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Abstract. Limiting the model size of a kernel support vector machine
to a pre-defined budget is a well-established technique that allows to
scale SVM learning and prediction to large-scale data. Its core addition
to simple stochastic gradient training is budget maintenance through
merging of support vectors. This requires solving an inner optimization
problem with an iterative method many times per gradient step. In this
paper we replace the iterative procedure with a fast lookup. We manage
to reduce the merging time by up to 65% and the total training time by
44% without any loss of accuracy.

1 Introduction

The Support Vector Machine (SVM; [5]) is a widespread standard machine
learning method, in particular for binary classification problems. Being a kernel
method, it employs a linear algorithm in an implicitly defined kernel-induced
feature space [24]. SVMs yield high predictive accuracy in many applications
[6,15,16,19,28]. They are supported by strong learning theoretical guarantees
[1,9,12,17].

When facing large-scale learning, the applicability of support vector machines
(and many other learning machines) is limited by their computational demands.
Given n training points, training an SVM with standard dual solvers takes
quadratic to cubic time in n [1]. Steinwart [23] established that the number
of support vectors is linear in n, and so is the storage complexity of the model
as well as the time complexity of each of its predictions. This quickly becomes
prohibitive for large n, e.g., when learning from millions of data points.

Due to the prominence of the problem, a large number of solutions was devel-
oped. Parallelization can help [29,33], but it does not reduce the complexity of
the training problem. One promising route is to solve the SVM problem only
locally, usually involving some type of clustering [14,30] or with a hierarchical
divide-and-conquer strategy [8,11]. An alternative approach is to leverage the
progress in the domain of linear SVM solvers [10,13,32], which scale well to large
data sets. To this end, kernel-induced feature representations are approximated
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by low-rank approaches [7,20,27,31], either a-priory using random Fourier fea-
tures, or in a data-dependent way using Nyström sampling.

Budget methods, introducing an a-priori limit B � n on the number of
support vectors [18,25], go one step further by letting the optimizer adapt the
feature space approximation during operation to its needs, which promises a
comparatively low approximation error. The usual strategy is to merge support
vectors at need, which effectively enables the solver to move support vectors
around in input space. Merging decisions greedily minimize the approximation
error.

In this paper we propose an effective computational improvement of this
scheme. Finding the best merge partners, i.e., support vectors that induce the
lowest approximation error when merged, is a rather costly operation. Usually,
O(B) candidate pairs of vectors are considered, and for each pair an optimization
problem is solved with an iterative strategy. By modelling the low-dimensional
space of (solutions of the) optimization problems explicitly, we can remove the
iterative process entirely, and replace it with a simple and fast lookup.

Our results show that merging-based budget maintenance can account for
more than half of the total training time. Therefore reducing the merging time
is a promising approach to speeding up training. The speed-up can be significant;
on our largest data set we reduce the merging time by 65%, which corresponds
to a reduction of the total training time by 44%. At the same time, our lookup
method is at least as accurate as the original iterative procedure, resulting in
nearly identical merging decisions and no loss of prediction accuracy.

The remainder of this paper is organized as follows. In the next section we
introduce SVMs and stochastic gradient training on a budget. Then we ana-
lyze the computational bottleneck of the solver and develop a lookup smoothed
with bilinear interpolation as a remedy. In Sect. 4 we benchmark the new algo-
rithm against “standard” BSGD, and we investigate the influence of the algorith-
mic simplification on different budget sizes. Our results demonstrate systematic
improvements in training time at no cost in terms of solution quality.

2 Support Vector Machine Training

In this section we introduce the necessary background: SVMs for binary classi-
fication, and training with stochastic gradient descent (SGD) on a budget, i.e.,
with a-priori limited number of support vectors.

Support Vector Machines. An SVM classifier is a supervised machine learning
algorithm. In its simplest form it linearly separates two classes with a large
margin. When applying a kernel function k : X × X → R over the input space
X, the separation happens in a reproducing kernel Hilbert space (RKHS). For
labeled data

(
(x1, y1), . . . , (xn, yn)

) ∈ (X ×{−1,+1})n, the prediction on x ∈ X
is computed as
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with w =
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j=1 αjφ(xj), where φ(x) is an only implicitly defined feature map
(due to Mercer’s theorem, see also [24]) corresponding to the kernel function
fulfilling k(x, x′) = 〈φ(x), φ(x′)〉. Training points xj with non-zero coefficients
αj �= 0 are called support vectors; the summation in the predictor can obviously
be restricted to this subset. The SVM model is obtained by minimizing the
following (primal) objective function:
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Here, λ > 0 is a user-defined regularization parameter and L(y, μ) = max{0, 1−
y · μ} denotes the hinge loss, which is a prototypical large margin loss, aiming
to separate the classes with a functional margin y · μ of at least one. The incor-
poration of other loss functions allows to generalize SVMs to other tasks like
multi-class classification, regression, and ranking.

Primal Training. Problem (1) is a convex optimization problem without con-
straints. It has an equivalent dual representation as a quadratic program (QP),
which is solved by several state-of-the-art “exact” solvers like LIBSVM [4] and
thunder-SVM [26]. The main challenge is the high dimensionality of the prob-
lem, which coincides with the training set size n and can hence easily grow into
the millions.

A simple method is to solve problem (1) directly with stochastic gradient
descent (SGD), similar to neural network training. When presenting one train-
ing point at a time, as done in Pegasos [22], the objective function P (w, b) is
approximated by the unbiased estimate

Pi(w, b) =
λ

2
‖w‖2 + L

(
yi,

〈
w, φ(xi)

〉
+ b

)
,

where the index i ∈ {1, . . . , n} follows a uniform distribution. The stochastic
gradient ∇Pi(w, b) is an unbiased estimate of the “batch” gradient ∇P (w, b)
but faster to compute by a factor of n, since it involves only a single training
point. Starting from (w, b) = (0, 0), SGD updates the weights according to

(w, b) ← (w, b) − ηt · ∇Pit(w, b),

where t is the iteration counter. With a learning rate ηt ∈ Θ(1/t) it is guaranteed
to converge to the optimum of the convex training problem [2].

With a sparse representation w =
∑

(α,x̃)∈M α ·φ(x̃) the SGD update decom-
poses into the following algorithmic steps. We scale down all coefficients α uni-
formly by the factor 1 − λ · ηt. If the margin yi(〈w, φ(xi)〉 + b) happens to be
less than one, then we add a new point x̃ = xi with coefficient α = ηt · yi to the
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model M . With a dense representation holding one coefficient αi per data point
(xi, yi) we would add the above value to αi. The most costly step is the compu-
tation of 〈w, φ(xi)〉, which is linear in the number of support vectors (SVs), and
hence generally linear in n [23].

SVM Training on a Budget. Budgeted Stochastic Gradient Descent (BSGD)
breaks the unlimited growth in model size and update time for large data streams
by bounding the number of support vectors during training. The upper bound
B � n is the budget size. Per SGD step the algorithm can add at most one new
support vector; this happens exactly if (xi, yi) does not meet the target margin
of one (and αi changes from zero to a non-zero value). After B + 1 such steps,
the budget constraint is violated and a dedicated budget maintenance algorithm
is triggered to reduce the number of support vectors to at most B. The goal of
budget maintenance is to fulfill the budget constraint with the smallest possible
change of the model, measured by ‖Δ‖2 = ‖w′ − w‖2, where w is the weight
vector before and w′ is the weight vector after budget maintenance. Δ = w′ −w
is referred to as the weight degradation.

Budget maintenance strategies are investigated in detail in [25]. It turns out
that merging of two support vectors into a single new point is superior to alter-
natives like removal of a point and projection of the solution onto the remaining
support vectors. Merging was first proposed in [18] as a way to efficiently reduce
the complexity of an already trained SVM. With merging, the complexity of bud-
get maintenance is governed by the search for suitable merge partners, which is
O(B2) for all pairs, while it is common to apply the O(B) heuristic resulting
from fixing the point with smallest coefficient αi as a first partner.

When merging two support vectors xi and xj , we aim to approximate αi ·
φ(xi) + αj · φ(xj) with a new term αz · φ(z) involving only a single point z.
Since the kernel-induced feature map is usually not surjective, the pre-image
of αiφ(xi) + αjφ(xj) under φ is empty [3,21] and no exact match z exists.
Therefore the weight degradation Δ = αiφ(xi) + αjφ(xj) − αzφ(z) is non-zero.
For the Gaussian kernel k(x, x′) = exp(−γ‖x − x′‖2), due to its symmetries,
the point z minimizing ‖Δ‖2 lies on the line connecting xi and xj and is hence
of the form z = hxi + (1 − h)xj . For yi = yj we obtain a convex combination
0 < h < 1, otherwise we have h < 0 or h > 1. In this paper we merge only
vectors of equal label. For each choice of z, the optimal value of αz is obtained
in closed form: αz = αik(xi, z) + αjk(xj , z). This turns minimization of ‖Δ‖2 =
α2

i +α2
j −α2

z +2k(xi, xj) into a one-dimensional non-linear optimization problem,
which is solved in [25] with golden section line search. The calculations are further
simplified by the relations k(xi, z) = k(xi, xj)(1−h)2 and k(xj , z) = k(xi, xj)h2

,
which save costly kernel functions evaluations.

Budget maintenance in BSGD usually works in the following sequence of
steps, see Algorithm 1: First, xi is fixed to the support vector with minimal coef-
ficient |αi|. Then the best merge partner xj is determined by testing B pairs
(xi, xj), j ∈ {1, . . . , B + 1} \ {i}. Golden section search is run for each of these
steps to determine h to fixed precision ε = 0.01. The weight degradation is com-
puted using the shortcuts mentioned above. Finally, the candidate with minimal
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weight degradation is selected and the vectors are merged. Hence, although a sin-
gle golden search search is fast, the need to run it many times per SGD iteration
turns it into a rather costly operation.

Algorithm 1. Procedure Budget Maintenance for a sparse model M

1 Input/Output: model M
2 (αmin, x̃min) ← arg min

{|α| ∣∣ (α, x̃) ∈ M
}

3 WD∗ ← ∞
4 for (α, x̃) ∈ M \ {(αmin, x̃min)} do
5 m ← α/(α + αmin)
6 κ ← k(x̃, x̃min)

7 h ← arg max
{
mκ(1−h′)2 + (1 − m)κh′2 ∣

∣h′ ∈ [0, 1]
}

8 αz ← αmin · κ(1−h)2 + α · κh2

9 WD ← α2
min + α2 − α2

z + 2 · αmin · α · κ
10 if (WD < WD∗) then
11 WD∗ ← WD
12 (α∗, x̃∗, h∗, κ∗) ← (α, x̃, h, κ)

13 z ← h∗ · x̃min + (1 − h∗) · x̃∗

14 αz ← αmin · (κ∗)(1−h∗)2 + α∗ · (κ∗)(h
∗)2

15 M ← M \ {(αmin, x̃min), (α
∗, x̃∗)} ∪ {(αz, z)}

A theoretical analysis of BSGD is provided by [25]. Their Theorem 1 estab-
lishes a bound on the error induced by the budget, ensuring that asymptotically
the error is governed only by the (unavoidable) weight degradation.

3 Precomputing the Merging Problem

αi φ(xi)

αj φ(xj)

αz φ(z)

Δ

Fig. 1. The merging problem.

The merging problem for given support
vectors xi and xj with coefficients αi

and αj is illustrated in Fig. 1. Our cen-
tral observation is that the geometry
depends only on the (cosine of the) angle
between αiφ(xi) and αjφ(xj), and on
the relative lengths of the two vectors.
These two quantities are captured by the
parameters

– relative length m = αi/(αi + αj)
– cosine of the angle κ = k(xi, xj),

both of which take values in the unit interval. The optimal merging coefficient h
is a function of m and κ, and so is the resulting weight degradation WD = ‖Δ‖2.
Therefore we can express h and WD as functions of m and κ, denoted as h(m,κ)
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and WD(m,κ) in the following. The functions can be evaluated to any given
target precision by running the golden section search. Their graphs are plotted
in Figs. 2a and b.

If the functions h or WD can be approximated efficiently then there is no
need to run a potentially costly iterative procedure like golden section search.
This is our core technique for speeding up the BSGD method.

The functions blend between different budget maintenance strategies. While
for κ � 0 and for m ≈ 1/2 it is beneficial to merge the two support vectors,
resulting in h ∈ (0, 1), this is not the case for κ � 1 and m ≈ 0 or m ≈ 1,
resulting in h ≈ 0 or h ≈ 1, which is equivalent to removal of the support vector
with smaller coefficient. This means that in order to obtain a close fit that works
well in both regimes we may need a quite flexible function class like a kernel
method or a neural network, while a simple polynomial function can give poor
fits, with large errors close to the boundaries.

A much simpler and computationally very cheap approach is to pre-compute
the function on a grid covering the domain [0, 1] × [0, 1]. The values need to be
pre-computed only once, and here we can afford to apply golden section search
with high precision; we use ε = 10−10. Then, given two merge candidates, we
can look up an approximate solution by rounding m and κ to the nearest grid
point. The approximation quality can be improved significantly through bilinear
interpolation. On modern PC hardware we can easily afford a large grid with
millions of points, however, this is not even necessary to obtain excellent results.
In our experiments we use a grid of size 400 × 400.

Bilinear interpolation is fast, and moreover it is easy to implement. When
looking up h(m,κ) this way, we obtain a plug-in replacement for golden section
search in BSGD. However, we can equally well look up WD(m,κ) instead to
save additional computation steps. Another benefit of WD over h is regularity,
see Figs. 2a and b and the following lemma.
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Fig. 2. Graphs of the functions h(m, κ) (a) and WD(m, κ) (b). The latter uses a log
scale on the value axis.
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Lemma 1. The functions h and WD are smooth for κ > e−2. The function h
is continuous outside the set Z = {1/2} × [0, e−2] ⊂ [0, 1]2 and discontinuous on
Z. The function WD is everywhere continuous.

Proof. The function sm,κ(h′) = mκ(1−h′)2 + (1 − m)κh′2
used in line 7 of

Algorithm 1 inside the arg max expression is a weighted sum of two Gaus-
sian kernels. Depending on the parameters m and κ, it can have one or two
modes. It has two modes for parameters in Z, as can be seen from an ele-
mentary calculation yielding s′′

1/2,κ(1/2) > 0 ⇔ κ < e−2. Due to symme-
try, the dominant mode switches at m = 1/2. The inverse function theorem
applied to branches of sm,κ implies that h(m,κ) = arg maxh′{sm,κ(h′)} and
WD(m,κ) = (αi + αj) · (m2 + (1 − m)2 − [sm,κ(h(m,κ))]2 + 2m(1 − m)κ

)
vary

smoothly with their parameters as long as the same mode is active. The maxi-
mum operation is continuous, and so is WD. For each m there is a critical value
of κ ≤ e−2 where sm,κ switches from one to two modes. We collect these param-
eter configurations in the set N . On N (in contrast to Z), h is continuous. With
the same argument as above, h and WD are smooth outside N ∪ Z. ��

Bilinear interpolation is well justified if the function is continuous, and dif-
ferentiable within each grid cell. The above lemma ensures this property for
κ > e−2, and it furthermore indicates that for its continuity, interpolating WD
is preferable over interpolating h. The regime κ < e−2 corresponds to merging
two points in a distance of more than two “standard deviations” of the Gaussian
kernel. This is anyway undesirable, since it can result in a large weight degra-
dation. In fact, if sm,κ has two modes, then the optimal merge is close to the
removal of one of the points, which is known to give poor results [25].

4 Experimental Evaluation

In this section we evaluate our method empirically, with the aim to investigate
its properties more closely, and to demonstrate its practical value. To this end,
we’d like to answer the following questions:

1. Which speed-up is achievable?
2. Do we pay for speed-ups with reduced test accuracy?
3. How do results depend on the budget size?
4. How much do merging decision differ from the original method?

To answer these questions we compare our algorithm to “standard” BSGD
with merging based on golden section search. We have implemented both algo-
rithms in C++; the implementation is available from the first author’s home-
page.1 We train SVM models on the binary classification problems SUSY, SKIN,
IJCNN, ADULT, WEB, and PHISHING, covering a range of different sizes. The
regularization parameter C = 1

n·λ and the kernel parameter γ were tuned on a
grid of the form log2(C), log2(γ) ∈ Z using 10-fold cross-validation. The data
sets are summarized in Table 1. SVMs were trained with 20 passes through the
data, except for the huge SUSY data, where we used a single pass.
1 https://www.ini.rub.de/the institute/people/tobias-glasmachers/#software .

https://www.ini.rub.de/the_institute/people/tobias-glasmachers/#software
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Table 1. Data sets used in this study, hyperparameter settings, and test accuracy of
the exact SVM model found by LIBSVM.

data set size features C γ accuracy
SUSY 4,500,000 18 25 2−7 79.79%
SKIN 183,793 3 25 2−7 99.96%
IJCNN 49,990 22 25 21 98.77%

data set size features C γ accuracy
ADULT 32,561 123 25 2−7 84.82%
WEB 17,188 300 23 2−5 98.81%
PHISHING 8,315 68 23 23 97.55%

To answer the first question, we trained SVM models with BSGD, com-
paring golden section search (GSS) with our new algorithms looking up h(m,κ)
(Lookup-h) or WD(m,κ) (Lookup-WD). For reference, we also ran golden section
search with precision ε = 10−10 (GSS-precise). We used two different budget sizes
for each problem.

All methods found SVM models with comparable accuracy as shown in
Table 2; in fact, in most cases the systematic differences are below one stan-
dard deviation of the variability between different runs.2 In contrast, the time
spent on budget maintenance differs significantly between the methods. In Fig. 3
we provide a detailed breakdown of the merging time, obtained with a profiler.

Lookup-WD and Lookup-h are faster than GSS, which is (unsurprisingly)
faster than GSS-precise. The results are very systematic, see Table 3 and Fig. 3.
The greatest savings of about 44% of the total training time are observed for the
rather large SUSY data set. Although the speed-up can also be insignificant, like
for the WEB data, lookup is never slower than GSS. The actual saving depends
on the cost of kernel computations and on the fraction of SGD iterations in
which merging occurs. The latter quantity, which we refer to as the merging
frequency, is provided in Table 3. We observe that the savings shown in Fig. 3
nicely correlate with the merging frequency.

The profiler results provide a more detailed understanding of the differ-
ences: replacing GSS with Lookup-h significantly reduces the time for comput-
ing h(m,κ). Replacing Lookup-h with Lookup-WD removes further steps in the
calculation of WD(m,κ), but practically speaking the difference is hardly notice-
able.

Overall, our method offers a systematic speed-up. The speed-up does not
come at any cost in terms of solution precision. This answers the first two ques-
tions.

If the budget size is chosen so large that merging is never needed then all
tested methods coincide, however, this defeats the purpose of using a budget in
the first place. We find that the merging frequency is nearly independent of the
budget size as long as the budget is significantly smaller than the number of
support vectors of the full kernel SVM model, and hence the fraction of runtime
saved is independent of the budget size. The results in Fig. 3 are in line with this
expectation, answering the third question.

2 Note that with increasing number of passes (or epochs) the standard deviation does
not tend to zero since the training problem is non-convex due to the budget con-
straint.
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Table 2. Test accuracy achieved by the different methods, averaged over 5 runs at
different budget sizes.

Data set Budget size Test accuracy
GSS-precise

Test accuracy
GSS-standard

Test accuracy
Lookup-h

Test accuracy
Lookup-WD

SUSY 100 76.975± 1.372 76.628± 2.030 76.934± 1.426 76.884± 1.261

500 76.989± 3.109 75.583± 3.0558 75.581± 2.558 75.570± 3.925

SKIN 100 99.621± 0.711 99.629± 0.852 99.621± 0.201 99.617± 0.877

200 99.868± 0.033 99.877± 0.053 99.855± 0.054 99.754± 0.089

IJCNN 100 97.141± 0.317 96.807± 0.344 97.132± 0.371 97.130± 0.363

500 98.138± 0.158 98.055± 0.334 98.113± 0.448 98.070± 0.372

ADULT 100 84.234± 0, 883 84.166± 0.701 84.164± 0.988 84.200± 0.798

500 84.280± 0.800 83.739± 1.303 83.836± 1.157 83.949± 1.001

WEB 100 98.805± 0, 026 98.793± 0.027 98.783± 0.045 98.793± 0.039

500 98.809± 0, 023 98.781± 0.047 98.799± 0.029 98.807± 0.016

PHISHING 100 96.554± 0.158 96.254± 0.301 96.539± 0.242 96.389± 0.371

500 97.555± 0.187 97.517± 0.292 97.518± 0.280 97.525± 0.201

Fig. 3. Breakdown of the merging time in seconds for GSS-precise, GSS, Lookup-h and
Lookup-WD. Section A represents the time invested to compute h using either golden
section search or lookup. For the Lookup-WD method the same bar represents the
look-up of WD(m, κ). Section B summarizes all other operations like loop overheads,
the computation of αz, and the construction of the final merge vector z. The numbers
on top of the columns for the lookup methods indicate the saving over GSS.
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Table 3. Relative improvement of the total training time with respect to golden section
search averaged over 5 runs (Lookup-h vs. GSS-standard and lookup-WD vs. GSS-
standard), and fraction of merging events for budget size 100 and statistics on the
quality of merging decisions (refer to the text for details).

Data set Budget size Lookup-h
vs. GSS-
standard

Lookup-WD
vs. GSS-
standard

Merging
frequency

Equal
merging
decisions

Factor
GSS

Factor
lookup-
WD

SUSY 100 43.911% 43.396% 43% 93.64% 1.01795 1.00733

500 39.201% 39.199%

SKIN 100 20.515% 17.788% 16% 74.31% 1.00047 1.00005

200 14.173% 14.900%

IJCNN 100 28.091% 30.372% 17% 91.79% 1.02429 1.00149

500 30.569% 29.861%

ADULT 100 21.627% 18.452% 32% 92.54% 1.05064 1.00402

500 22.334% 22.339%

WEB 100 3.053% 5.649% 6% 93.77% 1.00255 1.00039

500 7.483% 0.508%

PHISHING 100 15.385% 13.946% 21% 96.96% 1.00055 1.00008

500 7.563% 10.924%

In the next experiment we have a closer look at the impact of lookup-based
merging decisions by investigating the behavior in single iterations, as follows.
During a run of BSGD we execute GSS and Lookup-WD in parallel. We count
the number of iterations in which the merging decisions differ, and if so, we
also record the difference between the weight degradation values. The results
are presented in Table 3. They show that the decisions of the two methods agree
most of the time, for some problems in more than 99% of all budget maintenance
events.

Finally, we investigate the precision with which the weight degradation is
estimated by the different methods. While GSS can solve the problem to arbi-
trary precision, the reference implementation determines h(m,κ) only to a rather
loose precision of ε = 0.01 in order to save computation time. In contrast, we ran
GSS to high precision ε = 10−10 when precomputing the lookup table, however,
we may lose some precision due to bilinear interpolation. This loss shrinks as
the grid size grows, which comes at added storage cost, but without any runtime
cost. We investigate the precision of GSS and Lookup-WD by comparing them to
GSS-precise, which is considered a reasonable approximation of the exact min-
imum of ‖Δ‖2. For both methods we record the factor by which their squared
weight degradations exceed the minimum, see Table 3. All factors are very close
to one, hence none of the algorithms is wasteful in terms of weight degradation,
and indeed Lookup-WD with a grid size of 400 × 400 is more precise on all 6
data sets. This answers our last question.
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5 Conclusion

We have proposed a fast lookup as a plug-in replacement for the iterative golden
section search procedure required when merging support vectors in large-scale
kernel SVM training. The new method compares favorably to the iterative base-
line in terms of training time: it offers a systematic speed-up, resulting in com-
putational savings of up to 65% of the merging time and up to 44% of the
total training time, while the training time is never increased. With our method,
nearly the full computation time is spent on actual SGD steps, while the frac-
tion of efforts spent on budget maintenance can be reduced significantly. We have
demonstrated that our approach results in virtually indistinguishable and even
slightly more precise merging decisions. It is for this reason that the speed-up
comes at absolutely no cost in terms of predictive accuracy.
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schaft (DFG) through grant GL 839/3-1.
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