
Chapter 15
Toward the Problem of Low Re Flows
Through Linearly Elastic Porous Media

Sid Becker

Abstract An isotropic elastic porous structure whose initial geometry is regular
(periodically uniform) will experience non-uniform deformation when a viscous
fluid flows through the matrix under the influence of an externally applied pressure
difference. In such a case, the flow field will experience a non uniform pressure gra-
dient whose magnitude increases in the direction of bulk flow. The closed solution
to the problem of low Re flow through deformable porous media requires the simul-
taneous solution of the flow field in the void space and of the stress distribution in
the solid matrix. The focus of the current study is to attempt to predict the pressure
distribution of the flow field based only on the geometry of the media. The inten-
tion is to eventually simplify the coupled fluid-solid problem by replacing explicitly
solution of the flow field with a pressure boundary condition in the stress distribution
of the solid matrix.

Keywords Non-uniform · Porous media · Parallelepiped · Viscous

15.1 Introduction

At lowRe and in a uniformporousmedium, the flow rate is directly proportional to the
pressure gradient (Darcy’s Law). The permeability, K , of the medium characterizes
this relationship and it is determined experimentally or numerically from the relation:

K � Uμ

(
�P

�L

)−1

(15.1)

Here U is the seepage velocity, μ is the dynamic viscosity, �L represents the
length of the porous medium and �P is the difference in average pressure experi-
enced by the fluid. The permeability is always a function of geometry regardless of
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any heterogeneity in the flow field [1]. The importance of considering the local pore
structure for media with geometry that varies in the direction perpendicular to the
direction of bulk flow has been well studied, see for example the seminal work by
Vafai in [2]. The descriptions of slurry flow through evolving dendritic structures in
[3, 4] emphasize that macroscopic modelling is greatly improved when local hetero-
geneity in the structure is taken into account. One of the pore structures presented
therein is represented by bundles of capillary tubes that experience periodic constric-
tions and expansions. Permeability predictions that consider such serial type changes
in tube geometry have been presented that relate the permeability to the pore diame-
ters, porosity, and a pore size density [5–8]. When the porous medium is not uniform
in the direction of bulk flow, the permeability varies in this direction as well. In a
recent publication, a method is presented that allows the prediction of local losses of
low Re flow through a porous matrix composed of layers of orthogonally oriented
parallelepipeds for which the local geometry varies discreetly in the direction of bulk
flow [9, 10]. The important take-away from these works is that even in the presence
of non-uniform periodic matrix geometry, it is possible to predict the local losses as
long as there is full knowledge of the geometry.

With this in mind, consider the case of an initially uniform porous medium that is
composed of a linearly elasticmaterial. It is anticipated that the local pore structure of
such amatrixmay deform under the stresses associatedwith the pressure drop experi-
enced by the fluid as it passes through themedium. In this case, the linear relationship
between flow rate and pressure drop that is exhibited by non-deformable media is
not preserved. As the total pressure drop is increased, the matrix experiences local
pore structure deformations (constrictions) resulting in increased local resistance to
the flow. This result has been shown experimentally [11, 12]. The deformation of an
elastic porous media is non-uniform. At the inlet of the media (free surface), defor-
mations are smallest and lateral displacement of the media is the largest. Conversely,
at the outlet of the media (a fixed surface), the deformations are the largest while
the displacement is zero. This was illustrated in the work by Munro et al. [13] that
considered the lowRe flow of glycerol through elastic porousmedia in an experimen-
tal test rig that relates global pressure drop to flow rate. Using that experiment, we
found that the deformation of an elastic porous media is non-uniform. Unpublished
results of related experiments are shown in Fig. 15.1. At the inlet of the media (this
corresponds to the highest layer number), the deformations are smallest and lateral
displacement of the media is the largest. Conversely, at the outlet of the media (a
fixed surface represented in Fig. 15.1 by the lowest layer number), the deformations
are the largest while the displacement is nearly zero.

This work is motivated by the complexity of the problem of incompressible low
Re flow through a deformable porousmedia. The solution to this problem requires the
simultaneous solution of the flow field in the void space and of the stress distribution
in the solid matrix. Previously, attempts have been made to address the solution
theoretically [14–17]. The relatively recent review by Hou et al. provides a clear
description of the numerical requirements of the Fluid-Solid Interaction (FSI) [18].
A summary of the FSI problem outlined in that paper follows.
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Fig. 15.1 Relative
displacement of different
layers of an elastic porous
media subjected to flows
with different total pressure
drops

The equations of motion in the fluid domain is:

ρ f
(
∂t v

f
i + v f

j ∂ j v
f
i

)
− ∂ jσ

f
i j − b f

i � 0 (15.2)

If the flow is incompressible, the conservation of mass of the flow states that:

∂i v
f
i � 0 (15.3)

For an incompressible Newtonian flow the fluid stress is represented by:

σ
f
i j � −pδi j + τi j (15.4)

where p is the static pressure and the fluid shear is determined by:

τi j � 2μ
(
ei j − δi j ekk/3

)
(15.5)

Here ei j � ∂ j v
f
i + ∂i v

f
j .

The equation of motion for the solid matrix is:

ρs
(
∂t v

s
i + vsj∂ j v

s
i

) − ∂ jσ
s
i j − bsi � 0 (15.6)

Here the superscript f denotes associationwith the flowfield, the superscript s denotes
association with the solid matrix, and b is a body force. The solid side velocity is the
total time derivative of the solid displacement field vsi � u̇si . For the elastic solid, the
structural stress obeys Hooke’s law:

σ s
i j � λδi jεkk + 2Gεi j (15.7)
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where the strain is εi j � (
∂ j ui + ∂i u j

)
/2, the Lame constant is λ �

Eν/[(1 + ν)(1 − 2ν)] and the shear modulus is G � E/(2(1 + ν)), E is the Young’s
Modulus, and ν is the Poisson’s ratio.

The interface conditions at the fluid-solid interfaces are:

v f
i � vsi (15.8)

σ
f
i j · n � σ s

i j · n (15.9)

There are obvious inherent complications of this problem; in particular, that the
location at which these interface conditions are applied will change as the solid
experiences elastic deformation. Consider that many applications of this problem
seek only to know the final state of the flow field. In such cases the question might
be asked: “Given an applied pressure, and the initial geometry of the solid matrix,
what is the final geometry of the solid and the resulting flow rate of the fluid?” The
motivation behind the current paper is to take a step toward the approximation of the
final flow configuration without explicitly solving Eqs. (15.2)–(15.9).

Consider the problem of the response of the solid matrix to a known stress field
at the solid-fluid interface. In such a case the term σ

f
i j · n is known everywhere on

the fluid solid interface so that Eq. (15.9) may be treated as a boundary condition in
order to determine the solution of Eqs. (15.6)–(15.7). This paper considers a recent
publication [9] that develops a correlation that can return the fluid stress distribution
at the fluid-solid interface given the geometry of the solid, the total pressure drop
experienced by the fluid, and the fluid viscosity. In the following text, a summary of
the correlation developed in Ref. [9] is presented. The suggestion here is that in the
future, researchers could use such correlations as a simplification to determine an
approximate solution to the FSI problem of viscous low Re flow through an elastic
porous medium.

15.2 The Geometry

This section describes the regular periodic Cartesian geometry that was developed
and tested in [13]. The uniform version of this geometry is introduced in order to
highlight its important characteristics. Then a manner of describing the variation in
this geometry is presented. Consider the regular periodic geometry representative of
the Cartesian matrix structure depicted in Fig. 15.2. The longitudinal axis directions
of adjacent layers are perpendicular to one another. In order to introduce tortuosity,
parallel layers are offset by a single pore thickness. The colored regions correspond
to the space occupied by the solid matrix and the clear regions correspond to the pore
space.

The anticipated symmetry of the flow may be used in order to simplify the geom-
etry to a single representative pore structure. This is depicted in Fig. 15.3. In order to
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Fig. 15.2 Porous Structure (left); Side views in the x-z and y-z planeswith dash-dot lines indicating
planes of symmetry (right).Note that the planes of symmetry bisect the pores in laternating directions

introduce porosity variation in the direction of bulk flow, the geometry of each solid
layer is varied. Consider Fig. 15.3 depicting representative views of a single pore
channel through the matrix. In Fig. 15.3c a depiction of a pore channel through a
non-uniform matrix geometry is presented. Here each solid layer experiences a
decrease in its characteristic geometry in the direction of bulk flow, �z , and this
decrease is proportional to a variation parameter, ε. Simultaneously each solid layer
also experiences an increase in its characterizing length perpendicular to the direction
of bulk flow (�x in this view) and this increase is also proportional to the variation
parameter ε.

The parameter, ε, whose influence on the local pore geometry is depicted in
Fig. 15.3c, is analogous to the strain experienced in an elastic deformation. In this
way the variation parameter of each layer may be defined by the relation:

ε ≡
(

��z

L0

)
SOLID

�
(
L0 − �z

L0

)
SOLID

(15.10)

where L0 is the characteristic length when ε � 0.
The lateral expansion may also be related to this longitudinal compression by a

parameter, ν, that is analogous to the Poisson ratio. It is defined as:

ν ≡
(

��x

��z

)
SOLID

�
(

��y

��z

)
SOLID

(15.11)
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Fig. 15.3 a The
representative pore structure
through the uniform
Cartesian matrix (constant
β), b the geometric
characterization of the pore
structure in a single layer,
c the representative pore
structure for a non-uniform
medium in which each
layer’s variation parameter,
ε, increases in the direction
of flow

In thisway the pore structure and the porosity of each layer are also related directly
to the parameters through the parameters ε and ν. In the direction of bulk flow, the
characteristic pore length of the ith layer is:

Lz,i � L0(1 − εi ) (15.12)

Consider next the lengths of the pore sides that are perpendicular to the direction
of flow (oriented respectively along the x and y coordinates). The length of one of
these sides is always equal to the constant L0 while the length of the other side may
vary between layers and the orientations of these side lengths alternate coordinate
directions (x or y) between adjacent layers. The length of the side that is free to
experience a contraction or an expansion is linearly related to the variation parameter
by some positive constant, ν. In this way, the ith layer’s pore length perpendicular to
the direction of bulk flow may be described by the relation:

�i � L0

2
(1 − εiν) (15.13)

In thework done in this study the parameter ν does not vary. However the variation
parameter ε will change between layers. When the value of ε in the medium varies
discreetly between layers of the medium, and when its value in each layer is known,
the permeability of any layer “i”may be described to be dependent only on the values
of the variation parameter (i) of that layer εi, (ii) of its upstreamneighbor εi−1, and (iii)
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of its downstreamneighbor εi+1. The study [9] determines the functional relationships
between the dimensionless parameters:

Ki

L2
0

� f (εi−1, εi , εi+1) (15.14)

If the permeability can be determined from knowledge of the matrix geometry,
then it is results of numerical simulations are used to investigate the nature of this
dependence and then these results are used to determine a best fit curve to predict
the dependence of permeability on the local variation parameters.

15.3 Simulations

While numerical simulations are not the focus of this study, we later develop corre-
lations using the results of numerical simulations, and thus we provide some details
of the numerical computations here. These simulations were conducted using the
Software COMSOL® Multiphysics version 4.3. An Intel® Core™ i7-3770 CPU @
3.40 GHz with 32.0 GB RAMwas used to run the simulations. The stationary “lami-
nar Flow” model was used to simulate the steady solution. Symmetry boundary con-
ditions were implemented on surfaces corresponding to planes of symmetry and no
slip boundary conditions were imposed on surfaces corresponding to the fluid-solid
interfaces. A tetrahedral mesh was used. Grid refinement studies were conducted and
the mesh was refined until there a was a less than 0.1% difference in flow solutions.
This was listed as an “extra fine” mesh in the mesh settings.

At the inlet and outlet of the pore structure, uniform pressures were specified. To
ensure that the permeabilities of our correlation have no Re dependency, the inlet
and outlet pressures were chosen so that the local Reynolds number remained below
about 0.1. We simulated the laminar Newtonian flow of a viscous incompressible
liquid with a density of 103 kg m−3 and a viscosity of 0.1 Pa s−1.

In the correlations discussed later, local pressure losses are related to pore geom-
etry. The numerical results of the flow field were post processed for use in the corre-
lations as follows. At specified cross sections of the pore structure, average pressures
were determined from the simulated results using the COMSOL® “Surface Average”
tool. The results at each cross section were saved in a table and exported. We used
the “Surface Integration” tool to determine the total flow rate at some cross sections
perpendicular to the direction of bulk flow. The “Surface Average” tool is used to
determine the average pressure along the planes in the fluid domain that correspond
to the interfaces between the layers. For each geometric configuration, the flow rate
and average pressures are exported and then in a MatLab script the permeability of
each simulation is calculated. TheMatLab function “lsqcurvefit” is used to determine
the least squares best fit curve for the correlations which are described next.
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Fig. 15.4 The geometry of
the pore structure used in the
simulations to determine in
the permeability data used in
the correlations

15.4 Correlations

It is anticipated that at very low Re, the dimensionless permeability is dependent
only on the local pore geometry; the lateral the dimensionless permeability of any
particular layer depends only on the relative variation in the pore geometry of that
layer and of those associated with the adjacent layers as implied by Eq. (15.14).
Simulations are conducted of flows through different pore structure geometries of 6
layers. There first 3 layers always have the same value of the variation parameter,
ε. The last 3 layers share an identical variation parameter that. In this way, there is
a change in the variation parameter at the interface between layer 3 and layer 4 as
depicted in Fig. 15.4. In all simulations, the parameter characterizing lateral variation
in geometry that appears in Eq. (15.13) is constant and equal to ν � 0.4

In order to simplify the subsequent analysis, the downstream change in the vari-
ation parameter of layer “i” is introduced:

�ε−
i ≡ εi−1 − εi (15.15)

and the upstream change in the variation parameter of layer “i” is:

�ε+i ≡ εi+1 − εi (15.16)

In this way, from the each simulation, two values of the local permeability may be
estimated (one for layer i � 3 and one for layer i � 4) from the relation:

KSIM,i � Uμ

(�Pi/Li )
(15.17)

The simulated permeability values may be explicitly linked to their corresponding
variation parameter values ε, ε+, ε−. In the simulations that are used to develop the
correlation, the variation in geometry is constrained such that 0 ≤ ε ≤ 0.6 and 0 ≤
ε± ≤ 0.6. From the data of 11 simulations in this range, a good representation of the
permeability’s dependence on geometry is:

K

L2
0

� a1 + a2β + a3β
2 + �β−(a4 + a5β) + �β+(a6 + a7β) (15.18)
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The constants a1 − a7 of Eq. (15.18) are then determined using the method of
least squares from this data and are:

a1 � 9.802E−03 a2 � −2.478E−02 a3 � 1.614E−02

a4 � −2.774E−03 a5 � 4.556E−03

a6 � −2.790E−03 a7 � 4.586E−03 (15.19)

15.5 Test Case

In this section, the prediction of the pressures resulting from flows through the geom-
etry depicted in Fig. 15.5 is presented. The geometry of the pore channel the total
pressure drop �PT over the porous medium are specified. The predicted permeabil-
ity of each layer of the structure is first evaluated from constants of Eq. (15.19) with
the correlation:

Ki

L2
0

� a1 + a2βi + a3β
2
i + �β+

i (a4 + a5βi ) + �β−
i (a6 + a7βi ) i � 1, 2, . . . , 11

(15.20)

The upstream change in the variation parameter of the first layer and the down-
stream change in the variation parameter of the last layer are set to zero �ε−

1 �
�ε+N � 0. The volumetric flow rate is related to the total pressure drop using a
simple resistor representation:

Q � �PT AT

μ

1∑N
i�1 (Li/Ki )

(15.21)

Here AT is the total area perpendicular to the direction of flow, and the height
of each layer, Li , may be determined from that layer’s variation parameter by
Eq. (15.12). The prediction of the drop in the average pressures across each layer
may then be evaluated from the relation:

Fig. 15.5 A depiction of the
geometry of 11 layer
structure with a uniform
change in variation
parameter �ε+ � −�ε− �
0.05



182 S. Becker

Fig. 15.6 The comparison
between the pressure at the
layer interfaces determined
by the numerical simulation
and by the correlation of
Eq. (15.20) of the predict the
reduced correlation of
Eq. (15.18) of a the
difference in average
pressure across each layer,
and b the pressure at each
layer outlet

�Pi � μ

(Ki/Li )

Q

L2
0

i � 1, 2, . . . , 12 (15.22)

The inlet and outlet pressures (gage) are specified to be 100 and 0 Pa respectively
and gravitational effects are neglected. The fluid density is 103 kg m−3 and the fluid
viscosity is 0.1 Pa s−1. The geometric parameters used are L0 � 10−3 m and ν � 0.4.

The test case geometry that is depicted in 5, represents an 11 layer structure that
has a uniformly increasing value of the variation parameter so that the first layer has
a variation parameter of β1 � 0 and each subsequent layer’s variation parameter
increases by 0.05 (�ε+i � 0.05 i � 1, . . . , 10 and �ε−

i � −0.05 i � 2, . . . , 11).
A comparison between the results of the numerical simulations conducted in

COMSOL and the predictions of the correlation resulting from Eqs. (15.20)–(15.22)
are presented in Fig. 15.6. The pressure drop over each layer increaseswith increasing
ε in a quadratic manner (as is anticipated) and the correlation’s predictions agree well
with the simulation. The calculated average pressure at each layer’s outlet is depicted
explicitly in Fig. 15.6 in showing excellent agreement. A solid line has been added
here to accentuate the deviation of this pressure distribution from that represented
by a flow exhibiting a uniform pressure gradient (the magnitude of the slope of this
line is proportional to the effective permeability of the medium). The correlation’s
predicted volumetric flow rate of Eq. (15.21) agrees to within 1% of that determined
from the results of the numerical simulation.

15.6 Conclusions

An empirical correlation is presented that relates the dimensionless permeability to
the local pore geometry. Given only the information of the fluid viscosity, the local
matrix geometry, and total pressure drop, the correlation is able to predict global flow
rate and the average pressure at any cross section. It is the intent of this research that
in the future such correlations will be applied to the FSI problem of laminar flows



15 Toward the Problem of Low Re Flows Through Linearly … 183

through elastic porous media. It is anticipated that it will be possible to estimate the
solution of the solid matrix without explicitly solving the CFD problem by focusing
only on the solution to the solid matrix in a computational mechanics model. The
correlation developed in this study should be applied to estimate the average pressure
at each solid-liquid interfacial surface within each layer of the matrix. In this way
the pressure boundary condition of these faces will be dependent on the deformation
associated with each layer its adjacent layers.
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