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Abstract. Automatic facial expression recognition has recently
attracted the interest of researchers in the field of computer vision and
deep learning. Convolutional Neural Networks (CNNs) have proved to be
an effective solution for feature extraction and classification of emotions
from facial images. Further, ensembles of CNNs are typically adopted to
boost classification performance.

In this paper, we investigate two straightforward strategies adopted to
generate error-independent base classifiers in an ensemble: the first strat-
egy varies the seed of the pseudo-random number generator for determin-
ing the random components of the networks; the second one combines
the seed variation with different transformations of the input images.
The comparison between the strategies is performed under two different
scenarios, namely, training from scratch an ad-hoc architecture and fine-
tuning a state-of-the-art model. As expected, the second strategy, which
adopts a higher level of variability, yields to a more effective ensemble for
both the scenarios. Furthermore, training from scratch an ad-hoc archi-
tecture allows achieving on average a higher classification accuracy than
fine-tuning a very deep pretrained model. Finally, we observe that, in our
experimental setup, the increase of the ensemble size does not guarantee
an accuracy gain.

Keywords: Facial expression recognition ·
Convolutional Neural Network · Ensemble learning

1 Introduction

One of the most powerful communication tools is represented by human expres-
sions: out of all the information exchanged in an oral communication, facial
expressions account for 55%, whereas the plain language only for 7% [26]. More-
over, in 1971, Ekman et al. [4] showed that members of both preliterate and
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literate cultures use the same facial expression to convey any specific emotion.
Human facial expressions of emotion are universal, related to biological and evo-
lutionary factors rather than cultural or environmental ones. A set of distinctive
patterns of the facial muscles characterizes each one of the so-called basic emo-
tions: happiness, sadness, anger, fear, surprise, disgust. Thus, the Facial Expres-
sion Recognition (FER) problem has attracted the attention of the Computer
Vision and Machine Learning communities: the ability to automatically perform
FER over human facial images opens up the possibility to develop several appli-
cations in different fields, from Human Computer Interaction to Data Analytics,
emotional health and sentiment analysis [17].

The core of an automatic FER system is represented by the feature extrac-
tion functionality, aimed at extracting a representative and discriminating set of
features from the original facial images. Real-world applications ask for robust
feature extractors, able to cope with image variations typical of an “in-the-wild”
setting [3], such as occlusions, different head poses and illumination conditions.
Hand-crafted feature extractors turned out to be inadequate for this challenging
scenario, lacking the ability to generalize on incoming images: thus, the need
has arisen for new, more flexible methods. As Deep Learning methods obtained
excellent results in a wide variety of similar problems [15,16], their application
in the context of FER has been explored as well. Convolutional Neural Net-
works (CNNs) can be regarded as one of the most popular models used for this
purpose; they autonomously learn a hierarchical representation of the features
of the original images [11]. The success of recent classification systems relies on
the use of large collections of labeled data for training: 2012 ImageNet [2], for
example, is a dataset of 1.4 million images with 1000 classes. On the other hand,
annotating a large dataset of facial expression images is a difficult and time con-
suming task: FER2013 is one of the largest datasets of this kind built so far, and
contains 35,887 images of different subjects.

A general, effective solution for boosting classification performance is rep-
resented by ensemble techniques, which combine multiple, diverse base learners
(networks in our case). Several strategies have been proposed for the produc-
tion of error-independent networks and for merging their classification outputs
[5,12,24] but, to the best of our knowledge, in the FER context, their relative
effectiveness has not been adequately investigated.

The present work is aimed at shedding light on the effectiveness of two simple
techniques to generate diversity among the base classifiers of an ensemble: Seed
Strategy, i.e. varying only the seed of the random number generator in the learn-
ing procedure of each network, and Preprocessing Strategy, combining the seed
variation with different transformations of the input images. It is important to
underline that different scenarios can be considered, and we perform this anal-
ysis in two of them: (i) training from scratch an ad-hoc architecture, CNN10-S
(S stands for scratch), and (ii) fine-tuning a pre-trained state of the art model
VGG16-FT (FT stands for fine-tuning). Both architecture were chosen for their
recognized importance in the literature and availability to the research commu-
nity [18,19]. It is worth pinpointing that the paper focus is on experimentally
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comparing different ensemble strategies, instead of achieving the best absolute
accuracy on the FER-2013 dataset.

The remainder of the paper is organized as follows: in Sect. 2 we describe the
typical approaches for training CNNs. In Sect. 3 we provide a detailed description
of our experimental framework, from the used datasets to the proposed ensemble
strategies, along with the scenarios for the comparison. In Sect. 4 we discuss the
results of the experimentation, and finally Sect. 5 concludes the paper.

2 Brief Introduction to CNN Training Approaches

CNN [16] is a class of feed-forward neural networks: it is a convenient choice for
input data with known topology, such as 2D or 3D pixel matrices that represent
grayscale or RGB images, respectively.

As a Machine Learning model, the supervised learning procedure for CNNs
aims to minimize the training error by experimenting a labeled dataset. However,
the real objective is to perform well on new, unseen examples. To evaluate this
generalization capability, a validation set is used during the training: several
techniques are typically adopted to reduce the discrepancy between training
and validation errors, such as dropout [21], data augmentation [23], and weight
regularization [7]. Besides these, gathering and annotating more data is one of
the best practices to reduce the risk of overfitting, but this is often difficult and
time-consuming for many applications.

In the present work, we refer to a well-known, medium-size dataset
(FER2013, described in Sect. 3.1). Against this background, two scenarios are
taken into account: training an ad-hoc model from scratch, and using a pre-
trained model. We tackled the FER problem following both the approaches.

2.1 Training a Model from Scratch

All the weights in the model are randomly initialized: they characterize the
behaviour of every action unit. Along the training, an optimization algorithm,
typically based on stochastic gradient descent (SGD) [7], iteratively updates the
weights in order to minimize a cost function. In this scenario, the capacity of
the model is carefully tuned, considering the limited size of the dataset.

2.2 Using a Pre-trained Architecture

Training from scratch a novel architecture on datasets of limited size has recently
become unpopular [1]. Instead, a highly effective approach can be based on
exploiting the pre-training of a large network, with higher capacity, over a big
dataset, and then re-purposing such a network for the application of interest.
Indeed, modern CNNs for Computer Vision show a common behaviour [25]: the
features extracted in the first layers are quite standard and do not depend on
the specific image dataset, while the high level features are strongly related to
the considered task. Weights in the first layer typically learn filters that resemble
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fixed patterns, such as edge detectors, color blobs detectors, Gabor filters, etc. In
the last few years, this approach has gained popularity mainly for two reasons:
the availability of big labeled datasets for classification tasks, e.g. ImageNet
with 1.4M images, and the availability of pretrained state of the art models such
as VGG [20], Inception [22], and ResNet [10]. In our work, we use an already
pretrained VGG16 model.

3 Experimental Setup

In this section, we describe the dataset used in the present work and the experi-
mental approach. We recall that we want to compare two strategies for generating
variability among base classifiers in an ensemble. In order to evaluate the gen-
eral validity of the results, we perform the comparison in two typical scenarios:
training from scratch an ad-hoc architecture, and fine-tuning a state of the art
model. Experiments have been carried out over a server equipped with Nvidia
GTX 1080 Ti with 11 GB Memory.

3.1 FER-2013 Facial Expression Dataset

The Facial Expression Recognition 2013 (FER-2013) dataset [8] has been chosen
for our experiments because it is the most commonly adopted for this task, as
reviewed in [19]: it is one of the largest collections of in-the-wild facial images
consisting of 35.887 images from 7 classes: Neutral (6197), Anger (4945), Disgust
(547), Fear (5121), Happiness (8988), Sadness (6076), and Surprise (4001). The
official split of FER-2013 has been used after the removal of 11 black images,
and it consists of a training set with 28699 images, a validation set with 3588
images, and 3589 images as test set.

The classification accuracy on FER2013 represents the performance measure
of the models used in the present work. To the best of our knowledge, the best
model achieves a 75.2% accuracy on FER2013 [19], while the average human
accuracy on FER2013 is 65%.

3.2 Ensemble Design Strategies

There are two possible approaches for the design of an ensemble of neural net-
works [5,24]: the implicit (or direct) method aims to generate an ensemble of
error-independent base classifiers by introducing one or more sources of variabil-
ity. The explicit (or overproduce and choose) method involves a further optimiza-
tion step: a subset of networks is selected from an initial large set by optimizing
an error diversity measure out of selected base classifiers. In order to keep our
model as simple as possible, we consider two direct ensemble design strategies:
Seed Strategy and Preprocessing Strategy. We combine the outputs computed
by the base classifiers by using the most common aggregation schemes: average
and majority voting. For each strategy, a fixed-size ensemble of nine networks is
used.
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Seed Strategy (SE). The training procedure makes an extensive use of random
choices, namely in the following operations: (i) initial distribution of weights; (ii)
shuffle of the dataset; (iii) data augmentation; (iv) dropout.

This strategy thus exploits the simplest way to piece together an ensemble
of diverse single CNNs: it sets a different seed value for the random number
generator used in building up each base classifier, thus ensuring diversity across
the members of the ensemble.

Preprocessing Strategy (PS). As proposed in [13], it makes use of another
source of variability across the networks in the ensemble: a preprocessing layer
is added before the CNN input stage. Nine networks are obtained by combining
seed variability and preprocessing variability. Three different seeds are used in
order to generate three networks for each of the following groups (Fig. 1):

– networks fed with the original, unchanged images (default);
– networks fed with images that underwent histogram equalization (histEq),

which show an enhanced contrast with respect to the original ones [6];
– networks fed with images that underwent illumination normalization (iNor):

it results in a smoothed version of the illumination-induced variations of the
original images [9].

Fig. 1. The three versions of a sample image from FER2013 dataset adopted in the Pre-
processing Strategy. Left: default, original image. Center: image modified by histogram
equalization. Right: image modified by illumination normalization.

3.3 Two Scenarios of Interest: Adopted Models and Parametrization

The proposed strategies are evaluated on two typical scenarios: training from
scratch an ad-hoc architecture, and fine-tuning a pre-trained model. Hereafter
we describe the relative model, the preprocessing stage, the learning procedure,
and the specific data augmentation step used to obtain a wider training set.

CNN10-S: Training from Scratch an Ad-hoc Architecture

Model. We trained from scratch a classical feed-forward CNN (Fig. 2): it is a
10-layers network resulting in 1,769,447 trainable parameters. It mimics the
VGG-B architecture [20] by the Visual Geometry Group of the University of
Oxford, modified with batch normalization layers and dropout layers according
to the specification proposed by [19].
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Fig. 2. Scheme of the architecture used in CNN10-S (10 is the depth, S stands for
“scratch”). The network is entirely trained from scratch.

Preprocessing Stage. After applying one of the transformations described in
Sect. 3.2, a global mean value μ, and a global standard deviation value σ were
evaluated over the training set. The normalization step was performed by sub-
tracting μ and dividing by σ. The transformation was then applied to every
training, validation, and test image.

Learning Procedure. Following the approach proposed in [19], we used a stochas-
tic gradient descent procedure (momentum = 0.9) to minimize the loss function;
it is composed by a cross-entropy term and a L2 regularization term (λ = 0.0001).
The batch size is 200 and the minimum number of epochs is 300. Since then, val-
idation accuracy is monitored by stopping the training procedure after awaiting
20 epochs since the last improvement. The learning rate is a piecewise constant
function of the training step (boundaries: [12000, 18000, 24000, 30000, 36000],
values: [0.1, 0.05, 0.025, 0.0125, 0.00625, 0.003125]).

Data Augmentation. To artificially increase the training set size, every input
image undergoes the following transformations: zero-padding from 48 × 48 to
54 × 54, and selection of a random crop of size 48 × 48; random horizontal flip
with probability 0.5.

VGG16-FT: Fine-Tuning a Pretrained Model

Model. The reference pretrained model used in our framework is described in
[18] and has been released as Caffe model by the Visual Geometry Group:

– the architecture is the VGG16 [20]: it is a 16-layers network resulting in
134,289,223 parameters; a dropout layer is added after FC 7 layer to reduce
overfitting.

– the available weights of the model have been obtained by pretraining on
a dataset for face recognition: the authors in [18] proposed a method for
collecting and annotating 2.6M images from 2.6K different identities.

Since transfer learning is more successful when the source task and the target
task are more similar, this pretrained model perfectly fits on our case-study, i.e.
the classification of emotion from facial images.
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Fig. 3. The VGG16-FT architecture. During the first training step, only the output
layer (dotted box on the right) is updated. During the second training step, the layers
represented with filled boxes are fine-tuned.

Preprocessing Stage. The pretrained architecture, with a 224 × 224 × 3 input
layer, requires that grayscale images of FER2013 are upscaled to 224× 224 and
replicated on three channels. Images are then zero-centered by subtracting the
global mean value μ.

Learning Procedure. The following steps are performed:

– the original output layer is removed (it was designed for another classification
task). We add our custom output layer consisting of 7 units with softmax
activation. Dropout is added before the output layer to reduce overfitting.

– Step 1: Training the output layer. The whole network, except the newly added
output layer, is kept frozen, i.e. weights are not updated during training. Since
the output weights are randomly initialized, the loss function is high in the
first steps: including the convolutional layers in the learning procedure would
damage the representations previously learned by such layers, because of a
large error signal back-propagating through the network. The classifier is
trained for 5 epochs using the Adam optimizer [14] with a learning rate of
0.00005 and a categorical cross-entropy loss function. In this step, the number
of trainable parameters is 28,679. The batch size is 64.

– Step 2: Fine-Tuning. As shown in Fig. 3 all the hidden layers after conv5 3
are unfrozen. Learning rate is halved and a new training procedure jointly
fine-tunes these layers and the output added layer. In this step, the number
of trainable parameters raises to 121,934,343.

Data Augmentation. To enable a fair comparison among the two scenarios, we
perform the same data augmentation adopted for CNN10-S: images are zero-
padded to size 256 × 256. A random crop of size 224 × 224 is extracted from
either the padded image or its horizontally flipped version.

4 Experimental Results

In this section we show the experimental results: the performance of the proposed
models is evaluated in terms of accuracy on the FER2013 test set. For both the
ensemble strategies and the model architectures, three groups of nine networks
were trained and evaluated in order to assess the stability of the measures.
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Being able to rely on batches of 27 networks, we thus further investigated the
accuracy obtained increasing the ensemble size. Results are reported in Table 1
and summarized in Fig. 4.

Fig. 4. Base classifiers (white bars) and ensemble (filled bars) accuracy for both strate-
gies. In each group, the former white bar represents average of base classifiers accuracy,
the latter represents the best base learners accuracy; the former filled bar represents
ensemble accuracy using average voting, the latter represents ensemble accuracy using
majority voting. Left: trained from scratch CNN10-S. Right: fine-tuned VGG16-FT.

Comparison Between CNN10-S and VGG16-FT. A first result is that the
architecture CNN10-S (Table 1A), trained from scratch, achieves better perfor-
mance than the architecture VGG16-FT (Table 1B), used as a pretrained model
with fine-tuning (Fig. 4): the discrepancy between the accuracy values (between
1% and 2%) is confirmed both in terms of base and ensemble classifiers. Neverthe-
less, the two scenarios share common trends: they are analyzed in the following
paragraphs.

Accuracy of Base Classifiers. For each strategy we can rely on three groups of
nine networks. The low standard deviation of the average accuracy inter-groups
suggests that results are fairly stable, independently of the strategy and the
architecture. Both using CNN10-S and VGG16-FT, we observed that networks
of SE strategy achieve better performance than networks of PS strategy (Fig. 4,
white bars). Furthermore, the intra-group analysis suggests that networks of
the PS strategy have a higher standard deviation, especially for VGG16-FT.
Indeed, we noticed that the introduction of histogram equalization and illumi-
nation normalization leads to a slight performance drop compared to the use of
default images.

Ensemble Accuracy. We define the ensemble gain as the difference between
ensemble accuracy and average base classifier accuracy: combining preprocessing
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Table 1. Accuracy of base classifiers and ensembles (average and majority voting),
and the respective ensemble gains, are reported for each repeated measure. The mean
and the standard deviation values are reported for each strategy.

A. Results obtained by training CNN10-S from scratch

Network architecture CNN10-S

Base classifiers Ensemble AV. Gain AV. Ensemble MAJ. Gain MAJ.

SE 71.165 ± 0.520 73.084 1.919 72.862 1.697

71.180 ± 0.495 73.279 2.099 72.862 1.681

71.109 ± 0.275 73.057 1.947 73.224 2.114

Mean± Std 71.152 ± 0.031 73.140 ± 0.099 1.989 ± 0.079 72.982 ± 0.171 1.831 ± 0.201

PS 70.465 ± 0.585 73.140 2.675 72.973 2.508

70.496 ± 0.472 73.224 2.727 72.583 2.087

70.645 ± 0.649 73.224 2.579 73.335 2.690

Mean± Std 70.535 ± 0.078 73.196 ± 0.039 2.660 ± 0.062 72.964 ± 0.307 2.428 ± 0.253

B. Results obtained by fine-tuning VGG16-FT

Network architecture VGG16-FT

Base classifiers Ensemble AV. Gain AV. Ensemble MAJ. Gain MAJ.

SE 69.546 ± 0.320 71.942 2.396 71.580 2.034

69.462 ± 0.333 72.137 2.675 71.775 2.313

69.583 ± 0.487 72.137 2.554 72.026 2.443

Mean± Std 69.530 ± 0.050 72.072 ± 0.092 2.542 ± 0.114 71.793 ± 0.182 2.263 ± 0.170

PS 68.636 ± 1.187 72.388 3.752 72.527 3.892

68.592 ± 0.941 71.942 3.350 71.496 2.904

68.886 ± 0.403 72.416 3.529 72.527 3.641

Mean± Std 68.705 ± 0.130 72.249 ± 0.217 3.544 ± 0.165 72.184 ± 0.486 3.479 ± 0.419

and seed variability ensures a higher gain value than just varying the seed.
Nevertheless, in both the scenarios, PS strategy and SE strategy lead to very
close ensemble performances (Fig. 4, filled bars). Despite being based on a deeper
model, ensemble learning in VGG16-FT proves to be more effective than in
CNN10-S, since it shows higher ensemble gain.

Even if the adopted aggregation schemes (average and majority voting) lead
to comparable results, average voting shows slightly higher performance: in our
framework, with low intra-group accuracy variability, average voting represents
the proper choice. Indeed, majority voting is typical less sensitive to the output
of a single base classifier since it considers only the predicted labels.

It is worth noting that each ensemble achieves better performance than the
best base classifier composing it.

Increasing the Number of Base Classifiers. Let A, B, C be the three
groups of networks produced for each strategy. We could rely on 3 ensembles of
9 networks (A, B, C), 3 ensembles of 18 networks (AB, AC, BC), and 1 ensemble
of 27 networks (ABC). Figure 5 shows the results.

PS strategy shows a slight boost in performance with CNN10-S (+0.110%),
but a drop using VGG16-FT (−0.028%). On the other hand, SE strategy shows
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a promising trend with VGG16-FT (+0.316%) while decreases with CNN10-S
(−0.139%). Values in brackets are obtained by subtracting the accuracy value
of the 27-nets ensemble and the 9-nets ensemble, considering average voting.

From the above considerations and by analyzing the trend shown in the plot,
it is not possible to state that the increase of the number of base classifiers con-
siderably improves, in general, the performance of our ensembles. Further, using
the proposed model and the adopted parametrization, the training procedure is
extremely time-consuming.

Fig. 5. Ensemble accuracy values versus number of base classifiers in the ensemble.
Mean and standard deviation of three values are available for the ensembles with 9 and
18 networks, while a single value is available for the ensemble with 27 networks. For
each strategy, we considered only average voting. Left: trained from scratch CNN10-S.
Right: fine-tuned VGG16-FT.

5 Conclusion

In this paper we evaluated the performance of two design strategies for gen-
erating ensembles of CNNs used to tackle the FER problem, namely the Seed
Strategy and the Preprocessing Strategy. The former generates diversity among
base classifiers by simply varying the seed; the latter combines different val-
ues of the pseudorandom number generator with the introduction of different
transformations of the input images.

Using a well known medium-sized dataset (FER2013), we carried out our
comparison following two approaches: training an ad-hoc model from scratch
(CNN10-S) and fine-tuning a pretrained model (VGG16-FT).

Results have shown that the ad-hoc architecture is an appropriate choice for
the considered task, since it performs better than the fine-tuned model, both con-
sidering base classifiers and ensemble accuracy. Nevertheless, using a pretrained
model requires less effort.

In the presented experimental setup, Seed Strategy and Preprocessing Strat-
egy achieve comparable results using both the approaches (CNN10-S and
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VGG16-FT). However, the variability induced by the Preprocessing strategy
allows obtaining significantly higher ensemble gain than using the solely seed
variation.

To the best of our knowledge, this is the first work that analyze the effective-
ness of simple ensemble strategies using Deep Learning approaches for the FER
task. Since we did not make specific assumptions based on the facial images, it
could represent a starting point for further investigation also in other Computer
Vision classification tasks.

In future work, we will investigate if other models, which use the same or
other pretraining datasets, allow achieving comparable or better performance.
Further, we will analyze the performance of other state of the art models and
will evaluate the effect of introducing other factors of variation in the design of
ensemble strategies, considering also their computational load.
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