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Abstract. Atherosclerosis is one of the main causes of stroke and is
responsible for millions of deaths every year. Magnetic resonance (MR)
is a common way of assessing carotid artery atherosclerosis. Cine fast
spin echo (FSE) imaging is a new MR method that can now obtain
dynamic image data of the carotid artery across the cardiac cycle. This
work introduces a post-processing technique that segments the com-
mon carotid artery (CCA) wall-blood boundary across the cardiac cycle
without human interaction. To the best of our knowledge, the proposed
method is the first automatic technique proposed for segmenting cardiac
cycle-resolved cine FSE images. The technique overcomes some inher-
ent limitations of dynamic FSE images compared to static images (e.g.,
lower spatial resolution). It combines a priori knowledge about the size
and shape of the CCA, with the max-tree data structure, random forest
classifier and tie-zone watershed transform from identified internal and
external markers to segment the vessel lumen. Segmentation performance
was assessed using 3-fold cross validation with 15 cine FSE data sets in
the test set per fold, each sequence consisting of 16 temporal bins over
the cardiac cycle. The automatic segmentation was compared against
manually segmented images. Our technique achieved an average Dice
coefficient, sensitivity and false positive rate of 0.926 ± 0.005 (mean ±
standard deviation), 0.909 ± 0.011 and 0.056 ± 0.003, respectively, com-
pared to the majority voting consensus of manual segmentation from
three experts.
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1 Introduction

It is estimated that 4.4 million people die every year because of stroke [14],
making it one of the most common causes of death in the developed world.
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Atherosclerosis is a major cause of stroke and is attributed to about 25% of all
ischemic events [10]. Currently there are several different types of examinations
used to identify carotid atherosclerotic plaques and analyze the artery includ-
ing ultrasound and x-ray. However, these techniques are generally limited by
poor blood-wall image contrast [4,9]. Magnetic resonance (MR) imaging pro-
vides improved tissue contrast between vessel wall and lumen [14].

For this project we used cine fast spin echo (FSE) imaging, which differs from
usual FSE imaging in that this method collects dynamic information about dis-
tension and contraction of carotid artery over the cardiac cycle. Standard MR
imaging techniques usually acquire images with good tissue contrast, however,
they can be affected by motion artifacts, particularly when needing long acqui-
sition times [9]. Cine FSE imaging, on the other hand, is capable of acquiring
a set of N of images (N usually between 10 and 20) over the cardiac cycle in
approximately the same acquisition time used by a standard FSE technique to
acquire one static image [4,9].

Current carotid artery segmentation methods [2,11,13] use static carotid
MR images i.e., there is no temporal information. In addition in most published
methods, some degree of human interaction is required. In the present work, we
focus on a fully automatic segmentation of the common carotid artery (CCA)
lumen, i.e., the interior of the CCA, from cine FSE images. Our segmentation
method uses the max-tree [12] area signature analysis combined with tie-zone
watershed [3] and random forest classifier [5] to achieve accurate segmentations.

This paper is organized as follows: Sect. 2 describes cine FSE image and
proposed solution. Section 3 details the data set and experiments. Sections 4 and
5 present results, discussions and conclusions of this paper.

2 Materials and Methods

2.1 Cine FSE Images

Conventional static MR FSE imaging techniques generate images with accept-
able vessel wall-blood image contrast and allows for the depiction of vessel wall
morphology and characterization of plaque components. FSE images, with pro-
ton density-, T1- and/or T2-weightings are commonly used [10,14]. These images
provide only a snap-shot (i.e., they are time averaged) of the vessel wall morphol-
ogy and composition over the cardiac cycle. They can also suffer from cardiac
motion-induced artifacts due to their long data acquisition times [9]. Cine FSE
imaging is a new technique that is capable of acquiring images across the car-
diac cycle in total acquisition times similar to those required for a standard
static FSE technique, albeit often with slightly reduced spatial resolution [4,9].
Because cine FSE images are resolved over the cardiac cycle they potentially
can increase its accuracy and reduce image artifacts due to blood flow and wall
motion [4].

Cine FSE acquires data over the entire acquisition window asynchronously
with respect to the contraction of the heart. The acquired raw MR data is how-
ever tagged with its acquisition time within the cardiac cycle (typically using
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information from a pulse oximeter). The raw data is then rebinned into N tem-
poral bins that evenly cover the average cardiac cycle. N is user selectable and
in this study N = 16. Because the raw MR data was collected asynchronously,
each rebinned data set will, in general, be incomplete. Therefore sophisticated,
non-linear reconstruction methods, based on compressed sensing [8], are required
to generate images. Compared to static FSE images, cine FSE images are able to
generate a similar range of image contrasts (weightings), with potentially lower
resolution and signal-to-noise, but fewer flow and motion artifacts. The cine FSE
data acquisition process is fully explained in Boesen et al. [4] and is a refinement
of the method developed in [9].

2.2 Proposed Method

Our solution uses appropriate size and shape information obtained from the max-
tree algorithm to find the CCA centroid, internal and external (to the carotid
artery lumen) markers, which then are used by the tie-zone watershed transform.
The proposed method has five main steps detailed in Fig. 1.

Fig. 1. Flowchart of proposed method.

1. CCA Centroid Selection: The first step of the method performs the auto-
matic selection of the left and right CCA centroids. For this task, we use the
max-tree for image filtering combined with feature extraction and random
forest classification for final selection (Fig. 2).
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Fig. 2. Illustration of the centroid selection procedure: (a) Original image, (b) proba-
bility image (c) binary image, and (d) Final 6 pairs of centroids: 1-a, 1-b, 1-c, 2-a, 2-b
and 2-c.

(a) Max-Tree Filtering: Initially, we use a max-tree filter to return only the
nodes with area between 14.5mm2 and 46.6mm2 [7]. This filter is applied
over all 16 temporal bins reconstructed by the cine FSE sequence.

(b) Probability Image and Binary Image: A probability image is created by
summing over all 16 filtered images from the previous step. Next, we
applied a threshold of 0.8 to the probability image, therefore maintaining
only pixels that appeared in more then 80% of the 16 filtered images,
resulting in a binary image containing the candidate nodes (Fig. 2).

(c) Feature Extraction: Using the binary image, we perform feature extraction
from its connected components (CCs), which are the “white islands” in
the binary image. The attributes analyzed consist of the corresponding
gray level in the original unfiltered image, area, eccentricity, centroid of
CCs and distance between pairs of CCs. In order to create a feature
matrix, we divided the final image into a left side and right side and
analyzed the identified structures by pairs (Fig. 2(d)). At the end of this
step, we have a feature matrix of dimension n × 11, with n being the
number of candidate pairs returned in the image. The feature matrix is
the input to the classifier.

(d) Classifier: We use a random forest (RF) classifier with 45 estimators,
operating with entropy criteria to automatically detect the centroids. The
classifier outputs probabilities for each candidate pair of centroids. The
pair with highest probability is considered the carotid centroids’.

2. Internal Marker Selection: The internal marker (IM) selection uses a
priori knowledge of carotid artery area and one assumption about cine FSE
images. These assumptions are: (1) the carotid artery diameter varies from
4.4mm to 7.7mm [7] and (2) the histogram of two consecutive temporal
images are similar (Fig. 3(f).) In selecting the IM we are interested in the
carotid lumen which is dark in the cine FSE image. Therefore, we built the
max-tree of the negative image (i.e., the min-tree), then, we analyzed the
min-tree area signature starting from the selected centroid to the min-tree
root. Finally, we created a filter using a priori knowledge about the CCA
area (14.5 mm2 to 46.6 mm2 [7]), reducing the number of max-tree nodes
that need to be analyzed (Fig. 3(a–e)). From the final candidate nodes, the
IM was selected based on our histogram similarity assumption. We selected
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Fig. 3. (a) Original image (b) Negated image (c) Image representing the node before
the decrease in max-tree signature, see (e). (d) Image representing the node after
the decrease in max-tree signature. (e) Max-tree signature from the negated image
for structures smaller then 46.6 mm2. After the decrease, only the carotid artery lumen
and wall are represented. (f) Intensity histograms for region around carotid artery from
the same slice at different time points (Kolmogorov-Smirnov test found no significant
differences between the three histograms, p = 0.918).

as an IM marker the candidate with gray-level value closest to the gray level
of the previous time point. For the first temporal bin, we selected the node
with gray level closest to the peak value of the histogram, assuming that the
vessels are the brightest structures in the negated image.

3. External Marker Selection: For external markers (EM), we are interested
in the vessel wall, which is the brighter structure immediately surrounding
the lumen (Fig. 4). To select the EM, we built the max-tree of the gradient
image to find nodes around the carotid artery lumen. We use the gradient
image because it accentuates the artery wall-lumen boundary. We choose the
node whose centroid has the smallest Euclidean distance to the CCA centroid.
Usually, the carotid artery wall is not entirely represented by a single max-
tree node (cf. Figure 4(b)). The EM will work better if it encloses the carotid
lumen; therefore, the final EM was composed of a circle of diameter equal to
1.5× the largest distance between the pixels of the selected max-tree node
and the CCA centroid. The selected diameter was not allowed to exceed 7.7
mm, the assumed maximum diameter for the CCA [7], in order to prevent
leakage into the tie-zone watershed transform.

4. Tie-Zone Watershed: The tie-zone watershed transform receives the auto-
matically selected IM and EM as input and it is applied to the gradient image.
The tie-zone watershed returns regions of doubt that have the same cost value
for both the lumen and vessel wall labels. These pixels, known as “tie-zone”
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Fig. 4. Two illustrative cases for finding the external marker (EM): (a) Case where a
Node represents the entire vessel wall (green) and the final external marker (blue). (b)
Case where there is no node representing the entire vessel wall (green) and the final
external marker (blue). (Color figure online)

pixels, need to be correctly assigned in order to improve the accuracy of the
method.

5. Tie-Zone Assignment: The tie-zone pixels are assigned using a RF classifier
with 30 estimators, operating with entropy criteria. The classification was
performed on a pixel-by-pixel basis using features extracted from each tie-
zone pixel (local binary pattern (LBP) [1], histogram of gradients (HOG)
[6], tie-zone labels histogram, gray level of the pixel and mean gray level of
8-neighbors around the pixel). The two histograms (tie-zone histogram and
HOG) were computed on a 3 × 3 pixel window centered about the tie-zone
pixel. All features were computed on the original cine FSE image.

3 Experimental Setup

Our data set is composed of 9 healthy subjects, each subject having 5 different
MR image acquisitions. Therefore, we have a total of 45 data sets, each with N =
16 temporal bins and a resolution of 0.6mm×0.6mm×2.0mm. We performed two
experiments to validate our proposed method: the first related to the automatic
centroid selection and the second related to the CCA lumen segmentation.

Experiment 01 - CCA Centroid Selection: For the CCA centroid selection we
used 20 data sets for training and validation of the RF classifier and 25 data
sets for testing the classifier. On the training and validation set, we applied data
augmentation by applying scale, rotation, and translation transformations to the
images, in order to increase the classifier robustness. After data augmentation,
our training and validation data set was composed of 105 image data sets. The
centroid selection was assessed through the classifier accuracy. The test set and
training/validation set were composed by different subjects images, in order to
avoid bias towards high performance results.

Experiment 02 - CCA Lumen Segmentation: In the CCA lumen segmentation
experiment we used a k-fold, with k = 3, cross-validation to assess our method.
Each of the folds is composed of 15 images from 3 different subjects. For each
image data set we obtained manual segmentation from three different experts
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(Experts 1, 2 and 3) for validation purposes of our method. A majority voting
consensus was used to assess our results. We used the Dice coefficient, sensitivity
and false positive rate (FPR) metrics.

4 Results and Discussion

In the centroid selection experiment, we achieved an accuracy of 100%. In some
cases more than one pair of candidate nodes had a probability higher than 50%,
but by selecting only the pair with highest probability, this issue was overcome.

For the segmentation experiment, the average and standard-deviation of the
cross-validation results are summarized in Table 1. Overall, good visual agree-
ment was observed between our method and the voting consensus of the experts’
segmentation (Fig. 5). Our Dice coefficient was 0.926 when assessed against the
voting consensus results. Similarly good performance was observed for sensi-
tivity and FPR. [13] reported a dice coefficient of 0.93 when using static FSE
images. Despite a marginally lower Dice coefficient, our findings are encouraging
because they account for the fact that our data set is more challenging as cine
FSE images have lower resolution, and our method is fully automated. Perhaps
not surprising given the newness of the cine FSE [4]. We could not find any
public segmentation method to directly compare with our method.

Fig. 5. Representative images. Our segmentation (shown in green) agrees with the
voting consensus (in blue). (Color figure online)

Table 1. Dice coefficient, sensitivity and false positive rate (FPR) metrics. Averages
(mean ± standard deviation shown) across all three folds are reported comparing auto-
matic segmentation (AS) against the manual segmentation majority voting consensus
(VC) and the three experts (Exp m, m = 1, 2, or 3).

Dice Sensitivity FPR

AS x VC 0.926 ± 0.005 0.909 ± 0.011 0.056 ± 0.003

AS x Exp 1 0.906 ± 0.011 0.923 ± 0.005 0.057 ± 0.003

AS x Exp 2 0.905 ± 0.009 0.896 ± 0.010 0.084 ± 0.007

AS x Exp 3 0.914 ± 0.004 0.900 ± 0.013 0.071 ± 0.009

Exp 1 x Exp 2 0.918 ± 0.008 0.921 ± 0.005 0.075 ± 0.005

Exp 1 x Exp 3 0.941 ± 0.006 0.941 ± 0.004 0.057 ± 0.009

Exp 2 x Exp 3 0.908 ± 0.005 0.908 ± 0.011 0.057 ± 0.009
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5 Conclusions

This work proposes a new methodology for automatic CCA lumen segmentation.
There are a number of MR image-based, vessel segmentation methods described
in the literature, however, none operate on cine FSE image data sets. In addition,
currently available published segmentation methods are semi-automatic; they
require some degree of human interaction. Here, we present a fully automatic
method, including the CCA centroid selection step. This work is an initial step
of a larger project that intends to study carotid artery distensibility (first in the
CCA, but then extending to the carotid artery bifurcation, as well as the internal
and external artery branches). Based on these findings, we hope to be able to
accurately classify carotid artery atherosclerosis patients as healthy (low-risk of
stroke) or unhealthy (high-risk of stroke). Cine FSE images are necessary not
only for minimizing movement artifacts, but also for allowing the visualization
of expansion and contraction of carotid during cardiac cycle, and measurement
of carotid artery distensibility.
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