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Abstract. We live in the age of Big Data, and personal user data, in
particular, is necessary for the operation and improvement of healthcare
services. Many times, the capture and use of personal data are not made
explicit to the users, but they are central to the business model of com-
panies. However, each person’s right to privacy needs to be respected.

With the goal of reconciling these two conflicting needs, we
designed and implemented a proof-of-concept platform for performing
privacy-preserving computations. In particular, we implemented privacy-
preserving versions of Machine Learning algorithms, namely Decision
Trees, k -Means, Logistic Regression, and Support Vector Machines, using
Secure Multi-party Computations with Homomorphic Encryption and
Garbled Circuits. For each combination of Machine Learning algorithms
with Secure Multi-party Computation techniques, we present the rea-
soning behind our choices and their potential consequences in terms of
performance.

The ultimate goal is to provide Privacy-Preserving Computation as
a Service. With this platform, we wish to contribute to the faster inte-
gration of solutions developed by the scientific community in enterprise
systems, thus reducing the time required for innovation to reach products
used by many people where privacy improvements are urgently needed.

Keywords: Privacy-preserving computations · Machine Learning ·
Big Data · Secure-multi-party computations ·
Privacy-preserving platform

1 Introduction

The term Big Data means that there are vast amounts of data being analysed and
processed by companies every day [7]. Through this data processing, meaningful
information can be obtained to improve existing systems or to discover new
approaches in business models. Machine Learning (ML) algorithms in the context
of Big Data processing can produce significant results, so that it is possible to
do knowledge learning from datasets in order to predict future labels (i.e. classes
of data) or clusters for new data. An example of this can be seen in the field of
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Healthcare, where it can be beneficial to analyse patient records from different
hospitals in order to identify inefficiencies and develop best practices [8]. For
example, Google Deepmind is developing ML algorithms for faster patient triage
and admission processes in hospitals1, and IBM Watson is supporting medical
personnel consider treatment options for their patients2.

There are restrictions to the processing of personal data, such as patient data.
Privacy can be defined as the ability or right of an individual to protect his/her
personal information, and extends the ability or right to prevent invasions on
the personal space of said individual [2]. If patient data can be processed with
privacy then they can enable novel applications and scientific breakthroughs in
Healthcare. By combining ML algorithms and privacy-preserving techniques, it
is possible to create Data Mining processes that, not only allow for knowledge
learning on large datasets, but also help maintain a level of privacy desired by
individuals and compliant with existing legislation [5].

Data Resources

Healthcare Mobility Finance

API

Cryptographic 
Techniques

Machine Learning 
algorithms

Fig. 1. Conceptual view of the platform.

In Fig. 1 we present the conceptual view of our platform. The data resources
represent the datasets that are used in the classification process. The data pro-
cessing itself is done using the combination of ML algorithms and cryptographic
techniques for performing privacy-preserving computations. The Application
Programming Interface (API) layer abstracts details and provides the opera-
tions of the platform itself, which allow a simplified building of applications
and data visualizations. The use-cases describe the various subjects that can be
addressed using this platform, and allow us to place it in real-world scenarios
that have high impact and demand in Big Data operations. More use-cases are
possible beyond Healthcare, Mobility and Finance, as the platform is designed
for general use.

In this work, we present a proof-of-concept platform for privacy-preserving
distributed ML computations without resorting to trusted third parties. With
it, we aim to give users a platform that provides simplified access to privacy-
preserving techniques that can be used to meet privacy requirements in data
1 https://deepmind.com/applied/deepmind-health/.
2 https://www.mskcc.org/about/innovative-collaborations/watson-oncology.

https://deepmind.com/applied/deepmind-health/
https://www.mskcc.org/about/innovative-collaborations/watson-oncology
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processing. We provide a detailed comparison of four ML algorithms, namely:
Decision Trees (DT), k -Means, Logistic Regression (LR) and Support Vec-
tor Machines (SVM); combined with two Secure Multi-party Computations
(SMPC): Garbled Circuits (GC) and Homomorphic Encryption (HE); presenting
details on how this can be performed. We performed an experimental evaluation
of the adapted ML algorithms using publicly available datasets, and compare
the results with a baseline.

The paper is further organized as follows. Section 2 describes the ML algo-
rithms and the SMPC techniques used in the platform. In Sect. 3, we present the
related work. Section 4 describes the design of the platform, detailing the adjust-
ments done to ML algorithms. In Sect. 5, we present the experimental results.
Finally, in Sect. 6 we present the conclusions and propose future work.

2 Background

In this section we present the ML algorithms for which we wish to develop
privacy-preserving implementations and the used SMPC techniques.

2.1 Machine Learning Algorithms

Decision Trees (DT): A decision support tool composed of nodes and leaves,
with each node representing the decisions to take, and each leaf representing class
labels. Classification of a sample is accomplished by traversing the tree from the
top, comparing the features selected on each node with its respective threshold,
and choosing one branch or the other accordingly, repeating the process until a
leaf is reached. At each tree node, a decision is computed using:

fDT(xi) = xi

?≥ θj (1)

where xi is the feature value of interest of the testing sample and θj is the
decision threshold of node j. If the output is 0, the left hand child is selected; if
it is 1, the right hand child is selected.

Support Vector Machines (SVM): An SVM model represents the samples
as points in space, mapped so that the margin between the two classes is as wide
as possible. The vectors that define this margin are called Support Vectors (SVs).
The classification of new samples in SVM is done using the scoring function in
Eq. 2, where each testing sample x is attributed to a prediction label.

fSVM(x) =
m∑

i=1

αiK(x(i)
SV , x) + b (2)

where αi is the coefficient associated with the support vector x
(i)
SV , K is the

kernel function chosen, and b is a scalar number.
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k-Means: An iterative algorithm, with two distinct steps. (1) Each instance is
assigned to a cluster, by calculating the Euclidean distance, dE , between that
instance and each centroid. Then, the lowest distance indicates which cluster
the instance is assigned to. (2) Each centroid is updated to be the mean of all
the instances assigned to it. The algorithm stops when the centroids no longer
change position. The classification of a new sample is done by computing the dE

of the new sample with each centroid, discovering which is closer. The predicted
label of the sample is computed as described in Eq. 3:

fk-M(x) = argmin
C

dE(x,Cj) (3)

where C are the centroids of each cluster and x is the testing sample.

Logistic Regression (LR): A statistical model that analyses a dataset in
order to determine an outcome. This binary LR model is used to estimate the
probability of a binary response based on one or more variables. The classification
of samples is done using the following equation:

fLR(x) = β0 +
m∑

i=1

βixi (4)

where β0 is the intercept from the linear regression, βi are each regression coef-
ficient that is multiplied by each feature of the sample, and x is the testing
sample.

2.2 Privacy-Preserving Techniques

Garbled Circuits (GC). [14] allow two mutually mistrusting parties to eval-
uate a function over their private inputs without resorting to a trusted third
party. GC allows two parties holding inputs x and y to evaluate an arbitrary
function f(x, y) without leaking any information about their inputs beyond what
is inferred from the function output. The idea behind GC is that one party pre-
pares an encrypted version of a circuit that computes f(x, y) and the second
party then computes the output of the circuit without learning any intermediate
values.

Homomorphic Encryption (HE). [11] is a cryptographic technique that
allows computations to be carried with the ciphertext, so that, when decrypted,
the resulting plaintext reflects the computation made. In other words, HE allows
making some computation over the ciphertext, for example, addition, without
decrypting it, and the result is the same as making that computation on the
plaintext. This is of great importance because it allows chaining multiple ser-
vices that make computations on a ciphertext, without the need to expose the
data to those services. Homomorphic cryptosystems can be classified into two
distinct groups: Partially Homomorphic Cryptosystems (PHE), where there is
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only one operation that is allowed by the homomorphic property (ex: addition,
multiplication, XOR); and Fully Homomorphic Cryptosystems (FHE), where it
is possible to perform both addition and multiplication.

3 Related Work

Although well known Big Data platforms such as Apache Hadoop3 and Mon-
goDB4 have been around for a while, most (if not all) of them were designed
without Data Privacy concerns in mind. We envision a Big Data platform follow-
ing a Privacy by Design approach, where data privacy is taken into consideration
on every development step.

In many cases there are privacy-preserving versions of ML algorithms, for
example, k -Means [12], LR [4] or SVM [13], but they are not made available in
a platform.

There are also works on designing platform architectures focused on the pro-
tection of privacy in location-based services, and describing privacy-preserving
algorithms for them [1], but these works do not actually perform any implemen-
tation or testing of such solutions.

4 Platform Design

We structured the platform design in two major parts: a non-privacy-preserving
baseline and the privacy-preserving implementation. The former allows compar-
ing the effects of the privacy-preserving techniques in terms of performance.

4.1 Non-privacy-preserving Components

While designing the first part of our platform, the focus was to build a baseline
so that meaningful observations could be achieved, while also paving the way to
build the privacy-preserving approach. The models that we implemented allowed
us to later adapt the prediction step of the ML algorithms for GC and HE, while
also giving insight on which technique to use for each algorithm.

4.2 Privacy-Preserving Components

The privacy-preserving part consisted of adjustments to the evaluation processes
of the ML algorithms in order to be compatible with two privacy-preserving tech-
niques: GC and HE. These two techniques offer different means to obtain privacy-
preserving computations. GC builds ciphered boolean circuits where most oper-
ations are possible to implement. However, arithmetic operations require a large
number of logic gates, creating an overhead that makes GC very slow for those
operations. So, for some of the ML algorithms, we used an HE system, since it
offers arithmetic operations as core operations. The following sections describe
the chosen combinations.
3 http://hadoop.apache.org/.
4 https://www.mongodb.com/.

http://hadoop.apache.org/
https://www.mongodb.com/
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Garbled Circuits and Decision Trees. The process of evaluating a DT in
a privacy-preserving context is similar to evaluating it in the usual manner, as
described in Eq. 1. The main differences are: basic operations such as compar-
isons are replaced with logic gates; and the evaluation of the DT involves evalu-
ating every single node in it, to disclose the least possible information caused by
observation of the computations. Figure 2 shows the computations done inside
each node of the DT.

MUX

sample

xn x1 x0

featureID

>

threshold

sample

MUX

f1θ1 f2θ2

next featureID next threshold

Fig. 2. Boolean circuit of each node in a DT.

Another aspect to mention is that the trees are always complete, i.e., the
number of nodes n is always the maximum possible, and can be defined as
n = 2h+1 − 1, where h is the height of the tree. Even though in most cases this
will lead to an exponential increase of the number of nodes with increasing tree
depth, we feel this is necessary to prevent information leaks due to an attacker
being able to know the different path depths. Figure 3 shows the implications of
this expansion.

Garbled Circuits and k-Means. The process of evaluating the k -Means algo-
rithm in a privacy-preserving manner is similar to evaluating in the usual man-
ner. The operations in the prediction step of the algorithm were transformed into
boolean circuits, with logic gates representing operations. In Fig. 4 we show the
circuit we have designed to represent the k -Means prediction, where dE represents
the Euclidean distance between testing sample x and each centroid Ci.

Homomorphic Encryption and Logistic Regression. In order to use a FHE
system, the prediction function for LR described in Eq. 4 must be converted to:
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Fig. 3. Expansion of binary trees.
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Fig. 4. Boolean circuit of the k -Means prediction.

fLR,FHE(x) = Dk

(
Ek(β0) +

m∑

i=0

Ek(βi) · Ek(xi)

)
(5)

where Ek represents the encryption operation and Dk represents the decryption
operation using the key k.

Converting Eq. 5 to be computed using a PHE system is straightforward,
but this can only be done under two assumptions: (1) the data to be evaluated
(x) and the model parameters (β0, β1, . . . , βm) must come from two different
parties, and (2) the owner of the model parameters must be the one processing
the data. Under these assumptions, the linear prediction function for a additive
PHE system becomes:

fLR,PHE(x) = Dk

(
Ek(β0) ·

m∏

i=1

Ek(xi)βi

)
(6)
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Homomorphic Encryption and Support Vector Machines. For the SVM
algorithm, we only considered the linear kernel, as it simplifies the scoring func-
tion. The Eq. 2 is then simplified to the following:

fSVM(x) =
m∑

i=1

αix
(i)
SV x + b =

m∑

i=1

αi

n∑

j=1

xjx
(i,j)
SV + b (7)

To compute this function using a FHE system, we must convert it to:

fSVM,FHE(x) = Dk

(
m∑

i=1

Ek(αi) ·
n∑

j=i

Ek(xj) · Ek(x(i,j)
SV ) + Ek(b)

)
(8)

where Ek represents the encryption operation and Dk represents the decryption
operation using the key k.

Like before, converting it to be computed using a PHE system is equally
straightforward, and under the same two assumptions, the scoring function for
a additive PHE system becomes:

fSVM,PHE(x) = Dk

(
m∏

i=1

( n∏

j=1

Ek(xi)x
(i,j)
SV

)αi

· Ek(b)

)
(9)

4.3 Architecture

The combination of the components above helped us create a data processing
architecture for a privacy-preserving ML platform, presented in Fig. 5.

Data

Data Collection

Pre-Processing Data Sanitization Data Ciphering

Model Training

Data Storage

use

ML Algorithms 
(toolkits)

Cryptographic
Techniques 

(toolkits)

Privacy-Preserving
ML Algorithms

Cryptographic Keys

Model Evaluation 
(in ciphertext)

Result Evaluation

design

design

generate

use

encrypt

decrypt

Client

Server

Result DecipheringData Visualisation

Fig. 5. Data processing architecture for the platform.

We assume that only two parties exist: the client and the server. The client
represents a user or an individual who owns data and wishes store them and
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to perform some processing over them, but does not have the capabilities to
do so (e.g.: real-time processing, fault tolerance systems, scalable environment).
Despite this, the client wishes to keep these data private. The server represents
a cloud or service provider who has the capabilities to perform such processing.
To achieve the privacy goals of both parties, the client pre-processes, sanitizes
and encrypts the data and models before sending them to the server. The model
training is performed in the usual manner. The model evaluation process is the
main focus of our work, and it is where the privacy-preserving techniques are
deployed. At the end of the flow, the platform produces the prediction results.

With this architecture, we aim at providing companies a way to integrate
their Big Data systems processes with privacy-preserving ML algorithms, allow-
ing them to provide additional data privacy guarantees to their clients.

5 Experimental Results

This section presents the evaluation results. The objective of the experimental
evaluation is to answer two important questions: (1) How accurate is the pre-
diction versus the baseline system? (2) How easily can the platform be adapted
to different size and context of the datasets?

The datasets were split into three sets: training (70%), validation (15%) and
testing (15%) sets. The training step of the baseline ML algorithms was per-
formed using the scikit-learn toolkit for Python5. The GC results were obtained
using the VIPP toolkit [10]. The results using FHE were obtained using the HElib
toolkit [6]. The results using PHE were obtained using our own implementation
of the Paillier cryptosystem [9].

For running the experiments, we used the datasets listed in Table 1. They
are widely used in the literature.

Table 1. The datasets used in the evaluation.

Dataset Subject Instances Features

Pima Indians diabetesa Healthcare 768 8

Breast cancer wisconsinb Healthcare 569 30

Credit approvalc Finance 690 15

Adult incomed Governance 48842 14
ahttps://www.kaggle.com/uciml/pima-indians-diabetes-
database
bhttps://archive.ics.uci.edu/ml/datasets/
Breast+Cancer+Wisconsin+(Diagnostic)
chttp://archive.ics.uci.edu/ml/datasets/credit+approval
dhttps://archive.ics.uci.edu/ml/datasets/adult

5 http://scikit-learn.org/.

https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://archive.ics.uci.edu/ml/datasets/credit+approval
https://archive.ics.uci.edu/ml/datasets/adult
http://scikit-learn.org/
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5.1 Accuracy

After analysing the results obtained with the privacy-preserving ML algorithm
implementations using GC, we verified that changing the number of bits for the
actual numeric precision of the data and model parameters affects the accuracy
of the results. The absolute error percentage values for the experiments on DT
and k -Means are presented in Tables 2 and 3, respectively. It is to be noted that
this error is computed versus the baseline prediction results, not the prediction
labels from the dataset.

Table 2. GC + DT. Average absolute label prediction error vs. the baseline.

Bits Pima Indians Breast cancer Credit approval Adult income

8 1.88% 0.55% 8.70% 0.00%

12 0.00% 0.13% 1.11% 0.00%

16 0.00% 0.13% 0.31% 0.00%

20 0.00% 0.13% 0.31% 0.00%

24 0.00% 0.13% 0.31% 0.00%

Table 3. GC + k -Means. Average absolute label prediction error vs. the baseline.

Bits Pima Indians Breast cancer Credit approval Adult income

8 2.03% 3.07% 0.05% 0.02%

12 0.39% 0.85% 0.00% 0.00%

16 0.29% 0.72% 0.00% 0.00%

20 0.29% 0.72% 0.00% 0.00%

24 0.00% 0.00% 0.00% 0.00%

Analysing the obtained results, we can conclude that the loss of prediction
performance caused by using the privacy-preserving versions of the ML algo-
rithms is not relevant, as long as at least 16 bits are used to represent the data.
Since both DT and k -Means only output an integer representing the label, and
not a real number, the visible effect of changing the number of bits is minimal.

After analysing the results obtained using the PHE and FHE systems, we
verified that all predicted labels and almost all function evaluation outputs match
the baseline. The few examples when an exact match does not happen come
mostly from the SVM scoring evaluation function implemented in HElib, and are
most likely caused by the accumulation of the intrinsic noise generated every time
an operation is performed between two ciphertexts. Therefore, we can conclude
that our privacy-preserving versions of the ML algorithms using PHE and FHE
have no relevant loss of prediction performance.
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5.2 Discussion

Although we did not compare the performance of GC and HE directly, for
instance by choosing a ML algorithm and implementing it using both privacy-
preserving techniques, it is clear that the HE approach is adequate for ML algo-
rithms that rely on arithmetic operations, and the GC approach is adequate for
ML algorithms that rely on non-arithmetic operations.

We did not perform a detailed computational times analysis because we feel
that an evaluation of execution times is less relevant, as it is extremely depen-
dent on the hardware and toolkits used (which evolve through time), while the
evaluations we performed in terms of accuracy are not. We are, however, aware of
very efficient GC implementations for evaluating DT, but many of them do not
scale adequately with the DT size [3]. We did not consider such implementation
because we experimented with fully expanded DT of considerable depth.

An important remark on our experiments with GC is related to our choice
to only analyse fully expanded DT instead of the original ones, in order to pre-
vent any information leakage regarding the shape of the original tree. However,
in most cases this causes an exponential growth of the number of nodes with
increasing tree depths, leading to proportional increases in both the execution
times and the communication costs.

Another important conclusion made possible by our experiments with HE
is when each of the techniques should be used. We verified that PHE is, in
fact, usable in practice but under some restrictions (e.g.: if there is no need for
complex composition of operations and if data is separated between client and
server), while FHE is more flexible but still too computationally expensive.

With our implementation, we were able to understand that, despite the fact
that GC and HE are very different techniques, they can be used in almost the
same manner. The main difference is that the ML algorithms must be adapted
differently for each one. The tweaks done to the algorithms presented in Sect. 4.2
allowed us to implement privacy-preserving versions of them and running them
in the same manner as the non-privacy-preserving approach.

We were also able to produce results with datasets from varied contexts,
such as Healthcare or Finance, and of very different sizes, without the need to
specifically adapt the algorithms for them. With this, we have shown that the
platform can be used for different application domains.

6 Conclusions and Future Work

This paper presented a platform to perform privacy-preserving ML computations
to be applied in Big Data applications. We discussed the existing techniques that
provide the level of privacy compliance with the laws in force and matched those
techniques with the most commonly used ML algorithms. We evaluated the solu-
tion by comparing two SMPC techniques: GC and HE. Overall, we produced a
proof-of-concept platform that provides a unified and simplified API for privacy-
compliant ML. This shortens the distance between the scientific community that
develops the techniques and the companies that employ them in products that
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impact many people. With our approach, the most recent scientific advances in
privacy-preserving technologies can be applied faster in enterprise applications.

For future work, we propose the following points to enhance the functionali-
ties of the platform and its performance: extend the platform to work with more
ML algorithms (ex: Neural Networks or Naive Bayes), so that the platform can
be used for more purposes (ex: Deep Learning); optimize the SMPC techniques
used, to improve the performance of the platform; implement and test the SMPC
techniques using other toolkits, also to improve the performance of the platform.

Acknowledgements. Work supported by Portuguese national funds through
Fundação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013
(INESC-ID).
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