailment). Intuitively,
TS(L,P) is the set of constraints θ for which the literal L succeeds without
adding new constraints to θ (i.e., without constraining it further). For example,
given the following program P :

�

1 list([]).
2 list([_|T]) :- list(T).

� �

and L = list(X), both θ1 = {X = [1, 2]} and θ2 = {X = [1, A]} are in the trivial
success set of L in P , since calling (X = [1, 2], list(X)) returns X = [1, 2] and
calling (X = [1, A], list(X)) returns X = [1, A]. However, θ3 = {X = [1|]} is
not, since a call to (X = [1|Y], list(X)) will further constrain the term [1|Y],
returning X = [1|Y], Y = []. We define abstract counterparts for Definition 3:

Definition 4 (Abstract Trivial Success Subset of a Property Formula).
Under the same conditions of Definition 3, given an abstract domain Dα,

λ−
TS(L,P) ∈ Dα is an abstract trivial success subset of L in P iff γ(λ−

TS(L,P)) ⊆
TS(L,P).

Definition 5 (Abstract Trivial Success Superset of a Property For-
mula). Under the same conditions of Definition 4, an abstract constraint
λ+

TS(L,P) is an abstract trivial success superset of L in P iff γ(λ+
TS(L,P)) ⊇

TS(L,P).

I.e., λ−
TS(L,P) and λ+

TS(L,P) are, respectively, safe under- and over-approximations
of TS(L,P). These abstractions come useful when the properties expressed in the
assertions cannot be represented exactly in the abstract domain. Note that they
are always computable by choosing the closest element in the abstract domain,
and at the limit ⊥ is a trivial success subset of any property formula and � is a
trivial success superset of any property formula.

4.1 Including Guidance in the Fixpoint Algorithm

In Fig. 4 we present a version of PLAI-simp (from Fig. 1) that includes our
proposed modifications to apply assertions during analysis. The additions to the
algorithm are calls to functions apply succ and apply call, that guide analysis
results with the information of the assertion conditions, and E, an analysis-like
set of triples representing inferred states before applying the assertions that will
be used to check whether the assertions provided by the user could be proved by
the analyzer (see Sect. 5). Success conditions are applied (apply succ) after the
body of the clause has been abstractly executed. It receives an atom G and λc as
parameters to decide correctly which success conditions have to be applied. Call
conditions are applied (apply call) before calling function solve. Otherwise,
a less precise call pattern will be captured during the procedure (it adds new
entries to the table). The last addition, E, collects tuples to be used later to check
that the assertions were correct (see Sect. 5). We collect all success constraints
before applying any success conditions (line 11 of Fig. 4) and all call constraints
before applying any call condition (line 20 of Fig. 4).

Multivariant Assertion-Based Guidance in Abstract Interpretation 195

Fig. 4. Fixpoint analysis algorithm using assertion conditions.

Fig. 5. Applying assertions.

Assuming that we are analyzing program P and the applicable assertion
conditions are stored in C, the correct application of assertions is described in
Fig. 5. Flag speed-up controls if assertions are used to recover accuracy or to
(possibly) speed up fixpoint computation.

196 I. Garcia-Contreras et al.

Applying Call Conditions. Given an atom G and an abstract call constraint
λc, if there is a call assertion condition for G, if speed-up is true, λ+

TS(Pre,P)

is used directly, otherwise the operation λ+
TS(Pre,P) � λc will prune from the

analysis result the (abstracted) states that are outside the precondition. An
over-approximation has to be made, otherwise we may remove calling states
that the user did not specify.

Applying Success Conditions. Given an atom G, an abstract call constraint
λc and its corresponding abstract success constraint λs, all success conditions
whose precondition applies (λc � λ−

TS(Pre,P)) are collected in app. Making an
under-approximation of Pre is necessary to consider the application of the asser-
tion condition only if it would be applied in the concrete executions of the pro-
gram. An over-approximation of Post needs to be performed since otherwise
success states that actually happen in the concrete execution of the program
may be removed. If no conditions are applicable (i.e., app is empty), the result
is kept as it was. Otherwise, if the flag speed-up is true λ+

TS(Post,P) is used, as
it is; otherwise, it is used to refine the value of the computed answer λs.

Applying assertion conditions bounds the extrapolation (widening) per-
formed by abs generalize, avoiding unnecessary precision losses. Note that
the existence of guidance assertions for a predicate does not save having to ana-
lyze the code of the corresponding predicate if it is available, since otherwise
any calls generated within that predicate would be omitted and not analyzed
for, resulting in an incorrect analysis result.

4.2 Fundamental Properties of Analysis Guided by Assertions

We claim the following properties for analysis of a program P applying assertions
as described in the previous sections. The inferred abstract execution states are
covered by the call and (applicable) success assertion conditions.

Lemma 1. Applied call conditions. Let calls(H,Pre) be an assertion con-
dition from program P , and let 〈G,λc, λs〉 be a triple derived for P and initial
queries Qα by Guided analyze(P,Qα). If G = σ(H) for some renaming σ
then λc � λ+

TS(σ(Pre),P).

Proof. Function apply call obtains in λt the trusted value for the call. It
restricts the encountered call λc or uses it as is, in any case λc � λt = λ+

TS(Pre,P).
Hence if this function is applied whenever inferred call patterns are introduced
in the analysis results, the lemma will hold.

The lemma holds after initialization, since the function is applied before
inserting the tuples in A. Now we reason about how the algorithm changes the
results. The two spots in which analysis results are updated are in function
solve (line 7 of Fig. 2) and in the body of the loop of the algorithm (line 14 of
Fig. 4). Function solve adds tuples to the analysis whenever new encountered
call patterns are found, it is called right after apply call, therefore it only inserts
call patterns taking into account calls conditions. The analysis updates made in

Multivariant Assertion-Based Guidance in Abstract Interpretation 197

the body of the loop do not insert new call patterns, only the recomputed success
abstractions for those already present (previously collected in W), therefore all
call patterns encountered are added taking into account the call conditions and
the lemma holds. ��
Lemma 2. Applied success conditions. Let success(H,Pre,Post) be an
assertion condition from program P and let 〈G,λc, λs〉 be a triple derived for
P with Qα initial queries by Guided analyze(P,Qα). If G = σ(H) for some
renaming σ then λc � λ−

TS(σ(Pre),P) ⇒ λs � λ+
TS(σ(Post),P).

Proof. Function apply succ computes the � of all applicable assertion con-
ditions (checking λc � λ−

TS(Pre,P)), if existing. Since we make the � of all
applied conditions, λs � �

λ+
TS(Posti,P) � λ+

TS(Post,P) for any Post . Hence if
all results inserted in the analysis result have been previously processed by
apply succ the lemma holds. The lemma holds for the initialized results, because
λs = ⊥ � λ+

TS(Post,P) for any Post . Now we reason about how the algorithm
changes the results. We have the same points in the algorithm that change the
analysis result as in the proof of Lemma1. The solve function initializes λs of
the newly encountered calls with ⊥, so it is the same situation as when initial-
izing. In the body of the loop apply succ is always called before updating the
value in the result and the lemma holds. ��

5 Checking Correctness in a Guided Analysis

We discuss how assertions may introduce errors in the analysis, depending on
their status. sample-check assertions are not used by the analyzer. Any part
of the execution stopped by them will conservatively be considered to continue,
keeping the analysis safe. check assertions stop the execution of the program if
the properties of the conditions are not met. Hence it is safe to narrow the anal-
ysis results using their information. Last, trust assertions are not considered
during the concrete executions, so they may introduce errors. Such assertion con-
ditions express correct properties if they comply with the following definitions:

Definition 6 (Correct call condition). Let P be a program with an asser-
tion condition C = calls(H,Pre). C is correct for a query Q to P if for
any predicate descriptor G, s.t. G = σ(H) for some renaming σ, ∀θc ∈
calling context(G,P,Q), θc ∈ γ(λ+

TS(σ(Pre),P)).

Definition 7 (Correct success condition). Let P be a program with an
assertion condition C = success(H,Pre,Post). C is correct for P if for
any predicate descriptor G, s.t. G = σ(H) for some renaming σ, θc ∈
γ(λ−

TS(σ(Pre),P)), θ
s ∈ answers(P, {G : θc}) ⇒ θs ∈ γ(λ+

TS(σ(Post),P)).

198 I. Garcia-Contreras et al.

Theorem 2. Correctness modulo assertions. Let P be a program with cor-
rect assertion conditions C and Qα a set of initial abstract queries. Let Q be the
set of concrete queries: Q = {G : θ | θ ∈ γ(λ) ∧ G : λ ∈ Qα}.
The analysis result A = {〈G1, λ

c
1, λ

s
1〉, . . . , 〈Gn, λc

n, λs
n〉} computed with

Guided analyze(P,Qα) is correct (Definition 2) for P,Q.

Proof. For conciseness in the proof we omit the renaming part. Fixed pro-
gram P , given an abstract description d from an assertion (Pre or Post), let
λ−

d = λ−
TS(d,P), λ

+
d = λ+

TS(d,P). If there are no assertion conditions, the theo-
rem trivially holds (Theorem 1). If assertion conditions are used to generalize,
the theorem also holds because λc = λ+

Pre and λs = λ+
Post are by definition

(Definition 6, Definition 7, respectively) correct over-approximations. If assertion
conditions are used to regain precision:
Call: We want to prove that
∀G, θc ∈ calling context(G,P,Q) ∃〈G,λc, λs〉 ∈ A s.t. θc ∈ γ(λc) (Definition 2).

We applied: calls(G,Pre)

θc ∈ γ(λ+
Pre) (by Definition 6)

In E : ∃〈G,λc
E , λs

E〉 ∈ E, θc ∈ γ(λc
E) (by algorithm (Fig. 4 line 20))

Then: θc ∈ γ(λc
E) ∩ γ(λ+

Pre) ⊆ γ(α(γ(λc
E) ∩ γ(λ+

Pre))) ⊆ γ(λc
E � λ+

Pre)

θc ∈ γ(λc
E � λ+

Pre) = γ(λc) (by algorithm (Fig. 5 line 3))

Success: We want to prove that
∀〈G,λc, λs〉 ∈ A,∀θc ∈ γ(λc) if θs ∈ answers(P, {G : θc}) then θs ∈ γ(λs).

We applied: success(G,Prei,Post i)

λc � λ−
TS(Prei)

=⇒ λs � λ+
Posti

(by Lemma 2)

θc ∈ γ(λ−
Prei

), θs ∈ answers(P, {G : θc}) =⇒ θs ∈ λ+
Posti

(by Definition 7)

λp =
�

{λ+
Post | success(G,Pre,Post),∀θc ∈ λc, θc ∈ γ(λ−

Pre)}
θc ∈ γ(λc), θs ∈ answers(P, {G : θc}) =⇒ θs ∈ λp

∃〈G,λc
E , λs

E〉 ∈ E, s.t. λc � γ(λc
E) (unrefined abstractions)

We have: θs ∈ γ(λs
E), θs ∈ γ(λp)

θs ∈ γ(λs
E) ∩ γ(λp) ⊆ γ(α(γ(λs

E) ∩ γ(λp))) ⊆ γ(λs
E � λp)

θs ∈ γ(λs
E � λp) = γ(λs) �

In other words, Theorem 2 and Lemmas 1 and 2 ensure that correct assertion
conditions bound imprecision in the result, without affecting correctness. By
applying the assertion conditions no actual concrete states are removed from
the abstractions.

We can identify suspicious pruning during analysis. Let λa be the correct
approximation of a condition and λ be an inferred abstract state, typically a
value in the tuples of E. If λ � λa = ⊥ the inferred information is incompatible

Multivariant Assertion-Based Guidance in Abstract Interpretation 199

with that in the condition, therefore it is likely that the assertion is erroneous.
λ �� λa indicates that the algorithm inferred more concrete constraint states
than described in the assertion and the analysis results may be wrong. These
checks can be performed while the algorithm is run or off-line, by comparing the
properties of the assertion conditions against the triples stored in E, which, as
mentioned earlier, stores partial analysis results with no assertions applied. A
full description of this checking procedure is described in [25,27].

6 Related Work

The inference of arbitrary semantic properties of programs is known to be both
undecidable and expensive, requiring user interaction in many realistic settings.
Abstract interpreters allow the selection of different domains and parame-
ters for such domains (e.g., polyhedra, octagons, regtypes with depth-k, etc.),
as well as their widening operations (e.g., type shortening, structural widening,
etc.). Other parameters include policies for partial evaluation and other trans-
formations (loop unrolling, inlining, slicing, etc.). These parameters are orthog-
onal or complementary to the issues discussed in this paper. To the extent of
our knowledge the use of program-level annotations (such as assertions) to
guide abstract interpretation has not been widely studied in the literature, con-
trary to their (necessary) use in verification and theorem proving approaches.
The Cibai [18] system includes trust-style annotations while sources are pro-
cessed to encode some predefined runtime semantics. In [10] analysis is guided
by modifying the analyzed program to restrict some of its behaviors. However,
this guidance affects the order of program state exploration, rather the analy-
sis results, as in our case. As mentioned in the introduction, the closest to our
approach is Astrée, that allows assert-like statements, where correctness of the
analysis is ensured by the presence of compulsory runtime checks, and trusted
(known facts) asserts. These refine and guide analysis operations at program
points. Like in CiaoPP, the analyzer shows errors if a known fact can be falsified
statically. However, as with the corresponding Ciao assertions, while there has
been some examples of use [8], there has been no detailed description of how
such assertions are handled in the fixpoint algorithm. We argue that this paper
contributes in this direction.

7 Conclusions

We have proposed a user-guided multivariant fixpoint algorithm that makes use
of check and trust assertion information, and we have provided formal results on
the influence of such assertions on correctness and efficiency. We have extended
the semantics of the guidance (and all) assertions to deal with both the cases
in which the program execution will and will not incorporate run-time tests for
unverified assertions, as well as the cases in which the assertions are intended for
refining the information or instead to lose precision in order to gain efficiency.

200 I. Garcia-Contreras et al.

We show that these annotations are not only useful when dealing with incomplete
code but also provide the analyzer with recursion/loop invariants for speeding
up global convergence.

References

1. Bagnara, R., Hill, P.M., Zaffanella, E.: Widening operators for powerset domains.
In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 135–148.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 13

2. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9 2

3. Bourdoncle, F.: Interprocedural abstract interpretation of block structured lan-
guages with nested procedures, aliasing and recursivity. In: Deransart, P.,
Maluszyński, J. (eds.) PLILP 1990. LNCS, vol. 456, pp. 307–323. Springer, Hei-
delberg (1990). https://doi.org/10.1007/BFb0024192

4. Bruynooghe, M.: A practical framework for the abstract interpretation of logic
programs. J. Logic Program. 10, 91–124 (1991)

5. Bueno, F., Cabeza, D., Hermenegildo, M., Puebla, G.: Global analysis of standard
Prolog programs. In: Nielson, H.R. (ed.) ESOP 1996. LNCS, vol. 1058, pp. 108–124.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61055-3 32

6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of POPL 1977, pp. 238–252. ACM Press (1977)

7. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
21–30. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31987-0 3

8. Delmas, D., Souyris, J.: Astrée: from research to industry. In: Nielson, H.R., Filé,
G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 437–451. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74061-2 27

9. Gómez-Zamalloa, M., Albert, E., Puebla, G.: Modular decompilation of low-level
code by partial evaluation. In: SCAM, pp. 239–248. IEEE Computer Society (2008)

10. Gopan, D., Reps, T.: Guided static analysis. In: Nielson, H.R., Filé, G. (eds.) SAS
2007. LNCS, vol. 4634, pp. 349–365. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74061-2 22

11. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4 20

12. Henriksen, K.S., Gallagher, J.P.: Abstract interpretation of PIC programs through
logic programming. In: SCAM, pp. 184–196. IEEE Computer Society (2006)

13. Hermenegildo, M., Puebla, G., Bueno, F., Garćıa, P.L.: Integrated program debug-
ging, verification, and optimization using abstract interpretation (and the Ciao
system preprocessor). Sci. Comp. Progr. 58(1–2), 115–140 (2005)

14. Hermenegildo, M., Puebla, G., Bueno, F.: Using global analysis, partial specifica-
tions, and an extensible assertion language for program validation and debugging.
In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.) The Logic
Programming Paradigm. Artificial Intelligence, pp. 161–192. Springer, Heidelberg
(1999). https://doi.org/10.1007/978-3-642-60085-2 7

https://doi.org/10.1007/978-3-540-24622-0_13
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/BFb0024192
https://doi.org/10.1007/3-540-61055-3_32
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-540-74061-2_27
https://doi.org/10.1007/978-3-540-74061-2_22
https://doi.org/10.1007/978-3-540-74061-2_22
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-642-60085-2_7

Multivariant Assertion-Based Guidance in Abstract Interpretation 201

15. Kelly, A., Marriott, K., Søndergaard, H., Stuckey, P.: A generic object oriented
incremental analyser for constraint logic programs. In: ACSC, pp. 92–101 (1997)

16. Klemen, M., Stulova, N., Lopez-Garcia, P., Morales, J.F., Hermenegildo, M.V.:
Static performance guarantees for programs with run-time checks. In: PPDP. ACM
Press (2018)

17. Liqat, U., et al.: Energy consumption analysis of programs based on XMOS ISA-
level models. In: Gupta, G., Peña, R. (eds.) LOPSTR 2013. LNCS, vol. 8901, pp.
72–90. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14125-1 5

18. Logozzo, F.: Cibai: an abstract interpretation-based static analyzer for modular
analysis and verification of Java classes. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 283–298. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-69738-1 21

19. Marriott, K., Stuckey, P.J.: Programming with Constraints: An Introduction. MIT
Press, Cambridge (1998)

20. Méndez-Lojo, M., Navas, J., Hermenegildo, M.V.: A flexible, (C)LP-based app-
roach to the analysis of object-oriented programs. In: King, A. (ed.) LOPSTR
2007. LNCS, vol. 4915, pp. 154–168. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78769-3 11

21. Muthukumar, K., Hermenegildo, M.: Determination of variable dependence infor-
mation at compile-time through abstract interpretation. In: NACLP 1989, pp.
166–189. MIT Press, October 1989

22. Muthukumar, K., Hermenegildo, M.: Compile-time derivation of variable depen-
dency using abstract interpretation. JLP 13(2/3), 315–347 (1992)

23. Navas, J., Méndez-Lojo, M., Hermenegildo, M.V.: User-definable resource usage
bounds analysis for Java bytecode. In: BYTECODE 2009. ENTCS, vol. 253, pp.
6–86. Elsevier, March 2009

24. Puebla, G., Bueno, F., Hermenegildo, M.: An assertion language for constraint logic
programs. In: Deransart, P., Hermenegildo, M.V., Ma�luszynski, J. (eds.) Analysis
and Visualization Tools for Constraint Programming. LNCS, vol. 1870, pp. 23–61.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722311 2

25. Puebla, G., Bueno, F., Hermenegildo, M.: Combined static and dynamic assertion-
based debugging of constraint logic programs. In: Bossi, A. (ed.) LOPSTR 1999.
LNCS, vol. 1817, pp. 273–292. Springer, Heidelberg (2000). https://doi.org/10.
1007/10720327 16

26. Puebla, G., Hermenegildo, M.: Optimized algorithms for incremental analysis of
logic programs. In: Cousot, R., Schmidt, D.A. (eds.) SAS 1996. LNCS, vol. 1145,
pp. 270–284. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61739-
6 47

27. Stulova, N., Morales, J.F., Hermenegildo, M.V.: Some trade-offs in reducing the
overhead of assertion run-time checks via static analysis. Sci. Comput. Program.
155, 3–26 (2018)

28. Vaucheret, C., Bueno, F.: More precise yet efficient type inference for logic pro-
grams. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp.
102–116. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45789-5 10

29. Zaffanella, E., Bagnara, R., Hill, P.M.: Widening sharing. In: Nadathur, G. (ed.)
PPDP 1999. LNCS, vol. 1702, pp. 414–431. Springer, Heidelberg (1999). https://
doi.org/10.1007/10704567 25

https://doi.org/10.1007/978-3-319-14125-1_5
https://doi.org/10.1007/978-3-540-69738-1_21
https://doi.org/10.1007/978-3-540-69738-1_21
https://doi.org/10.1007/978-3-540-78769-3_11
https://doi.org/10.1007/978-3-540-78769-3_11
https://doi.org/10.1007/10722311_2
https://doi.org/10.1007/10720327_16
https://doi.org/10.1007/10720327_16
https://doi.org/10.1007/3-540-61739-6_47
https://doi.org/10.1007/3-540-61739-6_47
https://doi.org/10.1007/3-540-45789-5_10
https://doi.org/10.1007/10704567_25
https://doi.org/10.1007/10704567_25

Author Index

Alpuente, María 38

Carbone, Marco 59
Charalambidis, Angelos 132
Christiansen, Henning 94
Cruz-Filipe, Luís 59
Cuenca-Ortega, Angel 38

De Schreye, Danny 115

Escobar, Santiago 38

Falaschi, Moreno 148
Feliú, Marco A. 169
Fleuriot, Jacques 77

Garcia-Contreras, Isabel 184

Hermenegildo, Manuel V. 184

Kirkeby, Maja H. 94

Lucas, Salvador 3

Meseguer, José 38
Montesi, Fabrizio 59
Morales, Jose F. 184
Moscato, Mariano M. 169
Muñoz, César A. 169
Murawska, Agata 59

Nys, Vincent 115

Olarte, Carlos 148

Papapanagiotou, Petros 77
Payet, Étienne 22

Titolo, Laura 169
Troumpoukis, Antonis 132

	Preface
	Organization
	Abstracts of Invited Talks
	Formal Methods for JavaScript
	Constrained Horn Clauses for Verification
	Experiences in Designing Scalable Static Analyses
	Abstracts of Invited Tutorials
	The VeriMAP System for Program Transformation and Verification
	25 Years of Ciao
	Contents
	Analysis of Term Rewriting
	Proving Program Properties as First-Order Satisfiability
	1 Introduction
	2 Many-Sorted First-Order Logic
	3 Preservation of Many-Sorted First-Order Sentences
	4 Surjective Homomorphisms
	5 Examples of Application with Positive Sentences
	5.1 Complete Definedness and Commutativity
	5.2 Top-Termination

	6 Refutation Witnesses
	7 Example of Application with General Sentences
	8 Related Work
	9 Conclusions and Future Work
	References

	Guided Unfoldings for Finding Loops in Standard Term Rewriting
	1 Introduction
	2 Preliminaries
	3 Guided Unfoldings
	4 Inferring Terms that Loop
	5 Further Comparisons with the Approach of payet08
	6 Experiments
	7 Conclusion
	References

	Homeomorphic Embedding Modulo Combinations of Associativity and Commutativity Axioms
	1 Introduction
	2 Preliminaries
	2.1 Pure Homeomorphic Embedding

	3 Homeomorphic Embedding Modulo Equational Axioms
	4 Goal-Driven Homeomorphic Embedding Modulo B
	4.1 An Homeomorphic Embedding Calculus Modulo B
	4.2 Reachability-Based, Goal-Driven Homeomorphic Embedding Formulation

	5 Meta-Level Deterministic Goal-Driven Homeomorphic Embedding Modulo B
	6 Experiments
	7 Concluding Remarks
	References

	Logic-Based Distributed/Concurrent Programming
	Multiparty Classical Choreographies
	1 Introduction
	2 Preview
	3 GCP with Hypersequents
	4 Extending GCP with Choreographies
	5 Projection and Extraction
	6 Related Work and Discussion
	References

	A Pragmatic, Scalable Approach to Correct-by-Construction Process Composition Using Classical Linear Logic Inference
	1 Introduction
	2 Background
	2.1 Classical Linear Logic
	2.2 Related Work

	3 Process Specification
	4 Process Composition
	5 Auxiliary Processes
	6 Parallel Composition - The TENSOR Action
	7 Conditional Composition - The WITH Action
	8 Sequential Composition - The JOIN Action
	8.1 Atomic or Matching Output
	8.2 Parallel Output
	8.3 Optional Output
	8.4 Putting It All Together

	9 Conclusion
	References

	Confluence of CHR Revisited: Invariants and Modulo Equivalence
	1 Introduction
	1.1 Related Work
	1.2 Contributions
	1.3 Overview

	2 Basic Concepts, Confluence, Invariants and Equivalences
	3 Abstract Simulation
	4 Constraint Handling Rules
	4.1 Syntax
	4.2 The Logic-Based Operational Semantics for CHR

	5 Confluence Under the Logic-Based Semantics Re-Explained, and Why Invariants Are Difficult
	6 Invariants and Modulo Equivalence
	6.1 The Choice of a Ground Representation

	7 Conclusion
	References

	Analysis of Logic Programming
	Compiling Control as Offline Partial Deduction
	1 Introduction
	2 Preliminaries
	3 Running Example: Permutation Sort
	4 Abstract Domain
	5 Instantiation
	6 The Analysis Phase
	7 A Suitable Meta-interpreter
	7.1 Instantiation of the First Futamura Projection

	8 Programs Requiring the multi Abstraction: Primes
	8.1 An Extended Meta-interpreter

	9 Specialization Using Logen
	9.1 Simple Meta-interpreter
	9.2 Extended Meta-interpreter

	10 Equivalence with the Classical Approach
	11 Discussion
	References

	Predicate Specialization for Definitional Higher-Order Logic Programs
	1 Introduction
	2 A Simple Example
	3 Higher-Order Logic Programs
	4 Partial Evaluation of Logic Programs
	5 Predicate Specialization
	6 Implementation
	7 Experiments
	8 Related Work
	9 Conclusions and Future Work
	References

	An Assertion Language for Slicing Constraint Logic Languages
	1 Introduction
	2 Constraint Logic Languages
	2.1 The Language of CLP

	3 Slicing CCP and CLP Programs
	4 An Assertion Language for Logic Programs
	4.1 Dynamic Slicing with Assertions
	4.2 Experiments

	5 Related Work and Conclusions
	References

	Program Analysis
	Eliminating Unstable Tests in Floating-Point Programs
	1 Introduction
	2 Round-Off Errors and Unstable Tests
	2.1 Unstable Tests
	2.2 Floating-Point Denotational Semantics

	3 Program Transformation
	4 Case Study: PolyCARP Algorithm
	5 Related Work
	6 Conclusion
	References

	Multivariant Assertion-Based Guidance in Abstract Interpretation
	1 Introduction
	2 Preliminaries
	3 Basic Fixpoint Algorithm
	4 Adding Assertion-Based Guidance to the Algorithm
	4.1 Including Guidance in the Fixpoint Algorithm
	4.2 Fundamental Properties of Analysis Guided by Assertions

	5 Checking Correctness in a Guided Analysis
	6 Related Work
	7 Conclusions
	References

	Author Index

