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Abstract. Autism Spectrum Disorder (ASD) is a complex neurologi-
cal condition characterized by a triad of signs: stereotyped behaviors,
verbal and non-verbal communication problems and troubles in social
interaction. The scientific community has been interested on quantifying
anatomical brain alterations of this disorder to correlate the clinical signs
with brain tissue changes. This work presents a fully automatic method
to find out brain differences between patients diagnosed with autism and
control subjects. After pre-processing, a template (MNI152) is registered
to each evaluated brain, obtaining a set of segmented regions. Each region
is mapped into a 2D collage image which is decomposed by the Zernike
Moments, obtaining magnitude and phase. These features are then used
to train, region per region, a binary SVM classifier. The method was
evaluated in a children population, aged from 6 to 12 years, from the
public database Autism Brain Imaging Data Exchange. The AUC values
for the most representative brain region were 77% for ABIDE I and 76%
for ABIDE II, demonstrating the robustness of the method.
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1 Introduction

ASD constitutes a group of neurological alterations that represents a wide vari-
ety of clinical expressions. About 1 in 59 children has been identified with ASD
according to CDC’s Autism and Developmental Disabilities Monitoring (ADDM)
Network. The prevalence in children is higher in boys than in girls, in a propor-
tion of 4 to 1 [2].

Although there exist a large number of syndromes related to autism, the
diagnosis remains until now strictly clinical. A reliable diagnosis requires avail-
ability of therapists or physicians, resulting in a bottleneck that difficult early
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detection of this disorder [14]. In addition, most of early signs of brain function
alteration are not specific and autistic signs may be observed in patients with
no disorder, a source of confusion for many clinicians [31].

Currently, ASD diagnosis is performed using neuro-psychological tests that
evaluate the patient-environment interaction and high cerebral functions. These
tests register several clinician observations, making diagnosis subjective. The
gold standard [12] in terms of diagnosis is the Autism Diagnostic Observation
Schedule (ADOS) [24] and/or the Autism Diagnostic Interview (ADI-R) [25].
However the probability of misdiagnosis is high [15] since the clinician may mis-
lead descriptive labels and inevitably introduces bias by her/his judgment [29].
Clinicians’ experience may facilitate ASD diagnosis before the second year, yet
the average diagnosis age is above 3 years, which suggests many children may
not be diagnosed at all. Early ASD diagnosis is critical because earlier treat-
ments can reduce the degree of deterioration and improve the function of both
patients and carers [1]. Curiously, even if modern medical images are at the very
base of many decisions, in these kind of pathologies their role is still marginal
[36]. Neuro-imaging could be useful to evaluate relationship between the different
areas, regions or set of cerebral regions and the cognitive and functional signs
that patients present, that is to say, analysis of the structure offers new possibil-
ities of correlating brain changes or alterations at the functional level with ASD
signs.

Different researches have been done with the purpose of correlating func-
tional alterations presented in ASD and the anatomical structures. The first
approaches to this theory date back in 1991, when Kemper and Bauman ana-
lyzed brains of six autistic patients, finding main alterations at the level of the
limbic system, cerebellum and inferior olive. These brains showed no major mor-
phological changes, yet it was reported a decrease in the neuronal cell size and
an increase of the neuronal density at the level of the amygdala and other lim-
bic structures when comparing to controls [20]. Recent studies have used brain
MRI to classify patients with ASD, resulting that main changes were in regions
like the basal ganglia, corpus callosum, hippocampus, amygdala and thalamus
[3,11,22]. Participants in this study aged 6–15 years, volunteer ASD and control
subjects [18].

There is a strong ADS relationship with brain areas responsible for normal
language development such as Broca’s area and Wernicke’s area at a level of ver-
bal and non-verbal communication. There is evidence of increase in the volume
of the right and left temporal gyrus in T1-MRI studies [5,16]. Other research has
used more than three different classification techniques (RF, SVM and GBM)
using as main feature the size of the cortical and sub-cortical regions, reporting
a sensitivity of 57% and 64% of specificity for the binary classification task [19].

ASD characterization is difficult by the high variability between different
medical studies and children development. An automatic morphometry approach
has the advantage of including additional information to support early diagnosis,
but some approaches based on voxel size, shape, or volume [30] ignore local and
regional dependencies. A main contribution of the present research is a fully
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automatic morphometric method that establishes region differences by using
local shape information. The approach starts by a brain segmentation using a
known template [27]. Once the brain is segmented, each region is characterized by
the magnitude and phase of the region Zernike Moments which inputs a standard
classifier. Classification results using such feature space provide representative
regions that differentiate between ASD patients and control subjects.

2 Methods

The proposed method is divided in five phases, as illustrated in Fig. 1, start-
ing by firstly pre-processing each volume to eliminate differences coming from
acquisition protocols and devices. Afterwards, an atlas [6] is elastically registered
to each of the cases with the aim of segmenting brain regions. Each segmented
region is then arranged in a two-dimensional collage of images, constructed by
sequentially copying each slice into a 2D frame, from the top to the bottom of
the region. The obtained 2D image is used as input to calculate the Zernike
moments per region. The resultant magnitude and phase are used as features
that are challenged to a classic classification task by means of a conventional
Support Vector Machine (SVM).

2.1 Pre-processing

Each volume undergoes a pre-processing phase composed by two steps, first an
intensity correction to reduce intra-site variability since images were not obtained
by the same device and, second a brain extraction to remove skull, spinal cord
and eye holes. Intensity correction was performed by the FSLMATH tool pro-
vided by the Oxford University [28], which corrects the bias field and normalizes
each volume. Afterward, brain extraction was done by using BET (Brain Extrac-
tion Tool), which removes non-related brain tissues by using the histogram of
the image and triangular tessellations [34].

2.2 Registration and Segmentation

The registration phase was carried out to obtain the corresponding regions from
the Harvard-Oxford Atlas [26]. For so doing, the MNI152 template [27] was
elastically registered to each brain. The process begins with an affine registration
with 12 freedom degrees and a correction for spatial errors computed by means
of the FLIRT Tool (FMRIB’s Linear Image Registration Tool) [17]. Then, a finer
result is obtained by performing elastic registration using the FNIRT [28] tool
with a quadratic spline which optimizes the processing time and ensures that
transformation is as accurate as possible.
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Fig. 1. Pipeline of proposed strategy (1) pre-processing each volume, (2) a particular
atlas is elastically registered to each case and the resultant volume is segmented to
117 regions, (3) each 3D region is mapped into a 2D-collage image, (4) the Zernike
moments are computed per region, taking the magnitude and phase per moment as
features, and (5) finally a classification task between ASD patients and control subjects
to establish discriminative regions is performed.

2.3 Anatomic Region Representation and Collage

In the present work each segmented region, a volume structure, is represented
as a 2D image that contains each axial plane. This collage is built by placing
each slice in an squared resolution image, as seen in Fig. 2. However, note that
each volume slice is fit to the size of the region, that is to say, while the volume
resolution is 512×512, the resulting image resolution for a particular region slice
could be 45 × 57. This representation is convenient because it allows to describe
structural shape changes on each slice without any loss of information from the
3D original volume.

2.4 Region-Based Characterization: Zernike Moments

Zernike moments are considered as shape descriptors by performing a multiscale
frequency analysis which is usually represented as a pyramid, where the scales
are the different pyramid levels and frequency analysis (repetitions) is performed
through each of the scales. The complex 2D Zernike moments of order m and n
repetitions are defined in the unitary circle [23] as:

Zmn =
m + 1

π

∫ 2π

0

∫ 1

0

f(r, θ)V ∗
mn(r, θ)rdrdθ, r ≤ 1 (1)

where f(r, θ) stands for the image intensity function, V ∗
mn(r, θ) corresponds to

the complex conjugate of Zernike polynomial Vmn(r, θ), and m and n are both
integers related as:
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Fig. 2. An example of a 2D-image that represents a cortical brain region.

(m − |n|) is even and |n| ≤ m (2)

For processing a 2D image, Zernike moments are computed by using the
discretized form, as illustrated in Eq. 3:

Zmn =
m + 1

π

∑
r

∑
θ

P (r, θ)V ∗
mn(r, θ) r ≤ 1 (3)

In this work, a morphometric analysis was performed by transforming the 2D
image into the Zernike space, a representation that has demonstrated describe
complex shapes [23]. This representation allows to characterize each brain region
based on shape differences between ASD patients and control subjects. Each
brain region was described by using 9 scales (55 Zernike moments), where each
moment consists of magnitude and phase components, obtaining at the end a
descriptor of 110 features.

2.5 Classifier

Support Vector Machines (SVM) are a set of related methods for supervised
learning, applicable to both classification and regression problems. A SVM clas-
sifier sets a maximum-margin hyperplane that lies in a transformed input space
and splits the space, while maximizing the distance to the nearest sample exam-
ples. The parameters of the hyperplane solution are derived from a quadratic
programming optimization problem [33]. For this investigation, the SVM algo-
rithm was trained with the feature vectors obtained from previous phase.
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3 Experiments and Results

The proposed strategy performance was evaluated by using a open access
database [8]. The most important result is the identification of a set of brain
regions that better differentiate the two classes, namely ASD patients and con-
trol subjects.

3.1 Database

For this study, brain T1-MRI cases were used, available in theAutism Brain Imag-
ingData Exchange ABIDE I and ABIDE II (first and second version) [7,8]. ABIDE
databases contain 2226 cases (ASD individuals and typical controls aged 5–64
years), scanned across 17 medical centers. For this investigation, two subsamples
were used, including only male cases with voxel size of 1 × 1 × 1 and ages between
6 and 12 years, based on the criterion of growth and development of the cephalic
mass in children up to 12.1 years [13], aiming to get an homogeneous population.

The evaluation was then carried out with 196 subjects (98 individuals diag-
nosed with ASD and 98 controls), 68 from ABIDE I database (Table 1) and 128
from ABIDE II database (Table 2).

Table 1. Strict sample phenotypic information for ABIDE I

Group Age Total Mean Standard deviation Variance coefficient

Autism 6–12 years 34 10.88 1.87 16.94%

Control 6–12 years 34 10.96 1.75 15.77%

Table 2. Strict sample phenotypic information for ABIDE II

Group Age Total Mean Standard deviation Variance coefficient

Autism 6–12 years 64 9.85 1.479 14.84%

Control 6–12 years 64 10.08 1.303 12.81%

3.2 Registration and Segmentation

The Harvard - Oxford atlas [26] was used as the reference space to segment
each brain of the experimental group into 96 cortical (48 per hemisphere) and
17 sub-cortical regions. The lateralized template was rigidly and elastically reg-
istered to each brain, and the resultant transformation matrix was applied to
the atlas parcellation, obtaining the set of brain regions per case. Registration
was assessed by measuring the overlapping percentage (Dice Score coefficient [9]
metrics) between both complete brain volumes, the registered MNI-152 and each
case:

QS =
2|X ∩ Y |
|X| + |Y | (4)



48 N. Múnera et al.

where: X is the MNI152 template and Y the evaluated brain. Once the elastic
registration is performed, each brain is compared with the deformed template to
verify that there is a high correspondence between the complete brain volumes.
Registration results are shown in Tables 3 and 4 respectively.

Table 3. Overlap analysis for ABIDE I

Group Analyzed cases Register Total overlap ± SD in %

Control 34 Affine 37.33 ± 6.02

Elastic 97.62 ± 0.62

Autism 34 Affine 37.26 ± 4.58

Elastic 97.54 ± 0.66

Table 4. Overlap analysis for ABIDE II

Group Analyzed cases Register Total overlap ± SD in %

Control 64 Affine 30.51 ± 4.33

Elastic 97.16 ± 0.91

Autism 64 Affine 33.43 ± 2.91

Elastic 97.68 ± 0.30

3.3 Region-Based Characterization: Zernike Moments

In this phase of the proposed approach, there were computed 9 scales of the
Zernike transformation, providing the first 55 moments of such representation
space. This information corresponds to the shape orientations for each used
region, and then magnitude and phase per calculated moment are concatenated
on a matrix. Zernike moments were calculated the for the n×n 2D region mosaic-
image described in the Sect. 2.3, using Matlab [32,35]. Figure 3 illustrates the
complex parameters (magnitude and phase) provided by the Zernike moments
for a particular region in the polar space.

3.4 Classifier

For evaluating the performance of the proposed approach by using a Support
Vector Machine (SVM) classifier, a Radial Basis Function (RBF) was selected
as kernel because of the high dimensionality of the feature vector per region. A
10-fold cross-validation scheme was used to train and test the constructed model,
and four metrics are reported, namely Area Under the Curve (AUC), sensitivity,
specificity and F-Score. It is noteworthy that the regions that showed greater
accuracy were cortical regions, especially in those that are related to the normal
language development, which play an important role in brain morphological
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ABIDE I:
Right Orbital Frontal Cortex

Patient Control

(a) Zernike representation for the region Right Orbital Frontal Cortex on ABIDE I

Fig. 3. Representation of complex parameters (magnitude and phase) for a cortical
region (Right Frontal Orbital Cortex) provided by Zernike Moments. In (a) is presented
the distribution of the complex values in a control subject and in (b) the distribution
of the complex values in a autistic patient evaluated on the same region.

changes on autistic patients such as reported in previous researches [10]. Table 5
presents the classification results using the first 55 Zernike Moments for cortical
brain regions.

Table 5. Classification performance for cortical and sub-cortical regions by testing
with ABIDE I and ABIDE II. The reported metrics are: area under the curve (AUC),
sensitivity (SENS), specificity (SPEC) and F-Score (F-S).

DATA AUC SENS SPEC F-S Regions

ABIDE I 77% 71% 75% 74% Left Supramarginal Gyrus, posterior division

Right Frontal Orbital Cortex

Right Intracalcarine Cortex

Left Superior Parietal Lobule

Right Thalamus

ABIDE II 76% 72% 72% 72% Right Occipital Fusiform Cortex

Right Lateral Occipital Cortex, superior division

Left Lateral Occipital Cortex, superior division

Left Lingual Gyrus

Left Paracingulate Gyrus
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Fig. 4. Area under the curve for the most significant region per dataset, namely, ABIDE
I and II.

Figure 4 shows the Area Under Curve (AUC) graph for the most significant
brain region for ABIDE I (Right Frontal Orbital Cortex) and for ABIDE II
(Right Occipital Fusiform Gyrus), found with Zernike Moments characterization.
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4 Discussion

In the present study, we examined the orientations of the shape from each brain
region using the Zernike Moments, in a large sample of children with ASD
(Autism Spectrum Disorder), relative to TC (Typical Control). This represen-
tation does not find differences at the cellular level, but on the surface and how
they are related to the abnormal growth of each region. Frontal Orbital Cortex
is highly related to affective functions, decision-making and sensory integration
[21]. It is possible to associate alterations in this structure with one of the signs
present in autism related to communication and social interaction. [10].

Finally, we found associations with severity symptom within a thalamic sur-
face area cluster. These findings suggest that there are subtle differences in
subcortical morphology in ASD. Although this study was cross-sectional, our
findings also suggest that there may be atypical developmental of intellectual
function and performance deficits in ASD due to this atypical growth [4].

5 Conclusions and Future Work

This work presents a method for classifying patients diagnosed with ASD and
how the anatomy of their brains differs from control subjects in particular
regions. The variability of the disorder and the methods used by physicians
for diagnosis is not completely reliable. The method used in this research works
with high level features in MRI in order to represent the information as ori-
entations in brain shape. The obtained results correspond to regions reported
in state-of-the-art methods focused on image analysis based on other high level
features. Cortical regions remain relevant in the study of autism due to anatom-
ical variability of the brain, especially those related to the social interaction and
communication. As a future work, we would like to make an inter-class clas-
sification to automatically determine the existing classes in autism spectrum
disorder as Asperger, Classical Autism, Rett (present only in women) and other
non-invasive developmental disorders described by the DSM-V guide.
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relationship between clinicians’ confidence and accuracy, and the influence of child
characteristics, in the screening of autism spectrum disorder. J. Autism Dev. Dis-
ord. 46(7), 2340–2348 (2016)

16. Herbert, M.R., et al.: Abnormal asymmetry in language association cortex in
autism. Ann. Neurol. 52(5), 588–596 (2002)

17. Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimisation for the
robust and accurate linear registration and motion correction of brain images.
NeuroImage 17(2), 825–841 (2002)

18. Jiao, Y., Chen, R., Ke, X., Chu, K., Lu, Z., Herskovits, E.H.: Predictive models of
autism spectrum disorder based on brain regional cortical thickness. Neuroimage.
50(2), 589–599 (2010)

19. Katuwal, G.J., Cahill, N.D., Baum, S.A., Michael, A.M.: The predictive power of
structural MRI in autism diagnosis. In: 2015 37th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4270–4273,
August 2015. https://doi.org/10.1109/EMBC.2015.7319338

20. Kemper, T.L., Bauman, M.L.: The contribution of neuropathologic studies to the
understanding of autism. Neurol. Clin. 11(1), 175–187 (1993)

21. Kringelbach, M.L.: The human orbitofrontal cortex: linking reward to hedonic
experience. Nat. Rev. Neurosci. 6(9), 691 (2005)

https://doi.org/10.1109/EMBC.2015.7319338


Zernike Moments for ASD Characterization 53

22. Lauvin, M.A., et al.: Functional morphological imaging of autism spectrum disor-
ders: current position and theories proposed. Diagn. Interv. Imaging 93(3), 139–147
(2012). http://www.sciencedirect.com/science/article/pii/S2211568412000587

23. Liu, M., He, Y., Ye, B.: Image Zernike moments shape feature evaluation based on
image reconstruction. Geo-Spat. Inf. Sci. 10(3), 191–195 (2007)

24. Lord, C., et al.: The autism diagnostic observation schedule-generic: a standard
measure of social and communication deficits associated with the spectrum of
autism. J. Autism Dev. Disord. 30(3), 205–223 (2000)

25. Lord, C., Rutter, M., Le Couteur, A.: Autism diagnostic interview-revised: a
revised version of a diagnostic interview for caregivers of individuals with pos-
sible pervasive developmental disorders. J. Autism Dev. Disord. 24(5), 659–685
(1994)

26. Makris, N., et al.: Decreased volume of left and total anterior insular lobule in
schizophrenia. Schizophr. Res. 83(2), 155–171 (2006)

27. Mazziotta, J.C., Toga, A.W., Evans, A., Fox, P., Lancaster, J.: A probabilistic atlas
of the human brain: theory and rationale for its development: the international
consortium for brain mapping (ICBM). Neuroimage 2(2), 89–101 (1995)

28. Woolrich, M.W.: Bayesian analysis of neuroimaging data in FSL. Neuroimaging
45, S173–S186 (2009)

29. de la Paz, M.P., Arroyo, M.J.F., Aguilera, E.T., Muñoz, L.B.: Investigación epi-
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