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Preface

The spine represents both a vital central axis for the musculoskeletal system and a
flexible protective shell surrounding the most important neural pathway in the body, the
spinal cord. Spine-related diseases or conditions are common and lead to a huge burden
of morbidity and cost to society. Spine imaging is an essential tool for assessing spinal
pathologies. Giving the increasing volume of imaging examinations and the complexity
of their assessment, there is a pressing need for advanced computerized methods that
support the physician in diagnosis, therapy planning, and interventional guidance.

The objective of this combined workshop and challenge on spinal imaging was to
bring together researchers who share a common interest in spine-focused research and
to attract additional researchers to this field. By allowing submissions both of papers on
novel methodology and clinical research, and also papers which demonstrate the
performance of methods on the provided challenges, the aim is to cover theoretical and
very practical aspects of computerized spinal imaging.

We invited spine imaging researchers to share and exchange their experiences and
expertise in spinal imaging and method development. Prof. Leo Joskowicz, head of the
Computer-Assisted Surgery and Medical Image Processing Laboratory in the School of
Computer Science and Engineering of the Hebrew University of Jerusalem gave the
keynote speech. His talk was about the recent advances in computer-based diagnosis of
sacroiliitis on CT scans. The talk, with full-house audiences, attracted not only all CSI
participants but also many other MICCAI attendees on the workshop day.

The increasing number of publications in recent years on spinal imaging, in
particular at MICCAI, indicate the high relevance of this topic to the community. After
four very successful workshops at MICCAI 2013, 2014, 2015 and 2016, we also had
an increased number of participants in this year’s workshop. We accepted eight regular
papers on spine image analysis, including vertebra detection, spine segmentation,
image-based diagnosis, and image-guided spinal surgery. Each submission was
rigorously reviewed by two or three Program Committee members on the basis of its
technical quality, relevance, significance, and clarity. The best paper award was given
to the paper “Automated Grading of Modic Changes Using CNNs — Improving the
Performance with Mixup” by Dimitrios Damopoulos et al., based on the raw scores of
all review feedbacks.

In addition to regular research presentations, the computational challenge was
organized to attract researchers working on general-purpose algorithms to try their
methods on spinal data. The MICCAI 2018 Challenge on Automatic IVD Localization
and Segmentation from 3D Multi-modality MR (M3) Images was jointly organized
with the CSI 2018 workshop. The goal of the challenge was to investigate (semi-)
automatic IVD localization and segmentation algorithms and provide a standard
evaluation framework with a set of multi-modality MR images acquired with the Dixon
protocol. The challenge attract eight participating teams with nine submissions.
The Changliu team achieved the best performance on all metrics. The short papers



of the IVD challenge participants are included in the workshop proceedings. These
short papers focused on presenting the methodologies used for the challenge seg-
mentation task.

We would like to thank the MICCAI workshop organizers for supporting the
organization of the CSI workshop, all of the Program Committee members for their
great efforts and cooperation in reviewing and selecting the papers. We would also like
to thank all of the participants for attending the regular presentation sessions and
challenge competition session. Finally, our gratitude goes to Alfred Hofmann,
Anna Kramer, and Ingrid Haas of Springer for their continuous support in the publi-
cation of the workshop proceedings.

September 2018 Yunliang Cai
Guoyan Zheng
Daniel Belavy

Shuo Li

vi Preface
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Spinal Cord Gray Matter-White Matter
Segmentation on Magnetic Resonance

AMIRA Images with MD-GRU

Antal Horváth1(B), Charidimos Tsagkas2, Simon Andermatt1, Simon Pezold1,
Katrin Parmar2, and Philippe Cattin1

1 Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
antal.horvath@unibas.ch

2 Department of Neurology, University Hospital Basel, Basel, Switzerland

Abstract. The small butterfly shaped structure of spinal cord (SC)
gray matter (GM) is challenging to image and to delineate from its
surrounding white matter (WM). Segmenting GM is up to a point a
trade-off between accuracy and precision. We propose a new pipeline for
GM-WM magnetic resonance (MR) image acquisition and segmentation.
We report superior results as compared to the ones recently reported in
the SC GM segmentation challenge and show even better results using
the averaged magnetization inversion recovery acquisitions (AMIRA)
sequence. Scan-rescan experiments with the AMIRA sequence show high
reproducibility in terms of Dice coefficient, Hausdorff distance and rela-
tive standard deviation. We use a recurrent neural network (RNN) with
multi-dimensional gated recurrent units (MD-GRU) to train segmenta-
tion models on the AMIRA dataset of 855 slices. We added a generalized
dice loss to the cross entropy loss that MD-GRU uses and were able to
improve the results.

Keywords: Segmentation · Spinal cord · Gray matter ·
White matter · Deep learning · RNN · MD-GRU

1 Introduction

Cervical spinal cord (SC) segmentation in magnetic resonance (MR) images is a
viable means for quantitatively assessing the neurodegenerative effects of diseases
in the central nervous system. While conventional MR sequences only allowed
differentiation of the boundary between SC and cerebrospinal fluid (CSF), more
recent sequences can be used to distinguish the SC’s inner gray matter (GM)
and white matter (WM) compartments. The latter task, however, remains chal-
lenging as state-of-the-art MR sequences only achieve an in-slice resolution of
around 0.5 mm while maintaining a good signal-to-noise ratio (SNR) and an

A. Horváth and C. Tsagkas—These two authors contributed equally.
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acceptable acquisition time. This resolution is barely enough to visualize the
SC’s butterfly-shaped GM structure.

The 2016 spinal cord gray matter segmentation (SCGM) challenge [7]
reported mean Dice similarity coefficients (DSC) of 0.8 in comparison to a man-
ual consensus ground truth for the best SC GM segmentation approaches at that
time. Porisky et al. [6] experimented with 3D convolutional encoder networks but
did not improve the challenge’s results. Perone et al.’s U-Net approach [5] later
managed to push the DSC value to 0.85. More recently, Datta et al. [3] reported
mean DSC of 0.88 on images of various MR sequences with a morphological
geodesic active contour model.

Still, this means that a high number of subjects would be necessary to get
reliable findings from clinical trials. Hence, despite recent developments, there
is a need for improvement of the reproducibility of SC GM and WM measure-
ments. An accurate and precise segmentation of the SC’s inner structures in MR
images under the mentioned limiting trade-off between resolution, SNR, and
time therefore remains a challenge, especially when focusing on the GM.

In this work, we present a new robust and fully automatic pipeline for the
acquisition and segmentation of GM and WM in MR images of the SC. On the
segmentation side, we propose the use of multi-dimensional gated recurrent units
(MD-GRU), which already proved fit for a number of medical segmentation tasks
[1], to gain accurate and precise SC GM and WM segmentations. To this end, we
adapt MD-GRU’s original cross-entropy loss by integrating a generalized Dice
loss (GDL) [8] and show improved segmentation performance compared to the
original. Using the proposed setup, we manage to set a new state of the art on
the SCGM challenge data with a mean DSC of 0.9. On the imaging side, we
propose to use the AMIRA MR sequence [9] for gaining improved GM-WM and
WM-CSF contrast in axial cross-sectional slices of the SC. Using the proposed
MD-GRU approach in combination with this new imaging sequence, we manage
to gain an even higher accuracy of DSC 0.91 wrt. a manual ground truth, as we
demonstrate in experiments on scan-rescan images of healthy subjects, for both
SC GM and WM.

The remaining paper is structured as follows: in Sect. 2, we present our seg-
mentation method; in Sect. 3, we briefly describe the AMIRA MR sequence and
the two datasets (SCGM challenge, AMIRA images) that we use for the experi-
ments of Sect. 4, before we conclude in Sect. 5.

2 Method

The Multi-Dimensional Gated Recurrent Unit (MD-GRU) [1] is a generalization
of a bi-directional recurrent neural network (RNN), which is able to process
images. It achieves this task by treating each direction along each of the spatial
dimensions independently as a temporal direction. The MD-GRU processes the
image using two convolutional GRUs (C-GRUs) for each image dimension, one in
forward and one in backward direction, and combines the results of all individual
C-GRUs. The gated recurrent unit (GRU), compared to the more popular and
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established long short-term memory (LSTM), uses a simpler gating structure and
combines its state and output. The GRU has been shown to produce comparable
results while consuming less memory than its LSTM counterpart when applied
to image segmentation and hence allows for larger images to be processed [1].

We directly feed the 2D version of MD-GRU the 8-channel AMIRA images
(cf. Sect. 3.1) to train AMIRA segmentation models, but only use the single
channel images of the SCGM dataset (cf. Sect. 3.2) for the challenge models. To
address the high class imbalance between background, WM and GM, similar to
[5] we added a GM Dice loss (DL), but also included DLs for all the other label
classes using the generalized Dice loss (GDL) formulation of Sudre et al. [8].

2.1 Dice Loss

A straightforward approximation of a DL for a multi-labelling problem is

LD = − 1
∑

�∈L ω�

∑

�∈L
ω�

2
∑

x∈X p�x r�x
∑

x∈X p�x + r�x
, (1)

with the image domain X, labels L, predictions p, raters r, and class weights
ω. Sudre et al. [8] described a Generalized Dice Loss (GDL) LGD where they
divide the weighted sum of the intersections of all labels by the weighted sum
of all predictions and targets of all labels, instead of just linearly combining the
individual Dice coefficients:

LGD = − 2
∑

�∈L ω�

∑
x∈X p�x r�x

∑
�∈L ω�

∑
x∈X p�x + r�x

. (2)

As stated in [2], compared to the DL (1), the GDL (2) allows all labels to
contribute equally to the overall overlap (denominator in (2)).

The (squared) inverse volume weighting

ω� =
1

(∑
x∈X r�x

)2 , (3)

as proposed in [2], deals with the class imbalance problem: large regions only
contribute very little to LD or LGD, whereas small regions are weighted more
and thus are more important in the optimization process.

To avoid division by zero in ω� for image samples with absence of label �, we
regularize the denominator of (3) and formulate the weighting we used:

ω� =
1

1 +
(∑

x∈X r�x

)2 . (4)

The weighting (4) compared to (3) only slightly decreases its value as long as the
object of interest has enough pixels. Note, that during training of a network, it is
possible, that not all labels occur in a random subsample with random location.

Finally, we combine DL or GDL with the cross entropy loss LC (CEL) with
a factor λ ∈ [0, 1]:

L = λLD or GD + (1 − λ)LC.



6 A. Horváth et al.

Fig. 1. AMIRA sequence of an exemplary slice on C4 level. All images 10-fold upsam-
pled. Top and middle row: Inversion images with increasing inversion times from left to
right. Original cropped images (top), and histogram equalized (middle). Bottom row:
Histogram equalized sum of the first 5 inversion images in full view (left), weighted aver-
age with optimal CSF-WM contrast (middle), and optimal GM-WM contrast (right).

3 Data

In the following subsections, we describe the images used for the experiments:
healthy subjects scan-rescan AMIRA dataset (own), which we call the AMIRA
dataset, and the SCGM challenge dataset1 [7], which we refer to as SCGM
dataset.

3.1 AMIRA Dataset

The first dataset used in this paper consists of 24 healthy subjects (14 female,
10 male, age 40± 11 years). Each subject was scanned 3 times, remaining in the
scanner between the first and second scan, and leaving the scanner and being
repositioned between the second and third scan. Each scan contains 12 axial
cross-sectional slices of the neck acquired with the AMIRA sequence [9] that
were manually aligned at acquisition time perpendicular to the SC’s centerline
with an average slice distance of 4 mm starting from vertebra C3 level in caudal
direction.

1 http://cmictig.cs.ucl.ac.uk/niftyweb/program.php?p=CHALLENGE last accessed:
September 13, 2018.

http://cmictig.cs.ucl.ac.uk/niftyweb/program.php?p=CHALLENGE
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Because of severe imaging artifacts some slices had to be discarded. For one
scan the last three caudal slices, for two scans the last two slices and for another
two scans the last slice, in total 9 out of the 864 slices were discarded.

The AMIRA sequence consists of 8 inversion images of the same anatomical
slice captured at different inversion times after 180◦ MR pulses that have an in-
slice resolution of 0.67 mm × 0.67 mm. Exemplary inversion images and different
averages of an exemplary slice on vertebra C4 level are shown in Fig. 1. For
human raters, to manually segment the AMIRA images, different single channel
projections of the 8 channel images are necessary. Weighted averages of the
inversion images with e.g. optimal CSF-WM or GM-WM contrast, see Fig. 1,
were calculated with an approach that maximizes between-class intensity mean
values and minimizes within-class intensity variances [4].

In order to reduce the numerical errors for the calculated measures, we 10-fold
upsampled all slices with Lanczos interpolation. Since all images were manually
centered at the SC, we consequently trimmed one third of the image size on each
side and thus cropped out the inner ninth to a size of 650 × 650 pixels for faster
processing.

One experienced rater segmented all 855 images manually for WM and GM
and segmented again 60 randomly chosen slices over all subjects, scans and slices,
without knowledge of their origin, to enable an intra-rater comparison.

3.2 SCGM Dataset

The SCGM segmentation challenge data [7] consists of 40 training datasets and
40 test datasets acquired at 4 different sites. Both training and test datasets each
have 10 samples of each site. The 4 sites have different imaging protocols with
different field of view, size and resolution. Each dataset was manually segmented
by 4 experts and to assess rater performance, with majority voting (more than
2 positive votes) a consensus segmentation of the 4 raters was calculated.

For training and testing of our MD-GRU models, we resampled all axial slices
of all the datasets to the common finest resolution of 0.25 mm × 0.25 mm and
center cropped or padded all datasets to a common size of 640 × 640 pixels.
Before submitting the testing results for evaluation, we padded and resampled
all slices to their original sizes and resolutions.

4 Experiments and Results

In the following subsections, we describe our experiments, the chosen MD-GRU
options, and show their results.

4.1 AMIRA Segmentation Model

We split the 24 subjects into 3 groups of 8 subjects each for 3 cross-validations:
training on two groups and testing on a third group. To handle over-fitting, of
each training set we excluded one subject and used it for validation.
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We used the standard MD-GRU2 model with default settings and residual
learning, dropout rate 0.5, and dropconnect on state. We chose the following
problem specific parameters: Gaussian high pass filtering with variance 10, batch
size 1, and window size 500 × 500 pixels. In each iteration of the training stage,
for data augmentation, a subsample of the training data with random deforma-
tion field at a random location was selected. Random deformations included an
interpolated deformation field on 4 supporting points with randomly generated
deformations of standard deviation of 15, random scaling of a factor between 4/5
and 5/4, random rotation of ±10◦, and random mirroring along the anatomical
median plane. To prevent zero padding of the subsamples, we only allowed ran-
dom sampling within a safe distance of 45 pixels from the image boundary and
truncated the random deformation magnitudes to 45 pixels, which is 3 times the
chosen standard deviation.

We trained the networks with Adadelta with a learning rate of 1 for 30’000
iterations, where one iteration approximately took 10 s on an NVIDIA GeForce
GTX Titan X. Cross entropy and DSC on the evaluation set already reached
their upper bounds after around 20’000 iterations, and dropconnect on state
prevented from overfitting as we can see in Fig. 3.

The time for segmenting a slice with the trained network approximately
took 7 s.

Prior to the final model generation, we experimented in adding only a GM
DL to the CEL with weightings λ = 0, 0.25, 0.5, 0.75, 1 and figured that 0.5
produced the best results. DL produces values close to −1 whereas CEL tends
to have small values close to 0. Moreover, CEL holds the information of all
labels, since it is calculated over all labels. Now, when adding only GM DL,
because of the imbalance of the loss values, higher values of λ strongly weaken
the information for WM and background that in this setup is carried only within
CEL. The best weighting λ depends on the cross entropy and thus depends on
the class imbalance and label uncertainty of each specific segmentation task.

CGM 1 Scan 1 Slice 2 CGM 1 Scan 3 Slice 11

CEL GDL 0.5 CEL GDL 0.5

Fig. 2. Exemplary prediction probability maps of the three labeling maps background
(red), GM (green) and WM (blue) of MD-GRU with CEL and with GDL in RGB
colors. (Color figure online)

2 https://github.com/zubata88/mdgru last accessed: September 13, 2018.

https://github.com/zubata88/mdgru
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Fig. 3. GM DSC, WM DSC and cross entropy over the training iterations of the
validation set of group 1 in the AMIRA dataset in the format mean ± one standard
deviation. Top row: models with λ = 0 (only CEL), λ = 1 (only GDL), and combined
with λ = 0.5 (GDL 0.5). Bottom row: GM DL 0.5, DL 0.5, and GDL 0.5 show similar
performance.

We observed that the auxiliary DL produces sharper probability maps at the
boundaries as compared to only using CEL, see Fig. 2, and that DL helps to
delineate weak contrasts e.g. between GM and WM.

Further experiments showed, that the proposed automatic weightings ω� (4)
for the DLs between all label classes is a good strategy to simplify the selection
of λ. In our case, the evaluation scores did not show big differences for λ in a
range from 0.25 to 0.75, when using the class weights ω� according to (4) for both
DL and GDL. MD-GRU with the trivial linear combinations λ = 0 (only CEL)
and λ = 1 (only GDL) did not perform as good as true combinations between
the two losses. We show the improvement in the scores of GDL with λ = 0.5 in
Fig. 3 and Table 1.

Table 1. Improvement between native MD-GRU with CEL and the proposed MD-
GRU with GDL together with the manual segmentation’s precision and intra-rater
accuracy values. Intra-rater accuracy of the human expert was calculated for the 60
randomly chosen slices.

Accuracy Intra-session Inter-session
GM DSC HD(mm) DSC HD(mm) RSD(%) DSC HD(mm) RSD(%)
MD-GRU CEL 0.90 ± 0.04 0.68 ± 0.43 0.89 ± 0.03 0.71 ± 0.46 3.22 ± 2.87 0.88 ± 0.04 0.70 ± 0.43 3.65 ± 3.97
MD-GRU GDL 0.5 0.91 ± 0.03 0.56 ± 0.33 0.88 ± 0.03 0.58 ± 0.32 2.93 ± 2.63 0.88 ± 0.03 0.61 ± 0.35 3.86 ± 3.49
Manual 0.86 ± 0.03 0.67 ± 0.24 5.55 ± 4.11 0.85 ± 0.03 0.71 ± 0.27 6.27 ± 4.70
Intra-rater 0.85 ± 0.07 0.62 ± 0.30

WM DSC HD(mm) DSC HD(mm) RSD(%) DSC HD(mm) RSD(%)
MD-GRU CEL 0.94 ± 0.03 0.47 ± 0.26 0.94 ± 0.02 0.51 ± 0.25 2.07 ± 2.16 0.94 ± 0.02 0.52 ± 0.22 2.40 ± 2.22
MD-GRU GDL 0.5 0.95 ± 0.02 0.43 ± 0.22 0.94 ± 0.02 0.51 ± 0.22 2.14 ± 2.35 0.94 ± 0.02 0.53 ± 0.23 2.69 ± 2.54
Manual 0.93 ± 0.02 0.54 ± 0.13 3.78 ± 3.32 0.92 ± 0.02 0.58 ± 0.15 4.59 ± 3.77
Intra-rater 0.96 ± 0.02 0.44 ± 0.15
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Finally, comparisons between GM DL 0.5, auto-weighted DL 0.5 and GDL
0.5, all with λ = 0.5, are shown in Fig. 3 on the bottom row. As can be expected,
the similarity of the terms DL (1) and GDL (2) is reflected in their almost
identical segmentation performance.

GM DL 0.5 shows comparable WM segmentation performance to the losses
that have WM DL included. This can be explained, because the GM boundary is
part of the WM boundaries and thus influences the WM scores, and furthermore
the outer WM boundary is already well delineated even without any DL through
the good CSF-WM contrast. Choosing a DL as a surrogate for GM DSC only,
as proposed in [5], is thus justifiable.

Subject 6537 Scan 1 Slice 10 Subject 6582 Scan 2 Slice 1 Subject 6537 Scan 1 Slice 5

Subject 6550 Scan 1 Slice 3 Subject 6614 Scan 1 Slice 7 Subject 6582 Scan 1 Slice 9

Fig. 4. Exemplary slices of the AMIRA dataset with automatic GM (red) and CSF-
WM (green) boundaries, and manual GM (blue) and CSF-WM (magenta) boundaries.
(Color figure online)
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Fig. 5. SC, WM, and GM areas of GDL 0.5 (automatic) and manual segmentations
wrt. the anatomical slice positions in mean ± one standard deviation.

While the SCGM challenge results only provide GM segmentation accuracy,
for the AMIRA dataset we additionally also provide WM segmentation results.
For the statistics, we gathered all slice-wise test results of all cross-validations
for the proposed method GDL 0.5 and compare it with those of CEL. Pairwise
two-tailed Hotelling’s T-tests for GM accuracy in DSC and labelmap Hausdorff
distance (HD) show, that the test results of the MD-GRU models trained on the
different groups are not significantly different from each other (p > 0.3 for both
GDL and CEL).
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Fig. 6. GM and WM accuracy and precision plots of the AMIRA dataset. For both
boxes GM and WM: Top row: Accuracy (left) in DSC and HD of all the 855 slices
of the proposed method; intra-session (intra) and inter-session (inter) precision (right)
of the proposed method (auto) and the manual segmentations in DSC, HD, and area
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bars (right) for area RSD wrt. the slice positions, for better visualization shown with
0.2 standard deviations. HD is measured in millimeters, and RSD in percents.
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In Fig. 6 and in Table 1 we show GM and WM accuracy and precision of
all gathered slice results in DSC, HD and relative standard deviation of the
areas (RSD), also known as coefficient of variation. With intra- and inter-session
precision we compare segmentations of the same slice for different scans with
and without repositioning, respectively. The proposed automatic segmentations
shows better reproducibility as the manual segmentations. Additionally, we show
the anatomical GM and WM areas wrt. the slice positions in Fig. 5 and show
randomly chosen results in Fig. 4. Training multiple networks with data from
multiple human raters as ground truth data, as we did with the SCGM data, cf.
Subsect. 4.2, might further improve the performance.

4.2 SCGM Challenge Model

To enable comparison with other methods, we tested MD-GRU on the SCGM
dataset [7]. We trained four MD-GRU models, one for each expert rater’s ground
truth, and in the end performed majority voting on the individual test results
to mimic the challenge’s consensus segmentation.

We used the same MD-GRU setup but with a window size of 200×200 pixels
for a similar anatomical field of view as the AMIRA models. Random subsamples
in each training iteration were drawn with a distance of 200 pixels from the image
boundary. We trained the networks for 100’000 iterations and observed, that the
scores reached their upper bounds after around 60’000 iterations. One training
iteration took around 4 s and segmentation of one slice took less than 1 s.

In Table 2, the proposed model shows a new state-of-the-art in almost all
metrics. This comparison shows MD-GRU’s strong performance in learning the
GM segmentation problem. In Table 3, we additionally show the improvement
for the auto-weighted GDL, compared to the native MD-GRU approach with
only CEL. Figure 7 shows randomly chosen results of the proposed model.

Table 2. Results of the SCGM challenge competitors including the results of Porisky
et al. [6], Perone et al. [5] and ours. The metrics are Dice coefficient (DSC), mean sur-
face distance (MD), Hausdorff surface distance (HD), skeletonized Hausdorff distance
(SHD), skeletonized median distance (SMD), true positive rate (TPR), true negative
rate (TNR), precision (P), Jaccard index (J), and conformity (C). Best results on each
metric are highlighted in bold font. Distances are measured in millimeters.

JCSCS DEEPSEG MGAC GSBME SCT VBEM [6] [5] Proposed
DSC 0.79 ± 0.04 0.80 ± 0.06 0.75 ± 0.07 0.76 ± 0.06 0.69 ± 0.07 0.61 ± 0.13 0.80 ± 0.06 0.85 ± 0.04 0.90 ± 0.03
MD 0.39 ± 0.44 0.46 ± 0.48 0.70 ± 0.79 0.62 ± 0.64 0.69 ± 0.76 1.04 ± 1.14 0.53 ± 0.57 0.36 ± 0.34 0.21 ± 0.20
HD 2.65 ± 3.40 4.07 ± 3.27 3.56 ± 1.34 4.92 ± 3.30 3.26 ± 1.35 5.34 ± 15.35 3.69 ± 3.93 2.61 ± 2.15 1.85 ± 1.16
SHD 1.00 ± 0.35 1.26 ± 0.65 1.07 ± 0.37 1.86 ± 0.85 1.12 ± 0.41 2.77 ± 8.10 1.22 ± 0.51 0.85 ± 0.32 0.71 ± 0.28
SMD 0.37 ± 0.18 0.45 ± 0.20 0.39 ± 0.17 0.61 ± 0.35 0.39 ± 0.16 0.54 ± 0.25 0.44 ± 0.19 0.36 ± 0.17 0.37 ± 0.17
TPR 77.98 ± 4.88 78.89 ± 10.33 87.51 ± 6.65 75.69 ± 8.08 70.29 ± 6.76 65.66 ± 14.39 79.65 ± 9.56 94.97 ± 3.50 96.22 ± 2.69
TNR 99.98 ± 0.03 99.97 ± 0.04 99.94 ± 0.08 99.97 ± 0.05 99.95 ± 0.06 99.93 ± 0.09 99.97 ± 0.04 99.95 ± 0.06 99.98 ± 0.03
P 81.06 ± 5.97 82.78 ± 5.19 65.60 ± 9.01 76.26 ± 7.41 67.87 ± 8.62 59.07 ± 13.69 81.29 ± 5.30 77.29 ± 6.46 85.46 ± 4.96
J 0.66 ± 0.05 0.68 ± 0.08 0.60 ± 0.08 0.61 ± 0.08 0.53 ± 0.08 0.45 ± 0.13 0.67 ± 0.07 0.74 ± 0.06 0.82 ± 0.05
C 47.17 ± 11.87 49.52 ± 20.29 29.36 ± 29.53 33.69 ± 24.23 6.46 ± 30.59 44.25 ± 90.61 48.79 ± 18.09 64.24 ± 10.83 77.46 ± 7.31
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Table 3. SCGM challenge results of the native MD-GRU with only CEL in comparison
to the proposed GDL 0.5. Abbreviations of the metrics taken from Table 2.

DSC MD HD SHD SMD TPR TNR P J C
MD-GRU CEL 0.87 ± 0.03 0.30 ± 0.31 2.14 ± 1.20 0.85 ± 0.36 0.40 ± 0.20 93.93 ± 3.85 99.98 ± 0.03 82.04 ± 5.42 0.78 ± 0.05 70.90 ± 9.06
MD-GRU GDL 0.5 0.90 ± 0.03 0.21 ± 0.20 1.85 ± 1.16 0.71 ± 0.28 0.37 ± 0.17 96.22 ± 2.69 99.98 ± 0.03 85.46 ± 4.96 0.82 ± 0.05 77.46 ± 7.31

Site 1 Subject 15 Slice 2 Site 2 Subject 13 Slice 5 Site 3 Subject 12 Slice 14 Site 4 Subject 19 Slice 7

Fig. 7. For each site of the SCGM dataset, one randomly chosen result of the proposed
model in cropped view.

5 Conclusion

We presented a new pipeline of acquisition and automatic segmentation of SC
GM and WM. The AMIRA sequence produces 8 channel images for different
inversion times which the proposed deep learning approach with MD-GRU used
for segmentation. Using the 8 channels, tissue specific relaxation curves can be
learned and used for GM-WM segmentation.

Comparing our segmentation results to the results of the ex-vivo high-
resolution dataset of Perone et al. [5], we show comparable accuracy for in-vivo
data. The acquired AMIRA dataset in scan-rescan fashion, with and without
repositioning in the scanner, shows high reproducibility in terms of GM area
RSD. Thus we believe that the presented pipeline is a candidate for longitudinal
clinical studies. Further tests with patient data have to be conducted.

We added a generalized multi-label Dice loss to the cross entropy loss that
MD-GRU uses. We observed, that the segmentation performance was stable for
a larger region of the weighting λ between the two losses. In a future work,
we will study the effects of small λs that correspond well with the logarithmical
magnitudes of CEL. Our proposed segmentation model outperforms the methods
from the SC GM segmentation challenge. Training the MD-GRU models directly
on the 3D data might further improve the performance compared to slice-wise
segmentation.

Given the small and fine structure of the GM, we like to point out, that
the achieved results of the metrics are near optimal. Higher resolutions of the
imaging sequence will improve the accuracy more easily.

Acknowledgments. We thank Dr. Matthias Weigel, Prof. Dr. Oliver Bieri and Tanja
Haas for the MR acquisitions with the AMIRA sequence.
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Abstract. We describe a method to automatically predict scoliosis in
Dual-energy X-ray Absorptiometry (DXA) scans. We also show that
intermediate representations, which in our case are segments of body
parts, help improve performance. Hence, we propose a two step process
for prediction: (i) we learn to segment body parts via a segmentation
Convolutional Neural Network (CNN), which we show outperforms the
noisy labels it was trained on, and (ii) we predict with a classification
CNN that uses as input both the raw DXA scan and also the intermedi-
ate representation, i.e. the segmented body parts. We demonstrate that
this two step process can predict scoliosis with high accuracy, and can
also localize the spinal curves (i.e. geometry) without additional super-
vision. Furthermore, we also propose a soft score of scoliosis based on
the classification CNN which correlates to the severity of scoliosis.

1 Introduction

Scoliosis is an abnormal sideways curvature of the spine typically occuring prior
to puberty and affects approximately 1.1% to 2.9% of children [12]. While most
cases are mild, stablizing over time and presenting few symptoms, some children
develop severe deformaties that can cause lifelong disability and pain. Scoliosis
can also cause back pain [1] and in rare cases can cause respiratory failure [8]. It
is not currently possible to determine prognosis at the onset of disease and hence
children with scoliosis are monitored with repeated X-Ray imaging to determine
whether the disease is stable or progressing. While accepted as the standard
of care, the use of repeated X-Ray imaging on children with the associated
radiation dose is far from ideal. Moreover, the radiation dose also precludes its
use in population based epidemiological studies to better understand disease
progression and develop future tools to predict prognosis and for screening.

DXA Scans: The use of DXA imaging for diagnosis and monitoring of scolio-
sis has been proposed as an alternative to X-Ray due to its very low radiation
c© Springer Nature Switzerland AG 2019
G. Zheng et al. (Eds.): CSI 2018, LNCS 11397, pp. 15–28, 2019.
https://doi.org/10.1007/978-3-030-13736-6_2
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dose compared to spinal X-Rays (0.001 mSv vs. 1.5 mSv) and widespread avail-
ability [12]. DXA scans, typically used to measure bone mineral density in the
management of osteoporosis, are whole body scans acquired in a line scanning
manner from the top of the head to the bottom of the feet. Two X-Ray sources
at different energy levels are used to create a pair of absorption images which
are then post-processed to produce quantitative bone mineral density images.
While detection of scoliosis using DXA has been shown to be feasible and accu-
rate, the manual technique proposed by [12] is labour intensive and requires
careful adherence to the prescribed analysis protocol for accurate results. That
being said, the method has proven to be quite successful in scoliosis research
e.g. [5]. The technique involves first localizing important body parts to establish
a reference coordinate system. These are then used for two purposes: (i) the
head and legs are used to determine the overall body position because incorrect
positioning can either mask or mimic the appearance of the condition, and (ii)
the curvature of the spine is used to assess for the presence of the condition;
defined to be when the curvature is ≥10◦. Our goal in this work is to automate
the process of scoliosis classification using DXA, based on [12]. An overview of
our approach is given in Fig. 1.

Fig. 1. Overview: a two stage approach where we take in a raw DXA scan and produces
segmentation of the body parts as an intermediate step, the outputs of which are used
in our classification stage.

Intermediate Representations: Our approach is based on a CNN driven
by a set of intermediate representations that attempt to mimic the intuition
of the underlying process of [12] described above. Our hypothesis is that such
intermediate representations, in this case soft-segmentation masks, can improve
classification performance, at least within the context of specific medical appli-
cations and when training with dataset sizes typically available in medical image
analysis. The intermediate representations embed prior knowledge on how scol-
iosis is imaged and assessed in the case of DXA, and provide important cues for
the network. In more detail, we provide several soft map segmentations of the
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key parts of the anatomy used in the DXA assessment process: the head and
legs, to determine the overall body position; and the spine, so that its curvature
can be used to assess for the presence and severity of the condition. In effect,
the use of such intermediate representations guides the learning process to focus
on important parts in determining scoliosis.

Related Work: Intermediate representations have recently been proposed as
a means to extract characteristic object representations in the MarrNet 2.5D
sketches by [14], and to take advantage of available training datasets for learn-
ing keypoints by [15]. Our use of intermediate representations differs from these.
There has been a lot of work done on whole body DXA scans e.g. manual seg-
mentation of body parts in [2] and modelling the shape of the body in [11]. There
is also work looking at the spine using DXA, more specifically segmenting the
vertebral body [9] but ours is the first system to segment the spine automatically
in whole body DXA scans.

Contributions and Overview: This paper makes several contributions: (i)
we present an automated method to predict scoliosis from DXA scans; (ii) we
demonstrate improved classification performance of scoliosis when DXA images
are augmented with application tuned intermediate representations; (iii) we illus-
trate how such intermediate representations may be robustly generated using a
network trained on “cheaply” obtained but noisy labels; and (iv) we propose that
our network can infer a continuous scale of the severity of scoliosis even though
it has been trained on binary labels. The remainder of the paper is organized
in two main sections: Sect. 2 describes the approach and process by which we
train a (segmentation) network for generating the intermediate representations.
Section 3 describes the network for predicting the scoliosis and related labels
from both the DXA scans and intermediate representations. The description of
the dataset and experimental results then follow in Sects. 4 and 5 respectively,
including a proposal for a scoliosis score, and evidence hotspots localizing the
curvature of the spine.

2 Segmentation

There are multiple body parts that can be seen in the whole body DXA scans, not
all are important for predicting scoliosis. Hence, a sensible approach to automate
prediction of scoliosis from these scans is to segment relevant body parts prior
to classification of scoliosis. The body parts we segment are: (1) head, (2) spine,
(3) pelvis, (4) pelvic cavity, (5) left leg, and (6) right leg. The spine is the
most important part since scolios is a disease of the spine while the others are
important for predicting positioning error (straight body vs. curved). Positioning
error also plays a part in determining scoliosis as the orientation of the head and
legs also affects curvature of the spine.
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Since the full body DXA scans are homogeneous, segmentation labels for
some parts of the body can be produced with a series of simple heuristics. These
labels, although not perfect, are good enough to train a segmentation CNN
and, as will be seen, in many cases the trained CNN produces visually better
segmentations. In the following sections we describe the stages of training the
segmentation CNN: first, generating (possibly noisy) segmentation labels using
simple heuristics from classical computer vision; and second, defining loss func-
tions and the architecture of the CNN.

2.1 Generating Segmentation Labels

For each scan, the head is first segmented via active contour around the head
region [3]. The pelvis is located by scanning each row of the image starting
from the bottom of the image until the bimodal intensity from the legs becomes
unimodal. Working through the body in this way, using a combination of active
contours and row based intensity modes, each of the body parts in turn can be
segmented. Note, this is only possible because of the uniform positioning of the
body adopted for the DXA scans. Around 90% of the scans are good though
rough. Examples of the segmentation masks from these simple heuristics can be
seen in Fig. 2.

Fig. 2. Segmentation labels: the segmentation labels created by simple heuristics.
Going from left to right: (1) the original image followed by segmentation masks of
the (2) head, (3) spine, (4) pelvis, (5) pelvic cavity, (6) right leg, and (7) left leg.

2.2 A CNN for Segmentation

The goal is to automatically segment the labelled body parts for each DXA
scan using a CNN. The segmentation CNN takes in a DXA scan as input and
produces six different channels with same dimension as the input, where each
channel corresponds to the six labelled parts as shown in Fig. 2. The design of
the network is inspired by the U-Net architecture with minor changes [10]. The
architecture of the network is given in Fig. 3.
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Fig. 3. Segmentation CNN: the network takes in a full body DXA scan and produces
segmentation masks for each of the six body parts. The network is based on the U-Net
architecture in that we have multiple skip connections from the earlier layers of the
network connecting to the later layers. /2 denotes a stride of 2. The output shows
the segmentation output overlaid on top of the input (in actuality the network only
produces the segmentation mask).

Segmentation Losses: We consider two different losses to train the segmen-
tation network. The first is a standard L2 loss:

Lseg =
N∑

n=1

‖yn − ŷn‖2 (1)

where yn is segmentation label (binary, y = 1 for parts containing a body part
and y = 0 otherwise), and ŷn is the output of the network for sample n. The
loss is also balanced by the amount of background and foreground pixels in the
batch during training.

Inspired by the method of which DXA scanners typically operate (similar to a
line scan camera); scan line by scan line or row by row of the whole scan, we also
propose a segmentation loss on a per scan line basis. This is done as follows: for
each scan line, the network is tasked to predict both the mid-point and thickness
of the labelled body part. The mid-point prediction can be viewed as a 128-way
classification task where each class is the point of the 128-dimensional scan line
(i.e. the width of the image), optimized via a standard softmax log loss:
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Lmid = −
N∑

n=1

⎛

⎝yn − log
128∑

j=1

eyj(xn)

⎞

⎠ (2)

where yj is the jth component of the Conv11 output for xn per scan line. The
raw output of this layer is a mid-point heatmap for each labelled body part. The
prediction of thickness for each scan line can be expressed as the summation of
the number of pixels belonging to a labelled body part e.g. a scan line with 8
spine pixels would have a thickness of 8 for the spine class. The same Conv11
output yj is used for predicting the thickness, optimized with L2 loss:

Lthick =
N∑

n=1

∥∥∥∥∥∥

128∑

j=1

yn −
128∑

j=1

H(ŷn)

∥∥∥∥∥∥

2

(3)

where H is the Heaviside step function which is approximated via a sigmoid,
used to binarize the activation of the Conv11 output:

H(x) =
1

1 + e−k(x−0.5)
(4)

where k controls the steepness (k = 10 in our case). To produce the segmentation
mask for each scan, we combine the predicted mid-point (max of the activation
of Conv11 for each scan line) and the thickness of a labelled body part for the
corresponding scan line (see Fig. 4). A segmentation mask can also be produced
directly after the Heaviside activation but we find this leads to be slightly worse
segmentation performance.

The Benefits of Using a Segmentation CNN: Although we are able to pro-
duce segmentation masks via very simple heuristic and classical computer vision
methods, in about 10% of cases there are erroneous segmentations especially
for a really difficult body part like the spine. As the goal is to build an end-to-
end system of scoliosis prediction, a CNN is much more suitable approach as it
learns, despite the noisy training labels, to correctly predict the segmentation
masks. Figure 5 shows examples of failure cases for the simple method against
output of a CNN on the test set. A second benefit of using the CNN is that we
obtain a ‘soft-segmentation mask’. As will be seen, using this as an intermediate
representation improves the classification performance compared to using the
hard segmentations.

3 Classification

The goal is to predict three different classifications for each DXA scan: (i) a
binary classification of scoliosis vs. non-scoliosis, outlined in [12], (ii) a binary
classification of positioning error which is dependant on the straightness of the
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Fig. 4. Segmentation mask from mid-point and thickness: the segmentation masks
from intermediate soft segmentation of the body parts, which contain mid-point infor-
mation, alongside the corresponding thickness vector for each body part. We find the
intermediate segmentation, or soft mask, from the raw output of Conv11 can also be
used for classifying scoliosis and other tasks.

Fig. 5. Simple heuristics vs CNN: “Noisy” is the noisy annotation generated via simple
heuristics, and used to train the CNN. We see around 10% failure cases. Here we show
examples of those failure cases on the test set compared to the CNN segmentation for
the spine. Failures typically appears as under-segmentation of the spine around the
base or the middle of the spine highlighted in the “Noisy” examples.

whole body in the DXA scan, and (iii) the number of curves of a scoliotic spine
(only on cases with scoliosis). The number of curves is divided into three different
classes: no curve (normal spine); one curve, i.e. a “C” shaped spine; and more
than one curve, which includes the classical “S” shaped spine with two curves.
The networks for classification share the first six layers, five convolutional and
one fully connected layer, which branch out for each of the three classification
tasks (see Fig. 6).

Classification Loss: We follow the multi-task balanced loss approach discussed
in [7] which can be expressed as minimizing a combination of the softmax log-
losses of the three classifications:

Lt = −
N∑

n=1

⎛

⎝yc(xn) − log
Ct∑

j=1

eyj(xn)

⎞

⎠ (5)
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Fig. 6. Classification CNN: The network is inspired by the VGG-M network in [4]
with 5 convolutional layers and 3 fully connected layers but with slightly different
filter sizes and number of filters. We experimented with several different input for the
classification network: (1) raw DXA scan, (2) segmentation mask, (3) mid-point map,
and (4) a combination of the raw DXA and either the segmentation mask, mid-point
map or both.

where t corresponds to each classification and t ∈ {1 . . . 3}, x is the input scan,
Ct which corresponds to the number of classes in task t, yj is the jth component
of the FC8 output, and c is the true class of xn. The loss for each classification
is also balanced with the inverse of the frequency of the class to emphasize the
contribution of the minority class e.g. only 8% of the scans have scoliosis.

4 Dataset and Training Details

The dataset is from the Avon Longitudinal Study of Parents and Children
(ALSPAC) cohort that recruited pregnant women in the UK. The DXA scans
of the subjects were obtained from two different time points; when the subjects
were 9 and 15 years of age. This difference in acquisition period and the varia-
tion of height between different individuals results in a difference of scan heights.
Figure 7 shows a comparison of scans from various individuals at different time
points.

In all, there are 7645 unique subjects in the dataset, most of which have two
scans, which totals to 12028 scans. The distribution of labels of the different
classification tasks is given in Table 1. We use a 80:10:10 (train:test:validation)
random split, on a per patient basis (about 9.6k:1.2k:1.2k scans). Two different
random splits of the data are used throughout (from training to evaluation) in
order to obtain standard deviations on the classification performance.

Pre-processing: The scans are normalized such that both the head and feet
are roughly in the same region for all the scans regardless of age and original
height of the scans. Empty spaces on top of the head and below the feet are
also removed. The scans are cropped isotropically to prevent distortion and to
keep the aspect ratio the same as the original. The dimensions of the scans after
normalization is 416 × 128 pixels.
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Fig. 7. Height normalization: the top row shows examples of scans prior to height
normalization for both time points (9 and 15 years old), while the bottom row shows
the height normalized scans.

Training Details: Both the segmentation and classification networks are opti-
mized via stochastic gradient descent (SGD) from scratch. The hyperparameters
are; batch size 64 for segmentation and 256 for classification; momentum 0.9;
weight decay 0.0005; initial learning rate of 0.0001 for segmentation and 0.001
for classification, both of which are lowered by a factor of 10 as the loss plateaus.
The network were trained via the MatConvNet [13] toolbox using an NVIDIA
Titan X GPU. We employ several training augmentation strategies: (i) transla-
tion of ±24 pixels in the x-axis, (ii) translation of ±24 pixels in the y-axis, and
(iii) random flipping. At test time, the final prediction is calculated from the
average prediction of an image and its flip.
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Table 1. Distribution of labels: there
are three different classification tasks: (i)
scoliosis, (ii) positioning, and (iii) number
of curves (NOC). There are 12028 scans
but fewer labels, since not all scans have
labels for all three tasks.

Normal Abnormal

Positioning 10139

(94.3%)

1889

(15.7%)

Scoliosis 9435

(91.0%)

933

(9.0%)

0 1 >1

NOC 9435

(91.1%)

766

(7.4%)

159

(1.5%)

Table 2. The IoU of the models on
the test set: “L2” is the network trained
via L2 loss and “MT” is the network
trained on minimizing the mid-point and
thickness on a per scan line basis.

L2 MT

IoU Head 0.93 0.95

Spine 0.85 0.87

Pelvis 0.77 0.72

Pelvic cavity 0.64 0.90

Left leg 0.80 0.83

Right leg 0.81 0.84

5 Experiments and Results

5.1 Segmentation

Segmentation Losses Comparison: The segmentations are evaluated using
the intersection over union (IoU) between the predicted output and the noisy
label generated in Sect. 2.1. A CNN is trained for each loss, and their performance
compared in Table 2. The performance of the network trained on the mid-point
and thickness losses outperforms the network trained on the L2 loss on every
body part segmentation apart from the pelvis; 0.77 vs. 0.72. This might be due
to the fact that the pelvis is a much more complex segmentation task and harder
to segment on a per scan line basis. The pelvis ground truth annotations made
by the simple heuristics segmentation are also a lot noisier than the other body
parts.

5.2 Classification

Comparison of Input for Classification. We investigate different inputs for
the CNN for predicting the three classification tasks. The different inputs are
combinations of: (i) the raw DXA scan, (ii) the segmentation masks of the body
parts, and (iii) a soft segmentation of the body parts obtained from the output of
the Conv11 layer from the segmentation CNN (which also has mid-point infor-
mation of each body part per scan line). The network which only use the raw
DXA input is considered as baseline. CNNs with multiple inputs have concate-
nation layers after FC6 and share the last two layers for each task. The average
per-class accuracy is given in Table 3. It can be seen that the best choices are
networks that take in raw DXA together with either of the two intermediate
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representations, both hard and soft segmentation masks. Looking at each task
individually, the best network for scoliosis is the CNN (E) that takes in both
the raw DXA scan and the soft mask of the body parts, with an improvement of
+3.8% (86.7% → 90.5%) compared to the baseline CNN (A) that inputs just
the raw DXA. CNN (E) outperforms the baseline by +3.6% (69.0% → 72.6%)
for predicting the number of curves. Finally, the best result for positioning error
is CNN (D) which is +0.2% better than CNN (A) (81.5% → 81.7%). To sum-
marize, looking at Table 3, adding intermediate representation as input to the
classification CNN is always better, and that when comparing intermediate rep-
resentation, soft segmentation masks are better than hard (binary) segmentation
masks.

Table 3. Average per-class accuracy (mean ± std %): The top three rows are
the inputs used to train the network where “Raw DXA” is the raw DXA whole
body scan, “Mask” is the segmentation output, binary mask of the body parts, of
the segmentation CNN, and “Soft Mask” is the Conv11 output of the segmentation
CNN, which has both body parts localizations and mid-point information.

A B C D E

Raw DXA � � �
Mask � �
Soft Mask � �
Scoliosis 86.7 ± 2.0 82.5 ± 0.7 88.3 ± 0.1 87.3 ± 0.4 90.5± 1.5

Positioning 81.5 ± 1.8 77.6 ± 1.9 80.6 ± 1.3 81.7± 0.6 80.5 ± 0.3

#ofCurves 69.0 ± 2.1 68.2 ± 8.5 70.9 ± 2.3 69.7 ± 1.2 72.6± 1.2

Classification Hotspots. We investigate the weak localization of the task
learned by the CNN or evidence hotspots as in [6,7]. We follow the method
outlined in [16]. The best task to look at in our case is the scoliosis prediction.
Figure 8 shows different examples of scans in the test with scoliosis alongside
their hotspots. As expected, the hotspots manage to localize the spines in the
images, but also, interestingly, the hotspots manage to indicate which part of the
spine is affected by scoliosis; in Fig. 8, we can see hotspots examples of thoracic
scoliosis which localized around the thoracic region (upper spine) and examples
of lumbar scoliosis which localized around the lumbar region (lower spine).

Severity of Scoliosis. The output prediction of the network, specifically sco-
liosis, can be interpreted as a soft score of the task (softmax of the last layer).
Since the ease of predicting scoliosis directly relates to the how curved the spine
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Fig. 8. Evidence hotspots of scoliosis: top row shows examples of thoracic scoliosis
while bottom row shows examples of lumbar scoliosis. In each image, we show the
input image, the saliency map, and the saliency map overlaid on top of the image i.e.
hotspots.

is, the more confident the network is about the prediction, the more likely that
the scan has scoliosis. Figure 9 shows scans on the test set alongside their soft
scores. This soft score of scoliosis can be used to monitor disease progression of
patients with scoliosis, where getting higher scores across a period of time i.e. a
longitudinal study of the subject would mean the scoliosis is getting worse.
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Fig. 9. Severity of scoliosis: shown are examples on the test set and their soft scores
for scoliosis prediction; scans with scores approaching 1 are more scoliotic and scores
approaching 0 are normal. In this example, the 3 examples on the left are normal scans
and the 3 examples on the right have scoliosis.

6 Conclusion

We have shown that scoliosis can be predicted automatically via DXA scans,
and that predictions can improved by adding more supervision in the form of
intermediate representations, which in our case comes in the form of a soft
segmentation mask of the spine and other body parts. We have also demonstrated
that the evidence for the scoliosis classification can be weakly localized as hot
spots, and that the score defines a grading for scoliosis severity. One possible
future work is to predict the direction of the apex of the curves.
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Abstract. Intra-operative ultrasound (iUS) has a considerable poten-
tial for image-guided navigation in spinal fusion surgery. Accurate regis-
tration of pre-operative computed tomography (CT) images to the iUS
images is crucial for guidance. However, low image quality and bone-
related artifacts in iUS render the task challenging. This paper presents
a GPU-based fast CT-to-iUS rigid registration framework of a single
vertebra designed for image-guided spine surgery. First, the framework
involves a straightforward iUS acquisition procedure consisting in a sin-
gle sweep in the cranio-caudal axis, which allows to roughly determine
the initial alignment between CT and iUS images. Then, using this as a
starting point, the registration is refined by aligning the gradients that
are located on the posterior surface of the vertebra to obtain the final
transformation. We validated our approach on a lumbosacral section of a
porcine cadaver with images from T15 to L6 vertebrae. The median tar-
get registration error was 1.48mm (IQR = 0.68mm), which is below the
clinical acceptance threshold of 2mm. The total registration time was
10.79 s± 1.27 s. We believe that our approach matches the clinical needs
in terms of accuracy and computation time, which makes it a potential
solution to be integrated into the surgical workflow.

Keywords: Vertebra registration · Spine surgery · Ultrasound ·
Computed tomography · GPU

1 Introduction

Spinal fusion surgery is one of the most commonly employed procedures for
treating various spinal conditions involving scoliosis, spinal stenosis, degenera-
tive disc disease or spondylolisthesis [1]. The procedure consists in using a bone
graft to fuse two or more vertebral bodies together into one single rigid struc-
ture. In most cases, the surgeon additionally uses metal plates, screws and rods
to support the vertebrae while the bones fuse. A crucial part of the spinal instru-
mentation procedure is the placement of pedicle screws, which has been asso-
ciated with high complication factors related to screw malpositioning [2]. The
c© Springer Nature Switzerland AG 2019
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accuracy required for pedicle screw placement varies significantly depending on
the size of the screw, the vertebra level and the anatomy. Rampersaud et al. [3]
reported a maximum error tolerance of screw malpositioning below 1 mm trans-
lation and 5◦ rotation at the midcervical spine, the midthoracic spine, and the
thoracolumbar junction. The tolerance is higher in the thoracolumbar spine,
where 3.8mm/12.7◦ at the L5 vertebra was estimated.

Image-guided navigation systems (IGNS) have been shown to reduce screw
malpositioning rate by providing information on instrument localization with
respect to the patient’s anatomy. For IGNS to be functional during surgery,
the registration step that aligns pre-operative images to the current state of
the patient’s anatomy must be accurate. In a standard clinical procedure, the
registration is achieved by manually identifying homologous anatomical land-
marks on both the pre-operative images and the patient. The procedure lasts
approximately 10 to 15 min for each vertebra [4,5]. This approach is tedious,
extends the operating time and is subject to operator variability. Moreover, dur-
ing navigation, a dynamic reference object (DRO) (i.e., a spatially tracked tool)
is rigidly attached to the spinous process of a vertebra and serves as a reference
coordinate frame to account for patient positioning and motion during surgery.
Once the registration achieved, changes in the position of the DRO caused by
patient movement, surgical interventions or inadvertent contact with the DRO,
may invalidate the registration.

Common commercial IGNS, such as the O-arm (Medtronic inc., Minneapolis,
MN), Airo Mobile (Brainlab, Feldkirchen, Germany), SpineMask (Stryker, Kala-
mazoo, MI) or Ziehm Vision FD Vario 3D (Ziehm Imaging, Orlando, FL) use
fluoroscopy or computed tomography (CT) intra-operative imaging. The latter
imaging modalities introduce risks of harmful radiation exposure for both the
patient and the operating room (OR) personnel. Moreover, they require a typical
setup time of ∼15min [6] and extra personnel for manipulating the equipment,
which significantly extends the surgical procedure time.

Intra-operative ultrasound (iUS) has been investigated as possible alternative
imaging in orthopedic and spine surgery applications [7–9]. With low cost, non-
ionizing radiation exposure, small footprint and a significantly shorter setup
time in the OR, iUS imaging is a good candidate for image-guided navigation.
However, ultrasound images can have low image quality affecting the registration
accuracy, a limited field of view precluding imaging large or distant structures,
and shadow artifacts induced by high acoustic absorption of bones, which hinder
their application in clinical environment.

The goal of this paper is to propose an OR-designed fast CT-to-iUS image
registration method for spine surgery. Specifically, we present a rigid registration
framework to align pre-operative CT to iUS images of a single vertebra. Consid-
ering the rigid anatomical structure of the bones, single vertebra registration is a
common step to achieve a more global group-wise multi-vertebrae registration to
capture the spine curvature [10–12]. The motivations behind this work are three-
fold: (i) to develop a radiation-free approach that relies solely on iUS imaging,
(ii) to design an unobtrusive and straightforward procedure compatible with the
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surgical workflow, and (iii) to design a fast registration method that allows the
surgeon to rapidly realign the images to correct for patient-to-image misregistra-
tion during surgery. The remainder of this paper is organized as follows: Sect. 2
reviews previous work using iUS-based IGNS in spine surgery. Section 3 presents
the proposed registration framework. The experimentation setup is described in
Sect. 4 and results are presented in Sect. 5.

2 Related Work

In order to achieve high CT-to-iUS registration accuracy, several authors have
exploited unique properties of iUS imaging. Strong ultrasound reflections on
bone structures cause the vertebra to appear in black on iUS images with a
hyper echoic edge several mm thick on the bone surface [13]. Yan et al. [4,14]
proposed to use a backward and a forward tracing approaches to first extract the
posterior surface of the vertebra on both iUS and CT images, respectively. Then,
a rigid cross-correlation registration is applied to align the vertebra surfaces.
Authors reported a median target registration error (TRE) ranging between
1.65–2.31 mm on porcine cadavers. A slice-to-volume variant of the approach
proposed in [15], in which the registration is performed without iUS volume
reconstruction to accelerate the computations, achieved comparable accuracy.
The reported registration time was around 120 s per vertebra. Both methods
require an initial alignment, assumed to be achieved prior to the registration
with a landmark-based manual registration.

A hierarchical CT-to-iUS vertebra registration framework was proposed by
Koo et al. [8]. The registration involves three steps. First, similar to Yan’s app-
roach [4], a landmark-based manual registration is applied for an initial guess of
the alignment, followed by a rigid cross-correlation registration of the posterior
vertebral surface extracted on both iUS and CT imaging. The vertebra sur-
faces are extracted with the backward and forward tracing methods. Finally, an
additional intensity-based rigid registration is performed between the vertebra
surface on the CT image and the original iUS image. The average TRE reported
was 2.18mm ± 0.82mm (ranging between 0.89–4.45 mm) on a porcine cadaver.
Excluding the manual landmark registration, intensity-based registrations were
achieved in ∼100 s per vertebra.

Nagpal et al. [10] proposed a multi-vertebrae CT-to-iUS registration frame-
work. Here again, the posterior surface of the vertebrae is exploited [16] and the
registration is achieved in three steps. First, with the assumption that both CT
and iUS images represent similar structures, the initial alignment is obtained by
applying a rigid registration using mutual information on the vertebra surface
images. Then, the registration is refined by applying a global point-based reg-
istration using the vertebra surface coordinate points. To account for the spine
curvature over multiple vertebrae, an additional group-wise vertebra registra-
tion is performed, in which intervertebral points are manually added to pre-
vent physically incoherent transformations. Because, the study was conducted
on clinical data of human subjects, a gold standard registration was not possible,
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Fig. 1. Flowchart of the proposed registration framework.

authors used manual landmark registration combined with the proposed method
to serve as ground truth registration. They reported average TRE of anatomical
landmarks ranging from 0.71–1.70 mm and a computation time ranging from
50–185 s.

3 Registration Framework

Figure 1 shows an overview of the proposed registration framework. The app-
roach involves four intra-operative steps: (1) extract the posterior surface of
the vertebra on iUS images, (2) create an iUS compounded volume from iUS
acquisition slices, (3) estimate the initial alignment, and (4) perform gradient
alignment of the vertebra surfaces of CT and iUS images. The posterior vertebra
surfaces on CT and iUS images are extracted using the forward and backward
tracing methods [4]. The approach has the advantage to be fast and provides
good results.

3.1 Intra-operative Ultrasound Image Acquisition

We use an iUS-based navigation system composed of an optical tracking camera
(Polaris, Northern Digital Inc., Ontario, Canada), an ultrasound machine with a
tracked phased array probe (HDI 5000/P4-7, Philips, Amsterdam, Netherlands)
and a tracked tool used as a DRO. The ultrasound probe is calibrated such that
collected images are associated with their respective spatial position and orienta-
tion relative to the DRO. The Intraoperative Brain Imaging System (IBIS) [17]
open-source plate-form is used for navigation, i.e., probe calibration, tracking
and 3D visualization.

The acquisition frame rate of iUS images is around 25 Hz, which may intro-
duce redundant information in successive frames. To reduce the computation
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Fig. 2. Examples of ultrasound volume compounding with a resolution of 2×2×2mm3

(left), 1× 1× 1mm3 (middle) and 0.5× 0.5× 0.5mm3 (right).

time of vertebra surface extraction and volume compounding, the number of
acquired frames is reduced such as a minimum distance d ∈ R≥0 separates the
centroids of successive frames. A high value of d yields a sparse volume and fast
computations, while a value of zero does not modify the acquisition. The frames
satisfying the distance criterion are selected for the next steps.

3.2 Ultrasound Volume Compounding

The selected frames are combined into a single volume by aggregating the ultra-
sound slices to form a resampled volume, the compounded volume, to avoid a full
volume reconstruction as proposed in [15]. Because the relationship between the
spatial positions of the ultrasound slices is fixed, registering the compounded
volume to the CT volume is analogous to simultaneously optimizing for a slice-
to-volume rigid body registration of each individual iUS slice to the CT volume.
In our implementation, each iUS pixel intensity is resampled in its correspond-
ing 3D location in the compounded volume, and the intensities are averaged
for overlapping pixels. It is important to consider the spatial resolution of the
resampled compounded volume. Figure 2 shows examples of volume compound-
ing with different resolutions. While a fine resolution results in a large but highly
sparse volume, a coarse resolution results in a small but dense volume. Note that
because we use gradient information in the final alignment step, a too sparse vol-
ume precludes capturing inter-slice gradient information.

3.3 Initial Alignment

In order to guess the initial alignment, we define a simple sweep procedure
to limit the variability in the translational and angular positioning of the iUS
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Fig. 3. Illustration of the acquisition procedure.

probe during the acquisition. The quality of the iUS acquisition has a significant
impact on the registration [14]. Thus, our acquisition procedure consists in a
single axial sweep along the cranio-caudal direction, starting from the inferior
extremity up to the superior extremity of the vertebra, with the probe orientation
normal to the coronal plane (Fig. 3).

This acquisition procedure has three key properties: (1) assuming that the
same number of vertebrae is imaged with both CT and iUS, the center of mass
of the selected iUS frame centroids roughly correspond to the center of the
CT image, (2) the scan trajectory is approximately linear along the inferior to
superior axis, (3) on the iUS image plane, the proximal to distal axis from the
probe’s transducers corresponds to the posterior to anterior axis on the vertebra.
Based on this, three anatomical points are created on the physical space: a center
of mass pUS

mass, a superior point pUS
sup at a 10 mm distance from pUS

mass toward the
superior direction, and a distal point pUS

distal at a 10 mm distance from pUS
mass

toward the anterior direction. Similarly, three homologous points pCT
mass, pCT

sup

and pCT
distal are created on the CT image. Finally, the initial alignment transform

is obtained by applying a Procrustes point-based rigid registration, minimizing
the least-square distances between the CT and the iUS points.

3.4 GPU-Based Gradient Alignment Registration

The initial alignment approach roughly registers the CT to iUS images, based
on the acquisition procedure described in Sect. 3.3. To refine the registration,
we perform a gradient alignment registration [18]. Originally, the approach was
designed for brain MR-to-iUS registration. First, the gradient from both the
fixed iUS image and the moving CT image are extracted. Then, a covariance
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matrix adaptation (CMA) evolution strategy [19] is used to maximize the inner
product of the normalized gradients:

S(∇IUS(x),∇ICT(x)) =
〈 ∇IUS(x)

|∇IUS(x)| ,
∇ICT(x)
|∇ICT(x)|

〉n

, (1)

where x is the image coordinate vector, ∇IUS and ∇ICT are the fixed iUS and
moving CT image gradients, respectively, and n ∈ N is a free parameter which
characterizes the matching criterion and was set to n = 64. To reduce the com-
putation time, the metric is computed on a subset of points sampled among the
most confident gradients on the image. We slightly modified the algorithm to
take into account the vertebra surface on the intra-operative images. Instead of
a random sampling over the entire image, the points are sampled from a 2 mm
thick region around the iUS extracted bone surface. Candidates satisfying the
low uncertainty criterion (see [18] for details) among the bone surface points are
then selected to be used in Eq. (1). Gradient image computations of ∇IUS and
∇ICT, and evaluation of the similarity metric in Eq. (1) are performed on a GPU.
The final registration transform is given by:

T reg = arg max
T

S
(
∇IUS(x),∇ICT(T (x))

)
. (2)

Finally, we perform the registration using a multi-scale approach. Two different
scales are used. In the first pass, the images are smoothed using a Gaussian filter
with σ = 2mm to capture large structures, e.g., thicker surface of the vertebra.
A second registration pass is then performed on images filtered with σ = 1mm.

4 Experiments

We validated our proposed registration framework on the same dataset used
in [14]. The dataset contains a CT scan of a lumbosacral section of a porcine
cadaver in supine position, in which vertebrae T15 and L1 to L6 were present.
The CT scan consists in a superior to inferior axial slices acquired using a Picker
International PQ6000 CT scanner with an in-slice resolution of 0.35 × 0.35mm2

and a slice thickness of 2 mm.
For each vertebra, three to four fiducials were implanted on the ante-

rior/ventral part of the cadaver, such that they do not interfere with the iUS
acquisition. The fiducials are made of pipette tips that can be nested together.
Each fiducial is composed of three parts: a fiducial base which is rigidly fixed
to the vertebra, an imaging marker which is a steel sphere inside the pipette
that appears bright in CT images, and a reference marker which is a filled
pipette such that its center corresponds to the center of the sphere in the imag-
ing marker. Imaging fiducial positions were collected by computing the centers
of the segmented bright spheres that appear on the CT image. Reference fidu-
cial positions were manually collected using a tracked pointer with IBIS. The
ground truth registration transform of each vertebra was obtained by applying
a point-based registration on its corresponding fiducials.
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The fiducials were used to establish the ground truth registration transform.
Therefore, using the fiducial positions to assess vertebrae alignment is not suit-
able. In fact, computing the fiducial registration error (FRE) may not be rep-
resentative of the TRE at the vertebra surface. Moreover, because the fiducials
were placed far from the vertebra surface, a small misalignment of the fiducial
points (i.e., small FRE) may result in a large TRE at the vertebra surface. To
evaluate the TRE of the registration, seven landmarks were manually identified
on the surface of each vertebra on the CT images. The anatomical landmarks
correspond to: a point on the apex of the spinous process, two points on the left
and right laminae, two points on the left and right superior articular processes
and two points on the left and right inferior articular processes. The TRE of
each vertebra is obtained by:

TREv =

√√√√1
7

7∑
i

|T gtpi − T regpi|2, (3)

where v is the vertebra level, T gt is the ground truth registration transform
obtained from fiducial point-based registration and pi is the ith landmark point
manually positioned on the vertebra surface. In the literature [10,14], a thresh-
old of 2 mm is commonly used to characterize a successful registration, i.e., the
registration is considered successful if its associated TRE is below 2 mm. Simi-
larly, in our experiment, we use a 2 mm threshold to report the success rate of
the registration.

In addition to the registration accuracy, we measured the computation time
required to perform the registration of each vertebra. The computations involve
three main tasks: extracting the vertebra surface (backward tracing), compound-
ing the iUS volume and aligning CT to iUS volumes (i.e., solving Eq. (2)). We also
report the computation time required to perform the initial alignment, although
it can be neglected due to its small contribution to the overall registration time.
Note that the iUS acquisition time, i.e., the time required to manipulate the iUS
probe and perform the sweep, is not reported in this study. All computations
were performed using an Intel c© CoreTM i7-3820 CPU at 3.6GHz×8 station and
a NVIDIA GeForce GTX 670 graphics card with 4Gb of memory.

Using a stochastic CMA evolution strategy to optimize Eq. (2) yields non-
deterministic results. To measure the overall registration accuracy, for each ver-
tebra, 10 batches of registrations are performed. Each batch involves two steps.
The first step, referred to as Reconstruction, consists in performing a verte-
bra surface extraction on the iUS image and a slice compounding into a volume.
The second step, referred to as Registration, consists in performing 10 repetitions
of the CT-to-iUS registration, i.e., an initial alignment followed by a gradient
alignment. In total, 100 registration trials where performed for each vertebra.
It should be noted that the trials use the same CT and iUS acquisition images
for each vertebra. We set the distance threshold for acquisition frame reduction
d = 0.5mm (see Sect. 3.1). The resolution of the iUS compounded volume (see
Sect. 3.2) is set to 1.5 × 1.5 × 1.5mm3, to produce sufficiently dense volumes.
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Fig. 4. Example of qualitative results showing superimposition of a registered CT
image and a iUS image of the L4 vertebra: (red) iUS image, (blue) vertebra surface
extracted on iUS with backward tracing, (gray) CT image, (green) vertebra surface
extracted on CT with forward tracing. (Color Figure online)

5 Results

Figure 4 shows a qualitative result obtained with the proposed registration frame-
work and the quantitative accuracy results are summarized in Table 1. The over-
all TRE is slightly better than the results reported in [14] with the inferior to
superior axial iUS acquisition scan (ultrasound sweep No. 1). The median TRE
is 1.48 mm (IQR 0.68 mm) ranging from 0.45 mm to 2.78 mm, which is below the
acceptance threshold of 2 mm. This is highlighted by a success rate of 84.42%.
However, the results obtained on the L4 vertebra seem to be the worst, with
a median TRE of 2.03 mm. The reason behind this large error may be related
to the large FRE of 0.593 mm induced when the ground truth registration was
generated at L4.

The number of selected frames and the computation time for each vertebra
registration are summarized in Table 2. The average overall registration time is
0.742 s ± 0.037 s per vertebra. This includes both the initial alignment and the
gradient alignment processing time. This is significantly lower than the 2 min
reported by Yan et al. [15] and the 100 s reported by Koo et al. [8] per each
vertebra registration. The registration time ranging between 50–185 s reported
by Nagpal et al. [10] involved multiple vertebrae registration, precluding a direct
comparison. It should be noted that all the aforementioned works did not include
the iUS volume reconstruction time, which is expected to be performed after
acquiring the iUS images during the surgery. In our approach, the computational
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Table 1. Registration accuracy results for each vertebra level: (left) target registration
error (TRE) after the initial alignment, (middle left) TRE after final registration,
(middle right) success rate below 2mm, and (right) fiducial registration error of the
ground truth registration.

Vertebra
level

Initial
alignment
TRE (mm)

Final TRE (mm) Success
rate (%)

FRE (mm)

Median IQR Range

T15 3.714 1.20 0.30 [0.60, 1.88] 100 0.303

L1 2.916 0.84 0.32 [0.45, 1.39] 100 0.197

L2 2.439 1.37 0.44 [0.61, 2.21] 95 0.27

L3 3.698 1.40 0.32 [0.83, 2.21] 98 0.257

L4 5.916 2.03 0.35 [1.36, 2.78] 47 0.593

L5 8.32 1.69 0.42 [0.95, 2.47] 79 0.359

L6 9.185 1.75 0.46 [1.09, 2.66] 72 0.321

All vertebrae 1.48 0.68 84.42 0.328

Yan et al. [14] 1.93 0.72

Table 2. Computation time results: GPU computations are indicated by a �.

Vertebra

level

Frames Computation time (s)

Total Selected Reconstruction Registration Total

Surface

extraction

Volume

compounding

Initial

alignment

Gradient

alignment�

T15 197 106 (53%) 8.00 4.93 0.044 0.736 13.72

L1 209 80 (38%) 6.04 3.81 0.045 0.667 10.56

L2 219 83 (37%) 6.26 4.12 0.045 0.695 11.12

L3 215 76 (35%) 5.75 3.58 0.044 0.680 10.06

L4 205 79 (38%) 5.92 3.59 0.045 0.707 10.26

L5 211 81 (38%) 6.09 3.54 0.046 0.702 10.38

L6 235 76 (32%) 5.70 3.04 0.046 0.693 9.48

Average – – 6.25 3.80 0.045 0.69 10.79

bottleneck is associated with the reconstruction step with an average time of
10.05 s ± 1.26 s. This is expected since the reconstruction task is performed on a
CPU. Including the reconstruction and the registration, the total time to align
the pre-operative CT image to the iUS image is 10.79 s±1.27 s, which is practical
in the OR. Reducing the number of acquisition frames allows to reduce the
reconstruction time. Particularly for the vertebra surface extraction step where
the computation time corresponds to ∼58% of the overall registration time.
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6 Conclusion

In this paper, we presented a registration framework to rigidly align a CT vol-
ume to iUS images of a single vertebra. We demonstrated that our approach
can achieve a median accuracy of 1.48 mm ranging from 0.45 mm to 2.78 mm
on a lumbosacral section of a porcine cadaver. This is below the clinical accep-
tance threshold of 2 mm suggested in the literature. More importantly, with a
straightforward iUS acquisition procedure and a highly efficient computation
time of ∼11 s, the registration framework can be easily integrated into the sur-
gical workflow. We estimate the entire registration procedure (including the iUS
acquisition) to be completed in less than one minute, rather than the 15 min
required using an intra-operative CT imaging system. This allows fast corrections
of registration misalignment during the surgery, without additional exposure to
radiation.

Future work will involve an extended validation of the registration frame-
work. Because the quality of the iUS acquisition may have a significant impact
on the registration outcome [14], we will analyze how violation of the proposed
iUS acquisition procedure affects the registration results. We will also investigate
efficient methods to perform the reconstruction step on a GPU. In fact, paral-
lelizing the extraction of the vertebra surface and the iUS volume compounding
will result in further gain in computation time.
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Abstract. We propose a method for automated grading of the vertebral end-
plate regions according to the Modic changes scale based on the VGG16 net-
work architecture. We evaluate four variations of the method in a standard 9-
fold cross-validation study setup on a heterogeneous dataset of 92 cases. Due to
the very weak representation of the Modic Type III in the dataset, we focus on
the grading of Modic Type I and Modic Type II. Despite the relatively small size
of our dataset, the pipeline demonstrated a performanc1e that is similar to or
better than those achieved by the state-of-the-art methods. In particular, the most
performant variant achieved an accuracy of 88.0% with an average-per-class
accuracy of 77.3%. When the method is used as a binary detector for the
presence or not of Modic changes, the achieved average-per-class accuracy is
92.3%. Our evaluation also suggests that the so-called mixup strategy is par-
ticularly useful for this type of classification task.

Keywords: Modic changes � Automated grading � Mixup � VGG

1 Introduction

The term Modic changes (MCs) refers to specific patterns of intensity variation in the
signal of the T1 and T2 MR scans of the spine, occurring in the bone marrow region
around the vertebral endplates. They were first mentioned in 1987 [1] and they are then
named after the first author of [2, 3], where three types of such patterns were defined
and their possible association with degenerative disk disease (DDD) was discussed.

Specifically, a Type I Modic change is defined as the presence of a bone morrow
region which has a lower intensity than its surrounding tissue in a T1 scan and a higher
intensity in a T2 scan, indicating a bone marrow oedema. In a Type II Modic change,
the intensity of the region is higher than its surrounding tissue in both the T1 and T2
scans, indicating local fatty degeneration. Finally, in Type III Modic change the
intensity is lower in both the T1 and T2 scans, representing sclerotic changes of the
endplates that result in low signal in both sequences. For brevity, we will refer to these
grades as MC-I, MC-II and MC-III respectively. Figure 1 shows a representative
example for MC-I and MC-II from the dataset of our study.
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MCs are considered to be clinically important, especially MC-I and MC-II. There
has been evidence suggesting a correlation between the presence of these two MC
types (especially MC-I) and low back pain (LBP) [2, 4–7], however the etiology of the
MCs and how they are linked to either LBP or DDD remains an active research topic
[4, 9]. Research related to MCs is complicated by the subjectability of the MC grading
to inter-rater disagreement [10]. The variability in grading can be reduced substantially
if the grading process is more strictly standardized and when the raters get more
experienced in the task [4, 8, 10]. However, both of these conditions need time to be
satisfied. Moreover, grading every case manually on a large dataset is a time-
consuming process.

In this study, we propose a pipeline for the automated grading of the endplate
regions around the intervertebral disks (IVDs) of the lumbar spine according the MC
scale. As a component of a computer aided diagnosis system, we envision that such a
method can be useful in a clinical setting by automatically pinpointing IVD regions in
an MRI which might require further attention by the clinician, as possible sources of
LBP. Furthermore, it can facilitate the conduction of large population studies related to
MCs, as it can minimize the tedious task of annotating manually the large number of
cases typically stored in a PACS system.

Despite the small size of the dataset that was used, we were able to achieve a MC-
detection rate which is on par with the reported performances of human raters.
A highlight of the presented work is the application of the mixup strategy [16], which
we found to be effective for this particular type of classification task. In particular, we
make the following contributions:

(a) We present a learning-based method for the automated grading of MCs, reporting
an accuracy which is better than that of the other published work on this task [12].
The dataset that was available in the present study consisted of 92 cases, as
opposed to 388 of [12].

(b) We present a successful application of the mixup strategy as introduced in [16] for
data augmentation. Mixup appears to be well-suited for this problem, assisting us
in coping with the inherent imbalance of this classification task.

1.1 Related Work

A method for the automated detection of MCs was first proposed in [11], which
requires the manual segmentation of the IVDs, it consults only one T2 slice for the
detection and it performs only binary classification (presence or not of a MC). The first
complete system for automatic MC grading was proposed in [12], which also includes
an automatic module for the localization of the vertebrae and their corners, making the
whole pipeline fully automatic. Their proposed system achieved a 87.8% classification
accuracy. The same authors proposed a multi-task CNN architecture in [14], yielding
impressive performance in a variety of spine-related computer-aided diagnosis tasks.
One of them was the detection of bone marrow defects of the upper and lower vertebrae
of IVD regions, which they were able to detect with an accuracy of 91.0% and 90.3%
respectively with their best performing models, approaching their intra-rater accuracy.
These defects appear to be very similar to MCs, however they are not the same, since
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they are graded after consulting T2 slices only. The datasets used in the latter two
works were rather extensive, consisting of the annotated scans of 388 patients in the
case of [12] and of 2009 patients in the case of [14].

2 Method

The aim of the present study is to automatically grade a given pair of T1 and T2
sequences of regions of interest that capture the upper and lower marrow regions
around a particular IVD according to the MC grading system. We will refer to the two
sequences of regions of interest as IVD volumes and to their individual slices are IVD
regions. We restrict our attention to the following six spinal levels: T12/L1, L1/L2,
L2/L3, L3/L4, L4/L5 and L5/S1. For the rest of the discussion, we will refer to these as
IVD levels. Example IVD volumes are illustrated in Fig. 2.

As mentioned earlier, there are three MC types defined. However, in the dataset that
was utilized in this study, the number of cases with MC-III was very limited. Due to
this limitation and also because of the limited clinical significance of MC-III, it was
decided to restrict the set of the grades to the first two types, i.e. MC I and MC II. For
convenience, we will also refer to the absence of any MC on some IVD level as MC-0
(background class). Thus, there are M ¼ 3 classes in total, MC-0, MC-I and MC-II.

Fig. 1. Two characteristic cases of MCs from the dataset of the present study. The top T1 and
T2 slices depict a MC-I case at level L3/L4 and the bottom a MC-II case at level L5/S1. The
affected regions are highlighted with yellow rectangles. For the case of MC-I, the affected bone
marrow region is visibly hypointense on T1 and hyperintense on T2, whereas the for the MC-II
case the bone marrow is hyperintense on both modalities. (Color figure online)
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2.1 Isolation of the IVD Regions

The input to the pipeline is a sequence of T1-weighed and a sequence of T2-weighted
sagittal MR scans of a lumbar spine. Additionally, it is assumed that a prior localization
step has taken place that can provide estimations for the centers of the depicted IVDs,
their orientations and their widths. We are interested only in the projection of these
elements on the sagittal plane, therefore, for each IVD, we assume the availability of:
(a) its 2D center on the sagittal plane and (b) a 2D vector, whose angular displacement
represents its orientation and its length is equal to the width of the IVD.

The supplied information is utilized for the extraction of rectangular IVD regions.
The extracted IVD regions are centered around their corresponding 2D IVD center,
they are parallel to the identified orientation and their size is proportional to the
identified width, with their aspect ratio set to 2:1. For the extraction of the IVD volume,
this operation is carried out on five of the slices of the input T1 sequence and five of
these slices of the input T2 sequence, symmetrically around their midsagittal slice. The
same center, orientation and width are used for the extraction of all the 10 IVD regions
of the two IVD volumes. In [12], a rigid registration step was also employed for the
extraction of the IVD regions in order to account for the small possible movement of
the patient between the acquisition of the two sequences. In the present work, no
further attempt is made to register one of the two modalities to the other. Finally, the
intensity of the extracted regions is rescaled linearly to the 0-255 range. The result of
this region extraction stage is illustrated in Fig. 2.

Fig. 2. Schematic illustration of the procedure for the extraction of the IVD volumes. The width
of the IVD, its center and its orientation are given as input (left). Then, a region of aspect ratio 2:1
is extracted from five T1 and five T2 slices, symmetrically around the midsagittal slice (the two
slices from the left side of the midsagittal, the midsagittal and the two slices from its right side).
The result of this procedure is 10 aligned IVD regions, as shown on the right.
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2.2 Network Architecture

A variant of VGG16 CNN of [15] is employed, with the following modifications to the
vanilla architecture: (a) The size of the input layer is 112 � 224 � 6; (b) A dropout
layer is added after the last convolutional layer and (c) there is only one fully-connected
layer before the softmax classification. The six channels of the input volume consist of
three IVD regions extracted from the T1 slices and the corresponding three IVD
regions from the T2 slices, in that order. An illustration of the employed architecture is
presented in Fig. 3.

The weighted cross entropy is used as a loss function in all the conducted exper-
iments. Due to the imbalanced representation of the classes in the dataset, the contri-
bution of every training sample to the loss function is weighted according to its class.
These class weights are set to be inversely proportional to the frequency of the
respective class in the training set.

2.3 Mixup

An important challenge in this study is the lack of a satisfactory number of cases with a
non-background label. Only 123 IVD regions (22.3% of the total number) in our dataset
have a label which is not MC-0, with 84 of them labeled as MC-II. We attempt to
partially address this problem by using the so-called mixup strategy, introduced in [16].

Fig. 3. Schematic illustration of the VGG16 architecture of [15] as employed in the single-stage
variant of the present work. The input to the CNN consists of six channels of size 112 � 224,
populated with the IVD regions that are extracted from the three T1 and and three T2 slices. The
output is a softmax layer of three units, corresponding to the grades MC-0, MC-I, MC-II. Each
layer of the architecture is represented with a rectangle, whose width is proportional to the
number of feature maps in the layer. For the two-stage variant, the CNN architectures of the first
and the second stage differ only on the final classification layer (two output units instead of
three).
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The mixup approach was motivated in [16] by the desire to reduce the oscillating
predictive behavior of a trained classification model when it encounters samples that
fall outside of its training set. The basic idea is the following: Given two training
samples S1 ¼ x1; y1ð Þ and S2 ¼ x1; y2ð Þ where y1; y2� 0; 1½ �M are 1-hot vectors and M is
the number of classes in the problem, a new training sample Sm is formed by a linear
interpolation of S1; S2:

Sm ¼ xm; ymð Þ ¼ k � x1 þ 1� kð Þ � x2; k � y1 þ 1� kð Þ � y2ð Þ; k 2 0; 1½ � ð1Þ

Or more concisely:

Sm ¼ k � S1 þ 1� kð Þ � S2; k 2 0; 1½ � ð2Þ

Where the weight k is a random variable. When k is very close to either 0 or 1, Sm
will very similar to one of the original training samples, whereas values near 0.5 lead to
maximum blending. Following [16], k is drawn from a beta distribution, giving flex-
ibility on specifying how aggressively new mixup samples are formed. An illustration
of the mixup procedure is shown in Fig. 4.

Although after the application of mixup the target ym is no longer an 1-hot vector, it
can still be treated as a probabilistic distribution. Indeed, let y1 ¼ y1;1; � � � y1;M

� �
,

y2 ¼ y2;1; � � � y2;M
� �

, ym ¼ ym;1; � � � ym;M
� �

be the elements of the target vectors we

interested in. The original targets y1 and y2 are 1-hot vectors, so
PM

i¼1
y1;i ¼

PM

i¼1
y2;i ¼ 1.

Then:

XM

i¼1

ym;i ¼
XM

i¼1

k � y1;i þ 1� kð Þ � y2;i

¼ k �
XM

i¼1

y1;i þ 1� kð Þ �
XM

i¼1

y2;i ¼ kþ 1� kð Þ ¼ 1

Also, the elements ym;i are all positive since k; 1� kð Þ[ 0. Therefore, the target ym
can be treated as a discrete probability distribution over theM classes. This is important
because it allows us to continue using the cross-entropy as a loss function for training
the network, which is the standard choice for classification tasks.

In practice, mixup can be understood as a data augmentation method [16] and it can
be implemented with minimal modifications to the standard training pipeline. In par-
ticular, for every training mini-batch, a random permutation of it is constructed and the
k values are sampled from the beta distribution. Then, the original mini-batch and its
permuted version are multiplied with k and 1� kð Þ and they are added together to form
the mixup mini-batch.
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2.4 IVD Level Grading

A straightforward approach for predicting the label of a certain IVD level would be to
pass the isolated T1 and T2 IVD volumes (of five slices each) to the network and use
the prediction of the network as the prediction for the MC of that level. In practice
however, we found out that the accuracy is improved if narrower volumes are used as
input. The adopted strategy is as follows: firstly, from the original T1 and T2 IVD
volumes of five slices, three sub-volumes are constructed with three consecutive IVD
regions each. The constructed T1 and T2 sub-volumes are combined, forming three
volumes of size 112 � 224 � 6. Then, these three combined volumes are passed in
succession to the network in order to get one prediction for each of them. If all of these
predictions are MC-0, the assigned grade for this particular IVD level is MC-0.
Otherwise, it is the grade that corresponds to the most confident prediction.

Such an approach can be justified on the grounds that it mimics the process that a
human rater is following when rating a given pair of T1 and T2 sequences: One
examines one T1 slice and one T2 slice at a time, in order to assess whether MC
intensity patterns are present or not. The two adjacent slices are also taken into account
in order to decide whether any pinpointed pattern is consistent with the presence of a
MC or it is an unrelated artifact. If it is decided that a MC is present, this is enough to
assign a MC grade to whole IVD level, even if the detected pattern is not visible
throughout the sagittal length of the endplate.

Fig. 4. Illustration of the generation of the mixup training samples for a 3-class classification
scenario (MC-0, MC-I, MC-II). On the left, two training samples from the original mini-batch
with labels MC-0 and MC-II (top to bottom). The two training samples are linearly interpolated
with weights k and 1� kð Þ to form a mixup training sample. In this example, k ¼ 0:769. The
entire IVD volumes are interpolated (for convenience, only one pair of T1 and T2 slices are
shown on the figure).
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3 Experimental Design and Results

3.1 Dataset

The dataset of this study consists of a fully anonymized dataset of 92 pairs of T1 and
T2 sequences. These sequences were acquired using a variety of protocols, including
fat-suppressed T1 and T2, some of them employing the Dixon method. The inclusion
criteria were the following: (a) The entire sacrolumbar region should be visible; (b) any
deformities of the spinal curvature should be limited enough for a midsagittal slice to
still be definable and (c) no implants should be present on the lumbar region of the
spine. All of these sequences were sagittally acquired, with the total number of slices
per sequence being in the 9–17 range.

The endplate regions of six spinal levels from T12/L1 to S1/L5 of every case were
rated from two spine surgeons according to the MC grading system with every case
being rated by exactly one rater. The acquisition of the ground truth was guided by the
following criteria:

(a) Only the five slices closest to the midsagittal one were taken into consideration
during grading;

(b) Only intensity changes of the bone marrow that extend from an endplate were
graded as a MC;

(c) The MC pattern must be visible in at least two adjacent sagittal slices for an
endplate region to be graded as MC-I or MC-II.

Similar criteria have been used in literature in order to standardize the annotation
process [4, 8, 10]. The localization of the IVDs that is required for the extraction of the
IVD regions was performed with the help of a manual, approximate segmentation of
the IVDs. The orientation of each IVD was given by the first component of a principal
component analysis (PCA) on the corresponding binary segmentation mask of the IVD
and the IVD center by the centroid of the mask.

3.2 Evaluation

The dataset was split in 9 folds; 8 folds have the sequences of 10 patients and one fold
of 12 patients. A standard 9-fold cross-validation study was then conducted and the
achieved accuracy was compared with the annotations provided by the experts.
Therefore, every case participated exactly once in the study as a member of a testing
fold, permitting the computation of the evaluation metrics on the whole dataset.

The principal evaluation metric that was used is the average-per-class accuracy
(APCA), which is especially suited for unbalanced classification tasks. In particular, let
ACCMC�0;ACCMC�I ;ACCMC�II by the achieved accuracies for the classes MC-0, MC-I
and MC-II respectively. Then, the APCA will be:

ACCAPC ¼ ACCMC�0 þACCMC�I þACCMC�II

3
ð3Þ
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We also record the accuracy of detecting whether certain degree of MC is present,
i.e. the accuracy on the union of the MC-I and MC-II classes. We will denote this
measurement with ACCMC. The APCA for this binary classification task is:

ACCAPC;bin ¼ ACCMC�0 þACCMC

2
ð4Þ

Finally, the total, unweighted accuracy ACC is also reported, i.e. the rate of the
correct automatic classifications.

3.3 Multiclass Classification vs. Two-Stage Classification

In addition to the classification pipeline as presented in the previous section, we
evaluated an alternative scheme where the multiclass CNN classifier is replaced by two
binary classifiers, assembled in a two-stage classification fashion. In particular, the first-
stage binary classifier makes a prediction on whether the given IVD volume has a MC
grade of MC-0 or not. If the first-stage classifier does not detect a MC-0 grade, the
second-stage classifier further classifies the same IVD volume into MC-I or MC-II.
Except for the final softmax layer, both of these binary classifier share exactly the same
architecture as the multiclass classifier, including the size of the input IVD volume.
Both pipelines were evaluated with and without the application of mixup strategy.

3.4 Hyperparameters

The values of the hyperparameters were set using two splits of a subset of 78 cases of
the dataset into 70 training and 8 testing cases. The width of the extracted IVD regions
was set to be 1.7 times the width of the IVD. The parameter alpha of the beta distri-
bution of mixup was set to 0.1 for all experiments. Mixup was applied indiscriminately
to all the MC classes, thus all the combinations of MC classes were possible during the
creation of the mixup mini-batch. The dropout rate was set to 0.2. The mini-batch for
the training of the multiclass classifier and of the first-stage classifier was formed from
the IVD volumes of three cases of the training set. The size of the mini-batch of the
second-stage classifier was set to six IVD volumes, drawn from all the IVD volumes of
the training set with a non-MC-0 label. The weights of all the network were initialized
from a VGG16 network pre-trained on ImageNet [17]. The networks were trained for
40 epochs when mixup strategy was not used and for 80 epochs when mixup strategy
was used. The difference in the number of epochs was due to our observation that,
when mixup is applied, more epochs are need for the training error to reach the same
level (this observation agrees with [16]). When mixup was not used, the performance
seemed to actually get worse when the network was trained to the same number of
epochs (80), hence we decided to keep it much lower (40), in an attempt to make the
comparison fair. Furthermore, as in [14], we noticed that the increased network
capacity offered by the two additional fully-connected layers of the default VGG16
architecture hurt the performance, therefore we kept only one fully-connected layer
before the softmax layer.
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Similar to [14], extensive training-time data augmentation was applied: rotation of
the IVD regions by ±7.5˚, change of their scale by a factor of 0.8–1.2, displacement of
their center by ±5 pixels in the coronal and axial dimensions, random flipping in the
coronal direction with a probability of 0.5 and swapping of the order of the IVD
regions in a volume with a probability of 0.5.

3.5 Results

Four variations of the proposed method were evaluated, corresponding to the four
configuration combinations of using/not-using mixup and for multiclass/two-stage
classification. The achieved evaluation scores are reported in Table 1. For the case of
the two-stage classification, the ACCMC�0 and ACCMC metrics depend only the per-
formance of the first-stage classifier. On the other hand, the ACCMC�I and ACCMC�II

metrics depend on both on the accuracy of the first-stage on detecting MCs and on the
ability of the second-stage classifier to discriminate between MC-I and MC-II.

From this table, we can make some observations: firstly, the application of mixup
resulted in an improvement in five out of the six recorded evaluation metrics, both in
the multiclass and in the two-stage classification scheme. The metric that got worse in
both scenarios was the accuracy on the MC-0 class (ACCMC0). These results leave the
impression that mixup improves the accuracy on the underrepresented classes, at the
modest expense of the most common class.

The second observation is that the two-stage classification scheme seems to be
performing better than the multiclass one. Even though ACCMC�II got worse in the two-
stage pipeline, leading to a worse ACCMC too, the APCA is much higher (both the
binary and the multiclass one), as well as the total accuracy.

4 Discussion and Conclusion

This paper proposed a method for the automated detection of MC-I and MC-II in IVD
regions. The four variants of the proposed method were evaluated in a standard 9-fold
cross-validation setup with a heterogeneous dataset of 92 cases. The evaluation

Table 1. The achieved accuracies of the four variation of the pipeline (with and without mixup,
multiclass vs. two-stage classification). All the shown values are percentages over the whole
dataset. The number of IVD levels with labels MC-0, MC-I and MC-II is 429, 39, 84
respectively. The best values are highlighted with bold font.

MC-0 MC-I MC-II MC-I + MC-II APCA APCA binary Accuracy

Multiclass classifier
No mixup 90.4 41.0 78.6 88.6 70.0 90.0 85.1
Mixup 88.8 59.0 81.0 94.3 76.2 91.6 85.5
Two-stage classification
No mixup 93.2 51.3 71.2 87.8 71.6 90.5 86.8
Mixup 92.8 64.1 75.0 91.9 77.3 92.3 88.0
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demonstrated the usefulness of the recently proposed mixup strategy for this type of
classification task. Interestingly, a two-stage classification scheme achieved a generally
better performance than a multiclass classification approach.

Despite the relatively small size of the dataset used, the proposed method seems to
achieve a performance that is similar to or even better than those achieved by the state-
of-the-art methods. In particular, the most performant variant achieved an accuracy of
88.0%, which compared favorably to the 87.8% accuracy of [12], the only other
published method for the automatic MC multiclass grading. However, a direct com-
parison is difficult to make, since our dataset is different and smaller compared to the
one used in [12] and we also opted to omit the MC-III grade from our study. On the
other hand, when the proposed method is used as a binary detector for the presence or
not of MCs, the achieved performance is very good, with an average-per-class accuracy
of 92.3%, for the most performant variant.

Despite the success of the method in detecting the presence of MCs, their classi-
fication into MC-I or MC-II was proved to be a more challenging task for the present
method: the average-per-class-accuracy of 77.3% leaves much to be desired. The
accuracy on the MC-I class was particularly low (64.1%), likely related to the small
number of cases with such a grading on our dataset (39 in total).

As part of future work, we plan to collect and annotate additional cases, since we
feel that this is a limiting factor of the current study. A larger dataset could hopefully
allow us to consider MC-III in our study. Even though MC-III is clinically less sig-
nificant, the etiology of MCs is still not well understood and an automated system for
the identification of all the recognized MC types would be beneficial to MC-related
research. From a technical standpoint, it would be also interesting to see if mixup
remains effective on a larger dataset.
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Abstract. Segmentation of structures in clinical images is a precursor to
computer-aided detection (CAD) for many musculoskeletal pathologies.
Accurate CAD systems could considerably improve the efficiency and
objectivity of radiological practice by providing clinicians with image-
based biomarkers calculated with minimal human input. However, such
systems rarely achieve human-level performance, so extensive manual
checking may be required. Their practical utility could therefore be
increased by accurate error estimation, focusing manual input on the
images or structures where it is needed. Standard techniques such as the
minimum variance bound can estimate random errors, but provide no
way to estimate any systematic errors due to model fitting failure.

We describe the use of multiple, independent sub-models to estimate
both systematic and random errors. The approach is evaluated on ver-
tebral body segmentation in lateral spinal images, demonstrating large
(up to 50%) and significant improvements in the accuracy of error clas-
sification with concurrent improvements in annotation accuracy. Whilst
further work is required to elucidate the definition of “independence” in
this context, we conclude that the approach provides a valuable compo-
nent for appearance model based CAD systems.

1 Introduction

Standard statistical techniques exist to estimate errors on model fitting pro-
cesses. For example, in maximum likelihood or equivalent techniques such
as cross-correlation, the covariance matrix of the fitted model parameters is
bounded by (e.g. [2])

C−1
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≤ − <
∂2 log L
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where L is the likelihood function, r, s index a vector of parameters θ, and the
equality on the right-hand side is true in the large N limit. This is known as the
Minimum Variance Bound (MVB) and has been successfully applied to estimate
errors on registration, patch-matching and landmark localisation algorithms (e.g.
[5,9,15]). However, Eq. 1 shows that the covariance matrix on the fitted model
parameters is bounded by the width of the log-likelihood function about the
fitted optimum. It is not sensitive to any systematic error introduced by unmod-
eled modes of variation in the data, or fit failure due to convergence on a local
optimum, as shown in Fig. 1. In general, without either a prior distribution on
the systematic errors or a perfect model, there is no way to estimate systematic
errors since they cannot be randomly sampled.

(a) (b)

Fig. 1. (a) Unmodeled modes of variation in the data introduce a biasing parameter α
and so a prior term p(α|θ, I) where I is the query image and θ the model parameters.
(b) Use of a local, rather than global, optimiser may allow fitting to converge on a
local optimum. In either case, the minimum variance bound estimates the accuracy
with which a given optimum has been found, which is dependent on the width of that
optimum (σbiased or σlocal) about its mean (μbiased or μlocal), but is not sensitive to
the systematic error σsystematic.

It is often the case in medical image analysis that the most significant errors
are systematic, and induced by the use of imperfect models that cannot account
for all of the non-noise variation in the data. Such models can be considered
as existing on sub-spaces in the space of the perfect model i.e. they span some,
but not all, of the modes of variation of that model, and each has a systematic
error on a given query image as a result. However, if multiple models could
be produced, independent in the sense that they exist on different sub-spaces,
their results would include random samples from the population of all possible
systematic errors. The standard techniques for random error analysis could then
be applied to estimate the systematic errors. This approach has been successfully
applied to landmark annotation for Computed Tomography (CT) images using
patch-based rigid registration [6]. Here, we explore its application to appearance
model segmentation of musculoskeletal images.
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As an exemplar task, Random Forest Regression Voting Constrained Local
Models (RFRV-CLMs) [13] were applied to segment vertebrae in Dual-Energy
X-ray Absorptiometry (DXA) spinal images, to support classification of osteo-
porotic vertebral fractures (VFs). This combination of method and application
had several advantages. Osteoporosis is a common, degenerative disease that
increases the risk of fragility fractures, which most frequently occur in the verte-
brae, wrists and hips. Approximately 40% of postmenopausal Caucasian women
are affected, increasing their lifetime fragility fracture risk to as much as 40%
[14]. The impact of the disease is expected to grow as the population ages [7].
Early identification of osteoporotic VFs is therefore clinically important. How-
ever, the false negative rate for VF identification is high. A recent audit at a
large UK hospital revealed a reporting rate of 36% on CT images [12], and simi-
larly low rates have been reported elsewhere [1]. VF identification on CT images
may be opportunistic. However, a recent multi-centre, multinational prospective
study on VF reporting for lateral radiographs found a false negative rate of 34%
[8]. The potential utility of computer-aided diagnostic (CAD) systems for VF
identification in clinical images is therefore high. RFRV-CLMs have previously
been applied to this task in both DXA [3] and CT [4] demonstrating state-of-the
art annotation and classification accuracy. However, these publications showed
that model fitting failure limited classification accuracy. A reliable method to
identify such errors would considerably improve the practical utility of VF CAD
systems based on RFRV-CLMs, avoiding much of the need for manual inspection
and/or correction of the results.

2 Method

Random Forest Regression Voting Constrained Local Models. In the
interests of brevity we provide only a summary of the RFRV-CLM and refer the
reader to [13] for full details. RFRV-CLMs match a series of landmark points,
described by a statistical shape model (SSM), to a query image. They consist
of a SSM and a set of independent, local models of the image intensities around
each point. The latter are aligned to the query image independently, with the
SSM providing a global constraint. The training data consists of a set of images,
each annotated with n homogeneous points xl, where l = 1...n. The sets of points
are first aligned to remove non-shape variation using e.g. a similarity transfor-
mation. The shape in each aligned image is represented as a vector comprising
the concatenated coordinates of the points in that image. Principal Component
Analysis (PCA) is applied to these vectors to extract the main modes of varia-
tion P. A linear model is then constructed giving xl as the mean point position
x̄l in a suitable reference frame, plus some proportion b of each of the modes of
variation

xl = Tθ(x̄l + Plb + rl) (2)

where Pl is the sub-matrix of P relevant to l, and b are referred to as the shape
parameters. Tθ is the transformation, with parameters θ, from the reference
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frame to the query image, and rl allows small deviations from the model. Fitting
to a query image I proceeds by optimising a quality of fit Q over parameters
p = {b, θ, rl}, where

Q(p) = Σn
l=1Cl(Tθ(x̄l + Plb + rl)) s.t. bTS−1

b b ≤ Mt and |rl| < rl (3)

The threshold Mt is a shape constraint and is applied to the Mahalanobis dis-
tance of b, using the covariance matrix Sb of the b from the training data, and
rl is a threshold on the residuals. The cost images Cl are produced by Random
Forest (RF) regression voting. For each l, patches are sampled from the image
at a set of random displacements from xl in the reference frame, Haar-like fea-
tures are derived from the patches, and a RF regressor is trained to predict
the displacement from the features. During fitting each RF is scanned across
the image around the current estimate of the point location and the predicted
displacements are entered into a voting array Cl.

Data Collection and Manual Annotation. The dataset used in the eval-
uation consisted of 320 DXA VF assessment (VFA) images scanned on various
Hologic (Bedford MA) scanners, with manual annotation of 33 landmarks on
each vertebra from T7 to L4; see Fig. 2 for example images. Each vertebra was
also classified by an expert radiologist into one of five groups (normal, deformed
but not fractured, and grade 1 (mild), 2 (moderate), and 3 (severe) fractures as
defined by Genant et al. [10].

RFRV-CLM Training and Fitting. The training procedures and parameters
described in [3] were used. RFRV-CLMs were trained to model landmarks on
triplets of neighbouring vertebrae, using training data from all levels between T7
and L4 such that the models could fit any level. Two-stage, coarse-to-fine models
were used with two trees in the first stage and 15 in the second. Fitting to query
images was initialised using manual annotations of vertebral body centroids.
The shape constraint in Eq. 3 was removed in the last iteration of second-stage
fitting to avoid correlated errors between the landmarks. The model was fitted
to all triplets of centroids between T7 and L4, and landmarks from the central
vertebrae of each (plus the extremal vertebrae on the first and last triplets) were
concatenated to produce a segmentation of the vertebrae.

Error Estimation Methodology. The evaluation of the proposed approach to
systematic error detection was based on comparing two model-training regimes.
The first, referred to below as “multi-model”, evaluated error estimators based
on multiple, independent models. Weak independence was induced by training
models on independent data sets; see Sect. 4 for comments on potential routes
to formally inducing strong independence. The data set was divided into eighths
and models were trained on each. Therefore, seven models trained on indepen-
dent sets of images were available to fit each query image, producing seven
independent estimates xj for each landmark location. The final annotation was
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produced by taking the centroid xc of the multiple estimates. An error estimator
sensitive to any fit failures across the set of models was calculated as the root-
mean-square (RMS) of the Euclidean distances between the individual estimates
and their centroid, and is referred to below as RMS goodness-of-fit (RMSGOF)

xc =
1
k

k∑

j=0

xj RMSGOF =

√
√
√
√

1
k

k∑

j=0

(xj − xc)2 (4)

For comparison, a standard four-fold cross validation was also performed
and is referred to below as “single model”. Here, models were trained on 3/4 of
the data and tested on the remaining 1/4, such that one model was tested on
each query image. Since RFRV-CLMs contain regressors capable of predicting
the location of the landmark given patches of image data, a simple goodness-
of-fit measure sensitive only to random errors was produced by applying the
regressor at the optimised point position to estimate the residual; this is referred
to below as RGOF (residual GOF). RGOF was also calculated for the multi-
model approach by taking the mean of the RGOF from each of the multiple
model fits for a given point, and a combined GOF, or CGOF, was produced by
taking the product of the mean RGOF and the RMSGOF.

In both cases, the true error on the RFRV-CLM annotations was calcu-
lated as the Euclidean distance to the corresponding manual annotation. This is
referred to below as point-to-point, or P2P, error. The RF parameters were kept
consistent between the single model and multi-model approaches. In addition,
multi-model training used all vertebral triplets from each training image whilst
single-model training used only one; since T7 to L4 annotation provided eight
triplets per image, this ensured that the number of training samples used for
each model was consistent across both approaches.

Vertebral Fracture Classification. VF classification was performed using a
simple approach based on six-point morphometry [11]. The anterior Ha, middle
Hm, and posterior Hp heights of each vertebral body were calculated as the
Euclidean distances between the relevant landmark pairs. The predicted pos-
terior body height Hp′ was also calculated from the posterior heights of the
closest four annotated vertebrae by taking the largest of the four values, since
fractures decrease vertebral height. Three ratios were then calculated to mea-
sure the relative height reductions at the anterior (wedge ratio, Ha/Hp), middle
(biconcavity ratio, Hm/Hp) and posterior (crush ratio, Hp/Hp′) positions. The
data were whitened by subtracting the median and dividing by the square root
of the covariance matrix, estimated using the median absolute deviation. Nor-
mal vertebrae predominated, and so this was equivalent to whitening to the
mean and standard deviation of the normal class, without using manual clas-
sifications. A simple classifier was then constructed by placing a threshold tc
on the Euclidean distance from the origin to separate the data into fractured
and non-fractured classes, the latter including both normal and deformed ver-
tebrae. Error estimates for classification were derived from RMSGOF, CGOF
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and RGOF by applying standard error propagation to the above calculation to
produce a scaled estimate of the error HGOF on the length of the vector defined
by the three whitened height ratios Rw, Rb and Rc, and calculating the ratio of
this estimate to the distance of the data point from the decision boundary

ClassGOF =
HGOF

|tc − √

R2
w + R2

b + R2
c |

(5)

3 Evaluation

Figure 2 shows example images and serves as a flow diagram illustrating the
method. Taking the original images (a, f) as input, together with manual anno-
tations of vertebral body centres, RFRV-CLMs are fitted to produce high-
resolution annotations of the vertebral bodies as a precursor to VF classification.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2. Examples of image annotation using single and multiple models. (a, f) Original
images. (b, g) Manual annotations of T7 to L4. (c, h) Automatic annotation using a
single RFRV-CLM. (d, i) Automatic annotations from multiple, independent models.
(e, j) Centroids of the multiple estimates for each landmark.
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Comparing manual annotations (b, g) to automatic annotations produced by a
single model (c, h), it can be seen that some vertebra (L4 in (c) and T7 in (h))
are poorly fitted, leading to the appearance of reduction in anterior vertebral
body height that leads to misclassification of these normal vertebrae as fractured.
Since these errors are systematic, rather than random, techniques based on the
MVB will not identify them. However, if multiple, independent sub-models are
fitted (d, i), they can serve to sample the systematic errors. The centroids of the
multiple estimates for each point (e, j) serve as the final annotation.

The first stage of the evaluation focused on estimating the mean P2P error
across each vertebral body. Figure 3 shows scatterplots of the mean single-model
RGOF and multi-model RMSGOF for each vertebra against the vertebral mean
P2P error. The correlation coefficient was 0.54 for the vertebral mean single
model RGOF, 0.50 for the mean multi-model RGOF, 0.63 for the mean RMS-
GOF, and 0.67 for the mean CGOF, indicating that the RMSGOF is more
strongly correlated to the P2P error than the RGOF. The CGOF resulted in
a small improvement in correlation, indicating that there is some independent
information between the RGOF and RMSGOF.

To provide a more quantitative interpretation of the various error estimators,
they were used to construct binary classifiers. The ground truth classification for
each vertebra was produced by imposing a threshold on mean P2P error, set to
the 95th percentile of the error distribution, corresponding to 2.2 mm. Figure 4
shows ROC curves produced by applying a threshold to the error estimators
and comparing the classification to the ground truth. Error estimators based
on multiple models resulted in a large and significant increase in classification
accuracy, e.g. raising the precision at 50% recall from 42.1% for a single-model
RGOF to 59.3% for RMSGOF and 63.8% for CGOF.

(a) (b)

Fig. 3. Goodness-of-fit (GOF) measures vs. the P2P errors on automatically annotated
points: (a) mean single-model RGOF; (b) RMSGOF. Each graph also shows a linear
fit to the data.

The results discussed so far indicate that the use multiple, independent sub-
models is helpful in error estimation. However, the effect on the accuracy of



60 P. A. Bromiley et al.

(a) (b)

Fig. 4. ROC curves for binary classifiers of mean vertebral error using various error
estimators. The ground truth was provided by a threshold on the mean vertebral P2P
error corresponding to the 95th percentile of its distribution.

point localisation must also be evaluated. Since each of the multiple sub-models
is trained on a smaller set of images, it might be expected that the resultant
regressors would provide point location estimates with larger errors. In prac-
tice, the opposite was found. Figure 5 shows CDFs of the mean vertebral P2P
errors divided by vertebral classification, for both single and multiple models.
In general, multi-model annotation proved to be slightly more accurate than
single model annotation, although the differences were small. This also accounts
for the difference in accuracy between single and multi-model RGOF in Fig. 4;
the multi-model annotation makes fewer errors and so they are more difficult to
identify. However, Fig. 6 shows ROC curves for a six-point morphometry clas-
sifier applied to both the manual annotations and automated annotations from
single and multi-models. Multi-model VF classification was significantly more
accurate, approximately halving the difference compared to classification from
manual annotations.

To investigate this difference more thoroughly, several additional model train-
ing strategies were applied, and the results are also shown in Fig. 6. As described
in Sect. 2, in the experiments described up to this point single models were
trained on one vertebral triplet from each of the training images whilst, when
training multiple models, the training images were divided into eighths and one
model was trained on each, using all of the vertebral triplets. Furthermore, the
dimensions of the RFs were consistent, with two trees in the first stage and
fifteen in the second stage. Therefore, the number of trees and training sam-
ples for each individual model was consistent but, as an ensemble, the multiple
sub-models had seven times more trees and training samples available. To test
whether this accounted for the difference in accuracy between the single and
multi-model approaches, additional single models were trained with all verte-
bral triplets from all images, and with increased numbers of trees in the first
and second stages, and the results are shown in Fig. 6. Increasing the training
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(a) (b)

Fig. 5. Cumulative distribution functions of the vertebral mean P2P error on RFRV-
CLM annotations using a single model (a) and multiple models (b), for each vertebral
classification.

sample approximately halved the difference between the single and multi-model
approaches, and increasing the number of trees in each stage produced further
but smaller increases in accuracy. However, the single model still failed to achieve
the accuracy of the multi-model approach. Conversely, the size of the model on
disk increased dramatically. For example, the first stages of the multi-models
were on average 290 MB; single-model first stages were 230 MB for two trees and
one triplet per image and, when using all triplets, 1.2 GB for 2 trees and 5.0 GB
for 8 trees, making the latter impractically large. This indicates that dividing
training samples between multiple, independent models provides a more efficient
way in which to use large data sets. The single models used in the remaining
experiments reverted to the training strategy described in Sect. 2.

The final stage of the evaluation focused on identifying errors in the 6-point
morphometry fracture classification. Classification and error estimation were
performed as described in Sect. 2. A classification threshold tc (an operating
point in Fig. 6) giving 90% sensitivity was selected. A second threshold was
applied to the ClassGOF (derived from CGOF) to classify the VF classification
as accurate or erroneous. The ground truth was provided by the manual classi-
fication of each vertebra, and the threshold on ClassGOF was varied to produce
the ROC curves shown in Fig. 7(a).

Comparison of the results from single and multi-model error estimation for
VF classification is complicated by the fact that, as shown in Fig. 6, multi-
model fracture classification is more accurate, and so the number of errors to be
detected is smaller. However, in contrast to the results for classifying errors
on vertebral mean errors, the multi-model approach did not provide signifi-
cantly more accurate error estimation for VF classification compared to the
single-model approach. To illustrate why this occurred, Fig. 8 shows the distri-
butions of multi-model annotation error, across all vertebrae and images, for
each of the 33 landmarks. However, instead of P2P error, the figure shows the
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(a) (b)

Fig. 6. ROC curves of osteoporotic VF classification using 6-point morphometry,
for both manual landmarks and various automated annotations; (b) shows a detail
from (a).

(a) (b)

Fig. 7. (a) ROC curves showing the accuracy of error classification on the results
of VF classification using 6-point morphometry. (b) ROC curves of osteoporotic VF
classification using 6-point morphometry, for both manual landmarks, the single and
multi-model automatic annotations, and these automatic annotations after filtering out
results detected as erroneous by an error classifier.

point-to-curve (P2C) errors i.e. the minimum Euclidean distance between each
point and a piecewise-linear curve through the manual annotations. Large P2C
errors, where the points move away from the vertebral body edge, are predom-
inantly found on the anterior side and the pedicle, whilst the points used in
VF classification are more accurate, implying they are less subject to fit fail-
ure. Therefore, mean vertebral P2P error estimation benefits from the use of
RMSGOF and the sensitivity of the technique to systematic error/fit failure,
whilst error estimation for VF classification does not. However, the multi-model
approach did not result in significantly worse error estimation.
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(a) (b)

Fig. 8. (a) Box-and-whisker plots of the point-to-curve errors on the multi-model cen-
troid estimates of each point. The points shown in red are those used to estimate
heights for fracture classification, as shown in (b). (Color figure online)

To provide a more quantitative interpretation of the use of single and multi-
model error estimation for VF classification, Fig. 7(b) shows ROC curves of the
6-point morphometry fracture classifier applied to the manual, single and multi-
model annotations, and to the single and multi-model annotations after removal
of all vertebrae that were classified as inaccurate by the error classifier. This
reflects the use of the error estimation as a component of a CAD system, iden-
tifying potentially inaccurate classifications for manual checking and correction.
The threshold used for error classification was set to the operating point that
gave 10% false positive rate in Fig. 7(a). When combined with error classifica-
tion, single-model fracture classification was more accurate than multi-model
classification without error classification, and multi-model fracture classification
was more accurate than classification based on manual annotations. At an oper-
ating point of 90% sensitivity in the filtered, multi-model ROC curve, fewer than
20% of the vertebrae were labeled for manual inspection and only 5.65% of the
fractured vertebrae were misclassified both as normal and accurate i.e. 94.35%
of fractured vertebrae were either correctly classified or identified as inaccurate.

4 Conclusion

The use of shape and appearance models to segment structures in clinical images
is well established and has been proposed as the basis for clinical decision sup-
port systems for a number of musculoskeletal pathologies. However, these sys-
tems rarely achieve human-level accuracy. Reliable estimates of the errors on
the results would significantly increase their practical utility by highlighting the
images or structures requiring human input. However, this requires error estima-
tion techniques sensitive not only to random errors but also to systematic errors
such as model fitting failures.

This work has demonstrated the use of multiple, independent sub-models
as a route to estimation of systematic errors on appearance model fitting. The
underlying approach is not novel but we believe that this is the first time it
has been applied to appearance models. Using vertebral body segmentation and
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osteoporotic VF classification in DXA images as an example, the approach was
shown to be as accurate as an RF regressor in estimating random errors, but
significantly more accurate in estimating systematic errors. The use of multiple
sub-models also resulted in improvements in annotation accuracy by allowing
more efficient use of large training sets. The combination of these effects allowed
multi-model VF classification based on 6-point morphometry with error filtering
to exceed the accuracy of classification from manual annotations whilst rejecting
fewer than 20% of the vertebral segmentations, implying that it could have
practical utility in appearance model based CAD systems.

The work described here acts as a proof-of-concept but is preliminary. For
example, we have not explored the variations in annotation and error estimation
accuracy with varying numbers of sub-models. More significantly, the definition
of independence of the sub-models was not explored. Some degree of indepen-
dence was ensured by using independent training sets for each model. However, a
true definition of independence would require that each model existed on a sep-
arate sub-space of the shape and appearance space. Independence might there-
fore be maximized by permuting the assignment of training samples to models
to maximize the distances between the sub-spaces as measured using the Grass-
manian. In the case of spinal images, constraints would be required to ensure
this did not separate training samples by vertebral level and produce sub-models
that could not fit the whole spine. We intend to explore this in future work.
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Abstract. Accurate segmentation of intervertebral discs is a critical
task in clinical diagnosis and treatment. Despite recent progress in apply-
ing deep learning to the segmentation of multiple natural image scenar-
ios, addressing of the intervertebral disc segmentation with a small-sized
training set are still challenging problems. In this paper, a new frame-
work with fully dilated separable convolution (FDS-CNN) is proposed
for the automated segmentation of the intervertebral disc using a small-
sized training set. Firstly, a fully dilated separable convolutional net-
work is designed to effectively prevent the loss of context information
by reducing the number of down-sampling. Secondly, a multi-modality
data fusion and augmentation strategy are proposed, which can increase
the number of samples, as well as make full use of multi-modality
image data. Experimental results validate the proposed framework in the
MICCAI 2018 Challenge on Automatic Intervertebral Disc Localization
and Segmentation from 3D Multi-modality MR Images, demonstrating
excellent performance in comparison with other related segmentation
methods.

Keywords: Intervertebral disc · Dilated separable convolution ·
Semantic segmentation · Multi-modality data fusion

1 Introduction

Disc degeneration is likely to cause various back problems, where accurate seg-
mentation of intervertebral discs (IVDs) from MR images is a critical task in
clinical diagnosis and treatment [1]. Recent advances of deep learning techniques
have greatly facilitated the segmentation of MR images. Given a MR image
(either 2D or 3D), deep learning systems can automatically localize and segment
all related lesions end-to-end without user intervention. However, for the seg-
mentation of intervertebral discs, the large range of IVD shapes and the limited
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number of available datasets pose significant challenges in practical applications,
e.g., MICCAI 2018 Challenge on Automatic Intervertebral Disc Localization and
Segmentation. Especially, for this challenge, the IVD shapes are dramatically dif-
ferent even in the same type of IVDs, where the availably small-sized dataset
(only includes 64 3D MR images) are hard to support the training of deep seg-
mentation model. Therefore, new methods need to be developed to address the
above challenges for the IVD segmentation.

Early studies on IVD segmentation [2–4] have been done by manually
extracted features, where these hand-crafted features are dependent on expert
knowledge that can be subjective and unreliable. Recently, with the develop-
ment of deep learning, many effective methods have been proposed in the field
of image segmentation. Lin et al. proposed RefineNet [5], which explicitly exploits
all the information available along the down-sampling process to enable high-
resolution prediction using long-range residual connections. Zhao et al. [6] pro-
posed PSPNet, which uses the pyramid pooling module to obtain multi-scale
features. Wang et al. [7] proposed HDC to reduce the gridding issue caused by
the standard dilated convolution operation with a simple and effective method.
In particular, Deeplabv3 and Deeplabv3+ proposed by Chen et al. [8,9] achieved
a better performance on the PASCAL VOC 2012 semantic image segmentation
dataset by using spatial pyramid pooling and dilated convolution.

Unlike natural images, medical images usually lack sufficient annotations to
differentiate images or pixels from multi-modality imaging devices [20]. In prac-
tice, it is difficult to collect a large number of annotated samples to train the seg-
mentation model. Because of the problem, the above methods have difficulty in
adapting to medical images. Recently, researchers have proposed multiple meth-
ods focused on the medical image segmentation. For example, Chen et al. [10]
proposed a 3D full convolutional network (FCN) for IVD localization and seg-
mentation. Li et al. [11] proposed a multi-scale and modality dropout-learning
framework to segment IVDs from four modality MR images. Zeng et al. [12] pro-
posed a deeply supervised multi-scale fully convolutional network, which uses a
multi-scale deeply supervised method to automatically segment and locate IVDs
and using transfer learning to improve the performance of the deep model. Liao
et al. [13] proposed a multi-task 3D FCN combined with a bidirectional recur-
rent neural network to automatically segment vertebrae from the CT images. In
addition, Zeng et al. [14] proposed a deeply supervised 3D fully convolutional
network to segment the proximal femur in 3D MR images. However, the prob-
lem of losing a lot of contextual information is still well unsolved due to the
excessive use of down-sampling. Meanwhile, with the number of network layers
increases, the parameters will also increase dramatically, which can increase the
computational complexity of the whole network.

Taking the above problems into account, this paper proposes a new frame-
work with fully dilated separable convolution (FDS-CNN) for the automatic
segmentation of IVDs, using small-sized training set from multi-modality MR
images. Firstly, we design a fully dilated separable convolution network that
replaces all standard convolutions with dilated separable convolution, and
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prevents the loss of contextual information by reducing the number of down-
sampling. At the same time, in the case of ensuring the segmentation perfor-
mance, the network parameters can be effectively reduced. Subsequently, to make
full use of the characteristics of multi-modality data, we propose a multi-modality
data fusion and augmentation strategy, which can increase the number of sam-
ples in a simple and effective manner, improving the generalization performance
of the network. Finally, by drawing on the idea of the attention model [15],
we use pre-processing networks to pre-segment the spine and make the network
more focused on the places of interest.

This paper is organized as follows. In Sect. 2, we present the proposed frame-
work in detail. Then, our framework is evaluated using the MICCAI 2018 IVD
Segmentation Challenge Data Set in Sect. 3. Finally, Sect. 4 draws the conclusion
and discusses future works.

Spine Segmentation

FDS-CNN

Input images Preprocessed image Segmented spine

Cropped imageSegmented IVDsSegmentation result

Fig. 1. Overview of the fully automated intervertebral disc segmentation framework.

2 Methodology

Figure 1 presents the overall framework for the automated IVDs segmentation. In
order to suppress the complex background interference of multi-modality data,
the framework mainly includes two parts, i.e., (1) segmenting the spine out
of the original images; (2) segmenting the IVDs using the FDS-CNN. Besides,
we propose a multi-modality data fusion and augmentation strategy which can
make full use of the characteristics of multi-modality data to effectively increase
the number of training samples. Accordingly, in this section, we first present
the method for spine segmentation, and then introduce our proposed FDS-CNN
structure in detail. Finally, we introduce the multi-modality data fusion and
augmentation strategy.
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2.1 U-Net for Spine Segmentation
According to Fig. 1, we notice that the original IVD MR image has complicated
backgrounds, which may influence the performance of our segmentation model.
In order to make the IVD segmentation more focused on the area of interest, we
first introduce a pre-processing network to segment the spine from the original
image. The network is based on U-net [16] with BN [17] layers after each convo-
lution to speed up network convergence. U-net is a simple and effective semantic
segmentation network. It extracts high-level semantic information from images
through step-by-step down-sampling, and then restores the size of the image,
predicting the results step-by-step through up-sampling and skip connection.
Through the pre-processing network, spine images with the area of interests can
be obtained. Accordingly, before the segmentation of IVDs, pre-segmentation
of spine regions mainly has two advantages, i.e., (1) the subsequent FDS-CNN
only need to tackle the area of interest; (2) the computational complexity can
be greatly reduced. This idea is similar to the widely used attention model [15]
in the field of natural language processing. The model puts more attention on
the area of interest to obtain more details of the target and ignore other useless
information.

2.2 Convolutional Network with Fully Dilated Separable
Convolution

After the pre-segmentation of spine regions, we use the FDS-CNN for the accu-
rate segmentation of IVDs. The FDS-CNN first employs an improved Xcep-
tion [18] as the encoder network to extract high-level semantic information,
extracting multi-scale features based on a spatial pyramid model. Then, it can
recover the lost context information using a skip connection. Compared to previ-
ous works [6,8,9], the propose framework has multiple improvements in the cor-
responding modules to adapt the IVD segmentation task with only small-sized
training set. In particular, our network replaces all convolutions with dilated sep-
arable convolutions, which can greatly reduce the number of parameters of the
network and effectively extend the field of receptivity. Moreover, our network
does not need any pre-training, which can still achieve superior performance
with small-sized training set. The following of this section will introduce the
implementation details of our network.

Dilated Separable Convolution. The main idea of dilated convolution is
to insert “holes” (zeros) between pixels to enlarge the field of convolutional
kernels, which enable dense feature extraction in deep CNNs [7]. Dilated convo-
lution allows us to explicitly control the resolution at which feature responses
are computed within deep convolutional neural networks [8]. It can effectively
expand the field of view in each filter without increasing parameters and com-
putational complexity. We can obtain enough receptive fields through dilated
convolution without down-sampling. Therefore, the loss of context information
due to down-sampling can be well avoided. Besides, depthwise separable convolu-
tion separates the standard convolution into depthwise convolution followed by a
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Fig. 2. The structure of the convolutional network with fully dilated separable convo-
lution (FDS-CNN), including modified Xception, ASPP, skip connection, etc.

pointwise convolution. Specifically, the depthwise convolution performs a spatial
convolution independently for each input channel, while the pointwise convolu-
tion is employed to combine the output from the depthwise convolution [9]. This
decomposition can greatly reduce the computational complexity of the model.
In our designed FDS-CNN architecture, we use 3× 3 depthwise separable convo-
lutions, which can not only have less computation complexity (i.e., 8 to 9 times
less) than the standard convolution, but also maintain similar performance as
the standard convolution [19]. Our dilated separable convolution combines the
depthwise separable convolution and the dilated convolution. The dilated sepa-
rable convolution embeds the characteristics and inherits the advantages of these
two kinds of convolutions. For example, the dilated separable convolution can
be treated as a dilated convolution, effectively increasing the receptive field of
the network, which also has fewer parameters in comparison with the standard
convolution.
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Modified Xception. The Xception model [18] has achieved excellent perfor-
mance in image classification and segmentation tasks. Recently, Chen et al. [9]
applied the modified Xception model to address the semantic segmentation and
achieve excellent performance. In our solution, we continue to make further three
changes to the Xception model and apply it to address the IVD segmentation
task. First, we replace all convolutions in the Xception model with dilated sepa-
rable convolutions and use only one down-sampling in the entire model. Second,
in order to further improve the computation efficiency, we reduce the number of
all feature maps by half. Third, in order to effectively expanding the receptive
field, the dilated separable convolutions in each layer are assigned with different
rates. The modified Xception is shown in Fig. 2.

Additionally, we adopt other two strategies to further improve the perfor-
mance of FDS-CNN, i.e., Atrous Spatial Pyramid Pooling (ASPP) [6,9] and
Skip Connection. As shown in Fig. 2, we replace all convolutions in the spatial
pyramid structure with dilated separable convolutions, where the rate of dilated
separable convolutions in each layer can be modified accordingly. Subsequently,
the 1× 1 convolutions are applied to three low-level features, which are the out-
put of the third layer convolution, the output of the enter flow and the output
of the middle flow, respectively. Then they are concatenation with high-level
features. After the concatenation, we apply two 3× 3 separable convolutions
and one 1× 1 convolution to refine the features followed by a simple bilinear
upsampling with the factor of 2.

2.3 Multi-modality Data Fusion and Augmentation
For the small-sized training set, the segmentation model is easy to over-fitting.
For this problem, a general solution is to increase the number of samples by
rotating each image, thereby improving the generalization performance of the
model. Although this method can well increase the number of samples, it cannot
use the characteristics of multi-modality data itself. Therefore, we develop a new
method for multi-modality data fusion and augmentation. According to Fig. 3,
from (a–b), it can be seen that multi-modality images have different modalities
for the same object (IVD). However, the shape and position of objects inside
the image have not changed. Therefore, it is possible to use the feature of multi-
modality data to construct new modality. From (e–h), by simply adding the
corresponding pixel values from the original two modality images, images with
new modality can be obtained. This strategy can not only increase the num-
ber of samples, but also fuse different modalities to better represent IVDs. We
will verify the performance of the multi-modality data fusion and augmentation
strategy in the experimental part.

3 Experiments

3.1 Experimental Setting

We evaluated the proposed framework on the dataset from MICCAI 2018 Chal-
lenge of Automatic Intervertebral Disc Localization and Segmentation [21]. The
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(b) fat

(c) opp
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(f) wat + opp

(g) fat + opp

(h) inn + opp

Fig. 3. Schematic diagram of multi-modality data fusion and augmentation strategy.

data set contains 3D images from 8 patients scanned using a 1.5-Tesla MRI scan-
ner at two different times. In addition, each 3D multi-modality MRI data set
contains four aligned high-resolution 3D volumes: in-phase (inn), opposed-phase
(opp), fat and water (wat) images. There are in total 64 high-resolution 3D MRI
volume data. For each IVD, ground truth labels are provided in the form of
binary mask with pixel level annotation.

For the data pre-processing , the multi-modality fusion and augmentation
strategy discussed above is used to create a variety of sample data, which can
significantly increase the number of training samples. Meanwhile, traditional
data augmentation strategies such as image rotation are also employed. In order
to improve the performance of the model when dealing with blurred imaging
samples, we randomly selects images before the image input network, i.e., ran-
domly selecting 0%–15% of pixels of the image, assigning random-sized values.
With the increasing training batches, each image has different levels of noise,
which can increase the diversity of the sample. Besides, each image is normal-
ized using min-max normalization.

For the spine segmentation, in order to reduce the influence of complex back-
grounds, we employ a pre-segmentation network to extract spine regions from
original images. Spine segmentation network adopt U-net model [16] that has
widely applied in image segmentation. After the spine segmentation, we cut the
image into 112× 128 sub-maps to train the deep neural network. Additionally,
the FDS-CNN outputs the predicted image of the same size (112× 128) as the
training data, where this paper uses the splicing method to restore the predicted
image to its original size. In the training of FDS-CNN, we employ the open
source architecture from Keras, using the Adam optimization function, where
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the learning rate are set as 1E-4, with the batch size of 16. Our deep neural net-
works are implemented using Keras on a Linux system with two Nvidia 1080Ti
GPUs.

3.2 Evaluation

This paper uses cross-validation to evaluate the performance of the framework.
Due to the multi-modality images are scanned at different times, most images
from same patients are similar which cannot be set as training and testing data
respectively. Therefore, for the cross-validation, the training and testing data
will not include the multi-modality images of the same patient. The data set
contains in total 16 image data from 8 patients. For each round of validation,
12 image data from 6 patients are selected for training, and the remaining 4
image data are used for testing. In this paper, four groups of cross-validation are
performed in each experiment, and dice overlap coefficients are used to evaluate
the prediction results of the framework. In the following, we first evaluate the
effectiveness of the proposed FDS-CNN, and then verify the performance of the
multi-modality data fusion and augmentation strategy.

Table 1. Performance comparison of our network and two benchmarks on the IVD
segmentation dataset under different modalities.

Wat Fat Inn Opp Mean

Deeplabv3+ [9] 0.8309 0.8124 0.8257 0.8243 0.8235

U-net [16] 0.9107 0.8651 0.9051 0.8992 0.8953

FDS-CNN 0.9111 0.8853 0.9055 0.9062 0.9021

Effectiveness of FDS-CNN. To validate the effectiveness of the proposed
FDS-CNN, we compare our approach with 2 benchmark methods: U-net [16]
and Deeplabv3+ [9]. For these two benchmarks, as the scanned MRIs are single-
channel grayscale images, the input dimensions of networks are modified accord-
ingly. Meanwhile, we reduce the number of channels in the convolutional layers,
adding the BatchNormal layer to accelerate the convergence of U-net. All three
networks using the same training and augmentation strategies. Table 1 records
the dice score of three comparative methods. According to Table 1, the proposed
FDS-CNN achieves a mean dice overlap coefficient (MDOC) of 90.21%, where the
U-net and Deeplabv3+ only achieve MDOC of 89.53% and 82.35%, respectively.
The results demonstrate that the proposed FDS-CNN can achieve better perfor-
mance in the IVD segmentation task with small-sized training set. Meanwhile,
we notice that the accuracy of segmentation achieved by Deeplabv3+ is obvi-
ously less than that of U-net. This indicates that Deeplabv3+, which performs
well in natural image segmentation tasks, can not well adapt the small-sized
medical image data sets. Figure 4 illustrates a randomly selected example with
corresponding segmentation results using the proposed FDS-CNN. According
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to Fig. 4, our network can achieve the segmentation for IVDs with reasonable
results. It is worth pointing out that the accuracy of fat modality in these net-
works is lower than that of other modalities. This is because the IVDs in the fat
modality have low resolution, which can reduces the accuracy of segmentation.

Table 2. The performance of the fused modalities on the trained model.

Wat+Opp Fat+Opp Wat+Inn Inn+Opp Mean

0.9122 0.9086 0.9121 0.9140 0.9117

Table 3. Results without multi-modality data fusion and augmentation.

Wat Fat Inn Opp Mean

0.9096 0.8818 0.8984 0.8975 0.8973

Fig. 4. Examples of segmentation results from the validation data set. From left to
right, they are wat, fat, inn, and opp modalities. The second row is their segmentation
results (left) and the corresponding ground truth (right).

Validation of Multi-modality Data Fusion and Augmentation. We
adopt two protocols to validate the effectiveness of the proposed multi-modality
data fusion and augmentation strategy. We first use the new modality to test
the segmentation accuracy in the model, and then testing the performance of
the model without using multi-modality data fusion and augmentation strategy.
According to Table 2, the fused new modalities achieves the MDOC of 91.17%,
which is better than the original results, i.e., 90.21% as shown in Table 1. More-
over, the segmentation accuracy of each new modality is also higher than the
original modality. In particular, the fat+opp modality is 2.33% higher than the
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fat modality result, which can be treated as a preferable solution for the problem
of low resolution of the fat modality. This validates that the proposed multi-
modality data fusion and augmentation strategy can effectively fuse different
features from multiple modalities to improve the accuracy of segmentation. As
illustrated in Table 3, the model only achieves MDOC of 89.73% when the multi-
modality data fusion and augmentation strategy was not used. Moreover, the
segmentation accuracy of each modality is also lower than the results in Table 1.
This shows that the multi-modality data fusion and augmentation strategy can
provide rich multi-modality data for the network to support the learning of dis-
criminant information, thereby improving the segmentation results of IVDs.

4 Conclusion

In this paper, a new framework with fully dilated separable convolution (FDS-
CNN) is proposed for the IVD multi-modality image segmentation with small-
sized training set. Compared with other segmentation networks, the proposed
FDS-CNN can achieve superior performance in small-sized training set without
pre-training. By investigating the information from multi-modality image data,
this paper proposes a novel solution for the multi-modality image augmentation,
i.e., multi-modality data fusion and augmentation strategy, which can increase
the number of samples and improve the performance of the segmentation model.
Experiments on MICCAI 2018 IVD Localization and Segmentation Challenge
demonstrate the effectiveness and superiority of the proposed framework, in
comparison with other state-of-the-arts.
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Université catholique de Louvain, Louvain-la-Neuve, Belgium

5 Department of Radiology, ULB-Hôpital Erasme,
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Abstract. The value of whole-body MRI is constantly growing and
is currently employed in several bone pathologies including diagnosis
and prognosis of multiple myeloma, musculoskeletal imaging and evalua-
tion of treatment response assessment in bone metastases. Intra-patient
follow-up MR images acquired over time do not only suffer from spa-
tial misalignments caused by change in patient positioning and body
composition, but also intensity inhomogeneities, making the absolute
MR intensity values inherently non-comparable. The non-quantitative
nature of whole-body MRI makes it difficult to derive reproducible mea-
surement and limits the use of treatment response maps. In this work, we
have investigated and compared the performance of several standardiza-
tion algorithms for skeletal tissue in anatomical and diffusion-weighted
whole-body MRI. The investigated method consists of two steps. First,
the follow-up whole-body image is spatially registered to a baseline image
using B-spline deformable registration. Secondly, an intensity standard-
ization algorithm based on a histogram matching is applied to the follow-
up image. Additionally, the use of a skeleton mask was introduced, in
order to focus the accuracy of algorithms on a tissue of interest. A linear
piecewise matching method using masked skeletal region showed a supe-
rior performance in comparison to the other evaluated intensity stan-
dardization methods. The proposed work helps to overcome the non-
quantitative nature of whole-body MRI images, allowing for extraction
of important image parameters, visualization of whole-body MR treat-
ment response maps and assessment of severity of bone pathology based
on MR intensity profile.
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1 Introduction

The value of whole-body magnetic resonance imaging (MRI) in skeletal imag-
ing is constantly growing and is currently getting more interest in investiga-
tion of several bone pathologies, including diagnosis and prognosis of multiple
myeloma [1], bone marrow in paediatric age [3], musculoskeletal imaging [6] and
evaluation of treatment response assessment in bone metastases [2,8,11].

Due to its high resolution, whole-body coverage and high sensitivity MRI
can provide excellent definition of anatomical structures and underlying skele-
tal pathologies. Additionally, in combination with a follow-up scan, it allows for
monitoring of changes in patients body composition and disease involvement pro-
viding reliable treatment response assessment parameters (i.e. change in cancer
volume, number of metastases) and image response maps.

Follow-up MR images acquired in the same scanner do not only suffer from
spatial misalignments caused by different patient positioning and changes in
patients’ body composition over time, but also intensity inhomogeneities, making
the absolute MR intensity values inherently non-comparable. Therefore, due
to the non-quantitative nature of MRI, intensities cannot be compared from
one acquisition to another making it impossible to derive reproducible intensity
measurements containing interpretable information. Standardized images can
not be displayed with fixed windows without the need of per-case adjustment.
Additionally, they limit the use of treatment response maps only to quantitative
MR modalities, such as MR apparent diffusion coefficient (ADC) calculated using
diffusion-weighted images. In order to successfully compare a baseline and a
follow-up whole-body scan, both limiting factors have to be overcome, usually
via the means of image post-processing techniques.

Whereas, intra-patient whole-body spatial image misalignment can be com-
pensated by image registration [6,17], inter-scan intensity inhomogeneities bring
a challenging problem. In the literature, few authors have described different
intensity standardization methods for MR images, however most of the work
was done in the field of neuroimaging, limiting the application perspective to a
very specific domain and much smaller field of view.

Nyúl et al. [10] proposed a linear piecewise method of matching image his-
tograms of brain images. First, a number of intensity landmarks representing
statistical points (percentiles, modes) are found in the reference and target image
histogram. Secondly, both image landmarks are mapped on the common refer-
ence intensity space using a piecewise linear transform.

Robitaille et al. [14] proposed a method similar to Nuyl with a different
landmark detection algorithm. The method incorporates tissue spatial intensity
information derived from the segmentation image allowing for detection of more
precise, tissue specific landmarks.

Jäger et al. [5] represented a group of multi-modal reference and target brain
images as an n-D joint probability histogram. The next step involved deformable
registration of obtained n-D histograms, which provided the deformation field
matrix. The latter was used to standardize intensity inhomogeneities between
the reference and target image stack. Additionally, a method was adapted for
whole-body MRI images.
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In this work, we propose an extension of existing intensity standardization
methods maximizing the intensity similarity of skeletal structures in whole-body
MRI together with an extensive quantitative evaluation. A strong validation cri-
terion of mean absolute difference is introduced, allowing for direct quantification
of intensity profile separation. The performance of the proposed algorithm was
compared with the state-of-the-art methods.

2 Materials and Methods

The skeleton standardization methodology consist of two steps. First, the follow-
up whole-body image is spatially registered to a baseline image. Accurate align-
ment of baseline and follow-up images improves the similarity of the intensity
histograms limiting the influence of intra-scan anatomical differences. Addition-
ally, it allows for the introduction of strong validation criteria based on voxelwise
intensity comparison, such as the mean absolute intensity difference. Secondly,
four different image intensity standardization methods were implemented and
validated, aiming for equalization of skeleton intensity profiles.

2.1 Spatial Registration

In order to spatially align the baseline and the follow-up whole-body image and
compensate for the aforementioned spatial misalignment, image registration was
used.

Registration was performed in a pairwise manner, taking the baseline whole-
body image as the reference image, f , and a follow-up image as a moving image,
g. The aim was to solve an optimization problem finding a spatial transformation
T over the parameters µ, according to the following equation:

µ̂ = arg min
µ

C
x∈Ω

(
f(x), g

(
Tµ(x)

))
. (1)

In (1), the spatial coordinate x is taken from the overlapping region Ω, in
which we assumed an intensity interpolation scheme for the discrete images f
and g. The registration is guided by the minimization of the chosen cost function
C. Due to non-quantitative nature of the MRI before intensity standardization,
a mutual information (MI) cost function [9] was used:

DMI(f, g(Tµ) = −
∑
a,b

pfg(a, b)log
pfg(a, b)

pf (a)pg(b)
, (2)

where pfg is the joint probability density function (PDF) of the images f and
g, and pf and pg are the marginalised PDFs for the respective images. a and b
are the image intensity values.

Three stage multi-resolution image registration consisting of a rigid, affine
and deformable B-Spline [15] deformation was implemented in the freeware soft-
ware package elastix [7]. For a deformable step, a bending energy penalty
(BEP) was used [15]. Detailed registration parameters are provided in Table 1.
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Table 1. Parameters used in the spatial registration step.

Parameter Spatial registration

Transform Rigid Affine B-Spline

Metric MI MI MI, BEP

Number of resolutions 3 4 4

Image pyramid schedule 4 2 1 8 4 2 1 8 4 2 1

B-Spline grid spacing - - 4 2 1 1

Final B-Spline grid spacing (mm) - - 15 15 15

Number of histogram bins 32 32 32

Metric 1 weight 1 1 1

Metric 2 weight 0 0 10

Max iterations 2000 2000 2000

Sampler Random Random Random

Number of samples 2048 2048 2048

The registration was driven by high resolution 3D T1 whole-body image and
the resulting transformation field was used to map other modalities of lower
image quality, i.e. diffusion-weighted images.

2.2 Intensity Standardization

We compared 5 different intensity standardization algorithms with increasing
complexity based on histogram matching principle.

Method 1. Linear Scaling: Target image is linearly scaled to match the inten-
sity distribution in a reference image. Because of the signal intensity outliers, we
use the intensity range up the the 99.9% intensity percentile, which according
to the Eq. 3 gives:

ILS = IRmin
IT − ITmin

IToutlierPerc − ITmin
(IRoutlierPerc − IRmin). (3)

Here, we denote IR, IT and ILS as the reference, target and linearly scaled output
image. IRmin, ITmin, IRoutlierPerc and IToutlierPerc are the minimum intensity
values and 99.9% intensity outlier percentile values of the reference and target
image, respectively. Additionally, all other compared methods were initialized
from the linearly scaled result in order to roughly align image intensity profiles
before allowing for standardization with more degrees of freedom. Experiment
was performed, showing a benefit of initialization by linear scaling.

Method 2. Piecewise Linear Matching of Intensity Histograms: The
method is implemented similar to [10], where the basic idea is to find a linear
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piecewise mapping that deforms the follow-up image intensity histogram so that
it matches a baseline image histogram using intensity landmarks. In the first step,
five landmarks, L, representing intensity percentiles of the baseline and follow-up
image are calculated. Here, a number of n = 5 evenly spaced percentile values
was chosen, L = [0, 20, 40, 60, 99.9]. Second, a piecewise linear normalization is
applied, mapping a follow-up image landmarks to corresponding baseline image
landmarks, creating n−1 linear and independent transformations, each between
two landmarks (see Fig. 1).

Fig. 1. Schematic representation of a linear piecewise transform. Two sets of landmarks
L1−5 are detected in a reference and target image. Linear transformations T1−4 are used
to standardize intensities between the images, mapping follow-up image intensities onto
baseline image intensity profile.

Method 2.1. Piecewise Linear Matching of Masked Intensity His-
tograms: We propose a modification to the linear piecewise method by the
introduction of the whole-body skeleton mask (see Sect. 2.3). Instead of taking
all whole-body image voxels into account while calculating the intensity land-
marks, only the masked tissues of interest will be used. Here, a 3D binary mask
of the skeletal tissues is introduced, limiting excess of image information and
focusing algorithm performance only on the chosen masked structure. Similar to
method 2, five evenly spaced intensity percentiles were chosen as landmarks in
the baseline and follow-up image, L = [0, 20, 40, 60, 100], however, the range of
intensities used was limited to the intensity range of the masked skeleton tissue.
Later, as in method 2, piecewise normalization is performed taking into account
updated landmark positions.



82 J. Ceranka et al.

Method 3: Deformable Registration of Intensity Histograms: An image
intensity histogram can be represented as a 1D image, where intensity values rep-
resent voxel count at each specific histogram bin. Therefore, the intensity stan-
dardization problem can be treated as a deformable image registration problem,
aiming at finding a spatial transformation, Tµ , mapping a follow-up histogram
image, H(g), to a baseline intensity profile, H(f), according to Eq. 1 (see Fig. 2).
The resulting deformation field is used to correct intensities in the follow-up
image [5]. Such method, gives more degrees of freedom compared to Method 2,
allowing for smooth transformation and closer alignment of two intensity pro-
files. Here, a single-resolution deformable image registration with mean square
difference cost function, bending energy penalty regularizer, histogram with 128
bins and a final B-Spline grid spacing of 30 pixels was used.

Fig. 2. Schematic representation of a deformable registration of two 1D histograms.
The histogram of a follow-up image is deformably registered to the baseline image
histogram. Obtained 1D deformation field (red arrows) is used to map intensities of
the follow-up image onto baseline image intensity space. (Color figure online)

Method 3.1. Deformable Registration of Masked Intensity His-
tograms: The proposed method is a modification of method 3, where similarly
to method 2.1, intensity histograms of the baseline and follow-up image are cal-
culated only for the voxels included in the skeleton mask. Therefore, deformable
registration is based only on intensities of interest, allowing for more precise
intensity standardization transformation focusing on a chosen tissue of interest
(i.e. bone).

2.3 Data Description

Experiments were performed on a 3D T1 and diffusion-weighted whole-body
images of prostate cancer patients with metastatic bone involvement and healthy
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volunteers. Each patient had one follow-up examination, with an approximate 3–
9 months between consecutive scans. The follow-up images of healthy volunteers
were acquired during the same day, in a separate scanning session. 5 whole-body
image pairs (baseline + follow-up) of the same subject consisting of 4 image
station covering roughly head, torso, pelvis and legs were acquired. Images were
obtained as a routine examination performed in the Cliniques Universitaires
Saint-Luc, Brussels and Universitair Ziekenhuis Brussel. The study was approved
by the Institutional Ethics Board of both institutions.

MRI: Whole-body stations were composed after independent image station
preprocessing, which involved noise filtering using anisotropic diffusion fol-
lowed by bias field correction [18] both implemented as a standard Insight
Segmentation and Registration Toolkit (ITK) filters. Additionally, inter-
station intensity standardization was applied by scaling the intensity distribu-
tion of neighbouring stations to 99.9% intensity percentile based on the common
station overlay region prior to the composition of the whole-body image from
separate stations.

Anatomical whole-body image station were acquired as a T1 weighted spin-
echo sequence [12], with the following parameters: echo time (TE) = 8 ms, rep-
etition time (TR) = 382 ms, matrix size of 480 × 480, pixel spacing 0.65 mm,
slice thickness 1.19 mm. After the whole-body image reconstruction, spacing
was equal to 1.2× 0.65× 0.65 mm respectively in x, y and z direction with a
matrix size of 210× 1612–1705× 768. Diffusion-weighted images were acquired
with axial free breathing echo-planar DWI sequence (DWIBS) with a b-value
equal to 1000 s/mm2. Following sequence parameters were used: TR = 8421 ms,
TE = 66 ms, slice thickness 6.1 mm, matrix size 192 × 192, pixel spacing 2.3 mm,
FOV = 440× 440 mm2.

Skeleton Segmentation Mask: For each whole-body image pair (baseline and
follow-up image), the skeleton segmentation for a reference image was delineated
using first, the ‘GrowCutEffect’ application from Slicer [4] followed by manual
refinement. Additional smoothing was applied using morphological operations.
Aiming at the specific applications for bone pathologies (metastatic bone dis-
ease, multiple melanoma), only a selected number of bones with high probability
of involvement were considered. This involved clavicle, spine from C2 vertebra
to sacrum, pelvis and both femur bones. Tubercular bone as well as the cortical
bone were included. Figure 3 illustrates the anatomical reference of the bones
that are considered in this study together with corresponding manual segmen-
tations.



84 J. Ceranka et al.

Fig. 3. (a) Anatomical reference from Bio Digital [13]. (b) Volume rendering from
manual segmentation. (c) Coronal and (d) sagittal slice of a whole-body T1 image in
overlay with bone segmentation mask (yellow). (Color figure online)

2.4 Validation

Two validation criteria were used to asses similarity of skeletal intensity profiles
between a reference baseline and target follow-up image.

Mean Absolute Difference: Corresponding voxel intensities were compared
and summed into a mean absolute difference (MAD) value

MAD =

∑
x

|f(x) − g′((Tμ(x))|

N
, (4)

where, f(x) and g′(Tμ(x)) are image intensities of the reference and spatially reg-
istered - intensity standardized target image in the corresponding voxel location
x and N is a number of image voxels.

Kullback-Leibler Divergence: We have implemented the Kullback-Leibler
divergence (KL) representing a distance measure between two discrete probabil-
ity distributions (histograms)

KLD =
∑

i

P (i)log
Q(i)
P (i)

, (5)
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where, P (i) and Q(i) are discrete probability distributions of a reference and
standardized image at histogram bin i.

We can assume that if different tissue classes cover the same intensity range
in both volumes, the histograms of a reference and target whole-body image will
be as similar as possible, representing KL value close to zero.

Since not all of the data proved to be normally distributed (p > 0.05, Shapiro-
Wilk Normality Test [16]), the Wilcoxon two-tailed, signed-rank test was used
to investigate statistical significance of differences in validation criteria values
between the non-standardized image and each of the registration strategies sep-
arately. The p-value used for the statistical significance test was equal to 0.05.

3 Results

All proposed intensity standardization methods were quantitatively validated
and compared to a spatially registered and non-standardized whole-body image
pair, representing a baseline value. Results of the validation criteria representing
intensity standardization performance between baseline whole-body image and
follow-up whole-body image, averaged over all subjects used, are presented in
Table 2. Figure 4 shows the influence of the spatial registration and intensity stan-
dardization on baseline and follow-up image skeleton similarity. Figure 5 shows
whole-body T1 and DWI baseline and follow-up images before and after intensity
standardization displayed with the same window and level setting. A sample T1

functional response map indicating metastatic bone disease progression is shown
in Fig. 6.

Table 2. Evaluation metrics averaged over 10 whole-body image pairs of T1 and DWI
modalities for the proposed methods (± standard deviation). The best performing
strategy in terms of average for each criteria is highlighted in bold. Statistical sig-
nificance for each registration strategy and evaluation criterion, when compared to
unregistered raw images is marked with an asterix (*).

MAD KL divergence

No standardization 143.20 ± 126.67 0.540 ± 0.520

Method 1 76.15 ± 91.49 0.540 ± 0.520

Method 2 69.27 ± 81.77 0.468 ± 0.678

Method 2.1 49.29 ± 50.68* 0.095 ± 0.122*

Method 3 64.86 ± 60.22* 0.165 ± 0.169*

Method 3.1 64.32 ± 74.37* 0.484 ± 0.399
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Fig. 4. Coronal overlay view of whole-body T1 image (top) with extracted skeleton
(bottom). Pink and green colours indicate intensity difference. (a) Raw images, (b)
result after rigid registration, (c) result after deformable registration, (d) result after
deformable registration with linear scaling of intensities (Method 1), (e) result after
deformable registration with intensity standardization (Method 2.1). (Color figure
online)

3.1 Computation Times

Processing was performed using a 2.5 GHz Intel R© Core R© i7-4870HQ processor
and 16 GB RAM. Spatial registration inducing preprocessing steps and image
re-sampling took around 30 min for an image pair. The entire standardization
procedure (single threaded execution) for method 1 and all variations of method
2, took around 1 min. Method 3 with an execution time equal to 30 min, is con-
siderably more expensive due to the deformable histogram registration and a
higher number of intensity transformations equal to the size of the 1D deforma-
tion field.
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Fig. 5. Whole-body T1 (left) and DWI (right) baseline and follow-up images before and
after intensity standardization (Method 2.1). Images have been spatially registered. All
images are displayed with the same window and level setting.

Fig. 6. From top to bottom: axial, sagittal and coronal view of functional response
map calculated on T1 intensity standardized image showing left upper pelvis with a
visible progression of focal bone metastasis (red arrow). (Color figure online)

4 Discussion and Conclusion

In this work we investigated several strategies for intra-patient whole-body inten-
sity standardization of skeleton profiles. Five different intensity standardization
methods were compared and their performance was validated. Additionally, the
use of spatial registration between the baseline and follow-up volumes, allowed
for the introduction of strong validation criterion based on direct intensity dif-
ference - mean absolute difference of skeleton intensity profiles. The piecewise
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linear method using the masked tissue of interest (Method 2.1) performed better
than other evaluated methods, showing high stability and robustness of perfor-
mance. Slightly worse performance of masked 1D deformable method (Method
3.1) might be caused by the limited amount of image information which cor-
rupts the performance of deformable registration algorithms and the over-fitting
of the match of the intensity profiles. Intensity standardization algorithms can
be applied to any other tissue of interest if a specific mask representing a tissue
type is provided.

Accurate intensity standardization of intra-patient MRI whole-body skele-
ton profiles, opens opportunities for whole-body quantitative follow-up, cohort
comparison studies and functional response maps for non-quantitative modali-
ties, considerably simplifying extraction of relevant quantitative information for
healthy and disease.
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Abstract. Scoliosis correction surgery is typically a highly invasive procedure
that involves either an anterior or posterior release, which respectively entail the
resection of ligaments and bone facets from the front or back of the spine, in
order to make it sufficiently compliant to enable the correction of the deformity.
In light of progress in other areas of surgery in minimally invasive therapies,
orthopedic surgeons have begun envisioning computer simulation-assisted
planning that could answer unprecedented what-if questions. This paper presents
preliminary steps taken towards simulation-based surgery planning that will
provide answers as to how much anterior or posterior release is truly necessary,
provided we also establish the amplitude of surgical forces involved in cor-
rective surgery. This question motivates us to pursue a medical image-based
anatomical modeling pipeline that can support personalized finite elements
simulation, based on models of the spine that not only feature vertebrae and
inter-vertebral discs (IVDs), but also descriptive ligament models. This paper
suggests a way of proceeding, based on the application of deformable multi-
surface Simplex model applied to a CAD-based representation of the spine that
makes explicit all spinal ligaments, along with vertebrae and IVDs. It presents a
preliminary model-based segmentation study whereby Simplex meshes of CAD
vertebrae are registered to the subject’s corresponding vertebrae in CT data,
which then drives ligament and IVD model registration by aggregation of
neighboring vertebral transformations. This framework also anticipates foreseen
improvements in MR imaging that could achieve better contrasts in ligamentous
tissues in the future.
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1 Introduction

1.1 Background – Scoliosis

Scoliosis is a medical condition in which a person’s spinal axis has a three-dimensional
deviation, which viewed from the rear can resemble an “S” or a “C” rather than a
straight line. Scoliosis is defined as a spinal curvature of more than 10° to the right or
left in the coronal plane. Deformity may also exist in the sagittal plane. Its causes
include neuromuscular problems, genetic conditions, and limb length inequality.
Scoliosis is typically classified as either congenital (caused by vertebral anomalies
present at birth), idiopathic (cause unknown), or secondary to a primary condition.
X-rays are usually taken to assess the scoliosis curves and the kyphosis and lordosis,
convex and concave curvatures in the sagittal plane that can also individuals with
scoliosis. Instrumented scoliosis surgery was first performed in the 1960s [1], subse-
quent to which, device and technique modifications since then have led to improved
surgical results. The goals of surgical management of adolescent idiopathic scoliosis
(AIS) include maintaining coronal and sagittal alignment, producing level shoulders,
correcting deformity, and saving motion segments [2]. Classification systems for AIS
are useful for surgical planning and for comparing postoperative results. However,
choosing optimal fusion levels remains challenging; in a study by Lenke, an average of
five different proximal fusion levels and four different distal fusion levels were iden-
tified in AIS cases presented to 28 surgeons [3].

Computer simulation of scoliosis treatment can provide an efficient, risk-free means
of finding the optimum among competing therapeutic approaches. The main objective
of this project will be to predict the amplitude of the forces needed to correct the
scoliotic spine, for example to ensure adequate fixation. However, a long-term
objective is to provide the orthopedic surgery community with a predictive planning
tool that enables the exploration of what-if scenarios by clinicians both as individuals
and as a community, which will likely lead to greater consensus for various categories
of scoliotic deformity as well as for other orthopedics cases (herniated disc, trauma, and
so on) in the long term.

The proposed study describes a first instantiation of a deformable multi-surface
approach to constructing a ligamentous patient-specific anatomy; it is presented as a
preliminary result that will be improved upon through an on-going approach founded
on multi-material surface extraction, whose objective will ultimately be to preserve
shared boundaries (flush surfaces) where appropriate. The main objective of this study
is to demonstrate the feasibility of using the model-image transformations undergone
by vertebral surfaces of a descriptive spine model, drawn with CAD software by an
anatomist, to anchor the nonrigid transformation of neighboring soft tissues (IVDs,
ligaments). Moreover, these soft-tissue transformations may be further refined by
medical images if adequate contrast is available, particularly as imaging techniques
(MRI pulse sequences and high-field imaging) evolve to capture greater anatomical
details.
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1.2 Limitations in Current Scoliosis Surgery Planning – Impetus
for Minimally Invasive Approach

For many scoliosis cases, the rigidity of the deformity cannot be overcome enough to
achieve satisfactory correction, without using measures to make the spine more com-
pliant. In these cases, a release procedure, either anterior or posterior, is used to render
the spine more flexible and enable correction, albeit at the cost of a more complex and
extensive procedure, as shown in Fig. 1. In an anterior release, as in Fig. 1a, inter-
vertebral disc (IVD) tissue is removed from the front. Furthermore, the anterior lon-
gitudinal ligament is cut at each relevant IVD. Alternately, posterior column osteot-
omy, of Smith-Petersen or Ponte type, involves the posterior removal of ligament and
bone, as in Fig. 1b, including parts of the spinous process and facets to partially correct
scoliosis. Subsequently, the surgeon inserts pedicle screws, typically in both vertebral
pedicles, one of which will be used to cup a portion of a curved rod that mirrors the
deformation of the spine of the patient. This curved rod has a personalized shape,
which can be produced during the procedure by the surgeon himself, so as to corre-
spond to the scoliotic curvature of the patient. Once the curved rod is inserted in all of
the corresponding pedicle anchors, the surgeon imparts a 90-degree rotation to this
curved rod, which effectively straightens the spine, as seen in Fig. 2. Typically, this
correction requires a significant amount of force, even after anterior/posterior release,
and necessitates a pair of vice-grip-like surgical pliers to lock onto two points on the
curved rod. If the amplitude of corrective forces were known prior to surgery, surgical
workflow would be improved, the patient would spend less time in the operating room,
while limiting anterior and posterior release procedures to a minimum and generally
facilitating their planning. While finite-elements-based biomechanical studies in sur-
gery are not new, they emphasize pedicle screw insertion mechanics [5, 6]. Meanwhile,
patient- specific anatomical models that account for interaction between vertebrae,
bound to each other by ligaments, are generally not found in the literature or in clinical
practice.

As a result, existing work in surgery planning or simulation does not provide a
surgeon with an estimate of the amplitude of corrective forces involved in scoliosis
surgery.

These limitations of state-of-the-art surgery simulation and planning have two main
root causes. First, spinal ligaments are not easily delineated in MRI or CT: these tissues
exhibit little contrast in relation to other soft tissues nearby. Second, even if one were
able to identify these tissues (through segmentation), these tissue blobs would need to
be decomposed into elements (by volumetric meshing), such as tetrahedral or hexa-
hedra: this multi-material volumetric meshing is not done adequately in the current
state of the art, namely in a manner that produces high-fidelity patient-specific models.

Recently, research on the large-scale compliance of the spine has been published in
the biomechanics literature [9]. However, in the absence of a digital atlas of spinal
ligaments, biomechanists have to resort to modeling ligaments as a set of one-
dimensional rods whose anchor points are imposed by hand, as depicted in Fig. 3, the
limitations of which are described in detail in the Methods section.
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With the proposed anatomical modeling approach, founded on a deformable multi-
surface model fitted to an anatomist-drawn Computer-Aided Design (CAD) template,
we have the means to produce patient-specific finite element studies for a number of
applications in orthopedics, emphasizing in this project the estimation of corrective
forces in scoliosis surgery. This anatomical modeling technique, which addresses both
segmentation and meshing, warps the CAD-based anatomical template to any indi-
vidual’s CT/MR image dataset and can guide subsequent multi-tissue high-fidelity two-
stage tetrahedral meshing [10]. This two-stage tetrahedralization approach consists of
(i) a surfacic first stage, founded on a discrete deformable surface model [11], which
produces a controlled-resolution high-fidelity triangulated boundary, followed by
(ii) volumetric second stage: controlled-resolution variational tetrahedral meshing [12]
(found in CGAL [13]). The latter stage uses as input a prescribed triangulated mesh
boundary resulting from the first stage. The deformable multi-surface model compu-
tation effectively integrates the segmentation and the first stage of the meshing in one
step. For validation, we also planning some cadaveric image studies, featuring point
clouds identified by an anatomist and coinciding with the boundaries of the ligaments.

Fig. 1. (a) Anterior release: discectomy and resection of annulus of every intervertebral disk
within the instrumented area: the annulus is incised from the lateral aspect of the spine, the disk is
removed with curettes and rongeurs. The anterior longitudinal ligament is cut; the posterior
annulus may be removed. (b) Posterior column osteotomy (left to right). First, resect the inferior
aspect of the spinous process, followed by removal of the interspinous ligament with a rongeur.
Second, remove 3–5 mm of inferior aspect of inferior facet joint at each level of the planned
fusion with an osteotome. The ligamentum flavum is removed with a Kerrison rongeur while
avoiding to penetrate deeply against the dura. Last, a Kerrison rongeur is utilized to remove
the superior portion of the superior articular facet. Reproduced with permission from AO
Foundation [4].
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Fig. 2. Technical aspects of surgical scoliosis correction. (a) Pedicle screw-anchored rod
fixation: (left) assembly featuring inserted rods; (right) correct screw insertion into vertebral
pedicles and body [7, 8]. (b) Reduction procedure whereby a rod is inserted into the tops of the
screws; inset: reduction tower for rod insertion [4]. (c) 90-degree rotation that performs the
correction; inset: pliers used for rod rotation [4]. Figures b and c reproduced with permission;
Copyright by AO Foundation, Switzerland [4].

(a) (b)

Fig. 3. Motivation for an automatic ligamentous spine model computation: manual identifica-
tion of ligamentous constraints for finite element studies (ongoing work). (a) Intratransverse
ligaments (brown threads). (b) Supraspinous and interspinous ligaments (both labeled). (Color
figure online)
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2 Methods

2.1 Anatomist-Drawn Ligamentous CAD Model of the Spine

The cornerstone of our approach to achieving descriptive personalized anatomical
models of the spine is a CAD model that is commercially available through the Tur-
boSquid website [14]. The justification for using such a model is that it is virtually
impossible to volumetrically reconstruct the spinal ligaments from current routine
imaging modalities, either CT or MRI-based, using voxel-based segmentation tech-
niques. The descriptiveness required of the anatomy necessarily imposes a top-down,
model-based segmentation approach, which naturally maps to a multi-surface
anatomical atlas.

Moreover, in existing efforts to run finite element studies of the ligamentous spine,
while factoring in the constraining effect of the ligaments (Fig. 3), the current means of
representing the ligaments is limited to a terse representation based on a set of linear
constraints that are drawn by hand from one vertebral surface point to its opposing
surface landmark: each ligament is thus approximated as a simple collection of 1D
springs or stiff rods. We argue that, while this current approach is certainly an
improvement over an entirely untethered spine model, it is potentially limiting in
relation to the complexity of the 3D ligament geometry and onerous in terms of user
interaction, as is visible in Fig. 3b in interspinous ligaments in particular.

Moreover, should there be rheological studies published on spinal ligaments, which
could be used to populate the material properties of such a finite element model of the
spine, it would prove difficult to relate a small set of 1D springs to such properties
acquired by stress-strain experiments on a shell-like structure. In contrast, these
properties would naturally feed right into an anatomical model that faithfully replicates
the curviplanar or volumetric structure, depending on the thickness of the ligament. In
short, while manual rod/spring delineation is vital to tethering the spine, it under-
represents the complexity of the constraining ligamentous geometry, which may have a
dire impact on the fidelity of the finite element studies.

2.2 Using Descriptive CAD Models for Segmentation – Deformable
Multi-surface Models

As is true of all CAD drawings, the TurboSquid spine model (Fig. 4) is a collection of
polygons, typically 2D B-spline quadrilateral patches, which are easily converted to a
triangulated surface: each quad patch is bisected into two triangles. Moreover, as can be
seen in Fig. 5 and used extensively in our research, a triangulated surface can be used
to initialize a deformable surface model, such as the Simplex [11], through geometric
duality. The latter represents the second foundational aspect of our work:

CAD B-spline surface ! CAD triangulated surface
(! Watertight triangulated surface) !Deformable Simplex model.
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This recipe, although simple, is fundamental and surprisingly absent in the
literature:
this methodology suggests that we use an anatomist’s CAD drawing of an arbitrary
anatomy as a foundation for a deformable multi-surface model-based segmentation.

Although the results presented in this paper build on a naïve single-surface Simplex
model, such as developed by Delingette [11], it is feasible to transition to a multi-
surface approach [15, 16], which will be integrated into the second version of our
methodology. The Simplex is a discrete deformable mesh model, characterized by a set
of vertices linked by edges, and governed by a Newtonian model of vertex motion:

m
d2Pi

dt2
¼ �c

dPi

dt
þ aFint þ bFext ð1Þ

where m and c represent vertex mass and damping, and the latter two terms are sums of
internal and external forces. Moreover, an N-Simplex is a mesh where every vertex is
linked to N + 1 neighbors by edges. The 2-Simplex thus exhibits 3-connectivity, as
shown in Fig. 5a. Note the geometric duality between the 2-Simplex mesh in black and
triangulated mesh in blue. The external force Fext includes an image force that binds the
model to anatomical boundaries of interest, typically characterized by strong gradient
magnitude in a linear search space along the direction normal to each vertex.

Fig. 4. Anatomist-drawn ligamentous CAD model of the spine. (a) Spine model displayed in its
native Maya environment. Insert top left: surface rendering of the models of spline-based spine
and ligament anatomical surfaces in Maya format, overlaid on translucent body surface. Right:
wireframe rendering of the ligament model. (b) Close-up of a subset of the anatomy, converted to
triangulated surfaces (stored in .obj format), featuring the following components as visualized
with Paraview: C7, T1 and T2 vertebrae (white translucent), C7-T1 and T1-T2 IVDs (purple),
local ligaments: intertransverse (dark green), interspinous (cyan), capsulary (orange), and
ligamentum flavum (pink); ligaments spanning several vertebrae: anterior (yellow translucent)
and posterior (rust) longitudinal ligaments, nuchal (dark red, spanning C1-C6) and supraspinous
(dark blue, spanning C7-sacrum) ligaments. (Color figure online)
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There are two options for extending this single-surface deformable model to
espouse multiple anatomical boundaries, and such an extension is foreseen in the near
future. Gilles’ multi-surface model featuring a static collision detection between indi-
vidual surfaces [15]. Haq has integrated this multi-surface model with shape statistics
force for spine applications. Rashid’s multi-surface Simplex model emphasizes shared
boundaries based on multi-material surface extraction [17], which was used to achieve
a lightweight deformable atlas of basal ganglia for efficient intraoperative-MRI-based
guidance in robotic deep-brain stimulation. The latter multi-surface approach is
advantageous in that it produces models of the weight-bearing anatomy with flush
surfaces where needed, which is highly desirable in orthopedic finite elements
applications.

It is worth noting that there are numerous resources available online to facilitate the
computation of a watertight triangulated surface mesh, in the event that the surface
model is derived from a voxel-based atlas by surface extraction (e.g. available on
Paraview) or that there is a manifold inconsistency in the CAD model. Conversely, all
it takes to throw off the geometric duality of the triangulated surface with the Simplex
mesh is one hole or one non-manifold edge, whereby the deformable surface model is
doomed to failure. Based on the recipe suggested in [18], Poisson Surface Recon-
struction can be useful in correcting small surface inconsistencies (non-manifold edges,
inconsistent surface normals, etc.), while Quadric Edge Collapse decimation enables us
to control surface mesh resolution while preserving topology. Both surface mesh
processing algorithms are found in MeshLab [19]. In the case of the CAD model
described above, most surface models were a watertight collection of quadrilaterals that
could be diagonalized to produce a triangulated surface (through MeshLab’s triangular
mesh conversion). In the absence of a statistical pose model that can simplify the
registration of each vertebra, we opted for a homologous point-based registration using
17 anatomical landmarks, identified using Slicer 3D planning software [20], which
could reliably be located both on the vertebral model surface and in the target image.
A few models, namely the capsular ligament, contained holes: plugging such openings
in an unsupervised manner is the specialty of MeshFix [21].

Fig. 5. Computation of CAD-based Simplex vertebral model. (a) 2-Simplex surface mesh model
in black, with dual triangulation in blue. (b) C7 vertebral CAD model, depicting B-spline
quadrilaterals. (c) Triangulated surface, used to initialize Simplex by duality, with typical
landmark configuration for initializing a vertebral registration by homologous point pairs. (Color
figure online)
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In fact, for this simple proof of concept, the target image was taken from the
SpineWeb database and featured segmented vertebrae, however it was still vital to warp
the CAD model’s vertebrae to the SpineWeb model. Our goal with this exercise is not
to innovate on vertebral segmentation, but to demonstrate the merit of the chain effect
whereby vertebral model transformations, which are unambiguously determined by
sharp contrasts in a medical image, particularly CT, are aggregated and used to drive
the registration of nearby soft-tissue structures. This is achieved while preserving the
neighborhood topology throughout; ultimately, using contiguity with unambiguously
registered vertebral surfaces to constrain the positioning of soft tissue models.

The transformation used to initialize the Simplex warping is itself a simpler non-
rigid mapping based on homologous point pairs, namely the Thin-Plate Spline
(TPS) transformation [22]. This method leads to a stable elastic transformation that
maps a CAD vertebral surface model to the target boundary in the CT image, as can be
seen from the overlay of warped CAD model surface over a surface extracted from the
known boundary of the SpineWeb segmentation. Alternately, we can use an Iterative
Closest Point method to establish the vertebral registration that will serve as anchor for
the soft tissues, if we have a starting point of known anatomical boundaries of voxel-
based segmentation. Figure 6 depicts a typical result of a TPS-initialized vertebral
surface model, after 600 iterations of the Simplex, overlaid in red on the known
boundary of a SpineWeb model’s C7 cervical vertebra, depicted in white. The set of
such vertebral registrations will then serve to orient the soft-tissue surfaces attached to
neighboring vertebrae. This vertebral registration is not the main aspect of the inno-
vation: it serves as a foundational set of pitons we use to anchor our ascent, so to speak.

Fig. 6. TPS-initialized, Simplex-mesh-based model-to-target image registration of vertebral
CAD models. (a) Red warped model overlaid on white gold-standard surface from SpineWeb,
with 3D-mapped 2D axial slice in background. (b) 2D contour depicting planar intersections of
surfaces in a, mapped to red contour and purple gold-standard points respectively. (Color figure
online)
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2.3 Exploiting Well-Defined Vertebral Transformations to Drive
Ambiguous Ligament and IVD Model Registration

The stable nonrigid registration of the CAD vertebral models can be aggregated to
produce a putative registration of the IVD and ligaments, in a number of ways. One
option would have been to distill each vertebral elastic registration into rotation and
translation parameters that can be averaged or weighted according to proximity if
dealing with a structure in between two vertebrae, and then use static collision detection
to nudge overlapping surfaces away from each other. Ideally, if any image contrast
information is available, if for progress is made with high-field MR scanners for
example, image gradients could be used to finalize the image boundaries. Of course,
one of the advantages of shared-surface boundary-preserving meshing is that vertebral
surfaces will have direct implications for the boundaries of soft-tissue structures in
contact with them. Alternately, as currently pursued here, a subsample of warped
vertebral model points can be leveraged to determine a local TPS transformation that is
in turn applied to a local neighborhood; where two warped vertebral models abut, they
contribute to the local elastic transformation that is applied to soft-tissue surfaces
affixed to them in the CAD model. Typical results are shown in the following section.

3 Results and Discussion

Currently, our validation is qualitative rather than quantitative, due to the difficulty of
obtaining ground truth expert segmentations of the ligaments, which after all are elu-
sive in existing CT or MRI alone. We can point to qualitative results that appear
promising to an orthopedic surgeon on the team, as shown in Fig. 7. This figure depicts
surface-rendered visualizations and rasterized images of planar intersections of the
warped CAD model overlaid on the corresponding CT plane.

In fact, the planned validation strategy can briefly be described as follows. This
validation methodology is currently under development through the efforts of the
anatomists on the team. As shown in Fig. 8, the validation will exploit cadaveric
imaging studies that integrate, on the one hand, high-resolution CT and MRI image
acquisitions, interspersed with expert suturing of radiolucent thread at the surface of
these ligaments, producing point cloud sets that will coincide with the boundaries, for
comparison with those produced by the warped multi-surface model. These cadaveric
studies could also lead to a shape statistics model, whose integration with multi-surface
Simplex was shown by Haq et al. [16].

As mentioned above, this work is still in a nascent stage, but will soon integrate
further surface meshing innovations. We could employ the static collision detection
between neighboring surfaces to prevent overlap, as developed by Gilles [15] and also
applied by Haq to the lumbar spine [16]. However, this implementation only prevents
spatial overlap between two neighboring surfaces: it does not in any way ensure that
these surfaces should be flush with one another. A better approach has been proposed
by Rashid [17], as depicted in Fig. 9 below: multi-material surface extraction leads to a
triangulated multi-surface complex with shared boundaries: this multi-surface model
can then be converted to a deformable multi-surface Simplex model by geometric
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duality, which then allows us to warp the anatomy to the target image, while continuing
to enforce shared boundaries. With a shared-boundary deformable multi-surface
model, IVD-vertebra and ligament-vertebra interfaces will thus remain in perfect
contact throughout the deformation.

Fig. 7. Left: MITK Workbench [23] scene with registered semitransparent vertebrae C7, T1 and
T2, with two IVDs sandwiched between them and all ligament models of Fig. 4b, defined in
relation to these vertebrae and rendered with the same color codes. Right top and bottom: axial
and sagittal planes featuring colored contours coinciding with intersecting surface models. Right:
3D multi-planar view featuring embedded registered surfaces. (Color figure online)

Fig. 8. Planned validation study founded on
cadaveric MR, CT and radiolucent suturing-
based point cloud acquisition, coincident with
ligament boundaries.

Fig. 9. Plannedmulti-material shared-boundary
multi-surface model. (a-b) Synthetic triangulated
multi-material boundary, surface and wireframe-
rendered. (c-d) Dual shared-boundary simplex,
(c) surface and (d) wireframe-rendered. Repro-
duced from [17].
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Given that the starting point is a collection of individual surfaces, with tiny spaces
between them, the implementation of a multi-material surface extraction will require a
competitive Fast Marching method-based multi-front propagation of the various
boundaries within a fine-resolution image volume, to flag overlaps and seal small “air
pockets”. Surfaces that should anatomically be in contact will then exhibit airtight
contiguity in labeled fine-resolution image volumes. In turn, this airtight digital atlas of
the ligamentous spine will be input to Rashid’s shared-boundary-preserving multi-
surface extraction. One aspect of this method that requires further work is a decimation
technique for the multi-material Simplex model, which preserves double vertices and
edges on both sides of the interface. This decimation is needed to produce a suitably
sparse multi-surface complex that affords a robust, coarse-to-fine registration to the
target image.

Last, the pre-Simplex TPS transformation exhibits undulations, which is typical of
an interpolation of this nature. It is likely that a regularized approach, or alternately a
thin plate-based approximation, would be less prone to this oscillatory behavior.

4 Conclusions

This paper presented a novel approach to producing personalized anatomical models of
the spine that emphasize ligaments, in conjunction with the development of a finite
elements simulation-based scoliosis surgery planning. While the meshing methodology
is currently well proven, the application of anatomist-drawn CAD models is new and
broadly applicable to orthopedic surgery planning in general: knee, shoulder, pelvis,
and so on, provided that sufficiently descriptive and faithful CAD models of the rel-
evant anatomy be available. This method also does not preclude further image-
mediated refinements in the event that high-contrast delineation of the ligaments
becomes available in MRI: the application of shared-boundary multi-surface Simplex
models to tracking 3D image gradients has been demonstrated in deep brain data by
Rashid [17].
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Abstract. In the context of the challenge of “automatic InterVertebral
Disc (IVD) localization and segmentation from 3D multi-modality MR
images” that took place at MICCAI 2018, we have proposed a segmenta-
tion method based on simple image processing operators. Most of these
operators come from the mathematical morphology framework. Driven
by some prior knowledge on IVDs (basic information about their shape
and the distance between them), and on their contrast in the different
modalities, we were able to segment correctly almost every IVD. The
most interesting feature of our method is to rely on the morphological
structure called the Three of Shapes, which is another way to represent
the image contents. This structure arranges all the connected compo-
nents of an image obtained by thresholding into a tree, where each node
represents a particular region. Such structure is actually powerful and
versatile for pattern recognition tasks in medical imaging.

Keywords: Mathematical morphology · Tree of shapes

1 Introduction

Segmenting intervertebral discs (IVDs) is important to be able to measure auto-
matically their degeneration. Indeed, there is a strong association between such
degeneration and low back pain, which is one of the most prevalent health prob-
lems amongst population and, consequently, a leading cause of disability that
affects work performances and well-being.

The recent trend in medical imaging segmentation is to use convolutional
neural networks (CNN), which was not yet the case of the (rather) recent state-
of-the-art methods such as [1,10,14,15]. Since many research groups would
probably take advantage of the powerful—yet black-boxed–CNNs, we have
decided to propose an alternative approach based on mathematical morphology.
Section 2 explains the morphological tools used in our method, which is described
in Sect. 3. The result we obtained on the data provided by the challenge “Auto-
matic intervertebral disc localization and segmentation from 3D multi-modality
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MR images (IVDM3Seg)”1, that took place at the 21st International Confer-
ence on Medical Image Computing & Computer Assisted Intervention (MIC-
CAI) 2018, are given in Sect. 4. As we advocate reproducible research, the code
of the method presented here is available from:
https://publications.lrde.epita.fr/carlinet.19.csi.

2 Theoretical Background

The method we propose falls into the framework of mathematical morphology.
This section thus recalls the basic notions that are used in this paper. We will
consider that an image, either a 2D digital image or a 3D digital volume, are
represented by a function f : X → Y , where X is a subset of Z2, resp. Z3, and
where Y is a subset of N, typically �0, 255� in the case of an 8-bit quantization.

2.1 Operators

An operator ϕ on images (i.e., taking an image as input and producing an image
as output) is:

– increasing iff f1 ≤ f2 ⇒ ϕ(f1) ≤ ϕ(f2),
– idempotent iff ϕ ◦ ϕ(f) = ϕ(f),
– extensive iff ϕ(f) ≥ f ,
– anti-extensive iff ϕ(f) ≤ f .

In the writing of these properties, we implicitly consider that, for an operator
ϕ, they apply whatever the considered functions. Furthermore, ϕ ◦ ϕ(f) = ϕ(f)
means that ∀x ∈ X, we have ϕ ◦ ϕ(f)(x) = ϕ(f)(x). In the following, we will
also use the classical operator compact notation, such as ϕ ◦ ϕ = ϕ, meaning
that such a property applies whatever the function. Last, we say that:

– the operators ϕ and ψ are dual iff ϕ(f) = −ψ(−f),
– the operator ϕ is self-dual iff ϕ(f) = −ϕ(−f).

2.2 Morphology with Structuring Elements

First let us recall the couple of fundamental operators of mathematical morphol-
ogy. We call structuring element, a set B of vectors having the same discrete
coordinate system than X. In the following, we will only consider structuring
elements with the two following properties:

– centered, that is, 0 ∈ B,
– and symmetrical, that is, b ∈ B ⇒ −b ∈ B.

1 Site of the challenge: https://ivdm3seg.weebly.com/.

https://publications.lrde.epita.fr/carlinet.19.csi
https://ivdm3seg.weebly.com/
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(a) f (b) opening γB(f) (c) top-hat κB(f)

Fig. 1. Illustration of the white top-hat effect, with B being a vertical line of 15 pixels.
(Color figure online)

The structuring element is a parameter for some morphological operators; its
shape influences the filtering effect, while its size adjusts the filtering strength.

Given a structuring element B, the dilation δ and the erosion ε are operators
on images, respectively defined by:

∀x ∈ X, δB(f)(x) = max
b∈B

f(x + b) (1)

εB(f)(x) = min
b∈B

f(x + b). (2)

These two operators are dual, so εB(f) = −δB(−f). The dilation is extensive
(the resulting image is brighter than the input image), whereas the erosion is
anti-extensive (the result is darker than the input).

From these two operators, we can define two idempotent operators, the clos-
ing (extensive) and the opening (anti-extensive), respectively by:

φB = εB ◦ δB , (3)
γB = δB ◦ εB , (4)

which are dual: φB(f) = −γB(−f). If we consider that an image f is seen as a
landscape, where f(x) is the elevation—height of the landscape—at point x, the
effect of the closing φB is to fill valleys, i.e., image parts surrounded (in the sense
of B) by brighter pixels, whereas the opening γB has the opposite effect: remove
mountains, i.e., image parts surrounded by darker pixels. The white top-hat
operator is derived from the opening:

κB = id − γB , (5)

where “id” denotes the identity operator. Since we have κB ≤ id, the top-hat
operator is anti-extensive: it removes some bright regions in images.

The behavior of the opening and top-hat operators are illustrated in Fig. 1.
The IVD spaces appear as light parts in the original image f (Fig. 1(a)), sur-
rounded vertically by some darker regions, that correspond to disks. Therefore
the effect of an opening with a vertical structuring element is to remove the
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(a) Gray scale (b) An image f (c) Level lines of f

(d) Two shapes of f (e) Tree S(f)

Fig. 2. Toy example of an image, its level lines, its shapes, and its tree of shapes.

bright IVD spaces, as it can be seen in Fig. 1(b). In this image, namely γB(f),
the part of the spine is exclusively dark.

The top-hat is the difference κB(f) = f − γB(f), so the removed IVDs now
reappear; this result is depicted in Fig. 1(c). When comparing the original image
f with κB(f), we can observe that most of the bright parts/objects of f have
been filtered out, and, as a corollary, some IVD regions that were connected
in f with some other anatomical parts are now de-connected in κB(f); see for
example the red circle in Fig. 1(a) and (c).

In the following, the top-hat operator will thus be used to “clean” the 3D
volumes in different modalities, so that:

– many non-IVD objects are removed in the resulting volumes,
– and IVDs appear more clearly and are de-connected from other objects.

2.3 Tree of Shapes

Given a gray-level image f : X → Y and any scalar λ ∈ Y , the lower level sets
are defined as:

[f < λ] = {x ∈ X; f(x) < λ}, (6)

and the upper level sets as:

[f ≥ λ] = {x ∈ X; f(x) ≥ λ}. (7)

We will now consider the connected components (obtained by the opera-
tor denoted by CC) of these sets. Let us denote by Sat the cavity-fill-in
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operator2. In the following, we call shape the result of the cavity-fill-in oper-
ator applied to a connected component of a (lower or upper) level set. In the
image f depicted in Fig. 2(b), we have for instance the lower level set [f < 1] = B,
and CC([f < 1]) = {B}. Note that B has two holes, namely D and E, so we have
the shape Sat(B) = B ∪ D ∪ E. An example of upper level set is [f ≥ 2], and
CC([f ≥ 2]) = {C,D,E}. C is a component of a level set, so Sat(C) = C ∪ F is a
shape. Figure 2(d) depicts the two shapes Sat(B) and Sat(C).

The tree of shapes (ToS) of an image u is classically [13] defined by:

S(f) = {Sat(Γ ); Γ ∈ CC([f < λ]) ∪ CC([f ≥ λ])}λ. (8)

An image f and its tree of shapes S(f) are depicted respectively in Fig. 2(b)
and (e). An element of S(f) is called a shape; it is a connected component
of X with no cavity, and its boundary is a level line of f . Two shapes of f
are displayed in Fig. 2(d). Every shape corresponds to a node of the tree; for
instance, in Fig. 2(e) (right), the sub-tree rooted at node “B” corresponds to the
shape B∪D∪E. Keeping the level of every node—such as displayed in Fig. 2(e)
(right)—allows to reconstruct the image from its tree. It is thus another way to
represent the image contents.

original modified #1 modified #2 same level lines

(a) Invariance of the ToS wrt level/color transforms.

image #1 lines of #1 lines of #2 image #2

(b) Stability of level lines (taken from [19]).

Fig. 3. About properties of the tree of shapes and the level lines. (Color figure online)

It is worth mentioning that the tree of shapes has also been defined for multi-
variate data [5], that is, images whose pixel values are not scalars but vectors,

2 Topological reminder: In 2D, the cavity-fill-in operator is also called hole filling; in
3D, a cavity is just like a bubble within a sphere (whereas a hole is like a tunnel
going through a sphere).
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such as it is the case for instance for color images, multi-modality medical images,
and multi-band satellite images3.

The tree of shapes of an image f is a morphological representation of f , which
makes it easier to deal with the image contents [9]. For a “classical” image, there
is about as many nodes in the tree than pixels in the image. Such a tree thus
encodes a lot of shapes (connected components, i.e., regions) and their inclusion
relationship. Despite one might think that such a structure should be complex
and long to compute, and heavy to store in memory, this is actually not true.
Indeed, storing [3] and computing [6,11,12] the tree of shapes can both be done
very efficiently.

The tree of shapes is an operator satisfying two important major properties.
First, we have:

S(−f) = S(f), (9)

meaning that this representation does not favor a particular contrast (light
regions surrounded by darker ones, or the opposite). This property thus “con-
trasts” with the morphological operators presented in Sect. 2.3, where dual oper-
ators (such as δ and ε, or φ and γ) can be useful exactly because they rely on a
particular kind of contrast: we choose one of the dual operators so that we pro-
cess either brighter or darker parts of the images (remind Fig. 1 for instance).
Conversely, the tree of shapes is a structure from which we can derive self-dual
operators, that are, operators that process “the same way” light objects and dark
objects. The second property is that, with any non-negative function � acting
over gray-levels (that is, a contrast change function), we have:

S(� ◦ f) = S(f). (10)

This property implies that it is not the gray-level values of the pixels that mat-
ters, but only their ordering. Applying a gray-level change (or look-up table)
such as � = [0 
→ 0, 1 
→ 2, 2 
→ 4, 3 
→ 5] to the image in Fig. 2(b) does
not change the structure of its tree of shapes: the ToS of the new image is the
one of Fig. 2(e). As a direct consequence, the image processing operators that
derive from the ToS structure apply the same way on low-contrasted images (or
low-contrasted parts of images) than on better contrasted ones.

These properties are illustrated in Fig. 3. The image on the left in Fig. 3(a)
has been modified to produce two new images. The modification #1 consists
in contrast-change and contrast-inversion on the different color components; we
have applied a function �i (such as in Eq. 10) on each ith component. The mod-
ification #2 is a local contrast change. In both cases, the original image and the
modified ones have exactly the same set of level lines, depicted on the right.
In Fig. 3(b), two images (on the left and on the right) share partially the same
contents—a DVD jacket; yet the point of view, the lighting environment, and
the quantity of noise are different. Despite these differences, the “meaningful”

3 Such a multi-variate version of the tree of shapes is used in the illustrations of Figs. 3
and 4, but not in the segmentation method presented in this paper.
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Fig. 4. Some applications of the ToS: grain filter [8], filtering in shape-space [17], object
detection [16], simplification/segmentation [18], object picking [4]. (Color figure online)

level lines extracted from both images are very similar; the lines are depicted
on the middle, the colors expressing the depth in their respective tree of shapes.
In the grain filter example, depicted on the top-left part in Fig. 4, we can see
that both bright and dark objects tiny are filtering out at the same time, thus
illustrating the self-dual property, Eq. 9, of the ToS structure.

2.4 Some Applications of the Tree of Shapes

The tree of shapes is a versatile tool to perform image filtering [17], and a very
relevant structure to perform some pattern recognition and computer vision
tasks [2,7]. For illustration purpose, Fig. 4 shows that many applications can be
derived from manipulating—or just using—the tree of shapes.

3 Method Description

In the IVDM3Seg challenge, for each patient we have four aligned high-resolution
3D volumes: in-phase, opposed-phase, fat and water images. We only use the
three last modalities, abbreviated in the following opp, fat, and wat respectively.
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Fig. 5. Scheme of our method.

Our method has four main steps, illustrated in Fig. 5:

– Step 1: obtain some prior knowledge about IVDs localization, i.e., get a 2D
region of interest (ROI) for each IVD;

– Step 2: prepare a 3D “input” volume from the volumes corresponding to the
3 modalities;

– Step 3: identify shapes that correspond to IVDs in the set of “input” slices,
using the ROIs as localization constraints;
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– Step 4: regularize the output in 3D.

These steps are described in the next four sections.

(a) opp slices at z = 8, 16, and 24.
�
(b) 2D summation.

(c) Level lines of (b). (d) Zoom on (c). (e) Maximal shapes. (f) Selected ones.

Fig. 6. Step 1: obtaining localization prior knowledge.

3.1 Obtaining Prior Knowledge About IVDs Localization

The first step of the method aims at getting a gross estimation of the IVDs in
3D which will be refined later. At this stage, we do not need a precision at pixel
level, only the bounding box of the IVDs.

Image Preprocessing. The method works with the opp volume only. In slices
which reveal the IVDs the most, IVDs appear as bright oriented blobs which are
at least 7-pixels high. Thus, for each slice, a top-hat (as described in Sect. 2.2)
with a flat vertical structuring element of size 15 × 1 allows filtering out the
background and highlights the IVDs. Then, the slices are summed up (similar to
an Average Intensity Projection along the z-azis) to produce a consensus image.
The projection serves as a Temporal Noise Reduction to reduce noisy structures
that could have passed the top-hat filtering in some frames. Figure 6(b) shows
the result of the preprocessing of a volume whose slices are shown in Fig. 6(a).

IVD Selection. The method computes the Tree of Shapes (ToS) on the prepro-
cessed image. The latter enables a hierarchical representation of the inclusion of
the hole-filled connected components of the image. The tree is then filtered by
some prior-knowledge-based basic criteria:
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(a) fopp (b) fwat (c) − ffat (d) g

Fig. 7. Step 2: creation of a 3D volume from three different modalities.

– bounding box size and position of the shape
– position of the center of the shape
– orientation of the shape
– height of the shape
– average gray level of the shape.

Only about 20 maximal (i.e., not included in any other shape) shapes Si are
able to pass these requirements but have non-regular contours. To overcome this
problem, we then look for the sub-shapes S∗

i the most compact (i.e., maximizing
the ratio of the surface over the enclosing oriented rectangle surface) included
in the maximal shapes Si.

From this set of candidates, we then need to select only 7 of them—because
exactly 7 IVDs are expected for the challenge. The candidates are sorted by
decreasing average gray value (remind that IVDs appear very bright in the pre-
processed image). The brightest shape serves as a reference and is augmented
with shapes taken from S∗

i satisfying some relative positioning constraints:

– the y-distance between the shape center and the current bounding box is
between 15 and 45 pixels

– the x-distance between the shape center and top/bottom selected shapes is
below 15 pixels.

Figure 6(e) and (f) illustrate the 7 maximal and regular shapes retained by
our shape selection algorithm. From these shapes, we extract the 7 Region of
Interests (ROI) as the bounding boxes of the selected shapes. These ROIs and
shape center will be used as markers in Step 3.

3.2 Preparing a 3D “input” Volume

The previously detected seeds are used to guide the search in the 2D slices. We
are now going to work on an image combining the opp, fat and wat modalities,
as IVDs contours may be spread among these images. To that aim, the top-
hat filtering is used to enhance the contrast of IVDs. The combination of the 3
volumes is given by:

g = κB(fopp) + κB(fwat) − fwat, (11)

and is illustrated in Fig. 7.
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3.3 Identifying Shapes of IVDs in 2D Slices

This step is very similar to the IDV Selection process of Step 2 described in
Sect. 3.1. A ToS is computed on each slice of the 3D input volume. In each ROI
of the IVDs localized previously, we look for the best regular shape passing some
basic geometric criteria (min/max size, bounding box, minimum intensity. . . ).
Note that for an IVD ROI, there may not exist such shape, as some IVDs might
not be visible in some slices.

3.4 3D Regularization

Z-axis Regularization: In some slices, when no shape can be found for a given
IVD, it may be normal but also might be a missed detection. If a pixel (x, y)
is labeled at z = k − 1 and z = k + 1, but not at slice z = k, it is likely a
miss-detection. As a consequence, the regularization applies:

f(z, x, y) = f(z, x, y) ∨ (f(z − 1, x, y) ∧ f(z + 1, x, y))

3D Shape Regularization: In each 2D slice, shapes are quite regular because
of the shape selection algorithm that favors regular contours. On the contrary,
back in 3D, the concatenation of 2D results has no 3D coherence. To tackle this
problem, a structural opening followed by a structural closing with a small 3D
ball allows to remove contour irregularities.

Isolated Pixels Removal: While the z-axis regularization tackles the missed-
detection problem, false-detections may appear due to some natural noise (espe-
cially at the beginning and the end of the sequence). These shapes are generally
disconnected in 3D from the real IVDs. Thus, as a final step, we perform a 3D
connected component labeling and only retain the 7 largest ones.

Step 4 in Fig. 5 illustrates the 3D regularization of the shapes performed by
our method.

Dice
mean 0.881

sd 0.025
min 0.852
max 0.927

(a) On the training set.

IVDs
1 2 3 4 5 6 7

1 0.784 — — 0.858 0.589 0.850 0.659
2 0.899 0.416 — 0.916 0.902 0.892 0.706
3 0.742 — — 0.787 0.815 0.732 0.601
4 0.813 0.908 0.910 0.837 0.832 0.793 0.763
5 — 0.805 0.911 0.879 0.864 0.875 0.659
6 — 0.723 0.902 0.883 0.882 0.857 0.635
7 0.839 0.902 0.900 0.888 0.872 0.839 0.784
8 0.847 0.896 0.892 0.897 0.890 0.863 —

mean 0.821 0.775 0.903 0.868 0.831 0.838 0.687

(b) Dice values on the 8 cases of the test set.

Fig. 8. Quantitative results on the challenge data sets.
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4 Results

First we have run our method on the 16 cases of the challenge training set. We
can observe in Fig. 8(a) that the average Dice value of 0.881 is good, with a
very low standard deviation. On the 8 cases of the test set, the different rows in
Fig. 8(b), we miss some IVDs (which is symbolized by “—” in the table). Since
we do not have access to the data of the test set, we cannot figure out what
makes our method fail for these few IVDs. Yet, for the ones we segment, the
Dice values are satisfactory, with an overall average Dice of 0.816. Last, some
qualitative results, compared to the reference images provided by the challenge
organizers, are depicted in Fig. 9.

original reference our segmentation

Fig. 9. Some qualitative results on selected slices, respectively taken from training
samples #6 (top), #14 (middle), and #16 (bottom).
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5 Conclusion

We have presented a mathematical morpholology-based of the IVD segmentation
problem. This method which is a machine-learning free, only relies on a chain of
some simple morphological processing blocks. Despite being a learning-free app-
roach, we have shown that it is able to compete with new CNN-based methods
(but still perform worst when looking at the metrics only). On the other hand,
the strength of our method lies in its speed. Only few seconds are required to pro-
cess a whole volume with a single-threaded desktop processor, where CNN-based
methods would be several order of magnitude slower. Yet, our implementation
does not take benefit neither from a straightforward parallelization of the 2D
slices processing, nor from parallel implementations of the tree of shapes [6,11].
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11. Crozet, S., Géraud, T.: A first parallel algorithm to compute the morphological tree
of shapes of nD images. In: Proceedings of the 21st IEEE International Conference
on Image Processing (ICIP), Paris, France, pp. 2933–2937 (2014)

https://doi.org/10.1007/978-3-642-22092-0_19
https://doi.org/10.1007/978-3-540-68481-7
https://doi.org/10.1007/978-3-540-68481-7
https://doi.org/10.1007/978-3-642-04611-7
https://doi.org/10.1007/978-3-642-04611-7


118 E. Carlinet and T. Géraud
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Abstract. Intervertebral discs are joints that lie between vertebrae
in the spinal column, which absorb shock between vertebrae during
activities. There is a strong correlation between lower back pain and
degeneration of intervertebral discs, which may have a great impact on
peoples normal life. The precise segmentation of the intervertebral disc
is of great significance for the diagnosis of disc degeneration. Currently
clinical practice usually manually annotates the volumetric data, which
is time-consuming, tedious, needs a lot of expertise and lacks of repro-
ducibility. In this challenge, we developed a fully automated framework
that can accurately segment and locate seven intervertebral discs. First,
we delicately designed a powerful segmentation network which is a 2D
fully convolutional neural network with densely connected atrous spatial
pyramid pooling to capture and fuse multi-scale context information.
Then we used a localization network and a robust post-process scheme
to distinguish different IVD instance. Further more, we proposed a novel
training strategy that can make the segmentation network focus on the
spine region. The effectiveness of our algorithm is proven in the chal-
lenge, we achieved the mean segmentation Dice coefficient of 90.58%
and a mean localization error of 0.78 mm.

Keywords: IVD localization · IVD segmentation · Deep learning

1 Introduction

The intervertebral disc is a fibrocartilage disc that connects adjacent vertebrae
so that the spine can move within a certain angle. The IVDs have the nature of
toughness and elasticity, and can be deformed under pressure, so that the force
applied on the IVDs can be evenly distributed into all directions, and ensure the
entire surface of vertebral is subjected to the same pressure. IVDs are also the
main structure for absorbing shock. When the human body jumps, falls from
c© Springer Nature Switzerland AG 2019
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a high place, and performs other vertical movements, or when the shoulders,
back, and waist suddenly load heavy objects, the IVDs can buffer the force by
conduction and self-deformation, hence plays the role of protecting the spinal
cord and vital organs in the body.

However, with age, excessive activity or overload, it may lead to degeneration
of the intervertebral disc, causing lower back pain, numbness of lower limb, nerve
injury or even loss of movement, which will seriously affect work ability and life
quality. Clinically, medical image analysis is usually the best non-invasive diag-
nostic method. In order to obtain quantitative parameters, doctors usually man-
ually annotate the IVDs. However, for 3D images, this method is usually tedious,
time-consuming, needs a lot of expertise and lack of reproducibility. Therefore,
a fully automatic localization and segmentation algorithm of the intervertebral
disc can offer visualized 3D reconstructed image and also provide quantitative
parameters, which can greatly improve the speed as well as the quality of the
diagnosis.

As magnetic resonance imaging has the properties of excellent sensitivity to
soft tissue and no radiation, it is widely considered to be the best modality for
disc disease diagnosis. Further more, the Dixon method can generate fat only
and water only images by combining the in-phase and opposed-phase signal.
Making full use of the image information from different modalities can improve
the accuracy of the segmentation algorithm. The four modality Dixon sequences
are showed in Fig. 1.

Fig. 1. Examples of multi-modality Dixon sequence, including in-phase, opposed-
phase, fat and water from left to right. Each modality has different contrasts for specific
components, making full use of multi-modality information can result in better con-
tour segmentation. It should be noted that there are more than seven IVDs in the MR
images, but only the lumber IVDs are our objective.

The task of this challenge has two parts, the localization and segmentation of
intervertebral disc. The objective of segmentation is to obtain the binary mask
of each IVD, i.e. each voxel in the image is classified into the disc category or
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non-disc category. The objective of localization is to obtain the coordinates of
the centroid of each disc, which is calculated by the morphological center of each
IVD mask. The segmentation algorithm affects both segmentation accuracy and
localization accuracy, therefore a good segmentation algorithm is a prerequisite.

1.1 Related Work

In early studies, researchers typically used hand-crafted features [4,14] based
on image intensity or texture features for IVD localization and segmentation.
Graph-based methods are commonly used in the segmentation of vertebrae and
discs. For example normalized cut [2] and graph cut algorithm [1] were used for
IVDs segmentation in spine MR images. And graphical models [5,12] were used
for IVD localization.

As learning-based approaches gain more and more attention in the medical
image analysis field, several marginal spacing learning [9] and regression-based
methods [3] are proposed for localize IVDs and segment IVDs. However, those
methods were limited by the representation capability of the hand-crafted fea-
tures.

Recently, deep learning methods have revolutionized medical image analysis
and computer vision field with its remarkable feature representation capability.
For example, Ronneberger et al. [13] proposed U-net for cell segmentation from
2D images and Dou et al. [6] proposed 3D convolutional neural network for 3D
liver cancer segmentation. Deep learning methods also improve the performance
of IVD localization and segmentation to a brand new level. For example, Li
et al. [10] proposed a 3D multi-scale FCN with random modality dropout scheme
to better utilize multi-modality information and achieved decent accuracy for
IVD localization and segmentation.

1.2 Contribution

We propose a strong and robust deep learning framework for IVDs localiza-
tion and segmentation from multi-modality MR images. The evaluation results
from MICCAI 2018 Automatic Intervertebral Disc Localization and Segmenta-
tion from 3D Multi-modality MR Images demonstrated the effectiveness of our
proposed framework. Our main contributions can be summarized as follows:

• We delicately design a 2D fully convolutional network, which only performs
downsampling for 2 times, and use densely connected atrous spatial pyramid
pooling to capture multi-scale features as well as ensure large enough receptive
field. The network consists of three separate pathways for different spatial res-
olution features, which makes the training of encoder more effective. Further
more, a Squeeze-and-Excitation module are used for channel-wise attention.
This network is a strong backbone that can be generalized to other medical
image segmentation tasks.
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• We designed a 3D V-Net based localization network with a robust post-
process scheme to classify the seven lumber disc into seven category and
distinguish them from other thoracic discs, which makes the whole frame-
work to be fully automated.

• We proposed a novel and intuitive training strategy that can make the seg-
mentation network focus on the spine region while ignore the interference
from large and complex backgrounds.

• Our method was evaluated on MICCAI 2018 IVDM3Seg dataset which con-
sists of 16 sets of 3D multi-modality MR images from 8 subjects, and demon-
strated superior performance.

Fig. 2. The pipeline of proposed framework for IVD localization and segmentation.
The segmentation first perform binary segmentation to classify each voxel into disc and
non-disc region. The localization network and post-process treat each disc instance as
a categories and assign label from 1–7 from bottom to top.

2 Methodology

The pipeline of our framework for IVD localization and segmentation are illus-
trated in Fig. 2. Our localization and segmentation framework mainly consists
of two parts: the segmentation network, the localization network and the post-
process scheme. The objective of segmentation is to output the binary masks of
each IVD, however, because of the similarity between thoracic discs and lumber
discs, the segmentation network will predict more than 7 IVD masks, though
only 7 lumber discs have annotation. To obtain the final result and achieve the
purpose of fully automation, we designed a V-Net based localization network
which treats each IVD as an instance, i.e. performs 7 class segmentation, and
then used a post-processing method to increase the robustness of the localization
network.

2.1 Segmentation Network

In recent years, convolutional neural networks have revolutionized the field of
computer vision and medical image analysis. 2D CNNs based methods have made
great progress on medical images compared to traditional methods. Recently, 3D
CNNs [6,11] are explored as they can capture volumetric contextual information
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Fig. 3. The proposed 2D fully convolutional segmentation network, it takes the 4-
channel concatenated multi-modality image as input, and outputs the binary mask of
IVDs.

and have better representation capability. However, 3D CNNs essentially have
a disadvantage compared to 2D CNNs, they have a greater demand for data, as
3D CNNs treat a volumetric image as a single sample while 2D CNNs treat each
slice as a single sample. There are only 16 samples in the training set, therefore,
we think the 2D network is more suitable for this task.

U-net [13] is one of the most successful 2D convolutional neural networks in
medical image analysis, many previous deep learning methods are modified based
on it. U-net has a symmetric Encoder-Decoder structure, the encoder encodes
multi-scale information into feature maps by four downsamplings. The decoder
then reconstruct spatial resolution from high-level feature maps by upsampling
or deconvolution, while high-resolution features are also concatenated by short
connection from encoder to assist reconstruction. However, this structure has
three inherent defect for semantic segmentation. First, too many times of down-
sampling leads to the loss of detail information, although the high-resolution
feature maps are used in the reconstruction process, but this low-level feature
concatenate and feature fusion can only slightly alleviate the problem. Second,
UNet captures multi-scale features by downsapling, which results in capturing
only fixed and limited scales of features, making it difficult to represent complex
and variable anatomical structures. Third, during the gradient back propagation
in the training phase, the encoder will receive two gradient signals from different
resolutions, one is the low resolution gradient signal from below, and the other
is the same resolution gradient signal from the shortcut connection. It cannot
be guaranteed that the two path have the same magnitude of gradient signal
because the number of convolution layers on different paths is quite different.
The mixing of these two signals in the training process will affect the effectiveness
of the encoder training.

To solve the problems mentioned above, we elaborately design our segmen-
tation network, see in Fig. 3. We use a strong backbone network, which is based
on DenseNet [8] and uses Squeeze-and-Excitation module [7] as channel-wise
attention. For the first problem, reduce the number of downsampling is a intu-
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Fig. 4. The pipeline of localization network and the post-process scheme. (Color figure
online)

itive solution. In the trade-off between the GPU memory usage and segmentation
accuracy, our network only perform two downsamplings, it can effectively reduce
the information loss, and improve the segmentation accuracy of the detailed edge
region of discs. However, such structure has a disadvantage that the network
can only fuse less scales of features, moreover, the receptive field of convolution
kernel become smaller, which makes it difficult to capture more global and high-
level features. Therefore, we further use densely connected dilated convolution to
solve this problem, or use another name, densely connected atrous spatial pyra-
mid pooling (ASPP). Compared with the serial connected or parallel connected
[15] counterpart, densely connected ASPP combines arbitrary scales of features,
which can be adjusted by dilation rate, and better feature reuse. In our model,
we use the dilation rate of 3, 6, 12, 18 and 24. For the third problem, inspired
by some works on multi-task learning, we design three separate paths to handle
different resolution signal, i.e. treat each resolution signal path as a single task.
This approach can train each path more effectively without interfering with each
other.

2.2 Localization Network and Post-process

Although the segmentation network is trained only with 7 lumbar discs anno-
tation, the network predicts more than 7 IVDs because of the similar anatomy
pattern of thoracic disc and the lumbar disc. We design a localization network
and a post-process scheme to handle the output of the segmentation network,
and fully automatically get the target mask of 7 lumbar discs. The structure is
shown in Fig. 4. The localization network has a V-Net structure, which is a 3D
fully convolutional neural network with residual connection. The ground truth
annotation of the localization network is obtained by marking the mask of the
7 IVDs in the original annotation from 1 to 7 from bottom to top, that is, the
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localization network output 8 channels score map, including seven IVDs and one
background.

Then the prediction from localization network and prediction from segmen-
tation network are intersected together. Due to the similar appearance of the
IVDs, the predicted mask from localization network in the often have misclassi-
fied areas in the upper part of images, but the segmentation of the bottom disc
is always right. We then use a reference image from training set as moving image
to be registered to the predicted mask, and fit the centerline of spine from the
centroid of each disc in the registered mask, i.e. the red line shown in Fig. 4. At
last, we calculate the connected area of the predicted mask. Only the connected
area that intersects with the fitted centerline of the spine is retained. The other
connected regions are set as background. Then, the reserved connected region is
assigned with label from 1 to 7 from bottom to top.

This localization and post-processing strategy can greatly improve the
robustness of the framework, even if there are some misclassified outliers in
the segmentation network, it will not affect the identify of IVDs.

2.3 Training Strategy

To further improve the performance of the segmentation network, we made a
natural assumption.

Assumption. Only the spine part of the entire input image is useful for IVD
segmentation, while region outside the spine only acts as a useless background,
which will reduce the accuracy of the segmentation performance.

We first train a UNet to predict the spine area, where the label was generated
by calculating the convex hull of the annotation of discs after several dilation
operations. When training the segmentation network, the predicted mask from
the UNet was used, and we ignore the loss outside the spine region. In the
inference phase, the spine region is also predicted, and all the region outside the
spine is set as background in the output of segmentation network.

2.4 Loss Function

When training segmentation network, focal loss was used for better focus on
hard samples, i.e. the boundary region of IVDs, and the formula is as follow:

L(p) = −α(1 − p)γ log(p), (1)

Since the use of focal loss may cause instability problems when training, we first
train several epochs using cross entropy loss, then use focal loss.

3 Experiments

3.1 Dataset and Data Augmentation

We evaluated our proposed method on the dataset from MICCAI 2018
IVDM3Seg Challenge using both cross validation on the training data and inde-
pendent test data on the on-site challenge, where training data consists of 16
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sets of 3D multi-modality MR images from 8 subjects, and test data consists of 8
sets of 3D multi-modality MR images from 4 subjects. Each subject was scanned
with a 1.5-Tesla MRI scanner of Siemens using Dixon protocol. The voxel spac-
ing of each image is 2 mm × 1.25 mm × 1.25 mm. For the data augmentation,
we use 3D deformation, random scale, random noise, and random crop.

3.2 Evaluation Metrics

Dice overlap coefficient measures the percentage of correctly segmented vox-
els. Dice is computed by

Dice(A,B) =
2 | A ∩ B |
| A | + | B | × 100%, (2)

where A is the sets of foreground voxels in the ground-truth data and B is the
corresponding sets of foreground voxels in the segmentation result, respectively.

Average absolute distance (ASD) is a metric measures the average abso-
lute distance from the ground truth disc surface and the segmented surface.
Smaller average absolute distance means better segmentation accuracy.

Localization distance R is computed by

R =
√

(Δx)2 + (Δy)2 + (Δz)2, (3)

where Δx, Δy, Δz is the absolute difference between the identified IVD center
and the ground truth IVD center calculated from the ground truth segmentation
in X, Y and Z axis. Smaller localization distance means better segmentation
accuracy.

3.3 Results of MICCAI 2018 and Training Set Cross Validation

The evaluation result of the on-site challenge of MICCAI 2018 IVDM3Seg are
listed in Tables 1, 2 and 3. Our method demonstrated good performance and
strong robustness. Since the test data are not available to us, the segmentation
result are visualized using training set cross validation, see in Fig. 5.

Table 1. Dice overlap coefficient of independent test set in on-site challenge.

Dice Disc 01 Disc 02 Disc 03 Disc 04 Disc 05 Disc 06 Disc 07

Test 01 0.888 0.904 0.927 0.911 0.896 0.890 0.868

Test 02 0.908 0.934 0.940 0.944 0.930 0.923 0.925

Test 03 0.894 0.896 0.900 0.866 0.896 0.818 0.884

Test 04 0.918 0.938 0.938 0.913 0.909 0.885 0.925

Test 05 0.897 0.911 0.917 0.918 0.869 0.896 0.926

Test 06 0.865 0.914 0.929 0.910 0.898 0.898 0.892

Test 07 0.904 0.931 0.931 0.914 0.904 0.887 0.863

Test 08 0.904 0.928 0.922 0.923 0.910 0.907 0.889
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Table 2. Average absolute distance of independent test set in on-site challenge.

ASD(mm) Disc 01 Disc 02 Disc 03 Disc 04 Disc 05 Disc 06 Disc 07

Test 01 0.73 0.67 0.49 0.58 0.63 0.61 0.68

Test 02 0.54 0.47 0.44 0.37 0.44 0.41 0.41

Test 03 0.72 0.82 0.74 0.87 0.57 0.90 0.54

Test 04 0.55 0.48 0.42 0.50 0.48 0.51 0.29

Test 05 0.58 0.70 0.69 0.61 0.97 0.68 0.37

Test 06 0.85 0.66 0.57 0.75 0.78 0.69 0.55

Test 07 0.64 0.53 0.52 0.64 0.62 0.65 0.65

Test 08 0.72 0.63 0.63 0.68 0.62 0.57 0.58

Table 3. Average absolute distance of independent test set in on-site challenge.

Localization(mm) Disc 01 Disc 02 Disc 03 Disc 04 Disc 05 Disc 06 Disc 07

Test 01 0.44 1.42 0.53 0.78 1.37 0.98 1.08

Test 02 0.38 0.73 0.27 0.47 0.73 0.41 0.18

Test 03 0.64 0.33 1.36 2.11 0.95 1.27 0.46

Test 04 0.83 0.53 0.63 1.35 0.50 1.20 0.08

Test 05 0.80 0.34 0.13 1.04 0.93 1.04 0.49

Test 06 1.23 0.47 0.43 0.12 0.64 1.09 0.66

Test 07 0.60 1.12 0.98 1.21 1.17 0.63 1.07

Test 08 0.28 1.30 0.77 0.92 1.03 0.35 0.60

Fig. 5. Visualization of one subject in training set cross validation, the green line is the
prediction of our approach, read line is ground truth and yellow line is the intersection.
These images are from subject 3, the images in the first row is obtained in the first
phase, while the second row is obtained in the second phase. (Color figure online)
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4 Conclusion

In this paper, we present our novel and robust IVD segmentation and localiza-
tion framework from multi-modality MR images, which achieve state-of-the-art
performance. The delicately designed segmentation network can preserve the
detailed information as much as possible by reducing the number of downsam-
plings, and at the same time, using densely connected atrous spatial pyramid
pooling to capture and fuse multi-scale information as well as reserve large
enough receptive field, which can greatly enhance the feature representation
ability of the network. We also design three separate paths to handle different
resolution signal to train each path more effectively. A new training strategy
is also proposed to prevent the segmentation network from interfered by the
large complex background. Furthermore, we propose a localization network with
robust post-process scheme to distinguish thoracic discs and lumber discs. The
result of MICCAI 2018 challenge on IVD localization and segmentation demon-
strated the effectiveness of our proposed method.
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Accurate localization and segmentation of intervertebral disc (IVD) is crucial
for the assessment of spine disease diagnosis. Despite the technological advances
in medical imaging, IVD localization and segmentation are still manually per-
formed, which is time-consuming and prone to errors. If, in addition, multi-modal
imaging is considered, the burden imposed on disease assessments increases sub-
stantially. In this paper, we propose an architecture for IVD localization and
segmentation in multi-modal magnetic resonance images (MRI), which extends
the well-known UNet. Compared to single images, multi-modal data brings com-
plementary information, contributing to better data representation and discrimi-
native power. Our contributions are three-fold. First, how to effectively integrate
and fully leverage multi-modal data remains almost unexplored. In this work,
each MRI modality is processed in a different path to better exploit their unique
information. Second, inspired by HyperDenseNet [11], the network is densely-
connected both within each path and across different paths, granting the model
the freedom to learn where and how the different modalities should be pro-
cessed and combined. Third, we improved standard U-Net modules by extending
inception modules [22] with two convolutional blocks with dilated convolutions
of different scale, which helps handling multi-scale context. We report experi-
ments over the data set of the public MICCAI 2018 Challenge on Automatic
Intervertebral Disc Localization and Segmentation, with 13 multi-modal MRI
images used for training and 3 for validation. We trained IVD-Net on an NVidia
TITAN XP GPU with 16 GBs RAM, using ADAM as optimizer and a learning
rate of 1× 10−5 during 200 epochs. Training took about 5 h, and segmenta-
tion of a whole volume about 2–3 s, on average. Several baselines, with different
multi-modal fusion strategies, were used to demonstrate the effectiveness of the
proposed architecture.

1 Introduction

Intervertebral disc (IVD) degeneration [1] is one of the main causes for chronic
low back pain (LBP), which has become a major public health problem in our
society and a leading cause of function incapacity [24]. Magnetic resonance imag-
ing (MRI) is the preferred modality to evaluate lumbar degenerative disc dis-
ease because it offers a good soft tissue contrast without ionizing radiation [12].
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Advances in multi-modal MRI have increased the quality of diagnosis, treatment
and follow-up in many diseases. However this comes at the cost of an increased
amount of data, imposing a burden on disease assessments. Visual inspections of
such an enormous amount of medical images are prohibitively time-consuming,
prone to errors and unsuitable for large-scale studies. Developing robust meth-
ods for automatic IVD localization and segmentation from multi-modal MRI is
thus essential for the diagnosis and treatment of spine pathologies. Having such
methods could also reduce the manual work required by clinicians, and provide
a faster and more consistent diagnosis.

Over the years, various semi-automated and automated techniques have
been proposed for IVD localization and segmentation [2,4]. Recently, deep con-
volutional neural networks (CNNs) have shown outstanding performance for
this task, outperforming previous segmentation approaches [5,14,16,27,31]. For
example, Ji et al. [14] proposed a standard CNN for IVD segmentation, where
the inference was performed pixel-wise by extracting a patch around each pixel.
In addition, the authors evaluated different patch strategies, such as 2D or 2.5D
patches, as well as the impact of vicinity size. More recently, a deeply supervised
multi-scale fully CNN was proposed in [27] for the segmentation of IVDs in MR-
T2 weighted images. An interesting feature of this work is its use of multi-scale
deep supervision in the architecture, which alleviates the risk of vanishing gra-
dient during training. Despite achieving satisfactory results, these works have
mostly focused on single-modality scenarios.

Integrating multi-modal images in deep learning segmentation methods has
also gained growing attention recently. Multi-modal segmentation in CNNs is
typically addressed with an early fusion strategy, where multiple modalities are
merged from the original input space of low-level features [10,15,18,23,29] (See
Fig. 1, left). By concatenating image modalities at the input of the network, we
explicitly assume that the relation between different modalities is simple (e.g.,
linear), which may not correspond to the characteristics of the multi-modal data
at hand [21]. To better account for the complexity of multi-modal data, other
studies investigated late fusion strategies [19], where each modality is processed
by an independent CNN and the multi-modal outputs are merged in a deep
layer, as in the architecture depicted in Fig. 1, middle. This late fusion strat-
egy was demonstrated to outperform early fusion on infant brain segmentation
[19]. More recently, Aygün et al. explored different ways of combining multi-
ple modalities [3]. In this work, all modalities are considered as separate inputs
to different CNNs, which are later fused at an ‘early’, ‘middle’ or ‘late’ point.
Although it was found that ‘late’ fusion provides better performance, as in [19],
this method relies on a single-layer fusion to model the relation between all
modalities. Nevertheless, as demonstrated in several works [21], relations between
different modalities may be highly complex and cannot easily be modeled by a
single layer. To account for the non-linearity in multi-modal data modeling, we
recently proposed a CNN that incorporates dense connections not only between
pairs of layers within the same path, but also between layers across different
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paths [9,11]. This architecture, known as HyperDenseNet, obtained very com-
petitive performance in the context of infant and adult brain tissue segmentation
with multi-modal MRI data.

Fig. 1. Typical feature-fusion strategies (left and middle) and proposed fusion tech-
nique (right).

In the context of IVD localization and segmentation, Li et al. [17] have also
considered multi-modal images. Specifically, they proposed a multi-scale and
modality dropout learning framework, which employed four MRI modalities.
To capture multi-scale context and handle the scale variations of IVDs, three
different paths process regions extracted from the same location but at different
scales. In addition, a random modality voxel dropout strategy is used to reduce
feature co-adaptation between multiple modalities, and encourage each single
modality to learn discriminative information independently.

Nevertheless, the combination of multi-modal data at various levels of
abstraction has not been fully exploited for IVD localization and segmentation.
In this work, we adopt the strategy presented in [9,11] and propose a multi-
path architecture [8] called IVD-Net, where each modality is employed as input
of one pathway, with dense connectivity used between the layers, within and
across paths (Fig. 1, right). Furthermore, we extend the standard convolutional
module of InceptionNet [22] by including two additional dilated convolutional
blocks, which can help to learn larger context. In our previous work on multi-
modal ischemic stroke lesion segmentation [8], we showed this model to outper-
form architectures based on early and late fusion, as well as several state-of-art
segmentation networks.

2 Methodology

The proposed IVD-Net architecture follow the structure of UNet [20]. This well-
known model is composed of two paths: one contracting and one expanding.
While the former collapses the input image into a set of high level features form-
ing a compact intermediate representation of the input, the latter employs these
features to generate a pixel-wise segmentation mask. Furthermore, it includes
skip-connections, which connect the outputs from shallow layers to the input of
subsequent layers, with the goal of transferring information that may have been
lost in the encoding path during the compression process.
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2.1 Processing Multiple Modalities Separately

In order to fully exploit multi-modal data, we adopt the hyper-dense connec-
tivity approach of [11] in the current work. To achieve this dense connectivity
pattern, we first create an encoding path composed of multiple streams, each of
them processing a different image modality. The main goal of employing sepa-
rate streams for different modalities is to disentangle information that otherwise
would be fused from an early stage, limiting the learning capabilities of the net-
work to capture complex relationships between modalities. The structure of the
proposed IVD-Net architecture is depicted in Fig. 2.

Fig. 2. Proposed IVD-Net architecture for IVD segmentation in multi-modal images,
which extends the traditional UNet. Dotted lines represent some of the dense connec-
tivity patterns adopted in this extended version of UNet.

2.2 Extended Inception Module

Meaningful areas in an image may undergo extremely large variation in size. In
our particular case, as 3D segmentation is assessed in a 2D slice-wise manner,
the region occupied by the IVD varies from one image to another. For instance,
when the 2D sagittal slice corresponds to the center of the vertebral column,
every IVD will appear in the image, whereas only one or two IVDs will be
present in the image when the sagittal plane is located at extremes. This makes
the selection of an accurate and general kernel size difficult. While a smaller
kernel is better for local information, a larger kernel can capture information
that is distributed globally. This idea is exploited in InceptionNet [22], where
convolutions with multiple kernel sizes operate on the same level. Furthermore,
in more recent versions, n × n convolutions are factorized to a combination of
1 × n and n × 1 convolutions, resulting in a 33% memory reduction.

To facilitate the learning of multiple contexts, we included two dilated convo-
lutional blocks in parallel to the existing blocks in an inception module. Dilation
rates of these blocks are different, which helps learning from different recep-
tive fields, thereby increasing the context of the original inception modules. In
addition, we removed max-pooling from the proposed architecture, as dilated
convolutions were shown to be a better alternative, which captures more effec-
tively the global context [25]. Our extended inception modules are depicted in
Fig. 3.
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Fig. 3. Proposed extended inception modules. The module on the left employs standard
convolutions while the module on the right adopts the idea of asymmetric convolutions
[22].

2.3 Hyper-dense Connectivity

Inspired by the recent success of densely connected architectures for medical
image segmentation [6,11,26], we adopted hyper-dense connections in the pro-
posed model. The benefits of employing dense connections in the network are
four-fold [11,13]. First, as demonstrated in [11], dense connections between multi-
ple streams can better model relationships between different modalities. Second,
flow of information and gradients through the entire network is facilitated by
the use of direct connections between all layers, which alleviates the problem of
vanishing gradient. Third, including short paths to all feature maps in the net-
work introduces an implicit deep supervision. Fourth, dense connections have a
regularizing effect, reducing the risk of over-fitting on tasks with smaller training
sets.

Formulation. Let xl denote the output of the lth layer, and Hl be a mapping
function, which corresponds to a convolution layer followed by a non-linear acti-
vation. In standard CNNs, the output of the lth layer is typically obtained from
the output of the previous layer xl−1 as

xl = Hl

(
xl−1

)
. (1)

In a densely-connected network, nevertheless, all feature outputs are concate-
nated in a feed-forward manner, i.e.,

xl = Hl

(
[xl−1,xl−2, . . . ,x0]

)
, (2)

where [. . .] denotes a concatenation operation.
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In the present work, as in HyperDenseNet [9,11], the outputs from previous
layers in different streams are also concatenated to form the input of subsequent
layers. This connectivity yields a much more powerful feature representation
than early or late fusion strategies in a multi-modal context, as the network is
capable of learning more complex relationships between the different modalities
within and in-between all levels of abstraction. For simplicity, let us consider
the scenario with only two modalities. Let x1

l and x2
l denote the outputs of the

lth layer in streams 1 and 2, respectively. Then, the output of the lth layer in a
given stream s can be defined as

xs
l = Hs

l

(
[x1

l−1,x
2
l−1,x

1
l−2,x

2
l−2, . . . ,x

1
0,x

2
0]

)
. (3)

Furthermore, recent works have found that shuffling and interleaving com-
plete feature maps (or single feature maps elements) in a CNN can improve its
performance, as it serves as a strong regularizer [7,28,30]. Inspired by this, we
concatenate feature maps in a different order for each branch and layer, where
the output of the lth layer now becomes

xs
l = Hs

l

(
πs
l ([x

1
l−1,x

2
l−1,x

1
l−2,x

2
l−2, . . . ,x

1
0,x

2
0])

)
, (4)

with πs
l being a function that permutes the feature maps given as input. Thus,

in the case of two image modalities, the outputs of the lth layers in both streams
can be defined as

x1
l = H1

l

(
[x1

l−1,x
2
l−1,x

1
l−2,x

2
l−2, . . . ,x

1
0,x

2
0]

)

x2
l = H2

l

(
[x2

l−1,x
1
l−1,x

2
l−2,x

1
l−2, . . . ,x

2
0,x

1
0])

A detailed example of the adopted hyper-dense connectivity for the case of
two image modalities is depicted in Fig. 4. This figure shows a section (only three
levels) of a deep CNN where the two image modalities are processed in separated
paths and modules are linked in a hyper-dense fashion.

3 Materials

3.1 Dataset

The provided IVD dataset is composed of 16 3D multi-modal MRI data sets of at
least 7 IVDs of the lower spine, collected from 8 subjects in two different stages.
Each MRI data set contains four aligned high-resolution 3D volumes: in-phase,
opposed-phase, fat and water images. In addition to the MRI images, correspond-
ing reference manual segmentations were provided. More detailed information
about the dataset can be found at the IVD website1.

1 https://ivdm3seg.weebly.com.

https://ivdm3seg.weebly.com
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Fig. 4. Detailed version of a section of the proposed dense connectivity in multi-modal
scenarios. For simplicity, two image modalities (in orange and in green) are considered
in this example. While boxes represent a complete convolutional block of the proposed
type, arrows indicate the connectivity pattern between modules. (Color figure online)

3.2 Evaluation Metrics

Even though segmentation is performed in a 2D-slice fashion, once all the 2D
sagittal slices for a given patient have been segmented, they are stacked to
reconstruct the original 3D volume. The metrics introduced below are there-
fore employed to evaluate performance on the whole 3D image. While the first
metric is used to evaluate the segmentation accuracy, the second one serves as
a measure of localization error.
Dice Similarity Coefficient (DSC). We first evaluate performance using
Dice similarity coefficient (DSC), which compares volumes based on their over-
lap. Let Vref and Vauto be the reference and automatic segmentations of a given
tissue class and for a given subject, respectively. The DSC for this subject is
defined as

DSC
(
Vref , Vauto

)
=

2 | Vref ∩ Vauto |
| Vref | + | Vauto | (5)
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Localization Distance. To evaluate the localization error, we compute the 3D
barycenters of ground-truth and predicted IVDs, and measure their Euclidean
distance. Results are given in voxels.

3.3 Implementation Details

Baselines. Several architectures are used to demonstrate the effectiveness of
the proposed network. As baselines, we consider two UNet versions, the first
one with early fusion and the other with late fusion. In early fusion, following
the procedure employed in most works, all MRI image modalities are merged
into a single input which is processed through a unique path. In contrast, for
late fusion, each MRI modality is processed in a separate stream, and learned
features of different modalities are fused in a later stage. In both early and late
fusion, the extended inception module of Fig. 3 is employed, however asymmetric
convolutions are replaced by standard n × n convolutions in these baselines.
Another difference with respect to standard UNet is that feature maps from
skip connections are summed before being fed into convolutional modules of the
decoding path, instead of being concatenated.

Proposed Network. In terms of architecture, the proposed IVD-Net network
and the one employed with late fusion strategy are very similar. As introduced
in Sect. 2.3, the main difference is that feature maps from previous layers and
different paths are concatenated and fed into the subsequent layers, following Eq.
(4). Details of the resulting architecture are provided in Table 1. The first version
of the proposed network employs the same convolutional module as the two
baselines, whereas the second version adopts asymmetric convolutions instead
(Fig. 3).

Training. We employed Adam optimizer to train the proposed architectures,
with β1 = 0.9 and β2 = 0.99. Training converged after 200 epochs with an
initial learning rate of 1×10−4, reduced by half after 100 epochs. Four images
were used in each mini-batch. The same values for all hyper-parameters were
employed across all architectures. Implementation of the analyzed architectures
was done in PyTorch and experiments were performed on an NVidia TITAN XP
GPU with 16 GBs RAM. While training was done in around 5 h, inference on
a whole 3D volume took in 2–3 s on average. Images were normalized between
0 and 1 and no other pre- or post-processing steps were used. Furthermore, no
data augmentation was employed to boost the performance of the networks. For
all architectures, we used the four MRI modalities provided by the organizers as
input. While 13 scans were employed for training 3 scans were used for validation.

4 Results

Quantitative results obtained with the different architectures are reported in
Table 2. First, we observe that by simply fusing all image modalities at the
input of the network provides the lowest mean DSC value. Adopting a late
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Table 1. Layer placement of the proposed hyper-dense connected UNet.

Name HyperDense connectivity

Feat maps (input) Feat maps (output)

Encoding
Path
(each modality)

Conv Layer 1 1 × 256 × 256 32 × 256 × 256

Max-pooling 1 32 × 256 × 256 32 × 128 × 128

Layer 2 128 × 128 × 128 64 × 128 × 128

Max-pooling 2 64 × 128 × 128 64 × 64 × 64

Layer 3 384 × 64 × 64 128 × 64 × 64

Max-pooling 3 128 × 64 × 64 128 × 32 × 32

Layer 4 896 × 32 × 32 256 × 32 × 32

Max-pooling 4 256 × 32 × 32 256 × 16 × 16

Bridge 1920 × 16 × 16 512 × 16 × 16

Decoding
Path

Up-sample 1 512 × 16 × 16 256 × 32 × 32

Layer 5 256 × 32 × 32 256 × 32 × 32

Up-sample 2 256 × 32 × 32 128 × 64 × 64

Layer 6 128 × 64 × 64 128 × 64 × 64

Up-sample 3 128 × 64 × 64 64 × 128 × 128

Layer 7 64 × 128 × 128 64 × 128 × 128

Up-sample 4 64 × 128 × 128 32 × 256 × 256

Layer 8 32 × 256 × 256 32 × 256 × 256

Softmax layer 32 × 256 × 256 2 × 256 × 256

fusion strategy instead of early fusion achieves a mean DSC of 0.9086. Moreover,
we see that our hyper-densely connected IVD-Net architecture brings a boost
in performance compared to the more ‘naive’ early or late fusion strategies.
When employing the extended module with standard convolutions (Fig. 3), we
obtained a mean DSC of 0.9162, whereas the use of asymmetric convolutions
in the proposed module provided the best performance in terms of mean DSC.
These results are in line with values of localization distance, where the proposed
architecture outperforms simpler fusion strategies. Nevertheless, in this case,
the proposed network integrating standard convolutions slightly outperforms
the architecture with asymmetric convolutions.

Table 2. Results on validation subjects obtained by the different architectures.

Architecture DSC Localization distance (voxels)

Baseline EarlyFusion 0.8981 ± 0.0293 0.7701 ± 1.5872

Baseline LateFusion 0.9086 ± 0.0339 0.7400 ± 1.6009

IVD-Net 0.9162 ± 0.0192 0.4145 ± 0.2698

IVD-Net (asym) 0.9191 ± 0.0179 0.4470 ± 0.2641
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Qualitative evaluation of the proposed IVD-Net architecture is assessed in
Figs. 5 and 6. First, ground truth and automatic contours obtained with IVD-
Net are depicted on the sagittal plane in Fig. 5 for two validation subjects. Then,
3D rendered volumes for the ground truth and CNN segmentation are compared
in Fig. 6. In both figures, we can see that the segmentation obtained by our
architecture is very close to the manual annotated data, which aligns with the
quantitative results in Table 2.

Fig. 5. Visual results for two subjects of the validation set. While the area in red
represents the ground truth, bluish contours depict the automatic contours by our
IVD-Net (asym) method in the different image modalities. (Color figure online)

5 Discussion

We have presented an architecture called IVD-Net that can efficiently leverage
information from multiple image modalities for inter-vertebral disc segmenta-
tion. Following recent research on multi-modal image segmentation [8,11], our
architecture adopts dense connectivity between multiple paths in the encoding
section, each of them processing single modalities. Specifically, convolutional lay-
ers in any stream receive as input the features maps of all previous layers in the
same stream as well as from other streams.
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Fig. 6. 3D visualization of the ground truth, segmentation achieved by the proposed
network and the combination of both for a subject on the validation set.

We have demonstrated that naive feature fusion strategies, such as simply
merging information at an early or late stage, may be insufficient to fully exploit
information in multi-modal scenarios. By allowing the network to learn how to
combine learned features from separate modalities, it can capture more com-
plex relationships between multiple sources. This improves its representation
power, which ultimately results in a boost on performance. These findings are in
line with recent works on multi-modal image segmentation [9,11,19]. For exam-
ple, high-level features were combined at a late stage in [19], outperforming an
early fusion strategy in the context of infant brain segmentation. In a recent
work, we demonstrated that adopting more complex fusion techniques, referred
to as hyper-dense connectivity, surpasses the performance of other features fusion
strategies in the challenging tasks of infant and adult brain tissue segmentation
[9,11].

Even though considering 3D context typically helps improve performance, we
treated each volume as a stack of 2D sagittal slices (see Fig. 7). The main reason
for this is that manual segmentations provided in this challenge were performed
slice-wise in the sagittal plane. Thus, when looking at these annotations in the
axial plane, a sharp contour is observed. As CNNs will generally provide a smooth
contour, we assumed that tackling this problem as a 3D task would have led to
lower values during evaluation. Furthermore, IVD localization is assessed after
volumetric segmentation is done. This means that the process of localization
itself is not optimized during training. A possible solution to overcome this
limitation in the future might be to investigate multi-task architectures that
can be trained end-to-end, so that both localization and segmentation tasks can
be jointly optimized.



IVD-Net: Intervertebral Disc Localization and Segmentation in MRI 141

Fig. 7. Examples of manual annotations from the training set seen on axial slices.
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Abstract. The intervertebral discs (IVDs) segmentation and localization on
medical images are important for the clinical diagnosis and research of spine
diseases. In this work, we proposed a robust automatic method based on 2.5D
multi-scale fully convolutional network (FCN) and geometric constraint post-
processing for IVD segmentation and localization on 3D multi-modality Mag-
netic Resonance (MR) scans. Firstly, we designed a 2.5D multi-scale FCN. And
the ensemble outputs of such three networks are used as the IVD prediction
maps. The final segmentation and localization of IVDs are generated from these
prediction maps with a geometric constraint post-processing method. This work
ranked the first in the on-site test of MICCAI 2018 Challenge on Automatic
Intervertebral Disc Localization and Segmentation from 3D Multi-modality MR
Images (IVDM3Seg).

Keywords: Intervertebral disc � Segmentation � Localization �
Fully convolutional network

1 Introduction

The intervertebral disc (IVD) is a cartilaginous joint that lies between adjacent verte-
bras. It plays a crucial role in the shock absorption of vertebral movement [1, 2]. In
modern society, back pain is becoming a common healthy problem, which causes the
pain, stiffness and loss of independency of patients. According to the international
studies, the point prevalence of back pain is between 12% and 35%, while the lifetime
prevalence is up to 49% to 80% [3]. For this disease, degeneration of the intervertebral
disc is considered as a major cause [4].

Magnetic Resonance Imaging (MRI) is a commonly used imaging technique in the
diagnosis of IVD degeneration and many other diseases, which provides non-invasive
assessment to human body. Compared to other medical imaging methods, such as
Computed Tomography (CT) imaging, MRI could provide excellent contrast in soft
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tissue without ionizing radiation. Besides, the MR scans could be obtained with dif-
ferent modalities, and provide more information about tissue structure. In this work,
four MRI modalities (i.e. in-phase, opposed-phase, water, fat) were used for the seg-
mentation and localization of IVDs. Figure 1 shows an example of these four
modalities. It should be noticed that only the 7 IVDs between the twelfth thoracic
vertebra and sacrum are delineated manually as the targets.

The research on IVD degeneration usually needs the segmentation of IVDs. Tra-
ditionally, the IVD labels are delineated manually. However, this job is always time-
consuming and may be biased for inter- and intra-observer variabilities [5, 6]. For this
matter, automatic IVD segmentation and localization methods have great significance
to the study of IVD degeneration.

There are three main challenges for automatic IVD segmentation and localization
on multi-modality images. Firstly, distinguishing different IVDs is difficult due to the
intra-subject similarity of IVDs. Secondly, the intensity of IVD boundary resembles
that of the neighborhood tissues, which makes the IVD contour fuzzy. Thirdly, how to
harness the multi-modality information effectively in medical image processing
remains to be explored.

Fig. 1. An example of 3D multi-modality images provided by MICCAI 2018 Challenge on
IVDM3Seg. (a) to (d) are in-phase, opposed-phase, water, and fat modality in order while (e) is
the manually delineated labels for 7 IVDs between the twelfth thoracic vertebra and sacrum.
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1.1 Previous Work

There are many segmentation and localization methods proposed in previous research,
which are based on traditional hand-crafted features [7–13]. Besides, some popular
graph-based methods, such as graph cut [10] and statistical shape model [7], were also
applied to IVD segmentation. For localization, some graphical models were proposed
to take IVD geometric relationship into account [13]. With the reference to the local
parts shape and neighborhood anatomical structures, the accuracy of IVD localization
improved in some degree.

In recent years, machine learning has drawn extensive attention in many fields.
Some classical machine learning algorithms, such as marginal space learning
(MSL) [14], Adaboost [15], and sparse kernel machine [16], were also adopted to IVD
segmentation and localization. And these methods have shown excellent performance.

More recently, deep learning techniques achieved great success in computer vision.
Many researchers began to attempt deep learning algorithms in medical image pro-
cessing. And these methods have proven effective. In the past few years, all the state-
of-art methods on MICCAI IVD segmentation and localization challenge were deep
learning-based [17, 18].

Multi-modality images are not only available for IVD segmentation and localiza-
tion. How to utilize multi-modality information is a common issue in medical image
processing, such as MRI-based brain tissue [19] and brain tumor segmentation [20].
Generally, the harness of multi-modality data could improve the performance more or
less.

1.2 Our Contribution

We propose a 2.5D multi-scale deep learning network for segmentation and localiza-
tion of IVDs on multi-modality MR scans. Our method achieved the state-of-art per-
formance in the MICCAI 2018 Challenge on IVDM3Seg.

Our main contributions are summarized below:

1. We proposed a multi-scale 2.5D fully convolutional network (FCN) for IVD seg-
mentation and localization on multi-modality MR scans. The back bone of the
proposed network is a U-Net [21] like architecture. The input of the 2.5D network is
a few adjacent slices from multi-modality MR scans, while the output of this
network is a 2D slice corresponding to a certain layer of the input. For the purpose
of make full advantage of multi-modality information, Squeeze-and-Excitation
(SE) modules [22] are added in the skip connections.

2. We proposed a model fusion strategy to improve accuracy and robustness of IVD
prediction. In this work, we trained three different 2.5D networks. The predictions
of these models are corresponding to the middle, the rightmost, and the leftmost
slices of the input sequence. For the slices located at the middle of 3D images along
Z-axis, the average outputs of these models are taken as the final predictions. For
the slices near the both edges, IVD predictions are generated by the model, which is
corresponding to either the rightmost or the leftmost slice of the input sequence.

3. We proposed a geometric constraint post-processing method to generate accurate
IVD localization results. This method takes the intra-subject geometric relationship
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of IVDs into account. In our experiments, the false positive regions on the pre-
diction maps are well eliminated by this method.

2 Methodology

The detail of IVD segmentation and localization method is elaborated in this section.
We start by illustrating the architecture of proposed 2.5D multi-scale FCN for IVD
segmentation. Furthermore, we explain the way to harness multi-modality images with
this network. To improve the robustness and accuracy of prediction, an ensemble
strategy is employed in this work. In order to correct the false positive regions in
prediction maps, we proposed a post-processing pipeline, which takes geometric
constraint of 7 specified IVDs into account. The final results of segmentation and
localization are generated by this post-processing method.

2.1 2.5D Multi-scale FCN for IVD Segmentation

The detail structure of proposed network is shown in Fig. 2. The back bone of this
network is a U-Net like architecture, which has achieved great success in medical
image processing since it was proposed in 2015. To utilize multi-modality images, the
architecture of U-Net is slightly adapted from the origin version. The input of this
network is expanded up to 44 (11 slices * 4 modalities) channels to harness the multi-
modality data, while the output is corresponding to a certain position of the input
sequence. Besides, residual connections are added between feature maps with the same

Fig. 2. The details of our proposed 2.5D multi-scale FCN for IVD segmentation. The input slice
sequence includes 44 slices, which consists of 11 consecutive slices from four modalities with the
same corresponding position. The prediction map is corresponding to the middle, the leftmost, or
the right most slice of the input sequence.
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scale. And SE modules are also inserted in skip connections between the contracting
path and the expansive path. The reduction ratio used in SE modules is set to be 16.

2.2 2.5D Multi-scale FCN Ensemble Strategy

All the multi-modality images used in this work are in the same size of
256 * 256 * 36. For each study, 11 consecutive slices from four modalities with the
same corresponding position are extracted and concatenated as the input sequences.
And there are 26 such consecutive sequences for each image. These input sequences
are utilized to train three 2.5D multi-scale FCNs. The prediction of these models is
corresponding to different layers respectively, which are the middle, the leftmost and
the rightmost slices in the input sequence. We use mmiddle, mleft and mright to denote
these three models in the following content. The ensemble outputs of these models are
produced as prediction results, which are more accurate and robust. For the simplicity
of description, a mono-modality 3D image V is picked as an example. Slices in V from
left to right are denoted as Si i 2 1; 2; . . .; 26f gð Þ. For S6 to S31, the average outputs of
mmiddle, mleft and mright are taken as the prediction of IVD segmentation. For S1 to S5
and S32 to S36, the prediction of IVD segmentation is generated by mleft and mright

respectively.

2.3 Geometric Constraint Post-processing

Although model ensemble can improve the accuracy and robustness of segmentation
results to a certain extent, there are still some obvious false positive regions in the
prediction maps. These false positive areas could be categorized as two types, the
isolated noise points, and the IVD segmentation above the twelfth thoracic vertebra.
Figure 3 visualizes some ensemble prediction maps on opposed-phase. The isolated
noise can be well eliminated by excluding the small connected regions in prediction
maps. For IVDs above the twelfth thoracic vertebra, we proposed a post-processing
method with geometric constraint for removal. Firstly, we picked the ground truths
from training set, and aligned them to the segmentation result with reference to the
centroid of the last IVD. These ground truths are then registered to the segmentation
result with affine transformation. The best fitted one is then selected as the mask.
Remove all the connected regions that have no intersection with this mask. The
remaining content is right the final prediction of 7 expected IVDs. For the robustness of
post-processing, the registered ground truth was dilated before being applied as the
mask (Fig. 4).
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3 Experiments and Results

3.1 Data

The performance of our method was evaluated on multi-modality MR scans provided
by MICCAI 2018 Challenge on IVDM3Seg. These data were collected from 8 subjects

Fig. 3. Examples of prediction map on opposed-phase without post-processing. (a) to (f) are 6
slices extracted from a study. Green contours indicate the boundary of the ground truths. And the
ensemble prediction of IVDs is delineated by red lines. (Color figure online)

Fig. 4. Illustration of the geometric constraint post-processing. (a) is the ensemble prediction of
proposed networks. The red mask in (b) is the chosen registered ground truth with binary
dilation. And (c) is the final IVD segmentation result of our method. (Color figure online)
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at two time points of prolonged bed rest study. For each study, four MR scans acquired
with different modalities (i.e. in-phase, opposed-phase, water, fat) were enrolled. And
the IVDs between the twelfth thoracic vertebra and sacrum are delineated manually as
the ground truth. Figure 1 shows an example of these multi-modality images and the
corresponding ground truth.

3.2 Pre-processing and Data Augmentation

The multi-modality images were pre-processed with some commonly used methods.
Firstly, N4 correction algorithm was applied to correct the bias field of MR scans. In
the next stage, intensity distribution of the corrected images was normalized as zero
mean and unit variance. For the inadequacy of training data, some data augmentation
methods (i.e. random scale, rotate, translation, and deformable transformation) are
applied during the training stage.

3.3 Evaluation Metrics

The segmentation and localization results are evaluated with the following three
quantitative metrics:

1. Dice overlap coefficient. The Dice metric is one of the most popular assessments for
semantic segmentation, which measures the percentage of true positive voxels in
prediction. The definition of Dice can be expressed by the following formula:

Dice ¼ 2 A\Bj j
Aj j \ Bj j � 100% ð1Þ

Where A is the set of foreground voxels in the ground truth and B denotes the
corresponding set in the prediction of foreground.

2. Average absolute distance (ASD). For IVD segmentation task, ASD is the average
absolute distance between disc surface of ground truth and segmentation result.
Smaller ASD means a better segmentation result.

3. Localization distance. This metric is used for measuring the localization results. It is
calculated by the equation below:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dxð Þ2 þ Dyð Þ2 þ Dzð Þ2
q

ð2Þ

Where Dx, Dy and Dz are the absolute distance between the identified IVD centroids
and the corresponding ground truth along X-, Y- and Z-axis. It is obvious that a
smaller localization distance means a more accurate localization.
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3.4 Results of MICCAI 2018 On-site Challenge

Tables 1, 2, and 3 list the on-site test results of MICCAI 2018 Challenge on
IVDM3Seg with proposed method. Our method achieved the state-of-art performance
with the respect of all the three quantitative metrics (i.e. Dice, ASD, and Localization
distance) among nine participating teams.

Table 1. Dice of on-site test results

Dice Disc_01 Disc_02 Disc_03 Disc_04 Disc_05 Disc_06 Disc_07

Test_01 0.887 0.904 0.927 0.911 0.896 0.890 0.869
Test_02 0.909 0.934 0.941 0.944 0.930 0.925 0.924
Test_03 0.896 0.898 0.901 0.866 0.896 0.817 0.887
Test_04 0.920 0.939 0.938 0.915 0.912 0.885 0.924
Test_05 0.900 0.911 0.917 0.918 0.868 0.898 0.926
Test_06 0.865 0.914 0.930 0.909 0.897 0.898 0.892
Test_07 0.905 0.931 0.931 0.915 0.904 0.890 0.865
Test_08 0.905 0.928 0.924 0.925 0.910 0.907 0.889

Table 2. ASD of on-site test results

ASD (mm) Disc_01 Disc_02 Disc_03 Disc_04 Disc_05 Disc_06 Disc_07

Test_01 0.73 0.67 0.49 0.58 0.63 0.61 0.67
Test_02 0.54 0.48 0.43 0.37 0.43 0.41 0.41
Test_03 0.71 0.80 0.73 0.87 0.58 0.89 0.53
Test_04 0.54 0.47 0.41 0.49 0.47 0.51 0.29
Test_05 0.57 0.70 0.69 0.61 0.98 0.67 0.37
Test_06 0.85 0.66 0.56 0.76 0.78 0.69 0.54
Test_07 0.63 0.52 0.52 0.63 0.62 0.64 0.64
Test_08 0.72 0.63 0.61 0.57 0.62 0.57 0.58

Table 3. Localization distance of on-site test results

Localization (mm) Disc_01 Disc_02 Disc_03 Disc_04 Disc_05 Disc_06 Disc_07

Test_01 0.41 1.42 0.52 0.78 1.37 1.02 1.09
Test_02 0.30 0.73 0.27 0.50 0.72 0.40 0.17
Test_03 0.64 0.31 1.34 2.12 0.97 1.30 0.43
Test_04 0.81 0.52 0.62 1.30 0.49 1.22 0.08
Test_05 0.79 0.30 0.13 1.02 0.92 0.97 0.41
Test_06 1.23 0.47 0.45 0.09 0.65 1.09 0.76
Test_07 0.56 1.09 0.94 1.22 1.19 0.58 1.08
Test_08 0.36 1.31 0.72 0.91 1.04 0.34 0.56
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4 Discussion

Some common spine diseases, such as low back pain (LBP), have proven to be
associated with IVD degeneration [23]. IVD segmentation and localization have
important significance in clinical diagnosis and research. In this work, we proposed an
automatic IVD segmentation and localization method on multi-modality MRI with
2.5D multi-scale FCN and geometric constraint post-processing.

In the MICCAI 2018 Challenge on IVDM3Seg, the deep neural network is the most
popular algorithm. For 3D multi-modality MR images, processing with a 3D network is
a straightforward approach. Compared to 2D networks, 3D architectures could generate
more discriminative spatial features. And these architectures were employed by some
teams in this challenge. Due to the plenty of parameters in deep neural networks, a
huge amount of data is demanded in training stage. However, there were only 16
studies provided by MICCAI 2018 Challenge on IVDM3Seg, which were collected
from 8 subjects at two time points. Considering the inadequacy of 3D multi-modality
images, we proposed a 2.5D multi-scale FCN architecture as a tradeoff between the
capacity of network and the amount of training data. The on-site test results of MICCAI
2018 Challenge on IVDM3Seg shows that the performance of 2D networks was better
than that of 3D networks in general with limited training data. And our 2.5D FCN
surpassed both 2D and 3D architectures.

The intra-subject morphology and topology relationship between IVDs are similar
inter-subjects. And it is potential to be utilized for IVD localization. However, this rela-
tionship is hard to be captured byFCN.To take this information into account,we proposed
a geometric constraint post-processing method based on registration. And it shows great
performance in on-site test of MICCAI 2018 Challenge on IVDM3Seg. It should be
noticed that our registration-based post-processing relies on the inter-subject consistency
of IVD intra-subject geometric relationship. If this consistency was destroyed by some
severe spine diseases, this method may produce wrong cases. The IVD localization
method with better robustness remains to be explored in the future work.
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Abstract. MRI is considered the gold standard in soft tissue diagnostic of the
lumbar spine. Number of protocols and modalities are used – from one hand 2D
sagittal, 2D angulated axial, 2D consecutive axial and 3D image types; from the
other hand different sequences and contrasts are used: T1w, T2w; fat suppres-
sion, water suppression etc. Images of different modalities are not always
aligned. Resolutions and field of view also vary. SNR is also different for
different MRI equipment. So the goal should be to create an algorithm that
covers great variety of imaging techniques.

1 Introduction

MRI is considered the gold standard in soft tissue diagnostic of the lumbar spine.
Number of protocols and modalities are used – from one hand 2D sagittal, 2D angu-
lated axial, 2D consecutive axial and 3D image types; from the other hand different
sequences and contrasts are used: T1w, T2w; fat suppression, water suppression etc.
Images of different modalities are not always aligned. Resolutions and field of view
also vary. SNR is also different for different MRI equipment. So the goal should be to
create an algorithm that covers great variety of imaging techniques.

We consider the segmentation as the first step in a 3-step process: 1. Segmentation
Fig. 1(a); 2. Measurements Fig. 1(b); 3. Diagnosis (in the case shown in the Fig. 1(b) -

Fig. 1. (a) Segmentation of axial T2w slide; (b) Measurement of dural sac in a different slide
(white line).
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severity of disk herniation and central canal stenosis grading). Our system detects most of
the visible tissues that are relevant for diagnosing a pathology. One of the tissues is
Intervertebral Discs.We applied ourmethodwith some extensions to detect intervertebral
discs in the IVDM3Seg Segmentation Challenge [7].

2 Methods

In order to cover different protocols a 2D single modality algorithm was developed that
in cases of 3D multi-modality data can be used in ensemble of multiple 2D single
modality data models. Our 2D algorithms are using CNN [1] and are greatly inspired of
ResNet [2]. Dropout regularization [3] and batch normalizations [4] are also used. FCN
[5] style network is used for the super-pixel classification as this enable arbitrary field
of view input. Super-pixels are 8 times smaller (in all dimensions) than the actual pixels
(as stride 8 is used due to 3 2 � 2 max pooling layers). As a result fine grained details
are lost, so we use Unet-like [6] architecture for up-scaling the low resolution map into
the resolution of the input image. Separate 2D single modality results are combined
into 3D results using ensemble with learnable weights combining the 3D information
from 3 separate probability maps. To overcome the problem with small data set size,
extensive augmentations were used: crop and resize, tilt, rotate, dynamic range chan-
ges, random noise in all possible combinations.

Datasets. Our dataset consists of 30 patient studies, 918 axial and sagittal slices in
total. The patients’ age ranges from 30 to 50 years old, with a mean age of 37.5 years
old, including both male and female patients suffering from lower back pain. This data
was provided by three medical centers, two of which use a GE Medical Systems to
acquire MRI. The third set of MRI was acquired by a SIEMENS machine. The
characteristics of the slices in the dataset vary:

• Voxel Thickness: 3.5 mm to 10 mm (mean 7.4 mm)
• Repetition Time: from 1040 ms to 6739 ms
• Echo Time: from 9.6 ms to 110.3 ms
• Axial Resolutions (Cols � Rows): 512 � 512, 276 � 192
• Sagittal Resolutions (Cols � Rows): 512 � 512, 384 � 768.

The slices are not uniformly spaced and are not parallel to each other. The axial
slices are parallel to each of the discs. This way there is no value for each of the voxels
in the volume of the study. 3D ensemble from this data set is not straight forward The
challenge dataset provided by IVDM3seg consisting of 16 patients with full 3D data
available, consisting of 4 modalities.

Feature Extraction. Fully convolutional ResNet-50 was used for feature map
extractor. The model is pretrained on COCO. The minimal stride of the feature map for
pretrained model we could find was 8. For Image (512 � 512 � 3) a feature map
(64 � 64 � 1024) is produced. It is believed that the bigger feature stride causes lower
resolution imperfections in the masks. For 256 * 256 * 37 the smallest feature map
resolution is 4. An attempt to overcome this limitation was UNet-like mask predictor
architecture.
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The model originally uses 3 input channels (RGB). To make use of the modalities of
the MRI, the 3 most useful modalities are used as input in the feature extractor model
(Fig. 2).

Segmentation. To produce more accurate masks, which capture finer detail and higher
frequency changes in the contour, a UNet-like architecture was used. To produce the
mask, series of up-convolutions are used, starting from the stride 8 feature maps of the
feature extractor and doubling the resolution on each layer. Each layer is combined
with the corresponding resolution feature map from an internal layer in the feature
extractor. This way higher level, lower resolution semantic features are used as context,
and lower level, higher resolution features are used for finer details (Fig. 3).

3D Ensemble. The prediction from 3 2D models (axial, sagittal, coronal) are com-
bined using a 3D convolution neural network. It has 2 layers of 3 � 3 � 3 convolu-
tions that are trained on the predictions of one part of the validation set and validated on
the other part. The challenge data set is divided into train and validation set. The 3
models are trained on the train set and the hyper parameters are tuned on the validation
set. When the models are trained one part of the validation set is predicted and the
predicted probability maps are used to train the 3D convolution model.

Fig. 2. The ResNet

Fig. 3. The UNet-like segmentation architecture
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The input for the 3D convolution is 6 channel 3D matrix. Each plane has 2 channels.
Probability of segmentation of disk and some relative position encoding parameter. The
position encoding parameter helps the model combine the information from all the 3
models in the best way.

The 3D ensemble combines the best predictions form each single plane 2D model.
Each model is better than the others at some specific regions of the disc and worse in
others. A 2D model mask is better at the middle section (according to the direction of
the normal of the plane) of the disc than in the endings (where the intersections are
smaller). By putting more weight on the proper model (plane) prediction at each region,
the 3D ensemble mask combines the best prediction from each of the models in each
region. So the combined mask is better than any single plane 2D mask.

The other big effect of the 3D model is that it filters some prediction noise. 2D
models sometimes predict false positives. There is a low probability that in a particular
voxel more than 1 models have predicted false positives so the noise gets filtered.
Single voxel or some small objects gets filtered too (Fig. 4).

Augmentation. In order to train a big model with a small dataset, extensive aug-
mentations were used. Elastic whole image deformation – Take N � N uniform grid of
points on the image, and chose a random direction vector for each point. Move each
pixel in that direction with amplitude, proportional to f(inverse distance to the point).
Tissue deformation – chose random points on the contour of the object and inside the
object. Apply the elastic deformation on that points.

Fig. 4. The sagittal view of the ground truth and predicted binarized mask from all planes and
combined with 3D ensemble.
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All the above augmentations, augment the image as well as the GT mask. Tissue
brightness – change the values of the pixels lying in the ground-truth mask in some
random direction. Noise – add white noise to each image, without changing the GT
masks (Fig. 5).

3 Results

Challenge Result. Results achieved by 4-fold cross validation using the data provided
by the organizers [7] are listed in Table 1.

As seen in Table 1, the 3D ensemble outputs 2 times less errors in the mask.
It is interesting that the middle discs have bigger dice than the first and the last. This

phenomenon is observed in the other participants in the challenge too. May be the
middle disc are “easier”. We had big problems with detecting the 7-th disc (Th11–
Th12) on some patients. Because only 7 discs were labeled in the GT, in some patients
unlabeled discs appeared above the 7-th disc, which caused our classifier to get

Fig. 5. The tissue deformation + brightness augmentation

Table 1. Comparison of single plane results vs 3D ensemble (cross validation).

2D planes used Mean DICE

Sagittal 0.81
Axial 0.81
Coronal 0.77
Ensemble 0.915
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confused if it has to detect discs closer to the top end of the image or not. The problem
was overcome by cropping the unlabeled discs out of the GT images during training.
Test time is 3:10 s on a single GPU machine that can be reduced to 1:20 in batch mode.
The model supports resolution of 512/512 that is 4 (2 � 2) times bigger than necessary
for this particular set so test time can be further reduced (Table 2).

During the cross validation we never observed detection of the sacrum. With this
assumption we developed a simple filtration algorithm which takes the bottom 7 discs.
But in test set evaluation the sacrum was detected in two of the patients which, led to
missing the top disc completely and punishing the metrics of the bottom disc (Table 3).

We calculated our expected test set dice metric without detecting the sacrum and
missing the top disc (Table 4).

Results in detecting disc herniation are as follows (Tables 5, 6 and 7).

Table 2. Dice by disc (cross validation)

Metric Disc_1 Disc_2 Disc_3 Disc_4 Disc_5 Disc_6 Disc_7 Mean

Dice 0.898695 0.925335 0.937724 0.929478 0.916675 0.907566 0.893001 0.915

Table 3. Dice by disc (challenge test set)

Metric Disc_1 Disc_2 Disc_3 Disc_4 Disc_5 Disc_6 Disc_7 Mean

Dice 0.91568 0.916019 0.923087 0.917543 0.905131 0.897439 0.903565 0.9112

Table 4. Dice by disc without the 2 lost discs

Metric Disc_1 Disc_2 Disc_3 Disc_4 Disc_5 Disc_6 Disc_7 Mean

Dice 0.91341 0.91602 0.92308 0.91754 0.90513 0.89744 0.90239 0.91072

Table 5. Herniated discs and slices performance

Accuracy Sensitivity Specificity Precision TP TN FP FN

Axial-Slice herniated 0.906 0.567 0.993 0.954 42 286 2 32
Disk herniated 0.890 0.750 0.975 0.947 18 39 1 6

Table 6. Localization of hernia top point

Mean Abs error

Hernia X error on true positives 3 pix
Hernia Y error on true positives 2 pix
Hernia height error on all slices 1.3 pix
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The performance of disc segmentation on our data is slightly worse than in the
challenge because of the acquisition format that we use. The data in the challenge is 3D
and has info for every voxel, while our data has slices spaced on bigger distance. The
axial slices and sagittal slices are different sequences which are not strictly orthogonal
to each other and to the coordinate system axes. 3D ensemble of the axial and sagittal
slices is not straight forward. An experiment was undertaken to find the relation
between the training set size and the validation set performance (Fig. 6).

4 Discussion

It seems like the ground truth masks of the 3D data are labeled only in the sagittal
plane. The human annotator labeled each sagittal slice of the 3D matrix, producing 3D
ground truth matrix concatenated from all the sagittal slices. This leads to strange
artifacts when looking the 3D matrix form other perspectives.

Table 7. Mask quality of different tissues (axial)

Tissue IoU of mask for correctly detected objects

Disc 0.86
Disc and hernia 0.86
Dural sac 0.89
Hernia 0.66
Articular process 0.68
Ligament 0.62
Spinous process 0.73
Vertebrae 0.90
Whole disc 0.88

Fig. 6. Predicted masks of different tissues and probability of herniated disc. Automatic disk
labeling.
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The same thing is possible during prediction. We have 3 2D models each working
on one of the three planes. Each model can make 1–2 pixel mistakes in the edge. So the
3D convolution, that combines the outputs of the three models, uses the prediction of
each of the model in the region where it is most accurate. This way using the strengths
of each of the model (Figs. 7 and 8).

The same thing is possible during prediction. We have 3 2D models each working
on one of the three planes. Each model can make 1–2 pixel mistakes in the edge. So the
3D convolution, that combines the outputs of the three models, uses the prediction of
each of the model in the region where it is most accurate. This way using the strengths
of each of the models.

Fig. 7. Good looking ground truth disc segmentations in sagittal view.

Fig. 8. Artifacts in ground truth masks viewed from plane which was not used during labeling.
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Problems with Detection. Although the mask quality of correctly detected objects is
relatively good, there is a problem with detecting small objects. The most likely reason
is the big feature map stride (8 � 8). When the stride is big, one feature map pixel
corresponds to bigger area of original pixels. Instead of training one convolutional filter
many times, one filter gets trained less times, but with more diverse set of positions of
the smaller object in it. So there are a lot of places where the object did not appear in
the filter’s field of view. This leads to underfitting of the bigger convolutional filter and
to underfitting of the detector.

5 Conclusion

Test accuracy was similar to the previously reported results using 3D convolutions on
the test data of the previous challenge [8] although the algorithm was designed for 2D
single-modality data. Training set accuracy is near 100% which can be expected as the
complexity of the model is very big and definitely high variance is the current draw-
back. Never the less we decided to not reduce the complexity as we believe bigger
training set is necessary for reaching human level accuracy. So further test set accuracy
improvements can be expected by increasing the training set. Our intention for the
future development is to cover great variety of tissues and pathologies by acquiring an
annotated training set of 500 patients. Part of them will be released to the scientific
community.

References

1. Le Cun, Y., Bottou, L., Bengio, Y.: Reading checks with multilayer graph transformer
networks. In: ICASSP 1997, vol. 1, pp. 151–154. IEEE (1997)

2. He, K., et al.: Deep residual learning for image recognition. In: CVPR 2016 (2016)
3. Hinton, G.E., et al.: Improving neural networks by preventing co-adaptation of feature

detectors. Technical report. arXiv:1207.0580
4. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing

internal covariate shift. CoRR abs/1502.03167 (2015)
5. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation.

arXiv:1411.4038 (2014)
6. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image

segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015.
LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24574-4_28

7. Chen, C., Belavy, D., Zheng, G.: 3D intervertebral disc localization and segmentation from
MR images by data-driven regression and classification. In: Wu, G., Zhang, D., Zhou, L.
(eds.) MLMI 2014. LNCS, vol. 8679, pp. 50–58. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10581-9_7

8. Xiaomeng, L., et al.: 3D multi-scale FCN with random modality voxel dropout learning for
intervertebral disc localization and segmentation from multi-modality MR images. Med.
Image Anal. 45, 41–54 (2018)

162 N. Georgiev and A. Asenov

http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1411.4038
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-10581-9_7
http://dx.doi.org/10.1007/978-3-319-10581-9_7


Evaluation and Comparison of Automatic
Intervertebral Disc Localization

and Segmentation methods with 3D
Multi-modality MR Images:

A Grand Challenge

Guodong Zeng1(B), Daniel Belavy2, Shuo Li3, and Guoyan Zheng1

1 Institute for Surgical Technology and Biomechanics, University of Bern,
Bern, Switzerland

{guodong.zeng,guoyan.zheng}@istb.unibe.ch
2 Deakin University, Geelong, Australia

3 University of Western Ontario, London, Canada

Abstract. The localization and segmentation of Intervertebral Discs
(IVDs) with 3D Multi-modality MR Images are critically important
for spine disease diagnosis and measurements. Manual annotation is a
tedious and laborious procedure. There exist automatic IVD localization
and segmentation methods on multi-modality IVD MR images, but an
objective comparison of such methods is lacking. Thus we organized the
following challenge: Automatic Intervertebral Disc Localization and Seg-
mentation from 3D Multi-modality MR Images, held at the 2018 Interna-
tional Conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI 2018). Our challenge ensures an objective com-
parison by running 8 submitted methods with docker container. Experi-
mental results show that overall the best localization method achieves a
mean localization distance of 0.77 mm and the best segmentation method
achieves a mean Dice of 90.64% and a mean average absolute distance
of 0.60 mm, respectively. This challenge still keeps open for future sub-
mission and provides an online platform for methods comparison.

Keywords: Intervertebral disc · MRI · Localization · Segmentation ·
Multi-modality · Challenge

1 Introduction

Degeneration of intervertebral discs (IVDs) has a strong association with low
back pain (LBP) which is one of most prevalent health problems amongst pop-
ulation and a leading cause of disability [1]. Magnetic Resonance (MR) Imaging
(MRI) is widely recognized as the imaging technique of choice for the assess-
ment of lumbar IVD abnormalities due to its excellent soft tissue contrast and
no ionizing radiation [2]. Thus, automated image analysis and quantification for
c© Springer Nature Switzerland AG 2019
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spinal diseases using MR images have drawn a lot of attention. Localization
and segmentation are important steps before analysis and quantification. Pre-
vious works on disc degeneration were mainly done by manual segmentation,
which is a time-consuming and tedious procedure. Automatic localization and
segmentation of IVDs are highly preferred in clinical practice.

However, it is very difficult to directly compare different methods because
they are usually evaluated on different datasets. Thus, objective evaluation and
comparison are highly desired. For example, Zheng et al. [3] held a challenge on
3D IVD localization and segmentation in MICCAI 2015. But this challenge only
investigated on single modality MR images, i.e., T2 MR data. Multi-modality
MR images provide complementary information which can help improve recog-
nition accuracy, and therefore have been utilized in many medical image anal-
ysis tasks. In this challenge, we investigate different methods working on four-
modality IVD MR images acquired with Dixon protocol: fat, in-phase, opposed-
phase and water modality MR image. The four multi-modality MR images of
the same subject were acquired in the same space and thus are aligned with each
other.

How to ensure objective and fair comparison is a big concern in organizing a
challenge. In this challenge, all participants are required to submit a docker con-
tainer of their method. A docker container includes codes and all dependencies so
that others can re-run the method quickly and reliably on another computer. By
doing this, all results of each participant were generated by running submitted
containers on the challenge organizer’s machine.

The paper is arranged as follows. We first present the challenge organization,
rules for evaluation, image dataset and the established validation framework in
Sect. 2. A summary of each submitted method will be described in Sect. 3. The
validation results of each participant will be presented in Sect. 4, followed by
conclusion in Sect. 5.

Fig. 1. The 7 defined IVDs to be localized and segmented from each subject.
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2 Challenge Setup

The aim of this challenge is to investigate fully automatic IVD localization and
segmentation algorithms on a set of 3D Multi-modality MR images and to pro-
vide a standardized validation framework. The task for this challenge includes
two parts: localization part and segmentation part. The task of localization part
is to fully automatic localize the centers of 7 IVDs (T11-S1) for each test subject
while the task of segmentation part is to fully automatic segment 7 disc regions
T11-S1, which is illustrated in Fig. 1. For localization part, instead of detecting
IVDs explicitly as a separate task, the centroids of each IVD generated from
segmentation mask are recognized as the localization results.

2.1 Organization

Each participant could download the training data for method development after
submitting a scanned copy of the signed registration form. For test data, both
3D MR images and corresponding ground truths will be only known to challenge
organizers.

Participants should containerize their methods with Docker1 and submit
them to challenge organizers for evaluation. Containerized methods consist of
codes and all dependencies so that challenge organizers can run all participants’
methods quickly and reliably without complex development environment setup.
By doing this, all prediction results were generated by running methods on chal-
lenge organiser’s machine so that a fair comparison could be realized. More
details about how to do the method containerization and to run the containers
could be found at our challenge website2, where an example in Python script
was shown.

In the phase of testing, for each containerized method, it was run on each
test subject one by one to get the segmentation result. To guarantee the running
of containerized method is correct, challenge organizers sent the segmentation
result of the first training subject back to the participants for verification. A
desktop with a 3.6 GHz Intel(R) i7 CPU and a GTX 1080 Ti graphics card with
11 GB GPU memory was used to evaluate all submitted methods.

2.2 Description of Image Dataset

There are in total 24 sets of 3D multi-modality MRI data which contains at
least 7 IVDs of the lower spine, collected from 12 subjects in two different stages
in a study investigating the effect of prolonged bed rest (spaceflight simula-
tion) on the lumbar intervertebral discs [4]. Each set of 3D multi-modality MRI
data consists of four modality aligned high-resolution 3D MR images: in-phase,
opposed-phase, fat and water images. Thus, in total we have 12 subjects × 2
stages × 4modalities = 96 volume data.

1 https://www.docker.com.
2 https://ivdm3seg.weebly.com/methods.html.

https://www.docker.com
https://ivdm3seg.weebly.com/methods.html
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All MR images were scanned with a 1.5-Tesla MRI scanner of Siemens
(Siemens Health-care, Erlangen, Germany) using Dixon protocol [5]: slice thick-
ness = 2.0 mm, pixel Spacing = 1.25 mm, repetition Time (TR) = 10.6 ms, echo
time (TE) = 4.76 ms. The ground truth segmentation for each set of data were
then manually annotated and were provided in the form of binary mask.
All images (four volumes per patient) and binary masks (one binary volume
per patient) are stored in the Neuroimaging Informatics Technology Initiative
(NIFTI) file format.

During the challenge period, the organizer released training set of IVD
challenge (8 subjects × 2 stages × 4modalities = 64 volume data). For test data,
both MR images and ground truth segmentation will be only known to chal-
lenge organizer for independent evaluation and fair comparison (4 subjects× 2
stages × 4modalities = 64 volume data).

2.3 Rules for Evaluation

Submitted methods can generate multi-label segmentation or binary-label seg-
mentation. We provide following rules for evaluation:

Multi-Label Prediction. If the prediction segmentation is not binary but
with multiple labels, we will directly do the evaluation separately for seven IVDs
in one test subject.

Binary-Label Prediction. If the prediction segmentation is binary, we
first assign labels to each intervertebral disc based on ground truth segmenta-
tion and then do the evaluation. Specifically, the complete image space is spitted
into 7 sections, corresponding to 7 intervertebral discs in the ground truth seg-
mentation. Then we can do the evaluation similar as evaluation for multi-label
prediction.

2.4 Evaluation Metrics

Three metrics were used to evaluate different methods: Mean Localization Dis-
tance (MLD) is used for localization task while Mean Dice Similarity Coefficients
(MDSC) and Mean Average Surface Distance (MASD) are used for segmenta-
tion task. The details about how these three metrics are computed can be found
as follows:

1. Mean Localization Distance (MLD)
For each IVD, we first calculate the localization distance (R) between the

centroids of prediction and ground truth.

R =
√

(�x)2 + (�y)2 + (�z)2 (1)

where �x, �y and �z are the distances between the identified IVD centroids
calculated from prediction and ground truth in x, y, z axis respectively.
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After localization distance (R) was calculated, the MLD can be computed as
follows:

MLD =

∑Nimages

i=1

∑NIV Ds

j=1 Rij

NimagesNIV Ds

(2)

where Nimages is the number of test subjects, and NIV Ds is the number of IVDs
in each test subject, i.e. 7 in our experiment. MLD indicates the measurement
of average localization error for IVDs and lower value means better localization
performance.

2. Mean Dice Similarity Coefficients (MDSC)
For each IVD, we first calculate Dice Similarity Coefficients (DSC) between

prediction segmentation and ground truth segmentation, which is computed as
follows:

DSC =
2|A ∩ B|
|A| + |B| × 100% (3)

where A and B are foregrounds of prediction and ground truth segmentation
respectively. And Mean Dice Similarity Coefficients (MDSC) is computed as
below:

MDSC =

∑Nimages

i=1

∑NIV Ds

j=1 DSCij

NimagesNIV Ds

(4)

where Nimages is the number of test subjects, and NIV Ds is the number of IVDs
in each test subject, i.e. 7 in our experiment. MDSC indicates the measurement
of average overlap between the prediction and ground truth for IVDs and higher
value means better segmentation performance.

3. Mean Average Surface Distance (MASD)
For each IVD, we first calculate Average Surface Distance (ASD) between

prediction segmentation and ground truth segmentation. ASD calculation is
implemented by medpy toolbox3. And Mean Average Surface Distance (MASD)
is computed as below:

MASD =

∑Nimages

i=1

∑NIV Ds

j=1 ASDij

NimagesNIV Ds

(5)

where Nimages is the number of test subjects, and NIV Ds is the number of IVDs
in each test subject, i.e. 7 in our experiment. MASD measures average surface
distance between the prediction and ground truth for IVDs and lower value
means better performance.

For each intervertebral disc, both the localization distance and ASD will
be set as maximum value (458.24 mm) if the Dice value is less than 0.1% and
additionally the number of segmented voxels assigned to this disc is smaller than
5% of the total voxels of the ground truth segmentation. In such a case, a method
is regarded missing the segmentation of the disc completely.

3 http://loli.github.io/medpy/.

http://loli.github.io/medpy/
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2.5 Evaluation Ranking

The final ranking of all methods is based on three metrics described in Sect. 2.4.
For each metric, we sort all methods (in total n methods) from best to worst.
The best method will get a ranking score of 1, while the worst method get a
ranking score of n. For each method, it will get an overall ranking score, which
is the sum of its own ranking scores at each metrics. Lower overall ranking score
indicates better performance. Finally, the final ranking of all methods will be in
descending order by their overall ranking scores.

3 Methods

In total 8 teams submitted their methods and participated this challenge, but
we only received 7 methods description. A brief summary of 7 methods is given
below, in alphabetical order. Detailed method description and results of each
team can be found at our challenge website4.

1. changliu: a 2.5D U-Net-like [6] network which utilizes SEBottleneck [7]
to achieve channel-wise attention and predicts segmentation mask of one slice
from multiple-slice input (11 slices) [8].

2. gaoyunhecuhk: a 2D fully convolutional neural network which uses
DenseNet [9] as the backbone network. Their network only down-samples for
2 times and uses Atrous Spatial Pyramid Pooling(ASPP) [10] to ensure a large
receptive field [11].

3. livia: a UNet-like architecture which follows the multi-modality fusion
strategy presented in [12], and all convolutional blocks are replaced by an
Inception-like module and all convolutions are replaced by asymmetric convolu-
tions [13].

4. lrde: the only method not using deep learning, but based on mathematical
morphology operators which was driven by shape prior knowledge and their
contrast in the different modalities [14].

5. mader: they first applied random forests with conditional random field
(CRF) to detect 7 landmarks, i.e. the centroids of 7 IVDs. Then small fixed-size
sections around each landmark were cropped and reoriented. At last, a V-Net
[15] was trained to perform segmentation of IVDs [16].

6. smartsoft: Three 2D Unet-like neural networks were separately trained on
2d slice images in axial, sagittal, coronal axis respectively. The final segmentation
result will be achieved by ensemble from three models [17].

7. ucsf Claudia: V-Net was trained on full volumes to leverage the spatial
context of the whole image [15]. The combination of weighted cross entropy
(wce) loss and soft Dice loss was used. A 3D connected component analysis was
employed to eliminate predicted volumes of less than 1200 voxels [18].

4 https://ivdm3seg.weebly.com/miccai2018.html.

https://ivdm3seg.weebly.com/miccai2018.html


Evaluation and Comparison of Automatic Intervertebral Disc Localization 169

4 Experimental Results

The mean performance of each team is shown in Table 1. For each metric, there
is an individual ranking and the final ranking is based on the sum of all metrics’
ranking. The team changliu achieved best performance on all metrics, with a
mean Dice Similarity Coefficients of 90.64%, a mean Average Surface Distance
of 0.60 mm and a mean Localization Distance of 0.77 mm.

Table 1. Mean performance and ranking of each team on each metric. Metrics include
MDSC, MASD and MLD. The final ranking is based on the sum of ranking on all
metrics, in which lower value means better performance. Bold indicates the method
performs best on that metric.

Final

ranking

(#)

TEAM MDSC(%) MASD

(mm)

MLD

(mm)

MDSC

ranking

value

MASD

ranking

value

MLD

ranking

value

Sum of

ranking

value

1 changliu 90.64 0.60 0.77 1 1 1 3

2 gaoyunhe cuhk 90.58 0.61 0.78 2 2 2 6

3 ucsf Claudia 89.71 0.74 0.86 3 4 3 10

4 livia 89.67 0.65 0.96 4 3 5 12

5 wanghuan 88.77 0.82 0.92 5 5 4 14

6 smartsoft 81.93 34.03 34.27 6 6 6 18

7 mader 66.42 108.19 108.41 7 7 7 21

8 lrde 01 24.35 319.53 319.81 8 8 8 24

Fig. 2. Dice Similarity Coefficients (DSC) boxplot of 56 IVDs (8 test subjects× 7). The
box shows the interquartile range (IQR) and extends from first quartile (Q1) to third
quartile (Q3) values of the data, with a line at the median data. The whiskers extend
up to 1.5 times of the IQR and those flier points beyond the whiskers are outliers.

And the following four teams, i.e. gaoyunhe cuhk, ucsf Claudia, livia and
wanghuan also achieved good performance on both segmentation and localization
tasks. Especially for the team gaoyunhe cuhk, whose results show a very minor
difference with the winner team changliu. Specifically, team gaoyunhe cuhk
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reported a mean Dice Similarity Coefficients of 90.58%, a mean Average Surface
Distance of 0.61 mm and a mean Localization Distance of 0.78 mm. But for the
other three teams of smartsoft, mader, and lrde, they reported poor results on
MDSC, MASD and MLD in this challenge.

Figure 2 shows boxplots of in total 56 IVDs (8 test subjects × 7) of each
method on Dice Similarity Coefficients (DSC). As seen in Fig. 2, in terms of
segmentation from team of mader and lrde, there are lots of completely failed
cases whose DSC value are almost zero. Also, there are several such failed cases
in the team of smartsoft. Figure 3 show boxplots of each method on Average
Surface Distance (ASD) and Localization Distance (LD). Note that for each IVD,
both the ASD and LD will be set as maximum value (458.24 mm) if a method
is regarded missing the segmentation completely as mentioned in Sect. 2.4. As
observed in Fig. 3, for teams of smartsoft, mader, and lrde, all of them reported
some completely failed cases whose ASD and LD values are 458.24 mm.

(a) Average Surface Distance (ASD)
boxplot of IVDs

(b) Localization Distance (LD) box-
plot of IVDs

Fig. 3. The boxes show the interquartile range (IQR) and extends from first quartile
(Q1) to third quartile (Q3) values of the data, with a line at the median data. The
whiskers extend up to 1.5 times of the IQR and those flier points beyond the whiskers
are outliers.

5 Conclusion

This paper presents an objective comparison of state-of-the-art methods, which
were submitted to the MICCAI 2018 challenge on Automatic Intervertebral Disc
Localization and Segmentation from 3D Multi-modality MR Images. In total 8
teams submitted their results by docker container. The challenge organisers run
their submitted methods on a local machine and then do the evaluation to ensure
a fair comparison. The test data and ground truth are only known to the chal-
lenge organizers. The top-two ranking methods achieve similar results and the
following three methods produce quite good results on both segmentation and
localization tasks. The other 3 teams report poor results because their meth-
ods completely miss some IVDs. The organizers choose not to disclose the test
data and corresponding ground truth, and the Challenge remains open for new
submission in the future.
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Abstract. Named after Andreas Vesalius (1914–1964) for his landmark
description of the intervertebral discs, Vesalius is a VNet-based method for fully
automatic segmentation of intervertebral discs T11/T12 to L5/S1 in sagittal
Dixon MR sequences. Our method uses aggressive data augmentation, transfer
learning from a T2 weighted MR dataset, a fully convolutional VNet architecture
trained on full resolution image volumes, and model ensembling to smoothly
segment intervertebral discs with up to 0.9285 Dice in our preliminary tests.

Keywords: Spine � Intervertebral disc � Segmentation � VNet

1 Data Splitting

As mentioned in the IVDM3seg challenge description, data released for method
development consisted of 8 patients scanned at two timepoints. Leakage between
training and testing data should be avoided; the network should be discouraged from
“memorizing” specific patients’ intervertebral discs during training. Volumes were
paired based on structural similarity and restricted to the same training/testing
group. Augmentations of these volumes were also contained to the same group. Train
test split was 14/2 and leave-one-out-cross validation was performed by shuffling
training and testing groups while respecting patient divisions, creating a total of 8
unique data folds.

2 Data Augmentation and Preprocessing

The full dataset was augmented 38X using a combination of 3D rotation, 3D affine
transforms, and 3D elastic deformations and stored offline. These deformations were
designed tomimic variable patient positioning, spinal curvature, disc size, and disc shape.

© Springer Nature Switzerland AG 2019
G. Zheng et al. (Eds.): CSI 2018, LNCS 11397, pp. 175–177, 2019.
https://doi.org/10.1007/978-3-030-13736-6
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Volumes and segmentation masks were resampled to isotropic dimensions, augmented,
then resampled back to their original dimensions. Volumes and masks were interpolated
using cubic interpolation and masks defined by a 0.5 threshold. Intensities were nor-
malized to zero mean, unit variance on a per volume, per channel basis.

3 Network Structure and Training Details

A 3D VNet architecture was implemented in Tensorflow using Python (algorithm [1],
graph [2]) and trained end-to-end. VNet is a fully convolutional neural network archi-
tecture consisting of sequential 3D strided convolutional downsampling units and a
transpose convolution upsampling path with skip connections concatenated at each
resolution. By training the network with our full volumes, instead of patches, we were
able to leverage the spatial context of the whole image to predict our binary segmentation
mask. Our final network took a 4 channel input, one channel per modality, expanded to
16 channels at the first layer, and doubled in channels every subsequent level for a total of
256 channels at the bottom of the network. The networks 4 levels had 1,2,3,3 convo-
lutions respectively and 3 convolutions at the bottom level with ReLu activations.

Our loss metric combined weighted cross entropy (wce) loss and soft Dice loss.
Although the contribution of weighted cross entropy in the combined loss function was
relatively small (wce scaled by 0.017 and added to soft Dice), our combined loss metric
was successful in addressing the imbalance of foreground to background voxels.

Finally, each network was trained for 25 epochs (approximately 8 h, although
convergence was seen within 30 min) on a single Nvidia Titan X GPU using gradient
descent optimizer with exponential learning rate decay.

4 Transfer Learning

Networks underwent supervised pre-training for 25 epochs on a single-channel T2
weighted dataset from a previous MICCAI competition [3]. The T2w dataset was
cropped to match the field of view and resolution of the Dixon sequence, augmented
using the techniques described above, and broadcast to four input channels to match the
dimensions. Learned weights were used for weight initialization of our VNet.

5 Hyperparameter Tuning and Ensembling

A random search of 60 unique combinations of hyperparameters was performed. Due to
computational restrictions, the search was only performed on 1 of the 8 data folds. The
hyperparameter set with the highest and most stable test Dice accuracy and visually
smoothest segmentation was selected. Finally, 8 models were trained, each on a unique
data fold, using this hyperparameter set (initial learning rate = 0.029, decay steps/decay
rate = 3500/0.0700, background voxel weight wce = 0.014, foreground voxel weight
wce = 1.0, wce contribution to loss = 0.017, batch size = 1, dropout = 0.80).
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The input image is loaded, each channel normalized to zero mean unit variance, and
it is run through inference of models 1 through 8. The logits of all models are averaged
and used for prediction. In the case of a “missing” prediction for T11/T12 disc, the
input is flipped across axis = 0 and run through the inference again, and auxiliary
predictions are used for segmentation.

6 Post-processing

A 3D connected component analysis was used to eliminate predicted volumes of less
than 1200 voxels. Based on our observation of the manual segmentation ground truth,
segmentations appeared to be processed slice-wise in the sagittal plane. Partial volume
effect is a known problem in determining boundaries for segmentation of “bookend”
slices. To address this issue, a 2D connected component analysis was performed on the
bookend sagittal slices to remove any segmentations smaller than 25 pixels (size of
smallest manually drawn ROI). Finally, 3D connected components were labeled bot-
tom up with background assigned a value of 0, disc L5/S1 assigned a value of 1, L4/L5
2 and so on. The center of the disk is defined as the centroid of each 3D connected
component.
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1 Method

The task it so segment seven well-defined intervertebral discs (IVDs) in multi
modality MR images. For this we propose a method specifically designed to be
trained on a very small training set. The key idea is to reorient sections around
the individual IVDs to a standard orientation in order to be efficiently segmented
by an IVD-agnostic V-Net [2]. This leads to the following four step approach, as
illustrated in Fig. 1.

Fig. 1. Illustration of our four step approach to predict labeled IVD segmentations.

1.1 Localizing and Labeling IVDs

First, we use our approach proposed in [1] to localize and label the IVD’s center
of mass positions. It is a general method to localize and label arbitrary key points
by applying landmark-specific localizers (e.g., random forests or FCNs, here ran-
dom forests) followed by a conditional random field (CRF) to model the global
shape. It has been applied to different dimensionalities (2D, 3D) and modalities
(X-ray, CT) already, but has neither been applied so far to MR images nor to a
multi modality setup. Here, we extend our method to work with multi modal-
ity (i.e., multi-channel) MR images by correspondingly increasing the depth of
c© Springer Nature Switzerland AG 2019
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the image volume (4 in this case instead of a single channel volume). An addi-
tional modification compared to our previous work applies to the CRF: Instead
of using the proposed binary potentials, we use ternary potentials to increase
the rotation and scaling invariance in combination with unary potentials related
to the localizers. I.e., we use a Gaussian distribution to model the ratio between
two distances and a von Mises distribution to model the relative angle between
two vectors projected to one plane. Applying this method we obtain a labeled
localization hypothesis for each IVD.

1.2 Sampling Reoriented IVD Sections

Given the IVD locations predicted by the previous step, we sample small reori-
ented fixed-size sections around each prediction. The size (6× 5× 3 cm) is chosen
such that the classes are balanced and the sections are reoriented such that the
IVDs are level inside the sections (see second step in Fig. 1). PCA was applied
to the training segmentations to find the standard orientation of each IVD.

1.3 Segmenting IVDs

As third step, we perform the actual segmentation of the disc tissue using the
fully convolutional network V-Net [2]. We use the standard architecture and
train it using the setup proposed by the authors. A mini-batch size of 7 is used
and the optimization is carried out for 5000 epochs. To tackle the problem of
few training cases, we train one label agnostic model to segment all seven IVD
sections, effectively using the network to discriminate disc tissue from non-disc
tissue (2-class problem instead of 8-class problem). To further accelerate the
performance, we increase the training set size even more by a factor of 10 using
data augmentation in the form of translation and rotation. Note that histogram
matching is performed prior segmentation as data normalization.

Finally, the resulting segmentations are back-projected into the original label
space and relabeled according to the label predicted by the CRF in first step.

1.4 Evaluation

We used an 8-fold cross validation setup (14 training images, 2 test images)
to estimate essential parameters and to evaluate the training performance. On
average, our method achieves a Dice coefficient of 0.894 and a mean surface
distance of 0.45 mm, while processing one image in (on average) less than 10 s.
For testing, we use an ensemble of our 8 models to improve robustness.

Acknowledgements. This work has been financially supported by the Federal Min-
istry of Education and Research under the grant 03FH013IX5. The liability for the
content of this work lies with the authors.
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