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Preface

LOD is the international conference embracing the fields of machine learning,
optimization, and data science. The fourth edition, LOD 2018, was organized during
September 13-16, 2018, in Volterra (Pisa) Italy, a stunning medieval town dominating
the picturesque countryside of Tuscany.

The International Conference on Machine Learning, Optimization, and Data Science
(LOD) has established itself as a premier interdisciplinary conference in machine
learning, computational optimization, and big data. It provides an international forum
for the presentation of original multidisciplinary research results, as well as the
exchange and dissemination of innovative and practical development experiences.

The LOD Conference Manifesto is the following:

The problem of understanding intelligence is said to be the greatest problem in
science today and “the” problem for this century — as deciphering the genetic code
was for the second half of the last one. Arguably, the problem of learning represents a
gateway to understanding intelligence in brains and machines, to discovering how
the human brain works, and to making intelligent machines that learn from expe-
rience and improve their competences as children do. In engineering, learning
techniques would make it possible to develop software that can be quickly customized
to deal with the increasing amount of information and the flood of data around us.
The Mathematics of Learning: Dealing with Data

Tomaso Poggio and Steve Smale

LOD 2018 attracted leading experts from industry and the academic world with the
aim of strengthening the connection between these institutions. The 2018 edition of
LOD represented a great opportunity for professors, scientists, industry experts, and
postgraduate students to learn about recent developments in their own research areas
and to learn about research in contiguous research areas, with the aim of creating an
environment to share ideas and trigger new collaborations.

As chairs, it was an honor to organize a premiere conference in these areas and to
have received a large variety of innovative and original scientific contributions.

During LOD 2018, five plenary talks were presented:

“Advances in Inference and Generation with Hierarchical Latent Variable Models”
Jorg Bornschein, DeepMind, London, UK

“The Value of Evaluation: What Does My Machine Learning Metric Tell Me?”
Peter Flach, University of Bristol, UK

“Recent Advances in Recommender Systems: Sets, Local Models, Coverage, and
Errors”
George Karypis, University of Minnesota, USA
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“Dynamics of Financial Markets”
Panos Pardalos, University of Florida, USA

“Several Problems in Optimization and Learning: From Pure Mathematics to
Industrial Applications”
Andrey Raygorodsky, Moscow Institute of Physics and Technology, Russia

LOD 2018 received 126 submissions from 47 countries in five continents, and each
manuscript was independently reviewed by a committee formed by at least five
members through a blind review process. These proceedings contain 46 research
articles written by leading scientists in the fields of machine learning, artificial
intelligence, reinforcement learning, computational optimization, and data science
presenting a substantial array of ideas, technologies, algorithms, methods, and
applications.

At LOD 2018, Springer LNCS generously sponsored the LOD Best Paper Award.
This year, the paper by Andrea Patané and Marta Kwiatkowska titled “Calibrating the
Classifier: Siamese Neural Network Architecture for End-to-End Arousal Recognition
from ECG” received the LOD 2018 Best Paper Award.

This conference could not have been organized without the contributions of
exceptional researchers and visionary industry experts, so we thank them all for par-
ticipating. A sincere thank you goes also to the Program Committee, formed by more
than 400 scientists from academia and industry, for their valuable and essential work of
selecting the scientific contributions.

Finally, we would like to express our appreciation to the keynote speakers who
accepted our invitation, and to all the authors who submitted their research papers to
LOD 2018.

September 2018 Giuseppe Nicosia
Panos Pardalos

Giovanni Giuffrida

Renato Umeton

Vincenzo Sciacca
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Abstract. Affective analysis of physiological signals enables emotion
recognition in mobile wearable devices. In this paper, we present a deep
learning framework for arousal recognition from ECG (electrocardio-
gram) signals. Specifically, we design an end-to-end convolutional and
recurrent neural network architecture to (i) extract features from ECG;
(ii) analyse time-domain variation patterns; and (iii) non-linearly relate
those to the user’s arousal level. The key novelty is our use of a shared-
parameter siamese architecture to implement user-specific feature cali-
bration. At each forward and backward pass, we concatenate to the input
a user-dependent template that is processed by an identical copy of the
network. The siamese architecture makes feature calibration an integral
part of the training process, allowing modelling of general dependencies
between the user’s ECG at rest and those during emotion elicitation.
On leave-one-user-out cross validation, the proposed architecture obtains
+21.5% score increase compared to state-of-the-art techniques. Compari-
son with alternative network architectures demonstrates the effectiveness
of the siamese network in achieving user-specific feature calibration.

Keywords: Emotion recognition - Electrocardiogram -
Siamese neural network - Convolutional and recurrent neural network

1 Introduction

Driven by applications in mobile mental health and human-computer interac-
tion [1], affective analysis of physiological signals has recently grown in popular-
ity. Since the pioneering use of electrodermal activity for arousal detection, the
research has evolved to cater for a range of physiological signals, such as electro-
cardiogram (ECG), electroencephalogram, electromyogram, breath rhythm and
skin temperature [1]. However, while much effort has focused on multi-modal
sensor fusion, model performance on single signal sources is still sub-optimal. At
the same time, achieving performance improvement for single sensors can push
accuracy boundaries for the overall model architecture even further, potentially
leading to increased wearability of emotion recognition systems.

© Springer Nature Switzerland AG 2019
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The ECG signal, in particular, has become a focus of investigations because
of its unobtrusiveness, low cost and widespread availability of ECG sensors, as
well as sensitivity to both arousal and valence component of emotions [2]. Exist-
ing state-of-the-art machine learning pipelines for emotion recognition from ECG
signals usually proceed by extracting the HR (Heart Rate) signal and applying
sophisticated HRV (Heart Rate Variability) analysis techniques in a multi-step
process. This is mainly composed of: (i) HRV feature extraction; (ii) automatic
feature selection; (iii) user-specific feature calibration; (iv) hyper-parameter opti-
misation; and (v) model fitting. While steps (iv) and (v) are those actually
involved in model estimation, the overall performance of the resulting model
mainly depends upon the effectiveness of steps (i) to (iii), as testified by the
extensive literature on feature extraction, selection and calibration for HRV anal-
ysis [2-6]. The feature extraction and selection steps focus on extracting the most
informative features from the HR signal. On the other hand, user-specific feature
calibration crucially strives to enforce relative variation of feature values in the
model, rather than absolute variation, as the former are related to changes in
the user’s affective state. Furthermore, the features based on HRV are the only
type of features extracted from the ECG signal, and thus affective information
carried by most of the ECG signal is completely neglected [8-10].

In this work we pose the arousal recognition problem as a supervised classi-
fication problem and investigate the use of deep learning for arousal recognition
from ECG. For this purpose, we design a deep Convolutional and Recurrent
Neural Network (CRNN) architecture that (through end-to-end training) auto-
matically extracts general non-linear and time-domain features from the time-
series ECG signal and non-linearly relates those to specific arousal classes based
on common variation patterns found. Inspired by state-of-the-art HRV-based
machine learning pipelines, we propose the use of shared-parameter siamese neu-
ral network architecture [15], called the Siamese CRNN (S-CRNN), as a system-
atic way to extend and generalise feature calibration techniques into the deep
learning framework. By making feature calibration an integral part of the end-
to-end learning process, we allow the neural network to model general nonlinear
dependencies between the user’s ECG signal at rest and that during emotion
elicitation experiments. Namely, at each forward and backward pass through
the network one branch of the S-CRNN processes a new data sample, while the
other S-CRNN branch analyses a template sample specific to the user’s neutral
affective state. We use truncated back-propagation through time and stochastic
gradient descent to train the network in the classification problem associated to
the user’s arousal level.

We compare the S-CRNN architecture against state-of-the-art HRV analysis
pipelines on the classification task associated to a dataset for arousal recognition
during a real-world driving task [14]. The results obtained empirically demon-
strate the advantages of the end-to-end approach for arousal recognition from
the ECG signal. Namely, on leave-one-user-out cross validation settings the S-
CRNN architecture obtains average AUCs percentage increase of +21.5% on the
best results obtained by HRV analysis (that is, from 0.659 to 0.801). We further
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analyse the proposed S-CRNN against alternative architectures and approaches
for feature calibration and find that the approach based on shared-parameter
siamese neural networks leads to a +7.5% performance increase compared to
the corresponding CRNN, at the cost of negligible increase in network parame-
ters.

Contributions. The paper makes the following contributions.

— We propose an end-to-end classification framework for arousal recognition
from ECG. We design a CRNN that automatically extracts features from
ECG and analyses time patterns among them, relating them to arousal
classes.

— We investigate the use of siamese neural networks as a systematic way to
implement feature calibration techniques into the deep learning framework.

— We empirically compare the S-CRNN architecture against state-of-the-art
HRV analysis methods, observing a +21.5% performance improvement.

— We compare S-CRNN, models based on HRV analyses and alternative net-
work architectures in terms of generalisation performance to new users when
very few users are included in the training set. We assess the advantages of
the siamese architecture in achieving personalised feature calibration.

Organisation. The remainder of the paper is organised as it follows. In Sect. 2
we analyse related work in emotion recognition from the ECG signal and the
use of deep learning in affective computing. In Sect.3 we present the S-CRNN
architecture designed for arousal recognition from ECG. Empirical results eval-
uating the effectiveness of the S-CRNN architecture are discussed in Sect.4.
Finally, Sect.5 completes the paper with a discussion on the method presented,
and outlines future work directions.

2 Related Work

In this section, we give a brief overview of machine learning methods developed
for HRV analysis and applications of deep learning for affective computing.

2.1 Heart Rate Variability Analysis for Arousal Recognition

Table 1 lists a collection of 31 features generally extracted from HR signal and
used for HRV analysis for arousal recognition [2-6]. Machine learning methods
based upon HRV analysis are multi-step, and include feature selection and user-
dependent feature calibration as crucial steps of the model learning.

In fact, Ollander et al. [5] investigate extensive feature selection for emo-
tion recognition from biosignals. They extract a number of HRV features, which
are then calibrated using mean and standard deviation computed from a set
of user-specific neutral affective state measurements. Few of the selected HRV
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Table 1. Types of HRV feature analysis employed for emotion recognition. Full details,
including feature extraction algorithms, can be found in [2-5]

Domain Name

Time Mean, Median, SDNN, pNN50

RMSSD, SDNNi, meanRate, sdRate

Geometrical | TINN, RRTI, HRVTi

Frequency | Welch PSD: LF/HF, (LF+MF)/HF, peakLF, peakHF
Burg PSD: LF/HF, (LF+MF)/HF, peakLF, peakHF
L-S PSD: LF/HF, (LF+MF)/HF, peakLF, peakHF
Poincaré SD1, SD2, SD2/SD1

Nonlinear SampEn,, SampEn,, DFA,;, DFA, DFA,

features actually survive the feature selection step. Zhao et al. [2] extract several
features from participants’ HR signals and perform feature calibration on them.
An SVM model is then trained on the data by using /; regularisation for auto-
matic feature selection. Reportedly, only 10 out of 26 extracted features were
actually used by the SVM model. Melillo et al. [4] extracted 13 HRV features,
and applied exhaustive feature selection procedure and linear discriminant anal-
ysis. Surprisingly, the resulting classifier relied only upon three of the extracted
features. In order to partially overcome the feature selection problem, Gjoreski
et al. [7] train a multi-layer perceptron to predict arousal level from a PSD of
the HR signal. They report improvements over models trained on top of HRV
features, albeit the neural network proposed is constrained to use only frequency
domain features, and no feature calibration procedure is implemented.

Finally, though most of the above works extract HR from ECG, HRV anal-
ysis is the only systematic method used to compute features. Thus, potentially
relevant information from most of the ECG signal is ignored [8-10].

2.2 Deep Learning for Affective Computing

Many works have investigated the use of deep learning for face expression clas-
sification from images, as well as sentiment analysis of text, with deep learning
approaches systematically outperforming other techniques [12].

Martinez et al. [11] were among the first to apply end-to-end deep learning for
physiological signals’ affective processing. They developed a CNN for preference
learning from galvanic skin response and blood volume pulse data, and empiri-
cally demonstrated the advantages of deep features over manually designed ones.
Tripathi et al. [16] applied CNNs for arousal recognition from EEG. Empirical
results show up to ~14% improvement against methods based on manual feature
extraction. Cho et al. [22] present a CNN architecture for stress recognition from
breathing patterns. Emphasising data augmentation as a crucial step for model
training, they obtain substantial improvements over competitive methods.
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Our work is a continuation of the latter works that bring deep learning to
the field of emotion recognition from physiological signals. The key novelty is the
use of siamese networks as a systematic way to implement feature calibration,
which is usually overlooked in deep learning frameworks for emotion recognition.

3 Methods

This section discusses our design of the neural network architecture for arousal
recognition from ECG signal. First, we describe data pre-processing and aug-
mentation used. We then present the CRNN architecture we designed for feature
extraction, and describe the shared-parameter siamese version of the latter.

3.1 Preprocessing

As pre-processing steps we apply a baseline remover filter and standardisation
to each ECG signal. We thus segment the signals into fixed size time windows
with 50% overlap. Based on empirical results from ultra-short term HRV analysis
[17], we use time windows of 15s, as these provide just enough information to
extract significant features from the ECG signal. Though windows of greater size
would increase model sensitivity to small feature variations, they would conflict
with the practical limitations of the back-propagation through time training
algorithm (i.e., increased training time and the vanishing gradient problem).

3.2 Data Augmentation

Datasets for emotion recognition from physiological signals are typically of small
size, and thus deep models applied to them tend to overfit [7]. Furthermore,
real-world datasets related to health applications are notoriously unbalanced,
with the class associated to the absence of the disorder usually greatly over-
represented in the training data. This makes stochastic gradient descent some-
what challenging, as it will likely get stuck in a local optimum corresponding
to a trivial majority classifier. We thus heavily rely upon data augmentation
techniques in order to train our CRNN model.

First, we re-balance class labels of the training set by making multiple copies
of random representatives from the minorities class until the dataset is perfectly
balanced (that is, until each class is equally represented in the dataset). Then,
from each signal slice, we generate n training samples. Namely, we randomly
sub-sample n times the signal to a fixed size time window of m time points. In
doing so, we keep the time-stamps associated to the sub-sampled signal. Hence,
loss of information due to sub-sampling is mitigated, as the neural network is
potentially able to partially interpolate the missing pieces of the signal. Unless
otherwise specified, in the experiments of Sect. 4 we use n = 20 and m = 1024.
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Fig. 1. Proposed CRNN architecture, consisting of 6 convolutional blocks and three
stacked bidirectional recurrent neural networks.

3.3 Convolutional Recurrent Neural Networks

The proposed model architecture is sketched in Fig. 1 and summarised in Table 2.
Inspired by state-of-the-art HRV features, the CRNN employs a 3-layer bidirec-
tional RNN to summarise temporal patterns on top of a one-dimensional 6-layer
CNN. The CRNN is designed to first extract non-linear features from the ECG
signal, and then to analyse temporal information of feature variations.

Each convolutional block consists of a convolutional layer and a non-linear
activation function layer. After every other block, we use a one-dimensional max-
pooling layer to extract salient points from feature maps and compress temporal
information. Crucially, we employ Parametric ReLU [18] activation functions in
between convolutional layers to avoid dead ReLU problems. Parametric ReLU
allows automatic learning of the activation slope for negative input, effectively
avoiding the issue of fast death of units slowing down the learning procedure.
Notice that, because of data augmentation applied to the training set, data
distributions for the training set and the test set are systematically different, and
hence we cannot rely on batch-normalisation layers (usually used to circumvent
dead ReLU problems).

We use vanilla RNN units, as we experimentally observe that gated recurrent
layers quickly lead to overfitting problems. We speculate that this is due to the
small size of the dataset used here compared to datasets usually employed to
train deep LSTM and GRU recurrent networks [13,19]. We use a one-dimensional
global average pooling layer to summarise temporal patterns extracted by the
recurrent layers. Finally, we interleave dropout layers in between each pair of
layers, and only for the non-recurrent connections.

The final output of the CRNN is a vector of nonlinear and time domain
features extracted from each time window of the ECG signal. Next, we will
discuss how this is used to predict an arousal class from each signal window.
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Table 2. Details of the architectures and hyper-parameters of the CRNNs designed
for arousal recognition from ECG. Ticks (respectively crosses) indicates that the layer
is included (not included) in the layer block.

Layer 1| Layer 2 | Layer 3 | Layer 4 | Layer 5 | Layer 6
1-D Conv. filters | 16 32 32 64 128 128
1-D Conv. kernel | 11 9 9 7 7 7
1-D Max-pooling | v/ X v X v X
Bi-RNN units 128 128 256 X X X
1-D Max-pooling | X v X X X X

3.4 Siamese Neural Networks

We implement the CRNN inside a shared-parameter siamese architecture [15].
The outline of the siamese network is sketched in Fig.2. At each forward and
backward pass through the network, a user-specific template is fed into the net-
work along with the signal window currently analysed. The latter, and the user-
specific template, are independently processed by the CRNN, which extracts two
separate feature vectors from them. The resulting feature vectors are concate-
nated into a unique feature map and altogether processed by a fully connected
layer. By relying on the fully connected layer, the siamese architecture has the
capability to use features extracted from the user’s template to systematically
calibrate those extracted from the current signal sample. Finally, a soft-max
layer estimates the probability of the user being in an arousal state.

4

Current
window

LKL L
'

¥

CRNN =>

Parameter
sharing

CRNN l=>

User-specific
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I Input ” Feature Extraction “Feature Calibration”ArousaII

Fig. 2. Shared-parameter siamese architecture for arousal recognition. The current
ECG window and the user-specific template are passed through the CRNN. The two
feature maps are then concatenated and used to estimate arousal level.

Analogously to methods based on HRV analysis, for the user-specific tem-
plate we employ a sample recorded from the user before the beginning of the
experiment, which is assumed to be representative of the user’s neutral affective
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state. Notice that, in order to mitigate overfitting, we apply data augmentation
techniques outlined in Subsect. 3.2 also to the users’ templates.

4 Results

In this section we describe experiments related to the following key points:

— Comparison of HRV and S-CRNN on arousal recognition.

Evaluation of the siamese architecture capabilities to implement feature cal-
ibration, comparing the S-CRNN with alternative network architectures.
Analysis of the number of users included in the training set (population size)
to asses the effect on the feature calibration layer.

Sensitivity analysis of hyper-parameters included in our methodology, focus-
ing on data-augmentation and number of convolutional/recurrent layers.

4.1 Dataset

We perform comparisons on the classification task associated to a dataset for
arousal recognition made publicly available by Schneegass et al. [14]. Briefly,
a set of physiological signals were recorded from 10 users during a real-world
driving task. Data samples were then subjectively labelled by each user for
arousal/driving workload. Among the signals included in the dataset, we focus
on ECG and use the arousal labels to define a binary classification problem (low
vs. high arousal).

4.2 HRV-Based Analyses

We train models based on HRV on the 31 features listed in Table 1 and provide
results for a selection of classification methods used in the literature [2-5], that
is, k-Nearest Neighbours (K-NN), Linear Discriminant Analysis (LDA), Support
Vector Machine with /; regularisation (SVM-11) and Random Forest (RF). We
apply state-of-the-art feature selection algorithms and hyper-parameter optimi-
sation to all the techniques based on HRV analysis on a nested cross valida-
tion setting. Namely, we use fitting and hyper-parameter optimisation routines
implemented in the Matlab machine learning toolbox, and apply forward search,
backward search and randomised search for feature selection. For space limita-
tion, for each model we include results only for the best performing combination
of parameters/features.

4.3 Experimental Setup

Because of strong class imbalance (only ~6% of samples are representative of the
arousal class) we compare the results based on AUC score. Results are presented
for leave-one-user-out cross validation. We use Keras [20] with TensorFlow [21]
backend for implementation and training of neural networks. We train the net-
works using Adam optimiser [23] up to a maximum of 100 epochs, and use early
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stopping on a validation set. We do not investigate exhaustive hyper-parameter
optimisation for the S-CRNN;, as it is nested in a cross validation and would
thus lead to prohibitive computational times. Instead, we perform a local hyper-
parameter analysis on the most sensitive hyper-parameters (Sect. 4.6).

We train HRV analysis models on a 2 GHz Intel Core i5 processor with a RAM
of 8 GB @1867 MHz. Computational time for a full round of hyper-parameter
optimisation and cross validations for each HRV model varied between about 1
and 12h. We train deep learning models on NVIDIA Tesla K80 GPU. Compu-
tational time for a full round of cross validation took about 60 h.

4.4 Comparison of HRV and S-CRNN

In Fig. 3a we compare average AUCs obtained by different classification models
learnt on top of HRV features with the results obtained by the S-CRNN, for an
increasing number of users included in the training set. Results for population
sizes between 1 and 7 are averaged over 10 randomly chosen combinations of
users included in the training set (consistently among models).

As expected, we observe an overall trend for all the methods to perform
better as the number of users included in the training set increases. However,
the performance boost obtained for all the models when increasing the number
of training users from 1 to 5 seems to saturate for HRV-based methods, which
fail to take advantage of such increases. On the other hand, the S-CRNN obtains
additional AUC boosts when more users are included in the training set. For the
largest size of the training set allowed by the dataset used here (i.e. 9 users),
the S-CRNN obtains average AUCs percentage increase of +21.5% compared
to the best results obtained by HRV analysis (i.e. from 0.659 to 0.801 AUC).
Finally, notice that all the methods based on HRV analysis perform similarly to
each other. This suggests that the low AUC reached is not related to the actual
classification model used, but to the weak correlation between the HRV features
extracted and the user arousal level.

4.5 Variations on the Architecture

In Fig.3b we compare the S-CRNN with variants of its architecture, namely,
with the CRNN model that does not benefit from the feature calibration layer,
and with a M-CRNN (Merged-CRNN). Similarly to the S-CRNN, the latter is
based on two separate CRNN branches, but they do not share parameters.
Again, there is an overall trend of AUC increase as the number of training
users increases. Contrary to what happens for HRV -based methods, here all the
models systematically get performance boost every time new users are included
in the training set. This is likely to be related to the greater capacity of neu-
ral networks to use information from more data compared to manual feature
extraction pipelines. Interestingly, the CRNN slightly outperforms the S-CRNN
for population sizes of 1, 3 and 5. We speculate that this is because, with small
population sizes, the feature calibration layer overfits to the specific training
users characteristics. However, as the number of users increases, the S-CRNN is
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(a) HRV based method and S-CRNN. (b) Variants of S-CRNN.

Fig. 3. AUGCs for increasing the number of users included in the training set.

able to take full advantage of the information carried by new users’ data. In fact
with population size of 9, by proper calibration of the features extracted by the
CRNN, the S-CRNN obtains a +7.5% percentage increase on the corresponding
CRNN. Notice that, even though the M-CRNN model is more general than the
S-CRNN, it fails to improve even on the score obtained by the CRNN. This
could be due to the almost double number of parameters of the M-CRNN.

4.6 Hyper-parameters’ Analysis

In Fig. 4a we plot AUCs obtained for different numbers of recurrent and convo-
lutional layers included in the S-CRNN. We analyse the effect of changing the
number of layers of one type (either convolutional or recurrent), while keeping
the other type of layers fixed to its nominal value. Notice that the x and y axis
are normalised with respect to the S-CRNN architecture. The strongest effect
is given by the convolutional layers, with the fully recurrent network obtaining
only about 60% of the S-CRNN AUC. After an initial rapid increase, the AUC
score saturates around the nominal S-CRNN architecture.

Figure 4b shows the analysis results for the two hyper-parameters involved
in the data augmentation phase. As expected, there is an overall trend of AUC
increase as the number of copies made from each training sample is increased.
However, the benefit from having more copies saturates around 15. Analogously,
the more samples given as input to the S-CRNN, the higher is the AUC obtained.
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Fig. 4. Hyper-parameter analysis for S-CRNN.

5 Conclusions

We proposed a siamese CRNN architecture for arousal detection from ECG. The
CRNN is explicitly designed to extract non-linear features from the ECG signal
and analyse relevant time patterns using a 3-layer RNN stacked on top of a 6-
layer CNN. Relying on a shared-parameter siamese architecture, we implemented
feature calibration in the deep learning framework itself, which allows the neural
network to model non-linear relationship between users’ ECG at rest and that
during emotion elicitation. We demonstrated the advantages of our approach
compared to state-of-the-art HRV based methods, obtaining up to +21.5% per-
centage improvement on the AUC score. Further, we showed that the siamese
architecture obtains +7.5% score increase compared to the CRNN.

As future work we plan to extend the S-CRNN to long-term analysis set-
tings, and perform comparison with medium and long-term HRV techniques.
We emphasise that, though the siamese architecture was introduced for ECG,
it can be generalised to most of the physiological signals used for affective state
recognition. As feature calibration has proven to be a crucial step for manual
feature extraction pipelines, future work will investigate whether affective com-
puting based on deep learning can benefit from the siamese network paradigm.
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Abstract. In the paradigm of learning with a teacher, introduced by
Vapnik, a supervised learner is trained on an augmented features space,
and a student is requested to match the teacher accuracy as much as
possible in a reduced feature space. In particular, in the transfer learn-
ing mode proposed by Vapnik, a method was formalized to move the
knowledge from the teacher to the student. In this paper, we use biased
regularized least squares as a simple yet effective method to transfer the
knowledge from one learner to another, and to assess its accuracy. We
achieve this by further generalizing a semi-supervised learning method,
which we previously introduced. We will show that, with this approach,
the teacher can be any classifier. In particular, we will employ the Rel-
evance Vector Machine (RVM) as teacher to assess the method’s capa-
bility in transferring the knowledge in terms of classification accuracy,
and in reproducing the probabilities coming from RVM. We validate the
method against standard UCI datasets and systematically compare it
with Vapnik’s original method in terms of accuracy and execution time.
We thus demonstrate the feasibility and speed of this new approach.

1 Introduction

Supervised learning is an extremely well-studied topic in terms of theory
and algorithms. Several variations of the supervised learning paradigm have
appeared over the years, including semi-supervised learning [3-5], transfer learn-
ing, domain adaptation [12,13], multiple output learning, deep learning, and,
more recently, the learning with a teacher paradigm [1].

In classical supervised learning for classification, the learning algorithm is
fed with an input matrix X (where rows represent the samples, and columns
represent the features) and the desired labels vector y represents the class mem-
bership. The aim is the learning of a function f that can predict the labels y.
In contrast, in the learning with a teacher paradigm, it is hypothesized that a
teacher, namely a classifier, can access a privileged space D*, whereas a stu-
dent can only access a reduced unprivileged space D from which to replicate the
teacher classification accuracy. By privileged, we mean that the D* space has an
extended set of features that are not accessible in the space D. For instance, D*
has ten features, whereas D has access to only five of them. Implicitly, we are
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assuming that the additional features in D* are not noisy but significant. From
now on, z* and z will indicate a sample in the full teacher space D* and student
space D respectively, while the data matrices will be indicated by X* and X.
In this setting, Vapnik proposed the SVM+ and SVM A+ [1]: SVM 5o+ functional
is a nonlinear optimization problem, which Vapnik showed could be approxi-
mated by a convex one with linear constraints. To cope directly with knowledge
transfer, which is the object of this paper, Vapnik additionally proposed a learn-
ing scheme in which the student learns the kernel rows of the kernel matrix as
functions computed on the space D*, and tries to reproduce this hidden layer by
learning proper basis functions in the space D. This approach requires the learn-
ing of a number of approximate basis functions equal to the number of kernel
bases of the original space. Even if the number of landmarks N; (samples used
in the kernel expansion) can be reduced with respect to the original number
of samples N, N; regression problems still have to be solved. If the Regular-
ized Least Squares (RLS) method is used to solve the regression problems, then
the overall scaling of the learning procedure is O(N3N;) because of the (RLS)
cubic scaling. In particular, if we choose N; = N (which is the most agnostic
choice), the overall cost is O(N*). This makes the procedure computationally
intensive. This situation requires simpler and faster methods for learning with
privileged information. The recent literature contains works at the theoretical
and algorithmic level. At the theoretical level, Hypothesis Transfer Learning
(HTS) is another way to indicate learning with hidden/privileged information.
In [6], the authors use stability bounds to prove that HT'S is convenient and can
be successfully used. Interestingly, this group used regularized least squares for
their analysis. However, the biasing is placed in the loss function and not in the
regularizer. This means that, during the prediction phase, the original function
must be evaluated in the augmented space too. This makes the method unsuit-
able for out-of-sample and disjoint spaces D* and D, as in our case. In [7,8],
some methods are presented that can obtain knowledge transfer. However, they
are restricted to mimicking linear classifiers or mimicking nonlinear classifiers in
the same function space of the learnt final function. These limits considerably
restrict the applicability of these methods.

Here, we propose a biased form of regularized least squares as a simple and
effective solution. Furthermore, we show that the proposed functional generalizes
a previous one, which we proposed in [3,4] for semi-supervised learning. Indeed,
the functional we define has several advantages, including (a) independence of
the original classifier space with respect to the mapped one; (b) a simple learning
system to be solved to obtain the solution (so SVD can be used to accelerate
the search for an optimal regularization parameter); and (c) it offers a simple
Bayesian interpretation.

In the following, we introduce the regularized least squares algorithm (RLS),
the knowledge transfer scheme proposed by Vapnik, and our mimicking func-
tional and its properties. Then, we apply the method to the Relevance Vec-
tor Machine (RVM) as teacher and the proposed functional as student. We
thereby assess the method’s accuracy and execution speed compared to the
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knowledge transfer method proposed by Vapnik. In the same section, we dis-
cuss the method’s feasibility in reproducing RVM probabilities. Finally, we draw
some conclusions.

2 Regularized Least Squares

The regularized least squares algorithm is a widely used method for classification
and regression [9]. Althought it uses a regularization term identical to SVM, it
uses a squares loss instead of the hinge loss. The mathematical problem is:

mfinllf—y||2+/\||f\|% (1)

where f € H and H is a Reproducing Kernel Hilbert space. Due to the Repre-
senter Theorem, it can be shown that this functional admits as minimizer the
following linear expansion in terms of kernel functions:

N
@)=Y K (2, ) (2)
i=1

Substituting this expansion into the functional, the following matrix form can
be obtained:
min ||[Ka — y||*> + Aa'Ko (3)
(0%

In turn, computing the gradient and nullifying it, the optimal solution can be
obtained by solving a linear system of equations or inverting a matrix:

a=(K+X) 1y (4)

To compute the regularization path in an efficient way, namely the set of solutions
changing the regularization parameter, it is convenient to compute the SVD of
the kernel matrix K as per USU!. Indeed, it is easy to show that, by using
the SVD, computing the full regularization path boils down to computing a
trivial inversion of the S matrix and two matrix multiplications (U'y can be
precomputed) as per:

a=U(S+\) Uy (5)

RLS will be our starting point and we will show that this property is preserved
upon the proposed modification.

3 Knowledge Transfer
In [1], the knowledge transfer process is formalized as the process of starting

from the teacher representation in kernel space and moving it to the space of
the student. In particular, suppose the teacher has learnt a rule as per:

N
fla®) = Z&K(fc?’x*) (6)
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where x} are samples belonging to the full teacher space D*. We want the student
to mimic this function by just employing z instead of *, where x now belongs to
the reduced student space D. To this end, Vapnik proposes a strategy whereby
we directly mimic f(z*) by copying the kernel behaviour on z*. That procedure
can be formalized in three points.

— First, we find the fundamental elements of knowledge in the space D* called
u;. In other words, we define some landmarks a priori, or some support vec-
tors a posteriori in order to reduce the computational burden. This step is
computationally relevant only. Conceptually, it is not different than using all
the samples. In the following, we will use all the available samples to maximize
accuracy.

— Second, we find frames (m functions) K*(uf,x*),..., K*(uk,, £*) in space D*.
We identify the hidden layer elements that we want to transfer.

— Third, we find the basis functions ¢;(x),...,¢m(x) such that ¢p(z;) =
K*(uj, ). This means finding the basis functions that, for the space D, the
student space, mimic the behaviour of the full kernel function in space D*.

Once obtained, the m functions, then the student function becomes:
f@) =Y bon(a) (7)
k

From a neural network perspective, this strategy is equivalent to mimicking the
output of the hidden layer of a single hidden layer (pretrained) neural network
(as SVM is, where the number of neurons is equal to the number of samples,
ie, N =m).

With this method, the functions ¢(z) are the main source of practical dif-
ficulty because, for each of the m landmarks, we have to learn a regression
function. As a result, the method is not particularly efficient. In turn, as usual,
learning a function means conducting a model selection on it, which makes the
algorithm even slower.

To avoid the m regression and the m model selection problems, we propose a
much simpler method where just one regression is needed to transfer the knowl-
edge, thus dramatically reducing the computing time.

4 Mimicking the Teacher

After looking at the strategy proposed in [1], the key question is if we really need
to mimic the hidden layer to transfer the knowledge. Is it sufficient to mimic the
output of the network? To transfer the knowledge, most methods propose the
mimicking of the hypothesis space. For instance, in the linear case this means
defining the following biased Tikhonov functional:

min || Xw — y[[* + AfJw — w||* (®)
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where we denoted the teacher solution with w;. The problem with this intuitive
approach is that we are implicitly assuming that w; (the teacher model) and
w (the student model) live in the same space. This can be a limiting factor.
Here, we propose an alternate approach which directly mimics the teacher and
indirectly mimics the hypothesis space. Indeed, the final aim of the learning with
a teacher approach is to have a good generalization performance in the student
space. This can be achieved by decoupling the two hypothesis spaces.

This can be obtained in RLS by slightly changing its biased form and
switching from a hypothesis space bias to a bias in the output of the decision
functions. In the linear case, this corresponds to substituting ||w — wy||?> with
Zivzl(wxz —w;z})? or in general nonlinear terms:

mlnz — i) +)\1||f||71+)\22 — fi(w )) 9)

i=1

where now the mimicking is not done in the hypothesis space but simply by a
Euclidean norm in the output of the functions. Note that we here introduced
the mimicking regularizer Ao, which tells us to what extent the teacher should
be mimicked. This means that we are no longer mimicking the hypothesis space
directly. Rather, we are only mimicking the output of the teacher. Philosophi-
cally speaking, our student is not understanding the lesson (the hypothesis, the
model w), but just mimicking the teacher’s behaviour (f values). One might
expect this approach to be less effective. However, we will show empirically that
this is not the case. This simplification is somehow reminiscent of the transduc-
tive approach [10] when compared to full inference where the query points (the
questions to the student) are known a priori. Here, we also squeeze the problem
to its essence, namely just imitating the teacher. In addition to the philosophical
difference, even if the output is just copied, the learnt functions generalize well
when a proper \; regularizer is chosen. Indeed, imitating is sufficient to shape a
sufficiently good hypothesis space for the student.
Such a functional has some very nice properties:

— It decouples completely the f; space from f, the student function.

— It does not make any assumption about the source of f;. It could be any
classifier that gives some scalar output; even a multiclass classifier could be
mimicked by this approach. Later, we will show how this property can be
used to mimic class probabilities.

— It can be minimized by solving a linear system.

— It has an obvious Bayesian intepretation when looking at the second regular-
izer, in that this one could be interpreted as a Gaussian prior centered on the
teacher function f;.

— Tt is easily generalizable to a multi-teacher or even a multi-aim approach (e.g.
teacher+semi-supervised learning).

Those properties are all self-evident except two, namely the linear system
and the generalizability.
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First, we show that the system minimization can be achieved as a linear system
solution, and that SVD can be conveniently used again to quickly compute the
regularization path. Writing down the proposed function in matrix terms, we
obtain the following functional to be minimized in the « space

min ||[Ka — y|[* + Mo’ Ka + Xo||[Ka — fil (10)

Computing the gradient and nullifying it yields the solution:

a=(K+MI+XK) " (y+X\af) (11)

where [ is the identity matrix. By employing the SVD on K, we obtain K =
USU*®. Due to its positive definiteness and using the property that U! = U1,
we can conveniently write:

a=U((14+X)S+D)7Uy + Xafi) (12)

where it is clear that changing the regularization parameters just means inverting
a diagonal matrix that can be trivially obtained by inverting all its diagonal
elements. As such, the computation of the regularization path involves just one
SVD and matrix multiplications, hence its speed. In terms of computational
complexity without considering the cost of model selection, Vapnik’s approach
scales as per O(N3N;) (where N; is a possibly a priori or a posteriori subset of
samples), whereas our protocol only needs one RLS problem to be solved, thus
obtaining O(N?). For large sample sizes, the speed-up can be dramatic.

As already anticipated, it is interesting to note that the proposed functional is
very similar to that used in [3,4] to support semi-supervised learning. In contrast
to that work, the mapping step is not needed here because the f; is already
a classification function. Moreover, semi-supervised learning could be achieved
here by only letting f; represent a learnt function on the full set (supervised +
unsupervised) after the Mapping step (see [3]) and applying the square loss only
on labeled samples.

In the most general terms, one could envision the following functional:

L(f(x),y) + M)+ e > _IIf = fill? (13)

i=1

where a multi-teacher approach could be used by properly assigning the vari-
ous fl Interestingly, the amount of computations needed for transfer learning is
independent of the number of teachers or reference functions in general. Addi-
tionally, if the loss £ and the regularizer (2 are all quadratic, then a simple
linear system must be solved. Further, if fz comes from a mapping step as in
[3], then the method is flexible enough to allow simultaneous semi-supervised
and teacher learning, simultaneously leveraging the space D* and the unlabelled
samples possibly coming from D*.

Another interesting potential interpretation of (13) is a way of performing
boosting on different features. Indeed, one could assign to each fl a specific
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subset of features, using (13) to boost all of them. Thus f; would play the role of
the weak learners. However, these intriguing possibilities are beyond the scope
of the current paper, where we focus on learning with a single teacher only.

4.1 The Complete Learning Scheme

As anticipated, we will use the Relevance Vector Machine [11] as teacher in that
it can directly deliver the class probabilities. In particular, for computing the
probabilities from RVM and from biased RLS, we compute the sigmoid:

p(x) = 1/(1 + exp(=f(2))) (14)

where z is a generic sample, f is the learnt function by the learner, and p is the
corresponding class probability. Overall, the complete learning scheme can be
summarized in the following pseudocode:

Input: X* X,y
Output: «
1: Teacher learns by solving RVM(X™,y)
2: Compute teacher probabilities via eq.14, name them p*
3: Student learns by solving eq. 9 in space D, do model selection on A1 and get «
4: Compute student probabilities via eq. 14, name them p
5: return «,p,p”

Here, we assume that Ao is kept fixed during the model selection. Indeed, we
found empirically that a sufficiently large (e.g. 1e2) value is sufficient to enforce
the correspondence between p* and p as much as possible. In contrast, for the
model selection and as usual for RLS, we found that the first regularization
parameter \; value is critical.

5 Experiments

In the following, we discuss experiments conducted on some widely used UCI
datasets to demonstrate and study the method’s feasibility. We chose the follow-
ing datasets from UCI: ionosphere, A vs B letter recognition, mammographic
masses, musk, sonar and diabetic retinopathy. We split the datasets into two
halves, one for training and one for testing. The kernel was always the Gaus-
sian kernel with width automatically fixed to: o = 8 max;;(d;;/v2N), where d;;
is the pairwise distance between a pair of samples. Data were always normal-
ized in the [—1,41] domain, and the data order was randomly permuted. All
experiments were conducted with Matlab R2016a on an Intel Xeon 2630 work-
station and Linux Ubuntu. To emulate the learning with a teacher setting, we
suppressed some dataset features to simulate the student space D. In particu-
lar: we suppressed variables 1 to 32 for ionosphere, variables 5 to 160 for musk,
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variables 1 to 15 for sonar, columns 4, 5 for mammographic data, and columns
1 to 4 for diabetes. This column suppression allows us to fairly emulate a signifi-
cant difference in spaces between D* and D. The Ay parameter was always kept
fixed to 1e2. We performed model selection for A; in the interval [10719 10?]
in 25 equispaced values in the exponent space. For learning the m frames in
Vapnik’s method, we again used RLS. We used the same \; interval to perform
model selection, but with fewer values (only 13) to speed up the computation.
We did not use the SVD trick for model selection. We limited the total amount
of samples to random 1000 samples overall for the training and test sets.

First, we compare our method to Vapnik’s method to assess the algorithm’s
feasibility in terms of accuracy and computing time. Next, we characterize the
method’s behaviour when changing the training/test sample size. Finally, we
comment on the method’s ability to reproduce the class probabilites learnt by
the RVM teacher.

5.1 Comparison with Vapnik’s Algorithm

In this first set of experiments, we sought to understand how the proposed
method compares to the knowledge transfer scheme in [1]. In Fig. 1, we report the
results of Vapnik’s method versus the regularization parameter A\ used to learn
the regression functions. It is evident from the figures that a proper tuning of the
regularization parameter is needed to obtain a good accuracy. This confirms the
idea that not only must m regression functions be learnt, but proper model selec-
tion must also be conducted on them. The same kind of analysis is performed
for our method. Table 1 shows that the accuracy values of the two methods are
almost identical. Interestingly, however, our method is not only conceptually
much simpler but also much faster. In particular, in the table v; indicates the
teacher error, v, the error in the reduced space D, v, the student error after
the biasing, vj; is the student error using the algorithm in [1], ¢5 and ¢;; are the
respective execution times in seconds for our method and Vapnik’s method, and
Ap is the probability absolute difference Ap = |p(x) —p(z*)| between the teacher
and the student (this last quantity is also reported in the figures as the cyan line
with star marks). Clearly, Ap is dataset-dependent and accuracy-dependent. It is
likely that a higher classification error induces a higher difference in probability.
Nevertheless, we found that, on average, the probability is maintained under a
tolerance of about 10%. This means that, on average, even probability estimates
are reasonably accurate. By looking at the probability tolerance curves, we found
that the minimum is often attained (or very nearly) where the best regulariza-
tion parameter \; is found. This interesting property allows us to empirically
check that, where the best model is located, the estimated probabilities also tend
to match the original ones under a certain tolerance (Fig. 2).

5.2 Behaviour by Changing Sample Size

In this second set of experiments, we sought to understand when it is worth
transferring the knowledge in terms of the sample regime. We tested our algo-
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Fig. 1. Results for the method in [1]. From top to bottom and left to right: ionosphere,
sonar, letter, mammographic masses, musk, retinopathy. The line with squares (red)
indicates error in the D reduced space, the line with circles (black) indicates the teacher

error (in D*), and the line with rhomboids (green) indicates the student errors (Color
figure online)

rithm on a subset of datasets and collected the test errors at varying sample
sizes. We used only musk and ionosphere because they were the only two where
we could guarantee that the teacher error was lower then the error in the reduced
space. For certain sample sizes, removing some features can often be beneficial
instead of disadvantageous. For this reason, we selected only the datasets that
consistently allowed us to obtain a teacher error lower than the student error
at all sample sizes. From Fig. 3, it is evident that the student error is consis-
tently significantly better than the error in the reduced set. This confirms that
the method is advantageous regardless of sample size, provided that the teacher
error is better than the reduced error.
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Fig. 2. Results for the proposed method. From top to bottom and left to right: iono-
sphere, sonar, letter, mammographic masses, musk, retinopathy. The line with squares
(red) indicates error in the D reduced space, the line with circles (black) indicates the
teacher error (in D*), the line with rhomboids (green) indicates the student errors, and
the line with stars is Ap (Color figure online)

% k< 4 5 St
2 K 3
> ™S 3k 4 : \/19\}6
)
Ll S a2
o o
xX X
25
o o 38
(@] Q 36
— —
o 20 o 3
Q (O 2P
15 30
28
50 100 150 200 250 50 100 150 200 250

N N
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Table 1. Here, v+ indicates the teacher error, v, is the error in the reduced space D, v,
is the student error after the biasing, v is the student error using the algorithm in [1],
ts and t;; are the respective execution times in seconds for our method and Vapnik’s
method, and Ap is the probability absolute difference Ap = |p(x) — p(z*)| between the
teacher and the student

Dataset ve  |Ur | Vs ts v |t |Ap

Tono 11.4133.7/18.9|0.25 /194 | 5.2 |22.1
Letter 0 1.4/0.4 036 0.4 |77.8 0.7
Musk 21 |41.6/28.6 0.2628.6| 9.6 |23.1
Sonar 22.128.8 24 0.22 24 1.8114.2

Mammographic | 20.2 1 20.2 |21.2 {0.31 |20.2|31.6 5.3
Retinopathy 29 1394|314 035|331 [79.5| 84
Avg 17.3127.5]20.8 |0.3 |20.6 34.3|12.3

6 Discussion and Conclusions

In this paper, we proposed a simple, flexible, and fast method to learn from a
teacher. We empirically demonstrated that the method works well in a scenario
where we removed some features from standard UCI datasets to emulate the
enriched D* space and the reduced student space D. We showed the method
to be both accurate and fast when compared to the original method proposed
in [1]. Furthermore, we have shown that the tested method is easily generaliz-
able to a multi-teacher approach, in which some of the teachers may even come
from an unsupervised environment. Indeed, our functional generalizes a previous
functional that we defined for semi-supervised learning, which, de facto, was an
instance of transfer learning. In spirit, our functional resembles that defined in
[2]. Interestingly, the three-step procedure proposed in that paper is conceptually
analogous to the four steps we proposed earlier in [3]. However, the procedure
proposed in [3] is more flexible in that the mapping step allows an easy move
from an unsupervised solution to a function f in a RKHS. Moreover, our method
is always convex. Future works will systematically analyze the generalized func-
tional, and will mix teachers from the augmented space D* and unlabelled data
D in the same learning process.

References

1. Vapnik, V., Izmailov, R.: Learning using privileged information: similarity control
and knowledge transfer. J. Mach. Learn. Res. 16, 2023-2049 (2015)

2. Lopez-Paz, D., Bottou, L., Scholkopf, B., Vapnik, V.: Unifying distillation and
privileged information. In: ICLR 2016 (2016)

3. Bisio, F., Gastaldo, P., Zunino, R., Decherchi, S.: Semi-supervised machine learning
approach for unknown malicious software detection. In: IEEE INISTA, 2014, pp.
52-59 (2014)



10.

11.

12.

13.

Simple Learning with a Teacher via Biased Regularized Least Squares 25

Bisio, F., Decherchi, S., Gastaldo, P.: Inductive bias for semi-supervised extreme
learning machine. In: ELM 2014, vol. 1, pp. 61-70 (2014)

Decherchi, S., Ridella, S., Zunino, R., Gastaldo, P., Anguita, D.: Using unsuper-
vised analysis to constrain generalization bounds for support vector classifiers.
IEEE Trans. Neural Netw. 21, 424-438 (2010)

Kuzborskij, 1., Orabona, F.: Stability and hypothesis transfer learning. In: ICML
2013 (2013)

Wang, Z., Wang, X., Ji, Q.: Learning with hidden information. In: ICPR 2014
(2014)

Niu, L., Shi, Y., Wu, J.: Learning using privileged information with L-1 support
vector machine. In: IEEE International Conferences on Web Intelligence and Intel-
ligent Agent Technology (2012)

Rifkin, R.: Everything old is new again: a fresh look at historical approaches in
machine learning, Ph.D. thesis, Massachusetts Institute of Technology (2002)
Gammerman, A., Vovk, V., Vapnik, V.: Learning by transduction. In: UAI 1998,
Morgan Kaufmann Publishers Inc., pp. 148-155 (1998)

Tippimg, M.E.: Sparse Bayesian learning and the relevance vector machine. JMLR,
5, 211-244 (2001)

Pan, S.J., Tsang, I.LW., Kwok, J.T., Yang, Q.: Domain adaptation via transfer
component analysis. IEEE Trans. Neural Netw. 22(2), 199-210 (2011)

Daume III, H.: Frustratingly easy domain adaptation. In: Proceedings of the 45th
Annual Meeting of the Association of Computational Linguistics, pp. 256-263.
Association for Computational Linguistics (2007)



)

Check for
updates

Feature Based Multivariate Data Imputation

&=

Alessio Petrozziello and Ivan Jordanov

School of Computing, University of Portsmouth, Portsmouth, UK
{alessio.petrozziello, ivan. jordanov}@port. ac.uk

Abstract. We investigate a new multivariate data imputation approach for
dealing with variety of types of missingness. The proposed approach relies on
the aggregation of the most suitable methods from a multitude of imputation
techniques, adjusted to each feature of the dataset. We report results from
comparison with two single imputation techniques (Random Guessing and
Median Imputation) and four state-of-the-art multivariate methods (K-Nearest
Neighbour Imputation, Bagged Tree Imputation, Missing Imputation Chained
Equations, and Bayesian Principal Component Analysis Imputation) on several
datasets from the public domain, demonstrating favorable performance for our
model. The proposed method, namely Feature Guided Data Imputation is
compared with the other tested methods in three different experimental settings:
Missing Completely at Random, Missing at Random and Missing Not at Random
with 25% missing data in the test set over five-fold cross validation. Further-
more, the proposed model has straightforward implementation and can easily
incorporate other imputation techniques.

Keywords: Missing data - Multivariate data imputation -
Multitude of imputation models - Data mining

1 Introduction

Dealing with missing data is an important step in dataset pre-processing since most
statistical analysis techniques, data reduction tools, and machine learning methods
require complete datasets. There are many techniques that can be used to deal with the
missingness, but the common approach during imputation is to make the most of the
available data through minimizing the loss of statistical power and the bias inevitably
brought by the missing data inferred values. The mechanisms of missingness are
usually categorized into three groups [1]: MCAR (Missing Completely at Random);
MAR (Missing At Random); and MNAR (Missing Not At Random). In the first case,
the missingness is generally due to external factors, not correlated to the other variables
in the dataset, while in the last two, the cause is related to the other variables; therefore,
the risk of bringing bias due to the imputation should be carefully considered.

The approaches of dealing with missingness can be also divided into three cate-
gories [1]: deletion; univariate imputation; and multivariate imputation. In the first
category fall the list-wise deletion (the patterns with missing values are simply
removed), attribute deletion (the features with missing values are excluded) and pair-
wise deletion (where, in presence of missing values, the pattern is not dropped, and its
other values are still used during the analysis). The methods from the second category
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do not consider the correlation between the missing value and the other variables in the
dataset, and impute the data using only information of the same attribute. Good
examples of this group are: the Random Guessing, where the values are substituted
randomly, sampling from the other values of the same attribute; and the Mean (Median)
Imputation, where the values are replaced with the mean (median) of the considered
attribute. The last category includes methods that consider the correlation of the dif-
ferent attributes. Four different algorithms of this family are usually considered [1]:
Multiple Imputation Chained Equations (MICE); Bagged Tree Imputation (BTI); K-
Nearest Neighbour Imputation (KNNI) and Bayesian Principal Component Analysis
Imputation (bPCA).

These methods have been widely investigated and compared in the past years,
showing discordant results [2, 3]. Most approaches of dealing with missingness would
select a single method that outperforms the others based on a given performance
metrics. However, while a given approach might have a good performance across the
whole dataset, it does not mean that its performance will be superior at the level of each
individual feature. In the proposed approach, instead of selecting a single method
which outperforms the others on the whole dataset, a column-wise selection is used to
choose the best imputation method for each individual attribute.

The proposed method, namely Feature Guided Data Imputation (FGDI) is
extensively tested and validated on thirteen publicly available datasets. Its performance
is assessed and compared with other techniques using Wilcoxon Signed-rank test for
statistical significance [4].

The remainder of the paper is organized as follows. Section 2 describes the con-
sidered imputation methods, while Sect. 3 proposes the FGDI method. Section 4 dis-
cusses the empirical study carried out. The results of this investigation are discussed in
Sect. 5 and in Sect. 6 conclusion given.

2 Imputation Techniques

Baselines. The most common techniques used as baselines for comparison and analysis
of data imputation are Random Guessing, Mean Imputation and Median Imputation [5].
The Random Guessing is a very simple benchmark to estimate the performance of a
prediction method. It takes as input the missing data with random value drawn from the
known values of the same feature. The Mean (Median) Imputation replaces every
missing value with the mean (median) of the attribute. However, these techniques fall
into the single imputation category (the correlation between the variables is ignored),
which is the reason for being rejected by the scientific community [6], hence, they are
only used here to perform initial fast sanity check of the proposed approach.

Bagged Tree Imputation. The BTI with gradient boosting [7] is a machine learning
technique for solving regression problems, which produces a robust prediction model
using a vote (ensemble) among weak ones. The method follows few basic steps for
each feature with missing data: (1) train several tree models using the other features;
(2) for each tree, impute the data using a regression function; (3) use a vote among the
trees to select the data that will be imputed in the original dataset. Bagging predictors
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are used for generating multiple versions of a predictor to get an aggregated one. The
aggregation uses the average over the predictor versions when predicting a numerical
outcome, and employs a plurality vote when predicting a class. Bagging proved to be
more efficient in the presence of label noise when compared to boosting and ran-
domization [8]; it is also robust to outliers and can impute the data very accurately
using surrogate splits [9]. Another important feature of the tree model is its flexibility:
different models can be trained with the random forests and the prediction deferred to a
system vote among them. In this work, we employ gradient boosting technique for the
regression values, which uses an ensemble of weak decision trees.

K-Nearest Neighbors Imputation. In the KNNI the missing values are usually imputed
applying the mean of the K most similar patterns found by minimizing the Euclidean
Distance between a pattern with missing values and the complete subset [10].
The KNNI approach comprises three steps: (1) take only the rows of the dataset
without missing data and use this subset as a prototype dataset to select the nearest
neighbours; (2) choose a distance metric and compute the nearest neighbours between
each pattern with missing data and the complete subset; (3) impute the data, using the
mean or the mode of the chosen neighbours. An important parameter to select is the
number of neighbours K. There are discordant opinions in the literature, some sug-
gesting a low value of 1 or 2 for small datasets [11]. [12] advise a value of 10 for large
datasets, and in [10] is argued that the method is insensitive to the choice of the number
of neighbours. In all simulations carried out in this work, we used a value of K = 0.
The K-Nearest Neighbours has some advantages: the method can predict both, cate-
gorical variables (the most frequent value among the KNN) and continuous variables
(the average among the KNN); and when using this imputation, there is no need to
build a model (as in the Bagged Tree Imputation).

Missing Imputation Chained Equations. MICE [13] is a method from the multiple
imputation family. In the MICE process, a series of regression models are run modeling
each variable with missing data as dependent variable relying on all the other variables
in the dataset. This guarantees that each variable is modeled independently to its
distribution [13]. The MICE method is divided into four stages: (1) a simple imputation
(Mean) is performed for every missing value in the dataset to be used as placeholders;
(2) the placeholders for one variable are set back to miss; (3) the missing variable is
used as the dependent variable in a regression model and regressed using the other
variables. The procedure is followed for every variable with missing entries and
repeated many times until the convergence is reached. Practical guide on how to select
the number of imputations is given in [14], however, sometimes due to the size of the
dataset, it is not feasible to run the procedure many times. Therefore, 10 iterations are
usually considered enough for the convergence of the algorithm [15], which number is
also adopted in this investigation.

Bayesian Principal Component Analysis Imputation. The bPCA imputation [16] is an
evolution of the Single Value Decomposition Imputation [10] (since the SVD is a PCA
applied to normalized datasets with a O row-mean) with the additional Bayesian esti-
mation, using a known prior distribution. An advantage of this approach is that no
hyper-parameters tuning is needed, and the number of components is self-determined
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by the algorithm at the expense of a higher computational time. The bPCA can be
summarized as: (1) apply Principal Component Regression on the initial dataset;
(2) perform a Bayesian Estimation; (3) use an EM algorithm until convergence to a
specified tolerance.

3 The Proposed Method

All methods described in the previous section have been widely applied for solving
missing data problems [2]. However, while a given approach may produce low esti-
mation error for the whole dataset at hand, this does not mean that the method outputs
the best result (smaller error) for every individual feature (usually, for some of the
features other methods may give better estimates).

The investigated here Feature Guided Data Imputation (FGDI) is an imputation
approach which aggregates models in a feature-wise fashion (choosing the best model
for each feature (column) of the dataset, while allowing it at the same time to be inferior
for the rest of the features). In other words, when training the model, the best impu-
tation method for each feature of the dataset is selected among the considered tech-
niques. At the imputation phase, each selected method is sequentially used to impute
the features for which its performance was the best during the training stage.

During the learning phase, the algorithm is trained on artificially introduced missing
data (e.g., 25% of MCAR, MAR or MNAR) for each feature. A combination of the best
performed methods (based on a given error metrics, e.g., RMSE, MAE) is used to
impute the missing values in the original dataset. To cope with the random nature of the
algorithm and to ensure more robust choice, this process is iterated a given number of
times, and the technique that produced the lowest median overall error for each feature
is then chosen. For example, let’s assume a set of m imputation methods (M3, ..., M,, €
S) and dataset (X) composed of v variables (features) and n samples, where k of them
(0 < k < n) contain at least one missing value. Once the n-k complete samples are
separated (X' subset), a percentage of missingness is added to each variable of X' (e.g.,
25%). The missing data in X' are separately imputed using all methods of S, and the
estimation error (e.g., RMSE) is calculated for each feature (variable). This process is
repeated I times (e.g., [ = 5), and for every variable in X', the imputation algorithm
scoring the lowest median error is selected and included in a set E, (E C S).The
selected techniques are then used to estimate the missing values of the whole set X. In
particular, VM; € E, i = 1,.., j, (where j < m), the dataset X is entirely imputed, and
only the imputed values for the features where M; scored the lowest error are saved,
discarding the others. Since X is imputed independently using each technique, the order
of imputation is irrelevant, enabling the process to be parallelized.

4 Empirical Study

In previous works [3, 17], extensive review and experimentation was done in an effort
to identify correlation between imputation methods performance and the type of
datasets with missingness, which concluded with discordant results (confirming the
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‘No free lunch theorem’). These findings led to the current investigation, based on the
aggregation of different models.

The proposed method (FGDI) is compared with known univariate baselines and
multivariate state-of-the-art imputation methods (i.e., KNN, BTI, MICE and bPCA) to
assess its performance on the missing data imputation task. The experiments are exe-
cuted for all the three missing data mechanisms: MCAR, MAR and MNAR. Lastly, a
run time analysis is carried to observe the computational cost needed during the training
and imputation phases. The results are reported in Sect. 5.

Thirteen publicly available datasets from KEEL repositories [18] are used in this
work, namely Contraceptive, Yeast, Red wine, Car, Titanic, Abalone, White Wine, Page
Block, Ring, Two Norm, Pen Based, Nursery, and MagicO4. The selection of these
datasets was driven by the intent to cover different application domains and data
characteristics. They differ in the number of instances (from several hundreds to several
thousands), the number of features (from 3 to 20), and in the range and type of the
features (real, integer and categorical). The used datasets do not have missing values by
default, guaranteeing total control over the experiments and the assessment and eval-
uation of the results.

From the variety of metrics employed for comparing and evaluating data imputation
and prediction models found in the literature, Mean Squared Error (MSE) and Mean
Absolute Error (MAE) are the most widely used [16, 19]. MSE measures the difference
between predicted and actual values while MAE their absolute difference. The Mean
Absolute Error (MAE) is argued to be more accurate and informative than the RMSE
[20], successively refuted by [21], where it is stated that the two measures picture
different aspects of the error and therefore they should both be used to assess the results.
As suggested in [20] and [21], RMSE and MAE are implemented to compare the
estimated missing values and the original ones, reflecting the average performance of
the imputation method. Furthermore, the RMSE is employed as error function for the
training phase of the FGDI. The Standard Accuracy (SA) and Variance Relative Error
(RE*) are assumed to be good baseline estimation measures [22]. SA and RE* are used
to compare the proposed model with the univariate baseline imputation techniques
(discussed earlier). In particular, SA which compares the prediction against the mean of
a random sampling of the training response values SA = I — RMSE(predicted, actual)/
RMSE(randGuess, actual) and the RE* = ¢*( predicted — actual Vo’ (actual) which
gives score of 1 for a model predicting values with O variance. It is considered an
appropriate baseline error measure since any model producing RE* greater than 1
would be assumed weak, independently of the dataset [22].

To validate the proposed method, a k-fold cross validation is applied, splitting the
dataset into independent training and test sets. The test set is generated using a uniform
sampling without repetitions, and the rest of the data is left as a training set. Since the
Shapiro Test showed that many of our patterns came from non-normally distributed
populations, the statistical Wilcoxon Signed Rank Test was used to prove which method
is giving better performance [4]. Furthermore, the used test does not make any
assumptions about the underlying distribution of the data. In order to check the sta-
tistical significance of the difference in model performance, we test the following NULL
hypothesis: “Given a pair of models (M;, M) with i, j € {1,..,n},i # j, the RMSEs
(MAE:s) obtained by model M; are significantly smaller than the errors produced by
model M;”, using confidence level o = 0.05.
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When simulating Missing Completely at Random (MCAR) mechanism, for each
feature value in the dataset, a number is drawn from a uniform distribution in the (0, 1)
interval. If this number is smaller than assumed missing data threshold (e.g., 0.25), the
feature value is set as missing in the original dataset. For the Missing at Random
(MAR) mechanism, a variance-covariance matrix is built for the considered dataset.
For each variable, the probability of missingness is governed by the most correlated
feature in the matrix (i.e., the bigger the value of the correlated feature, the higher the
probability of introducing missingness). To generate the Missing Not at Random
(MNAR) mechanism, we draw values (used as thresholds) from a uniform distribution
in (0, 1) interval, and sort them in decreasing order. We do the same for the variable
values and pair them with the sorted random numbers. For each threshold, we draw a
new random number in the (0, 1) interval and if it is smaller than the threshold, we
erase the feature value (this way the pairs with higher random numbers are more likely
to be set as missing).

5 Results and Discussion

Three different experiments are carried out: MCAR, MAR, and MNAR mechanisms
with 25% of missing data and 5-fold cross validation (80% training and 20% testing).
To calibrate the model during the training phase, 25% of missing data is added to each
attribute of the training set, subsequently imputed using the five imputation techniques
and the accuracy is evaluated using both MAE and RMSE. This process is run 5 times
and for each attribute, the imputation model achieving the lowest median error (pre-
ferred to the mean due to robustness to outliers) is selected. Lastly, the selected
techniques are used to impute the data on the independent test set and the results are
compared to all the other methods.

The first set of experiments is performed imputing the missing data under the
MCAR mechanism. As the MCAR occurs when the missingness is unrelated to any-
thing in the study, the missingness is simulated using a Bernoulli random variable
removing values with 25% chance of success. The SA values given in Table 1 show
superior results for the imputation carried out with our model. It outperformed the
baseline methods Random Guessing (SAgundaom s always 0) and the Median Imputation
(SArgpr > SAyedian). The Mean Imputation was omitted in favor of the Median
Imputation, since the latter is considered less biased to outliers. Furthermore, Table 2
presents the RE* results over five different imputation methods and again, as it can be
seen from the values, our FGDI method outperformed the Median Imputation, with
REr;pr < 1 in almost all case studies. It can be also seen from the table that the
RE;;ce > 1, which means high variance in the imputed values, problem already dis-
cussed in [23]. The REgnn;, instead, shows high variance (from 0.19 to 1.24)
depending on the considered dataset and feature. In the Yeast dataset, two variables (Erl
and Pox) are removed during the RE* calculation since the variance in the denominator
is 0. To finally assure that the proposed method is outperforming the baselines, a
Wilcoxon test for statistical significance is run, testing the NULL hypothesis “The
RMSEs provided by FGDI are significantly smaller than the errors produced by the
models Random Guessing and Median Imputation”. The results proved FGDI being
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better than both with p-value < 0.05 over all 13 datasets. The Standard Accuracy
analysis (Table 1) shows that the FGDI method not only outperforms the baselines, but
it is also comparable, and even better than the state-of-the-art algorithms. As it can be
seen from the table, the SArgp; is higher than the SA of the other methods in 41 out of
the 52 cases, comparable in 9 out of the 52 cases, and worse in only 2 cases. To
validate the significance of the difference, the Wilcoxon test is run justifying the NULL
hypothesis “The RMSEs provided by FGDI are significantly smaller than the errors
achieved by the state-of-the-art methods”.

Table 1. Standard Accuracy (SA) values achieved by FGDI, the baseline (Median Imputation)
and state-of-the-art (KNNI, BTI, MICE, and bPCA) techniques over the 13 datasets for 5-fold
cross validation with 25% MCAR. Higher values represent better estimation over the random
guess

Dataset FGDI KNNI BTI MICE bPCA Median
MCAR| MAR IMNAR|MCAR| MAR [MNAR|MCAR| MAR [MNAR|MCAR| MAR [MNAR|MCAR| MAR [MNAR|MCAR| MAR [MNAR|
Contraceptive| 0.39 | 0.27 | 0.31 | 024 | 0.11 | 0.17 | 0.36 | 0.26 | 0.30 | 0.18 | -0.02 | 0.03 | 0.38 | 0.23 | 0.31 | 0.26 | 0.23 | 0.27
Yeast 0.33 | 037 | 0.27 | 0.24 | 0.29 | 0.09 | 0.32 | 0.36 | 0.24 | 0.06 | 0.04 | -0.02 | 0.33 | 0.36 | 0.22 | 0.28 | 0.36 | 0.22
Red Wine 0.37 | 0.28 | 0.28 | 033 | 0.13 | 0.14 | 0.33 | 0.18 | 0.25 | 0.23 | 0.01 | -0.08 | 0.32 | 0.15 | 0.25 | 0.30 | 0.28 | 0.26
Car 0.29 | 032 | 0.29 | 0.12 | 0.21 | 0.16 | 0.29 | 0.31 | 0.15 | -0.01 | 0.01 | -0.07 | 0.29 | 031 | 0.14 | 0.25 | 0.29 | 0.29
Titanic 0.35 | 0.27 | 0.28 | 0.26 | 0.18 | 0.00 | 0.34 | 0.27 | 0.26 | 0.05 | -0.06 | -0.05 | 0.34 | 0.27 | 0.23 | 0.28 | 0.25 | 0.26
Abalone 0.68 | 0.28 | 0.27 | 0.62 | -0.32 | -0.05 | 0.57 | 0.27 | 0.18 | 0.66 | 0.08 | -0.10 | 0.72 | 0.08 | -0.10 | 0.28 | 0.27 | 0.27
White Wine | 0.36 | 0.29 | 0.30 | 0.34 | 0.11 | 0.12 | 0.34 | 0.18 | 0.18 | 0.16 | -0.01 | 0.00 | 0.34 | 0.18 | 0.19 | 0.28 | 0.29 | 0.29
Page Block | 0.49 | 0.26 | 0.22 | 041 | 0.16 | 0.17 | 043 | 0.26 | 0.20 | 0.39 | 0.12 | 0.03 | 046 | 0.22 | 0.16 | 0.25 | 0.26 | 0.23
Rin, 0.31 | 0.30 | 0.29 | 0.24 | 0.24 | 0.25 | 0.29 | 0.29 | 0.29 | -0.02 | -0.02 | 0.00 | 0.29 | 0.29 | 0.29 | 0.28 | 0.29 | 0.29
Two Norm | 0.34 | 0.30 | 0.30 | 0.24 | 0.18 | 0.21 | 0.32 | 0.29 | 0.29 | 0.07 | 0.01 | 0.01 | 0.34 | 0.25 | 0.27 | 0.30 | 0.29 | 0.29
Pen Based | 0.54 | 0.27 | 0.28 | 0.59 | 0.02 | 0.00 | 0.49 | 0.22 | 0.22 | 0.47 | 0.00 | -0.01 | 045 | 0.17 | 0.20 | 0.27 | 0.27 | 0.28
Nursery 0.30 | 0.30 | 0.28 | 0.09 | 0.18 | 0.13 | 0.25 | 0.24 | 0.25 | 0.00 | 0.01 | 0.00 | 0.29 | 0.29 | 0.28 | 0.23 | 0.23 | 0.22
Magic04 0.47 | 0.26 | 0.22 | 0.42 | 0.13 | 0.06 | 041 | 022 | 0.18 | 0.32 | 0.07 | -0.06 | 045 | 0.20 | 0.13 | 0.28 | 0.25 | 0.22

Table 2. RE* metric of FGDI and four state-of-the-art imputation methods for the 13 datasets.
Each entry represents the number of times that given algorithm scored RE* < 1 (good estimator)
on a total of 138 used features. The median imputation is not reported since it always scores
RE* =1

Dataset (# features) | FGDI | KNNI | BTI | MICE | bPCA
Contraceptive (9) 9 3 91 1 8
Yeast (6) 5 1 6| 0 4
Red Wine (11) 10 6 11| 4 9
Car (6) 6 0 510 0
Titanic (3) 3 1 310 3
Abalone (8) 8 7 8 7 8
White Wine (11) 10 7 10| 1 8
Page Block (10) 10 |10 10| 4 9
Ring (20) 16 0 201 0 14
Two Norm (20) 20 0 200 O 20
Pen Based (16) 15 |16 16 | 14 16
Nursery (8) 8 0 2,0 0
Magic04 (10) 9 8 9| 5 9
Total (138) 129 |59 129 |36 108
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As evidenced in Table 3 (first three columns): the imputation improvement
achieved by FGDI is statistically significant (p-value < 0.05) in 40 out of the 52 cases
(77%); comparable in 9 cases; and worse in 3 cases only. As suggested in [20], the
same NULL hypothesis was tested using the MAE metric. The FGDI resulted signif-
icantly better in 37 cases (71%), comparable in 12 and worse in only 3 cases. The
second-best imputation method (bPCA) for RMSE was significantly better in 31 out of
the 52 cases (60%); comparable in 9; and worse in 12 cases, which shows an
improvement for FGDI of 17% over the best single method. For the MAE hypothesis,
bPCA results were significantly better in 24 out of the 52 cases (46%); comparable in
14; and worse in 14 cases, showing inferior imputation accuracy in 25% of the cases,
compared with the FGDI. Furthermore, Table 3 shows the robustness of FGDI when
estimating the missing values - lower variance than KNNI, MICE, bPCA, and com-
parable RE* values with BTI (Table 2).

Table 3. RMSE (MAE) significance test for 5-fold cross validation with 25% MCAR, MAR,
and MNAR. Each row shows how many times model M; is better (win), comparable (tie), or
worse (loss) than the other models with the Wilcoxon Signed Rank Test

MCAR MAR MNAR

Win | Tie | Loss | Win | Tie | Loss | Win | Tie | Loss
FGDI (40 |9 |3 41 |10 |1 47 |5 |0

(3B7)|(12)(3) (@D |(5) (0) |48 |4 ()
bPCA |31 |9 |12 |36 |8 |8 34 |7 |11

24 | a4 a4 |G| ©) (A5 |G | () 44
BTI |26 |12 |14 |28 |6 |18 |23 |6 |23

(19) 1 (5)(A8) | (22) | (11) (19) | (22) | (8) | (22)
KNNI| 15 |3 |34 |11 |2 |39 |14 |3 |35

(19) | (11)(22) | (13) | (6) |(33) |(13)|(6) | (33)
MICE | 3 5 |4 |1 2 149 |1 1 |50

@ () [¢0) (1) [(5) |¢@6) (1) [(5)  46)

The following experiments are considered when the missingness is caused by MAR
and MNAR mechanisms.

The Standard Accuracy values given in Table 1 for the MAR experiment show
slightly superior performance of FGDI when compared with the other imputation
techniques. The proposed model outperforms the baseline Random Guessing
(SArgpr > 0) in all reported cases and the Median Imputation (SArgpr > SAnedian) 10 8
out of 13 datasets. Furthermore, it also shows better accuracy in all 13 cases when
compared to KNNI and MICE, and superior than BTI and bPCA results in 11 and 10
cases respectively. It is also worth to notice that the imputation under MAR condition is
generally harder task (compared to MCAR), since the missingness is not uniformly
distributed across the dataset and depends on the other variables as well (as discussed
in Sect. 4). As for all previous experiments, the Wilcoxon test is adopted to evaluate the
significance in difference for RMSE and MAE metrics. Results in Table 3 (4™ to 6™
column) show significant imputation improvement of the FGDI for 41 out of the 52
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cases (79%); comparable in 10; and worse in only 1 case, when using RMSE. On the
other hand, for the MAE metric, the FGDI resulted better in 47 cases (90%); com-
parable in 5; and never worse. The second-best imputation method (BTI) for RMSE
and MAE is significantly better in 36 and 31 out of the 52 cases (69% and 60%);
comparable in 8 and 6 cases; and worse in 8 and 15 cases, showing inferior to the FGDI
performance in 10% and 30% of the cases respectively.

The same analysis performed under the MNAR condition also suggests that the use
of a single imputation method for the whole dataset is not the best option. Again, the
SA values (Table 1) are generally lower when compared to the MCAR mechanism as
the missingness is caused by the considered variable itself (as explained in Sect. 4),
increasing the likelihood of introducing bias when imputing the values. In the MNAR
case, Table 1 also shows superior results for our method in 10 out of 13 datasets. The
reported SAggpy is better than SAxnnt and SAycg for all considered datasets, while
being never worse than SAgty and SAppca. When compared to the baselines, the FGDI
is always superior to the Random Guess (SAggpy > 0), better than the Median Impu-
tation in 7 out of 13 cases, and worse only in 1 of the cases. The Wilcoxon analysis
Table 3 (columns 7 to 9) shows the FGDI being better than the second best method
(BTD in 25% and 33% of the cases for RMSE and MAE respectively. Comparing the
proposed method with the other imputation techniques, the FGDI is better than bPCA,
KNNI and MICE in 46%, 64% and 89% of the cases for the RMSE and 50%, 67% and
90% for the MAE metrics. Despite being generally not recommended [6], the Median
Imputation showed comparable and even better results than the bPCA, BTI, KNNI, and
MICE in both MAR and MNAR settings. At first sight, this result is contradictory to
the MCAR experiment (Table 1). This could be explained by the fact that the multi-
variate model can benefit from the uniformly distributed missingness across the dataset
(like in the MCAR mechanism), while for the MAR and MNAR (where the miss-
ingness depends on a single variable), the use of a univariate model (baselines) could
be reducing the noise in the prediction (because of not considering uncorrelated fea-
tures). However, as it can be seen from the carried experiments, the use of combination
of baselines and state-of-the-art techniques (as in our approach) can improve the
accuracy in almost all proposed scenarios with a very low risk of worsening the
imputation.

Last point to note is that while the FGDI is superior in all setups, the bPCA and BTI
are competing for the second position in the three scenarios (bPCA for MCAR; and
BTI for MAR and MNAR). All the experiments presented in this work have been done
on a 16-core machine with 32gb RAM and 64 Gb SSD of storage. Figure 1 shows the
training time for the four state-of-the-art techniques (KNNI, BTI, MICE, and bPCA)
and the proposed FGDI method over the 13 datasets, given in seconds. Due to the
FGDI parallelization (each imputation algorithm can be run independently from the
others), its training execution time is never significantly higher than the time needed for
any other single technique. FGDI training time (blue bar in Fig. 1) is always compa-
rable with the slowest technique, plus an overhead due to the different scheduled
threads. Furthermore, the proposed method shows a consistent time execution overhead
with datasets of different volume and features size. This behavior can be observed from
the percentage change between the FGDI and the slowest compared model. he per-
centage change results are smaller for bigger datasets (7.69, 6.15, 14.37, 11.76, 5.84,
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10.74 and 4.76 for White Wine, Page Block, Ring, Two Norm, Pen Based, Nursery and
Magic04 respectively) and larger for the small ones (22.5, 20, 43.90, 59.09, 56.25,
46.34 for Contraceptive, Yeast, Red Wine, Car, Titanic and Abalone respectively).

This finding supports the recommendation of using the FGDI regardless the size of
the dataset (as long as the imputation is feasible for the single models employed in the
FGDI). For the prediction run-time (applied on the test set), FGDI showed to be
comparable with the slowest method selected during the training phase.

300
250
200
150 ‘
100 ‘
Lil Lul Iif
0 I ] I [ ] I ' | (I | ] I., I I ‘ ‘ ‘
Ring Two Norm v gico

Contraceptive  Yeast Red Wine car Titanic Abalone  White Wine  Page Block PenBased  Nurser Magic04

WcGDI WKNNI WBTI % MICE WbPCA

Fig. 1. Training time in seconds (y-axis) of the five considered imputation methods over the 13
datasets (x-axis). The Median Imputation is omitted having always a training time less than 1 s
(Color figure online)

6 Conclusion

The investigated FGDI method initially extracts the complete subset (without missing
values), and selects through a learning process the most suitable imputation method for
each feature. The FGDI imputation performance is evaluated with four widely used
metrics for such tasks (SA, RE*, RMSE, and MAE). The results are statistically
assessed using the Shapiro Test to check the distribution normality, and the non-
parametric Wilcoxon Signed Rank Test, for statistical significance, using confidence
level o = 0.05.

Under the MCAR mechanism, the Standard Accuracy analysis demonstrates that
the proposed model is always more accurate than the baselines and produces better
estimation than the state-of-the-art methods in 41 out of 52 cases. The Wilcoxon shows
improvements of 17% and 25% for the FGDI over the second best performing algo-
rithm (bPCA) over the two metrics. In addition, FGDI and BTI impute values with
higher stability (RE* < 1) for 129 out of 138 tested features, followed by bPCA with
108 out of 138.

Although the prediction under MAR and MNAR mechanisms is generally less
accurate than the one under MCAR, the FGDI still shows better performance when
compared with the baselines and the state-of-the-art techniques. In particular, in the
MAR case, the FGDI is more accurate than the second best model (BTI) in 10% and
30% of the cases for RMSE and MAE respectively. Under the MNAR mechanism the
proposed model is again better than BTI in 25% and 33% respectively.

Finally, the performed imputation run time analysis proves the approach feasibility
regarding the needed training and testing time. The reported results strongly support the
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efficiency of the proposed method when implementing multivariate imputation as a
way of dealing with missingness. Another advantage is that the FGDI can be easily
parallelized, having straightforward implementation allowing other imputation methods
to be easily incorporated.
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Abstract. An Extreme Learning Machine (ELM) performs the training of a
single-layer feedforward neural network (SLEN) in less time than the back-
propagation algorithm. An ELM defines the input weights and biases of the
hidden layer with random values, and then analytically calculates the output
weights. The use of random values causes SLFN performance to decrease sig-
nificantly. The present work carries out the adaptation of three continuous
optimization algorithms of high dimensionality (IHDELS, DECC-G and MOS)
and compares their performance to each other and with the state-of-the-art
method, a memetic algorithm based on differential evolution called M-ELM.
The results of the comparison show that IHDELS using a validation model
based on retention (Training/Testing) obtains the best results, followed by
DECC-G and MOS. All three algorithms obtain better results than M-ELM. The
experimentation was carried out on 38 classification problems recognized by the
scientific community, while Friedman and Wilcoxon nonparametric statistical
tests support the results.

Keywords: Extreme Learning Machine - IHDELS -
Self-adaptive differential evolution -
Multiple trajectory search with local search - Memetic algorithm

1 Introduction

An Extreme Learning Machine (ELM) is a method of training a single-layer feedfor-
ward neural network (SLFN) [1]. ELM, as opposed to the back-propagation algorithm
(BP), avoids the iterative process (epochs) in the learning process [2] and has been
successfully used in various areas of knowledge such as biomedical engineering,
computer vision, and identification systems, among others. A SLFN is a feedforward
neural network (FNN) with a single hidden layer. FNNs are a type of neural network
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that carry out information processing unidirectionally. The neurons of a layer connect
only with the neurons of the layer immediately following and no cycles are allowed in
it. In other words, the connections are not made to previous layers.

The theory behind ELM indicates that the input weights (interconnection between
the input layer and the hidden layer) and the biases of the hidden layer of an SLFN can
be defined in a uniform random manner, while the output weights (interconnection
between the hidden layer and the output layer) must be assigned analytically by means
of the Moore-Penrose pseudoinverse [1], provided that: (1) the activation function of
the output layer neurons is linear [2]; and (2) the activation function of the neurons of
the hidden layer is continuous and infinitely differentiable [4].

Experimental results show that defining input weights and biases with random
values affects the performance of a SLEN trained with ELM and sometimes causes
more neurons to be required in the hidden layer [5]. Bearing in mind that evolutionary
algorithms and meta-heuristics have frequently been used as methods for solving
complex optimization problems [3], Zhang et al. in 2016 proposed an evolutionary
algorithm called Memetic ELM (M-ELM) [1] that uses Differential Evolution (DE) as a
global search algorithm, and Simulated Annealing (SA) as a local search algorithm, to
better define input weights and biases of the hidden layer of a SLFN trained with ELM.
This work was found to obtain better results for accuracy than when the weights are
defined with random values or with other state-of-the-art methods.

The current research was carried out taking into account that: (1) M-ELM presented
good results compared to the state-of-the-art methods; (2) of the “no free lunch”
theorems [6] it follows that given a type of optimization problem, the only way to know
which optimization meta-heuristic is the best one to approach it, is through evaluation
and experimental comparison; (3) optimization algorithms specialized in continuous
multimodal problems of high dimensionality have not been used to solve the definition
problem of weights and biases of an SLFN trained with ELM; and (4) IHDELS [7] was
one of the algorithms that presented the best results in the continuous large-scale
optimization competition in the 2015 IEEE CEC (Congress on Evolutionary Compu-
tation) where continuous problems of 1000 and more dimensions are taken into
account, along with unimodal, multimodal, separable and non-separable optimization
problems.

The work involved adaptation of IHDELS, DECC-G and MOS, high dimension-
ality, continuous optimization algorithms to the SLFN training problem using ELM,
and their comparison with each other in addition to comparison with the state-of-the-art
M-ELM method, and a baseline using a Random Walk (RW). The experimentation
shows that ITHDELS obtains the best results. This conclusion is supported by the
statistical analysis based on Friedman and Wilcoxon nonparametric tests.

The rest of the document is organized as follows: Sect. 2 presents the theoretical
context that supports SLFN training with ELM. Section 3 then presents the adaptation
of the IHDELS algorithm for joint use with ELM to define the weights of the input
layer and the biases of the hidden layer of an SLFN. Section 4 describes the experi-
ments carried out, results obtained and their analysis. Finally, conclusions are pre-
sented, along with future work that the research team hopes to perform in the short
term.
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2 Theoretical Context

ELM is a training algorithm for a SLFN, whose learning speed can reach up to three
hundred times faster than traditional algorithms such as BP [8]. In the following,
current theory relating to ELM is explained, taken from [8]. To train the SLFN, input
weights o (Eq. 1) and biases b (Eq. 2) of the hidden layer were first randomly defined.

W Wi ... Opy o
(053] W ... Wy (0))
w = - . . . = - y Wi = Wi Wi ... a)im] (1)
Wp1 Wp2 ... Wpp Wy |
by ]
by
b= 1| . 2)
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where w;; is the weight between neuron i of the hidden layer and neuron j of the input
layer, i being the sub index of the row and j the sub index of the column, b; is the bias
of the i-th neuron of the hidden layer, and n corresponds to the number of neurons in
the hidden layer.

With X (Eq. 3) being the training data where each column is a training record and
each row is the entry to the i-th neuron of the input layer. This matrix has m rows that
correspond to the input variables of the dataset and k columns that correspond to the
total number of records in the dataset. And with Y (Eq. 4) representing the output
matrix of the training data. In this matrix, each column represents the output of the j-th
record of X where only one row per column must have the value of 1, and / corresponds
to the total number of classes in the dataset. If y;; takes the value of 1 then it means that
the i-th classification is correct and if it takes the value of —1 it means that the record
does not belong to the i-th classification.
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The output matrix of the hidden layer for the training data is H (Eq. 5), where g(x)
is the activation function of the hidden layer, which corresponds to the sigmoidal, sine,
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multi-quadratic, Gaussian, hardlim, and triangular functions, among others, all con-
tinuous and infinitely differentiable.

To obtain the weights between the neurons of the hidden layer and the output layer,
Eq. 6 is applied.

where H™ is the Moore-Penrose pseudoinverse of H, Y7 is the transpose of ¥ and
Bjx represents the weight between neuron j of the hidden layer and neuron & of the
output layer. Finally, the output of the neural network, denoted by T is obtained by
applying Eq. 7.

glwixy +b1) glwxy+by) - glwnxs +by)
gloxa+b1) glwaxa+by) - glwnxy+by)

H = , : - : (5)
g(oetbr) gl +by) ... glonxe+bn)

B=H"Y" (6)

T=(HP' (7)

To find out the accuracy of the SLFN in classification problems, 7 and Y are
checked, verifying for each column that the highest value of T corresponds to the same
row in Y, that is to say that the classification of each training record (which is described
in Y) is the same one that predicts the neural network. Each hit is counted, and the final
figure divided by the total training records to obtain the accuracy (Eq. 8). In regression
problems, T and Y are also compared and mean square error between the expected
output and the output of the neural network is calculated.

hit,
accuracy = % (8)

3 IHDELS for Training a SLFN Using ELM

3.1 Representation of the Solution

A solution (individual) integrates the input weights and biases of the hidden layer of a
SLEN into a vector where parts of each of them are interspersed so that the data of a
hidden neuron remain together (see Fig. 1). In this figure, the first block
w11, ®12, - . ., D1, by corresponds to all the weights between the input neurons and the

Wy | Wiz | | Wim bl | Wpy | W2 | 0t | Wam bn

Fig. 1. Representation of the solution
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first neuron of the hidden layer and includes their bias. The same is then done for the
second neuron of the hidden layer, and so on.

The theory of the ELM indicates that the input weights and biases are generated
randomly in the range [—1, 1]. Therefore, each of the values of this vector must remain
in this range.

The quality of a solution is evaluated according to the accuracy obtained during the
training process. If two solutions obtain the same accuracy, which of the two is better is
decided based on the norm two of the output weights f, which was used in [9].
Therefore, if there is a tie in accuracy for two solutions, the one with the lowest norm
(IIBI) is selected as the best solution.

3.2 Adaptations Made to IHDELS

The iterative hybridization of differential evolution with local search and restarts
(IHDELS) is an algorithm specialized to solve high dimensional problems. It uses as an
exploratory method an algorithm based on differential evolution (DE) and for
exploitation it implements two local search (LS) methods that are used according to
their performance [7]. In each iteration, IHDELS executes the Self-adaptive Differential
Evolution (SaDE) algorithm together with a LS method, with the objective of com-
plementing them. The LS is selected according to the quality of the individuals pro-
duced in its last execution. When executing SaDE or a LS, their adaptive parameters
start with the values of their last execution. When no significant improvement is
detected, a restart mechanism is applied.

IHDELS (see Algorithm 1) starts from a random population and an initial individual
that is constructed with the upper and lower constraints of each variable of the problem.
Selection of the LS is made as follows: initially all the LS are executed as indicated in
line 5 of Algorithm 1 and the improvement rate is stored for each one (Eq. 9).

previousEvaluation — newEvaluation

©)

improvementRateg; = - -
previousEvaluation

In each iteration, the LS with the highest improvement rate is applied. IHDELS
keeps a record of the best solution found, named best. Meanwhile, a solution called
currentBest is used to calculate the improvement rate. This corresponds to the best
individual found on the current iteration. IHDELS defines a threshold that makes it
possible to identify when the improvement rate has been significant. For this to happen,
the improvement rate must be greater than or equal to the threshold value [7].
The IHDELS restart mechanism affects the adaptive parameters of LS or its population
in the following cases [7]: (i) On applying SaDE and the LS during a number of
restarts in the immediately preceding iterations and improvement rate has not been
sufficiently significant, then: (1) the currentBest individual is altered as indicated by
line 25 of Algorithm 1 where rand(—0.05,0.05) returns a random number between
[—0.05,0.05], (2) the population is reset randomly, and (3) the adaptive parameters of
the LS return to their original value. (ii) If after applying SaDE there is no improve-
ment, the population is restarted, and (iii) If in the execution of the LS nothing
improves, its adaptive parameters are restarted.
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The local searches used were MTS-LS1 and Hill Climbing (HC); MTS-LS1 as a
local search takes a currentBest as its best individual found and starts the optimization
from the population indicated. As HC is not a population-based method, it divides the
evaluations that have been assigned between each of the individuals of the population
and optimizes them separately. Finally, it selects the best individual between the
optimized population and the given currentBest and returns it.

The L-BFGS-B algorithm, original LS method of IHDELS, was replaced by HC
because it is a Quasi-Newton algorithm based on the gradient method. Calculation of
this consumes high quantities of evaluations of the objective function in a short time,
making it difficult to take full advantage of the algorithm in the context of ELM.

HC is a local search algorithm related to the gradient rise without directly using the
gradient, instead, it evaluate individuals around a current individual, the individual with
the best fitness replaces the current one [10]. Calculation of the neighbors consists of

Algorithm 1 IHDELS meta-heuristic
1: evaluations < 0

population « createRandomPopulation(populationSize)
evaluatePopulation(population)

initialSolution < (upperLimit + lowerLimit)/2
currentBest « applyLocalSearches (initialSolution)
best « currentBest

LScounter < 0

while evaluations < maxEvaluations

9: previous < currentBest. evaluation
10:  currentBest = SaDE (currentBest, population, FE_DE)

11: best = (previous- currentBest. evaluation)/previous

12: if improves = 0 then

13: population = createRandomPopulation(populationSize)
14: evaluatePopulation(population)

15: end if

16: LS = selectLS()

17:  currentBest = LS(population, FE_LS, currentBest)
18:  best = selectBest(best, currentBest)

19:  if LS.improvementRate = 0 then

20: LS.restartParameters()

21: end if

22: if LS. improvementRate < threshold then

23: LScounter = LScounter + 1

24: if LScounter = restarts then

25: currentBest[i] = best[i] + rand(—0.05,0.05) = 0.1 x (b-a)
26: population = createRandomPopulation(populationSize)
27: evaluatePopulation(population)

28: localSearches.restartParameters()

29: LScounter =0

30: end if

31: Else

32: LScounter = 0

33: end if

34: end while
35: return best
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making small changes to the variables of the current individual. In this case, the limited
uniform convolution method was used, which makes changes on a variable if a
probability is met [10].

MTS-LS1 is also a local search algorithm. This begin from a search range for each
variable of the individuals of the population, which is initially calculated according to
the restrictions of the upper and lower limits of the variables, performs a process of
exploitation by altering the variables of each individual in different percentages,
seeking to obtain a better solution.

The global search algorithm implemented by IHDELS is SaDE. This is an algo-
rithm that generally behaves as a differential evolution, but that uses two mutation
strategies and a probability p to select one of these; adaptation of this algorithm lies in
the value of p that is updated according to the number of individuals that have been
generated with a mutation strategy and have successfully entered the next generation
and the number of individuals that have not entered the next generation.

SaDE applies a new scale factor to each individual generated and this value is
obtained by making F = N(0.5,0.3), where N(0.5,0.3) is a normal distribution with
mean 0.5 and standard deviation 0.3 [11]. The crossover rate is calculated for each
solution, obtaining this value from a normal distribution and SaDE self-adapts the
mean value at the end of each learning period.

4 Experiments

4.1 Datasets and Preprocessing

The datasets used were extracted from the official repository of the University of
California at Irvine (UCI). Selection of the classification datasets was made considering
those presented in [1]. Each dataset was divided into two files, one for training and
another for testing. The division was made following the relationship presented in [1],
which is approximately 70% of the instances for training and the remaining 30% for
testing. The characteristics of the 38 datasets used are expressed in Table 1. For each
dataset, its name, number of features or variables, and number of classes are shown.
Variety can be seen in number of features and classes.

The datasets were processed in the following way: (1) features not necessary for the
learning of the neural network were eliminated such as instance number or instance id,
(2) categorical values were defined as an integer number, and (3) continuous features
(variables) were normalized between the values [—1, 1].
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Table 1. Description of the datasets

Name #Features  #Classes Name #Features  #Classes

Banknote 4 2 Knowledge 5 4

Blood 4 2 Leaf 14 36

Car 6 4 Letter 16 26
Cardiotocography 21 10 Libras 90 15

Chart 60 6 Optdigits 64 10

ClimateSimulation 18 2 Pen 16 10
Connectionist 60 2 Planning 12 2
Contraceptive 9 3 QSARBiodegradation 41 2
Dermatology 34 6 Seeds 7 3
Diabetes 8 2 Shuttle 9 7
Ecoli 7 8 SPECTF 44 2
Fertility 9 2 Vertebral(2C) 6 2
Glass 9 6 Vertebral(3C) 6 3
Haberman 3 2 Wdbc 30 2
Hayes 5 3 Wilt 5 2
Hill 100 2 Wine 13 3

Indian 10 2 WineRed 11 6

Ionosphere 34 2 Yeast 8 10
Iris 4 3 Z00 16 7

4.2 Configuration of the Experiment

The THDELS and M-ELM algorithms were implemented in JAVA in the JMetal
framework [12], which is specialized in mono and multi-objective meta-heuristic
algorithms. The source code and datasets are available at https://goo.gl/GX8pXF.
Execution of the meta-heuristic algorithms was performed on computers with the
following characteristics: AMD A-10 at 3.2 GHz, 8 GB RAM and Win 10.

Three thousand evaluations of the objective function (Evaluations of Fitness
Objectives, EFOs) were carried out, bearing in mind that an ELM was conceived to
perform the training of a SLFN in less time than the back-propagation algorithm. The
results were obtained for the cross validation (CV) and retention (training/testing or TT)
validation models. Thirty runs were performed for each dataset using an algorithm and a
validation model. Thirty represents the minimum number for calculating an average with
high convergence at the central point. Each run was performed with a different seed.

The IHDELS parameters were configured as indicated in Table 2, where TT refers
to the parameter values used with the retention method (Training/Testing), while CV
represents cross-validation. These values were obtained from a tuning process of
parameters carried out using covering arrays.

The parameters used in M-ELM were populationSize = 50, evaluations = 3000 and
numberLocalOptimizations = 70. This configuration was used for both types of vali-
dation and these values were taken from [1]. It was further defined that: (i) Problems
evaluated with cross-validation would have ten folders (10-folders cross-validation)
and for that reason the evaluation of a model implies the use of 10 EFOs, (ii) The ELM
uses 50 neurons in the hidden layer for training the neural network this number was
chosen taking the original value from [1], without considering the dataset, and (iii) The
activation function of the neurons in the hidden layer is the sigmoidal one.
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Table 2. Parameters used in IHDELS according to the validation model

Parameter Classification
TT Cv
(1) Number of evaluations for DE in IHDELS (FE_DE) | 90 60
(2) Number of evaluations for each BL (FE_LS) 60 45
(3) Lower limit of search domain (a) —0.60 | —0.20
(4) Upper limit of search domain (b) 0.60 [0.20

(5) Number of restarts 8 12

(6) Threshold value 0.40 |0.01
(7) SaDE crossover rate 1 0.50 [0.50
(8) SaDE scale factor 1 0.95 [0.50
(9) SaDE crossover rate 2 0.70 10.20
(10) SaDE scale factor 2 0.95 |0.70
(11) Probability of executing Hill Climbing 0.20 |0.50
(12) Hill Climbing noise radius 0.6 0.1

(13) Population size 10 10

4.3 Results

The results present the average of the thirty executions carried out and their respective
standard deviation. Comparison was also made with the DECC-G [13] and MOS [14]
algorithms, meta-heuristic algorithms that had performed well in the 2015 IEEE CEC
competition in optimization of high dimensionality problems. Comparison was further
made with a random walk (RW) that executes the same number of EFOs, as a baseline.
Table 3 presents the results obtained with the validation model of the retention
(Training/Testing) method and Table 4 with the cross-validation model. The algorithm
with the best result for each dataset is presented in bold.

Table 3. Results with the validation model of the retention method (TT)

Dataset

DECC-G

MOS

THDELS

M-ELM

RW

Banknote

Blood

Car
Cardiotocography
Chart

0.9999 + 0.0004
0.7540 £ 0.0094
0.8398 £ 0.0188
0.7678 + 0.0100
0.9063 + 0.0193

0.9998 £ 0.0007
0.7528 £ 0.0097
0.8466 + 0.0250
0.7623 £ 0.0112
0.9170 + 0.0190

1.0000 £ 0.0000
0.7508 £ 0.0092
0.8465 £ 0.0218
0.7742 % 0.0094
0.9170 £ 0.0233

0.9999 £ 0.0006
0.7491 £ 0.0068
0.8411 & 0.0224
0.7675 & 0.0092
0.9078 + 0.0218

0.9998 £ 0.0007
0.7527 £+ 0.0106
0.8399 £ 0.0227
0.7671 &+ 0.0110
0.9092 £ 0.0228

Climatesimulation
Connectionist
Contraceptive
Dermatology
Diabetes

Ecoli

Fertility

Glass

Haberman

0.8491 £ 0.0033
0.7629 + 0.0465
0.5276 & 0.0156
0.9710 + 0.0121
0.7578 + 0.0128
0.8568 + 0.0152
0.7111 + 0.0395
0.5224 4 0.0422
0.7036 + 0.0172

0.8472 £ 0.0012
0.7600 £ 0.0461
0.5307 & 0.0126
0.9672 £ 0.0144
0.7535 £+ 0.0149
0.8494 £ 0.0167
0.6722 £ 0.0626
0.531 + 0.04090
0.7101 % 0.0138

0.8534 % 0.0090
0.7567 £ 0.0395
0.5345 + 0.0123
0.9648 £ 0.0110
0.7531 £+ 0.0128
0.8568 & 0.0169
0.7033 £ 0.0697
0.5248 £ 0.0503
0.7026 £ 0.0200

0.8494 £ 0.0039
0.7529 £ 0.0501
0.5298 & 0.0134
0.9678 & 0.0106
0.7569 % 0.0165
0.8470 & 0.0138
0.6556 + 0.0717
0.5229 & 0.0542
0.7098 + 0.0140

0.8515 £ 0.0053
0.7505 £ 0.0431
0.527 & 0.01350
0.9678 £ 0.0108
0.7509 £ 0.0119
0.8488 £ 0.0126
0.6644 £ 0.0655
0.5252 £ 0.0422
0.7029 £ 0.0146

(continued)
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Dataset

DECC-G

MOS

IHDELS

M-ELM

RW

Hayes

Hill

Indian
Tonosphere
Iris
Knowledge
Leaf

0.6826 + 0.0545
0.6655 + 0.0146
0.6444 + 0.0157
0.8635 + 0.0264
0.8953 £ 0.0406
0.8256 + 0.0269
0.7767 £+ 0.0300

0.6712 & 0.0516
0.6518 £ 0.0198
0.6439 £ 0.0160
0.8561 + 0.0274
0.8853 & 0.0390
0.8298 + 0.0211
0.7758 £ 0.0245

0.6864 * 0.0555
0.6587 £ 0.0223
0.6440 £ 0.0166
0.8493 + 0.0282
0.9127 + 0.0424
0.8236 £ 0.0257
0.7830 + 0.0192

0.6515 & 0.0646
0.6556 % 0.0200
0.6416 & 0.0155
0.8456 + 0.0286
0.8716 & 0.0406
0.8271 & 0.0234
0.7715 + 0.0215

0.6553 £ 0.0557
0.6696 + 0.0263
0.6432 £ 0.0150
0.8476 £ 0.0341
0.8760 & 0.0312
0.8279 £ 0.0246
0.7709 £ 0.0200

Letter
Libras
Optdigits
Pen
Planning
QSARBiodegradation
Seeds
Shuttle
SPECTF
Vertebral2C
Vertebral3C
Wdbc

Wilt

Wine
WineRed
Yeast

Zoo

0.7056 + 0.0040
0.7777 £ 0.0334
0.8911 &+ 0.0117
0.9305 + 0.0076
0.5196 + 0.0437
0.8608 & 0.0125
0.9810 + 0.0100
0.5059 + 0.2992
0.3213 + 0.1378
0.8597 &+ 0.0152
0.8133 + 0.0176
0.9625 + 0.0078
0.9694 + 0.0016
0.9761 + 0.0170
0.5891 + 0.0134
0.5792 + 0.0067
0.8796 + 0.0280

0.6898 & 0.0057
0.7713 £ 0.0434
0.8823 £ 0.0099
0.9163 £ 0.0078
0.5174 £+ 0.0518
0.8612 & 0.0120
0.9776 £+ 0.0126
0.5626 + 0.2804
0.3408 + 0.1290
0.8537 & 0.0204
0.8160 £ 0.0227
0.9607 £ 0.0089
0.9689 & 0.0018
0.9550 £ 0.0276
0.5846 & 0.0136
0.5764 & 0.0084
0.8527 & 0.0376

0.7011 £ 0.0062
0.7690 £ 0.0340
0.8965 + 0.0168
0.9229 + 0.0084
0.5256 £ 0.0440
0.8622 % 0.0094
0.9805 £ 0.0101
0.5040 £ 0.2991
0.3012 £ 0.1209
0.8670 % 0.0197
0.8170 £+ 0.0159
0.9632 % 0.0083
0.9700 & 0.0014
0.9722 £ 0.0203
0.5889 £ 0.0110
0.5752 £ 0.0081
0.8602 £ 0.0372

0.6879 & 0.0052
0.7597 &+ 0.0308
0.8868 & 0.0131
0.9152 £ 0.0090
0.5365 + 0.0445
0.8564 & 0.0107
0.9757 + 0.0153
0.5303 & 0.2399
0.3202 + 0.1455
0.8573 &+ 0.0197
0.8133 & 0.0162
0.9621 £ 0.0091
0.9690 & 0.0017
0.9611 + 0.0199
0.5875 & 0.0105
0.5764 & 0.0056
0.8108 £ 0.0563

0.6947 £ 0.0057
0.7690 £ 0.0372
0.8858 £ 0.0132
0.9191 £ 0.0086
0.5146 £+ 0.0529
0.8614 & 0.0111
0.9790 £ 0.0164
0.4587 £ 0.2781
0.3250 &+ 0.1114
0.8537 & 0.0196
0.8147 £ 0.0182
0.9600 £ 0.0108
0.9704 = 0.0016
0.9617 £ 0.0232
0.5866 & 0.0140
0.5782 £ 0.0080
0.8065 £ 0.0507

4.4 Statistical Analysis of the Results

Statistical analysis of the results was made using Friedman and Wilcoxon nonpara-
metric tests with the aim of determining which algorithm generally gives the best
performance. These tests were carried out using the KEEL software available at www.

keel.es.

Table 4. Results with the validation model of 10-folds cross-validation (CV)

Dataset

DECC-G

MOS

IHDELS

M-ELM

RW

Banknote

Blood

Car
Cardiotocography
Chart

0.9999 + 0.0004
0.7504 £ 0.0072
0.8360 + 0.0215
0.7650 % 0.0086
0.9117 £+ 0.0230

0.9998 £ 0.0007
0.7468 £ 0.0088
0.8425 £ 0.0203
0.7617 & 0.0097
0.9057 £ 0.0252

0.9999 + 0.0004
0.7485 £ 0.0091
0.8366 £ 0.0226
0.7678 & 0.0122
0.9188 + 0.0188

0.9998 £ 0.0007
0.7470 & 0.0100
0.8456 + 0.0192
0.7682 = 0.0099
0.9095 + 0.0205

0.9998 £ 0.0007
0.7484 £ 0.0085
0.8436 £ 0.0204
0.7651 & 0.0117
0.9160 £ 0.0188

Climatesimulation
Connectionist
Contraceptive
Dermatology
Diabetes

Ecoli

Fertility

0.8492 £ 0.0046
0.7662 + 0.0466
0.5275 + 0.0114
0.9615 + 0.0151
0.7549 + 0.0116
0.8491 £ 0.0173
0.6567 + 0.0717

0.8478 & 0.0016
0.7371 £ 0.0480
0.5287 £ 0.0148
0.9661 £ 0.0123
0.7542 £+ 0.0187
0.8521 + 0.0130
0.6433 £ 0.0588

0.8495 £ 0.0054
0.7367 £ 0.0550
0.534 + 0.0125

0.9612 £ 0.0125
0.7543 £+ 0.0125
0.8488 £ 0.0163
0.6689 % 0.0711

0.8489 & 0.0030
0.7429 + 0.0394
0.5297 & 0.0135
0.9693 + 0.0102
0.7575 £ 0.0151
0.8506 & 0.0103
0.6448 + 0.0720

0.8503 + 0.0050
0.7576 £ 0.0486
0.5289 £ 0.0141
0.9642 £ 0.0093
0.7569 + 0.0154
0.8488 £ 0.0151
0.6600 £ 0.0674

(continued)
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Table 4. (continued)

Dataset DECC-G MOS IHDELS M-ELM RW

Glass 0.5490 % 0.0357 | 0.5552 + 0.0438 | 0.5305 & 0.0439 | 0.5350 £ 0.0314 | 0.5419 £ 0.0492
Haberman 0.7265 £ 0.0144 | 0.7261 + 0.0174 | 0.7258 £+ 0.0170 | 0.7230 % 0.0186 | 0.7222 + 0.0163
Hayes 0.6780 £ 0.0563 | 0.6561 & 0.0450 | 0.6750 £ 0.0646 | 0.6712 £ 0.0465 | 0.6583 £ 0.0517
Hill 0.6384 + 0.0278 | 0.6383 + 0.0252 | 0.6564 + 0.0249 | 0.6467 + 0.0218 | 0.6459 + 0.0232
Indian 0.6405 4 0.0178 | 0.6381 & 0.0167 | 0.6386 & 0.0167 | 0.6423 * 0.0160 | 0.6358 £ 0.0183
Ionosphere 0.8493 + 0.0298 | 0.8510 £ 0.0257 | 0.8410 % 0.0265 | 0.8459 + 0.0252 | 0.8413 + 0.0292
Iris 0.8827 £ 0.0409 | 0.8920 % 0.0409 | 0.8920 % 0.0431 | 0.8677 + 0.0510 | 0.8780 % 0.0394
Knowledge 0.8461 + 0.0234 | 0.8314 & 0.0253 | 0.8434 £ 0.0236 | 0.8408 £ 0.0213 | 0.8380 £ 0.0225
Leaf 0.7745 + 0.0194 | 0.7721 % 0.0257 | 0.7755 £+ 0.0195 | 0.7800 + 0.0251 | 0.7779 + 0.0217
Letter 0.6887 % 0.0055 | 0.6859 £ 0.0058 | 0.6917 % 0.0065 | 0.6903 £ 0.0042 | 0.6887 £ 0.0054
Libras 0.7783 + 0.0323 | 0.7697 % 0.0330 | 0.7843 £ 0.0346 | 0.7667 + 0.0397 | 0.7767 + 0.0355
Optdigits 0.8835 &+ 0.0120 | 0.8767 + 0.0121 | 0.8886 + 0.0142 | 0.8883 + 0.0142 | 0.8825 + 0.0114
Pen 0.9139 4+ 0.0110 | 0.9057 & 0.0101 | 0.9153 £ 0.0100 | 0.9155 * 0.0075 | 0.9152 £ 0.0102
Planning 0.5306 % 0.0424 | 0.5402 + 0.0425 | 0.5224 + 0.0443 | 0.5292 % 0.0502 | 0.5242 + 0.0316

QSARBiodegradation
Seeds

0.8613 &+ 0.0115
0.9733 + 0.0109

0.8608 & 0.0115
0.9695 £+ 0.0183

0.8629 + 0.0118
0.9705 £+ 0.0169

0.8582 & 0.0095
0.9705 + 0.0195

0.8551 £ 0.0077
0.9714 £ 0.0143

Shuttle 0.4123 4 0.2680 | 0.5787 + 0.2897 | 0.5082 £ 0.3006 | 0.5261 £ 0.2757 | 0.4390 £ 0.2886
SPECTF 0.3517 £ 0.1419 | 0.3513 & 0.1584 | 0.3471 & 0.1179 | 0.3267 &+ 0.1076 | 0.3387 £ 0.1193
Vertebral2C 0.8580 % 0.0202 | 0.8597 % 0.0156 | 0.8603 + 0.0192 | 0.8643 + 0.0193 | 0.8690 + 0.0209
Vertebral3C 0.8057 & 0.0180 | 0.8043 & 0.0191 | 0.8037 & 0.0178 | 0.8137 £ 0.0168 | 0.8067 & 0.0194
Wdbc 0.9582 + 0.0081 | 0.9618 % 0.0079 | 0.9611 % 0.0110 | 0.9619 + 0.0082 | 0.9591 + 0.0106
Wilt 0.9687 & 0.0016 | 0.9687 & 0.0015 | 0.9695 £ 0.0013 | 0.9694 £ 0.0017 | 0.9699 * 0.0014
Wine 0.9606 + 0.0230 | 0.9628 + 0.0218 | 0.9611 % 0.0273 | 0.9517 & 0.0217 | 0.9639 + 0.0244
WineRed 0.5849 &+ 0.0115 | 0.5816 & 0.0101 | 0.5851 £ 0.0088 | 0.5867 x 0.0078 | 0.5861 £ 0.0091
Yeast 0.5756 % 0.0068 | 0.5780 £ 0.0073 | 0.5724 % 0.0065 | 0.5734 & 0.0097 | 0.5733 % 0.0080
Zoo 0.7462 £+ 0.1568 | 0.7387 & 0.1330 | 0.6763 + 0.1927 | 0.7634 + 0.1422 | 0.7441 + 0.1213

The results of the Friedman test are presented in Table 5. This test establishes a
ranking among the algorithms. Here, IHDELS TT is seen to be the winner, followed by
DECC-G TT and thirdly MOS TT. The p-value of the test was equal to 5.80E—6 (less
than 0.05) and a chi-square value with 9 degrees of freedom equal to 40.646, which
makes this ranking statistically significant. Then, as a Friedman post hoc test, the
Wilcoxon test was executed. This test establishes the level of dominance of the results
of one algorithm over another (see Table 6). The black dot indicates that the algorithm
of the row dominates the algorithm of the column and the white dot indicates that the
algorithm of the column dominates that of the row; the empty box indicates that it is not
possible to establish a dominance of one algorithm over another. The results below the
diagonal have a significance of 0.95 and above the diagonal of 0.90. Table 6 shows that
the algorithm with the highest dominance is IHDELS TT, with a significance of 0.95
against all the algorithms except DECC-G TT, which occupies second place in dom-
inance, followed by MOS TT.
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Table 5. Results of the Friedman test

Algorithm | Ranking | Algorithm Ranking
IHDELS TT |3.5526 (1) | Random TT |5.9605 (6)
DECC-G TT | 3.8026 (2) | DECC-G CV | 6.0000 (7)
MOS TT 5.3421 (3) |Random CV |6.1974 (8)
IHDELS CV |5.5395 (4) | M-ELM TT |6.3289 (9)
M-ELM CV |5.5658 (5) | MOS CV 6.7105 (10)

Table 6. Results of the Wilcoxon test
M) 3| @) 6) (7)[(B)]9)|10)

DECC-G TT (1)
IHDELS TT (2)
MOS TT (3)
M-ELM TT (4)
RW TT (5)
DECC-G CV (6)
THDELS CV (7)
MOS CV (8)
M-ELM (9)

RW CV (10)
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4.5 Analysis of Results

From the results, the IHDELS meta-heuristic algorithm with the retention validation
model (Training/Testing) presents a better performance, in optimization of input
weights and biases of the hidden layer of an SLFN using ELM, than the M-ELM
algorithm from the state-of-the-art. In addition, [IHDELS TT obtains better results than
other specialized algorithms for the solution of continuous problems of high dimen-
sionality, namely DECC-G and MOS. The best results came from using the retention
method, these being more accurate and reliable. The Friedman and Wilcoxon non-
parametric statistical test supports these conclusions with 95% confidence.

5 Conclusions and Future Work

The present research work adapted the IHDELS algorithm to the problem of training an
SLFN using ELM, considering that this problem is continuous and of high dimen-
sionality. The IHDELS algorithm originally had two local searches, MTS-LS1 and
L-BFGS-B, but the second was changed for Hill Climbing since it used gradient
information and consumed too many EFOs.

Experimentation was conducted on classification problems recognized by the
academic and scientific community, using a specific number of evaluations of the
objective function that maintains the main concept of an ELM, which is to carry out the
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training of the neural network in a shorter time than doing so using back-propagation
algorithm. It was determined that IHDELS TT (Training/Testing) presents better results
than the other algorithms with which it was compared: M-ELM, DECC-G, MOS and
RW except against DECC-G TT. These results are supported by the Friedman and
Wilcoxon nonparametric statistical tests. In addition, the results show that it is better to
use the retention model (training/testing) than the cross-validation model, showing that
the algorithms obtain better results when they can carry out more EFOs.

The working group anticipates adapting the algorithms that presented the best
results in the 2017 IEEE CEC competition to the problem of training a SLEN using
ELM. Additionally, it is hoped to carry out the experiments by optimizing the number
of neurons in the hidden layer together with the values of the input weights and biases
for each dataset. Finally, it is expected to evaluate other local search methods in
IHDELS.
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Abstract. Feature selection is one of the major challenges in machine
learning. In this paper, we focus on mutual information based methods,
which attracted a significant attention in recent years. A clear limita-
tion of the most existing methods is that they usually take into account
only low-order interactions between features (up to 3rd order). We pro-
pose a novel criterion which takes into account both 3-way and 4-way
interactions and can be naturally extended to the case of higher order
terms. The basic component of our criterion is interaction information
which is a measure of interaction strength derived from information the-
ory. We show that our method is able to find interactions which remain
undetected when using standard methods. We prove some theoretical
properties of the introduced criterion and interaction information.

1 Introduction

Feature selection is one of the major problems in machine learning [1-3]. It is a
crucial challenge for several reasons. First it improves the understandability of
the considered model and allows to discover the relationship between features
and the class (target) variable. Secondly, it helps to devise approaches with
better generalization and larger predictive power [4]. Finally, it allows to reduce
the computational cost of fitting the model.

In this paper, we focus on mutual information (MI) based feature selection.
This approach has several important advantages. First MI, unlike some classical
measures (e.g. Pearson correlation), is able to capture both linear and non-
linear dependencies among random variables. Secondly MI based criteria do not
depend on any particular model which allows to find all features associated with
the class variable, not only those which are captured by an employed model.
This is particularly important in the domains where feature selection itself is
the main goal of the analysis, e.g. in human genetics where finding mutations
of genes influencing the disease is a crucial problem. Moreover, some advanced
MI based criteria are able to discover interactions between features as well as
to take redundancy between features into account. Finally information-theoretic
© Springer Nature Switzerland AG 2019
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approach can be used for both classification and regression tasks, i.e. nominal
and quantitative class variable as well as for any type of the features. In this
work we focus on classification problem, but the method can be easily extended
to regression.

In recent years many algorithms based on mutual information have been
proposed. A clear limitation of the existing methods is that they usually take
into account only low-order interactions (up to 3rd order). This can be a seri-
ous drawback when some complex dependencies exist in our data. For example
recent studies in genetics indicate that high-order interactions between genes
may contribute to many complex traits [5] and it is crucial to identify them in
order to efficiently predict the trait. Taylor et al. [5] give two examples of high-
order interactions: one example of three-locus interactions that influence body
weight in a cross of two chicken lines and another that showed a pair of genetic
interactions involving five or more loci that determine colony morphology in a
cross of two yeast strains. We propose a novel criterion called Interaction Infor-
mation Feature Selection (IIFS) that takes into account both 3-way and 4-way
interactions and can be possibly extended to the case of higher order terms. The
basic component of our contribution is interaction information, which is a non-
parametric measure of interaction strength derived from information theory. Our
method is a generalization of Conditional Infomax Feature Extraction (CIFE)
criterion [6] whose limitation is that it only considers 3-way interaction terms.
We show that our method is able to find interactions which remain undetected
when using standard approaches. We also prove some theoretical properties of 4-
way interaction information and of the novel criterion. Moreover we experiment
with two different methods of multivariate entropy estimation: plug-in estimator
based on data discretization and knn-based Kozachenko-Leonenko estimator [7].

The paper is structured as follows. In Sect. 2 we recall the definition of interac-
tion information and prove some new theoretical properties of 4-way interaction
information. In Sect.3 we define the problem and review the existing methods.
In Sect.4 we present our method and discuss its theoretical properties, Sect.5
contains the results of numerical experiments.

2 Interaction Information

First we define basic quantities used in Information Theory. We consider the
discrete class variable Y and features Xy, ..., X, which can be either continuous
or discrete. For sake of simplicity we write definitions only for discrete variables.
We first recall the definition of the entropy for discrete class variable:

H(Y)==> P(Y =y)log P(Y =y). (1)

Entropy quantifies the uncertainty of observing random values of Y. If large mass
of the distribution is concentrated on one particular value of Y then the entropy is
low. If all values are equally likely then H(Y") is maximal. Let S = (X1,..., X,,)
be a subset of the original feature set of size m = 1,...,p. The entropy of S



Information-Theoretic Feature Selection Using High-Order Interactions 53

is defined analogously to (1), with a difference that multivariate probability is
used instead of univariate probability. The conditional entropy of .S given class
variable Y can be written as

H(S|Y) = ZP H(S|Y =y). (2)

The joint mutual information between S and class variable Y is
I(S,Y)=H(S)— H(S|Y). (3)

This can be interpreted as the amount of uncertainty in S which is removed when
Y is known which is consistent with the intuitive meaning of mutual information
as the amount of information that one variable provides about another. Moreover
the conditional mutual information between S and Y given variable Z is defined
as

I1(S,)Y|Z)=H(S|Z)— H(S|Y, Z). (4)

We recall a definition of m-way interaction information (II) [8,9]

I1(S) =II(Xy,..., Xpm) = = Y _ (=17 H(T), (5)
TCS

which generalizes the 3-way interaction information proposed in [10]. For m = 2,
interaction information reduces to mutual information. The definition of inter-
action information is identical to that of multivariate mutual information I(S)
[10] except for a change in sign in the case of an odd number of variables, i.e.
I1(S) = (=1)ISI1(S). IT can be understood as the amount of information com-
mon to all variables (or set of variables), but that is not present in any subset of
these variables. Interestingly, m-way interaction information can be also defined
using recursive formula

II(Xy,. ., X)) =T1(X1, ..., X1 | X)) = IT(X1, ..., Xu_1),  (6)

where IT(X1,..., Xm—1|Xm) =>., P(X;m = 2)[I(X1,..., Xpn-1|Xm = z). The
next formula (also known as Mobius representation) [11-14] shows the relation-
ship between IT and joint mutual information I(S,Y) which will be useful in
the context of the proposed feature selection method

I(S,Y):I((Xl,...,Xm),Y):i Y IH(TuY). (7)
k=1TCS:|T|=k

To better grasp the concept of 11, let us discuss in more detail 3-way and 4-way
interactions. It follows from M&bius representation (7) that

TI(Xy, X0, Y) = I((X1,X2),Y) = I[(X1,Y) = [(X2,Y), (8)

which indicates that interaction information can be interpreted as a part of the
mutual information of (X1, X2) and Y which is due solely to interaction between
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X1 and X5 in predicting Y i.e. the part of I((X1, X2),Y") which remains after
subtraction of individual informations between Y and X; and Y and X5. In other
words, I is obtained by removing the main effects from the term describing
the overall dependence between Y and the pair (X7, X2). Here let us mention
that 3-way interaction information is a commonly used measure for detecting
interactions between genes in genome-wide case- control studies [15,16]. For 4-
way interaction we have from (7) and (8) that

T1(X1, X0, X3,Y) = I((X1, X2, X3),Y)
—I((X1,X2),Y) = I((X1,X3),Y) = I((X2, X3),Y)
+ I(X1,Y) + (X2, Y) + I(X3,Y). (9)

Observe that both terms I((X1,X2),Y) and I((X1,X3),Y) in (9) contain
I(X1,Y) as summands (cf. (8)) and as a result I(X;,Y) is subtracted twice.
To account for it we add I(X7,Y) in the last line of (9). The remaining pairs
are treated analogously. The simplest examples of 3-way and 4-way interactions
are XOR problems. In XOR Y = 1 when the number of input variables taking
value 1 is odd. It is easy to check that input binary variables are mutually inde-
pendent and marginally independent from a class variable. For 3-dimensional
case we have I(X1,Y) = I(X2,Y) = 0 and II(X;,X,,Y) = I((X1,X2),Y) =
HY) - HY|X1,X2) = H(Y) = log(2). For 4-dimensional case all terms,
except the first one, are zero. ie. I1(Xy, X2, X3,Y) = I((X1,X2,X3),Y) =
H(Y) — H(Y|Xy, X2, X5) = H(Y) = log(2).

Some properties of 4-way Interaction Information which has not been dis-
cussed in the literature are discussed below. For the sake of clarity we assume
that all variables are discrete and let p;j;m = P(X1 = z;, X2 = 25, X3 =
2k, Y = y;), where P denotes the distribution of (X, Xs, X3,Y’). Moreover,
KL(P||Q) stands for Kullback-Leibler divergence between P and @, defined as
KL(P||Q) = X, ;1 Pijk 108(Pijr/dijk)-

Theorem 1. We have (i) II(X1,X2,X3,Y) = KL(P||Px), where Pg corre-
sponds to mass function p™ defined as

K — Hs:|3|:3 Ps Hs:|5|:1 DS DijkPijIPjkiDikiPiPjPEDI
ikl = = .
Y HS:\S\:2 ps DijPikPilDjkPjIPkl

(i) If X1 L Xo|W, where W is any subset (including 0) of {X3,Y} then
II(X1,X5,X3,Y)=0.

(iii) Let n = Zi,j,k,lpgkl‘ Ifn <1 and I1(Xy, X2, X3,Y) =0 then P = Pk.
Proof. (i) follows from (5) and definition of Kullback-Leibler divergence. (ii)
is a consequence of (10) and assumptions. In order to prove (iii) note that
KL(P||Q) = 0 implies P = @ not only in the case when @ is probability
distribution but also in the case when total mass of () does not exceed 1. This
yields the result when applied to Q = Pk.

(10)

Observe that Py is not necessarily probability distribution. Condition < 1 is
sufficient condition which ensures that P = Px when I = 0. Pk is generaliza-
tion of Kirkwood approximation [17] to four-dimensional case.
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3 Problem Formulation and Previous Work

In this work we focus on feature selection based on mutual information (MI).
MI-based feature selection is concerned with identifying a fixed-size subset
S C {1,...,p} of the original feature set that maximizes the joint mutual infor-
mation between S and class variable Y. Finding an optimal feature set is usu-
ally infeasible because the search space grows exponentially with the number of
features. As a result various greedy algorithms have been developed including
forward selection, backward elimination and genetic algorithms. Today sequen-
tial forward selection is the most commonly adopted solution. Forward selection
algorithms start from an empty set of features and add, in each step, the feature
that jointly, i.e. together with already selected features, achieves the maximum
joint mutual information with the class. Formally, assume that S is a set of
already chosen features, S¢ is its complement and X}, € S¢ is a candidate fea-
ture. The score for feature X, is

J(Xp) =I(SUX,,Y) = I(S,Y). (11)

Obviously the second term in (11) does not depend on X}, and it can be omitted,
however it is more convenient to use this form. In each step we add a feature
that maximizes J(X}). Criterion (11) is equivalent to

J(Xg) = I(X, Y]9), (12)

see [18] for the proof. We also refer to [19] who proposed a fast feature selec-
tion method based on conditional mutual information and min-max approach.
Observe that (12) indicates that we select a feature that achieves the maximum
association with the class given the already chosen features. Criterion (11) (or
equivalently (12)) is appealing and attracted a significant attention. However
in practice the estimation of joint mutual information is problematic even for
small set S. This makes a direct application of (11) infeasible. A rich body of
work in the MI-based feature selection literature approaches this difficulty by
approximating the high-dimensional joint MI with low-dimensional MI terms.
These approximations may by accurate provided some additional conditions on
data distribution are satisfied. A comprehensive review of the existing methods
can be found in [18], here we review some representative methods. One of the
most popular methods is Mutual Information Feature Selection (MIFS) proposed
in [20]

Twres(Xi) = (X5, V) = > I(X; (13)

jES

This includes the I(Xy,Y) term to ensure feature relevance, but introduces
a penalty to enforce low correlations with features already selected in S. The
similar idea is used in Minimum-Redundancy Maximum-Relevance (MRMR)
criterion [21]

JvrMR (X)) = 1(Xp, Y g ZI (14)
JES
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with the difference that the second term is averaged over features in S. Both
MIFS and MRMR criteria focus on reducing redundancy, however they do not
take into account interactions between features. Brown et al. [18] have shown
that if the selected features from S are independent and class-conditionally inde-
pendent given any unselected feature X}, then (11) reduces to so-called CIFE
criterion [6]

Jorre(Xg) = 1(Xg, Y) + Z 3 XelY) = 1(X;, Xp)]. (15)
jeSs

In view of (8), the second term in (15) is equal >, IT(X;, Xk, Y), so it is
seen that CIFE is able to detect 3-way interactions. Yang and Moody [22] have
proposed using Joint Mutual Information (JMI)

Ty (Xx) ZI Y), (16)

jes
which is equal up to a constant to
Tiat(X) = [SII(Xx, Y) 4+ ) [I(X5, Xe|Y) = I(X;, Xp)]. (17)
JjES

JMI is a similar to CIFE, with the difference that in JMI the marginal relevance
term plays more important role than the overall interaction term.

4 Feature Selection Based on Interaction Information

In this Section we describe a proposed approach which can be seen as a gener-
alization of CIFE. Our method considers not only 3-way interactions but also
4-way interactions.

4.1 Proposed Criterion: ITF'S

In our method we make use of Mobius representation. Recall that S is a set of
already selected features of size m and X}, is a candidate feature. First observe
that it follows from Md&bius representation (7) that

J(Xp) =1(SUX,, Y Z > ITUX, UY). (18
k=0TCS:|T|=k

In the proposed method ITFS (Interaction Information Feature Selection ) we
define a score

Jirs(Xp) = I(Xp, Y) + Y II(X;, X, V) + Y TI(X3,X;, X, Y), (19)
jES 4,jE€S:i<]

which is a third order approximation of (18). The first term in (19) takes into
account marginal relevance of the candidate feature whereas the second and the
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third terms describe the 3 and 4-way interactions, respectively. Note that ITFS
can be seen as an extended version of CIFE which is a second order approxima-
tion of J(X}), namely

Jurs(Xx) = Jorre(Xk) + Z II(X;, X, Xi, Y). (20)
i,jESHi<j

It is possible to consider higher order terms in (18), however it would increase
the computational cost and make the estimation even more difficult. Below we
state some properties of the introduced criteria.

Theorem 2. The following properties hold.
(i) Assume that X LY. Then
Jere(Xk) = Y I(Xi, Y|X;). (21)
JES
(11) Assume that Xy, LY and Xy, LY |X; for any X; € S. Then
Jups(Xe) = Y I(X3,Y[X;, X;). (22)
i,j€S8H<]
(111) Assume that X; L X;| Xy, and X; L X;|Xy,Y, for some X;, X; € S. Then
II(X;, X;, Xy, Y) does not depend on Xj,.
(iv) If |S| = 2 then argmaxy, ¢ e Jirrs(Xy) = argmax ¢ geJ (Xg).
Proof. To prove (i) observe that property (6) implies
II(X;, X3, Y) = (X3, Y|X;) — [(X3, Y). (23)

Under assumption X L Y we have I(X%,Y) = 0 which, together with (23) and
(15) yields (21). Let us now prove (ii). It follows from (6) that

II(XMX]’XIWY) = II(X]7X/€’Y|XZ) - II(XJ7Xk7Y) (24)

and

II(X;, X, YX;) = I(Xs, Y| X5, X;) — I(Xe, Y] X5). (25)
Under assumption (ii) we have that I(Xy,Y) = 0, II(X;, X, Y) = 0 and
I(X,Y|X;) = 0 and thus II(X;, X;, X%,Y) = I(Xy,Y|X;,X;) which yields
(22). Let us now prove (iii). Using (6) we can write

I1(X:, X, X3, Y) = I1(X;, X, Y|X3) — II(X;, X;,Y)

Assumptions of (iii) implies that I(X;, X;|X%,Y) = I(X;, X;|Xx) = 0, which
yields the assertion in view of (26). Finally note that (iv) follows from the fact
that for |S| = 2 Egs. (18) and (19) are equivalent. i.e. Mobius representation
gives an exact value of J(Xy).
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Let us briefly comment the above statements. Items (i) and (ii) of Theorem 2
indicate that under additional assumptions CIFE and ITF'S reduce to simpler and
more intuitive forms. Using the forms given in (i) and (ii) one may easily give an
example showing the advantage of ITF'S over CIFE. Indeed, under assumption (ii)
we have Jorrg(Xg) = 0 and we may conclude that Jirs(Xj) > 0 if there exists
a pair X;, X; € S such that I(Xy,Y|X;, X;) > 0. In this case IIFS recognizes
X as a relevant whereas CIFE treats X, as a spurious feature. In addition
[18] has showed that if assumptions of (iii) hold for any k € S¢, maximization
of Jorrr(Xk) is equivalent to maximization of J(X%). In (iii) we confirm that
indeed in this case the 4-way interaction term can be omitted.

5 Experiments

The aim of the experiments is to compare the performance of the proposed
method ITFS with other popular methods discussed in Sect.3: MIFS, MRMR,
JMI and CIFE.

5.1 Artificial Data

The main advantage of the experiments on artificial data is that we can directly
investigate which method is able to detect the particular types of interactions. We
consider two simulation models, including 3-way and 4-way interactions, respec-
tively. To make a task more challenging we assume in both cases that features
are continuous. To assess the quality of the methods we introduce the following

measure. Let ¢ be a set of relevant features influencing Y and j1, jo,...,Jp be

features sequentially selected by the given method. The selection rate (SR) is
defined as |
i, Ot

g 111 |t.|7|t} ’ (27)

i.e. SR is a fraction of relevant features among first || selected. For example if we
have two relevant features X1, X5 then ¢t = {1,2}. When the method produces a
list {1,2,5,...} then SR = 1. On the other hand if the method gives {1,5,2,...}
then SR = 0.5, as one spurious feature X5 is ranked higher than the relevant
feature Xs. In the following we describe two simulation models.

Simulation Model 1 (3-Way Interaction Model). We consider 50 uniformly
distributed features: X1 ~ U[0,3], X; ~ U[0, 2], for j = 2,...,50. Only two first
features X; and Xs are relevant, i.e. class variable Y depends only on X; and
X5, the remaining features are spurious. Table 1 shows the joint distribution of
X1, X5,Y. This model is an extension of 2-dimensional XOR; note that ¥ =1
when X; € A, X5 € Bor X; € B, Xs € A. It is easy to verify that for this model
we have: I[(X1,Y) >0, I(X;,Y) =0, for j = 2,...,50 and [1(X1,X5,Y) >0,
thus we have one main effect corresponding to X; and one 3-way interaction.
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Simulation Model 2 (4-Way Interaction Model). We consider 50 uni-
formly distributed features: X, Xy ~ UJ0,3], X; ~ UJ0,2], for j = 3,...,50.
Class variable Y depends on Xi, X5, X5 whereas the remaining features are
spurious. Table2 shows the joint distribution of X7, X5,Y. This model is an
extension of 3-dimensional XOR. It is easy to verify that for this model we have:
I(Xh Y), I(XQ, Y) > 0, I(Xj, Y) = 0, fOI‘j = 3, ey 50 and [I(Xl,Xg, X3,Y) >
0, thus we have two main effects corresponding to X; and X5 and moreover one
4-way interaction.

Table 1. Simulation model 1 (3-way interaction model). Notation: A = [0,1], B =
(1,2], C = (2, 3] and constant p equals 1/6.

123456
X1 AA/B/B|C|C
X, A/B/ABAB
Y 0110 0/0
P(X1,X2,Y) p p|p p p|p

Table 2. Simulation model 2 (4-way interaction model). Notation: A = [0,1], B =
(1,2], C = (2, 3] and constant p equals 1/16.

1123456 7|8[9/]10(11/12/13/14 15 16
X1 A B/AJAIB/B/[A|IBC C|C|C|A|A | B|B
X A/AIB/[AIB/IA/IB/ B AB A B|C|C| C|C
X3 A/A/A/B|A'B/BB/A|A|B B A |B|A|B
Y of1|1/1jofofo 1|11 |1 /1 /1 |1 |1 |1
P(X1,X2,X3,Y) | p plppp plPPp PP P |P|P|P|P|P

Table 3. Computational times.

Feature selection | CIFE JMI MIFS MRMR | ITIFS
MADELON 16.312s | 16.228s | 16.089s | 16.147s | 1.109 min
GISETTE 1.156h| 1.153h| 1.091h| 1.124h| 2.701h
MUSK 11.719s | 11.048s | 13.587s | 14.217s | 15.746s
BREAST 0.887s | 0.425s | 0.515s | 0.499s | 0.988s

Figure 1 shows how selection rate (SR) depends on sample size n. In the
case of model 1 the methods which take into account 3-way interactions (JMI,
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CIFE, IIFS) produce the same rankings. They detect successfully both relevant
features: X; and X5. MIFS and MRMR are able to detect only one relevant
feature. In the case of model 2, MIFS, MRMR, JMI and CIFE are able to detect
only 2 relevant features Xy, X5 but they fail to select feature X3. Selection rate
(SR) for MIFS, MRMR, JMI and CIFE converges to 2/3. As expected only ITFS
chooses all 3 relevant features, which results in SR = 1 for sufficiently large
sample size. The above experiment shows that there is no significant difference
between ITFS, JMI, CIFE when only 3-way interactions occur. In the case of 4-
way interaction model, ITF'S is significantly superior to other methods. Moreover
we analyse how the method of entropy estimation influences the results. We
used two methods: standard plug-in method based on data discretization with b
bins (solid line) and knn-based Kozachenko-Leonenko estimator [7], with & = 10
(dashed line). For small b = 2 it is seen that knn-based method is superior to
plug-in method. For b = 5, plug-in method works better than knn-based method
in the case of model 1, whereas knn-based method is a winner for model 2.

Model 1 Model 1
—MIFS (b=2) S —MIFS (b=5)
—MRMR (b=2) EETTT —MRMR (b=5)
CIFE (b=2) 00 < CIFE (b=5)
—IMI(b=2) —IMI(b=5)
° ~IIFS (b=2) w0 ~IIFS (b=5)
® --MIFS (knn) © --MIFS (knn)
< --MRMR (knn) co --MRMR (knn)
2 CIFE (knn) 2 CIFE (knn)
8 --IMI(knn) §0 --IMI(knn)
g - 1IFS (knn) k3 - 1IFS (knn)
0.4
0.3
50 100 150 200 250 300
n
(a) (0)
Model 2 Model 2
e L —MIFS (b=2) 1 —MIFS (b=5)
—MRMR (b=2) —MRMR (b=5)
00 CIFE (b=2) 00 CIFE (b=5)
—IMI(b=2) —IMI(b=5)
° ), =IIFS (b=2) ° =IIFS (b=5)
&° ! -~ MIFS (knn) &° -~ MIFS (knn)
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o7 _ ~CIFE (knn) 807 1 CIFE (knn)
B --IMI(knn) 8 4 --IMI(knn)
Qo6 - 1IFS (knn) Qo s,', f - 1IFS (knn)
0.5 0.5
0.47"
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
n n
(c) (d)

Fig. 1. Selection rate w.r.t. sample size n for simulation models 1 (a)—(b) and 2 (c)-
(d). Parameter b corresponds to the number of bins in discretization, ‘knn’ in brackets
corresponds to knn-based entropy estimation.
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5.2 Benchmark Data

For more thorough assessment of developed criterion we used datasets from the
NIPS Feature Selection Challenge [23] (MADELON and GISETTE) and UCI
repository [24] (BREAST and MUSK). NIPS datasets consist of training sets
(2000 observations for MADELON and 6000 for GISETTE) and validation sets
(600 observations for MADELON and 1000 for GISETTE), whereas for UCI
datasets we used 10-fold cross-validation in order to calculate error rates. We
carried out the same experiment as that described in [18, Sect. 6.1]. In addition
to methods considered in [18] we investigate the performance of the proposed
method ITFS. Each criterion was used to generate a ranking for the top features.
Then the original datasets were used to classify the validation data. As in [18]
we used kNN method with k& = 3 neighbours as a classifier. As an evaluation
measure we considered Balanced Error Rate defined as

TP N TN )
TP+ FN TN+ FP”

BER=1-05-( (28)

where TP, TN, F'P, FN denote true positives, true negatives, false positives and

false negatives, respectively. Results of our experiments are presented in Fig. 2.
We only present curves corresponding to plug-in estimator as knn-based entropy

MADELON data set GISETTE data set
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Fig. 2. Validation error curves for MADELON (a), GISETTE (b), MUSK (c) and
BREAST (d) datasets.
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estimator worked much worse in this case possibly due to a prior discretization
of the original data. For MADELON and MUSK datasets there is no significant
improvement of IIFS compared to CIFE and JMI. So we may conclude that
considering interactions of order higher than 3 does not improve the performance
in this case. Note that for MADELON interactions play an important role; the
methods which do not take into account interactions at all (MIFS and MRMR)
fail. For GISETTE dataset the proposed criterion IIFS has the lowest error rate
when the number of features varies between 20 and 100. For BREAST IIF'S is also
a winner. This suggests that taking into account high-order interactions helps
in these cases. Interestingly, for GISETTE and BREAST, ITFS is significantly
better than CIFE, which additionally indicates that including 4-way interaction
term improves the performance. The computational times for ITFS are longer
than for competitors (see Table 3) which is a price for taking into account high-
order interactions. Note however that the times for IIF'S, although longer than
for CIFE, are of the same order.

6 Conclusions

In this paper we presented a novel feature selection method, named IIF'S. Feature
selection score in IIF'S, based on interaction information, is derived from so-called
Moébius representation of joint mutual information. Our method in an extension
of CIFE criterion consisting in taking into account 4-way interaction terms. We
discussed theoretical properties of 4-way interaction information (Theorem 1) as
well as feature selection methods: CIFE and IIFS (Theorem 2). The numerical
experiments for artificial datasets show that there is no significant difference
between IIFS, JMI and CIFE when only the interactions of order up to 3 are
present. This means that estimation of absent 4-way interactions does not cause
significant deterioration of IIFS performance. In the case when 4-way interac-
tions occur IIFS is significantly superior to other methods. Future work will
include the development of methods considering high-order interactions as well
as the comparison of IIFS with such methods, for example with a novel method
proposed in [25].
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Abstract. The Random Forest (RF) algorithm consists of an assembly of base
decision trees, constructed from Bootstrap subsets of the original dataset. Each
subset is a sample of instances (rows) by a random subset of features (variables
or columns) of the original dataset to be classified. In RF, pruning is not applied
in the generation of base trees and in the classification process of a new record,
each tree issues a vote enabling the selected class to be defined, as that with the
most votes. Bearing in mind that in the state of the art it is defined that random
feature selection for constructing the Bootstrap subsets decreases the quality of
the results achieved with RF, in this work the integration of covering arrays
(CA) in RF is proposed to solve this situation, in an algorithm called RFCA.
In RFCA, the number N of rows of the CA defines the lowest number of base
trees that require to be generated in RF and each row of the CA defines the
features that each Bootstrap subset will use in the creation of each tree. To
evaluate the new proposal, 32 datasets available in the UCI repository are used
and compared with the RF available in Weka. The experiments show that the
use of a CA of strength 2 to 7 obtains promising results in terms of accuracy.

Keywords: Classification + Random Forest + Covering arrays *
Feature selection

1 Introduction

The Random Forest (RF) algorithm, developed by Leo Breiman in 2001 [1], is com-
posed of a collection of M independent trees to which an input is passed. Each emits a
unitary vote and RF then selects the most popular class of all the votes received
(majority vote). Building each tree starts with a bootstrap sample of the original dataset.
Each node of a decision tree is built from a small group of randomly selected features
[1]. In RF, pruning is not applied and each of the generated trees functions as a base
classifier. RF stands out for its robustness, low sensitivity to noise and low risk of
overfitting [2]. As regards limitations, in [3] the authors point to the amount of time it
takes to manually fix the hyperparameters (number of trees, M, number of features to be
taken into account in each tree, K, and depth of each tree, depth) and the lack of a more
suitable feature selection process, since in its original proposal it resorted to a simple
random selection. According to [4], the value of K (number of randomly selected
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features for each tree) is established arbitrarily or empirically, and often does not have a
theoretical or experimental justification.

This paper proposes the integration of covering arrays as a mechanism for selecting
the features that are used to construct the Bootstrap samples with which the base trees
are built.

A covering array (CA) is a mathematical object that has been used in various areas
to evaluate and compare different situations in which many parameters interact with
each other and carrying out an exhaustive evaluation is not feasible for reasons of cost,
time, or effort. CAs have been used in experimental design, software testing, hardware
testing and more recently in clustering [5].

In the selection mechanism proposed in this paper, binary CAs are used, formally
defined as CA (N, P, v = 2, f) that can be represented as a matrix of N x P elements,
where N is the number of rows of the CA. In this context, N refers to the number of
base trees to be generated. The value of P refers to the number of columns of the CA,
which is the number of factors/parameters involved in the problem (dataset, without
considering the class column). The v = 2 refers to the fact that the CA is binary, and the
data found in each cell of the matrix can only take the value of zero (0) or one (1).
Finally, parameter t is called strength and defines the degree of interaction between the
P factors covered by the CA. Where there is a strength of 2 in a binary CA, it is
expected that the values {0, 0}, {0, 1}, {1, 0}, {1, 1} will be found in any pair of
columns in the CA. In general, in a CA, each N x ¢ sub-matrix contains all the
combinations of the v = 2 symbols at least once. Figure 1 shows the CA (6, 6, 2, 2)
with 6 rows (&), 6 columns (P), binary alphabet (v = 2), and strength 2 (7).

CAIN=6P=6v=2t=2)=

COoORrROR R
OR RO OR
OR OO R KL
ORr RR OO
COoORR RO
oOR RO RO

Fig. 1. Example of a covering array: CA (6, 6, 2, 2)

In this paper, each row of the CA defines the features that will be used for building the
base trees that RF uses to make decision. A one means that the feature is included and a
zero that it is not. The value of t, the strength of the CA, is defined as a hyperparameter of
the new algorithm (Random Forest based on Covering Arrays, RFCA) and is established
empirically. The proposed RFCA was compared with the original RF algorithm pro-
posed by Breiman [1] implemented in Weka, and one called RF_SQRT, the same
original RF but in which the K value (number of features selected for building the nodes
of base trees) is defined using a different formula. The evaluation was carried out with 32
datasets using 10-fold cross-validation. The results show that RFCA improves the
accuracy in half of the evaluation scenarios with respect to state of the art algorithms. In
addition, Friedman and Wilcoxon nonparametric statistical test results are promising.
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The rest of the paper is organized as follows: Sect. 2 presents previous research
work related to improvements to the RF algorithm; Sect. 3 describes the RFCA clas-
sifier, along with an example of its use; Sect. 4 describes the experiments and an
analysis of the results; and finally, Sect. 5 presents the conclusions of the work carried
out, together with some future work that is expected to be undertaken.

2 Related Work

The original RF algorithm (2001) consists of an assembly of decision trees. Initially in
the process of building a RF, bootstrapping is applied on the training dataset to produce
many different data subsets [1]. Each subset is then used to construct a decision tree. In
the growth process of the tree, the partition of each node depends on the randomly
selected features with respect to all the features present in the dataset [4]. No pruning is
applied in RF and each of the trees generated works as a base classifier. To define the
class of an instance, the vote of each of the base classifiers is received and a weighting
is performed that determines the respective class [2, 6].

In 2008 [7] saw the arrival of an algorithm called Forest-RK. Based on Forest-RI
[1], Forest-RK, introduced a new method of induction in which an alternative to the
arbitrary adjustments of the hyperparameter K is offered. For random feature selection,
the K value is chosen randomly for each division of a node, with the aim of generating
greater diversity in the trees that make up the forest, in contrast with Forest-RI, in
which the value of K is identical for all decision trees. The results show that this new
method is statistically more accurate than the Breiman RF [1].

In 2011 [8], the use of oblique tree models as base learners in the algorithm was
proposed. The “oblique” RFs focus on the optimal recursive partition of the nodes, so
that in each recursive binary division, a new set of features is sampled without
replacement, and the optimal division in the sub-space covered by these features is
sought. For the search of the optimal division, linear discriminative models are used
instead of random coefficients used in the Breiman RF [1]. The results show that RF
with orthogonal divisions obtains good results in factor datasets, in numerical and
spectral data. This proposal outperformed a wide range of classifiers.

In 2012 [9], a tree regularization framework was proposed that allows many tree
models to perform feature selection efficiently. The key idea of the framework is to
penalize with A (a coefficient € [0, 1] based on information gain), the selection of a
feature used for the division of a node, in cases where its quality index is like the
features used in previous divisions. It is therefore expected that a regularized tree model
contains a set of features that are informative, but not redundant. The results show that
the proposed method increases the quality of the RF classifier.

In 2014 [10] a technique was presented for finding the appropriate number for the
attribute subspace (K) used in the division of a node into a decision tree. The number of
attributes for the subspace is determined by a random number selected in a range that is
calculated with the number of samples resulting from the CART partition of a node
(size of the bootstrap sample for the root node), and the size of the bootstrap sample of
the decision tree. This calculation is performed dynamically for each of the nodes and
ensures a diverse range of trees. The results show that the proposed technique can
significantly improve the accuracy of the classifier.
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In 2016 [11] an RF version was proposed with a cost-sensitive feature selection
method called feature-cost-sensitive Random Forest (FCS-RF). In FCS-RF, the cost of
the features is incorporated into the building process of the decision tree to produce
subsets of low-cost features. The algorithm selects a feature with a probability inversely
proportional to its associated cost, instead of being selected randomly. The results show
that FCS-RF is mainly useful in cases where there are redundant or higher cost features.

In 2017 [12] an integration of an algorithm called CURE-SMOTE with a hybrid
algorithm based on RF was proposed. CURE (Clustering Using Representatives) groups
the least representative class samples and SMOTE (synthetic minority oversampling
technique) eliminates noise and outliers. The dataset used to solve the classification
problem is then generated using random samples between representative points and data
from the less representative classes. Elimination of redundant features, feature selection,
optimization of parameters, and definition of the number of sub-features is then carried
out by means of three hybrid algorithms that use RF: one based on genetic algorithms
(GA-RF), another based on particle swarm optimization (PSO-RF), and finally, another
based on a swarm of fish (AFSA-RF). The results show that the CURE-SMOTE
algorithm minimizes the noise of the original data distribution and that the hybrid
algorithms surpass original RF [1] in F-measure, G-mean, AUC, and Out-Of-Bag error.

3 Proposed Random Forest Based on Covering Arrays
(RFCA)

In the original Random Forest proposal of Breiman [1], the process of feature selection,
denoted as Forest-RI, employs in the division of each node, small groups of randomly
selected features. The size, K, of the groups is fixed and is generally equal to the first
integer smaller than log,P + 1, where P is the total number of attributes of the dataset.
The hyperparameter number of trees in the forest, M, is established arbitrarily or
empirically, and although an increase in the number of trees can linearly increase the
quality of the model, there is a certain point at which increasing the number of trees
does not improve and even decreases the accuracy of the model [3]. In this context,
covering arrays in RFCA eliminates the need to set and fine-tune the number of trees
(hyperparameter M) and improve the feature selection process.

RFCA uses CAs of binary alphabet (v = 2). This means that each component of the
CA has only values {0, 1}. The subsets of candidate variables used in building each of
the RF trees are determined with the rows of the CA. Parameter P of the CA corre-
sponds to the total number of attributes of the dataset to be classified. Below, an
example of RFCA execution is detailed and then the algorithm is presented.

3.1 Example of Model Creation in RFCA

To illustrate the behavior of RFCA, a reduced version of the Churn dataset is used,
from the UCI Repository (University of California in Irvine). The term Churn is used to
indicate that a client leaves the service of a company to take that of the competition. In
this reduced version, only 6 (P columns of the dataset and the CA) of the most
important variables are used in 20 of the customer records and the target variable,
Churn. In Table 1, the name of the attributes of the dataset is shown and in the upper
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part a short name appears for each of them, A1, A2, and so on. In this example, 80% of
the dataset is used for training and the remaining 20% as the test dataset. The Random
Forest algorithm is based on the bootstrapping process, which implies that it generates
a set of trees, M in which each tree is generated with its own training dataset that is the
result of a random selection of data from the original training dataset.

Table 1. Description of the adapted dataset

Id | Al A2 A3 A4 AS A6 Class
International | Voice Total Total minutes | Total Total minutes | Churn
plan mail minutes afternoon minutes international

plan morning night

Training dataset

1 |No No 178.7 233.7 131.9 9.1 FALSE
2 |No Yes 148.5 114.5 178.3 6.5 FALSE
3 |No Yes 164.1 219.1 220.3 12.3 FALSE
4 | Yes No 197.2 188.5 211.1 7.8 FALSE
5 |No No 124.9 300.5 192.5 11.6 FALSE
6 |No No 1154 209.9 280.9 15.9 FALSE
7 |Yes No 140 196.4 120.1 9.7 TRUE

15 | No Yes 156.2 215.5 279.1 9.9 FALSE
16 | No No 231.1 153.4 191.3 9.6 FALSE

Test dataset

17 | No No 180.8 288.8 191.9 14.1 FALSE
18 | Yes No 213.8 159.6 139.2 5 FALSE
19 | No Yes 234.4 265.9 241.4 13.7 FALSE
20 | No Yes 265.1 1974 244.7 10 FALSE

The number of trees to be built in RFCA is determined by the number of rows of
the binary CA, chosen according to the number of attributes of the original training
dataset. According to the dataset of the example, a binary covering array is required to
cover the six input variables. In the present example, the CA of Fig. 1 is used.
According to this CA, the number of trees is six (number of rows of the CA). However,
because row 6 of the CA contains only zeros, that is, it does not select any attributes,
the total number of trees to be built is only five (5).

Each row of the binary CA defines for its corresponding tree which features (attributes
of the original training dataset) will be used in building it, where 0 indicates the absence
and 1 the presence of a variable in the subset of candidate features. For example, based on
row three [0]0]0|1|1]|0] it can be said that the tree is built considering features four and five
(A4 and AS5), which correspond to Total minutes afternoon and Total minutes night.

The original RF has a hyperparameter K that defines the number of attributes that
must be considered when each tree is created. This attribute is defined, according to the
Breiman proposal [1], as the first integer less than log,(P) + 1, where P is the number
of input variables of the original training dataset, which in this case is equal to three
(K = [logy(6) + 1] = 3).
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As can be seen for the example of row three of the CA, it only selects two
attributes. For this reason, the RFCA algorithm adds one randomly to complete the
three required by the K parameter. It can also happen that the row of the CA has more
selected features than those defined by the K parameter. In this case K features are
selected randomly from the subset defined by the line of the CA.

To build Tree; based on row 1 [1]1]1]0]0]0] of the CA, the attributes selected in the
subset are: Al, A2 and A3. Since the number of attributes selected in the CA row
matches the value of K (3), all are selected. After sampling the rows, the data sample of
Fig. 2a is obtained. In addition, the base tree that is obtained with that input sample is
presented on the right side of this figure.

Data for Tree 1
Al | A2 | A3 | Class
no | no [ 178.7 | FALSE

no [ yes | 148.5 [ FALSE Al =no

yes | no | 197.2 | FALSE A3 <276.1: FALSE (12/0)

no | no | 1249 | FALSE A3 >=276.1: TRUE (1/0)
(a) no | no [ 1154 | FALSE Al =

yes | no | 140 | TRUE - yes

no no | 321.1 | TRUE A3 <168.6: TRUE (2/0)

no | no [ 193.4 | FALSE A3 >=168.6: FALSE (1/0)

no | no [ 106.6 | FALSE
no | yes [ 156.2 | FALSE
no | no [231.1 | FALSE

Data for Tree 2
Al A3 A5 Class
no | 178.7 | 131.9 | FALSE
no | 148.5 | 178.3 | FALSE

yes | 197.2 | 211.1 | FALSE
. no | 1154 [ 280.9 | FALSE A5 < 126: TRUE (1/0)
® yes | 140 | 120.1 | TRUE A5 >= 126: FALSE (15/0)

no | 193.9 | 210.1 | FALSE
no | 1934 | 243.3 | FALSE
no | 134.7 | 2214 | FALSE
no | 156.2 | 279.1 | FALSE
no | 231.1 | 191.3 | FALSE

Data for Tree 3
A3 | A4 | A5 | Class
178.7 | 233.7 | 131.9 | FALSE
148.5 | 114.5 | 178.3 | FALSE

164.1 | 219.1 | 2203 | FALSE A4 <249.6: FALSE (12/0)

© 197.2 [ 188.5 | 211.1 | FALSE A4 >=249.6
321.1 | 2655 | 180.5 | TRUE A3 <213.85: FALSE (3/0)
169.8 | 197.7 | 193.7 | FALSE A3 >=213.85: TRUE (1/0)

193.4 ] 116.9 | 243.3 | FALSE
106.6 | 284.8 | 178.9 | FALSE
156.2 | 215.5 | 279.1 | FALSE
231.1 ] 153.4]191.3 | FALSE

Fig. 2. A sample of the trees generated using RFCA.

For building Tree; based on row 2 [1|0[1|0[1|1] of the CA. The attributes defined by
this row are A1, A3, A5 and A6. The number of attributes (4 in total) of the subset selected
by this row of the CA is greater than the number K of attributes to be selected (K = 3)
Therefore, the algorithm selects 3 attributes of the subset randomly and without repetition.
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For the example, attributes Al, A3 and A5 were selected. Figure 2b presents the data
sample and the base tree obtained. For building Tree4 and Trees, the same situation occurs
(the number of attributes of the subset selected by the row of the CA is greater than the
number K of attributes to be selected). The algorithm therefore operates in the same way.

Building Trees is based on row 3 [0[0[0[1|1|0] of the CA, which allows the selection
of attributes A4 and AS. In this case, the number of attributes of the subset selected by
this row of the CA is less than the number K of attributes to be selected (K = 3).
Consequently, for those cases the algorithm selects the missing attributes randomly and
without repetition (in this case one additional attribute). For the example, A3 is
selected. Figure 2c presents the data sample and the base tree obtained.

After creating the trees, the classifier test is performed. In this case the test instances
are passed to each of the trees, the class label is assigned based on a majority vote. In
this case, the classifier obtains 100% of instances correctly classified.

3.2 RFCA Algorithm

Next, Algorithm 1 summarizes the technique of building an ensemble of decision trees
using bagging and covering arrays for feature selection (RFCA). The function trainDT
(T’, K) performs training of a decision tree on a bootstrap sample T~ and K features
selected based on each row of the CA. The process of training a decision tree is
presented in Algorithm 2.

4 Experiments and Results

4.1 Configuration of the Experiments

Validation was performed using 32 available datasets in the repository at UCI, namely:
Banknote, Blood, Car, Chart, Climate, Contraceptive, Dermatology, Diabetes, Ecoli,
Fertility, Glass, Haberman, Hayes, Indian, Ionosphere, Iris, Knowledge, Leaf, Libras,
Planning, QSARBiodegradation, Seeds, Segment, Sonar/Connectionist, Soy Bean,
Spectf, Vowel, Wdbc, Wine, Wine Red, Yeast, and Zoo. The total number of training
instances corresponds to approximately 70% of the total data in each dataset. The
algorithm was implemented in Java as a package of Weka 3.8. Binary CAs of strength
2 through 7 were shared by CINESTAV-Tamaulipas of Mexico. All the experiments
were performed on an Intel Core i7 4510U, 2.0 GHz, 8 GB RAM, Windows 10. The
source code and other resources (such as the CAs) required to replicate the experiments
are available online at https://github.com/sebasv22/RFCA.

4.2 Parameters of the Algorithms

To evaluate the RFCA algorithm, a comparison was made with the original Random
Forest (RF) algorithm proposed by Breiman [1] and a version of Random Forest called
RF_SQRT in which the size K of the randomly selected subsets of features is defined as:
K = /P, where P corresponds to the number of attributes in the dataset [4, 13]. The
values of the parameters common to the three algorithms are those designated by default
in Weka (see Table 2). The hyperparameter K (numFeatures in Weka) for RF and RFCA
is defined, according to the Breiman proposal [1], as the first integer less than log,(P) + 1.
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Algorithm 1. The proposed Random Forest using Covering Arrays

inputs: T /* Dataset */

f /* Covering array strength */

Isize  /* Leaf size limit, parameter of Random Forest in weka */
output:  Class label for the input data.

begin
r = numRows (T) /* Number of rows of the Dataset */
p = numAttributes (T) /* Number of attributes of the dataset */
ca = loadCA (f, p) /* Loads the covering array (CA) according to fand p */

M = numRowsCA (ca) /* Number of trees is equal to the number of rows of the CA */
K=1log,(p) + 1] /* Number of attributes to use in tree construction */

att = listAttributes (T) /* Set of attributes from the Dataset */

fori=1toMdo

2 . . . . .
/* Select % points (dataset instances), with replacement, uniformly in T */

T = bootstrap (T)
subAS = SelAttributesCA (cali]) /* from row i determines selected attributes */
Tree = trainDT (T’, K, subAS, att, Isize)
add Tree to RF
end for
Once M Trees are created, Test instance will be passed to each tree and class label will
be assigned based on majority of votes.
End

Algorithm 2. Function trainDT (for Training each Decision Tree to the Random Forest)

inputs: T /* Bootstrap sample */
K /* Number of random features */
subAS /* Attribute indices selected in the CA Row */
att /* Set of attributes from the Dataset */
Isize /* Leaf size limit */

output:  Tree, a trained decision tree

begin

if numinstances (T’) > Isize then
subK =@

if size (subAS) >= K then
subK = RandomSelect (subAS, K)  /*Select uniformly, without replacement, a
subset subK from K attributes in subAS, subK csubAS */
else
subK = RandomSelectAttributes (att, subAS, K) /*subK include all attributes in
subAS plus additionally attributes from att uniformly selected without replace-
ment that do not belong to subAS. at the end subK has K attributes */
end if
/* Select the best split in T by optimizing the CART-Split criterion */
(leftT, rightT) = Split (T’, subK)
Tree.add (trainDT (leftT, K, subAS, att, Isize))  /* left child */
Tree.add (trainDT (rightT, K, subAS, att, Isize)) /*right child */
else return Tree
end if
end function
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Table 2. Default Weka algorithm parameters

Parameters Value | Parameters Value
bagSizePercent 100 | maxDepth 0
batchSize 100 | numExecutionSlots | 1
breakTiesRandomly | False

In RFCA the parameter M (number of trees) is not defined but the strength
parameter is defined, with which parameter T of the binary CA used in building the
forest is determined. This parameter takes the values of strength 2 to strength 7. To
make the comparison between RFCA, RF and RF_SQRT under the same conditions,
the parameter M (number of trees) is defined in the last two algorithms equal to the one
defined in RFCA with the number of rows of the CA.

4.3 Results and Analysis

A sample of the results of the experiments are shown in Table 3 and were obtained
from the average of 30 executions of each algorithm in each dataset using 10-fold
cross-validation. The CAs were evaluated using strengths from 2 to 7, all with the
binary alphabet. The evaluation was carried out with different strength values to
identify which value achieves the best results in terms of accuracy. Each dataset that
was evaluated required a CA defined according to the number of variables in the set
(parameter P in the CA). The number of trees increases as strength (T) increases.

A total of 192 scenarios were obtained (32 datasets by 6 CA strength values) for
evaluating the proposed algorithm with respect to the state of art. As can be seen in
Table 4, the RFCA algorithm performs better in approximately half of the evaluation
scenarios. The remaining percentage is divided between the two algorithms of the state
of the art.

Taking the results of Friedman’s non-parametric statistical test, we obtain the
ranking in Table 5, which confirms RFCA performing better than RF and RF_SQRT.
The p-value of the test was not less than 0.05, which means that the results are not
statistically significant. Nevertheless, the Wilcoxon test shows with 90% confidence
that the RFCA algorithm outperforms RF and RF_SQRT, and at 95% confidence, that
RFCA outperforms RF_SQRT.

In the results, those corresponding to the Car and Leaf datasets predominate: in Car,
RF outperforms RFCA by a wide margin, while in Leaf, RFCA outperforms RF by a
considerable advantage. On reviewing the structure of the attributes of the Car dataset,
it was found to have 6 ordinal attributes, 4 classes and 1,728 instances, data that are like
those of other datasets and as such was not able to be identified since in this case RF
greatly outperforms RFCA (see the left-hand side of Fig. 3).

In the case of Leaf, it was found to consist of 14 continuous attributes, 1 nominal,
36 classes and 340 instances. Although not conclusive, the high number of classes in
this dataset can benefit from the analysis of the interactions of the columns that are
made with the CA. In this dataset, from the lowest strength value (2) to the highest (7),
there is a considerable difference of RFCA with respect to RF and RF_SQRT (see the
right side of Fig. 3).
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Table 3. A sample of the results using 10-fold cross-validation (best results in bold)

Dataset T\M RFCA | RF RF_SQRT | Dataset T\M RFCA | RF RF_SQRT
Banknote 2 41 98.5593 | 98.9359 | 98.8654 Blood 2 474.8396 | 74.1355 | 73.9617
3 7199.1764 | 99.1618 | 99.1861 3 7 |73.6453 | 73.066 | 72.8654
4 15199.2347 | 99.2541 | 99.2444 4 15| 74.3449 | 73.3378 | 73.1907
5 30 | 99.2833 | 99.2687 | 99.2736 5 30 | 74.1266 | 73.4804 | 73.369
6 60 | 99.3051 | 99.3051 | 99.2687 6 60 | 73.9171 | 73.057 | 72.9724
7| 120 99.3659 | 99.3367 | 99.3076 7 120 |73.9394 | 73.0348 | 73.0704
Car 2 5| 86.8538 | 91.4892 | 89.2091 Chart 2 9 96.7556 | 96.3667 | 96.6556
3 11| 81.603 |93.4143 | 92.338 3 31]98.2222 | 98.2111 | 98.2778
4 20 | 88.2234 | 94.1223 | 93.5899 4 67 | 98.6167 | 98.5556 | 98.5667
5 311 90.4649 | 94.3769 | 94.2149 5| 135/98.7722 | 98.65 98.7111
6 63 | 88.2195 | 94.6509 | 94.8669 6| 675989556 | 98.9222 | 98.8889
7| 126 | 88.2851 | 94.7647 | 95.0675 71245399 98.9389 | 98.9444
Climate 2 71 92.0247 | 92.8025 | 92.4074 Contraceptive | 2 549.6108 | 48.959 | 48.6309
3 17 1 91.7223 | 93.0741 | 92.5864 3 11 | 51.2333 | 49.9208 | 49.7873
4 39| 91.5062 | 93.1975 | 92.5864 4 23| 52.2788 | 50.74 50.5295
5 99 | 91.4938 | 93.2222 | 92.5988 5 53529894 | 51.222 | 51.0138
6| 300 91.4815|93.0864 | 92.6049 6| 107 | 53.0572 | 51.5886 | 51.437
7| 630 91.4815 | 93.0555 | 92.6543 7 169 | 52.9758 | 51.9167 | 51.6452
Dermatology | 2 7| 94.5902 | 94.1712 | 94.2896 Diabetes 2 5| 71.9488 | 73.138 | 72.7083
3 23| 96.3024 | 95.7377 | 95.8561 3 11| 73.2031 | 74.5747 | 74.0148
4 62 96.5118 | 96.2113 | 96.1566 4 23| 74.349 | 75.0304 | 75.0564
5| 133 196.6484 | 96.2751 | 96.3206 5 52 (75.3212 | 75.4601 | 75.3255
6| 482 96.7395 | 96.3935 | 96.439 6 84 | 75.6727 | 75.4644 | 75.5599
7 | 1178 | 96.7122 | 96.4299 | 96.4845 7| 128 |75.6858 | 75.5642 | 75.7726
Ecoli 2 5|80.9821 | 82.8572 | 82.8572 Fertility 2 5| 86.6333 | 86.3667 | 85.7333
3 11| 83.4127 | 84.9206 | 84.6329 3 11 |87.6 87.5 87.4333
4 23 | 84.5536 | 85.7441 | 85.6052 4 23| 87.8333 | 87.4 87.5
5 42 | 85.5952 | 85.9921 | 86.4286 5 53| 88.0333 | 87.8667 | 87.9
6 64 | 85.248 | 86.1508 | 86.6171 6| 107 | 88.2333 | 87.4667 | 87.9333
7| 127 | 86.3194 | 86.4385 | 86.8353 7] 169 | 88.5 87.1667 | 87.9
Glass 2 5| 71.9003 | 73.5358 | 73.3022 Haberman 2 370.9477 | 66.9499 | 68.2135
3 11 |75.4829 | 76.3396 | 75.7788 3 770.3268 | 67.048 | 69.0196
4 23 | 78.1153 | 77.4766 | 77.6947 4 14 | 71.1764 | 68.3878 | 69.9782
5 53179.6262 | 78.972 | 79.5639 5 28 | 71.7538 | 68.5839 | 70.3703
6| 107 | 79.8287 | 79.6885 | 79.6885 6 56 | 71.8191 | 69.2265 | 71.3072
7| 169 | 79.8754 | 80.1246 | 80.2025 7| 112 |72.2004 | 69.0087 | 71.2636
Hayes 2 4 |77.7083 | 76.1458 | 76.1875 Indian 2 569.9257 | 69.0566 | 69.4225
3 7| 77.6667 | 77.6458 | 77.8958 3 11| 70.9605 | 69.5598 | 70.1658
4 151 79.1042 | 79.0833 | 79.3125 4 23| 71.6295 | 70.1487 | 70.6632
5 30 | 79.6875 | 79.0208 | 79.8958 5 55| 71.9897 | 70.8005 | 71.3093
6 60 | 79.5 78.6042 | 79.875 6| 115 |71.9554 | 70.7604 | 71.2236
7| 120 79.3125 | 78.8125 | 79.9167 7| 219 | 72.1555 | 70.8005 | 71.3665
Knowledge |2 5| 87.3643 | 92.8295 | 90.8527 Leaf 2 7| 54.598 | 18.7451 | 28.2745
3 10 | 93.5659 | 93.7855 | 92.429 3 16 | 55.4902 | 19.8529 | 32.6275
4 15193.708 | 94.4315 | 93.2688 4 34| 55.9216 | 20.5196 | 34.9412
5 3194.031 | 94.664 | 93.9664 5 79 | 57.6176 | 21.3529 | 36.7941
6 62| 94.4702 | 94.7674 | 94.186 6| 128|61.3137 | 21.7843 | 37.6373
7| 124 | 94.5736 | 94.8966 | 94.3669 7| 255|61.3824 | 21.6961 | 37.9902
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Table 4. Results summary

Exceeds Equals Total
RFCA RF RF_SQRT |RF y RF_SQRT | RFCA y RF
# Scenarios | 96 (50%) | 53 (27.60%) | 29 (15.1%) | 13 (6.77%) 1(0.52%) 192

In Fig. 4, the average graph across all strengths is shown. In the graph, the dis-
turbance caused by the atypical results of the Car and Leaf datasets can be seen.
Likewise, it is evident that the gradual increase in strength of the CA generates, on
average, a better result in terms of accuracy.

Table 5. Ranking of algorithms based on the Friedman test

Algorithm | Ranking

RFCA 1.8828 (1)
RF_SQRT | 2.0078 (2)

RF 2.1094 (3)
p-value 0.08436 (chi-square with 2 degrees of freedom: 4.9453)
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5 Conclusions and Future Work

In this work, a new method was proposed and evaluated for the selection of features in
the Random Forest algorithm, based on binary covering arrays of strength 2 to strength
7. In the CAs, each row represents a subset of selected variables to build the bootstrap
samples and the number of rows of the CA allows adjusting the hyperparameter
number of trees, suppressing the random feature selection of the Random Forest
originally proposed by Breiman and with it, the need to adjust this hyperparameter. The
experiments were performed on 32 datasets evaluated by 10-fold cross-validation and
the results obtained are promising, in which an average improvement in accuracy
between 0.5% and 2% is achieved. The new RFCA classifier improves accuracy in half
of the evaluation scenarios with respect to the state-of-the-art algorithms used. On
average the greatest accuracy in the RFCA algorithm is obtained at strength 7. How-
ever, considering that a greater strength represents a greater number of trees, strength 5
is considered a suitable value for parameter t of RFCA.

As future work it is expected to study the performance of RFCA on variations of
Random Forest in which the bootstrap sample is different in size from two thirds of the
training dataset [1], or in which the sampling of the instances is carried out without
replacement [14]. Tests will meanwhile be run on other test datasets of the UCI
repository or similar, using CAs with different values of strength (t =2, ..., 10),
comparing them against other more recent algorithms. These tests will include addi-
tional statistical tests, not only those of Friedman and Wilcoxon. Further tests will be
done using values for the hyperparameter K that are different from those used in the
present work.
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Abstract. The world is witnessing an unprecedented growth of needs in
data analytics. Big Data is distinguished by its three main characteristics:
velocity, variety and volume. An open issue and challenge faced by the
data community is how to scale up analytic algorithms. To address this
issue, optimization of large scale data sets has attracted many researchers
in recent years. In this paper, we first present the most recent advances
in optimization of Big Data analytics. Further, we introduce a fully dis-
tributed stochastic optimization algorithm for decision making over large
scale data sets. We also propose the optimal weight design for the pro-
posed algorithm and study its performance by considering a practical
application in cognitive networks. Experimental results confirm that the
proposed method performs well, proven to be distributed, scalable and
robust to missing data and communication failures.

Keywords: Distributed - Stochastic - Optimization - Big Data -
Decision making

1 Introduction

Enormous amount of data have been continually generated at unprecedented and
ever increasing scales. Large-scale data sets are collected and studied in numerous
domains, from engineering sciences to social networks, commerce, biomolecular
research, and security. Nowadays, the term “Big Data” referring to its modern
definition, i.e. information explosion and large sets of data, has truly influenced
our lives, at-least by introducing new insights. In 1999, for the first time, the term
Big Data appeared in an article, published by the Association for Computing
Machinery [1]. The authors of this paper quoted that ‘the purpose of computing is
insight, not numbers’. Since then, Big Data is becoming more and more popular.
In 2001, Doug Laney, analyst at Gartner, defined three terms of volume, velocity
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and variety that are commonly accepted as three main characteristics of Big Data
[2].

One important subject in this era is Big Data optimization. To understand
the value of Big Data optimization, we introduce the distinctive characteristics
of Big Data, namely volume, variety and velocity. Interconnection between these
characteristics known as the 3 Vs are shown in Fig. 1. The term volume represents
the growing amount of data in Exabytes and Zettabytes. The Variety of data is
produced by sources such as physical sensors, smart devices and social media in
semi-structured, structured or unstructured formats. The velocity describes how
quickly the data is retrieved, stored and processed.

Fig. 1. The interconnection of three main characteristics of Big Data

Today, the Big Data is a common topic and many researchers, in various fields
of study, including convex optimization and machine learning, have contributed
to the literature. The basic ingredient for every smart and intelligent system, is
data. Smarter systems acquire more data to make efficient decision that leads
to large scale data sets. This data could be generated from many sensors in
smart phones [3], physical sensors attached to cyber-physical systems [4], many
objects in Internet of Things (IoT) [5] platforms and smart cities [6]. This data
may further be transferred to a center using new technologies such as 5G [7].
Therefore, data gathering is the first challenge of Big Data Era. Other challenges
may include data storage and data processing [8]. Many researches are focused
on adaptation of existing technologies or inventing new ones to store Big Data.
Some examples may be found in [9] for cloud storage of Big Data. However, many
researchers believe that the main challenge is still finding efficient and optimal
solutions to process the data in appropriate time by considering the Big Data
challenges.

In general, data processing can be performed in a centralized or distributed
manner. Analysis on very large data sets and Big Data seems infeasible by using
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central processing and storage units. Considering the streaming data sources,
learning must often be performed in real-time or near real-time [10]. Although
centralized processing methods usually provide the optimal decision, consider-
ing the challenges faced by data storage in the cloud or any distributed file
system [12], decentralized methods are still preferred [11]. Therefore, there is an
urgent need to scalable methods, capable of efficient data processing, considering
the storage, query, and communication challenges. In some cases, privacy and
security concerns are critical and prevent accessing the full data. In these cases
only partial data or processed output (decision) might be transferred through
communication interfaces.

As depicted in Fig.2, the characteristics of Big Data require an optimiza-
tion algorithm that is scalable, compatible with missing values of data (robust),
performs near real-time and is applicable in distributed platforms such as cloud.
These challenges are not properly answered by traditional optimization methods
and the final purpose of any modified or new optimization algorithm in Big Data
era is to reduce the computational, storage, and communications bottlenecks.

Scalable to
network size
Robust to
Decentralized communicati
processing on failures or
. . missing data
Characteristics
of Optimization
Algorithms for
Big Data
Analytics
Near
Time RealTime
Adaptive decision
making
Distributed

Fig. 2. Different characteristics of optimization algorithms for Big Data analytics

In this paper we investigate optimization techniques for Big Data analytics.
We introduce a fully distributed stochastic optimization algorithm for decision
making over large scale data sets. We describe the proposed model mathemati-
cally. Our method is scalable to any network or data size, works based on coop-
eration of neighbor processing/storage units and it is adaptive to any dynamic
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behavior of processing/storage units. We further propose an optimal weighting
of cooperation coefficients.

The rest of this paper is organized as follows: In Sect. 2, we introduce the
related work and literature review of Big Data optimization. The system model
is introduced in Sect.3 and the proposed method is presented in Sect.4. The
evaluation scenarios and simulation results are presented in Sect.5 and finally
the Sect. 6 concludes the paper.

2 Related Work

Optimization plays a centric role in Big Data analytics. Optimization for Big
Data has recently attracted significant attention not only from its own commu-
nity, but also from the other scientific and engineering communities such machine
learning, statistics, and signal processing. In this section, we present the most
recent advances in optimization techniques for Big Data analytics.

The convex optimization techniques have attracted many researchers in the
last decade due to the rise of new theory for rank minimization, and successful
statistical learning models like support vector machines [13]. In [14] authors
review the advances of convex optimization algorithms for Big Data. They
assume that the defined cost functions are separable and convex. In [14], three
methods for optimization algorithms are introduced, namely first order, ran-
domization and distributed methods. First order methods use techniques such as
gradient estimates and achieve low or medium accuracy. The first order methods
provide convergence rates that are almost dimension independent and theoreti-
cally robust. These methods are suitable for distributed and parallel computa-
tion [15]. Randomization techniques are introduced to enhance the scalability of
first order methods. The idea behind randomization techniques is to replace the
deterministic gradient and proximal calculations with statistical estimators to
speed up basic linear algebra routines by using randomization [16]. First order
methods, with some approximations to increase the scalability, form the third
category. These distributed methods are enormously scalable algorithms often
with decentralized communications [17].

In [18], authors consider a novel partitioned framework for distributed opti-
mization in peer to peer networks. They propose an asynchronous distributed
algorithm, based on dual decomposition and coordinate methods. In [19], authors
propose an optimization algorithm of p-DOT model in Big Data computing
framework by analyzing high speed optical fiber communication system. They
consider the machine parameters, execution mode and cost function as reference
variables and aim to improve the efficiency of high speed optical fiber commu-
nication system.

In [20,21] authors investigate non-convex and hybrid (convex and non-
convex) optimization problems for Big Data. They propose a decomposition
framework for the parallel optimization of the sum of a differentiable function
and a block separable convex one. In their proposed framework, the (block)
variables are updated and chosen according to a mixed random and determin-
istic procedure. They also present the almost sure convergence of the proposed
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scheme. Authors in [22] present an algorithmic framework for Big Data opti-
mization, called the block Successive Upper Bound Minimization (BSUM). Their
proposed BSUM includes methods such as the Block Coordinate Descent (BCD),
the Convex Concave Procedure (CCCP), the Block Coordinate Proximal gradi-
ent (BCPG), the Nonnegative Matrix Factorization (NMF) and the Expectation
Maximization (EM).

In [23], authors consider the wireless big sensory data networks and propose
an accelerated distributed rate control method to minimize the recovery error
of big sensory data. Their proposed method is claimed to guarantee the error
minimization of reconstructed data and converge to the optimal value with a
lower latency. Distributed optimization algorithms based on Alternating Direc-
tion Method of Multipliers (ADMM), to solve Big Data optimization problem
in smart grid communication networks are presented in [24]. They introduce the
canonical formulation of optimization problem and the general form of ADMM.
Authors in [25] study Evolutionary Algorithms (EAs) to solve Big Data opti-
mization problems that involve a very large number of variables and need to be
analyzed in a short period of time. They consider the issues of EA algorithms
such as scalability and propose a heterogeneous framework that integrates a
cooperative co-evolution method. Their proposed framework splits the big prob-
lem into subproblems in order to increase the efficiency of the solving process.
A review of the recent advances in the secure outsourcing of large scale compu-
tations for a Big Data analysis is given in [26]. Authors in [26] focuses on linear
algebra and its application in Big Data optimization problems. The authors
also investigate both iterative and convex solutions for Big Data optimization
problems.

In a very simple explanations, Big Data optimization methods try to partition
the data so that it is feasible to process, mostly in a centralized manner. Although
many research articles are published in this era, there is still a big gap between
practice and theory, specially considering the needs for scalability, robustness and
characteristics of Big Data. It seems that distributed optimization algorithms are
the promising solution so fill this gap, although there still is a long road to go.
In next section we introduce the system model of proposed method.

3 System Model

From data point of view, there are two different approaches namely, centralized
and distributed. In centralized techniques, the data is transferred to a center
for further processing/storage, whereas in the distributed manner, the data is
exchanged and processed within the network locally. Transmitting the data to
a center may cause network congestion and waste of communication and power
resources. It is obvious that any malfunction in the center causes network break-
down. In addition, center requires high computation power to process the large
volume of collected data. In comparison, in a distributed approach, the network
computational load is divided between processing/storage units using coopera-
tion and no centralized infrastructure is required. In this paper we consider fully
decentralized and distributed techniques.
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Notation. The following notations are used throughout this paper. Matrices
are represented by upper case and vectors by lower case letters. Boldface fonts
are reserved for random variables and normal fonts are used for deterministic
quantities. Superscript ()T denotes transposition for real-valued vectors and
matrices while (.)* denotes conjugate transposition for complex valued vectors
and matrices. The symbol E [.] is the expectation operator, T (.) represents the
trace of its matrix argument. Ip; represents the identity matrix of order M.

We consider a network consisting of N processing/storage units, also called
‘node’ from now-on. The nodes are assumed to be distributed, each capable
of processing and storing limited size of data (at-least during the processing)
and may or may not be involved in initial data generation. We assume that
neighbor units are able to communicated to each other by using direct connection
interfaces. Node [ is said to be a neighbor of node k if they can communicate
and cooperate with each other. We denote the set of all neighbors of node k& by
Ni.

In this model we assume that the nodes are generating or receiving continuous
data with Big Data characteristics. It is impossible to transfer and process the
data in a centralized manner because of the challenges faced by communication,
security, time and storage. The objective of the nodes in the network is to make a
decision in a fully distributed manner. In other words, the solution is an estimate
of an unknown parameter vector w® in a distributed manner through stochastic
optimization. At every time instant (iteration), ¢, each node k observes a scalar
random process dy, (i) and a vector random process uy; which are related to w®
via the linear regression model presented as follows [27]:

dy (i) = lljm'wo + v (i) (1)

In writing Eq. (1), it is assumed that:
— The regression data {uy;} is zero mean, independent and identically dis-
tributed (i.i.d.) in time and independent over space with covariance matrices

Rux =B [uf up] > 0.

— The noise v () is zero mean, i.i.d. in time and independent over space with
: 2
variances o .

— The ug, and the noise vy, (1) are mutually independent.

The network will try to estimate w® by searching for the minimized global
cost function as presented in Eq. (2).

T (W) =Y Bldk (i) — upwl’ (2)
k=1

The most important issue to solve an optimization problem in a distributed
manner is to be able to separate the cost function among processing units. Each
processing/storage unit should be able to act on its own, while cooperating with
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neighbor nodes. Moreover, we assume that the cost function is separable among
all processing units as presented in Eq. (3).

N
T () = 37 T () 3)
k=1

Ji (w) is the cost function of k processing/storage units defined as Eq. (4).
T (W) = Eldi (1) — up 0|’ (4)
The cost function Ji (w) can further be written in another form as presented in

Eq. (5).
Ji (W) = [Jw — w°||?%u,k + mmsey, (5)

where ||z||%, denotes the weighted square quantity as z* Yz for any semi-definite
matrix ¥ >0, Ry, =E [u,’;,iukﬁl} > 0 and mmsey, is an additional MMSE term

that is independent of w. Therefore, we may conclude Eq. (6).

ngobal (w) = J (w) + Z (”w _ w0||?%u)l + mmsel) (6)
£k

It is obvious that the optimum value, w® that appears in the quadratic parts
is not known. It should also mentioned that the weighting matrices R, ; are not
available in general and only those from the neighbors can be assumed to be
available. Therefore, we may conclude Eq. (7).

JSt (1) = Jj (W) + Z (||w — oJOHZRu‘z) (7)
leN\{k}

Please note that the term mmse; is ignored since is independent of w and have
no effects in finding the optimal value, w®. The covariance matrices R, ; is not
available in practice. Usually, processing/storage units can only observe realiza-
tions w; ; of data arising from distributions whose covariance matrix is unknown
R,,;. One way to address this issue is to replace each of the weighted norms by
a scaled multiple of the form as presented in Eq. (8).

o = w°lI%, , = bkl — o) (8)

where b; ;, is a non-negative coefficient. Considering Eq. (8), each node k approx-
imates the moment R, ; from its neighbors by multiples of the identity matrix.
This Approximation is reasonable because using the Rayleigh-Ritz characteriza-
tion of eigenvalues, it holds that:

0|2 0|2 02
Amin (Ru) [w = %l < flw = wllR, , < Amax (Ru ) o — @] (9)
Therefore, we may conclude that:

Tt W) e Tk @)+ Y bl — W) (10)
leNK\{k}
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This recent cost function at node k relies only on available information from
neighbor nodes. Now, each node k can apply a steepest-descent iteration to
minimize the cost function as presented in Eq. (11).

Whyi = Whyi—1 — M [V It (w)]*
Whi = Wkio1 + ik Paug — Rugwiio1) — kYo bk (weio1 —w®) (1)
leNK\{k}

where V, denotes the gradient vector. The step size parameters uj can be con-
stant or variant. Constant step size allows the algorithms to work continuously,
while variant step sizes that decay to zero, causes the algorithms to stop after a
while. An adaptive implementation of can be obtained by replacing covariance
matrices by instantaneous approximations as presented in Eq. (12).

Tk ~ d (9) uy, ;

12
Ry k=~ up juk (12)

Finally, by some substitution of equations, we may conclude that:
Wi = Whyio1 + prug; (dy (1) — ug jwri—1) — p Z bk (Wk,i—1 —w?) (13)
IENK\{k}

The last correction term still depends on the unknown w®. Choosing different
approximations for w? leads to different strategies such as consensus.

4 Proposed Method

In this section we first present the proposed method by its mathematical model.
We further propose an optimal weighting and finally discuss on computational
complexity of the presented method.

4.1 Mathematical Model

In the proposed method, we apply diffusion adaptation [28] and by defining an
intermediate variable, 1, we have:

Vr,i = Wri—1 + ey, (dg (1) — g iwki-1)

Wi = Uk — e >, bk (wiio1 —w?) (14)
LeENL\{k}

The unknown term w® is still shown in the equation. Considering v ; as a sub-
stitute for w® we have:

Vi = wri—1 + ey, ; (dg (7) — g iwki-1)

Wr = Vi — k>, bk (Vi — Vi) (15)
leNw\{k}
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It should be noted that in previous methods, w; ;1 is usually substituted as
w?. Defining a; 1 as a weighting coefficient as presented in Eq. (16) and py as
Eq. (17), we may conclude Eq. (18).

L= > wbjr,l=k
B FENI\{k} 16
aykr = ,Ukbl,kvl ENk\{k} ( )

0, otherwise

oo

g (i) = 00, 3 it 1) < 0 (17)

Vkyi = wi,i—1 + ey ; (di (1) — g wk,i-1)
Wi = Y, apkri-1 (18)
LENG,
The Eq. (18) could also be written in another form as presented in Eq. (20).
Where ¢; 1 are the entries of the right-stochastic matrix C, satisfying Eq. (19).

ar>0, Cly=1n, c¢r=0 if €N (19)

Vi = Whi—1 + e Y cruf,; (di (1) — wiwii-1)

LEN} 20
Wi = D, G pPri-1 (20)
lENk

4.2 Optimal Weighting

In this section, we assume that the network topology may vary in each itera-
tion, 7. It means that the neighborhood of each node changes over time and the
static combination rules are not applicable for these dynamic networks. In these
networks, the entries of the variant left stochastic matrix A; can be expressed
as follow:

ak (1) = Lk (4) (21)

where 7; i, is positive fixed combination weights that node k assigns to neighbors
l € Ny, and Z; i, (4) is defined in Eq. (22).

N I if lGNk,i
Lk (i) = {0, otherwise (22)

As can be seen in Eq. (22), Z; x () is a random variable with Bernoulli distribu-
tion. Considering Eq. (21) the weighting function could be written as:

Yiplig (1), if 1€ Npi\{k}

o )1e . if l=k
a (i) = e 0 (23)

0, otherwise



86 R. Shahbazian et al.

The stability of proposed method in the mean does not depend on the
particular choice of combination matrix. Theoretically, other choices are pos-
sible as long as E[A;] yields a left stochastic matrix. Intuitively, E[4;] will
be a left stochastic matrix if the instantaneous combination matrix A; satisfies

> ak (1) = 1 for all . Mathematically the claim can be stated as follows. If
ZGN)CJ‘,

Vi € {0,1,...} ,Vk € {1,...,N}, Y a;i(i) =1 then E
lENk,i
This can be proven as presented in Eq. (24).

Z agk (Z)] = 1.

lE./V’)cJ‘,

E[A]=E| > ak ()L (i)
leNk,‘i
E[4;] = lim % i > Lk DLk (9) (24)

E [Al} = hm% [ Z a g (1)Il,k; (1) + -4 Z a g (’L) Il,k: (’L) =1

i—00 lEN,,: lEN,,;

Therefore, the optimum weight based on Metropolis combination rule in large
scale and dynamic networks with variant topology can be presented as Eq. (25).

s € N\ {k}

oL Y ) ifi=k
ai (7) N (25)

0, otherwise

4.3 Computational Complexity

Considering n as the average number of neighbor nodes in each iteration, and
assuming that total I iterations is needed for the convergence and having N pro-
cessing/storage units in the network, the computational complexity is presented
in Table1. Comparing with convex optimization and considering semidefinite
programming (SDP) or Second Order Cone Programming (SOCP) the complex-
ity is non-linearly related to number of data generator/processor/storage units,
at-least by o(N?).

Table 1. Computational complexity of proposed distributed method

Number of additions | Number of multiplications
(n+2)NI NI
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5 Evaluation Results

In this section we evaluate the proposed algorithm using a practical example.
In this application, we define an optimization problem and evaluate the perfor-
mance in terms of accuracy and robustness.

5.1 Cognitive Networks

One practical example of Big Data may be found in wireless sensor networks
where the sensors generate huge amount of data in a non-stop manner [29]. In
wireless networks, it is shown that only a partial spectrum is used by the users.
So, the cognitive systems are proposed as a solution and to improve the spectrum
usage efficiency. Such systems include two types of users namely, primary and
secondary. The primary users are the owner of spectrum and secondary users
should continuously scene the spectrum (called spectrum sensing). When they
find the an unused band of spectrum for a period of time, use it based on the
network predefined policy. Now, assume that the sensors should sense the data
and send their observations to a center. Besides the security, power consumption
and data processing issues, the latency introduced in transferring data is not
acceptable. This might be a simple application of proposed method to make a
decision continuously with high accuracy and reliable against any communica-
tion failure [29]. A simple diagram of distributed spectrum sensing procedure is
presented in Fig. 3.

Fig. 3. Instruction of performed tasks in distributed spectrum sensing

As presented in Fig. 3, first each sensor needs to measure the energy level
and cooperate with other neighbors to make a distributed decision with local
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information. We consider a sample network consisting of 15 sensors (secondary
user). We consider two scenarios; in the first scenario, we assume that the com-
munication link between sensors (neighbors) is ideal. In this case, each sensor
sends the data to its neighbors and makes a decision accordingly. The simulation
results are presented in Fig. 4. As illustrated in Fig. 4, the first decision of each
sensor is different. It is because each sensor have only access to its local informa-
tion. Obviously, the first decision of most sensors is wrong. The challenges forced
by communication, security, processing power and more important time of deci-
sion, makes it impossible to gather the information in a center and process them
simultaneously. We assume that information are transferred only to neighbors
and nodes perform the proposed optimization algorithm. After a few iterations,
the whole network (each node) can reach a correct decision while each has only
processed local information. This simulation shows how the continuously gener-
ated large amount of data that is impossible to transfer and process in any of
nodes is processed in a fully distributed manner.

—%—— Sensor1
—k—— Sensor2
—¥—— Sensor3
—¥—— Sensor4
—¥—— Sensor5 =

Sensoré
—¥—— Sensor7
—%—— Sensor8
—%—— Sensor9
—¥—— Sensor10
——— Sensor11
—¥%—— Sensor12 7

Detected signal's energy (dB)

Sensor13

—¥%—— Sensor14
20 —%—— Sensor15

195 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50
Number of Iterations

Fig. 4. Performance of the distributed spectrum sensing when the communication link
is ideal

In second scenario, we consider a more practical example. We assume that
the communication between neighbor sensors is imperfect, meaning that we eval-
uate the proposed method when some data is missing. In this scenario, we try to
evaluate the robustness of proposed algorithm. We set the probability of com-
munication failure to 0.4. It means that in each time instant (iteration), the
probability of successful transmission is 0.6 and with 40% of chance, the trans-
mitted data is missing. The result is presented in Fig. 5.

As simulation results indicate, the proposed stochastic optimization method
finds the global optimum while only local information is exchanged through the
network. The convergence of this network means that, although sensors only pro-
cess their own cost function, the information diffuses to the network. Considering
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Fig. 5. Performance of the distributed spectrum sensing when the communication link
fails with probability of 0.4

the communication link imperfection, the method is robust against missing data.
It should be mentioned that the algorithm is capable to be used in all network
with arbitrary size.

6 Conclusion

In this paper we investigated the optimization techniques for Big Data analyt-
ics. We presented a fully distributed method to make a decision over large scale
networks and data sets. We further proposed optimal weighting function for pro-
posed stochastic optimization algorithm. The proposed method is scalable to any
network configuration, is near real-time (in each iteration, a solution is provided
although it might not be the optimum one) and more important, robust to any
missing data or communication failures. We evaluated the proposed method by a
practical example and simulations on cognitive networks. Simulation results con-
firmed that the proposed method is efficient in terms of accuracy and robustness.
In this paper we evaluated the proposed algorithm with a simple application of
cognitive sensor networks. In future works, the convergence of proposed algo-
rithm and more applications, specially in IoT and Intelligence Transportation
Systems could be evaluated.
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Abstract. Term-Weighting Scheme (TWS) is an important step in text
classification. It determines how documents are represented in Vector
Space Model (VSM). Even though state-of-the-art TWSs exhibit good
behaviors, a large number of new works propose new approaches and
new TWSs that improve performances. Furthermore, it is still difficult
to tell which TWS is well suited for a specific problem. In this paper, we
are interested in automatically generating new TWSs with the help of
evolutionary algorithms and especially genetic programming (GP). GP
evolves and combines different statistical information and generates a
new TWS based on the performance of the learning method. We experi-
ence the generated TWSs on three well-known benchmarks. Our study
shows that even early generated formulas are quite competitive with the
state-of-the-art TWSs and even in some cases outperform them.

1 Introduction

Text Classification (T'C) aims to automatically assign a set of predefined cate-
gories to a text document based on their content. TC is an important machine
learning problem that has been applied to numerous applications such as spam
filtering [28], language identification [32], and so on. Generally, the TC approach
is to learn an inductive classifier from a set of predefined categories. This app-
roach requires that documents are represented in a suitable format such as the
Vector Space Model (VSM) representation [26].

In a VSM, a document d; is represented by a term vector d; = (w1, w2 4, ...,
wy ;) where each term is associated with a weight wy, ;.

The weight represents how much a term contributes to the semantics of a
document. The method which assigns a weight to a term is called Term Weighting
Scheme (TWS).

Numerous TWS exist and we introduce the most famous in Sect. 2. They are
generated according to human a priori and mathematical rules. TWSs are usually
simple mathematical expressions. Unfortunately, depending on the application,
it is not easy to know a priori which TWS will be effective.

As expression discovery may naturally be addressed by genetic programming
[1], we are interested in this paper to study the effectiveness of Genetic Pro-
gramming (GP) generated formulas for term-weighting and their aspects. We
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are also interested to know if a stochastic evolutionary process with no informa-
tion about the complexity, the shape and the size of the expression can find at
least competitive discriminative TWS.

The paper is organized as follows: Sect.2 presents the TWSs and related
works. In Sect.3 we present Genetic Programming and how it is applied to
TWS. Section 4 presents the experiments and the results, and then we conclude
in Sect. 5.

2 Term Weighting Schemes

TC is a supervised learning task. Hence, the training data consists of a set of
labeled documents D = ((di,l1), ..., (dn,In)), such that d; is the term vector
of j-th document, I; is its label and N is the total number of training doc-
uments. As in VSM representation, a document d; is represented by a term
vector dj = (w15, W2 5, ..., W, ;) Where w; ; is a weight assigned to the i-th term
of the vocabulary ¢; of the document d; and determined by the TWS.

2.1 Statistical Information

Generally, a multi-labeled classification task is turned into several distinct single-
label binary task, one for each label, using the binary relevance (BR) transfor-
mation strategy. That is, given the list of labels L = {l1, 1, ..., 1, }, the original
data set is transformed into m different data sets D = {D;, Do, ..., D, }. For
each data set Dy, documents having the label I, will be tagged as the positive
category ci, and the rest as the negative category ¢x. Weights are then computed
independently for each binary data set.

Based on the BR transformation, given a term ¢; and a category cx, TWS
could be expressed using statistical information a, b, ¢ and d obtained from the
training data:

— a is the number of documents that contain the term t; and belong to the
positive category ck.

b is the number of documents that don’t contain ¢; and belong to cy.

— ¢ is the number of documents that contain ¢; and don’t belong to c.

d is the number of documents that don’t contain ¢; and don’t belong to c.

Besides the statistics described above, Table 1 shows different statistical infor-
mation that could be extracted from the training data.

2.2 Term Weighting Schemes

Generally, TWSs combines two of three factors pointed out by Salton et al. in
[26] that are believed to improve both recall and precision:

— Term Frequency (TF) factor: The TF factor is used to capture the relative
importance of terms in a document.
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Table 1. Statistical information (Terminals) Table 2. Six traditional CF factors.
used to evolve a TWS.

Label | Description CF|Defined by
N # documents e Nx(axd—bxc)x(a*xd—bxc)
C # categories (atc)*(b+d)*(a+b)*(ctd)
a *
Cy # categories that contain the term t or 10g(2 + b C)
T a
& # doc that contain t rf 10g(2 + m)
N; # doc that do not contain t ] 1 (g)
- s icf|1l0g c
Necat | # doc in the positive category cat _ - lt
Neot |# doc that do not belong to cat ig |(§ xlog (a+b)(a+0))
+(g x log (c+d)<a+c>

§

~ X log < a+b)(b+d)
4 10g7
N [CETH D)

— Collection Frequency (CF) factor: Also called term discrimination. The
importance of words in a document (TF factor) does not provide enough
discrimination ability. A common word like "The’ is frequent in almost all
documents, and then it could not separate a group of documents from the
remainder of the collection. Hence a discrimination factor is needed to favor
those terms that are concentrated in a few documents of the collection. Main
known CF factors are presented in Table 2.

TWSs could be divided into two sets depending on whether they make use
of available information on document membership (Supervised TWSs) or not
(Unsupervised TWSs).

Unsupervised TWSs are generally borrowed from Information Retrieval
domain [26] and adopted for TC [7,22,23].

Term Frequency-Inverse Document Frequency (TF-IDF) is the most famous
term weighting method. This method combines the TF factor and the CF factor
and can be formally defined as w; ; = tf; ; x log % where w; ; is the weight of
the term t; in the document d;, tf; ; = f; ; is the term frequency represented by
the raw count of ¢; in d;, and log IJVV is the inverse document frequency (idf).

Besides the raw count (f; q) representation of ¢ f, there exist numerous other
variants such as binary representation (w;; = 1 if the term ¢; occurs in the
document d; and 0 otherwise), log(fi ;) + 1, fij/ D ycq ft,a- All these variants
are also used as TWS on their own [7,8,22,26]. The inverse document frequency
has also a number of variants such as log(N/N;) + 1, log((N — N;)/Ny) [26].

Supervised TWSs makes use of available information on the membership of
training documents by replacing the unsupervised idf component in TF-IDF by
another supervised component. Debole et al. and Deng et al. in [7,8] are the
first to take advantage of such information by combining the unsupervised TF
component with different supervised term discrimination component: y? (TF-
CHI), which makes a test of independence between a term and a category. x>
alongside with other supervised feature selection metrics, has been tested in sev-
eral papers, as a term weighting methods for text categorization. For example,
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Deng et al. in [8], replaces the idf factor with x? factor, claiming that TF-CHI
is more efficient than TF-IDF. In contrast, in a similar test, Debole et al. in
[7], compare TF-IDF with three supervised term weightings, namely, TF-CHI,
Odds Ratio (TF-OR) and Information Gain (TF-IG). The authors have found no
consistent superiority of these new term weighting methods over TF-IDF; Infor-
mation Gain TF-IG [2] which measures the amount of information obtained for
category prediction by knowing the presence or absence of a term in a document
[7,8,31]; Gain Ratio (TF-GR) first used in a feature selection method defined as
the ratio between the information gain of two variables and the entropy of one
of them [7]; Odds Ratio (TF-OR) was first used as a feature selection method by
Mladeni’c et al. [24]. It is a measure that describes the strength of association
between two random variables. A comparative study on term-weighting for TC is
made by Deng et al. in [8]. The study shows a good performance of TF-OR but is
outperformed by TF-GR; Relevance frequency (TF-RF) proposed in [20], mea-
sures the distribution of a term between the positive and the negative category,
and favors those terms that are more concentrated in positive category than in
negative categories; Inverse Category Frequency (TF-ICF) is a new supervised
TWS proposed by Wang et al. in [30]. The measure aims to favor those terms that
appear in fewer categories. More similar methods have appeared in [12,13,15].
Several comparative studies on these TWSs for both term-weighting and feature
selection has been reported in [8,22,24,31]. A new approach for term-weighting
based on (TF-IG) have been proposed for multi-labeled classification task in [23].
The method computes a score based on all categories and then subtracts it from
the original TF-IG weight. The idea is to take into consideration the weights
of terms not only in terms of positive and negative categories but also in terms
of every single category. Similar approaches have been proposed to learn TWSs
via GPin [4-6,11,25,29], however, these studies have focused on information
retrieval problem. For TC, a similar approach proposed by Escalante et al. in
[9]. However our study differs in two ways: first, Escalante et al. try to generate
new TWSs by combining existing TWS, and secondly, they learn a single TWS
for each data set whereas we learn a TWS for each category in a data set. In our
work, we generate TWSs by combining statistical information at a microscopic
level to evolve new TWSs. We also extend the study on the thematic TC. We
hope this leads into more robust non human based TWSs.

3 Genetic Programming

Evolutionary computing is based on Darwin’s theory of “survival of the fittest”.
The main scheme of evolutionary algorithms is to evolve a population of indi-
viduals that are randomly generated. Each individual represents a candidate
solution that undergoes a set of genetic operators that allow to mix and alter
partial solutions. One of the key features of evolutionary algorithms is that they
are stochastic schemes.
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3.1 Introduction

GP belongs to the family of evolutionary algorithms. It was first proposed by
Cramer [3] and then popularized by Koza [19]. Unlike genetic algorithms where
the aim is to discover a solution, the goal of GP is to find out a computer program
that is able to solve a problem.

In GP, a set of random expressions that usually represent computer pro-
grams are generated. As in all evolutionary computation algorithms, this set of
programs will evolve and change dynamically during the evolution. What makes
GP suitable for a number of different applications is that these computer pro-
grams can represent many different structures, such as mathematical expressions
for symbolic regression [27], decision trees [17], programs that control a robot
[18,21] to fulfill a certain task or programs that are able to predict defibrillation
success in patients and so on.

The quality of a candidate solution (i.e. a program) is usually assessed by
confronting it with a set of fitness cases. This step is usually the most time-
consuming step as the programs may get huge and several thousands of candidate
programs are usually evaluated at each generation. These computer programs
will undergo one or several evolutionary operators that will alter in a hope-
fully beneficial way. The most classical evolutionary operators are usually the
crossover operator that allows the exchange of genetic material (in our case sub-
trees) and the mutation operator that allows a small alteration to the program.

In the most conventional GP approach, programs are usually depicted by
trees. In GP terminology, the set of nodes are split into two sets, inner nodes
of the tree are drawn from a set of functions while the terminal nodes (leaves)
are drawn from a so-called terminal set. Depending on the problem, the set of
functions can be mathematical functions, boolean functions, control flow func-
tions (if, ...), or any functions that may be suitable to solve the given problem.
The terminal set is usually the set of inputs of the problem, e.g., parameters and
constants for symbolic regression problems, sensors for robot planning, etc.

When the stopping criterion is reached, the best individual is returned, oth-
erwise, the loop continues and the best individuals are selected (according to
their fitness). There exist numerous ways for selecting the population, the muta-
tion and the crossover operators. This is beyond the scope of this paper and the
reader can refer to [16,19] for more information.

3.2 Evolving Term Weighting Scheme Using Genetic Programming

A CF factor is a combination of statistical information. It is intended to measure
the discriminative power of a term, i.e. it tells how much a term is related to a
certain category. These statistics combined by means of mathematical operators
and functions.

We are interested in automatically evolving a CF factor (an individual) using
GP. In our approach, the learned CF factor combined to the TF factor forms a
term weighting method.
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In our context of automatically evolving term weighting methods, an indi-
vidual is a combination of the function set that is built with simple arithmetical
operators (4, —, %, /, log, ...) and the terminal set (constant values and inputs
to our problem).

Table 1 shows the statistical information used as terminal set for generating
formulas which represent CF factors. As it can be seen, the function set is made
of very simple arithmetical functions while the terminal set includes to the best
of our knowledge all the statistical information used to build a TWS.

As previously mentioned, programs (generated TWS) are depicted as trees.
In this problem, the terminal nodes consist of statistical information extracted
from training data, while the inner nodes are a set of defined operators that
combines the statistical information to form a new TWS (Table 3).

Table 3. Parameters used in our genetic program.

Parameter Value

Population size 100

Initial individual size |20

Number of generations | 100

Function set +, = /, *, vz, logl(x), log2(x)

Terminal set a, b, c,d, N, Ny, Ni, Neat, Neaz, C, Cy
Mutation OnePointMutation (P = 1/individual size)
CrossOver SubtreeCrossover (P = 0.85)

Terminals and Function Set. In this study, we try to generate new TWS by
evolving the CF factor and then combines it with the TF factor. The CF factor is
a combination of constants, statistical information (N, Ny, ...), and mathematical
operators. Hence we define the terminals as the statistical information shown in
Table 1. Regarding the mathematical operators, they are defined as one of the
following (+, —, /, *, V&, logl(z) = log(1 + z) and log2(z) = log(2 + z)).

We should note that the statistical information has different types (single
value, vector, and matrix). For instance, the number of documents in the training
data N is a constant (single value), the number of documents that contains a
term t is a vector containing the number of documents for each term and finally,
the number of documents that belongs to a category cat and contains a term
t is a matrix. Operations on these different types of statistical information are
taken care of by Eigen' library using element-wise transformations.

Genetic Operators. In GP, a set of individuals is initialized and then evolved
according to a set of genetic operators. At first, we randomly generate a ran-
dom size individuals with a max size of twenty genes (the max size could be

! http://eigen.tuxfamily.org/.
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overpassed during the cross-over operation). As for genetic operators, we use the
elite selection and re-insertion, a subtree crossover with a probability of 0.85 and
one point mutation with a probability of 1/size of the individual.

Fitness Function. Generally, the performance of a TWS is assessed on known
benchmarks by evaluating a classification model on VSM representation of this
TWS. Numerous evaluation metrics exist that evaluate the classification model
such as fi; measure. Evaluating the classification model is a vital step that affects
the performance of the GP. However, it could be very time-consuming. Hence,
it is important to choose a good and fast machine learning algorithm. LibLinear
[10] is an open source library for large-scale linear classification. It supports
linear support vector machines.

In our study, once a new individual is generated, we perform a 3-fold cross-
validation on the training data which generates three disjoint subsets. We use two
subsets as the training set and one subset as the test set. The process is repeated
three times using each time different subset for testing. The performance is
measured using the f; measure. The average classification performance is used
as the fitness function. The f; measure considers both precision p (true positive
over true positive plus false positive) and recall r (true positive over true positive

plus false negative) and can be formally defined as fi(p,r) = ff; .

4 Experiments and Results

This section presents an empirical evaluation of the proposed approach. The goal
of this study is to assess the effectiveness of the generated TWSs and compare
their performances to standard TWSs. The souce code of the implementation
needed for our experiments could be found in a public repository?.

4.1 Experimental Setup

In our experiments, we have used three widely well-known benchmarks in TC:
Reuters-21578 Benchmark Corpus®, Oshumed Benchmark Corpus (see footnote
2) and the 4 Universities data set also called Webkb?. The Reuters-21578 data
set is one of the most used test collection for TC research. We use the well-
known “ApteMod” split [14]. This version of the data set contains ninety cat-
egories, however, in our experiments, we report results only for the largest ten
categories. Oshumed dataset is extracted from the Oshumed (see footnote 1)
collection compiled by William Hersh. It includes 13,929 medical abstracts from
the MeSH categories of the year 1991. Each document in this data set belongs to
one or more categories from 23 cardiovascular diseases categories. Webkb data

2 https://bitbucket.org/mazyad /eigennlp.
3 http://disi.unitn.it/moschitti/corpora.htm.
4 http://www.cs.cmu.edu/afs/cs.cmu.edu/project /theo-20/www /data, .
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set contains WWW-pages collected from computer science departments of var-
ious universities in January 1997 by the World Wide Knowledge Base (Webkb)
project of the CMU text learning group. In this experiment, we kept only the
four largest categories (“student”, “faculty”, “course” and “project”), and we
split it into three random folds where two folds are used for the training set and
one fold for the test set.

For all three data sets considered in the experiments, a default list of stop
words, punctuation and numbers are removed, lower case transformation and
Porter’s stemming are performed.

Furthermore, for each experiment, a binary transformation is applied. That
leads to multiple distinct single-label binary task, one for each label (see
Sect. 2.1). Each task could be treated as an independent experiment with its
own data set.

As mentioned above, each data set has been split into training and test
subsets. Table 4 shows, for each data set, the number of documents in the training
and test subsets, the number of classes, the number of terms, the size of smallest
category and the size of the largest category.

TWSs are evolved using the training subset (see Sect. 3.2). Finally, the test
subset is used to evaluate the performance of the generated TWS. And finally,
for each data set, we report the fi; measure (see Sect. 3.2).

In order to obtain more reliable results, we have performed 20 runs on each
task. After having evaluated the generated TWSs, we report the performance
average and standard deviation over the 20 runs. In addition, we report the
maximum and minimum f; score obtained across the 20 runs (for each run, only
the last generated TWS is taken into account).

Tables 5,6 and 7 show the results obtained by the generated TWSs and the
best baseline using linearSVM. Table 8 shows the average classification perfor-
mance of the generated TWSs on the test subset of the training data (Validation)
and the performance on the test data (Test). The goal of this experiment is to
assess the learning ability and to warn us of eventual overfitting. Table 9 shows
the average classification performance of a random learned TWS for a single-
label binary task on the complete data set. This is important in order to know
whether our GP-Based TWS has good generalization performances.

Table 4. Statistics on the selected data sets used for our experiments (training/test).

Reuters Oshumed | Webkb
Number of documents 7769/3019 | 6286,/7643 | 2803/1396
Number of classes 90 23 4
Number of terms 26000 30198 7890
Size of the smallest category | 1/1 65/70 336/168
Size of the largest category |2877/1087 | 1799/2153 | 1097 /544




100 A. Mazyad et al.

4.2 Results

First, a fast study of the Tables 5,6 and 7 shows that the best baseline TWS is
different for each binary task. Therefore, a multi-labeled task requires different
TWSs for each category. Using different TWSs could lead to better results.
However, the problem is to recognize the best TWS for a specific task. Finding
the TWS by cross-validation does not mandatory return the best TWS.

Regarding Reuters-21578, the generated TWSs and the baseline schemes have
similar performances. However, on Oshumed and Webkb data sets, the GP-
Based TWSs outperform the best baseline schemes. Reuters-21578 is one of the
most studied data-set in TC for TWS making the task of finding better TWS
harder. Moreover, it is the most unbalanced data set in the study which makes
generalization harder.

Table 5. Classification performance on top 10 categories of Reuters-21578 obtained
with the generated TWSs and the best standard TWS. Best results are bolded.

GP Best TWS
Label f1 Min |Max |fl TWS
Earn 98.34 + 0.09 | 98.24 | 98.54 | 98.38 | tf.idf
Acq 96.93 +0.23 | 96.55 | 97.54 | 97.10 | tf.idf

Money-fx | 79.60£0.50 | 78.16 | 80.45 | 78.63 | tf.idf
Grain 94.25 +0.63 | 93.10 | 95.22 | 93.43 | tf.rf
Crude 90.01 £0.81 | 88.27/90.94 | 88.24 | tf.rf
Trade 79.10+1.21|77.69|80.18 | 78.03 | tf.rf
Interest | 75.16 = 0.50 | 74.45|76.19 | 76.19 | tf.idf

Ship 80.52+1.54|77.84 | 82.93|78.95 |tf.or
Wheat 88.11 +1.26 | 86.12 | 90.96 | 90.20 | tf.chi
Corn 92.80 +0.27 | 90.83 | 93.94 | 93.91 | tf.chi

Average |87.48+£0.70|86.13 88.69 | 87.30

From Table8, we can see that the performance of generated TWSs on the
test subset of the training data during the cross-validation (See Sect. 3.2) is very
similar to the performance on the test data. In addition, the standard TWSs have
different results. This is interesting as it suggests that there is no overfitting and
that further learning can improve the performance.

From Table9, we can see that the average performance (macro-f;) of the
generated TWSs outperforms the best baseline on the three corpora which means
that the three learned TWS have good generalization performance.

Finally, compared to the results obtained in [9] on Reuters-21578 and Webkb,
we have similar results. Note that, in [9], they used Reuters-10 data set which
contains only documents from the top 10 categories of the Reuters-21578 data
set, whereas we use Reuters-21578 “ModApte” split which contains documents
from 90 categories.
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Table 6. Classification performance on Oshumed data set obtained with the generated
TWSs and the best baseline of the standard TWSs.

GP Best TWS GP Best TWS
L |fl Min Max |f1 TWS L |fl Min Max |f1 TWS
C01|68.194+1.00 65.91 70.71|64.36 tf.or C13(66.48+0.47 64.72 67.92(63.70 tf.or
C02|41.284+1.20 38.45 43.51|36.38 tf.or C14(80.08+0.39 79.22 80.55(77.11 tf.idf
C03|76.54+3.28 72.03 81.21|78.23 tf.or C15(65.98+0.71 64.16 67.20(61.53 tf.chi
C04|80.06+1.48 77.67 81.72|80.06 tf.chi C16(33.54+0.89 31.14 35.41{28.00 tf.or
C05|59.484+0.20 59.05 60.59|52.85 tf.or C17(64.85+0.90 61.87 66.87(59.24 tf.chi
C06|73.9941.29 71.49 75.76|71.44 tf.or C18(61.214+1.50 57.50 65.12{61.22 tf.or
C07|41.40+3.35 34.86 47.45|32.6  tf.or C19(41.60+2.04 38.23 45.01{39.84 tf.or
C08(63.97+2.51 59.13 67.69|61.34 tf.or (C20{71.61+0.28 70.96 72.07(69.62 tf.or
C09|53.75+2.63 50.85 58.43|48.00 tf.or (C21(65.55+0.32 64.18 67.56(64.37 tf.chi
C10{57.00+2.33 51.05 59.53(50.2  tf.rf (C22(10.314+0.12 8.33 14.37|4.21 tf.or
C11|67.78+1.06 65.52 69.23|66.67 tf.or (C23(46.77+0.08 45.59 47.20(46.15 tf.idf
C12|76.724+1.10 73.52 78.25|72.86 tf.or Avg|59.48+1.26 56.76 61.89|56.08
Table 7. Classification performance on Webkb Table 8. Average -classification

data set obtained with the generated TWSs and
the best baseline of the standard TWSs.

GP

Best TWS

L

f1 Min

Max

f1

TWS

Student

90.29 £0.50|89.05

90.90

90.11

tf.rf

Faculty

86.62+£0.15/85.69

87.81

86.21

tf.rf

Project

80.82+0.64|77.48

81.76

80.25

tf.rf

Course

94.47 +£0.34|93.86

96.08

93.56

tf.rf

Avg

88.05 +0.41|86.52

89.14

87.53

performance for validation phase

and test phase.

Validation

Test

Reuters [89.1510.42

87.48 £0.70

Oshumed | 59.74 +£0.9

59.48 +£1.26

Webkb |87.74+0.31

88.05+0.41

Table 9. Average classification performance of random TWS learned for a single-label
task on its corresponding data set and the best baseline. The selected TWS is randomly
chosen between the best generated TWSs for each category.

GP-Based Baseline
Data set |Prefixed formula TWS f1 f1 Best baseline
Reuters |+ * C * //acN log2c C|C* C x (;y *log(2 +c)) 86.88|85.92 | tf.xf
Oshumed | /d/ + N¢log2 Cia m 60.30 57.10 | tf.chi
Webkb |logl log2 a log(1 + log(2 + a)) 88.43|87.53 | tf.rf

5 Conclusion

In this paper, we have studied the benefits of using genetic programming for gen-
erating term-weighting schemes for text categorization. Unlike previous studies,
we generate formulas by combining statistical information at a microscopic level.
This kind of generation is new, and we can conclude that :
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Different data sets require different formulas. This means that having a good
generic formula is really hard to find.

Within a corpus, it is even better to use a different formula for each category.
The hard task is to find out the best for each one.

Genetic programming is able to find very good formulas which outperform
standard formulas given by experts in the literature.

Eventually, even if the generated formula is specific to a given category, results
show that the best formula for one category is generic enough to be good (but
not best) for other categories.
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Abstract. In this paper, a clustering based surrogate is proposed to
be used in offline data-driven multiobjective optimization to reduce the
size of the optimization problem in the decision space. The surrogate is
combined with an interactive multiobjective optimization approach and
it is applied to forest management planning with promising results.
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1 Introduction

Recently, emphasis on optimization has been shifting from model-based to data-
driven optimization where the optimization problem is formulated based on avail-
able data. The size of the data can sometimes be large which means that the
optimization problem(s) to be solved become large as well increasing their solu-
tion times. This is especially challenging in multiobjective optimization having a
large number of objective functions. In more details, this is because interaction
with a human decision maker (DM) is required to find satisfactory solutions to
such problems and long solution times can make the interaction less efficient.
Surrogate-assisted optimization approaches are often used to solve compu-
tationally expensive optimization problems both for single and multiobjective
problems (see, e.g., [2,4]). Typically, computational expensiveness is considered
as the time taken to evaluate objective and/or constraint functions since that
can take a long time for e.g. simulation or experiment-based models. In data-
driven optimization, the expensiveness is typically not in evaluating the objective
function values, but in the size of the problems solved (in the decision and/or
objective space). The main idea in surrogate-assisted optimization is to use a
relatively small sample of expensive function evaluations to train surrogate func-
tions that approximate the expensive functions but are faster to evaluate [2,4].
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In this paper, we introduce a surrogate-assisted approach for data-driven
multiobjective optimization problems that are based on large data sets motivated
by a case study in forest management described later. We assume that all data
is available at the beginning of optimization and no new data can be obtained
(often referred to as offline data-driven optimization [15]). Further, we consider
linear problems with discrete decision space. The method uses clustering in the
decision space as a surrogate to decrease the size of the optimization problem by
reducing the number of similar variables. The resulting optimization problems
are not as accurate as the original problem but are faster to solve. The proposed
surrogate is combined with an interactive multiobjective optimization approach
that iteratively utilizes preferences of a DM in finding a most preferred solution
for the multiobjective problem considered.

In the literature, one approach has been presented that is somewhat similar
to what we present, in [15] where the design of a trauma system was optimized.
Due to the large amount of data available, the data was first clustered and the
cluster centers were then used as data in evolutionary optimization of finding
non-dominated solutions for a bi-objective problem. In our approach, we use
mathematical programming together with interaction with a DM to find the
most preferred PO solution. Furthermore, hierarchical clustering was used in
[15] to represent the real hierarchy of the data which is not necessary in our case
study. Further, functional analysis of variance decomposition was used in [12] to
decompose a multiobjective optimization problem both in objective and decision
spaces. Then, solution of the original problem was constructed by solutions of
the decomposed problems. A different approach from ours was presented in [1]
where clustering was used to find versatile solutions after finding a set of non-
dominated solutions by multiobjective optimization. To summarize, there does
not exist similar approach in the literature as far as we know.

As a case study to demonstrate the developed approach, we consider a boreal
forest management problem where both the economical and biodiversity related
objectives are considered. The underlying data gathered from around 30 000
forest stands simulated 50 years into future (with seven management options)
was used to formulate a four objective combinatorial optimization problem which
was then solved by interacting with an expert DM. Previous considerations of
similar problems have included directly using the combinatorial optimization
problem together with the epsilon constraint method which optimizes only one
of the objectives while considering others as constraints [9,13,14]. When using
our proposed approach, it is possible to (1) consider larger problems (i.e., more
stands and/or management options) with comparable results in fewer time, and
(2) more conveniently handle the conflicting objectives and inherent trade-offs
while interacting with an expert DM.

The rest of the paper is organized as follows. First some background infor-
mation is given in Sect.2, while the proposed clustering based optimization
approach is described in Sect.3. Our case study and the obtained results are
described in Sects. 4 and 5, respectively. Finally, conclusions and future research
ideas are given in Sect. 6.
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2 Background

2.1 Multiobjective Optimization

When multiple conflicting objectives are concerned, the optimal solutions are
often called Pareto optimal (PO) which means none of the objective values can
be improved without impairing some other ones [6]. In this paper, we consider
multiobjective integer linear programming problems of the form
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The problem includes k objective functions to be maximized. Further, i €
{1,2,...,n} denotes index for the ith decision variable while j € {1,2,...,m}
denotes index for different values for the decision variables. Note that categor-
ical variables having several possible values in the original problem have been
converted into binary variables, i.e., z;; € {0,1}. Coefficients c,lij denote the
objective values for the decision variable values x;; for the [th objective function
and they are attained from data.

A feasible solution x* for problem (1) is called PO if there does not exist
another feasible solution x such that f;(x) > fi(z*) for all ¢ = 1,...,k and
fi(x) > fj(z*) for at least one j. Note that there can exist infinitely many PO
solutions that are mathematically equally good, i.e., none of them is better than
others without any additional preference information.

Many different approaches have been developed over the years for solving
multiobjective optimization problems (see, e.g. [3,6]). In this paper, we will con-
centrate on interactive approaches [7], where a DM provides preference informa-
tion in order to find the most preferred solution for the problem considered. The
general idea of interactive approaches is that first some PO solution is computed
and shown to the DM for evaluation. The DM indicates how that solution should
be improved if she is not satisfied with it by providing preference information.
The type of preference information depends on the interactive method used.
Then, the preference information is taken into account and new PO solution(s)
is computed and again shown to the DM for evaluation. This iterative process
continues until the DM is satisfied.

To solve problem (1) with the help of a DM, we will use a surrogate approach
based on clustering (described in more details in Sect. 3) combined with the syn-
chronous NIMBUS method. Synchronous NIMBUS (8] is an interactive method
based on classification where preference information is indicated by classifying
objective functions into different classes at the current PO solution. More pre-
cisely, an objective function can be classified either (1) to be improved as much
as possible, (2) to be improved until a given aspiration level z2°P, (3) to retain
its current value, (4) to be allowed to impair until a given bound z*"?, or (5) to
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change freely (i.e., not interesting at this iteration). A feasible classification is
such that there should be at least one objective function in the first two classes
and in the last two classes since if any improvements are required, some impair-
ments have to be allowed. Then, the original multiobjective problem together
with the preference information are used to formulate up to four different single
objective scalarized subproblems that are then solved by using a suitable single
objective optimizer. The resulting solutions are proven to be PO [8].

2.2 Forest Management

In Fennoscandia, much of the countries are dominated by Boreal forests, which
provide a wide range of ecological, economic, and social values. Most of these
forests can be considered to be semi-natural, where limited silvicultural and
management actions are done infrequently throughout the development of each
forest stand (a relatively homogeneous parcel of forest). A forested stand in
Fennoscandia follows rather similar development following a clear felling (the
removal of the trees in a specific area). Depending on the site, trees are either
planted, seeded, or allowed to grow through natural regeneration (where seeds
provided from the forests surrounding the stand, and specific trees left within the
stand for this specific purpose). Following this, within 5 to 10 years, tending of
the stand may be required to remove grasses and shrubs. Once the forest stand
is established it is left to grow. Throughout the forest stands development the
forest stand can be thinned (the selected removal of specific trees) several times
prior to clear felling, where the process is repeated.

From a forest management perspective, the specific actions conducted in a
forest stand can vary according to intensity and timing. For instance, thinnings
may or may not be performed, and final felling can be delayed, done years prior
to the expected maturity or delayed indefinitely. Each management decision will
impact the quantity of timber provided, and ecosystem services provided from
the forest stand. At a landscape (500-5000 ha) or regional scale (500-20000 km?)
managing forests becomes a combinatorial optimization problem where the deci-
sion variables describe the number of stands and the number of options allowed
to for managing each forest stand. Managing the use of forests involves significant
conflicts between different objectives. Economic objectives conflict with ecologi-
cal objectives, and conflicts can arise between different ecological objectives. The
quantification of the economic and ecological objectives is done through forecast-
ing future forest growth through forest simulators. In Fennoscandia, there are
multiple varieties of forest simulators available, and each software package utilize
over four hundred empirically based models to predict forest development and
growth.

3 Clustering Based Interactive Multiobjective
Optimization Approach

The main idea of the developed surrogate is to cluster the decision variables in
such a way that similar variables are represented in the optimization problem
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through a representative one within the cluster, thus, reducing the size of the
optimization problem. In this paper, we consider only discrete decision variables,
but our approach can also be extended to mixed variables. To solve the resulting
multiobjective optimization problem, we utilize here the synchronous NIMBUS
method as already mentioned, which leads us to solve a series of single objective
subproblems. By reducing the number of decision variables, the resulting sub-
problems are easier/faster to solve which reduces the time that the DM needs
to wait between interactions.

3.1 Clustering as a Surrogate

The core of forming the surrogate is clustering the discrete decision variables
using some hard clustering method: original n variables are assigned to K < n
clusters according to their similarity in values. To guide how the clustering is
performed, it is important to define a similarity measure, i.e., how the similarity
of variables is defined. Even though clustering using expert knowledge is possible,
the numerical similarities of the variables in each cluster are more important.
As the method is used to reduce the computational burden, manual clustering
would require extreme human effort due to large number of decision variables.

The clustering based surrogate is built on a large number of round clusters
used to approximate the decision space. In the traditional clustering, the number
of clusters K is supposed to match the real number of different classes in the
data, and it is one of the most important elements of clustering. However, in
the clustering based surrogate this aspect is not as important but the focus
of designing clusters should be the ability to compress and represent the data
accurately and to be sufficient for its purpose. On occasions, it could be profitable
to use more clusters than compared to what would be otherwise optimal to
improve accuracy.

In traditional clustering, the shapes of the clusters are supposed to capture
and separate different classes from the data. In the clustering based surrogate,
this does not need to be the case as the focus could be on appropriately approx-
imating and compressing the data. Especially when the number of clusters is
“too large”, the most suitable shape for clusters is rounded. This enables that
all the clusters can be handled similarly as local approximations.

When the n variables have been assigned into K clusters, the most “repre-
sentative” variable z; is selected from each cluster ¢ € {1,2,..., K} as a proxy
variable. As the clusters are rounded, the most representative should be the
center of each cluster. If the chosen clustering method is not using existing vari-
ables as centers, then the variable closest to the center can be used as proxy. The
proxy variables that are representing all the variables of individual clusters are
then already existing variables. Note that if variables in the same cluster have
different numbers of discrete value alternatives, the proxy variable’s ability to
represent all the variables in the cluster is greatly impaired.

The chosen proxy variable z; is denoted by y; and it is assigned a weight w;
according to the proportion of the variables in the given cluster 7. For example, if
there are 356 variables in a single cluster 4, its corresponding weight is w; = %6.



Data-Driven Interactive Multiobjective Optimization 109

In addition, the coefficients ¢! ;; are renamed to d , and the previously presented

multiobjective integer linear programming problem (1) is transformed to
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where ¢ € {1,2,..., K}, denotes index for proxy variable, j € {1,2,...,m} index
for discrete value alternatives for each proxy variable 4, and w; the weighting
coefficient for the proxy variable. Value déj denotes the lth objective value of the
proxy ¢ when the jth discrete value alternative is chosen. For ith proxy variable,
yi; has value 1 if jth value is chosen for proxy variable ¢, and otherwise 0. The
parameter n is the number of original variables. As can be seen, if K = n, then
w; = + for all i € {1,2,..., K} and this formulation is identical with problem (1).
Thus, this guarantees the validity of this approach of combining the described
surrogate and optimization.
Building the cluster-based surrogate is summarized as follows:

1. Cluster n decision variables into K clusters by using some clustering method.

2. For each K clusters, choose the center of the cluster as the proxy variable if
the center is an existing variable. Otherwise, choose the variable closest to
the center as the proxy variable.

3. Solve multiobjective optimization problem (2) by using the values of the ith
proxy variable for all the variables in the ith cluster.

The proposed surrogate is based only on local approximations of the decision
space, so the results of the clustering based multiobjective optimization prob-
lem naturally include some approximation error. Due to the structure of the
surrogate, the larger the number of the clusters used the more accurate is the
surrogate and, thus, the result of optimization. On the other hand, since the
idea of clustering is to reduce the number of decision variables, the amount of
reduction is dependent on the number of clusters, so that the less clusters there
are, the lighter the computational burden. It is thus evident, that the accuracy
and the ability to compress the decision space are contradicting features.

In multiobjective optimization, the different objectives are typically contra-
dicting with each other and this is likely to show in the clustering also. In prac-
tice, this means that depending on the chosen clustering paradigm, approxima-
tion errors for different objectives may be different. When using the clustering
based surrogate in multiobjective optimization, this problem becomes more evi-
dent as different objectives may reach their real optima to different degrees.

As the scalarized subproblems of problem (1) used here are linear [8] with
integer variables, the resulting values in the objective space may be discontinuous
in its original state. When using the clustering based surrogate and combining
several decision variables, this trait will be emphasized and there will be “bigger
holes” in the PO front (i.e. the set of all PO solutions in the objective space).
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Finding the most preferred PO solution from this kind of PO front can be quite
challenging depending on the multiobjective method used. Therefore, we have
decided to use the synchronous NIMBUS method, which uses up to four scalariz-
ing functions [8] that can be used for any kind of PO fronts, even discontinuous,
to find different PO solutions using the same preference information. To sum-
marize, we are much more likely to find an acceptable solution even from such
a challenging PO front.

For the scalarizing functions used in the synchronous NIMBUS method it
is important to attain ranges for all the objectives within the PO front, i.e.,
to calculate ideal and nadir vectors. This is usually done by computing the
optimal solutions for all the single objective optimization problems (forming the
ideal objective vector) and then estimating the nadir values by using a so-called
pay-off table [6]. When using the clustering based surrogate, these values can
be calculated with optimization using the surrogate, but if possible, the optima
based on the original variables and problem should be used instead. Even though
the scalarizing functions in synchronous NIMBUS were used with the clustering
based surrogate, it would still be better to use the original ideal and nadir values
in their formulations. The reason is that the surrogate based ideal and nadir
values are more averaged because of the approximations used in the surrogate.

The interactive solution process itself remains the same even when using the
clustering based surrogate in optimizations. The DM gives her/his preferences,
explores different PO solutions, and finally chooses the most preferred PO solu-
tion as usual with interactive approaches. The main effect of using the surrogate
is that it reduces the computational burden significantly and so enables more
seamless and less delayed interaction during the iterative solution process.

When the preferred PO solution is found using the clustering based surro-
gate, it would be good to know how far it is from the real PO front, i.e., what
is the approximation error introduced by using the proposed surrogate. This
is required as the usage of any surrogate always introduces some error, which
may misguide optimization and, thus, also the selection of the most preferred
solution. To overcome this problem, the values of the chosen surrogate based
optimal solution can be used as a reference point for the achievement scalarizing
function (see, e.g., [8]) and optimize it with the original objective functions. As
this would require using the original uncompressed decision space and be poten-
tially computationally very expensive, it may not always be possible to solve the
optimization problem in a reasonable time.

3.2 Implementation

The clustering based surrogate approach is not dependent on a specific clustering
algorithm, a similarity metric, or a way of choosing the most representative
variable, as these are always case specific. As an example, in the following case
study the clustering based surrogate is constructed using commonly known K-
means algorithm with cosine distance and the variable closest to the Euclidean
center of each cluster is chosen as the representative one.
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The actual clustering was implemented and verified using Python libraries
and Jupyter Notebooks!. To solve the resulting multiobjective problem, IND-
NIMBUS [10], an implementation of the synchronous NIMBUS method, was
used. The single objective subproblems produced were solved with the CPLEX
optimizer. Note that all solutions produced by synchronous NIMBUS are PO if
the single optimal subproblems are solved to optimality [8].

A screenshot of the graphical user interface of IND-NIMBUS is shown in
Fig. 1. On the left hand side, the current PO solution is shown in the Classifica-
tion panel as a bar chart. Each horizontal bar represents an objective function
and the end points denote the nadir and ideal values, respectively. For maxi-
mized objective functions the colored part starts from right and, thus, the less
color the better the value. In this case, all objectives are to be maximized. The
DM can indicate preferences by clicking different parts of the bars. If one clicks
on the colored part, it means that the objective needs to be improved. On the
other hand, if one clicks on the non-colored part, it means that the objective is
allowed to impair. All the PO solutions computed during the solution process
are shown in the top right panel called Alternatives while the most interesting
ones found so far can be dragged to the Best candidates panel in bottom right.

Classifier | Generate Alternatives | Messages

Classificatioly Alternatives
1860 Timber revenue
4D 72
L BEOE
1 ‘ 2 ‘ 3 J 4 5

Carbon Storage i j E ! !
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511 6 7 9 10
D j i j !
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m*3

18 . 11 ‘ . 12 ‘ . 13 ‘ . 14 | | 15

Habitat
suitability

029

Best candidates
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Fig. 1. A screenshot of IND-NIMBUS showing interaction with the DM.

4 Case Study: Multiobjective Forest Management
A forest landscape from Central Finland is used as a demonstrative example
of the clustering approach. Information on the current state of the forest was

collected by the Finnish Forest Center through field measurements. The forest

! Code awailable in https://github.com /josejuhani/gradu-code.
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information represents 68700 ha, organized as 29666 stands. To predict the future
forest resources, a forest simulator (MOTTTI [11]) was used. The forest simulator
predicted forest growth for a 50-year period, according to a pre-determined set of
management alternatives. Depending on the initial stand characteristics, a range
of seven management alternatives were generated. These alternatives ranged
from setting the forest aside (doing nothing), conducting the typical management
(business as usual), with a variety of extending/shortening the final harvest and
including or excluding the option to thin the forest prior to final harvesting. The
simulated data is openly available at https://dvn.jyu.fi/dvn/dv/Boreal forest,
and more detailed descriptions of the data and simulations can be found in
[9,13,14].

Following the simulation of the set of different management alternatives, indi-
cators representing a range of values were extracted. This set of indicators rep-
resented economic and ecological interests, and the set was selected to represent
potential interests of specific stakeholders. The set of indicators (i.e., objective
functions) was: timber revenue, carbon storage, deadwood volume, and a species
habitat availability. The timber revenue was measured as the net present value
revenue using a 3% discount rate. Carbon storage was measured as the tonnes
of carbon contained within the forest (including the carbon in the soil, in the
deadwood and in the standing trees). The deadwood volume was evaluated as
a diversity weighted index: this is ecologically justifiable proxy for deadwood-
inhabiting biodiversity [5]. The species habitat availability is evaluated as done
in [9] which aggregates high quality habitat for six indicator species.

The multiobjective optimization problem was formulated as follows:
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where Tj; is the timber revenue, C;; is the amount of carbon in storage, D;; is
the volume of deadwood, S;; is the habitat availability, each provided by stand i
from management alternative j. Note that all the objective values are presented
as per hectare. The decision variable values x;; denote the jth management
alternative selected for stand i. The total number of stands n = 29666.

This forest management problem has been solved earlier, focusing on various
conservation related issues. In [9] the focus was on understanding the impacts
conservation has on the profitability of forest management. The range of com-
promise solutions and the conflicts between various solutions has been explored
n [13] and [14]. The common feature between these earlier solutions is the lack
of integration with the DM.

For solving this forest management problem, the implementation of the clus-
tering based surrogate presented in Sect. 3.2 was used. When empirically tested,
the accuracy of the surrogate increased linearly with the increase of the number
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of clusters. Based on this, it was decided to choose 600 clusters for the surro-
gate as that amount kept the time between interactions in about 10s. For the
case study, the ideal and nadir values were obtained by using the original func-
tions as previously suggested. These were verified with the previous research
n [14]. For the chosen clustering, the optimal solutions for the four individ-
ual objective functions differed from the known real optima by 0.15%, 0.47%,
2.67% and 1.38%. Further, the usefulness of clustering was verified by comparing
the approach against random clustering. The accuracy with random clustering
in optimizing each objective individually varied between 3.2%-17.8% indicating
poor performance of random clustering (results based on 10 independent runs).

5 Results and Discussion

The interactive solution process was performed by using the implementation
described in Sect.3.2. The DM involved has significant experience in both
research and implementation of forest management solutions. To start the solu-
tion process, a neutral compromise solution with values (2710, 58.3,2.76,0.26)
(obtained by using the midpoint between ideal and nadir values as a reference
point), i.e., a solution where all the objectives were balanced, was shown to
the DM. Starting from that solution, the DM wanted in the second iteration
to improve carbon storage and habitat suitability while allowing timber revenue
and deadwood volume impair. Based on those preferences, four fairly similar new
alternative solutions were produced as shown in Table 1. From the new solutions
obtained, the DM deduced that he would like to improve timber revenue.

As the current solution for the third iteration, the DM chose the first solution
(2070, 60.4, 3.02,0.28). He wanted to see how solution changes if timber revenue
is desired to improve until 2500 and the others left to reach for the values set
already in the previous iteration except for small increase for carbon storage.
Now, the DM wanted to see two new solutions (i.e. use only two scalarizations)
and optimization produced two new alternative solutions shown in Table 1.

The DM was quite happy with both the solutions, slightly preferring the
second one which had higher timber revenue (2420) when compared to the first
one (2280). He also realized that deadwood volume was not changing much.
However, he wanted to see how would a solution in between these too look like
and, thus, gave preferences as (2400, 59.5,2.81,0.28). After optimization, the
solution (2380, 59.4,2.87,0.28) was obtained which the DM was happy with. It
had a moderate amount of timber revenue and quite high carbon storage and
overall it was focusing more on the ecological aspects of forest management.

Finally, the DM wanted to still see what happens to ecological objectives
if the timber revenue is maximized while letting the other values change freely.
That should produce an alternative solution focusing on the monetary aspect and
enable comparison with the preferred solution already found. As expected, the
two solutions found maximizing the timber revenue had poor values for all the
ecological objectives and, thus, supports the selection of the balanced solution
having objective values (2400, 59.5,2.81,0.28). The DM was now satisfied and
the solution process was finished.
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Table 1. Results of iterations in solving the multiobjective problem.

Iter | Issue Timber Carbon Deadwood | Habitat
revenue [€] | storage [mgC] | volume [m?] | suitability
Ideal 3640.0 64.8 3.18 0.29
Nadir 450.0 41.2 1.16 0.17
1 | Init. Sol. |2710.0 58.3 2.76 0.26
2 | Cur. Sol. |2710.0 58.3 2.76 0.26
Classif 284 = 2070.0 | 2P =59.2 | 25"? = 2.19 | 2P = 0.28
2070.0 60.4 3.02 0.28
2180.0 60.0 2.92 0.28
2250.0 59.9 2.92 0.28
2150.0 60.1 2.91 0.28
3 | Cur. Sol. |2070.0 60.4 3.02 0.28
Classif 297 = 2500.0 | 25" = 59.9 | 25" =2.19 | 24"d =0.28
2280.0 59.9 2.99 0.28
2420.0 59.3 2.83 0.27
4 | Cur. Sol. |2420.0 59.3 2.83 0.27
Classif 224 = 2400.0 | 25°7 = 59.5 | 25" =2.81 |23°P =0.28
2380.0 59.4 2.87 0.28
5 | Cur. Sol. |2380.0 59.4 2.87 0.28
Classif 29 = 3640.0 | 25" =412 | 24"? =1.16 |2 =0.17
3630.0 41.2 1.16 0.17
3630.0 41.8 1.53 0.19
Final Sol. 2380.0 59.4 2.87 0.28

6 Conclusions

Using the developed cluster-based surrogate approach to find nearly optimal
solutions, a quick interactive decision process was enabled. Although the DM
only went through a small number of iterations, the process was quick enough to
maintain interest in the decision making process until a final acceptable solution
was found. By using the implemented decision support tool, the DM was able
to conveniently steer the solution process towards a final solution emphasizing
ecological values while still having moderate amount of timber revenue. In addi-
tion, the nature of the conflicts between different objectives considered became
more clear to him.

While this forest management problem has been solved in the extensive form
earlier, it can be made more realistic. In this case, only a limited number of
predefined management alternatives were used, which prevented the problem
from being too large. Additionally, we did not explore the temporal sequence of
planning outcomes, nor were spatial relationships maintained. As future research
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is concerned, the proposed cluster-based approach will be extended to mixed
variables. In addition, it will be tested with larger and more realistic data sets
in forest management as well as applied to different types of applications.

Acknowledgment. This research was supported by the Academy of Finland (projects
no. 311877 and 287496) and is related to the thematic research area DEMO of the
University of Jyvaskyla.
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Abstract. Data science is an interdisciplinary field of methods, processes,
algorithms and systems to extract knowledge or insights from data. University of
Winchester Business School, UK is developing an undergraduate degree pro-
gramme in Data Science which brings together student-centred and business-
driven approaches: positioning the course for the interests of students and
requirements of employers. The new programme follows the expectations of
relevant subject benchmark statements and is built on activities which focus on
different aspects of data science, drawing on some existing modules as a base. It
integrates key themes in information management, data mining, machine
learning and business intelligence. This paper presents the ongoing development
of the Data Science programme through the key aspects in its conception and
design. Understanding the employment market while defining specific skills sets
associated with potential graduates is always important for courses in higher
education. The Skills Framework for the Information Age (SFIA) has been
adopted and a novel mapping proposed for the interpretation of employability
skills related to data science. These are then linked to an adapted process model
as well as the specialist modules across academic levels.

Keywords: Subject benchmarks - Skills frameworks - Business analytics -
Data mining - Machine learning - Business intelligence - Analytical tools -
SFIA

1 Introduction

Data Science is an emerging field that requires multi-disciplinary principles to guide the
extraction of knowledge from data. In the Business context, the ultimate goal of data
science is improving decision making and its links to Big Data and other data-driven
technologies. Within the University of Winchester (UoW) Business School in the UK,
a new BSc (Hons) Data Science programme is under development which recognises
the increasing importance to organisations of knowledge as a commodity. The cur-
riculum is adopting a distinctive structure and pedagogy, building on the well-
established Digital & Technology Solutions Degree Apprenticeship as well as the
newly-validated Computer Science suite of courses. This is articulated particularly
through some specialist modules where technology and business-oriented activities are
designed to focus on different aspects of data science, namely: information manage-
ment, data mining, machine learning and business intelligence.
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This paper describes the ongoing development of the Data Science programme and
starts with the expectations of relevant QAA subject benchmark statements in the UK,
including Business and Management; Computing; and Mathematics, Statistics and
Operational Research. Understanding the employment market while defining specific
skills sets associated with data science is important for corresponding courses in higher
education. Within the same Sect. 2, the national Skills Framework for the Information
Age (SFIA) has been adopted to provide the necessary underpinning for the pro-
gramme, which allows a novel interpretation of data science skills.

Section 3 extends the theme of data science in practice by adapting a cross-industry
standard process model as a methodology to guide relevant activities and tasks, which
are linked to SFIA-related skills from a business-driven perspective. Analytical tools
and publicly available data sources have been recommended here in order to facilitate
student projects in terms of data pre-processing, visualisation and analytics.

The Data Science curriculum design has been illustrated in Sect. 4 through a
graphical representation across the three academic levels, which gives an indication of
the specialist modules versus the more diverse. All of the specialist modules are then
linked with relevant SFIA skills through a visual mapping. The paper draws to a close
with some concluding remarks and a pointer to future work in relation to the EDISON
Data Science Framework.

2 Academic and Professional Frameworks

2.1 Subject Benchmark Statements

Considering Part A of the UK Quality Code for Higher Education, which covers setting
and maintaining academic standards, there is a range of Subject Benchmark State-
ments which UK universities are required to meet across their undergraduate provision
[9]. There is no particular statement for Data Science as yet, but it is relevant to
consider three current subject benchmarks in the context of this paper.

The Business and Management benchmark statement from 2015 [10] generally
applies to the various honours degree courses in business studies and management
studies, including (e.g.) organisational development and strategic management. How-
ever, it can also be used to inform a wider provision, including those courses focused
on business functions or sectors. A broad, analytical and highly integrated study of
business and management is expected within a framework encompassing organisations,
business environment and management. Environment here comprises a range of fac-
tors, notably the digital and technological, while management includes rational analysis
and other processes of decision making within organisations.

Graduates from Business Schools should be able to demonstrate knowledge and
understanding in several areas: one of these is information systems and business
intelligence. Skills of particular relevance include problem solving and critical analysis;
research — ability to analyse and evaluate a range of business data, sources of infor-
mation and appropriate methodologies ... for evidence-based decision making; and
numeracy — use of quantitative skills to manipulate data, evaluate, estimate and model
business problems [10].
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The next subject benchmark considered here is that for Mathematics, Statistics and
Operational Research from 2015 [12]. It applies to cognate programmes of study in
MSOR including (e.g.) computational mathematics, numerical analysis and statistical
modelling. There are so many real-world applications of mathematics, which has its
roots in the systematic development of methods to solve practical problems in areas
such as construction and commerce. Understanding of the world is facilitated by
identifying and codifying patterns, enabling deeper relationships to be found than could
otherwise have been possible from observation or unaided reasoning.

Statistics has been characterised in the MSOR statement as the science of drawing
conclusions from data. It includes methods for describing and visualising data to reveal
patterns within it as well as the underlying processes producing such data, to extract
information and predict future outcomes. The subject area of analytics has become
increasingly associated with operational research in recent years. While the name OR is
generally well understood, some provision has adopted other titles across the sector,
notably: management science, business analytics, business decision methods and
business systems modelling [12].

It is worth noting that the MSOR subject benchmark advises that its statement is
unlikely to apply to teaching outside cognate departments, although it is important that
such programmes pay due attention to the place of MSOR within them.

Moving on finally to the Computing benchmark statement from 2016 [11], a range
of provision across computer science and information systems is addressed. For the
purposes of this paper, courses in data management, information modelling, machine
learning and knowledge representation are especially relevant. Computing overlaps
with a number of adjacent subjects, including (e.g.) mathematics and business. Infor-
mation systems in particular is concerned with the modelling, codification and storage
of data for subsequent analysis — specific areas of interest again relate to databases and
information modelling as well as the interactions between information systems and the
more socio-technical systems. Those courses focused on Computing in society fall
under this subject benchmark if their content is informed by computer engineering,
software engineering, information technology or information systems.

Computing-related cognitive skills include an understanding of scientific method
and its application to problem solving; knowledge and understanding of modelling for
the purpose of (e.g.) prediction; as well as the deployment of methods and tools for
implementation of systems. On the other hand, Computing-related practical skills
comprise a range of abilities, notably deploying tools effectively in the solution of real-
world applications; and critically evaluating and analysing complex problems,
including those with incomplete information. Universities are also required to provide
every student the opportunity to acquire more generic skills to enhance employability.
They include intellectual skills, self-management, team working and significantly
contextual awareness here, to understand and meet the needs of (e.g.) business and the
community [11].

It can be seen that there are elements of all three benchmarks which are relevant to
some extent to Data Science and these are developed further in the following sections.
In particular it is clear that, if only one subject benchmark statement was selected, it
would be that for Computing.



Data Science in the Business Environment 119

2.2 Professional SKkills Frameworks

The Skills Framework for the Information Age (SFIA) describes the skills expected of
professionals in roles involving information and communications technology. It has
become the globally accepted common language for skills and competencies required
in the digital world [13]. SFIA gives employers a framework which they can use to
measure the skills they have against the skills they need, and tells education and
training providers what the job market wants. It is supported by key organisations such
as: BCS (British Computer Society), Tech Partnership (formerly e-skills UK), IET
(Institution of Engineering and Technology), IMIS (Institute for the Management of
Information Systems) and the IT Service Management Forum (itSMF).

BCS in conjunction with SFIA offer a skills matrix, called SFIAplus [14], which
contains the framework of IT skills plus detailed training and development resources. It
provides the most established and widely adopted skills, training and development
model reflecting current industry needs. SFIAplus can be viewed as a three-
dimensional model which comprises Categories of Work — Strategy and Architec-
ture; Change and Transformation; Development and Implementation; Delivery and
Operation; Skills and Quality; Relationships and Engagement — as well as Levels of
Responsibility and Task Components.

\‘ Emerging Tech Monitoring
Information Management |
——— | Business Process Improvement
Database Design

Programming/Software Dev_ | Analytics

\ \ Data Management
——
‘ Innovation

Methods & Tools
—

[ Research Consultancy
— — | — Business Process Testing
| —

Business Strategy
& Planning

/
Advice & |
Guidance [
Business Analysis
———

(" Business Modeling
| —

Data Analysis
Strategy & usiness Chang

P! Architecture Y Management
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Development J
‘ Development & o Change & usiness Chang
Implementation N Transformation Implementation
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Data Science
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ty \( Qaality & >
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Fig. 1. An interpretation of data science skills using SFIA. (Colour figure online)



120 J. Lu

The Data Science programme proposed at UoW aims to develop how to use data to
provide key business insights, helping companies improve their performance and make
key decisions. Moreover, the programme is designed to meet employers’ needs for
innovative expertise as well as students’ needs for an engaging and developmental
course of study leading ultimately to rewarding employment. While the UK Govern-
ment has published the essential capabilities it needs from Data Scientists [3],
describing in some detail the knowledge and experience required, the corresponding
essential competencies comprise those used in the Civil Service and are more generic.

For the Business environment, SFIA has been chosen as the reference against
which employability skills are mapped here. A novel presentation of this framework is
given in Fig. 1 — individual skills are displayed across six categories of work and
associated subcategories — however, the ones which are considered most relevant to
data science are shown in bold. It is interesting to note that a key category in this
interpretation is Strategy, although Business Change is relatively significant too.

In terms of wider frameworks for data science, the EU-funded EDISON project [2]
has focused on activities to establish the new profession of Data Scientist. This has
included development of a Data Science Competence Framework (CF-DS) which
provides the basis for other components. CF-DS defines five competence groups as
Data Analytics; Data Science Engineering; Data Management; Research Methods and
Project Management; and Domain-based Business Analytics. Related skills are labelled
in blue in Fig. 1 in order to cross reference with SFIA.

3 Methodology and Practice

3.1 Cross-Industry Standard Process Model

There is not an established process model for data science although the most widely
used approach for analytics is CRISP-DM, the Cross-Industry Standard Process for
Data Mining [15]. Since the data mining process breaks up the overall task of finding
patterns from data into a set of well-defined subtasks, it is also useful for structuring
discussions about data science. Figure 2 shows the process model adapted for data
science based on activities and tasks linked to SFIA-related skills. At the centre of the
model is data management, which may include the internal data environment within an
organisation and the external data sources as necessary.

Business Knowledge and Understanding. Prior to the start of a data science project it is
crucial to incorporate as much insight as possible into the business goals — then specify
business questions and determine any other business requirements. It is also important
to define the nature of business success for the project.

Data Understanding. This phase involves accessing the data and exploring it in more
detail — this will help to determine its quality prior to the data pre-processing phase.
Historical data is often collected for reasons unrelated to the creation of a model, so will
need to be considered appropriate to the project.

Data Pre-processing. The data chosen to be included in the analysis may be based on
the objectives set at the business understanding stage, the quality of the data determined
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at the data understanding stage or other practical aspects. Data may be constrained by
the analytical technologies used to create the model, e.g. it may be required to be in a
different format. Preparation will involve all activities required to construct the final
dataset including selecting attributes, cleaning the data to address any data quality
issues and transforming data to create derived variables.
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Fig. 2. A process model for data science based on CRISP-DM.

Data Modelling. Various modelling approaches will be deployed based on the busi-
ness objectives and the dataset which is used [5]. Statistical analysis, data mining and
machine learning are fundamentally involved with extracting information from a
dataset. Common analytical techniques are classification, clustering, regression and
dimension reduction while visual analytics technology combines data analysis with
data visualisation and human interaction.

Business Intelligence. The primary goal of data science for business is to support
decision making — business intelligence focuses on supporting and improving the
decision-making process. The modelling results will need to be evaluated carefully as
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“various stakeholders have interests in the business decision-making that will be
accomplished or supported by the resultant models™ [8].

Insight Management. The results from the modelling and subsequent evaluation will
determine how the model will be deployed to make improvements in organisations.
This could include implementing a predictive model into pre-existing information
systems [1]. This stage will also involve planning of the maintenance strategy.

While CRISP-DM has been the industry standard for data mining over the last two
decades, Stirrup argues that the model has not been updated to work with new tech-
nologies — such as big data — and recommends use of the “Team Data Science Process”
cyclical model to address these issues [16].

3.2 Analytical Tools and Data Sources

Data scientists need to be proficient in understanding, searching, extracting and pre-
senting information from structured and unstructured data sources. Keeping up-to-date
with the latest trends in technological development is key for effective analytics.
Table 1 provides an illustration of some analytical tools associated with the SFIA
“Analytics” skill from a technical perspective.

Table 1. Analytical tools and techniques.

SFIA “Analytics” — Excel | XLMiner | Alteryx | SPSS | R | iNZight | Weka | Tableau | Python
typical tools and
techniques

Statistical analysis and |/
forecasting

v

Machine learning and
data mining

Graphical visualisation |/
of data

Data and information
modelling

Decision support v V4 v
systems

DY N NSRS

S SRR
<

< <

As a spreadsheet, Excel can be used for data entry, manipulation and presentation,
but it also offers a suite of statistical analysis functions and other tools that can be used
to run descriptive statistics and perform inferential statistical tests. In addition,
XLMiner is the comprehensive data mining plug-in for Excel, now known as Analytic
Solver.

Alteryx is a tool especially made to extract, transform and load data into a data
warehouse. Its key capabilities for data preparation include: connect to and cleanse data
from data warehouses, spreadsheets and other sources; improve quality of data with
profiling, advanced data cleansing and data manipulation tools; repeatable workflow
design to assist with data integrity during data preparation process.
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SPSS is a software package which has been widely used for statistical analysis by
social scientists, education researchers, health researchers, market researchers, survey
companies, government and other organisations for many years. IBM SPSS Modeler is
a data mining and text analytics software application used to build predictive models
and conduct other analytical tasks.

R is a language and environment for statistical computing and graphics, with
RStudio providing a user-friendly interface to analyse and manipulate data. R is
commonly used for big data management and analysis — it is widely accepted in the
data science field and has a very active support community. Developed using R,
iNZight can also generate insights into real-world data by producing graphs and
summaries through statistical analysis.

Weka (Waikato Environment for Knowledge and Analysis) is open source software
written in Java [4] which offers a wide range of statistical inference and machine
learning algorithms. It contains tools for data pre-processing, classification, regression,
clustering, association rules, sequential patterns mining and visualisation. It provides a
way to easily test the performance of a comprehensive suite of data mining and
machine learning algorithms on real-world problems.

Tableau Software provides a collection of interactive data visualisation products
designed for business intelligence. Its advanced analytics functionalities include: cohort
analysis through drag-and-drop segmentation; what-if analysis by modifying calcula-
tions and testing different scenarios; and predictive analysis using trending and fore-
casting models. In addition, an R plug-in allows integration with other platforms.

Python has become an even more popular and powerful programming language in
the era of data science. Data analysis, machine learning, information visualisation and
text analysis techniques can be applied through Python software libraries and toolkits
such as pandas, scikit-learn, matplotlib and nltk to gain further insight into data.

Table 2 is a list of some useful resources for data science projects in the areas of
data cleansing, visualisation, data mining and machine learning — the data sources
column contains hyperlinks to the individual repositories.

Table 2. Data sources for data science projects.

Data sources Description
Data data.world A social-based data source that allows users to
cleansing share/clean/improve data collectively. Can write SQL
within the interface to explore data and join multiple
datasets

The world bank The platform provides several tools like Open Data
Catalog, world development indices, education indices
etc.

Reddit A community discussion site which has a section devoted
to sharing interesting datasets

(continued)
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Table 2. (continued)

Data sources Description
Data FiveThirtyEight Interactive news and sports site with data-driven articles.
visualisation Each dataset includes the data, a dictionary and the link to
the story
FlowingData Catalogue of data sources, described in detail and shown

with examples. It explores how statisticians, data scientists
and others use analysis and visualisation

Tableau public Sample data for visual analytics in the categories of
Education, Public, Government, Science, Technology,
Health, Business, Sports and Entertainment etc.

Machine UCI machine One of the oldest and most famous sources of datasets
learning learning repository | online. Vast majority are clean and ready for machine
learning
Kaggle A data science community which hosts machine learning

competitions — contains externally-contributed datasets

Quandl For financial and economic datasets — useful for building
models to predict economic indicators or stock prices

4 Education and Training

4.1 UG Programme Development

Within the UoW Business School, the BSc Digital & Technology Solutions degree
apprenticeship and BSc Computer Science suite both inform the BSc Data Science
prototype. One way to express the significance of current modules to the new under-
graduate programme is to display the relationships graphically. Figure 3 shows the
extent to which relevant modules may contribute to Data Science — each of the indi-
vidual boxes represents a module with the colour-coding across Level 4 to 6. The boxes
within the triangle are the specialist modules proposed for data science while the oval
shapes outside indicate diverse modules from other programmes, with dotted ovals for
optional modules. There is also a Group Project module for Level 5 and a double-credit
Data Science Project for Level 6.

A brief description for each specialist taught module is given below — these are
linked with Data Science Body of Knowledge areas from the EDISON project [2],
which are associated with their CF-DS competence groups.

Database Analysis and Design. Introduces analysis and design concepts (using SQL
and UML) that are essential for developing and implementing relational database
solutions in given business scenarios [DSDM/DMS: Data management systems].

Quantitative Data Analysis. Introduces quantitative analytics concepts, procedures and
software tools (Excel and SPSS) for specific data analysis tasks [DSDA/SMDA: Sta-
tistical methods for data analysis].


http://fivethirtyeight.com/
https://flowingdata.com/
https://public.tableau.com/s/resources?qt-overview_resources=1
http://mlr.cs.umass.edu/ml/
http://mlr.cs.umass.edu/ml/
https://www.kaggle.com/
https://www.quandl.com/
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Fig. 3. BSc data science prototype.

Information Management and Data Analytics. Organised around three themes: Data-
base Management and SQL; Data Warehousing and Information Modelling; Data
Mining and Knowledge Discovery [DSDA/DM: Data mining].

Predictive Data Analytics. Provides experience of predictive modelling and analytics
across a range of domains, acquiring relevant practical skills (using R and Weka) in
data science to create data visualisations and carry out analyses [DSDA/PA: Predictive
analytics].

Visualisation of Business Intelligence. Focuses on techniques for data extraction and
preparation while analysing data in visual ways (using Alteryx and Tableau) to gen-
erate insight for business intelligence and decision making [DSENG/IS: Information
systems].

Insight Management. Provides knowledge and skills to identify and evaluate a busi-
ness issue and/or research problem, effectively analyse data and interpret insights
(using iNZight and Tableau) so that they can have an impact at managerial levels of
organisations [DSBPM/BA: Business analytics].

Strategic Forecasting and Simulation. Covers the data-driven business prediction
topics of forecasting and simulation (using R and XLMiner) to develop advanced
models and solutions to real-world problems [DSDA/MODSIM: Computational
modelling, simulation and optimisation].
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Strategic Analytics. Provides students with a deeper understanding of how data is used
by strategic decision makers, covering the analysis of big data (using Python and
Weka) as well as data analytics case studies [DSDA/ML: Machine learning].

4.2 SFIA-Related Skills Mapping

There are relationships between the proposed Data Science modules and the key SFIA
skills too, which are demonstrated in Fig. 4. First dotted lines are used to connect
related SFIA skills to each other. For example, relevant SFIA skills for “Analytics”
comprise Information Management, Data Analysis, Business Analysis and Business
Modelling. Similarly, relevant skills for “Information Management” include (e.g.)
Database Design, Data Management, Innovation and Business Process Improvement
among others.

The specialist modules for the Data Science programme can then be mapped onto
corresponding SFIA skills, where the same colour-coding applies as in Fig. 3. For
example, modules linked with the SFIA Analytics skill are Predictive Data Analytics,
Strategic Analytics and Strategic Forecasting & Simulation. As another example, the
Visualisation of Business Intelligence and Insight Management modules are closely
connected with the SFIA Business Analysis and Business Modelling skills. Finally, the
Group Project and Data Science Project are linked primarily to the Research skill,
although the taught specialist modules will all apply to some degree. Figure 4 repre-
sents a novel aspect of skills analytics in the Data Science context.
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5 Conclusion

The digital economy has facilitated an explosion in the data available to the world
which has affected businesses, jobs and education. The term “Big Data” refers to
datasets so large and complex that it would be impossible to analyse them using
traditional methods. Big data was originally defined in terms of the three Vs, namely:
“high-volume, high-velocity and high-variety”. A 4th V for veracity ensued, referring to
the trustworthiness of the data. However all this enormous quantity of fast-moving data
of different types and confidence levels has to be turned into value, which leads to the
5th V for big data [6]. Data Science will help organisations to turn data into valuable
insights in order to better understand their customers and optimise their internal pro-
cesses while identifying cost savings and growth opportunities [7]. Some representative
business analytics approaches include for example financial analytics, market analytics,
customer analytics, employee analytics and operational analytics alongside the core
analytical tools and techniques.

This paper has discussed an overall curriculum design and the skills required for
Data Science in the business environment. The new BSc Data Science development is
already having a positive impact on other programmes within the University of
Winchester Business School, for example: BA Accounting & Finance/Management
and their Level 5 Research and Analysis module; MSc Digital Marketing & Analytics
and its Analytical Tools for Digital Data module; and the Executive MBA module
delivering Insight Management for business professionals.

In terms of the next stage for programme development at Winchester, the EDISON
Data Science Framework [2] will be considered further — in particular the detailed Data
Science Model Curriculum. An evaluation of the extent to which their recommended
learning outcomes and topics would apply in UK higher education will be significant
here, especially within a Business School context. The real evidence of what can be
achieved by the programme will begin to materialise following its first year of delivery
in 2019/20.
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Abstract. The paper is devoted to consideration of multicriterial opti-
mization (MCO) problems subject to multiextremality of criteria. Appli-
cation of convolution techniques for finding partial Pareto-optimal solu-
tions generates under this assumption the multiextremal problems of
scalar optimization. For solving these problems it is necessary to use
efficient global optimization algorithms. As such the methods the nested
schemes of dimensionality reduction in combination with univariate char-
acteristical optimization algorithms are considered. A general description
of the scheme is given and its modification accelerating the search is pre-
sented. Efficiency of the proposed approach is demonstrated on the base
of representative computational experiment on a test class of bi-criterial
MCO problems with essentially multiextremal criteria.

Keywords: Multicriterial optimization - Multiextremal criteria -
Dimensionality reduction - Global search algorithms

1 Introduction

Mathematical models formulated as multiobjective, or multicriterial optimiza-
tion (MCO) problems describe complicated decision making processes in which
the main factors of complexity are contradictoriness of partial criteria and dimen-
sionality of the problem. The contradictoriness leads to the necessity of consid-
eration a set of compromise solutions (Pareto set) as a general solution of the
multicriterial problem investigated. For finding the compromise solutions the
initial MCO problem is often reduced to a family of scalar optimization prob-
lems in the form of mathematical programming ones, for example, by means of
convolution techniques.

Various approaches to investigation of the MCO problems have been
described in many fundamental publications (see, for example, the monographs
[1-4]). Some theoretical and practical aspects of MCO investigation can be found
in [5-12].

The variety of MCO models is the source of different classes of MCO prob-
lems determined by the properties of criteria and constraints describing the
© Springer Nature Switzerland AG 2019
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model. Among these models the class of multidimensional MCO problems with
multiextremal criteria is one of the most difficult ones for the research because
reducing to a single-criterion problem that determines a compromise solution
generates a global optimization problem. For this class of problems the expo-
nential growth of computational complexity when increasing the dimension (so
called “the dimensionality curse” of multiextremal problems) [15] takes place. In
order to solve arising problems of multiextremal optimization it is necessary to
use efficient global search algorithms. There are many approaches to constructing
such the methods oriented at different classes of multiextremal problems (see, for
example, the monographs [15-21]). In this paper the methods based on ideas of
dimensionality reduction are considered and applied to solving the MCO prob-
lems. In the framework of given approach the initial multidimensional problem
is reduced to a family of univariate subproblems solved in general theoretical
description by the characteristical methods [22] and by the core information
global search algorithm [15] in computational experiment. This approach has
demonstrated [23] its efficiency in comparison with other global optimization
methods, in particular, with the popular method DIRECT [24].

The rest of the paper is organized as follows. Section 2 contains the statement
of MCO problems to be investigated, and the general description of dimension-
ality reduction scheme on the base of recursive nested optimization. Section 3
is devoted to consideration of two modifications of the nested scheme (classi-
cal and adaptive) in combination with characteristical algorithms of univariate
optimization. Section4 presents the results of computational experiments and
Sect. 5 concludes the paper.

2 Problem Statement and Reduction Schemes

The considered decision making model described as the multicriterial (or mul-
tiobjective) optimization (MCO) problem contains functions w;(y) : RY — RY,
1 <i<p,p>1, called partial criteria of the problem, depending on the vector
of arguments y = (y1,...,yn) € RY and defined over the domain

H:{yERN:aigyiSbi,lgiSN} (1)

being a hyperparallelepiped in N-dimensional Euclidean space RY.
The statement of the MCO problem is to minimize in the domain (1) the
vector function (vector criterion)

W(y) = (wi(y), .-, wp(y))- (2)
Hereinafter this problem will be written in the form
W(y) — min,y € H. (3)

Each partial criterion w;(y), 1 < i < p, is supposed to satisfy in H the Lipschitz
condition

|wi(y') —wi(y")| < Lilly' —o"|, v/,y" € H, (4)
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with corresponding Lipschitz constant L; > 0 where || - || denotes the Euclidean
norm. The assumption (4) is required for the purpose of further applying the
Lipschitz global optimization methods as tools of analyzing the problem (3).

Moreover, all the partial criteria are considered to possess positive values in
the domain H. This requirement is necessary in the framework of the convolution
scheme (5)—(7).

If the partial criteria are contradictory, it is impossible to find a point y*
such that it is the global minimum point for all of them. In this situation a
compromise solution is considered as a partial solution of the problem and all
the compromise solutions are the full solution of the MCO problem. We will
deal with efficient (Pareto-optimal) points that form the Pareto set as the full
solution of the problem (3).

There are many approaches to finding the partial solutions. For example,
it is possible to build the Pareto set by means of reducing the initial MCO
problem (3) to solving a parametrized family of mathematical programming
(scalar optimization) problems

Px(y) — min,y € H, (5)

with the objective function (convolution)

Pa(y) = max (Nwi(y)) + O‘Z)\iwi(y)a (6)

1<i<p

where parameters A belong to the set

A{AGRP:)\iZO,lgz‘gp,éAil} (7)

and « is a small positive number [13,14].

Under the Lipschitz condition (4) for partial criteria, the function (6) is Lip-
schitzian as well and, in general case, multiextremal. This circumstance neces-
sitates applying efficient algorithms of global optimization for solving the prob-
lems (5). One of the known approaches to creating the qualitative global search
methods is based on ideas of dimensionality reduction. This approach has been
developing for many years and it is the source of many efficient global optimiza-
tion algorithms [15,19,25-33]. Application of dimensionality reduction methods
to the MCO problems and investigation of their efficiency for this goal is a novel
research described in the present paper.

The main dimensionality reduction scheme considered hereinafter is the
scheme of recursive nested optimization (another reduction approach based on
Peano-type space filling curves can be found in the works [15,19]). The nested
optimization scheme reduces the multidimensional problem (5) to a family of
univariate subproblems in the following way.

Let us introduce a family of reduced functions as

Y (y) = Pa(y), (8)
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éi(yla"'ayq) = min {¢g+1(y17"'7yq+1) L Qg1 S Yq+1 S bq+1}71 S q < N.

(9)
Then, following the relation [15,25,26]

; = i i ... i ] 1
mmng(y) ay gllllféln azgilulznﬁlm an SI?JIVHSZJN )\(y)’ ( O)

instead of the multidimensional problem (5) one can solve the univariate problem
@) (y1) — min, y; € [a1,b1]. (11)

However, when solving this problem it is necessary to evaluate the function
@} (y1) at points of the interval [aq,b1] but any evaluation at a given point
leads to solving the problem

3 (91, y2) — min, yo € [az, by (12)

being one-dimensional as well, and so on up to solving the univariate problem

Y (y) = PA(y) — min, yn € an, by, (13)

where the coordinates yq,...,yn—1 are fixed (obtained from preceding levels of
one-dimensional optimization).

Thus, the described scheme allows one to substitute solving the multidimen-
sional problem (5) for solving the family of nested univariate subproblems

@g\(yl, sy Yg—1,Yq) — min, Yy, € [ag,b), 1 < g < N. (14)

If the objective function @y (y) from (5) satisfies the Lipschitz condition (in
our case this property is provided by the assumptions (4) the one-dimensional
objective functions @4 (y) in (14) also meet the Lipschitz condition (see [33]) and
for solving subproblems (14) the methods of Lipschitz global optimization can
be used.

3 Characteristical Algorithms and Adaptive Nested
Optimization

Combining the nested scheme (14) with different one-dimensional optimization
methods enables to design a wide spectrum of multidimensional algorithms. In
particular, for solving the subproblems (14) the methods belonging to the wide
class of characteristical algorithms [22] can be taken which many well-known
global optimization algorithms [15,19,26,33-35] belong to. The use of these algo-
rithms inside the nested scheme allows one to modify the classical nested scheme
for getting improvements of its functioning. Before returning to this modification
and its further explanation, the general computational structure of characteris-
tical algorithms should be described.
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To simplify the description let us present the subproblems (14) in the follow-
ing unified form
o(z) — min, z € [a,]. (15)

Then a numerical method for solving the optimization problem is characteristical
one if its computational scheme consists in the following.

First n > 1 trials (evaluations of the objective function ¢(x)) are executed
at arbitrary trial points x!,..., 2" of the interval [a,b] and the function values
21 ..., 2" are evaluated at these points, i.e., 2/ = p(27), 1 < j < n. For obtaining
a point x°T! of any subsequent (s + 1)-th trial for s > n it is required to realize
the following steps:

1. The points x!, ..., 2° of preceding trials and the points a and b (if they were
not the trial points earlier) are ordered in increasing order and renumbered
by subscripts, i.e.,

ro=a<x1 << Tp_1<T, =0 (16)

The values z; = ¢(z;) are juxtaposed to the points x; from (16) belonging
to the sequence z!, ..., z°.

2. The ordering (16) splits the search region [a, b] into v subintervals (z;_1, z;),
1 < j <, for each of those a numerical value R(j) (called characteristic of
this interval) is assigned.

3. The subinterval (zp_1,2x), 1 <k < v, such that
R(k) = max R(j), (17)

is chosen among all the subintervals formed by the ordering (16).
4. The new (s + 1)-th trial is carried out at a point x**1 € (x1_1,x1), the value
25t = p(25t1) is computed and the iteration number s is increased by 1.

General conditions of convergence for characteristical algorithms (including con-
vergence to global minima) are presented in the paper [22]. These general results
substantiate the stopping rule in the form

T — Tp—1 <€, (18)

where € > 0 is a given coordinate accuracy, i.e., the search is completed if the
length of the subinterval with maximal characteristic from (17) is less than the
accuracy €.
As an example of characteristical method let us describe the core information
global search algorithm [15,33] using for it hereafter the short denotation GSA.
When solving the problem (15) two first trials GSA are executed at the end
points of the search region, namely, ' = a, 2 = b and, consequently, s = 2 and
v =s—1 for s > n. Next trials are carried out in accordance with Steps 14,
where the characteristics of the subintervals (z;_1,2;), 1 < j < v, are calculated
as
R(j) = mé; + 2/ () — 4(z;-1 + ;) (19)
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and the point of new trial
o5 = (v +ak)/2 — G/ (2m). (20)

Here 6; = x; — xj_1;( = 2z — 2zi—1, ¢ = j, k; index k from (17), the factor m is
evaluated as

M, M
m— d™M, > 0, (21)
1, M =0,
where
M =max {|(;|/0; : 1 < j <v} (22)

and r > 1 is the parameter of GSA.

Applying characteristical algorithms in the nested optimization scheme
makes possible to accelerate the search. A brief explanation of this effect consists
in the following (more detailed information can be found in the papers [23,31]).
In classical implementation of the nested scheme at any moment only one uni-
variate subproblem of the level can be active; the others either have been solved
already or will be solved after completing the current subproblem. Moreover, the
information obtained in the course of optimization in the completed subprob-
lems is not used during solving the current one. This loss of information slows
up the multidimensional optimization.

In the paper [31] a new version of the nested scheme called adaptive dimen-
stonality reduction has been proposed and theoretically substantiated. The core
of the adaptive scheme consists in simultaneous consideration of all the subprob-
lems (14) arising in the course of multidimensional optimization and in the choice
for realization of a certain subproblem with some “best” features. It means that
it is necessary to introduce a quality criterion for the subproblems. If a charac-
teristical algorithm is used for solving the problems (14), for each subproblem
its current maximal characteristic (17) is taken as the quality criterion of the
whole subproblem.

The results of large-scale experimental comparison on complicated test
classes of essentially multiextremal functions for several global optimization
methods presented in [23] demonstrate significant advantage of the adaptive
nested optimization over its classical prototype and the other methods com-
pared.

Taking into account the results mentioned above and the confirmation of
efficiency of GSA obtained earlier in other researches [15,22,31], in this paper the
classical and adaptive optimization schemes combined with GSA are considered
for the study of efficiency of the dimensionality reduction approach for solving
the MCO problems.

4 Numerical Experiments

For efficiency assessment of the nested optimization schemes in classical and
adaptive variants a class of bi-criterial MCO problems is constructed in the
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following way. 100 functions of dimension 2 (see [22,31])

ly){<iZ[AUa” )+ BLbis(y )DZ+

i=1 j=1

(Zi[ jaii(y +le()})2}%, (23)

where a;;(y) = sin(miy, ) sin(mjys), b i(y) = Cos(m'yl) cos(mjyz), 1 <1 <100, are
taken with the coefficients Aiﬁ ”, C’f], U, which are independent random
numbers, distributed uniformly over the interval [—1,1]. The functions of this
class are essentially multiextremal and they are widely used for experimental
testing in global optimization (see [22,27,29,31,33,35]).

Each function was converted to the criterion

wh(y) =15 — " (y) (24)
being positive in the square
H={yeR:0<y;,y <1}. (25)

There was considered 100 bi-criterial problems according to the following rule.
In the I-th MCO problem (1 < [ < 99) the function w!(y) was taken as the
first criterion and the function w!*!(y) as the second one. For the last problem
the function w!'%%(y) was chosen as the first criterion and the function w!(y) as
the second. The square (25) was used as the admissible domain (1) in all the
problems.

For numerical building the Pareto set each bi-criterial problem was reduced
to a family of scalar subproblems (5) corresponding to 160 values of the param-
eter A; taken as nodes of the uniform grid in the interval [0, 1] (the coefficient
A2 = 1 — A1 because of conditions (7)).

An example of convolution (6) (level curves and surface) is presented in
Fig. 1. The image of the domain (25) mapped onto the plane of criteria is shown
in Fig. 2, where the Pareto boundary is marked with red colour.

The global optimization subproblems (5) were solved by the algorithms on the
base of classical and adaptive nested schemes combined with the method GSA.
For comparison of the described algorithms with a method of other nature, the
subproblems (5) were solved by the known and very popular global optimization
method DIRECT [24] as well. For assessment of efficiency of the nested schemes
and the method DIRECT the methodology of operational characteristics [15,23,
31] has been used. Briefly, this methodology consists in the following.

After solving a collection of optimization problems by a method with some
fixed parameters we can evaluate the average number K of trials spent by the
method and the number @ of problems solved successfully. Repeating this exper-
iment with different method’s parameters we get a set of pairs (K, Q) which is
called the operational characteristic of the method. Operational characteristics
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Fig. 1. Level curves and surface of convolution

of several methods presented in graphical form on the plane (K, Q) enable visual
comparing the methods’ efficiency. Namely, if for given value K the operational
characteristic of one method is placed above the characteristic of the other, the
first method is better because it has solved more problems.

Wz
5

Fig. 2. Criterial plane and Pareto set (Color figure online)

The compared nested schemes optimized the convolutions (6) for different
values of accuracies ¢ from (18) and used the GSA parameter r = 3.2 from (21)
that provided the sufficient conditions of global convergence. The operational
characteristics of the dimensionality reduction schemes are presented in Fig. 3.

In the figure the number K of trials is considered as the average number of
evaluations spent for solving one subproblem (5) and this indicator is plotted on
the abscissa axis in the logarithmic scale.
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Operational characteristics

100

80

60

— Classical Scheme
—— Adaptive Scheme
—— DIRECT

40

20

Number of Solved Problems
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Average Number of Trials

Fig. 3. Operational characteristics of the compared methods

The indicator corresponding to the vertical axis reflects the number of mul-
ticriterial problems solved successfully with a given tolerance. A problem (3) is
considered to have been solved, if an approximation P of the Pareto set eval-
uated by the method via solving partial subproblems (5) corresponding to all
the chosen parameters ) is sufficiently close to the “ideal” Pareto set P*. As the
measure of closeness the criterion w(P) = 1 — hv(P)/hv(P*) was used, where
hv(P) is the hypervolume index [10,11] introduced for evaluating the quality of
approximation. In the experiment the multicriterial problem was supposed to
have been solved if w(P) < 0.02.

Another experiment has been carried out for 5-dimensional MCO problem
with two multiextremal criteria taken from the test class GKLS [36] (subclass
of hard complexity). GKLS is widely used for testing the global optimization
methods. For building the Pareto set 100 scalar convolutions (6) corresponding
to the different coefficients A; uniformly distributed in the interval [0, 1] have
been minimized.

In the nested schemes the parameter r from (21) was equal to 4.5 and € = 0.02
in the stopping rule (18). Both the nested schemes and DIRECT have built the
Pareto set with accuracy w(P) < 0.02, but the classical nested scheme has
spent on average 248 745 trials (evaluations of convolution @ (y)) per one scalar
problem (5), DIRECT 100 258 trials and the adaptive scheme 45 155 evaluations.

The results of the experiment demonstrate the successful applicability of the
global optimization methods based on the dimensionality reduction schemes to
solving the MCO problems in the case of multiextremal criteria. As it follows
from Fig.3 both the nested optimization schemes are more efficient for high
levels of reliability @ than DIRECT and the use of the adaptive nested scheme
is more preferable than the classical one, while in 5-dimensional case the best
efficiency demonstrates the adaptive reduction of dimensionality and DIRECT
is better than the classical nested scheme.
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5 Conclusion

In the paper the multicriterial optimization (MCO) problems with multiextremal
criteria have been considered. As a tool of analyzing these problems the approach
connected with ideas of reducing the initial MCO problem to families of sim-
pler optimization problems has been taken. At the beginning, the MCO problem
is reduced in a traditional way via convolutions to a set of scalar subproblems,
solutions of which are Pareto-optimal points. Further, solving the scalar subprob-
lems is based on global optimization algorithms reducing the multidimensional
problem to a family of univariate subproblems by means of the dimensional-
ity reduction schemes of nested optimization. These schemes are theoretically
substantiated and their efficiency has been confirmed in experiments. Two ver-
sions of the nested optimization (classical and adaptive) and the known method
DIRECT have been considered for comparison.

The general description of the mentioned approach has been done and the
results of numerical testing on a test set of bi-criterial MCO problems with essen-
tially multiextremal criteria have been presented. The results of the experiment
have demonstrated that the adaptive dimensionality reduction can be used as
an effective tool for solving the multiextremal MCO problems.

It is worth to note that the algorithms considered in the paper can be devel-
oped in directions of search acceleration connected with the use of additional
information about the studied problems and with designing their parallel ver-
sions.
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Abstract. Network representation learning has recently attracted con-
siderable interest, because of its effectiveness in performing important
network analysis tasks such as link prediction and node classification.
However, most of the existing studies rely on the knowledge of the com-
plete network structure. Very often this is not the case, unfortunately:
the network is either partially or completely hidden. For example, due
to privacy and competitive market advantage, the friendship and fol-
lower networks of Facebook and Twitter are hardly accessible. User
activity logs (also known as cascades), instead, are usually available.
In this study we propose REFINE, a representation learning algorithm
that does not require information about the network and simply utilizes
cascades. Nodes embeddings learned through REFINE are optimized for
network reconstruction. Towards this end, it utilizes the global interac-
tion patterns exposed by reaction times and co-occurrences. We present
an extensive experimentation using two OSN datasets and show that
our approach outperforms existing baselines. In addition, we empirically
show that REFINE can be used to predict cascades as well.

Keywords: Network inference - Representation learning -
Cascade prediction

1 Introduction

Network representation learning (NRL) has recently attracted considerable
research attention. In particular, the ubiquitous success of deep learning has
inspired social network scientists to exploit neural networks to automatically
learn representation of nodes, that could later be used for several social analysis
tasks. A number of existing studies have assumed that the network structure is
completely known. Very often, however, this is not the case; instead, information
about the network is either partial or completely absent. For instance, companies
seeking a marketing campaign through Facebook or Twitter desire access to the
structural properties of the social graph; such information, however, is usually
not accessible due to privacy and competitive market advantage [1].

Some information is available, though. For example, extensive logs of events
occurring on the social graph can be easily obtained, e.g. through public APIs.
© Springer Nature Switzerland AG 2019
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These logs represent the propagation of information over the latent network, for
example by recording the instant in which a user shares a meme or a piece of fake
news. The process of propagation is known as a cascade; it is usually triggered
by a few sources (seeds) and spreads over the graph through its edges [2—4].

In other words, we can observe who shares a meme and when this happens,
but not the edge through which the meme has been transported. The goal of
this study is to learn a representation of nodes optimized for reconstructing the
latent network by simply using the cascades.

Related Work. Several studies [2-7] have been proposed towards the network
reconstruction task. In general, we can divide them into two broad categories,
which are (i) delay-aware and (ii) delay-agnostic. Some of the existing delay-
aware models, such as NETINF [2], NETRATE [6], INFOPATH [5], and KERNEL-
CASCADE [3], exploit infection rates based on delay patterns between infection
timestamps. The main assumption is that if a pair of nodes tend to get infected
right after each other, then there is a diffusion pattern that is a likely indi-
cator of connections. Some of them [5,6] assume a fixed parametric form (e.g.
exponential) of influence model or transmission rate on the edges of the network.
Nonetheless, a particular study [3] has argued and empirically demonstrated that
such an assumption is too strong for capturing the complex diffusion patterns
and user infection dynamics in real networks.

On the other hand, some studies [4,7] follow a delay-agnostic approach sim-
ply based on the order and/or context of infection events. Furthermore, they
have argued that delay-aware models are likely to miss out several diffusion pat-
terns, even in the presence of recurring ones, because of the delay intervals of
such models that could potentially be too large or too small. This problem is
normally caused by explicitly pre-defined infection rates (delay patterns) and
fixed parametric forms of influence models, as argued by [3].

In the area of network representation learning, there are also quite a number
of studies [8-15]. The algorithms vary from classical techniques that rely on
matrix factorization to recent techniques using deep neural networks. Their goal
is usually to embed nodes of the network in a low-dimensional latent space in
such a way that the embedding preserves different properties of the network, for
example local neighborhoods. Our work is essentially different from the above
techniques, because we lack the knowledge of the network structure.

Current Work. In this study, we propose REFINE, an delay-aware algorithm for
network reconstruction based on representation learning. Contrary to [4,7], we
argue that delay-aware models can also perform as well as delay-agnostic models
if they are properly designed. Therefore, REFINE utilizes the delays between
infection events; unlike some of the existing methods [2,5,6], however, it avoids
any assumption regarding the influence model and infections rates. Instead, it
directly embeds users according to the inherent interaction patterns exposed by
them.

REFINE is established on the premise that closely connected users, for exam-
ple members of a community, expose interaction patterns that are expressed by
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reaction time and frequency. In terms of reaction time, given a post by a certain
member of a community, it is very likely for another member to share the post
faster than non-members. In terms of frequency, it is more likely for a member
of a community to co-occur with another member in cascades more frequently
than with other non-members. REFINE learns a low-dimensional embedding of
nodes that capture such interaction patterns and use the learned embedding to
estimate pairwise edge probabilities towards reconstructing the network.

We have performed extended evaluations of our approach and compared
it against strong baselines. Besides utilizing the embedding to reconstruct the
latent network, we have also evaluated the capability of our representation learn-
ing approach to predict the cascades themselves.

The rest of the paper is organized as follows. Section 2 introduces the notation
which is used in the rest of the paper. Section 3 describes the REFINE algorithm.
Section 4 presents the results of our experiments and we conclude the paper in
Sect. 5.

2 Model and Problem Definition

We assume that cascades occur over a hidden graph H = (U, E), where U is a
set containing n vertexes, each vertex corresponding to a user, and FE is a set
containing m edges (connections) between users. We will use the term vertex
and user as synonyms, preferring the former when referring to human being,
and the latter when referring to graph-theoretic concepts. Interactions between
users occur over the network; while the set of users is normally well-defined, the
set of connections among them can be partially or completely unknown.

The spread of multiple contagions across the network H generates a collection
C of cascades. A contagion can be considered as any piece of online content, such
as, a tweet, meme, video, that spread through online networks as a result of re-
sharing activities. A cascade C' € C is a sequence that captures both the order
and the time instant in which users have been infected by a given contagion.
More formally, it is defined as: C' = [(u1, t1), (u2,t2), ..., (uc, t.)] where ¢; is the
timestamp associated to user u;. We assume that ¢ < j = t; <.

We use C(i) to denote the i-th user of C; and Cy(4) to denote the correspond-
ing timestamp. We also use C,, C C to denote the subset of all cascades that user
w is involved in C,, = {C' : i A1 < i < |C]AC(i) = u} with C, # ), meaning
that all users in U have been involved in at least one cascade.

Given a cascade C, we define a function r¢ : U x U — RT measuring the
reaction time between the infection events of u and v, if both have been infected
in C, or oo otherwise:

)G = Ci(G)] Fisjru=C() Av=C(j))
ro(u,v) =

+00 otherwise

In addition, we define the co-infection frequency function f(u,v) = |C, NC,|
that computes the number of cascades that involve both » and wv.
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The problem we want to solve is the following: given a set of observed cascades
C over a hidden network H = (U, E), we want to infer a network G = (U, E’)
such that E’ approximates F as much as possible.

To evaluate the performance of our algorithms, similar to [8] we use the
precision-at-K (PQK) metric. Our approach will produce an edge probability
for every pair of vertexes; we can thus rank pairs of vertexes according to such
probability. We cut this rank at different thresholds K and we compute the
precision on the top-K pairs, i.e. the fraction of those pairs that are true edges
on the ground-truth network.

3 The REFINE Algorithm

REFINE considers global interaction patterns expressed through users reaction
time and co-occurrences in cascades. For a given user v € U, REFINE computes
(i) a reaction time summary between the infection time of w and all other users
and (ii) the relative co-occurrence frequency between u and all other users, both
measured over the entire collection C. Our assumption is that if two users u and
v exhibit a strong interaction pattern, then they are likely to be connected.

A straightforward approach towards reconstruction is to compute similarity
between users according to their global interaction representation. However, this
leads to poor performances as this representation is very sparse. Rather, we first
learn an embedding of users in such a way that their interaction patterns in the
input representation space is preserved. Finally, we estimate the pairwise edge
probabilities between every pair of nodes to reconstruct the latent network.

3.1 Interaction Pattern Summarization

REFINE is a delay-aware model based on the global interaction delays (reaction-
time) and frequency (co-occurrence) in cascades. We start by computing a reac-
tion time distribution for each user. Given a cascade C € C and a user u appear-
ing in C (e.g., 3i : u = C(¢)), we compute, for the sake of numerical convenience,
an inverted reaction time function 7' (u,v) defined as follows:

0 ro(u,v) = 00
ral(u,v) =<1 ro(u,v) =0 (1)

e~re(wv)  gtherwise

rgl(u,v) is a well-defined function from pairs of nodes to [0,1], given that
ral(u, v) approaches 0 when r¢(u, v) grows to infinity, and rgl(u, v) approaches
1 when r¢(u,v) tends to 0.

REFINE utilizes the function 7“51 to compute an (inverted) reaction time
summary vector R'(u) for each user u € U, aggregated over all cascades C,
where each entry R'(u)[v], v € U, is defined as follows:

—1
ZCECuﬁCU ro (u,v)

T Yoo, S vt (w, C))

R/ (u)[v] (2)
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Equation 2 computes the (inverted) average reaction time between u and v, nor-
malized over all the cascades pertinent to u, C,.

One can easily notice that the reaction time summary vector R’(u) captures a
reaction time distribution for each user u. Nonetheless, it fails to account for the
co-infection frequency between u and every other node v, which we consider to be
another strong signal for the existence of an edge between u and v. For example,
let v and w be two nodes with equal values in their respective entries in the
reaction time summary vector of u, i.e. R'(u)[v] = R (u)[w]. If f(u,v) > f(u,w),
it is obvious that u and v have a stronger interaction tendency than u and w,
which is not modeled by R’.

To compensate for that, we first compute the relative co-infection frequency
vector F'(u), where each F(u)[v], v € U, is defined as follows:

Fl] = <100 3)

ZweU fu,w)

Finally, we combine R’ and F' to obtain the interaction pattern summary I(u) =
F(u) x R'(u) for each user u. The vectors I(u) can be summarized in a matrix
I=[I(w),...,I(u,)] €[0,1]"*" that contains a row for each user.

Now, even though two users v and w have a tie for u in terms of R/(u), i.e,
R/(u)[v] = R/(u)[w], F(u) breaks such tie by putting more weight on the user
with a stronger co-infection frequency with w.

A nailve approach towards reconstructing the hidden network could be to
compute the similarity between each pair of users u,v based on I(u) and I(v),
for example by computing their distance over [0,1]™. This approach, however,
leads to a poor performance as I is very sparse. We apply instead a learning
phase to embed I in a low and dense latent embedding space, in such a way that
the patterns encoded in I are preserved. In other words, we intend to identify a
mapping function @ : [0,1]"*" — R"*? with d < n.

Finally, we utilize @ to effectively learn the probability for an edge between
a pair of nodes to exist, in order to reconstruct the hidden network.

3.2 User Embedding ‘ Interaction Pattern Summarization

The hidden network structure that we seek to g UserEmbeddng g
reconstruct lives in a highly non-linear space [8]. ||g °
Therefore, one has to identify a mapping @ € R"*¢ | @ 5 o
that enables her to recover the non-linear net- :L ﬂ W:
work structure. Towards this goal, REFINE uses a |@ 8 ®
deep autoencoder, an unsupervised neural network : :
model. ® °
An autoencoder enables us to embed I in a low- I

dimensional latent space by composing several non-
linear functions (layers), as shown in Fig.1. The
input is given by the matrix I. The user embedding Fig.1. The REFINE frame-
module of Fig.1 has two components, the encoder ok (Color figure online)

‘ Reconstruction (Edge Prediction) ‘
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(blue layers) and the decoder (black layers). The former transforms the input
into an embedding (white layer), while the latter tries to regenerate and output
the original input from the embedding.

Formally, the encoder & : [0,1]"*" — R"*? and the decoder D : R4 —
[0,1]™*™ are a composition of non-linear functions defined as follows:

EI)=e
D(P) = dy(.

1ocee(o (eI -Wy) -Wa)..)...)=@ (4)

codg((dy(P-WY) W) ). ) =1 (5)
where e, and dy are the non-linear functions (e.g., relu, tanh) of the {—th encoder
and decoder layers, respectively. Each layer of an autoencoder is fully connected,
meaning that it is a linear transformation of the output of the previous layer
£—1,d.e fo_1(:)- Wy, and fy is either ey or dp.

Optimization. The weights are the main parameters of the model that needs to
be trained. Normally this is achieved by minimizing the cost function of Eq. 6.

L=argmin || I -T|3% (6)
w

where I is the input matrix and I is the regenerated output matrix. The mere
optimization of Eq.6 leads to a poor performance due to I'’s sparsity. To deal
with this, we adopt Wang’s strategy [8] and reformulate Eq. 6 as

L=argmin || I-1)&S |% + ¢ (7)
w,W

where @ is the Hadamard product and S € Rixn a term to avoid the sparsity
problem, is associated with I, i.e if I(u,v) = 0, then S(u,v) = 1 otherwise
S(u,v) = p > 1 and p is an alias for S(u,v). The second term in Eq.7, £ =
Zle:1 | Wi ||% + || We ||2, is a regularization term to avoid over-fitting and
A € (0,1) is the regularization constant. Finally, Eq.7 can be optimized using
classical algorithms such as gradient descent. Then, once the optimization is
solved, we obtain an embedding @(u) of each user u € U.

Speeding-Up the User Embedding. For a very large value of n, training an autoen-
coder using I could be very expensive. Thus, we propose an intermediate step
of dimensionality reduction using truncated (partial) singular value decomposi-
tion (T-SVD) for very large matrices [16]. T-SVD utilizes a few of the highest
or smallest eigenvalues of a large matrix. As a result, we can efficiently reduce
I's dimension and feed the reduced I, to the autoencoder. Moreover, this can
be considered as an alternative solution to tackle the sparsity problem with I.
Note that when employing this component there is no need for the sparsity term
in the loss function of Eq. 7. We have observed that including this optimization
provides similar or better results, with a significant reduction in memory and
computational time.
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3.3 Reconstruction

Once @ is computed as in Sect. 3.2, we exploit it to predict the probability that
an edge exists between a pair of users. We assume that if a pair of users never
co-occur in any cascade, they have a very small chance of being connected.
Therefore, we discard such pairs and analyze the remaining ones.

Let p(u, v) = 1/(14e~ (@7 2®)) he a function that predicts the probability
that an edge exists between u and v. We build a network G = (U, E'),E' = E
by adding an edge (u,v) to E’ with probability p(u,v). E’ can be refined by
pruning edges (u,v) where p(u,v) < 7 for some threshold 7.

4 Experiments and Results

Dataset Description. Our experiments are performed on the following datasets,
whose characteristics are summarized in Table 1.

Twitter [17] contains a set of Twitter users with a reciprocal follower rela-
tionships, collected from March 24th to April 25th, 2012. The follower network
is considered as a ground truth. Two kinds of cascades are present: (1) Hashtag
(HT): Cascades collected from user activity when using/adopting hashtags; (2)
Retweet (RT): Cascades collected from user retweeting tweets.

MemeTracker (MT) [5], contains users represented by a collection of news
media and blog sites. Cascades are formed based on the spread of memes. A
contagion occurs when a particular meme is used by a site for the first time. The
sequence of all the infected sites form a cascade. The ground truth network is
built based on hyper-links found in each site.

Settings. In order to tune the hyper-parameters of REFINE, we use the random
grid search strategy; its weights are initialized according to [18] for uniform
distribution. To implement our models, we adopted the TENSORFLOW' and
SciPy? Python-based libraries. In all the experiments, both the encoder and
decoder of REFINE use the tanh activation function.

Table 1. Dataset summary. Number of users, number of edges, number of cascades,
number of users after removing large cascades.

Dataset | |U| |E| IC| |U’]

HT 595,460 | 14,273,311 | 1,345,913 | 34,371
RT 595,460 | 14,273,311 | 226,488 |11,700
MT 3,836,314 | 15,540,787 | 71,568 52,088

! https://www.tensorflow.org)/.
2 https://www.scipy.org/.
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Results. In the first set of experiments, we have compared REFINE with
two strong baselines INFOPATH [5] (delay-aware) and DEEPINFER [7] (delay-
oblivious). To perform a fair comparison, we have selected four topics of the
Memetracker dataset that have been evaluated in the INFOPATH original paper.
The cascades derived from these topics are associated with 5000 users.

Algorithm [l DEEPINFER [l INFoPATH [l REFINE

30 Occupy Strauss—-Kahn Syria

20

i

100 500 1000 1500 2000 100 500 1000 1500 2000 100 500 1000 1500 2000 100 500 1000 1500 2000

P@K
)

Fig. 2. Comparison of REFINE with the baselines over four topics from the Meme-
tracker dataset for different value of K for the PQK metric. For all datasets, REFINE
applies T-SVD and I, € R™"*1024  Cascade length: for Syria and Occupy, between 3
and 100; for NBA and Strauss Kahn, between 3 and 1000. (1) Syria n = 1,207, and
IC| = 615,176; REFINE: layer sizes = [1024, 700, 300, 200], learning rate a = 0.005,
regularization constant A = 0.0005. (2) Occupy: n = 1,875, |C| = 655,183; REFINE:
layer sizes = [1024, 900, 400, 200], o« = 0.001, A = 0.009. (3) NBA: n = 2,087, and
IC| = 1, 543,630; REFINE: layer sizes = [1024, 700, 300, 200], o = 0.003, A = 0.0005; (4)
Strauss-Kahn: n = 1,263, and |C| = 204, 238; REFINE: layer sizes = [1024, 800, 500, 200],
a = 0.005, A = 0.01. For DEEPINFER: s = 15, and d = 200. For INFOPATH, we have
adopted the exponential influence model, as it performs slightly better than the others.

The results are reported in Fig. 2. REFINE performs better than the baselines
in almost all of the cases, by up to an order of magnitude. Apart from this, it
is worthwhile to note that a single-threaded version of INFOPATH would require
several days to complete. In fact, the original paper reports 4 h of computation
to infer 38 different time-varying networks for 38 different topics, in a cluster
equipped with 1000 CPU cores and 6 TB total RAM [5]. REFINE has been exe-
cuted on a 48-core, 128 GB machine and takes at most 10 min to reconstruct the
topic-associated networks for each of the four topics.

In the same figure, it is possible to observe the poor performance of DEEPIN-
FER; this is due to the fact that we only consider 5000 users. To detect patterns,
DEEPINFER relies on frequent co-occurrence of users in close contexts; however,
we do not have any guarantee that the 5000 users will occur in such man-
ner, hence the poor performance. This would not be an issue for REFINE and
INFOPATH, as they rely on reaction time and/or mere co-occurrence patterns
rather than context proximity.
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In all of the above experiments, the T-SVD step of REFINE has been executed.
As shown in Fig. 5, handling the sparsity issue through T-SVD gives better result
than the formulation in Eq. 7. REFINE with T-SVD is more robust than REFINE
when K increases. However, one could ask if simply using the T-SVD method as
an embedding technique could be sufficient. In the following experiment we show
that a variant of REFINE, referred to as REFINE-BASIC which simply considers
the T-SVD output as node embedding, is not sufficient. For this experiment,
we have chosen cascades of minimum length 5 and maximum length 200. In
fact, it has been argued that users belonging to large cascades are usually not
similar, as such cascades tend to be viral and include almost all users [17]. By
discarding cascades which are too large in order to reduce noise, the number of
users decreases, as shown in column |U’| of Table 1.

Figure3 shows how poorly REFINE-BASIC performs when it is compared
against REFINE and DEEPINFER. Recall that the network structure is highly
non-linear and our main goal for designing the complete REFINE solution is to
capture such non-linearity. REFINE-BASIC is a linear model, and hence it fails
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to effectively predict the edges of the latent network. One particular observation
is that REFINE tends to perform well when there is a large number of training
examples (i.e. the first two plots). Note that a training example in REFINE cor-
responds to a user. In Fig. 3 we have not included the performance of INFOPATH
as it fails to complete the inference on large datasets after several days.

Parameter Analysis. To complete the analysis, we investigate now how the differ-
ent parameters of our models affect the performance. We start by analyzing the
effect of embedding dimensionality in the network reconstruction task. As we are
interested in understanding the effect of the parameters, in the following experi-
ments we only set the minimum size of cascades to be 3, i.e. {C': |C| > 3,C € C}.

Algorithm == REFINE = REFINE+TSVD

Algorithm = REFINE == REFINE+TSVD
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The first plot of Fig.4 shows the effect of increasing the embedding dimen-
sionality in the network reconstruction task. As one might expect, increasing
this parameter up to a given threshold improves the results, because we can
encode more information. However, beyond a certain point the performance
either reaches a plateau or decreases. Our experiments show that in most of the
cases, the best results occur when the embeddings size is in the range 150-200. In
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the second plot of Fig.4, the effect of the regularization constant A (introduced
in Eq.7) is analyzed. In line with previous findings [8], our experiments show
that in most of the cases, the best results are obtained when A is between 0.0
and 0.4; after that point, the performance usually decreases. Finally, in the third
plot of Fig.4 we analyze the effect of the sparsity factor u, introduced in Eq. 7.
Our experiments show that in most of the cases, the best results are obtained
when p is between 0 and 10.

Earlier we have shown the advantage of using T-SVD in terms of the quality of
the result; here, we analyze the effect from the convergence of the loss function L,
Eq. 7. Figure 6 shows that the loss function converges much faster (after a couple
of iterations) for REFINE with T-SVD rather than REFINE without T-SVD.

Cascade Prediction. Besides its effectiveness in network reconstruction, our app-
roach can be extended to perform other tasks, such as cascade prediction: given
the state of a cascade C up to a certain time ¢, we want to predict whether the
cascade will go viral by time ¢ + At. This is a practically relevant problem and
a crucial challenge in social networks analysis [17,19,20].

In this study, we formulate the virality prediction problem similarly to Weng
et al. [17]. Let S:(C) = {u : u = C¢(i) A i < t} be the number of users who
participated in a cascade up to a discrete time . Let ¥ be a virality threshold;
we seek to predict whether the cascade will affect a number of users which is
larger than 9% of the recorded cascades. We utilize the embeddings proposed
in Sect. 3.2. We compute a feature vector f € R? that encodes the current state
of the cascade based on S;(C) as follows. Let p = |S;(C)|, and let & € RP*4
be an embedding matrix constructed from the set of p starting users at time ¢,
u € S¢(C). We then compute f by aggregating &, i.e. the j — th component f;
for j =1,...,d is computed as f; = %Zf:l Eij.

Once we automatically build the feature vectors, we assign binary labels for
each cascade according to their state at ¢t + At and . That is, a cascade C' is
labeled as wviral if its size at t + At is greater than the size of 9% of the cascades;
otherwise, it is labeled non-viral. Finally, we follow a standard machine learning
approach by splitting the data into training (60%) and test (40%). To make a
fair comparison with community-based features (CBF) [17], we follow the same
techniques and settings. As we have a rare-class classification task, we use F-
Measure with G = 3 [19].

We use the same dataset as [17] (Twitter-HT). We compare REFINE with
CBF and DEEPINFER; for CBF only, features are manually extracted from the
underlying network.

Figure 7 shows that REFINE is no better than the baselines for ¢ = {70, 80}.
However it is much better for ¥ = 90 (REFINE = 69.7%, DEEPINFER = 65.5%,
CBF = 43%), and in virality prediction it is crucial to have an effective prediction
at higher values of ¥ [19].

A vital task in this problem is to predict virality as early as possible. There-
fore, in the following experiments we seek to predict virality of a cascade C' at
different ¢t + At based on the observation of C' at different values of ¢ with a fixed
9. In this experiment, we compare the two strong algorithms REFINE and DEEP-
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INFER, and for both algorithms d is equal to 200. As shown in Fig.8, REFINE
is a clear winner for this task. In particular, note that the prediction quality
for REFINE improves as we increase t, and this provides a strong case for the
delay-aware approach. As it is difficult to predict far in the future, performance
decreases as we increase At.

5 Conclusions

This study addresses the problem of network reconstruction from diffusion events
through node embedding, and proposes a novel algorithm called REFINE.

One of our objectives is to argue against some existing studies [4] and show
that, if carefully designed, delay-aware models are as good as or even better than
delay-oblivious models in reconstructing the hidden network.

REFINE is based on user embeddings learned from cascade logs, that are
leveraged to predict edge probabilities between pairs of users. Unlike some exist-
ing techniques that assume a parametric form of influence model, we make
no assumption regarding the transmission rates over edges. Instead, we sim-
ply embed the interaction patterns between users in a low-dimensional space
and utilize that for reconstructing the edges. We show the effectiveness of this
technique by comparing it against existing delay-aware and delay-agnostic meth-
ods.

Moreover, we have also demonstrated the technique presented in this study
can be used for cascade prediction. Compared to existing manual or automatic
feature extraction techniques, our algorithm shows a significant performance
gain. Our study is limited to inferring the existence of edges between a pair of
users, and in a future work we seek to infer the direction of edges as well.
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Abstract. The paper presents the application of nonlinear dimensional-
ity reduction methods to shape and physical data in the context of hull-
form design. These methods provide a reduced-dimensionality represen-
tation of the shape modification vector and associated physical parame-
ters, allowing for an efficient and effective augmented design-space explo-
ration. The data set is formed by shape coordinates and hydrodynamic
performance (based on potential flow simulations) obtained by Monte
Carlo sampling of a 27-dimensional design space. Nonlinear extensions
of the principal component analysis (PCA) are applied, namely kernel
PCA, local PCA and a deep autoencoder. The application presented is a
naval destroyer sailing in calm water. The reduced-dimensionality repre-
sentation of shape and physical parameters is set to provide a normalized
mean square error smaller than 5%. Nonlinear methods outperform the
standard PCA, indicating significant nonlinear interactions in the data
structure. The present work is an extension of the authors’ research [1]
where only shape data were considered.

Keywords: Shape optimization - Hull-form design -
Nonlinear dimensionality reduction - Kernel methods -
Deep autoencoder

1 Introduction

The simulation-based design (SBD) analysis and optimization paradigm has
demonstrated the capability of supporting the design decision process, not only
providing large sets of design options but also exploring operational spaces by
assessing design performance for a large number of operating and environmen-
tal conditions. The recent development of high-performance computing systems
has driven the SBD towards integration with global optimization (GO) algo-
rithms and uncertainty quantification (UQ) methods, moving the SBD paradigm
to automatic deterministic and stochastic SBD optimization (SBDO) possibly
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Fig. 1. SBDO scheme, including pre-optimization strategy.

aiming at global solutions to the design problem. In shape design, SBDO con-
sists of three main elements: (i) a deterministic and/or stochastic simulation tool
(integrating physics-based solvers, such as computational fluid dynamics, CFD,
with UQ), (ii) an optimization algorithm, and (iii) a shape modification tool (see
Fig. 1, right box). In this context, both GO and UQ are affected by the curse
of dimensionality as the algorithms’ complexity and computational cost rapidly
increase with the problem dimension. This is generally also true if metamod-
els are applied. Therefore, the assessment and breakdown of the design-space
dimensionality are key elements for the efficiency and affordability of SBDO [2].

On-line linear design-space dimensionality reduction techniques have been
developed, requiring the evaluation of the objective function or its gradient.
Specifically, principal component analysis (PCA) or proper orthogonal decom-
position (POD) methods have been applied for local reduced-dimensionality rep-
resentations of feasible design regions [3]. A PCA/POD-based approach is used
in the active subspace method [4] to discover and exploit low-dimensional mono-
tonic trends in the objective function, based on the evaluation of its gradient.

Off-line linear methods have been developed with focus on design-space vari-
ability and dimensionality reduction for efficient optimization procedures. A
method based on the Karhunen-Loéve expansion (KLE, equivalent to POD) has
been formulated in [2] for the assessment of the shape modification variability
and the definition of a reduced-dimensionality global model of the shape mod-
ification vector and applied to a fast catamaran. The method has been applied
to a naval destroyer [5], a small waterplane area twin hull [6], and a hydrofoil
[7], showing significant reduction of the design space dimensionality with great
benefit to the efficiency of the shape SBDO. Nevertheless, significant physical
phenomena induced by small shape modifications may be overlooked, since no
physical information is processed by the method. Furthermore, linear methods
such as KLE/POD/PCA may not be efficient when complex nonlinear relation-
ship between design variables are involved.

An extension to augmented design-space dimensionality reduction methods
by combining shape and physics based data was introduced in earlier research
[8-10]. This extension improved the effectiveness of the dimensionality reduction,
bringing physics based information (provided by low-fidelity hydrodynamic com-
putations) into the variability breakdown analysis (see Fig. 1 left box).

In order to address data with nonlinear structures, nonlinear dimensionality
reduction methods have been developed and investigated. Among others, local
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PCA (LPCA) divides the initial design space in k clusters and the PCA is applied
to each of them, assuming each cluster having approximately a linear structure
[11]. Kernel PCA (KPCA) solves the PCA in a new space (called feature space)
using kernel methods [12]. Autoencoders or autoassociative neural networks have
been studied and proposed as nonlinear extension of PCA by several researchers
[13,14]. Earlier research by the authors includes the application of nonlinear
methods to the design-space dimensionality reduction of a naval destroyer based
on shape data only [1,15,16].

The objective of the present work is to solve the dimensionality reduction of
combined shape and physical data using nonlinear methods and assessing their
efficiency and effectiveness.

Nonlinear methods include LPCA, KPCA, and DAE and are demonstrated
for the DTMB 5415 model (an early and open-to-public version of an USS
Arleigh Burk-class destroyer) in calm water at 18 kn. The data set is formed
by the results of 9,000 potential flow simulations obtained by the Monte Carlo
sampling of a 27-dimensional design space. Data include three heterogeneous
distributed and suitably discretized parameters (geometry modification vector,
pressure distribution on the hull, and wave elevation) and one lumped param-
eter (wave resistance coefficient). The reduced-dimensionality representation of
shape and physical parameters is set to provide a mean square error smaller
than 5%, normalized with the overall data variance. The efficiency and effective-
ness of nonlinear methods are assessed considering their compression capability
and associated reconstruction error compared to PCA. Current formulations and
methods go beyond design-space dimensionality reduction for shape optimization
and can be extended to large sets of heterogeneous physical data from simula-
tions, experiments, and real operation measurements. An extended version of
the current paper has been presented in [17].

2 Dimensionality-Reduction Formulation and Methods

Global optimization tries to find the best design exploring the entire design
space. This solution is obviously unknown a priori and therefore the problem
can be considered as affected by an epistemic type of uncertainty. Consequently,

distributed physical
parameter vector
— Y
. 5
lumped physical 7
Y ;
parameter vector /|
b

/ ~X0 Ogg=c0 _ \

Fig. 2. Domains for shape modification, distributed physical parameter, and lumped
(or global) physical parameter vectors in a disjoint Hilbert space.
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the design-variable vector can be associated to a probability density function
and studied as a random variable [2].

General definitions and assumptions are presented in the following, along
with the solution of data reduction by PCA, LPCA, KPCA and DAE.

2.1 Combined Shape- and Physics-Based Formulation

Assume that u € U C RM is the design-variable vector, defining the shape
modification vector § € R, ¢ = 1,...,3, along with a distributed physical
parameter vector w € R%, g5 = 1,...,00 (representing, e.g., velocity, pressure
distribution, wave elevation, etc.), and a lumped (or global) physical parameter
vector @ € R%, g3 = 1,...,00 (representing, e.g., resistance, motion RMS, etc.).
For the sake of snrnphmty7 consider one set of coordinates x € R™, and assume
G, P, and Q as the domain of §, 7, and 0 respectively, as schematized in Fig. 2.
Note that Q has a null measure and corresponds to an arbitrary point xg where
the lumped physical parameter vector is virtually defined. Also note that, in
general, H = GUP U Q is not simply connected. Finally, consider u as a random
variable with associated probability density function p(u). Consider a combined
geometry and physics based vector v € R? with ¢ = max{q1, ¢2,¢3}

' (x,u)/{|6'>) if xeg
Y(xu) = 7w/ (7)) i xeP (1)
0'(x,u)/ (||6']|?) if xeQ

as belonging to a disjoint Hilbert space H, where each component (generically
called 9" = 1) — (1b)) is centered and normalized by the associated variance

= (J1']1?) / / (%, 1) - 9 (x, w)p(u)dxdu (2)

with (-) the ensemble average over u.

The aim of the dimension-
ality reduction is to identify
a reduced dimensionality rep-
resentation J(x,a) of the vec-
tor ~, for which its modifica-
tion depends on a new reduced
order design variable ¢ € A C
RY with N < M. A(x,a)
is estimated during a process
of encoding/decoding by the
dimensionality reduction meth-
ods. Figure 3 shows an example
for shape modification (8) only,
with n =1 and g = 2.

A convenient metric to evaluate the goodness of 4(x,a) to fit v(x,u) is
the mean square error (MSE) normalized to the design-space original variance
(0?) as

Fig. 3. Scheme and notation for the current for-
mulation, example for shape modification only
with n =1 and ¢ = 2.
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2 2
A(x, ) — vy(x,u)||*p(u, a)dxduda
MSE ﬂX{{HH (x, ) = v(x, u)|[*p(u, @)

NMSE =
o? [ v, 0)]2p(u)dxdu
UH

3)

where p(u, ) is an unknown joint probability distribution over the product
space U x A. Discretizing ‘H by elements of equal measure AH = 1 and sampling
U by a statistically convergent number of Monte Carlo realizations S, so that
{ui}3_, ~ p(u), the discretization g(u) of v(x,ux) are organized in a [L x 9]
data matrix as

D= [g(ul) ‘ ‘ g(us)} with g(ug) = {dT,pT,tT}Z, (4)

where L is the dimensionality of g and with d, p, and t the discrete form of the
vectors d(x,u), w(x,u), and 0(x,u), respectively. Equation3 can be approxi-
mated as

S A
MSE _ 377 [I8(ow) — g(u)?
= 5
o 2 k=1 llg(ur)l?
Details of formulation and numerical discretization can be found in [8].

NMSE = (5)

2.2 Principal Component Analysis

PCA allows to reduce the dimensionality of the data matrix by representation
in a linear subspace defined by the eigenvectors of the [L x L] sample covariance
matrix C = DDT/S. Thus, PCA reduces to the solution of the eigenproblem

CZ =7A (6)

where Z and A collect the L eigenvectors and eigenvalues of C, respectively. The
eigenvalues represent the variance resolved along the corresponding eigenvectors.
The linear subspace formed by the N eigenvectors (collected in Z) associated to
the largest N eigenvalues resolves the largest variance, compared to any other
linear subspace of dimension N [18]. The cumulative sum of the eigenvalues is
used to assess the variance resolved by the linear subspace of dimension N. The
associated reconstruction of D is given by

D= 27D (7)

2.3 Local Principal Component Analysis

LPCA performs a PCA for each disjoint region of the input space H. If local
regions are small enough the associated data manifold will not curve much
over the extent of the region and the linear model is assumed to be a good
fit [11]. The first step in LPCA is clustering the data in k sets, such that
D = {Dy,...,D;}¥_,. Here, the k-means algorithm [19] is used. After k clusters
are defined, kK PCA eigenproblems are solved

Cizi :Aizi Vi = 1,...,]6 (8)
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LPCA results are highly dependent on the clustering method and the num-
ber of clusters. The number of clusters needs to be defined carefully to avoid
increasing the computational cost and data overfitting.

2.4 Kernel Principal Component Analysis

KPCA [12] finds directions of maximum variance in a higher (possibly infinite)
dimensional feature space F, mapping data points from the input space H by a
(possibly) nonlinear function ¢ : H — F

g(uk) %@(gk), Vk = 1,...,5 (9)

The PCA is computed in the feature space F. Assuming ), @(gr) = 0, the
kernel principal component {Zp}f::l can be found solving the eigenproblem

Yozy = Ap2Zp (10)

where 3¢ is the [P X P] covariance matrix in the feature space F, defined as
18
_ 1 T
To=3 k%l@(gk)@(gk) (11)

Defining K(g;,gr) = P(g;) ?(gx) and z, = Zle cpk®P(gr) Eq.10 can be
rewritten as
Kc, = A\, S¢, (12)

where K is the symmetric and positive-semidefinite [S x S| kernel matrix, with
K;r = K(gi,8k). The length of the S-component vector ¢, is chosen such that
z)z, = A\pSclc, = 1. Once the eigenproblem of Eq.12 is solved, the new
parametrization can be found projecting $(g) on z, as

S

5
a=9(g)z, = Z cor®(g) " P(gr) = Z cpi K (8, 81) (13)
k=1 k=1

The reconstruction of the original data from the feature space F in KPCA
is more problematic than PCA. Here, the approximate pre-images technique
proposed in [20] is used.

2.5 Deep Autoencoders

An autoencoder is a feedforward ANN that performs two main tasks: (i) an
encoder function £ maps the input data g(uy) into compressed data ay; (ii)
a decoder function D maps from the compressed data ay back to g(ay). The
overall operation is performed setting the same number of neurons (L) in the
input and output layer. The hidden layer is set to have N < M neurons and is
responsible for the data compression.



160 D. D’Agostino et al.

Consider a single hidden layer autoencoder and assume no bias vector. New
design variables can be expressed as ay = £(H(1)g(ug)) where H is a weight
matrix and subscript “(1)” indicates the encoding operation. The reconstruction
vector can be expressed as g(ay) = D(H(yax) where subscript “(2)” indicates
the decoding operation. Finally, the network parameters N' = {Hq1),Hy) }, are
evaluated by the (non trivial) minimization of the MSE in the form:

19))

s
MSE(WNV Z w)|* = Z (H)&(Hg(ur))) — glur)|?
k=1 k:
(14)
Using nonlinear activation functions and multiple hidden layers, DAE pro-
vides a nonlinear generalization of the PCA. The DAE compression capability is
represented by the number of neurons N in the central hidden layer and defined
based on parametric minimization of the MSE, varying N.

0)|

3 Application

Figure4 shows a schematic representation of the heterogeneous data set. Hull
and performance details of the orginal geometry can be found in [21]. The shape
parameter vector used for design-space dimensionality reduction collects the
y—component (d,) of the shape modification vector (8). The shape modification
is defined using a combination of M = 27 basis functions over a hyper-rectangle
embedding the demi hull. Details of equations and setting parameters may be
found in [22]. The distributed (heterogeneous) physical parameter vector col-
lects values of the pressure distribution (p) and wave elevation (7)), whereas the
lumped physical parameter vector includes the wave resistance coefficient (Cy,).
Physical parameters are based on calm-water potential flow solution at Fr = 0.25.
Hydrodynamic simulations are conducted using the code WARP (Wave Resis-
tance Program), developed at CNR-INSEAN. Wave resistance computations are

Wave elevation vector

Shape modification vector and
pressure distribution

Fig. 4. Distributed shape and physical parameters for current application.



Augmented Design-Space Exploration 161

based on linear potential flow theory using Dawson (double-model) lineariza-
tion [23]. The frictional resistance is estimated using a flat-plate approximation,
based on the local Reynolds number [24]. Details of equations, numerical imple-
mentations, and validation of the numerical solver are given in [25]. Simulations
are performed for the right demi-hull, taking advantage of symmetry about the
zz-plane. The computational domain for the free-surface is defined by a 75 x 20
grid nodes. The associated hull grid is defined by 90 x 25 nodes. The design-
space dimensionality reduction is performed combining together all geometric
and physical parameters.

3.1 Numerical Results

The original design space is sampled using a uniform random distribution of
S = 9,000 hull-form designs. The reduced-dimensionality models are validated
using 10-fold cross-validation repeated 6 times to compute the hypothesis test (¢-
test). The reduced-dimension N is set so as to achieve a maximum NMSE equal
to 5%. A number of cluster k = 45 is used for LPCA. A quadratic polynomial
kernel is used for the KPCA. Three hidden layers are used for DAE (composed
by 600-NN-600 neurons) with an exponential linear units [26] activation function
for each hidden layer. A linear activation function is used for the output layer.
The DAE training is performed by the Adam optimization algorithm [27], using
a minibatch size of 512 data point for gradient evaluation by the backpropaga-
tion algorithm [28]. For the implementation of the DAE the open-source python
library [29] is used.

Table 1 shows the dimensionality-reduction results in terms of number of com-
ponents N required by the methods to reconstruct successfully the data set along
with the associated NMSE (averaged on the training and test datasets). The
number of components N also indicates the reduced-dimensionality parametriza-
tion of the shape modification vector for future SBDO. The non-linear methods
outperform linear PCA. Specifically, LPCA and KPCA are found the most effec-
tive methods for the current problem in terms of dimensionality reduction capa-
bility (N = 14). DAE (N = 17) also shows a sufficient compression capability,
whereas PCA is found the least effective method requiring N = 19 principal
components. This suggests the presence of significant nonlinear structures into
the data set.

Table 1. Methods’ compression capability (N), dimensionality reduction (DR), and
training and test NMSE (p-value < 0.05).

Method | N | DR% | NMSE% (training) | NMSE% (test)

PCA 19129.6 |4.5 4.6
LPCA |14]48.2 3.6 4.6
KPCA |14]48.2 4.1 4.6

DAE 17 37.0 4.3 4.5
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Fig. 5. Reconstruction of hull shape (d,), pressure distribution (p), wave elevation (),
and corresponding errors A(-) for a target design (results are shown versus I— and
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Figure 5 shows the reconstruction of the hull shape (d,) and the distributed
physical (p and n) parameters vector for an example design in the test set. A
good agreement between the target and reconstructed data is achieved by all
methods. Furthermore, Fig. 5 shows the reconstruction of the wave resistance
coefficient (C,,) for the whole test set, showing a remarkable agreement.

4 Conclusions and Future Work

Nonlinear dimensionality reduction methods have been applied to the design
space assessment of the DTMB 5415 hull form in calm water at Fr =0.25. Nonlin-
ear extensions of principal component analysis (PCA) have been applied, namely
local PCA (LPCA), kernel PCA (KPCA), and a deep autoencoder (DAE). The
data matrix under investigation was formed by the results of potential flow sim-
ulations coming from the MC sampling of a 27-dimensional design space asso-
ciated to a shape-optimization problem. The dataset includes the geometry as
well as two heterogeneous physical distributed parameters (pressure and wave
elevation) and one lumped parameter (wave resistance coefficient). The reduced-
dimensionality representation of shape and physical variables was sets to achieve
an NMSE smaller than 5% of the data variance.

The standard (linear) PCA meets the requirement using 19 principal compo-
nents/parameters. DAE shows here the least promising compression capability
among the nonlinear methods with 17 components required by the reduced-
dimensionality parametrization. Finally, LPCA and KPCA provides the most
promising compression capability with 14 components. Reconstructed data for
shape, pressure, wave elevation, and wave resistance coefficients were presented,
showing a remarkable agreement to target values.

The current results are promising, representing a first step towards data
compression and reduced-order model prediction of complex physical phenom-
ena. Current formulation goes beyond shape optimization and can be applied
to large sets of heterogeneous physical data from simulations, experiments, and
real operation measurements.

Future work includes extensions to multi-physics heterogeneous data from
multiple design conditions [10]. The possibility of using higher-fidelity analy-
sis solver with metamodels will be addressed. In parallel, a similar approach is
being applied to particle image velocimetry data of complex flows to assess the
compression capability of nonlinear extensions of the proper orthogonal decom-
position (POD) technique [30].
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Abstract. We present a novel framework for developing a risk model for
class prediction from high-dimensional gene expression data; we define a
new model that relies on several already known classification methods.
We make use of the model for a survival analysis of tumor and immune
subtype from Diffuse Large B-cell Lymphoma patients. Experimental
analyses show good level of accuracy in the detection of Cell-of-Origin
of diseases.

Keywords: Classification + Gene expression + Lymphoma

1 Introduction

The univocal identification of cancer and the understanding of its composition
are crucial in medicine; however, they represent non-trivial challenges. In order
to extrapolate features of single cells from complex tumor admixtures, non-trivial
approaches and accurate statistics analyses are required.

Among the different kinds of cancer, the treatment of Lymphoma requires
some of the most difficult tasks; indeed, a proper understanding conditions in
which it arises is still an open problem, as well as the definition of the specific
kind of genetic mutation causing its growth [1]. Furthermore, we know that DNA
changes related to Lymphoma are usually acquired after birth, rather than being
inherited [2]; nevertheless, even if they may result from several causes, such as
exposure to radiation, cancer-causing chemicals or infections, changes occur for
no apparent reason, in general.

In order to effectively tackle these challenges, new techniques have been
recently developed that enhance already existing immune profiling technol-
ogy [3]. In this context, statistical analysis of gene expression [4] plays a crucial
role, and it can be of help for immune profiling, therapeutic design, treatment
strategies and also for studying and understanding the unusual growth and/or
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the migration of cells into organs or tissues from their sources of origin. For
instance, in malignant tumors, levels of cellular infiltration are associated with
tumor growth, cancer progression and patient outcome.

Several methods for prognosis prediction of Diffuse Large B-cell Lymphoma
and analysis of gene expression profiling have been proposed, based on Fuzzy
Neural Networks [5], statistical techniques [6], survival analysis [7] or microar-
ray manipulation [8], among others. In recent years, a new research trend has
been arising, mostly based on discovering Cell-of-Origin (COO) into two distinct
molecular subtypes, identified by gene expression profiling: the activated B-cell-
like (ABC) and the germinal center B-cell-like (GCB)[9]. Indeed, the assignment
of Diffuse Large B-cell Lymphoma into COO groups has become increasingly
important with the emergence of novel therapies that have selective biological
activity in GBC or ABC groups [10]. Many studies take advantage of differ-
ent feature extraction methods to discover independent components from gene
expression profile, such as Principal Component Analysis (PCA) [11], Linear
Discriminant Analysis (LDA) [12] and Locally Linear Discriminant Embedding
(LLDE) [13], and Prediction Analysis for Microarrays (PAM) [14]. Although
such methods have solid biomedical support, there are a great number of gene
subsets with the same predictive performance which could lead to the arbitrari-
ness selection of candidate gene subsets. In fact, each method suffers from some
drawbacks, and many factors such as normalization, small sample size, noisy
data, improper evaluation methods, and too many model parameters can lead
to the overfitting of the resulting models, the bias of results and even false discov-
ery [15]. Among these methods, promising results has been attained by the work
of Dabney et al. [6], that showed Classification to Nearest Centroids (ClaNC)
outperforming other methods in terms of accuracy and overall error.

In this work we propose a novel approach for class prediction from gene
expression data and survival analysis of tumor and immune subtype; we are
interested in finding a subset of genes which have a significant impact on survival
probability. In particular, our approach relies on the definition of two groups
based on the amount of certain member cell types composing the genes, and
on a Kaplan-Meier survival analysis that aims at understanding which group
has more chances to survive. Genes can be identified by taking into account
the fact that, if the presence of some set of genes changes, the composition
of the groups changes accordingly, and hence the survival probability. In our
approach, we make use of machine-learning techniques in order to identify gene
candidates and of CIBERSORT [16] in order to adaptively identify the induced
groups. The framework is available at https://github.com/DeMaCS-UNICAL/
DLBCL-prediction.

The remainder of the paper is structured as follows: Sect. 2 reports the main
methods used, including frameworks used to set up the experiments; Sect. 3
defines the experimental activities we carried out, while Sect.4 discusses the
results. Section 5 presents our conclusions and perspectives.


https://github.com/DeMaCS-UNICAL/DLBCL-prediction
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2 Proposed Approach

In the context of DNA microarrays, classifying and predicting the diagnostic
category of a sample based on its gene expression profile constitute a challenge,
as there is a large number of inputs (genes) from which to predict classes along
with a relatively small number of samples. Hence, the identification of which
genes contribute towards the classification is an important task.

The goal of this study is to provide a new approach for identifying a subset
of genes that influence survival rate of patients having Diffuse Large B-cell Lym-
phoma. The proposed approach consists of three steps: (i) use CIBERSORT [16] to
estimate the excess of certain member cell types in a mixed-cell population and
subdivide the patients in different groups w.r.t. their own cell types value; (i)
apply Kaplan-Meier analysis to the groups, in order to estimate the survival func-
tion from lifetime data and measure the fraction of patients living for a certain
amount of time after treatment; (ii1) identify the best separating genes from the
mixture that influence the survival rate of each subgroup. In particular, in order
to perform an accurate prognosis prediction, we evaluate performance of three
different classification algorithms: PAM, ClaNC and Proportional Overlapping
Score (POS).

2.1 Subgroup Definition Using CIBERSORT

CIBERSORT [16] is a method for characterizing cell heterogeneity from nearly
any tissue by using their gene expression profiles. It uses a machine learning
approach called v-Support Vector Regression (V-SVR) and performs a decon-
volution of mixtures, useful to analyze the composition of each sample in term
of percentage of tumor and noise. The output of CIBERSORT is a new estimated
mixtures that is expressed in the percentage relationship between genes and
cell lines and, then, the composition of each gene. By using CIBERSORT, we
divided the patients into two groups w.r.t. the median value computed on the
B-cell proportions among all patients. In particular, let P; be a patient, X (P;)
the B-cell proportion value of that patient and M the median value, we define
the “High” group s.t. P; € High — X(P;) >= M and the “Low” group s.t.
P, € Low < X(P;) < M. Basically, the High group contains patients, which
B-cell proportion is greater or equal than the median, while the Low group con-
tains patients which B-cell proportion is lower than the median. The resulting
groups represent a starting point of our analysis. Indeed, for each group the
Kaplan-Meier analysis is computed to obtain the overall survival of the patients.

2.2 Survival Analysis

Kaplan-Meier [17] is a method used to measure the fraction of subjects living for
a certain amount of time after treatment. The Kaplan-Meier survival function is
defined as the probability of surviving in a given period of time while considering
time in many small intervals. Let d; be the number of death patients at time ¢;,
and let n; be the number of patients “at risk”, i.e. alive patients or not censored
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just before ¢; (a patient is censored when information is missing); at a given time
t, the value of the survival function is computed as follows:

s =S"[1-4

.
t; <t v

For instance, the probability of a patient surviving two days after a
chemotherapy treatment for non-Hodgkin lymphoma is computed by conditional
probability [18] as follows:

P(t) = P(slsg\sl)

where s; is the probability of surviving after the first day and s is the
probability of surviving after the second day.

2.3 Gene Classification

In order to identify subsets of probe sets that best characterize each class with
a reasonably small cross-validation error, we consider the PAM, ClaNC and
POS classification techniques, widely used in problems related to cancer-gene
expression studies [19]. These probe sets were removed in order to analyze the
variation of survival rate by comparing the survival curves. — PAM is a statistical
technique for class prediction from gene expression data using Nearest Shrunken
Centroids (NSC) [20]. It is a simple, accurate and fast classifier often used to
select genes directly linked with breast cancer [14]. — ClaNC is a classification
algorithm based on NSC. It can be represented by the centroid components and
pooled by the standard deviation of the active genes, that are most frequent genes
for each class, demonstrated to be successful in selecting genes that discriminate
between multiple clinical or biological classes [6]. — POS is a method based on
the analysis of the overlapping regions, for each gene, yielded by the intersection
between gene expression intervals of different classes with the aim to denote gene
with higher discriminating power for the considered classification problem. It is
able to achieve interesting results in gene selection to increase the diagnostic
value of gene expression data for colorectal cancer [19].

PAM and ClaNC are based on NSC, which, in turn, is one of the most fre-
quently used classification methods for high-dimensional data, such as microar-
ray data [21]. NSC selects “good” genes according to two factors: within class
distance and between classes distance. When expression levels of a gene for all
samples in the same class are fairly consistent with a small variance, but are
largely different among samples of different classes, the gene is considered a
good candidate for classification because it has discriminant information for dif-
ferent classes. Genes whose expression levels do not significantly differ between
the classes will have their centroids reduced to the overall centroids, effectively
removing them from the classification procedure [20].
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3 Experimental Setting

In the following we illustrate our experimental activities; in particular, we
describe the dataset of use and the evaluation criteria adopted.

3.1 Dataset Description

We conduct our experiments on the publicly available dataset taken from the
Gene Expression Omnibus (GEO)!, a database consisting of microarray, next
generation sequencing (NGS) and other high-throughput data. In particular, we
tested our method on GSE23501 dataset composed of DNA methylation signa-
tures define molecular subtypes of Diffuse Large B-cell Lymphoma (DLBCL),
characterized by probe sets represented on GeneChip Human Genome U133 Plus
2.0 Array. The screening population consisted of 69 DLBCL cases in the 16-92
age range, subjected to the same treatment (R-CHOP); for each patient, age,
overall survival, molecular subtype, gender and treatment are known. We used
the LM22, signature matrix designed by Newman et al. [16]. LM22 contains 547
genes that distinguish 22 human hematopoietic cell phenotypes including seven
T-cell types naive and memory B-cells. These cells are highly relevant since they
can kill tumor cells, or in some cases promote their growth. Precisely, we focus
on B-cells memory (a type of lymphocytes) that are part of the adaptive immune
system, a specific defense [22]. In order to perform a foreign comparison accord-
ing to [16], we converted probes of references matrix (LM22) to HUGO gene
symbols [23].

3.2 Evaluation

We used log-rank test and F-test for comparing the survival distributions of
two samples. The log-rank test is based on the null hypothesis that there is
no difference regarding survival among two distributions. In log-rank test we
calculated the expected number of events in each group, i.e. F; and F, while
01 and O3 are the total number of observed events in each group, respectively.
The statistic test is:

01 — E1)? Oy — E5)?
,_ (0B (0, By)

£y Ey

Log-rank tests were computed within a level of significance of 5% [24].
Log-rank test may be invalid or less significant if the survival curves cross
because of an increased probability of type II error [24]. For this reason, especially
to determine whether two curves belong to different distribution, we included
F-test [25] in our analysis, a statistical tool for data analysis programmed to
determine whether two independent estimates of variance can be assumed to be
estimates of the same variance; this allows us to perform a comparison between
two treatments. Let Y; the sample mean in the iy, group, n; the number of

! https://www.ncbi.nlm.nih.gov/geo/.
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observations in the i, group, Y the overall mean of the data, K the number of
groups, N the overall sample size; then, the formula for the F-test statistic value
is:

F-test is performed with a significance level of 5%. It is the probability of
making the wrong decision when the null hypothesis is true and it is also called
a level. According to this test, the null hypothesis is rejected when both critical f
value is smaller than F-test value and a p-value is smaller than a level. Critical f
value is a cutoff value on the test distribution where the F-test value is unlikely
to be wrong.

4 Experimental Analysis and Discussion

The goal of this study is to find a subset of genes that influence the survival
rate and the disease. Patients are divided into two groups, and for each group
the Kaplan-Meier analysis is computed in order to obtain the overall survival.
Comparing performances of three classification algorithms, subsets of probe sets
that best characterize each class are identified and removed in order to analyze
the variation of survival rate. The first classification algorithm used is PAM. A
grid search is used to estimate best score value, called threshold, that minimizes
classification errors. The results reported in the tables are relative to the test
set obtained by splitting the original dataset in training (80%) e test set (20%).
In particular, the results are related to the average performance on the test
set among 10-fold cross-validation. Precision, Recall, Accuracy and F-measure,
derived from confusion matrix, and the overall MSE (i.e., the average of the
squares of the difference between the estimated centroid and observed value)
were used to assess the quality of the algorithm. In order to select the genes that
best characterize each group, we tested each method by selecting sets of genes of
different size (10, 50, 100, 150 and 200). For each size we performed the Kaplan-
Meier analysis and we compared the overall results in order to find the best
size. By increasing the size, there were no relevant changes in the survival curve.
Hence, we selected only 10 genes with the additional purpose of minimizing the
modifications on the genome. Table 1 reports a subset of 10 probe sets founded
by PAM with an overall cross validation error of 45.5% [25 out of 38 High samples
were correctly predicted (63%), while 18 out of 33 Low were misclassified (54%)].

These probe sets are removed from the original dataset and we performed
the analysis over all remaining genes. Thus, Kaplan-Meier analysis is performed
on the resulting new subgroups with the aim of discovering relevant correlations
between genes and survival rate. After pruning (i.e. removing genes) according
to the classifier, we computed the survival analysis and we noticed that some
patients are automatically moved from High group to Low group or vice-versa
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Table 1. Genes distinguishing best between High and Low classes, according to PAM
analysis

Id High-score | Low-score
207928_s_AT 0.0995 | —0.1056
1554141.s_aT | 0.0774 —0.0821
230877_AT —0.0764 0.081
1560997_AaT | —0.0651 0.0691
211821 x_AT | —0.0605 0.0642

234458_AT —0.0581 0.0616
210607_AT —0.0569 0.0604
240791_AT 0.0542 —0.0574
236582_AT 0.0516 —0.0547
215290_AT —0.0473 0.0501

due to classification results. Indeed, due to removing of genes, the genome of
patients and, consequently, the percentage of B-cell are changed.

Figure 1 shows a survival graph before and after removing these probe sets
according to the PAM analysis, on the left and on the right, respectively. On the
Y and X axes the estimated survival probability and the time of observation [26]
are reported, respectively. The survival curve is drawn as a step function: the
proportion surviving remains unchanged between the events, even if there are
some intermediate censored observations.
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Fig. 1. Plots of Kaplan-Meier product limit estimates of survival of a group of patients
(on the left), and after removing genes according the PAM analysis (on the right).

Table 2 reports the survival time for each group in which the dataset was sub-
divided before (on the left) and after removing probe sets according to the PAM
analysis (on the right). The rows represent the number of patients belonging
to the two groups, while columns represent the number of patients observed in
each group, survival time and survival probability, respectively. The number of
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patients in the High class decreases as well as the average survival rate and aver-
age survival probability (i.e. 60% of survival probability), w.r.t. values obtained
from original dataset (on the left) (i.e. 70% of survival probability).

Table 2. Kaplan-Meier analysis’ results before (on the left) and after removing probe
sets according to PAM (on the right) in terms of average survival probability and
survival time for each group (+standard deviation)

Observed Time Survival Observed Time Survival
35 3.87 (£0.36) 70% HicH 24 3.55 (£0.47)  60%
33 4.89 (+0.40) 90% Low 44 5.12 (£0.33)  90%

Table 3. Log-rank test computed before (I) and after the PAM analysis (II)

Log-rank | Observed | Critical value | P-value
I 1.93 3.84 0.17
11 4.28 3.84 0.04

In order to compare the distribution of the two obtained curves (Fig. 1), we
calculated and compared the p-value according to the log-rank. Table3 shows
the comparison between log-rank test results obtained from original dataset (1)
and the dataset after probe sets removed according to the PAM analysis (II). In
particular, analysis (IT) indicates a significant difference between the population
survival curves (p-value 0.0391); analysis (I), instead, does not show a significant
difference between the two curves (p-value 0.1650).

Table 4. Average and standard deviation computed before (I) and after PAM analysis
(IT) on survival probability (i.e Y axis) (right) and on survival time (i.e. X axis) (left)

Average (Estdev) Average (tstdev)
(I)  2.28 (£1.66) (I)  0.78 (£0.08)
(II)  2.21 (£1.83) (II)  0.73 (£0.13)

For completeness and to support our previous claims (i.e. statistical tests),
we insert average comparison. As reported in Table4, the average of survival
probability and survival time decrease from analysis (I) to analysis (II).

We performed the same procedure with the other two classification algo-
rithms. Performance of PAM, ClaNC and POS are compared to each other, as
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Table 5. Comparison the PAM, the ClaNC and the POS error rate (MSE) for each
class

Class high | Class low
PAM ]0.37 0.54
ClaNC | 0.10 0.14
POS ]0.30 0.44

illustrated in Table 5. In particular, we can observe that the overall MSE, when
classifying according to ClaNC, tends to be substantially lower than the PAM
error rate, in contrast to POS error.

According to each method, 10 more relevant probe sets for each class are
found (see Table6). Note that the algorithms do not find the same probe sets.
Indeed, although the first two techniques are both based on NSC, they use a
different approach resulting in an outcome are very different. This difference in
strategy impacts on the results and the selection of the genes that best charac-
terize each class, also taking into account that the difference between the genes
is small.

Table 6. Comparison the PAM, the ClaNC and the POS top probe sets

ClaNC PAM POS
231192_AT 207928 S_AT | 213524_S_AT
243188_AT 1554141_s_AT | 201904_S_AT
227573_S_AT | 230877_AT 1563203_AT
207928_S_AT | 1560997_AT |241355_AT
219833_s_.AT | 211821_X_AT | 1555801_S_AT
1554141_S_AT | 234458 _AT 236347_AT
221558_s_AT | 210607_AT 230352_AT
215000_s-AT | 240791_AT 239435_X_AT
1563127_AT | 236582_AT 240529_AT
234458 _AT 215290_AT 1552569_A_AT

Each subset of probe sets was removed from original dataset in order to
perform Kaplan-Meier analysis and search for a correlation between these probe
sets and survival rate of patients. Results of Kaplan-Meier analysis do not show
a relevant change after removing each probe set selected by ClaNC and POS,
as indicated in Table 7. Indeed, the survival probability is similar to the value
obtained after removing probe sets according to the PAM analysis (Table 2).

Our analysis is focussed only on High curve, that has shown a relevant change
according to the PAM analysis. Table 8 reports the comparison between log-rank
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Table 7. Kaplan-Meier analysis’ results after removing probe sets according to ClaNC
in terms of average survival time (+ standard deviation) on the left and according to
POS in terms of average survival time (+ standard deviation) on the right

Observed Time Survival Observed Time Survival
HicH 21 3.80 (+£0.47) 65% 37 3.87 (+£0.36) 75%
Low 47 4.78 (£0.32) 88% 31 4.89 (+0.40) 90%

test results among original dataset (I) and resulting dataset according to the
PAM analysis (II), to the ClaNC analysis (III) and to the POS analysis (IV).

Table 8. Log-rank test computed among original dataset (I), analysis (II), (III) and
1v)

Log-rank | Observed | Critical value | P-value
1 1.93 3.84 0.17
II 4.28 3.84 0.04
111 1.18 3.84 0.28
vV 2.05 3.84 0.12

In particular, analysis (I), (III) and (IV) do not show a significant difference
between the two curves (p-value 0.170, 0.2810 and 0.1201, respectively).

Table 9. Average and standard deviation computed before (I) and after the PAM
analysis (II), after the ClaNC analysis (III), after the POS analysis (IV) on survival
probability (i.e. Y axis) (right) and on survival time (i.e. X axis) (left)

Average (Lstdev) Average (fstdev)
(I)  2.28 (£1.66) (I)  0.78 (£0.08)
(II)  2.21 (£1.83) (II)  0.73 (£0.13)
(II1)  2.43 (£1.80) (II)  0.76 (£0.12)
(IV)  2.26 (£1.65) (IV)  0.79 (£0.09)

As shown in Table9, the average value of survival probability and survival
time increases from analysis (II) to analysis (IIT) and analysis (IV). Although the
differences are small, taking into account the p-value results, we can say that the
analysis (III) and (IV) do not find relevant differences between the population
survival curves.
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Table 10. F-test results in terms of F value, critical f value and p-value according X

P. Bruno et al.

(Survival time) and Y (Survival probability) axes

PAM ClaNC POS

X Y X Y X Y
F-vALUE 1.20 2.35 F-vALUE 2.12 1.97 F-VALUE 1.40 2.20
CRITICAL F 1.86 1.55 CRITICAL F 1.80 1.56 CRITICAL F 1.70 1.80
P-VALUE 0.30 0.01 P-VALUE 0.06 0.05 P-VALUE 0.40 0.06

Such result is also evident from Table 10, which reports the result of F-test
computed by comparing the High curve between original dataset and the result-
ing dataset, according to each classification method used.

The F-test shows that PAM achieves good results according to survival prob-
ability (Y axis). In fact, F value is greater than critical f value and p-value is
lesser that the « level (i.e. 0.05) (see Sect. 3.2).

Our findings suggest that PAM achieves the best result, implying that the
distributions of the two curves (before and after the PAM analysis) are not equal.

5 Conclusion

In this work we investigated how a particular set of genes could influence the
survival of two prognostic groups. In particular, we first used CIBERSORT to
estimate the excess of certain member cell types in a mixed-cell population,
and subdivided the patients in different groups with respect to their own cell
type value. In a second phase, we performed Kaplan-Meier survival analysis in
order to understand which group has more chances to survive after the same
treatment. We employed different statistical techniques for class prediction from
gene expression data in order to detect a set of Cells-of-Origin of disease for
each prognostic subgroup. The results obtained are affected by the different
probe set proportion between signature matrix and mixture. Indeed, only four
probe sets over ten found according the PAM analysis is present in LM22, only
one according the ClaNC analysis and no probe set according the POS analysis.

As far as future works are concerned, a new signature matrix that includes
more probe sets could improve our results, and better define the correlation
between genes and survival rate of patients.
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Abstract. Dynamic Bayesian networks (DBNs) offer an approach that
allows for causal and temporal dependencies between random variables
repeatedly measured over time. For this reason, they have been used in
several domains such as medical prognostic predictions, meteorology and
econometrics. Learning the intra-slice dependencies is, however, most of
the times neglected. This is due to the inherent difficulty in dealing with
cyclic dependencies. We propose an algorithm for learning optimal DBNs
consistent with the tree-augmented network (tDBN). This algorithm uses
the topological order induced by the tDBN to increase its search space
exponentially while keeping the time complexity polynomial.

1 Introduction

Bayesian networks (BN) are a powerful probabilistic representation [20] that pro-
vide interpretable models of the domain. This is achieved through the definition
of a network — a directed acyclic graph (DAG) — that unravels direct condi-
tional dependencies between random variables. This network provides nothing
more than a factorization of the joint probability distribution of those variables.
Learning a BN from data consists in learning this structure. Having so, it is easy
to learn its parameters and make inferences over this probabilistic framework.

Dynamic Bayesian networks (DBN), on the other hand, model stochastic
processes [19]. In this case, variables are measured not only once, as for the
case of BNs, but repeatedly over time. The networks to be learned consist in
a prior network and several transition networks. The prior network is a BN
eliciting the dependencies between the random variables at their initial state.
The transition network unravels the dynamic dependencies of the variables over
time: from past states to current states (inter-slice dependencies); and between
current states (intra-slice dependencies).

The inter-slice dependencies are easy to learn as they flow forward in time and
do not create cycles [12]. On the other hand, learning the intra-slice dependencies
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suffers from the hardness of finding an acyclic graph [7,9,11]. A polynomial-time
algorithm for learning optimal DBNs was proposed using the Mutual Information
Tests (MIT) [22]. However, learning the inter and intra-slice networks all together
is not considered. This step has been done for tree-like networks, resulting in the
so-called tree-augmented DBN (tDBN) [17]. We propose to further extend this
algorithm by increasing exponentially its search space to networks consistent
with the topological order induced by an optimal tDBN. At the same time, we
are able to maintain its time complexity polynomial in the size of the input.

The emerging availability of electronic medical records (EMR) is trigger-
ing this line of research, bringing large, feature-rich, heterogeneous, noisy, and
incomplete time series. The proposed algorithm is currently being used to pre-
dict evolution of amyotrophic lateral sclerosis and treatment outcome of arthritis
rheumatoid from EMR.

We start by reviewing the basic concepts of both BNs and DBNs. Then, we
present the proposed learning algorithm and the experimental results. The paper
concludes with a brief discussion and directions for future work.

2 Bayesian Networks

Let X denote a discrete random variable that takes values over a finite set X
and X = (Xy,...,X,,) represent an n-dimensional random wvector, where each
X, takes values in X; = {w;,..., i, . Furthermore, let P(x) denotes the
probability that X takes the value x. A Bayesian network (BN) encodes the
joint probability distribution of a set of n random variables {X,..., X, } [20]
and it is given by a triple B = (X, G, ©), where:

- X =(X1,...,X,), each random variable X; taking values in {x;1,..., 2, },
where x;;, denotes the k-th value X; can take.

- G = (X,E) is a directed acyclic graph (DAG) with nodes in X and edges E
representing direct dependencies between the nodes.

— The set @ encodes the parameters of the network GG. Each random variable
X; has an associated conditional probability distribution (CPD) a.k.a. local
parameters: ©;;, = Pp(X; = z|IIx, = w;;), where II'x, denotes the set of
parents of X; in the network G' and w;; is the j-th parent configuration of
ITx,, which ranges over {w1, ..., w;q, }, with ¢; = HXJ-GHXi T

We note that the random vector X coincide exactly with the set of nodes in G,
and we abuse notation considering that set to be denoted by X.
A BN B induces a unique joint probability distribution over X given by:

PB(X17...,Xn):ﬁPB(XiUYXi). (1)

i=1

Intuitively, the graph G of a BN can be viewed as a network structure that
provides the skeleton for representing the joint probability, compactly, in a fac-
torized way. This reduces highly the number of parameters needed to describe
the full joint probability distribution over the random variables [6,16].
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Learning a Bayesian network is done in two steps: first the structure is
learned; having the structure fixed, the parameters are learned. This is called
structure learning and parameter learning, respectively. In what follows, we
assume data D is complete, i.e, each instance is fully observed, there are no
missing values or hidden variables. Moreover, D = {x1,...,Xy} is given by a
set of IV i.i.d. instances. In that case, IV;;;, is the number of instances where X;
takes the value x;;, and its parents IIx, takes the configuration w;;. In addition,
the number of instances where ITx, takes the configuration w;; is denoted by
Nij'

In order to learn the parameters we assume the underlying graph G is given;
in this case, the goal is to estimate the parameters © of the network. Using gen-
eral results of the maximum likelihood estimate we get the following parameters
for a BN B: N

AT
ijk N, (2)

that is denoted by observed frequency estimates (OFE). When learning the struc-
ture, the aim is to find a DAG G, given D. This can be accomplished through
the use of a scoring function ¢ : S x X — R, where S denotes the search space,
that measures how well the BN B fits the data D; therefore, it is called score-
based learning [2,3,5]. The main scoring criteria are Bayesian and information-
theoretical [1]. We will focus only on information-theoretical ones, in particular,
log-likelihood (LL) and minimum description length (MDL). The LL of a BN B
is given by:

0

no qi 7
LL(BID) = > ) ) Nijilog(0ijk)- (3)
i=1 j=1 k=1
This criterion does not generalize well as it favors complete network structures,
leading to the overfitting of the model to the data. The MDL criterion, pro-
posed by Rissanen [21], imposes that the parameters of the model must also be

accounted, providing a penalty factor that balances between fitness and model
complexity. The MDL is defined by:

MDL(B|D) = LL(B|D) — %111(N)|B|, with |B| = Z(T’z - Dg;, (4)

i=1

where |B| corresponds to the number of parameters © of the network. These
scoring functions have a very important property, they are decomposable. This
means that the overall score ¢ of B can be expressed as sums of local contri-
butions ¢; of each node X, and its parents (c.f. summations in Eq. (3)). This
decomposability property allows for efficient learning procedures based on local-
search methods.

In light of the previous discussion, structure learning reduces to an optimiza-
tion problem: given a scoring function ¢ and a data D, find the BN B that
maximizes ¢(B, D).

Learning general BNs is a NP-hard problem [7,9,11]. However, if we restrict
the search space S to branchings (a.k.a. tree-like structures) [8,15] or networks
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Fig.1. Given the branching R represented in Fig. la, b represents a C2G w.r.t. R;
Fig. 1c represents a non-consistent 2-graph w.r.t. R due to the edge from X5 to Xj.

with bounded in-degree with a known ordering over the variables [10], it is pos-
sible to obtain global optimal solutions for this problem. A polynomial-time
algorithm for learning BNs with underlying consistent k-graphs (CkG) was pro-
posed combining these ideas [4]. Therein, the authors showed that the set of
networks consistent with the optimal branching is exponentially larger, in the
number of variables, when comparing with branchings themselves [4]. In addi-
tion, the time-complexity of the learning procedure remained polynomial. The
method we propose in this paper is an extension of the CkGs to DBNs, so in the
following we further introduce notation and detail the CkG learning procedure.

A k-graph is a graph where each node has in-degree at most k. Given a
branching R over a set of nodes V', a graph G = (V, E) is said to be a consistent
k-graph (CkG) w.r.t. R if it is a k-graph and for any edge in E from X, to X;
the node Xj is in the path from the root of R to X;. Intuitively, this branching
R provides a topological order of the nodes from which the set of parents of each
node in the network can be refined without creating cycles, avoiding the hardness
of checking for cycles in the DAG. In this way, it is possible to add relevant edges,
not considered previously due to the branching restriction (that allows only for
one parent), and remove irrelevant ones (as branchings also requires exactly one
parent per node, except from the root). For an example see Fig. 1.

The algorithm for learning CxG network structures, presented in Algo-
rithm 1, starts by determining an optimal branching R (Step 1); for this it
uses the Chow-Liu [8] or Edmond’s [13] algorithm (see details in [4]). It then
computes the set of candidate ancestors «;, for each node X;, compatible with
the topological order induced by the optimal branching R (Steps 2-3). The par-
ents of each node X; in the network are then refined considering those in oy
(Steps 4-9). The algorithm returns a BN of in-degree k consistent with R, aug-
menting the search space exponentially, in the number of variables, relatively to
branchings, yet keeping a polynomial-time bound in the number of variables n.

3 Dynamic Bayesian Networks

Dynamic Bayesian networks (DBN) model the stochastic evolution of a set of
random variables over time [19]. Consider the discretization of time in time slices
T =40,...,T}. Let X[t] = (X1[t], ..., Xn[t]) be a random vector denoting the
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Algorithm 1. Learning CkG networks

1: Run a deterministic algorithm Ay that outputs an optimal branching R.
2: for each node X; in R do

3: Compute the set a; of candidate ancestors for X;.

4 for each subset S of o; with at most x nodes do
5 Compute ¢;(S, D).

6 if ¢:(S, D) is the maximal score for X; then
7: Set IIx, = S.
8

9
10:

end if
end for
end for

value of the set of attributes at time ¢. Furthermore, let X[t; : ¢2] denote the set
of random variables X for the interval ¢; <t < ty. Consider a set of individuals
‘H measured over T sequential instants of time. The set of observations is repre-
sented as {x"[t]}ner.teT, where x"'[t] = (2, ..., 2") is a single observation of n
attributes, measured at time ¢ and referring to individual h.

In DBNs we aim at defining a probability joint distribution over all possible
trajectories, i.e., possible values for each attribute X; and instant ¢, X;[t]. Let
P(X[t1 : t2]) denote the joint probability distribution over the trajectory of
the process from X[t1] to X[t2]. The space of possible trajectories is enormous,
therefore, it is necessary to simplify the problem and make it tractable.

In what follows, observations are viewed as i.i.d. samples of a sequence of
probability distributions { Py }+er. For all individuals h € H, and a fixed time
t, the probability distribution is considered constant, i.e., x"[t] ~ Py, h € H.
Using the chain rule, the joint probability over X is given by:

P(X[0: T]) = P(X[0]) 1:[ P (X[t + 1]|1X[0: ]).

In this case the attributes in time slice ¢ + 1 depend on all previous time slices
t, for t € {0,...,T — 1}. Usually, not all previous time slices are considered but
only a few. In that case, we say that m is the Markov lag of the process, also
known as m*-order Markov process, and so

P(X[t+1]|X[0: ¢]) = P(X[t + 1]|X[t —m +1: t]).

A further simpification approach is to consider that the process is stationary,
also called time invariant or homogeneous, that is, P (X[t + 1]|X[t]) is the same
for all time slices t € {0,...,T — 1}. Sometimes, instead of considering the full
process as stationary, we consider it piece-wise stationary.

In what follows we consider the stochastic process to be a first-order Markov
stationary process. This eases the exposition, but its extension to a non-
stationary or a mf"-order Markov is straightforward. In this case, a first-order
Markov stationary dynamic Bayesian network (DBN) consists of:
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Fig. 2. An example of a DBN. In the left, the prior network By is depicted and in
the right, the transition network BjT' is represented. The edges Xi[t] — Xi[t + 1]
and Xs[t] — Xa[t + 1] are the inter-slice connections and edge X[t + 1] — X3[t + 1]
represents the intra-slice connection.

— A prior network B, which specifies a distribution over the initial states X[0].
— A transition network B{™! over the variables X[t : t + 1], representing the
state transition probabilities, for 0 <¢ < T — 1.

The transition network has the additional constraint that edges between slices
must flow forward in time.

We denote by Gy, the subgraph of Bf™" with nodes X[t + 1] that contains
only the intra-slice dependencies. Observe that a transition network encodes
the inter-slice dependencies, from time transitions ¢ to ¢t + 1, and intra-slice
dependencies, in time slice t + 1 only. Figure 2 depicts an example of a DBN.

Learning dynamic Bayesian networks, considering no hidden variables or
missing values, i.e., considering a fully observable process, reduces simply to
learning two BNs: the initial network By and the transition network B, tak-
ing into account that in Bf“ edges between slices must flow forward in time
[14]. Not considering the acyclicity constraints, it was proved that learning a
BN does not have to be NP-hard [12]. This result can be applied to DBNs, as
the resulting unrolled graph, that contains a copy of each attribute in each time
step, is acyclic. For this reason, several methods that consider only inter-slice
dependencies appeared, as therein no cycles can arise [18,22].

More recently, a polynomial-time algorithm was proposed that learns both
the inter and intra-slice connections in a transition network; the resultant net-
work was denoted by tree-augmented DBN (tDBN) [17]. Therein, the search
space for the intra-slice networks was restricted to have a tree-like structure;
each attribute in time slice ¢t + 1 was allowed to have at most one parent from
the same time slice, and up to p parents were allowed from previous time slices;
p is a user-input parameter.

We now describe the first-order Markov stationary tDBN algorithm. Let
P<p(X[t]) be the set of subsets of X[t] with cardinality less or equal to p. For
each X;[t +1] € X[t + 1], the optimal set of parents ITx, 141 € P<p(X[t]) yields
the following score:
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Si = max i (I x, , DIty
Moyt iy Pty D)

where ¢; is the local score of attribute X;[t + 1] and D! is the subset of
observations for time transition t — t + 1. Then, allowing at most one parent
X[t + 1] from the current time slice, the maximal score is defined as:

Sii = max (I x. U{X;jt+1 7DHI. 5
J Hxi[t+1]€77§p(x[t])¢( X [t+1] { g[ ]} t ) ()

A complete directed graph is built such that each edge X;[t + 1] — X[t + 1]
has the following weight,
€ij = Sij — Si, (6)

that is, the gain in the network score of adding X[t + 1] as a parent of X[t +1].
Herein, the tDBN algorithm is able to determine the optimal set of inter and
intra-slice parents of X;[t + 1] in a one-step procedure.

Generally e;; # e;;, as the edge X;[t + 1] — X[t + 1] may account for the
contribution from the inter-slice parents and, in general, inter-slice parents of
X;[t+1] and X[t + 1] are not the same. Therefore, Edmond’s algorithm [13] is
applied to obtain a maximum branching for the intra-slice network.

The pseudo-code of the procedure is given in Algorithm 2. A complete
directed graph in X[t + 1] is built (Step 1). Afterwards, in Step 2, the weight of
all edges and the optimal set of parents for all nodes are determined according
to Eq. (6) for a given scoring criterion ¢. An optimal branching is obtained using
Edmonds’ algorithm [13] in Step 3. Step 4 retrieves the tree-like intra-slice tran-
sition network elicited in Step 3 with the optimal inter-slice parents determined
in Step 2.

Algorithm 2. Optimal first-order Markov stationary tDBN
1: Build a complete directed graph in X[t + 1].
2: Calculate the weight of all edges and the optimal set of parents of all nodes.
3: Apply Edmonds’ algorithm to retrieve an optimal branching.
4: Extract transition network ¢t — ¢ + 1.

The tDBN algorithm has a worst-case time complexity that is linear in N
(size of the input data), polynomial in n (number of variables) and r (number
of values a variable can take), and exponential in p (number of parents from the
previous time slice).

4 Proposed Method

Profiting from the CxG learning algorithm for BN, we propose an algorithm to
learn DBN structures consistent with the tDBN. In what follows, as for tDBN,



186 M. Sousa and A. M. Carvalho

the proposed method is explained only for first-order Markov stationary DBNs;
the extension to non-stationary m'™-order Markov, however, is straightforward.

Rigorously, a DBN is said to be a CkG, denoted by ¢cDBN, if the intra-slice
transition network Gy1 is a k-graph where each edge from X;[t + 1] to X;[t +1]
is consistent with the intra-slice tree-network of a given tDBN. Moreover, each
node X;[t + 1] has at most p parents from the previous time slice. Therefore,
in order to be well-defined, a ¢cDBN needs two positive integers: x and p. In
addition, the given tDBN is an optimal tDBN computed with exactly the same
number of p parents from the previous time slice.

We now describe briefly the proposed algorithm. It starts by computing an
optimal tDBN. The intra-slice branching Gyy; is then used to refine the set
of parents of each node in the network at time-slice ¢ + 1 so that they are
consistent with the topological order induced by such branching. This is done
by computing the candidate ancestors of each node X[t + 1], denoted by v 141;
these are exactly the set of nodes in ¢ + 1 connecting the root of the optimal
branching given by G¢11 and X;[t + 1]. For node X;[t 4+ 1], the optimal set of
past parents X,s[t] and intra-slice parents, denoted by X,s[t + 1], are obtained
in a one-step procedure by finding

a a (X [t] U X[t + 1], DEFYY, 7
xps[tlrel%’;(p(xm)xps[t+1]len79;<ai,t+1>¢( pslt]U Xypult 411, D) @

where P<,(a;+1) is the set of all subsets of ;41 of cardinality less than or
equal to k. Note that, if X;[t + 1] is the root, P<,(a; +1) = {0}, so the set of
intra-slice parents X,s[t + 1] of X;[t + 1] is always empty.

Algorithm 3 finds an optimal first-order Markov stationary c¢cDBN, given
a decomposable scoring criterion ¢, a set of n random variables, a maximum
number of parents from the previous time slice of p, and a bounded in-degree in
the intra-slice network of .

Algorithm 3. Learning optimal first-order Markov stationary cDBN

1: Compute an optimal tDBN with p parents with intra-slice graph given by G¢41.
2: for each node X;[t + 1] € G¢4+1 do
3: Compute the set a; ¢++1 of ancestors of X[t + 1].

4: for each subset P in P<,(X][t]) do

5: for each subset S in P<y(i,e4+1) do

6: Compute ¢;(PU S, DiT).

7 if ¢;(PUS, DI™) is the maximal score for X;[t + 1] then
8: Set IIx;(441 = PU S.

9: end if

10: end for

11: end for

12: end for

The proposed algorithm increases exponentially the search space of the intra-
slice transition network. Indeed, in the context of BNs, it was proved that the
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class of CkGs is exponentially larger, in the number of variables, when com-
pared to tree-network structures [4], result which is straightforwardly extended
to ¢cDBNs. In Fig. 3 the search-space classes relating DBNs, namely tDBNs and
cDBNs, are presented.

general DBN

inter-slice DBN

k—in-degree DBN

Fig. 3. Search-space classes of first-order Markov DBNs discussed in this paper. The
class of inter-slice DBN contains all DBNs with no intra-slice dependencies. The class
tDBN contains tree-augmented DBNs for all p parents from the previous time slice.
The ¢cDBN class contains all (k + p)—in-degree cDBNs for all p and «. The class of xk—
in-degree DBN contains DBNs with in-degree at most k < 2n, where n is the number
of variables per time slice. This class does not include the tDBN as k may be smaller
than p. The general DBN class coincides with the (2n — 1)—in-degree DBNs.

In terms of worst-time complexity, when comparing with the tDBN algo-
rithm, Algorithm 3 is linear in N (size of the input data) and 7' (number of time
slices), polynomial in n (number of variables) and r (number of values a variable
can take), and exponential in p (number of parents from the previous time slice
t) and k (number of parents in current time slice ¢ + 1).

5 Experimental Results

We evaluate the proposed algorithm comparing it with the tDBN learning algo-
rithm [17]. Our algorithm was implemented in Java and was released under a
free software license.! The experiments were run on an Intel Core i5-3320M CPU
@ 2.60GHzx4 machine.

We analyze the performance of the proposed algorithm for synthetic data
generated from first-order Markov stationary ¢DBNs. Four ¢cDBN structures
and parameters were determined, and observations were sampled from the gen-
erated networks, for a given number of observations N. The parameters p and
k were taken to be the maximum in-degree of the inter and intra-slice network,
respectively, of the transition network considered. The four transition networks

! https://margaridanarsousa.github.io/learn_cDBN/.


https://margaridanarsousa.github.io/learn_cDBN/

188 M. Sousa and A. M. Carvalho

considered included: (i) one incomplete cDBN with n = 5, xk = 2 and at most
p = 1 parents from the previous time slice; (ii) one complete cDBN with n =5,
k = 4 and at most p = 1 parents from the previous time slice; (iii) one incomplete
c¢DBN with with n = 10, kK = 6 and at most p = 1 parents from the previous time
slice; (iv) one incomplete cDBN with n = 10, K = 4 and at most p = 1 parents
from the previous time slice. The tDBN and ¢cDBN algorithms were applied to
the resultant data sets, and the ability to learn and recover the original network
structure was measured using the precision, recall and Fj-measure metrics.Two
scoring functions were used: LL in Eq. (3) and MDL in Eq. (4).

The results are depicted in Table1 and the presented values are annotated
with a 95% confidence interval, over 5 trials. Considering LL, the cDBN algo-
rithm consistently outperforms tDBN, for all number of instances N considered.
As for MDL, the cDBN networks have a greater number of parameters, therefore
the model complexity penalization factor of MDL leads to the selection of sim-
ple networks when considering a low number of instances. Hence, in these cases,
the tDBN+MDL gives raise to better results. Generally, considering N > 1000
instances for the networks considered, cDBN+MDL outperforms tDBN+MDL.
Comparing the results for networks 1 and 2, we observe that LL gives raise
to better results when considering complete networks, whereas considering less
complex structures, the MDL has better results. On the other hand, when com-
paring the results for networks 2:4 and 3:4, we conclude that considering a higher
number of nodes and intra-slice in-degree x, respectively, a higher number of
instances is necessary to achieve similar recalls.

In Fig.4, an example of the cDBN+MDL learning algorithm’s ability to
recover a known network is shown. The original ¢cDBN network has n = 5
attributes, each taking r = 2 different values, having up to one parent from
the previous time slice and two from the current time slice. Varying the number
of input observations N, five recovered networks are shown. As N increases, the
recovered network structures become more similar to the original, converging to

the original for N = 1800.

QQ
© @

(a) N = 100.

(e) N = 1800.

Fig.4. Reconstructed networks for ¢cDBN algorithm, where N is the number of
instances used to learn. The true network was recovered when N = 1800.
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Table 1. Comparative structure recovery results for tDBN and ¢cDBN on simulated
data. The tDBN+LL and tDBN+MDL denote, respectively, the tDBN learning algo-
rithm with LL and MDL criteria. Similarly, for cDBN+LL and cDBN+MDL. For each
network, n is the number of variables, p is the maximum inter-slice in-degree, k is the
maximum intra-slice in-degree, and r is the number of values of all attributes. On the
left, N is the number of observations. Precision (Pre), recall (Rec) and F)-measure
(F1) values are presented as percentages, running time is in seconds.

N tDBN+LL tDBN+MDL cDBN+LL cDBN+MDL
‘ Pre Rec F;  Time| Pre Rec Fy Time| Pre Rec F; Time| Pre Rec Fi Time

Network 1 (n=5,p=1,k = 2,r = 3)

100 |60£5 60+£560+5 0 |924+1451+£866+10 0 58+5 76+£7 65+6 0 [100£0 20£4 33+6 0

500 (78 0 780 78+0 O 86+8 64+4 7T4£5 0 73£3 9844 8443 0 98+4 84+5 90+4 0

1000| 78 £0 78 078 £0 O 88+0 78+0 82+0 0 75+£0 100£084+0 0 |100£0 1004+0 1000 O

200078 £0 78 £0 78+ 0 0 884+0 78+0 82+0 0 75+0 100£08+0 0 [100£0 1004+0 1000 O
Network 2 (n =5,p=1,k =4,r = 3)

100 (71 £1043+653+7 0 |62+£13194+6 29+8 0 |71+3 56+£3 63+3 0 0+0 4£3 0%£0 0

500 |96 £5 57+£372+4 0 |96£7 41+£7 5848 0 [98+£3 77+3 87£3 0 (9018 28+9 42+13 O

1000{ 98 £4 59+273+3 0 [100£0474+0 640 O [100£0 80+£0 89+0 0 |100£0 44+3 61+3 0

2000({100 0 60+075+0 0 [100£0524+2 68+2 0 |100£0 80+0 89+0 0 |100£0 64+£5 78+3 0
Network 3 (n =10,p =1,k = 6,7 = 3)

100 |53 +£5 33+£341+4 0 66+8 23+4 34+5 0 36+9 38+£7 37+8 2 (83 £18 7+2 13+4 4

500 (7245 454+356+4 0 88+5 40+2 55+3 0 534+2 68+£7 60+4 1 [100£0 33£2 50+2 1

1000| 77+£2 49+160£2 O 924+2 46+ 1 61+2 0 594+2 75+4 66+£2 2 [100£0 47+£0 64+0 7

200078 £2 49+160+1 0 924+2 48+ 1 63+2 0 60+1 78+2 68+2 10 [100+0 58+3 73+2 8
Network 4 (n = 10,p = 1,k = 4,7 = 3)

100 [294+9 234+726+8 0 (3617 13+6 19+9 0 |24+5 33+£7 2846 0 [40£33 3+2 0%0 0

500 |58 £3 46+£251+3 0 [80%+1033+4 47+6 0 [43+£7 61+£1250+£8 0 |[73+14 31+8 43+10 3

1000| 60 +5 48+453+4 0 |[80+8 38+£3 515 0 [41+6 69+9 51+7 4 [86+6 48+4 62+5 24

20000 65+2 524+258+2 0 [86+9 4844 62+5 0 |50+3 74+£7 59+1 17 |85 £10 68+9 76+9 17

6 Conclusions

We conclude that the proposed algorithm allows to learn efficiently DBNs consis-
tent with the topological order induced by the transition network of an optimal
tDBN as far as the in-degree bounds p and x are kept low. Notwithstanding,
it is well known that in most practical scenarios BNs behave well with small
in-degree network structures.

The resulting method is scalable (in the number of instances N, number of
time slices T' and number of variables n) and therefore suitable for the increasing
amount of temporal data arising from medicine (and also other fields). We are
currently using cDBN to predict the class of evolution of Amyotrophic Lateral
Sclerosis (ALS) patients and the treatment outcome of rheumatoid arthritis
(RA). These ALS and RA data is collected as a multivariate time series with
heterogeneous values, which can be addressed effectively by cDBN. DBNs play
the unique role of not only being able to model evolution in time of several
autocorrelated variables but also provide models that are human interpretable.

Further improvements of the algorithm may include using a total order,
instead of a partial one (as the topological order), and extend the learning pro-
cedure to allow hidden variables.
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Abstract. A modern ship design process is subject to a wide variety
of constraints such as safety constraints, regulations, and physical con-
straints. Traditionally, ship designs are optimized in an iterative design
process. However, this approach is very time consuming and is likely to
get stuck in local optima. Not only does this optimization problem have
complex constraints, it also consists of multiple objectives like resistance,
stability and cost.

This constrained multi-objective optimization problem can be dealt
with much more efficiently than through the traditional approach. In this
paper, we propose a novel global optimization algorithm that explores
the design space with the help of integrated software tools that are capa-
ble of simultaneous evaluation of the ship objectives and constraints. The
optimization algorithm proposed uses the 8-Metric-Selection-based Effi-
cient Global Optimization (SMS-EGO) in combination with constraint
handling techniques from an algorithm called Self-Adjusting Constrained
Optimization by Radial Basis Function Approximation (SACOBRA).
Since the evaluation of these ship designs is expensive in terms of compu-
tational effort, it is crucial for the algorithm to find feasible near-optimal
solutions in as few evaluations as possible.

In this paper, it is shown that the proposed Constrained Efficient
Global Optimization (CEGO) algorithm can significantly improve ship
designs by automatic optimization using a small evaluation budget.

Keywords: Efficient Global Optimization -
Multi-objective optimization - Constrained Optimization -
Real-world applications

1 Introduction

The International Maritime Organization (IMO) responsible for regulating the
shipping industry announced that by 2050 the greenhouse gas emissions should
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be reduced by 50% compared to 2008 [18]. To achieve this goal, the new ships
that are currently being engineered will have to be optimized for minimum envi-
ronmental impact. Of course, the environmental impact is not the only objective
to consider while optimizing a ship. The ship owners also want their ship to be
operationally efficient and to have the lowest building cost as possible. Addi-
tionally, safety and comfort of crew and/or passengers should meet the criteria
given by the regulating authorities.

To achieve an optimal solution where all stakeholders are satisfied, typically
different experts work together to optimize the ship. These experts, traditionally,
optimize using the classical design spiral [9] and heuristics learned over the course
of years, derived from knowledge and gained through a process of trial and error.
For a single naval architect or a group of experts, it is impossible to consider
the whole design space and all the relationships and dependencies between the
variables, constraints and objectives [19]. Furthermore and most importantly,
the traditional, expert driven, iterative approach used to design a ship can cause
the design process to get stuck in local optima.

To make better design decisions in the future, the ship optimization processes
such as proposed by Papanikolau [19] could be used. This integrated design
approach brings together all key design aspects at the same time. In this paper it
is shown that the combination of an integrated design approach and our proposed
optimization algorithm results in significantly improved ship designs.

This paper is organized as follows: First, related research and algorithms
are described and discussed in Sect.2. The problem is described by giving an
example ship design optimization problem in Sect. 3. The proposed algorithm is
discussed into detail in Sect. 4. Next, it is shown empirically that the proposed
algorithm is efficient and is able to find a good approximation of the Pareto front
using a limited evaluation budget in Sect. 5. Finally, the results are discussed and
conclusions are drawn in Sect. 6.

2 Related Work

Quite some work has been done in the domain of multi-objective optimization
and constraint handling. The state of the art algorithms in constraint handling
and multi-objective optimization together with the most relevant algorithms are
listed below. Other algorithms without constraint handling (e.g. [13,17,21]) are
not further considered in this research.

SACOBRA [1] In efficient constraint handling a recent model assisted opti-
mization algorithm offers a promising efficiency in terms of the evaluation
budget. This single objective optimization technique, SACOBRA, uses a Self
Adjusting parameter control in Constrained Optimization by use of Radial
Basis function Approzimation. Because of self adjusting parameters and the
Radial Basis function approximation of the constrained and objective space,
SACOBRA is able to find high-quality results using only few function evalu-
ations without having to spend evaluations on tuning the parameters [1].
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SMS-EGO [22] SMS-EGO is an efficient multi-objective optimization algorithm
that uses a Design and Analysis of Computer Experiments (DACE) to train
Kriging [12] surrogate models in order to efficiently optimize the objective
functions. Furthermore, SMS-EGO uses the 8-metric or (hyper)volume con-
tribution [2] to optimize the (hyper)volume between the current Pareto front
and a reference point. This optimization algorithm, however, does not offer a
constraint handling technique.

NSGA-II [6] NSGA-II Non-dominated Sorting Genetic Algorithm, version II
is a classic multi-objective optimization algorithm. NSGA-II uses a non-
dominated sorting-based selection operator. This operator creates a mating
pool by combining the parent and child population to select the best N feasi-
ble solutions for the next generation. This selection operator makes sure that
the mating pool is well spread and that the solutions in the pool have a high
fitness.

NSGA-III [11] The adaptive NSGA-III algorithm is a many-objective opti-
mization algorithm based on NSGA-II [6] and the original NSGA-IIT algo-
rithm [7]. It emphasizes certain individuals in the population which are both
non-dominant and close to a set of reference points which are generated on the
fly. The algorithm can both be used for constrained and unconstrained prob-
lems since in every iteration the non-useful reference points are re-allocated
around the useful reference points [11].

SPEAZ2 [29] The second Strength Pareto Evolutionary Algorithm (SPEA2) is
an evolutionary algorithm that uses a fine-grained fitness assignment strat-
egy that is based on how many feasible individuals each feasible individual
dominates and is dominated by. Furthermore a nearest neighbor density esti-
mation technique is incorporated which takes care of a more precise guidance
of the search process. The algorithm also makes sure that the boundaries are
guaranteed by truncation of the solutions that fall outside of the boundary.

MOGA This algorithm is currently a component of the widely used ship design
software NAPA!. Tt is a so-called Multi-objective Genetic Algorithm (MOGA),
which is based on the first version of the SPEA algorithm [30], where the
fitness value is again based on the number of dominated feasible individuals.
The selection of the parents is done by tournament selection and the children
are generated by single-point crossover. Furthermore, the children have a
chance to get mutated by the creep mutation operator.

3 Ship Design Optimization Example

Every ship design process starts with an initial idea from a client. After the
objectives and physical constraints are known, the concept design process can
begin. In the concept design phase, the naval architects translate the initial
idea into the concept design of the ship. In the resulting concept design, the
following components get defined and parameterized: the general arrangement,
first estimations regarding stability, strength, and the main cross section.

I NAPA Oy, Release 2017.3-3 (2018), NAPA software, http://www.NAPA.fi/.
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These components will define the ship’s future performance, safety and cost.
In this stage of the design process, all different components need to be optimized
and designed in such a manner that they meet all regulations and safety criteria.
This is not trivial for the following three reasons: (1) The objectives are typically
conflicting. (2) Computing the constraints and objectives is very time consuming
due to the required simulation time. (3) Only little parallelism is possible due
to a typical limited number of commercial licences available to the ship design
company. After the concept design phase, a ship yard can make an estimation
of how long it will take, and how expensive it will be to build the ship.

As a real world application a dredger from C-Job Naval Architects? is opti-
mized. The details about the decision variables, constraints, and objectives are
given in the following subsections.

3.1 Decision Variables

The decision variables of a ship design problem are the numerical quantities for
which values can be varied in the optimization process [3]. These quantities are
denoted as = [x1,...,&y], where z; represents one decision variable.

The dredger (Fig. 1) has the following decision variables: Apreqatn, Aiength,
foreship length, hopper length extension, hopper breadth, hopper height. Here
A means a change opposed to the original design. All the possible combinations
in between a defined lower and upper bound of & together is called the design
space {2.

breadth

Fig. 1. Trailer suction Hopper Dredger designed by C-Job Naval Architects, with the
design variables annotated.

The overall length and breadth of the hull can be transformed with the help
of Free Form Deformation (FFD) [25]. For this transformation a box is drawn
around the hull. Any point on the box can be moved in all directions and the

2 C-Job Naval Architects, Ship Design and Engineering (2018), https://c-job.com/.
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parent surface that is inside this box will be transformed accordingly. This FFD
can be achieved by changing the Apreqarn and Ajengen, parameter which then
applies the FFD on the original concept design.

The part of the ship from the most forward bulkhead to the front is called
the foreship. The location of this last bulkhead can be changed by varying the
foreship length decision variable.

The cargo space, where the dredged material is dumped in, is called the
hopper. Changes can be made to the height, the breadth, and to the length
extension of the hopper.

3.2 Constraints

The constraints can be expressed in terms of function inequalities; g;(x) < 0
where one function inequality g;(x) represents one of the m constraints. When
equality constraints are present, we can simply rewrite them to two inequality
constraints without loss of generality g(x) < ¢+ € and g(x) > ¢ — €. In practice,
€ can be neglected because it is chosen very small: ¢ = 0.000001.

In the dredger case, the design has two categories of constraints: practi-
cal constraints and domain constraints. The constraints mainly make sure that
everything fits in the hull and that the safety constraints are taken into account.

The practical constraints mainly consider the space reservation for: payload,
fuel tank, engine, pump, and the accommodation. Every design variation is
checked to see if it at least meets the minimum space required.

The domain constraints: steel arrangement, hull formation, double bottom
check, location of foremost bulkhead, intact stability, draft when fully loaded,
trim, and heel are checked to see if the ship meets the recommended stability
criteria, and to see if it at least meets the other prescribed safety regulations.

In total, the dredger case has sixteen constraints, which are computed by
subtracting the obtained constraint value from the required minimum value.
When all values are negative the ship design variation is feasible.

3.3 Objectives

The objective functions are typically conflicting, as a consequence there is usu-
ally not one perfect solution but a set of alternative, so called non-dominated
solutions. This non-dominated solution set contains good compromises between
the objective functions: f;(x),j = 1,...,k. The feasible Pareto optimal set of
solutions together form the Pareto front where Pareto optimality is defined in
Coello et al. [3].

The dredger case has two objectives: maximizing the performance and mini-
mizing the building cost. This can be achieved by minimizing the resistance and
the steel weight. This sounds trivial, but the objectives are a classical example
of conflicting ones. A long and slender ship will lead to less hull resistance and
a higher steel weight while a wide shorter ship will have a higher hull resistance
and a lower steel weight.



196 R. de Winter et al.

The resistance of the design variation can be estimated with a Computational
Fluid Dynamics (CFD) simulation. There are different types of CFD simulation
methods. In the concept phase of the dredger, a relatively simple potential flow
solver [26] is used. This approach does not take everything into account but it
is very suitable for comparing the resistance between different design variations.

In the concept phase, an indication of the steel weight is calculated by first
creating the main frame scantlings. This main frame is made strong enough so
it does not exceed the maximum stress limit. This way the maximum bending
moments can never be exceeded. The surface of the scantlings multiplied by the
length can then be used to give an indication of the steel weight of the ship.

4 CEGO: Constrained Efficient Global Optimization

Here we propose the Constrained Efficient Global Optimization (CEGO) algo-
rithm, combining the strengths of both the 8-metric multi-objective optimization
techniques from SMS-FEGO and the constraint handling techniques from SACO-
BRA. These two techniques are chosen because they showed to be very efficient in
constraint handling [1] and finding a good approximation of the Pareto front [22].
The implementation of the proposed algorithm can be found on Github [4].

The proposed algorithm needs little to no parameter tuning and starts with
an initial sampling of the decision variables using Latin Hypercube Sampling
(LHS) [15]. The LSH samples then get evaluated by the evaluation function.
The corresponding objective values are used to train the objective surrogate
models. The objective surrogate models used are Kriging [14] (often also called
Gaussian Process Regression models). For every objective dimension a separate
Kriging model is fitted. Kriging treats every unknown objective function f as the
combination of a centered Gaussian Process e(x) of zero mean with an unknown
constant trend p. The advantage of using Kriging is that in addition to the
predicted mean y(x), the predicted uncertainty, called the Kriging variance o(z),
is provided. The Kriging variance can be exploited in the optimization procedure.

The corresponding constraint values are used to train the constraint surrogate
models. For the constraint surrogate models, Cubic Radial Basis Functions [1]
(CRBF) are used. For every constraint function a CRBF model is fitted. The
steps taken to model the constraint functions are the same as the ones in SACO-
BRA [1]:

1. Rescale the decision space to an interval of [—1, 1],

2. Normalize the constraint functions so that they are equally important,

3. Define the distance requirement factor (DRC) that defines how close the
solutions are allowed to be to each other, and alter it at every iteration,

4. Adjust the margin (¢) of allowed violation of the CRBF model at every iter-
ation.

In the first few iterations, the CRBF model might not fit the constraint function
very well. Therefore, a violation of the constraints is allowed. The magnitude
of the allowed violation decreases as more feasible solutions are found. In the
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experiments reported in this paper, the e-value used starts at 0.01. When three
feasible solutions are found, e decreases by 50%. Alternatively, € increases by
100% when three infeasible solutions are found.

After training the surrogate models, the feasible Pareto front approximation
is determined (denoted as A). To improve the Pareto front approximation, CEGO
uses the idea of Emmerich et al. to use 8-metric or (hyper)volume contribution [2]
extended as an infill criterion [22]. The infill criterion function computes for
a given input vector x, the predicted objective scores § and their estimated
uncertainties §. If the 95% lower confidence bound of the potential solution
Upot = § — - § is still e-dominant we compute the additional (hyper)volume it
adds to the Pareto front. e-dominance as described in [2] is applied to support a
good distribution over the Pareto front. The size of € is set every iteration:

max(A) — min(A)
€= .
14+ | A| =55 - (mazEval — eval)

(1)

Here max(A)/min(A) is the maximum/minimum value per objective on the
Pareto front, k£ is the number of objectives, maxFEval the maximum number
of allowed iterations, and ewval the number of evaluations executed so far. The
final (hyper)volume that gp,: adds to the Pareto front is the score the 8-metric
criterion will return. If g,,+ does not contribute anything, the infill criterion
will return zero. The 8-metric infill criterion therefore gives the highest score to
solutions that potentially contributes the most to the Pareto front while it gives
a low score to solutions that does not contribute to the potential Pareto front.

This infill criterion is optimized using the Constrained Optimization by Lin-
ear Approximation (COBYLA) algorithm [23]. COBYLA optimizes the infill
criterion under the condition that the constraints, which are modeled with the
CRBF functions, are satisfied. The vector & that is predicted feasible and is
expected to contribute the most to the Pareto front approximation is proposed
as new solution. If no feasible solution can be found, the vector & with the
smallest expected constraint violation according to the CRBF models is chosen.

The proposed solution x then gets evaluated by the actual evaluation func-
tions that are being optimized. This evaluation of x gives a new individual that
can be added to the population. In the next iteration, the surrogate models are
re-trained so that a new solution « can found and evaluated. This optimization
process goes on until the evaluation budget is exhausted.

5 Experiments and Results

To evaluate the performance of the proposed algorithm, three different experi-
mental setups are used. In the first setup, seven artificially designed functions
are optimized. In the second setup, seven Real World Like Problems (RWLP)
are optimized. Finally, in the third setup, the dredger ship design is optimized.
All experiments are conducted with CEGO, NSGA-II, NSGA-III, SPEA2, and
MOGA with the default parameters, and a limited function evaluation budget
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of 200 evaluations per run. In the experiments we used the two most cited per-
formance metrics [24] to compare the diversity and the accuracy of the solutions
obtained by the different multi-objective optimization algorithms. The first met-
ric is the (hyper)volume (HV) metric that represents the HV between a fixed
reference point and the Pareto front [2]. The second metric is the Generational
Distance (GD), which represents how “far” the normalized obtained Pareto front
is from the true normalized Pareto front [28]. Each algorithm is executed between
5 and 100 times per test function, depending on the time-complexity of the algo-
rithm and the evaluation function.

5.1 Artificially Designed Functions

Inspired by previous studies on multi-objective optimization algorithms, seven
widely used artificially designed functions are selected to experiment with:
BNH [3], C3-DTLZ4 [27], OSY [3,8], SRN [8], TNK [8], CEXP1 [5], and
CTP1 [5]. In Table 1 the number of objectives (k), number of variables (n), num-
ber of constraints (m), Lower Bound (LB), Upper Bound (UB) of the variables
and the reference point (ref) are given for each function. To get some insight
into the severity of the constraints, the percentage of feasible solutions (F(%))
is approximated by the evaluation of 1 million random samples.

Table 1. Artificially designed test problems and the corresponding dimensions.

Problem |k|n|m|LB UB ref F (%)
BNH 2122 [0, 0] 5, 3] [140, 50] | 96.92
CEXP 21212 (0.1, 0] 1, 5] 1,9 57.14
C3-DTLZ4 |2 6 |2 [0,0,0,0,0,0] [1,1,1,1,1,1] |[3,3] | 22.22
SRN 2122 |[-20, —20] [20, 20] [301, 72]  16.18
TNK 222 [le=5, le—5] | [m, 7] 2, 2] 5.05
0SY 2166 [0,0,1,0,1,0] [10, 10, 5, 6, 5, 10] | [0, 386] | 2.78
CTP1 222 [0, 0] 1, 1] 1,2 |92.67

5.2 Real World Like Problems

The RWLP are real world like problems which are believed to be very dif-
ficult because they have many complex constraints [11]. The following seven
RWLP have been used in the experiments: Two-Bar Truss Design problem
(TBTD) [10], Welded Beam problem (WB) [10], Disc Brake Design problem
(DBD) [10], Speed Reducer Design problem (SRD) [16], Ship Parametric Design
problem (SPD) [20], Car Side Impact problem (CSI) [11], and the Water Problem
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(WP) [11]. Details about the RWLP are given in Table 2. Note that if a function
was to be maximized it is transformed into a minimization problem.

5.3 Dredger Ship Design

Finally, the dredger case as described in the problem definition (Sect.3) is opti-
mized. The limits used for the dredger parameters are: Aprcqarn € [—1.6,3.4],
Ajengtn € [—2.8,9.8], foreship length € [16,22], hopper length extension € [5, 9],
hopper breadth € [5,9], and hopper height € [12,16]. The reference point is set
to [5000,2]. This is the case because we are not interested in design variations
with a larger resistance coefficient than 2, or design variations with a larger steel
weight than 5000 tonnes. Furthermore, based on 200 random samples, approx-
imately 24% of the design space is feasible. The original dredger designed by
human experts has an approximated steel weight of 2039 tonnes and an esti-
mated resistance coefficient of 1.08.

Table 2. Real world like problems and the corresponding dimensions.

Problem |k |n|m |LB UB ref F(%)
TBTD (23| 2 |[1, 0.0005, 0.0005] [3, 0.05, 0.05] [0.1, 100 000] | 19.46
WB 2|4| 5 /[0.125, 0.1, 0.1, 0.125] [5, 10, 10, 5] [350, 0.1] 35.28
DBD |2/4| 5 |[55, 75, 1 000, 2] 80, 110, 3 000, 20] | [5, 50] 28.55
SRD  |2|7|11 |[26,0.7, 17, 7.3, 7.3, 2.9, |[3.6, 0.8, 28, 8.3, |[7 000, 1 700] | 96.92
5] 8.3, 3.9, 5.5]
SPD (36| 9 |[150, 25, 12, 8, 14, 0.63] | [274.32, 32.31, 22, |[16, 19 000, 3.27
11.71, 18, 0.75] | —260 000]
CSI 3|7/10 |[0.5, 0.45, 0.5, 0.5, 0.875, |[1.5, 1.35, 1.5, 1.5, |[42, 4.5, 13] 18.17
0.4, 0.4] 2.625, 1.2, 1.2]
WP 53| 7 /[0.01, 0.01, 0.01] [0.45, 0.1, 0.1] [83 000, 1 350, |92.06
2.85, 15 989
825, 25 000]

5.4 Results

In Table 3 it is shown that CEGO outperforms NSGA-II, NSGA-III, SPEA2 and
MOGA in terms of the HV and the GD measure for all problems experimented
with, except for the C3-DTLZ4 artificially designed test problem. Additionally,
In the Figs.2, 3, 4 and 5 the non-dominated solutions of a few typical test
functions and the dredger case are visualized. From these figures it can clearly
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be seen that the approximation of the Pareto front and the spread of the CEGO
algorithm is better, compared to the other algorithms.

Table 3. Mean HV and mean GD score for the obtained Pareto front by the different
algorithms. Bold face denotes the method that outperforms the other methods accord-
ing to a paired Welchs t-test (Welchs t-test is used because of unequal variances and

unequal sample sizes, a significance level of 5% is used.).

Problem | NSGA-II NSGA-III SPEA2 MOGA CEGO
Criterion |GD | HV GD | HV GD |HV GD HV GD |HV
BNH 0.005 | 5 187 0.015 | 4 965 0.007 | 5 137 0.007 | 4 993 0.003 | 5 254
CEXP 0.025 | 3.414 0.018 | 3.162 0.083 | 3.141 0.032 | 2.950 0.002 | 3.788
C3-DTLZ4 | 0.010 | 5.198 0.005 | 4.605 0.016 | 5.058 0.004 | 4.662 0.014 | 6.098
SRN 0.021 | 5.82-10* | 0.035 | 5.71-10* | 0.078 | 4.88-10%* | 0.056 |5.19-10* | 0.005 | 6.26-10%
TNK 0.025 | 7.247 0.007 | 6.763 0.045 | 6.449 0.011 | 6.074 0.001 | 8.058
oSy 0.136 | 3.66-10* | 0.108 | 3.92.10% | 0.157 | 2.17.10% | 0.098 | 4.71-10* |0.014 | 1.00-10°
CTP1 0.037 | 1.248 0.022 | 1.218 0.055 | 1.221 0.042 | 0.661 0.002 | 1.303
TBTD 0.026 | 7 868 0.026 | 7 736 0.031 | 7 060 0.868 | 608.8 0.003 | 8 805
WB 0.028 | 34.07 0.058 | 33.74 0.054 | 33.67 0.019 | 33.93 0.015 | 34.52
DBD 0.041 | 219.4 0.031 | 214.8 0.050 | 214.6 0.016 | 221.4 0.006 | 227.9
SRD 0.118 | 1.99-10% | 0.090 | 1,81-10% | 0.156 | 1.50.10° | 0.321 | 1.66-10° |0.002 | 4.16-10°
SPD 0.055 | 2.45-10'° | 0.047 | 1.93.10'° | 0.057 | 2.09-10'° | 0.041 | 1.94.10'° | 0.026 | 3.24.10'°
CsI 0.032 | 15.34 0.034 | 12.77 0.032 | 13.95 0.026 | 17.13 0.017 | 23.21
WP 0.094 | 1.28-10%° | 0.100 | 1.22-10%° | 0.118 | 1.13-10*° | 0.071 | 1.27-10'° | 0.053 | 1.57-10'°
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Fig. 2. Pareto front obtained by the
five algorithms on CEXP problem.

Fig. 3. Pareto front obtained by the
five algorithms on OSY problem.
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6 Conclusions

An algorithm, Constrained Efficient Global Optimization (CEGO), is proposed
and it is shown that CEGO is efficient in finding a Pareto front approximation
using limited evaluation budgets for both Real-World Like Problems and artifi-
cially designed test functions. In case of the dredger design optimization task, ten
unique non-dominated solutions are found within 200 function evaluations. The
most interesting solution (marked in Fig.5) has a resistance factor of 0.87 and
a steel weight of 1748 tonnes. This means that compared to the original design,
the improved design has a 19% smaller resistance coefficient and 14% less steel
weight. As a post processing step, a naval architect inspected the design. After
a few, very small, practical changes the ship was good to go to the next phase
in the design process.

CEGO also outperforms state-of-the-art alternatives on all of the fourteen
test problems used in the experimental setup. The novel proposed CEGO algo-
rithm shows great potential and can be used to optimize ships that are more
energy efficient while maintaining or even improving all other objectives. Of
course the CEGO algorithm could also be used for any other application with
expensive function evaluations with or without constraints.

For future work, the proposed algorithm could be improved by taking the
CRBF constraint surrogate models into account when defining a new infill-
criterion instead of using them as a constraint when minimizing the S-metric
infill-criterion. It would also be beneficial to parallelize the CEGO algorithm
such that multiple evaluations can be run at the same time. For practical ship
design purposes, it would also be interesting to extend the algorithm in such a
manner that constrained multi-objective mixed integer problems can be solved.
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