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Preface

Background

Many problems in mechanics involve a deformable domain with moving bound-
aries. Examples include two-way fluid–structure interaction, free surface flows,
flows over soft tissues and textiles, flows involving accretion/erosion, flows through
deformable porous media, material forming, to name but a few. The interaction
of the moving boundary with the participating medium leads to fascinating phe-
nomena in a very broad range of contexts such as flutter, wave breaking, dune
formation, ripple formation on the ocean floor, flow instabilities, structure reso-
nance and failure, atherosclerosis, ice formation on aircraft wings, etc.

The presence of a moving boundary also presents considerable challenges when
it comes to modeling and understanding the underlying system dynamics. The
moving boundary often introduces nonlinearities, which call for special analytical
or numerical treatment. Many techniques have been developed over the years to
handle the moving boundary and the corresponding deformable medium. Examples
include front tracking methods, front fixing methods, the volume of fluid method,
the arbitrary Lagrangian–Eulerian method, etc. These methods have allowed the
community to tackle forever more complex problems of engineering and physics,
but challenges still remain and the range of applications for which these techniques
can be applied is vast.
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Symposium

The IUTAM symposium on “Recent Advances in Moving Boundary Problems in
Mechanics” occurred from February 12 to February 15, 2018 in Christchurch, New
Zealand. The aims of the symposium were to

1. gather the international community of engineers and scientists involved in
moving boundary problems in mechanics,

2. attract a broad spectrum of researchers from various backgrounds (theoreticians,
numerical analysts, experimentalists, applied mathematicians, engineers,
physicists, etc.), and

3. unify a fragmented community to cross-fertilize ideas.

It was a pleasure to host about 50 participants from 17 different countries, a truly
international cross section of the field. The single stream format of the symposium
over 4 days afforded many opportunities for all participants to interact and get to
know one another. Talks were broadly organized in themes: fluid–structure inter-
action, bioengineering applications, multiphase flows, analytical and numerical
methods, Stefan problems, structures with a moving boundary, and optimization.
The symposium had a good mix of participants (65% Engineering, 31% Applied
Mathematics, 4% Physics). Presentations also spanned the whole spectrum from
theory to applications. Most of the talks were oriented toward fluid mechanics
(approximately 40% fluid, 40% fluid–structure interaction, 20% solid).

We were delighted to have had four engaging and inspiring plenary talks:

1. Prof. Yvonne Stokes (University of Adelaide): “Can we fabricate that fibre?”
2. Prof. Scott McCue (Queensland University of Technology): “Three dimensional

linear and nonlinear surface wave patterns”
3. Prof. Jun Zhang (NYU): “Symmetry breaking bifurcations arising from

fluid-structure interaction”
4. Prof. Frederic Dias (University College Dublin): “Recent advances in

slamming”

We gratefully acknowledge their contribution to the success of the symposium.
Beyond the stimulating environment of the symposium, we will also keep fond

memories of the social events including the symposium banquet and the Akaroa
Harbour cruise.

Finally, we would like to acknowledge the professional and financial support of
IUTAM, the College of Engineering at the University of Canterbury, the scientific
committee, and local organizing team. Our special and personal thanks go to the
symposium secretary James N. Hewett, who ran this symposium in such a way that
everyone will keep this symposium in mind with very pleasant memories.
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In summary, this symposium not only “moved boundaries” but also broke
boundaries between researchers and pushed them to enhance knowledge in the
field.

Christchurch, New Zealand Stefanie Gutschmidt
James N. Hewett
Mathieu Sellier
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Chapter 1
Can We Fabricate That Fibre?

Yvonne M. Stokes, Darren G. Crowdy, Heike Ebendorff-Heidepriem,
Peter Buchak and Michael J. Chen

Abstract This paper reviews the development of an efficient mathematical model
for the drawing of optical fibres using extensional flow theory which is applicable
for fibres of arbitrary geometry. The model is comprised of a 1D axial stretching
problem describing the change in area of the cross-section from preform to fibre
coupled with a 2D cross-plane problem describing the evolution of a cross-section.
The solution of the axial stretching problem may be written in an exact form while
the cross-plane problem must, in general, be solved numerically. The model may be
used to solve forward and inverse problems and gives results that compare well with
experiments.

Keywords Extensional flow · Free-boundary problem · Optical fibres

1.1 Introduction

Modelling of fibre drawing has been a topic of interest for around five decades,
motivated initially by the ‘spinning’ of textile fibres [13] and film-blowing [14], and,
more recently, by optical fibre technologies [1, 2, 5–8, 15–18] and the fabrication
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2 Y. M. Stokes et al.

Fig. 1.1 Schematic diagram
of the neck-down region,
0 ≤ x ≤ L , over which the
cross-sectional area of the
preform S0 reduces to that of
the fibre SL due to the large
draw speed UL relative to the
feed speed U0. c©2016
IEEE. Reprinted, with
permission, from Chen et al.,
J. Lightwave Tech. 34(24),
5651–5656 (2016) [3, Fig. 1] neck-down

region

x = 0, u (0) = U0,
S (0) = S0

x = L, u (L) = UL,
S (L) = SL

of capillary tubes [9]. The aim of this paper is to review key research in the context
of drawing of microstructured optical fibres.

Microstructured optical fibres, containing patterns of air channels running along
their length, have revolutionised optical fibre technology, promising a virtually limit-
less range of fibre designs for a wide range of applications, including communication
networks, medical devices and sensing [10, 11]. These are fabricated as depicted in
Fig. 1.1; a preform (1–3cm diameter and with a length of around 10cm or so), with a
cross-section of appropriate geometry and having area S0, is fed into a heated region
at a feed speedU0 and pulled at a higher draw speedUL bywinding onto a spool some
distance downstream beyond the neck-down region of length comparable to, but not
necessarily identical with, the heated region. Internal channels may be pressurised.
In the laboratory reference frame this drawing process over the neck-down region
0 ≤ x ≤ L may be considered a steady-state problem. The resulting fibre will, typi-
cally, have a diameter of 100−200µm, a cross-sectional area SL � S0, and a length
of a kilometre or more, while the internal air channels have diameters comparable
to the wavelength of light. Even when the channels are not pressurised, the fibre
drawing process modifies the shape of the cross-sectional geometry from that of the
preform (see Fig. 1.2), as well as its scale, so that fabrication of a fibre with a desired
structure presents a major challenge. What initial preform is suitable and what draw
parameters should be used? Can it even be made? This is an inverse problem and
mathematics is essential to its solution.

While full 3D numerical simulation has been used to investigate deformation of
the cross-sectional geometry during fibre drawing [16, 17], this is still not practical
for fibres with complex cross-sectional geometries because of the fine mesh reso-
lution and large computational resources required. However, the slenderness of the
geometry enables extensional flow theory to be used to develop accurate and efficient
models and we here focus on these.

The first such model of steady-state fibre drawing seems to be due to Matovich
and Pearson [13] who examined the drawing of solid axisymmetric fibres having no
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Fig. 1.2 Cross-sectional geometry of (left) a fibre preform with total pattern diameter 3cm, and
(right) the resulting fibre with total pattern diameter 20µm. These show the deformation due to the
fibre drawing process. Photographs reproduced with the permission of the Institute for Photonics
and Advanced Sensing, The University of Adelaide

internal structure. They obtained the form of the solution assuming a Newtonian fluid
and neglecting surface tension and/or inertial forces; they also considered some non-
Newtonian fluid models. Dewynne, Howell and Wilmott [7] showed that, assuming
a Newtonian fluid and with neglect of surface tension, fibre drawing results only in a
change in the cross-sectional scale, but not its shape, so that the steady-state model,
for any given preform geometry, may be written as a boundary-value problem in one
spatial dimension for the cross-sectional area as a function of axial position, which
is readily solved. In an appendix they also noted that, for the case of non-negligible
surface tension, the first-order model for the cross-sectional area is the same as
for the zero surface tension case, but that the cross-section no longer maintains its
shape which must be determined by solving a second-order 2D cross-flow problem.
Modelling of fibre drawing including surface tension was considered in detail by
Cummings and Howell [5] for fibres with no internal cross-sectional geometry and
for a fluid of constant temperature (viscosity). They showed that the 2D cross-flow
problem may be written as a classical 2D free-boundary Stokes-flow problem.

Motivated specifically by the drawing of microstructured optical fibres, Fitt et al.
[8] used extensional-flow theory to derive coupled flow and temperature models for
the steady drawing of axisymmetric capillary tubes. A Newtonian viscous fluid with
temperature-dependent viscosity was assumed and inertia, gravity, surface tension
and pressurisation of internal channels were included in the model. Various cases
neglecting one or more of these were considered but the complete exact solution for
isothermal fibre drawing with non-negligible surface tension, and neglecting inertia,
gravity and pressurisation, was not found. Griffiths and Howell [9] obtained the
solution for thin-walled annular tubes in theirwork extending themodel ofCummings
andHowell [5] to the non-isothermal drawing of (not necessarily axisymmetric) thin-
walled tubes.

Solution of the extensional flowmodel with non-negligible surface tension for the
drawing of microstructred optical fibres of arbitrary cross-sectional geometry and,
indeed, also the drawing of an annular tube with arbitrary wall thickness, proved
elusive but was finally solved by Stokes et al. [15]. The breakthrough that led to
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this model is described in Sect. 1.2. Importantly, both forward and inverse problems
may be solved as described in Sect. 1.3. Pressurisation of internal channels is not
considered in this paper but was added by Chen et al. [2]. Section 1.4 contains
concluding remarks and also shows some stunningly accurate comparisons of the
model and experiments.

1.2 Mathematical Model

Let the x-axis lie on the central axis of the fibre and be directed downwards in the
direction of stretching (Fig. 1.1); y and z are then the transverse coordinates. At x = 0
the cross-sectional geometry is that of the preform, which has cross-sectional area
S0, and at x = L the cross-sectional geometry is that of the fibre, which has cross-
sectional area SL , so that the neck-down region over which we model is 0 ≤ x ≤ L .
In this Eulerian reference frame fibre-drawing is a steady-state problem. Further, the
effect of gravity is negligible. Then, for a preform of arbitrary geometry, we start
with the full (3D) steady Navier–Stokes equations,

∇ · u = 0,

ρ (u · ∇u) = −∇p + ∇ · σ,

where u = (u, v, w) is the velocity vector, p is pressure, σ = μ(∇u + (∇u)T ) is
the usual viscous-stress tensor, and ρ and μ are the constant density and temperature-
dependent viscosity of the fluid. The fibre has a number of free-surface boundaries,
the external free surface and the surfaces of each of the interior air channels. In this
paper we denote the collection of free-surface boundaries by G(x, y, z, t) = 0 on
which we have the dynamic and kinematic boundary conditions

σ · n = −γκn, u · n = 0.

Here γ is the coefficient of surface tension, assumed to be constant, κ is the curvature
of the boundary and n is an outward normal to the boundary. In addition we have the
boundary conditions

u(0, y, z) = U0, u(L , y, z) = UL .

1.2.1 The Axial Stretching Problem

As discussed previously the geometry through the neck-down region from preform
to fibre is slender so that we may, as is common [5, 7–9, 13, 15], use extensional
flow theory. Thus we set ε = √

S0/L � 1 and then scale variables and parameters
as follows:
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μ = μ̄μ∗, γ = μ̄U0
√
S0

L
γ∗,

(x, y, z) = L(x ′, εy′, εz′), p = μ̄U0

L
p′,

u = (u, v, w) = U0(u
′, εv′, εw′), S = S0S

′,

where primes denote dimensionless variables, asterisks denote dimensionless param-
eters, and μ̄ is a typical viscosity. Because the resulting scaled equations involve only
O(1) and O(ε2) terms, but no O(ε) terms, we also expand scaled dependent vari-
ables in powers of ε2 [7]:

u′ = u0 + ε2u1 + ε4u2 + . . . ,

v′ = v0 + ε2v1 + ε4v2 + . . . ,

and so on. From this we find that, to leading order the axial velocity and pressure
are independent of the transverse coordinates, i.e. u0 = u0(x, t) and p0 = p0(x, t).
As shown in [8], a similar process can be used to show that, at leading order, the
temperature is independent of the transverse coordinates, so that this is also true
of the temperature-dependent viscosity μ and its scaled form μ∗. In this paper we
assume μ(x) to be a known function and take μ̄ to be its harmonic mean over the
neck-down region,

μ̄ = L
∫ L
0 1/μ(x)dx

⇒
∫ 1

0

1

μ∗(x ′)
dx ′ = 1.

Finally we note that the Reynolds number Re = ρU0L/μ̄ is much less than unity
(typically Re ∼ 10−8) so that inertia may be neglected.

With these scalings, and after considerable work [5, 7, 15], the leading-order
model for S0(x ′) and u0(x ′) is obtained. Dropping primes on dimensionless variables
and subscripts on the leading order components of the dependent variables, this is

u(x)S(x) = 1, (1.1)

3μ∗(x)Sux + γ∗

2

√
SΓ = 6σ∗, (1.2)

S(0) = 1, u(0) = 1, u(1) = D = 1/S(1), (1.3)

where Γ (x) is the total length of all internal and external boundaries at position x ,
σ∗ is the scaled tension in the fibre, and D = UL/U0 is the draw ratio. We refer to
this as the axial stretching problem. Clearly, we may use (1.1) to substitute for u
or S in (1.2), and so reduce this model to a single first-order ODE for S or u, with
associated boundary conditions. We note that a given draw ratio D will dictate the
fibre tension σ∗ or vice versa. In general, we must determine Γ (x) from a model
for the cross-plane flow but we first consider the case of zero surface tension γ∗ = 0
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which removes the term involving Γ and enables straight-forward solution of the
axial stretching problem.

1.2.2 The Case of Zero Surface Tension

This case was considered in detail by Dewynne and others [6, 7] who showed that,
at leading order, the cross-plane flow solution may be written entirely in terms of the
leading order axial flow component u,

p = −μ∗ ∂u

∂x
, v = − y

2

∂u

∂x
, w = − z

2

∂u

∂x
.

From this solution we have that the cross section changes in scale but not in shape.
Therefore, we need only solve for the cross-sectional area S(x) which has solution

S(x) = exp

(

−2σ∗
∫ x

0

1

μ∗(x ′)
dx ′

)

,

S(1) = 1

D
= exp

(−2σ∗) ,

where we have made use of the fact that the harmonic mean of μ∗ over 0 ≤ x ≤ 1 is
unity and found that the draw ratio D determines the fibre tension σ∗.

1.2.3 The Cross-Plane Flow Problem for Non-negligible
Surface Tension

We now come to the leading order cross-plane flow problem for γ∗ > 0. As shown
by Cummings and Howell [5], the zero surface tension solution may be considered
an eigensolution of this problem and the flow solution written as the sum of the
eigensolution and a part due to surface tension. We also move to the reference frame
moving with a cross-section from x = 0 to x = 1, in which reference frame the
problem is unsteady and the variable x is replaced by the time variable t . We rescale
variables using the cross-sectional area S(x) as follows:

(y, z) = √
S (ỹ, z̃), t = t̃, Γ = √

SΓ̃ , κ = κ̃√
S

p = pZST + γ∗
√
S
p̃, (v,w) = (vZST , wZST ) + γ∗

μ∗ (ṽ, w̃),
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where pZST , vZST , wZST is the leading order cross-plane flow solution for γ∗ = 0
and tildes denote the new dimensionless variables. In addition we use the ‘reduced
time’ transformation introduced for constant viscosity in [5] and for temperature-
dependent viscosity in [9],

τ = γ∗
∫ t̃

0

dt

μ∗√S
.

The cross-plane problem so obtained is a classical 2D free-boundary Stokes-flow
problem driven by unit surface tension in a domain of unit area:

ṽỹ + w̃z̃ = 0, ṽỹ ỹ + ṽz̃ z̃ = p̃ỹ, w̃ỹ ỹ + w̃z̃ z̃ = p̃z̃, (1.4)

Gτ + ṽGỹ + w̃Gz̃ = 0, on G = 0, (1.5)

Gỹ(− p̃ + 2ṽỹ) + Gz̃(ṽz̃ + w̃ỹ) = −κ̃Gỹ, on G = 0, (1.6)

Gỹ(ṽz̃ + w̃ỹ) + Gz̃(− p̃ + 2w̃z̃) = −κ̃Gz̃, on G = 0, (1.7)

Here subscripts denote differentiation with respect to the subscript variable. Solu-
tion of the cross-plane problem gives the re-scaled cross-flow and cross-sectional
geometry, including the boundary length Γ̃ , as functions of reduced time τ .

1.2.4 Coupling of Axial Stretching and Cross-Plane Flow
Problems

The cross-plane problem (1.4)–(1.7) in terms of τ is coupled with the Eulerian axial
stretching problem (1.1)–(1.3) in terms of x via

dx

dt̃
= u ⇒ γ∗

μ∗√S

dx

dτ
= u, x(0) = 0. (1.8)

While a solution has been obtained for a thin-walled tube with μ∗ an exponential
function of temperature [9], obtaining a solutionmore generally is difficult. However,
as shown by Stokes et al. [15] the two coupled problems are readily solved for general
geometries and viscosity functions if the 1D axial stretchingmodel is written in terms
of the variable τ ,

−3γ∗
√
S

dS

dτ
+ γ∗

2
Γ (τ ) = 6σ∗,

and putting χ = √
S and Γ = √

SΓ̃ reduces this to the first-order ODE

dχ

dτ
− χ

12
Γ̃ = −σ∗

γ∗ ,
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where Γ̃ (τ ) is obtained from the cross-plane problem which is independent of the
axial stretching problem and may be solved first. Defining the integrating factor

H(τ ) = exp

(

− 1

12

∫ τ

0
Γ̃ (τ ′)dτ ′

)

, (1.9)

the solution may be written as

χ(τ ) = 1

H(τ )

(

1 − σ∗

γ∗

∫ τ

0
H(τ ′)dτ ′

)

. (1.10)

Thus, in summary, the cross-plane model gives the total boundary length Γ̃ (τ ),

0 ≤ τ ≤ τ1 where τ1 determines the fibre shape but not its size. Any appropriate
analytical or numerical method may be used to solve for the cross-plane shape and
boundary length and, hence for the integrating factor (1.9). The stretching flow
problem has the exact solution (1.10) in terms of the integrating factor. The draw
ratio D = UL/U0 = 1/χ2(τ1) = 1/S(τ1) determines the size of the final fibre cross-
section and, from (1.10), we have the relation between the fibre shape (τ1) and the
ratio of fibre and surface tension (σ∗/γ∗),

1√
D

= 1

H(τ1)

(

1 − σ∗

γ∗

∫ τ1

0
H(τ ′)dτ ′

)

.

From (1.8) we obtain the separable ODE relating τ and x ,

dx

dτ
= μ∗

γ∗χ
, x(0) = 0,

integration of which gives the fibre tension σ∗,

∫ 1

0

1

μ∗(x ′)
dx ′ = 1 = − 1

σ∗ log

(
H(τ1)√

D

)

.

The model involves the four parameters σ∗ (fibre tension), γ∗ (surface tension),
D = UL/U0 = S0/SL (draw ratio, equivalently fibre size), and τ1 (fibre geometry).
These are not all independent; two must be specified and the remaining two deter-
mined as part of the solution.

An important result from this solution is that for drawing a desired fibre from a
given preform we can use the model to determine the required physical fibre tension
without knowing the temperature profile. As discussed in detail in [15], for a given
preform geometry and a given fibre geometry (i.e. D and τ1), the model gives the
required ratio σ∗/γ∗ which is related to the ratio of the physical parameters σ and γ
by
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σ∗

γ∗ = 1

6
√
S0

σ

γ
. (1.11)

Since the surface tension γ is a known fluid property and the cross-sectional area
S0 of the preform is also known, we may use (1.11) to compute the physical fibre
tension σ. Provided the draw tower allows for measurement of fibre tension during
a draw, the furnace temperature can be adjusted to achieve the desired fibre tension
without the need to know anything about the fluid temperature itself. In fact, since
the model also gives σ∗ and assuming the (approximate) neck-down length is known,
the (approximate) harmonic mean of the fluid temperature through the neck-down
region may be computed from

σ = μ̄U0S0
L

6σ∗ ⇒ μ̄ = σL

6U0S0σ∗ .

1.3 Forward and Inverse Solutions

Solution of the forward problem is done by solving the cross-plane problem for a
given preformgeometry over reduced time 0 ≤ τ ≤ τ1, for some chosen value τ1, and
then solving the axial stretching problem. Solution of the inverse problem is achieved
by solving the cross-plane problem backwards from a given fibre geometry.When the
cross-plane problem may be solved analytically, both forward and inverse problems
are easily solved; see, for example, the solutions given in [15] for the drawing of
(i) an annular tube and (ii) the tube made by arranging a number of circular rods
of appropriate radius in a circle. These two examples were also used to show that
the inverse problem is inherently unstable; small imperfections in the description of
the fibre are amplified as the model is run backwards, leading to different preform
geometries, some of which may not be practical.

To overcome this instability in numerical solution of the inverse cross-plane prob-
lem, some form of regularisation must be used. An example of this is [1] where a
modified form of Crowdy’s [4] elliptical-pore model, which constrains elliptical
holes in the 2D cross-section to remain elliptical as they evolve, is obtained and used
to solve both forward and inverse problems. Figure 1.3, reproduced from [1], shows
some different preform cross-sectional geometries each of which will yield the same
fibre geometry when drawn using the correct value of the draw ratio and fibre tension.

1.4 Conclusions

In this paper we have reviewed the development of an efficient mathematical model
for fibre drawing using extensional flow theory. The model is comprised of a 2D
free-boundaryStokes-flowproblemdescribing theflowandgeometry evolution in the
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Fibre geometry τL = 0.010 τL = 0.020

τL = 0.030 τL = 0.035 τL = 0.040

Fig. 1.3 Options for preform geometries yielding the fibre geometry shown, calculated by running
the elliptical-pore model backwards. To obtain a fibre with the geometry shown and a given cross-
sectional area the preform of chosen geometry must be drawn with the correct draw ratio and
the correct fibre tension which may be determined from the model solution. c©2015 Cambridge
University Press, Reprintedwith permission fromBuchak et al., J. FluidMech. 778, 5–38 [1, fig. 14]

cross-section, and a 1D axial stretching problemwhich describes the change in cross-
sectional area from preform to fibre. By writing and solving both of these problems
in a reference frame moving with a cross-section, and in terms of an appropriately
transformed time variable, an analytic solution of the axial stretching problem for the
evolutionof the cross-sectional area has beenobtained in termsof a function involving
the total boundary length of the cross-section. This boundary lengthmust be obtained
by solving the 2D cross-plane problem; for some geometries analytical solutions are
available but, in general, the 2D cross-plane problem must be solved numerically.
This model is applicable to fibres of arbitrary cross-sectional geometry and it enables
solution of both forward and inverse problems. When solving the inverse problem
the cross-plane problem is run in reverse and some form of regularisation may be
needed to overcome instability and ensure practically realisable preform geometries.

It is noteworthy that the model enables determination of the tension in the fibre
required to draw a given fibre from a given preform, without the need to know any-
thing about the temperature of the fibre material. Then, when using a draw tower
fitted with a tension-measuring device, the furnace temperature can be adjusted to
yield the required fibre tension. This is of great practical value since determining the
temperature and, therefore, the viscosity, through the neck-down region is extremely
difficult, if not impossible. We also here note that the model indicates that all temper-
ature profiles which yield viscosity profiles with the same harmonic mean through
the neck-down region give the same fibre from a given preform. The temperature
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pH = 0mbar, T = 85.65 g pH = 150mbar, T = 85.66 g

pH = 250mbar, T = 85.67 g pH = 300mbar, T = 85.68 g

(100Pa=1 mbar)

Fig. 1.4 Experimentalmicroscope images of the fibre cross-section, overlaidwith the finite element
simulation of [12] (pale blue transparency) and the results of the new asymptotic simulation (thin
red lines). Shown are the four values of pressurisation from [12, Fig. 3]. For each example the
pressurisation applied is shown in the caption above the image, along with the fibre tension as
calculated by the iterative scheme. c©2016 IEEE. Reprinted, with permission, from Chen et al., J.
Lightwave Tech. 34(24), 5651–5656 [3, Fig. 4]

profile affects the evolution of the geometry along the neck-down region but not the
end result.

Although not discussed in this paper, it is possible to include active pressurisation
of the air channels during fibre drawing, which modifies the balance between fibre
tension and surface tension. In this case there is two-way coupling between the
cross-plane flow and axial stretching problemswhichmust be solved simultaneously.
Importantly, measurement of fibre tension still circumvents the need to know the
temperature profile. For further detail on this model see [2].
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Figure 1.4, taken from [3], compares the extensional-flow model including active
pressurisation with experimental results and a 3D finite-element simulation for a
6-hole preform with an external diameter of 4mm. The extensional-flow model
captures the cross-sectional fibre geometry extremely well and better than the
finite-element simulation. This provides excellent validation of the extensional-flow
modelling approach. For further details see [3].

In closing we note that the model accuracy decreases as the preform diameter and
the draw ratio increase. Good comparison is seen between model and experiment
for preforms with external diameters up to around 10mm and the model is a useful
predictive tool for determininghow to fabricate a desiredfibre. For quite largepreform
diameter, around 3cm, there is reasonable qualitative agreement between model and
experiment for some choices of parameters but significant discrepancy for others, in
particular large draw ratio and large tension. This is the subject of ongoing research.
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Chapter 2
A Numerical Study on Free Hovering
Fruit-Fly with Flexible Wings

Y. Yao, K. S. Yeo and T. T. Nguyen

Abstract Insect flyers have drawn the attention of many biologists, mechanists and
engineers due to their unparalleled manoeuvrability. In this article, we introduce a
comprehensive FSI model to investigate a model fruit-fly with flexible wings. We
then apply the model in the numerical study of the interaction between aerodynamic
and structural processes in free hovering flight. The model fruit-fly is allowed to fly
with six-degrees of freedom (6-DoF) and hovers steadily with active wing kinematic
control. The present study provides a convenient approach to track the dynamic
deformation of flexible wings and the instantaneous aerodynamic forces and power
in free flight. The results of hovering flight simulations show that the flexibility of
insect wing allows the wing to bend and passively adapt to the detaching direction
of leading-edge vortices (LEVs), which helps to enhance lift force and reduce the
aerodynamic power consumption in free flight.

Keywords Insect flight · Flexible wing · Free flight · Computational fluid
dynamics · Fluid-structure interaction

2.1 Introduction

Winged insects are amazingly agile flapping wing flyers which can hover, fly up-
side down, and execute rapid manoeuvres [1]. The flapping wing flights are more
efficient in low Reynolds number regime, which outperforms conventional fixed and
rotary wing aircrafts [2]. Due to their unparalleled manoeuvrability and efficiency,
winged insects have long captured the interest of zoologists and aerodynamicists.
The advance of computational fluid dynamics (CFD) enabled researchers to explore
the unsteady aerodynamics of flapping wings and behaviours of free insect flight
via numerical approaches. The aerodynamic performance of insect flight in different
scenarios has been investigated in the literature [2–4].Moreover, there have been also
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several attempts to model natural flexible insect wings via fluid-structural interaction
(FSI) analysis [5, 6]. The recent work of Nguyen et al. [6] enabled the modelling
of flexible wings with large deformation and revealed that wing flexibility plays an
important role in allowing insectwings to undergo aerodynamically favourable defor-
mation. However, few studies integrated the deformation of wing in free insect flight
study. Thus, the effects of wing flexibility on natural free flight remain untouched.

In this article, we present a comprehensive FSImodel for insect flight with flexible
wings and set out to seek for a better understanding of the interaction between
aerodynamic and structural processes in free flights. The model insect is allowed
to fly with six-degrees of freedom (6-DoF) and comprises a pair of flexible wings.
The present numerical method allows the interaction between meshfree node cloud
surrounding moving bodies and background Cartesian grid, and will be described in
Sect. 2. In Sect. 3, the flight performances of model insects with rigid and flexible
wings are presented and analysed respectively. Some qualitative aspects of the fluid
dynamics are discussed to provide insights in the effect of flexibility on aerodynamic
loads on the flapping wings. The key conclusions arising from the present work are
summarized in Sect. 4.

2.2 Methods

2.2.1 Modelling of Free Flying Insect

To correctly simulate insect motion in free flight, flow field surrounding flying insect
needs to be solved to evaluate unsteady aerodynamic forces generated by flapping
wings. The complex geometry and dynamics of the flyer make simulation of such
flowshighly challenging for conventional computational fluid dynamics (CFD)meth-
ods. In this study, we solve moving boundary problem involved in flapping wing
flight with a singular value decomposition (SVD) based generalized finite difference
(GFD) scheme on a hybrid coupled Cartesian-meshfree grid system. The SVD-GFD
method was first proposed by Ang et al. [7], then was further extended to solve
complex moving boundary problems like insect flapping flight, fish swimming, and
others. The present methodology has been validated by comparing results obtained
in standard cases with numerical and experimental data published in the literature.

The computational setup used for ground effect study is presented in Fig. 2.1. The
flow field between the wing stroke plane and the ground was discretized by uniform
Cartesian mesh (grid interval 0.025R, and R is the wing length of the flyer) to obtain
satisfactory resolution. Highly refined meshfree grid was used near the surfaces as
shown in Fig. 2.1b.

The motion of the flyer is driven by the reaction force of the fluid obtained in the
numerical simulation. Once the flow field is solved by the aforementioned numerical
methods, aerodynamic forces can be computed to obtain the solution of the kinematic
and dynamics equations in accordance with Newton’s laws.
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Fig. 2.1 Configuration of computational grid for free hovering fruit-fly study. a Background
Cartesian mesh; bMeshfree cloud around the model insect

Fig. 2.2 Insect wing model adapted from Nguyen et al. [6]. a Natural fruit-fly wing; b LER wing
model

2.2.2 Modelling of Flexible Wing

The non-linear dynamics of the flexible wings under coupled inertia-aerodynamic
loadings is then modelled through a finite element method-based loose fluid-
structural coupling process described in [6]. The open-source FEA library, Vega
[8], which offers a wide choice of numerical schemes and material models, was
adopted this study to solve the non-linear structural dynamic problems related to
flexible wings.

The discretized second order system of differential equations that describes the
motion of a deformable solid can be constructed using the principle of virtual work
and finite element discretization [9]. The co-rotational linear elasticity model is
chosen thanks to its relative simplicity, inexpensive computational cost and good
behaviour in problems involving large deformation [8]. The implicit Newmark inte-
grator is selected to advance the solution in time due to its reliability [10].

A leading-edge reinforced (LER)wing shown in Fig. 2.2 is adopted in this work to
better represent the thin shell structures of natural flexible wings. The LERwing fea-
tures a distribution of stiffening veins and connecting softmembrane that is abstracted
from that of the natural wing. The construction and properties of the LER wing may
be found in [6] with details.
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Fig. 2.3 Instantaneous lift and drag histories of a fruit-fly wing executing simple harmonic motion
at Re � 200

2.2.3 Validation

We adopted the experimental results in Lua et al. [11] to validate the CFD scheme
presented in this paper. In the experiments of Lua et al., the forces on the insect
wings were estimated from a scaled robot wing and normalized to the insect scale.
As shown in Fig. 2.3, our numerical results closely tracked the build-up and decrease
of the experimental data, and correctly captured major force peaks and troughs in
the whole wingbeat. This relative error between experimental and numerical results
also agreed with the previous numerical studies [4, 12], and it may be caused by the
oscillation/flutter of the robotic wing due to its imperfect rigidity and slips within the
actuator mechanisms. The general agreement indicates that the present FSI solver
can predict the force generation of insect wings with sufficient accuracy for our
purpose. More comprehensive validations for the FSI solver, including analyses of
non-deformable, stationary andmoving objects, can be found in the authors’ previous
paper [6].

2.3 Results and Discussions

Many insects have been observed to hoverwith approximately horizontal stroke plane
[13]. This flight status is named normal hovering, and has been considered as the
most basic mode of flapping wing flight by researchers [4, 14]. In the present work,
we implement the proposed FSI model to investigate the effects of wing flexibility
on the normal hovering flight of a model fruit-fly.

The morphological model of the fruit-fly was extracted from the images pho-
tographed by Fry et al. [14] and Holtzman and Kaufman [15]. The model flyer has
a wing length of R � 2.39mm and a body length of L � 2.78mm. The basic wing
kinematics was assumed to be simple harmonic motion with an initial flapping fre-
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Fig. 2.4 Designated body
posture in normal hovering
flight

quency of f � 260 Hz. Then the Reynolds number of the flapping wing flight, which
represent the ratio of inertial to viscous aerodynamic forces, could be determined:

Re f lap � � f R2

ν

where � is the stroke amplitude and ν is viscosity. A nominal Re of 148 may be
worked out for Fry et al.’s sample of six free hovering fruit flies [14], which had an
average wing-beat frequency f � 218 Hz (range 211–227 Hz).

The flyer was controlled to maintain a designated posture shown in Fig. 2.4. In
normal hovering flight, the mean body angle χ̄ was set to 48°, while the stroke-plane
was set to be horizontal at the non-dimensional time t* � 0. In the simulations,
the model flyer is regulated by a stroke-plane based kinematic control algorithm to
maintain long-term steady hovering status. The basic wing kinematics was assumed
to be simple harmonic motion with an initial flapping frequency of 260 Hz. The
stroke-plane was adjusted forward or backward within a set range of βR � βR,0±6◦,
where βR is the angle between stroke-plane and body heading, to keep the flyer stay
at the designated position. A small stroke bias was then set and adjusted actively in
the flight to keep the net pitch moment in balance.

2.3.1 Flight Performance

Figures 2.5 and 2.6 show the details of the flyer’s motion in normal hovering over a
periodof 100wingbeatswith rigid andflexiblewings respectively. Thebodydisplace-
ment was normalized by the wing length R. The time histories of body displacement
and rotation presented in Figs. 2.5 and 2.6 indicate that the lateral motion (yawing,
rolling and lateral displacement (x-direction)) is negligible in hovering flight. There
was a significant body oscillation appearing in the first ten wingbeats of the hovering
flight (t*< 10). The flyer then gradually stabilized to steady cyclical motion in the
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Fig. 2.5 Time histories of motion and kinematic parameters in normal hovering flight with rigid
wings. a Displacement of centre of mass; b Yaw, roll and pitch angles of the flyer

course of simulation. The rigid wing flyer deviated about 0.1R backward, 0.015R
upward from the designated hovering position in the early stage of flight (Fig. 2.5a),
while the body pitched up about 5.5° (Fig. 2.5b). For the flexible wing flyer, the
maximum deviation of the body displacement was about 0.052R backward, 0.018R
upward (Fig. 2.6a), and it was about 2.7° for body pitch (Fig. 2.6b).

The large body oscillation at the beginning of flight is due to the unbalanced forces
and moments produced in the first wingbeat as the flyer accelerate its flapping wings
from rest. Thedecreaseddeviation in theflexiblewingflight indicates the deformation
of the LER wings would reduce the unbalanced pitch moment and longitudinal force
in the 1st wingbeat compared with the rigid wing. The smaller pitch angle further
alleviated the burden of the horizontal motion control. This alleviated initial body
oscillation leads to a 20% cut-down of the settling time in the flight with flexible
LER wings (see Table 2.1).

Moreover, comparing the results shown in Table 2.1, it is noted that the steady-
state body fluctuations associated with wing flapping slightly decreased on the flight
with flexible wings. The 10-wingbeat mean flapping frequency also reduced in the
flexible wing case. We further computed the peak and 10-wingbeat mean power con-
sumption in steady hovering flight. The results provided in Table 2.1 agree well with
experimental data in [14]. The different power consumptions indicate that the flexible
wing flight is more efficient than the rigid wing one. The mean power consumption
of the flexible wing flight was about 20% less than that of the rigid wing flight. The
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Fig. 2.6 Time histories of motion and kinematic parameters in normal hovering flight with flexible
wings (LER wings). a Displacement of centre of mass; b Yaw, roll and pitch angles of the flyer

Table 2.1 Flight
performance of model flyer
over 10 wingbeats in
quasi-steady flight

Rigid wing LER wing

Horizontal deviation
Y ∗ − Ȳ ∗

D

/
10−3

(−1.44, +5.88) (−3.78, +2.44)

Vertical deviation
Z∗ − Z̄∗

D

/
10−3

(−0.86, +0.06) (−3.87, −0.04)

Pitch deviation
χ∗ − χ̄∗

D

/ ◦ (−0.80, +0.34) (−0.93, +0.25)

Mean flapping
frequency f̄

/
Hz

262.8 258.5

Peak power

P∗
peak

/
Wkg−1

272.9 202.9

Mean power
P̄∗/Wkg−1

136.9 110.2

present results indicate that natural flexible wings will help damp flight oscillations
and reduce power consumption of the flyer for natural insect flyers.
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(a)

(b) (c)

Fig. 2.7 Vortices on the flapping wing in mid down-stroke of hovering flight. a Near field vortex
structure showing by iso-surfaces of λ2 � −80; b Spanwise vorticity contours on slice at 0.8 span
on rigid wing; c Spanwise vorticity contours on slice at 0.8 span on flexible LER wing

2.3.2 Vortex Structures

More details of the flow structures around the free flying model insect have been
extracted from the CFD results. The present numerical method resolves the full
details of temporal dynamics of the flow field. It provides us a convenient way to
visualize and quantify the 3D vortices produced by the rigid and flexible wings. Since
the evolution of the vortex wake in hovering flapping flight was well documented
and discussed in previous works [4, 12, 16], this paper will focus on the flow field
obtained at the mid-downstroke of a wingbeat (in quasi-steady hovering) to analyse
the near-field vortex dynamics generated by both rigid and flexible wings.

In hovering flight, the wings shed a copious amount of vorticity into the sur-
rounding air. These take the forms of a leading-edge vortex (LEV), a wing-tip vortex
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(WTV) and a trailing-edge vortex (TEV)—identified by the regions on the wing
where they are generated as shown Fig. 2.7a. The vortices connected with each other
to form a vortex ring (VR) on the wing. The LEV was formed at the sharp lead-
ing of the wing, and engulfed the wing from wing root to tip. The WTV extended
contiguously from the LEV, and detaches from the wing surface at the distal end of
the wing. The WTV stretched from the beginning to the end of the stroke during
flapping motion due to the continuous shedding from the LEV. The TEV grew in
size and strength as the mid angle-of-attack of the wing increases. It then detached
from the wing and moved downstream from the trailing edge. The shedding TEV
near the wing tip, which entangled with the WTV, decayed in the course of flapping
motion, whereas it forms a sheet-like vortex near the wing root stretching from the
wing base to the middle of the wing plane. The bulk of vortical flow was shed into
wake via the VR, especially the WTV due to centrifugal effect.

Further details of vortices near the leading edge could be found in Fig. 2.7b, c.
Between the rigid and LER wings, the LEV is comparable in magnitude, but quite
different in its location on the wing’s upper surface. The flexibility of LER wing
allow the wing to deflect upwards and the deflection delayed the separation of LEV.
The deformation of LER wing clearly presents a reduced frontal area to translational
drag. The closely attached LEV on the LER wing also induces lower pressure over
upper wing surfaces, which enhances the suction effect and leads to lift enhancement.
Similar to the results given in [6], the above flow condition persists and continues to
benefit lift production beyond the mid-stroke.

The VRs, comprising the LEV, TEV and WTV, was shed into the vortex wake
during wing supination at the start of each stroke. Figure 2.8 shows that stacked VRs
dominated the vortex wake. The VRs formed in the previous downstroke (VR-D) and

(a) (b)

Fig. 2.8 Side views of shedding vortex wake in hovering flights showing by iso-surfaces of λ2 �
−1.8 (dark red) and λ2 � −0.18 (light blue). a Flight with rigid wings; b Flight with flexible LER
wings
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upstroke (VR-U) can be identified in the vortex wake. The shedding VRs consisted
two branches, aWTV and a wing root vortex (WRV). TheWRVwas developed from
the sheet-like TEV and shed from the inner edge of the wings. Strong downwash
flow jet passing through the VRs was observed in the velocity field. The significant
deformation of the LERwing caused the downwash to turn more vertical (comparing
Fig. 2.8a, b).

2.4 Concluding Remarks

In this paper, we implemented a comprehensive computational framework to accom-
plish the numerical simulation of free hovering insect flight with flexible wings. The
model fruit-fly was allowed to hover with 6-DoF in the study through the regulation
of the stroke-plane based kinematic controller. A quantitatively analysis of aerody-
namic performance is first carried out for flights with flexible and rigid wings. The
results indicate that the hovering flight with flexible wing is more efficient in terms
of lift generation and power consumption. The flexibility also helps to reduce the
body oscillation in steady flight. Flow visualization further demonstrates that the
flexible wing can passively adapt to detaching leading edge vortex (LEV). Thus,
the deformation of wing delays the detachment of LEV and contributes to high lift
generation.

The present numerical study on fruit-fly model may imply that the flexibility of
wing could also enhance the performance of other kinds of insects. The present results
encourage us to investigate larger insects with softer wings, such as butterflies, moths
and dragonflies. Moreover, the capability of the present computational framework
could be extended to analyse the behaviour of insect and wing deformation in rapid
and complex manoeuvring flight.
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Chapter 3
Three-Dimensional Flight Simulation
with Transient Moving-Aerofoil Models

Arion Pons and Fehmi Cirak

Abstract The simulation of highly transient three-dimensional flight has relevance
to several areas of current aerospace research, including the design of biomimetic
micro-air vehicles. Modelling transient aerofoil motion in such systems is diffi-
cult due to the competing demands of model fidelity and computation time. In this
work we present a fully three-dimensional flight simulator for biomimetic moving-
wing aircraft, using a Goman-Khrabrov type model to capture transient aerodynamic
effects. Parameters for this model are identified from quasistatic data and transient
computational fluid dynamics, with a quantitative assessment of the model’s limita-
tions. Flight simulation results are presented for a Pugachev cobra manoeuvre, and
the significance of transient aerodynamic modelling is demonstrated.

Keywords Biomimetic · Flight simulation · Aerodynamics · Goman-Khrabrov

3.1 Flight Simulator Framework

3.1.1 Biomimetic Systems

Biomimetic flapping aircraft have seen significant study over a wide range of scales:
biomimetic insects [1, 2], pigeons [3], bats [4, 5], and pterosaurs [6, 7] have been
considered, among many others. A key impediment to their practical implementa-
tion—particularly in high-performance applications—is the difficulty of flight mod-
elling and analysis, arising from the complexity of flapping-wing aerodynamics.
High-fidelity computational models are often required [8, 9], which limits the scope
of analysis that may be carried out.

In this work we devise reduced-order models for the transient post-stall aerody-
namic analysis of a flapping wing system, with a target scale of c. 1 m (e.g. larger
biomimetic vertebrates), and a characteristic wing Reynolds number of c. 3 × 105.
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Fig. 3.1 Schematic of aerodynamic mesh framework

This is implemented in a flight simulator for a hybrid biomimetic aircraft; consist-
ing of a conventional propulsion system (e.g. propeller) coupled with three degree-
of-freedom wing rotation to enable biomimetic supermanoeuvrability—highly
transient, post-stall manoeuvres. The inclusion of transient post-stall aerodynamic
effects is self-evidently a key factor in accurately simulating such manoeuvres.

3.1.2 Structural Dynamics and Integration

Multibody dynamics are used to describe the structural behaviour of the modelled
aircraft. All system internal degrees of freedom (e.g. wing motion) are assumed to
be actuated, leading to a six degree-of-freedom system model which nevertheless
includes the inertial effects of wing motion exactly. The system orientation is param-
eterized with an orientation quaternion, and the system model is integrated with a
quaternion variational integrator, similar to that of Manchester and Peck [10].

3.1.3 Aerodynamic Framework

The system aerodynamics are formulated in a strip theory/blade element momentum
framework. Each component of the airframe, lifting surface or otherwise, is dis-
cretized along its major axis into a series of two-dimensional section models. Local
aerodynamic quantities at each section model are computed from the body kine-
matics (including the effect of wing motion-induced flow) and resolved into polar
coordinates, leading to local values of the effective angle of attack αi , its rate α̇i , and
the airspeed U . Figure 3.1 shows a schematic of this discretization process.

This framework neglects the effects of spanwise flow and of flow shadowing or
other interactions within the airframe. While the aerodynamic mesh framework does
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not preclude the modelling of spanwise flow or inter-section coupling effects, no
models to this end have yet been suggested in the literature.

The aerofoil considered in this paper is the wing aerofoil (ST50W) from the
ShowTime 50, an existing highly-manoeuvrable remote-control aircraft. This aero-
foil is used for the wings of the case study biomimetic system. Quasistatic data for
this aerofoil is available from Selig [11]. The stabilisers use other aerofoils, which
contain control surfaces. The modelling approach for these aerofoils is not covered
in this paper.

3.2 Goman-Khrabrov (GK) Modelling

3.2.1 Transient Aerodynamic Models

In situations where computational models of transient aerodynamic
effects are unfeasible, some form of lower-order dynamic stall and
lift hysteresis model is required. Phenomenological models of this form include
the ONERA [12] and Goman-Khrabrov (GK) [13] models, among others [14].
Model reduction techniques are also available [15–17], though these still require
higher-fidelity data to work on. At a simpler level, Theodorsen’s aerodynamic theory
provides a method by which the dynamic effects of low-amplitude pitching and
dihedral motion may be modelled [18, 19]; though the method does not extend to
large amplitudes [20]. Wagner’s indicial response function [20] and the finite-state
theory of Peters et al. [21] perform similar roles. Few of these methods, however,
have been applied to morphing-wing systems.

In this work we apply a GK model to our biomimetic system. The application of
such a model to fully three-dimensional flight simulation requires some significant
extensions and generalisations. Here the phenomenological nature of this model is
a significant advantage, as physical reasoning can be utilised to diagnose the causes
of model breakdown, and to guide the model identification process.

3.2.2 GK Model Formulation

The Goman-Khrabrov dynamic stall model may be expressed as follows. For any
section model, the aerodynamic coefficients (lift, drag and moment) are decomposed
into attached-flow

(
Ci,att

)
and separated-flow

(
Ci,sep

)
components, each as a function

of angle of attackα. These components are then recomposedwith amixing parameter
p, describing the degree of local flow separation:

Ci (α) � pCi,att(α) + (1 − p)Ci,sep(α). (3.1)
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In a fully attached flow regime p � 0, and in a fully separated flow regime p � 1;
and thus the behaviour of p only governs the system aerodynamic behaviour in the
transition zone. In Goman andKhrabrov’s original model [13], pwas related directly
to the location of the flow separation point along the airfoil chord; p � 1 representing
separation at the leading edge and p � 0 at the trailing edge, i.e. not at all. However,
more modern approaches [22–24] have loosened this direct relation in favour of a
parameter-identification approach.

In the case of aerofoil quasistaticmotion, the behaviour of p is governed solely by a
quasistaticmixing function, p � p0(α), representing the flow separation progression
through the transition region.Note that it is possible to account for static lift hysteresis
here, by defining separate p+0 and p−

0 functions representing quasistatic pitch-up and
pitch-down motion [22]; but we do not consider this here. In the case of transient
motion, p is modelled by a first-order ordinary differential equation:

τ1 ṗ � p0(α − τ2α̇), (3.2)

where {τ1, τ2} are delay times, corresponding respectively to the system time constant
(i.e. the system delay in responding to a change in state) and the separation-delaying
effect of pitch rate (α̇). With an accurate identification of the delays {τ1, τ2}, qua-
sistatic mixing function p0(α) and separated and attached flow models Ci,att and
Ci,sep, accurate models of transient airfoil pitching model may be obtained [22].

3.2.3 Identification of Quasistatic Model Parameters

A key distinction may be made in the GK model between quasistatic and dynamic
model parameters. The former, p0(α), Ci,att(α) and Ci,sep(α), are features of the
decomposition of aerodynamic coefficients into separated and attached components,
and are thus not directly associated with any dynamic effects. They may be identified
directly from quasistatic data. The attached flow regime is modelled well by linear
relations, as per potential flow theory, whereas the separated flow regime is modelled
well by sinusoids, as per separated-flow thin-aerofoil theory [23]. We in fact propose
a split sinusoid model, as this yields a significantly better fit; particularly for the drag
and moment coefficients:

Ci,sep(α) � Ai sin(Bi |α − Ci | + Di ),

Ci,att(α) �
⎧
⎨

⎩

Eiα + Fi −90◦ ≤ α ≤ 90◦

Gi (α − 180◦) + Hi 90◦ < α ≤ 180◦

Gi (α + 180◦) + Hi −180◦ ≤ α < −90◦,

(3.3)

with coefficients Ai − Hi . It should be noted that, in a fully three-dimensional
flight simulator, cases of lifting surface reverse flow (α ∼� 180◦) may occur. An
identification of trailing edge p0(α) and Ci,att(α) are thus also required: hence the
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Fig. 3.2 Aerodynamic
coefficients for the ST50W:
attached and separated flow
models, original data, and
reconstructed model

formulation Ci,att(α), which additionally accounts for the discontinuity (between
±180◦) at this location. Phenomenologically the leading and trailing edge models
are unlikely to be identical on account of the sharp tip on the trailing edge—leading
to more rapid flow separation and a change in the attached flow gradients. The
identification and implementation of a full leading and trailing edge GK model has
not been attempted before.

A direct identification of p0 is more difficult, and typically requires a large num-
ber of data points within the transitional flow regime (c.f. [22]). When this is not
available, and particularly when considering multiple aerodynamic coefficients (lift,
drag and moment) direct identification is not possible. To overcome this, Reich et al.
[23] proposed a general empirical result, an inverse tangent sigmoid. Applied to the
leading and trailing edge the model may be expressed:

p0(α) �
{ −0.0058 tan−1(w+|α| + 16) + 0.5 −90

◦ ≤ α ≤ 90
◦

−0.0058 tan−1(w−(|α| − 180) + 16) + 0.5 90
◦
< |α| ≤ 180

◦
.

(3.4)

As an addition, we include a width parameter w± (� 1 in Reich et al. [23]) for the
purpose of modelling the aerofoil trailing edge.

Thequasistaticmodel specification is nowcomplete. Figure 3.2 shows the attached
and separated flow models identified from the quasistatic ST50W data of Selig [11].
Figure 3.3 shows the empirical p0 model from Reich et al. [23], compared with the
results of results generated by a direct identification, which may be obtained simply
by solving Eq. 3.1 for p at each quasistatic data point. The trailing edge results are
presented around α � 0 for convenience. Figure 3.2 shows additionally the GK
reconstruction of the quasistatic data, computed with p � p0(α) in Eq. 3.1.

As can be seen, the identification of the separated and attached flow models is
very good: the split sinusoidmodel performs significantly better than a plain sinusoid
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Fig. 3.3 Identified p0(α) functions for the ST50W, compared with the arctangent sigmoid

would, as can be noted by the significant non-zero values of the separated flowmodels
at α � 0. The empirical result for p0 also represents a good fit: for the leading edge
we have w+ � 1 as per Reich et al. [23]; for the trailing edge w− � 1.6 to match the
profile observed in the lift and drag coefficient data. There is a degree of spread in the
directly identified p0 profiles, notably in the trailing edge moment coefficient, and
this leads to a degree of error in the reconstructed quasistatic profiles (again, notably
in the trailing edge moment coefficient). However, attempting to extend the model
to a unique p0(α) function in each coefficient breaks the physical relevance of p and
yields a model which ceases to have any phenomenological basis. Overall, a single
p0(α) is adequate. This completes the identification of the quasistatic parameters.

3.2.4 Identification of Transient Model Parameters

To identify the dynamic delay times {τ1, τ2}we turn to computational fluid dynamics
(CFD). A two-dimensional transient flow simulation of the aerofoil at Reynolds
number 3 × 105 is created in OpenFoam, equipped with a moving-mesh solver to
allow arbitrary specified in-plane wing motion. Figure 3.4 shows the simulation
geometry, along with the standard simulation mesh and the velocity and pressure
boundary conditions. Turbulence in the flow domain is modelled using the Menter
shear-stress-transport model [25] with wall functions to resolve the boundary layer.
The turbulent kinetic energy and specific rate of dissipation boundary conditions are
all switching conditions which take a fixed freestream value on cells with flow into
the domain, and constrained to zero gradient on cells with outward flow.

The flow initial conditions are supplied via a steady state solution to system
at the initial aerofoil orientation, obtained via the SIMPLE algorithm [26]. The
transient flow equations are solved using the PIMPLE algorithm, an OpenFoam-
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Fig. 3.4 Schematic of CFD model geometry and mesh, with boundary conditions

specific combination of the SIMPLE and PISO algorithms [27]. Amesh convergence
analysis is carried out. Aerodynamic coefficient results for simulations at fixed angle-
of-attack are notably larger than those reported in Selig [11], as a result of closed-jet
tunnel conditions (c.f. [28]) generatedby themoderately-sizeddomain size.However,
as the identification of {τ1, τ2} is independent of the magnitude of the aerodynamic
components, this is not a fundamental difficulty: the quasistatic model parameters
can be re-identified for the closed-jet tunnel results. Then, under the assumption
that the closed-jet conditions do not fundamentally alter the nature or timescale of
the dynamic stall event, the identified {τ1, τ2} may be applied to the original model.
While a larger domain size could remove this need for re-identification, the smaller
closed-jet tunnel domain allows a larger number of simulations to be carried out for
an equivalent computational effort.

Results from the simulation of sinusoidal pitching motion at several reduced
frequencies are used to identify {τ1, τ2}. These reduced frequencies are defined as
k � bω/U , where b is the aerofoil semichord,U the airspeed and ω the dimensional
oscillatory frequency. A reasonable match for reduced frequencies below k � 0.70
is found to be τ1 � 1b/U , τ2 � 3b/U . Figures 3.5, 3.6 and 3.7 shows the GKmodel
predictions compared with the CFD data for results at k � 0.175, 0.35, 0.70 (0.5,
1.0 and 2.0 Hz). The quasistatic coefficient curve, in the absence of GK modelling,
is also noted. As can be seen, a reasonable quantitative match is obtained. The
observed noise effects (e.g. Fig. 3.6) are related to the transition between attached
and separated flow regimes. A notable result is that of k � 0.70: the CFD dynamic
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Fig. 3.5 GK model and CFD lift coefficient results for k � 0.175

Fig. 3.6 GK model and CFD lift coefficient results for k � 0.35

stall loop in angle-of-attack space is of similar size and shape, but at significantly
higher coefficient values. This difference is attributable to added mass effects, and
indicates the beginning of model breakdown.

3.2.5 Limitations on the Identification of Transient
Parameters

Severe model breakdown is observed above k � 1.40 (2 Hz): Fig. 3.8 demonstrates
this effect. The broad elliptical coefficient curves are characteristic of added mass
effects, as inTheodorsen’s aerodynamic theory [29].However, it is not clear how such
models of added mass effects can be synthesised with the GK model, especially as
the former are typically expressed in the frequency domain [29]. Until such synthesis



3 Three-Dimensional Flight Simulation with Transient … 35

Fig. 3.7 GK model and CFD lift coefficient results for k � 0.70

Fig. 3.8 GK model and CFD lift coefficient results for k � 1.40

models are developed, this aerodynamic model must be regarded as valid only up to
k � 0.70.

3.3 Flight Simulation

3.3.1 Cobra Manoeuvre

As a test case, we simulate a Pugachev cobra manoeuvre [30] carried out by a
biomimetic morphing-wing system. The manoeuvre is designed via longitudinal
stability analysis: this process is not presented here. Figure 3.9 however shows the
manoeuvre, simulated with GK and quasistatic aerodynamic models. As can be seen,
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Fig. 3.9 Flight simulation results for the Pugachev cobra manoeuvre, for GK and quasistatic aero-
dynamic models

the implementation of GK modelling has a significant effect on the manoeuvre:
delayed reattachment in the later phases of the manoeuvre leads to a much longer
duration of pitch-down moment, drawing the aircraft into a dive. Changes of control
design are thus required to avoid this effect—demonstrating the relevance of GK
modelling to this system.

3.3.2 Spectral Analysis

To check whether the Pugachev cobra manoeuvre breaches the validity conditions
of the GK model, we perform a spectral analysis of the angle-of-attack history of
the GK simulation. Under the Fourier transform, α(t) � α̂ exp(iωt), the system
spectrum in ω may be used to estimate the spectrum in reduced frequency; k �
bω/U . We base this estimate on the (left) wingtip angle of attack: the location
showing the greatest induced flow from wing motion. However, as U is a time-
domain quantity, we compute max(k) and min(k) over the manoeuvre history based
on the maximum and minimumU . Figure 3.10 shows the time-domain history of the
wingtip α and its corresponding reduced-frequency spectrum, with the GK model
validity boundary at k � 0.70 noted.As can be seen, even under themost conservative
estimate, the manoeuvre contains negligible frequency components above the model
validity boundary. This analysis demonstrates the validity of this Pugachev cobra
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Fig. 3.10 Time-domain history and reduced frequency spectrum of the left wingtip angle-of-attack
during the Pugachev cobra manoeuvre (GK model simulation)

simulation with the GK model, and provides a method of assessing the validity of
these frequency-dependent aerodynamic models applied to other strongly transient
flight simulations. This confirms the noted significance of theGKmodel to the control
and guidance of this supermanoeuvre, as carried out by the biomimetic morphing-
wing system considered in this work.

3.4 Conclusion

In this work we have presented a fully three-dimensional flight simulator for
biomimetic moving-wing aircraft, including a Goman-Khrabrov (GK) type model to
capture transient aerodynamic effects.We identify parameters for theGKmodel from
quasistatic data and simulations of the transient aerodynamics via computational fluid
dynamics, and we give a quantitative assessment of the model’s limitations. Flight
simulation results are presented for a Pugachev cobra manoeuvre, demonstrating
both the potential of biomimetic systems for complex post-stall manoeuvring, and
the significance of transient aerodynamic modelling for such manoeuvres. For future
work, there is scope for the development of more accurate models based on larger
computational fluid dynamic data sets, and including added mass and Reynolds
number effects. There is also the potential for the design and simulation of more
complex post-stall manoeuvres in biomimetic systems; and for applications in high-
performance biomimetic unmanned aerial vehicles.
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Chapter 4
Vortex Shedding and Flow-Induced
Vibration of Two Cylinders in Tandem

Negar Hosseini, Martin D. Griffith and Justin S. Leontini

Abstract This paper presents a study of the interaction between a fluid flow and
two cylinders in a tandem arrangement. The cylinders are identical in size and either
rigidly mounted, or elastically mounted but restricted to one degree of freedom in
the cross-flow direction. The Reynolds number is Re = UD/ν = 200 where U is
the freestream velocity, D is the cylinder diameter and ν is the kinematic viscosity.
The sharp interface immersed boundary method is used to conduct two-dimensional
simulations of the interaction between fluid and the two structures as a function
of elasticity level quantified by the reduced velocity (U ∗ = U/ fN · D) where fN
is the natural structural frequency of each cylinder in vacuo, and pitch p which is
the streamwise distance between the centres of the two cylinders. In the first stage,
aerodynamic forces, frequency spectrum and amplitude of oscillation have been
measured as a function of p for rigid cylinder system. The results showed that in
the rigid two-cylinder system, there are four distinct regimes. In the second stage, a
similar study with varying pitch but also with varying reduced velocity,U ∗, has been
conducted for elastically mounted cylinders. It is found that for systems with very
small p, the behaviour is highly nonlinear and the oscillation of both bodies exceeds
that of a single isolated cylinder. Over a critical value of p the oscillation of the
front cylinder is very similar to a single cylinder system and is therefore essentially
independent of pitch. However, the rear cylinder behaviour is strongly dependent on
the pitch. The rear cylinder can oscillate with an amplitude which is higher or lower
than the amplitude of oscillation for a single cylinder depending on the U ∗ value.
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4.1 Introduction

The vortex shedding in the wake of bluff bodies can cause motion of structures in
situations ranging from off-shore structures, to electricity wires, to wind turbines.
This phenomenon can be destructive or useful based on the application. Interaction of
fluid and a single cylinder system has been studied for many years, including rigidly
mounted immovable cylinders [1], cylinders where motion is imposed externally [2]
and elastically mounted cylinders free to respond to the flow [3]. If the cylinder is
elastically mounted and the frequency of the Kármán vortex shedding is close to the
natural frequency of the structure, a high-amplitude resonance-type of oscillation
occurs. This vortex-induced vibration occurs for a range of natural frequencies of
the structure [4].

Although studying the interaction of fluid and a single isolated structure is of
fundamental importance, investigating this concept for multi-structure systems is
highly important in a practical sense as groups of closely spaced structures are ubiq-
uitous in both engineering and nature. The flow interference which is the effect of
the presence of other bodies in the flow has a significant importance in aerodynamics
and hydrodynamics. This interference can lead to phenomena such as wake-induced
galloping and wake-induced vibration [5, 6].

The simplest system in which flow interference can be studied is a system of
two cylinders that are rigidly mounted. The arrangement of structures is classified to
three different groups including tandem, side-by-side and staggered arrangements.
In tandem arrangement, the line connecting the centre of all the bodies is parallel to
the free stream direction, while in the side-by-side arrangement, this line is in the
cross-flow direction. The staggered arrangement can be considered as combination
of these two previous arrangements as the connecting line makes an angle to the
free stream direction which is not zero or 90◦. Systems in these arrangements have
been studied investigating the impact of cylinder spacing [7–10], showing a range
of flow regimes that appear to be essentially independent of Re. Extending further
are a series of studies of two elastically mounted cylinders in a tandem arrangements
[11] and in a staggered arrangement [12].

Here, the flow behaviour of two cylinders in a tandem arrangement is studied
primarily as a function of the distance between the cylinders, or pitch p. First, the
cylinders are rigidly mounted. The results confirm the major flow regimes found in
previous studies, showing four distinct regimes as a function of the pitch. Second,
the cylinders are elastically mounted and the pitch p and the elasticity (quantified by
the reduced velocity U ∗) is varied. The most important finding is that over a critical
value of p, the front cylinder behaviour is essentially the same as that of an isolated
cylinder, and further increases in pitch have little impact. However, the behaviour of
the rear cylinder is found to be strongly dependent on the pitch p and this is quantified
in terms of the cylinder oscillations amplitude.
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4.2 Methodology

The sharp interface immersed boundary method has been implemented to simulate
the fluid and cylindrical structures in two dimensions. The implementation used is
described in detail and shown to be accurate in simulating fluid-structure interac-
tion problems in [13] and the basic method closely follows that presented in [14],
therefore only a brief overview is provided here. In this method the stationary and
vibrating cylinders are modeled by a Lagrangian set of finite immersed elements in
an underlying Cartesian grid.

The incompressible Navier–Stokes equations govern the motion of the fluid

∂u
∂τ

= −(u · ∇)u − ∇P + 1
Re∇2u + Ab,

∇ · u = 0,
(4.1)

where τ = tU/D is the time non-dimensionalised by the advective time scale, u
is the velocity field non-dimensionalised by the free-stream velocity U , P is the
pressure field non-dimensionalised by ρU 2, and Ab is a generic acceleration term
that models the presence of an immersed boundary. A second-order central finite-
difference scheme is used to spatially discretise these equations. Time integration is
implemented using a second-order accurate two-way time-splitting scheme which
first takes a “velocity sub-step” by integrating the advection, diffusion and immersed
boundary acceleration terms to an intermediate time. The pressure is then integrated
in a “pressure sub-step” from this intermediate time to the end of the timestep, using
a pressure field found by solving a Poisson equation that is formed by enforcing
continuity at the end of the pressure sub-step.

When the bodies are elastically mounted, the equation of motion of each of
the structures (Eq.4.2) which will be coupled to Navier–Stokes equations via the
immersed boundary acceleration term (Eq.4.1) is given by

mÿ + ky = F(t) (4.2)

where m, k and F(t) are mass, stiffness and the time dependent force caused by
fluid stresses. y, ẏ and ÿ are respectively the displacement, velocity and acceleration
of the cylinder. The stiffness is expressed in this study via the reduced velocity
U ∗ = U/( fN · D), where fN = √

k/m/(2π) is the natural structural frequency of
the cylinder structure. The acceleration term in the Navier–Stokes equations (Eq. 4.1)
is affected by the body motion, and the fluid forces in Eq. (4.2) come from the fluid
stresses, proving a two-way coupling between the fluid and structural equations.

At the immersed boundary, a no-slip boundary condition is applied such that

ui = Ẋi (4.3)

where the ui represents the velocity component of fluid and Ẋi is the velocity of
the boundary. A Neumann condition (∂P/∂n = 0) where n is the normal vector
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enforces a zero pressure gradient at the surface. The presence of the boundary is
enforced by identifying ghost points—points in the Cartesian mesh which are inside
the boundary but have neighbours in the fluid. A stencil is formed for these points that
involves the boundary condition at the closest point on the boundary to the ghost node.
This modified stencil is what provides the immersed boundary acceleration term in
Eq. (4.1), and the ghost point values then make it possible to simply interpolate fluid
field values such as pressure and traction to the immersed surface to calculate forces.
Body motion is therefore relatively simply implemented as the only requirement is
to identify the ghost points at each timestep and construct the interpolation stencil.

The outer domain boundary conditions are standard for an open flow. For the
velocity, a freestream condition is applied upstream and laterally, and a Neumann
condition (∂u/∂n = 0) is applied at the outflow. For the pressure, a Neumann condi-
tion (∂P/∂n = 0) is applied at the upstream and lateral boundaries, and a Dirichlet
condition P = 0 applied at the outflow.

The justification and validation of this set of boundary conditions for tandem
two-cylinder system was provided in [12, 13, 15].

The initial condition for all the simulations is assumed to start from rest. Since all
the simulations started from rest, the presence of any hysteresis was not assessed.

The two cylinders are symmetrically spaced on sides of the origin point. A box
with a regular grid spacing and dimensions of (p + 4)D × 4D is placed with origin
in its centre. The inlet and outlet distance from the closest sides of the box is 13D
and 35D in x-direction. In y-direction 13D is the lateral distance and is considered
from the top and bottom edges of the box. Total number of nodes is 2048 and 1024
in x-direction and y-direction, respectively. The smallest mesh size is Δx = D/128
in the box around the bodies. A schematic description of this defined mesh domain
is shown in Fig. 4.1.

A mesh convergence study was investigated for the same code and similar set-up
in [12]. The convergence data was reproduced and shown in Table 1 of [12].

This code has previously being compared to the published results for similar fluid-
structure interaction problems from multiple different codes and has been shown
faithfully to reproduce the results [12, 13].

Fig. 4.1 Schematic
description of the defined
domain which controls the
mesh resolution for the
present study. The small box
around the cylinders has the
dimensions of
(p + 4)D × 4D

13D 35D

13D

13D

Box (p+ 4)D × 4D
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Fig. 4.2 Schematic description of the present study for a rigid-cylinder system and b elastically
mounted system, where D is diameter, p is pitch,U is free stream velocity, Re is Reynolds number
of free stream, k is spring stiffness and m is mass of the cylinder

4.3 Results

The base investigation starts with two rigidly mounted cylinders in a tandem
arrangement as a limiting case for examining the elastically-mounted cylinders. The
schematic description of the system is provided in Fig. 4.2.

4.3.1 Rigidly-Mounted Cylinders

The data for maximum lift coefficient, mean drag coefficient and frequency spectrum
for the rigid two-cylinder system as a function of p are presented in Fig. 4.3.

There are four distinct regimes as a function of p. Example images of each regime
showing contours of vorticity are provided in Fig. 4.4.

In the first regime which is for closely placed cylinders (p ≤ 1.8), they behave as
a single streamlined structure. The separated flow from the front cylinder reattaches
to the rear cylinder and stable recirculation appears in the gap between the two rigid
cylinders.

By increasing p in the range of 1.8 < p ≤ 3.6, in regime 2, the flow in the gap
experiences some fluctuations. However, the separated flow from the front cylinder
still reattaches to the rear cylinder, and there is no distinct vortex formation and
shedding in the gap.

Further increase in p results in the commencement of regime 3. This regime is
marked by the onset of full vortex formation and shedding in the gap (3.6 < p ≤ 4.6)
from the front cylinder. Effectively a single vortex occupies the entire gap between
the cylinders.

With increasing p, with the formation of a second vortex in the gap, the flow
conditions switch to regime 4. The frequency of vortex shedding for both of the
cylinders is almost identical and converges to the single cylinder vortex shedding
frequency for large values of p.
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(a) (b)

Fig. 4.3 The plots of maximum lift coefficient, mean drag coefficient and frequency spectrum for
a first cylinder, b second cylinder. The horizontal red lines are representative of the corresponding
parameter value for a single cylinder system. The vertical dashed lines are used to separate the
regimes

Fig. 4.4 Flow visualizations of two-rigid cylinder system with a p = 1.5 (regime 1), b p = 3.0
(regime 2), c p = 4.0 (regime 3), d p = 7.0 (regime 4). All the flow visualizations are in the same
phase (maximum lift coefficient of rear cylinder). Vorticity fields are shown by red and blue colors
for positive and negative signs, respectively

For a very high p, the parameters for the front cylinder converges to those of a
single cylinder system. Interestingly, when the cylinders are far enough apart, even
for very large values of p, the rear cylinder parameters, including CLmax and CD

converges to a different value due to the flow interference effect of the front cylinder.
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(a)

(b)

Fig. 4.5 Amplitude of oscillation for a front cylinder and b rear cylinder as a function of U∗ for
systems with different pitch. The lines are used to provide a better visual guide

4.3.2 Elastically-Mounted Cylinders

In the next stage, elastically-mounted cylinders with one degree of freedom oscilla-
tion in cross-flow direction have been studied.

One representative pitch from each regime of rigid cylinder system has been
selected—p = 1.5, 3, 4, 7—and the study extended to elastically-mounted systems
as a function of U ∗ for these pitches. The maximum cross-flow displacement for
each representative pitch with different values of U ∗ for front and rear cylinders in
comparison to the single cylinder oscillation are presented in Fig. 4.5.
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As can be seen, the effect of adding an additional cylinder on the front cylinder
is subtle, while the rear cylinder presents completely different behaviour. When
p = 1.5, the behaviour of two cylinders are different from the systems with larger
value of p and both of the cylinders oscillate with higher amplitude of oscillation
whenU ∗ is high enough. Once the distance between two cylinders increases, there is
a loss of feedback from the rear to the front cylinder, and the amplitude of oscillation
for the elastically mounted front cylinder converges to that of the single cylinder
system. This critical pitch which is in the range of 1.5 < Pcr < 3.0 is considerably
shorter than critical value of p in the rigidly mounted two-cylinder system for the
onset of vortex shedding form the front cylinder.

Figure 4.6 presents the response of the single cylinder and the front cylinder
in two-cylinder system in terms of the maximum lift coefficient CLmax , maximum
amplitude of oscillation Amax , frequency of oscillation f and phase lag between the
lift force and oscillation as a function of reduced velocity U ∗.

As can be seen in this figure, by increasing pitch to p > 1.5 the oscillation and
lift force properties get closer to the single cylinder properties.

The oscillation of the rear cylinder is different from the single cylinder. For low
values of U ∗, the front cylinder has higher amplitude of oscillation while higher U ∗
values, rear cylinder oscillates with higher amplitude for all the values of p that were
tested.

By comparing the data for all values of pitch, the highest amplitude of oscillation
of the system can be seen for the rear cylinder when U ∗ = 7.0 for all values of p.

The frequency of oscillation for the rear cylinder is shown in Fig. 4.7. The highest
amplitude, whenU ∗ = 7.0, is concurrent with a frequency of oscillation close to the
natural frequency. This indicates the synchronization in the system. Since this is a
non-linear phenomenon and resonance is a linear phenomenon, it would be an over
simplification to consider this non-linear high amplitude oscillation as resonance.

The flow visualization of the elastically-mounted system for U ∗ = 7.0 for all
values of p is presented in Fig. 4.8. In all the images, the rear cylinder is at its
maximum displacement.

When p = 1.5, although the separated flow reattaches the rear cylinder in rigid
cylinder, there are strong fluctuations in the gap of the elastically-mounted system,
driving an oscillation of both cylinders that is much larger than that for a single iso-
lated cylinder. A previous study [12] has shown this mode is driven by a complicated
interaction where vortices are forced between the gap between the bodies, such that
the negative vortex from the top of the front cylinder interacts with the positive vortex
formed at the bottom of the rear cylinder. For this to occur the two cylinders need to
oscillate essentially out of phase, as is evident in Fig. 4.8a.

For the larger pitches p � 3, the images in Figs. 4.8b–d show that the vortex
formation process from the front cylinder is basically unaffected by the presence of
the rear cylinder. It is also clear that there is some similarity of the vortex formation
process from the rear cylinder and its interaction with the vortices impinging on the
rear cylinder from the front cylinder. The wake behind the two bodies for p = 3, 4, 7
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Fig. 4.6 From top to bottom, the CLmax , Amax , frequency of oscillation and phase lag between
displacement and lift force data is shown for the single cylinder and the front cylinder of two-
cylinder system as a function of U∗. The corresponding data for single cylinder is shown with •,
and the front cylinder data is shown with ◦, ×, � and � when p = 1.5, 3.0, 4.0 and 7.0

all display a variant of a 2P wake [2], with two pairs of oppositely signed vortices
formed per cycle of oscillation. However, it appears that the phase of the oscillation
between the front and rear cylinders adjusts so that the positive vortex (shown in red)
formed from the front cylinder passes under the rear cylinder when the rear cylinder
is at the peak of its motion.
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Fig. 4.7 The primary frequency of oscillation for the rear cylinder in two-cylinder system with
different p. The natural frequency of oscillation is shown by the solid line

(a) (b)

(c) (d)

Fig. 4.8 Flow visualizations for elastically-mounted systems when the rear cylinder is in the max-
imum cross-flow displacement from the starting point and U∗ = 7.0 with a p = 1.5, b p = 3.0, c
p = 4.0 and d p = 7.0. Vorticity fields are shown by red and blue colors for positive and negative
signs, respectively. The initial position of each cylinder is shown by +
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4.4 Conclusion

The rigid cylinder system simulation results with different pitch confirm the experi-
mental and high Re results by Zdravkovich [7]. There are four distinct regimes for
aerodynamic forces and frequency spectrum of two rigid cylinders as a function of
p. By increasing the p to high values, the studied parameters converge to specific
values. Although these converged values are very close to single-cylinder values
for the front cylinder, there is a considerable difference for the rear cylinder. This
conclusion indicates the importance of studying systems with multiple structures.

In elastically-mounted cylinder systems, the cylinders are free to oscillate in the
transverse direction to the free stream. It is found that the elasticity (the reduced
velocity) has a significant impact on the behaviour of the flow. For two cylinders
with short pitch of p = 1.5 (which is much less than the critical value of p for
the onset of vortex shedding in the gap between cylinders in the equivalent rigid
system) large amplitude oscillations and associated vortex shedding can be observed
for both cylinders once U ∗ is large enough. For cylinders with longer pitch, the
vortex shedding from, and the motion of, the front cylinder is basically independent
of pitch, and the rear cylinder motion adjusts to maintain a consistent motion with
respect to the arrival of a vortex shed from the front cylinder.
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Chapter 5
Flow-Induced Vibration and Energy
Harvesting Using Fully-Passive Flapping
Foils

Justin S. Leontini, Martin D. Griffith, David Lo Jacono
and John Sheridan

Abstract When a fluid flows past an elastic body, the ensuing fluid-structure inter-
action can cause the body to vibrate as energy is transferred from the fluid to the
elastic structure. This transfer is via work, and therefore this energy transfer is max-
imized when large oscillations of the structure occur with fluid forces in phase with
the motion. A suitable structure is a plate or foil that can oscillate across the flow in
heave, as well as rotate about an axis perpendicular to the flow in pitch. Here, we
model the foil as an ellipse of aspect ratio 6, and the Reynolds number is fixed at 200.
We consider the efficacy of this system to extract energy from a flowing fluid. Both
the pitching and heaving motion are free so the motion is fully passive, but energy is
only extracted from the heaving degree of freedom. We present results showing that
the energy extracted is of similar magnitude to the net power of semi-active set-ups
when the cost of the activation is accounted for. We also show that at this relatively
low Reynolds number, the flow undergoes a spontaneous symmetry breaking, and
the oscillating foil generates a mean lift force while still extracting energy. The opti-
mal case for energy extraction is also compared to that from Veilleux and Dumas
(J. Fluids Struct. 70:102–130, 2017) at a much higher Reynolds number and using
a NACA0015 aerofoil. Interestingly it is found that the optimal heave parameters
are reasonably similar, indicating that Reynolds number and the details of the body
shape only play a minor role in the energy harvesting dynamics.
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5.1 Introduction

Extracting usable energy from a flowing fluid occurs via the fluid doing work on a
structure. In the classic case of a turbine, the flow impinging on the turbine blades
imparts a stress and therefore force, resulting in subsequent rotation of the turbine
and therefore a transfer of energy from the fluid to the structure. The same process
can be used to exploit fluid-structure interaction phenomena. The main difference
between the utilization of these phenomena compared to regular turbines is that
fluid-structure interactions are usually inherently dynamic. The features associated
with this dynamism, such as large and strong vortices, can be used to generate
relatively large forces and therefore extract energy from the flow in situations where
traditional turbines are not suitable. Such situations are in unpredictable flows, flows
that are restricted such as in a shallow yet wide channel, or simply at small scale
as the friction losses associated with rotary turbines see their efficiencies decrease
markedly [11]. Notable examples of fluid-structure interactions being used for energy
harvesting include vortex-induced vibrations of cylindrical structures [2, 3, 10],
various configurations of small, bending piezoelectric elements (see [6, 7] and the
review of energy harvesting from [1]), and flapping or oscillating foils (see the review
of [13]).

Out of many potential designs, a simple plate or aerofoil exposed to the flow and
allowed to flap with some mechanism to extract energy (effectively dissipating it
and therefore acting as a damping) has been shown to be very effective. A recent
study [12] performed an in-depth optimization of such a device using a NACA0015
aerofoil at the reasonably high Reynolds number of Re = 500000, varying all of the
structural parameters.

Here, we also investigate a “flapping foil” set-up, where the foil is free to rotate
or pitch around some axis, and to oscillate across the flow and perpendicular to
this pitching axis. However, the foil is modelled as a simple elliptical cross section,
the Reynolds number is lower at 200 (suitable for centimetre-scale devices) and we
focus on the impact of extracting energy only from the heaving motion. We find the
dynamics can be complicated, with oscillations occurring around a non-zero mean
position, but the values for optimal energy transfer are still similar to those found in
[12].

5.2 Methodology

Two-dimensional direct numerical simulations were conducted using a sharp-
interface immersed boundary method. The method closely follows that outlined in
[9], and a detailed description and validation for fluid-structure interaction problems
of the implementation used here are provided in [5]. Therefore only a brief overview
is provided here.
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The code solves the incompressible Navier–Stokes equations for the fluid motion,
which in non-dimensional form are

∂u
∂τ

= − (u · ∇) u − ∇P + 1

Re
∇2u + Ab

∇ · u = 0
(5.1)

where u is the velocity field normalized by the free stream velocity U , τ is time
normalized by the advection time scale D/U where D is the chord length of the
foil, P is pressure normalized by the free stream dynamic pressure ρU 2/2 where ρ
is the fluid density, Re = UD/ν is the Reynolds number where ν is the kinematic
viscosity, and Ab is a general acceleration term that accounts for the presence of the
immersed boundary.

The body motion in the fully passive case is governed by a simple harmonic
oscillator equation in both the heave and pitch degrees of freedom (undamped in the
pitch direction) that are coupled when the pitching axis does not coincide with the
body centre of mass, such that in non-dimensional form these equations become

ÿ + c∗ ẏ + k∗y + x∗
θ (θ̇2 sin θ − θ̈ cos θ) = 1

2πm∗Γ
CL

θ̈ + k∗
θ θ − x∗

θ (ÿ cos θ) = Γ

2π I ∗
θ

Mθ

(5.2)

where y is the transverse displacement of the foil pitching axis normalized by D,
c∗ = cD/(mU ) is the normalized heave damping coefficient where m is the mass of
the foil structure, k∗ = kD2/(mU 2) is the normalized heave spring stiffness, x∗

θ is
the distance from the body centre of mass to the pitching axis, θ is the body angular
displacement about its pitching axis, m∗ = m/(ρV ) is the ratio of the body mass to
the mass of displaced fluid where V is the body volume, Γ is the ellipse aspect ratio,
CL = FL/((1/2)ρU 2D) is the lift coefficient where FL is the force per unit spanwise
length, k∗

θ = kθD2/(IU 2) is the normalized torsional spring stiffness where I is the
moment of inertia about the pitching axis, I ∗

θ = I/(ρV D2) is the normalizedmoment
of inertia, and Mθ = T/((1/2)ρU 2D2) is the normalized fluid moment on the foil
where T is the torque applied per unit spanwise length.

The Navier–Stokes equations (5.1) are coupled to the body motion via the bound-
ary acceleration term, and the body motion Eqs. (5.2) are coupled to the fluid flow
field via the lift force and fluid moments which are calculated by integrating the
fluid stresses on the immersed boundary. Details of the numerical discretization and
solution of these equations is provided in [5].

Boundary conditions on the foil are a no-slip condition for the velocity, and a
zero-normal pressure gradient. On the outer domain, for the velocity a Dirichlet
condition specifying the free streamvelocity is applied on the upstreamand transverse
boundaries, and a zero-normal gradient applied at the outflow. For the pressure,
a zero-normal gradient is applied at the upstream and transverse boundaries, and
a Dirichlet condition of zero pressure at the outflow.
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Fig. 5.1 A schematic of the problem studied. The geometric parameters x , y the Cartesian coor-
dinates with the origin at the unperturbed position of the centre of rotation, θ is the the angle of
the body with respect to its unperturbed position, D is the chord length of the body, and xθ is the
distance from the centre of rotation to the centre of mass of the body. The structural parameters
are the body mass m, the linear spring stiffness k, the linear damping c, and the rotational spring
stiffness kθ . Note the linear spring and damping act through the centre of rotation and the rotational
spring acts on rotation about this same point. The flow parameters are the freestream velocity U ,
the fluid density ρ and the fluid kinematic viscosity ν

The initial conditions for all simulations were the same, with the flow started from
rest with the body in a position of zero vertical and rotational displacement.

A schematic of the basic set-up is shown in Fig. 5.1. For the simulations of this
study, Re = 200, m∗ = 10, the torsional spring stiffness is nominal at k∗

θ = 0.01,
and the normalized mass moment of inertia is I ∗

θ = 0.1205. The body geometry is
an elliptical cross section with aspect ratio of major to minor axis length 6, and the
pitching axis is located at a distance of D/3 from the leading edge giving a value
x∗

θ = −1/6. Two values of heave damping are studied, one undamped c∗ = 0, and a
second with c∗ = 0.5, close to the optimal value found in a related study of a semi-
passive foil (where the pitch was externally controlled) [4]. The heave stiffness is
varied and typically presented as the reduced velocity U ∗ = 2π/

√
k∗ = U/( fN D)

where fN is the natural structural frequency.
Note also that the fluid mesh, and the mesh describing the elliptical cross section

were identical to those used in [4] where a detailed mesh resolution and timestep
study was undertaken - these studies are directly applicable to the study here and
show the independence from numerical parameters of the results acquired.
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5.3 Results and Discussion

5.3.1 The Fully Passive Case—No Energy Extraction

The first case studied is that of a system that is completely undamped. In this config-
uration, all the terms in Eq. (5.2) are conservative, and so any energy transferred to
the structure in one part of the oscillation cycle must be returned to the flow at a later
time. While this configuration is of no value from an energy harvesting perspective,
it does provide a limiting case and give some indication of the range of responses
that may be experienced in terms of amplitudes of motion.

Figure5.2 shows the response of the body for this case in terms of the range of
displacement, and the mean displacement, for both the heaving and pitching degrees
of freedom. Note the mean values were obtained by averaging over the last 100τ of
the simulation (somewhere around 15–20 cycles). Therefore some small margin of
error is likely still present.

The response can be split into three regimes. In the first regime for U ∗ � 6, the
heave displacement shown in Fig. 5.2a shows that as the value of U ∗ is initially
increased (or equivalently k∗ is decreased) the amplitude of oscillation increases
almost linearly about a zero-mean position. Figure5.2b shows that the angular dis-
placement also oscillates around a zero-mean position, however, the angular dis-
placement is almost constant. This combination is what would be expected if there
was effectively no coupling between the fluid flow and the body motion. The fluid
forces and moments are essentially independent of U ∗ in the range. The constant-
amplitude moment results in a constant-amplitude angular displacement, and the
constant-amplitude forces result in a constant-amplitude spring force, which means
a linear increase in amplitude is required as the stiffness is lowered.
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Fig. 5.2 a Maximum deviation of displacement from the mean displacement (•) and the mean
displacement (◦) and b maximum deviation of rotation from the mean rotation (•) and the mean
rotation (◦). The horizontal dashed line in b marks a value of π/2, or the point beyond which the
foil has exceeded a vertical orientation. All are plotted as a function of reduced velocity U∗ for the
completely undamped case. The vertical lines delineate three flow regimes: a disordered motion
regime for U∗ � 8; a periodic, zero-mean regime for 8 < U∗ < 10; and a periodic, but non-zero
mean regime for U∗ � 10
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In the second regime for 8 < U ∗ < 10, the foil motion and vortex formation
synchronize. The heaving motion amplitude is almost constant at a very large value
of y � 2, and the pitching motion has an amplitude of θ � 1.8, indicating that the
foil rotates past the vertical orientation. In this regime, both the heaving and pitching
motion oscillate around a zero-mean value.

Figure5.3 shows the time histories of heave and pitch and instantaneous vorticity
contours for an example case of this second regime at U ∗ = 9. The synchronization
between the two degrees of freedom and the vortex production and shedding is clear.
The vortex formation process is reasonably complex, producing a pair of oppositely-
signed vortices per half cycle.

In the third regime for U ∗ > 10, a spontaneous symmetry breaking occurs pro-
ducing a mean lift and therefore a non-zero-mean heave and pitch displacement. The
mean heave displacement increases linearly with U ∗, and the mean angular or pitch
displacement is effectively constant. For both the heave and the pitch, the oscillatory
motion about this mean position decreases with increasing U ∗. Note that the flow
could break symmetry to either side - the side selected by a particular simulation is
a function of the small perturbations (round-off, solver tolerance, etc.) present.

Figure5.4 shows time histories of the heave and angular displacement and instan-
taneous vorticity contours for an example case in this regime at U ∗ = 12. It is clear
from the images that the motion of the body in both degrees of freedom and the
vortex formation are synchronized and periodic, even though the flow is asymmet-
ric. Similar symmetry breaking bifurcations have been observed in other wake flows
with bodies undergoing large amplitude oscillations [8].
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Fig. 5.3 Regime 2 for the undamped case. a Time history of heave displacement, b time history
of angular displacement, and c instantaneous image of vorticity contours of the undamped case for
U∗ = 9. Blue/red contours mark negative/positive vorticity at levels ωD/U = ±1
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Fig. 5.4 Regime 3 for the undamped case. a Time history of heave displacement, b time history
of angular displacement, and c instantaneous image of vorticity contours of the undamped case for
U∗ = 12. Blue/red contours mark negative/positive vorticity at levels ωD/U = ±1

5.3.2 The Fully Passive Case—Energy Extraction
via Damping of the Heaving Motion

The undamped motions of the previous section give some indication of the range
of motions that can be expected. Interestingly, they show a wide range of large-
amplitude motions that are synchronized and periodic, which could be exploited for
energy harvesting. Here, we directly assess the energy that can be extracted from the
flow, modelling the power take-off as a linear damping on the heave motion only.
This is equivalent to equipping such a device with a linear generator. Of course,
the damping applied would be a function of the electrical load on the generator.
There will be an optimal value for this damping. Too little damping and close to
no power is extracted; too much and the motion is completely quenched. A recent
study [12] performed a thorough optimization of a fully passive NACA0015 aerofoil
at Re = 500000, allowing all structural parameters to vary, and found a value of
c∗ = 0.495 to be optimal. Similarly, a study of a semi-passive pitching and heaving
ellipse (where the pitch was externally controlled) [4] found an optimum value of
c∗ = 0.503. We therefore select a value of c∗ = 0.5 for investigation here.

Figure5.5 shows the heave amplitude and mean position, and the pitch amplitude
and mean position for this example damped case as a function of U ∗. Like the
undamped case, there are three regimes, however they differ somewhat in character
and are further described below.

In thefirst regime forU ∗ � 6, the foil again oscillates arounda zero-meanposition,
and like the undamped case this motion is relatively disordered with no synchroniza-
tion between the flow and the body motion. Similar to the undamped case, there is
a linear increase in the heaving oscillatory amplitude and the pitching amplitude is
almost constant, however this amplitude is less in the damped case.

In the second regime for 6 < U ∗ < 9, the flow is significantly different to the
second regime in the undamped case. Here, the flow synchronizes to the bodymotion,
however the symmetry is broken from the beginning, with the body oscillating about
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Fig. 5.5 a Maximum deviation of displacement from the mean displacement (•) and the mean
displacement (◦) and b maximum deviation of rotation from the mean rotation (•) and the mean
rotation (◦). All are plotted as a function of reduced velocityU∗ for the damped case with c∗ = 0.5.
Three flow regimes are identified: a disordered motion regime for U∗ � 6; a periodic, but non-
zero-mean regime for 6 < U∗ < 9; and a periodic, but non-zero mean regime for U∗ � 9
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Fig. 5.6 Regime 2 for the damped case. a Time history of heave displacement, b time history
of angular displacement, and c instantaneous image of vorticity contours of the undamped case
for U∗ = 8. This is also the optimal case for energy harvesting. Blue/red contours mark nega-
tive/positive vorticity at levels ωD/U = ±1

a non-zero-mean position as soon as this regime begins. In this way, it is more similar
to regime 3 in the undamped case.

Figure5.6 shows the time history of the heave and pitching motion and instan-
taneous vorticity contours for an example case in this regime at U ∗ = 8. This case
is also the optimal for energy harvesting as will be further explained below. The
figure clearly shows the synchronization and periodic motion. It also shows that the
asymmetry in the motion is driven by the forming of vortex dipoles in the wake that
self convect to one side.

The third regime occurs for U ∗ � 9. In this regime, the oscillation of the body
in both the pitch and heave directions reduces towards zero with increasing U ∗,
effectively presenting a static aerofoil to the flow. The aerofoil therefore experiences
a constant lift force and moment. The constant moment results in a constant angular
displacement, while the constant force results in a constant force from elasticity
which results in a linearly increasing mean position with decreasing stiffness (or
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Fig. 5.7 Normalized power
as a function of U∗ for the
damped case. Vertical lines
mark the approximate
boundaries of the flow
regimes. The asymmetric but
periodic oscillations of
regime 2 of the damped case
return the largest power
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increasing U ∗). As the oscillation in this case is small, this regime is not conducive
to energy harvesting.

The average power extracted over a cycle of oscillation can be calculated by
integrating the work done on the body in the heaving degree of freedom. In non-
dimensional form this can be stated as

P = 1

T

∫ τ+T

τ

CL · ẏdτ (5.3)

where P is the power normalized by the energy flux through an area equivalent to the
chord length D multiplied by the span and T is the normalized period of oscillation.

This power is plotted in Fig. 5.7, where the period of integration in Eq. (5.3) has
been chosen to coincide with the primary frequency of oscillation. The figure shows
that the largest power output is returned by damped regime 2 at a value of U ∗ = 8,
which exhibits periodic and large-amplitude oscillations about a non-zero mean.
Interestingly the aerofoil study of [12] returned an optimal value of U ∗ � 10; a
reasonably similar value considering the change of geometry and the vast difference
in Re (200 here versus 500000 in [12]).

It is also clear from the figure that the amount of power returned is reasonably
low. P can be thought of as a type of efficiency; it compares the power returned to
the energy flux in the flow over a fixed area equal to the plan area of the foil. The
optimal case at U ∗ = 8 only returns P � 0.1. The semi-passive simulations with
active pitching in [4] returned values over three times as large as this. However, it
should be pointed out that a semi-active case bears an energy cost associated with
controlling themotion of the pitch. Thework in [4] showed that a worst-case scenario
for this control was a cost of around two-thirds of the energy returned, bringing the
net power out down to something similar to the fully passive case investigated here.
Also, a fully passive design is somewhat simpler to implement as it requires only a
single generator rather than a generator and a motor. Increasing the efficiency of this
fully passive design remains a future goal.
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5.4 Conclusions

This study has shown that themotion of a fully passive flapping foil can be reasonably
complex, with large-amplitude oscillations possible, some around an asymmetric
non-zero mean. In fact, these non-zero-mean oscillations return the largest power
output when a generator is modelled as a linear damper on the heaving motion.
This limited study has shown the potential of a fully passive foil, even at the low
Reynolds number of 200 to extract power from a flow, and a goal of future work
will be to increase the efficiency of this extraction. We have also shown that even
though our geometry is different to previous studies (using an ellipse instead of an
aerofoil section) and our Reynolds number is lower, the optimum values for energy
extraction are reasonably similar.
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Chapter 6
Passive Cavitation Detection During Skin
Sonoporation

Jeremy Robertson, Marie Squire and Sid Becker

Abstract Passive cavitation detectors (PCDs) have been effectively employed in
high-intensity focused ultrasound (HIFU) and cell sonoporation studies to monitor
variations in inertial cavitation activity during the course of ultrasound application.
As inertial cavitation is the mechanism responsible for many ultrasound induced
bioeffects, this monitoring can provide valuable information in real time about the
effectiveness of the ultrasound treatment. Despite the well-established benefits of
employing PCD techniques inHIFU and cell sonoporation applications, little attempt
has been made to utilize such techniques in the field of low-frequency skin sonopo-
ration. This study presents an attempt to employ a confocal PCD system to monitor
inertial cavitation activity during sonoporation in a Franz diffusion cell setup. To
determine whether inertial cavitation activity was effectively monitored, the output
of the PCD system was compared to the cavitation enhanced transport of caffeine
through porcine skin. The correlation between caffeine transport enhancement and
PCD response was poor relative to similar correlations presented in the literature.
This result should not be seen as an indictment on the concept as the present study
was only a first attempt at employing a confocal PCD in a skin sonoporation setup.
The authors intend to refine their methodology and repeat the study.

Keywords Cavitation · Sonoporation · Franz diffusion cell

6.1 Introduction

The transdermal route is advantageous for drug delivery as it avoids the first pass
metabolism effects which occur with oral delivery and the pain associated with
intravenous injection. However, the skin acts as a natural barrier against most top-
ical permeants. In skin sonoporation, a transducer produces a vibrating solid-fluid
interface which creates an ultrasound field. This ultrasound field is used to tem-
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porarily enhance the skin’s permeability so that topical permeants may more easily
diffuse. Five experimental parameters have been shown to influence skin permeabil-
ity enhancement in skin sonoporation studies: the transducer frequency [1, 2], the
ultrasound application time [3, 4], the distance from the transducer to the skin [3, 5],
the chemical composition of the coupling fluid [6], and the ultrasound intensity [1, 7].
Each of these parameters can be independently controlled and maintained through-
out ultrasound application and their influences on enhancement are well understood.
Investigating the influences of these parameters has been, in part, motivated by the
desire to optimize ultrasound enhancement [1, 3, 5]. However, such optimization can-
not be achieved without first controlling the behavior of the mechanism that actually
drives skin permeability increase: inertial cavitation [1, 2, 7].

Inertial cavitation activity can vary over the course of ultrasound application,
even if all of the experimental parameters are held constant [8]. This is due to its
dependence on coupling fluid temperature and the presence of cavitation nuclei in the
coupling fluid, which can both vary during ultrasound application. In order to circum-
vent this variation and maintain a consistent amount of inertial cavitation activity in
their high-intensity focused ultrasound (HIFU) tumor ablation setup, Hockham et al.
[8] employed a novel technique. This involved a feedback loop that non-invasively
monitored the inertial cavitation activity and then altered the transducer amplitude
to mitigate any changes. Before attempting to apply the technique of Hockham et al.
[8] to skin sonoporation, it is necessary to first address the question that motivated
the present study: can the inertial cavitation activity in a skin sonoporation setup be
effectively monitored during sonoporation?

A system for monitoring inertial cavitation activity has already been effec-
tively employed in several different ultrasound biophysics studies, including that of
Hockham et al. [8]. This system is known as a passive cavitation detector (PCD).
A PCD involves a hydrophone that is positioned in the coupling fluid and aligned
with the ultrasound transducer beam in a confocal manner. The signal from this
hydrophone is filtered to isolate a band of noise independent of the harmonic and
sub-harmonic peaks in the frequency spectrum. The RMS value of this broadband
noise emission has been shown to be indicative of the prevalence of inertial cavita-
tion activity in the ultrasound beam [9]. In their study of HIFU induced blood-brain
barrier opening, Tung et al. [10] used a PCD to investigate the pressure threshold
for inertial cavitation in a blood vessel phantom. In the planar high-frequency cell
sonoporation study by Hallow et al. [9], a confocal PCD system was used to monitor
variations in inertial cavitation activity during ultrasound application. In that study,
broadband noise was found to correlate with cellular bioeffects over a broad range
of experimental conditions which lead the authors to advocate for a feedback system
similar to the one employed by Hockham et al. [8].

Despite the effective use of PCDs in other ultrasound biophysics applications,
there appear to be only three published studies in the field of skin sonoporation
that have attempted to include a cavitation monitoring system. Tezel, Sens et al. [2]
employed PCD techniques in their skin sonoporation study. However, the PCD data
was captured prior to sonoporation instead of during, and although the hydrophone
was confocally aligned with the transducer, no skin was present. A similar setup
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was used in the study by Tezel and Mitragotri [11]. This study also employed PCD
techniques, but not during skin sonoporation. In the study by Tang, Wang et al. [7]
a transducer device was epoxied to the bottom of the apparatus. This was used as a
PCD device despite the fact that it was not confocally aligned with the transducer in
the coupling fluid. All three of these published studies reported encouraging results
from their PCD systems, however, none of these systems captured noise emission
data with a confocal hydrophone during skin sonoporation. A possible explanation
for the limited use of PCDs in skin sonoporation setups can be found in the established
geometry and materials used for Franz diffusion cells which are an integral part of
most transdermal transport experiments [1, 3, 4, 12, 13]. Due to the small diameters of
the donor chambers in these cells, usually around 15 mm [2], confocal positioning of
a transducer and hydrophone in the coupling fluid is impractical. In order to facilitate
a confocally aligned hydrophone, necessary for the correct implementation of a PCD,
a partial redesign of the Franz diffusion cell is necessary.

The purpose of this study was to assess the effectiveness with which a confocally
aligned PCDwas able to monitor inertial cavitation activity during skin sonoporation
in a modified Franz diffusion cell. This was achieved by measuring the broadband
noise emission over 10 min of ultrasound application at three different intensity
levels. This noise emission was then compared with the transport of caffeine through
the sonoporated skin to determine the correlation between transport enhancement
and PCD response.

6.2 Materials and Methods

6.2.1 Modified Diffusion Cell

Each of the 10 identical vertical Franz diffusion cells used in this study was made
up of a donor and receiver chamber. The donor chamber had an inner diameter of
61 mm, an outer diameter of 65 mm, an aperture diameter of 9 mm, and a total
volume of 96 mL. The receiver chamber had a volume of 3.2 mL and an aperture
diameter of 9 mm. The donor, receiver and clamp geometries are shown in Fig. 6.1.

The donor and receiver chambers were turned from solid polypropylene rods
(Polystone, Dotmar EPP Pty Ltd, Christchurch, New Zealand) on a CNC lathe
(Top-Turn CNC 406, Jashco Machine Manufacture Co. LTD, Taichung, Taiwan).
Franz diffusion cells are usually made of glass, however, polypropylene was used in
the present study due to its low cost and machinability. To form the sampling arm
(Fig. 6.1), a section of carbon fiber tube (inner diameter 3.5 mm, outer diameter
6 mm) (Carbon Fiber Tube Pultruded, MAKERshop, Auckland, New Zealand) was
glued to the polypropylene receiver with Loctite 401. Two pieces of carbon fiber tub-
ing (inner diameter 2 mm, outer diameter 4 mm) were glued to the donor chamber
in order to form the ports (Fig. 6.1) that enabled circulation of the coupling fluid for
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Fig. 6.1 Diffusion cell geometry (left) plan view, (middle) front view, and (right) isometric view

temperature control (described in Sect. 2.4). The donor and receiver chambers were
held together by a 3D printed clamp described in [14].

6.2.2 Chemicals and Porcine Skin

Caffeine powder (ReagantPlus) was purchased from Sigma-Aldrich (St Louis,
MO). Phosphate buffered saline (PBS) (pH 7.4) was purchased from Thermofisher
(Waltham, MA). The caffeine solution was prepared by dissolving the caffeine pow-
der in room temperature PBS at a concentration of 0.5% w/v (5 g/L), as in the study
by Sarheed and Abdul Rasool [15].

Porcine earswere obtained fromAshburtonMeat Processors Ltd (Ashburton,New
Zealand) immediately after slaughter. The ears were cleaned with cold tap water. The
top 1 mm of the skin was removed from each ear using a dermatome (Dermatome
50 mm, Nouvag AG, Goldach, Switzerland). The dermatomed pieces of skin were
flash frozen in liquid nitrogen using the technique described by Han and Das [16]
then immediately transferred to a −20 °C freezer for storage. Prior to each set of
experiments, the skin was removed from the freezer and thawed in a container of
deionized water at room temperature. Each piece of skin was then visually assessed
for uniform thickness and integrity before being mounted in a diffusion cell.

6.2.3 Ultrasound Generation and Intensity

A low-frequency (20 kHz) ultrasound field was generated using a VC 505 ultrasound
processor (Sonics and Materials Inc., Connecticut, USA). This unit was operated
with a 13 mm diameter replaceable tip (Fig. 6.2). An application time of 10 min
was used for all of the skin insonation experiments in this study. The transducer face
was positioned 5 mm from the surface of the skin as this was the smallest distance
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Fig. 6.2 System schematic. The solid lines represent the coupling fluid circuit. The dashed lines
represent the signal inputs and outputs to and from the instruments in the coupling fluid

Fig. 6.3 Cross section of the diffusion cell showing the positioning of the transducer, hydrophone,
and thermocouple

that allowed for a confocal hydrophone (shown in Fig. 6.3). The intensity of the
ultrasound field was determined with the commonly used calorimetric method [3, 4,
13, 17–19]. This method is described in [14].



68 J. Robertson et al.

6.2.4 Temperature Measurement and Control

Continuous application of ultrasound at the intensities used in this study results in
significant increases in coupling fluid temperature. A circulating method, described
in [14], was used to mitigate this temperature increase during skin sonoporation.
The temperature of the coupling fluid was measured with a thermocouple (Wire
Type K thermocouple, Jaycar Electronics Pty Ltd, Auckland, New Zealand). The
thermocouple was not positioned within the beam of the transducer, where it would
have best represented the temperature of the coupling fluid near the skin surface,
as this would have partially obscured the skin surface, and resulted in cavitation
damage to the thermocouple tip. Instead the thermocouple was positioned outside of
the transducer beam (Fig. 6.2). The difference in the temperatures recorded in these
two positions was found to be less than 1.5 °C during sonoporation at 39.4 W/cm2.

6.2.5 Passive Cavitation Detection

The PCD hydrophone was positioned in the coupling fluid so that it was confocal
with the ultrasound transducer (Fig. 6.2). This needle hydrophone (2.0 mm Needle
Hydrophone, Precision Acoustics Ltd, Dorchester, Dorset, UK) had a sensitivity
of −236.4 dBre1 V/µPa at the transducer driving frequency. The position of the
hydrophone was kept consistent over all of the experimental repetitions by using an
aluminum sleeve that was fixed relative to the transducer and diffusion cell. Between
experimental repetitions, the hydrophone was taken out of this sleeve so that the
diffusion cell could be switched out and the next one inserted.

The method used to process the raw hydrophone data was described in [14].
Briefly, the hydrophone voltage data was filtered to isolate the broadband noise
emission between 92.5 and 97.5 kHz. An RMS value of this filtered data was cal-
culated every 1–2 s. All of the RMS values were then integrated over the 10 min of
ultrasound application in order to calculate a single inertial cavitation dose value for
each ultrasound application. Therefore, each inertial cavitation dose value represents
the time-averaged broadband noise emission for a specific ultrasound application.

6.2.6 Chromatography

Transdermal transport of caffeinewasmeasuredwith aHPLCsystem (Ultimate 3000,
Thermo Fisher Scientific, MA, USA). The solid phase consisted of a Poroshell 120
column (EC-C18, DKSH NZ Ltd, Palmerston North, New Zealand). This column
was maintained at 40 °C during operation. The mobile phase consisted of 10%
acetonitrile in water. The flow rate was 0.8 mL/min. The injection volume was 1 µL.
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The retention time was 3.5 min and the reproducibility relative standard deviation
was 1%.

6.2.7 Transdermal Transport Experiments

Prior to the ultrasound application, a piece of skin was mounted onto each of the ten
diffusion cells. The receiver fluid consisted of PBS while the donor chamber fluid
was deionized water. One at a time, each diffusion cell was positioned along with
the transducer, hydrophone and thermocouple. The temperature control system was
then switched on to lower the coupling fluid (deionized water) to 10 °C. Continuous
ultrasoundwas then applied for 10min. Following sonoporation of each skin sample,
fresh room temperature deionized water was added to the donor chamber to keep
the skin hydrated while the other skin samples were sonoporated. After all ten of the
skin samples had been individually sonoporated, the deionized water was removed
from each of the donor chambers so that the caffeine solution could be applied. This
solution was allowed to diffuse for a period of 20 h. During this time the donor
chambers were covered with Parafilm (Bemis, WI, USA) to prevent evaporation of
the fluid. This process was repeated for three different ultrasound intensities (23.8,
34.2, and 39.4W/cm2). In addition to these experiments, two control cases were also
investigated. For the first control case, the 10 diffusion cells were set up in the same
manner described above, however, no ultrasoundwas applied. The coupling fluidwas
simply maintained at 10 °C for 10 min. For the second control case, no ultrasound
was applied and the coupling fluid was maintained at 25 °C for 10 min. During
each of the 30 ultrasound experiments, the temperature was kept between these two
control temperatures by varying the voltage input to the temperature controller.

6.2.8 Physical Dosimeter Experiments

The pitting of aluminum foil under insonation has previously been used to determine
the influence of ultrasound parameters on inertial cavitation activity [4]. In the present
study, aluminum foil was used as a physical dosimeter in order to demonstrate the
influence of the temperature control method on the inertial cavitation activity at the
skin aperture. Ten pieces of aluminum foil (Homebrand, Manukau, New Zealand)
were insonated (at an intensity of 23.8W/cm2) for 5 s with andwithout coupling fluid
circulation. The number of pits in each of the 20 pieces of foil were then counted in
order to demonstrate the influence of circulation. In these experiments, the coupling
fluid in the donor chamber was deionized water at 10 ± 2 °C.
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6.3 Results and Discussion

The results presented in this study were collected in order to assess whether the
inertial cavitation activity in a skin sonoporation setup can be effectively monitored
during skin sonoporation. However, the present study represents the first time the
temperature control system (described in Sect. 2.4) has been used during transdermal
transport experiments. Therefore, it was necessary to first ensure that the coupling
fluid circulation did not negatively impact the inertial cavitation activity at the skin
aperture. This was achieved with physical dosimeter experiments. The mean number
of pits after ultrasound application without coupling fluid circulation was 28.8. With
coupling fluid circulation, the mean value was 26.3. These values (shown by the
crosses in Fig. 6.4) indicate that coupling fluid circulation resulted in only a 9%
decrease in inertial cavitation activity at the skin aperture (p � 0.4). This small
decrease in inertial cavitation is acceptable.

In order to quantify the effects of ultrasound enhancement in this skin sonoporation
study, it was necessary to measure the transdermal transport of caffeine through skin
samples not exposed to ultrasound. Two such control cases were investigated (as
described in Sect. 2.7). Following diffusion for 20 h, the mean and median receiver
caffeine concentrations for the control at 10 °C were 31.6 mg/L and 27.6 mg/L
respectively (Fig. 6.5). For the control at 25 °C, themean andmedian receiver caffeine
concentrations were 42.5 mg/L and 34.9 mg/L respectively. These values indicate
that the coupling fluid temperature did have a small effect on skin permeability within
this range. However, this effect is minor when compared to the effect of ultrasound
exposure (Fig. 6.6).

Ultrasound was applied to skin samples at three different intensities (as described
in Sect. 2.7). Application at 23.8 W/cm2 resulted in mean and median receiver caf-
feine concentrations of 45.9 mg/L and 15.6 mg/L respectively (shown in Fig. 6.6).
Application at 34.2W/cm2 resulted in mean and median receiver caffeine concentra-
tions of 111.4 mg/L and 95.2 mg/L respectively. Application at 39.4 W/cm2 resulted
in mean and median receiver caffeine concentrations of 116.6 mg/L and 108.7 mg/L

Fig. 6.4 The influence of
coupling fluid circulation on
the pitting of aluminum foil.
The crosses within the boxes
represent the mean values
(n � 10)
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Fig. 6.5 Receiver chamber
caffeine concentration after
10 min of exposure to 10 °C
or 25 °C deionized water and
20 h of passive caffeine
diffusion (n � 10)

Fig. 6.6 Receiver chamber
concentration after 10 min of
ultrasound exposure to
various intensities. The
coupling fluid temperature
was maintained between 10
and 20 °C (n � 10)

respectively. When these values are compared to those from the two control cases, it
is apparent that no enhancement was achieved at an intensity of 23.8 W/cm2 while
ultrasound at 34.2W/cm2 and 39.4W/cm2 resulted in mean values that were, respec-
tively, 2.6 (p < 0.05) and 2.7 (p < 0.05) times the mean of the 25 °C control case.

This greater transport at the two higher intensities can be attributed to the higher
degree of inertial cavitation achieved when the intensity is increased. Therefore, if
the PCD setup worked as expected, the mean inertial cavitation dose should also
have increased with increasing intensity. This trend is indeed apparent when inertial
cavitation dose is plotted as a function of ultrasound intensity (Fig. 6.7). However,
the analysis of the correlation between transdermal transport enhancement and PCD
response must go further than this simple comparison of trends. In order to assess
whether the PCD effectively monitored inertial cavitation activity during skin sono-
poration, a direct comparison must be made between the inertial cavitation dose and
the receiver caffeine concentration for all of the data across the three intensities. This
comparison is shown in Fig. 6.8.

The direct correlation between the inertial cavitation dose and receiver caffeine
concentration values was poor. There is no clear separation between the inten-
sity groups which was expected considering the clear intensity-concentration and
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Fig. 6.7 Inertial cavitation
dose as a function of
ultrasound intensity
(n � 9–10)

Fig. 6.8 Receiver chamber
caffeine concentration as a
function of inertial cavitation
dose

intensity-dose trends shown in Figs. 6.6 and 6.7. There is also no clear trend within
each intensity group.

The poor correlation shown in Fig. 6.8 suggests that the PCD system used in
this study did not represent the inertial cavitation behavior that occurred during skin
sonoporation. However, this may be misleading. There are several features of the
methodology that may have contributed to the poor correlation between caffeine
transport and inertial cavitation dose. It is possible that the long caffeine residence
time (20 h) caused the effects of the inertial cavitation activity on the skin per-
meability to be diminished by the effects of hydration which also acts to increase
permeability over long periods of time. This issue could have been circumvented if
periodic concentration samples had been taken during diffusion. Furthermore, the
small molecular weight of caffeine (194 g/mol) may have limited the potential for
permeability enhancement as only a small enhancement is possible with such a small
drug. These pointsmust be addressed, and the study repeated, if a definitive statement
about the effectiveness of the PCD system is to be made. With these caveats in mind,
the results of the present study should not be seen as an indictment on PCD systems
in skin sonoporation. Nor should the results detract from the potential benefits of
employing a functional cavitation feedback loop in a skin sonoporation setup.
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6.4 Conclusions

The purpose of this study was to assess the effectiveness with which a confocal
PCD monitored the inertial cavitation activity within a Franz diffusion cell during
skin sonoporation. If a PCD could be shown to perform in this context, that would
enable the implementation of a feedback loop to control inertial cavitation activity. In
order to facilitate an assessment of PCD performance, three different intensities were
employed to create three distinctly different degrees of inertial cavitation activity. As
expected, both receiver caffeine concentration and inertial cavitation dose increased
with increasing intensity. However, a clear correlation between inertial cavitation
dose and receiver caffeine concentration, which would have been indicative of an
effectivePCD, could not be obtained.The correlationwaspoor both between intensity
groups andwithin intensity groups. The authors propose that using a larger permeant,
and a shorter residence time will result in an improvement in the correlation.
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Chapter 7
CFD Reconstruction of Blood
Hemodynamic Based on a Self-made
Algorithm in Patients with Acute Type
IIIb Aortic Dissection Treated
with TEVAR Procedure

A. Polanczyk, A. Piechota-Polanczyk, Ch. Neumayer and I. Huk

Abstract Background: Combination of computational fluid dynamic (CFD) tech-
nique and medical data (AngioCT and USG-Doppler data) allowed preparation of
a non-invasive method for blood hemodynamic analysis in type B aortic dissection
(TBAD).Materials andmethods: Three-dimensional digital models of the aorta were
reconstructed using pre- and post-operative data from a 39-year-old patient treated
for acute TBAD with thoracic endovascular aortic repair (TEVAR). Moreover, the
left renal artery and the right common iliac artery were treated with additional stents.
CFD technique was used to quantify the displacement forces acting on the aortic wall
in the areas of endograft and validated with USG-Doppler data. The aortic segment
was extended from the origin of the aortic arch to the aortic bifurcation. Results: Our
results indicated that prostheses implantation improved overall aortic blood flow.We
observed that blood flow rate was around two-fold higher in branching arteries of
the aorta after surgical procedure. The wall shear stress (WSS) values were lower
in all analysed areas. Hence, the overall risk of dissection propagation and rupture
was decreased. Conclusion: CFD technique may provide qualitative assessment of
hemodynamic forces in the aorta before and after prostheses implantation and may
have potential in aiding the therapeutic decision-making process after operation.
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7.1 Introduction

Acute dissection, with tear formation in the inner lining of the aorta, is one of the
cardiovascular emergencies, associatedwith highmorbidity andmortality [9, 31]. An
alternative treatment to open repair is thoracic endovascular aortic repair (TEVAR)
for the management of acute type B dissection [5, 16]. Moreover, aortic dissection
can be influenced bymechanical factors e.g. blood hemodynamic, vascular geometry
and mechanical properties of the aortic wall [3, 10, 18]. Hemodynamic parameters
play a crucial role in the formation and the progression of the aortic dissection.
Blood flow rate and wall shear stress (WSS) are the main parameters that change
after aortic repair (TEVAR) [10]. Blood hemodynamic within the dissected aorta is
dominated by locally disturbed flow with areas of recirculation [4, 19]. Therefore, in
this study we focus on the evaluation of hemodynamic parameters such as flow rate
and WSS pre- and post-TEVAR. Computational fluid dynamic (CFD) technique is
one of the engineering applications that allow reconstruction of blood hemodynamic
in complex 3D models of cardiovascular system [15, 27, 30, 32]. Application of
CFD technique in the topic of blood hemodynamic in vessels is widely described in
literature [1, 14, 26]. Previously, the CFD technique has been applied to assess blood
flow hemodynamic in vessels after stent-graft implantation in aortic aneurysms [22,
29, 33]. The real three-dimensional models of vessels are usually reconstructed with
AngioCT or magnetic resonance imaging [2, 20]. Also, CFD allows to analyse blood
hemodynamic changes within the true and false lumen of dissected aorta before
and after TEVAR procedure [17]. Therefore, the aim of this study was to prepare a
CFD model of chosen blood flow parameters within the aorta and aortic branches in
patients with type B aortic dissection (TBAD) before and after TEVAR procedure.

7.2 Materials and Methods

A 39-years old male with acute complicated type B dissection was analysed. Antihy-
pertensive therapy was initiated and AngioCT analysis was performed in which the
primary entry tear was identified and substantial flow limitation to the renal arter-
ies was found. TEVAR via a transfemoral approach was performed with intentional
coverage of the left subclavian artery (LSA), 2 additional stents were implanted
in the left renal artery, and the right common iliac artery (EpicTM, self-expanding
stents, Boston Scientific, Natick, MA). Post-operative AngioCT showed significant
stenosis of the celiac trunk, which was retreated with the implantation of a balloon
expandable stent (ExpressTM, Boston Scientific, Natick, MA) using a percutaneous
approach. The post-operative course was uneventful. Renal function improved dur-
ing the hospital stay (sCrea: 2.28; GFR: 58.4 ml/min) and improved gradually during
follow up. The management of arterial hypertension involved the use of beta block-
ers, ACE-inhibitors, calcium channel blockers and diuretics. During follow up, so
far, no endoleak was found. The intentional coverage of the left subclavian artery
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Fig. 7.1 AngioCT data and 3D reconstruction of the dissected aorta from the analysed patient.
a–c An example of cross-sections before surgical intervention; d–f an example of cross-section
after surgical intervention; g 3D geometry of analysed aorta before surgical intervention; h 3D
geometry of analysed aorta after surgical intervention; i 3D geometries of vascular implant

(LSA) was tolerated well so far and no subsequent revascularisation was required.
Anonymized pre-operative and post-operative AngioCT data (512× 512× 270 vox-
els, in-plane resolution of 0.78 × 0.78 mm, slice thickness 2 mm) was performed
(Fig. 7.1). The aortic reconstruction comprised implantation of a stent-graft in the
distal aortic arch and the descending thoracic aorta (LSA covered) and the implan-
tation of self-expanding stents into the left renal artery and the right common iliac
artery. The study was approved by the local Institutional Review Board (2069/2012).

Application of AngioCT data allowed preparation of patient-specific 3D digital
geometries of pre- and post-operative aorta with the use of 3DDOCTOR software
(Able Software Corp., Lexington, MA, USA) as previously described [21, 28]. Anal-
ysed geometries included data from the ascending aorta, aortic arch, descending tho-
racic aorta, abdominal aorta, iliac arteries, the orifices of the main aortic branches,
the brachiocephalic trunk, left common carotid artery, left subclavian artery, renal
arteries, iliac arteries, and the endograft and stents placed during TEVAR (Fig. 7.2).
A CFD analysis was utilized to simulate blood flow and WSS for one cardiac cycle
as previously described [23, 26]. With the use of ANSYS ICEM (ANSYS, USA)
we reconstructed the 3D geometries with numerical mesh of analysed aorta for pre-
and post-operative conditions (Fig. 7.2a, b). In the first step, we performed mesh
independent test for different configuration of numerical grids. Finally, the follow-
ing properties of numerical grid were considered: (1) elements were tetrahedral; (2)
number of grid elements was in range from 900 000 to 1 000 000; (3) three bound-
ary layers were applied; (4) the size of elements was in range from 0.1 to 2 mm
(Fig. 7.2c, d). ANSYS FLUENT 18.2 software (ANSYS, USA), using Euler method
for solving Navier-Stokes equations, was applied to carry out blood flow simula-
tions. We assumed that the blood flow was incompressible and laminar and used
Dirichlet conditions for the description of the mathematical domain. According to
it, the following boundary conditions were applied: domain inlet was described with
the use of velocity-inlet (v(x, y, z)), outlets from the domain were described with
the pressure conditions, and wall was treated as a rigid structure. The investigated
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Fig. 7.2 3D virtual geometry of the analysed aorta: a before surgical intervention; b after surgical
intervention; c, d examples of digital mesh applied for the analysed mathematical domains

spatial configuration of analysed geometries had one inlet at the top, three outlets at
the aortic arch, eight outlets at the middle of the aorta and four outlets at the bottom.
At the inlet we applied blood velocity profile, acquired from USG-Doppler exami-
nation for pre- and post-operative conditions, in a function of time [24]. While, at
outlets we assumed an average pressure value equal to 17 332 Pa. Moreover, in our
study we focused on blood hemodynamic changes only for arteries where endografts
and stents were placed. Following Hoskins et al. [12] blood density was assumed
as a constant value of 1 040 kg/m3. Moreover, blood was treated as non-Newtonian
liquid and described with the use of Quemada’s model [25, 26]. We concentrated on
the comparison of blood flow rate/velocity and WSS for the areas where endografts
were placed.

7.3 Results

CFD analysis of pre- and post-operative aortic models indicated that the endografts
remodelled the aortic geometry and restored blood flow through the true lumen.
To determine how aortic remodelling influences blood hemodynamic, we analysed
changes in blood redistribution, flow rate/velocity andWSS.Main flowpatterns at the
initial examination and after TEVAR were similar. There was high-velocity flow in
the ascending aorta, with a pronounced jet into the dissection entry tear from the true
lumen to the false lumen, and a slow-flow zone with recirculation patterns adjacent to
the false lumen wall. Verification of CFD results with USG-Doppler examination for
both cases, before and after TEVAR showed high correlation (accuracy 93 and 97%
before TEVAR: thoracic trunk 0.30 m/s (USG-Doppler) and 0.32 m/s (CFD), renal
arteries 0.30 m/s (USG-Doppler) and 0.31 m/s (CFD) and iliac arteries 0.028 m/s
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Fig. 7.3 An example of blood flow distribution before and after surgical intervention for aortic
arch (left), renal artery (middle), iliac arteries for time of 0.1 s and posterior position (right)

(USG-Doppler) and 0.029 m/s (CFD); after TEVAR: thoracic trunk 0.30 m/s (USG-
Doppler) and 0.32 m/s (CFD), renal arteries 0.34 m/s (USG-Doppler) and 0.35 m/s
(CFD) and iliac arteries 0.029 m/s (USG-Doppler) and 0.030 m/s (CFD)).

Similarly, in the bottleneck places of renal and iliac arteries areas of a low-velocity
(Fig. 7.3) but high-WSS (Fig. 7.4) were observed. The WSS analysis presented that
mean WSS values after TEVAR, calculated for one heart cycle, increased slightly
from 1.88 to 2.02 Pa. Moreover, post-operative aortic remodelling contributed to
flow distribution into aortic branches, which was a result of better perfusion of the
true lumen. We observed a 70% increase in blood flow through the true lumen of the
thoracic aorta followed by 15% decrease in blood flow through the brachiocephalic
trunk, left common carotid artery, left subclavian artery, and iliac arteries. After
detailed analysis of flow distribution we decided to concentrate on three trouble-spot
areas of the aorta, which included the aortic arch, where aortic dissection begins, the
left renal artery and right common iliac artery. We decided to analyse these vascular
territories more in detail, since they were strongly affected by the dissection and
needed stents insertion.

Analysis of postinterventional remodelling of the aortic arch indicated changes in
WSS values before and after TEVAR. The pre-operative aorta had irregular shapes
with numerous narrowing areas and unstable flow determined by the appearance
of the two lumens (true and false). In our study the dissecting membrane creates
an artificial barrier characterized by high-velocity and high-WSS (4.73 Pa) in the
areas adjacent to the wall. Therefore, in true lumen the velocity and WSS were
much lower than expected. Moreover, the endovascular intervention separated the
false lumen and directed blood flow through the true lumen leaving one channel.
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Fig. 7.4 An example of wall shear stress distribution before and after surgical intervention for
aortic arch (left), renal artery (middle), iliac arteries for time of 0.1 s and posterior position (right)

This smoothed the blood flow and caused a noticeable change in WSS value with a
3-fold decrease in average WSS from 4.73 to 1.57 Pa after TEVAR. Additionally,
post-operative character of velocity counters distribution was more uniform and
no cross-sectional flow between the true and false lumen appeared. Post-operative
remodelling increased aortic diameter and decreased the average blood flow velocity
by 40%. Uneven distribution of blood flow contours accompanied by a thinner aortic
wall within the dissection area increases the risk of further aortic wall remodelling.
Therefore, in our case, the aortic arch remodelling after insertion of an endograft
closed the false lumen and directed blood through the true channel what overall
improved blood rheology. Moreover, prior to intervention the left renal artery had an
irregular shape with numerous stenotic areas, which resulted in high average WSS
values (4.42 Pa). The endovascular intervention led to an alignment of the artery and
a 57% increase of the average channel cross-section. Moreover, there was a 3.2-fold
decrease in the average WSS from 4.42 to 1.40 Pa. Stent implantation lead to an
increased cross-sectional diameter of the left renal artery, therefore, ameliorating
blood flow by 2.8-fold and average blood velocity by 1.8-fold. Free passage through
the left renal artery also lowered the averageWSS in this area. Furthermore, analysis
of postinterventional remodelling of the right common iliac artery indicated that the
initial artery (prior toTEVAR) had an irregular shape including numerous narrowness
which resulted in high averageWSS values (4.76 Pa). The endovascular intervention
led to an alignment of the artery and a 57% increase of the average channel cross
section. Moreover, there was a 2.6-fold decrease in the average WSS from 4.76 to
1.82 Pa. Also, the post-operative remodelling of the right iliac artery resulted in
an equal distribution of blood through the branching iliac arteries. The analysis of
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velocity contours in time showed amore stable and smoother flow. The average blood
velocity in all outlets was reduced by around 50%. The change in the right iliac artery
rheology was a consequence of changed overall distribution of blood flow through
the aorta and its branches.

7.4 Discussion

This report clearly demonstrates that CFD technique can quantify changes in blood
distribution, velocity and wall shear stress resulting from aortic remodelling after
TEVAR for acute type B dissection. Aortic repair (TEVAR) led to improvement of
blood distribution within the aorta and its branches, as well as stabilization of blood
velocity, thereby efficiently reducing overall WSS. Changes in spatial configuration
of the geometry of aorta and aortic branches indicated changes in blood velocity
profiles. It was indicated in our study that during dissection around 80% of stroke
volume enters the false lumen, which may further increase the dilation of the aorta.
Moreover, implantation of an endograft in the thoracic aorta closed the primary entry
to the false lumen and improved blood flow. Therefore, high flow conditions within
the true lumen may limit aneurysm growth, as demonstrated previously [11]. Addi-
tionally, our results indicated that post-operative remodelling of the aorta decreased
WSS especially in the areas of endograft and stent implantation. Lower-WSS within
the aorta was a consequence of closure of the primary entry to the false lumen. Pre-
viously, Karmonik et al. [13] described in a patient-derived data model in which the
aneurysm entry tear was characterized by high WSS and low total pressure. Also
Cheng et al. [4] reported on high values of WSS around the entry tear inside the true
lumen which could expand the tear. Moreover, post-operative remodelling of the
aorta leads to changes in the lumen cross-sectional diameter, which correlates with
WSS [8]. Furthermore, WSS values are influenced by vessel centreline asymmetry
and maximum diameter [6].

Our study has some limitations. Firstly, unlike in humanswe treated the arterywall
as a rigid body, therefore neglecting its influence on blood flow character. However,
this approach was in line with [7] who presented that differences between blood flow
distribution for rigid and pulsating wall are comparable. Secondly, we described
blood using non-Newtonian model. Nevertheless, it was presented by Xiang et al.
[34] that non-Newtonian fluid reflects the real properties of blood and does not
artificially increase WSS comparing to the Newtonian approach. Finally, the CFD
simulations accuracy depends on the resolution of AngioCT data. In our study we
applied 2 mm slides which gives acceptable but not perfect resolution. Therefore, it
might influence the results.
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7.5 Conclusion

With the use of CFD technique it was possible to characterise post-operative remod-
elling of the aorta after TEVAR for acute type B dissection. Therefore, CFD analysis
may become a useful non-invasive tool for the characterization of blood hemody-
namic changes before and after endovascular treatment of acute TBAD andmay have
potential in aiding therapeutic decision making after operation.
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Chapter 8
The Three Dynamical Regimes of a
Droplet Driven by Thermocapillarity

Jonatan Raúl Mac Intyre , Juan Manuel Gomba, Carlos Alberto Perazzo,
Pablo Germán Correa and Mathieu Sellier

Abstract We study the behaviour of two-dimensional droplets of partially wetting
liquids driven by thermocapillary forces. A sessile droplet over a non-uniformly
heated surface undergoes a shear stress along the surface of the liquid that moves the
droplet from warmer to colder regions. By means of a two-term disjoining pressure
model with a single stable energy minimum, we introduce the effect of a non-zero
contact angle and two different models are compared. Polar liquids are modelled
using London–van der Waals and ionic-electrostatics molecular interactions and,
non-polar fluids with long- and short-range molecular forces. The droplet dynamics
model is based on the lubrication approximation and the resulting partial differential
equation is solved in the Finite Element package COMSOLMultiphysics. As a result
of a parametric study on the contact angle, we characterize three different regimes.
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8.1 Introduction

In a variety of industrial applications, such as coating, ink-jet printing, microfluidics,
micro-electronics, and medical diagnostics [2], the migration of droplets over a solid
substrate is crucial. Among a large range of different physical principles to displace
the liquids, we study here the thermocapillary effect, which has been employed in a
large number of microfluidic devices to actuate droplets and bubbles given that the
change of the surface tension with temperature is observable in most liquids [11].

We focus on droplets on horizontal surfaces that are driven by thermocapillary
forces, where a non-uniformly heated substrate induces a shear stress along the
surface of the liquid that moves the droplet from warmer to colder regions. Using
a precursor film model at the contact line, we solve an initial value problem for the
displacement of the droplet, without imposing restrictions on either the shape of the
interface or the velocity of the contact lines [8].

We carry out a parametric study using the contact angle and distinguish three
different flow regimes. For small contact angles, the drop spreads in the direction
of motion, while for large contact angles the liquid migrates steadily preserving
its shape. For intermediate contact angles, for both polar and non-polar liquids, the
droplet breaks up into smaller droplets or migrates with a stationary profile, although
we observe that polar droplets are more likely to break up than non-polar ones.

8.2 Mathematical Model

Figure8.1 shows a two-dimensional droplet of density ρ and viscosityμ deposited on
a non-uniformly heated surface. We reduce the Navier–Stokes equations to a single
partial differential equation for the thickness h = h(x, t) of the droplet employing
the lubrication approximation [14].

We apply two boundary conditions: no slip at the solid substrate and tangential
Marangoni stress τ along the liquid-air interface. The surface tension γ is linear in
the temperature T (x, h) at the air-liquid interface

Fig. 8.1 Sketch of the problem: a two-dimensional droplet of thickness h(x, t) resting on a non-
uniformly heated surface. The temperature induces a gradient of the surface tension which drives
the liquid towards the colder region. The droplet is surrounded by a constant film thickness with an
initial (equilibrium) thickness h f ilm [13]
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γ = γ0 − σ(T − T0) , (8.1)

where γ0 is the surface tension at T = T0 and σ is a positive constant. Based on
experimental data [1, 4], we assume Péclet number Pe = HU/δ � 1 (where H is
the maximum droplet thickness, U the migration velocity and δ the liquid thermal
diffusivity) and Biot number Bi = Hq∞/κt � 1 (where q∞ is the interfacial heat
transfer coefficient and κt the liquid thermal conductivity), that is the conduction is
the main heat transfer mechanism within the drop and the conductivity of the liquid
is high. Therefore, the fluid temperature is equal to the linear temperature profile at
the substrate [3] and the Marangoni stress along the liquid-air interface

τ = dγ

dT

dT

dx
(8.2)

is equal to a positive constant.
We scale both space directions with hc = xc = a, where a = √

γ0/ρg is the capil-
lary length, and define the characteristic time as tc = 3μa/γ0. The evolution equation
for the thickness h(x, t) is given by [3]

∂h

∂t
+ ∂

∂x

[
h3

∂

∂x

(
∂2h

∂x2
+ K

[(
h∗
h

)n

−
(
h∗
h

)m])
+ Bh2

]
= 0 , (8.3)

where the constants are

K = tan2 θ (n − 1)(m − 1)

2(n − m)h∗
, B = 3aτ

2γ0
, (8.4)

and h∗, the thickness for which the energy of solid-liquid interaction reaches its
minimum in units of a [13]. Equation (8.3) is obtained under the lubrication approx-
imation, that assumes small values for the Reynold number and the first derivative
(see for example Ref. [15]). The term multiplied by K models the effects of the
molecular interactions, which satisfies n > m > 1. We focus on two different types
of molecular potentials: polar liquids are represented by (n,m) = (3, 2), and non-
polar liquids by (n,m) = (4, 3) [13, 14, 18]. The disjoining-conjoining pressure
allows us to study droplets of partially wetting liquids and that non-zero contact
angle θ is defined as the angle at the inflection point for large drops. The fourth-order
differential equation is solved using the finite element technique in COMSOLMulti-
physics environment and is subject to periodic boundary conditions at both extremes
of the domain for the height of the droplet h. These conditions are equivalent to null
first and third derivatives at the extremes of the domain.

The initial condition corresponds to the profile of a static droplet of area Awhen the
temperature gradient is zero. This condition is satisfied employing the static profiles
reported in [13] for non-polar liquids, and in [7, 16] for polar ones. We estimate the
intensity of the thermal gradient and the area of the droplets as 0.002 ≤ B ≤ 0.05 and
0.1 ≤ A ≤ 10, respectively, based on experimental data [1, 4]. The use of realistic
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values for h∗, typically of 10−100nm, in problems with moving contact lines is
impractical because it requires cell sizes of the order of h∗ [6], so that we will use
h∗ ≥ 5 × 10−3 [9, 10]. The effect of non-using realistic values is mainly evidenced
as a time shift in the evolution of the flow with minor effects on the morphology of
the surface (see Ref. [17] where the breakup of a droplet is reproduced, or Ref. [10]
where the instability of a rivulet is reproduced numerically).

8.3 Film Regime

For small contact angles tan2 θ ≈ 0 (K ≈ 0), the molecular action is negligible.
Experimental results for Marangoni films have shown that non-polar liquids under
microgravity develop a linear profile [5] similar to the one we report here. Then, we
will call this behaviour as film regime.

Figure8.2a shows the numerical solution of Eq. (8.3) for a non-polar liquid with
θ = 4◦ and B = 0.01. The front develops a characteristic capillary ridge and the
bulk adopts a linear profile with a slope which decreases with time, while the droplet
elongates, its maximum height decreases, and the volume under the linear profile
grows. For polar liquids the behaviour is identical to that just described, due to
independence of molecular interaction expected when K ≈ 0.

The numerical solution of the differential equation retaining all terms shows that
the long rear part of the drop develops a linear profile which, using the method of
characteristics, is given by [8]

h = x − x0
2Bt

, (8.5)

where x0 is a constant related to the initial position of the rear contact line. Figure8.2a
shows the comparison between the numerical solution of the full Eq. (8.3) with
Eq. (8.5). Figure 8.2b shows the evolution of the maximum height hm for two values
of B using both polar and non-polar liquids. At long times, the curves converge to the
asymptotic curve hm ∝ (Bt)−1/2 independently of the molecular interaction. Note
that as the value of B is increased, the duration of the transient stage is reduced.

The bulk region of the droplet can be approximated by a triangular profile of
width x f − xa and height (x f − xa)/(2Bt), where x f and xa are the front and rear
positions of the drop, respectively. Then the area A of the droplet is given by A =
(x f − xa)2/(4Bt). Given that A is almost constant since the capillary ridge is narrow,
we can obtain the velocity of the droplet as U = dx/dt = √

AB/t .
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(a)

(b)

Fig. 8.2 a Evolution of the thickness profile for a non-polar (solid green line) and polar (dashed
blue line) droplets. The dashed red line is the analytic solution for the rear profile given by Eq. (8.5).
Here, θ = 4◦, B = 0.01, A = 10 and h∗ = 0.01. bEvolution of themaximum height hm for θ = 4◦,
two values of B, and both molecular potentials. Here, A = 10, h∗ = 0.01

8.4 Transition Regime

For intermediate values of the contact angle θ, the effects of the molecular potential
and the Marangoni stress are of the same order. In this transition regime the droplet
migrates across the plate and, while doing so, exhibits two different dynamics, as
shown in Fig. 8.3: either it breaks into two or more smaller volumes or attains some,
ultimately steady, profile which then migrates with a constant velocity. Non-polar
liquid are more stable, the droplet moves steadily with a profile that consists in
a capillary ridge followed by a film of constant thickness. On the contrary polar
liquids breaks up more readily, showing a complex behaviour. We observe that in
order to detect break up of non-polar liquids we have to increase B beyond the range
of parameters reported in the experimental works (B > 0.03). Later in the text we
analyze the differences between polar and non-polar flows in terms of the linear
stability analysis of the flat profile behind the front.

Figure8.4 shows steady solutions that do not break up, move with a constant
velocity and present a characteristic flat thickness he. As B increases, the width of
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Fig. 8.3 Comparison of a stable (dashed green line) and unstable (solid blue line) droplet migration
for θ = 16◦ and B = 0.05

Fig. 8.4 Migration of flat droplets for a initial contact angle θ = 16◦, and two different thermal
gradients at {5; 2.8} × 104 in dashed line and 3.2 × 104 in solid line. he decreases as B increases

the profile w and the velocity of the droplet U increases, while the thickness he
decreases. Note that the area below the capillary ridge enlarges as B diminishes and,
when most of the fluid is within the capillary ridge, the profile does not present a flat
film.

By dimensional analysis and parametric studies on K , B, and A, we find that the
dependence of he on K and B is given by

he ∝ K B−2/3 ∝ tan2 θ B−2/3 , (8.6)

and the width of the droplet w follows the scaling law

w ∝ A

K
B2/3 ∝ A

tan2 θ
B2/3 , (8.7)

which are successfully tested. Also, the numerical results show that when A is
increased, the width w increases but the thickness he remains constant, as expected
from Eq. (8.6) to Eq. (8.7). Assuming that the solution is well represented by a travel-
ling wave, we can determine that the velocity of migration isU = Bhe, which is in a
good agreement with the numerical data as shown Fig. 8.5. Note that using Eq. (8.6),
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Fig. 8.5 Dependence of the thickness he on the velocity U and thermal gradient B. The law (8.8)
is valid for the intermediate flow regime when droplets move steadily without ruptures, as shown
Fig. 8.4

the velocity of the drop becomes

U ∝ K B1/3 ∝ tan2 θ B1/3 . (8.8)

The nature of polar or non-polar liquid affects the stability of the flat film, as
can observed in Fig. 8.3. In order to understand the rupture process, we implement a
linear stability analysis using Eq. (8.3) for h = he + ξ exp(ıkx + ωt), with he � ξ.
The growth rate and the wavenumber are related by [12]

ω = −2ı̇ Bhek − h3ek
2

[
k2 − K

(
m

hm∗
hm+1
e

− n
hn∗
hn+1
e

)]
. (8.9)

A stable constant thickness he requires a negative growth rate, which from previous
equation implies

k >
√
K

(
m

hm∗
hm+1
e

− n
hn∗
hn+1
e

)1/2

. (8.10)

Note that the minimum unstable wavelength is larger for the case (n,m) = (4, 3),
thus non-polar liquids need longer times and larger domains to develop an instability.
From Eq. (8.9) we can determinate the wavelength with the largest growth rate as

λm = 2π

√
2

K

(
m

hm∗
hm+1
e

− n
hn∗
hn+1
e

)−1/2

. (8.11)

We implement a Fourier analysis of the thickness profile. Figure8.6 shows the
Fourier transform of the thickness profiles showed in Fig. 8.3 for (n,m) = (3, 2).
The position of the vertical line, that indicates the maximum wavelength amplitude
λn
m = 4.68, agrees well with the theoretical value λt

m = 2π/km = 3.72.
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Fig. 8.6 Fourier transformof the thickness profilewith amolecular potential (n,m) = (3, 2) shown
in Fig. 8.3. The vertical line shows the numerical maximum wavelength, here λn

m = 4.68

Fig. 8.7 Evolution of the thickness profile for non-polar liquid, (n,m) = (4, 3) (green solid line)
and polar liquid, (n,m) = (3, 2) (blue dashed line). The effect of the potential avoids drop stretching
due to Marangoni stress

8.5 Droplet Regime

In the droplet regime, the molecular potential becomes strong enough to keep the
initial shape of the droplet during the migration with constant velocity U . Experi-
mentally, Brzoska et al. [1] and Chen et al. [4] show that droplets migrate keeping
their initial shape and the velocities present differences for different liquids, vis-
cosities and thermal gradients. Similar to the experiments, the type of the molecular
force modifies the velocity of migrationU , as we can see in Fig. 8.7 for droplets with
initial contact angle θ = 29◦. Note that the velocity of migrationU changes with the
polarity of the liquid, i.e. with the molecular potential.

Brzoska et al. [1] and Chen et al. [4] have shown that the velocity is proportional
to B and inversely proportional to the viscosity. Following the dimensional analysis
carried out by Gomba and Homsy [8], we define twoΠ∗ groups to consider different
pairs (n,m) depending on the type of liquid and obtain that
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Fig. 8.8 Dependence of the velocityU for several combinations of the parameters (n,m), A, θ, B,
and h∗. The exponent in Eq. (8.12) is β = 0.4 for both liquids

Π∗
1 = U

Bh∗
∝ (Π∗

2 )β , (8.12)

Π∗
2 =

(
(n − 1)(m − 1)

2(n − m)

)1/2 A tan θ

h2∗
, (8.13)

with β = 0.4, independently of the pair (n,m). Therefore, the pre-factor in Eq. (8.13)
is responsible for the different velocity for each liquid. Figure8.8 shows U/Bh∗
versus A tan θ/h2∗ for several combinations of the parameters (n,m), A, θ, B, and
h∗.

8.6 Conclusions

We have explored the dynamics of droplets under the effect of a thermocapillary
driving force. In the considered configuration, a droplet over a non-uniformly heated
surface experiences a shear-stress that displaces the liquid from warmer to colder
regions in a complex way. The droplet dynamics model is based on the lubrication
approximation and the resulting partial differential equation is solved in the Finite
Element package COMSOL.

For small contact angles, the droplets stretch in such a way that they develop a
linear profile in the region behind the capillary ridge. The straight profile is well
described by a similarity solution irrespective of the molecular interaction potential
which is a consequence of the fact that, for small contact angles, the contribution
of the disjoining pressure term is negligible. The asymptotic velocity of the front is
given by U = √

BA/t .
The transition regime occurs for intermediate values of the contact angle. Two

characteristic behaviours are found in this regime: droplets travel with a constant
profile which is different from the initial one or break up into a series of smaller
droplets. Stable dropletsmigrate with a constant velocity, that scales as the 1/3 power
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of B. Also, it is sensitive to small differences in the contact angle being proportional
to K . Unstable droplets are strongly dependent on the type of molecular interaction
potential. For polar liquids with a disjoining pressure given by the pair (n,m) =
(3, 2), breakup occurs more readily than for non-polar liquids with a disjoining
pressure for which (n,m) = (4, 3). In other words, it takes a smaller value of the
driving thermocapillary stress to breakup the initial droplets into smaller ones for
polar liquids than for non-polar ones. By means of a linear stability analysis, we
found that the maximum growth rate of the instability is larger for polar liquids,
(n,m) = (3, 2) than for non-polar ones and occurs for shorter wavelengths. That is
to say, the instability for non-polar liquids takes longer times and larger distances to
develop. The stability analysis also allows a prediction of the number of droplets the
parent droplet breaks up into and the distance between them.

Finally, for larger values of the contact angle, the model confirms experimental
results showing that the droplet travels with a constant profile and at constant speed.
The travelling velocity is found to be greater for non-polar than for polar liquids
and scales linearly with the thermocapillary driving force. The constant velocity of
the droplet follows a power law with the parameters of the problem (see Eq. (8.13))
but, interestingly, the exponent of the power law is completely independent of the
molecular potential.

This study presents new results on the role of the polarity of liquids in the dynamics
of droplets driven by thermocapillary stresses. They shed light on howfluid properties
and parameter selection are of importance in the context of droplet actuation.

Acknowledgements The authors gratefully acknowledge the funding supports via the CONICET
Grants PIP No. 356 and PIP No. 299, the ANPCyP Grant No. 2012-1707 and CICPBA.

References

1. Brzoska, J.B., Brochard-Wyart, F., Rondelez, F.: Motions of droplets on hydrophobic model
surfaces induced by thermal gradients. Langmuir 9(8), 2220–2224 (1993). https://doi.org/10.
1021/la00032a052

2. Casadevall i Solvas, X., DeMello, A.: Droplet microfluidics: recent developments and
future applications. Chem. Commun. 47(7), 1936–1942 (2011). https://doi.org/10.1039/
C0CC02474K

3. Chaudhury, K., Chakraborty, S.: Spreading of a droplet over a nonisothermal substrate:multiple
scaling regimes. Langmuir 31(14), 4169–4175 (2015). https://doi.org/10.1021/la5047657

4. Chen, J.Z., Troian, S.M., Darhuber, A.A., Wagner, S.: Effect of contact angle hysteresis on
thermocapillary droplet actuation. J. Appl. Phys. 97(1), 014906 (2005). https://doi.org/10.
1063/1.1819979

5. Fote, A.A., Slade, R.A., Feuerstein, S.: Thermally Induced Migration of Hydrocarbon Oil. J.
Lubr. Technol. 99(2), 158–162 (1977). https://doi.org/10.1115/1.3453002

6. Gaskell, P.H., Jimack, P.K., Sellier, M., Thompson, H.M.: Efficient and accurate time adaptive
multigrid simulations of droplet spreading. Int. J. Numer. Methods Fluids 45(11), 1161–1186
(2004). https://doi.org/10.1002/fld.632

7. Gomba, J.M., Homsy, G.M.: Analytical solutions for partially wetting two-dimensional
droplets. Langmuir 25(10), 5684–5691 (2009). https://doi.org/10.1021/la804335a

https://doi.org/10.1021/la00032a052
https://doi.org/10.1021/la00032a052
https://doi.org/10.1039/C0CC02474K
https://doi.org/10.1039/C0CC02474K
https://doi.org/10.1021/la5047657
https://doi.org/10.1063/1.1819979
https://doi.org/10.1063/1.1819979
https://doi.org/10.1115/1.3453002
https://doi.org/10.1002/fld.632
https://doi.org/10.1021/la804335a


8 The Three Dynamical Regimes of a Droplet Driven by Thermocapillarity 95

8. Gomba, J.M., Homsy, G.M.: Regimes of thermocapillary migration of droplets under
partial wetting conditions. J. Fluid Mech. 647, 125–142 (2010). https://doi.org/10.1017/
S0022112010000078

9. Gomba, J.M., Diez, J.A., González, A.G., Gratton, R.: Spreading of a micrometric fluid strip
down a plane under controlled initial conditions. Phys. Rev. E 71(1), 016304 (2005). https://
doi.org/10.1103/PhysRevE.71.016304

10. Gomba, J.M., Diez, J.A., Gratton, R., González, A.G., Kondic, L.: Stability study of a constant-
volume thin film flow. Phys. Rev. E 76(4), 046308 (2007). https://doi.org/10.1103/PhysRevE.
76.046308

11. Karbalaei, A., Kumar, R., Cho, H.: Thermocapillarity in microfluidics - a review. Microma-
chines 7(1), 13 (2016). https://doi.org/10.3390/mi7010013

12. Mac Intyre, J.R.: Efectos de fuerzas moleculares sobre gotas estáticas y flujos termocapilares.
Ph.D. thesis, Universidad Nacional del Centro de la Provincia de Buenos Aires (2017)

13. Mac Intyre, J.R., Gomba, J.M., Perazzo, C.A.: New analytical solutions for static two-
dimensional droplets under the effects of long- and short-range molecular forces. J. Eng. Math.
101(1), 55–69 (2016). https://doi.org/10.1007/s10665-016-9846-x

14. Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Mod.
Phys. 69(3), 931–980 (1997). https://doi.org/10.1103/RevModPhys.69.931

15. Perazzo, C.A., Gratton, J.: Navier-Stokes solutions for parallel flow in rivulets on an inclined
plane. J. Fluid Mech. 507, 367–379 (2004). https://doi.org/10.1017/S0022112004008791

16. Perazzo, C.A., Mac Intyre, J.R., Gomba, J.M.: Final state of a perturbed liquid film inside a
container under the effect of solid-liquid molecular forces and gravity. Phys. Rev. E 89(4),
043010 (2014). https://doi.org/10.1103/PhysRevE.89.043010

17. Schwartz, L.W., Eley, R.R.: Simulation of droplet motion on low-energy and heterogeneous
surfaces. J. Colloid Interface Sci. 202(1), 173–188 (1998). https://doi.org/10.1006/jcis.1998.
5448

18. Starov,V.M.,Velarde,M.G.,Radke,C.J.:Wetting andSpreadingDynamics. Surfactant Science,
vol. 11. CRC Press, Boca Raton (2007)

https://doi.org/10.1017/S0022112010000078
https://doi.org/10.1017/S0022112010000078
https://doi.org/10.1103/PhysRevE.71.016304
https://doi.org/10.1103/PhysRevE.71.016304
https://doi.org/10.1103/PhysRevE.76.046308
https://doi.org/10.1103/PhysRevE.76.046308
https://doi.org/10.3390/mi7010013
https://doi.org/10.1007/s10665-016-9846-x
https://doi.org/10.1103/RevModPhys.69.931
https://doi.org/10.1017/S0022112004008791
https://doi.org/10.1103/PhysRevE.89.043010
https://doi.org/10.1006/jcis.1998.5448
https://doi.org/10.1006/jcis.1998.5448


Chapter 9
Simulation of the Ultrasound-Induced
Growth and Collapse of a Near-Wall
Bubble

Bradley Boyd and Sid Becker

Abstract The ultrasound-induced growth and collapse of a bubble results from
the oscillating position of an ultrasound transducer face in a liquid medium. The
current work presents a fully-compressible model that is the first to capture the
growth and collapse of a bubble set in a liquid medium subjected to an ultrasound
transducer. The oscillating transducer face is represented by an immersed moving
reflective boundary. The flow is simulated using a conservative interface capturing
method, which includes the use of a high-order WENO reconstruction, a maximum-
principle-satisfying and positivity-preserving limiter, and the HLLC approximate
Riemann flux. A simulation is conducted of the growth and collapse of an initially
spherical bubble with an initial radius of 50 µm near a wall subjected to the acoustic
field resulting from a transducer face oscillating with a frequency of 30 kHz and a
displacement amplitude of 0.6956µm.The shape of the bubble during the growth and
collapse is found to be qualitatively consistent with previous work, with a flattening
of the bubble near the wall after the growth and the formation of a jet during the
collapse. The violent collapse of the bubble results in a maximum pressure at the
wall of approximately 14 MPa.

Keywords Acoustic cavitation · Bubble collapse · WENO

9.1 Introduction

Ultrasound-induced cavitation (acoustic cavitation) is employed in applications such
as ultrasonic surface cleaning [1], water filtration [2], and food processing [3]. The
medical field employs ultrasound-induced cavitation in ultrasound lithotripsy [4], the
antitumor effect [5], hemostasis [6], phacoemulsification [7], drug and gene delivery
[8], sonoporation [9], and cancer immunotherapy [10]. These applications make
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use of the violent collapse of cavities (bubbles) that occur as a result of acoustic
cavitation.

The ultrasound-induced growth and collapse of a bubble is a result of acoustic
cavitation. With a sufficient drop in the fluid pressure, caused by the acoustic field,
the fluid undergoes a phase change in localized regions where nucleation is possible:
this is described as cavitation [11, 12]. The newly formed air and vapor cavity appears
as a bubble in the solution, where it is able to continue to grow in time as air from
the solution diffuse into the bubble: this is termed rectified diffusion [11, 12]. If the
initial stable cavitation bubble is large enough and the amplitude of the acoustic field
is sufficient in magnitude the bubble will respond transiently: often described as the
lower transient threshold or Blake threshold [12]. This cavity will then grow rapidly
with decreasing fluid pressure to at least twice its initial radius [12]. As the fluid
pressure begins to increase, the bubbles rate of growth starts to decelerate until the
bubble radius reaches its maximum and the transient collapse begins. The collapse of
a cavitation bubble near a wall results in a high pressure experienced by the boundary
and, in cases, a jet develops through the center of the bubble toward the boundary
and impacts the surface of the boundary [13, 14].

We seek to model the acoustically-driven growth and collapse of a near wall
bubble. To capture the violent collapse of a bubble, a fully compressible two-phase
model that is capable of capturing shocks is required to represent both the bubble fluid
and the surrounding liquid as compressible. In existing fully compressible models,
the collapse is either induced by a shock wave traveling through the domain [13–17]
or by using an initial condition in which there is a pressure difference between the
bubble and the surrounding medium [1, 16, 18], which is referred to as a Rayleigh
collapse. However, the shock-induced collapse and the Rayleigh collapse are not
intended to capture the collapse of a bubble in a transient acoustic field.

Our previous study [19]worked on developing amodel to capture the acoustically-
driven collapse of a near wall bubble where the growth phase of the bubble is approx-
imated using the Rayleigh-Plesset equation. Instead of approximating the growth and
simulating the collapse, the focus of the present study is to directly simulate both the
growth and collapse stages of the near wall bubble.

The field lacks a fully compressible model that is able to capture an acoustically-
driven bubble near a wall. Themodel presented in this paper captures both the growth
and collapse phases of a bubble subject to an ultrasound field. The ultrasound field
is simulated directly using an immersed moving reflective boundary condition: the
immersed boundary simulates the movement of the active face of the ultrasound
transducer.
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9.2 Methodology

9.2.1 Physical Model

The current study uses some previously validated simplifications to model the
ultrasound-induced bubble growth and collapse. The nucleation and formation of
the cavity are not considered as they are difficult to model and provide no addi-
tional insight into the growth and collapse of a cavity [16]. Instead, we assume the
cavitation bubble is already present in the solution. Surface tension, viscous effects,
gravity, and heat conduction are considered to be of secondary importance during
the collapse [14, 20–24]; thus, they are neglected. We also assume that no mass
transport occurs across the interface and that the cavitation bubble is entirely com-
posed of air. Considering the condensation and evaporation of the vapor across the
interface and rectified diffusion of air across the interface during the collapse would
greatly increase the complexity of the model, with minimal additional insight into
the dynamics of the bubble. These assumptions result in the idealized model of an
acoustically-driven air bubble, where a compressible multiphase model is used to
capture the different fluids and any shock waves that develop.

In practice, the transducer face oscillates sinusoidally in the fluid medium pro-
ducing the ultrasound field. Thus, the properties of the ultrasound field in the fluid
depend on the transducers displacement amplitude (a) and the transducers frequency
( f ). A representation of an experimental ultrasound-induced cavitation setup (e.g.
ultrasonic cleaning [25] or sonoporation [26]) including the transducer, cavitation
bubble, surrounding fluid, and the wall is depicted in Fig. 9.1a. The dashed line in
this figure represents the physical domain that is modelled in the present study. The
width of the domain is smaller than the width of the transducer face to allow the
outer boundary to be treated as a reflective boundary, capturing the symmetry across
that boundary.

Fig. 9.1 a A representative depiction of an ultrasound transducer setup and b the computational
domain in cylindrical coordinates used to simulate the acoustically-driven bubble
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The computational domain for the present study is depicted in Fig. 9.1b. The
model uses an axisymmetric cylindrical coordinate system with a growing mesh
from the refined region that encompasses the bubble (Fig. 9.1b). Figure 9.1b shows
the dimensions of the domain, Hd and Rd , the dimensions of the refined region,
Hr and Rr , the standoff distance of the bubble from the wall, S, and the boundary
conditions. The ultrasound transducer face is simulated using an immersed moving
reflective boundary that oscillates sinusoidally. Thewall is represented by a reflective
boundary.

9.2.2 Numerical Methods

In this study, we model the acoustically-driven growth and collapse of an air bubble
in water exposed to an ultrasound field. The bubble dynamics are modelled using a
compressible, inviscid, multiphase model. The two-fluid system, the bubble air and
the surrounding water, is described using the five-equation model of [27]. To model
a multiphase system containing liquids and gases using the same equation of state
(EOS), we use the stiffened equation of state [24].

The numerical scheme consists of a conservative interface capturing scheme
which uses the fifth-order WENO reconstruction [24] with a maximum-principle-
satisfying and positivity-preserving limiter (developed in [28]), and the HLLC
approximate Riemann flux [24]. Tomodel the ultrasound input, an immersedmoving
reflective boundary oscillates through a fixed grid of finite-volume cells (Fig. 9.1b).
A conservative cell mixing method allows the moving boundary to bisect the fixed
cells, where the moving boundary-fluid interaction is evaluated using the one-sided
Riemann problem [29].

The initial bubble (R0) in equilibrium with the surrounding fluid (pB � patm)

is superimposed onto the developed ultrasound field (Fig. 9.3) to give the initial
condition for the simulation. The superimposing procedure is similar to the method
developed in [19]. The key difference is that the bubble is initialized at an equilibrium
state, prior to growth (R0), as opposed to the maximum bubble size, prior to collapse
(Rmax).

9.3 Results

9.3.1 Case Study Parameters

A representative case study is presented to show the application of the model devel-
oped. The case study captures the growth and collapse of a bubble that has an initial
radius of 50 µm in an ultrasound field where the transducer face is oscillating at
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Table 9.1 Model parameters
and fluid properties

Symbol Description Value

f Ultrasound frequency 30.0 kHz

a Amplitude of the transducer face 0.6956 µm

S Initial bubble standoff distance 116 µm

R0
Initial bubble radius 50.0 µm

Hd
Domain depth 1.0 cm

Rd
Domain radius 1.0 cm

Hr
Refined region depth 200.0 µm

Rr
Refined region radius 400.0 µm

�rmin
Refined cell radius 1.0 µm

�zmin
Refined cell depth 1.0 µm

N Cells 134400

g Cell growth rate 1.1

CFL CFL condition (to compute �t) 0.16

patm Atmospheric pressure 101.325kPa

ρ0,2
Density of water (surrounding
fluid) at patm

1000.0kg/m3

γ1
EOS parameter for air [15] 1.4

γ2
EOS parameter for water [15] 6.12

π∞,1
EOS parameter for air [15] 0.0 Pa

π∞,2
EOS parameter for water [15] 3.43×108

Pa

30 kHz with a displacement amplitude of 0.6956 µm. The model parameters and
fluid properties are provided in Table 9.1.

9.3.2 Bubble Growth and Collapse Results

The ultrasound-induced growth and collapse of a bubble is presented in Fig. 9.2,
where the bubble interface contours are stepped in time. The growth phase of the
simulation shows the rapid non-spherical growth of the near-wall bubble (Fig. 9.2a).
The bubble deviates from the spherical shape due to the near-wall boundary hindering
the flow, resulting in a flat region of the bubble interface on the side nearest to the
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Fig. 9.2 The a growth and
b collapse of a bubble near a
wall (S � 116µm). The
depiction shows the bubble
interface stepped in time in
increments of 1.463 µs until
the dashed contour line
where the interface is then
stepped in time in increments
of 0.3658 µs

wall (Fig. 9.2a). This leaves a layer of water between the fully grown bubble and the
wall, which is observed in experiments [30].

Once the bubble reaches its maximum size and the collapse phase begins, the
simulation shows the formation of a jet which penetrates the bubble towards the wall
at the later stages of the collapse (Fig. 9.2b). The final three contours of (Fig. 9.2b)
show the formation of a toroidal bubble as the jet fully penetrates the bubble, and the
rebounding of the bubble (the growth of the toroidal bubble after the collapse). The
bubble shape for the majority of the collapse phase is qualitatively consistent with
the collapse shape found in multiple studies [1, 21, 31–33].
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Fig. 9.3 The ultrasound standing pressure wave (quarter wave) between the transducer face
(immersed moving boundary condition) (z ≈ 1 cm) and the wall (z ≈ 0), without the presence
of a bubble. The standing pressure wave is presented by showing the acoustic pressure wave at
multiple different instances during the acoustic wave cycle. The local pressure amplitude varies in
z direction: pA(z) � (

pmax(z) − pmin(z)
)
/2

An ultrasound transducer face displacement amplitude of 0.6956 µm resulted
in a standing wave between the wall (z � 0) and the immersed moving boundary
(z ≈ 1 cm)with no bubble present, see Fig. 9.3. The evolution of the location pressure
near the wall gives a pressure amplitude of 200 kPa (Fig. 9.3). The subsequent far-
field pressure at [r � Rd , z � 0] during the bubble growth and collapse is sinusoidal
with a pressure amplitude of 200 kPa (Fig. 9.4a).
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Fig. 9.4 a The far-field pressure (at [r � Rd , z � 0] near the wall and the outer boundary, see
Fig. 9.1) produced by the immersed moving reflective boundary, used to simulate the ultrasound
input, b the bubble volume, and c the pressure experienced by the wall at r � 0

For a bubble with an initial radius of 50 µm and a pressure amplitude of 200 kPa
(Fig. 9.4a), the pressure experienced by the wall increased rapidly nearing the end
of the collapse, reaching a peak pressure of approximately 14 MPa (Fig. 9.4c).

9.4 Conclusion

To the authors’ knowledge, this is the first fully compressible model able to simulate
the ultrasound-induced growth and collapse of a bubble near a wall. The case study
presented in this paper applies the numerical model to the ultrasound-induced growth
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and collapse of a cavitation bubble near a wall. Given an initial bubble (R0 � 50μm)

and the parameters of the ultrasound transducer, frequency of 30 kHz and transducer
displacement amplitude of 0.6956µm, the resulting bubble growth and collapse was
simulated and analyzed. The shape of the bubble during growth and collapse was
found to be qualitatively consistent with previous work. The pressure experienced
by the nearby solid boundary was analyzed and the bubble collapse resulted in the
formation of a jet which produced a maximum pressure at the wall of 14 MPa.
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Chapter 10
Air Flow Entrainment of Lactose
Powder: Simulation and Experiment

Thomas Kopsch, Darragh Murnane and Digby Symons

Abstract Lactose powder is frequently used as an excipient in drug formulations
for use in dry powder inhalers (DPIs). As a patient inhales through a DPI the lactose
powder is entrained into the airflow, thus enabling delivery of the drug dose to the
patient’s lungs. Computational fluid dynamics (CFD) can potentially aid the design-
ers of DPIs if the entrainment process can be accurately simulated. In this study we
compare CFD simulations and experimental observations of entrainment of lactose
powder using an example 2D DPI geometry and typical inhalation airflow profiles.
2D transient CFD simulations were carried out using an Eulerian-Eulerian solver
to model the progression of entrainment subject to two example patient inhalation
maneuvers: one high and one low flow rate. Experiments used the same 2D geometry
laser cut from a 3 mm thick opaque acrylic sheet sandwiched between transparent
sheets. A powder dose was pre-loaded before assembly of the geometry. Two differ-
ent lactose powders were used with particle sizes of 59 and 119 μm. Air flow was
provided by a computer controlled pump (a breath simulator). The geometry was
back lit and the progression of entrainment was filmed at 1000 fps. Comparison of
the CFD simulations and experimental results showed good agreement for the two
powders tested.
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10.1 Introduction

10.1.1 Motivation

Dry powder inhalers (DPIs) are used to deliver medicines directly to the lungs to
treat both respiratory and systemic diseases. Drug particles are usually micronized
to obtain particle sizes of less than 5 μm to maximize pulmonary deposition and
minimize tracheobronchial deposition [1].However, such small particles are typically
extremely cohesive: they have poor flowability and form large agglomerates that are
difficult to entrain into the airstream. The drug is therefore often pre-mixed with an
excipient composed of larger carrier particles. De-agglomeration of the drug from the
carrier particles is accomplished (primarily by impacts) as the entrained formulation
exits the DPI.

Lactose powder is frequently used as an excipient in drug formulations for use in
dry powder inhalers (DPIs). In many DPIs the powder drug dose is stored in a foil
sealed “blister” until use. Typically the foil seal is then pierced by an inlet and outlet
tube and the blister itself forms the entrainment part of the air path through the DPI,
see Fig. 10.1.

Good performance of the entrainment geometry of a DPI is necessary to achieve
good drug delivery performance. Computational fluid dynamics (CFD) can poten-
tially aid the designers ofDPIs if the entrainment process can be accurately simulated.

10.1.2 Overview of Paper

In this studywecompareCFDsimulations and some initial experimental observations
of entrainment of lactose powder using an example DPI geometry and typical patient
inhalation airflow profiles.

Fig. 10.1 Schematic
illustration of the drug
delivery process with a DPI.
a The DPI and the
respiratory tract. b A
close-up view of the DPI
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10.2 Methods

10.2.1 Computational Simulation

For this study the example entrainment geometry investigated was a 2D representa-
tion of a blister type entrainment geometry with length ~6 mm, see Fig. 10.2 The
geometry had previously been computationally optimised to perform consistently,
with low sensitivity to the patient’s inhalation profile, using a similar process to that
described in Kopsch et al. [2].

In CFD analysis for DPIs the particulate (drug) phase can either be ignored (a
single phase approach considering air flow only) or modelled using a multiphase
approach. The majority of reported studies using multiphase approaches for simula-
tion of DPIs have used Eulerian-Lagrangian (EL), i.e. particle-tracking, approaches
[3]. However, EL approaches make it difficult to study the fluidization process of
a powder bed due to the large number of particle-particle interactions. It is for this
reason that Zimarev et al. [4] introduced an Eulerian-Eulerian (EE) CFD approach
to model the entrainment of drug in a DPI and to optimize the entrainment part of
a DPI. When the volume fraction of drug is very high, the EE approach is more
computationally efficient than an EL particle tracking approach.

In the EE approach, the drug particles are modelled as a second continuous phase
and the interaction between the gas and the granular phase is modelled. A new

Fig. 10.2 The tested geometry with dimensions in mm indicated. The dark grey area indicates the
initial powder load in the CFD simulations
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Fig. 10.3 Idealized
representation of the
Eulerian-Eulerian (EE)
approach. The volume
fraction α indicates the
density of particles

Table 10.1 Settings for the
OpenFOAM EE CFD solver

CFD modelling parameter Sub-model selected

Granular viscosity model ‘Gidaspow’ [7]

Frictional stress model ‘Johnson Jackson’ [8]

Conductivity model ‘Gidaspow’ [7]

Granular pressure model ‘Lun’ [5, 9]

Radial distribution ‘Lun Savage’ [5, 9]

Drag coefficient ‘GidaspowErgunWenYu’ [7]

variable, the volume fraction (α) is introduced to keep track of the local fraction
of granular phase. As in other CFD approaches the domain of interest is split into
a large number of cells. For each cell the EE algorithm solves for a number of
variables including the volume fraction α, the average velocity of drug particles
v̄drug and the average velocity of the gaseous phase v̄air . As shown in Fig. 10.3 the
value of α indicates the number of particles in that cell. In an EE approach, all phases,
including the particulate phases, are modelled as continuous fluids and consequently
mass, momentum and energy conservation laws are applied to all phases. In many
cases, these equations look similar to the standard Navier-Stokes equations. The
kinetic theory of granular flow (KTGF) [5] is one method to model the constitutive
behaviour of a granular phase in the EE approach. KTGF makes predictions about
stresses and phase interaction terms in the governing equations of the fluid.

For this study 2D transient CFD simulations were carried out using
“twoPhaseEulerFoam”: an OpenFoam [6] EE solver with k- 2turbulence modelling.
KTGF sub-models of particle-particle interaction were used to provide the constitu-
tive behaviour of the powder phase. The sub-models used in this work are given in
Table 10.1.

The powder was modelled as uniform sized particles with diameter equal to the
measured D50 size of the lactose powders used in the later experiments, i.e. 59 and
119 μm, see Table 10.2. The simulations modelled the progression of entrainment
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Table 10.2 Powder characteristics of two different lactose powders

Manufacturer DMV-Fonterra Excipients GmbH & Co. KG

Product name Respitose® SV003 Respitose® Lactohale 100

Measured Specification Measured Specification

D10 (μm) 33.1 ± 0.2 19–43 50.9 ± 0.6 45–65

D50 (μm) 59.2 ± 0.1 53–66 119.4 ± 0.4 125–145

D90 (μm) 89.9 ± 0.3 75–106 200.4 ± 2.4 200–250

Poured density (g/L) 630 690

Tapped density (1250 taps) (g/L) 780 840

subject to two time varying flow rate profiles representative of typical patient inhala-
tion maneuvers: one high and one low flow rate.

10.2.2 Experiment

Lactose Powders

Experiments were carried out with two different powders: Respitose SV003 and Lac-
tohale 100 (measuredD50 of 59 and 119μmrespectively, bothDMV-Fonterra Excip-
ients GmbH). The material properties as specified by the manufacturer are shown in
Table 10.2. Most real pharmaceutical powders, including the lactose powders chosen
in this study, are not monodisperse in size (as assumed for the CFD simulations).
Instead, they consist of particles of a range of different diameters. Table 10.2 shows
the D10, D50 and D90 values for these powders as specified by the manufacturer. To
validate these specifications a measurement of particle size distribution was carried
out. The particle size distribution for was measured with a laser diffraction system,
a Sympatec HELOS laser diffraction sensor [10] together with a Sympatec RODOS
dry dispersing unit [11]. Measured values are included in Table 10.2 where the stated
error is the standard deviation over four repeated measurements. Measured values
are generally in agreement with the specification.

Entrainment Module

Entrainment experiments were carried out with an apparatus based on the same
2D geometry as used for the CFD simulations. The geometry was laser cut from a
3.15 mm thick opaque acrylic sheet that was then clamped between two transparent
acrylic sheets, see Fig. 10.4. The experimental powder dose was pre-loaded before
assembly of the geometry.

Breathing Simulator

In order to simulate a patient’s inhalation maneuver, a breathing simulator (model
BRS 3000 [12] from Copley Scientific) was used. The breathing simulator could
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Fig. 10.4 Assembled entrainment module

generate user-defined inhalation flow rate profiles. It consists of a piston whose
movement is controlled by a microprocessor. Integrated software allows a flow rate
profile to be specified. The breathing simulator was connected to the outlet of the
entrainment unit via a filter. The purpose of the filter was to remove powder from the
air flow before it entered the breathing simulator. A digital flow meter (Certifier FA
Plus Ventilator Test System 4080 [13] by TSI Inc.) was connected to the inlet of the
entrainment unit. Theflowmetermonitored the specifiedflow rate profile. Figure 10.5
depicts schematically the position of the breathing simulator, the entrainmentmodule
and the flow meter.

Camera and Illumination

During the entrainment process, the entrainment compartment was filmed with a
high-speed camera. The camera (Casio Exilim EX-FH20 [14]) was set to high-speed
mode (1000 frames per second). It was mounted with a tripod screw on a wooden
platform to fix the relative position of the camera and the entrainment module. The
goal was to obtain the same image section consistently in different experiments. The
entrainment module was illuminated from the back. A diffusion panel (a thin sheet
of paper) was placed between the lamp and the entrainment module to reduce optical
artefacts. Figure 10.6 shows two photos of the complete experimental setup.

Inhalation Flow Rate Profiles

The specified flow rate profilesQhigh(t) andQlow(t) are shown in Fig. 10.7. Both flow
rate profiles started with the inhalation maneuver at time t � 0 s. The maximum
flow rate of the inhalation profile was reached at time t � 0.45 s after the onset of
the inhalation. For the ‘high’ flow rate profile the peak flow was 20 L min−1, for
the ‘low’ flow rate profile the peak was 14 L min−1. Since an air bypass was not
incorporated in the entrainment module, the chosen peak values were lower than
typical peak values of real patients [15] to account for the absent bypass. For both
profiles, inhalation was complete at time t � 3.7 s. At this time, most of the powder
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Fig. 10.5 Setup of the entrainment experiment. a Front view: the breathing simulator generates a
flow through the entrainment module. b Side view: a camera records the powder in the entrainment
module

was typically entrained. However, video post-processing is simplified if a reference
frame with the evacuated entrainment unit is available. Consequently, a high flow
rate was applied from time t � 5 to 11 s to evacuate the entrainment unit completely.
The exact length and strength of the evacuation flow profile was not important as
long the compartment was emptied. As an illustration, Fig. 10.7b shows how the
distribution of drug in the entrainment compartment may look as a function of time.

Analysis of the Entrainment Videos

The aim of analysing the entrainment videos was to compare the experimental obser-
vations of the entrainment process with predictions from CFD simulations. This was
done both qualitatively and quantitatively. Qualitatively, individual frames from an
entrainment video were compared with the corresponding CFD contour plots of the
volume fraction α. Quantitatively, the mass of drug released M(t) as a function of
time t was determined from the videos and compared to CFD predictions.
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Fig. 10.6 Setup of the entrainment experiment. The breathing simulator generates a flow rate profile
through the entrainment module, while a camera records the process

Fig. 10.7 a The specified inhalation flow rate profiles Qhigh(t) and Qlow(t). The entrainment time
interval and the evacuation time interval are indicated. b An illustration of the entrainment process
as a function of time (sample data for illustration only)
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10.3 Results

For both powders SV003 and LH100 experimental entrainment results were com-
pared toCFDpredictions.A qualitative comparison of video frames andCFDcontour
plots of the volume fraction α for the ‘high’ flow profile are shown in Fig. 10.8. The
CFD prediction is in good agreement with the experimental video footage for both
powders.

Figure 10.9 compares the predicted mass release profileM(t) and the correspond-
ing experimental measurement for both ‘high’ and ‘low’ flow profiles. Each experi-
mental curve is the average of three experiments. Good agreement between the CFD
prediction and the experiment is observed.

Fig. 10.8 Comparison of CFD and experimental images of entrainment with the high flow profile.
Air flow is from right to left

Fig. 10.9 Comparison of predicted (CFD) and experimentally measured drug powder release with
both the high and low flow profiles. a SV003 b LH100
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10.4 Conclusions

The aim of this work was to make a preliminary experimental validation of the EE
CFDmethod for simulating entrainment of lactose in an example DPI geometry. This
was achieved by conducting entrainment experiments with a transparent entrainment
module, two different lactose powders and two different inhalation flow rate profiles.
Entrainment processes were recorded with a high-speed camera and the resulting
video footage was compared qualitatively and quantitatively with the corresponding
CFD prediction. For the quantitative comparison M(t), the mass of released drug,
was inferred from the measured intensity distribution.

Limitations of the EE CFD method used were that cohesive interaction and de-
agglomeration of particles were not modelled. Nonetheless, the CFD predictions
agreed strongly with the experimental results for lactose powders SV003 and LH100.

The experimental validation results reported in this work suggest excellent
promise for modelling entrainment of lactose powder drug formulations in DPIs
with an EE CFD approach.
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Chapter 11
Oblique Impact of a Droplet
on a Textured Substrate

Hossein Rashidian and Mathieu Sellier

Abstract This study presents the modelling of an oblique drop impact on a textured
substrate using the multiphase lattice Boltzmann method to understand the condi-
tions under which the lamella lifts off the substrate and generates a satellite droplet.
Depending on the impact angle and the Weber number, four various outcomes are
observed: asymmetric spreading, bilateral splashing including a prompt splash and a
corona splash, one-sided coronal splashing and asymmetric break-up. To obtain a bet-
ter understanding of when splashing is likely to occur, a graphwhich shows splashing
thresholds for a range of normal Weber numbers and impact angles between 5° and
45° is presented. Numerical results show that an increasing proportion of the droplet
bounces off the surface in the form of satellite droplets for increasingly tangential
impacts. Furthermore, the influence of substrate texture parameters such as the height
of posts and wettability of the substrate are investigated. Results show that splash-
ing vanishes as the wettability of the substrate increases. Also, the space between
posts and the height of posts is shown to play an important role on the occurrence of
splashing.

Keywords Oblique droplet impact · Textured substrate · Multiphase lattice
Boltzmann method

11.1 Introduction

The impact of droplets onto solid surfaces has been extensively studied over the past
due to its importance in a range of applications such as inject printing or spray coating
but also because it encompasses some of the most difficult modelling challenges
in fluid mechanics such as a free surface, a wetting front or topography changes.
The current state of the knowledge is comprehensively reviewed by Josserand and
Thoroddsen [1]. Better understanding how the droplet wets a solid surface after
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impact is critical to obtaining a better control in practical applications. For example,
one may wish to avoid lamella break-up and the production of satellite droplets
post-impact in the application of pesticide on foliage.

For normal impacts on solid surfaces, Rioboo et al. proposed that the wetting
outcomes can be broken down into five categories: deposition, rebound, receding
break-up, prompt splash and corona splash [2]. The regime of interest here is the
splashing because this phenomena, observed in many applications, still remains less
understood. As a droplet impacts on a solid surface, the kinetic energy of the droplet
is transformed into surface energy (potential energy) and dissipated by the viscous
shear. If kinetic energy overcomes surface energy, the lamella may either generate
tiny droplets at the contact line (prompt splash) or lifts off and detaches away from
the substrate and generates satellite droplets (corona splash). Simple dimensional
analysis reveals that the main dimensionless number expressing the ratio of inertia
forces to surface tension forces is the Weber number:

We � ρV 2D

σ
(11.1)

where ρ and σ are the density and surface tension of the liquid, respectively. D
denotes the diameter of the droplet and V refers to the impact velocity.

Several studies have described the dynamics of a droplet which impacts normally
onto a textured substrate [3–6]. Generally, at a high enough Weber number, incre-
ment of the roughness amplitude of substrates leads eventually to prompt splash [3].
Experiments also demonstrated that the presence of a small vertical obstacle pro-
motes corona splash [4]. Furthermore, the drop splashing threshold is dependent on
geometrical parameters of the textured substrate [5]. In addition to surface morphol-
ogy, the ambient pressure may affect the dynamics of the wetting front so that the
splashing vanishes with a decrease in the ambient pressure [6].

In spite of the large number of important applications, the understandingof oblique
impacts is, on the other hand, a lot less advanced. For oblique impacts, both the nor-
mal and tangential components of the impact velocity are considered and therefore
the behaviour of the lamella spreading is more complex. In particular, an impor-
tant question is how the tangential component of the impact velocity influences the
dynamics of the contact line. To address this question, several researchers studied
vertical impact onto an inclined stationary surface [7–10] and others investigated
the vertical impact of droplets onto a moving surface which equally resulted in a
tangential component of the impact velocity [11–13]. Another case for which the
tangential component of the impact velocity matters is oblique impact on a hori-
zontal surface. For such impacts, the role of the impact velocity components on the
wetting outcomes has not to this day been investigated systematically.

Thewettability of the substrate and the impact parameters such as the impact angle
and the Weber number may affect the wetting outcome of oblique droplet impacts.
Few studies exist on the oblique impact of droplets on super-hydrophobic surfaces.
For example; Yeong et al. [8] performed an investigation of the impact and rebound
dynamics of droplet impacting at an angle onto a super-hydrophobic surface and
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reported that the maximum spread of the droplet is a function of both the normal and
tangential components of the impact velocity. Aboud and Kietzig [13] carried out
oblique drop impacts onto tilted moving surfaces with various wettability including
super-hydrophobic surfaces to obtain the oblique splashing threshold. Although the
wettability of the surface was considered in the above studies, the effect of the geo-
metrical parameters of the textured hydrophobic surface such as the space between
posts, the height of the posts have not been investigated.

On the other hand, the aforementioned efforts in the literature have been experi-
mental and therefore a numerical modelling of the dynamics of the lamella resulting
from the oblique impact of a droplet onto a horizontal textured substrate has not per-
formed yet. Thus, this work is a first attempt to simulate the behaviour of the lamella
and investigate numerically the conditions under which it breaks-up and generates a
satellite droplet. Furthermore, the influence of geometrical parameters of the textured
substrate as well as the impact parameters is studied systematically. Thus, the aim
of this contribution is to provide a greater understanding of the relation between the
splashing, the impact parameters, and the substrate texture. To achieve this goal, we
have developed a two-dimensional multiphase lattice Boltzmann code following the
Shan-Chen model [14]. In recent years, the lattice Boltzmann method (LBM) which
is based on the mesoscopic kinetic equation has been developed as a powerful tool
for simulating multiphase fluid systems.

The remainder of the paper is structured as follows. Section 11.2 describes the
multiphase lattice Boltzmann method in details. Then, a validation case is presented
in Sect. 11.3. In this section,we perform simulations to calculate themaximumspread
of an oblique impacting droplet onto a smooth surface and compare the numerical
results with a correlation reported by Yeong et al. [8]. Section 11.4 represents the
various possible splashing outcomes of the oblique impact of a droplet onto a tex-
tured substrate and investigates the effects of the impact angle, Weber number and
wettability of the textured substrate. Finally, Sect. 11.5 presents concluding remarks.

11.2 Computational Algorithm

In the LBM, the simulation domain is divided into lattices which are occupied by
either a fluid (liquid or gas) or a solid. The main variable is the density distribution
function fk(x, t) which represents the state of the particle collection. The lattice
position vector at time t is represented by x and the velocity direction is denoted by
the label k. The density distribution function is discretised using the typical D2Q9
lattice arrangement [15]. This velocity model involves nine microscopic velocity
vectors in two space dimensions. For this model, the microscopic velocity vectors
ek and weights ωk are defined as follows:
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ek �
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2

)
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2

))
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√
2c

(
cos

(
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2 )π
2

)
, sin

(
(k− 9

2 )π
2

))
k � 5, 6, 7, 8

(11.2)

ωk �
⎧
⎨

⎩

4/9 k � 0
1/9 k � 1, 2, 3, 4
1/36 k � 5, 6, 7, 8

(11.3)

In the above, c denotes the lattice speed which is given by c � �x
�t where �x

and �t are the lattice unit (lu) and the time step (ts), respectively. Within the LBM,
a fluid is modelled as a fraction of the distribution functions which streams with
ek from x to its neighbouring lattice x + ek�t via certain directions k at the fol-
lowing time step �t . This process is named the streaming step. Another process
which is called the collision step occurs since a portion of other particles is moving
from various directions to the same lattice simultaneously. The collision step which
takes account of the rate of change in the particle distribution can be simplified to
the Bhathagar-Gross-Krook (BGK) single relaxation time approximation [15]. Both
above-mentioned steps are embodied by the discretized Boltzmann equation:

fk(x + ek�t, t + �t) − fk(x, t) � �t

τ

[
f eqk (x, t) − fk(x, t)

]
(11.4)

The left hand side of the Eq. 11.4 expresses the streaming step and the right
hand side represents the collision step where τ is the relaxation time adjusted to 1.
The kinematic viscosity which is related to the relaxation time is defined as υ �
c2s (τ − 0.5)�t where the sound speed is determined as c2s � c2

3 . In the collision step,
the equilibrium distribution function f eqk is calculated as:

f eqk � ωkρ

[

1 +
ek .u
c2s

+
1

2

(
ek .u
c2s

)2

− u.u
2c2s

]

(11.5)

where ρ and u denote the fluid density and velocity, respectively. These quantities
can be determined from the density distributions:

ρ �
8∑

k�0

fk (11.6)

u � 1

ρ

8∑

k�0

fkek (11.7)

For fluid nodes, an initial velocity u0 needs to be assigned as well as an initial
density ρ0 which is either the gas density ρg or the liquid density ρl . The following
initial assumption can be applied as the relaxation time is unity:
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fk(x, t � 0) � f eqk (x, t � 0) � f eqk (ρ0, u0) (11.8)

Following Benzi et al. [16], the solid nodes possess an artificial wall density ρw

where ρg ≤ ρw ≤ ρl to tune the substrate contact angle [17]. It is also important
to note that for the lateral sides of the bounding box, periodic boundary conditions
are applied for which the distribution functions carry on the opposite wall once they
reach the end of the region.We also consider bounce-back boundary conditions at the
solid-liquid interface as the known distribution functions from the streaming process
hit the wall and scatter back to the fluid via its incoming lattice link. To obtain the
inter-particle forces, the single component multiphase Shan-Chen model [14] is used
as follows:

F(x, t) � −Gψ(x, t)
8∑

k�0

ωkψ(x + ek�t, t)ek (11.9)

where G denotes the attraction strength factor and creates the liquid-gas interface
with constant surface tension, density gradient and interface thickness. ψ denotes
the mean field potential term and is a function of density such that [18]:

ψ(ρ) �
√
2
(
P − c2sρ

)

c2s G
(11.10)

where P denotes the pressure and is determined from the Carnahan-Starling (C-S)
equation of state (EOS) [19]:

P � ργ T
1 + βρ

4 +
(

βρ

4

)2 − ( βρ

4 )
3

(
1 − βρ

4

)3 − αρ2 (11.11)

where T denotes the temperature and can be obtained by T � 0.0943T0 as α � 1
lu5/(mu.ts2), β � 4 lu3/mu and γ � 1 lu2/(ts2.tu) [19]. mu and tu are the mass
unit and the temperature unit, respectively.

An alternative velocity named the equilibrium velocity is considered for calculat-
ing the equilibrium distribution function [14]:

ueq � u +
Fτ

ρ
(11.12)

where ueq denotes the equilibrium velocity and replaces u in Eq. 11.5.
After collision, a new collection of distribution functions can leave this colli-

sion lattice and another streaming step starts. These steps are performed until a final
desired time is reached. Finally, the density contours can be plotted to show the
liquid behaviour during its interaction with the gas and the solid. During our sim-
ulation, default values of the liquid density and gas density are 0.285mu/ lu3 and
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0.0285mu/ lu3, respectively. Furthermore, the effect of gravity is neglected as it is
assumed to be negligible compared to inertia and surface tension.

11.3 Validation

The maximum spread which occurs when an impacting droplet deforms to its largest
extent along a substrate is considered as a validation case. For an oblique impact,
the maximum spread is the outcome of an asymmetric behaviour created by the
tangential component of the impact velocity. Since the tangential momentum affect
such drop impacts, a normal and tangential Weber number is defined through the
normal impact velocity Vn and the tangential impact velocity Vt :

Wen � ρV 2
n D

σ
(11.13)

Wet � ρV 2
t D

σ
(11.14)

The impact angle, illustrated in Fig. 11.3, is defined as:

Φ � tan−1 Vn

Vt
(11.15)

Yeong et al. [8] obtained a relationship between the normalized maximum spread
Dmax/D and the Weber numbers:

(Dmax/D) � 0.9We0.25n + C Wet (11.16)

where C is a constant equal to 0.005. It should be noted that this correlation is valid
for Wen < 60 since break-up occurs beyond this value.

We now model the impact of a droplet with a diameter of D � 200 lu and impact
velocity V under an initial impact angle Φ � 30° onto a smooth substrate with an
equilibrium contact angle of θ � 150◦. Figure 11.1 shows the droplet at maximum
spread when the Weber number is 50. For this case, the non-dimensional maximum
spread calculated via correlation 15 yields 3.14, while our simulation gives 3.17
(error is around 1%).

Numerical simulations are performed for a various range of the normal Weber
numbers from 10 to 50. A comparison between the normalized maximum spread
determined numerically (the blue line) and Eq. 11.16 (the black spot) is shown in
Fig. 11.2. It can be seen that a good agreement is found. The maximum error is 3.7%
as Φ � 10°.
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Fig. 11.1 Numerical simulation of the maximum spread of a droplet when the normal Weber
number and the impact angle are 50° and 30°, respectively

Fig. 11.2 Comparison between the current numerical simulations and the correlation reported by
Yeong et al. [8] for the maximum spread of an oblique impact drop on a super-hydrophobic surface
when the impact angle is 30°

11.4 Results and Discussion

11.4.1 Outcomes Classification

We consider now an oblique droplet impacts on a textured substrate as is shown in
Fig. 11.3. The size of the droplet is D � 200lu during all simulations and because
of its diagonal motion, the impact velocity of the droplet contains two components:
Vn � V sin� and Vt � V cos�. The textured substrate features an array of identical
posts. To restrict the number of independent parameters, posts have unit aspect ratio
and unit spacing ratio. Therefore the width of posts W , the space between posts
S, and the height of posts H are equal and such that W � S � H � 10 lu. The
equilibrium contact angle of the substrate is set to θ � 150

◦
which is referred to a

super-hydrophobic surface.
First, we investigate the possible outcomes which are observed during our simula-

tions. Four possible outcomes are illustrated in Fig. 11.4: (a) an asymmetric spreading
occurs as the lamella may spread onto substrate in an asymmetrically without splash-
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Fig. 11.3 Schematic of an oblique impacting droplet with a diameter of D and an impact angle Φ

onto a substrate. V , Vn and Vt denote the impact velocity, the normal component and tangential
components of the impact velocity, respectively

Fig. 11.4 Four various possible outcomes of the oblique impact of a droplet onto a super-
hydrophobic textured substrate: a asymmetric spreading (Wen � 125 and Φ � 30◦), b bilat-
eral splashing includes simultaneous occurrence of both the prompt splash and the corona splash
(Wen � 140 and Φ � 20◦), c one-sided corona splashing (Wen � 140 and Φ � 30◦) and
d asymmetric break-up (Wen � 690 and Φ � 60◦)

ing, (b) bilateral splashing including a prompt splash which generates tiny droplets
onto the substrate from the receding contact line of the lamella and a corona splash
which launches a satellite droplet from the advancing contact line of the lamella, (c)
one-sided corona splashing which only occurs at the advancing contact line of the
lamella and finally (d) an asymmetric break-up which takes place as an air pocket
appears and grows underneath the lamella and causes a break-up at maximum spread.
It is also worth noting that the combination outcome of (c) and (d) in Fig. 11.4 may
occur. This combination happens when the normal Weber number increases in Case
(d) and as a consequence in addition to the occurrence of the asymmetric break-up,
the one-sided corona splashing also takes places in the separated right hand part of
the lamella.
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11.4.2 Effect of Impact Parameters on Splashing

The impact angle of the droplet as well as its normal Weber number lead to different
wetting outcomes as mentioned in previous section. Numerical results demonstrate
that the asymmetric spreading can be observed so long as the normal weber number is
insufficient to trigger splashing. Therefore, such outcome may occur for any impact
angle. If the normal Weber number is high enough, splashing and asymmetric break-
up take place. While bilateral splashing only takes place as long as the impact angle
is Φ ≤ 20◦, the one-sided corona splashing happens for an impact angle between
25◦ ≤ Φ ≤ 45◦. When the impact angle becomesΦ ≥ 50◦ the asymmetric break-up
can occur.

Figure 11.5 illustrates the splashing threshold values for an oblique impact with
an impact angle of 5◦ ≤ Φ ≤ 45◦. There is no splash in the area located on the left
hand side of the line. It can be seen that splashing is likely to occur with a decrease
in the impact angle (i.e. increasingly tangential impact). In other words, with a lower
normal weber number, splashing takes place for smaller impact angles.

During corona splashing, amount of the mass which detaches away from the
lamella is also an interesting quantity. In thermal spraying and for a smooth surface,
Sobolev and Guilemany [20] reported that the ratio χ of the mass of the droplet
which remains onto the substrate to the initial mass of the droplet is dependent on
the impact angle as follows:

χ ∼ sinΦ

Fig. 11.5 Corona splashing threshold for an oblique impact with a range of the impact angle
between 5° and 45°. On left hand side of the line splashing does not occur
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From the above relation, it is obvious that the loss of the droplet mass due to
splashing decreases as the impact angle increases. To confirm this trend,we compared
two different cases with the same normal Weber number (Wen � 140) and different
impact angles (Φ � 20◦ Case (b) and Φ � 30◦ for Case (c) in Fig. 11.4). It can be
seen that with an increase in the impact angle from Φ � 20◦ to Φ � 30◦, the mass
of the satellite droplet generated during splashing decreases as predicted.

11.4.3 Effect of Texture Parameters on Splashing

In addition to the impact parameters, the substrate parameters such as texture and
wettability may influence on splashing. In this section, the normal Weber number
and the impact angle are kept constant and equal to Wen � 140 and Φ � 30◦ (Case
(c) in Fig. 11.4) and numerical simulation were performed for a range of substrate
parameters.

First of all, the effect of texture on splashing is investigated. When the substrate
does not feature posts, splashing does not occur for a contact angle of 150° with
Wen � 140 and Φ � 30◦ as seen in Fig. 11.6. Conversely, the presence of texture
with W � S � H � 10 lu was shown to trigger the splash for the same conditions
(Case c in Fig. 11.4). To understand the role of the space between posts (S), the height
of post (H), and the wettability of the substrate (θ ) in appearance of splashing, we
now simulate six different cases as are reported in Table 11.1 and compare these
numerical results with Case (c) in Fig. 11.4. The simulation results for Case 1 and
Case 2 for which only the space between posts is varied are depicted in Fig. 11.7.
It can be seen that with S equal to 5 lu (Case 1) the splashing is unlikely to occur
(see Fig. 11.7a), whereas with an increase in this parameter to 20 lu (Case 2) the
splashing is observed (see Fig. 11.7b) as was seen for Case (c) for which S was 10 lu.
The difference between Case 2 and Case (c) is that splashing occurs earlier (17,000
ts for Case 2 against 20,000 ts for Case (c)). This means that the space between posts
affects the time and the likelihood of splashing.

Beside the space between posts, the height of the posts also plays an important role
in splashing. Our numerical results demonstrate that for Case 3 for which the height
of posts is H � 5 lu splashing does not happen as shown in Fig. 11.8a, while as
previously observed in Fig. 11.4c splashing occurs when H � 10 lu. Splashing takes

Fig. 11.6 Although the equilibrium contact angle of the substrate is θ � 150◦ splashing does not
occur for an oblique impact on a smooth substrate with the impact parameters Wen � 140 and
Φ � 30◦
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Table 11.1 Six simulation cases with different substrate parameters

Case Impact parameters Substrate parameters Status

Wen Φ (°) W (lu) S (lu) H (lu) θ (°)

1 140 30 10 5 10 150 No splashing

2 140 30 10 20 10 150 Splashing

3 140 30 10 10 5 150 No splashing

4 140 30 10 10 20 150 Splashing

5 140 30 10 10 25 150 No splashing

6 140 30 10 10 10 110 No splashing

c in Fig. 11.4 140 30 10 10 10 150 Splashing

These simulation cases are compared with Case (c) in Fig. 11.4 of Sect. 4.1 for which the one-sided
corona splashing took place

Fig. 11.7 The effect of the space between posts (S) on the occurrence of splashing for an oblique
impact with Wen � 140 and Φ � 30◦ on a textured substrate with an equilibrium contact angle
θ � 150◦: a the splashing is does not occur for Case 1 for which S � 5 lu and the height of posts
(H) and the width of posts (W ) are 10 lu but b splashing occurs for Case 2 which S � 20 lu and
H � W � 10 lu

Fig. 11.8 For an oblique impacting droplet withWen � 140 andΦ � 30◦ onto a textured substrate
with S � W � 10 lu, the splashing is unlikely to occur as the height of the posts are either a H � 5 lu
or b H � 25 lu

place until H � 20 lu (Case 4). When the height of posts reaches H � 25 lu (Case
5), splashing is once more prevented as shown in Fig. 11.8b. Thus, splashing occurs
between two thresholds of post height. To investigate the effect of the wettability of
the substrate on splashing, we consider another case (Case 6) for which the impact
parameters (Wen � 140 and Φ � 30◦) and texture parameters (W � S � H �
10 lu) are similar to Case c in Fig. 11.4. The equilibrium contact angle of the substrate
is set to θ � 110◦. Figure 11.4c showed that splashing occurs when the equilibrium
substrate contact angle is 150°. With a reduction in the contact angle from 150° to
110°, the splashing is seen to be prevented since wettability of the substrate increases
(Fig. 11.9).
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Fig. 11.9 Simulation result for an oblique impacting dropletwith an impact angle of 30° and normal
Weber number of 140. The equilibrium contact angle of the substrate is θ � 110°. The numerical
results show that the splashing vanishes with an increase in wettability of the substrate to θ � 110°

11.5 Conclusion

In this numerical study, we have developed a multiphase lattice Boltzmann code to
investigate how the lamella of an oblique impacting droplet behaves onto a textured
super-hydrophobic substrate. For oblique impacts, an asymmetric behaviour has been
observed due to the tangential component of the impact velocity. First, as a validation
case, we have performed simulations to calculate the maximum spread for an oblique
impacting droplet onto a smooth surface. The numerical results have been compared
with a correlation reported by Yeong et al. [8] and a good agreement has been found.

Then, numerical simulations were performed for oblique impacts on a textured
substrate. Four various wetting outcomes have been identified for such impacts. The
asymmetric spreading happens for any impact angle Φ as the normal Weber is suf-
ficiently low such that surface tension prevents splashing. Depending on the impact
angle, other wetting outcome occur with an increase in the normal Weber number.
Bilateral splashing including prompt and corona splash is observed for an impact
angle Φ ≤ 20◦, one-sided corona splash for 25◦ ≤ Φ ≤ 45◦ and the asymmetric
break-up for Φ ≥ 50◦. We have also presented a graph which illustrates splashing
threshold values for impact angles 5◦ ≤ Φ ≤ 45◦. Results show that splashing is
more likely to occur for smaller impact angle. Moreover, we have demonstrated that
the mass of the satellite droplet generated during corona splashing decreases as the
impact angle increases as predicted by others. In addition to the impact parameters,
we have studied the influence of the geometrical parameters of the textured sub-
strate (the space between posts and the height of the posts) and also the wettability
of the surface on the occurrence of splashing. We observed that the time and the
occurrence of splashing are influenced by the distance between posts. Furthermore,
corona splashing only occurs in a limited range of post heights. Finally, our result
show that with a decrease of the substrate contact angle from θ � 150° to θ � 110°,
splashing is prevented as intuitively expected.
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Chapter 12
Numerical Simulation in Coupled
Hydroelastic Problems by Using the
LS-STAG Immersed Boundary Method

Ilia K. Marchevsky and Valeria V. Puzikova

Abstract A software package is developed for numerical simulation in coupled
hydroelastic problems by using the modified LS-STAG immersed boundary method.
In the case of moving immersed boundary, Arbitrary Lagrangian Eulerian method
idea is used. It allows solution of problems when domain shape changes in the
simulation process due to hydroelastic body motion without mesh reconstruction at
each time step. The flow past an in-line oscillating circular airfoil was computed to
verify the numerical method and the developed software package. Some numerical
results are also presented for simulation of a circular airfoil wind resonance phe-
nomenon, wind turbine rotors autorotation, buffeting phenomenon and tube-bundle
flow-induced vibrations. Computational results are in good qualitative agreement
with the experimental data. Obtained results demonstrate the extensive possibilities
of the developed numerical method and its effectiveness.

Keywords Immersed boundary method · The LS-STAG method · Coupled
hydroelastic problem · Flow-induced vibrations · Airfoil · Wind resonance ·
Buffeting · Autorotation

12.1 Introduction

Coupled hydroelastic problems appear when simulating autorotation and auto-
oscillations phenomena. Such problems are complicated for numerical solution,
since it is necessary to take into account interference between the flow and mov-
ing immersed body. In the case of a sufficiently massive body, coupled hydroelastic
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problems can be solved using a step-by-step numerical algorithm, firstly simulating
flow around a bodymovingwith known parameters and then computing the dynamics
of the body with known hydrodynamic loads.

Immersed boundary methods [1] are useful for numerical simulation in coupled
hydroelastic problems, since they do not require a coincidence of cell edges and
boundaries of the computational domain, and allow the solution of problems when
domain shape is irregular or it changes in the simulation process due to hydroelastic
body motion. The main advantage of these methods is that mesh reconstruction is
not needed at each time step.

The LS-STAG cut-cell immersed boundary method [2] for viscous incompress-
ible flow simulations combines the advantages of immersed boundary methods and
the level-set method. This method allows the solution of problems on a Cartesian
grid. In contrast to classical immersed boundary methods, the flow variables are
computed in the cut-cells, and not interpolated. Numerical analogues of conserva-
tion laws satisfaction in all fluid domain cells is a basis of LS-STAG discretization
construction, which allows one to obtain physically realistic numerical solutions.
For these reasons, the LS-STAG method is used in the present study for simulation
in coupled hydroelastic problems. The immersed boundary is represented with the
level-set function [3]. Due to this fact the LS-STAG method allows to easy simulale
the flow past an airfoils system [4, 5]. Linear systems resulting from the LS-STAG
discretization of the Navier-Stokes or Reynolds-averaged Navier-Stokes equations,
are solved using the BiCGStab method [6] with the ILU- and multigrid [7] precon-
ditioning [8].

12.2 Governing Equations

The problem is considered for the 2D unsteady case when the flow around an airfoil
(or airfoils system) is assumed to be viscous and incompressible. The continuity and
momentum equations are the following:

∇ · v = 0,
∂v
∂t

+ (v · ∇)v = −1

ρ
∇ p + νΔv. (12.1)

The boundary conditions on the external boundaries of the computational domain
are the following:

v
∣
∣
inlet = v∞,

∂v
∂n

∣
∣
∣
outlet

= 0,
∂ p

∂n

∣
∣
∣
inlet&outlet

= 0, (12.2)
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and the boundary conditions on the camber line of each airfoil are no-slip conditions:

v
∣
∣
airfoil = vib,

∂ p

∂n

∣
∣
∣
airfoil

= 0. (12.3)

Here vib is the velocity of the immersed boundary. The airfoil is assumed to be rigid
and it can oscillate with 1, 2 or 3 degrees of freedom. Such problem can be considered
as coupled hydroelastic one, despite the fact that the airfoil itself is non-deformable,
because its motion in the flow domain depends on hydrodynamic loads. The airfoil’s
motion is described by dynamics equations which in the most common form can be
written down as the following:

q̈ = �(q, q̇) + Qflow + Qext. (12.4)

Here q is the airfoil generalized coordinates vector, �(q, q̇) is determined by elastic
and viscous constraints imposed on the airfoil,Qflow is the generalized aerodynamic
force, Qext is the external mass forces vector.

If the i th airfoil can oscillate along Ox then the airfoil constraint is assumed to
be linear viscoelastic of Kelvin—Voigt type and their motion (12.4) is described by
the following equation:

mi ẍ∗,i + bẋ∗,i + cx∗,i = Fx,i . (12.5)

Here mi is the airfoil mass, bi is the damping factor, ci is the constraints rigidity;
Fx,i is the drag force; x∗,i is the deviation from the equilibrium on Ox .

Similarly, if the i th airfoil can oscillate along Oy then the airfoil constraint is
assumed to be linear viscoelastic and theirmotion (12.4) is described by the following
equation:

mi ÿ∗,i + bẏ∗,i + cy∗,i = Fy,i . (12.6)

Here Fy,i is the lift force; y∗,i is the deviation from the equilibrium on Oy.
If the i th airfoil can autorotate then the following dynamics equation (12.4) is to

be solved:

Ii α̈i + ki α̇i = Mflow
i . (12.7)

Here αi is the rotation angle of the airfoil; Ii is the polar moment of inertia of
the airfoil; ki is the viscous friction coefficient in the axis; Mflow

i is the hydrody-
namic moment. Since the two-dimensional problem is considered, Mflow

i = Mz,i . In
addition, the airfoil angular velocity is ωi = α̇i , so (12.7) can be rewritten as the
following:

Ii ω̇i + kiωi = Mz,i . (12.8)
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12.3 Numerical Method

A Cartesian mesh with cells Ωi, j = (xi−1, xi ) × (y j−1, y j ) is introduced in the
rectangular computational domain. It is denoted that Γi, j is the face of Ωi, j and
xci, j = (xci , y

c
j ) is the center of this cell. According to the concept of the LS-STAG

method, normal stress components are sampled on this mesh (similar to pressure
discretization) and shear ones are sampled in the upper right corners of the mesh
cells. Unknown components ui, j and vi, j of velocity vector v are computed in the
middle of fluid parts of the cell faces. These points are the centers of control vol-
umes Ωu

i, j = (xci , x
c
i+1) × (y j−1, y j ) and Ωv

i, j = (xi−1, xi ) × (ycj , y
c
j+1) with faces

Γ u
i, j and Γ v

i, j , respectively.
Cells which the immersed boundary intersects are the so-called ‘cut-cells’. These

cellsΩ ib
i, j contain the solid part together with the liquid one. The level-set function ϕ

is used for immersed boundary Γ ib description. The boundary Γ ib is represented by
a line segment on the cut-cell Ωi, j . Locations of this segment endpoints are defined
by linear interpolation of the variable ϕi, j = ϕ(xi , y j ). The cell-face fraction ratios
ϑu
i, j and ϑv

i, j are introduced. They take values in the interval [0, 1] and represent the
fluid parts of the east and north faces of Γi, j , respectively. One-dimensional linear
interpolation of ϕ(xi , y) on the segment [y j−1, y j ] and ϕ(x, y j ) on the segment
[xi−1, xi ] is used for the cell-face fraction ratios computing.

The hydrodynamic moment on the nth time step for each airfoil can be computed
in the following way:

Mn
z =

∑

Cut-cells Ω ib
i, j

[(xci − XC)Fy|ni, j − (ycj − YC)Fx |ni, j ]. (12.9)

Here (XC ,YC ) are coordinates of the airfoil center, around which the rotation takes
place, Fx |ni, j and Fy|ni, j are the portion of drag and lift acting on the solid part of the
cut-cell Ωi, j on the nth time step:

Fx |i, j = (ϑu
i−1, j − ϑu

i, j )Δy j
(

pi, j − ν
∂u

∂x

∣
∣
∣
i, j

)

− νQuadibi, j
(∂u

∂y
ey · n

)

, (12.10)

Fy|i, j = −νQuadibi, j
(∂v

∂x
ex · n

)

+ (ϑv
i, j−1 − ϑv

i, j )Δxi
(

pi, j − ν
∂v

∂y

∣
∣
∣
i, j

)

. (12.11)

Here Δy j = y j − y j−1, Δxi = xi − xi−1, Quadibi, j are the quadratures of the shear
stress which depend on the cut-cells [2]. Respectively, hydrodynamic force can be
computed as the following:

Fx =
∑

Cut-cells Ω ib
i, j

Fx |i, j , Fy =
∑

Cut-cells Ω ib
i, j

Fy|i, j . (12.12)
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We denote that the deviations from the equilibrium on the nth step of computation
are xn∗,i = Xn

C,i − X0
C,i , y

n
∗,i = Y n

C,i − Y 0
C,i . Here (X0

C,i , Y 0
C,i ) are coordinates of the

i th airfoil center at the initial time and (Xn
C,i , Y n

C,i ) are coordinates of this airfoil
center at the nth step of computation. Difference analogues of Eqs. (12.5), (12.6) can
be written down in the following form:

mi · X
n+1
C,i −2Xn

C,i +Xn−1
C,i

(Δt)2
+ bi · X

n+1
C,i −Xn−1

C,i

2Δt
+ ci · xn∗,i = Fx,i |n, (12.13)

mi · Y
n+1
C,i − 2Y n

C,i + Y n−1
C,i

(Δt)2
+ bi · Y

n+1
C,i − Y n−1

C,i

2Δt
+ ci · yn∗,i = Fy,i |n. (12.14)

Here Δt is a time discretization step. Position of the airfoil center at the next time
step can be easily obtained from this equation on every computational step after
computing the lift force acting on the airfoil. It allows the reconstruction of the
level-set function and all matrices required for the computation and to compute the
immersed boundary velocity vib for recalculation the source terms.

The difference analogue of Eq. (12.7) for the kth airfoil can be written down in
the following form:

Ik
ωn+1
k − ωn

k

Δt
+ kkω

n
k = Mn

z,k . (12.15)

The value of the airfoil angular velocity at the next time step can be easily computed
after (12.15). New airfoil position and the immersed boundary velocity can be defined
by using this value:

αn+1
k = αn

k + ωn
kΔt, (12.16)

vib,n+1
k |i, j =

{

− ycj − YC,k

|ycj − YC,k | · ωn+1
k |xci − XC,k |, xci − XC,k

|xci − XC,k | · ωn+1
k |ycj − YC,k |

}

.

The Arbitrary Lagrangian-Eulerian method [9] is widely used by finite-volume
methods on body-conformalmeshes. Thismethod considers a computational domain
that tracks the moving boundary, such that the grid follows the boundary motion in
the Lagrangian fashion, while it is held fixed in an Eulerian manner sufficiently far
from it. The ALE equations of the flow motion written in the computational domain
are similar to the Navier—Stokes equations except for the convective term

∫

Γ ∗(t)

([v − vg] · n)v dS. (12.17)

In a series of papers, Farhat and co-workers have shown that an ALE numerical
scheme preserves the accuracy and stability of its fixed grid counterpart if the grid
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velocity and mesh update procedure are designed such that the so-called geometric
conservation law is enforced at the discrete level [10]:

d

dt

∫

Ω∗(t)

dV =
∫

Γ ∗(t)

vg · n dS. (12.18)

This equation is obtained by requiring that a uniform flow is a solution to the ALE
equations, and states that the change in volume of a cell during a time interval must
be equal to the volume that has been swept by the cell boundary. For immersed
boundary methods the geometric conservation law is easy to fulfill because only the
grid nodes on the solid part of a cut-cell are moving and the computational grid is
not deformed by the immersed boundary motion.

The time integration is performed with a semi-implicit Euler scheme. The predic-
tor step leads to discrete analogues of theHelmholtz equation for velocities prediction
Ũx , Ũy at the time tn+1 = (n + 1)Δt . The corrector step leads to a discrete analogue
of the Poisson equation for pressure correction � = Δt (Pn+1 − Pn).

12.4 Numerical Experiments

All computations were performed on a server based on the Intel C610 platform
using the Intel Xeon E5-1620 V3 4-core processor (3.5GHz) with HyperThreading
support (8 logical cores). The server is equipped with 16GB of ECC DDR4-2133
RAM and two hard drives (2TB), united in a RAID1 disk volume. This server is
running Windows Server 2012 R2 operating system.

12.4.1 In-Line Oscillating Circular Airfoil in a Free-Stream

To validate the developed implementation of the LS-STAG method the flow past an
in-line oscillating circular airfoil was computed. The in-line motion of the airfoil
center is given by:

XC = X0
C +

{

A, t < 10D/V∞,

A cos (2πSe [tV∞ − 10D] /D) , t ≥ 10D/V∞,
(12.19)

YC = Y 0
C .

Here A is the amplitude of oscillations, Se is the exciting Strouhal number, (XC ,YC )

are coordinates of the airfoil center at the current time moment, (X0
C ,Y 0

C ) are coor-
dinates of the airfoil center at the initial time.

This problem has been numerically solved in [11–14] and it also has been studied
by Dutsch et al. [15] in experiment with the following dimensionless parameters:
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Table 12.1 Comparison of time averaged drag coefficient C̄x with established results from the
literature

Study Dutsch (experiment) [15] The present Guilmineau & Queutey [12]

Mesh – 240 × 296 120 × 100 240 × 200 480 × 400

C̄x 2.090 2.075 2.059 2.078 2.080

Fig. 12.1 Dynamics of vortex formation and shedding from an in-line oscillating circular airfoil
(the shown pictures correspond to sixth parts of the period)

V∞ = 1.0, D = 1.0, Re = 100, A = 0.8D, Se = 0.2.

This flow is characterized by stable, symmetric and periodic vortex shedding.
Computations were performed on a non-uniform grid 240 × 296 with time dis-

cretization step Δt = 0.005. Computed time averaged drag coefficient C̄x differs
from the experimentally defined value [15] by less than 1% (Table 12.1).

Vortex dynamics is shown in Fig. 12.1. As the airfoil moves from the initial
position downstream, vortices begin to form on the top and bottom of it. Vortices
increase in size when the airfoil is close to the rightmost position and reach their
maximum radius when the airfoil is in the rightmost position. Then the airfoil starts
its backward motion, creating the same vortex formation on the other side of it. As
the direction of the airfoil motion changes again, the resulting pair of vortices is shed
from the airfoil. The described process begins again when the airfoil is returned to
its initial position.

12.4.2 Circular Airfoil Wind Resonance

To simulate wind resonance phenomenon we considered the motion of the circular
airfoil with diameter D across the stream with one degree of freedom (12.6). The
natural frequency of the system ω ≈ √

c/m can be set by varying the coefficient c. A
number of computations have been performed on a non-uniform grid 272 × 292 with
time discretization step Δt = 0.0001 and the following dimensionless parameters:

V∞ = 3.0, ρ = 1.0, ν = 0.003, D = 1.0, m = 39.75, b = 0.731.
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These parameters correspond to a Reynolds number Re = 1000. The dimensionless
natural frequency of the system is in the following range:

Stω = ω

2π
· D

V∞
= 0.150 . . . 0.280.

Computational results are in good agreement with the previous studies [16].
Maximal amplitude is about 0.4D and it occurs when the natural frequency of the
system Stω is close to the Strouhal number, calculated for a fixed airfoil St ≈ 0.24
[2, 17, 18].

12.4.3 Circular Airfoil Buffeting

To simulate the buffeting phenomenonwe considered themotion of two equal circular
airfoils with diameter D = 1.0 across the stream at V∞ = 1.0 with two degrees of
freedom (12.5), (12.6). The distance between airfoil centers is equal to L = 5.5 on
the horizontal and T = 0.7 on the vertical at the initial time. The dimensionless
natural frequency of the system was in the range

Stω/St = 0.50 . . . 2.00.

Here St is the Strouhal number, calculated for a fixed airfoil at the corresponding
Reynolds number.

A number of computations have been performed on a non-uniform grid 666 × 344
at Re = 100 and Re = 1000 and the following dimensionless parameters:

ρ = 1.0, m = 4.7273, b = 4πmξStω, ξ = 3.3 · 10−4, c = m(2πStω)2.

The time discretization stepwas equal toΔt = 10−4 (Δt = 5 · 10−5 at Re = 1000) at
Stω/St = 0.85 . . . 1.15 andΔt = 5 · 10−4 (Δt = 10−4 at Re = 1000) at other values.
A uniform mesh block with spatial discretization step h = D/64 was used in the
proximity of the airfoil.

Since the distance between the airfoil centers along the Ox axis is large enough
(>5D), the upstream airfoil (K1) behaves like a single airfoil and the downstream
airfoil (K2) performs forced oscillations due to periodic vortex-shedding flow past
airfoil K1. Thus, buffeting of airfoil K2 is observed. The maximal amplitude of the
airfoil K2 oscillations significantly exceeds the amplitudeof the airfoil K1 oscillations
at the Re = 100 (Fig. 12.2). The maximal amplitude of the airfoil K1 oscillations
appear at Stω ≈ St (St ≈ 0.162 at Re = 100) as in [19]. This corresponds to the
single airfoil behavior in the flow. Maximal amplitude of the airfoil K2 oscillations
along the Oy axis appears at Stω ≈ 0.85St.

The amplitudeof airfoil K2 oscillations along theOy axis is less than the amplitude
of airfoil K1 oscillations (Fig. 12.3) at Re = 1000 as in [20]. In this case the maximal
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Fig. 12.2 Maximal amplitude of the circular airfoils oscillations at Re=100: a along the Ox axis;
b along the Oy axis

Fig. 12.3 Characteristics of the circular airfoils oscillations at Re=1000: a maximal amplitude of
the circular airfoils oscillations; b frequences of lift and drag forces oscillations

amplitude of the circular airfoil oscillations appears at Stω ≈ St both along the Oy
axis and the Ox axis.

12.4.4 Tube-Bundle Flow-Induced Vibrations

Weconsidered themotion of circular airfoilswith diameter D = 1.0 across the stream
at V∞ = 1.0 with two degrees of freedom (12.5), (12.6). Tubes can be destroyed at
Stω ≈ St with damping, which corresponds to b < 0.1 [21]. Therefore, simulations
were performed at m = 40 and ξ = 3.3 · 10−3 in this research. These values corre-
spond to the damping coefficient b = 4πmξStω > 0.14 at Stω > 0.09.

The flow pattern depends on the arrangement of the tubes and their locations in
the bundle [21]. For this reason, we considered flow around six columns of tubes
in a staggered arrangement and flow around five columns of tubes in an in-line
arrangement (Fig. 12.4).

The distance between airfoil centers is equal to L on the horizontal and T on the
vertical at the initial time. When the simulation was performed at T/D > 4, vortex
streets between the rows do not affect each other, as in [21]. When L/D > 4, tubes
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Fig. 12.4 Considered tube arrangements: a staggered tube arrangement; b in-line tube arrangement

in the bundle behave as single airfoils. So, tube-bundles behave as a single system at
lower values of L , T .

As an example, herewe present computational results at T/D = 2.0, L = T in the
case of an in-line tube arrangement and L = T

√
3/2 in the case of a staggered tube

arrangement. Thus, in the first case airfoils in adjacent columns are in the corners of a
square, and in the second case they are located at the vertices of an equilateral triangle.

A number of computations have been performed at Re = 1000 on a non-uniform
grid 846 × 424 in the case of a staggered tube arrangement and on a non-uniform
grid 816 × 424 in the case of an in-line tube arrangement. A uniform mesh block
with space discretization step h = D/64 was used in the vicinity of the airfoil. The
time discretization step was equal to Δt = 5 · 10−5. To simulate 50 dimensionless
time units is required about 137h.

The natural frequency of the system was in the range Stω/St = 0.50 . . . 2.00.
Here St is the Strouhal number, calculated for a fixed tube-bundle at the corre-
sponding Reynolds number. Our simulations showed that St ≈ 0.205 in the case
of an in-line tube arrangement. This is in agreement with the fact that for this
arrangement in the experiments [21] St = St(T/D) = 0.2 + exp [−1.2(T/D)1.8],
i.e. St(2.0) ≈ 0.215. In the case of a staggered arrangement two different frequen-
cies are observed for tubes from even and odd columns (Fig. 12.4) as in [21].
Upper frequency is observed in the tubes from odd columns. This frequency is
considered as the vortex shedding frequency. So, we obtain that St ≈ 0.280 in
the case of a staggered tube arrangement. This is in agreement with the fact
that in the experiments [21] the maximum amplitude of oscillation occurs at
a frequency equal to (0.4 + 2 exp [−0.44(T/D)1.8])/3, i.e the Strouhal number
St ≈ 0.277 at T/D = 2.0. Lower frequency is observed in the tubes from even
columns and it is equal St/2. It corresponds to the frequency of vortex street inter-
action.

Computational results (Fig. 12.5) are in qualitative agreement with the experi-
mental data [21]. Tubes from the first column behave like a single airfoil. In the case
of a staggered tubes arrangement the amplitude of the tube oscillations along the Oy
axis significantly decreases with increasing column number.
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Fig. 12.5 Maximal amplitude of the tube oscillations at Re=1000: a staggered tube arrangement;
b in-line tube arrangement

12.4.5 Airfoils Autorotation

To simulate the airfoil autorotation of wind turbine rotors, the dynamics equa-
tion (12.7) has been solved.Algorithmof level-set function construction for complex-
shaped airfoils, based on Bezier curves, was proposed in [22]. Also, algorithm for the
level-set function recalculation at any time without reconstructing the Bezier curve
for each new airfoil position was described. The designed second-order Butterworth
low-pass filter for aerodynamic torque filtration for simulations using coarse grids
was presented. Simulation of flow past autorotating Savonius rotor with two blades
by using the modified LS-STAG method was presented. Computational results [22]
were in good qualitative agreement with the experimental data.

12.5 Conclusions

• A software package was developed for the numerical simulation of airfoil motion
in a viscous incompressible flow using the LS-STAG method.

• Simulation of circular airfoil wind resonance and buffeting phenomena, tube-
bundle flow-induced vibrations and airfoil autorotation were considered. The LS-
STAGmethod allows the simulation of these phenomenons on a very coarse mesh.

• Computational results were in good qualitative agreement with the experimental
data.

Acknowledgements The work was supported by the Russian Science Foundation Grant (proj. No
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Chapter 13
On the Efficiency of the Parallel
Algorithms in VM2D Open Source Code
for 2D Flows Simulation Using Vortex
Methods

Kseniia Kuzmina and Ilia K. Marchevsky

Abstract VM2D is an open-source software being developed by the authors for
two-dimensional incompressible flows simulations around airfoils. VM2D is based
on meshless Lagrangian vortex methods. The main operations of the algorithm are
pointed out, and the estimations of their computational complexity are given. Two
model problems with different parameters are considered in order to analyze the
ratio between computational complexities of the operations. Parallel algorithms are
implemented for all time-consuming operations to perform the simulations on CPU
andGPU.Test problems show thatVM2D is efficiently parallelized; the accelerations
achieved on GPUs are comparable to acceleration on hundreds and even thousands
of CPU cores.

Keywords Vortex Methods · VM2D Code · CPU · GPU · MPI · OpenMP ·
NVidia CUDA

13.1 Introduction

Inmany engineering applications Fluid–Structure Interaction problems appear, when
it is necessary to calculate the loads actingon the constructionbeing immersed into the
flow. Such problems become especially complicated when we deal with essentially
unsteady flow with intensive vortex shedding: in this case, it is impossible to use
approximate models based on stationary aerodynamic characteristics, so, the only
way is to perform direct numerical simulation of the flow.Moreover, when designing
a structure, it is necessary to perform a large number of numerical experiments; and
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in spite of large number of commercial and open-source codes for flow simulation
based on different numerical methods, there is relevant problem of developing of
efficient methods for direct numerical simulation in FSI problems.

Most of the existing methods for numerical simulation in FSI problems belong
to the class of Eulerian or hybrid Eulerian/Lagrangian methods and require mesh
generation in the flow domain; in case of moving or deformable body the mesh
should be modified at every time step (except immersing boundary methods [1, 2]).
In case of small body displacementswe can dowithmesh deformation; but if the body
has significant displacement or rotation, it is necessary to reconstruct the mesh, at
least after several time steps, what reduces essentially the efficiency of the numerical
method. From this point of view, the class of meshless Lagrangian methods which
doesn’t require fluid domain meshing and permits arbitrary displacements of the
body is preferable.

In the present research the efficiency of meshless Lagrangian vortex method and
its software implementation is investigated. It should be noted that the range of appli-
cability of vortex methods is restricted by rather low Reynolds numbers (up to 105)
and incompressible flow model. However, many problems which arise in engineer-
ing practice, satisfy such conditions and can be efficiently solved numerically using
vortex methods.

The main idea of vortex methods [3–7] is the considering of the vorticity as
the primary calculated variable. The body is replaced with three thin sheets on its
surface: an attached vortex sheet, an attached source sheet and a free vortex sheet.
The intensities of the attached sheets are expressed through the velocity of the body
surface; free vortex sheet intensity can be found from the no-slip boundary condition
satisfaction on the body surface. To satisfy the no-slip boundary condition the ideas of
vortex panelmethods are used [8]: the airfoil surface line is discretized into rectilinear
panels, the solution on each panel is represented by a constant distribution. The main
differences of the approach used in this paper from the classical approach are the
following: instead of the equality of the normal velocity components at the airfoil
surface line, the equality of the tangent components is required [9], and the boundary
condition is satisfied not in collocation points, bat on average at the panels [10]. So,
at every time step we should satisfy boundary condition, which is represented by
integral equation, and find the intensity of the free vortex sheet; and then this vorticity
sheds to the vortex wake in form of separate vortex elements and become part of the
vortex wake behind the body.

It should be noted that vortex methods are especially efficient in comparison with
meshmethodswhenwe simulate external flowaround the structures, since in this case
the boundary condition of perturbations decay at infinity is satisfied automatically
and there is no need to limit the computational domain artificially and set some
boundary conditions on its outer boundaries. Moreover, in most cases of the external
flow simulation the domain with non-zero vorticity is localized around and behind
the body, so computational resources can be “concentrated” in this domain.

Vortex methods are well-investigated and they are rather popular in engineering
community. There are various modifications of vortex methods both for numerical
simulation in 3D and 2D problems. Nevertheless, vortex methods are still not imple-



13 On the Efficiency of the Parallel Algorithms in VM2D … 149

mented in any known software packages: both commercial and freely distributed. Of
course, many researchers have their own “in-house” codes, however, such software
is usually used only by small groups of scientists working also on their development.
This fact negatively effects the popularity of vortex methods.

Therefore, having some research experience in vortexmethods, aswell as the expe-
rience of their software implementation in our “in-house” software [11], the authors
have started to develop new software package VM2D—Open source code for two-
dimensional flows simulation using vortex methods [12]. Source code is avail-
able on GitHub: https://github.com/vortexmethods/VM2D. In [12] the
general structure of the VM2D code and main approaches implemented there are
described. The current paper does not aim to re-describe VM2D software; the main
purpose is to analyze the efficiency of the VM2D code and its parallel properties.

The VM2D software is based on the method of Viscous vortex domains (VVD),
developed by prof. G.Ya. Dynnikova [7]. Well known models and numerical algo-
rithms as well as the authors’ advancements are implemented in the VM2D code [10,
13–15]. At the present moment, it is expected that the code is used for external flows
simulation, however, problems solution which require internal flow simulation is
also possible, maybe after some modification of the algorithm for higher efficiency
achievement.

It should also be noted that in order to provide the simplicity of program modifi-
cation, both by the authors and other users, and the possibility of new approaches and
features addition, we have adhered to the principles of the object-oriented approach,
and the VM2D code has modular structure. The main purpose of the VM2D devel-
opment is to create a tool for the engineering problems numerical solution in a short
time, so, it is important to provide the possibility of computations performing in
parallel mode. In this paper, we study the efficiency of parallel algorithms in the
VM2D.

13.2 Main Computational Blocks in the VM2D Algorithm

There are 7 basic computational blocks in the vortex method algorithm implemented
in the VM2D. Their detailed description can be found in [11, 13], here we will give
only their brief description and point out the main operations in these blocks and
estimate their computational complexities, which depend primarily on the airfoil
discretization.

1. Vorticity generation on the airfoil surface. In order to calculate the free vortex
sheet intensity on the airfoil surface line, we solve the integral equation, which fol-
lows from the no-slip boundary condition on the airfoil surface line. There are two
approaches to derive such integral equation: by satisfying the boundary condition for
normal or tangential components of flow velocity [9]. The right-hand side of these
integral equations depends on the velocity, generated on the airfoil surface by all the
vortex elements, which model the vortex wake in the flow. All the vortices contribu-
tions computation makes this procedure time-consuming. For the numerical solution
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Fig. 13.1 Two airfoils
approximated with
rectilinear panels

1st airfoil

2nd airfoil

of the integral equation, the airfoils are usually approximated by polygons consist
of rectilinear panels (Fig. 13.1); then linear algebraic equations system is generated
according to the chosen numerical scheme. There are number of different numerical
schemes for the integral equation approximation, they have different computational
complexities (with regard to coefficients computations) and lead to linear systems of
different sizes, but in all the known scheme system size is commensurate with num-
ber of panels. In [14] a hierarchy of such schemes is described, all of those schemes
are based on the ideas of Galerkin approach, continuous or discontinuous. In the
current version of the VM2D code the numerical scheme with constant basis and
projection functions in the framework of tangential components approach is used, as
well as some less accurate schemes.

In order to estimate the computational complexities of the operations, we use
hereinafter the following designations:

N is number of vortex elements in the flow domain;
n is total number of panels on the surface lines of all the airfoils.
In accordance with the described numerical scheme and formulae for calculating

of the matrix and right-hand side coefficients given in [14], the following estimates
for the computational complexity of this block can be obtained:

• the matrix coefficients computation: Q1 = 83n2,
• the right-hand side vector computation: Q2 = 30Nn + 85n2,
• linear system solving: Q3 = n3/3.

In themost general case of flow simulation aroundm deformable airfoils, it is nec-
essary to recompute and solve the linear system at every time step of the simulation.
The structure of the matrix can be schematically represented as the following:

⎛
⎜⎜⎜⎝

A11 A12 . . . A1m

A21 A22 . . . A2m

...
...

. . .
...

Am1 Am2 . . . Amm

⎞
⎟⎟⎟⎠ ,

where blocks Akk express the self-influence of the k-th airfoil, and blocks Akp express
the contribution of the vorticity, being generated on the surface of the p-th airfoil, to
limit value of the flow velocity on the k-th airfoil surface line.
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The coefficients which form the corresponding blocks, depend on the relative
positions of the panels only; therefore, in case of non-deformable (rigid) airfoils
maintaining their positions relative to each other, the systemmatrix remains constant,
that allows to calculate all the coefficients only once, then reverse the matrix (only
at the first time step, computational complexity Qrev = O (n3), and solve the system
by its multiplying the right-hand side (Qmult = O (n2) operations). In case of non-
deformable airfoils being moved relative to each other, diagonal blocks Akk remain
constants, while the other (non-diagonal) blocks should be recalculated.

2. Velocities computation. The velocities of the vortex elements within the VVD
approach [7] consist of two components: convective velocities and diffusive (caused
by viscosity) velocities. When calculating the convective velocity, it is necessary
to take into account the mutual influence of all vortex elements (i.e., to calculate
the contributions of all the other vortices), according to the Bio—Savart law. The
diffusive velocities are also calculated by taking into account the mutual influence
of all vortex elements.

Computational complexities of these operations are the following:

• convective velocities computation: Q4 = 6N 2 + 8Nn,
• diffusive velocities computation: Q5 = 9N 2 + 14Nn.

Note, that complexity of diffusive velocities computation can be reduced by taking
into account that vortices contributions to the diffusive velocity decrease exponen-
tially with distance increase, so in practice it is necessary to calculate the influences
only from the vortex elements, placed not very far one from others.

It also should be noted, that the surfaces of the airfoils also make a contribution
to diffusive velocity of vortices in the flow. It should be taken into account only for
vorticeswhich are placed close to the airfoil surface, so the computational complexity
of this procedure is proportional to n2 and it can be neglected since n � N . In
practice, however, this operation is important and in order to achieve high efficiency
of parallel implementation, it also should be parallelized.

3. Hydrodynamic loads computation. In this block we compute hydrodynamic
loads (forces and torque) acting the airfoils. For such purposes it is possible to
use integral formulae, which are derived by prof. G.Ya. Dynnikova and adapted to
several types of problems being solved by using vortex methods [16]. Note, that
computational complexity of this block is much less in comparison with the other
operation, so we will not take it into account.

4. Vorticity evolution. In this block vortices in the vortex wake are just being
transferred along the calculated velocity field (recall, that it is superposition of con-
vective and diffusive velocity fields). We use explicit Euler integration method, so
it is necessary just to multiply vortices velocities by the time step value and add it
to the current vortices positions. So the computational complexity of the block 4 is
also much less than for the other operations, and normally it can be neglected.

5. No-throw control. In this operation we exclude vortex elements that penetrate
the airfoil. Its complexity depends on the implementation; in the first approximation
Q6 ∼ n2, and the proportionality coefficient is of the order of 10.
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6. Vortex wake restructuring. Closely placed vortex elements can be merged,
and vortex elements which move far away from the airfoil, can be excluded. The
computational complexity of this algorithm, as calculations show, is of the order of
Q7 ∼ N 2, the proportionality coefficient is relatively small.

Thus, the computational complexity of the last two operations, although it may
be high, is much lower than the total complexity of the other operations, so their
complexities can be taken into account approximately: we set Q6 = Q1 and Q7 =
0.2 Q4.

13.3 Model Problems Description

In order to estimate the possible ratios of computational complexities of the above
mentioned operations for different types of problems, we consider two model prob-
lems:

Problem 13.1 (Hydroelastic oscillations simulation for circular cylinder) We con-
sider flow around movable circular cylinder (Fig. 13.2) when vortex sheet on the
surface line of cylinder is modeled with np0 = 200 vortex elements. We assume
that the vortex wake after the airfoil is simulated by N0 = 10 000 vortex elements,
and number of time steps is T0 = 30 000. Such estimates are taken from practical
simulation and correspond to the parameters of the real algorithm.

In order to improve the accuracy of simulation, which is necessary for flow simu-
lation at rather high Reynolds numbers (number of vortices np0 = 200 is considered
to be more or less enough only for Re ≤ 103), number of vortex elements on the
airfoils surfaces np should be increased. Total number of vortices in the flow domain
N we assume to be proportional to n2, time step should be proportionally decreased
and number of steps—proportionally increased:

n = np, N = N0 ·
( np

n p0

)2
, T = T0 ·

( np

n p0

)
. (13.1)

Fig. 13.2 Model problem 13.1 statement
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Fig. 13.3 Model problem 13.2 statement

Problem 13.2 (Circular cylinder hydroelastic oscillations simulation in the pres-
ence of the screen) The mentioned problem (Fig. 13.3) is considered in [17, 18].
In numerical simulation, the flow around the airfoil which models the screen, can
be considered as flow without separation, that makes it possible to decrease number
of vortices in the flow domain due to vorticity flux simulating only on the cylinder
surface (vortex sheet on the screen surface is attached). As basic parameters of the
numerical scheme, we consider the following: vortex sheet on the cylinder surface is
modeled with np0 = 200 vortex elements, vortex sheet on the screen surface—with
ne0 = 3np0 = 600 vortex elements, number of vortices in the wake in flow domain
N0 = 10 000.

As the result, for arbitrary value of np we obtain

n = 4np, N = N0 ·
( np

n p0

)2
, T = T0 ·

( np

n p0

)
.

Computational complexities of the considered model problems for np = 200 are
the following:

S1(200) =
3∑

r=1

Qr (n, N ) +
7∑

r=4

Qr (n, N ) · T0 = 5.0 · 1013,

S2(200) =
7∑

r=1

Qr (n, N ) · T0 = 7.1 · 1013.

Estimations for computational complexities of these problems at different values
of np (being normalized to S(np = 200)) are shown in Table 13.1.

The diagrams in the Figs. 13.4 and 13.5 showhow the shares of separate operations
vary for the considered problems with different np.

It is clear from the diagrams, that for different problems with different parameters
the distribution of the total computational complexity over the operations can vary
significantly. Figure 13.4 shows the ratio of the complexities of the operations for
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Table 13.1 Computational complexity of the algorithm for different values of n p in comparison
with S(200)

n p 100 200 400 600 800 1 000

S1(n p)

S1(200)
0,03 1 32 240 1000 3050

S2(n p)

S2(200)
0,05 1 26 188 766 2293

Fig. 13.4 The shares of separate operations for the Problem 13.1 with n p = 200 and n p = 1000

Fig. 13.5 The shares of separate operations for the Problem 13.2 with n p = 200 and n p = 1000
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Problem 13.1: it is evident that in the case of np = 1000 panels, only operations
4, 5 and 7 have significant complexities, while all the other operations takes only
about 0.2%. However, for np = 200, the operation 3 also becomes significant. In
the case of Problem 13.2, when there is large number of panels on the airfoils, some
of which do not shed to the flow, for np = 1000, complexities of operations 2, 3,
4, 5, 7 are essential, while it seems that complexities of the 1 and 6 operations
still can be neglected. However, if we consider the same problem with np = 200,
all the operations are essential, and in order to obtain an efficient acceleration of
computations, it is necessary to perform parallelization of all the listed operations.

13.4 Parallel Technologies Implemented in the VM2D Code

In theVM2Dcode parallel algorithms based on theMPI, OpenMP andNvidia CUDA
technologies are implemented, which allow one to perform simulations on multipro-
cessor computers with different architectures: on CPUs (with distributed and shared
memory), and of hybrid systems with CPUs + GPUs. To achieve high accelera-
tion and high efficiency, all the operations listed above are parallelized for all the
mentioned parallel technologies.

13.4.1 MPI + OpenMP Parallelization

Parallelization for distributed memory systems is performed using MPI technol-
ogy, computations within one node are parallelized using OpenMP technology. To
estimate the efficiency of parallelization, the test simulations for four problems sim-
ilar to Problem 13.1 have been performed with the following parameters: (1) np =
1000, N1 = 80 000; (2) np = 2000, N2 = 160 000; (3) np = 4000, N3 = 320 000;
(4) np = 6000, N4 = 480 000.

The computations have been performed on two cluster systems:

1. Cluster with HP Blade Servers BL2x220c G7, Ivannikov Institute for System
Programming of the RAS (Infiniband QDR, 2 × Intel Xeon X5670 (6 cores),
2.93 GHz).

2. Cluster HPC1 in National Research Center “Kurchatov Institute” (Infiniband
QDR, 2 × Intel Xeon E5345 (4 cores), 2.33 GHz).

Figure 13.6 shows the acceleration of computations on the BL2x220c G7 system.
The black line shows the acceleration level for the “ideally parallelized” code with
0.1% of non-parallel (sequential) code calculated according to the Amdahl’s law
[19]. It can be seen, that parallelization is themore efficient, themore vortex elements
are in the vortex wake. Note, that for the considered problems we reach absolute
efficiency 0.75 . . . 0.79 at 96 cores and 0.62 . . . 0.75 at 228 cores. If we normalize
our acceleration to the acceleration of the code with 0.1% of sequential code, we
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Fig. 13.6 Acceleration of the computations obtained for different number of cores for problems
with different parameters on BL2x220c G7
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Fig. 13.7 Acceleration of the computations obtained by different number of cores for problems
with different parameters on HPC1

obtain efficiency 0.82 . . . 0.92 at 96 cores and 0.75 . . . 0.88 at 228 cores. Finally, we
reach 140 . . . 170 times acceleration of the algorithm at 228 nodes.

Figure 13.7 shows the acceleration of computations on the Claster HPC1 in
National Research Center “Kurchatov Institute”. As earlier, the black line shows
the acceleration of the “ideally parallelized” code with 0.1% sequential code calcu-
lated according to the Amdahl’s law. For the considered problems we reach absolute
efficiency 0.68 . . . 0.76 at 256 cores and 0.30 . . . 0.41 at 1280 cores. If we normal-
ize our acceleration to the acceleration of the code with 0.1% sequential code, we
obtain efficiency 0.84 . . . 0.94 at 256 cores and 0.68 . . . 0.93 at 1280 cores. Finally,
we reach 380 . . . 520 times acceleration of the algorithm at 1280 nodes.
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Table 13.2 Comparison of performances of GPUs and BL2x220c G7

Acceleration 1 12 48 G970 96 144 192 228 K40

N = 80 000 1 10.2 39.1 58.7 72.3 103.4 127.0 140.1 158.9

N = 480 000 1 10.2 38.6 66.1 75.8 110.3 145.1 171.5 162.6

Table 13.3 Comparison of performances of GPUs and HPC1

Acceleration 1 8 G970 256 512 768 1024 K40 1280

N = 80 000 1 7.2 127.9 173.3 273.7 331.7 367.2 467.6 468.6

N = 480 000 1 7.3 190.8 192.8 294.0 392.3 463.0 469.0 565.9

13.4.2 Nvidia CUDA and MPI + CUDA Parallelization

All the algorithms for the describedoperations havebeen adapted for hybrid computer
systemswithGPUaccelerators. Test simulationswere performedbyusing twoGPUs:

GeForce GTX 970 Tesla K40c
Number of multiproc./cores 13/1664 15/2880
DRAM Memory 4 Gb (3.5 Gb) 12 Gb

Tables 13.2 and 13.3 show a comparison of theVM2Dcode performance onGPUs
with its performance on CPUs. It can be seen that in the framework of VM2D one
GPU GeForce GTX 970 can replace dozens or even hundreds of CPU cores. GPU
Tesla K40c replaces hundreds or even more than 1000 CPU cores. It is also possible
to perform calculations on several graphical cards that are located on different nodes,
their communication takes place with the help of MPI. Test calculations show that if
you use two graphical cards, you can get an acceleration of 1.6 times, and for three
cards—2.2 times compared with the calculation on a single graphical card.

13.5 Conclusions

Parallel algorithms for VM2D open-source code were implemented using three tech-
nologies: MPI, OpenMP and CUDA. It is shown that ratio between computational
complexities of the operations of the algorithm can vary significantly for different
problems statements. Test problems shown that VM2D is efficiently parallelized:
we achieve 75 . . . 79% efficiency of parallelization at 96 CPU cores, 0.68 . . . 0.76%
efficiency at 256 cores and 0.30 . . . 0.41% efficiency at 1280 cores. It is shown that
the acceleration achieved on one GPU is comparable to acceleration on hundreds and
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even thousands of CPU cores. At the same time, the acceleration of calculations on
GPU can be further increased due to the fact that it is possible to perform calculations
on several cards simultaneously.
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Chapter 14
A Geometry-Adaptive Immersed
Boundary–Lattice Boltzmann Method
for Modelling Fluid–Structure
Interaction Problems

Lincheng Xu, Li Wang, Fang-Bao Tian, John Young and Joseph C. S. Lai

Abstract The immersed boundary method has been extensively used inmany areas.
However, there are two typical challenges for modelling fluid-structure problems at
moderate and high Reynolds numbers (e.g. 103–105). One is the size of mesh at
high Reynolds numbers when the standard immersed boundary method is applied.
The other is the numerical instability associated with the partitioned coupling for
fluid-structure interaction problems involving small structure-to-fluid mass ratios.
To address the challenges, a novel computational framework which combines the
lattice Boltzmann method and an improved immersed boundary method based on
a dynamic geometry-adaptive Cartesian grid is presented. A few classic validations
are conducted to demonstrate the accuracy of the current method.

Keywords Adaptive mesh · Immersed boundary method · Lattice Boltzmann
method · Fluid-structure interaction

14.1 Introduction

Many biological systems and flows in nature involve fluid-structure interactions
(FSIs) such as flag flapping, vocal-fold vibration, insect wing and fish fin (see e.g.
[1–8]). Study of FSIs within these flows is of great significance to understand the
fundamentals and improve engineering designs. For example, the knowledge of flag
flapping is able to provide inspiration to designing the flexible plate energy har-
vester by using piezoelectric materials [1, 3, 4, 6, 9–11]. The flexibility of flapping
wings/foils is able to enhance the aerodynamic performance [5, 8, 12–14]. There-
fore, great effort has been dedicated to develop numerical methods for modelling
FSI problems [15–18].

Due to the complexity of FSI flows, various numerical methods have been devel-
oped. Each method is suitable for a group of topics. Some of these were summarized
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by Deng et al. [15]. Among these methods, there are two typical types of approaches:
body-fitted grid methods and Cartesian grid methods. In body-fitted grid methods,
one needs to generate a mesh to fit the boundaries immersed in the fluid. The advan-
tages of body-fitted grid methods are associated with the facts that the boundary
conditions can be directly applied at the fluid-structure boundaries and that it is easy
to apply a very finemesh around the boundaries to resolve the boundary layer [15, 19–
25]. However, it is time consuming to generate a proper mesh for problems involving
complex geometries and to handle moving mesh for problems involving large defor-
mation. On the other hand, these challenges are avoided in Cartesian grid methods
where the fluid governing equations are discretized on a Cartesian mesh which does
not conform to the immersed boundaries. The immersed boundary method (IBM),
first developed by Peskin [26, 27] and recently a popular approach of Cartesian grid
methods, has attracted growing interest on expanding its applications and proposing
new features [28–31] and has been extensively used in many areas (see e.g. [3, 31–
37]). There are two typical challenges for modelling FSI problems at moderate and
high Reynolds numbers (e.g. 103–105) by using IBM and partitioned FSI coupling
strategy. One is the size of mesh at high Reynolds numbers when the standard IBM
is applied. The other is the numerical instability for FSI problems involving small
structure-to-fluid mass ratios [38, 39].

In thiswork,we present a novel computational frameworkwhich combines the lat-
tice Boltzmannmethod (LBM) and an improved IBM based on a dynamic geometry-
adaptive Cartesian grid. In addition, the heat transfer, solved by a finite difference
method, is coupled with the fluid and structure dynamics. A few classic validations
are conducted to demonstrate the accuracy of the current method.

14.2 Numerical Method

In this work, the fluid dynamics, structure dynamics and heat transfer are coupled in
a partitioned way, so that each component can be solved separately, and coupled via
boundary conditions handled by the IBM.

In the current work, the fluid dynamics is obtained by solving the discrete lattice
Boltzmann equation [40], i.e.

mi (x + eδt , t + δt ) − mi (x, t) = si
(
meq

i − mi (x, t)
) +

(
1 − si

2

)
(MG)i , (14.1)

m = Mg, meq = Mgeq , (14.2)

where m represents the velocity moment, meq is the equilibrium moment, g
is the distribution function, geq is the equilibrium function, e is the discrete
velocity, x is the space coordinate, δt is the time step size, si is a series of
relaxation rates, M is the moment matrix, and j th component of G is given by
ω j

[
δt f · (

e j − u
)
/cs2 + (

δt f · e j
) (
u · e j

)
/cs4

]
, with f being an external body

force, macroscopic variables including the fluid density, velocity and pressure values
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respectively calculated by ρ = ∑
g j , u = (∑

g j e j + 0.5δt f
)
/ρ, p = ρcs2, and cs

being the lattice sound speed given by δx/
(√

3δt
)
with δx being the mesh spac-

ing. The equilibrium function g j
eq is determined by g j

eq = ω jρ[1 + u · e j/cs2 +
(
u · e j

)2
/(2cs4) − u2/(2cs2)], where ω j is the j th weight. In the above calculations,

i and j indicate the i th component of velocity moment and j th discrete velocity,
respectively.

The heat transfer, governed by an unsteady convection-diffusion equation, is
solved by using a finite difference method. In this method, the second-order upwind
scheme is used to discretize the convection term, and the second-order central dif-
ference scheme is adopted for the diffusion term. In addition, a second-order explicit
scheme is used for the temporal discretization.

The structure dynamics can be solved by the finite element method (as used in
Ref. [36]), finite difference method (as used in Refs. [22, 39]) or meshfree material
point method [41]. In this paper, filament/thin plate structure in our FSI validation
cases is solved by the finite difference method.

Both LBM for the fluid dynamics and finite differencemethod for the heat transfer
are solved on a dynamic geometry-adaptive Cartesian mesh which is applied to
provide fine resolution around the immersed geometries and coarse resolution in
the far field. The overlapping grids between two adjacent refinements consist of
two layers. In order to enhance the numerical stability, two-layer “ghost nodes” are
generatedwithin the immersed bodydomainwhich is a non-fluid area. Themovement
of fluid–structure interfaces only causes adding or removing grids at the boundaries
of refinements and consequently a high mesh-update efficiency is guaranteed.

The boundary conditions of fluid dynamics at the FSI interfaces are handled by an
improved IBM, which drives the predicted flow velocity (calculated after the LBM
stream process [42] without the IBM body force) to match the solid velocity. In
the present IBM, the feedback coefficient is mathematically derived and explicitly
approximated, i.e.

k = k0/(1 − ΔU1/ΔU ) = 2/(1 − CUR), (14.3)

where CUR is an approximation of the relative velocity residual. The Lagrangian
force is divided into two parts, i.e.

F I B = k̄
(
Un+1

b − Au∗) δx/δt

= k̄
(
Un+1

b − Un
b + Un

b − Au∗) δx/δt

= k̄
(
Un

b − Au∗) δx/δt + k̄δxa, (14.4)

where k̄ = kδt/δx and a is the acceleration of the flexible structure. The first part is the
driving force caused by the predicted flow velocity, and the other part is caused by the
acceleration of the immersed boundary. Such treatment significantly enhances the
numerical stability for modelling FSI problems involving small structure-to-fluid
mass ratios. The Lagrangian force is then spread onto the fluid nodes around the
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boundary according to

f (x, t) =
∫

Γ

F I Bδh(X(s, t) − x)ds, (14.5)

where δh is a smooth approximation of Dirac’s delta function [43].
For the heat transfer, similar technique is applied tomodify the heat source around

the boundary [44]

q =
∫

Γ

Q(s, t)δh(X(s, t) − x)ds, (14.6)

where Q is the Lagrangian heat source. For the first type of boundary condition, Q
can be calculated according to

Q = αT (Tib − T0), (14.7)

where αT is a large factor, T0 is the boundary condition on the immersed boundary,
and Tib is the temperature on the surface interpolated by

Tib(s, t) =
∫

V
T (x, t)δh(X(s, t) − x)dx. (14.8)

In Eq. (14.1), the fluid kinematic viscosity ν is reflected in values of si . It could
be a constant (for Newtonian fluid) or a function of shear rate (for non-Newtonian
fluid) [20, 39, 45–48]. If the large eddy simulation (LES) model is applied, it also
includes turbulent viscosity component. In our work, the classic Smagorinsky LES
model [49], the Germano–Lilly model [50] and the Lagrangian dynamic subgrid-
scale model [51] have been incorporated into the framework to model turbulent
flows at relatively high Reynolds numbers.

14.3 Validation

14.3.1 Fluid-Structure-Heat Interaction of Flow Around a
Filament in the Wake of a Stationary Cylinder

A filament in the wake of a stationary cylinder located in a uniform flow, which
has been extensively used to study fish behaviors in a street wake [3, 7, 52, 53], is
coupled with heat transfer and power-law fluid. The problem configuration is shown
in Fig. 14.1, where D is the diameter of the cylinder, L is the length of the filament
and l is the distance from the origin of the cylinder to the fixed leading edge of the
filament. Simulations are performed at l/D = 3.0,ms = 0, L/D = 2.5 and Re=100.
The non-dimensional stretching coefficient defined by K ∗

s = Ks/(ρU 2D) is 1000,
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Fig. 14.1 Schematic of fluid-structure-heat interaction of a filament in the wake of a stationary
cylinder located in a uniform flow

Table 14.1 Mean drag coefficient (CD), Strouhal number (St) and mean Nusselt number (Nu) of
the cylinder, and the lateral flapping amplitude A/D of the trailing end of the filament

Sources n CD St Nu A/D

Present 0.6 1.25 0.175 5.881 1.10

Present 1.0 1.38 0.156 5.407 1.11

Sui et al. [52] 1.41 0.156 – 1.14

Present 1.4 1.51 0.143 5.077 1.10

and the non-dimensional bending rigidity defined by K ∗
b = Kb/(ρU 2D3) is 10−4.

The mesh size around the cylinder and filament is D/160. The dimensionless time
step Δt∗ = ΔtU0/D = 6.25 × 10−4. Three power-law indices n = 0.6, 0.8 and 1.0
are considered.

Table 14.1 shows the mean drag coefficient (CD), Strouhal number (St) and mean
Nusselt number (Nu) of the cylinder, and the lateral flapping amplitude (A/D) of the
trailing end of the filament. For n = 1.0 (Newtonian flow), results of Ref. [52] are
listed in the table for comparison. First, our results for n = 1 are in good agreement
with those predicted by Sui et al. [52]. Second, CD increases with n, while St and
Nu decrease with n. This is quite similar to that of a single cylinder in power-law
flow [39, 45, 46]. Finally, A/D is almost independent of power-law index. The
instantaneous vorticity and temperature contours are presented in Fig. 14.2. The
non-Newtonian results presented here can be used to extend the limited database of
fluid-structure-heat interaction.
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Fig. 14.2 Instantaneous vorticity (left column) and temperature (right column) contours at Re =
100, Pr = 1.0: a n = 0.6, b n = 1.0 and c n = 1.4

14.3.2 A Hovering Dragonfly

A hovering dragonfly is simulated to validate a three-dimensional complex case. The
wings undergo both body axis-centered stroke motion and pitching motion around
their spanwise torsion axes, with a frequency of about 36Hz and a stroke plane angle
of 60◦ [54]. The stroke kinematics can be described as

ϕ (t) = 0.5 (ϕmax + ϕmin) + 0.5 (ϕmax − ϕmin) cos (2π f t) , (14.9)

where f is the frequency, and ϕmin and ϕmax are respectively −25◦ and 35◦ for
forewings and−15◦ and 45◦ for hindwings. The pitching kinematics is approximated
by (measured in degrees) [55]

θ (t) = 105 + 54cos (2π f t + 1.55) + 2cos (4π f t + 1.53) + 7cos (6π f t + 0.91) .

(14.10)
Here the Reynolds number, defined by Re = 2ρ (ϕmax − ϕmin) f Lw c̄/μ, is about
2500, where f is the flapping frequency, and Lw and c̄ are respectively the spanwise
length and the mean chord length of a wing. The phase difference between forewings
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Fig. 14.3 Flow around hovering dragonfly: a Vortex structure of an integrated dragonfly model
during hovering flight; b Lift coefficient of hindwings. Experimental data conducted by Hu and
Deng [55] is shown for comparison

and hindwings is 180◦. The vortical structures and lift coefficient of a pair of hind-
wings are shown in Fig. 14.3. It shows that the current result is in good agreement
with the experimental data in Ref. [55].

14.3.3 Turbulence Flow Over a Wavy Wall

A pressure-driven turbulent flow over a wavy wall [56, 57] is conducted to validate
the turbulence modelling capability. The bottom wavy wall is described by y =
acos (2πx/λ), where a is the amplitude of the wave, x is the streamwise coordinate,
andλ is thewave length. FollowingRefs. [56, 57], we set h/λ = 0.4, a/λ = 0.05 and
lw/λ = 0.944,where h and lw are respectively the half height and the spanwise length
of the channel. No-slip condition is applied on the wavy wall; periodic boundary
conditions are applied on all of the lateral walls; and symmetric boundary condition
is applied on the top wall. A constant streamwise pressure gradient is applied over
the whole domain. The Reynolds number based on the half channel height h and
the mean streamwise velocity on the top wall is around 2400 which is achieved by
adjusting the pressure gradient.

Figure 14.4 shows the mean streamwise velocity, velocity profiles within sub-
layers, turbulent statistics and energy spectrum. For comparison, the LES result
from Ref. [57] and experimental data from Ref. [56] are shown in the picture. From
Fig. 14.4a, it is found that our results are in good agreementwith those fromRefs. [56,
57]. The turbulent models [49–51] implemented in this framework are able to pre-
dict reliable results, as demonstrated by Fig. 14.4a, b. Regarding turbulent statistics
shown in Fig. 14.4c, results of three models are comparable. But we also notice
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Fig. 14.4 Turbulence flowover awavywall: aMean streamwise velocity;bVelocity profileswithin
sublayers; c ν|S|/U2 × 10, − < u′v′ > /U2 × 10 and νt/ν + 0.2; and d Energy spectrum. In a,
the LES result from Ref. [57] (pink dash-double dotted line) and experimental data from Ref. [56]
(blue diamond symbol) are presented for comparison. Other line legends in a are the same as those in
c. In order to optimise that visualisation, the stresses in c are amplified by 10 times and the turbulent
viscosity is shifted by 0.2. SMSGS, DSGS and LDSGS represent the classic Smagorinsky LES
model [49], the Germano–Lilly model [50] and the Lagrangian dynamic subgrid-scale model [51],
respectively

that the turbulent viscosities predicted by the Germano–Lilly model [50] and the
Lagrangian dynamic subgrid-scale model [51] are lower compared to that predicted
by the classic Smagorinsky LES model [49], and approach zero on the wall. Finally,
the −5/3 Kolmogorov law is well captured, as shown in Fig. 14.4d.

14.4 Conclusion

In this work, a novel geometry-adaptive IB-LBM has been introduced to model FSI
problems involving heat transfer, non-Newtonian flow and turbulence. Benchmark
cases including fluid-structure-heat interaction of flow around a filament in the wake
of a stationary cylinder, a hovering dragonfly and turbulence flow over a wavy wall
have been conducted to validate the current solver. Results show that the current
solver is reliable. In addition, the results presented in this work can be used to extend
the limited database of fluid-structure-heat interaction.
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Chapter 15
Toward the Problem of Low Re Flows
Through Linearly Elastic Porous Media

Sid Becker

Abstract An isotropic elastic porous structure whose initial geometry is regular
(periodically uniform) will experience non-uniform deformation when a viscous
fluid flows through the matrix under the influence of an externally applied pressure
difference. In such a case, the flow field will experience a non uniform pressure gra-
dient whose magnitude increases in the direction of bulk flow. The closed solution
to the problem of low Re flow through deformable porous media requires the simul-
taneous solution of the flow field in the void space and of the stress distribution in
the solid matrix. The focus of the current study is to attempt to predict the pressure
distribution of the flow field based only on the geometry of the media. The inten-
tion is to eventually simplify the coupled fluid-solid problem by replacing explicitly
solution of the flow field with a pressure boundary condition in the stress distribution
of the solid matrix.

Keywords Non-uniform · Porous media · Parallelepiped · Viscous

15.1 Introduction

At lowRe and in a uniformporousmedium, the flow rate is directly proportional to the
pressure gradient (Darcy’s Law). The permeability, K , of the medium characterizes
this relationship and it is determined experimentally or numerically from the relation:

K � Uμ

(
�P

�L

)−1

(15.1)

Here U is the seepage velocity, μ is the dynamic viscosity, �L represents the
length of the porous medium and �P is the difference in average pressure experi-
enced by the fluid. The permeability is always a function of geometry regardless of
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any heterogeneity in the flow field [1]. The importance of considering the local pore
structure for media with geometry that varies in the direction perpendicular to the
direction of bulk flow has been well studied, see for example the seminal work by
Vafai in [2]. The descriptions of slurry flow through evolving dendritic structures in
[3, 4] emphasize that macroscopic modelling is greatly improved when local hetero-
geneity in the structure is taken into account. One of the pore structures presented
therein is represented by bundles of capillary tubes that experience periodic constric-
tions and expansions. Permeability predictions that consider such serial type changes
in tube geometry have been presented that relate the permeability to the pore diame-
ters, porosity, and a pore size density [5–8]. When the porous medium is not uniform
in the direction of bulk flow, the permeability varies in this direction as well. In a
recent publication, a method is presented that allows the prediction of local losses of
low Re flow through a porous matrix composed of layers of orthogonally oriented
parallelepipeds for which the local geometry varies discreetly in the direction of bulk
flow [9, 10]. The important take-away from these works is that even in the presence
of non-uniform periodic matrix geometry, it is possible to predict the local losses as
long as there is full knowledge of the geometry.

With this in mind, consider the case of an initially uniform porous medium that is
composed of a linearly elasticmaterial. It is anticipated that the local pore structure of
such amatrixmay deform under the stresses associatedwith the pressure drop experi-
enced by the fluid as it passes through themedium. In this case, the linear relationship
between flow rate and pressure drop that is exhibited by non-deformable media is
not preserved. As the total pressure drop is increased, the matrix experiences local
pore structure deformations (constrictions) resulting in increased local resistance to
the flow. This result has been shown experimentally [11, 12]. The deformation of an
elastic porous media is non-uniform. At the inlet of the media (free surface), defor-
mations are smallest and lateral displacement of the media is the largest. Conversely,
at the outlet of the media (a fixed surface), the deformations are the largest while
the displacement is zero. This was illustrated in the work by Munro et al. [13] that
considered the lowRe flow of glycerol through elastic porousmedia in an experimen-
tal test rig that relates global pressure drop to flow rate. Using that experiment, we
found that the deformation of an elastic porous media is non-uniform. Unpublished
results of related experiments are shown in Fig. 15.1. At the inlet of the media (this
corresponds to the highest layer number), the deformations are smallest and lateral
displacement of the media is the largest. Conversely, at the outlet of the media (a
fixed surface represented in Fig. 15.1 by the lowest layer number), the deformations
are the largest while the displacement is nearly zero.

This work is motivated by the complexity of the problem of incompressible low
Re flow through a deformable porousmedia. The solution to this problem requires the
simultaneous solution of the flow field in the void space and of the stress distribution
in the solid matrix. Previously, attempts have been made to address the solution
theoretically [14–17]. The relatively recent review by Hou et al. provides a clear
description of the numerical requirements of the Fluid-Solid Interaction (FSI) [18].
A summary of the FSI problem outlined in that paper follows.
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Fig. 15.1 Relative
displacement of different
layers of an elastic porous
media subjected to flows
with different total pressure
drops

The equations of motion in the fluid domain is:

ρ f
(
∂t v

f
i + v f

j ∂ j v
f
i

)
− ∂ jσ

f
i j − b f

i � 0 (15.2)

If the flow is incompressible, the conservation of mass of the flow states that:

∂i v
f
i � 0 (15.3)

For an incompressible Newtonian flow the fluid stress is represented by:

σ
f
i j � −pδi j + τi j (15.4)

where p is the static pressure and the fluid shear is determined by:

τi j � 2μ
(
ei j − δi j ekk/3

)
(15.5)

Here ei j � ∂ j v
f
i + ∂i v

f
j .

The equation of motion for the solid matrix is:

ρs
(
∂t v

s
i + vsj∂ j v

s
i

) − ∂ jσ
s
i j − bsi � 0 (15.6)

Here the superscript f denotes associationwith the flowfield, the superscript s denotes
association with the solid matrix, and b is a body force. The solid side velocity is the
total time derivative of the solid displacement field vsi � u̇si . For the elastic solid, the
structural stress obeys Hooke’s law:

σ s
i j � λδi jεkk + 2Gεi j (15.7)
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where the strain is εi j � (
∂ j ui + ∂i u j

)
/2, the Lame constant is λ �

Eν/[(1 + ν)(1 − 2ν)] and the shear modulus is G � E/(2(1 + ν)), E is the Young’s
Modulus, and ν is the Poisson’s ratio.

The interface conditions at the fluid-solid interfaces are:

v f
i � vsi (15.8)

σ
f
i j · n � σ s

i j · n (15.9)

There are obvious inherent complications of this problem; in particular, that the
location at which these interface conditions are applied will change as the solid
experiences elastic deformation. Consider that many applications of this problem
seek only to know the final state of the flow field. In such cases the question might
be asked: “Given an applied pressure, and the initial geometry of the solid matrix,
what is the final geometry of the solid and the resulting flow rate of the fluid?” The
motivation behind the current paper is to take a step toward the approximation of the
final flow configuration without explicitly solving Eqs. (15.2)–(15.9).

Consider the problem of the response of the solid matrix to a known stress field
at the solid-fluid interface. In such a case the term σ

f
i j · n is known everywhere on

the fluid solid interface so that Eq. (15.9) may be treated as a boundary condition in
order to determine the solution of Eqs. (15.6)–(15.7). This paper considers a recent
publication [9] that develops a correlation that can return the fluid stress distribution
at the fluid-solid interface given the geometry of the solid, the total pressure drop
experienced by the fluid, and the fluid viscosity. In the following text, a summary of
the correlation developed in Ref. [9] is presented. The suggestion here is that in the
future, researchers could use such correlations as a simplification to determine an
approximate solution to the FSI problem of viscous low Re flow through an elastic
porous medium.

15.2 The Geometry

This section describes the regular periodic Cartesian geometry that was developed
and tested in [13]. The uniform version of this geometry is introduced in order to
highlight its important characteristics. Then a manner of describing the variation in
this geometry is presented. Consider the regular periodic geometry representative of
the Cartesian matrix structure depicted in Fig. 15.2. The longitudinal axis directions
of adjacent layers are perpendicular to one another. In order to introduce tortuosity,
parallel layers are offset by a single pore thickness. The colored regions correspond
to the space occupied by the solid matrix and the clear regions correspond to the pore
space.

The anticipated symmetry of the flow may be used in order to simplify the geom-
etry to a single representative pore structure. This is depicted in Fig. 15.3. In order to
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Fig. 15.2 Porous Structure (left); Side views in the x-z and y-z planeswith dash-dot lines indicating
planes of symmetry (right).Note that the planes of symmetry bisect the pores in laternating directions

introduce porosity variation in the direction of bulk flow, the geometry of each solid
layer is varied. Consider Fig. 15.3 depicting representative views of a single pore
channel through the matrix. In Fig. 15.3c a depiction of a pore channel through a
non-uniform matrix geometry is presented. Here each solid layer experiences a
decrease in its characteristic geometry in the direction of bulk flow, �z , and this
decrease is proportional to a variation parameter, ε. Simultaneously each solid layer
also experiences an increase in its characterizing length perpendicular to the direction
of bulk flow (�x in this view) and this increase is also proportional to the variation
parameter ε.

The parameter, ε, whose influence on the local pore geometry is depicted in
Fig. 15.3c, is analogous to the strain experienced in an elastic deformation. In this
way the variation parameter of each layer may be defined by the relation:

ε ≡
(

��z

L0

)
SOLID

�
(
L0 − �z

L0

)
SOLID

(15.10)

where L0 is the characteristic length when ε � 0.
The lateral expansion may also be related to this longitudinal compression by a

parameter, ν, that is analogous to the Poisson ratio. It is defined as:

ν ≡
(

��x

��z

)
SOLID

�
(

��y

��z

)
SOLID

(15.11)
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Fig. 15.3 a The
representative pore structure
through the uniform
Cartesian matrix (constant
β), b the geometric
characterization of the pore
structure in a single layer,
c the representative pore
structure for a non-uniform
medium in which each
layer’s variation parameter,
ε, increases in the direction
of flow

In thisway the pore structure and the porosity of each layer are also related directly
to the parameters through the parameters ε and ν. In the direction of bulk flow, the
characteristic pore length of the ith layer is:

Lz,i � L0(1 − εi ) (15.12)

Consider next the lengths of the pore sides that are perpendicular to the direction
of flow (oriented respectively along the x and y coordinates). The length of one of
these sides is always equal to the constant L0 while the length of the other side may
vary between layers and the orientations of these side lengths alternate coordinate
directions (x or y) between adjacent layers. The length of the side that is free to
experience a contraction or an expansion is linearly related to the variation parameter
by some positive constant, ν. In this way, the ith layer’s pore length perpendicular to
the direction of bulk flow may be described by the relation:

�i � L0

2
(1 − εiν) (15.13)

In thework done in this study the parameter ν does not vary. However the variation
parameter ε will change between layers. When the value of ε in the medium varies
discreetly between layers of the medium, and when its value in each layer is known,
the permeability of any layer “i”may be described to be dependent only on the values
of the variation parameter (i) of that layer εi, (ii) of its upstreamneighbor εi−1, and (iii)
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of its downstreamneighbor εi+1. The study [9] determines the functional relationships
between the dimensionless parameters:

Ki

L2
0

� f (εi−1, εi , εi+1) (15.14)

If the permeability can be determined from knowledge of the matrix geometry,
then it is results of numerical simulations are used to investigate the nature of this
dependence and then these results are used to determine a best fit curve to predict
the dependence of permeability on the local variation parameters.

15.3 Simulations

While numerical simulations are not the focus of this study, we later develop corre-
lations using the results of numerical simulations, and thus we provide some details
of the numerical computations here. These simulations were conducted using the
Software COMSOL® Multiphysics version 4.3. An Intel® Core™ i7-3770 CPU @
3.40 GHz with 32.0 GB RAMwas used to run the simulations. The stationary “lami-
nar Flow” model was used to simulate the steady solution. Symmetry boundary con-
ditions were implemented on surfaces corresponding to planes of symmetry and no
slip boundary conditions were imposed on surfaces corresponding to the fluid-solid
interfaces. A tetrahedral mesh was used. Grid refinement studies were conducted and
the mesh was refined until there a was a less than 0.1% difference in flow solutions.
This was listed as an “extra fine” mesh in the mesh settings.

At the inlet and outlet of the pore structure, uniform pressures were specified. To
ensure that the permeabilities of our correlation have no Re dependency, the inlet
and outlet pressures were chosen so that the local Reynolds number remained below
about 0.1. We simulated the laminar Newtonian flow of a viscous incompressible
liquid with a density of 103 kg m−3 and a viscosity of 0.1 Pa s−1.

In the correlations discussed later, local pressure losses are related to pore geom-
etry. The numerical results of the flow field were post processed for use in the corre-
lations as follows. At specified cross sections of the pore structure, average pressures
were determined from the simulated results using the COMSOL® “Surface Average”
tool. The results at each cross section were saved in a table and exported. We used
the “Surface Integration” tool to determine the total flow rate at some cross sections
perpendicular to the direction of bulk flow. The “Surface Average” tool is used to
determine the average pressure along the planes in the fluid domain that correspond
to the interfaces between the layers. For each geometric configuration, the flow rate
and average pressures are exported and then in a MatLab script the permeability of
each simulation is calculated. TheMatLab function “lsqcurvefit” is used to determine
the least squares best fit curve for the correlations which are described next.
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Fig. 15.4 The geometry of
the pore structure used in the
simulations to determine in
the permeability data used in
the correlations

15.4 Correlations

It is anticipated that at very low Re, the dimensionless permeability is dependent
only on the local pore geometry; the lateral the dimensionless permeability of any
particular layer depends only on the relative variation in the pore geometry of that
layer and of those associated with the adjacent layers as implied by Eq. (15.14).
Simulations are conducted of flows through different pore structure geometries of 6
layers. There first 3 layers always have the same value of the variation parameter,
ε. The last 3 layers share an identical variation parameter that. In this way, there is
a change in the variation parameter at the interface between layer 3 and layer 4 as
depicted in Fig. 15.4. In all simulations, the parameter characterizing lateral variation
in geometry that appears in Eq. (15.13) is constant and equal to ν � 0.4

In order to simplify the subsequent analysis, the downstream change in the vari-
ation parameter of layer “i” is introduced:

�ε−
i ≡ εi−1 − εi (15.15)

and the upstream change in the variation parameter of layer “i” is:

�ε+i ≡ εi+1 − εi (15.16)

In this way, from the each simulation, two values of the local permeability may be
estimated (one for layer i � 3 and one for layer i � 4) from the relation:

KSIM,i � Uμ

(�Pi/Li )
(15.17)

The simulated permeability values may be explicitly linked to their corresponding
variation parameter values ε, ε+, ε−. In the simulations that are used to develop the
correlation, the variation in geometry is constrained such that 0 ≤ ε ≤ 0.6 and 0 ≤
ε± ≤ 0.6. From the data of 11 simulations in this range, a good representation of the
permeability’s dependence on geometry is:

K

L2
0

� a1 + a2β + a3β
2 + �β−(a4 + a5β) + �β+(a6 + a7β) (15.18)
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The constants a1 − a7 of Eq. (15.18) are then determined using the method of
least squares from this data and are:

a1 � 9.802E−03 a2 � −2.478E−02 a3 � 1.614E−02

a4 � −2.774E−03 a5 � 4.556E−03

a6 � −2.790E−03 a7 � 4.586E−03 (15.19)

15.5 Test Case

In this section, the prediction of the pressures resulting from flows through the geom-
etry depicted in Fig. 15.5 is presented. The geometry of the pore channel the total
pressure drop �PT over the porous medium are specified. The predicted permeabil-
ity of each layer of the structure is first evaluated from constants of Eq. (15.19) with
the correlation:

Ki

L2
0

� a1 + a2βi + a3β
2
i + �β+

i (a4 + a5βi ) + �β−
i (a6 + a7βi ) i � 1, 2, . . . , 11

(15.20)

The upstream change in the variation parameter of the first layer and the down-
stream change in the variation parameter of the last layer are set to zero �ε−

1 �
�ε+N � 0. The volumetric flow rate is related to the total pressure drop using a
simple resistor representation:

Q � �PT AT

μ

1∑N
i�1 (Li/Ki )

(15.21)

Here AT is the total area perpendicular to the direction of flow, and the height
of each layer, Li , may be determined from that layer’s variation parameter by
Eq. (15.12). The prediction of the drop in the average pressures across each layer
may then be evaluated from the relation:

Fig. 15.5 A depiction of the
geometry of 11 layer
structure with a uniform
change in variation
parameter �ε+ � −�ε− �
0.05
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Fig. 15.6 The comparison
between the pressure at the
layer interfaces determined
by the numerical simulation
and by the correlation of
Eq. (15.20) of the predict the
reduced correlation of
Eq. (15.18) of a the
difference in average
pressure across each layer,
and b the pressure at each
layer outlet

�Pi � μ

(Ki/Li )

Q

L2
0

i � 1, 2, . . . , 12 (15.22)

The inlet and outlet pressures (gage) are specified to be 100 and 0 Pa respectively
and gravitational effects are neglected. The fluid density is 103 kg m−3 and the fluid
viscosity is 0.1 Pa s−1. The geometric parameters used are L0 � 10−3 m and ν � 0.4.

The test case geometry that is depicted in 5, represents an 11 layer structure that
has a uniformly increasing value of the variation parameter so that the first layer has
a variation parameter of β1 � 0 and each subsequent layer’s variation parameter
increases by 0.05 (�ε+i � 0.05 i � 1, . . . , 10 and �ε−

i � −0.05 i � 2, . . . , 11).
A comparison between the results of the numerical simulations conducted in

COMSOL and the predictions of the correlation resulting from Eqs. (15.20)–(15.22)
are presented in Fig. 15.6. The pressure drop over each layer increaseswith increasing
ε in a quadratic manner (as is anticipated) and the correlation’s predictions agree well
with the simulation. The calculated average pressure at each layer’s outlet is depicted
explicitly in Fig. 15.6 in showing excellent agreement. A solid line has been added
here to accentuate the deviation of this pressure distribution from that represented
by a flow exhibiting a uniform pressure gradient (the magnitude of the slope of this
line is proportional to the effective permeability of the medium). The correlation’s
predicted volumetric flow rate of Eq. (15.21) agrees to within 1% of that determined
from the results of the numerical simulation.

15.6 Conclusions

An empirical correlation is presented that relates the dimensionless permeability to
the local pore geometry. Given only the information of the fluid viscosity, the local
matrix geometry, and total pressure drop, the correlation is able to predict global flow
rate and the average pressure at any cross section. It is the intent of this research that
in the future such correlations will be applied to the FSI problem of laminar flows
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through elastic porous media. It is anticipated that it will be possible to estimate the
solution of the solid matrix without explicitly solving the CFD problem by focusing
only on the solution to the solid matrix in a computational mechanics model. The
correlation developed in this study should be applied to estimate the average pressure
at each solid-liquid interfacial surface within each layer of the matrix. In this way
the pressure boundary condition of these faces will be dependent on the deformation
associated with each layer its adjacent layers.
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Chapter 16
Approximate Analytic Solution
of the One Phase Stefan Problem
for the Sphere

R. B. Shorten

Abstract This paper presents an approximate analytic solution for the (well-posed)
one phase Stefan problem for the sphere using homotopy analysis. Unlike prior
studies, the analytic approximation presented here uses homotopy analysis to deal
with the non-linearity associatedwith themoving boundary; at no point in the analysis
are any changesmade to either the governing heat equation or the boundary and initial
conditions. Explicit analytic expressions are developed in the form of separate Taylor
series for themoving boundary location and the temperature profile within the sphere
up to and including the fourth term in each series. The approximations are found to
be in good agreement with the results from a number of prior studies.

Keywords Single phase Stefan problem · Sphere · Approximation · Homotopy
analysis

16.1 Introduction

This paper outlines an analysis of the one phase Stefan problem for the sphere (which
is known to be well-posed: see [1] at p. 2350)

1
through an application of homotopy

analysis.
2
Unlike prior studies (see, for example, [1, 3–7]), the analytic approximation

presented here uses homotopy analysis to deal with the non-linearity associated with

1The velocity of the moving boundary is unbounded at t � 0 but is finite for all t up to (but not
including) the point when themoving boundary reaches the centre of the sphere (which point in time
is denoted by te). Practically speaking, the moving boundary problem exists for all times between t
� 0 and t � te. Beyond this point, the solution for the temperature profile is still well defined and,
in this sense, the problem is “well behaved” for all values of t > te.
2For a detailed discussion of “homotopy analysis” including worked examples, see [2].
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the moving boundary based on the methods outlined in [8]. As far as the author is
aware, homotopy analysis has not been applied to the single phase Stefan problem
for the sphere.

Explicit analytic expressions are developed in the form of separate Taylor series
for the moving boundary location and the temperature profile within the sphere up
to and including the fourth term in each series—the Taylor series are based on the
corresponding short time solutions (see [3] for details of the short time solution3) for
the moving boundary and the temperature profile. The paper discusses the relation-
ship between the four term approximations presented here and the corresponding
exact solution. It also outlines how the analytic approximations presented here may
be made arbitrarily accurate (relative to the exact solution) by the addition of extra
terms in the respective Taylor series.

Instances where the analysis outlined in this papermay be of practical use include:
(i) applications involving suspended liquid droplets in air (e.g., inkjet printing) or
other gases where the spherical droplet vaporises as time passes; (ii) applications in
minerals processing and chemical and electro-chemical processes where there is an
unreacted core surrounded by a reacted outer layer; and (iii) cases where the analysis
can serve as a starting point for the solution of more complex problems involving
moving boundaries in a sphere (e.g., the analysis of melting spherical nano-particles
where surface tension effects are included in a single phase setting).

The nomenclature is as follows:

α Stefan number where α > 0

r dimensionless spatial variable where s(t) ≤ r ≤ 1

t dimensionless time variable where 0 < t ≤ te

te extinction time when the moving boundary reaches the centre of the spherea

u(r, t) dimensionless temperature profile

s(t) position of the moving boundary

q embedding parameter

c0 convergence control parameter

w(r, t) transformed dimensionless temperature profile

z transformed dimensionless spatial variable

λ solution to the transcendental equation arising for the short time solution to the
underlying boundary value problem

aRefer to footnote 1

16.2 Outline of the Mathematical Problem

The mathematical problem analysed here is as follows:

3The short time solutions are shown in [3] as Eqs. (4.3) and (4.4) and the leading term of Eq. (7.3).
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ut (r, t) � urr (r, t) + (2/r)ur (r, t) (16.1)

u(s(t), t) � 0 (16.2)

u(1, t) � 1 (16.3)

ur (s(t), t) � − α.st (t) (16.4)

s(0) � 1 (16.5)

where both u(r, t) and s(t) are unknown. At r � 1 the temperature is set equal to 1
and the melting temperature at the moving boundary is assumed to be equal to 0.
Equation (16.4) is the Stefan condition which reflects the absorption of latent heat at
themoving boundary arising from the change of phase. This boundary value problem
in Eqs. (16.1)–(16.5) corresponds to the dimensionless problem set out as Eqs. (1.6)
to (1.8) in [3].

An initial transformation is used to simplify Eqs. (16.1)–(16.5) by letting
u (r, t) � w(r, t)/r such that Eqs. (16.1)–(16.5) are now:

wt (r, t) � wrr (r, t) (16.6)

w(s(t), t) � 0 (16.7)

w(1, t) � 1 (16.8)

wr (s(t), t) � − α.s(t)st (t) (16.9)

s(0) � 1 (16.10)

where both w(r, t) and s(t) are unknown.
A further transformation is required in order to reduce the problem in

Eqs. (16.6)–(16.10) to one involving fixed spatial boundaries. The specific
transformation involves the introduction of a new spatial variable, z, where
z � (1 − r)/(1 − s(t)) such that 0 ≤ z ≤ 1. The transformed boundary value problem
(i.e., Eqs. (16.6)–(16.10)) is as follows:

(1−s(t))2.wt (z, t) � wzz(z, t)−z.(1−s(t)).st (t).wz(z, t) (16.11)

w(1, t) � 0 (16.12)

w(0, t) � 1 (16.13)

wz(1, t) � α.(1− s(t)).s(t).st (t) (16.14)
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s(0) � 1 (16.15)

16.3 Development of an Approximate Analytic Solution
to Eqs. (16.11)–(16.15) Using Homotopy Analysis

16.3.1 Preliminaries

Consider the following “generalised” PDE and associated boundary and initial con-
ditions for the unknown functions for the temperature profile, w(z, t; q), and the
position of the moving boundary, s(t; q):

(1 − q).[wzz(z, t ; q) − z.(1 − s(t ; 0)).st (t ; 0).wz(z, t ; 0) − (1 − s(t ; 0))2.wt (z, t ; 0)]

� c0.q.[wzz(z, t ; q) − z.(1 − s(t ; q)).st (t ; q).wz(z, t ; q)

−(1 − s(t ; q))2.wt (z, t ; q)] (16.16)

w(1, t ; q) � 0 (16.17)

w(0, t ; q) � 1 (16.18)

wz(1, t ; q) � α.(1−s(t ; q)).s(t ; q).st (t ; q)

+ (1−q).[wz(1, t ; 0)−α.(1−s(t ; 0)).s(t ; 0).st (t ; 0)] (16.19)

s(0; q) � 1 (16.20)

The solutions to the generalised PDE subject to the associated boundary and
initial conditions (i.e., Eqs. (16.16)–(16.20)) are assumed to be both capable of
representation as a Taylor series in q about the point q � 0 and convergent for
0 ≤ q ≤ 1:

w(z, t ; q) �
∞∑

n�0
[dnw(z, t ; 0)/dqn]qn/n! s(t ; q) �

∞∑

n�0
[dns(t ; 0)/dqn]qn/n!

When q� 1, the above PDE’s and associated boundary and initial conditions (i.e.,
Eqs. (16.16)–(16.20)) correspond to Eqs. (16.11)–(16.15) and the Taylor series for
w(z, t; 1) and s(t; 1) represent the solutions to Eqs. (16.11)–(16.15). Accordingly,
the practical task is to develop expressions for the coefficients in each of the above
Taylor series. This is done by successively differentiating Eqs. (16.16)–(16.20) with
respect to q, setting q equal to 0 and then solving the resultant “subsidiary” problems.

The constant in Eq. (16.12), c0, is referred to as the “convergence control param-
eter” which is independent of q. By changing c0, the rate of convergence of the
Taylor series can be varied allowing the range of values of c0 for which the Taylor
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series converges4 to be identified. It emerges that in this particular case a further
simplification can be effected5 by letting c0 � −1. When this substitution is made,
Eqs. (16.16)–(16.20) reduce to the following:

wzz(z, t ; q)−(1− q).[z.(1−s(t ; 0)).st (t ; 0).wz(z, t ; 0) + (1−s(t ; 0))2.wt (z, t ; 0)]

� q.[z.(1−s(t ; q)).st (t ; q).wz(z, t ; q) + (1−s(t ; q))2.wt (z, t ; q)] (16.21)

w(1, t ; q) � 0 (16.22)

w(0, t ; q) � 1 (16.23)

wz(1, t ; q) � α.(1− s(t ; q)).s(t ; q).st (t ; q)

+ (1− q).[wz(1, t ; 0) −α.(1− s(t ; 0)).s(t ; 0).st (t ; 0)] (16.24)

s(0; q) � 1 (16.25)

When q � 1, Eqs. (16.26)–(16.30) below correspond to the problem to be solved
(i.e., Eqs. (16.11) to (16.15) above):

wzz(z, t ; 1) � z.(1−s(t ; 1)).st (t ; 1).wz(z, t ; 1) + (1−s(t ; 1))2.wt (z, t ; 1)
(16.26)

w(1, t ; 1) � 0 (16.27)

w(0, t ; 1) � 1 (16.28)

wz(1, t ; 1) � α.(1− s(t ; 1)).s(t ; 1).st (t ; 1) (16.29)

s(0; 1) � 1 (16.30)

This implies that the Taylor series expressions for w(z, t; q) and s(t; q) at q �1
correspond to the solution to the Stefan problem to be solved subject to the following
conditions: (i) each Taylor series converges for all values of q between and including
0 and 1; and (ii) at least one point in the t space (usually at t � 0) the respective Taylor
series for the cases where q � 0 and q � 1 are solutions to the Stefan problem being
analysed (i.e., Eqs. (16.6)–(16.10)). If these two conditions are met, we can say that
when q moves from 0 to 1 there is a continuous change between the solutions to the
two problems where q � 0 and q � 1 (i.e., the two solutions are “homotopic”).

4Refer to [2] for a detailed discussion of the role of the convergence control parameter in the
homotopy analysis method.
5Based on the comparison of the four term approximations for both the temperature and the moving
boundary position against results set out in prior works (e.g., [1, 4]) it is clear that the Taylors series
expressions for both are convergent where c0 � −1.
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Explicit expressions for the coefficients of the two Taylor series can be derived by:
(i) successively differentiating Eqs. (16.21) to (16.25) with respect to q, setting q� 0;
and (ii) solving the resulting boundary value problems startingwith the determination
of the first term in each Taylor series, namely, w(z, t; 0) and s(t; 0).

16.3.2 Expressions for w(z, t; 0) and s(t; 0)

The first step in the analysis of Eqs. (16.21)–(16.25) is to develop explicit expressions
for the first term in each Taylor series for the moving boundary and the underlying
temperature profile, namely: w(z, t; 0) and s(t; 0). When q � 0, Eqs. (16.21)–(16.25)
are as follows6:

(1−s(t ; 0))2.wt (z, t ; 0) � wzz(z, t ; 0)−z.(1−s(t ; 0)).st (t ; 0).wz(z, t ; 0)
(16.31)

w(1, t ; 0) � 0 (16.32)

w(0, t ; 0) � 1 (16.33)

wz(1, t ; 0) � wz(1, t ; 0) (16.34)

s(0; 0) � 1 (16.35)

While the homotopy analysis method allows for considerable flexibility in terms
of the choice of w(z, t; 0) and s(t; 0), the choice made must (as noted above)
be a solution of both Eqs. (16.31)–(16.35) and the problem being analysed (i.e.,
Eqs. (16.6)–(16.10)) for at least one point in the t space. The small time solution to
Eqs. (16.6)–(16.10), which is denoted by f (r, t) for the temperature profile and s*(t)
for the moving boundary location, is as follows7:

f (r, t) � (
1−K .Er f

(
[1−r ]/2t1/2

))
(16.36)

s∗(t) � 1−2λt1/2 (16.37)

where K � 1/Erf(λ) and λ is the solution to the transcendental equation:
e−λ2 � απ1/2λ.Er f (λ). The small time solution set out in Eqs. (16.36)–(16.37)
is straightforward and matches the actual solution including the corresponding
Stefan condition exactly at t � 0 but not for t > 0.

6The conditions set out in Eq. (16.34) will, of course, be automatically satisfied by the choice of
w(z, t; 0).
7This is sometimes referred to as the “Neumann solution”. Itmatches Eqs. (16.6)–(16.8), and (16.10)
for all t but Eq. (16.9) only at t � 0. Refer also to footnote 3 above.
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As a practical matter, the Taylor series for the moving boundary will display
singular behaviour at the point in time where the small time solution for the moving
boundary is equal to zero. This behavior occurs because the small time solution for
the moving boundary appears in the denominator of all higher order terms for the
Taylor series for the moving boundary. This does not present a practical difficulty
provided the moving boundary reaches the centre of the sphere before the small
time solution does. Fortunately, other studies (e.g., [3, 4]) confirm that the moving
boundary does indeed reach the centre of the sphere ahead of the corresponding small
time solution. If this were not the case, a more appropriate choice for the initial term
must be found (as was the case in the analysis in [8]).

With this in view, Eqs. (16.36) and (16.37) can be used as the basis for w(z, t; 0)
and s(t; 0) respectively. Using the substitution z � (1 − r)/(1 − s(t; 0)) to transform
f (r, t) into w(z, t; 0) we obtain the following expressions for w(z; t; 0) and s(t; 0):

w(z, t ; 0) � 1−K .Er f [λz] (16.38)

s(t ; 0) � (1−2λt1/2) (16.39)

With this result, further terms in each Taylor series can be identified as outlined
above. It emerges that these higher order terms are: (i) in the case of the temperature
profile, the solutions to a series ofwell-posed secondorder linearODE’s in z (although
the time variable, t, also appears in σ each ODE); and (ii) in the case of the moving
boundary, the solutions to a series of well-posed first order linear ODE’s in t.

16.3.3 Expressions for wq(z, t; 0) and sq(t; 0)

The development of explicit expressions for the second term in each Taylor series
for w(z, t; 1) and s(t; 1), namely wq(z, t; 0) and sq(t; 0), begins by differentiating
Eqs. (16.21)–(16.25) once with respect to q and setting q equal to zero to yield the
following:

wzzq(z, t ; 0) � 0 (16.40)

wq(0, t ; 0) � 0 (16.41)

wq(1, t ; 0) � 0 (16.42)

α.sq(t ; 0)
2
(
st (t ; 0) + stq(t ; 0)

)
+ wz(1, t ; 0) + wzq(1, t ; 0) �

α.sq(t ; 0).st (t ; 0) + α.s(t ; 0).(
(
1− 2.sq(t ; 0)).st (t ; 0) + stq(t ; 0)

)
(16.43)
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sq(0; 0) � 0 (16.44)

The solution to Eq. (16.40) (which is a second order linear ODE) subject to the
conditions set out in Eqs. (16.41)–(16.42) is as follows:

wq(z, t ; 0) � 0 (16.45)

Taking this result and substituting it into Eq. (16.43) yields a first order linear
ODE for sq(t; 0) subject to the condition in Eq. (16.44). This is easily solved given
that s(t; 0), st(t; 0), wz(1, t; 0) and wzq(1, t; 0) are already known:

sq(t ; 0) � − (4λ2t)/(3(1−2λt1/2)) (16.46)

16.3.4 Expressions for wqq(z, t; 0) and sqq(t; 0)

The development of explicit expressions for the third term in each Taylor series for
w(z, t; 1) and s(t; 1), namely wqq(z, t; 0) and sqq(t; 0), begins by differentiating
Eqs. (16.21)–(16.25) twice with respect to q and setting q equal to zero.

Applying the corresponding boundary conditions for the second order ordinary
differential equation for wqq(z, t; 0) yields the following expression:

d2w(z, t ; 0)

dq2
� −4λ

√
t
(
3 − 4

√
tλ

)
(Er f [zλ] − zEr f [λ])

3Er f [λ]
(
1 − 2

√
tλ

)2 (16.47)

The first order ordinary differential equation for sqq(t; 0), can then be solved
subject to the initial condition that sqq(t � 0; 0) � 0:

d2s(t ; 0)

dq2

� −
2λt

(
3λ

(
3 − 4λ

√
t
)
+ eλ2

√
π

(−6 + 3αλ2 + 16tαλ4 − 4
√
tλ

(−3 + 4αλ2
))
Er f [λ]

)

9
(
1 − 2λ

√
t
)3

(16.48)

16.3.5 Expressions for wqqq(z, t; 0) and sqqq(t; 0)

The development of explicit expressions for the fourth term in each Taylor series for
w(z, t; 1) and s(t; 1), namely wqqq(z, t; 0) and sqqq(t; 0), begins by differentiating
Eqs. (16.21)–(16.25) three times with respect to q and setting q equal to zero.

Applying the corresponding boundary conditions for the second order ordinary
differential equation for wqqq(z, t; 0) yields the following expression:
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d3w(z, t ; 0)

dq3

�
√

πα

6
(
1 − 2

√
tλ

)4 e
−z2λ2

(
e
(
3+z2

)
λ2π zαλ

(
64t2αλ6

(
−7 + 2

(
−1 + z2

)
λ2

)
+ 3

√
tλ

(
−24

+ 87αλ2 + 4
(
5 − 8z2

)
αλ4

)
+ 6

(
3 + 2αλ2

(
− 3 +

(
− 1 + z2

)
λ2

))
− 8t3/2λ3

(
6 + αλ2

(
−115

+ 6
(
−5 + 6z2

)
λ2

))
+ 16tλ2

(
6 + αλ2

(
− 45 + 2

(
− 5 + 8z2

)
λ2

)))
Er f [λ]3

+ 9e
(
1+z2

)
λ2λ

(
−4 + 5

√
tλ

)
Er f [zλ] + 3Er f [λ]

(
3eλ2 zλ

(
−4eλ2

√
tαλ3

(
3 − 8

√
tλ

+ 4tλ2
)
+ ez

2λ2
(
4 − 32tαλ4 + 16t3/2αλ5 +

√
tλ

(
−5 + 12αλ2

)))
− 2e

(
2+z2

)
λ2

√
π

(
− 3

+ 8tαλ4
(
1 − 6z2λ2

)
+ 4t3/2αλ5

(
−1 + 6z2λ2

)
+ 6

√
t
(
λ − αλ3 + 3z2αλ5

))
Er f [zλ]

)

+
√

πEr f [λ]2
(
6z

(
2e3λ

2√
tα2λ5

(
3 − 8

√
tλ + 4tλ2

)
+ e

(
2+z2

)
λ2

(
− 3 − 2

(
−1 + z2

)
αλ4

+ 8tαλ4
(
1 +

(
− 2 − 4z2 + 2α

)
λ2

)
− 4t3/2αλ5

(
1 +

(
−2 − 4z2 + 2α

)
λ2

)
+ 2

√
tλ

(
3

− 3α2λ4 + αλ2
(
−3 + λ2 + 8z2λ2

))))
+ e

(
3+z2

)
λ2

√
παλ

(
− 18 + 36αλ2 + 448t2αλ6

− 48tλ2
(
2 + αλ2

(
−15 + 2z2λ2

))
+ 9

√
tλ

(
8 + αλ2

(
−29 + 4z2λ2

))
+ 8t3/2λ3

(
6

+αλ2
(
−115 + 6z2λ2

)))
Er f [zλ]

))
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The first order ordinary differential equation for sqqq(t; 0), can then be solved
subject to the initial condition that sqqq(t � 0; 0) � 0 to give:

d3s(t ; 0)

dq3

� 1

108λ
(−1 + 2

√
tλ

)5

√
t
(
27λ2

(
15 − 32

√
tλ + 16tλ2

)
− 27eλ2

√
πλ

(
18 − 15αλ2

+ 128t3/2αλ5 + 6
√
tλ

(
−9 + 20αλ2

)
− 4tλ2

(
−9 + 58αλ2

))
Er f [λ] − 9e2λ

2
π

(
768t2α2λ8

− 16t3/2αλ5
(
15 + 2(−3 + 55α)λ2

)
− 24

√
tλ

(
− 3 + 4αλ2 − 5αλ4 + 25α2λ4

)
+ 3

(
−6

− 8αλ4 + 27α2λ4
)
+ 8tλ2

(
−9 + 39αλ2 − 24αλ4 + 194α2λ4

))
Er f [λ]2

+ e3λ
2
π3/2αλ

(
2560t5/2α2λ9 − 64t2αλ6

(
−99 + 2(18 + 55α)λ2

)
− 27

(
6 + 3α2λ4

+ 2αλ2
(
−9 + 4λ2

))
+ 54

√
tλ

(
16 + 16α2λ4 + αλ2

(
−71 + 28λ2

))
+ 48t3/2λ3

(
18

+ 154α2λ4 + 3αλ2
(
−95 + 34λ2

))
− 36tλ2

(
42 + 102α2λ4 + αλ2

(
−305

+ 112λ2
)))

Er f [λ]3
)

(16.50)
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16.3.6 Approximate Solution

Using the above expressions the four term approximation for the temperature profile
in terms of the variables z and t is:

w(z, t ; 1) � w(z, t ; 0)/0! +wq(z, t ; 0)/1! +wqq(z, t ; 0)/2! +wqqq(z, t ; 0)/3! + . . .

(16.51)

and the four term approximation for the moving boundary is:

s(t ; 1) � s(t ; 0)/0! + sq(t ; 0)/1! + sqq(t ; 0)/2! + sqqq(t ; 0)/3! + . . . (16.52)

16.3.7 Higher Order Terms, Approximate and Exact
Solutions

The steps outlined in the sections immediately above can be repeated to allow
for the derivation of higher order terms within each Taylor series expression for
w(z, t; 1) and s(t; 1).

The subsidiary PDE’s and associated boundary and initial conditions for all the
higher order terms (i.e., for n ≥ 2) for the temperature profile are of the following
general form8:

d2[dnw(z, t ; 0)/dqn]/dz2 � gn(z, t) (16.53)

where gn(z, t) is: (i) the nth derivative with respect to q evaluated at q � 0 of a
suitably rearranged Eq. (16.21) excluding the second order spatial derivative; and
(ii) calculated from the results for the previous terms for the Taylor series for each
of w(z, t; 1) and s(t; 1) that have already been determined.

The corresponding boundary conditions are dnw(z � 0, t; 0)/dqn � 0 and
dnw(z � 1,t; 0)/dqn � 0 and the initial condition is dnw(z, t � 0; 0)/dqn � 0. Further-
more, the subsidiary ODE’s for all the higher order terms for the moving boundary
position are of the following general form (i.e., for n ≥ 2):

d
[
dnw(z � 1, t ; q)/dqn

]
/dz � dn[α.(1− s(t ; q)).st (t ; q)]/dqn (16.54)

evaluated at q � 0 and are subject to the initial condition dns(t � 0; q)/dqn � 0 at
q � 0.

8The convergence control parameter, c0, does not appear explicitly given the assumption that c0 �
−1. However, in the general case represented by Eqs. (16.16)–(16.20) it does appear other than in
the first two terms of the Taylor series for w(z, t; 1) and s(t; 1).
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If the Taylor series for each ofw(z, t; 1) and s(t; 1) is truncated at a finite number of
terms, the result will be a fully analytic approximation of the solution to the original
boundary problem (as represented byEqs. (16.11)–(16.15)). This approximationmay
be made arbitrarily more accurate by the addition of extra terms in each Taylor series
to produce an exact analytic solution. To recover the solution to the temperature
profile in the original spatial variable, r, the substitution, z � (1 − r)/(1 − s(t; 1))
must be made and the function w(r, t; 1) divided by r.

16.4 Comparison with Other Studies

16.4.1 Basic Results

Figure 16.1 shows the location of the moving boundary over time (based on the four
term approximation of the solution) superimposed on the results set out in [4] which
were derived using a number of different analytic approximation and numerical
methods for α � 10.

Figure 16.2 shows the temperature profile for various times (based on the four
term approximation of the solution) superimposed on the results set out in [1] such
that the moving boundary, s(t), is equal to 0.9, 0.7, 0.5, 0.3 and 0.1 respectively for
α � 10.

The temperature profiles in the original graph in [1] were derived using both a
front fixing numerical scheme and the enthalpy method (see [9–11] for details). The

Fig. 16.1 This figure compares the four term homotopy approximation for the moving boundary
(shown in blue) against results presented in [4]. The graph against which the comparison has been
made here has been reproduced from Fig. 3.1 on page 52 of [4] with the kind permission of the
author
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Fig. 16.2 This figure compares the four term homotopy approximation for the temperature profile
(shown in blue) against results presented in [1] in Fig. 2, Part (b). The graph against which the
comparison has been made here has been reprinted from [1], copyright 2009, with permission from
Elsevier

fit between the analytic approximations and the results from the prior studies shown
in Figs. 16.1 and 16.2 depend on how close the moving boundary is to the centre of
the sphere (the closer the moving boundary is to the centre the worse the fit).

16.4.2 Convergence Behaviour

As noted above, the single phase Stefan problem for the sphere analysed here is
well-posed as are the individual component parts of each of the Taylor series for
u(r, t; 1) and s(t; 1). This and the equivalence, when q � 1, of Eqs. (16.16)–(16.20)
and Eqs. (16.11)–(16.15) collectively imply the smoothness and convergence of the
Taylor series solutions for both u(r, t; 1) and s(t; 1) and the respective approximations
of each; furthermore, the graphical comparisons shown in Figs. 16.1 and 16.2 support
this conclusion.

Figures 16.3 and 16.4 below show the 1st, 2nd, 3rd, and 4th order approxima-
tions against one another for the moving boundary position and temperature profile
respectively—the convergence behaviour of the four term approximation for the
moving boundary position is affected by value of the Stefan number and how close
the boundary is to the centre of the sphere.
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Fig. 16.5 This figure compares the four term homotopy approximation for the moving boundary
(shown in blue) for α � 1, 2 and 5 against results presented in [1] in Fig. 3. The graph against which
the comparison has been made here has been reprinted from [1], copyright 2009, with permission
from Elsevier

Figures 16.1 and 16.2 indicate that as t approaches te, the four term approximation
for the both the moving boundary and the temperature profile worsen which implies
that additional terms in each Taylor series are required. Figure 16.5 shows the four
term approximation for the moving boundary for smaller Stefan numbers (α � 1, 2
and 5):

The four term approximation for themoving boundary for smaller Stefan numbers
(α � 2 and α � 5) is a relatively good fit against the results shown in [1]; in the case
where α � 1, the fit implies that additional terms are required.

16.4.3 Relationship to Other Solution Methods

The homotopy analysismethod as outlined above is not the only strategy available for
developing an approximate analytic solution to Eqs. (16.1)–(16.5). Apart the various
analytic approximations covered in [1, 3–7], a recently published paper (refer to
[12]) employs an interesting approach to the mathematical modelling of the growth
of a spherical crystal in a metastable liquid and, accordingly, has relevance to the
problem set out above in Eqs. (16.1)–(16.5).

The specific problem studied in [12] shares some similarities to the problem anal-
ysed in this paper—the governing PDE in [12], when transformed into dimensionless
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co-ordinates, is of the same form as the PDE considered here. However, the boundary
conditions applicable to the problem in [12] are different:

• the moving boundary starts at the centre of sphere and moves outwards;
• the Stefan condition imposed at the moving boundary point links the velocity of
the boundary to: (i) the difference in temperature between the phase transition
temperature and the temperature at the moving boundary; and, separately, (ii) the
temperature gradient at the moving boundary point; and

• there is an additional condition such that themovement of the solid/liquid interface
ceases when the spherical crystal radius reaches a pre-determined size (which is
when in the radius of the spherical crystal, in terms of the dimensionless spatial
variable, equals 1).

The key point of interest in [12] insofar as the analysis in this paper is concerned
relates to the approach used to solve for the temperature profile and the moving
boundary location. The analysis in [12] begins with the assumption that the solution
to the heat transfer problem can be represented by a Taylor series in the spatial
variable around the point of maximum growth of the crystal sphere after imposing
the Stefan condition applicable at the point of maximum growth. The coefficients in
this Taylor series representation of the temperature profile are then translated, based
on the governing PDE, into the corresponding ascending time derivatives for the
temperature profile at the point of maximum growth for the sphere.

The functional dependency of this solution for the temperature profile on the time
variable is still “implicit” in that the coefficients involving the dimensionless time
variable for the series are, at this point in the analysis, unknown—the next step is to
solve for both the coefficients and the moving boundary as explicit functions of the
dimensionless time variable. Substituting the Taylor series solution for the temper-
ature profile into the two separate Stefan conditions at the moving boundary point
yields two equations involving the moving boundary location and the temperature at
the point where the dimensionless spatial variable equals 1.

Separate expressions for the moving boundary location and the temperature at the
point where the dimensionless spatial variable equals 1 are constructed as infinite
series involving ascending powers of the difference (represented by the symbol β0

in [12]) between:

• the phase change temperature; and
• the temperature at the point where the dimensionless spatial variable equals 1when
the dimensionless time equals zero,

coupledwith an assumption that this difference is verymuch smaller than 1 (to ensure
the two power series in β0 are convergent and, as a result, remain bounded for all
values of the dimensionless time until the maximum size of the spherical crystal is
reached).

The coefficients of each series are taken to be functions of the dimensionless time
variable—the coefficients are determined by substituting the two power series into
the two previous expressions involving the moving boundary location and the tem-
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perature at the point where the dimensionless spatial variable equals 1 and equating
like powers of β0 in each series.

It is interesting to note that the “Taylor series” approach such as that used in
[12] may (but not necessarily always) give the same result as a suitably constructed
application of the homotopy analysis method—this is because, as explained in [13],
the homotopy analysis method is more general than and conceptually distinct from
the Taylor series approach. The author in [13] notes (see p. 154 in [13]) that while
the homotopy analysis method requires the Taylor series in the embedding parameter
to be analytic, it does not require the original basis functions (e.g., the short time
solutions in the present case of the single phase Stefan problem for the sphere) to
be analytic for all values of the underlying independent variables.9 In contrast, the
Taylor series expression used for the temperature profile used in [13]must be analytic
over the range of the underlying independent variables under consideration for the
Taylor series approach to be valid over that range.10

16.5 Concluding Remarks

This paper analyses the single phase Stefan problem for the sphere using homotopy
analysis; in particular, an explicit approximate solution has been developed and
the relationship between this approximation and the corresponding exact solution
presented. The approximation may be made arbitrarily accurate by adding extra
terms to the approximation to produce an exact, albeit complicated, analytic solution.
Finally, there is scope for themethods outlined to be applied to other Stefan problems
(subject to appropriate adjustments to accommodate differences in the governing
equations).11

9An example is given in Sect. 5 of [13] of a nonlinear PDE boundary value problem with a non-
analytic, global solution (obtained using homotopy analysis) where the corresponding Taylor series
solution can only be defined locally.
10The problem in [12] appears to bewell behaved (and, by implication, the power series solutions for
the temperature profile and the moving boundary location presented in [12] will be correspondingly
well behaved) due to: (i) the condition that the crystal sphere stops growing when the maximum
size of the sphere is reached; (ii) the constraint imposed on β0 that β0 is � 1; and (iii) the spherical
symmetry of the heat transfer problem. These features allow for only one (bounded) solution for
each of the location of the moving boundary and the temperature profile at any given point in time
up to and including the point in time where the spherical crystal reaches its maximum size.
11For example, the corresponding classical two phase Stefan problem for the sphere can be analysed
using this approach (see [5] for details of the underlying problem). A suitable set of short time
solutions for the classical two phase Stefan problem for the sphere are identified in [5] on pages 2068
and 2069 (see Eqs. 5.5 and 5.6 in [5] for the details).
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Chapter 17
Selection Criterion of Stable Mode
of Dendritic Growth with n-Fold
Symmetry at Arbitrary Péclet Numbers
with a Forced Convection

Dmitri V. Alexandrov and Peter K. Galenko

Abstract A stable mode of anisotropic dendrite growing in a forced convective flow
with n-fold crystalline symmetry is studied for low, moderate and rapid tip velocities
(for arbitrary Péclet numbers). A generalized selection criterion determining a stable
combination for the dendrite tip velocity and dendrite tip diameter is obtained.

Keywords Moving boundary problem · Crystal growth · Dendrites · Solvability
theory · Selection criterion

17.1 Introduction

It is well-known that crystallization processes occurring in undercooled or supersat-
urated systems are described by the evolution of a very complex crystal structure
with lateral branches which is called a dendrite [1–4]. From the mathematical point
of view, the growing dendritic shape is the solution of moving boundary problem
(see, among others, [5–10]). This shape highly depends on the heat and mass transfer
mechanisms, hydrodynamic flows, anisotropies of surface energy and atomic kinet-
ics as well as on the growth Péclet number Pg . One of the important problems in
dendritic theory which describes a particular crystal structure of solidified materi-
als (e.g. monocrystal or polycrystal) is connected with the selection of stable mode
of dendritic growth. In other words, we need to determine a stable combination
σ∗ = 2d0DT /(ρ2V ) between the dendrite tip velocity V and tip diameter ρ (here
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DT and d0 are the thermal diffusivity and capillary constant). This combination can
be found on the basis of solvability and stability theories [11–13]. It is important to
note that the selection problem has been solved by a number of authors in the case
of four- and six-fold symmetries and moderate growth Péclet numbers [14–26]. The
present paper extends this solution to more general case of n-fold symmetry of crys-
talline anisotropy, binary systems, forced convection and arbitrary Péclet numbers
including the rapid crystallization scenario.

17.2 Marginal Growth Mode

Let us consider a two-dimensional growthof a needle-like dendritic crystal in a single-
component undercooled liquid (the case of a two-component undercooled mixture is
studied below). In addition,we consider the growth process in the presence of a forced
(convective) flow that is directed toward the crystal growth direction z (Fig. 17.1).
The present theory is based on the morphological stability analysis carried out by
Bouissou and Pelcé [17] and by ourselves [22]. The dispersion relation determining
the marginal growth mode of the wave number km and taking into account n-fold
crystalline symmetry can be written out as [17, 22]

k3m = V exp(iθ)

2d(θ)DT
km + iaU sin θ cos θ

8ρDT
km

− iV sin θ

2DT
k2m + V 2 cos θ exp(iθ)

4d(θ)D2
T

+ iV β̃(θ) sin θ

d(θ)TQ
k2m,

(17.1)

whereU is the fluid velocity at infinity, i is the imaginary unit, θ is the angle between
the growth axis and the normal to the dendrite surface, TQ = Q/cp, Q is the latent
heat parameter, and cp is the specific heat.

Note that the dispersion relation (17.1) determines the marginal mode of the wave
number of morphological perturbations superimposed on the surface of a dendrite
growing with a constant velocity (a detailed analysis of morphological stability lead-
ing to expression (17.1) is carried out in Refs. [12, 13, 22]).

Fig. 17.1 A scheme of
growing dendrite in a forced
convective flow (Vn is the
normal velocity to the
interface)



17 Selection Criterion of Stable Mode of Dendritic Growth … 205

In the case of n-fold symmetry, the anisotropic capillary length d(θ) and
anisotropic growth coefficient β(θ) have the form [27]

d(θ) = d0 {1 − αd cos [n (θ − θd)]} ,

β̃(θ) = β0TQ
{
1 − αβ cos

[
n
(
θ − θβ

)]}
,

(17.2)

whereβ0 is the kinetic constant. Expressions (17.2) assume that the anisotropyparam-
etersαd andαβ are small so thatαd � 1 andαβ � 1.Note that the parameter n deter-
mines the order of crystalline symmetry: n = 2 (whiskers), n = 3 (triangles), n = 4
(rectangles), n = 5 (disclinations), n = 6 (snowflakes), and n = 10 (quasicrystals)
[28–31].

The parameter a in expression (17.1) describes the effect of a viscous flow and
has the form (on the basis of the Oseen hydrodynamic equations) [32]

a(Re) =
√
Re

2π

exp (−Re/2)

erfc
√
Re/2

, Re = ρU

ν
, (17.3)

where ν stands for the kinematic viscosity and Re is the Reynolds number.
The first contribution in the right-hand side (r.h.s.) of expression (17.1) leads to

the classical wave number at the neutral stability curve found byMullins and Sekerka
(see, among others, [12, 33])

kmMS = −
√
V exp (iθ)

2d(θ)DT
, (17.4)

The first and second contributions (r.h.s., expression (17.1)) lead to the Bouissou
and Pelcé wave number [13, 17]

kmBP = kmMS

√

1 + iaUd(θ)

8ρV
sin(2θ) exp (−iθ). (17.5)

The first four contributions in the r.h.s. of expression (17.1) correspond to the case
of rapid dendritic growth (high growth Péclet number limit) with allowance for the
effect of atomic kinetics at the dendrite surface [22]

kmAG = kmBP + V exp (−iθ)

4DT
. (17.6)

In addition, the contribution arising from the first and fifth summands in the r.h.s. of
expression (17.1) was studied by Brener (kinetic effects without convection) [18].

Equation (17.1) can be solved on the basis of Cardano’s formula (d0 �= 0) in the
spirit of our previous theory [22]. Considering now the case of n-fold symmetry, we
get



206 D. V. Alexandrov and P. K. Galenko

km = kmAG + iV β̃(θ) sin θ

2d(θ)TQ
. (17.7)

If the growthof dendrite is controlled by the atomic kinetics at its surface (d0 → 0),
one can find

km = iTQ exp (iθ)

2DT β̃(θ) sin θ
+ V cos θ

2DT
. (17.8)

The present analysis leaning upon the wave numbers (17.7) and (17.8) generalizes
all previously known results for the case of n-fold crystalline anisotropy.

17.3 Solvability Condition

The anisotropy of surface energy for different faces of a growing crystal is no more
than 1.5–2% for metals and alloys and not more than 5% for strongly anisotropic
materials. With such a small anisotropy, analytical solutions describing the growth
of a crystal with a constant velocity are found near the classical Ivantsov solutions
for a parabolic (paraboloidal) dendrite. From the mathematical point of view, this
means fulfilling the condition of microscopic solvability, which is an approximate
solution of the axisymmetric problem with the linearization of the heat and mass
transfer conditions on the surface of the parabolic (paraboloidal) dendrite. To select
a stable mode of dendritic growth with a constant velocity V near unstable solutions
derived by Ivantsov for the parabolic platelet [34, 35], one can use the solvability
condition written out with allowance for the effects of crystalline anisotropy. This
condition derived by Pelcé and Bensimon [12, 33] takes the form

∞∫

−∞
G [X0(l)] exp

⎡

⎣i

l∫

0

km(l1)dl1

⎤

⎦ dl = 0, (17.9)

where G represents the curvature operator, and X0(l) is a continuum of solutions
from which the marginal mode of the wave number km is determined. Note that km
is given by solutions (17.7) and (17.8) in the case of dendritic growth.

Let us now consider the thermally-controlled growth regime of needle-like den-
drites when the wave number is described by expression (17.7), θd = 0, and the
anisotropy parameters are small enough. Also, we use the following variables [17]

l = −ρ

2

[
tan θ

cos θ
+ ln

(
1

cos θ
+ tan θ

)]
, η = tan θ. (17.10)

Substituting the wave number (17.7) into the solvability integral (17.9) and using
variables (17.10), we arrive at
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∞∫

−∞
dηG [X0(η)] exp

⎧
⎨

⎩
−i

η∫

0

[
Pg(1 − iη1)

2
+ iρVβ0η1

2d0

−
√

(1 + iη1)
(
1 + η2

1

)λn + iαη1Bn(η1)

σ∗Bn(η1)

⎤

⎦ dη1

⎫
⎬

⎭
= 0,

(17.11)

where l1 and η1 are defined by formulas (17.10), and

Bn(η) = (
1 + η2

)n/2 − αd

n∑

k=0

(
n

k

)
ηn−k cos

(n − k)π

2
,

dl1 = −ρ
√
1 + η2

1dη1, α = aUd0
4ρV

, λn = n + 1

2
, σ∗ = 2d0DT

ρ2V
.

(17.12)

Note that the solvability integral (17.11) transforms to the previous theory detailed
for n = 4 [17, 21, 22].

Let us now consider the growth mode controlled by kinetics when the wave
number is defined by expression (17.8). Combining expressions (17.8)–(17.10) and
assuming that θβ = 0, we have

∞∫

−∞
dηG [X0(η)] exp

⎧
⎨

⎩
−i

η∫

0

[

Pg + iρ (1 + iη1)
(
1 + η2

1

)λn

2DTβ0η1B ′
n(η1)

]

dη1

⎫
⎬

⎭
= 0, (17.13)

B ′
n(η) = (

1 + η2
)n/2 − αβ

n∑

k=0

(
n

k

)
ηn−k cos

(n − k)π

2
.

An important point is that the solvability integrals (17.11) and (17.13) coincide with
integrals (20) and (24) in Ref. [22] if n = 4. In addition, if n = 6 in the absence of
kinetics β0 = 0 and impurity concentration, the solvability integral (17.11) corre-
sponds to expressions (8) and (12) from Refs. [24, 25], respectively.

17.4 Selection Criterion

In this section, we discuss the selection criteria (the stable combinations between
the dendrite tip velocity V and its tip diameter ρ) for (i) purely thermal growth
and (ii) thermo-solutal growth with moderate Péclet numbers as well as (iii) their
modification in the case of rapid crystallization scenario.
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17.4.1 Thermally-Controlled Dendritic Growth

Let us evaluate the solvability integral (17.11) by means of the previously developed
approach [17, 22]. At first, we neglect the kinetic contribution (∼β0) in Eq. (17.11)
and arrive at the following criterion

σ∗ = 2d0DT

ρ2V
= σ0α

7/n
d A7/n

n
(
1 + a1α

2/n
d A2/n

n Pg

)2 (
1 + bτυn

n
) , (17.14)

τn = αα
−3/n
d A−3/n

n , υn = n + 7

2(n + 3)
,

An = 2−3n/4
n∑

k=0

(
n

k

)
i n−k cos

(n − k)π

2
,

where σ0 and b stand for the selection constants. It is significant to note that the
selection criterion (17.14) transforms to the previously found criterion for n = 4
(criterion (17.6) in Ref. [21] and criterion (25) in Ref. [22]). In this case (see, for
details, Ref. [21])

a1 = (8σ0/7)
1/2 (3/56)3/8 ,

and A4 = 1, υ4 = 11/14. An important point is that the parameter n determining the
order of crystalline symmetry takes only certain values so that An is real (Table17.1).

Now we consider the next possible case if the kinetic contribution in (17.11) (the
term containing β0) is much greater than the other contribution proportional to Pg .
Thus, neglecting the first summand in curly brackets in (17.11), we get

σ∗ = σ0α
7/n
d A7/n

n
[
1 + a′

1α
2/n
d PgDTβ0A

2/n
n /d0

]2 (
1 + bτυn

n
) , (17.15)

Table 17.1 Parameters determining the selection criterion

Symmetry order n Crystals Parameter An

2 Whiskers [28] 2−1/2

3 Triangles [28] 2−1/4

4 Rectangles [28] 1

5 Disclinations [29] 21/4

6 Snowflakes [28] 21/2

10 Quasicrystals [30, 31] 23/2
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where a′
1 is a constant of selection analysis. Note that a′

1 = 20
√

σ0/3 if n = 4 [18,
22]. The obtained selection criterion (17.15) contains the previously known results.
Namely, if n = 4 and U = 0 in the low Péclet number limit, expression (17.15)
corresponds to expression (25) from Ref. [18]. In addition, setting n = 4 in (17.15),
we arrive at expression (26) from Ref. [22].

An important point is that two selection criteria (17.14) and (17.15) can be rep-
resented in a combined form as

σ∗ = σ0α
7/n
d A7/n

n
[
1 + a1α

2/n
d A2/n

n Pg (1 + δ0DTβ0/d0)
]2 (

1 + bτυn
n
) , (17.16)

where a′
1 = a1δ0. Two selection parameters σ0 and b entering in this criterion can

be found from experimental data or phase-field computations as in the previously
studied case, n = 4 [36–40].

The thermally-controlled selection criterion (17.16) can be rewritten in terms of
the dendritic tip velocity V

V = 2DT P2
g σ0α

7/n
d A7/n

n /d0
[
1 + a1α

2/n
d A2/n

n Pg (1 + δ0DTβ0/d0)
]2 (

1 + bτυn
n
) , (17.17)

where the definition of σ∗ in terms of V and Pg , 2DT P2
g σ∗ = d0V , is taken into

account. Expression (17.17) transforms to the criterion V ∝ DTα
3/4
d d−1

0 f
(√

αd Pg

)

derived in Ref. [41] for n = 4 and U = 0. Note that function f is demonstrated in
Fig. 8 in Ref. [41].

Expressions (17.16) and (17.17) enable us to select the dendrite tip velocity V
and dendrite tip diameter ρ with allowance for the undercooling balance condition.
They correspond to expressions (29) and (30) deduced in Ref. [22] for the case n = 4
and expressions (10) and (14) deduced in Refs. [24, 25] for the case n = 6. If we
are dealing with arbitrary crystalline symmetry (parameter n is listed in Table17.1),
criteria (17.16) and (17.17) essentially differ from the previously known theory [22].
The main difference consists in the powers of αd and τn dependent on n.

Now we pay our attention to the case completely controlled by the anisotropy
of atomic kinetics. The solvability integral (17.13) can be evaluated in the spirit of
previous theory [22] for αβ � 1 and different parameters n given in Table17.1

V = σ0α
5/n
β A5/n

n Pg

β0

(
1 + hnα

2/n
β A2/n

n Pg

) , (17.18)

where hn is a constant. It is significant to note that expression (17.18) represents
the selection criterion in the large Péclet number limit when the process of dendritic
growth is controlled by the effects of atomic kinetics. Taking this into account we
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consider the large Péclet number limit in criteria (17.17) and (17.18) to find the
unknown constant hn . The result is

hn = d0α
3/n
β a21 (1 + δ0DTβ0/d0)

2

2DTβ0α
3/n
d

.

If n = 4 this formula coincides with the previously known expression found in
Ref. [22]. Expression (17.18) in terms of dendritic tip diameter ρ reads as

ρ =
2DTβ0

(
1 + hnα

2/n
β A2/n

n Pg

)

σ0α
5/n
β A5/n

n

. (17.19)

Note that criteria (17.18) and (17.19) transform to criteria (35) and (36) fromRef. [22]
if n = 4.Moreover, criterion (17.18) coincides with expression (16) fromRef. [18] in
the limiting case Pg � 1. Concluding this subsection we especially emphasize that
expressions (17.18) and (17.19) underline a key contribution arising in kinetically-
controlled growth mode of rapid crystallization [42, 43].

17.4.2 Chemical Dendrite

Let us nowconsider the case of so-called “chemical dendrite” growing in a binary sys-
tem at a constant temperature in the presence of a forced convective flow. The differ-
ence between the aforementioned purely “thermal” problem and purely “chemical”
problem under consideration consists in the fact that the “chemical” problem is one-
sidedbecauseweneglect the diffusionfield in the solid phase. This leads to a scale fac-
tor 2 in the selection criterion (17.16). In addition, the factor Λ = mCi (1 − k0)/TQ

appears as a result of symmetry of temperature and concentration models. Taking
this into account and definition σ∗

CD = 2d0DC/(ρ2V ), we rewrite criterion (17.16)
in the form

σ∗
CD = 2Λσ0α

7/n
d A7/n

n
[
1 + a2α

2/n
d A2/n

n PC (1 + δ0DCβ0/d0CD)
]2 (

1 + bτυn
nCD

) , (17.20)

wherem is the equilibrium liquidus slope,Ci is the concentration at the dendrite sur-
face, k0 is the partition coefficient, DC is the diffusion coefficient, PC = ρV/(2DC)

is the chemical Péclet number, and

τnCD = αCDα
−3/n
d A−3/n

n , αCD = aUd0CD

2ρV
, d0CD = TQd0

2mCi (1 − k0)
.
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The surface concentration Ci and constant a2 = √
2a1 are determined in Refs. [13,

21]. Note that the “chemical” selection criterion (17.20) coincides with the previous
theory at n = 4 [22].

17.4.3 Thermo-Solutal Dendritic Growth

The selection criteria (17.16) and (17.20) corresponding to the thermally- and
chemically-controlled regimes of dendritic growth can be generalized for binary
non-isothermal liquids. Such a generalized selection criterion describes the effects
of anisotropies of the surface energy and growth kinetics, different growth sym-
metries (Table17.1), forced convective flow, arbitrary Péclet numbers (within the
framework of local-equilibrium crystallization scenario) and takes the form

σ∗ = σ0α
7
n
d A

7
n
n

1 + bτ̄ υn
n

⎡

⎢
⎣

1
(
1 + a1α

2
n
d A

2
n
n PgζT

)2 + 2ΛDT
(
1 + a2α

2
n
d A

2
n
n PCζC

)2
DC

⎤

⎥
⎦ , (17.21)

τ̄n = aUd0

4ρV Pα
3
n
d A

3
n
n

(
1 + 2DT

DC

)
, ζT = 1 + δ0DTβ0

d0
, ζC = 1 + δ0DCβ0

d0CD
,

where P = 1 + 2DTΛ/DC , n, An , and υn are determined in Table17.1 and expres-
sions (17.14).We especially note that the obtained selection criterion (17.21) includes
all previously known criteria, namely

(i) the criterion derived by Ben Amar and Pelcé [16] for crystal growth without
kinetics (β0 = 0) and forced convective flow (U = 0) in the case of small
Péclet numbers (Pg � 1 and PC � 1) and n = 4;

(ii) the criterion deduced by Bouissou and Pelcé [17] for thermally controlled
dendritic growth (Ci = 0) without kinetics (β0 = 0) in the case of small Péclet
numbers (Pg � 1 and PC � 1) and n = 4;

(iii) the criterion obtained by Müller-Krumbhaar with co-authors [19] for crys-
tal growth with the four-fold symmetry (n = 4) in a stagnant liquid (U = 0)
without kinetics (β0 = 0);

(iv) the criterion derived by Alexandrov and Galenko [21] for dendritic growth
with the four-fold symmetry (n = 4) without growth kinetics (β0 = 0);

(v) the criterion deduced by Brener [18] for crystal growth in a single-component
liquid (Ci = 0) with n = 4 in the absence of convective flow (U = 0) and in
the limit of small Péclet number (Pg � 1) (criterion (17.21) coincides with
criterion (25) in Ref. [18] in the limit μ ≡ β0ρV

√
αd/d0 � 1);

(vi) the criterion obtained by Alexandrov and Galenko [22] for the four-fold crys-
talline symmetry (n = 4);
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(vii) the criterion derived by Alexandrov and Galenko [24, 25] for dendritic growth
in single-component and binary liquids with the six-fold symmetry (n = 6) in
the absence of kinetics (β0 = 0);

(viii) the criteriondeducedbyAlexandrov andGalenko [44] for thermally-controlled
crystal growth (Ci = 0) with n-fold symmetry;

(ix) the criterion (17.23) coincides with criterion (24) obtained by Alexandrov and
Galenko [47] for rapidly growing dendrites if n = 4.

17.4.4 Rapid Thermo-Solutal Dendritic Growth at High
Péclet Numbers

It is well-known that the growth of crystals at high solidification rates should be
described by the hyperbolic equation for the solute concentration in the liquid phase
while the heat transfer equation is of parabolic type (see, among others, [45, 46]).
Recently, based on the analysis of the boundary integral equation for the curvilinear
crystallization front, it was shown that the following substitutions

ρ√
1 − W 2

by ρnew and (1 − W 2)V by Vnew (17.22)

must be taken into account if we consider the local nonequilibrium rapid regime of
dendritic solidification [47]. Here W = V/VD and VD is the bulk diffusion velocity.
Expressions (17.22) show that the chemical Péclet number PC = ρV/(2DC) trans-

forms as P∗
C = ρnewVnew/

(
2DC

√
1 − W 2

)
. Taking this into account and omitting

subscript “new”, we rewrite the selection criterion (17.21) as

σ∗ = 2d0DT

ρ2V
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)2 , V ≥ VD,

(17.23)

where ΛV = mVCi (1 − kV )/TQ , mV , kV and Ci are determined in Ref. [47]. Selec-
tion criterion (17.23) extends the theory of Ref. [47] to the case of n-fold symmetry.
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Fig. 17.2 The dendrite tip
velocity V as a function of
total undercooling ΔT is
compared with experimental
data [48] of rapidly solidified
Ni-0.7 at%B liquid droplets

17.5 Conclusion

The selection criteria derived in Sect. 17.4 define an additional expression connecting
the dendrite tip velocity V and dendrite tip diameter ρ. To find V and ρ indepen-
dently as functions of the system driving force—undercooling ΔT , one can use the
corresponding balance of undercoolings. This balance equation contains the differ-
ent contributions stemming from the thermal, concentration, kinetic and interface
curvature undercoolings (see, among others, [13, 24, 25, 44, 47]). Figure17.2 com-
pares the theory under consideration with experimental data. It is easily seen that the
selection criterion (17.23) describes the experimental breakpoint appearing at large
undercooling ΔT .
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Chapter 18
Evolution of a Melting Sphere in Cross
Flow Using an Arbitrary Mesh Topology

James N. Hewett and Mathieu Sellier

Abstract The melting front of a sphere of ice was simulated using the finite vol-
ume method where the water-ice interface was explicitly tracked over time as a
domain boundary. We used our previously developed node shuffle algorithm—for
improving mesh quality as the interface transforms—and extended this algorithm
into 3-D. A hemispherical shape formed in the case of forced convection and a
balloon-like shape formed when natural convection occurred; these results were also
observed from existing experiments. The melting bodies became less streamlined
for both cases, resulting in higher drag coefficients, although their Nusselt numbers
decreased. Deformation of the computational mesh was significant, with the melting
sphere reducing in volume by up to 85.3% and its surface greatly changing shape,
demonstrating that the algorithm is capable of enhancing mesh transformations in
moving boundary problems on 3-D unstructured grids.

Keywords Node shuffle algorithm · Evolving boundary · Stefan problem ·
Dynamic mesh

18.1 Introduction

Moving boundary problems are abundant in nature and industry, for example: melt-
ing ice caps, lava flows and injection moulding. These problems consist of a moving
interface driven by flow dynamics or a physical mechanism such as melting. Accu-
rately modelling the moving interface requires capturing the sharp boundary for the
duration of the problem. In this paper we apply a moving boundary along with our
node shuffle algorithm [7], extended to 3-D, to solve a Stefan problem involving a
melting sphere in cross flow. The contribution of this work is the development and
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validation of this 3-D extension; our simulation results are compared with existing
experiments [2, 3].

18.2 Methods

18.2.1 Problem Description and Governing Equations

We modelled the melting of a spherical block of ice immersed in an infinite stream
of warm water with a temperature of T∞ at a low Reynolds number

Re = 2au∞
ν

(18.1)

where a is the effective radius of the body, u∞ the freestream speed and ν the
kinematic viscosity of the surrounding fluid. As the block of ice melts over time,
both the morphology as well as the volume of the body change; consequently, a and
therefore Re reduce over time. Initial states of geometrical parameters are subscripted
with a zero (for example a0). The effective radius a was measured normal to the flow
because the flow regime is sensitive to this dimension [6], and was calculated with
a = √

Ax/π where Ax is the projected area in the x-direction (streamwise). Fluid
properties of the water were evaluated at the local temperature by using empirical
formulas [12], and were evaluated at the freestream temperature for dimensionless
numbers as recommended by Whitaker [14].

The flow regime explored in this studywas steady and axisymmetric which occurs
for approximately Re < 210 [10]. The initial Reynolds number was typically Re0 =
200, and with a monotonically decreasing geometry (irreversible melting), Re was
always in this flow regime. Therefore we assumed a laminar, incompressible and
steady state flow field for each discrete melting time stepΔtmelt. We assumed that the
temperature at the water-ice interface, as well as within the body of ice, was constant
and at the melting temperature Tm = 0◦ C, such that the thermal flux from the warm
water was exclusively contributing to the melting rate. Specifically, no energy was
expended for heating the ice from below Tm , which was the case for the experiments
by Hao and Tao [3].

The Navier–Stokes equations, with the above assumptions, are

u · ∇u = −1

ρ
∇ p + ν∇2u + g (18.2)

where u is the velocity of the fluid, ρ the fluid density, p the pressure and g the
acceleration due to gravity. The continuity equation (conservation of mass) is

∇ · u = 0 (18.3)
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and the temperature equation, from conservation of energy assuming negligible vis-
cous heating, is given by

u · ∇T = α∇2T (18.4)

where T is the temperature of the fluid, α = k/ρcp the thermal diffusivity with k
the thermal conductivity and cp the specific heat. The melting interface velocity is
calculated using the Stefan condition with

vi = −k

ρiceΔh f

dT

dn

∣
∣
∣
∣
i

n̂ (18.5)

where ρice is the density of the ice, Δh f the latent heat of fusion and n̂ the unit
normal vector at thewater-ice interface and is directed toward the ice. The continuous
motion of themovingwater-ice interface was discretised by displacing each interface
boundary node with

Δxi = Δtmeltvi (18.6)

for each melting time step Δtmelt. Although the flow field was treated as steady state
for each Δtmelt, the surrounding flow evolved with the body over the duration of the
melting process. Here, we made the assumption that the local heat flux at the melting
interface was approximately constant for the duration of Δtmelt.

The Nusselt number describes the ratio between convective and conductive heat
transfer and can be defined locally as

Nui = 2av

T∞ − Ti

dT

dn

∣
∣
∣
∣
i

(18.7)

where av is the radius of the body based on an equivalent sphere of the same volume
and Ti = Tm the temperature at the interface. The Prandtl number is the ratio between
momentum diffusivity and thermal diffusivity and is evaluated with

Pr = ν

α
(18.8)

The drag coefficient is defined as

CD = FD
1
2ρu∞2Ax

(18.9)

where FD is the drag force composed of both pressure and viscous forces.
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18.2.2 Numerical Scheme and Discretisation

The governing equations outlined above were solved by the finite volume method
using the software ANSYS Fluent R17.0 and analysis of results were processed with
MATLAB R2017a. The pressure-based solver was used with the laminar viscous
model and SIMPLEC pressure-velocity coupling, second-order pressure and third-
order MUSCL spatial discretisation schemes were employed for the momentum and
energy equations. The transient solver with the dynamic mesh model was enabled
to apply Eqs. 18.5 and 18.6 with user-defined functions, instead of choosing a less
accurate method such as changing cell types [5]. Two time scales were utilised
in our study: (1) the surrounding flow field with t ; and (2) the melting time step
Δtmelt. The steady state assumption was enforced with a pseudo-infinite time step of
t = 1 × 108 s; we have verified this approach by comparing results with the steady
state solver both here and in a previous study [8]. The dynamic mesh is deployed
at the beginning of each time step in Fluent and therefore Eq.18.6 with Δtmelt was
calculated for every time step after the first.

The boundary condition at the inlet was a uniformly applied normal velocity with
a magnitude of u∞ with T = T∞, while the outlet condition had a zero gauge pres-
sure applied. The boundary of the melting body had a no slip condition with T = Ti
and the far-field boundary had a symmetry boundary condition (zero temperature and
velocity gradients enforced). Initial conditions were calculated from the field prop-
erties from the inlet boundary. Iterative convergence was assessed on area-weighted
average Nusselt number at the interface and was achieved for all simulations.

18.2.3 Meshing Strategy

The computational domain was comprised of a cylinder surrounding the initially
spherical body which was subtracted with a boolean operation, leaving only the
exterior flow field to be modelled. The exterior cylinder had a radius of 20a0, an
upstream length of 20a0 and downstream of 40a0 which were all sufficiently large in
order to reduce blockage, entrance and exit effects respectively. Accurately resolving
the thermal boundary layer at the melting interface was the primary objective for our
simulations, and therefore inflation layers (up to 20) were applied on the surface of
the sphere. The y+ is a dimensionless number describing the cell resolution near a
boundary and is defined as

y+ = Δn

ν

√
τw

ρ
(18.10)

whereΔn is the distance between centroids of the boundary face and its neighbouring
cell, τw the wall shear stress and the fluid properties are evaluated at the temperature
of the neighbouring cell. Mesh convergence of the results were analysed for the static
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(non-deforming) sphere case in Sect. 18.3.1 with a particular attention to the thermal
boundary resolution through measuring y+

max.
An unstructured mesh was selected to validate and apply our model to this type

of grid, and this mesh was generated with ANSYS Meshing R17.0. Tetrahedral
cells are composed of four triangular faces, and consequently, domain boundaries
are a set of stitched triangular faces with an average interior angle of 60◦ and have a
relatively high number of valence nodes (when compared to other geometries such as
squares or polygons). This dense clustering of boundary nodes may lead to bunching
and ultimately numerical issues as discussed in our previous work on erosion of
a cylinder in cross flow [6]. In order to mitigate this problem we transformed the
mostly tetrahedral-based mesh into a polyhedral mesh in Fluent; resulting in a mean
minimum interior angle of approximately 114◦ for all boundary faces. The conversion
to a polyhedral grid reduced the number of cells by a factor of approximately 3.7:
from 385684 to 103449 cells for the chosen (mesh converged) grid. Evolutions of
the mesh at the water-ice boundary are shown in Figs. 18.7 and 18.8.

18.2.4 Node Shuffle Algorithm in 3-D

The primary contribution for this work is the extension and validation of our node
shuffle algorithm into 3-D; the algorithm was originally designed for a cylindrical
deforming boundary which had a 2-D shape evolution [6]. The algorithm involves an
iterative procedure which for each iteration loops through every boundary node and:
(1) shifts the node between the neighbouring nodes; then (2) projects the node back
onto a sphere fitted to neighbouring nodes. The second step is critical for preserving
the overall profile of the boundary; for example without this step, convex bodies
such as a sphere would always reduce in volume which would artificially enhance
the melting rate as modelled in our simulations.

First, each node is shifted in a similar way to Laplacian smoothing [4] with

xn+1
j = xnj + γ

1

N j

N j
∑

k=1

(xnk − xnj ) (18.11)

with the shuffled node using index j , where n is the iteration number, N the number
of valence nodes, k the index of the valence nodes and γ the under-relaxation factor
(0 < γ � 1 and typically γ = 1). Second, the shuffled node is projected back onto a
sphere by holding the spherical angles constant. This fitted sphere is defined by four
points in space: the shuffled node and three nearest valence node coordinates.
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Table 18.1 Mesh convergence of boundary layer resolution and face sizing on sphere. Re = 200
and Pr = 0.72 with 〈y+〉 as the mean y+ at the sphere boundary, NCV the total number of control
volumes, NCN,S the number of cell nodes on the sphere and NCF,S the number of cell faces on the
sphere

Mesh 〈y+〉 y+
max NCV NCN,S NCF,S CD Nu

1 0.298 0.501 95098 5508 2756 0.782 9.116

2 0.148 0.250 103449 5508 2756 0.780 9.159

3 0.058 0.099 114084 5508 2756 0.780 9.198

4 0.137 0.238 46018 1394 699 0.793 9.221

5 0.150 0.251 294110 21632 10818 0.777 9.148

18.3 Results

18.3.1 Validation of Flow Past a Static Sphere

The first task of this study before undertaking the melting sphere cases was to val-
idate the computational model for flow around a static sphere. As mentioned ear-
lier in the methods, the thermal boundary layer is the critical region of the flow to
accurately model for capturing the local temperature gradient, and consequently the
local melting rate. The governing equations employed in our model can be non-
dimensionalised [1] and results in two dimensionless parameters: Re and Nu. In this
section, we set Pr = 0.72, Re = 50, 100, 200 with a = 18mm, and the fluid proper-
ties to their respective freestream temperature values of ρ(x, t) = ρ∞, μ(x, t) = μ∞,
cp(x, t) = cp,∞ and k(x, t) = k∞, in order to quantitatively compare our results with
existing simulations and experiments.

A suitable grid, Mesh 2, was chosen based on a mesh convergence study with a
summary of results shown in Table18.1. The convergence of Nu for boundary layer
resolution is shown between Mesh 1, 2 and 3 where the differences are less than
0.5% between each subsequent refinement, and the influence of face sizing chosen
for the sphere boundary is shown between Mesh 4, 2 and 5 with differences less than
0.7%.

A range of Reynolds number flows were compared against existing simulations,
as shown in Fig. 18.1, in order to validate our model for the range of flow dynamics
experienced during the melting process. The angle θ is measured from the geometric
centroid of the body, between the x-axis and the yz-plane with θ = 0 corresponding
to the stagnation point on the fore. Our results have an excellent agreement with
existing simulation results [1]. The maximum local heat transfer (related to Nu, and
is proportional to melting rate) is found at the fore stagnation point and Nu decreases
for lower Re with a lower limit of Nu = 2 which corresponds to the case of heat
transfer purely by conduction [14].
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Fig. 18.1 Nusselt number distributions around the static (non-deforming) sphere for several
Reynolds number in the axisymmetric flow regime with Pr = 0.72, compared with existing simu-
lation results [1]

18.3.2 Melting Sphere Due to Forced Convection

The first melting sphere case we modelled was with forced convection; isolating the
melting rate from gravitational effects by setting g = 0. The fluid was water with
Pr = 6.78, variable fluid properties were as described in Sect. 18.2.1, Re0 = 200
and a0 = 18mm. A melting time step of Δtmelt = 2 s yielded a converged profile
evolution and was used for both melting cases. An axisymmetric shape evolution
was obtained, as shown in Fig. 18.2, where a flat surface emerges on the aft of the
body; forming a hemispherical shape. The formation of this flat aft was also observed
in experiments [3] for relatively high Re cases where natural convection plays only
a minor role in the melting process.

The melting water-ice interface receded quickest on the fore of the sphere, with
a peak melting rate found at the stagnation point as presented in Fig. 18.3. The
minimum melting rate occurs immediately downstream of the separation point of
θsep ≈ 2π/3.

18.3.3 Melting Sphere with Mixed Convection

The second case we investigated was for mixed convection which had the same
parameters as for Sect. 18.3.2, except that the natural convection due to density
variations causing buoyancy effects were included by applying the gravitational
forcing term g. Axial symmetry of the melting sphere was lost for this case as the
warm water climbed up around the body, in the positive y-direction, resulting in
a balloon-like shape as shown in Fig. 18.4. The balloon is tilted upstream and the
centroid recedes both downstream and in the direction of gravity.
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18.3.4 Heat Transfer and Drag Trends

Themean Nu for the mixed convection case was significantly higher than for the case
of purely forced convection as shown in Fig. 18.5. This result was expected because
themixed convection case is a combination of both the natural and forced heat transfer
types, and the natural convection plays a major role for slowly moving flows. Heat
transfer by natural convection was greatest for the initial spherical body and then
decreased as the melting ice transformed into a balloon shape. Both the magnitude
of Nu and its gradient with Re match reasonably well with extrapolating the results
from experiments [3], indicating that our melting model is generally accurate.1

Trends of the drag coefficient are shown in Fig. 18.6 where CD is defined in
Eq.18.9 with a time-dependent cross-sectional area. Particularly, the CD always
increased for both cases, although FD decreased except at tmelt < 42 s for the mixed
convection case where the drag force slightly increased. Interestingly, under forced
convection CD,0 = 0.849 which is slightly higher than the CD = 0.780 calculated
when all fluid properties were evaluated at T = T∞ (Table18.1). Natural convection
adversely affected the drag on the melting sphere due to the additional motion of
water climbing around the body caused by buoyancy effects, increasing CD,0 by
167%. Both melting cases experienced an increase inCD as their bodies became less
streamlined as shown in Figs. 18.2 and 18.4. Particularly, the mixed convection case
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Fig. 18.2 Profile evolution of the forced convection case with Re0 = 200. The centroid of the
melting sphere is denoted with the crossed marks

1A quantitative comparison between our results and their experiments was not undertaken because
Re0 was lower in our simulations than the cases they investigated.
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Fig. 18.3 Nusselt number distribution around the melting sphere for the forced convection case.
Shade of lines correspond to Fig. 18.2
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Fig. 18.4 Profile evolution of the mixed convection case with Re0 = 200. The centroid of the
melting sphere is denoted with the crossed marks

developed a pair of protrusions at the base of the sphere; as shown in Fig. 18.8 with
the dark regions corresponding to the slowest melting rate.
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Fig. 18.5 Mean Nusselt number (surface area-averaged) over time for both melting sphere cases
where Re0 = 200
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Fig. 18.6 Drag coefficient over time for both melting sphere cases where Re0 = 200

18.4 Discussion

18.4.1 Symmetric and Asymmetric Profiles

Without natural convection, the flow and consequently the melting rate was axisym-
metric throughout the melting process as expected for Re � 200 conditions [10].
Recirculation behind the aft of the sphere enhanced the melting rate, resulting in a
flat profile with a sharp ridge located at the separation point; separating the curved
fore and flat aft. A similar phenomena was observed with experiments for the disso-
lution of hard candy in flowing water [9] where a roughly hemispherical shape was
formed at Re = O(104). The physical mechanisms responsible for driving the mov-
ing interface in both melting and dissolution problems are similar [11], inasmuch as
the constitutive equations include a problem dependent constant multiplied by the
temperature or concentration gradients respectively.
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Both the symmetric and asymmetric profiles resulted in an increased drag coef-
ficient; a phenomena in contrast to what we found for the case of an eroding cylin-
der [6]. The eroding cylinder surface was driven by wall shear stress (function of
velocity gradient) instead of heat flux (function of temperature gradient), causing
different shape dynamics. Although the Nusselt number, which is dependent on the
temperature gradient, decreases for both cases; indicating that the profiles become
less prone to melting.

18.4.2 Node Shuffling in 3-D Space

This study has proven that the node shuffle algorithm extends to three spatial coor-
dinates on arbitrary meshes (unstructured grids including nodes with an arbitrary
number of valences), and we found that including this algorithm delayed the onset
of mesh degradation. One key benefit of employing this algorithm is the retention of
node connectivity between time steps; such that recreating the mesh after each shape
change is not required (computationally expensive). Another primary benefit is that
the surface profile is preserved overmany deformation steps; accurately capturing the
melting body evolution without artificially under or overestimating the melting rate.
The volume V of the void within the computational domain, representing the melt-
ing body, shrunk to 0.374V0 (mixed convection) and 0.147V0 (forced convection); a
significant volume change for the mesh to tackle.

Polyhedral cells were chosen over tetrahedral cells, as reasoned in Sect. 18.2.3,
and several snapshots of the mesh at the interface are shown in Figs. 18.7 and 18.8.
The naturally larger interior angles of the polygons were more effective at node
shuffling than the triangular boundary faces when compared in preliminary tests;
where the tetrahedral grids tended to bunch and cause numerical issues earlier than
the polyhedral grids. The resolution of the ridge which formed on the hemispherical
body was limited by the boundary nodes. Either refining the mesh or switching to
a structured grid would help capture this geometric feature. Typically, a structured
grid, decomposed of several subdomain blocks, would be suitable for modelling flow
past a sphere [13] in order to limit numerical diffusion. Our node shuffle algorithm
could be directly applied to unstructured grids with the same procedure.

Regionswhich caused numerical issueswere locatedwhere the curvature changed
significantly: the ridge around the hemisphere (forced convection) and the base of the
balloon (mixed convection). Boundary faces at the water-ice interface appear well
defined and of good quality, although the interior mesh cells became significantly
skewed and of poor quality. A diffusion based smoothing method was applied on
the interior cells with the dynamic mesh model of Fluent; however, we found that a
linearly elastic solid model (not available for polyhedral grids in Fluent) performs
better in cases with non-uniform shape deformations including node shuffling which
effectively pulls the nodes around the body. The simulations could be prolonged by
improving how the interior mesh deforms over time, with the aim of reducing the
cell skewness near the water-ice interface.



228 J. N. Hewett and M. Sellier

Fig. 18.7 Shape evolution of a melting body of ice under forced convection. The snapshots corre-
spond to t = 0 s, 70 s, 140 s, 210 s, 280 s and 350 s. Boundary faces are shaded based on Nu from
dark (low Nu) to light (high Nu)

Fig. 18.8 Shape evolution under mixed convection. The snapshots correspond to t = 0 s (left), 70 s
(center) and 140 s (right). Boundary faces are shaded based on Nu with the same scale as Fig. 18.7
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18.5 Conclusion

In this work we extended our node shuffle algorithm from 2-D to 3-D and applied
this algorithm tomodel a melting sphere of ice in cross flow. Polyhedral meshes were
employed for the simulations in order to validate our model with unstructured grids;
and the algorithm could also be applied to a structured grid. The volume of melted
ice was up to 85.3% and the final geometries were significantly different from their
initial spheres; demonstrating that a single mesh can be deformed for large volume
and shape changes without the requirement of completely remeshing the domain.
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Chapter 19
Analysis of 3D Crack Boundary
Problems by Means of the Enriched
Scaled Boundary Finite Element Method

Sascha Hell and Wilfried Becker

Abstract In fracture mechanics, a demanding challenge is the analysis of truly
three-dimensional crack boundary value problems. For instance laminate structures
composed of fiber-reinforced plies are typically prone to the formation of inter-fiber
cracks because of the given strongly anisotropic stiffness and strength properties.
These inter-fiber cracks commonly run through complete plies but are stopped at the
ply interfaces. This leads to non-standard three-dimensional crack configurations
with locally singular stress fields which should be investigated in regard of their
criticality. For that purpose, the Scaled Boundary Finite Element Method turns out
to be an appropriate and effective analysis method that permits solving linear elastic
mechanical problems including stress singularitieswith comparably little effort.Only
the boundary is discretized by two-dimensional finite elements while the problem
is considered analytically in the direction of the dimensionless radial coordinate ξ.
A corresponding separation of variables representation for the displacement field
employed in the virtual work equation leads to a system of differential equations
of Cauchy-Euler type. This differential equation system can be converted into an
eigenvalue problem and solved by standard eigenvalue solvers for non-symmetric
matrices. Depending on the given load the respective 3D stress singularities may
lead to subsequent crack initiation and propagation, i.e. secondary moving cracks
(with correspondingly moving boundaries). For the analysis of these secondary 3D
crack configurations the Scaled Boundary Finite Element Method has been extended
by an appropriate enrichment of the displacement representations. This leads to a
clearly better numerical performance and computational efficiency compared to the
standard Scaled Boundary Finite Element Method.
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Fig. 19.1 Three-dimensional crack configurations in a cross-ply laminate with locations of stress-
singularities

19.1 Introduction

In laminate structures composed of unidirectionally reinforced single plies the occur-
rence of inter-fiber cracks is very common because of the typically highly anisotropic
stiffness and strength properties. This may happen from mechanical, but also from
thermomechanical or hygromechanical loading. The inter-fiber cracks commonly
run through complete plies and then are stopped at the ply interfaces where they may
meet. In addition delamination cracks may occur. This results in non-standard three-
dimensional crack configurations as they are depicted schematically in Fig. 19.1.
At the red-dotted points in Fig. 19.1 three-dimensional stress singularities arise, not
only when two crack fronts meet but also when a crack front meets a free laminate
edge. All these 3D configurations are of high interest in regard of their criticality
[1–5].

19.2 The Scaled Boundary Finite Element Method

The Scaled Boundary Finite Element Method (SBFEM) [6, 7] is a semi-analytical
methodwhich combines the advantages of theBoundaryElementMethod (BEM) and
the Finite ElementMethod (FEM). Comparable to the BEM, only the boundary, or in
some cases even only parts of the boundary, need to be discretized. At the same time,
the problem of strongly singular integrands, present in the BEM-approach, does not
exist in the SBFEM. This is because the SBFEM is based on a variational principle
and does not need any fundamental solutions. The so-called geometric scalability is a
fundamental requirement of the SBFEM. It requires that the connection of any point
on the boundary with the scaling center with a straight line must be possible without
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Fig. 19.2 Scaling
coordinate system of the
SBFEM

any intersections. Accordingly, a scaled boundary coordinate system is defined with
its origin at the scaling center in aCartesian coordinate system.The scaling coordinate
ξ runs from the scaling center ξ � 0 to the boundary ξ � 1. In case of a 2D problem,
a boundary coordinate η runs along the boundary. In the 3D case, two boundary
coordinates η1 and η2 describe the surface of the body. Figure 19.2 illustrates this
situation.

For an analysis of thewhole domain only the boundary is discretized using isopara-
metric finite elements and shape functions N(η1, η2). The problem is still considered
analytically in the scaling coordinate ξ . Thus, vector functions u(ξ ) are introduced
for the displacements on rays pointing from the scaling center to the finite element
nodes on the boundary and the following kind of product ansatz or separation of
variables ansatz is chosen:

u(ξ, η1, η2) � N(η1, η2)u(ξ ) (19.1)

If this displacement representation is used within the principle of minimum total
potential and the variations and integrations are performed finally a homogeneous
differential equation system of Cauchy-Euler type is obtained:

ξ 2E0u(ξ),ξξ +ξ
[
2E0 − E1 + ET

1

]
u(ξ),ξ +

[
ET

1 − E2
]
u(ξ) � 0. (19.2)

Here the quantities E0, E1, E2 are a kind of appropriately defined non-symmetric
“stiffness matrices”. This equation system can be solved by transformation to a
quadratic eigenvalue problem and eventually leads to the following kind of solution

u(ξ) �
nλ∑

i�1

cpiξ
λpi φpi + cniξ

λni φni (19.3)
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where the positive and negative exponents λpi, λni are the eigenvalues of the eigen-
value problem, the quantities φpi, φni are the corresponding eigenvectors and the
constants cpi, cni can be identified from the given boundary conditions. So far, this
kind of method is standard and is described for instance in [6].

In order to make the scaled boundary finite element method more efficient for
the case of three-dimensional crack problems where there are meeting straight crack
fronts an enriched separation of variables approach has been chosen and implemented
[4]. It is of the following kind:

ui (ξ,η1,η2) �
∑

k∈N
Nk(η1,η2)uik(ξ) +

∑

l∈P

Nl(η1,η2)

. . .

[
ns∑

s�1

nF∑

m�1

(

Fism(r,ϕ) −
∑

k∈N
Nk(η1,η2)Fism(rk,ϕk)asm(ξ)

]

(19.4)

where the functions Fism come from an appropriate 2D crack solution (e.g. also from
a scaled boundary finite element analysis). The details of the implementation can be
found in [4].

19.3 Analysis of Two Perpendicularly Meeting Inter-Fiber
Cracks

As a representative 3D crack problem the situation of two perpendicularly meeting
inter-fiber cracks in a [0°/90°]-laminate is considered. The local configuration and
the employed SBFEM-surface mesh are shown in the left part of Fig. 19.3.

The SBFEM eigenvalue problem yields 6 independent crack deformation modes.
Two of them are shown in the right part of Fig. 19.3. These deformation modes
are characterized by singularity exponents that are different from the standard stress
singularity exponent −0.5 for plane 2D cracks. The singularity exponents may be of
a smaller absolute value than 0.5, but they may also be stronger (so-called “super-
singularities”). It is a remarkable advantage of the SBFEM that it gives these singu-
larity orders with high precision without the need of any post-processing. The effect
of the enrichment of the SBFEM on the convergence properties has been studied
thoroughly and it has been confirmed that in general the convergence rate at refining
themesh is significantly better when an enrichment is employed. For the two opening
deformation modes of Fig. 19.3 this can be seen in Fig. 19.4.

The singular stress concentration at the location of two perpendicularly meeting
inter-fiber cracks makes this location very prone for the initiation of a “secondary”
crack in the interface plane, see Fig. 19.5.

For the assessment of the respective “post-cracked” problem the scaled boundary
finite element method has to be employed in such amanner that it takes into account a
post crack in the interface. To keep things as simple as possible only a quarter-model
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Fig. 19.3 Crack configuration, SBFEM surface mesh and crack opening modes

Fig. 19.4 Convergence of
the standard SBFEM and the
enriched SBFEM with mesh
refinement for the considered
two crack opening modes
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Fig. 19.5 Exemplary plot of stress effort for deformation mode with Re(λ3D − 1) � 0.4554. a,
b Failure mode concept by Cuntze [7]. c Stress effort derived from Puck’s action plane concept [8]

Fig. 19.6 SBFEM modeling of scalable triangular crack as a two-boundaries problem

is considered and a triangular shape has been assumed for the initiated crack. To
simulate the crack initiation and propagation the SBFEM model has been modified
in such a manner as it is sketched in Fig. 19.6. There is an inner SBFEMmodel with
the triangular crack and two scaling centers at the ends of the crack front and there
is an outer SBFEM model with the scaling center at the location of the originally
meeting two inter-fiber cracks. By simply scaling the inner model different sizes
of the secondary triangular crack can be simulated. The inner and outer models
are combined to a so-called two-boundaries problem. As a result all required field
quantities are efficiently available for any kind of cracking state.
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19.4 Finite Fracture Mechanics Assessment

The initiation of a delamination cannot be predicted solely on the basis of the stress
distribution for the non-delaminated situation since the presence of the stress sin-
gularity would always predict failure, even for arbitrarily small loads. On the other
hand, the consideration of the energy release rate for a starting crack would not
either allow to predict crack initiation since the energy release rate starts with the
value zero. The way out of this unclear situation is challenging. From a very funda-
mental point-of-view such problems can be tackled by a variational approach free
from a pre-existing crack as it has been suggested by Francfort and Marigo [9]. The
corresponding computational effort however is very significant.

An easier way in this situation is possible in the framework of Finite Fracture
Mechanics using a coupled stress and energy criterion, as it has originally been
suggested by Leguillon [3]. The respective concept is to assume an instantaneous
initiation of a crack of finite size when an appropriate strength criterion is fulfilled
over the whole area �A of the generated crack and when at the same time the so-
called incremental or averaged energy release rate Ḡ is sufficiently large to overcome
the fracture toughness Gc of the material:

f
(
σi j

) ≥ σc

∧
Ḡ ≥ Gc. (19.5)

In this connection the incremental energy release rate can be calculated from the
change of the total potential as Ḡ � −�Π/�A. The effective strength of a structure
can be assessed by determining the smallest load for which the coupled criterion
(19.5) is fulfilled for the first time. Mathematically this leads to an optimization
problem which has to be solved by standard optimization calculus. In most cases this
optimization problem can also be solved by an iterative procedure where the applied
load and the generated crack size are modified stepwise until both subcriteria of
condition (19.5) are fulfilled in a sufficiently precise manner. The solution of the
optimization problem then consists in the critical load (or effective strength) and the
size of the instantaneously generated crack.

In the case of the present two perpendicularly meeting inter-fiber cracks in a
standard CFRP cross-ply laminate made of T800/epoxy material (with a transverse
tensile strength of 55 N/mm2 and a fracture toughness of 0.14 N/mm) the initiation of
a secondary delamination crack happens under a biaxial tensile load of about 0.4%
elongation. The generated secondary crack size is predicted to be of the order of
10−3 mm2. Of course, this is a very small crack size, but nevertheless an interesting
outcome.
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19.5 Summary and Conclusion

The semi-analytical Scaled Boundary Finite Element Method turns out to be an
appropriate method for the analysis of three-dimensional crack configurations where
the requirement of scalability is fulfilled. The advantage of this method is that only
the boundary of the considered solid body needs to be discretized. When there are
stress singularities in the underlying configuration and the scaling center is placed
directly at the location of the singularity, all singularity orders can be identified
with little effort and high precision, even when they include super-singularities. The
SBFEM has been enhanced by the implementation of a well-adjusted enrichment
around meeting straight crack fronts. This implementation is working well and the
enrichment leads to a significantly enhanced convergence behavior.

By means of the enriched SBFEM the situation of two perpendicularly meeting
inter-fiber cracks has been analyzed more thoroughly. The initiation and growth of a
triangular interface delamination crack has been taken into account by a correspond-
ing scalable two boundariesmodel. Bymeans of a coupled stress and energy criterion
in the framework of Finite Fracture Mechanics the effective strength or critical load
can be assessed with the implemented approach.

The implemented kind of approach and analysis has been tested so far only for two
perpendicularly meeting inter-fiber cracks. It should, however, also work for other
crack orientations, for the interaction of a delamination with an inter-fiber crack and
also for the interaction of an inter-fiber crack with a free edge. This is left for future
work.
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Chapter 20
Analysis of Dynamic Variable Mass
and Variable Parameter Systems
Applying Semi-analytic Time-Integration

Helmut J. Holl

Abstract For open dynamic systems with moving boundaries the derivation of the
equations of motion and the computation of the solution for the vibrations is dis-
cussed. The mechanical model has to consider the variable mass by the flow of mass
through the boundary of the applied control volume and the variable parameter of the
system in the derivation of the equations of motion. An efficient semi-analytic time-
integration algorithm is introduced, analysed with respect to the numerical behaviour
and applied to compute the solution of the non-symmetric and non-linear equations
of motion. As an example a defined winding process in a Steckel mill is considered
and the computed results of some characteristic forces and displacements are shown
for given operation conditions.

Keywords Open system · Non-symmetric · Variable mass · Variable parameter ·
Time-integration · Semi-analytic

20.1 Introduction

The accurate computation of the vibrations in open dynamic systems with moving
boundaries is important. Open systems considered within this context are winding
processes, increase of load of a carrier, rockets and transportation of mass in a pro-
duction system. There are two main items which have to be analysed. At first the
effect of variable mass has to be considered which leads to the extended equations
of Lagrange. These equations have to be used for the derivation of the equations of
motion for such a system. The second item is the time-integration for such dynamic
systems which has to consider efficiently the variable parameters and the variable
mass terms as well as the non-linearity in the system and additionally has to guar-
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antee a converged solution. A long time scale has to be computed as the production
process usually is a long term procedure, where frequently also non-steady opera-
tion conditions occur. Therefore the numerical behavior of the algorithm has to be
analysed carefully to give an efficient computation of the results. In this contribution
a new approximation is used for the integration of the coordinate dependent force
which are considered on the right hand side of the equation of motion. The applied
approximation results in an unconditionally stable algorithm also for the variable
mass terms and a high accuracy of the results.

The formulation of the extended equations ofLagrange has been derived by Irschik
and Holl [1] for the use of Euler coordinates. The well known equations of Lagrange
are restricted to constant mass systems only, see Ziegler [2], and the use of the
extended equation of Lagrange is necessary to consider the flow of mass and energy
through the boundary of the control volume of the system. Frequently non-linearities
are present in the system and the parameters vary with time as the stiffness and some
system parameters change. In Irschik and Holl [3] some contributions to dynamic
systems with variable mass are discussed with respect to the balance of mass and
linearmomentum.From the cited literature it can be stated that dynamic variablemass
systems are of permanent interest. The formulation ofMeshchersky’s reactive force is
used by Cveticanin in [4] within various examples for variable mass open systems in
production systems and manipulators. The Lagrange equations for a special variable
mass system are discussed by Pesce in [5] for a system of particles and are applied
to the deploying of a heavy cable from a reel and the impact of a rigid body to
the free surface of a fluid. A generalized formulation of the Hamilton principle for
non-material volumes is derived by Pesce and Casetta in [6]. In finding a constant of
motion Casetta et al. [7] derived a formulation usingNoether’s theorem and applied it
to the uncoiling of a strip from a drum. Casetta [8] introduced a new conservation law
for dynamic systems for position dependentmass particles.Aprinciple of generalized
velocities is derived by Cveticanin in [9] and is applied to the separation of a rigid
body. The symmetric and conserved quantities are discussed by Jiang and Xia in [10]
and applied to a strip coiling drum.

A time integration scheme for dynamic systems described by a differential equa-
tion of second order is given byNewmark in [11] and this scheme has frequently been
expanded and improved with different assumptions and applications. Some repre-
sentative work is given in Chung and Hulbert in [12] and in Hilber et al. in [13] with
emphasis to improve the numerical behaviour of themethod. Fung [14] introduced an
algorithm using polynomial approximations and collocation points, gives a compari-
son with Runge–Kutta methods and showed the spectral radius of the derivedmethod
in [15]. From the results it can be seen that the parameters of the method determine
the stability of the algorithm. A half-explicit timestepping scheme is discussed by
Schindler et al. [16] for the solution of contact problems in dynamic systems and is
applied to a rotordynamic system to show the efficiency of the method. Soares [17]
used an adaptive parameter depending on the critical frequency in order to get an
unconditional stable algorithm. For a system with few coordinates a transformation
to a system of differential equations of first order can be used and the solution is
computed by a suitable Runge–Kutta method. Hairer [18] shows some numerical
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solution methods and their behaviour and discusses the suitable application of dif-
ferent methods. The derivation and application of a semi-analytic time-integration
algorithm is shown for rotordynamic systems by Holl in [19] and has been applied to
non-symmetric and non-linear cases [20], where the numerical behaviour and effi-
ciency for non-symmetric and non-linear systems is demonstrated. Exact solutions
are known for special kinds of variable mass systems, which have been used by Holl
et al. in [21] to evaluate a first approach for the semi-analytic time-integration.

20.2 Semi-Analytic Time-Integration Algorithm

20.2.1 Derivation of the Algorithm

With the extended equations of Lagrange for open systems the differential equation
of motion for the mechanical system can be derived in the general form

M Ẍ + (
D + G + Ṁ

)
Ẋ + (K + N)X + FN = F(t) (20.1)

where M is the mass matrix, Ṁ its time-derivative, D is the damping matrix, G
represents the gyroskopic matrix, K is the stiffness matrix, N is the matrix of the
circulatory forces, FN is the vector of non-linear restoring forces, F(t) is the vector
of the excitation forces, X(t) is the vector of coordinates or degrees of freedom
and n is the total number of degrees of freedom. D = DM + DN is subdivided into
the part DM which is diagonalized with a modal transformation and the residual
(usually non-classic or non-symmetric) damping matrix DN . The algorithm starts
with a separation of the solution into a quasi-static and a dynamic part

X = XS + XD, (20.2)

where the quasi-static part is computed by

K XS = F(t) (20.3)

and the differential equation for the dynamic part is rewritten suitable for the appli-
cation of the modal analysis in the form

M ẌD + DM ẊD + K XD = −FN − (K + N) XS − (
D + G + Ṁ

)
ẊS

−M ẌS − (
DN + G + Ṁ

)
ẊD − N XD. (20.4)

The application of modal analysis with the modal transformation

XD = � qD (20.5)
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and the identities �TM� = I, �TDM� = � = diag(2ζiωi ) and �TK� = � =
diag(ω2

i ) gives the i th modal equation for the dynamic part

q̈Di + 2ζiωi q̇Di + ω2
i qDi = −�T

i FN − �T
i (K + N)XS − �T

i

(
D + G + Ṁ

)
ẊS

−�T
i M ẌS − �T

i

(
DN + G + Ṁ

)
� q̇D − �T

i N � qD = �T
i P. (20.6)

Due to the non-symmetric matrices on the right hand side of the equations, the solu-
tion is not decoupled and a certain coupling between themodal coordinates is present.
A time-stepping procedure has to consider the time evolution of the dynamic part
of the solution. If the right hand side in (20.6) is summarized by an excitation force
vector P and due to the modal transformation Pi (τ ) = �T

i P the exact formulation

for a linear system for the i th degree of freedom with ωid = ωi

√
1 − ζ2i and for a

discrete time step Δt instead of the time t is

{
qDi

q̇Di

}

Δt

=
[
Ai11 Ai12

Ai21 Ai22

]

Δt

{
qDi0

q̇Di0

}
+ 1

m

Δt∫

0

e−ζiωi (Δt−τ )

{
gi1(Δt − τ )

gi2(Δt − τ )

}
Pi (τ )dτ

(20.7)
with the abbreviations

Ai11 = e−ζiωiΔt

⎡

⎣cos (ωidΔt) + ζi√
1 − ζ2i

sin (ωidΔt)

⎤

⎦ , (20.8a)

Ai12 = e−ζiωiΔt 1

ωid
sin (ωidΔt) , (20.8b)

Ai21 = −e−ζiωiΔt ωi√
1 − ζ2i

sin (ωidΔt) , (20.8c)

Ai22 = e−ζiωiΔt

⎡

⎣cos (ωidΔt) − ζi√
1 − ζ2i

sin (ωidΔt)

⎤

⎦ , (20.8d)

gi1(Δt − τ ) = 1

ωid
sin [ωid (Δt − τ )] , (20.8e)

gi2(Δt − τ ) = cos [ωid (Δt − τ )] − ζi√
1 − ζ2i

sin [ωid (Δt − τ )] . (20.8f)

In this semi-analytic time-integration procedure the approximation of the excitation
force in (20.6) has to be defined within the mth time step Δt = tm+1 − tm
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Pi (τ ) = Pim + ΔPim
τ

tm+1 − tm
+ 4 ΔΔPim

(tm+1 − tm)2
τ (tm+1 − tm − τ ) , (20.9)

where Pim is the i th force at the begin of the time step tm , ΔPim is the increment
within the considered time step and with the force in the middle of the time step
Pim+ 1

2
it follows for the parameter of the quadratic interpolation

ΔΔPim = Pim+ 1
2
− Pim − ΔPim

2
. (20.10)

After integration for one time step it results

{
qDi

q̇Di

}

Δt

=
[
Ai11 Ai12

Ai21 Ai22

]

Δt

{
qDi0

q̇Di0

}
+

[
Li11 Li12 Li13

Li21 Li22 Li23

]

Δt

⎧
⎨

⎩

Pim
ΔPim

ΔΔPim

⎫
⎬

⎭
(20.11)

with the elements of the load transfer matrices

Li11 = 1

ω2
i

⎡

⎣1 − e−ζiωiΔt

⎛

⎝cos (ωidΔt) + ζi√
1 − ζ2i

sin (ωidΔt)

⎞

⎠

⎤

⎦ , (20.12a)

Li12 = ωiΔt − 2ζi
ω3
i Δt

+ e−ζiωiΔt

ω3
i Δt

⎛

⎝2ζi cos (ωidΔt) − 1 − 2ζ2i√
1 − ζ2i

sin (ωidΔt)

⎞

⎠ ,

(20.12b)

Li13 = 8
(
1 + ζiωiΔt − 4ζ2i

)

ω4
i Δt2

− 4 e−ζiωiΔt

ω4
i Δt2

[
2
(
1 − 4ζ2i − ζiωiΔt

)
cos (ωidΔt)

+
(
1 − 2ζ2i

)
ωiΔt + 2ζi

(
3 − 4ζ2i

)

√
1 − ζ2i

sin (ωidΔt)

]
, (20.12c)

Li21 = e−ζiωiΔt 1

ωid
sin (ωidΔt) , (20.12d)

Li22 = 1

ω2
i Δt

⎡

⎣1 − e−ζiωiΔt

⎛

⎝cos (ωidΔt) + ζi√
1 − ζ2i

sin (ωidΔt)

⎞

⎠

⎤

⎦ , (20.12e)
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Li23 = 4

ω3
i Δt2

[
4ζi − ωiΔt + e−ζiωiΔt

(
2
(
1 − 2ζ2i

) − ζiωiΔt
√
1 − ζ2i

sin (ωidΔt)

− (ωiΔt + 4ζi ) cos (ωidΔt)

)]
. (20.12f)

With the formulation (20.11) the solution at the end of the time step can be com-
puted. However in the load vector parameters Pim , ΔPim and ΔΔPim in (20.6) the
unknown coordinates are involved. Among different possible approximations of the
time evolution of the unknown coordinates within the time step, for this analysis a
linear variation is used for the displacement and the velocity and a constant value is
taken for the acceleration of the coordinates:

qDi (τ ) = qDi0 + qDi − qDi0

Δt
τ ; q̇Di (τ ) = q̇Di0 + q̇Di − q̇Di0

Δt
τ ; q̈Di (τ ) = q̇Di − q̇Di0

Δt
.

(20.13)

These approximations result in a very efficient algorithm and involves the unknown
solution at the end of the time step qDi and q̇Di . Inserting these approximations
(20.13) in (20.11) and solving for the solution of the coordinates at the end of the
time step after some algebraic manipulations it results for the incremental form with
ΔqDi = qDi − qDi0 and Δq̇Di = q̇Di − q̇Di0

{
ΔqDi

Δq̇Di

}
= Ai SA

{
qDi0

q̇Di0

}
+ Li SA ΔPi N (20.14)

The transfer matrix Ai SA and the load transfer matrix Li SA for the implicit semi-
analytic procedure depend on the used approximation (20.13), where ΔPi N is the
increment of the non-linear force for the i th modal coordinate. Due to the non-
linearity in (20.6) an incremental form and an iteration procedure is necessary. Finally
the total solution is computed from the quasi-static and the dynamic part of the
solution. There are different possible assumptions about the time evolution of the
kinematic solution so that a family of algorithms with different transfer matrices can
be derived. The present assumptions (20.13) lead to an efficient algorithm and some
further improvements are under current research.

20.2.2 Error and Stability Analysis of the Algorithm

The analysis of the numerical behavior of the algorithm is performed by evaluating
the accuracy in the form of the local and global error and the stability by evaluating
the spectral radius of the algorithm which is shown by Hilber in [13] and Fung in
[15]. This analysis is performed in the literature for linear and symmetric systems
which are suitable for modal analysis as an exact reference solution is advantageous
to compute the error. As the above presented semi-analytic method is exact in this
case the error for such dynamic system vanish. So an enhanced error analysis has to
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Fig. 20.1 Analysis of the
spectral radius for damping
force excitation

be performed. Analogous to the reformulations of (20.6) used in the derivations of
the semi-analytic method for a single degree of freedom oscillator as a representative
example portions of the system parameters are considered on the right hand side of
the linear system

q̈ + 2ζωq̇ + ω2q = f − αq − 2ηωq̇ − χq̈. (20.15)

For this dynamic SDOF-system a portion of the damping η, a part of the massχ and a
part of the stiffnessα is considered as an excitation force to the dynamic system. This
has the advantage that the numerical behavior can be analysed for each part separately
and an exact solution is known for this designed test case. In computing the transfer
matrixASA for the system (20.15) the approximations (20.13) are used in (20.11) and
manipulated as explained in the above section. The accuracy is computed based on
the truncation error which for the present algorithm is of second order. The stability is
computed considering the maximum of the absolute values of the eigenvalues of the
resulting transfer matrixASA. Furthermore it can be shown for some non-symmetric
coupled matrices these results are also valid and similar.

In a first step the undampled oscillator (ζ = 0) is considered which is excited
only by the damping force 2ηωq̇ on the right hand side. With the assumption for the
kinematic variables of (20.13) some computations are performed in order to get the
formulation (20.14). When analysing the spectral radius of the transfer matrix for
different dimensionless time steps the result is shown in Fig. 20.1 for two damping
values, where the exact solution and the results for the algorithm is given. It can be
stated that this algorithm is unconditionally stable as the spectral radius is less than
one for all time steps. In a second step the portion of the stiffness parameter α is
considered, which would represent a non-linearity in the system by the term αq in
(20.15). The same procedure is performed again and in Fig. 20.2 the result is shown
for a damped oscillator ζ = 0.1 and a value for the non-linearity of α = 0.3 for
the present method. Additionally the results for the Newmark method and the exact
values are shown. It can be seen, that the eigenvalues of the present method are very
close to the exact solution. In a third step the excitation force is assumed to depend
on a portion χ of the mass. Again for a damped oscillator (ζ = 0.02) and different
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Fig. 20.2 Analysis of the
spectral radius for stiffness
proportional force excitation

Fig. 20.3 Analysis of the
spectral radius for splitted
mass force excitation

values of the portion of the mass χ it can be seen in Fig. 20.3 an unconditionally
stable method however there are also parameters for higher values of χ where the
resulting algorithm is only conditionally stable and hence for these parameters cannot
be used to solve a problem with many degrees of freedom which can be shown when
applying modal transformation to such a system.

20.3 Mechanical Model of a Winding Process in a Steckel
Mill

In a Steckel mill usually steel sheets are reversibly rolled and coiled in a storage
unit situated on both sides where the temperature of the steel strip is homogenized.
The strip passes the roller stand alternating in both directions where the thickness is
reduced in a rolling mill stand situated between the two coiling units. A mechanical
model of such a coiling unit is shown in Fig. 20.4, where the shown surface of the
control volume on the left side defines the exit of the rolling mill stand where the
steel strip moves with an axial speed ṡB . With the strip thickness h and the strip width
b the flow of mass is defined by ṁ = ρ b h ṡB .
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Fig. 20.4 Mechanical model of the Steckel mill

The rolled steel sheet with a defined thickness leaves the rolling mill stand and
passes a pair of pitch rolls, which have the number 3© in Fig. 20.4, where the applied
torque maintains a certain strip tension force. The strip passes the deflector roll 2©
before it is coiled on the coiling drum 1©, where the outer radius changes with
the number of layers of the sheet. At the three rotating units a torque is applied to
get a good process and performance for a high quality of the product. The accurate
simulation of the coiling process of the strip on the coiling drum would be very
complicated but for sake of simplicity it is assumed that there is no relative motion
between the coiled sheet and the layers are fixed on the drum when they touch the
coiling drum. The rotating drum is modeled as a Laval-rotor and the elastic shaft
involves a global Ritz’ approximation where a variable stiffness results as the coiled
sheets contribute to the stiffness. Due to the coiled strip the mass of the coiling
drum changes with ṁC = ρ b h ϕ̇ r . No thermal deformation of the coiling drum
is considered which corresponds to a homogeneous temperature distribution. The
shown rigid bearings in Fig. 20.4 for the rolls are mounted on both ends of the elastic
shaft so that a deflection coordinate is introduced considering the bending with a
stiffness according to a Ritz approximation with one coordinate. When considering
the variable outer radius of the coiling drum an Archimedian spiral r = r0 + h

2 π
ϕ

is used, where h is the sheet thickness. The axially moving steel strip is modeled
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considering longitudinal and transversal deformations in the regions between the
rotating units using Ritz approximations, Ziegler [2]. For the longitudinal motion of
the strip a linear Ritz approximation u∗(ξ, t) = uL + (1 − ξ

L0
)uR is applied, where

ξ is the longitudinal coordinate, uL is the strip length on the left side of the consid-
ered region with the length L0 and uR is the strip length on the right side, which
are defined by the rotation angles of the rolls. For the transversal deflection of

the strip the Ritz approximation w∗(ξ, t) = w∗
B(ξ, t) + gL

(
1 − ξ

L0

)
+ gR

ξ
L0

with

w∗
B(ξ, t) = sin2

(
ξπ
L0

)
qT (t) is used, where gL = 0 at the left and gR = yW − r at

the right side of the region. The absolute transversal velocity of the moving strip is
ẇ∗(ξ, t) = ẇ∗

B(ξ, t) + dw∗
B (ξ,t)
dξ

u̇∗(ξ, t) + (ẏW − ṙ) ξ
L0
.With the kinetic energy of the

moving strip TS = 1
2

L0∫

0
ρAu̇∗(ξ, t)2dξ + 1

2

L0∫

0
ρAẇ∗(ξ, t)2dξ, where the Rayleigh–

Ritz approximation is inserted and integrated. The potential energy using the strain
in the strip εS = εxx − zw′′ + 1

2w
′2 gives

VS = 1

2

L0∫

0

[

E A

(
∂u∗

∂ξ

)2

+ E IS

(
∂2w∗

∂ξ2

)2
]

dξ +
L0∫

0

FB

2

(
∂w∗

B

∂ξ

)2

dξ (20.16)

and with the above given Rayleigh–Ritz approximation after the integration results
in VS = cS

2 (sR − sL)
2 + E JSπ4

L3
0

q2 + FBπ2

4L0
q2
T , which involves a coupling between the

bending of the coiling drum and the axial motion of the strip. The steel strip enters the
control volume with the speed ṡB and the speed when attaching the coiling drum can
be computed from the time derivative of the coiled strip length. For the Archimedian

spiral sR = r0ϕ + hϕ2

4π + xW − π2q2
T

4L0
is the coiled strip length with homogeneous ini-

tial condition, ϕ the rotation angle and xW is the horizontal coordinate of the center
of the shaft of the coiling drum.

With the actual momentum of inertia the kinetic energy of the coiling drum is

given by TC = mC
ẋ2S+ẏ2S

2 + JC
ϕ̇2

2 , where themomentum of inertia JC = mC
2

(
r2 + r̄20

)

increases with the outer radius. The potential energy considers the deflection of
the coiled drum VC = cC

2

[
(xW − xW0)

2 + (yW − yW0)
2
] − mCgyS , where cC is the

computed bending stiffness of the coiling drum. The generalized forces for the
extended Lagrange equations consider a damping at the rotating units. The resulting
10◦ of freedom of the system are the vertical and horizontal motion of the center
of the coiling drum and the deflector roll, the rotation angles, the vertical motion
of the pitch roll, the longitudinal and transversal sheet deformations in both regions
between the rotating units. No gaps are allowed in the driving units and the controlled
torques are applied at the rollers and the coiling drum. The resulting equations of
motion after performing the described derivation cannot be given here as for all
coordinates lengthy equations result.
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Fig. 20.5 Defined data of
the strip length, speed and
acceleration

20.4 Computed Results

The computation of the solution of the derived equations of motion for the open
system with variable mass and variable parameter inserting proper system param-
eters (a12 = 1.8m, a23 = 1.05m, l12 = 1.12m, l23 = 0.83m, mC = 5000kg, IC =
2350kgm2, r = 0.7m, M1 = −150kNm, M2 = 0Nm, M3 = 20.6kNm, b = 0.9m,
h = 15mm, ρ = 7800kg/m3) is performed. As an example a given production pro-
cess of a Steckel mill is considered with a defined speed profile, the corresponding
axially moving strip length and the acceleration profile are shown in Fig. 20.5. The
corresponding rotation angles are given in Fig. 20.6 and the resulting strip tension
forces are shown in Fig. 20.7. The driving moments at the rotating units are kept
constant in this representative example, so it can be seen that the strip tension forces
are decreasing during the pass time as the radius of the coiling drum is increasing.
Due to the speed profile some small vibrations are excited which can be observed in
the strip tension forces. The components of the displacements of the center of gravity
of each rotating units are shown in Fig. 20.8 and the displacement of the coiling drum
in an orthogonal plane to the rotation axis is shown in Fig. 20.9. The oscillations are
small as a save operation procedure is based to the simulations and an Archimedian
spiral is used for the variable outer radius of the coiling drum. Also the transversal
oscillations of the strip in Fig. 20.10 are small and decrease after a disturbance. The
shown converged solution has been computed with different algorithms.

As a conclusion it can be stated that due to the performed simulations a comparison
of the computation time shows that the Newmark procedure and the HHT-α-method
described in [13] need about 80% higher computation time, whereas with a Runge
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Fig. 20.6 Results for the
rotation of the pitch roll,
deflector roll and coiling
drum

Fig. 20.7 Results of the
strip tension forces in the
three regions

Fig. 20.8 Results for the
motion of the center of mass
of rolls and drum
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Fig. 20.9 Results of the
position of the center of the
coiling drum

Fig. 20.10 Transversal
vibrations of the strip
between deflector roll and
pitch roll

Kuttamethod the used computation time is 1,5 times higher.Amore general approach
for the approximation of the load function is in ongoing research an order to find an
even better semi-analytic algorithm for non-linear systems with variable mass and
parameters.
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Chapter 21
Equipartition of Modal Energy in a Stiff
Vibrating String Due to a Finite Curved
Boundary Obstacle

Ashok K. Mandal and Pankaj Wahi

Abstract We study the characteristics of stiff strings vibrating against a curved
boundary obstacle which is a situation encountered in stringed musical instruments
like sitar, veena and tanpura. The wrapping and unwrapping of the string over the
curvedobstacle introduces amovingboundarywhichupon appropriate spatial scaling
reveals the resulting nonlinearity. We find dominant quadratic nonlinearities which
facilitate modal interactions leading to mode-locked solutions in the absence of
damping. The analytical results for the phase-locked solutions are obtained using
the method of multiple scales (MMS). We have further found a mode-locked state
which tends to an equipartition of energy among the various vibrational modes with
an increase in the number of modes considered for the analysis. . . .

Keywords Stiff strings · Modal interactions · Mode locking · Equipartition of
energy

21.1 Introduction

Sitar, veena, tanpura (or tambura) etc. are plucked stringed musical instruments used
in Indian classical music [1]. They are known to have attractive tonal quality of sound
in terms of harmonicity, modulations in frequency and amplitude, and presence of a
large number of overtones. These instruments have a finite-sized curved bridge at one
end instead of a sharp bridgewhich is commonly used inwestern stringed instruments
[2]. In this paper, we study the vibrational characteristics of a real sitar string with
bending stiffness which is smoothly wrapping/unwrapping around a curved obstacle.
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Fig. 21.1 Top and side view of a sitar bridge with a typical spectrogram obtained by plucking a
string

Even though there have been several studies on a string vibrating against a curved
obstacle [3–6], the vibration characteristics of the string in the presence of the obstacle
has been reported only recently in [7–9]. The current paper extends the results in
[7, 8] for ideal strings to strings with bending stiffness and shows the existence of a
vibrating state with an equipartition of energy among all the modes even for a stiff
string.

The top and side view of a sitar bridge is shown in Fig. 21.1. There are slots on
the left elevated portion (as shown in the side view) of the bridge through which
the strings pass so as to retain their position along the widthwise direction while the
strings wrap and unwrap around the right portion which is a smooth curved surface.
A typical spectrogram obtained when one of the strings of the sitar is plucked is
shown in this figure as well. It can be seen that several overtones are present and
each overtone has a modulated decay which signifies the amplitude modulations.
Frequency modulations has not been well captured in the spectrogram shown in
Fig. 21.1. However, experimental investigations of Raman [2] on sitar showed that
several overtones were present in the sound while the experiments of Benade and
Messenger [10] reported a complex variation in the sitar sound spectrum with the
presence of modulation in frequency and amplitude of the various modes. We note
that the strings in these musical instruments have non-planar vibrations involving
motions both parallel and perpendicular to the bridge geometry. As will be seen
later, our simplified model of a real string vibrating only perpendicularly to a curved
boundary obstacle, however, is able to explain all these observed features of the
sound of sitar.

Harmonic overtones (integral multiples of the fundamental) are desirable in sound
to make it musical and soothing. Hence, there is a lot of emphasis in the design of
musical instruments to make its sound have harmonic overtones. Stringed musical
instruments have the vibration of strings as the source of sound which can produce
harmonic overtones. However, these harmonic overtones are possible under highly
idealized situation like no bending rigidity, fixed supports and no damping. In con-
trast, the strings used in almost all musical instruments have small but finite bending
rigidity, sources of dissipation of energy and nonrigid end conditions which make
the overtones inharmonic [11, 12]. It has already been shown in [9] that the presence
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of a finite curved obstacle as in sitar and veena introduces a quadratic nonlinearity
which enhances modal interactions and can lead to mode locking among the vari-
ous vibrational modes. We extend the results of [9] to higher number of modes and
find that there exists a mode-locked state which tends to the state of equipartition
of energy among the various modes even for the stiff string as was observed for the
case of an ideal string in [8].

21.2 Mathematical Model

A schematic diagram of the string vibrating against an obstacle is shown in Fig. 21.2
where all the quantities are nondimensionalized as in [7, 8]. The axial coordinate x̄
is nondimensionalized by the length L of the string so that l = 1 and time is non-

dimensionalized by

√
T

ρL2
, where T is the uniform tension in the string and ρ is the

uniform density per unit length. We assume that the string perfectly wraps/unwraps
around the obstacle with a continuous contact patch and a unique point of separation
at x̄ = γ . This implies that the wrapped length of the string is γ whereas the free
length is 1 − γ . For an ideal string, i.e., in the absence of any bending rigidity, the
transverse displacement ȳ(x̄, τ̄ ) (nondimensionalized by the height of the bridge) of
the free portion of the string is given by the non-dimensional wave equation

∂2 ȳ(x̄, τ̄ )

∂ x̄2
− ∂2 ȳ(x̄, τ̄ )

∂τ̄ 2
= 0 , γ ≤ x̄ ≤ 1 (21.1)

with the standard displacement/geometric boundary conditions at the two ends

ȳ(γ, τ̄ ) = ȳb(γ, τ̄ ), ȳ(1, τ̄ ) = 0 , (21.2)

where ȳb(x̄, τ̄ ) represents the profile of the boundary obstacle in the domain 0 ≤
x̄ ≤ b with b as the length of the obstacle. For simplicity of analysis, we will be
approximating the shape of the obstacle with a parabola, i.e., yb(x̄) = α x̄(b − x̄),
where α is a constant representing its curvature. We note that the exact functional
form for the obstacle does not alter the various conclusions drawn in the current paper
on the effect of the wrapping nonlinearity on the modal interactions. The assumption
of a parabola just simplifies the algebra.

Note that the point of separation or the wrapped length γ is another state vari-
able along with the transverse displacement ȳ(x̄, τ̄ ) and hence, an extra equation
is required to determine it. This extra equation comes in the form of an additional
boundary condition at the left end of the string, i.e., x̄ = γ which can be obtained
from the transversality condition, see [8] for details. However, we can simply make
an assumption that the string remains tangent to the bridge surface at x̄ = γ which
leads to
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Fig. 21.2 Schematic diagram of vibration of string against boundary obstacle

∂ ȳ(γ, τ̄ )

∂ x̄
= α(b − 2γ ) . (21.3)

Equation (21.1) along with Eqs. (21.2) and (21.3) uniquely determines the transverse
displacement ȳ(x̄, τ̄ ) of the free portion of the string and the wrapped length γ for
an ideal string. In the presence of a nondimensional bending rigidity K for the string,
the equation of motion for the free portion is modified to

∂2 ȳ(x̄, τ̄ )

∂ x̄2
− ∂2 ȳ(x̄, τ̄ )

∂τ̄ 2
− K

∂4 ȳ(x̄, τ̄ )

∂ x̄4
= 0 , γ ≤ x̄ ≤ 1 . (21.4)

We note that (21.4) is a fourth order PDE for K �= 0 while it is a second order PDE
for K = 0. Hence, two extra boundary conditions are required to completely define
the problem for the case when K �= 0. The extra boundary condition at the fixed end
(x̄ = 1) can be easily identified as a pinned or a clamped support. However, the extra
condition at the moving end (i.e., at x̄ = γ ) is not completely clear. Continuity of
string and slope continuity at x̄ = γ have already been taken into account even for
K = 0. However, for a beam in variable contact with a flat surface in the absence of
adhesion, it has been shown that no point moment can exist at the point of separation.
This in turn will imply curvature continuity at the point of separation for our case.
Accordingly, the complete set of boundary conditions to determine ȳ(x̄, τ̄ ) and γ

for PDE (21.4) are:

ȳ(γ, τ̄ ) = αγ (b − γ ),
∂ ȳ(γ, τ̄ )

∂ x̄
= α(b − 2γ ),

∂2 ȳ(γ, τ̄ )

∂ x̄2
= −2α, (21.5)

ȳ(1, τ̄ ) = 0,
∂2 ȳ(1, τ̄ )

∂ x̄2
= 0 . (21.6)

We note further that for typical parameters of the string used in the musical instru-
ments, K � 1 and accordingly, it is a singular perturbation problem. The two new
boundary conditions associated with the curvatures at the two ends affect the solution
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for K �= 0 in a very close neighborhood of the boundary and the solution in large
part of the domain remains unchanged from the solution for K = 0. In fact, in the
multiple scales analysis to be used in this work, the unperturbed equation turns out
to be a second order PDE with the effect of the bending stiffness only appearing as
a perturbation at the next order. Accordingly, for all practical purposes in this work,
we will ignore the curvature boundary conditions and use the boundary conditions
relevant to the ideal string only, i.e.,

ȳ(γ, τ̄ ) = αγ (b − γ ),
∂ ȳ(γ, τ̄ )

∂ x̄
= α(b − 2γ ) , ȳ(1, τ̄ ) = 0 . (21.7)

Note that, all the above quantities are nondimensional and γ is a function of time (τ̄ )

which makes the spatial domain dynamic.We use a scaling x = x̄ − γ

1 − γ
which makes

the spatial domain from moving to fixed (x ∈ [0, 1]). We use ȳ(x̄, τ̄ ) = y(x, τ ),
τ̄ = τ and rewrite the above Eqs. (21.4) and (21.7) in the scaled domain to obtain

K

(1 − γ )4

∂4y

∂x4
+

[
(x − 1)2γ̇ 2 − 1

(1 − γ )2

]
∂2y

∂x2
+

[
(x − 1)

(1 − γ )

(
2γ̇ 2

(1 − γ )
+ γ̈

)]
∂y

∂x

+
[
2(x − 1)γ̇

(1 − γ )

]
∂2y

∂x∂τ
+ ∂2y

∂τ 2
= 0, (21.8)

ȳ(0, τ̄ ) = αγ (b − γ ),
∂ ȳ(0, τ̄ )

∂ x̄
= α(b − 2γ )(1 − γ ) , ȳ(1, τ̄ ) = 0, (21.9)

where we drop all the explicit dependency of dependent variables for brevity.

21.3 Nonlinear Analysis Using Method of Multiple Scales

Equation (21.8) is a nonlinear equation where K is a small parameter. In order to
analyze the system, we replace K by εk, where 0 < ε � 1 and introduce two time
scales as T0 = t and T1 = εt . We further assume

γ (t) = γst + εγ1(T0, T1) + ε2γ2(T0, T1) + O(ε3), (21.10)

and

y(x, t) = yst (x) + εy1(x, T0, T1) + ε2y2(x, T0, T1) + O(ε3). (21.11)

Substituting (21.10) and (21.11) along with K = εk into (21.8) and applying the
chain rule for differentiation, we get the following equations at different orders of ε:



258 A. K. Mandal and P. Wahi

O(1) : d
2yst (x)

dx2
= 0, (21.12)

O(ε) : k

(1 − γst )4

d4yst (x)

dx4
+ ∂2y1(x, T0, T1)

∂T 2
0

− 1

(1 − γst )2

∂2y1(x, T0, T1)

∂x2

− (1 − x)

(1 − γst )

dyst (x)

dx

∂γ1(T0, T1)

∂T0
− 2γ1

(1 − γst )3

d2yst (x)

dx2
= 0,

(21.13)

O(ε2) : ∂2y2(x, T0, T1)

∂T 2
0

− 1

(1 − γst )2

∂2y2(x, T0, T1)

∂x2
+ k

(1 − γst )4

∂4y1(x, T0, T1)

∂x4

− 2γ1(T0, T1)

(1 − γst )3

∂2y1(x, T0, T1)

∂x2
− (1 − x)

(1 − γst )

∂2γ1(T0, T1)

∂T 2
0

∂y1(x, T0, T1)

∂x

− 2(1 − x)

(1 − γst )

∂γ1(T0, T1)

∂T0

∂2y1(x, T0, T1)

∂T0∂x
+ 2

∂2y1(x, T0, T1)

∂T0∂T1

−
(
3γ 2

1 (T0, T1) − 2γstγ2(T0, T1) + 2γ2(T0, T1)
)

(1 − γst )4

∂2yst (x)

∂x2

+
[

(1 − x)2

(1 − γst )2

∂2yst (x)

∂x2
− 2(1 − x)

(1 − γst )2

∂yst (x)

∂x

] (
∂γ1(T0, T1)

∂T0

)2

−
[
(1 − x)γ1(T0, T1)

(1 − γst )2

∂yst (x)

∂x
+ 2(1 − x)

(1 − γst )

∂yst (x)

∂x

]
∂2γ1(T0, T1)

∂T0∂T1

− (1 − x)

(1 − γst )

∂yst (x)

∂x

∂2γ2(T0, T1)

∂T 2
0

+ 4kγ1(T0, T1)

(1 − γst )5

d4yst (x)

dx4
= 0. (21.14)

Similarly, from the boundary conditions (21.9), we obtain

yst (0) = αγst (b − γst ), (21.15)

y1(0, T0, T1) = αγ1(T0, T1)(b − 2γst ), (21.16)

y2(0, T0, T1) = αγ2(T0, T1)(b − 2γst ) − αγ 2
1 (T0, T1), (21.17)

dyst (0)

dx
= α(b − 2γst )(1 − γst ), (21.18)

∂y1(0, T0, T1)

∂x
= −αγ1(T0, T1)(2 + b − 4γst ), (21.19)

∂y2(0, T0, T1)

∂x
= 2αγ 2

1 (T0, T1) − αγ2(T0, T1)(2 + b − 4γst ), (21.20)
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yst (1) = 0, y1(1, T0, T1) = 0, y2(1, T0, T1) = 0 . (21.21)

The static solution for (21.13) satisfying the boundary conditions (21.15), (21.18)
and (21.21) is obtained as

yst (x) = αγst (b − γst )(1 − x) , with γst = 1 − √
1 − b . (21.22)

We assume

y1(x, T0, T1) = αγ1(T0, T1)(b − 2γst )(1 − x) + f1(x, T0, T1), (21.23)

and y2(x, T0, T1) = (
αγ2(T0, T1)(b − 2γst ) − αγ 2

1 (T0, T1)
)
(1 − x) + f2(x, T0, T1)

(21.24)
which satisfy boundary conditions (21.16), (21.17), and (21.21) with

fi (0, T0, T1) = 0, fi (1, T0, T1) = 0 , where i = 1, 2 . (21.25)

Now substituting (21.23) and (21.24) into (21.19) and (21.20), respectively,we obtain

γ1(T0, T1) = − 1

2α(1 − γst )

∂ f1(0, T0, T1)

∂x
, (21.26)

γ2(T0, T1) = − 1

2α(1 − γst )

(
−αγ 2

1 (T0, T1) + ∂ f2(0, T0, T1)

∂x

)
. (21.27)

Substituting (21.22), (21.23) and (21.26) into (21.13) and simplifying we get

∂2 f1(x, T0, T1)

∂T 2
0

− 1

1 − b

∂2 f1(x, T0, T1)

∂x2
= 0. (21.28)

Solution of (21.28) can be written as

f1(x, T0, T1) =
N∑

m=1

f1m(T0, T1) sin(mπx), (21.29)

where f1m(T0, T1) = Am(T1) sin

(
nπT0√
1 − b

)
+ Bm(T1) cos

(
nπT0√
1 − b

)
which satis-

fies (21.25). Substituting (21.22), (21.23), and (21.24) into (21.14) and following the
procedure outlined in [8], we obtain the slow flow equations governing the evolution
of Am(T1) and Bm(T1) as
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∂Am

∂T1
= − m3π3kBm

2(1 − b)3/2
+ mπ2

4α(1 − b)3/2

N∑
p=1

p(Ap Am + BpBm)δp,2m

+ π3

4mα(1 − b)3/2

N∑
n=1

N∑
p=1

np3(K4nm − K3m)
[
(BnBp − An Ap)δn+p,m

+ (An Ap + BnBp)(δn−p,m + δp−n,m)
]

− π3

4mα(1 − b)3/2

N∑
n=1

N∑
p=1

n2 p2(2K4nm − K3m)
[
(An Ap − BnBp)δn+p,m

+ (An Ap + BnBp)(δn−p,m + δp−n,m)
]
, (21.30)

∂Bm

∂T1
= m3π3k Am

2(1 − b)3/2
+ mπ2

4α(1 − b)3/2

N∑
p=1

p(AmBp − ApBm)δp,2m

− π3

4mα(1 − b)3/2

N∑
n=1

N∑
p=1

np3(K4nm − K3m)
[
(ApBn + AnBp)δn+p,m

+ (AnBp − Bn Ap)(δn−p,m − δp−n,m)
]

− π3

4mα(1 − b)3/2

N∑
n=1

N∑
p=1

n2 p2(2K4nm − K3m)
[
(ApBn + AnBp)δn+p,m

+ (ApBn − AnBp)(δn−p,m − δp−n,m)
]
, (21.31)

where δn,m = 1 if m = n and 0 otherwise, and K3m and K4nm are defined as

K3m =
∫ 1

0
(1 − x) sin(mπx)dx = 1

mπ
,

K4nm =
∫ 1

0
(1 − x) cos(nπx) sin(mπx)dx =

⎧⎪⎨
⎪⎩

1

4mπ
if n = m,

m

(m2 − n2)π
if n �= m.

For convenience of further development, we write Am(T1) and Bm(T1) in polar coor-
dinates as

Am(T1) = Rm(T1) cos (φm(T1)) , and Bm(T1) = Rm(T1) sin (φm(T1)) . (21.32)

Also noting that our system is autonomous and hence, the relative phases are more
important than the individual phases, we introduce the relative phases θq = (q +
1)φ1 − φq+1 and obtain slow flow equations in terms of Rm and θq . These slow flow
equations are
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∂Rm
∂T1

= mπ2

4α(1 − b)3/2

N∑
p=1

pRm Rp cos(θ2m−1 − 2θm−1)δp,2m

− π3

4mα(1 − b)3/2

N∑
n=1

N∑
p=1

np3(K4nm − K3m )Rn Rp
[
cos(θm−1 − θp−1 − θn−1)δn+p,m

− cos(θm−1 − θp−1 + θn−1)δn−p,m − cos(θp−1 − θn−1 − θm−1)δp−n,m
]

− π3

4mα(1 − b)3/2

N∑
n=1

N∑
p=1

n2 p2(2K4nm − K3m )Rn Rp
[
cos(θm−1 − θp−1 − θn−1)δn+p,m

+ cos(θm−1 − θp−1 + θn−1)δn−p,m + cos(θp−1 − θn−1 − θm−1)δp−n,m
]
, (21.33)

∂θq

∂T1
= − q(q + 1)(q + 2)π3k

2(1 − b)3/2
− (q + 1)π2

4α(1 − b)3/2

⎡
⎣2R2 sin(θ1) −

N∑
p=1

pRp sin(θ2q+1 − 2θq )δp,2(q+1)

⎤
⎦

−
N∑

n=1

N∑
p=1

(q + 1)π3np3(K4n1 − K31)Rn Rp

4α(1 − b)3/2R1

[
sin(θp−1 − θn−1)δp−n,1 − sin(θp−1 − θn−1)δn−p,1

]

−
N∑

n=1

N∑
p=1

(q + 1)π3n2 p2(2K4n1 − K31)Rn Rp

4α(1 − b)3/2R1

[
sin(θp−1 − θn−1)δn−p,1 − sin(θp−1 − θn−1)δp−n,1

]

+
N∑

n=1

N∑
p=1

π3np3(K4n(q+1) − K3(q+1))Rn Rp

4(q + 1)α(1 − b)3/2R(q+1)

[
sin(θq − θp−1 − θn−1)δn+p,q+1

− sin(θq − θn−1 + θp−1)δn−p,q+1 + sin(θp−1 − θn−1 − θq )δp−n,q+1
]

+
N∑

n=1

N∑
p=1

π3n2 p2(2K4n(q+1) − K3(q+1))Rn Rp

4(q + 1)α(1 − b)3/2R(q+1)

[
sin(θq − θp−1 − θn−1)δn+p,q+1

+ sin(θq − θn−1 + θp−1)δn−p,q+1 − sin(θp−1 − θn−1 − θq )δp−n,q+1
]
, (21.34)

where m = 1, 2, . . . , N , q = 1, 2, . . . , N − 1 and θ0 = 0.
Equation (21.33) governs the evolution of the amplitudes of the various modes

while Eq. (21.34) represents the dynamic departure of the higher mode frequencies
from the integral multiple of the fundamental frequency. The first term in Eq. (21.34)
is the inharmonicity introduced due to the bending stiffness whereas the remaining
terms represent the inharmonicity introduced due to the quadratic modal interactions
facilitated by the wrapping nonlinearity. The fixed points of Eqs. (21.33) and (21.34)
represent periodic solutions of the system where the various modal frequencies are
exact harmonics of the fundamental frequency. Such periodic solutions are referred
as ‘mode-locked periodic solutions’. There are infinitely many of these solutions
each with a different overall energy content depending on the initial energy supplied
to the system. However, if we fix the modal amplitude of one of the modes, say the
first mode, there are finitely many of these periodic solutions that can exist. It is these
finitely many mode-locked solutions and their characteristics that we discuss in the
next section.
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21.4 Mode Locked Periodic Solutions

The slow flow equations for 2 modes (N = 2) are:

∂R1

∂T1
= π2R1R2 cos θ1

2α(1 − b)3/2
, (21.35)

∂R2

∂T1
= − π2R2

1 cos θ1

8α(1 − b)3/2
, (21.36)

∂θ1

∂T1
= π2

α(1 − b)3/2

[
πk − R2 sin θ1 + R2

1 sin θ1

8R2

]
, (21.37)

The condition for periodic solution turns out to be cos θ1 = 0 which implies θ1 =
(2n + 1)π

2
. Accordingly, there are two possibilities for the relationship between R1

and R2 corresponding to the mode-locked solution. The number of such possible
solutions increases with an increase in the number of modes and the relationship
becomes non-trivial. Accordingly, we will only report numerical results with the
parameters b = 0.05, α = 4

b2 and k = 0.5 × 10−6, and the first modal amplitude
fixed to R1 = 0.1. In Tables21.1 and 21.2, we present the modal amplitudes and
their stability properties for the various possible mode-locked periodic solutions for
N = 2 and N = 3 modes, respectively. It can be seen from Table21.1 that there
are two neutrally stable mode-locked periodic solutions. Accordingly any arbitrary
initial condition will result in a modulated response around this mode-locked state
which accounts for the amplitude and frequency modulations. It can be seen from
Table21.2 that the number of possible mode-locked states increases to 5 with 3 of
them being neutrally stable while 2 are unstable. The number of purely imaginary
eigenvalues associated with a mode-locked state increases with an increase in the
number of modes. We have verified that there is convergence in the amplitudes
corresponding to the mode-locked solution with increasing N . There is also some
convergence in the smallest purely imaginary eigenvalue associated with this mode-
locked state. However, since an extra purely imaginary eigenvalue gets added with
an increase in the considered mode by 1, convergence cannot be strictly established
for the eigenvalues associated with these mode-locked states. A significant number

Table 21.1 Fixed points and corresponding eigenvalues for k = 0.5 × 10−6, N = 2

S. No. Fixed points Eigenvalues

R1 R2

1. 0.1 0.039325 0, ±i 0.000394

2. 0.1 0.031785 0, ±i 0.000423
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Table 21.2 Fixed points and corresponding eigenvalues for k = 0.5 × 10−6, N = 3

S. No. Fixed points Eigenvalues

R1 R2 R3

1. 0.1 0.008229 0.017052 0, ±i 0.000560, ±i 0.000362

2. 0.1 0.038348 0.016505 0, ±i 0.000478, ±i 0.001044

3. 0.1 0.044511 0.025425 0, ±i 0.000509, ±i 0.000927

4. 0.1 0.065971 0.046877 0, ±i 0.000971, ±0.000444

5. 0.1 0.067798 0.061334 0, ±i 0.000954, ±0.000554

Table 21.3 A neutrally stable fixed point with an increasing number of modes

N Fixed points

R1, R2, . . . , RN

2 0.1, 0.039325

3 0.1, 0.044511,0.025425

4 0.1, 0.046417,0.028602,0.019603

5 0.1, 0.047235,0.029965,0.021505,0.016508

6 0.1, 0.047601,0.030577,0.022353,0.017630,0.014652

7 0.1, 0.047748,0.030832,0.022711,0.018100,0.015258,0.013465

8 0.1, 0.047773,0.030898,0.022819,0.018249,0.015450,0.013701,0.012685

of purely imaginary eigenvalues for the mode-locked state explains the complex
modulations observed both in themodal amplitudes and frequencies in the nominally
harmonic sound of these musical instruments.

The total number of possible solutions increases exponentially with an increase
in N . However, there is always a neutrally stable solution around the original solu-
tions given in Table21.1 and the evolution of one of them with an increase in the
number of modes is presented in Table21.3 and represented graphically in Fig. 21.3

wherein we have plotted the amplitude ratios of the modal coordinates

(
Rn

R1

)
for

n = 2, 3, 4, 5, 6. It can be seen from Fig. 21.3 that the relative amplitudes

(
Rn

R1

)

are converging to
1

n
(shown with the dashed line) with an increase in the number of

modes N . A comparison of Table21.3 with a similar table for k = 0 reported in [8]
reveals that this neutrally stable solution is converging faster to the limiting value of
Rn

R1
= 1

n
with a non-zero bending stiffness k. As discussed in [8], this mode-locked

solution corresponds to the state of equipartition of energy among the various vibra-
tional modes of the string. Since there are other neutrally stable solutions possible
for our system, we finally numerically verify that a general plucked initial condition
which is given while playing these musical instruments in fact results in modulated
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Fig. 21.4 Amplitude plot corresponding to the plucking of the string at half the length. For the
exact initial condition, kindly refer to [8]

response around this equipartition state. This is shown in Fig. 21.4 for plucking at
the center of the string and it can be seen that the initial characteristics of the solution
differ from the final one and the mean value of the solution from the final phase
indeed satisfies the condition of equipartition of energy.
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21.5 Conclusion

In this work, we have investigated the possibility of phase locked solutions for stiff
strings vibrating against obstacles. Method of multiple scales is used to obtain the
slowly varying amplitude and relative phase equations. We observe that the system
has finitely many mode-locked periodic solutions with a fixed amplitude of the first
mode, some ofwhich are neutrally stable. Neutral stability of these solutions explains
the amplitude and frequency modulations observed in the musical instruments with
finite curved bridge at one end. One such neutrally stable solution tends to a state of
equipartition of energy among the various modes with an increase in the number of
modes. Numerical simulations with initial conditions corresponding to plucking the
string shows that the equipartition energy state is preferred at steady state. Hence,
highermodes of the string also becomeprominent in the sound ofmusical instruments
with a finite curved bridge like sitar and veena.
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Chapter 22
FEM with Floquet Theory for
Non-slender Elastic Columns Subject
to Harmonic Applied Axial Force Using
2D and 3D Solid Elements

Eoin Clerkin and Markus Rieken

Abstract The Rayleigh–Ritz formulation of finite element method using solid ele-
ments is implemented for a 2D and 3D clamped-clamped column which is subject to
a periodically applied axial force. Non-linear strain is considered. A mass element
matrix and two stiffness matrices are obtained. After assembly by elements, the
calculated natural frequencies and buckling loads are compared to Euler–Bernoulli
beam theory predictions. For 2D triangular and 3D cuboid elements, a large number
of degrees of freedom are required for sufficient convergence which adds particular
computational costs to applying Floquet theory to determine stability of the har-
monically forced column. A method popularised by Hsu et al. is used to reduce the
computational load and obtain the full monodromy matrix. The Floquet multipliers
are discussed in relation to their bifurcations. The versatile 2D and 3D elements
used allows for the discussion of non-slender columns. In addition, the stability of
a 3D steel column comprised of impure materials or with changed aspect ratio are
investigated.

Keywords Column · Time periodic · Finite element method · Rayleigh–Ritz ·
Floquet theory · Hsu method

22.1 Introduction

The finite element method (FEM) is an ubiquitous and versatile tool developed
by engineers to solve partial differential equations for complex composite mate-
rials across varied geometries and boundary conditions [32]. Modelling of elas-
tostatic structures is important throughout structural engineering as a first step in
the design and optimisation of a new bridge, automobile, skyscraper, aircraft, or
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ship. Determining stability of the structure, i.e. renitent to minute perturbation of
its material, is achieved using the well-known complex eigenvalue analysis (CEA)
which is efficiently implemented in commercially-available FEM software suites.
However, for some problems in engineering, e.g. involving asymmetric rotors with
anisotropic support in a fixed-frame coordinate system [21, 22] or structures sub-
ject to periodic loads [9, 37] as is studied in this manuscript, time-periodicity must
arise in the equations of motion (EQM) making the CEA as a method of stability-
determination mathematically invalid. Misleadingly, some instabilities are still cor-
rectly detected byCEAwhile others in the plane of oscillation aremissed. Stability of
time-periodic linear differential equations may be reliably determined using Floquet
theory (FT) [10, 36]. However, significant computational and numerical difficulties
occur as the degrees of freedom (DOF) of the problem grows. Implications of peri-
odic dynamics on node definition and meshing in elastodynamic structures, as well
as possible incompatibility with several time-saving approaches adopted in FEM
software means that commercial solutions are not currently available.

A column subjected to harmonically applied axial force is a paradigmatic example
of an elastostatic structure with time-periodic parameter excitation [5, 8]. Under
minor simplifications, particularly slenderness for this study, the long established
Euler–Bernoulli beam theory (EBBT) provides useful analytical benchmarks. For a
constant applied force P0, an expression for the critical load at which buckling in the
columnoccurs, knownas theEuler buckling load,maybe easily obtained fromEBBT.
Barsoum et al. [2] studied the buckling problem under various boundary conditions
using a FEM. For a column harmonically forced with frequency Ω and amplitude
P1, perturbation methods [15, 38] have yielded stability boundaries. Iwatsubo et
al. [19] studied vibrations and stability of columns under periodic load, while later
in Ref. [18], they used a finite difference method to theoretically predict stability
boundaries validated by experiment. They categorised four types of resonances and
studied their stability behaviour by discretization of the EBBT under four different
boundary condition scenarios in [20]. Hsu et al. [17] outlined amethod to numerically
calculate stability more efficiently which is used extensively in this manuscript.
Friedman et al. [11] built upon thismethod to study a clamped-clamped column under
periodic axial load (cf. Fig. 22.1a) using the FEM with 1D beam elements. Beam
elements are the 1D finite element schematically drawn in Fig. 22.1b, which have two
nodes eachwith a single translational and bendingmoment.Due to thewell developed
EBBT and the small computational cost when using beam elements, many authors [5,
7, 11, 26–28, 33] have studied the harmonically forced column (cf. Fig. 22.1a) as a
paradigmatic example of the FEM with FT. Using only a handful (<<10) of beam
elements, the critical stability boundaries and the first three eigenfrequencies all show
a remarkable agreementwith analytic results obtained from theory and experiment [7,
18]. However, to make a genuine use of the power of the FEM, the technique must be
able to efficiently determine stability using a versatile non-germane finite element as
the degrees of freedom (DOF) of the system significantly increases. In this work, the
stability of non-slender columns (cf. Fig. 22.1c) are investigated using the Rayleigh–
Ritz formulation of the FEM using 2D triangular (cf. Fig. 22.1d) and 3D cuboid (cf.
Fig. 22.1e) linear elements. The nonlinear phenomenonof buckling therefore requires
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Fig. 22.1 Column under constant and periodic axial load; a slender, and c non-slender. A classical
1D beam element is shown in b, 2D and 3D solid elements are shown in d and e

a nonlinear strain approach. Thousands of DOF are needed for sufficient convergence
which introduces significant computational cost which needs to be overcome. The
added versatility of using these solid elements allows the investigation of alternative
column configurations.

In Sect. 22.3, implementation of the Rayleigh–Ritz formulation of the FEM using
2D triangular elements for an elastic column under load is outlined. Steps to adapt
the method for the 3D cuboid elements are discussed subsequently in Sect. 22.3.1.
Equations of motion in the form of a system of second order ordinary differential
equations with time-periodic coefficients are obtained. In Sect. 22.4, Floquet theory
for stability determination is briefly introduced along with the numerical algorithm
for obtaining the monodromy matrix in this work. The computation load needed
for modelling an elastic column with the FEM using solid elements is addressed
in Sect. 22.5. In particular, the number of elements for sufficient convergence and a
timing test using differentmethods for calculation of Floquetmultipliers is discussed.
But first, in Sect. 22.2, the results of the stability determination of a 2D and 3D non-
slender elastic column in various material configuration under periodic applied load
is presented.

22.2 Stability of a Non-slender
Harmonically-forced Column

Theuseof versatile 2Dand3Dsolid elements used in thismanuscript allows the inves-
tigation of stability of non-slender columns with more complex configurations than
permissible using 1Dbeamelements. In order to study the stability of a generic elastic
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(a) (b) (c)

(e)(d)

Fig. 22.2 a Stability map for P0 = 0 as P1 and Ω are varied. Regions of instability of the zero
solution are shown in blue. “ωi” denotes the ith natural frequency. Diagrams b–e show the Floquet
multipliers μ at various points of Fig. 22.2 a calculated for beam and solid 2D triangular elements.
Due to a large number of degrees of freedom, the red points join together to form a solid unit circle

industrially-relevant material, the following parameter values consistent with a steel
column (Young’s modulus E = 2.1 × 1011 Pa, density ρ = 7850kg m−3, Poisson’s
ratio ν = 0.3) of length l = 1m of width lx = 0.05m and of breadth ly = 0.05m,
which equates to a cross-sectional area A = 0.0025 m2 and a moment of inertia
I = (lyl3x/12

) = 5.208 × 10−7 m4, were chosen. These values were used to gener-
ate all graphs and diagrams of this section unless otherwise stated in its caption.
EBBT (see e.g. Ref. [14]) was used to estimate the first ω1 = 1670 Hz, second
ω2 = 4604 Hz, third ω3 = 9026 Hz and fourth ω4 = 1492 Hz natural frequency.
These natural frequency values are labelled as an interpretive reference throughout
the figures of this section. However, some caution needs to be attached as the approx-
imation of EBBT is not very accurate to the true natural frequencies for a non-slender
column calculated by experiment or here by elastic theory.

InFig. 22.2a, a stability diagram for a harmonically forced steel column is obtained
for different forcing amplitude and frequency. The forcing strength, shown on the
vertical axes is normalised over the EBBT calculated static Euler buckling load Pc,
whilst frequencies denoting the EBBT calculated first, second and third harmonics,
their doubles and combinations are shown at the top and bottom horizontal axes.
Areas in white have stable combinations of forcing strength and frequency. The sub-
plot, Fig. 22.2e, shows the Floquet multipliers, μ calculated at the position marked
with a solid black square and labelled (e). It shows the Floquet multipliers as calcu-
lated via beam elements in open black circles and 2D solid triangular elements as
closed red circles. The red circles, due to their large quantity, havemerged together to
form a solid red line. As may be seen, all multipliers lie on the unit circle in the com-
plex plane and therefore the system is determined to bemarginally stable according to
FT [36]. The areas of Fig. 22.2a in blue with a fishnet pattern denote unstable param-
eter combinations (P1,Ω). Each area has a similar “V” shape, which is wider at the
top and extends down and ends in a tip. Although in this figure, only the instabilities
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regions with the widest frequency range at the static critical load (P1 = Pc) extend
all the way to zero forcing strength, this is a sampling error anomaly in the diagram.
All blue regions irrespective of thickness would extend to zero forcing strength if the
diagram could be made with high enough resolution. Although this could mean that
a steel column would be highly susceptible to instabilities from the slightest external
force applied at these discrete frequencies [4], in reality, if damping were considered
for the production of this figure, each unstable frequency would be tapered off at a
finite non-zero level, thus making the column robust to “small” periodic loads.

One class of instability region extends to the natural harmonics ω1,ω2,ω3 of
the column. The point labelled (b) is contained in the ω1 instability region and is
a characteristic example. As may be seen in Fig. 22.2b, a pair of Floquet multipli-
ers has left the unit circle and is positioned on the real axis Im(μ) = 0. As one of
the Floquet multipliers has an absolute value greater than “1”, the system is deter-
mined to be unstable via FT [36]. Although in a generic sense, the loss of stability
would be consistent with a fold bifurcation of limit cycles, due to presence of the
left/right symmetry in the column, we may deduce that this is a pitchfork of limit
cycles bifurcation [35]. The pitchfork bifurcation is synonymous with buckling. The
widest of the blue instabilities are labelled at double the natural frequencies. As an
example, the point labelled (c) is contained in the 2ω2 instability region. Fig. 22.2c
shows its Floquet multipliers. Similar to the point discussed before, a pair of Floquet
multipliers are no longer on the unit circle and are on the real axis, Im(μ) = 0. How-
ever, this time the bifurcation which caused a loss of stability has occurred near “-1”
which is consistent with with a period-doubling bifurcation. We may deduce that the
cyclic states must be of fixed type with respect to the symmetry [23, 31]. In the blue
instability region, the solution with the column oscillating vertically at the driving
frequency is not stable. For unstable parameter values near the period-doubling bifur-
cation line, new periodic solutions exist and are stable whereby the column would
oscillate at twice or half the supplied frequency [13]. The last blue instability region
which we will discuss occurs at the linear combinations of the natural frequencies.
The point label (d) is contained in theω1 + ω3 instability region. In this case a double
pair of Floquet multipliers (four) has left the unit circle with non-zero imaginary part
(Im(μ) �= 0)with two of the Floquetmultipliers having an absolute value greater than
“1”. If these frequencies were incommensurate with the driving frequency, a torus
bifurcation and resultant quasi-periodic motion would be expected [13]. However, as
they instead occur at discrete multiples, periodic behaviour is maintained and these
are well known in the applied mechanics literature as combination resonances [1, 9,
34].

In Fig. 22.3, the maximal Floquet multiplier, which is the eigenvalue of the mon-
odromy matrix of largest absolute value, for a 3D column calculated with cuboid
elements for a range of forcing frequency is plotted. Using Floquet theory, a system
is determined to be unstable when one of the eigenvalues of its monodromy matrix is
greater than one [36]. The force amplitude is fixed at P1 = 0.5Pc and the force fre-
quency is varied. These diagramsmay be compared with the centre line of Fig. 22.2a.
For large intervals of the frequency Ω in Fig. 22.3a–c, the maximal Floquet multi-
plier is exactly one and therefore the system is considered to be marginally stable
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(a) (b) (c)

Fig. 22.3 For P1 = 0.5Pc, the maximal Floquet multiplier is plotted against the frequency of the
applied force for 3D elements under different scenarios. a Black solid line is Floquet multipliers
for 1D beam elements and red dashed line are for 3D cuboid elements. b 8% of the elements are
random removed for the brown solid line. c Aspect ratio is changed so that the width and breadth
of the 3D column differs, i.e. ly = 0.04 m for the blue solid line

meaning that a small perturbation does not grow as the system evolves through one
complete cycle. However, several humps of larger than one values are seen around
discrete frequency values. As a Floquet multiplier is greater than one, the 3D column
is unstable at these forcing frequencies. Fig. 22.3a compares the maximal Floquet
multipliers calculated using beam elements for a 1D column (thin solid black line)
and cuboid elements for a 3D column (thick red dashed line). The two curves match
almost identically, except at the ω1 + ω3 combination resonance instability where
the unstable interval occurs at a slightly lower frequency for 3D elements than the
1D elements. The extra dimension in the case of the 3D column allows us to investi-
gate how the stability of the column is affected by alternate column configurations.
In Fig. 22.3b, a column with an impure steel material is modelled via randomly
removing 8% of the 3D elements (brown solid line). The frequency of instability is
slightly shifted to a lower frequency which would be consistent with the stiffness
of the column being reduced. Furthermore, the magnitude and interval length of the
instability for each of the unstable frequency intervals are diminished. It may be
therefore argued that the robustness of the column against frequency-induced insta-
bilities has been increased by reducing the purity of the material. In Fig. 22.3c, the
aspect ratio of the 3D column has been changed to 5 : 4 meaning its breadth is 20%
less than its width. As may be seen, the instability intervals have been split into one
matching the harmonically induced buckling in the breadth direction and one in the
width direction. However, the interval of instabilities has been greatly increased and
so it may be inferred that a column of unequal aspect ratio is considerably less stable.
This concludes our discussion on the stability of a non-slender, an impure and with
a non-symmetric aspect ratio 3D steel column.
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22.3 Rayleigh–Ritz Formulation of the FEM for a Column
under load

For the sake of brevity of notation, the main steps for obtaining the EQM is outlined
in this section for a harmonically loaded column using 2D triangular elements. Rel-
atively straight forward adaption for the 3D hexahedral element will be discussed
subsequently. In order to apply the Rayleigh–Ritz formalisation of the FEM, expres-
sions for energies of the system must be obtained. A standard kinetic energy T (t)
over an element, written in integral form is

T (e) (t) = 1

2

∫ ∫

V (e)

ρ

[
u̇(x, y, t), v̇(x, y, t)

] [
u̇(x, y, t)
v̇(x, y, t)

]
dx dy (22.1)

where ρ is the mass per unit area, and V (e) is the area of an element. u(x, y, t) and
v(x, y, t) are the spatial- and time-varying components of the displacement vector
field in the x and y direction respectively. The overscript dot represents differentiation
with respect to time, t . Using aRitz representation, spatial and temporal contributions
may be separated

[u(x, y, t), v(x, y, t)]T = N(x, y) �q(t) (22.2)

where �q(t) is a vector of nodal temporal displacements and N(x, y) is a matrix of
shape functions. As schematically drawn in Fig. 22.1d, the 2D triangular element
has a node at each of its three vertices. The simple linear shape function used in this
work is

Ni (x, y) = αi + βi x + γi y for i = 1, 2, 3

which means that N is a 6 × 2 matrix and �q is a vector of size 6 for the temporal
displacements, one for each spatial direction for each node in an element. Useful
integration formulas available in Ref. [39] reduce the need to integrate the integral
of Eq. (22.1) computationally for 2D elements. We may write the kinetic energy in
matrix form as

T (e)(t) = �̇qT(t)
∫ ∫

V (e)
ρ NTN dx dy �̇q(t) = �̇qT(t)

ρAh

12

⎛

⎜
⎜⎜⎜
⎜⎜
⎝

2 0 1 0 1 0
0 2 0 1 0 1
1 0 2 0 1 0
0 1 0 2 0 1
1 0 1 0 2 0
0 1 0 1 0 2

⎞

⎟
⎟⎟⎟
⎟⎟
⎠

︸ ︷︷ ︸
M(e)

�̇q(t) (22.3)

Using elastic theory [25], the internal potential energy within the material of the
column due to stresses and strains may be written as

V (e) = 1

2

∫ ∫

V (e)

εTσ dx dy (22.4)
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as an integral of the product of the strain ε and stress σ tensors over the area of the
element. Stresses within the column due to the innate material σ0 and the external
force σ1 are treated separately.

σ = σ0 + σ1 (22.5)

Assuming plane stress, stresses are related to the corresponding strains within the
material by the matrix C via

σ0 = C ε with C = E

1 − ν2

⎛

⎝
1 ν 0
ν 1 0
0 0 1−ν

2

⎞

⎠ (22.6)

where E is Young’s modulus of elasticity and ν is Poisson’s ratio. For more informa-
tion on the material matrix, one may consult Ref. [25]. In order to apply an external
force in as simple a fashion as possible, uniaxial stress is assumed, i.e. the strain
in the vertical y direction is modulated with the harmonic function p(t) across its
cross-sectional area.

σ1 =
⎡

⎣
0
p(t)
A
0

⎤

⎦ (22.7)

It should be noted that this simplification suffices as our aim is to determine the
stability of the undeformed column. However if one wished to model the stability of
a buckled state, which exists in the instability regions of Fig. 22.2, the stress would at
least need to vary over its cross sectional area to account for the inner and outer side of
the bend being under compression and tensile stress respectively. To incorporate the
nonlinear phenomenon of buckling using linear shape functions, a nonlinear strain
approach is warranted. Reference [29] is followed

ε =

Cauchy strain
︷ ︸︸ ︷⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

[
∂u
∂x

]

[
∂v
∂y

]

[
∂u
∂y + ∂v

∂x

]

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

+

Green-Lagrangian
︷ ︸︸ ︷⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

[
1
2

[(
∂u
∂x

)2 + ( ∂v
∂x

)2]

[
1
2

[(
∂u
∂y

)2 +
(

∂v
∂y

)2]

[
1
2

[
∂u
∂x

∂u
∂y + ∂v

∂x
∂v
∂y

]

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

(22.8)

Combining these for the integral Eq. (22.4) yields the potential energy in matrix form
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V (e)(t) = 1

2
�qT(t)V (e)

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

E

1 − ν2

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

β2
1 0 β1β2 0 β1β3 0
0 γ2

1 0 γ1γ2 0 γ1γ3
β1β2 0 β2

2 0 β2β3 0
0 γ1γ2 0 γ2

2 0 γ2γ3
β1β3 0 β2β3 0 β2

3 0
0 γ1γ3 0 γ2γ3 0 γ2

3

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

+ νE

1 − ν2

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

0 β1γ1 0 β1γ2 0 β1γ3
β1γ1 0 β2γ1 0 β3γ1 0
0 β2γ1 0 β2γ2 0 β2γ3

β1γ2 0 β2γ2 0 β3γ2 0
0 β3γ1 0 β3γ2 0 β3γ3

β1γ3 0 β2γ3 0 β3γ3 0

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

+ E(1 − ν)

2(1 − ν2)

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

γ2
1 β1γ1 γ1γ2 β2γ1 γ1γ3 β3γ1

β1γ1 β2
1 β1γ2 β1β2 β1γ3 β1β3

γ1γ2 β1γ2 γ2
2 β2γ2 γ2γ3 β3γ2

β2γ1 β1β2 β2γ2 β2
2 β2γ3 β2β3

γ1γ3 β1γ3 γ2γ3 β2γ3 γ2
3 β3γ3

β3γ1 β1β3 β3γ2 β2β3 β3γ3 β2
3

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

+ p(t)

A

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

γ2
1 0 γ1γ2 0 γ1γ3 0
0 γ2

1 0 γ1γ2 0 γ1γ3
γ1γ2 0 γ2

2 0 γ2γ3 0
0 γ1γ2 0 γ2

2 0 γ2γ3
γ1γ3 0 γ2γ3 0 γ2

3 0
0 γ1γ3 0 γ2γ3 0 γ2

3

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

�q(t)

(22.9)

Each of the four 6 × 6 matrices could be regarded as four different stiffness matri-
ces for a study which requires material parameters to be varied independently. As
Poisson’s ratio ν and Young’s modulus E will not vary in this study, the first three
matrices are combined to defineK(e)

0 . The fourth matrix is used to defineK(e)
1 which

is due to the additional stress introduced by the vertical load. Each βi and γi may
be simply resolved to their numerical values by considering the geometry, namely
cathetus and area, of the right-angle triangular element. For a fixed length, width
and number of elements in the mesh, the triangular elements come in a up or down
orientation and therefore resolve to just two different numerical stiffness matrices.
These are compiled by assembly of elements as outlined in Ref. [39] to generate a
global mass M and two global stiffness matrices K0 and K1. Once the kinetic and
potential energies are written in global matrix form similar to Eqs. (22.3) and (22.9),
Hamilton’s principle of stationary action and integration by parts provides the basis
to combine them correctly.

δ

∫ t2

t1

( T (t) − V(t) ) dt = 0 (22.10)

where t1 and t2 are arbitrary start and end time t . EQM are obtained as the vanishing
condition inside the integral, shown by combining the terms in the square brackets
of the following two expressions

∫
δT dt = 1

2

∫
δ
(
�̇qT
M �̇q
)
dt = −

∫
(δ�q)

T
[
M �̈qe

]
dt (22.11)

∫
δV dt = 1

2

∫
δ
(
�qT (K0 + p(t)K1) �q

)
dt =

∫
(δ�q)T

[
(K0 + p(t)K1) �q] dt (22.12)

One term in the integration by parts method will disappear as the variational method
does not vary the initial and final states of the system. Reference [14] discusses
vanishing terms in the integration of parts technique due to boundary conditions in
some detail. In our case boundary conditions are satisfied by removing all clamped
degrees of freedom for the top and base of the column. The following system of 2nd
order linear differential equations are obtained.

M �̈x + D �̇x + (K0 + p(t)K1) �x = �0 (22.13)
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where a Rayleigh damping matrixD proportional to a linear combination of the mass
and stiffness equation, i.e.D = μM + λK, may be added subsequently. �x is the total
time-varying displacement for each spatial direction at each node of the column
mesh. The mass matrix M and first stiffness matrix K0 is validated by looking at
convergence to the natural frequencies of the column. SubsequentlyK1 is verified in
relation to the constant load Euler buckling problem. Validation is further discussed
in Sect. 22.5. When p(t) is a time-periodic harmonic function such as cos(Ωt), the
above equation is a sparse version of the coupled Mathieu equation and stability
diagrams Fig. 22.2 match those in the literature [16]. In the next sections, the method
to determine the stability of the system Eq. (22.13) as used in figures of Sect. 22.2
will be outlined.

22.3.1 Interlude: Adaptation for the 3D Column

In order to adapt the technique for the 3D hexahedral elements as schematically
drawn in Fig. 22.1e, the z spatial coordinate and its component of the displacement
vector w(x, y, z, t) must be considered. The vector of temporal nodal displacements
q(t) is of size 24, 3 displacement vectors for each of its 8 nodes. For example the
kinetic energy is over all three spatial coordinates, and ρ is the standard volumetric
density. As shape functions Lagrange polynomials were used

Ni = 1

8
(1 + ξξi )(1 + ηηi )(1 + ζζi ) (22.14)

where ξ, η and ζ are natural coordinates inside the element ranging from −1 to 1. If
a cuboid is delimited by [xmin, xmax ] × [ymin, ymax ] × [zmin, zmax ], then the natural
coordinates may be resolved as [40]

ξ = 2(x − xmin)

xmax − xmin
− 1, η = 2(y − ymin)

ymax − ymin
− 1, ζ = 2(z − zmin)

zmax − zmin
− 1.

(22.15)
Thus, for the Ritz representation Eq. (22.2), the matrix N has size 3 × 9. and the
resultant mass matrix element is of size 24 × 24. The strains (22.8) will be needed
to take into account one extra translation and two extra shear strain directions. See
Refs. [29, 40]. As in the 2D case, two stiffness matrices are obtained but of a con-
siderably larger 24 × 24 size. The method follows almost precisely Sect. 22.3.
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22.4 Floquet Theory—Determining Stability for
Time-Periodic Mechanical Systems

A fundamental solution matrix �(t) of a differential equation consists of a complete
set of linearly independent solutions, one per each columnof thematrix. It specifies all
solutions as for each initial starting vector �c, �x(t) = �(t)�c defines a unique solution.
Floquet’s theorem [10] states the form of all fundamental solution matrices for linear
ordinary equations with time-periodic coefficients as

�(t) = Q(t) exp (tB) . (22.16)

which consists of the time-periodic matrix Q(t) and an exponential matrix, with
matrix of constant coefficients B. The matrix exp (τB) = [�(τ )�−1(0)

]
, where τ

is the period, is called the monodromy matrix. The system is spectrally unstable if
any of its eigenvalues have an absolute value greater than one as after one complete
revolution of the cycle a perturbation in the direction of the associated eigenvector
would have grown. For a textbook which defines the concepts rigorously, we direct
the reader to Ref. [36]. It will be the aim of the rest of this section to elaborate on a
computational approach to obtain the monodromy matrix. In order to apply Floquet

theory, the second order system Eq. (22.13) is transformed using �y = [�x, �̇x]T into
a first order system

�̇y = A(t)�y (22.17)

where matrixA(t) is time-periodic with period τ and has the following block matrix
form

A(t) =
[

0 I
M−1K0 + p(t)M−1K1 M−1D

]
(22.18)

To determine stability of Eq. (22.17), one must check the stability for each degrees
of freedom. For small systems, a direct approximation method may be implemented
by integrating over a single period for each degree of freedom, thus checking if the
magnitude of a small perturbation grows or contracts. Success of this technique will
be a discussion in Sect. 22.5

22.4.1 Hsu Method [17]

An alternative approach which shows considerable computational saving is to follow
the method in Ref. [11, 17]. The essential part of the Hsu method is to split up a
single period into N parts in order to approximate the time periodic A(t) by a large
enough number of constant matrices at discrete times. It is an attractive method as
stiffness andmassmatricesmaybe obtained at “frozen” times using standardmeshing
packages of commercially-available FEM software provided nodal positions and
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its elements are not redefined. For the general case

A(t) ≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A (τ/2N ) for 0 ≤ t < (τ/N )

A (3τ/2N ) for (τ/N ) ≤ t < (2τ/N )

A (5τ/2N ) for (2τ/N ) ≤ t < (3τ/N )

...
...

A ((2 j + 1)τ/2N ) for (( j − 1)τ/N ) ≤ t < (( j + 1)τ/N )

...
...

A ((2N − 3)τ/2N ) for ((N − 2)τ/N ) ≤ t < ((N − 1)τ/N )

A ((2N − 1)τ/2N ) for ((N − 1)τ/N ) ≤ t < τ
(22.19)

In order to integrate around a single period, the first step in the integration would be
approximated by

�y(τ/N ) = exp

[∫ (τ/N )

0
A (s) ds

]
�y(0) ≈ exp

[
(τ/N )A (τ/2N )

]
�y(0) (22.20)

whilst the subsequent second step would be

�y(2τ/N ) = exp

[∫ 2(τ/N )

(τ/N )
A (s) ds

]

�y (τ/N ) ≈ exp

[
(τ/N )A (3τ/2N )

]
�y (τ/N ) (22.21)

The general condition for an unspecific integration step is

�y( jτ/N ) = exp

[∫ ( jτ/N )

(( j−1)τ/N )

A(s) ds

]

�y(( j − 1)τ/N ) ≈ exp

[
(τ/N )A((2 j + 1)τ/2N )

]
�y(( j − 1)τ/N ) (22.22)

Clearly Eqs. (22.20)–(22.22) may be combined by substituting in the previous
approximation step to integrate round a complete orbit which results in the recurrence
relation

�y(τ ) =
N∏

j=1

exp

[∫ (N− j+1)(τ/N )

(N− j)(τ/N )
A(s)ds

]

�y(0) ≈
N∏

j=1

exp

[( τ

N

)
A
(

(τ/N )

(
(N − j)

N
+ 1

2

))]
�y(0) (22.23)

As the vector �y(0) is general and a full set of linearly independent vectors produces
the monodromy matrix, the identity matrix is chosen �−1(0) = I. Equation (22.23)
may be regarded as similar to a direct integration method using a symplectic Euler
integrator. The growth matrix or monodromy matrix simplifies to

exp [τB] = �(τ ) ≈
N∏

j=1

exp

[( τ

N

)
A
(

(τ/N )

(
(N − j)

N
+ 1

2

))]
(22.24)
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The absolute values of the eigenvalues of this matrix Eq. (22.24) are used to predict
stability of the harmonically forced column as discussed in Sect. 22.2. The main
numerical cost of Hsu method is repeated calculation of the matrix exponential
which is known to be computationally expensive [30] and is addressed in the next
section.

22.5 Computational Details

Using the FEM with 2D and 3D solid elements to model a harmonically forced
column requires a large number of elements to achieve an adequate accuracy. In
Fig. 22.4a the relative difference for the first three eigenfrequencies for the unforced
column as compared to EBBT versus the number of elements is plotted. The numer-
ical values for EBBT is contained in Sect. 22.2. As may be seen from Fig. 22.4a,
all three frequencies converge as the number of elements increases. Shear locking
due to use of linear solid elements is expected to overestimate the stiffness within
the column, yet all three eigenfrequencies, especially visible for the third eigenfre-
quency, converge to values below those calculated by EBBT. This is consistent with
EBBT slightly overstating the true natural frequencies (see results in Ref. [24]) for
non-slender columns. As only the mass matrix M and a single stiffness matrix K0

of Eq. (22.13) was used for an unforced column, Fig. 22.4a was appropriate in this
work to validate these two matrices. Figure 22.4b shows the relative difference of
the buckling calculated by the FEM and the theoretical Euler buckling load versus
the number of elements. Similarly, as observed by other authors [28], the buckling
load calculated via the FEM is slightly less than that estimated via EBBT. Fig. 22.4b
is used to validate the second stiffness matrix K1 of Eq. (22.13). It should be noted,
that a significant increase in the number of 2D and 3D solid elements over 1D beam

(a) (b) (c)

Fig. 22.4 a First 3 eigenfrequencies of unloaded columncompared toEBBTas number of triangular
elements is varied. Validation formassM and stiffnessmatrixK0.bCritical buckling load compared
to Euler buckling load as number of triangular elements changes. Validation for second stiffness
matrix K1. c Histogram plot of time taken by various methods: 1: Euler and Trapezoidal methods
failed to converge, 2: Dormand–Prince method, 3: Hsu method using 2nd order approximation
matrix exponential method, and 4: Hsu method with scaling and squaring method
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elements were needed for convergence of the frequencies (cf. Fig. 22.4a) and the
buckling load (cf. Fig. 22.4b). In order to control for numerical errors in the determi-
nation of stability with the 2D and 3D elements, a large enough number of elements
to allow convergence to within approximately 1% was sought using diagrams such
as Figs. 22.4a, b. For results in Sect. 22.2, it was found that 2528 DOF and 2832 DOF
to achieve this for the triangular element and for the cuboid element respectively.

Lastly, we discuss a few techniques to calculate the Floquet multipliers and their
computational load. Figure 22.4c shows a histogram diagram with the total time
taken for several trial methods. The comparison was conducted for a 348 DOF test
case using a single thread of an Intel(R) Core i7 CPU 960 @ 3.20GHz with 8 GB
RAMwith ASCII C code compiled with GNU C compilers. In order to calculate the
Floquet multipliers, the standard direct integration technique was first implemented.
Using either a simple Euler step or trapezoidal integration method, the time traces
blew up for arbitrary small stepsize. Failure of these techniques was probably due
to the EQM Eq. (22.13) being stiff. In order to alleviate this, a special integrator for
stiff equations was utilised, namely the Prince-Dormand method [6] which is an 8th
order Runge–Kutta method. The total time taken (23h) may be seen in the second
column of the histogram diagram Fig. 22.4c. Next Hsu method (Sect. 22.4.1) was
implemented in order to calculate monodromy matrix. By far the most computation-
ally expensive part of the technique is repeated calculations of a matrix exponential.
For this reason, Hsu et al. suggested to take only the first few terms in its Taylor
expansion. It was found that although each matrix exponential estimation was sub-
stantially quicker, a much larger number of matrix exponential steps were required
(cf. Eq. (22.24)) to comply with our error tolerance. The total time for this trial was
5h. Lastly Hsumethod using the “scaling and squaring”Moler and van Loanmethod
3 recommended in Ref. [30] for matrix exponential determination implemented in
the GNU scientific library (GSL) yielded significant faster computations (22min)
as the total number matrix exponential needed to be calculated could be reduced.
Although the simple timing comparison conducted here needs to be treated with
care as substantial improvements could be possible via tweaking of algorithms, a
clear improvement may be seen in Fig. 22.4c in the amount of time taken by each
method run on a single thread of the processor. Additionally Hsu method [17] with
scaling and squaring method may be easily parallelized as each matrix exponential
computation may be treated independently. Parallelization was achieved using Open
Multi-Processing [3] allowing a possible 8-fold speedup for the Intel i7 with 4 cores
and 2 threads per core. Diagrams and figures of Sect. 22.2 were produced on a 32
symmetric node cluster each with 64GBRAM, 4 AMDOpteron CPU run at 2.6GHz
and 48 threads.
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22.6 Conclusion

In this work, time-periodic equations of motion for a non-slender 2D and 3D column
under periodically-applied axial load is obtained by a Rayleigh–Ritz formulation
of the FEM. Versatile solid elements such as linear triangular or linear cuboid ele-
ments are used meaning a non-linear strain approach is required to obtain buckling
instabilities. Unlike for beam elements, a large number of these germane elements
are required for sufficient convergence of the natural frequencies and Euler buckling
load. The resultant growth of the DOF required leads to significant numerical and
computational difficulties in determining stability via Floquet theory [10]. Numerical
schemes of the direct integration method and Hsu method is compared. The signifi-
cant computational load is handled via purposely written C-code using the GSL [12]
with OpenMP [3] parallelization. The use of versatile solid elements allows one
to determine stability of elastodynamic structures of non-simple geometry. As two
examples of the flexibility of the technique, two configurations of a 3D steel col-
umn under harmonically-applied force is discussed. In the results section of this
manuscript, it is concluded that a column with non-symmetric aspect ratio is less
stable whilst a column made of nonhomogeneous, in this case with holes, material
is more stable.
Notes and Comments. This work was supported by DFG (HA 1060/56-1). We
thank the graduate school of computational engineering for use of its “icluster” and
Prof. Peter Hagedorn for general encouragement.
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Chapter 23
Effects of Non-neighbouring Members in
an Array of Beams Vibrating in Fluids

Arun Kumar Manickavasagam, Stefanie Gutschmidt and Mathieu Sellier

Abstract Broadband, multi-functional and parallel-processing devices are often
built on coupled oscillators or arrays of resonators. Different length scales and appli-
cations determine the dominating coupling mechanism of the device. In this work
we investigate the effects of fluid coupling between members of a one-dimensional
cantilever array. We are specifically interested in studying the influence of non-
neighbouring members in view of trying to distinguish between local and global
(array) effects. Our analysis is based on the Navier-Stokes equation for incompress-
ible flow which is solved using a boundary-integral technique resulting in the hydro-
dynamic coupling matrix through which added mass and hydrodynamic dissipation
effects are inferred. Results clearly suggest that non-neighbouring members play a
significant role with an increase in size of the array and at gap widths less than half
the width of the cantilever.

Keywords Fluid coupling · Array effects · Non-neighbouring members · Added
mass · Hydrodynamic dissipation

23.1 Introduction

With recent improvements and increased performance specifications of MEMS
(micro-electromechanical systems) based technologies such as e.g. scanning probe
microscopy [1] or biosensors [2], but also larger scale applications like piezoelectric
fans [3] and flapping wings for propulsion [4], there has been a growing interest to
understand the collective dynamics of coupled oscillators, especially when immersed
in a fluid. Other examples of coupled nonlinear oscillators include networks of pace-
maker cells in the heart, congregations of synchronously flashing fireflies and crickets
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chirping in unison.While dominating coupling effects canbeof different origin (fluid,
mechanical, thermal, etc.) and size, in this work we focus purely on hydrodynamic
interactions between members of the array and the ways in which these influence the
collective dynamics of the array. More specifically, we investigate the hydrodynamic
influences of non-neighbouring members on the overall array dynamics. The aim of
this work is to be able to distinguish between parameter domains at which coupling
effects of non-neighbouring members significantly influence or even determine the
overall performance of the system and for which these can be neglected.

Basak and Raman [5] studied the hydrodynamic coupling effects between near-
est neighbour members of an array of M micro-mechanical beams. The array under
investigation was an edge-to-edge configuration and the authors studied the effects of
hydrodynamic forces for a range of gap widths, amplitude ratios and relative phases
analytically and computationally. They concluded that the dynamics of microbeams
in an array can be tuned to either maximize or minimize the hydrodynamic resis-
tance on individual microbeams. Intartaglia et al. [6] investigated the hydrodynamic
coupling effects of a pair of cantilevers in a face-to-face configuration. Their work
sheds light on mutual influences of the two beams, manifested in added mass and
dissipation effects. They showed that the added mass effect is magnified for decreas-
ing gaps and hydrodynamic damping decreases as the gap increases. Their proposed
theoretical approach was also validated experimentally in water on centimeter sized
compliant beams subject to base excitation. Cellini et al. [7] investigated hydrody-
namic coupling effects in a parallel array (face-to-face configuration) of five identical
ionic polymer metal composites (IPMCs) subjected to low frequency base excita-
tion limiting the interactions only to nearest neighbours. Their analysis suggests that
closely spaced IPMCs result in higher harvested powers, which is also validated
experimentally. While these works have studied the nearest neighbour interactions,
they have ignored the effects of non-neighbouring members.

In this paper we focus on small sized arrays with three and five beams in an
edge-to-edge configuration (considering motion in transverse direction only), see
Fig. 23.1 for the cross-sectional view of cantilevers in fluid. The beams are long,
slender cantilever structures immersed in an incompressible, viscous fluid. While
the hydrodynamic coupling effects of a pair and local neighbours of cantilevers in
an array have been studied in detail [5], we will focus on the theoretical analysis of
hydrodynamic coupling on the effects stemming from non-neighbouring members
and/or global array properties.

The paper is organized as follows. In Sect. 23.2, we present the boundary-integral
theory resulting in matrix-vector equations to compute the added mass and hydro-
dynamic dissipation effects over the width of the beam. In Sect. 23.3, we extend the
theoretical model introduced by Basak and Raman [5] incorporating the effects of
non-neighbouring members in a three and a five-beam array. Results are discussed
and conclusions are drawn in Sect. 23.4.
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23.2 General Formulation of the Array Model

23.2.1 Streamfunction Formulation

In this section we extend the boundary-integral formulation [5] for an array of M
beams in general matrix form. The final expression determines the hydrodynamic
forces along the width of each beam. We consider small amplitude oscillations of
infinitely thin cantilever beams of rectangular cross section, each of width 2b and
spaced 2g apart, see Fig. 23.1. The derivations are based on previous work by Tuck
[8], Tung [9] and Raman [5]. We, however, highlight new and additional terms of
non-neighbouring members and compare and validate our results against theirs.

We base the derivations of mathematical expressions on the following assump-
tions:

1. Each microbeam can be of arbitrary cross section as long as the cross section
remains uniform along its length.

2. The fluid motion along the axial direction Ex can be neglected for lower flexural
modes.

3. Only transverse vibrations of the beam along Ez are considered and any lateral
motion along Ey is ignored.

4. Only hydrodynamic coupling effects are considered, ignoring any effects arising
from structural coupling.

5. The fluid is incompressible as the acoustic wavelength in both liquids and gases
typically exceeds the characteristic length scale of the microbeam.

6. Furthermore, all beams are assumed to oscillate with the same frequency andwith
small amplitudes and possibly different phases.

Since the nonlinear convective effects are negligible due to the small amplitude
assumption, the fluid flow is governed by the linearized Stokes and the continuity
equation. The Fourier transformed unsteady Stokes and continuity equation for the
fluid is given by [9]

iωρu = −∇ p + μ∇2u, ∇.u = 0, (23.1)

2b 2g 2b 2g 2b

x,Ex

z, Ez

y,Ey

C

Fig. 23.1 Sketch of the boundary value problem for three oscillating rectangular cross-sectional
beams. Ex, Ey, Ez is the vector basis corresponding to the x , y and z coordinate system
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where ω is the driving frequency, u(y, z|ω) is the fluid velocity vector given by
u = v(y, z|ω)j + w(y, z|ω)k, where v and w are magnitudes of velocities in the
lateral and transverse directions respectively, p(y, z|ω) is the pressure field in the
fluid, and ρ and μ are the density and dynamic viscosity of the fluid respectively.
The beam cross sections in the y − z plane are separated from the fluid domain by a
closed contour C.

The far-field boundary condition is that u → 0 as y, z → ±∞ and the velocity
at the solid-fluid interface is given by:

v = 0, w = Wm, (23.2)

at z = 0 (beam), where v and w are flow velocities along Ey and Ez respectively and
Wm is the transverse velocity amplitude of the beam cross section.

Following Tuck’s work [8], we introduce a stream function ψ(y, z) to satisfy the
continuity equation in (23.1)

v = ψz, w = −ψy . (23.3)

Thus, the boundary conditions at the solid-fluid interface in terms of the streamfunc-
tion are

ψz = 0, − ψy = Wm . (23.4)

Reformulating Eq. (23.1) in terms of the streamfunction and application of Green’s
theorem yields the following expression for the streamfunction: [5]

ψ(y, z|ω) =
∫
C
(Ψ (y′, z′|ω)Gn(y, z|y′, z′)

− Ψn(y
′, z′|ω)Ω(y, z, |y′, z′) − ζ(y′, z′|ω)Ψn(y, z|y′, z′)

+ 1

η
P(y′, z′|ω)Ψl(y, z|y′, z′))dl,

(23.5)

where (y, z) is a point in the fluid domain, (y′, z′) is a point on the contour C,
ζ is the fluid vorticity, and G, Ω and Ψ are the Green’s functions for the Laplace
operator, the Helmholtz operator and for the operator∇4(.) − i Re∇2(.) respectively.
The subscripts n and l define derivatives in normal (transverse) and parallel (lateral)
directions to the contour C, respectively.

The problem then involves differentiating the above equation with respect to z
and y in turn to obtain the velocity components v and w resulting in coupled integral
equations.Anumerical scheme is thenused to convert the systemof integral equations
into a corresponding system of matrix equations using quadrature. A nonuniform
discretization technique is employed to discretize the beam into N unequal segments,
to avoid square root singularities. Also, the equations are allowed to hold at the
midpoint of each segment to avoid logarithmic singularity [8]. Once all the matrix



23 Effects of Non-neighbouring Members in an Array of Beams Vibrating in Fluids 287

entries are computed, linear system is solved in MATLAB to obtain the unknown
pressure jumps. A more detailed procedure on computing the pressure jumps can be
found in [5].

23.3 Hydrodynamic Coupling of Arrays in Fluids

We focus in this section on the hydrodynamic coupling effects between members
in an array. We provide a generalized matrix formulation for an array of M beams
incorporating coupling contributions of all members and study the influence of non-
neighbouring members in a three-and a five-beam array.

Derivations of the hydrodynamic coupling matrix are based on existing work by
Basak and Raman [5] whereas the new contribution in this paper is the consideration,
analysis and discussion of coupling contributions of all members. We consider iden-
tical beams equally spaced apart. The width of each beam is 2b and the gap between
each is 2g. The unsteady streamfunction is computed for transverse vibrations and
the velocity matching conditions are formulated for M beams. The transverse veloc-
ity of the mth beam in the array is given by Wm(z) = Ŵmei(ωt+θm ), where Ŵm is the
velocity amplitude and θm is the phase of vibration of the mth beam. Also velocity
matching conditions for each beam is formulated following a similar procedure as
that by Basak and Raman [5]. We nondimensionalise gaps, pressure jumps, velocity
amplitudes and unsteady Reynolds number to make comparisons meaningful. The
uncoupled integral equations are then solved using a numerical procedure similar
to the one used by Tuck [8] and Basak and Raman [5]. The hydrodynamic matrix
elements for an array of M beams incorporating interactions between all members
in the array are given by

Gm,n = [
Akj

]
m,n ,

where m, n ∈ 1...M and Akj is given by

Akj =
∫ ξ j+1

ξ j

L(
√
i Re|ξ ′ − ξ |)dξ ′,

= 1

2π
[ f (Re, ξ ′

j+1, ξk) − f (Re, ξ ′
j , ξk)],

(23.6)

and

f (Re, ξ j
′, ξk) = i

Re

(
1

ξ ′
j − ξk

+ sgn(ξ ′
j − ξk)i

√
i ReK1

× (−i |ξ ′
j − ξk |

√
i Re)

)
.

(23.7)

Each diagonal entry contains hydrodynamic influence coefficients due to the seg-
ments of the samemicrobeamwhereas each off diagonal entry comprises of elements



288 A. K. Manickavasagam et al.

representing the hydrodynamic coupling generated by the neighbouring ((m + 1)th
and (m − 1)th) and non-neighbouring members on the mth beam. For example, G11

contains hydrodynamic influence coefficients on the first microbeam due to the seg-
ments of the same microbeam whereas G12 contains hydrodynamic influence coef-
ficients on the first microbeam due to the segments of the second microbeam, and so
on. The logarithmic and square-root singularities are circumvented by allowing the
equations to hold at the middle point of each segment and by dividing each beam into
unequal number of segments N respectively. For instance, elements of sub-matrix
G11 are computed by running a loop over the number of nodes j (0, . . . , N ) for each
k (0, . . . , N − 1) which is the midpoint of each segment on the first beam [8].

The velocity matching equations for any beam other than the first beam can be
written in matrix notation as follows

rm1e
iθm1 [1 1 . . . 1]T = Ĝ[Pm]T (23.8)

where rm1 and θm1 are the relative amplitude and phase of themth beam with respect
to beam 1. We consider beam 1 (left-most beam) as our reference and hence r11 = 1
and θ11 = 0.

The coupling matrix Ĝ incorporating all member interactions for a three and a
five-beam array are given by:

Ĝ I I I =
⎡
⎣G11 G12 G13

G21 G22 G13

G31 G32 G33

⎤
⎦ ,

ĜV =

⎡
⎢⎢⎢⎢⎣

G11 G12 G13 G14 G15

G21 G22 G23 G24 G25

G31 G32 G33 G34 G35

G41 G42 G43 G44 G45

G51 G52 G53 G54 G55

⎤
⎥⎥⎥⎥⎦ ,

where the elements in red represent the coupling contributions of non-neighboring
members and are set to zero as in previouswork [5, 6, 9]when only nearest neighbour
interactions are considered. The solutions for the nondimensional pressure jump are
found simply by inverting the coupling matrix and multiplying it by the velocity
vector.

23.4 Beam Array Analysis

Non-dimensional parameters that influence the coupled hydrodynamics are the gap
ḡ = g/b, the amplitude ratio rm1, the relative phase θm1, the unsteady Reynolds num-
ber Re and the non-neighbouring members. The effect of the first four parameters
have been studied for nearest neighbour interactions and the focus in this paper is on
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the influence of non-neighbouring members for different gap widths and two differ-
ent configurations, namely in-phase vibrations and out-of-phase vibrations (where
alternating beams vibrate in opposite directions).

In-phase Vibration Analysis

We consider all beams to oscillate in-phase with identical vibration amplitudes incor-
porating nearest neighbour interactions initially. The imaginary (�P∗

i ) and real
(�P∗

r ) parts of the pressure across the middle beam in a three and a five-beam
array are analysed for varying gap sizes between members at Re = 1.

The imaginary part (�P∗
i ) of the pressure drop across the beam is 90◦ out-of-phase

with its transverse velocity and contributes to the added mass whereas the real part
(�P∗

r ) of the pressure drop is in-phase with its transverse velocity and contributes
to the hydrodynamic dissipation. We notice from Fig. 23.2 that at gaps greater than
twice thewidth of the beam (i.e. g/b > 2 ), each beambehaves independentlywithout
interactions with its neighbours. The pressure distribution in such cases is similar to
that of a single beam vibrating in an unbounded fluid [8]. However, as the gap width
is reduced the imaginary and real parts of pressure behave in non-intuitive ways. The
critical gaps at which they switch trends is different as also observed by Basak and
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Fig. 23.2 Variation of imaginary and real parts of pressure across the middle beam subject to in-
phase vibration mode; a), b) in a three-beam array (dotted line) and c), d) in a five-beam array (solid
line). Plots for ḡ = 8 , ḡ = 2 , ḡ = 0.8 , ḡ = 0.4 , ḡ = 0.2

and ḡ = 0.1 are shown
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Raman [5]. For instance, added mass and damping initially increase in magnitude as
the beams are brought close to each other but the added mass effect starts to decrease
for g/b < 0.4 whereas damping starts to decrease for g/b < 0.8 both in a three and
a five-beam array.

Non-neighbouring members are then incorporated in the array to predict their
effects on the added mass and damping of the whole array. Fig. 23.3 presents the
differences in pressure parts over the middle beam with all members included as
compared to only nearest neighbours for a three-beam array represented by dotted
lines and a five-beam array represented by solid lines respectively. We restrict our
attention to three gap widths: g/b = 8 , 0.4 and 0.1 only.

There is no significant effect of neighbouring members in a three and a five-beam
array when the beams are far apart as can be seen in Fig. 23.3. The dotted line
overlaps the solid line for a gap width of g/b = 8, suggesting that each beam in the
array behaves independently.However, as the beams are brought in close proximity to
each other, the added mass effect increases more in the five-beam array. This implies
that the effect of non-neighbouring members becomes significant as the array size
increases due to increasing contribution to additional “global effects”.

In Fig. 23.3 we have also plotted the differences in real part (proportional to
hydrodynamic dissipation effects) of pressure when all members are incorporated
and the case where only nearest neighbours are incorporated, both for a three and a
five-beam array. Again, as expected there is no difference for gap widths g/b > 8 as
the dotted line overlaps the solid line implying that each beambehaves independently.
The damping effects in a three-beam array alternates between negative and positive
values as we reduce the gap width. In a five-beam array the trend is positive with the
damping effect increasing initially until g/b = 0.4 but decreasing as the gap width
is reduced beyond 0.4.
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Fig. 23.3 Differences in imaginary and real parts of pressure with all members incorporated and
only nearest members incorporated in a three (dotted line) and a five (solid line) beam array with all
members vibrating in-phase at maximum amplitudes. Plots for ḡ = 8 , ḡ = 0.4
and ḡ = 0.1 are shown
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Hence, both added mass and damping effects are significantly impacted by the
global non-neighbouring members dynamics and the increase in size of the array.
The significance of non-neighbouring members increases as the array size increases.

Out-of-phase Vibration Analysis

Initially, we consider beams oscillating in an out-of-phase mode with identical vibra-
tion amplitudes incorporating nearest neighbour interactions only. The imaginary
(�P∗

i ) and real (�P∗
r ) parts of the pressure across the middle beam in a three and a

five-beam array are plotted in Fig. 23.4, for varying gaps.
We notice that when the beams are far apart there is no change in the imaginary

and real parts of pressure in a three and a five-beam array [8]. In this case each beam
behaves like a single separate beam in an unbounded fluid. As the gap between beams
decreases, the added mass effect decreases in magnitude as can be seen in Fig. 23.4a,
c. Also, the magnitude of the added mass in a five-beam array is more than that of
the three-beam array for g/b < 0.8. The damping behaves in a non-intuitive manner
for a three-beam array whereas for a five-beam array it decreases as the gap width is
reduced which leads us to the conjecture that array effects are enhanced as the size
of the array increases.
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Fig. 23.4 Variation of imaginary and real parts of pressure across the middle beam subject to out-
of-phase vibration mode; a, b a three-beam array (dotted line) and c, d a five-beam array (solid
line). Plots for ḡ = 8 , ḡ = 2 , ḡ = 0.8 , ḡ = 0.4 , ḡ = 0.2

and ḡ = 0.1 are shown
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Fig. 23.5 Differences in imaginary and real parts of pressure with a all members incorporated and
b only nearest members incorporated in a three (dotted line) and a five-beam array (solid line) with
all members vibrating in an out-of-phasemanner at maximum amplitudes. Plots for ḡ = 8 ,
ḡ = 0.4 and ḡ = 0.1 are shown

Now, we incorporate the non-neighbouring members in addition to the nearest
neighbours to predict their effects on the added mass and damping matrices of the
array.

Similar to the in-phase case, Fig. 23.5 depicts that the members of the array
behave independently when they are far apart i.e. g/b = 8. With the addition of
non-neighbouring members the added mass effect shows a similar trend magnitude-
wise to that of a five-beam array and a three-beam array. The real part of pressure
(hydrodynamic dissipation effects) on the other hand reaches a maximum value near
g/b = 0.4 in a three-beam array and decreases as the members are brought closer
whereas in a five-beam array, it shows a monotonic trend i.e. the hydrodynamic dis-
sipation effects decrease with decreasing gap widths.

23.5 Conclusion

The underlying physics of the hydrodynamic interactions betweenmultiple members
in a three and five-beam array have been systematically analysed for two different
modes, namely in-phase and out-of-phase, with and without the incorporation of
non-neighbouring members at a particular Reynolds number Re = 1. Based on the
boundary element technique given by Tuck [8] and the generalized coupling matrix
given by Basak et al. [5], we incorporated the additional coupling contributions due
to non-neighbouring members to investigate their effects on the added mass and the
damping of the whole array. In this paper we focused only on the sensitiveness of
the hydrodynamic effects (added mass and damping) due to different gap widths,
relative phases and the effects of non-neighbouring members.

For the in-phase mode, the magnitude of the added mass effect increases as the
array size increases. Hydrodynamic dissipation effects on the other hand reach an
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optimum value for a critical gap width near g/b = 0.4 and drop further as the gap
width is reduced. The drop in the dissipation effects is much more enhanced in a
five-beam array compared to that of a three-beam array.

For the out-of-phase mode, added mass effect shows a similar trend both in a
three-and a five-beam arraywith increase inmagnitude as the gapwidths are reduced.
However, the hydrodynamic dissipation effects on the other hand show a monotonic
trend in a five-beam array with increase in magnitude as the gap widths are reduced
whereas in a three-beam array the effect can be neglected.

A key conclusion is that non-neighbouring members play a significant role as the
array size increases irrespective of the phase and cannot be ignored for arrays having
more than three members. In particular, the effect is enhanced for nondimensional
gap widths g/b less than 0.4.
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