
Giuseppe Nicosia · Panos Pardalos
Giovanni Giuffrida · Renato Umeton
Vincenzo Sciacca (Eds.)

 123

LN
CS

 1
13

31

4th International Conference, LOD 2018
Volterra, Italy, September 13–16, 2018
Revised Selected Papers

Machine Learning,
Optimization,
and Data Science



Lecture Notes in Computer Science 11331

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA



More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409


Giuseppe Nicosia • Panos Pardalos
Giovanni Giuffrida • Renato Umeton
Vincenzo Sciacca (Eds.)

Machine Learning,
Optimization,
and Data Science
4th International Conference, LOD 2018
Volterra, Italy, September 13–16, 2018
Revised Selected Papers

123



Editors
Giuseppe Nicosia
University of Catania
Catania, Italy

and

University of Reading
Reading, UK

Panos Pardalos
University of Florida
Gainesville, FL, USA

Giovanni Giuffrida
University of Catania
Catania, Italy

Renato Umeton
Harvard University
Cambridge, MA, USA

Vincenzo Sciacca
IBM, Tivoli Research Lab
Rome, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-13708-3 ISBN 978-3-030-13709-0 (eBook)
https://doi.org/10.1007/978-3-030-13709-0

Library of Congress Control Number: 2019931948

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-13709-0


Preface

LOD is the international conference embracing the fields of machine learning,
optimization, and data science. The fourth edition, LOD 2018, was organized during
September 13–16, 2018, in Volterra (Pisa) Italy, a stunning medieval town dominating
the picturesque countryside of Tuscany.

The International Conference on Machine Learning, Optimization, and Data Science
(LOD) has established itself as a premier interdisciplinary conference in machine
learning, computational optimization, and big data. It provides an international forum
for the presentation of original multidisciplinary research results, as well as the
exchange and dissemination of innovative and practical development experiences.

The LOD Conference Manifesto is the following:

The problem of understanding intelligence is said to be the greatest problem in
science today and “the” problem for this century – as deciphering the genetic code
was for the secondhalf of the last one. Arguably, the problemof learning represents a
gateway to understanding intelligence in brains and machines, to discovering how
the human brain works, and to making intelligent machines that learn from expe-
rience and improve their competences as children do. In engineering, learning
techniqueswouldmake it possible to develop software that can bequickly customized
to deal with the increasing amount of information and the flood of data around us.
The Mathematics of Learning: Dealing with Data
Tomaso Poggio and Steve Smale

LOD 2018 attracted leading experts from industry and the academic world with the
aim of strengthening the connection between these institutions. The 2018 edition of
LOD represented a great opportunity for professors, scientists, industry experts, and
postgraduate students to learn about recent developments in their own research areas
and to learn about research in contiguous research areas, with the aim of creating an
environment to share ideas and trigger new collaborations.

As chairs, it was an honor to organize a premiere conference in these areas and to
have received a large variety of innovative and original scientific contributions.

During LOD 2018, five plenary talks were presented:

“Advances in Inference and Generation with Hierarchical Latent Variable Models”
Jorg Bornschein, DeepMind, London, UK

“The Value of Evaluation: What Does My Machine Learning Metric Tell Me?”
Peter Flach, University of Bristol, UK

“Recent Advances in Recommender Systems: Sets, Local Models, Coverage, and
Errors”
George Karypis, University of Minnesota, USA



“Dynamics of Financial Markets”
Panos Pardalos, University of Florida, USA

“Several Problems in Optimization and Learning: From Pure Mathematics to
Industrial Applications”
Andrey Raygorodsky, Moscow Institute of Physics and Technology, Russia

LOD 2018 received 126 submissions from 47 countries in five continents, and each
manuscript was independently reviewed by a committee formed by at least five
members through a blind review process. These proceedings contain 46 research
articles written by leading scientists in the fields of machine learning, artificial
intelligence, reinforcement learning, computational optimization, and data science
presenting a substantial array of ideas, technologies, algorithms, methods, and
applications.

At LOD 2018, Springer LNCS generously sponsored the LOD Best Paper Award.
This year, the paper by Andrea Patané and Marta Kwiatkowska titled “Calibrating the
Classifier: Siamese Neural Network Architecture for End-to-End Arousal Recognition
from ECG” received the LOD 2018 Best Paper Award.

This conference could not have been organized without the contributions of
exceptional researchers and visionary industry experts, so we thank them all for par-
ticipating. A sincere thank you goes also to the Program Committee, formed by more
than 400 scientists from academia and industry, for their valuable and essential work of
selecting the scientific contributions.

Finally, we would like to express our appreciation to the keynote speakers who
accepted our invitation, and to all the authors who submitted their research papers to
LOD 2018.

September 2018 Giuseppe Nicosia
Panos Pardalos

Giovanni Giuffrida
Renato Umeton

Vincenzo Sciacca
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Best Paper Awards

LOD 2018 Best Paper Award
“Calibrating the Classifier: Siamese Neural Network Architecture for End-to-End
Arousal Recognition from ECG”
Andrea Patané* and Marta Kwiatkowska*
*University of Oxford, UK

Springer sponsored the LOD 2018 Best Paper Award with a cash prize of EUR 1,000.

MOD 2017 Best Paper Award
“Recipes for Translating Big Data Machine Reading to Executable Cellular Signaling
Models”
Khaled Sayed*, Cheryl Telmer**, Adam Butchy*, and Natasa Miskov-Zivanov*
*University of Pittsburgh, USA
**Carnegie Mellon University, USA

Springer sponsored the MOD 2017 Best Paper Award with a cash prize of EUR 1,000.

MOD 2016 Best Paper Award
“Machine Learning: Multi-site Evidence-based Best Practice Discovery”
Eva Lee, Yuanbo Wang and Matthew Hagen
Eva K. Lee, Professor Director, Center for Operations Research in Medicine and
HealthCare H. Milton Stewart School of Industrial and Systems Engineering, Georgia
Institute of Technology, Atlanta, GA, USA

MOD 2015 Best Paper Award
“Learning with discrete least squares on multivariate polynomial spaces using
evaluations at random or low-discrepancy point sets”
Giovanni Migliorati
Ecole Polytechnique Federale de Lausanne – EPFL, Lausanne, Switzerland

XVIII Organization



Contents

Calibrating the Classifier: Siamese Neural Network Architecture
for End-to-End Arousal Recognition from ECG . . . . . . . . . . . . . . . . . . . . . 1

Andrea Patanè and Marta Kwiatkowska

Simple Learning with a Teacher via Biased Regularized Least Squares . . . . . 14
Sergio Decherchi and Andrea Cavalli

Feature Based Multivariate Data Imputation . . . . . . . . . . . . . . . . . . . . . . . . 26
Alessio Petrozziello and Ivan Jordanov

Optimization of Neural Network Training with ELM Based on the Iterative
Hybridization of Differential Evolution with Local Search and Restarts . . . . . 38

David Sotelo, Daniela Velásquez, Carlos Cobos, Martha Mendoza,
and Luis Gómez

Information-Theoretic Feature Selection Using High-Order Interactions . . . . . 51
Mateusz Pawluk, Paweł Teisseyre, and Jan Mielniczuk

Covering Arrays to Support the Process of Feature Selection in the Random
Forest Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Sebastián Vivas, Carlos Cobos, and Martha Mendoza

A New Distributed and Decentralized Stochastic Optimization Algorithm
with Applications in Big Data Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Reza Shahbazian, Lucio Grandinetti, and Francesca Guerriero

Generating Term Weighting Schemes Through Genetic Programming . . . . . . 92
Ahmad Mazyad, Fabien Teytaud, and Cyril Fonlupt

Data-Driven Interactive Multiobjective Optimization Using a Cluster-Based
Surrogate in a Discrete Decision Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Jussi Hakanen, Jose Malmberg, Vesa Ojalehto, and Kyle Eyvindson

Data Science in the Business Environment: Skills Analytics
for Curriculum Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Jing Lu

Adaptive Dimensionality Reduction in Multiobjective Optimization
with Multiextremal Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Victor Gergel, Vladimir Grishagin, and Ruslan Israfilov

REFINE: Representation Learning from Diffusion Events . . . . . . . . . . . . . . 141
Zekarias T. Kefato, Nasrullah Sheikh, and Alberto Montresor



Augmented Design-Space Exploration by Nonlinear Dimensionality
Reduction Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Danny D’Agostino, Andrea Serani, Emilio Fortunato Campana,
and Matteo Diez

Classification and Survival Prediction in Diffuse Large B-Cell Lymphoma
by Gene Expression Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Pierangela Bruno, Francesco Calimeri, and Aldo Marzullo

Learning Consistent Tree-Augmented Dynamic Bayesian Networks. . . . . . . . 179
Margarida Sousa and Alexandra M. Carvalho

Designing Ships Using Constrained Multi-objective Efficient
Global Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Roy de Winter, Bas van Stein, Matthys Dijkman, and Thomas Bäck

A New Approach to Measuring Distances in Dense Graphs . . . . . . . . . . . . . 204
Fatimah A. Almulhim, Peter A. Thwaites, and Charles C. Taylor

Ant Colony Optimization for Markov Blanket-Based Feature Selection.
Application for Precision Medicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Christine Sinoquet and Clément Niel

Average Performance Analysis of the Stochastic Gradient Method
for Online PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Stéphane Chrétien, Christophe Guyeux, and Zhen-Wai Olivier Ho

Improving Traditional Dual Ascent Algorithm for the Uncapacitated
Multiple Allocation Hub Location Problem: A RAMP Approach . . . . . . . . . 243

Telmo Matos, Fábio Maia, and Dorabela Gamboa

Supervised Learning Approach for Surface-Mount Device Production . . . . . . 254
Eva Jabbar, Philippe Besse, Jean-Michel Loubes, Nathalie Barbosa Roa,
Christophe Merle, and Rémi Dettai

Crawling in Rogue’s Dungeons with (Partitioned) A3C . . . . . . . . . . . . . . . . 264
Andrea Asperti, Daniele Cortesi, and Francesco Sovrano

Decision of Neural Networks Hyperparameters
with a Population-Based Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Yağız Nalçakan and Tolga Ensari

Strong Duality of the Kantorovich-Rubinstein Mass Transshipment
Problem in Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

José Rigoberto Gabriel-Argüelles, Martha Lorena Avendaño-Garrido,
Luis Antonio Montero, and Juan González-Hernández

XX Contents



Evolutionary Construction of Convolutional Neural Networks. . . . . . . . . . . . 293
Marijn van Knippenberg, Vlado Menkovski, and Sergio Consoli

Improving Clinical Subjects Clustering by Learning and Optimizing
Feature Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Sergio Consoli, Monique Hendriks, Pieter Vos, Jacek Kustra,
Dimitrios Mavroeidis, and Ralf Hoffmann

A Framework to Automatically Extract Funding Information from Text . . . . . 317
Subhradeep Kayal, Zubair Afzal, George Tsatsaronis,
Marius Doornenbal, Sophia Katrenko, and Michelle Gregory

Speeding Up Budgeted Stochastic Gradient Descent SVM Training
with Precomputed Golden Section Search . . . . . . . . . . . . . . . . . . . . . . . . . 329

Tobias Glasmachers and Sahar Qaadan

An Unsupervised Learning Classifier with Competitive Error Performance . . . 341
Daniel N. Nissani (Nissensohn)

A GRASP/VND Heuristic for the Max Cut-Clique Problem . . . . . . . . . . . . . 357
Mathias Bourel, Eduardo Canale, Franco Robledo, Pablo Romero,
and Luis Stábile

A Modelica-Based Simulation Method for Black-Box Optimal Control
Problems with Level-Set Dynamic Programming. . . . . . . . . . . . . . . . . . . . . 368

Ping Qiao, Yizhong Wu, and Qi Zhang

A Clonal Selection Algorithm for Multiobjective Energy Reduction
Multi-Depot Vehicle Routing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Emmanouela Rapanaki, Iraklis-Dimitrios Psychas, Magdalene Marinaki,
Yannis Marinakis, and Athanasios Migdalas

Big Data Privacy by Design Computation Platform . . . . . . . . . . . . . . . . . . . 394
Rui Claro, José Portêlo, Miguel L. Pardal, and Raquel Pinho

Assessing Accuracy of Ensemble Learning for Facial Expression
Recognition with CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

Alessandro Renda, Marco Barsacchi, Alessio Bechini,
and Francesco Marcelloni

Processing Online SAT Instances with Waiting Time Constraints
and Completion Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

Robinson Duque, Alejandro Arbelaez, and Juan Francisco Díaz

Variable Selection and Outlier Detection in Regularized Survival Models:
Application to Melanoma Gene Expression Data . . . . . . . . . . . . . . . . . . . . . 431

Eunice Carrasquinha, André Veríssimo, Marta B. Lopes,
and Susana Vinga

Contents XXI



Methods of Machine Learning for Censored Demand Prediction . . . . . . . . . . 441
Evgeniy M. Ozhegov and Daria Teterina

N-Gram Representation for Web Service Description Classification . . . . . . . . 447
Christian Sánchez-Sánchez and Leonid B. Sheremetov

Lookahead Policy and Genetic Algorithm for Solving Nurse
Rostering Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

Peng Shi and Dario Landa-Silva

Image-Based Fashion Product Recommendation with Deep Learning. . . . . . . 472
Hessel Tuinhof, Clemens Pirker, and Markus Haltmeier

A Machine Learning Approach for Line Outage Identification
in Power Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

Jia He, Maggie X. Cheng, Yixin Fang, and Mariesa L. Crow

Sparse Feature Extraction Model with Independent Subspace Analysis. . . . . . 494
Radhika Nath and M. Manjunathaiah

Bayesian Clustering of Multivariate Immunological Data . . . . . . . . . . . . . . . 506
Alberto Castellini and Giuditta Franco

Nonnegative Coupled Matrix Tensor Factorization for Smart City
Spatiotemporal Pattern Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

Thirunavukarasu Balasubramaniam, Richi Nayak, and Chau Yuen

User Preferences in Bayesian Multi-objective Optimization:
The Expected Weighted Hypervolume Improvement Criterion . . . . . . . . . . . 533

Paul Feliot, Julien Bect, and Emmanuel Vazquez

Reinforcement Learning Methods for Operations Research Applications:
The Order Release Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

Manuel Schneckenreither and Stefan Haeussler

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

XXII Contents



Calibrating the Classifier: Siamese Neural
Network Architecture for End-to-End

Arousal Recognition from ECG

Andrea Patanè(B) and Marta Kwiatkowska

Department of Computer Science, University of Oxford, Oxford, UK
{andrea.patane,marta.kwiatkowska}@cs.ox.ac.uk

Abstract. Affective analysis of physiological signals enables emotion
recognition in mobile wearable devices. In this paper, we present a deep
learning framework for arousal recognition from ECG (electrocardio-
gram) signals. Specifically, we design an end-to-end convolutional and
recurrent neural network architecture to (i) extract features from ECG;
(ii) analyse time-domain variation patterns; and (iii) non-linearly relate
those to the user’s arousal level. The key novelty is our use of a shared-
parameter siamese architecture to implement user-specific feature cali-
bration. At each forward and backward pass, we concatenate to the input
a user-dependent template that is processed by an identical copy of the
network. The siamese architecture makes feature calibration an integral
part of the training process, allowing modelling of general dependencies
between the user’s ECG at rest and those during emotion elicitation.
On leave-one-user-out cross validation, the proposed architecture obtains
+21.5% score increase compared to state-of-the-art techniques. Compari-
son with alternative network architectures demonstrates the effectiveness
of the siamese network in achieving user-specific feature calibration.

Keywords: Emotion recognition · Electrocardiogram ·
Siamese neural network · Convolutional and recurrent neural network

1 Introduction

Driven by applications in mobile mental health and human-computer interac-
tion [1], affective analysis of physiological signals has recently grown in popular-
ity. Since the pioneering use of electrodermal activity for arousal detection, the
research has evolved to cater for a range of physiological signals, such as electro-
cardiogram (ECG), electroencephalogram, electromyogram, breath rhythm and
skin temperature [1]. However, while much effort has focused on multi-modal
sensor fusion, model performance on single signal sources is still sub-optimal. At
the same time, achieving performance improvement for single sensors can push
accuracy boundaries for the overall model architecture even further, potentially
leading to increased wearability of emotion recognition systems.

c© Springer Nature Switzerland AG 2019
G. Nicosia et al. (Eds.): LOD 2018, LNCS 11331, pp. 1–13, 2019.
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The ECG signal, in particular, has become a focus of investigations because
of its unobtrusiveness, low cost and widespread availability of ECG sensors, as
well as sensitivity to both arousal and valence component of emotions [2]. Exist-
ing state-of-the-art machine learning pipelines for emotion recognition from ECG
signals usually proceed by extracting the HR (Heart Rate) signal and applying
sophisticated HRV (Heart Rate Variability) analysis techniques in a multi-step
process. This is mainly composed of: (i) HRV feature extraction; (ii) automatic
feature selection; (iii) user-specific feature calibration; (iv) hyper-parameter opti-
misation; and (v) model fitting. While steps (iv) and (v) are those actually
involved in model estimation, the overall performance of the resulting model
mainly depends upon the effectiveness of steps (i) to (iii), as testified by the
extensive literature on feature extraction, selection and calibration for HRV anal-
ysis [2–6]. The feature extraction and selection steps focus on extracting the most
informative features from the HR signal. On the other hand, user-specific feature
calibration crucially strives to enforce relative variation of feature values in the
model, rather than absolute variation, as the former are related to changes in
the user’s affective state. Furthermore, the features based on HRV are the only
type of features extracted from the ECG signal, and thus affective information
carried by most of the ECG signal is completely neglected [8–10].

In this work we pose the arousal recognition problem as a supervised classi-
fication problem and investigate the use of deep learning for arousal recognition
from ECG. For this purpose, we design a deep Convolutional and Recurrent
Neural Network (CRNN) architecture that (through end-to-end training) auto-
matically extracts general non-linear and time-domain features from the time-
series ECG signal and non-linearly relates those to specific arousal classes based
on common variation patterns found. Inspired by state-of-the-art HRV-based
machine learning pipelines, we propose the use of shared-parameter siamese neu-
ral network architecture [15], called the Siamese CRNN (S-CRNN), as a system-
atic way to extend and generalise feature calibration techniques into the deep
learning framework. By making feature calibration an integral part of the end-
to-end learning process, we allow the neural network to model general nonlinear
dependencies between the user’s ECG signal at rest and that during emotion
elicitation experiments. Namely, at each forward and backward pass through
the network one branch of the S-CRNN processes a new data sample, while the
other S-CRNN branch analyses a template sample specific to the user’s neutral
affective state. We use truncated back-propagation through time and stochastic
gradient descent to train the network in the classification problem associated to
the user’s arousal level.

We compare the S-CRNN architecture against state-of-the-art HRV analysis
pipelines on the classification task associated to a dataset for arousal recognition
during a real-world driving task [14]. The results obtained empirically demon-
strate the advantages of the end-to-end approach for arousal recognition from
the ECG signal. Namely, on leave-one-user-out cross validation settings the S-
CRNN architecture obtains average AUCs percentage increase of +21.5% on the
best results obtained by HRV analysis (that is, from 0.659 to 0.801). We further
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analyse the proposed S-CRNN against alternative architectures and approaches
for feature calibration and find that the approach based on shared-parameter
siamese neural networks leads to a +7.5% performance increase compared to
the corresponding CRNN, at the cost of negligible increase in network parame-
ters.

Contributions. The paper makes the following contributions.

– We propose an end-to-end classification framework for arousal recognition
from ECG. We design a CRNN that automatically extracts features from
ECG and analyses time patterns among them, relating them to arousal
classes.

– We investigate the use of siamese neural networks as a systematic way to
implement feature calibration techniques into the deep learning framework.

– We empirically compare the S-CRNN architecture against state-of-the-art
HRV analysis methods, observing a +21.5% performance improvement.

– We compare S-CRNN, models based on HRV analyses and alternative net-
work architectures in terms of generalisation performance to new users when
very few users are included in the training set. We assess the advantages of
the siamese architecture in achieving personalised feature calibration.

Organisation. The remainder of the paper is organised as it follows. In Sect. 2
we analyse related work in emotion recognition from the ECG signal and the
use of deep learning in affective computing. In Sect. 3 we present the S-CRNN
architecture designed for arousal recognition from ECG. Empirical results eval-
uating the effectiveness of the S-CRNN architecture are discussed in Sect. 4.
Finally, Sect. 5 completes the paper with a discussion on the method presented,
and outlines future work directions.

2 Related Work

In this section, we give a brief overview of machine learning methods developed
for HRV analysis and applications of deep learning for affective computing.

2.1 Heart Rate Variability Analysis for Arousal Recognition

Table 1 lists a collection of 31 features generally extracted from HR signal and
used for HRV analysis for arousal recognition [2–6]. Machine learning methods
based upon HRV analysis are multi-step, and include feature selection and user-
dependent feature calibration as crucial steps of the model learning.

In fact, Ollander et al. [5] investigate extensive feature selection for emo-
tion recognition from biosignals. They extract a number of HRV features, which
are then calibrated using mean and standard deviation computed from a set
of user-specific neutral affective state measurements. Few of the selected HRV
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Table 1. Types of HRV feature analysis employed for emotion recognition. Full details,
including feature extraction algorithms, can be found in [2–5]

Domain Name

Time Mean, Median, SDNN, pNN50

RMSSD, SDNNi, meanRate, sdRate

Geometrical TINN, RRTI, HRVTi

Frequency Welch PSD: LF/HF, (LF+MF)/HF, peakLF, peakHF

Burg PSD: LF/HF, (LF+MF)/HF, peakLF, peakHF

L-S PSD: LF/HF, (LF+MF)/HF, peakLF, peakHF

Poincaré SD1, SD2, SD2/SD1

Nonlinear SampEn1, SampEn2, DFAall, DFA1, DFA2

features actually survive the feature selection step. Zhao et al. [2] extract several
features from participants’ HR signals and perform feature calibration on them.
An SVM model is then trained on the data by using l1 regularisation for auto-
matic feature selection. Reportedly, only 10 out of 26 extracted features were
actually used by the SVM model. Melillo et al. [4] extracted 13 HRV features,
and applied exhaustive feature selection procedure and linear discriminant anal-
ysis. Surprisingly, the resulting classifier relied only upon three of the extracted
features. In order to partially overcome the feature selection problem, Gjoreski
et al. [7] train a multi-layer perceptron to predict arousal level from a PSD of
the HR signal. They report improvements over models trained on top of HRV
features, albeit the neural network proposed is constrained to use only frequency
domain features, and no feature calibration procedure is implemented.

Finally, though most of the above works extract HR from ECG, HRV anal-
ysis is the only systematic method used to compute features. Thus, potentially
relevant information from most of the ECG signal is ignored [8–10].

2.2 Deep Learning for Affective Computing

Many works have investigated the use of deep learning for face expression clas-
sification from images, as well as sentiment analysis of text, with deep learning
approaches systematically outperforming other techniques [12].

Martinez et al. [11] were among the first to apply end-to-end deep learning for
physiological signals’ affective processing. They developed a CNN for preference
learning from galvanic skin response and blood volume pulse data, and empiri-
cally demonstrated the advantages of deep features over manually designed ones.
Tripathi et al. [16] applied CNNs for arousal recognition from EEG. Empirical
results show up to ≈14% improvement against methods based on manual feature
extraction. Cho et al. [22] present a CNN architecture for stress recognition from
breathing patterns. Emphasising data augmentation as a crucial step for model
training, they obtain substantial improvements over competitive methods.
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Our work is a continuation of the latter works that bring deep learning to
the field of emotion recognition from physiological signals. The key novelty is the
use of siamese networks as a systematic way to implement feature calibration,
which is usually overlooked in deep learning frameworks for emotion recognition.

3 Methods

This section discusses our design of the neural network architecture for arousal
recognition from ECG signal. First, we describe data pre-processing and aug-
mentation used. We then present the CRNN architecture we designed for feature
extraction, and describe the shared-parameter siamese version of the latter.

3.1 Preprocessing

As pre-processing steps we apply a baseline remover filter and standardisation
to each ECG signal. We thus segment the signals into fixed size time windows
with 50% overlap. Based on empirical results from ultra-short term HRV analysis
[17], we use time windows of 15 s, as these provide just enough information to
extract significant features from the ECG signal. Though windows of greater size
would increase model sensitivity to small feature variations, they would conflict
with the practical limitations of the back-propagation through time training
algorithm (i.e., increased training time and the vanishing gradient problem).

3.2 Data Augmentation

Datasets for emotion recognition from physiological signals are typically of small
size, and thus deep models applied to them tend to overfit [7]. Furthermore,
real-world datasets related to health applications are notoriously unbalanced,
with the class associated to the absence of the disorder usually greatly over-
represented in the training data. This makes stochastic gradient descent some-
what challenging, as it will likely get stuck in a local optimum corresponding
to a trivial majority classifier. We thus heavily rely upon data augmentation
techniques in order to train our CRNN model.

First, we re-balance class labels of the training set by making multiple copies
of random representatives from the minorities class until the dataset is perfectly
balanced (that is, until each class is equally represented in the dataset). Then,
from each signal slice, we generate n training samples. Namely, we randomly
sub-sample n times the signal to a fixed size time window of m time points. In
doing so, we keep the time-stamps associated to the sub-sampled signal. Hence,
loss of information due to sub-sampling is mitigated, as the neural network is
potentially able to partially interpolate the missing pieces of the signal. Unless
otherwise specified, in the experiments of Sect. 4 we use n = 20 and m = 1024.
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Fig. 1. Proposed CRNN architecture, consisting of 6 convolutional blocks and three
stacked bidirectional recurrent neural networks.

3.3 Convolutional Recurrent Neural Networks

The proposed model architecture is sketched in Fig. 1 and summarised in Table 2.
Inspired by state-of-the-art HRV features, the CRNN employs a 3-layer bidirec-
tional RNN to summarise temporal patterns on top of a one-dimensional 6-layer
CNN. The CRNN is designed to first extract non-linear features from the ECG
signal, and then to analyse temporal information of feature variations.

Each convolutional block consists of a convolutional layer and a non-linear
activation function layer. After every other block, we use a one-dimensional max-
pooling layer to extract salient points from feature maps and compress temporal
information. Crucially, we employ Parametric ReLU [18] activation functions in
between convolutional layers to avoid dead ReLU problems. Parametric ReLU
allows automatic learning of the activation slope for negative input, effectively
avoiding the issue of fast death of units slowing down the learning procedure.
Notice that, because of data augmentation applied to the training set, data
distributions for the training set and the test set are systematically different, and
hence we cannot rely on batch-normalisation layers (usually used to circumvent
dead ReLU problems).

We use vanilla RNN units, as we experimentally observe that gated recurrent
layers quickly lead to overfitting problems. We speculate that this is due to the
small size of the dataset used here compared to datasets usually employed to
train deep LSTM and GRU recurrent networks [13,19]. We use a one-dimensional
global average pooling layer to summarise temporal patterns extracted by the
recurrent layers. Finally, we interleave dropout layers in between each pair of
layers, and only for the non-recurrent connections.

The final output of the CRNN is a vector of nonlinear and time domain
features extracted from each time window of the ECG signal. Next, we will
discuss how this is used to predict an arousal class from each signal window.
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Table 2. Details of the architectures and hyper-parameters of the CRNNs designed
for arousal recognition from ECG. Ticks (respectively crosses) indicates that the layer
is included (not included) in the layer block.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

1-D Conv. filters 16 32 32 64 128 128

1-D Conv. kernel 11 9 9 7 7 7

1-D Max-pooling ✓ ✗ ✓ ✗ ✓ ✗

Bi-RNN units 128 128 256 ✗ ✗ ✗

1-D Max-pooling ✗ ✓ ✗ ✗ ✗ ✗

3.4 Siamese Neural Networks

We implement the CRNN inside a shared-parameter siamese architecture [15].
The outline of the siamese network is sketched in Fig. 2. At each forward and
backward pass through the network, a user-specific template is fed into the net-
work along with the signal window currently analysed. The latter, and the user-
specific template, are independently processed by the CRNN, which extracts two
separate feature vectors from them. The resulting feature vectors are concate-
nated into a unique feature map and altogether processed by a fully connected
layer. By relying on the fully connected layer, the siamese architecture has the
capability to use features extracted from the user’s template to systematically
calibrate those extracted from the current signal sample. Finally, a soft-max
layer estimates the probability of the user being in an arousal state.

Fig. 2. Shared-parameter siamese architecture for arousal recognition. The current
ECG window and the user-specific template are passed through the CRNN. The two
feature maps are then concatenated and used to estimate arousal level.

Analogously to methods based on HRV analysis, for the user-specific tem-
plate we employ a sample recorded from the user before the beginning of the
experiment, which is assumed to be representative of the user’s neutral affective
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state. Notice that, in order to mitigate overfitting, we apply data augmentation
techniques outlined in Subsect. 3.2 also to the users’ templates.

4 Results

In this section we describe experiments related to the following key points:

– Comparison of HRV and S-CRNN on arousal recognition.
– Evaluation of the siamese architecture capabilities to implement feature cal-

ibration, comparing the S-CRNN with alternative network architectures.
– Analysis of the number of users included in the training set (population size)

to asses the effect on the feature calibration layer.
– Sensitivity analysis of hyper-parameters included in our methodology, focus-

ing on data-augmentation and number of convolutional/recurrent layers.

4.1 Dataset

We perform comparisons on the classification task associated to a dataset for
arousal recognition made publicly available by Schneegass et al. [14]. Briefly,
a set of physiological signals were recorded from 10 users during a real-world
driving task. Data samples were then subjectively labelled by each user for
arousal/driving workload. Among the signals included in the dataset, we focus
on ECG and use the arousal labels to define a binary classification problem (low
vs. high arousal).

4.2 HRV-Based Analyses

We train models based on HRV on the 31 features listed in Table 1 and provide
results for a selection of classification methods used in the literature [2–5], that
is, k-Nearest Neighbours (K-NN), Linear Discriminant Analysis (LDA), Support
Vector Machine with l1 regularisation (SVM-l1) and Random Forest (RF). We
apply state-of-the-art feature selection algorithms and hyper-parameter optimi-
sation to all the techniques based on HRV analysis on a nested cross valida-
tion setting. Namely, we use fitting and hyper-parameter optimisation routines
implemented in the Matlab machine learning toolbox, and apply forward search,
backward search and randomised search for feature selection. For space limita-
tion, for each model we include results only for the best performing combination
of parameters/features.

4.3 Experimental Setup

Because of strong class imbalance (only ≈6% of samples are representative of the
arousal class) we compare the results based on AUC score. Results are presented
for leave-one-user-out cross validation. We use Keras [20] with TensorFlow [21]
backend for implementation and training of neural networks. We train the net-
works using Adam optimiser [23] up to a maximum of 100 epochs, and use early
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stopping on a validation set. We do not investigate exhaustive hyper-parameter
optimisation for the S-CRNN, as it is nested in a cross validation and would
thus lead to prohibitive computational times. Instead, we perform a local hyper-
parameter analysis on the most sensitive hyper-parameters (Sect. 4.6).

We train HRV analysis models on a 2 GHz Intel Core i5 processor with a RAM
of 8 GB @1867 MHz. Computational time for a full round of hyper-parameter
optimisation and cross validations for each HRV model varied between about 1
and 12 h. We train deep learning models on NVIDIA Tesla K80 GPU. Compu-
tational time for a full round of cross validation took about 60 h.

4.4 Comparison of HRV and S-CRNN

In Fig. 3a we compare average AUCs obtained by different classification models
learnt on top of HRV features with the results obtained by the S-CRNN, for an
increasing number of users included in the training set. Results for population
sizes between 1 and 7 are averaged over 10 randomly chosen combinations of
users included in the training set (consistently among models).

As expected, we observe an overall trend for all the methods to perform
better as the number of users included in the training set increases. However,
the performance boost obtained for all the models when increasing the number
of training users from 1 to 5 seems to saturate for HRV-based methods, which
fail to take advantage of such increases. On the other hand, the S-CRNN obtains
additional AUC boosts when more users are included in the training set. For the
largest size of the training set allowed by the dataset used here (i.e. 9 users),
the S-CRNN obtains average AUCs percentage increase of +21.5% compared
to the best results obtained by HRV analysis (i.e. from 0.659 to 0.801 AUC).
Finally, notice that all the methods based on HRV analysis perform similarly to
each other. This suggests that the low AUC reached is not related to the actual
classification model used, but to the weak correlation between the HRV features
extracted and the user arousal level.

4.5 Variations on the Architecture

In Fig. 3b we compare the S-CRNN with variants of its architecture, namely,
with the CRNN model that does not benefit from the feature calibration layer,
and with a M-CRNN (Merged-CRNN). Similarly to the S-CRNN, the latter is
based on two separate CRNN branches, but they do not share parameters.

Again, there is an overall trend of AUC increase as the number of training
users increases. Contrary to what happens for HRV -based methods, here all the
models systematically get performance boost every time new users are included
in the training set. This is likely to be related to the greater capacity of neu-
ral networks to use information from more data compared to manual feature
extraction pipelines. Interestingly, the CRNN slightly outperforms the S-CRNN
for population sizes of 1, 3 and 5. We speculate that this is because, with small
population sizes, the feature calibration layer overfits to the specific training
users characteristics. However, as the number of users increases, the S-CRNN is
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(a) HRV based method and S-CRNN. (b) Variants of S-CRNN.

Fig. 3. AUCs for increasing the number of users included in the training set.

able to take full advantage of the information carried by new users’ data. In fact
with population size of 9, by proper calibration of the features extracted by the
CRNN, the S-CRNN obtains a +7.5% percentage increase on the corresponding
CRNN. Notice that, even though the M-CRNN model is more general than the
S-CRNN, it fails to improve even on the score obtained by the CRNN. This
could be due to the almost double number of parameters of the M-CRNN.

4.6 Hyper-parameters’ Analysis

In Fig. 4a we plot AUCs obtained for different numbers of recurrent and convo-
lutional layers included in the S-CRNN. We analyse the effect of changing the
number of layers of one type (either convolutional or recurrent), while keeping
the other type of layers fixed to its nominal value. Notice that the x and y axis
are normalised with respect to the S-CRNN architecture. The strongest effect
is given by the convolutional layers, with the fully recurrent network obtaining
only about 60% of the S-CRNN AUC. After an initial rapid increase, the AUC
score saturates around the nominal S-CRNN architecture.

Figure 4b shows the analysis results for the two hyper-parameters involved
in the data augmentation phase. As expected, there is an overall trend of AUC
increase as the number of copies made from each training sample is increased.
However, the benefit from having more copies saturates around 15. Analogously,
the more samples given as input to the S-CRNN, the higher is the AUC obtained.
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(a) Convolutional and recurrent layers. (b) Data augmentation hyper-parameters.

Fig. 4. Hyper-parameter analysis for S-CRNN.

5 Conclusions

We proposed a siamese CRNN architecture for arousal detection from ECG. The
CRNN is explicitly designed to extract non-linear features from the ECG signal
and analyse relevant time patterns using a 3-layer RNN stacked on top of a 6-
layer CNN. Relying on a shared-parameter siamese architecture, we implemented
feature calibration in the deep learning framework itself, which allows the neural
network to model non-linear relationship between users’ ECG at rest and that
during emotion elicitation. We demonstrated the advantages of our approach
compared to state-of-the-art HRV based methods, obtaining up to +21.5% per-
centage improvement on the AUC score. Further, we showed that the siamese
architecture obtains +7.5% score increase compared to the CRNN.

As future work we plan to extend the S-CRNN to long-term analysis set-
tings, and perform comparison with medium and long-term HRV techniques.
We emphasise that, though the siamese architecture was introduced for ECG,
it can be generalised to most of the physiological signals used for affective state
recognition. As feature calibration has proven to be a crucial step for manual
feature extraction pipelines, future work will investigate whether affective com-
puting based on deep learning can benefit from the siamese network paradigm.
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Abstract. In the paradigm of learning with a teacher, introduced by
Vapnik, a supervised learner is trained on an augmented features space,
and a student is requested to match the teacher accuracy as much as
possible in a reduced feature space. In particular, in the transfer learn-
ing mode proposed by Vapnik, a method was formalized to move the
knowledge from the teacher to the student. In this paper, we use biased
regularized least squares as a simple yet effective method to transfer the
knowledge from one learner to another, and to assess its accuracy. We
achieve this by further generalizing a semi-supervised learning method,
which we previously introduced. We will show that, with this approach,
the teacher can be any classifier. In particular, we will employ the Rel-
evance Vector Machine (RVM) as teacher to assess the method’s capa-
bility in transferring the knowledge in terms of classification accuracy,
and in reproducing the probabilities coming from RVM. We validate the
method against standard UCI datasets and systematically compare it
with Vapnik’s original method in terms of accuracy and execution time.
We thus demonstrate the feasibility and speed of this new approach.

1 Introduction

Supervised learning is an extremely well-studied topic in terms of theory
and algorithms. Several variations of the supervised learning paradigm have
appeared over the years, including semi-supervised learning [3–5], transfer learn-
ing, domain adaptation [12,13], multiple output learning, deep learning, and,
more recently, the learning with a teacher paradigm [1].

In classical supervised learning for classification, the learning algorithm is
fed with an input matrix X (where rows represent the samples, and columns
represent the features) and the desired labels vector y represents the class mem-
bership. The aim is the learning of a function f that can predict the labels y.
In contrast, in the learning with a teacher paradigm, it is hypothesized that a
teacher, namely a classifier, can access a privileged space D∗, whereas a stu-
dent can only access a reduced unprivileged space D from which to replicate the
teacher classification accuracy. By privileged, we mean that the D∗ space has an
extended set of features that are not accessible in the space D. For instance, D∗

has ten features, whereas D has access to only five of them. Implicitly, we are
c© Springer Nature Switzerland AG 2019
G. Nicosia et al. (Eds.): LOD 2018, LNCS 11331, pp. 14–25, 2019.
https://doi.org/10.1007/978-3-030-13709-0_2
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assuming that the additional features in D∗ are not noisy but significant. From
now on, x∗ and x will indicate a sample in the full teacher space D∗ and student
space D respectively, while the data matrices will be indicated by X∗ and X.
In this setting, Vapnik proposed the SVM+ and SVMΔ+ [1]: SVMΔ+ functional
is a nonlinear optimization problem, which Vapnik showed could be approxi-
mated by a convex one with linear constraints. To cope directly with knowledge
transfer, which is the object of this paper, Vapnik additionally proposed a learn-
ing scheme in which the student learns the kernel rows of the kernel matrix as
functions computed on the space D∗, and tries to reproduce this hidden layer by
learning proper basis functions in the space D. This approach requires the learn-
ing of a number of approximate basis functions equal to the number of kernel
bases of the original space. Even if the number of landmarks Nl (samples used
in the kernel expansion) can be reduced with respect to the original number
of samples N , Nl regression problems still have to be solved. If the Regular-
ized Least Squares (RLS) method is used to solve the regression problems, then
the overall scaling of the learning procedure is O(N3Nl) because of the (RLS)
cubic scaling. In particular, if we choose Nl = N (which is the most agnostic
choice), the overall cost is O(N4). This makes the procedure computationally
intensive. This situation requires simpler and faster methods for learning with
privileged information. The recent literature contains works at the theoretical
and algorithmic level. At the theoretical level, Hypothesis Transfer Learning
(HTS) is another way to indicate learning with hidden/privileged information.
In [6], the authors use stability bounds to prove that HTS is convenient and can
be successfully used. Interestingly, this group used regularized least squares for
their analysis. However, the biasing is placed in the loss function and not in the
regularizer. This means that, during the prediction phase, the original function
must be evaluated in the augmented space too. This makes the method unsuit-
able for out-of-sample and disjoint spaces D∗ and D, as in our case. In [7,8],
some methods are presented that can obtain knowledge transfer. However, they
are restricted to mimicking linear classifiers or mimicking nonlinear classifiers in
the same function space of the learnt final function. These limits considerably
restrict the applicability of these methods.

Here, we propose a biased form of regularized least squares as a simple and
effective solution. Furthermore, we show that the proposed functional generalizes
a previous one, which we proposed in [3,4] for semi-supervised learning. Indeed,
the functional we define has several advantages, including (a) independence of
the original classifier space with respect to the mapped one; (b) a simple learning
system to be solved to obtain the solution (so SVD can be used to accelerate
the search for an optimal regularization parameter); and (c) it offers a simple
Bayesian interpretation.

In the following, we introduce the regularized least squares algorithm (RLS),
the knowledge transfer scheme proposed by Vapnik, and our mimicking func-
tional and its properties. Then, we apply the method to the Relevance Vec-
tor Machine (RVM) as teacher and the proposed functional as student. We
thereby assess the method’s accuracy and execution speed compared to the
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knowledge transfer method proposed by Vapnik. In the same section, we dis-
cuss the method’s feasibility in reproducing RVM probabilities. Finally, we draw
some conclusions.

2 Regularized Least Squares

The regularized least squares algorithm is a widely used method for classification
and regression [9]. Althought it uses a regularization term identical to SVM, it
uses a squares loss instead of the hinge loss. The mathematical problem is:

min
f

||f − y||2 + λ||f ||2H (1)

where f ∈ H and H is a Reproducing Kernel Hilbert space. Due to the Repre-
senter Theorem, it can be shown that this functional admits as minimizer the
following linear expansion in terms of kernel functions:

f(x) =
N∑

i=1

αiK(xi, x) (2)

Substituting this expansion into the functional, the following matrix form can
be obtained:

min
α

||Kα − y||2 + λαtKα (3)

In turn, computing the gradient and nullifying it, the optimal solution can be
obtained by solving a linear system of equations or inverting a matrix:

α = (K + λI)−1y (4)

To compute the regularization path in an efficient way, namely the set of solutions
changing the regularization parameter, it is convenient to compute the SVD of
the kernel matrix K as per USU t. Indeed, it is easy to show that, by using
the SVD, computing the full regularization path boils down to computing a
trivial inversion of the S matrix and two matrix multiplications (U ty can be
precomputed) as per:

α = U(S + λI)−1U ty (5)

RLS will be our starting point and we will show that this property is preserved
upon the proposed modification.

3 Knowledge Transfer

In [1], the knowledge transfer process is formalized as the process of starting
from the teacher representation in kernel space and moving it to the space of
the student. In particular, suppose the teacher has learnt a rule as per:

f(x∗) =
N∑

i

δiK(x∗
i , x

∗) (6)
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where x∗
i are samples belonging to the full teacher space D∗. We want the student

to mimic this function by just employing x instead of x∗, where x now belongs to
the reduced student space D. To this end, Vapnik proposes a strategy whereby
we directly mimic f(x∗) by copying the kernel behaviour on x∗. That procedure
can be formalized in three points.

– First, we find the fundamental elements of knowledge in the space D∗ called
u∗

i . In other words, we define some landmarks a priori, or some support vec-
tors a posteriori in order to reduce the computational burden. This step is
computationally relevant only. Conceptually, it is not different than using all
the samples. In the following, we will use all the available samples to maximize
accuracy.

– Second, we find frames (m functions) K∗(u∗
1, x

∗), ...,K∗(u∗
m, x∗) in space D∗.

We identify the hidden layer elements that we want to transfer.
– Third, we find the basis functions φ1(x), ..., φm(x) such that φk(xi) ≈

K∗(u∗
k, x∗

i ). This means finding the basis functions that, for the space D, the
student space, mimic the behaviour of the full kernel function in space D∗.

Once obtained, the m functions, then the student function becomes:

f(x) =
m∑

k

δkφk(x) (7)

From a neural network perspective, this strategy is equivalent to mimicking the
output of the hidden layer of a single hidden layer (pretrained) neural network
(as SVM is, where the number of neurons is equal to the number of samples,
i.e., N = m).

With this method, the functions φ(x) are the main source of practical dif-
ficulty because, for each of the m landmarks, we have to learn a regression
function. As a result, the method is not particularly efficient. In turn, as usual,
learning a function means conducting a model selection on it, which makes the
algorithm even slower.

To avoid the m regression and the m model selection problems, we propose a
much simpler method where just one regression is needed to transfer the knowl-
edge, thus dramatically reducing the computing time.

4 Mimicking the Teacher

After looking at the strategy proposed in [1], the key question is if we really need
to mimic the hidden layer to transfer the knowledge. Is it sufficient to mimic the
output of the network? To transfer the knowledge, most methods propose the
mimicking of the hypothesis space. For instance, in the linear case this means
defining the following biased Tikhonov functional:

min
w

||Xw − y||2 + λ||w − wt||2 (8)
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where we denoted the teacher solution with wt. The problem with this intuitive
approach is that we are implicitly assuming that wt (the teacher model) and
w (the student model) live in the same space. This can be a limiting factor.
Here, we propose an alternate approach which directly mimics the teacher and
indirectly mimics the hypothesis space. Indeed, the final aim of the learning with
a teacher approach is to have a good generalization performance in the student
space. This can be achieved by decoupling the two hypothesis spaces.

This can be obtained in RLS by slightly changing its biased form and
switching from a hypothesis space bias to a bias in the output of the decision
functions. In the linear case, this corresponds to substituting ||w − wt||2 with∑N

i=1(wxi − wtx
∗
i )

2 or in general nonlinear terms:

min
f

N∑

i=1

(f(xi) − yi)2 + λ1||f ||2H + λ2

N∑

i=1

(f(xi) − ft(x∗
i ))

2 (9)

where now the mimicking is not done in the hypothesis space but simply by a
Euclidean norm in the output of the functions. Note that we here introduced
the mimicking regularizer λ2, which tells us to what extent the teacher should
be mimicked. This means that we are no longer mimicking the hypothesis space
directly. Rather, we are only mimicking the output of the teacher. Philosophi-
cally speaking, our student is not understanding the lesson (the hypothesis, the
model w), but just mimicking the teacher’s behaviour (f values). One might
expect this approach to be less effective. However, we will show empirically that
this is not the case. This simplification is somehow reminiscent of the transduc-
tive approach [10] when compared to full inference where the query points (the
questions to the student) are known a priori. Here, we also squeeze the problem
to its essence, namely just imitating the teacher. In addition to the philosophical
difference, even if the output is just copied, the learnt functions generalize well
when a proper λ1 regularizer is chosen. Indeed, imitating is sufficient to shape a
sufficiently good hypothesis space for the student.

Such a functional has some very nice properties:

– It decouples completely the ft space from f , the student function.
– It does not make any assumption about the source of ft. It could be any

classifier that gives some scalar output; even a multiclass classifier could be
mimicked by this approach. Later, we will show how this property can be
used to mimic class probabilities.

– It can be minimized by solving a linear system.
– It has an obvious Bayesian intepretation when looking at the second regular-

izer, in that this one could be interpreted as a Gaussian prior centered on the
teacher function ft.

– It is easily generalizable to a multi-teacher or even a multi-aim approach (e.g.
teacher+semi-supervised learning).

Those properties are all self-evident except two, namely the linear system
and the generalizability.



Simple Learning with a Teacher via Biased Regularized Least Squares 19

First, we show that the system minimization can be achieved as a linear system
solution, and that SVD can be conveniently used again to quickly compute the
regularization path. Writing down the proposed function in matrix terms, we
obtain the following functional to be minimized in the α space

min
α

||Kα − y||2 + λ1α
tKα + λ2||Kα − ft||2 (10)

Computing the gradient and nullifying it yields the solution:

α = (K + λ1I + λ2K)−1(y + λ2ft) (11)

where I is the identity matrix. By employing the SVD on K, we obtain K =
USU t. Due to its positive definiteness and using the property that U t = U−1,
we can conveniently write:

α = U((1 + λ2)S + I)−1U t(y + λ2ft) (12)

where it is clear that changing the regularization parameters just means inverting
a diagonal matrix that can be trivially obtained by inverting all its diagonal
elements. As such, the computation of the regularization path involves just one
SVD and matrix multiplications, hence its speed. In terms of computational
complexity without considering the cost of model selection, Vapnik’s approach
scales as per O(N3Nl) (where Nl is a possibly a priori or a posteriori subset of
samples), whereas our protocol only needs one RLS problem to be solved, thus
obtaining O(N3). For large sample sizes, the speed-up can be dramatic.

As already anticipated, it is interesting to note that the proposed functional is
very similar to that used in [3,4] to support semi-supervised learning. In contrast
to that work, the mapping step is not needed here because the ft is already
a classification function. Moreover, semi-supervised learning could be achieved
here by only letting ft represent a learnt function on the full set (supervised +
unsupervised) after the Mapping step (see [3]) and applying the square loss only
on labeled samples.

In the most general terms, one could envision the following functional:

L(f(x), y) + λ1Ω(f) + λ2

nt∑

i=1

||f − f̂i||2 (13)

where a multi-teacher approach could be used by properly assigning the vari-
ous f̂i. Interestingly, the amount of computations needed for transfer learning is
independent of the number of teachers or reference functions in general. Addi-
tionally, if the loss L and the regularizer Ω are all quadratic, then a simple
linear system must be solved. Further, if f̂i comes from a mapping step as in
[3], then the method is flexible enough to allow simultaneous semi-supervised
and teacher learning, simultaneously leveraging the space D∗ and the unlabelled
samples possibly coming from D∗.

Another interesting potential interpretation of (13) is a way of performing
boosting on different features. Indeed, one could assign to each f̂i a specific
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subset of features, using (13) to boost all of them. Thus f̂i would play the role of
the weak learners. However, these intriguing possibilities are beyond the scope
of the current paper, where we focus on learning with a single teacher only.

4.1 The Complete Learning Scheme

As anticipated, we will use the Relevance Vector Machine [11] as teacher in that
it can directly deliver the class probabilities. In particular, for computing the
probabilities from RVM and from biased RLS, we compute the sigmoid:

p(x) = 1/(1 + exp(−f(x))) (14)

where x is a generic sample, f is the learnt function by the learner, and p is the
corresponding class probability. Overall, the complete learning scheme can be
summarized in the following pseudocode:

Input: X∗,X,y
Output: α
1: Teacher learns by solving RVM(X∗,y)
2: Compute teacher probabilities via eq.14, name them p∗

3: Student learns by solving eq. 9 in space D, do model selection on λ1 and get α
4: Compute student probabilities via eq. 14, name them p
5: return α, p, p∗

Here, we assume that λ2 is kept fixed during the model selection. Indeed, we
found empirically that a sufficiently large (e.g. 1e2) value is sufficient to enforce
the correspondence between p∗ and p as much as possible. In contrast, for the
model selection and as usual for RLS, we found that the first regularization
parameter λ1 value is critical.

5 Experiments

In the following, we discuss experiments conducted on some widely used UCI
datasets to demonstrate and study the method’s feasibility. We chose the follow-
ing datasets from UCI: ionosphere, A vs B letter recognition, mammographic
masses, musk, sonar and diabetic retinopathy. We split the datasets into two
halves, one for training and one for testing. The kernel was always the Gaus-
sian kernel with width automatically fixed to: σ = 8maxij(dij/

√
2N), where dij

is the pairwise distance between a pair of samples. Data were always normal-
ized in the [−1,+1] domain, and the data order was randomly permuted. All
experiments were conducted with Matlab R2016a on an Intel Xeon 2630 work-
station and Linux Ubuntu. To emulate the learning with a teacher setting, we
suppressed some dataset features to simulate the student space D. In particu-
lar: we suppressed variables 1 to 32 for ionosphere, variables 5 to 160 for musk,
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variables 1 to 15 for sonar, columns 4, 5 for mammographic data, and columns
1 to 4 for diabetes. This column suppression allows us to fairly emulate a signifi-
cant difference in spaces between D∗ and D. The λ2 parameter was always kept
fixed to 1e2. We performed model selection for λ1 in the interval [10−10, 103]
in 25 equispaced values in the exponent space. For learning the m frames in
Vapnik’s method, we again used RLS. We used the same λ1 interval to perform
model selection, but with fewer values (only 13) to speed up the computation.
We did not use the SVD trick for model selection. We limited the total amount
of samples to random 1000 samples overall for the training and test sets.

First, we compare our method to Vapnik’s method to assess the algorithm’s
feasibility in terms of accuracy and computing time. Next, we characterize the
method’s behaviour when changing the training/test sample size. Finally, we
comment on the method’s ability to reproduce the class probabilites learnt by
the RVM teacher.

5.1 Comparison with Vapnik’s Algorithm

In this first set of experiments, we sought to understand how the proposed
method compares to the knowledge transfer scheme in [1]. In Fig. 1, we report the
results of Vapnik’s method versus the regularization parameter λ used to learn
the regression functions. It is evident from the figures that a proper tuning of the
regularization parameter is needed to obtain a good accuracy. This confirms the
idea that not only must m regression functions be learnt, but proper model selec-
tion must also be conducted on them. The same kind of analysis is performed
for our method. Table 1 shows that the accuracy values of the two methods are
almost identical. Interestingly, however, our method is not only conceptually
much simpler but also much faster. In particular, in the table νt indicates the
teacher error, νr the error in the reduced space D, νs the student error after
the biasing, νlt is the student error using the algorithm in [1], ts and tlt are the
respective execution times in seconds for our method and Vapnik’s method, and
Δp is the probability absolute difference Δp = |p(x)−p(x∗)| between the teacher
and the student (this last quantity is also reported in the figures as the cyan line
with star marks). Clearly, Δp is dataset-dependent and accuracy-dependent. It is
likely that a higher classification error induces a higher difference in probability.
Nevertheless, we found that, on average, the probability is maintained under a
tolerance of about 10%. This means that, on average, even probability estimates
are reasonably accurate. By looking at the probability tolerance curves, we found
that the minimum is often attained (or very nearly) where the best regulariza-
tion parameter λ1 is found. This interesting property allows us to empirically
check that, where the best model is located, the estimated probabilities also tend
to match the original ones under a certain tolerance (Fig. 2).

5.2 Behaviour by Changing Sample Size

In this second set of experiments, we sought to understand when it is worth
transferring the knowledge in terms of the sample regime. We tested our algo-
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Fig. 1. Results for the method in [1]. From top to bottom and left to right: ionosphere,
sonar, letter, mammographic masses, musk, retinopathy. The line with squares (red)
indicates error in the D reduced space, the line with circles (black) indicates the teacher
error (in D∗), and the line with rhomboids (green) indicates the student errors (Color
figure online)

rithm on a subset of datasets and collected the test errors at varying sample
sizes. We used only musk and ionosphere because they were the only two where
we could guarantee that the teacher error was lower then the error in the reduced
space. For certain sample sizes, removing some features can often be beneficial
instead of disadvantageous. For this reason, we selected only the datasets that
consistently allowed us to obtain a teacher error lower than the student error
at all sample sizes. From Fig. 3, it is evident that the student error is consis-
tently significantly better than the error in the reduced set. This confirms that
the method is advantageous regardless of sample size, provided that the teacher
error is better than the reduced error.
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Fig. 2. Results for the proposed method. From top to bottom and left to right: iono-
sphere, sonar, letter, mammographic masses, musk, retinopathy. The line with squares
(red) indicates error in the D reduced space, the line with circles (black) indicates the
teacher error (in D∗), the line with rhomboids (green) indicates the student errors, and
the line with stars is Δp (Color figure online)

Fig. 3. Analyzing the accuracy at varying sample sizes. The cyan line is the student
error. The red line is the error on the reduced dataset. The first figure is the ionosphere
dataset. The second figure is the musk dataset. Learning with a teacher is convenient
regardless of the sample size. (Color figure online)
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Table 1. Here, νt indicates the teacher error, νr is the error in the reduced space D, νs

is the student error after the biasing, νlt is the student error using the algorithm in [1],
ts and tlt are the respective execution times in seconds for our method and Vapnik’s
method, and Δp is the probability absolute difference Δp = |p(x)− p(x∗)| between the
teacher and the student

Dataset νt νr νs ts νlt tlt Δp

Iono 11.4 33.7 18.9 0.25 19.4 5.2 22.1

Letter 0 1.4 0.4 0.36 0.4 77.8 0.7

Musk 21 41.6 28.6 0.26 28.6 9.6 23.1

Sonar 22.1 28.8 24 0.22 24 1.8 14.2

Mammographic 20.2 20.2 21.2 0.31 20.2 31.6 5.3

Retinopathy 29 39.4 31.4 0.35 31 79.5 8.4

Avg 17.3 27.5 20.8 0.3 20.6 34.3 12.3

6 Discussion and Conclusions

In this paper, we proposed a simple, flexible, and fast method to learn from a
teacher. We empirically demonstrated that the method works well in a scenario
where we removed some features from standard UCI datasets to emulate the
enriched D∗ space and the reduced student space D. We showed the method
to be both accurate and fast when compared to the original method proposed
in [1]. Furthermore, we have shown that the tested method is easily generaliz-
able to a multi-teacher approach, in which some of the teachers may even come
from an unsupervised environment. Indeed, our functional generalizes a previous
functional that we defined for semi-supervised learning, which, de facto, was an
instance of transfer learning. In spirit, our functional resembles that defined in
[2]. Interestingly, the three-step procedure proposed in that paper is conceptually
analogous to the four steps we proposed earlier in [3]. However, the procedure
proposed in [3] is more flexible in that the mapping step allows an easy move
from an unsupervised solution to a function f in a RKHS. Moreover, our method
is always convex. Future works will systematically analyze the generalized func-
tional, and will mix teachers from the augmented space D∗ and unlabelled data
D in the same learning process.

References

1. Vapnik, V., Izmailov, R.: Learning using privileged information: similarity control
and knowledge transfer. J. Mach. Learn. Res. 16, 2023–2049 (2015)

2. Lopez-Paz, D., Bottou, L., Scholkopf, B., Vapnik, V.: Unifying distillation and
privileged information. In: ICLR 2016 (2016)

3. Bisio, F., Gastaldo, P., Zunino, R., Decherchi, S.: Semi-supervised machine learning
approach for unknown malicious software detection. In: IEEE INISTA, 2014, pp.
52–59 (2014)



Simple Learning with a Teacher via Biased Regularized Least Squares 25

4. Bisio, F., Decherchi, S., Gastaldo, P.: Inductive bias for semi-supervised extreme
learning machine. In: ELM 2014, vol. 1, pp. 61–70 (2014)

5. Decherchi, S., Ridella, S., Zunino, R., Gastaldo, P., Anguita, D.: Using unsuper-
vised analysis to constrain generalization bounds for support vector classifiers.
IEEE Trans. Neural Netw. 21, 424–438 (2010)

6. Kuzborskij, I., Orabona, F.: Stability and hypothesis transfer learning. In: ICML
2013 (2013)

7. Wang, Z., Wang, X., Ji, Q.: Learning with hidden information. In: ICPR 2014
(2014)

8. Niu, L., Shi, Y., Wu, J.: Learning using privileged information with L-1 support
vector machine. In: IEEE International Conferences on Web Intelligence and Intel-
ligent Agent Technology (2012)

9. Rifkin, R.: Everything old is new again: a fresh look at historical approaches in
machine learning, Ph.D. thesis, Massachusetts Institute of Technology (2002)

10. Gammerman, A., Vovk, V., Vapnik, V.: Learning by transduction. In: UAI 1998,
Morgan Kaufmann Publishers Inc., pp. 148–155 (1998)

11. Tippimg, M.E.: Sparse Bayesian learning and the relevance vector machine. JMLR
5, 211–244 (2001)

12. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer
component analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2011)

13. Daume III, H.: Frustratingly easy domain adaptation. In: Proceedings of the 45th
Annual Meeting of the Association of Computational Linguistics, pp. 256–263.
Association for Computational Linguistics (2007)



Feature Based Multivariate Data Imputation

Alessio Petrozziello(&) and Ivan Jordanov

School of Computing, University of Portsmouth, Portsmouth, UK
{alessio.petrozziello,ivan.jordanov}@port.ac.uk

Abstract. We investigate a new multivariate data imputation approach for
dealing with variety of types of missingness. The proposed approach relies on
the aggregation of the most suitable methods from a multitude of imputation
techniques, adjusted to each feature of the dataset. We report results from
comparison with two single imputation techniques (Random Guessing and
Median Imputation) and four state-of-the-art multivariate methods (K-Nearest
Neighbour Imputation, Bagged Tree Imputation, Missing Imputation Chained
Equations, and Bayesian Principal Component Analysis Imputation) on several
datasets from the public domain, demonstrating favorable performance for our
model. The proposed method, namely Feature Guided Data Imputation is
compared with the other tested methods in three different experimental settings:
Missing Completely at Random,Missing at Random andMissing Not at Random
with 25% missing data in the test set over five-fold cross validation. Further-
more, the proposed model has straightforward implementation and can easily
incorporate other imputation techniques.

Keywords: Missing data � Multivariate data imputation �
Multitude of imputation models � Data mining

1 Introduction

Dealing with missing data is an important step in dataset pre-processing since most
statistical analysis techniques, data reduction tools, and machine learning methods
require complete datasets. There are many techniques that can be used to deal with the
missingness, but the common approach during imputation is to make the most of the
available data through minimizing the loss of statistical power and the bias inevitably
brought by the missing data inferred values. The mechanisms of missingness are
usually categorized into three groups [1]: MCAR (Missing Completely at Random);
MAR (Missing At Random); and MNAR (Missing Not At Random). In the first case,
the missingness is generally due to external factors, not correlated to the other variables
in the dataset, while in the last two, the cause is related to the other variables; therefore,
the risk of bringing bias due to the imputation should be carefully considered.

The approaches of dealing with missingness can be also divided into three cate-
gories [1]: deletion; univariate imputation; and multivariate imputation. In the first
category fall the list-wise deletion (the patterns with missing values are simply
removed), attribute deletion (the features with missing values are excluded) and pair-
wise deletion (where, in presence of missing values, the pattern is not dropped, and its
other values are still used during the analysis). The methods from the second category
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do not consider the correlation between the missing value and the other variables in the
dataset, and impute the data using only information of the same attribute. Good
examples of this group are: the Random Guessing, where the values are substituted
randomly, sampling from the other values of the same attribute; and theMean (Median)
Imputation, where the values are replaced with the mean (median) of the considered
attribute. The last category includes methods that consider the correlation of the dif-
ferent attributes. Four different algorithms of this family are usually considered [1]:
Multiple Imputation Chained Equations (MICE); Bagged Tree Imputation (BTI); K-
Nearest Neighbour Imputation (KNNI) and Bayesian Principal Component Analysis
Imputation (bPCA).

These methods have been widely investigated and compared in the past years,
showing discordant results [2, 3]. Most approaches of dealing with missingness would
select a single method that outperforms the others based on a given performance
metrics. However, while a given approach might have a good performance across the
whole dataset, it does not mean that its performance will be superior at the level of each
individual feature. In the proposed approach, instead of selecting a single method
which outperforms the others on the whole dataset, a column-wise selection is used to
choose the best imputation method for each individual attribute.

The proposed method, namely Feature Guided Data Imputation (FGDI) is
extensively tested and validated on thirteen publicly available datasets. Its performance
is assessed and compared with other techniques using Wilcoxon Signed-rank test for
statistical significance [4].

The remainder of the paper is organized as follows. Section 2 describes the con-
sidered imputation methods, while Sect. 3 proposes the FGDI method. Section 4 dis-
cusses the empirical study carried out. The results of this investigation are discussed in
Sect. 5 and in Sect. 6 conclusion given.

2 Imputation Techniques

Baselines. The most common techniques used as baselines for comparison and analysis
of data imputation are Random Guessing, Mean Imputation andMedian Imputation [5].
The Random Guessing is a very simple benchmark to estimate the performance of a
prediction method. It takes as input the missing data with random value drawn from the
known values of the same feature. The Mean (Median) Imputation replaces every
missing value with the mean (median) of the attribute. However, these techniques fall
into the single imputation category (the correlation between the variables is ignored),
which is the reason for being rejected by the scientific community [6], hence, they are
only used here to perform initial fast sanity check of the proposed approach.

Bagged Tree Imputation. The BTI with gradient boosting [7] is a machine learning
technique for solving regression problems, which produces a robust prediction model
using a vote (ensemble) among weak ones. The method follows few basic steps for
each feature with missing data: (1) train several tree models using the other features;
(2) for each tree, impute the data using a regression function; (3) use a vote among the
trees to select the data that will be imputed in the original dataset. Bagging predictors
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are used for generating multiple versions of a predictor to get an aggregated one. The
aggregation uses the average over the predictor versions when predicting a numerical
outcome, and employs a plurality vote when predicting a class. Bagging proved to be
more efficient in the presence of label noise when compared to boosting and ran-
domization [8]; it is also robust to outliers and can impute the data very accurately
using surrogate splits [9]. Another important feature of the tree model is its flexibility:
different models can be trained with the random forests and the prediction deferred to a
system vote among them. In this work, we employ gradient boosting technique for the
regression values, which uses an ensemble of weak decision trees.

K-Nearest Neighbors Imputation. In the KNNI the missing values are usually imputed
applying the mean of the K most similar patterns found by minimizing the Euclidean
Distance between a pattern with missing values and the complete subset [10].
The KNNI approach comprises three steps: (1) take only the rows of the dataset
without missing data and use this subset as a prototype dataset to select the nearest
neighbours; (2) choose a distance metric and compute the nearest neighbours between
each pattern with missing data and the complete subset; (3) impute the data, using the
mean or the mode of the chosen neighbours. An important parameter to select is the
number of neighbours K. There are discordant opinions in the literature, some sug-
gesting a low value of 1 or 2 for small datasets [11]. [12] advise a value of 10 for large
datasets, and in [10] is argued that the method is insensitive to the choice of the number
of neighbours. In all simulations carried out in this work, we used a value of K = 10.
The K-Nearest Neighbours has some advantages: the method can predict both, cate-
gorical variables (the most frequent value among the KNN) and continuous variables
(the average among the KNN); and when using this imputation, there is no need to
build a model (as in the Bagged Tree Imputation).

Missing Imputation Chained Equations. MICE [13] is a method from the multiple
imputation family. In the MICE process, a series of regression models are run modeling
each variable with missing data as dependent variable relying on all the other variables
in the dataset. This guarantees that each variable is modeled independently to its
distribution [13]. The MICE method is divided into four stages: (1) a simple imputation
(Mean) is performed for every missing value in the dataset to be used as placeholders;
(2) the placeholders for one variable are set back to miss; (3) the missing variable is
used as the dependent variable in a regression model and regressed using the other
variables. The procedure is followed for every variable with missing entries and
repeated many times until the convergence is reached. Practical guide on how to select
the number of imputations is given in [14], however, sometimes due to the size of the
dataset, it is not feasible to run the procedure many times. Therefore, 10 iterations are
usually considered enough for the convergence of the algorithm [15], which number is
also adopted in this investigation.

Bayesian Principal Component Analysis Imputation. The bPCA imputation [16] is an
evolution of the Single Value Decomposition Imputation [10] (since the SVD is a PCA
applied to normalized datasets with a 0 row-mean) with the additional Bayesian esti-
mation, using a known prior distribution. An advantage of this approach is that no
hyper-parameters tuning is needed, and the number of components is self-determined

28 A. Petrozziello and I. Jordanov



by the algorithm at the expense of a higher computational time. The bPCA can be
summarized as: (1) apply Principal Component Regression on the initial dataset;
(2) perform a Bayesian Estimation; (3) use an EM algorithm until convergence to a
specified tolerance.

3 The Proposed Method

All methods described in the previous section have been widely applied for solving
missing data problems [2]. However, while a given approach may produce low esti-
mation error for the whole dataset at hand, this does not mean that the method outputs
the best result (smaller error) for every individual feature (usually, for some of the
features other methods may give better estimates).

The investigated here Feature Guided Data Imputation (FGDI) is an imputation
approach which aggregates models in a feature-wise fashion (choosing the best model
for each feature (column) of the dataset, while allowing it at the same time to be inferior
for the rest of the features). In other words, when training the model, the best impu-
tation method for each feature of the dataset is selected among the considered tech-
niques. At the imputation phase, each selected method is sequentially used to impute
the features for which its performance was the best during the training stage.

During the learning phase, the algorithm is trained on artificially introduced missing
data (e.g., 25% of MCAR, MAR or MNAR) for each feature. A combination of the best
performed methods (based on a given error metrics, e.g., RMSE, MAE) is used to
impute the missing values in the original dataset. To cope with the random nature of the
algorithm and to ensure more robust choice, this process is iterated a given number of
times, and the technique that produced the lowest median overall error for each feature
is then chosen. For example, let’s assume a set of m imputation methods (M1, …, Mm 2
S) and dataset (X) composed of v variables (features) and n samples, where k of them
(0 < k < n) contain at least one missing value. Once the n-k complete samples are
separated (X′ subset), a percentage of missingness is added to each variable of X′ (e.g.,
25%). The missing data in X′ are separately imputed using all methods of S, and the
estimation error (e.g., RMSE) is calculated for each feature (variable). This process is
repeated I times (e.g., I = 5), and for every variable in X′, the imputation algorithm
scoring the lowest median error is selected and included in a set E, (E � S).The
selected techniques are then used to estimate the missing values of the whole set X. In
particular, 8Mi 2 E, i = 1,.., j, (where j � m), the dataset X is entirely imputed, and
only the imputed values for the features where Mi scored the lowest error are saved,
discarding the others. Since X is imputed independently using each technique, the order
of imputation is irrelevant, enabling the process to be parallelized.

4 Empirical Study

In previous works [3, 17], extensive review and experimentation was done in an effort
to identify correlation between imputation methods performance and the type of
datasets with missingness, which concluded with discordant results (confirming the
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‘No free lunch theorem’). These findings led to the current investigation, based on the
aggregation of different models.

The proposed method (FGDI) is compared with known univariate baselines and
multivariate state-of-the-art imputation methods (i.e., KNN, BTI, MICE and bPCA) to
assess its performance on the missing data imputation task. The experiments are exe-
cuted for all the three missing data mechanisms: MCAR, MAR and MNAR. Lastly, a
run time analysis is carried to observe the computational cost needed during the training
and imputation phases. The results are reported in Sect. 5.

Thirteen publicly available datasets from KEEL repositories [18] are used in this
work, namely Contraceptive, Yeast, Red wine, Car, Titanic, Abalone, White Wine, Page
Block, Ring, Two Norm, Pen Based, Nursery, and Magic04. The selection of these
datasets was driven by the intent to cover different application domains and data
characteristics. They differ in the number of instances (from several hundreds to several
thousands), the number of features (from 3 to 20), and in the range and type of the
features (real, integer and categorical). The used datasets do not have missing values by
default, guaranteeing total control over the experiments and the assessment and eval-
uation of the results.

From the variety of metrics employed for comparing and evaluating data imputation
and prediction models found in the literature, Mean Squared Error (MSE) and Mean
Absolute Error (MAE) are the most widely used [16, 19]. MSE measures the difference
between predicted and actual values while MAE their absolute difference. The Mean
Absolute Error (MAE) is argued to be more accurate and informative than the RMSE
[20], successively refuted by [21], where it is stated that the two measures picture
different aspects of the error and therefore they should both be used to assess the results.
As suggested in [20] and [21], RMSE and MAE are implemented to compare the
estimated missing values and the original ones, reflecting the average performance of
the imputation method. Furthermore, the RMSE is employed as error function for the
training phase of the FGDI. The Standard Accuracy (SA) and Variance Relative Error
(RE*) are assumed to be good baseline estimation measures [22]. SA and RE* are used
to compare the proposed model with the univariate baseline imputation techniques
(discussed earlier). In particular, SA which compares the prediction against the mean of
a random sampling of the training response values SA = 1 − RMSE(predicted, actual)/
RMSE(randGuess, actual) and the RE* = r2(predicted − actual)/r2(actual) which
gives score of 1 for a model predicting values with 0 variance. It is considered an
appropriate baseline error measure since any model producing RE* greater than 1
would be assumed weak, independently of the dataset [22].

To validate the proposed method, a k-fold cross validation is applied, splitting the
dataset into independent training and test sets. The test set is generated using a uniform
sampling without repetitions, and the rest of the data is left as a training set. Since the
Shapiro Test showed that many of our patterns came from non-normally distributed
populations, the statistical Wilcoxon Signed Rank Test was used to prove which method
is giving better performance [4]. Furthermore, the used test does not make any
assumptions about the underlying distribution of the data. In order to check the sta-
tistical significance of the difference in model performance, we test the following NULL
hypothesis: “Given a pair of models (Mi, Mj) with i; j 2 1; ::; nf g; i 6¼ j; the RMSEs
(MAEs) obtained by model Mi are significantly smaller than the errors produced by
model Mj”, using confidence level a = 0.05.
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When simulating Missing Completely at Random (MCAR) mechanism, for each
feature value in the dataset, a number is drawn from a uniform distribution in the (0, 1)
interval. If this number is smaller than assumed missing data threshold (e.g., 0.25), the
feature value is set as missing in the original dataset. For the Missing at Random
(MAR) mechanism, a variance-covariance matrix is built for the considered dataset.
For each variable, the probability of missingness is governed by the most correlated
feature in the matrix (i.e., the bigger the value of the correlated feature, the higher the
probability of introducing missingness). To generate the Missing Not at Random
(MNAR) mechanism, we draw values (used as thresholds) from a uniform distribution
in (0, 1) interval, and sort them in decreasing order. We do the same for the variable
values and pair them with the sorted random numbers. For each threshold, we draw a
new random number in the (0, 1) interval and if it is smaller than the threshold, we
erase the feature value (this way the pairs with higher random numbers are more likely
to be set as missing).

5 Results and Discussion

Three different experiments are carried out: MCAR, MAR, and MNAR mechanisms
with 25% of missing data and 5-fold cross validation (80% training and 20% testing).
To calibrate the model during the training phase, 25% of missing data is added to each
attribute of the training set, subsequently imputed using the five imputation techniques
and the accuracy is evaluated using both MAE and RMSE. This process is run 5 times
and for each attribute, the imputation model achieving the lowest median error (pre-
ferred to the mean due to robustness to outliers) is selected. Lastly, the selected
techniques are used to impute the data on the independent test set and the results are
compared to all the other methods.

The first set of experiments is performed imputing the missing data under the
MCAR mechanism. As the MCAR occurs when the missingness is unrelated to any-
thing in the study, the missingness is simulated using a Bernoulli random variable
removing values with 25% chance of success. The SA values given in Table 1 show
superior results for the imputation carried out with our model. It outperformed the
baseline methods Random Guessing (SARandom is always 0) and the Median Imputation
(SAFGDI > SAMedian). The Mean Imputation was omitted in favor of the Median
Imputation, since the latter is considered less biased to outliers. Furthermore, Table 2
presents the RE* results over five different imputation methods and again, as it can be
seen from the values, our FGDI method outperformed the Median Imputation, with
REFGDI < 1 in almost all case studies. It can be also seen from the table that the
REMICE > 1, which means high variance in the imputed values, problem already dis-
cussed in [23]. The REKNNI, instead, shows high variance (from 0.19 to 1.24)
depending on the considered dataset and feature. In the Yeast dataset, two variables (Erl
and Pox) are removed during the RE* calculation since the variance in the denominator
is 0. To finally assure that the proposed method is outperforming the baselines, a
Wilcoxon test for statistical significance is run, testing the NULL hypothesis “The
RMSEs provided by FGDI are significantly smaller than the errors produced by the
models Random Guessing and Median Imputation”. The results proved FGDI being
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better than both with p-value < 0.05 over all 13 datasets. The Standard Accuracy
analysis (Table 1) shows that the FGDI method not only outperforms the baselines, but
it is also comparable, and even better than the state-of-the-art algorithms. As it can be
seen from the table, the SAFGDI is higher than the SA of the other methods in 41 out of
the 52 cases, comparable in 9 out of the 52 cases, and worse in only 2 cases. To
validate the significance of the difference, the Wilcoxon test is run justifying the NULL
hypothesis “The RMSEs provided by FGDI are significantly smaller than the errors
achieved by the state-of-the-art methods”.

Table 1. Standard Accuracy (SA) values achieved by FGDI, the baseline (Median Imputation)
and state-of-the-art (KNNI, BTI, MICE, and bPCA) techniques over the 13 datasets for 5-fold
cross validation with 25% MCAR. Higher values represent better estimation over the random
guess

Dataset FGDI KNNI BTI MICE bPCA Median
MCAR MAR MNARMCAR MAR MNARMCAR MAR MNARMCAR MAR MNARMCAR MAR MNARMCAR MAR MNAR

Contraceptive 0.39 0.27 0.31 0.24 0.11 0.17 0.36 0.26 0.30 0.18 -0.02 0.03 0.38 0.23 0.31 0.26 0.23 0.27
Yeast 0.33 0.37 0.27 0.24 0.29 0.09 0.32 0.36 0.24 0.06 0.04 -0.02 0.33 0.36 0.22 0.28 0.36 0.22

Red Wine 0.37 0.28 0.28 0.33 0.13 0.14 0.33 0.18 0.25 0.23 0.01 -0.08 0.32 0.15 0.25 0.30 0.28 0.26
Car 0.29 0.32 0.29 0.12 0.21 0.16 0.29 0.31 0.15 -0.01 0.01 -0.07 0.29 0.31 0.14 0.25 0.29 0.29

Titanic 0.35 0.27 0.28 0.26 0.18 0.00 0.34 0.27 0.26 0.05 -0.06 -0.05 0.34 0.27 0.23 0.28 0.25 0.26
Abalone 0.68 0.28 0.27 0.62 -0.32 -0.05 0.57 0.27 0.18 0.66 0.08 -0.10 0.72 0.08 -0.10 0.28 0.27 0.27

White Wine 0.36 0.29 0.30 0.34 0.11 0.12 0.34 0.18 0.18 0.16 -0.01 0.00 0.34 0.18 0.19 0.28 0.29 0.29
Page Block 0.49 0.26 0.22 0.41 0.16 0.17 0.43 0.26 0.20 0.39 0.12 0.03 0.46 0.22 0.16 0.25 0.26 0.23

Ring 0.31 0.30 0.29 0.24 0.24 0.25 0.29 0.29 0.29 -0.02 -0.02 0.00 0.29 0.29 0.29 0.28 0.29 0.29
Two Norm 0.34 0.30 0.30 0.24 0.18 0.21 0.32 0.29 0.29 0.07 0.01 0.01 0.34 0.25 0.27 0.30 0.29 0.29
Pen Based 0.54 0.27 0.28 0.59 0.02 0.00 0.49 0.22 0.22 0.47 0.00 -0.01 0.45 0.17 0.20 0.27 0.27 0.28

Nursery 0.30 0.30 0.28 0.09 0.18 0.13 0.25 0.24 0.25 0.00 0.01 0.00 0.29 0.29 0.28 0.23 0.23 0.22
Magic04 0.47 0.26 0.22 0.42 0.13 0.06 0.41 0.22 0.18 0.32 0.07 -0.06 0.45 0.20 0.13 0.28 0.25 0.22

Table 2. RE* metric of FGDI and four state-of-the-art imputation methods for the 13 datasets.
Each entry represents the number of times that given algorithm scored RE* < 1 (good estimator)
on a total of 138 used features. The median imputation is not reported since it always scores
RE* = 1

Dataset (# features) FGDI KNNI BTI MICE bPCA

Contraceptive (9) 9 3 9 1 8
Yeast (6) 5 1 6 0 4
Red Wine (11) 10 6 11 4 9
Car (6) 6 0 5 0 0
Titanic (3) 3 1 3 0 3
Abalone (8) 8 7 8 7 8
White Wine (11) 10 7 10 1 8
Page Block (10) 10 10 10 4 9
Ring (20) 16 0 20 0 14
Two Norm (20) 20 0 20 0 20
Pen Based (16) 15 16 16 14 16
Nursery (8) 8 0 2 0 0
Magic04 (10) 9 8 9 5 9
Total (138) 129 59 129 36 108
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As evidenced in Table 3 (first three columns): the imputation improvement
achieved by FGDI is statistically significant (p-value < 0.05) in 40 out of the 52 cases
(77%); comparable in 9 cases; and worse in 3 cases only. As suggested in [20], the
same NULL hypothesis was tested using the MAE metric. The FGDI resulted signif-
icantly better in 37 cases (71%), comparable in 12 and worse in only 3 cases. The
second-best imputation method (bPCA) for RMSE was significantly better in 31 out of
the 52 cases (60%); comparable in 9; and worse in 12 cases, which shows an
improvement for FGDI of 17% over the best single method. For the MAE hypothesis,
bPCA results were significantly better in 24 out of the 52 cases (46%); comparable in
14; and worse in 14 cases, showing inferior imputation accuracy in 25% of the cases,
compared with the FGDI. Furthermore, Table 3 shows the robustness of FGDI when
estimating the missing values - lower variance than KNNI, MICE, bPCA, and com-
parable RE* values with BTI (Table 2).

The following experiments are considered when the missingness is caused by MAR
and MNAR mechanisms.

The Standard Accuracy values given in Table 1 for the MAR experiment show
slightly superior performance of FGDI when compared with the other imputation
techniques. The proposed model outperforms the baseline Random Guessing
(SAFGDI > 0) in all reported cases and the Median Imputation (SAFGDI > SAMedian) in 8
out of 13 datasets. Furthermore, it also shows better accuracy in all 13 cases when
compared to KNNI and MICE, and superior than BTI and bPCA results in 11 and 10
cases respectively. It is also worth to notice that the imputation under MAR condition is
generally harder task (compared to MCAR), since the missingness is not uniformly
distributed across the dataset and depends on the other variables as well (as discussed
in Sect. 4). As for all previous experiments, the Wilcoxon test is adopted to evaluate the
significance in difference for RMSE and MAE metrics. Results in Table 3 (4th to 6th

column) show significant imputation improvement of the FGDI for 41 out of the 52

Table 3. RMSE (MAE) significance test for 5-fold cross validation with 25% MCAR, MAR,
and MNAR. Each row shows how many times model Mi is better (win), comparable (tie), or
worse (loss) than the other models with the Wilcoxon Signed Rank Test

MCAR MAR MNAR
Win Tie Loss Win Tie Loss Win Tie Loss

FGDI 40
(37)

9
(12)

3
(3)

41
(47)

10
(5)

1
(0)

47
(48)

5
(4)

0
(0)

bPCA 31
(24)

9
(14)

12
(14)

36
(31)

8
(6)

8
(15)

34
(31)

7
(7)

11
(14)

BTI 26
(19)

12
(15)

14
(18)

28
(22)

6
(11)

18
(19)

23
(22)

6
(8)

23
(22)

KNNI 15
(19)

3
(11)

34
(22)

11
(13)

2
(6)

39
(33)

14
(13)

3
(6)

35
(33)

MICE 3
(4)

5
(8)

44
(40)

1
(1)

2
(5)

49
(46)

1
(1)

1
(5)

50
(46)
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cases (79%); comparable in 10; and worse in only 1 case, when using RMSE. On the
other hand, for the MAE metric, the FGDI resulted better in 47 cases (90%); com-
parable in 5; and never worse. The second-best imputation method (BTI) for RMSE
and MAE is significantly better in 36 and 31 out of the 52 cases (69% and 60%);
comparable in 8 and 6 cases; and worse in 8 and 15 cases, showing inferior to the FGDI
performance in 10% and 30% of the cases respectively.

The same analysis performed under the MNAR condition also suggests that the use
of a single imputation method for the whole dataset is not the best option. Again, the
SA values (Table 1) are generally lower when compared to the MCAR mechanism as
the missingness is caused by the considered variable itself (as explained in Sect. 4),
increasing the likelihood of introducing bias when imputing the values. In the MNAR
case, Table 1 also shows superior results for our method in 10 out of 13 datasets. The
reported SAFGDI is better than SAKNNI and SAMICE for all considered datasets, while
being never worse than SABTI and SAbPCA. When compared to the baselines, the FGDI
is always superior to the Random Guess (SAFGDI > 0), better than the Median Impu-
tation in 7 out of 13 cases, and worse only in 1 of the cases. The Wilcoxon analysis
Table 3 (columns 7 to 9) shows the FGDI being better than the second best method
(BTI) in 25% and 33% of the cases for RMSE and MAE respectively. Comparing the
proposed method with the other imputation techniques, the FGDI is better than bPCA,
KNNI and MICE in 46%, 64% and 89% of the cases for the RMSE and 50%, 67% and
90% for the MAE metrics. Despite being generally not recommended [6], the Median
Imputation showed comparable and even better results than the bPCA, BTI, KNNI, and
MICE in both MAR and MNAR settings. At first sight, this result is contradictory to
the MCAR experiment (Table 1). This could be explained by the fact that the multi-
variate model can benefit from the uniformly distributed missingness across the dataset
(like in the MCAR mechanism), while for the MAR and MNAR (where the miss-
ingness depends on a single variable), the use of a univariate model (baselines) could
be reducing the noise in the prediction (because of not considering uncorrelated fea-
tures). However, as it can be seen from the carried experiments, the use of combination
of baselines and state-of-the-art techniques (as in our approach) can improve the
accuracy in almost all proposed scenarios with a very low risk of worsening the
imputation.

Last point to note is that while the FGDI is superior in all setups, the bPCA and BTI
are competing for the second position in the three scenarios (bPCA for MCAR; and
BTI for MAR and MNAR). All the experiments presented in this work have been done
on a 16-core machine with 32gb RAM and 64 Gb SSD of storage. Figure 1 shows the
training time for the four state-of-the-art techniques (KNNI, BTI, MICE, and bPCA)
and the proposed FGDI method over the 13 datasets, given in seconds. Due to the
FGDI parallelization (each imputation algorithm can be run independently from the
others), its training execution time is never significantly higher than the time needed for
any other single technique. FGDI training time (blue bar in Fig. 1) is always compa-
rable with the slowest technique, plus an overhead due to the different scheduled
threads. Furthermore, the proposed method shows a consistent time execution overhead
with datasets of different volume and features size. This behavior can be observed from
the percentage change between the FGDI and the slowest compared model. he per-
centage change results are smaller for bigger datasets (7.69, 6.15, 14.37, 11.76, 5.84,
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10.74 and 4.76 for White Wine, Page Block, Ring, Two Norm, Pen Based, Nursery and
Magic04 respectively) and larger for the small ones (22.5, 20, 43.90, 59.09, 56.25,
46.34 for Contraceptive, Yeast, Red Wine, Car, Titanic and Abalone respectively).

This finding supports the recommendation of using the FGDI regardless the size of
the dataset (as long as the imputation is feasible for the single models employed in the
FGDI). For the prediction run-time (applied on the test set), FGDI showed to be
comparable with the slowest method selected during the training phase.

6 Conclusion

The investigated FGDI method initially extracts the complete subset (without missing
values), and selects through a learning process the most suitable imputation method for
each feature. The FGDI imputation performance is evaluated with four widely used
metrics for such tasks (SA, RE*, RMSE, and MAE). The results are statistically
assessed using the Shapiro Test to check the distribution normality, and the non-
parametric Wilcoxon Signed Rank Test, for statistical significance, using confidence
level a = 0.05.

Under the MCAR mechanism, the Standard Accuracy analysis demonstrates that
the proposed model is always more accurate than the baselines and produces better
estimation than the state-of-the-art methods in 41 out of 52 cases. The Wilcoxon shows
improvements of 17% and 25% for the FGDI over the second best performing algo-
rithm (bPCA) over the two metrics. In addition, FGDI and BTI impute values with
higher stability (RE* < 1) for 129 out of 138 tested features, followed by bPCA with
108 out of 138.

Although the prediction under MAR and MNAR mechanisms is generally less
accurate than the one under MCAR, the FGDI still shows better performance when
compared with the baselines and the state-of-the-art techniques. In particular, in the
MAR case, the FGDI is more accurate than the second best model (BTI) in 10% and
30% of the cases for RMSE and MAE respectively. Under the MNAR mechanism the
proposed model is again better than BTI in 25% and 33% respectively.

Finally, the performed imputation run time analysis proves the approach feasibility
regarding the needed training and testing time. The reported results strongly support the

Fig. 1. Training time in seconds (y-axis) of the five considered imputation methods over the 13
datasets (x-axis). The Median Imputation is omitted having always a training time less than 1 s
(Color figure online)
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efficiency of the proposed method when implementing multivariate imputation as a
way of dealing with missingness. Another advantage is that the FGDI can be easily
parallelized, having straightforward implementation allowing other imputation methods
to be easily incorporated.
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Abstract. An Extreme Learning Machine (ELM) performs the training of a
single-layer feedforward neural network (SLFN) in less time than the back-
propagation algorithm. An ELM defines the input weights and biases of the
hidden layer with random values, and then analytically calculates the output
weights. The use of random values causes SLFN performance to decrease sig-
nificantly. The present work carries out the adaptation of three continuous
optimization algorithms of high dimensionality (IHDELS, DECC-G and MOS)
and compares their performance to each other and with the state-of-the-art
method, a memetic algorithm based on differential evolution called M-ELM.
The results of the comparison show that IHDELS using a validation model
based on retention (Training/Testing) obtains the best results, followed by
DECC-G and MOS. All three algorithms obtain better results than M-ELM. The
experimentation was carried out on 38 classification problems recognized by the
scientific community, while Friedman and Wilcoxon nonparametric statistical
tests support the results.

Keywords: Extreme Learning Machine � IHDELS �
Self-adaptive differential evolution �
Multiple trajectory search with local search � Memetic algorithm

1 Introduction

An Extreme Learning Machine (ELM) is a method of training a single-layer feedfor-
ward neural network (SLFN) [1]. ELM, as opposed to the back-propagation algorithm
(BP), avoids the iterative process (epochs) in the learning process [2] and has been
successfully used in various areas of knowledge such as biomedical engineering,
computer vision, and identification systems, among others. A SLFN is a feedforward
neural network (FNN) with a single hidden layer. FNNs are a type of neural network
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that carry out information processing unidirectionally. The neurons of a layer connect
only with the neurons of the layer immediately following and no cycles are allowed in
it. In other words, the connections are not made to previous layers.

The theory behind ELM indicates that the input weights (interconnection between
the input layer and the hidden layer) and the biases of the hidden layer of an SLFN can
be defined in a uniform random manner, while the output weights (interconnection
between the hidden layer and the output layer) must be assigned analytically by means
of the Moore-Penrose pseudoinverse [1], provided that: (1) the activation function of
the output layer neurons is linear [2]; and (2) the activation function of the neurons of
the hidden layer is continuous and infinitely differentiable [4].

Experimental results show that defining input weights and biases with random
values affects the performance of a SLFN trained with ELM and sometimes causes
more neurons to be required in the hidden layer [5]. Bearing in mind that evolutionary
algorithms and meta-heuristics have frequently been used as methods for solving
complex optimization problems [3], Zhang et al. in 2016 proposed an evolutionary
algorithm called Memetic ELM (M-ELM) [1] that uses Differential Evolution (DE) as a
global search algorithm, and Simulated Annealing (SA) as a local search algorithm, to
better define input weights and biases of the hidden layer of a SLFN trained with ELM.
This work was found to obtain better results for accuracy than when the weights are
defined with random values or with other state-of-the-art methods.

The current research was carried out taking into account that: (1) M-ELM presented
good results compared to the state-of-the-art methods; (2) of the “no free lunch”
theorems [6] it follows that given a type of optimization problem, the only way to know
which optimization meta-heuristic is the best one to approach it, is through evaluation
and experimental comparison; (3) optimization algorithms specialized in continuous
multimodal problems of high dimensionality have not been used to solve the definition
problem of weights and biases of an SLFN trained with ELM; and (4) IHDELS [7] was
one of the algorithms that presented the best results in the continuous large-scale
optimization competition in the 2015 IEEE CEC (Congress on Evolutionary Compu-
tation) where continuous problems of 1000 and more dimensions are taken into
account, along with unimodal, multimodal, separable and non-separable optimization
problems.

The work involved adaptation of IHDELS, DECC-G and MOS, high dimension-
ality, continuous optimization algorithms to the SLFN training problem using ELM,
and their comparison with each other in addition to comparison with the state-of-the-art
M-ELM method, and a baseline using a Random Walk (RW). The experimentation
shows that IHDELS obtains the best results. This conclusion is supported by the
statistical analysis based on Friedman and Wilcoxon nonparametric tests.

The rest of the document is organized as follows: Sect. 2 presents the theoretical
context that supports SLFN training with ELM. Section 3 then presents the adaptation
of the IHDELS algorithm for joint use with ELM to define the weights of the input
layer and the biases of the hidden layer of an SLFN. Section 4 describes the experi-
ments carried out, results obtained and their analysis. Finally, conclusions are pre-
sented, along with future work that the research team hopes to perform in the short
term.
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2 Theoretical Context

ELM is a training algorithm for a SLFN, whose learning speed can reach up to three
hundred times faster than traditional algorithms such as BP [8]. In the following,
current theory relating to ELM is explained, taken from [8]. To train the SLFN, input
weights x (Eq. 1) and biases b (Eq. 2) of the hidden layer were first randomly defined.

x ¼
x11 x12 . . . x1m

x21 x22 . . . x2m

..

. ..
. . .

. ..
.

xn1 xn2 . . . xnm

2
6664

3
7775 ¼

x1

x2

..

.

xn

2
6664

3
7775; xi ¼ xi1 xi2 . . . xim½ � ð1Þ

b ¼
b1
b2
..
.

bn

2
6664

3
7775 ð2Þ

where xij is the weight between neuron i of the hidden layer and neuron j of the input
layer, i being the sub index of the row and j the sub index of the column, bi is the bias
of the i-th neuron of the hidden layer, and n corresponds to the number of neurons in
the hidden layer.

With X (Eq. 3) being the training data where each column is a training record and
each row is the entry to the i-th neuron of the input layer. This matrix has m rows that
correspond to the input variables of the dataset and k columns that correspond to the
total number of records in the dataset. And with Y (Eq. 4) representing the output
matrix of the training data. In this matrix, each column represents the output of the j-th
record of X where only one row per column must have the value of 1, and l corresponds
to the total number of classes in the dataset. If yij takes the value of 1 then it means that
the i-th classification is correct and if it takes the value of −1 it means that the record
does not belong to the i-th classification.

X ¼
x11 x12 . . . x1k
x21 x22 . . . x2k
..
. ..

. . .
. ..

.

xm1 xm2 . . . xmk

2
6664

3
7775 ¼ x1 x2 . . . xk½ �; xj ¼

x1j
x2j
..
.

xmj

2
6664

3
7775 ð3Þ

Y ¼
y11 y12 . . . y1k
y21 y22 . . . y2k
..
. ..

. . .
. ..

.

yl1 yl2 . . . ylk

2
6664

3
7775; 8 yij 2 1;�1f g ð4Þ

The output matrix of the hidden layer for the training data is H (Eq. 5), where g xð Þ
is the activation function of the hidden layer, which corresponds to the sigmoidal, sine,
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multi-quadratic, Gaussian, hardlim, and triangular functions, among others, all con-
tinuous and infinitely differentiable.

To obtain the weights between the neurons of the hidden layer and the output layer,
Eq. 6 is applied.

where H þ is the Moore-Penrose pseudoinverse of H, YT is the transpose of Y and
bjk represents the weight between neuron j of the hidden layer and neuron k of the
output layer. Finally, the output of the neural network, denoted by T is obtained by
applying Eq. 7.

H ¼
g x1x1 þ b1ð Þ g x2x1 þ b2ð Þ � � � g xnx1 þ bnð Þ
g x1x2 þ b1ð Þ g x2x2 þ b2ð Þ � � � g xnx2 þ bnð Þ

..

. ..
. . .

. ..
.

g x1xk þ b1ð Þ g x2xk þ b2ð Þ . . . g xnxk þ bnð Þ

2
6664

3
7775 ð5Þ

b ¼ H þ YT ð6Þ

T ¼ Hbð ÞT ð7Þ

To find out the accuracy of the SLFN in classification problems, T and Y are
checked, verifying for each column that the highest value of T corresponds to the same
row in Y, that is to say that the classification of each training record (which is described
in Y) is the same one that predicts the neural network. Each hit is counted, and the final
figure divided by the total training records to obtain the accuracy (Eq. 8). In regression
problems, T and Y are also compared and mean square error between the expected
output and the output of the neural network is calculated.

accuracy ¼ hits
k

ð8Þ

3 IHDELS for Training a SLFN Using ELM

3.1 Representation of the Solution

A solution (individual) integrates the input weights and biases of the hidden layer of a
SLFN into a vector where parts of each of them are interspersed so that the data of a
hidden neuron remain together (see Fig. 1). In this figure, the first block
x11;x12; . . .;x1m; b1 corresponds to all the weights between the input neurons and the

Fig. 1. Representation of the solution
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first neuron of the hidden layer and includes their bias. The same is then done for the
second neuron of the hidden layer, and so on.

The theory of the ELM indicates that the input weights and biases are generated
randomly in the range [−1, 1]. Therefore, each of the values of this vector must remain
in this range.

The quality of a solution is evaluated according to the accuracy obtained during the
training process. If two solutions obtain the same accuracy, which of the two is better is
decided based on the norm two of the output weights b, which was used in [9].
Therefore, if there is a tie in accuracy for two solutions, the one with the lowest norm
( bk k) is selected as the best solution.

3.2 Adaptations Made to IHDELS

The iterative hybridization of differential evolution with local search and restarts
(IHDELS) is an algorithm specialized to solve high dimensional problems. It uses as an
exploratory method an algorithm based on differential evolution (DE) and for
exploitation it implements two local search (LS) methods that are used according to
their performance [7]. In each iteration, IHDELS executes the Self-adaptive Differential
Evolution (SaDE) algorithm together with a LS method, with the objective of com-
plementing them. The LS is selected according to the quality of the individuals pro-
duced in its last execution. When executing SaDE or a LS, their adaptive parameters
start with the values of their last execution. When no significant improvement is
detected, a restart mechanism is applied.

IHDELS (see Algorithm 1) starts from a random population and an initial individual
that is constructed with the upper and lower constraints of each variable of the problem.
Selection of the LS is made as follows: initially all the LS are executed as indicated in
line 5 of Algorithm 1 and the improvement rate is stored for each one (Eq. 9).

improvementRateBL ¼ previousEvaluation� newEvaluation
previousEvaluation

ð9Þ

In each iteration, the LS with the highest improvement rate is applied. IHDELS
keeps a record of the best solution found, named best. Meanwhile, a solution called
currentBest is used to calculate the improvement rate. This corresponds to the best
individual found on the current iteration. IHDELS defines a threshold that makes it
possible to identify when the improvement rate has been significant. For this to happen,
the improvement rate must be greater than or equal to the threshold value [7].
The IHDELS restart mechanism affects the adaptive parameters of LS or its population
in the following cases [7]: (i) On applying SaDE and the LS during a number of
restarts in the immediately preceding iterations and improvement rate has not been
sufficiently significant, then: (1) the currentBest individual is altered as indicated by
line 25 of Algorithm 1 where rand �0:05; 0:05ð Þ returns a random number between
�0:05; 0:05½ �, (2) the population is reset randomly, and (3) the adaptive parameters of
the LS return to their original value. (ii) If after applying SaDE there is no improve-
ment, the population is restarted, and (iii) If in the execution of the LS nothing
improves, its adaptive parameters are restarted.
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The local searches used were MTS-LS1 and Hill Climbing (HC); MTS-LS1 as a
local search takes a currentBest as its best individual found and starts the optimization
from the population indicated. As HC is not a population-based method, it divides the
evaluations that have been assigned between each of the individuals of the population
and optimizes them separately. Finally, it selects the best individual between the
optimized population and the given currentBest and returns it.

The L-BFGS-B algorithm, original LS method of IHDELS, was replaced by HC
because it is a Quasi-Newton algorithm based on the gradient method. Calculation of
this consumes high quantities of evaluations of the objective function in a short time,
making it difficult to take full advantage of the algorithm in the context of ELM.

HC is a local search algorithm related to the gradient rise without directly using the
gradient, instead, it evaluate individuals around a current individual, the individual with
the best fitness replaces the current one [10]. Calculation of the neighbors consists of
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making small changes to the variables of the current individual. In this case, the limited
uniform convolution method was used, which makes changes on a variable if a
probability is met [10].

MTS-LS1 is also a local search algorithm. This begin from a search range for each
variable of the individuals of the population, which is initially calculated according to
the restrictions of the upper and lower limits of the variables, performs a process of
exploitation by altering the variables of each individual in different percentages,
seeking to obtain a better solution.

The global search algorithm implemented by IHDELS is SaDE. This is an algo-
rithm that generally behaves as a differential evolution, but that uses two mutation
strategies and a probability p to select one of these; adaptation of this algorithm lies in
the value of p that is updated according to the number of individuals that have been
generated with a mutation strategy and have successfully entered the next generation
and the number of individuals that have not entered the next generation.

SaDE applies a new scale factor to each individual generated and this value is
obtained by making F ¼ N 0:5; 0:3ð Þ, where N 0:5; 0:3ð Þ is a normal distribution with
mean 0.5 and standard deviation 0.3 [11]. The crossover rate is calculated for each
solution, obtaining this value from a normal distribution and SaDE self-adapts the
mean value at the end of each learning period.

4 Experiments

4.1 Datasets and Preprocessing

The datasets used were extracted from the official repository of the University of
California at Irvine (UCI). Selection of the classification datasets was made considering
those presented in [1]. Each dataset was divided into two files, one for training and
another for testing. The division was made following the relationship presented in [1],
which is approximately 70% of the instances for training and the remaining 30% for
testing. The characteristics of the 38 datasets used are expressed in Table 1. For each
dataset, its name, number of features or variables, and number of classes are shown.
Variety can be seen in number of features and classes.

The datasets were processed in the following way: (1) features not necessary for the
learning of the neural network were eliminated such as instance number or instance id,
(2) categorical values were defined as an integer number, and (3) continuous features
(variables) were normalized between the values [−1, 1].
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4.2 Configuration of the Experiment

The IHDELS and M-ELM algorithms were implemented in JAVA in the JMetal
framework [12], which is specialized in mono and multi-objective meta-heuristic
algorithms. The source code and datasets are available at https://goo.gl/GX8pXF.
Execution of the meta-heuristic algorithms was performed on computers with the
following characteristics: AMD A-10 at 3.2 GHz, 8 GB RAM and Win 10.

Three thousand evaluations of the objective function (Evaluations of Fitness
Objectives, EFOs) were carried out, bearing in mind that an ELM was conceived to
perform the training of a SLFN in less time than the back-propagation algorithm. The
results were obtained for the cross validation (CV) and retention (training/testing or TT)
validation models. Thirty runs were performed for each dataset using an algorithm and a
validation model. Thirty represents the minimum number for calculating an average with
high convergence at the central point. Each run was performed with a different seed.

The IHDELS parameters were configured as indicated in Table 2, where TT refers
to the parameter values used with the retention method (Training/Testing), while CV
represents cross-validation. These values were obtained from a tuning process of
parameters carried out using covering arrays.

The parameters used in M-ELM were populationSize = 50, evaluations = 3000 and
numberLocalOptimizations = 70. This configuration was used for both types of vali-
dation and these values were taken from [1]. It was further defined that: (i) Problems
evaluated with cross-validation would have ten folders (10-folders cross-validation)
and for that reason the evaluation of a model implies the use of 10 EFOs, (ii) The ELM
uses 50 neurons in the hidden layer for training the neural network this number was
chosen taking the original value from [1], without considering the dataset, and (iii) The
activation function of the neurons in the hidden layer is the sigmoidal one.

Table 1. Description of the datasets

Name #Features #Classes Name #Features #Classes
Banknote 4 2 Knowledge 5 4
Blood 4 2 Leaf 14 36
Car 6 4 Letter 16 26

Cardiotocography 21 10 Libras 90 15
Chart 60 6 Optdigits 64 10

ClimateSimulation 18 2 Pen 16 10
Connectionist 60 2 Planning 12 2
Contraceptive 9 3 QSARBiodegradation 41 2
Dermatology 34 6 Seeds 7 3
Diabetes 8 2 Shuttle 9 7
Ecoli 7 8 SPECTF 44 2

Fertility 9 2 Vertebral(2C) 6 2
Glass 9 6 Vertebral(3C) 6 3

Haberman 3 2 Wdbc 30 2
Hayes 5 3 Wilt 5 2
Hill 100 2 Wine 13 3
Indian 10 2 WineRed 11 6

Ionosphere 34 2 Yeast 8 10
Iris 4 3 Zoo 16 7
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4.3 Results

The results present the average of the thirty executions carried out and their respective
standard deviation. Comparison was also made with the DECC-G [13] and MOS [14]
algorithms, meta-heuristic algorithms that had performed well in the 2015 IEEE CEC
competition in optimization of high dimensionality problems. Comparison was further
made with a random walk (RW) that executes the same number of EFOs, as a baseline.
Table 3 presents the results obtained with the validation model of the retention
(Training/Testing) method and Table 4 with the cross-validation model. The algorithm
with the best result for each dataset is presented in bold.

Table 2. Parameters used in IHDELS according to the validation model

Parameter Classification
TT CV

(1) Number of evaluations for DE in IHDELS (FE DE) 90 60
(2) Number of evaluations for each BL (FE LS) 60 45
(3) Lower limit of search domain (a) −0.60 −0.20
(4) Upper limit of search domain (b) 0.60 0.20
(5) Number of restarts 8 12
(6) Threshold value 0.40 0.01
(7) SaDE crossover rate 1 0.50 0.50
(8) SaDE scale factor 1 0.95 0.50
(9) SaDE crossover rate 2 0.70 0.20
(10) SaDE scale factor 2 0.95 0.70
(11) Probability of executing Hill Climbing 0.20 0.50
(12) Hill Climbing noise radius 0.6 0.1
(13) Population size 10 10

Table 3. Results with the validation model of the retention method (TT)

Dataset DECC-G MOS IHDELS M-ELM RW

Banknote 0.9999 ± 0.0004 0.9998 ± 0.0007 1.0000 – 0.0000 0.9999 ± 0.0006 0.9998 ± 0.0007

Blood 0.7540 – 0.0094 0.7528 ± 0.0097 0.7508 ± 0.0092 0.7491 ± 0.0068 0.7527 ± 0.0106

Car 0.8398 ± 0.0188 0.8466 – 0.0250 0.8465 ± 0.0218 0.8411 ± 0.0224 0.8399 ± 0.0227

Cardiotocography 0.7678 ± 0.0100 0.7623 ± 0.0112 0.7742 – 0.0094 0.7675 ± 0.0092 0.7671 ± 0.0110

Chart 0.9063 ± 0.0193 0.9170 – 0.0190 0.9170 ± 0.0233 0.9078 ± 0.0218 0.9092 ± 0.0228

Climatesimulation 0.8491 ± 0.0033 0.8472 ± 0.0012 0.8534 – 0.0090 0.8494 ± 0.0039 0.8515 ± 0.0053

Connectionist 0.7629 – 0.0465 0.7600 ± 0.0461 0.7567 ± 0.0395 0.7529 ± 0.0501 0.7505 ± 0.0431

Contraceptive 0.5276 ± 0.0156 0.5307 ± 0.0126 0.5345 – 0.0123 0.5298 ± 0.0134 0.527 ± 0.01350

Dermatology 0.9710 – 0.0121 0.9672 ± 0.0144 0.9648 ± 0.0110 0.9678 ± 0.0106 0.9678 ± 0.0108

Diabetes 0.7578 – 0.0128 0.7535 ± 0.0149 0.7531 ± 0.0128 0.7569 ± 0.0165 0.7509 ± 0.0119

Ecoli 0.8568 – 0.0152 0.8494 ± 0.0167 0.8568 ± 0.0169 0.8470 ± 0.0138 0.8488 ± 0.0126

Fertility 0.7111 – 0.0395 0.6722 ± 0.0626 0.7033 ± 0.0697 0.6556 ± 0.0717 0.6644 ± 0.0655

Glass 0.5224 ± 0.0422 0.531 – 0.04090 0.5248 ± 0.0503 0.5229 ± 0.0542 0.5252 ± 0.0422

Haberman 0.7036 ± 0.0172 0.7101 – 0.0138 0.7026 ± 0.0200 0.7098 ± 0.0140 0.7029 ± 0.0146

(continued)
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4.4 Statistical Analysis of the Results

Statistical analysis of the results was made using Friedman and Wilcoxon nonpara-
metric tests with the aim of determining which algorithm generally gives the best
performance. These tests were carried out using the KEEL software available at www.
keel.es.

Table 3. (continued)

Dataset DECC-G MOS IHDELS M-ELM RW

Hayes 0.6826 ± 0.0545 0.6712 ± 0.0516 0.6864 – 0.0555 0.6515 ± 0.0646 0.6553 ± 0.0557

Hill 0.6655 ± 0.0146 0.6518 ± 0.0198 0.6587 ± 0.0223 0.6556 ± 0.0200 0.6696 – 0.0263

Indian 0.6444 – 0.0157 0.6439 ± 0.0160 0.6440 ± 0.0166 0.6416 ± 0.0155 0.6432 ± 0.0150

Ionosphere 0.8635 – 0.0264 0.8561 ± 0.0274 0.8493 ± 0.0282 0.8456 ± 0.0286 0.8476 ± 0.0341

Iris 0.8953 ± 0.0406 0.8853 ± 0.0390 0.9127 – 0.0424 0.8716 ± 0.0406 0.8760 ± 0.0312

Knowledge 0.8256 ± 0.0269 0.8298 – 0.0211 0.8236 ± 0.0257 0.8271 ± 0.0234 0.8279 ± 0.0246

Leaf 0.7767 ± 0.0300 0.7758 ± 0.0245 0.7830 – 0.0192 0.7715 ± 0.0215 0.7709 ± 0.0200

Letter 0.7056 – 0.0040 0.6898 ± 0.0057 0.7011 ± 0.0062 0.6879 ± 0.0052 0.6947 ± 0.0057

Libras 0.7777 – 0.0334 0.7713 ± 0.0434 0.7690 ± 0.0340 0.7597 ± 0.0308 0.7690 ± 0.0372

Optdigits 0.8911 ± 0.0117 0.8823 ± 0.0099 0.8965 – 0.0168 0.8868 ± 0.0131 0.8858 ± 0.0132

Pen 0.9305 – 0.0076 0.9163 ± 0.0078 0.9229 ± 0.0084 0.9152 ± 0.0090 0.9191 ± 0.0086

Planning 0.5196 ± 0.0437 0.5174 ± 0.0518 0.5256 ± 0.0440 0.5365 – 0.0445 0.5146 ± 0.0529

QSARBiodegradation 0.8608 ± 0.0125 0.8612 ± 0.0120 0.8622 – 0.0094 0.8564 ± 0.0107 0.8614 ± 0.0111

Seeds 0.9810 – 0.0100 0.9776 ± 0.0126 0.9805 ± 0.0101 0.9757 ± 0.0153 0.9790 ± 0.0164

Shuttle 0.5059 ± 0.2992 0.5626 – 0.2804 0.5040 ± 0.2991 0.5303 ± 0.2399 0.4587 ± 0.2781

SPECTF 0.3213 ± 0.1378 0.3408 – 0.1290 0.3012 ± 0.1209 0.3202 ± 0.1455 0.3250 ± 0.1114

Vertebral2C 0.8597 ± 0.0152 0.8537 ± 0.0204 0.8670 – 0.0197 0.8573 ± 0.0197 0.8537 ± 0.0196

Vertebral3C 0.8133 ± 0.0176 0.8160 ± 0.0227 0.8170 – 0.0159 0.8133 ± 0.0162 0.8147 ± 0.0182

Wdbc 0.9625 ± 0.0078 0.9607 ± 0.0089 0.9632 – 0.0083 0.9621 ± 0.0091 0.9600 ± 0.0108

Wilt 0.9694 ± 0.0016 0.9689 ± 0.0018 0.9700 ± 0.0014 0.9690 ± 0.0017 0.9704 – 0.0016

Wine 0.9761 – 0.0170 0.9550 ± 0.0276 0.9722 ± 0.0203 0.9611 ± 0.0199 0.9617 ± 0.0232

WineRed 0.5891 – 0.0134 0.5846 ± 0.0136 0.5889 ± 0.0110 0.5875 ± 0.0105 0.5866 ± 0.0140

Yeast 0.5792 – 0.0067 0.5764 ± 0.0084 0.5752 ± 0.0081 0.5764 ± 0.0056 0.5782 ± 0.0080

Zoo 0.8796 – 0.0280 0.8527 ± 0.0376 0.8602 ± 0.0372 0.8108 ± 0.0563 0.8065 ± 0.0507

Table 4. Results with the validation model of 10-folds cross-validation (CV)

Dataset DECC-G MOS IHDELS M-ELM RW

Banknote 0.9999 – 0.0004 0.9998 ± 0.0007 0.9999 – 0.0004 0.9998 ± 0.0007 0.9998 ± 0.0007

Blood 0.7504 – 0.0072 0.7468 ± 0.0088 0.7485 ± 0.0091 0.7470 ± 0.0100 0.7484 ± 0.0085

Car 0.8360 ± 0.0215 0.8425 ± 0.0203 0.8366 ± 0.0226 0.8456 – 0.0192 0.8436 ± 0.0204

Cardiotocography 0.7650 ± 0.0086 0.7617 ± 0.0097 0.7678 ± 0.0122 0.7682 – 0.0099 0.7651 ± 0.0117

Chart 0.9117 ± 0.0230 0.9057 ± 0.0252 0.9188 – 0.0188 0.9095 ± 0.0205 0.9160 ± 0.0188

Climatesimulation 0.8492 ± 0.0046 0.8478 ± 0.0016 0.8495 ± 0.0054 0.8489 ± 0.0030 0.8503 – 0.0050

Connectionist 0.7662 – 0.0466 0.7371 ± 0.0480 0.7367 ± 0.0550 0.7429 ± 0.0394 0.7576 ± 0.0486

Contraceptive 0.5275 ± 0.0114 0.5287 ± 0.0148 0.534 – 0.0125 0.5297 ± 0.0135 0.5289 ± 0.0141

Dermatology 0.9615 ± 0.0151 0.9661 ± 0.0123 0.9612 ± 0.0125 0.9693 – 0.0102 0.9642 ± 0.0093

Diabetes 0.7549 ± 0.0116 0.7542 ± 0.0187 0.7543 ± 0.0125 0.7575 – 0.0151 0.7569 ± 0.0154

Ecoli 0.8491 ± 0.0173 0.8521 – 0.0130 0.8488 ± 0.0163 0.8506 ± 0.0103 0.8488 ± 0.0151

Fertility 0.6567 ± 0.0717 0.6433 ± 0.0588 0.6689 – 0.0711 0.6448 ± 0.0720 0.6600 ± 0.0674

(continued)
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The results of the Friedman test are presented in Table 5. This test establishes a
ranking among the algorithms. Here, IHDELS TT is seen to be the winner, followed by
DECC-G TT and thirdly MOS TT. The p-value of the test was equal to 5.80E−6 (less
than 0.05) and a chi-square value with 9 degrees of freedom equal to 40.646, which
makes this ranking statistically significant. Then, as a Friedman post hoc test, the
Wilcoxon test was executed. This test establishes the level of dominance of the results
of one algorithm over another (see Table 6). The black dot indicates that the algorithm
of the row dominates the algorithm of the column and the white dot indicates that the
algorithm of the column dominates that of the row; the empty box indicates that it is not
possible to establish a dominance of one algorithm over another. The results below the
diagonal have a significance of 0.95 and above the diagonal of 0.90. Table 6 shows that
the algorithm with the highest dominance is IHDELS TT, with a significance of 0.95
against all the algorithms except DECC-G TT, which occupies second place in dom-
inance, followed by MOS TT.

Table 4. (continued)

Dataset DECC-G MOS IHDELS M-ELM RW

Glass 0.5490 ± 0.0357 0.5552 – 0.0438 0.5305 ± 0.0439 0.5350 ± 0.0314 0.5419 ± 0.0492

Haberman 0.7265 – 0.0144 0.7261 ± 0.0174 0.7258 ± 0.0170 0.7230 ± 0.0186 0.7222 ± 0.0163

Hayes 0.6780 – 0.0563 0.6561 ± 0.0450 0.6750 ± 0.0646 0.6712 ± 0.0465 0.6583 ± 0.0517

Hill 0.6384 ± 0.0278 0.6383 ± 0.0252 0.6564 – 0.0249 0.6467 ± 0.0218 0.6459 ± 0.0232

Indian 0.6405 ± 0.0178 0.6381 ± 0.0167 0.6386 ± 0.0167 0.6423 – 0.0160 0.6358 ± 0.0183

Ionosphere 0.8493 ± 0.0298 0.8510 – 0.0257 0.8410 ± 0.0265 0.8459 ± 0.0252 0.8413 ± 0.0292

Iris 0.8827 ± 0.0409 0.8920 – 0.0409 0.8920 ± 0.0431 0.8677 ± 0.0510 0.8780 ± 0.0394

Knowledge 0.8461 – 0.0234 0.8314 ± 0.0253 0.8434 ± 0.0236 0.8408 ± 0.0213 0.8380 ± 0.0225

Leaf 0.7745 ± 0.0194 0.7721 ± 0.0257 0.7755 ± 0.0195 0.7800 – 0.0251 0.7779 ± 0.0217

Letter 0.6887 ± 0.0055 0.6859 ± 0.0058 0.6917 – 0.0065 0.6903 ± 0.0042 0.6887 ± 0.0054

Libras 0.7783 ± 0.0323 0.7697 ± 0.0330 0.7843 – 0.0346 0.7667 ± 0.0397 0.7767 ± 0.0355

Optdigits 0.8835 ± 0.0120 0.8767 ± 0.0121 0.8886 – 0.0142 0.8883 ± 0.0142 0.8825 ± 0.0114

Pen 0.9139 ± 0.0110 0.9057 ± 0.0101 0.9153 ± 0.0100 0.9155 – 0.0075 0.9152 ± 0.0102

Planning 0.5306 ± 0.0424 0.5402 – 0.0425 0.5224 ± 0.0443 0.5292 ± 0.0502 0.5242 ± 0.0316

QSARBiodegradation 0.8613 ± 0.0115 0.8608 ± 0.0115 0.8629 – 0.0118 0.8582 ± 0.0095 0.8551 ± 0.0077

Seeds 0.9733 – 0.0109 0.9695 ± 0.0183 0.9705 ± 0.0169 0.9705 ± 0.0195 0.9714 ± 0.0143

Shuttle 0.4123 ± 0.2680 0.5787 – 0.2897 0.5082 ± 0.3006 0.5261 ± 0.2757 0.4390 ± 0.2886

SPECTF 0.3517 – 0.1419 0.3513 ± 0.1584 0.3471 ± 0.1179 0.3267 ± 0.1076 0.3387 ± 0.1193

Vertebral2C 0.8580 ± 0.0202 0.8597 ± 0.0156 0.8603 ± 0.0192 0.8643 ± 0.0193 0.8690 – 0.0209

Vertebral3C 0.8057 ± 0.0180 0.8043 ± 0.0191 0.8037 ± 0.0178 0.8137 – 0.0168 0.8067 ± 0.0194

Wdbc 0.9582 ± 0.0081 0.9618 ± 0.0079 0.9611 ± 0.0110 0.9619 – 0.0082 0.9591 ± 0.0106

Wilt 0.9687 ± 0.0016 0.9687 ± 0.0015 0.9695 ± 0.0013 0.9694 ± 0.0017 0.9699 – 0.0014

Wine 0.9606 ± 0.0230 0.9628 ± 0.0218 0.9611 ± 0.0273 0.9517 ± 0.0217 0.9639 – 0.0244

WineRed 0.5849 ± 0.0115 0.5816 ± 0.0101 0.5851 ± 0.0088 0.5867 – 0.0078 0.5861 ± 0.0091

Yeast 0.5756 ± 0.0068 0.5780 – 0.0073 0.5724 ± 0.0065 0.5734 ± 0.0097 0.5733 ± 0.0080

Zoo 0.7462 ± 0.1568 0.7387 ± 0.1330 0.6763 ± 0.1927 0.7634 – 0.1422 0.7441 ± 0.1213
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4.5 Analysis of Results

From the results, the IHDELS meta-heuristic algorithm with the retention validation
model (Training/Testing) presents a better performance, in optimization of input
weights and biases of the hidden layer of an SLFN using ELM, than the M-ELM
algorithm from the state-of-the-art. In addition, IHDELS TT obtains better results than
other specialized algorithms for the solution of continuous problems of high dimen-
sionality, namely DECC-G and MOS. The best results came from using the retention
method, these being more accurate and reliable. The Friedman and Wilcoxon non-
parametric statistical test supports these conclusions with 95% confidence.

5 Conclusions and Future Work

The present research work adapted the IHDELS algorithm to the problem of training an
SLFN using ELM, considering that this problem is continuous and of high dimen-
sionality. The IHDELS algorithm originally had two local searches, MTS-LS1 and
L-BFGS-B, but the second was changed for Hill Climbing since it used gradient
information and consumed too many EFOs.

Experimentation was conducted on classification problems recognized by the
academic and scientific community, using a specific number of evaluations of the
objective function that maintains the main concept of an ELM, which is to carry out the

Table 5. Results of the Friedman test

Algorithm Ranking Algorithm Ranking

IHDELS TT 3.5526 (1) Random TT 5.9605 (6)
DECC-G TT 3.8026 (2) DECC-G CV 6.0000 (7)
MOS TT 5.3421 (3) Random CV 6.1974 (8)
IHDELS CV 5.5395 (4) M-ELM TT 6.3289 (9)
M-ELM CV 5.5658 (5) MOS CV 6.7105 (10)

Table 6. Results of the Wilcoxon test

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

DECC-G TT (1) - • • • • • • • •

IHDELS TT (2) - • • • • • • • •

MOS TT (3) ○ ○ - • •

M-ELM TT (4) ○ ○ ○ -
RW TT (5) ○ ○ ○ -
DECC-G CV (6) ○ ○ -
IHDELS CV (7) ○ ○ -
MOS CV (8) ○ -
M-ELM (9) ○ ○ -
RW CV (10) ○ ○ -
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training of the neural network in a shorter time than doing so using back-propagation
algorithm. It was determined that IHDELS TT (Training/Testing) presents better results
than the other algorithms with which it was compared: M-ELM, DECC-G, MOS and
RW except against DECC-G TT. These results are supported by the Friedman and
Wilcoxon nonparametric statistical tests. In addition, the results show that it is better to
use the retention model (training/testing) than the cross-validation model, showing that
the algorithms obtain better results when they can carry out more EFOs.

The working group anticipates adapting the algorithms that presented the best
results in the 2017 IEEE CEC competition to the problem of training a SLFN using
ELM. Additionally, it is hoped to carry out the experiments by optimizing the number
of neurons in the hidden layer together with the values of the input weights and biases
for each dataset. Finally, it is expected to evaluate other local search methods in
IHDELS.

References

1. Zhang, Y., Wu, J., Cai, Z., Zhang, P., Chen, L.: Memetic extreme learning machine. Pattern
Recognit. 58, 135–148 (2016)

2. Matias, T., Souza, F., Araújo, R., Antunes, C.H.: Learning of a single-hidden layer
feedforward neural network using an optimized extreme learning machine. Neurocomputing
129, 428–436 (2014)

3. Zhu, Q.-Y., Qin, A.K., Suganthan, P.N., Huang, G.-B.: Evolutionary extreme learning
machine. Pattern Recognit. 38(10), 1759–1763 (2005)

4. Huang, G., Huang, G.B., Song, S., You, K.: Trends in extreme learning machines: a review.
Neural Netw. 61, 32–48 (2015)

5. Cao, J., Lin, Z., Huang, G.B.: Self-adaptive evolutionary extreme learning machine. Neural
Process. Lett. 36(3), 285–305 (2012)

6. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans.
Evol. Comput. 1(1), 67–82 (1997)

7. Molina, D., Herrera, F.: Hibridación iterativa de DE con búsqueda local con reinicio para
problemas de alta dimensionalidad. In: XVI Conferencia CAEPIA, pp. 251–260 (2015)

8. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications.
Neurocomputing 70(1–3), 489–501 (2006)

9. Kong, H.: Evolving extreme learning machine paradigm with adaptive operator selection and
parameter control. Int. J. Uncertainty, Fuzziness Knowl.-Base Syst. 21(December), 143–154
(2013)

10. Luke, S.: Essentials of Metaheuristics (2013)
11. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical

optimization. In: 2005 IEEE Congress on Evolutionary Computation, pp. 1785–1791 (2005)
12. Nebro, A.J., Durillo, J.J.: jMetal: a Java framework for multi-objective optimization. Adv.

Eng. Softw. 42, 760–771 (2011)
13. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative

coevolution. Inf. Sci. (Ny) 178(15), 2985–2999 (2008)
14. LaTorre, A., Muelas, S., Peña, J.M.: Multiple offspring sampling in large scale global

optimization. In: IEEE World Congress on Computational Intelligence, WCCI 2012 (2012)

50 D. Sotelo et al.



Information-Theoretic Feature Selection
Using High-Order Interactions

Mateusz Pawluk1(B), Pawe�l Teisseyre2(B), and Jan Mielniczuk1,2

1 Faculty of Mathematics and Information Science,
Warsaw University of Technology, Warsaw, Poland

m.pawluk@mini.pw.edu.pl
2 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

{teisseyrep,miel}@ipipan.waw.pl

Abstract. Feature selection is one of the major challenges in machine
learning. In this paper, we focus on mutual information based methods,
which attracted a significant attention in recent years. A clear limita-
tion of the most existing methods is that they usually take into account
only low-order interactions between features (up to 3rd order). We pro-
pose a novel criterion which takes into account both 3-way and 4-way
interactions and can be naturally extended to the case of higher order
terms. The basic component of our criterion is interaction information
which is a measure of interaction strength derived from information the-
ory. We show that our method is able to find interactions which remain
undetected when using standard methods. We prove some theoretical
properties of the introduced criterion and interaction information.

1 Introduction

Feature selection is one of the major problems in machine learning [1–3]. It is a
crucial challenge for several reasons. First it improves the understandability of
the considered model and allows to discover the relationship between features
and the class (target) variable. Secondly, it helps to devise approaches with
better generalization and larger predictive power [4]. Finally, it allows to reduce
the computational cost of fitting the model.

In this paper, we focus on mutual information (MI) based feature selection.
This approach has several important advantages. First MI, unlike some classical
measures (e.g. Pearson correlation), is able to capture both linear and non-
linear dependencies among random variables. Secondly MI based criteria do not
depend on any particular model which allows to find all features associated with
the class variable, not only those which are captured by an employed model.
This is particularly important in the domains where feature selection itself is
the main goal of the analysis, e.g. in human genetics where finding mutations
of genes influencing the disease is a crucial problem. Moreover, some advanced
MI based criteria are able to discover interactions between features as well as
to take redundancy between features into account. Finally information-theoretic
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approach can be used for both classification and regression tasks, i.e. nominal
and quantitative class variable as well as for any type of the features. In this
work we focus on classification problem, but the method can be easily extended
to regression.

In recent years many algorithms based on mutual information have been
proposed. A clear limitation of the existing methods is that they usually take
into account only low-order interactions (up to 3rd order). This can be a seri-
ous drawback when some complex dependencies exist in our data. For example
recent studies in genetics indicate that high-order interactions between genes
may contribute to many complex traits [5] and it is crucial to identify them in
order to efficiently predict the trait. Taylor et al. [5] give two examples of high-
order interactions: one example of three-locus interactions that influence body
weight in a cross of two chicken lines and another that showed a pair of genetic
interactions involving five or more loci that determine colony morphology in a
cross of two yeast strains. We propose a novel criterion called Interaction Infor-
mation Feature Selection (IIFS) that takes into account both 3-way and 4-way
interactions and can be possibly extended to the case of higher order terms. The
basic component of our contribution is interaction information, which is a non-
parametric measure of interaction strength derived from information theory. Our
method is a generalization of Conditional Infomax Feature Extraction (CIFE)
criterion [6] whose limitation is that it only considers 3-way interaction terms.
We show that our method is able to find interactions which remain undetected
when using standard approaches. We also prove some theoretical properties of 4-
way interaction information and of the novel criterion. Moreover we experiment
with two different methods of multivariate entropy estimation: plug-in estimator
based on data discretization and knn-based Kozachenko-Leonenko estimator [7].

The paper is structured as follows. In Sect. 2 we recall the definition of interac-
tion information and prove some new theoretical properties of 4-way interaction
information. In Sect. 3 we define the problem and review the existing methods.
In Sect. 4 we present our method and discuss its theoretical properties, Sect. 5
contains the results of numerical experiments.

2 Interaction Information

First we define basic quantities used in Information Theory. We consider the
discrete class variable Y and features X1, . . . , Xp, which can be either continuous
or discrete. For sake of simplicity we write definitions only for discrete variables.
We first recall the definition of the entropy for discrete class variable:

H(Y ) = −
∑

y

P (Y = y) log P (Y = y). (1)

Entropy quantifies the uncertainty of observing random values of Y . If large mass
of the distribution is concentrated on one particular value of Y then the entropy is
low. If all values are equally likely then H(Y ) is maximal. Let S = (X1, . . . , Xm)
be a subset of the original feature set of size m = 1, . . . , p. The entropy of S
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is defined analogously to (1), with a difference that multivariate probability is
used instead of univariate probability. The conditional entropy of S given class
variable Y can be written as

H(S|Y ) =
∑

y

P (Y = y)H(S|Y = y). (2)

The joint mutual information between S and class variable Y is

I(S, Y ) = H(S) − H(S|Y ). (3)

This can be interpreted as the amount of uncertainty in S which is removed when
Y is known which is consistent with the intuitive meaning of mutual information
as the amount of information that one variable provides about another. Moreover
the conditional mutual information between S and Y given variable Z is defined
as

I(S, Y |Z) = H(S|Z) − H(S|Y,Z). (4)

We recall a definition of m-way interaction information (II) [8,9]

II(S) = II(X1, . . . , Xm) = −
∑

T⊆S

(−1)|S|−|T |H(T ), (5)

which generalizes the 3-way interaction information proposed in [10]. For m = 2,
interaction information reduces to mutual information. The definition of inter-
action information is identical to that of multivariate mutual information I(S)
[10] except for a change in sign in the case of an odd number of variables, i.e.
II(S) = (−1)|S|I(S). II can be understood as the amount of information com-
mon to all variables (or set of variables), but that is not present in any subset of
these variables. Interestingly, m-way interaction information can be also defined
using recursive formula

II(X1, . . . , Xm) = II(X1, . . . , Xm−1|Xm) − II(X1, . . . , Xm−1), (6)

where II(X1, . . . , Xm−1|Xm) =
∑

x P (Xm = x)II(X1, . . . , Xm−1|Xm = x). The
next formula (also known as Möbius representation) [11–14] shows the relation-
ship between II and joint mutual information I(S, Y ) which will be useful in
the context of the proposed feature selection method

I(S, Y ) = I((X1, . . . , Xm), Y ) =
m∑

k=1

∑

T⊆S:|T |=k

II(T ∪ Y ). (7)

To better grasp the concept of II, let us discuss in more detail 3-way and 4-way
interactions. It follows from Möbius representation (7) that

II(X1,X2, Y ) = I((X1,X2), Y ) − I(X1, Y ) − I(X2, Y ), (8)

which indicates that interaction information can be interpreted as a part of the
mutual information of (X1,X2) and Y which is due solely to interaction between
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X1 and X2 in predicting Y i.e. the part of I((X1,X2), Y ) which remains after
subtraction of individual informations between Y and X1 and Y and X2. In other
words, II is obtained by removing the main effects from the term describing
the overall dependence between Y and the pair (X1,X2). Here let us mention
that 3-way interaction information is a commonly used measure for detecting
interactions between genes in genome-wide case- control studies [15,16]. For 4-
way interaction we have from (7) and (8) that

II(X1,X2,X3, Y ) = I((X1,X2,X3), Y )
− I((X1,X2), Y ) − I((X1,X3), Y ) − I((X2,X3), Y )
+ I(X1, Y ) + I(X2, Y ) + I(X3, Y ). (9)

Observe that both terms I((X1,X2), Y ) and I((X1,X3), Y ) in (9) contain
I(X1, Y ) as summands (cf. (8)) and as a result I(X1, Y ) is subtracted twice.
To account for it we add I(X1, Y ) in the last line of (9). The remaining pairs
are treated analogously. The simplest examples of 3-way and 4-way interactions
are XOR problems. In XOR Y = 1 when the number of input variables taking
value 1 is odd. It is easy to check that input binary variables are mutually inde-
pendent and marginally independent from a class variable. For 3-dimensional
case we have I(X1, Y ) = I(X2, Y ) = 0 and II(X1,X2, Y ) = I((X1,X2), Y ) =
H(Y ) − H(Y |X1,X2) = H(Y ) = log(2). For 4-dimensional case all terms,
except the first one, are zero. i.e. II(X1,X2,X3, Y ) = I((X1,X2,X3), Y ) =
H(Y ) − H(Y |X1,X2,X3) = H(Y ) = log(2).

Some properties of 4-way Interaction Information which has not been dis-
cussed in the literature are discussed below. For the sake of clarity we assume
that all variables are discrete and let pijkl = P (X1 = xi,X2 = xj ,X3 =
xk, Y = yl), where P denotes the distribution of (X1,X2,X3, Y ). Moreover,
KL(P ||Q) stands for Kullback-Leibler divergence between P and Q, defined as
KL(P ||Q) =

∑
i,j,k pijk log(pijk/qijk).

Theorem 1. We have (i) II(X1,X2,X3, Y ) = KL(P ||PK), where PK corre-
sponds to mass function pK defined as

pKijkl =

∏
S:|S|=3 pS

∏
S:|S|=1 pS∏

S:|S|=2 pS
=

pijkpijlpjklpiklpipjpkpl
pijpikpilpjkpjlpkl

. (10)

(ii) If X1 ⊥ X2|W , where W is any subset (including ∅) of {X3, Y } then
II(X1,X2,X3, Y ) = 0.
(iii) Let η =

∑
i,j,k,l p

K
ijkl. If η ≤ 1 and II(X1,X2,X3, Y ) = 0 then P = PK .

Proof. (i) follows from (5) and definition of Kullback-Leibler divergence. (ii)
is a consequence of (10) and assumptions. In order to prove (iii) note that
KL(P ||Q) = 0 implies P = Q not only in the case when Q is probability
distribution but also in the case when total mass of Q does not exceed 1. This
yields the result when applied to Q = PK .

Observe that PK is not necessarily probability distribution. Condition η ≤ 1 is
sufficient condition which ensures that P = PK when II = 0. PK is generaliza-
tion of Kirkwood approximation [17] to four-dimensional case.
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3 Problem Formulation and Previous Work

In this work we focus on feature selection based on mutual information (MI).
MI-based feature selection is concerned with identifying a fixed-size subset
S ⊂ {1, . . . , p} of the original feature set that maximizes the joint mutual infor-
mation between S and class variable Y . Finding an optimal feature set is usu-
ally infeasible because the search space grows exponentially with the number of
features. As a result various greedy algorithms have been developed including
forward selection, backward elimination and genetic algorithms. Today sequen-
tial forward selection is the most commonly adopted solution. Forward selection
algorithms start from an empty set of features and add, in each step, the feature
that jointly, i.e. together with already selected features, achieves the maximum
joint mutual information with the class. Formally, assume that S is a set of
already chosen features, Sc is its complement and Xk ∈ Sc is a candidate fea-
ture. The score for feature Xk is

J(Xk) = I(S ∪ Xk, Y ) − I(S, Y ). (11)

Obviously the second term in (11) does not depend on Xk and it can be omitted,
however it is more convenient to use this form. In each step we add a feature
that maximizes J(Xk). Criterion (11) is equivalent to

J(Xk) = I(Xk, Y |S), (12)

see [18] for the proof. We also refer to [19] who proposed a fast feature selec-
tion method based on conditional mutual information and min-max approach.
Observe that (12) indicates that we select a feature that achieves the maximum
association with the class given the already chosen features. Criterion (11) (or
equivalently (12)) is appealing and attracted a significant attention. However
in practice the estimation of joint mutual information is problematic even for
small set S. This makes a direct application of (11) infeasible. A rich body of
work in the MI-based feature selection literature approaches this difficulty by
approximating the high-dimensional joint MI with low-dimensional MI terms.
These approximations may by accurate provided some additional conditions on
data distribution are satisfied. A comprehensive review of the existing methods
can be found in [18], here we review some representative methods. One of the
most popular methods is Mutual Information Feature Selection (MIFS) proposed
in [20]

JMIFS(Xk) = I(Xk, Y ) −
∑

j∈S

I(Xj ,Xk). (13)

This includes the I(Xk, Y ) term to ensure feature relevance, but introduces
a penalty to enforce low correlations with features already selected in S. The
similar idea is used in Minimum-Redundancy Maximum-Relevance (MRMR)
criterion [21]

JMRMR(Xk) = I(Xk, Y ) − 1
|S|

∑

j∈S

I(Xj ,Xk). (14)
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with the difference that the second term is averaged over features in S. Both
MIFS and MRMR criteria focus on reducing redundancy, however they do not
take into account interactions between features. Brown et al. [18] have shown
that if the selected features from S are independent and class-conditionally inde-
pendent given any unselected feature Xk then (11) reduces to so-called CIFE
criterion [6]

JCIFE(Xk) = I(Xk, Y ) +
∑

j∈S

[I(Xj ,Xk|Y ) − I(Xj ,Xk)]. (15)

In view of (8), the second term in (15) is equal
∑

j∈S II(Xj ,Xk, Y ), so it is
seen that CIFE is able to detect 3-way interactions. Yang and Moody [22] have
proposed using Joint Mutual Information (JMI)

JJMI(Xk) =
∑

j∈S

I((Xj ,Xk), Y ), (16)

which is equal up to a constant to

JJMI(Xk) = |S|I(Xk, Y ) +
∑

j∈S

[I(Xj ,Xk|Y ) − I(Xj ,Xk)]. (17)

JMI is a similar to CIFE, with the difference that in JMI the marginal relevance
term plays more important role than the overall interaction term.

4 Feature Selection Based on Interaction Information

In this Section we describe a proposed approach which can be seen as a gener-
alization of CIFE. Our method considers not only 3-way interactions but also
4-way interactions.

4.1 Proposed Criterion: IIFS

In our method we make use of Möbius representation. Recall that S is a set of
already selected features of size m and Xk is a candidate feature. First observe
that it follows from Möbius representation (7) that

J(Xk) = I(S ∪ Xk, Y ) − I(S, Y ) =
m∑

k=0

∑

T⊂S:|T |=k

II(T ∪ Xk ∪ Y ). (18)

In the proposed method IIFS (Interaction Information Feature Selection ) we
define a score

JIIFS(Xk) = I(Xk, Y ) +
∑

j∈S

II(Xj ,Xk, Y ) +
∑

i,j∈S:i<j

II(Xi,Xj ,Xk, Y ), (19)

which is a third order approximation of (18). The first term in (19) takes into
account marginal relevance of the candidate feature whereas the second and the
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third terms describe the 3 and 4-way interactions, respectively. Note that IIFS
can be seen as an extended version of CIFE which is a second order approxima-
tion of J(Xk), namely

JIIFS(Xk) = JCIFE(Xk) +
∑

i,j∈S:i<j

II(Xi,Xj ,Xk, Y ). (20)

It is possible to consider higher order terms in (18), however it would increase
the computational cost and make the estimation even more difficult. Below we
state some properties of the introduced criteria.

Theorem 2. The following properties hold.

(i) Assume that Xk ⊥ Y . Then

JCIFE(Xk) =
∑

j∈S

I(Xk, Y |Xj). (21)

(ii) Assume that Xk ⊥ Y and Xk ⊥ Y |Xj for any Xj ∈ S. Then

JIIFS(Xk) =
∑

i,j∈S:i<j

I(Xk, Y |Xi,Xj). (22)

(iii) Assume that Xi ⊥ Xj |Xk and Xi ⊥ Xj |Xk, Y , for some Xi,Xj ∈ S. Then
II(Xi,Xj ,Xk, Y ) does not depend on Xk.

(iv) If |S| = 2 then argmaxXk∈ScJIIFS(Xk) = argmaxXk∈ScJ(Xk).

Proof. To prove (i) observe that property (6) implies

II(Xj ,Xk, Y ) = I(Xk, Y |Xj) − I(Xk, Y ). (23)

Under assumption Xk ⊥ Y we have I(Xk, Y ) = 0 which, together with (23) and
(15) yields (21). Let us now prove (ii). It follows from (6) that

II(Xi,Xj ,Xk, Y ) = II(Xj ,Xk, Y |Xi) − II(Xj ,Xk, Y ) (24)

and
II(Xj ,Xk, Y |Xi) = I(Xk, Y |Xj ,Xi) − I(Xk, Y |Xi). (25)

Under assumption (ii) we have that I(Xk, Y ) = 0, II(Xj ,Xk, Y ) = 0 and
I(Xk, Y |Xi) = 0 and thus II(Xi,Xj ,Xk, Y ) = I(Xk, Y |Xj ,Xi) which yields
(22). Let us now prove (iii). Using (6) we can write

II(Xi,Xj ,Xk, Y ) = II(Xi,Xj , Y |Xk) − II(Xi,Xj , Y )
= I(Xi,Xj |Xk, Y ) − I(Xi,Xj |Xk) − II(Xi,Xj , Y ). (26)

Assumptions of (iii) implies that I(Xi,Xj |Xk, Y ) = I(Xi,Xj |Xk) = 0, which
yields the assertion in view of (26). Finally note that (iv) follows from the fact
that for |S| = 2 Eqs. (18) and (19) are equivalent. i.e. Möbius representation
gives an exact value of J(Xk).
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Let us briefly comment the above statements. Items (i) and (ii) of Theorem 2
indicate that under additional assumptions CIFE and IIFS reduce to simpler and
more intuitive forms. Using the forms given in (i) and (ii) one may easily give an
example showing the advantage of IIFS over CIFE. Indeed, under assumption (ii)
we have JCIFE(Xk) = 0 and we may conclude that JIIFS(Xk) > 0 if there exists
a pair Xi,Xj ∈ S such that I(Xk, Y |Xi,Xj) > 0. In this case IIFS recognizes
Xk as a relevant whereas CIFE treats Xk as a spurious feature. In addition
[18] has showed that if assumptions of (iii) hold for any k ∈ Sc, maximization
of JCIFE(Xk) is equivalent to maximization of J(Xk). In (iii) we confirm that
indeed in this case the 4-way interaction term can be omitted.

5 Experiments

The aim of the experiments is to compare the performance of the proposed
method IIFS with other popular methods discussed in Sect. 3: MIFS, MRMR,
JMI and CIFE.

5.1 Artificial Data

The main advantage of the experiments on artificial data is that we can directly
investigate which method is able to detect the particular types of interactions. We
consider two simulation models, including 3-way and 4-way interactions, respec-
tively. To make a task more challenging we assume in both cases that features
are continuous. To assess the quality of the methods we introduce the following
measure. Let t be a set of relevant features influencing Y and j1, j2, . . . , jp be
features sequentially selected by the given method. The selection rate (SR) is
defined as

SR =
|{j1, . . . , j|t|} ∩ t|

|t| , (27)

i.e. SR is a fraction of relevant features among first |t| selected. For example if we
have two relevant features X1,X2 then t = {1, 2}. When the method produces a
list {1, 2, 5, . . .} then SR = 1. On the other hand if the method gives {1, 5, 2, . . .}
then SR = 0.5, as one spurious feature X5 is ranked higher than the relevant
feature X2. In the following we describe two simulation models.

Simulation Model 1 (3-Way Interaction Model). We consider 50 uniformly
distributed features: X1 ∼ U [0, 3], Xj ∼ U [0, 2], for j = 2, . . . , 50. Only two first
features X1 and X2 are relevant, i.e. class variable Y depends only on X1 and
X2, the remaining features are spurious. Table 1 shows the joint distribution of
X1,X2, Y . This model is an extension of 2-dimensional XOR; note that Y = 1
when X1 ∈ A,X2 ∈ B or X1 ∈ B,X2 ∈ A. It is easy to verify that for this model
we have: I(X1, Y ) > 0, I(Xj , Y ) = 0, for j = 2, . . . , 50 and II(X1,X2, Y ) > 0,
thus we have one main effect corresponding to X1 and one 3-way interaction.



Information-Theoretic Feature Selection Using High-Order Interactions 59

Simulation Model 2 (4-Way Interaction Model). We consider 50 uni-
formly distributed features: X1,X2 ∼ U [0, 3], Xj ∼ U [0, 2], for j = 3, . . . , 50.
Class variable Y depends on X1,X2,X3 whereas the remaining features are
spurious. Table 2 shows the joint distribution of X1,X2, Y . This model is an
extension of 3-dimensional XOR. It is easy to verify that for this model we have:
I(X1, Y ), I(X2, Y ) > 0, I(Xj , Y ) = 0, for j = 3, . . . , 50 and II(X1,X2,X3, Y ) >
0, thus we have two main effects corresponding to X1 and X2 and moreover one
4-way interaction.

Table 1. Simulation model 1 (3-way interaction model). Notation: A = [0, 1], B =
(1, 2], C = (2, 3] and constant p equals 1/6.

1 2 3 4 5 6

X1 A A B B C C

X2 A B A B A B

Y 0 1 1 0 0 0

P (X1, X2, Y ) p p p p p p

Table 2. Simulation model 2 (4-way interaction model). Notation: A = [0, 1], B =
(1, 2], C = (2, 3] and constant p equals 1/16.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

X1 A B A A B B A B C C C C A A B B

X2 A A B A B A B B A B A B C C C C

X3 A A A B A B B B A A B B A B A B

Y 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1

P (X1, X2, X3, Y ) p p p p p p p p p p p p p p p p

Table 3. Computational times.

Feature selection CIFE JMI MIFS MRMR IIFS

MADELON 16.312 s 16.228 s 16.089 s 16.147 s 1.109 min

GISETTE 1.156 h 1.153 h 1.091 h 1.124 h 2.701 h

MUSK 11.719 s 11.048 s 13.587 s 14.217 s 15.746 s

BREAST 0.887 s 0.425 s 0.515 s 0.499 s 0.988 s

Figure 1 shows how selection rate (SR) depends on sample size n. In the
case of model 1 the methods which take into account 3-way interactions (JMI,
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CIFE, IIFS) produce the same rankings. They detect successfully both relevant
features: X1 and X2. MIFS and MRMR are able to detect only one relevant
feature. In the case of model 2, MIFS, MRMR, JMI and CIFE are able to detect
only 2 relevant features X1,X2 but they fail to select feature X3. Selection rate
(SR) for MIFS, MRMR, JMI and CIFE converges to 2/3. As expected only IIFS
chooses all 3 relevant features, which results in SR = 1 for sufficiently large
sample size. The above experiment shows that there is no significant difference
between IIFS, JMI, CIFE when only 3-way interactions occur. In the case of 4-
way interaction model, IIFS is significantly superior to other methods. Moreover
we analyse how the method of entropy estimation influences the results. We
used two methods: standard plug-in method based on data discretization with b
bins (solid line) and knn-based Kozachenko-Leonenko estimator [7], with k = 10
(dashed line). For small b = 2 it is seen that knn-based method is superior to
plug-in method. For b = 5, plug-in method works better than knn-based method
in the case of model 1, whereas knn-based method is a winner for model 2.
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Fig. 1. Selection rate w.r.t. sample size n for simulation models 1 (a)–(b) and 2 (c)–
(d). Parameter b corresponds to the number of bins in discretization, ‘knn’ in brackets
corresponds to knn-based entropy estimation.
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5.2 Benchmark Data

For more thorough assessment of developed criterion we used datasets from the
NIPS Feature Selection Challenge [23] (MADELON and GISETTE) and UCI
repository [24] (BREAST and MUSK). NIPS datasets consist of training sets
(2000 observations for MADELON and 6000 for GISETTE) and validation sets
(600 observations for MADELON and 1000 for GISETTE), whereas for UCI
datasets we used 10-fold cross-validation in order to calculate error rates. We
carried out the same experiment as that described in [18, Sect. 6.1]. In addition
to methods considered in [18] we investigate the performance of the proposed
method IIFS. Each criterion was used to generate a ranking for the top features.
Then the original datasets were used to classify the validation data. As in [18]
we used kNN method with k = 3 neighbours as a classifier. As an evaluation
measure we considered Balanced Error Rate defined as

BER = 1 − 0.5 · (
TP

TP + FN
+

TN

TN + FP
), (28)

where TP, TN,FP, FN denote true positives, true negatives, false positives and
false negatives, respectively. Results of our experiments are presented in Fig. 2.
We only present curves corresponding to plug-in estimator as knn-based entropy

Fig. 2. Validation error curves for MADELON (a), GISETTE (b), MUSK (c) and
BREAST (d) datasets.
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estimator worked much worse in this case possibly due to a prior discretization
of the original data. For MADELON and MUSK datasets there is no significant
improvement of IIFS compared to CIFE and JMI. So we may conclude that
considering interactions of order higher than 3 does not improve the performance
in this case. Note that for MADELON interactions play an important role; the
methods which do not take into account interactions at all (MIFS and MRMR)
fail. For GISETTE dataset the proposed criterion IIFS has the lowest error rate
when the number of features varies between 20 and 100. For BREAST IIFS is also
a winner. This suggests that taking into account high-order interactions helps
in these cases. Interestingly, for GISETTE and BREAST, IIFS is significantly
better than CIFE, which additionally indicates that including 4-way interaction
term improves the performance. The computational times for IIFS are longer
than for competitors (see Table 3) which is a price for taking into account high-
order interactions. Note however that the times for IIFS, although longer than
for CIFE, are of the same order.

6 Conclusions

In this paper we presented a novel feature selection method, named IIFS. Feature
selection score in IIFS, based on interaction information, is derived from so-called
Möbius representation of joint mutual information. Our method in an extension
of CIFE criterion consisting in taking into account 4-way interaction terms. We
discussed theoretical properties of 4-way interaction information (Theorem1) as
well as feature selection methods: CIFE and IIFS (Theorem 2). The numerical
experiments for artificial datasets show that there is no significant difference
between IIFS, JMI and CIFE when only the interactions of order up to 3 are
present. This means that estimation of absent 4-way interactions does not cause
significant deterioration of IIFS performance. In the case when 4-way interac-
tions occur IIFS is significantly superior to other methods. Future work will
include the development of methods considering high-order interactions as well
as the comparison of IIFS with such methods, for example with a novel method
proposed in [25].
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Abstract. The Random Forest (RF) algorithm consists of an assembly of base
decision trees, constructed from Bootstrap subsets of the original dataset. Each
subset is a sample of instances (rows) by a random subset of features (variables
or columns) of the original dataset to be classified. In RF, pruning is not applied
in the generation of base trees and in the classification process of a new record,
each tree issues a vote enabling the selected class to be defined, as that with the
most votes. Bearing in mind that in the state of the art it is defined that random
feature selection for constructing the Bootstrap subsets decreases the quality of
the results achieved with RF, in this work the integration of covering arrays
(CA) in RF is proposed to solve this situation, in an algorithm called RFCA.
In RFCA, the number N of rows of the CA defines the lowest number of base
trees that require to be generated in RF and each row of the CA defines the
features that each Bootstrap subset will use in the creation of each tree. To
evaluate the new proposal, 32 datasets available in the UCI repository are used
and compared with the RF available in Weka. The experiments show that the
use of a CA of strength 2 to 7 obtains promising results in terms of accuracy.

Keywords: Classification � Random Forest � Covering arrays �
Feature selection

1 Introduction

The Random Forest (RF) algorithm, developed by Leo Breiman in 2001 [1], is com-
posed of a collection of M independent trees to which an input is passed. Each emits a
unitary vote and RF then selects the most popular class of all the votes received
(majority vote). Building each tree starts with a bootstrap sample of the original dataset.
Each node of a decision tree is built from a small group of randomly selected features
[1]. In RF, pruning is not applied and each of the generated trees functions as a base
classifier. RF stands out for its robustness, low sensitivity to noise and low risk of
overfitting [2]. As regards limitations, in [3] the authors point to the amount of time it
takes to manually fix the hyperparameters (number of trees,M, number of features to be
taken into account in each tree, K, and depth of each tree, depth) and the lack of a more
suitable feature selection process, since in its original proposal it resorted to a simple
random selection. According to [4], the value of K (number of randomly selected
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G. Nicosia et al. (Eds.): LOD 2018, LNCS 11331, pp. 64–76, 2019.
https://doi.org/10.1007/978-3-030-13709-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13709-0_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13709-0_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13709-0_6&amp;domain=pdf
https://doi.org/10.1007/978-3-030-13709-0_6


features for each tree) is established arbitrarily or empirically, and often does not have a
theoretical or experimental justification.

This paper proposes the integration of covering arrays as a mechanism for selecting
the features that are used to construct the Bootstrap samples with which the base trees
are built.

A covering array (CA) is a mathematical object that has been used in various areas
to evaluate and compare different situations in which many parameters interact with
each other and carrying out an exhaustive evaluation is not feasible for reasons of cost,
time, or effort. CAs have been used in experimental design, software testing, hardware
testing and more recently in clustering [5].

In the selection mechanism proposed in this paper, binary CAs are used, formally
defined as CA (N, P, v = 2, t) that can be represented as a matrix of N � P elements,
where N is the number of rows of the CA. In this context, N refers to the number of
base trees to be generated. The value of P refers to the number of columns of the CA,
which is the number of factors/parameters involved in the problem (dataset, without
considering the class column). The v = 2 refers to the fact that the CA is binary, and the
data found in each cell of the matrix can only take the value of zero (0) or one (1).
Finally, parameter t is called strength and defines the degree of interaction between the
P factors covered by the CA. Where there is a strength of 2 in a binary CA, it is
expected that the values {0, 0}, {0, 1}, {1, 0}, {1, 1} will be found in any pair of
columns in the CA. In general, in a CA, each N � t sub-matrix contains all the
combinations of the v = 2 symbols at least once. Figure 1 shows the CA (6, 6, 2, 2)
with 6 rows (N), 6 columns (P), binary alphabet (v = 2), and strength 2 (t).

In this paper, each row of the CA defines the features that will be used for building the
base trees that RF uses to make decision. A one means that the feature is included and a
zero that it is not. The value of t, the strength of the CA, is defined as a hyperparameter of
the new algorithm (Random Forest based on Covering Arrays, RFCA) and is established
empirically. The proposed RFCA was compared with the original RF algorithm pro-
posed by Breiman [1] implemented in Weka, and one called RF_SQRT, the same
original RF but in which the K value (number of features selected for building the nodes
of base trees) is defined using a different formula. The evaluation was carried out with 32
datasets using 10-fold cross-validation. The results show that RFCA improves the
accuracy in half of the evaluation scenarios with respect to state of the art algorithms. In
addition, Friedman and Wilcoxon nonparametric statistical test results are promising.

( = 6, = 6, = 2, = 2) = ⎣⎢⎢
⎢⎢⎡1 1 11 0 10 0 0 0 0 00 1 11 1 01 1 00 1 10 0 0 1 1 11 0 10 0 0⎦⎥⎥

⎥⎥⎤

Fig. 1. Example of a covering array: CA (6, 6, 2, 2)
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The rest of the paper is organized as follows: Sect. 2 presents previous research
work related to improvements to the RF algorithm; Sect. 3 describes the RFCA clas-
sifier, along with an example of its use; Sect. 4 describes the experiments and an
analysis of the results; and finally, Sect. 5 presents the conclusions of the work carried
out, together with some future work that is expected to be undertaken.

2 Related Work

The original RF algorithm (2001) consists of an assembly of decision trees. Initially in
the process of building a RF, bootstrapping is applied on the training dataset to produce
many different data subsets [1]. Each subset is then used to construct a decision tree. In
the growth process of the tree, the partition of each node depends on the randomly
selected features with respect to all the features present in the dataset [4]. No pruning is
applied in RF and each of the trees generated works as a base classifier. To define the
class of an instance, the vote of each of the base classifiers is received and a weighting
is performed that determines the respective class [2, 6].

In 2008 [7] saw the arrival of an algorithm called Forest-RK. Based on Forest-RI
[1], Forest-RK, introduced a new method of induction in which an alternative to the
arbitrary adjustments of the hyperparameter K is offered. For random feature selection,
the K value is chosen randomly for each division of a node, with the aim of generating
greater diversity in the trees that make up the forest, in contrast with Forest-RI, in
which the value of K is identical for all decision trees. The results show that this new
method is statistically more accurate than the Breiman RF [1].

In 2011 [8], the use of oblique tree models as base learners in the algorithm was
proposed. The “oblique” RFs focus on the optimal recursive partition of the nodes, so
that in each recursive binary division, a new set of features is sampled without
replacement, and the optimal division in the sub-space covered by these features is
sought. For the search of the optimal division, linear discriminative models are used
instead of random coefficients used in the Breiman RF [1]. The results show that RF
with orthogonal divisions obtains good results in factor datasets, in numerical and
spectral data. This proposal outperformed a wide range of classifiers.

In 2012 [9], a tree regularization framework was proposed that allows many tree
models to perform feature selection efficiently. The key idea of the framework is to
penalize with k (a coefficient 2 [0, 1] based on information gain), the selection of a
feature used for the division of a node, in cases where its quality index is like the
features used in previous divisions. It is therefore expected that a regularized tree model
contains a set of features that are informative, but not redundant. The results show that
the proposed method increases the quality of the RF classifier.

In 2014 [10] a technique was presented for finding the appropriate number for the
attribute subspace (K) used in the division of a node into a decision tree. The number of
attributes for the subspace is determined by a random number selected in a range that is
calculated with the number of samples resulting from the CART partition of a node
(size of the bootstrap sample for the root node), and the size of the bootstrap sample of
the decision tree. This calculation is performed dynamically for each of the nodes and
ensures a diverse range of trees. The results show that the proposed technique can
significantly improve the accuracy of the classifier.
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In 2016 [11] an RF version was proposed with a cost-sensitive feature selection
method called feature-cost-sensitive Random Forest (FCS-RF). In FCS-RF, the cost of
the features is incorporated into the building process of the decision tree to produce
subsets of low-cost features. The algorithm selects a feature with a probability inversely
proportional to its associated cost, instead of being selected randomly. The results show
that FCS-RF is mainly useful in cases where there are redundant or higher cost features.

In 2017 [12] an integration of an algorithm called CURE-SMOTE with a hybrid
algorithm based on RF was proposed. CURE (Clustering Using Representatives) groups
the least representative class samples and SMOTE (synthetic minority oversampling
technique) eliminates noise and outliers. The dataset used to solve the classification
problem is then generated using random samples between representative points and data
from the less representative classes. Elimination of redundant features, feature selection,
optimization of parameters, and definition of the number of sub-features is then carried
out by means of three hybrid algorithms that use RF: one based on genetic algorithms
(GA-RF), another based on particle swarm optimization (PSO-RF), and finally, another
based on a swarm of fish (AFSA-RF). The results show that the CURE-SMOTE
algorithm minimizes the noise of the original data distribution and that the hybrid
algorithms surpass original RF [1] in F-measure, G-mean, AUC, and Out-Of-Bag error.

3 Proposed Random Forest Based on Covering Arrays
(RFCA)

In the original Random Forest proposal of Breiman [1], the process of feature selection,
denoted as Forest-RI, employs in the division of each node, small groups of randomly
selected features. The size, K, of the groups is fixed and is generally equal to the first
integer smaller than log2P + 1, where P is the total number of attributes of the dataset.
The hyperparameter number of trees in the forest, M, is established arbitrarily or
empirically, and although an increase in the number of trees can linearly increase the
quality of the model, there is a certain point at which increasing the number of trees
does not improve and even decreases the accuracy of the model [3]. In this context,
covering arrays in RFCA eliminates the need to set and fine-tune the number of trees
(hyperparameter M) and improve the feature selection process.

RFCA uses CAs of binary alphabet (v = 2). This means that each component of the
CA has only values {0, 1}. The subsets of candidate variables used in building each of
the RF trees are determined with the rows of the CA. Parameter P of the CA corre-
sponds to the total number of attributes of the dataset to be classified. Below, an
example of RFCA execution is detailed and then the algorithm is presented.

3.1 Example of Model Creation in RFCA

To illustrate the behavior of RFCA, a reduced version of the Churn dataset is used,
from the UCI Repository (University of California in Irvine). The term Churn is used to
indicate that a client leaves the service of a company to take that of the competition. In
this reduced version, only 6 (P columns of the dataset and the CA) of the most
important variables are used in 20 of the customer records and the target variable,
Churn. In Table 1, the name of the attributes of the dataset is shown and in the upper
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part a short name appears for each of them, A1, A2, and so on. In this example, 80% of
the dataset is used for training and the remaining 20% as the test dataset. The Random
Forest algorithm is based on the bootstrapping process, which implies that it generates
a set of trees, M in which each tree is generated with its own training dataset that is the
result of a random selection of data from the original training dataset.

The number of trees to be built in RFCA is determined by the number of rows of
the binary CA, chosen according to the number of attributes of the original training
dataset. According to the dataset of the example, a binary covering array is required to
cover the six input variables. In the present example, the CA of Fig. 1 is used.
According to this CA, the number of trees is six (number of rows of the CA). However,
because row 6 of the CA contains only zeros, that is, it does not select any attributes,
the total number of trees to be built is only five (5).

Each row of the binary CAdefines for its corresponding tree which features (attributes
of the original training dataset) will be used in building it, where 0 indicates the absence
and 1 the presence of a variable in the subset of candidate features. For example, based on
row three [0|0|0|1|1|0] it can be said that the tree is built considering features four and five
(A4 and A5), which correspond to Total minutes afternoon and Total minutes night.

The original RF has a hyperparameter K that defines the number of attributes that
must be considered when each tree is created. This attribute is defined, according to the
Breiman proposal [1], as the first integer less than log2(P) + 1, where P is the number
of input variables of the original training dataset, which in this case is equal to three
K ¼ log2 6ð Þþ 1b c ¼ 3ð Þ.

Table 1. Description of the adapted dataset

Id A1 A2 A3 A4 A5 A6 Class

International
plan

Voice
mail
plan

Total
minutes
morning

Total minutes
afternoon

Total
minutes
night

Total minutes
international

Churn

Training dataset
1 No No 178.7 233.7 131.9 9.1 FALSE
2 No Yes 148.5 114.5 178.3 6.5 FALSE
3 No Yes 164.1 219.1 220.3 12.3 FALSE
4 Yes No 197.2 188.5 211.1 7.8 FALSE
5 No No 124.9 300.5 192.5 11.6 FALSE
6 No No 115.4 209.9 280.9 15.9 FALSE
7 Yes No 140 196.4 120.1 9.7 TRUE
… … … … … …. … …

15 No Yes 156.2 215.5 279.1 9.9 FALSE
16 No No 231.1 153.4 191.3 9.6 FALSE

Test dataset
17 No No 180.8 288.8 191.9 14.1 FALSE
18 Yes No 213.8 159.6 139.2 5 FALSE
19 No Yes 234.4 265.9 241.4 13.7 FALSE
20 No Yes 265.1 197.4 244.7 10 FALSE
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As can be seen for the example of row three of the CA, it only selects two
attributes. For this reason, the RFCA algorithm adds one randomly to complete the
three required by the K parameter. It can also happen that the row of the CA has more
selected features than those defined by the K parameter. In this case K features are
selected randomly from the subset defined by the line of the CA.

To build Tree1 based on row 1 [1|1|1|0|0|0] of the CA, the attributes selected in the
subset are: A1, A2 and A3. Since the number of attributes selected in the CA row
matches the value of K (3), all are selected. After sampling the rows, the data sample of
Fig. 2a is obtained. In addition, the base tree that is obtained with that input sample is
presented on the right side of this figure.

For building Tree2 based on row 2 [1|0|1|0|1|1] of the CA. The attributes defined by
this row are A1, A3, A5 andA6. The number of attributes (4 in total) of the subset selected
by this row of the CA is greater than the number K of attributes to be selected (K = 3)
Therefore, the algorithm selects 3 attributes of the subset randomly andwithout repetition.

(a) 

Data for Tree 1
A1 A2 A3 Class
no no 178.7 FALSE
no yes 148.5 FALSE
yes no 197.2 FALSE
no no 124.9 FALSE
no no 115.4 FALSE
yes no 140 TRUE
no no 321.1 TRUE
no no 193.4 FALSE
no no 106.6 FALSE
no yes 156.2 FALSE
no no 231.1 FALSE

A1 = no
A3 < 276.1: FALSE (12/0)
A3 >= 276.1: TRUE (1/0)

A1 = yes
A3 < 168.6: TRUE (2/0)
A3 >= 168.6: FALSE (1/0)

(b)

Data for Tree 2
A1 A3 A5 Class
no 178.7 131.9 FALSE
no 148.5 178.3 FALSE
yes 197.2 211.1 FALSE
no 115.4 280.9 FALSE
yes 140 120.1 TRUE
no 193.9 210.1 FALSE
no 193.4 243.3 FALSE
no 134.7 221.4 FALSE
no 156.2 279.1 FALSE
no 231.1 191.3 FALSE

A5 < 126: TRUE (1/0)
A5 >= 126: FALSE (15/0)

(c) 

Data for Tree 3
A3 A4 A5 Class

178.7 233.7 131.9 FALSE
148.5 114.5 178.3 FALSE
164.1 219.1 220.3 FALSE
197.2 188.5 211.1 FALSE
321.1 265.5 180.5 TRUE
169.8 197.7 193.7 FALSE
193.4 116.9 243.3 FALSE
106.6 284.8 178.9 FALSE
156.2 215.5 279.1 FALSE
231.1 153.4 191.3 FALSE

A4 < 249.6: FALSE (12/0)
A4 >= 249.6

A3 < 213.85: FALSE (3/0)
A3 >= 213.85: TRUE (1/0)

Fig. 2. A sample of the trees generated using RFCA.

Covering Arrays to Support the Process of Feature Selection 69



For the example, attributes A1, A3 and A5 were selected. Figure 2b presents the data
sample and the base tree obtained. For building Tree4 andTree5, the same situation occurs
(the number of attributes of the subset selected by the row of the CA is greater than the
number K of attributes to be selected). The algorithm therefore operates in the same way.

Building Tree3 is based on row 3 [0|0|0|1|1|0] of the CA, which allows the selection
of attributes A4 and A5. In this case, the number of attributes of the subset selected by
this row of the CA is less than the number K of attributes to be selected (K = 3).
Consequently, for those cases the algorithm selects the missing attributes randomly and
without repetition (in this case one additional attribute). For the example, A3 is
selected. Figure 2c presents the data sample and the base tree obtained.

After creating the trees, the classifier test is performed. In this case the test instances
are passed to each of the trees, the class label is assigned based on a majority vote. In
this case, the classifier obtains 100% of instances correctly classified.

3.2 RFCA Algorithm

Next, Algorithm 1 summarizes the technique of building an ensemble of decision trees
using bagging and covering arrays for feature selection (RFCA). The function trainDT
(T’, K) performs training of a decision tree on a bootstrap sample T’ and K features
selected based on each row of the CA. The process of training a decision tree is
presented in Algorithm 2.

4 Experiments and Results

4.1 Configuration of the Experiments

Validation was performed using 32 available datasets in the repository at UCI, namely:
Banknote, Blood, Car, Chart, Climate, Contraceptive, Dermatology, Diabetes, Ecoli,
Fertility, Glass, Haberman, Hayes, Indian, Ionosphere, Iris, Knowledge, Leaf, Libras,
Planning, QSARBiodegradation, Seeds, Segment, Sonar/Connectionist, Soy Bean,
Spectf, Vowel, Wdbc, Wine, Wine Red, Yeast, and Zoo. The total number of training
instances corresponds to approximately 70% of the total data in each dataset. The
algorithm was implemented in Java as a package of Weka 3.8. Binary CAs of strength
2 through 7 were shared by CINESTAV-Tamaulipas of Mexico. All the experiments
were performed on an Intel Core i7 4510U, 2.0 GHz, 8 GB RAM, Windows 10. The
source code and other resources (such as the CAs) required to replicate the experiments
are available online at https://github.com/sebasv22/RFCA.

4.2 Parameters of the Algorithms

To evaluate the RFCA algorithm, a comparison was made with the original Random
Forest (RF) algorithm proposed by Breiman [1] and a version of Random Forest called
RF_SQRT in which the size K of the randomly selected subsets of features is defined as:
K ¼ ffiffiffi

P2
p

, where P corresponds to the number of attributes in the dataset [4, 13]. The
values of the parameters common to the three algorithms are those designated by default
in Weka (see Table 2). The hyperparameter K (numFeatures in Weka) for RF and RFCA
is defined, according to the Breiman proposal [1], as the first integer less than log2(P) + 1.
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Algorithm 1. The proposed Random Forest using Covering Arrays

inputs: T /* Dataset */
f /* Covering array strength */
lsize /* Leaf size limit, parameter of Random Forest in weka */

output: Class label for the input data.
begin

r = numRows (T) /* Number of rows of the Dataset */ 
p = numA ributes (T) /* Number of a ributes of the dataset */
ca = loadCA (f, p) /* Loads the covering array (CA) according to f and p */
M = numRowsCA (ca) /* Number of trees is equal to the number of rows of the CA */
K = /* Number of a ributes to use in tree construc on */
a  = listA ributes (T) /* Set of a ributes from the Dataset */
for i = 1 to M do

/* Select points (dataset instances), with replacement, uniformly in T */
T’ = bootstrap (T)
subAS = SelA ributesCA (ca[i]) /* from row i determines selected a ributes */
Tree = trainDT (T’, K, subAS, a , lsize)
add Tree to RF

end for
Once M Trees are created, Test instance will be passed to each tree and class label will 
be assigned based on majority of votes.

End

Algorithm 2. Function trainDT (for Training each Decision Tree to the Random Forest)

inputs: T’ /* Bootstrap sample */
K /* Number of random features */
subAS /* A ribute indices selected in the CA Row */
a /* Set of a ributes from the Dataset */
lsize /* Leaf size limit */

output: Tree, a trained decision tree
begin

if numInstances (T’) > lsize then
subK = Ø
if size (subAS) >= K then

subK = RandomSelect (subAS, K) /*Select uniformly, without replacement, a 
subset subK from K a ributes in subAS, subK subAS */

else
subK = RandomSelectA ributes (a , subAS, K) /*subK include all a ributes in 
subAS plus addi onally a ributes from a  uniformly selected without replace-
ment that do not belong to subAS. at the end subK has K a ributes */

end if
/* Select the best split in T’ by op mizing the CART-Split criterion */
(le T, rightT) = Split (T’, subK)
Tree.add (trainDT (le T, K, subAS, a , lsize)) /* le  child */
Tree.add (trainDT (rightT, K, subAS, a , lsize)) /*right child */

 else return Tree
end if

end func on
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In RFCA the parameter M (number of trees) is not defined but the strength
parameter is defined, with which parameter T of the binary CA used in building the
forest is determined. This parameter takes the values of strength 2 to strength 7. To
make the comparison between RFCA, RF and RF_SQRT under the same conditions,
the parameter M (number of trees) is defined in the last two algorithms equal to the one
defined in RFCA with the number of rows of the CA.

4.3 Results and Analysis

A sample of the results of the experiments are shown in Table 3 and were obtained
from the average of 30 executions of each algorithm in each dataset using 10-fold
cross-validation. The CAs were evaluated using strengths from 2 to 7, all with the
binary alphabet. The evaluation was carried out with different strength values to
identify which value achieves the best results in terms of accuracy. Each dataset that
was evaluated required a CA defined according to the number of variables in the set
(parameter P in the CA). The number of trees increases as strength (T) increases.

A total of 192 scenarios were obtained (32 datasets by 6 CA strength values) for
evaluating the proposed algorithm with respect to the state of art. As can be seen in
Table 4, the RFCA algorithm performs better in approximately half of the evaluation
scenarios. The remaining percentage is divided between the two algorithms of the state
of the art.

Taking the results of Friedman’s non-parametric statistical test, we obtain the
ranking in Table 5, which confirms RFCA performing better than RF and RF_SQRT.
The p-value of the test was not less than 0.05, which means that the results are not
statistically significant. Nevertheless, the Wilcoxon test shows with 90% confidence
that the RFCA algorithm outperforms RF and RF_SQRT, and at 95% confidence, that
RFCA outperforms RF_SQRT.

In the results, those corresponding to the Car and Leaf datasets predominate: in Car,
RF outperforms RFCA by a wide margin, while in Leaf, RFCA outperforms RF by a
considerable advantage. On reviewing the structure of the attributes of the Car dataset,
it was found to have 6 ordinal attributes, 4 classes and 1,728 instances, data that are like
those of other datasets and as such was not able to be identified since in this case RF
greatly outperforms RFCA (see the left-hand side of Fig. 3).

In the case of Leaf, it was found to consist of 14 continuous attributes, 1 nominal,
36 classes and 340 instances. Although not conclusive, the high number of classes in
this dataset can benefit from the analysis of the interactions of the columns that are
made with the CA. In this dataset, from the lowest strength value (2) to the highest (7),
there is a considerable difference of RFCA with respect to RF and RF_SQRT (see the
right side of Fig. 3).

Table 2. Default Weka algorithm parameters

Parameters Value Parameters Value

bagSizePercent 100 maxDepth 0
batchSize 100 numExecutionSlots 1
breakTiesRandomly False
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Table 3. A sample of the results using 10-fold cross-validation (best results in bold)

Dataset T M RFCA RF RF_SQRT Dataset T M RFCA RF RF_SQRT

Banknote 2 4 98.5593 98.9359 98.8654 Blood 2 4 74.8396 74.1355 73.9617

3 7 99.1764 99.1618 99.1861 3 7 73.6453 73.066 72.8654

4 15 99.2347 99.2541 99.2444 4 15 74.3449 73.3378 73.1907

5 30 99.2833 99.2687 99.2736 5 30 74.1266 73.4804 73.369

6 60 99.3051 99.3051 99.2687 6 60 73.9171 73.057 72.9724

7 120 99.3659 99.3367 99.3076 7 120 73.9394 73.0348 73.0704

Car 2 5 86.8538 91.4892 89.2091 Chart 2 9 96.7556 96.3667 96.6556

3 11 81.603 93.4143 92.338 3 31 98.2222 98.2111 98.2778

4 20 88.2234 94.1223 93.5899 4 67 98.6167 98.5556 98.5667

5 31 90.4649 94.3769 94.2149 5 135 98.7722 98.65 98.7111

6 63 88.2195 94.6509 94.8669 6 675 98.9556 98.9222 98.8889

7 126 88.2851 94.7647 95.0675 7 2453 99 98.9389 98.9444

Climate 2 7 92.0247 92.8025 92.4074 Contraceptive 2 5 49.6108 48.959 48.6309

3 17 91.7223 93.0741 92.5864 3 11 51.2333 49.9208 49.7873

4 39 91.5062 93.1975 92.5864 4 23 52.2788 50.74 50.5295

5 99 91.4938 93.2222 92.5988 5 53 52.9894 51.222 51.0138

6 300 91.4815 93.0864 92.6049 6 107 53.0572 51.5886 51.437

7 630 91.4815 93.0555 92.6543 7 169 52.9758 51.9167 51.6452

Dermatology 2 7 94.5902 94.1712 94.2896 Diabetes 2 5 71.9488 73.138 72.7083

3 23 96.3024 95.7377 95.8561 3 11 73.2031 74.5747 74.0148

4 62 96.5118 96.2113 96.1566 4 23 74.349 75.0304 75.0564

5 133 96.6484 96.2751 96.3206 5 52 75.3212 75.4601 75.3255

6 482 96.7395 96.3935 96.439 6 84 75.6727 75.4644 75.5599

7 1178 96.7122 96.4299 96.4845 7 128 75.6858 75.5642 75.7726

Ecoli 2 5 80.9821 82.8572 82.8572 Fertility 2 5 86.6333 86.3667 85.7333

3 11 83.4127 84.9206 84.6329 3 11 87.6 87.5 87.4333

4 23 84.5536 85.7441 85.6052 4 23 87.8333 87.4 87.5

5 42 85.5952 85.9921 86.4286 5 53 88.0333 87.8667 87.9

6 64 85.248 86.1508 86.6171 6 107 88.2333 87.4667 87.9333

7 127 86.3194 86.4385 86.8353 7 169 88.5 87.1667 87.9

Glass 2 5 71.9003 73.5358 73.3022 Haberman 2 3 70.9477 66.9499 68.2135

3 11 75.4829 76.3396 75.7788 3 7 70.3268 67.048 69.0196

4 23 78.1153 77.4766 77.6947 4 14 71.1764 68.3878 69.9782

5 53 79.6262 78.972 79.5639 5 28 71.7538 68.5839 70.3703

6 107 79.8287 79.6885 79.6885 6 56 71.8191 69.2265 71.3072

7 169 79.8754 80.1246 80.2025 7 112 72.2004 69.0087 71.2636

Hayes 2 4 77.7083 76.1458 76.1875 Indian 2 5 69.9257 69.0566 69.4225

3 7 77.6667 77.6458 77.8958 3 11 70.9605 69.5598 70.1658

4 15 79.1042 79.0833 79.3125 4 23 71.6295 70.1487 70.6632

5 30 79.6875 79.0208 79.8958 5 55 71.9897 70.8005 71.3093

6 60 79.5 78.6042 79.875 6 115 71.9554 70.7604 71.2236

7 120 79.3125 78.8125 79.9167 7 219 72.1555 70.8005 71.3665

Knowledge 2 5 87.3643 92.8295 90.8527 Leaf 2 7 54.598 18.7451 28.2745

3 10 93.5659 93.7855 92.429 3 16 55.4902 19.8529 32.6275

4 15 93.708 94.4315 93.2688 4 34 55.9216 20.5196 34.9412

5 31 94.031 94.664 93.9664 5 79 57.6176 21.3529 36.7941

6 62 94.4702 94.7674 94.186 6 128 61.3137 21.7843 37.6373

7 124 94.5736 94.8966 94.3669 7 255 61.3824 21.6961 37.9902
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In Fig. 4, the average graph across all strengths is shown. In the graph, the dis-
turbance caused by the atypical results of the Car and Leaf datasets can be seen.
Likewise, it is evident that the gradual increase in strength of the CA generates, on
average, a better result in terms of accuracy.

Table 4. Results summary

Exceeds Equals Total
RFCA RF RF_SQRT RF y RF_SQRT RFCA y RF

# Scenarios 96 (50%) 53 (27.60%) 29 (15.1%) 13 (6.77%) 1 (0.52%) 192

Table 5. Ranking of algorithms based on the Friedman test

Algorithm Ranking

RFCA 1.8828 (1)
RF_SQRT 2.0078 (2)
RF 2.1094 (3)
p-value 0.08436 (chi-square with 2 degrees of freedom: 4.9453)

Fig. 3. Accuracy on car and leaf datasets

Fig. 4. Average accuracy over all the strengths
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5 Conclusions and Future Work

In this work, a new method was proposed and evaluated for the selection of features in
the Random Forest algorithm, based on binary covering arrays of strength 2 to strength
7. In the CAs, each row represents a subset of selected variables to build the bootstrap
samples and the number of rows of the CA allows adjusting the hyperparameter
number of trees, suppressing the random feature selection of the Random Forest
originally proposed by Breiman and with it, the need to adjust this hyperparameter. The
experiments were performed on 32 datasets evaluated by 10-fold cross-validation and
the results obtained are promising, in which an average improvement in accuracy
between 0.5% and 2% is achieved. The new RFCA classifier improves accuracy in half
of the evaluation scenarios with respect to the state-of-the-art algorithms used. On
average the greatest accuracy in the RFCA algorithm is obtained at strength 7. How-
ever, considering that a greater strength represents a greater number of trees, strength 5
is considered a suitable value for parameter t of RFCA.

As future work it is expected to study the performance of RFCA on variations of
Random Forest in which the bootstrap sample is different in size from two thirds of the
training dataset [1], or in which the sampling of the instances is carried out without
replacement [14]. Tests will meanwhile be run on other test datasets of the UCI
repository or similar, using CAs with different values of strength (t = 2, …, 10),
comparing them against other more recent algorithms. These tests will include addi-
tional statistical tests, not only those of Friedman and Wilcoxon. Further tests will be
done using values for the hyperparameter K that are different from those used in the
present work.
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Abstract. The world is witnessing an unprecedented growth of needs in
data analytics. Big Data is distinguished by its three main characteristics:
velocity, variety and volume. An open issue and challenge faced by the
data community is how to scale up analytic algorithms. To address this
issue, optimization of large scale data sets has attracted many researchers
in recent years. In this paper, we first present the most recent advances
in optimization of Big Data analytics. Further, we introduce a fully dis-
tributed stochastic optimization algorithm for decision making over large
scale data sets. We also propose the optimal weight design for the pro-
posed algorithm and study its performance by considering a practical
application in cognitive networks. Experimental results confirm that the
proposed method performs well, proven to be distributed, scalable and
robust to missing data and communication failures.

Keywords: Distributed · Stochastic · Optimization · Big Data ·
Decision making

1 Introduction

Enormous amount of data have been continually generated at unprecedented and
ever increasing scales. Large-scale data sets are collected and studied in numerous
domains, from engineering sciences to social networks, commerce, biomolecular
research, and security. Nowadays, the term “Big Data” referring to its modern
definition, i.e. information explosion and large sets of data, has truly influenced
our lives, at-least by introducing new insights. In 1999, for the first time, the term
Big Data appeared in an article, published by the Association for Computing
Machinery [1]. The authors of this paper quoted that ‘the purpose of computing is
insight, not numbers’. Since then, Big Data is becoming more and more popular.
In 2001, Doug Laney, analyst at Gartner, defined three terms of volume, velocity
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and variety that are commonly accepted as three main characteristics of Big Data
[2].

One important subject in this era is Big Data optimization. To understand
the value of Big Data optimization, we introduce the distinctive characteristics
of Big Data, namely volume, variety and velocity. Interconnection between these
characteristics known as the 3 Vs are shown in Fig. 1. The term volume represents
the growing amount of data in Exabytes and Zettabytes. The Variety of data is
produced by sources such as physical sensors, smart devices and social media in
semi-structured, structured or unstructured formats. The velocity describes how
quickly the data is retrieved, stored and processed.

Fig. 1. The interconnection of three main characteristics of Big Data

Today, the Big Data is a common topic and many researchers, in various fields
of study, including convex optimization and machine learning, have contributed
to the literature. The basic ingredient for every smart and intelligent system, is
data. Smarter systems acquire more data to make efficient decision that leads
to large scale data sets. This data could be generated from many sensors in
smart phones [3], physical sensors attached to cyber-physical systems [4], many
objects in Internet of Things (IoT) [5] platforms and smart cities [6]. This data
may further be transferred to a center using new technologies such as 5G [7].
Therefore, data gathering is the first challenge of Big Data Era. Other challenges
may include data storage and data processing [8]. Many researches are focused
on adaptation of existing technologies or inventing new ones to store Big Data.
Some examples may be found in [9] for cloud storage of Big Data. However, many
researchers believe that the main challenge is still finding efficient and optimal
solutions to process the data in appropriate time by considering the Big Data
challenges.

In general, data processing can be performed in a centralized or distributed
manner. Analysis on very large data sets and Big Data seems infeasible by using
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central processing and storage units. Considering the streaming data sources,
learning must often be performed in real-time or near real-time [10]. Although
centralized processing methods usually provide the optimal decision, consider-
ing the challenges faced by data storage in the cloud or any distributed file
system [12], decentralized methods are still preferred [11]. Therefore, there is an
urgent need to scalable methods, capable of efficient data processing, considering
the storage, query, and communication challenges. In some cases, privacy and
security concerns are critical and prevent accessing the full data. In these cases
only partial data or processed output (decision) might be transferred through
communication interfaces.

As depicted in Fig. 2, the characteristics of Big Data require an optimiza-
tion algorithm that is scalable, compatible with missing values of data (robust),
performs near real-time and is applicable in distributed platforms such as cloud.
These challenges are not properly answered by traditional optimization methods
and the final purpose of any modified or new optimization algorithm in Big Data
era is to reduce the computational, storage, and communications bottlenecks.

Fig. 2. Different characteristics of optimization algorithms for Big Data analytics

In this paper we investigate optimization techniques for Big Data analytics.
We introduce a fully distributed stochastic optimization algorithm for decision
making over large scale data sets. We describe the proposed model mathemati-
cally. Our method is scalable to any network or data size, works based on coop-
eration of neighbor processing/storage units and it is adaptive to any dynamic
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behavior of processing/storage units. We further propose an optimal weighting
of cooperation coefficients.

The rest of this paper is organized as follows: In Sect. 2, we introduce the
related work and literature review of Big Data optimization. The system model
is introduced in Sect. 3 and the proposed method is presented in Sect. 4. The
evaluation scenarios and simulation results are presented in Sect. 5 and finally
the Sect. 6 concludes the paper.

2 Related Work

Optimization plays a centric role in Big Data analytics. Optimization for Big
Data has recently attracted significant attention not only from its own commu-
nity, but also from the other scientific and engineering communities such machine
learning, statistics, and signal processing. In this section, we present the most
recent advances in optimization techniques for Big Data analytics.

The convex optimization techniques have attracted many researchers in the
last decade due to the rise of new theory for rank minimization, and successful
statistical learning models like support vector machines [13]. In [14] authors
review the advances of convex optimization algorithms for Big Data. They
assume that the defined cost functions are separable and convex. In [14], three
methods for optimization algorithms are introduced, namely first order, ran-
domization and distributed methods. First order methods use techniques such as
gradient estimates and achieve low or medium accuracy. The first order methods
provide convergence rates that are almost dimension independent and theoreti-
cally robust. These methods are suitable for distributed and parallel computa-
tion [15]. Randomization techniques are introduced to enhance the scalability of
first order methods. The idea behind randomization techniques is to replace the
deterministic gradient and proximal calculations with statistical estimators to
speed up basic linear algebra routines by using randomization [16]. First order
methods, with some approximations to increase the scalability, form the third
category. These distributed methods are enormously scalable algorithms often
with decentralized communications [17].

In [18], authors consider a novel partitioned framework for distributed opti-
mization in peer to peer networks. They propose an asynchronous distributed
algorithm, based on dual decomposition and coordinate methods. In [19], authors
propose an optimization algorithm of p-DOT model in Big Data computing
framework by analyzing high speed optical fiber communication system. They
consider the machine parameters, execution mode and cost function as reference
variables and aim to improve the efficiency of high speed optical fiber commu-
nication system.

In [20,21] authors investigate non-convex and hybrid (convex and non-
convex) optimization problems for Big Data. They propose a decomposition
framework for the parallel optimization of the sum of a differentiable function
and a block separable convex one. In their proposed framework, the (block)
variables are updated and chosen according to a mixed random and determin-
istic procedure. They also present the almost sure convergence of the proposed
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scheme. Authors in [22] present an algorithmic framework for Big Data opti-
mization, called the block Successive Upper Bound Minimization (BSUM). Their
proposed BSUM includes methods such as the Block Coordinate Descent (BCD),
the Convex Concave Procedure (CCCP), the Block Coordinate Proximal gradi-
ent (BCPG), the Nonnegative Matrix Factorization (NMF) and the Expectation
Maximization (EM).

In [23], authors consider the wireless big sensory data networks and propose
an accelerated distributed rate control method to minimize the recovery error
of big sensory data. Their proposed method is claimed to guarantee the error
minimization of reconstructed data and converge to the optimal value with a
lower latency. Distributed optimization algorithms based on Alternating Direc-
tion Method of Multipliers (ADMM), to solve Big Data optimization problem
in smart grid communication networks are presented in [24]. They introduce the
canonical formulation of optimization problem and the general form of ADMM.
Authors in [25] study Evolutionary Algorithms (EAs) to solve Big Data opti-
mization problems that involve a very large number of variables and need to be
analyzed in a short period of time. They consider the issues of EA algorithms
such as scalability and propose a heterogeneous framework that integrates a
cooperative co-evolution method. Their proposed framework splits the big prob-
lem into subproblems in order to increase the efficiency of the solving process.
A review of the recent advances in the secure outsourcing of large scale compu-
tations for a Big Data analysis is given in [26]. Authors in [26] focuses on linear
algebra and its application in Big Data optimization problems. The authors
also investigate both iterative and convex solutions for Big Data optimization
problems.

In a very simple explanations, Big Data optimization methods try to partition
the data so that it is feasible to process, mostly in a centralized manner. Although
many research articles are published in this era, there is still a big gap between
practice and theory, specially considering the needs for scalability, robustness and
characteristics of Big Data. It seems that distributed optimization algorithms are
the promising solution so fill this gap, although there still is a long road to go.
In next section we introduce the system model of proposed method.

3 System Model

From data point of view, there are two different approaches namely, centralized
and distributed. In centralized techniques, the data is transferred to a center
for further processing/storage, whereas in the distributed manner, the data is
exchanged and processed within the network locally. Transmitting the data to
a center may cause network congestion and waste of communication and power
resources. It is obvious that any malfunction in the center causes network break-
down. In addition, center requires high computation power to process the large
volume of collected data. In comparison, in a distributed approach, the network
computational load is divided between processing/storage units using coopera-
tion and no centralized infrastructure is required. In this paper we consider fully
decentralized and distributed techniques.
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Notation. The following notations are used throughout this paper. Matrices
are represented by upper case and vectors by lower case letters. Boldface fonts
are reserved for random variables and normal fonts are used for deterministic
quantities. Superscript (.)T denotes transposition for real-valued vectors and
matrices while (.)∗ denotes conjugate transposition for complex valued vectors
and matrices. The symbol E [.] is the expectation operator, Tr (.) represents the
trace of its matrix argument. IM represents the identity matrix of order M .

We consider a network consisting of N processing/storage units, also called
‘node’ from now-on. The nodes are assumed to be distributed, each capable
of processing and storing limited size of data (at-least during the processing)
and may or may not be involved in initial data generation. We assume that
neighbor units are able to communicated to each other by using direct connection
interfaces. Node l is said to be a neighbor of node k if they can communicate
and cooperate with each other. We denote the set of all neighbors of node k by
Nk.

In this model we assume that the nodes are generating or receiving continuous
data with Big Data characteristics. It is impossible to transfer and process the
data in a centralized manner because of the challenges faced by communication,
security, time and storage. The objective of the nodes in the network is to make a
decision in a fully distributed manner. In other words, the solution is an estimate
of an unknown parameter vector ωo in a distributed manner through stochastic
optimization. At every time instant (iteration), i, each node k observes a scalar
random process dk (i) and a vector random process uk,i which are related to ωo

via the linear regression model presented as follows [27]:

dk (i) = uk,iω
0 + vk (i) (1)

In writing Eq. (1), it is assumed that:

– The regression data {uk,i} is zero mean, independent and identically dis-
tributed (i.i.d.) in time and independent over space with covariance matrices
Ru,k = E

[
u∗

k,iuk,i

]
> 0.

– The noise vk (i) is zero mean, i.i.d. in time and independent over space with
variances σ2

v,k.
– The uk,i and the noise vk (i) are mutually independent.

The network will try to estimate ωo by searching for the minimized global
cost function as presented in Eq. (2).

Jglob (ω) =
N∑

k=1

E |dk (i) − uk,iω|2 (2)

The most important issue to solve an optimization problem in a distributed
manner is to be able to separate the cost function among processing units. Each
processing/storage unit should be able to act on its own, while cooperating with
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neighbor nodes. Moreover, we assume that the cost function is separable among
all processing units as presented in Eq. (3).

Jglob (ω) =
N∑

k=1

Jk (ω) (3)

Jk (ω) is the cost function of k processing/storage units defined as Eq. (4).

Jk (ω) = E|dk (i) − uk,iω|2 (4)

The cost function Jk (ω) can further be written in another form as presented in
Eq. (5).

Jk (ω) = ‖ω − ωo‖2Ru,k
+ mmsek (5)

where ‖x‖2Σ denotes the weighted square quantity as x∗Σx for any semi-definite

matrix Σ ≥ 0, Ru,k = E
[
u∗

k,iuk,i

]
> 0 and mmsek is an additional MMSE term

that is independent of ω. Therefore, we may conclude Eq. (6).

Jglobal (ω) = Jk (ω) +
∑
l �=k

(
‖ω − ωo‖2Ru,l

+ mmsel

)
(6)

It is obvious that the optimum value, ωo that appears in the quadratic parts
is not known. It should also mentioned that the weighting matrices Ru,l are not
available in general and only those from the neighbors can be assumed to be
available. Therefore, we may conclude Eq. (7).

Jdist
k (ω) = Jk (ω) +

∑
l∈Nk\{k}

(
‖ω − ωo‖2Ru,l

)
(7)

Please note that the term mmsel is ignored since is independent of ω and have
no effects in finding the optimal value, ωo. The covariance matrices Ru,l is not
available in practice. Usually, processing/storage units can only observe realiza-
tions ul,i of data arising from distributions whose covariance matrix is unknown
Ru,l. One way to address this issue is to replace each of the weighted norms by
a scaled multiple of the form as presented in Eq. (8).

‖ω − ωo‖2Ru,l
≈ bl,k‖ω − ωo‖2 (8)

where bl,k is a non-negative coefficient. Considering Eq. (8), each node k approx-
imates the moment Ru,l from its neighbors by multiples of the identity matrix.
This Approximation is reasonable because using the Rayleigh-Ritz characteriza-
tion of eigenvalues, it holds that:

λmin (Ru,l) ‖ω − ωo‖2 ≤ ‖ω − ωo‖2Ru,l
≤ λmax (Ru,l) ‖ω − ωo‖2 (9)

Therefore, we may conclude that:

Jdist
k (ω) ≈ Jk (ω) +

∑
l∈Nk\{k}

bl,k ‖ω − ωo‖2 (10)
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This recent cost function at node k relies only on available information from
neighbor nodes. Now, each node k can apply a steepest-descent iteration to
minimize the cost function as presented in Eq. (11).

ωk,i = ωk,i−1 − μk

[∇ωJdist
k (ω)

]∗

ωk,i = ωk,i−1 + μk (rdu,k − Ru,kωk,i−1) − μk

∑
l∈Nk\{k}

bl,k (ωk,i−1 − ωo) (11)

where ∇ω denotes the gradient vector. The step size parameters μk can be con-
stant or variant. Constant step size allows the algorithms to work continuously,
while variant step sizes that decay to zero, causes the algorithms to stop after a
while. An adaptive implementation of can be obtained by replacing covariance
matrices by instantaneous approximations as presented in Eq. (12).

rdu,k ≈ dk (i)u∗
k,i

Ru,k ≈ u∗
k,iuk,i

(12)

Finally, by some substitution of equations, we may conclude that:

ωk,i = ωk,i−1 + μku∗
k,i (dk (i) − uk,iωk,i−1) − μk

∑
l∈Nk\{k}

bl,k (ωk,i−1 − ωo) (13)

The last correction term still depends on the unknown ωo. Choosing different
approximations for ωo leads to different strategies such as consensus.

4 Proposed Method

In this section we first present the proposed method by its mathematical model.
We further propose an optimal weighting and finally discuss on computational
complexity of the presented method.

4.1 Mathematical Model

In the proposed method, we apply diffusion adaptation [28] and by defining an
intermediate variable, ψ, we have:

ψk,i = ωk,i−1 + μku∗
k,i (dk (i) − uk,iωk,i−1)

ωk,i = ψk,i − μk

∑
l∈Nk\{k}

bl,k (ωk,i−1 − ωo) (14)

The unknown term ωo is still shown in the equation. Considering ψl,i as a sub-
stitute for ωo we have:

ψk,i = ωk,i−1 + μku∗
k,i (dk (i) − uk,iωk,i−1)

ωk,i = ψk,i − μk

∑
l∈Nk\{k}

bl,k (ψk,i − ψl,i) (15)
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It should be noted that in previous methods, ωl,i−1 is usually substituted as
ωo. Defining al,k as a weighting coefficient as presented in Eq. (16) and μk as
Eq. (17), we may conclude Eq. (18).

al,k =

⎧
⎪⎨
⎪⎩

1 − ∑
j∈Nk\{k}

μkbj,k, l = k

μkbl,k, l ∈ Nk\ {k}
0, otherwise

(16)

∞∑
i=1

μk (i) = ∞,
∞∑

i=1

μ2
k (i) < ∞ (17)

ψk,i = ωk,i−1 + μku∗
k,i (dk (i) − uk,iωk,i−1)

ωk,i =
∑

l∈Nk

al,kψl,i−1
(18)

The Eq. (18) could also be written in another form as presented in Eq. (20).
Where cl,k are the entries of the right-stochastic matrix C, satisfying Eq. (19).

cl,k ≥ 0, C1N = 1N , cl,k = 0 if l ∈ Nk (19)

ψk,i = ωk,i−1 + μk

∑
l∈Nk

cl,ku∗
l,i (dl (i) − ul,iωl,i−1)

ωk,i =
∑

l∈Nk

al,kψl,i−1
(20)

4.2 Optimal Weighting

In this section, we assume that the network topology may vary in each itera-
tion, i. It means that the neighborhood of each node changes over time and the
static combination rules are not applicable for these dynamic networks. In these
networks, the entries of the variant left stochastic matrix Ai can be expressed
as follow:

al,k (i) = γl,kIl,k (i) (21)

where γl,k is positive fixed combination weights that node k assigns to neighbors
l ∈ Nk,i, and Il,k (i) is defined in Eq. (22).

Il,k (i) =
{

1, if l ∈ Nk,i

0, otherwise
(22)

As can be seen in Eq. (22), Il,k (i) is a random variable with Bernoulli distribu-
tion. Considering Eq. (21) the weighting function could be written as:

al,k (i) =

⎧
⎪⎨
⎪⎩

γl,kIl,k (i) , if l ∈ Nk,i\ {k}
1 − ∑

l∈Nk,i\{k}
al,k (i) , if l = k

0, otherwise

(23)
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The stability of proposed method in the mean does not depend on the
particular choice of combination matrix. Theoretically, other choices are pos-
sible as long as E [Ai] yields a left stochastic matrix. Intuitively, E [Ai] will
be a left stochastic matrix if the instantaneous combination matrix Ai satisfies∑
l∈Nk,i

al,k (i) = 1 for all i. Mathematically the claim can be stated as follows. If

∀i ∈ {0, 1, . . .} ,∀k ∈ {1, . . . , N} ,
∑

l∈Nk,i

al,k (i) = 1 then E

[
∑

l∈Nk,i

al,k (i)

]
= 1.

This can be proven as presented in Eq. (24).

E [Ai] = E

[
∑

l∈Nk,i

al,k (i) Il,k (i)

]

E [Ai] = lim
i→∞

1
i

i∑
j=1

∑
l∈Nk,i

al,k (j) Il,k (j)

E [Ai] = lim
i→∞

1
i

[
∑

l∈Nk,i

al,k (1) Il,k (1) + · · · +
∑

l∈Nk,i

al,k (i) Il,k (i)

]
= 1

(24)

Therefore, the optimum weight based on Metropolis combination rule in large
scale and dynamic networks with variant topology can be presented as Eq. (25).

al,k (i) =

⎧
⎪⎪⎨
⎪⎪⎩

1
max{|Nk,i|,|Nl,i|} if l ∈ Nk,i\ {k}
1 − ∑

l∈Nk,i\{k}
al,k (i) , if l = k

0, otherwise

(25)

4.3 Computational Complexity

Considering n as the average number of neighbor nodes in each iteration, and
assuming that total I iterations is needed for the convergence and having N pro-
cessing/storage units in the network, the computational complexity is presented
in Table 1. Comparing with convex optimization and considering semidefinite
programming (SDP) or Second Order Cone Programming (SOCP) the complex-
ity is non-linearly related to number of data generator/processor/storage units,
at-least by o(N2).

Table 1. Computational complexity of proposed distributed method

Number of additions Number of multiplications

(n+2)NI 2NI
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5 Evaluation Results

In this section we evaluate the proposed algorithm using a practical example.
In this application, we define an optimization problem and evaluate the perfor-
mance in terms of accuracy and robustness.

5.1 Cognitive Networks

One practical example of Big Data may be found in wireless sensor networks
where the sensors generate huge amount of data in a non-stop manner [29]. In
wireless networks, it is shown that only a partial spectrum is used by the users.
So, the cognitive systems are proposed as a solution and to improve the spectrum
usage efficiency. Such systems include two types of users namely, primary and
secondary. The primary users are the owner of spectrum and secondary users
should continuously scene the spectrum (called spectrum sensing). When they
find the an unused band of spectrum for a period of time, use it based on the
network predefined policy. Now, assume that the sensors should sense the data
and send their observations to a center. Besides the security, power consumption
and data processing issues, the latency introduced in transferring data is not
acceptable. This might be a simple application of proposed method to make a
decision continuously with high accuracy and reliable against any communica-
tion failure [29]. A simple diagram of distributed spectrum sensing procedure is
presented in Fig. 3.

Fig. 3. Instruction of performed tasks in distributed spectrum sensing

As presented in Fig. 3, first each sensor needs to measure the energy level
and cooperate with other neighbors to make a distributed decision with local
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information. We consider a sample network consisting of 15 sensors (secondary
user). We consider two scenarios; in the first scenario, we assume that the com-
munication link between sensors (neighbors) is ideal. In this case, each sensor
sends the data to its neighbors and makes a decision accordingly. The simulation
results are presented in Fig. 4. As illustrated in Fig. 4, the first decision of each
sensor is different. It is because each sensor have only access to its local informa-
tion. Obviously, the first decision of most sensors is wrong. The challenges forced
by communication, security, processing power and more important time of deci-
sion, makes it impossible to gather the information in a center and process them
simultaneously. We assume that information are transferred only to neighbors
and nodes perform the proposed optimization algorithm. After a few iterations,
the whole network (each node) can reach a correct decision while each has only
processed local information. This simulation shows how the continuously gener-
ated large amount of data that is impossible to transfer and process in any of
nodes is processed in a fully distributed manner.
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Fig. 4. Performance of the distributed spectrum sensing when the communication link
is ideal

In second scenario, we consider a more practical example. We assume that
the communication between neighbor sensors is imperfect, meaning that we eval-
uate the proposed method when some data is missing. In this scenario, we try to
evaluate the robustness of proposed algorithm. We set the probability of com-
munication failure to 0.4. It means that in each time instant (iteration), the
probability of successful transmission is 0.6 and with 40% of chance, the trans-
mitted data is missing. The result is presented in Fig. 5.

As simulation results indicate, the proposed stochastic optimization method
finds the global optimum while only local information is exchanged through the
network. The convergence of this network means that, although sensors only pro-
cess their own cost function, the information diffuses to the network. Considering
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Fig. 5. Performance of the distributed spectrum sensing when the communication link
fails with probability of 0.4

the communication link imperfection, the method is robust against missing data.
It should be mentioned that the algorithm is capable to be used in all network
with arbitrary size.

6 Conclusion

In this paper we investigated the optimization techniques for Big Data analyt-
ics. We presented a fully distributed method to make a decision over large scale
networks and data sets. We further proposed optimal weighting function for pro-
posed stochastic optimization algorithm. The proposed method is scalable to any
network configuration, is near real-time (in each iteration, a solution is provided
although it might not be the optimum one) and more important, robust to any
missing data or communication failures. We evaluated the proposed method by a
practical example and simulations on cognitive networks. Simulation results con-
firmed that the proposed method is efficient in terms of accuracy and robustness.
In this paper we evaluated the proposed algorithm with a simple application of
cognitive sensor networks. In future works, the convergence of proposed algo-
rithm and more applications, specially in IoT and Intelligence Transportation
Systems could be evaluated.
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Abstract. Term-Weighting Scheme (TWS) is an important step in text
classification. It determines how documents are represented in Vector
Space Model (VSM). Even though state-of-the-art TWSs exhibit good
behaviors, a large number of new works propose new approaches and
new TWSs that improve performances. Furthermore, it is still difficult
to tell which TWS is well suited for a specific problem. In this paper, we
are interested in automatically generating new TWSs with the help of
evolutionary algorithms and especially genetic programming (GP). GP
evolves and combines different statistical information and generates a
new TWS based on the performance of the learning method. We experi-
ence the generated TWSs on three well-known benchmarks. Our study
shows that even early generated formulas are quite competitive with the
state-of-the-art TWSs and even in some cases outperform them.

1 Introduction

Text Classification (TC) aims to automatically assign a set of predefined cate-
gories to a text document based on their content. TC is an important machine
learning problem that has been applied to numerous applications such as spam
filtering [28], language identification [32], and so on. Generally, the TC approach
is to learn an inductive classifier from a set of predefined categories. This app-
roach requires that documents are represented in a suitable format such as the
Vector Space Model (VSM) representation [26].

In a VSM, a document dj is represented by a term vector dj = (w1,j , w2,j , ...,
wt,j) where each term is associated with a weight wk,j .

The weight represents how much a term contributes to the semantics of a
document. The method which assigns a weight to a term is called Term Weighting
Scheme (TWS).

Numerous TWS exist and we introduce the most famous in Sect. 2. They are
generated according to human a priori and mathematical rules. TWSs are usually
simple mathematical expressions. Unfortunately, depending on the application,
it is not easy to know a priori which TWS will be effective.

As expression discovery may naturally be addressed by genetic programming
[1], we are interested in this paper to study the effectiveness of Genetic Pro-
gramming (GP) generated formulas for term-weighting and their aspects. We
c© Springer Nature Switzerland AG 2019
G. Nicosia et al. (Eds.): LOD 2018, LNCS 11331, pp. 92–103, 2019.
https://doi.org/10.1007/978-3-030-13709-0_8
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are also interested to know if a stochastic evolutionary process with no informa-
tion about the complexity, the shape and the size of the expression can find at
least competitive discriminative TWS.

The paper is organized as follows: Sect. 2 presents the TWSs and related
works. In Sect. 3 we present Genetic Programming and how it is applied to
TWS. Section 4 presents the experiments and the results, and then we conclude
in Sect. 5.

2 Term Weighting Schemes

TC is a supervised learning task. Hence, the training data consists of a set of
labeled documents D = ((d1, l1), ..., (dN , lN )), such that dj is the term vector
of j-th document, lj is its label and N is the total number of training doc-
uments. As in VSM representation, a document dj is represented by a term
vector dj = (w1,j , w2,j , ..., wm,j) where wi,j is a weight assigned to the i-th term
of the vocabulary ti of the document dj and determined by the TWS.

2.1 Statistical Information

Generally, a multi-labeled classification task is turned into several distinct single-
label binary task, one for each label, using the binary relevance (BR) transfor-
mation strategy. That is, given the list of labels L = {l1, l2, ..., lm}, the original
data set is transformed into m different data sets D = {D1,D2, ...,Dm}. For
each data set Dk, documents having the label lk will be tagged as the positive
category ck, and the rest as the negative category ck. Weights are then computed
independently for each binary data set.

Based on the BR transformation, given a term ti and a category ck, TWS
could be expressed using statistical information a, b, c and d obtained from the
training data:

– a is the number of documents that contain the term ti and belong to the
positive category ck.

– b is the number of documents that don’t contain ti and belong to ck.
– c is the number of documents that contain ti and don’t belong to ck.
– d is the number of documents that don’t contain ti and don’t belong to ck.

Besides the statistics described above, Table 1 shows different statistical infor-
mation that could be extracted from the training data.

2.2 Term Weighting Schemes

Generally, TWSs combines two of three factors pointed out by Salton et al. in
[26] that are believed to improve both recall and precision:

– Term Frequency (TF) factor : The TF factor is used to capture the relative
importance of terms in a document.
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Table 1. Statistical information (Terminals)
used to evolve a TWS.

Label Description

N # documents

C # categories

Ct # categories that contain the term t

Nt # doc that contain t

Nt # doc that do not contain t

Ncat # doc in the positive category cat

Ncat # doc that do not belong to cat

Table 2. Six traditional CF factors.

CF Defined by

χ2 N ∗ (a ∗ d− b ∗ c)∗(a ∗ d− b ∗ c)
(a+ c) ∗ (b+ d) ∗ (a+ b) ∗ (c+ d)

or log(2 + a ∗ d
b ∗ c )

rf log(2 + a
max(1, c)

)

icf log( C
Ct
)

ig ( a
N

× log a × N
(a+ b)(a+ c)

)

+( c
N

× log c × N
(c+ d)(a+ c)

)

+( b
N

× log b × N
(a+ b)(b+ d)

)

+( d
N

× log d × N
(c+ d)(b+ d)

)

– Collection Frequency (CF) factor : Also called term discrimination. The
importance of words in a document (TF factor) does not provide enough
discrimination ability. A common word like ’The’ is frequent in almost all
documents, and then it could not separate a group of documents from the
remainder of the collection. Hence a discrimination factor is needed to favor
those terms that are concentrated in a few documents of the collection. Main
known CF factors are presented in Table 2.

TWSs could be divided into two sets depending on whether they make use
of available information on document membership (Supervised TWSs) or not
(Unsupervised TWSs).

Unsupervised TWSs are generally borrowed from Information Retrieval
domain [26] and adopted for TC [7,22,23].

Term Frequency-Inverse Document Frequency (TF-IDF) is the most famous
term weighting method. This method combines the TF factor and the CF factor
and can be formally defined as wi,j = tfi,j × log N

Nt
where wi,j is the weight of

the term ti in the document dj , tfi,j = fi,j is the term frequency represented by
the raw count of ti in dj , and log N

Nt
is the inverse document frequency (idf).

Besides the raw count (ft,d) representation of tf , there exist numerous other
variants such as binary representation (wi,j = 1 if the term ti occurs in the
document dj and 0 otherwise), log(fi,j) + 1, fi,j/

∑
t′∈d ft′,d. All these variants

are also used as TWS on their own [7,8,22,26]. The inverse document frequency
has also a number of variants such as log(N/Nt) + 1, log((N − Nt)/Nt) [26].

Supervised TWSs makes use of available information on the membership of
training documents by replacing the unsupervised idf component in TF-IDF by
another supervised component. Debole et al. and Deng et al. in [7,8] are the
first to take advantage of such information by combining the unsupervised TF
component with different supervised term discrimination component: χ2 (TF-
CHI), which makes a test of independence between a term and a category. χ2

alongside with other supervised feature selection metrics, has been tested in sev-
eral papers, as a term weighting methods for text categorization. For example,
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Deng et al. in [8], replaces the idf factor with χ2 factor, claiming that TF-CHI
is more efficient than TF-IDF. In contrast, in a similar test, Debole et al. in
[7], compare TF-IDF with three supervised term weightings, namely, TF-CHI,
Odds Ratio (TF-OR) and Information Gain (TF-IG). The authors have found no
consistent superiority of these new term weighting methods over TF-IDF; Infor-
mation Gain TF-IG [2] which measures the amount of information obtained for
category prediction by knowing the presence or absence of a term in a document
[7,8,31]; Gain Ratio (TF-GR) first used in a feature selection method defined as
the ratio between the information gain of two variables and the entropy of one
of them [7]; Odds Ratio (TF-OR) was first used as a feature selection method by
Mladeni’c et al. [24]. It is a measure that describes the strength of association
between two random variables. A comparative study on term-weighting for TC is
made by Deng et al. in [8]. The study shows a good performance of TF-OR but is
outperformed by TF-GR; Relevance frequency (TF-RF) proposed in [20], mea-
sures the distribution of a term between the positive and the negative category,
and favors those terms that are more concentrated in positive category than in
negative categories; Inverse Category Frequency (TF-ICF) is a new supervised
TWS proposed by Wang et al. in [30]. The measure aims to favor those terms that
appear in fewer categories. More similar methods have appeared in [12,13,15].
Several comparative studies on these TWSs for both term-weighting and feature
selection has been reported in [8,22,24,31]. A new approach for term-weighting
based on (TF-IG) have been proposed for multi-labeled classification task in [23].
The method computes a score based on all categories and then subtracts it from
the original TF-IG weight. The idea is to take into consideration the weights
of terms not only in terms of positive and negative categories but also in terms
of every single category. Similar approaches have been proposed to learn TWSs
via GPin [4–6,11,25,29], however, these studies have focused on information
retrieval problem. For TC, a similar approach proposed by Escalante et al. in
[9]. However our study differs in two ways: first, Escalante et al. try to generate
new TWSs by combining existing TWS, and secondly, they learn a single TWS
for each data set whereas we learn a TWS for each category in a data set. In our
work, we generate TWSs by combining statistical information at a microscopic
level to evolve new TWSs. We also extend the study on the thematic TC. We
hope this leads into more robust non human based TWSs.

3 Genetic Programming

Evolutionary computing is based on Darwin’s theory of “survival of the fittest”.
The main scheme of evolutionary algorithms is to evolve a population of indi-
viduals that are randomly generated. Each individual represents a candidate
solution that undergoes a set of genetic operators that allow to mix and alter
partial solutions. One of the key features of evolutionary algorithms is that they
are stochastic schemes.
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3.1 Introduction

GP belongs to the family of evolutionary algorithms. It was first proposed by
Cramer [3] and then popularized by Koza [19]. Unlike genetic algorithms where
the aim is to discover a solution, the goal of GP is to find out a computer program
that is able to solve a problem.

In GP, a set of random expressions that usually represent computer pro-
grams are generated. As in all evolutionary computation algorithms, this set of
programs will evolve and change dynamically during the evolution. What makes
GP suitable for a number of different applications is that these computer pro-
grams can represent many different structures, such as mathematical expressions
for symbolic regression [27], decision trees [17], programs that control a robot
[18,21] to fulfill a certain task or programs that are able to predict defibrillation
success in patients and so on.

The quality of a candidate solution (i.e. a program) is usually assessed by
confronting it with a set of fitness cases. This step is usually the most time-
consuming step as the programs may get huge and several thousands of candidate
programs are usually evaluated at each generation. These computer programs
will undergo one or several evolutionary operators that will alter in a hope-
fully beneficial way. The most classical evolutionary operators are usually the
crossover operator that allows the exchange of genetic material (in our case sub-
trees) and the mutation operator that allows a small alteration to the program.

In the most conventional GP approach, programs are usually depicted by
trees. In GP terminology, the set of nodes are split into two sets, inner nodes
of the tree are drawn from a set of functions while the terminal nodes (leaves)
are drawn from a so-called terminal set. Depending on the problem, the set of
functions can be mathematical functions, boolean functions, control flow func-
tions (if, ...), or any functions that may be suitable to solve the given problem.
The terminal set is usually the set of inputs of the problem, e.g., parameters and
constants for symbolic regression problems, sensors for robot planning, etc.

When the stopping criterion is reached, the best individual is returned, oth-
erwise, the loop continues and the best individuals are selected (according to
their fitness). There exist numerous ways for selecting the population, the muta-
tion and the crossover operators. This is beyond the scope of this paper and the
reader can refer to [16,19] for more information.

3.2 Evolving Term Weighting Scheme Using Genetic Programming

A CF factor is a combination of statistical information. It is intended to measure
the discriminative power of a term, i.e. it tells how much a term is related to a
certain category. These statistics combined by means of mathematical operators
and functions.

We are interested in automatically evolving a CF factor (an individual) using
GP. In our approach, the learned CF factor combined to the TF factor forms a
term weighting method.



Generating Term Weighting Schemes Through Genetic Programming 97

In our context of automatically evolving term weighting methods, an indi-
vidual is a combination of the function set that is built with simple arithmetical
operators (+, −, ∗, /, log, ...) and the terminal set (constant values and inputs
to our problem).

Table 1 shows the statistical information used as terminal set for generating
formulas which represent CF factors. As it can be seen, the function set is made
of very simple arithmetical functions while the terminal set includes to the best
of our knowledge all the statistical information used to build a TWS.

As previously mentioned, programs (generated TWS) are depicted as trees.
In this problem, the terminal nodes consist of statistical information extracted
from training data, while the inner nodes are a set of defined operators that
combines the statistical information to form a new TWS (Table 3).

Table 3. Parameters used in our genetic program.

Parameter Value

Population size 100

Initial individual size 20

Number of generations 100

Function set +, −, /, ∗,
√

x, log1(x), log2(x)

Terminal set a, b, c, d, N , Nt, Nt, Ncat, Ncat, C, Ct

Mutation OnePointMutation (P = 1/individual size)

CrossOver SubtreeCrossover (P = 0.85)

Terminals and Function Set. In this study, we try to generate new TWS by
evolving the CF factor and then combines it with the TF factor. The CF factor is
a combination of constants, statistical information (N , Nt, ...), and mathematical
operators. Hence we define the terminals as the statistical information shown in
Table 1. Regarding the mathematical operators, they are defined as one of the
following (+, −, /, ∗,

√
x, log1(x) = log(1 + x) and log2(x) = log(2 + x)).

We should note that the statistical information has different types (single
value, vector, and matrix). For instance, the number of documents in the training
data N is a constant (single value), the number of documents that contains a
term t is a vector containing the number of documents for each term and finally,
the number of documents that belongs to a category cat and contains a term
t is a matrix. Operations on these different types of statistical information are
taken care of by Eigen1 library using element-wise transformations.

Genetic Operators. In GP, a set of individuals is initialized and then evolved
according to a set of genetic operators. At first, we randomly generate a ran-
dom size individuals with a max size of twenty genes (the max size could be
1 http://eigen.tuxfamily.org/.

http://eigen.tuxfamily.org/
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overpassed during the cross-over operation). As for genetic operators, we use the
elite selection and re-insertion, a subtree crossover with a probability of 0.85 and
one point mutation with a probability of 1/size of the individual.

Fitness Function. Generally, the performance of a TWS is assessed on known
benchmarks by evaluating a classification model on VSM representation of this
TWS. Numerous evaluation metrics exist that evaluate the classification model
such as f1 measure. Evaluating the classification model is a vital step that affects
the performance of the GP. However, it could be very time-consuming. Hence,
it is important to choose a good and fast machine learning algorithm. LibLinear
[10] is an open source library for large-scale linear classification. It supports
linear support vector machines.

In our study, once a new individual is generated, we perform a 3-fold cross-
validation on the training data which generates three disjoint subsets. We use two
subsets as the training set and one subset as the test set. The process is repeated
three times using each time different subset for testing. The performance is
measured using the f1 measure. The average classification performance is used
as the fitness function. The f1 measure considers both precision p (true positive
over true positive plus false positive) and recall r (true positive over true positive
plus false negative) and can be formally defined as f1(p, r) = 2rp

r+p .

4 Experiments and Results

This section presents an empirical evaluation of the proposed approach. The goal
of this study is to assess the effectiveness of the generated TWSs and compare
their performances to standard TWSs. The souce code of the implementation
needed for our experiments could be found in a public repository2.

4.1 Experimental Setup

In our experiments, we have used three widely well-known benchmarks in TC:
Reuters-21578 Benchmark Corpus3, Oshumed Benchmark Corpus (see footnote
2) and the 4 Universities data set also called Webkb4. The Reuters-21578 data
set is one of the most used test collection for TC research. We use the well-
known “ApteMod” split [14]. This version of the data set contains ninety cat-
egories, however, in our experiments, we report results only for the largest ten
categories. Oshumed dataset is extracted from the Oshumed (see footnote 1)
collection compiled by William Hersh. It includes 13,929 medical abstracts from
the MeSH categories of the year 1991. Each document in this data set belongs to
one or more categories from 23 cardiovascular diseases categories. Webkb data

2 https://bitbucket.org/mazyad/eigennlp.
3 http://disi.unitn.it/moschitti/corpora.htm.
4 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/.

https://bitbucket.org/mazyad/eigennlp
http://disi.unitn.it/moschitti/corpora.htm
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
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set contains WWW-pages collected from computer science departments of var-
ious universities in January 1997 by the World Wide Knowledge Base (Webkb)
project of the CMU text learning group. In this experiment, we kept only the
four largest categories (“student”, “faculty”, “course” and “project”), and we
split it into three random folds where two folds are used for the training set and
one fold for the test set.

For all three data sets considered in the experiments, a default list of stop
words, punctuation and numbers are removed, lower case transformation and
Porter’s stemming are performed.

Furthermore, for each experiment, a binary transformation is applied. That
leads to multiple distinct single-label binary task, one for each label (see
Sect. 2.1). Each task could be treated as an independent experiment with its
own data set.

As mentioned above, each data set has been split into training and test
subsets. Table 4 shows, for each data set, the number of documents in the training
and test subsets, the number of classes, the number of terms, the size of smallest
category and the size of the largest category.

TWSs are evolved using the training subset (see Sect. 3.2). Finally, the test
subset is used to evaluate the performance of the generated TWS. And finally,
for each data set, we report the f1 measure (see Sect. 3.2).

In order to obtain more reliable results, we have performed 20 runs on each
task. After having evaluated the generated TWSs, we report the performance
average and standard deviation over the 20 runs. In addition, we report the
maximum and minimum f1 score obtained across the 20 runs (for each run, only
the last generated TWS is taken into account).

Tables 5, 6 and 7 show the results obtained by the generated TWSs and the
best baseline using linearSVM. Table 8 shows the average classification perfor-
mance of the generated TWSs on the test subset of the training data (Validation)
and the performance on the test data (Test). The goal of this experiment is to
assess the learning ability and to warn us of eventual overfitting. Table 9 shows
the average classification performance of a random learned TWS for a single-
label binary task on the complete data set. This is important in order to know
whether our GP-Based TWS has good generalization performances.

Table 4. Statistics on the selected data sets used for our experiments (training/test).

Reuters Oshumed Webkb

Number of documents 7769/3019 6286/7643 2803/1396

Number of classes 90 23 4

Number of terms 26000 30198 7890

Size of the smallest category 1/1 65/70 336/168

Size of the largest category 2877/1087 1799/2153 1097/544
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4.2 Results

First, a fast study of the Tables 5, 6 and 7 shows that the best baseline TWS is
different for each binary task. Therefore, a multi-labeled task requires different
TWSs for each category. Using different TWSs could lead to better results.
However, the problem is to recognize the best TWS for a specific task. Finding
the TWS by cross-validation does not mandatory return the best TWS.

Regarding Reuters-21578, the generated TWSs and the baseline schemes have
similar performances. However, on Oshumed and Webkb data sets, the GP-
Based TWSs outperform the best baseline schemes. Reuters-21578 is one of the
most studied data-set in TC for TWS making the task of finding better TWS
harder. Moreover, it is the most unbalanced data set in the study which makes
generalization harder.

Table 5. Classification performance on top 10 categories of Reuters-21578 obtained
with the generated TWSs and the best standard TWS. Best results are bolded.

GP Best TWS

Label f1 Min Max f1 TWS

Earn 98.34 ± 0.09 98.24 98.54 98.38 tf.idf

Acq 96.93 ± 0.23 96.55 97.54 97.10 tf.idf

Money-fx 79.60± 0.50 78.16 80.45 78.63 tf.idf

Grain 94.25± 0.63 93.10 95.22 93.43 tf.rf

Crude 90.01± 0.81 88.27 90.94 88.24 tf.rf

Trade 79.10± 1.21 77.69 80.18 78.03 tf.rf

Interest 75.16 ± 0.50 74.45 76.19 76.19 tf.idf

Ship 80.52± 1.54 77.84 82.93 78.95 tf.or

Wheat 88.11 ± 1.26 86.12 90.96 90.20 tf.chi

Corn 92.80 ± 0.27 90.83 93.94 93.91 tf.chi

Average 87.48± 0.70 86.13 88.69 87.30

From Table 8, we can see that the performance of generated TWSs on the
test subset of the training data during the cross-validation (See Sect. 3.2) is very
similar to the performance on the test data. In addition, the standard TWSs have
different results. This is interesting as it suggests that there is no overfitting and
that further learning can improve the performance.

From Table 9, we can see that the average performance (macro-f1) of the
generated TWSs outperforms the best baseline on the three corpora which means
that the three learned TWS have good generalization performance.

Finally, compared to the results obtained in [9] on Reuters-21578 and Webkb,
we have similar results. Note that, in [9], they used Reuters-10 data set which
contains only documents from the top 10 categories of the Reuters-21578 data
set, whereas we use Reuters-21578 “ModApte” split which contains documents
from 90 categories.
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Table 6. Classification performance on Oshumed data set obtained with the generated
TWSs and the best baseline of the standard TWSs.

GP Best TWS
L f1 Min Max f1 TWS
C01 68.19±1.00 65.91 70.71 64.36 tf.or
C02 41.28±1.20 38.45 43.51 36.38 tf.or
C03 76.54±3.28 72.03 81.21 78.23 tf.or
C04 80.06±1.48 77.67 81.72 80.06 tf.chi
C05 59.48±0.20 59.05 60.59 52.85 tf.or
C06 73.99±1.29 71.49 75.76 71.44 tf.or
C07 41.40±3.35 34.86 47.45 32.6 tf.or
C08 63.97±2.51 59.13 67.69 61.34 tf.or
C09 53.75±2.63 50.85 58.43 48.00 tf.or
C10 57.00±2.33 51.05 59.53 50.2 tf.rf
C11 67.78±1.06 65.52 69.23 66.67 tf.or
C12 76.72 1.10 73.52 78.25 72.86 tf.or

GP Best TWS
L f1 Min Max f1 TWS
C13 66.48±0.47 64.72 67.92 63.70 tf.or
C14 80.08±0.39 79.22 80.55 77.11 tf.idf
C15 65.98±0.71 64.16 67.20 61.53 tf.chi
C16 33.54±0.89 31.14 35.41 28.00 tf.or
C17 64.85±0.90 61.87 66.87 59.24 tf.chi
C18 61.21±1.50 57.50 65.12 61.22 tf.or
C19 41.60±2.04 38.23 45.01 39.84 tf.or
C20 71.61±0.28 70.96 72.07 69.62 tf.or
C21 65.55±0.32 64.18 67.56 64.37 tf.chi
C22 10.31±0.12 8.33 14.37 4.21 tf.or
C23 46.77±0.08 45.59 47.20 46.15 tf.idf
Avg 59.48 1.26 56.76 61.89 56.08

Table 7. Classification performance on Webkb
data set obtained with the generated TWSs and
the best baseline of the standard TWSs.

GP Best TWS

L f1 Min Max f1 TWS

Student 90.29± 0.50 89.05 90.90 90.11 tf.rf

Faculty 86.62± 0.15 85.69 87.81 86.21 tf.rf

Project 80.82± 0.64 77.48 81.76 80.25 tf.rf

Course 94.47± 0.34 93.86 96.08 93.56 tf.rf

Avg 88.05 ±0.41 86.52 89.14 87.53

Table 8. Average classification
performance for validation phase
and test phase.

Validation Test

Reuters 89.15± 0.42 87.48± 0.70

Oshumed 59.74± 0.9 59.48± 1.26

Webkb 87.74± 0.31 88.05± 0.41

Table 9. Average classification performance of random TWS learned for a single-label
task on its corresponding data set and the best baseline. The selected TWS is randomly
chosen between the best generated TWSs for each category.

GP-Based Baseline

Data set Prefixed formula TWS f1 f1 Best baseline

Reuters ∗ ∗ C ∗ //acN log2c C C ∗ C ∗ ( a
c∗N ∗ log(2 + c)) 86.88 85.92 tf.rf

Oshumed /d/+Ntlog2 Cta
a

d∗(Nt+log(2+Ct))
60.30 57.10 tf.chi

Webkb log1 log2 a log(1 + log(2 + a)) 88.43 87.53 tf.rf

5 Conclusion

In this paper, we have studied the benefits of using genetic programming for gen-
erating term-weighting schemes for text categorization. Unlike previous studies,
we generate formulas by combining statistical information at a microscopic level.
This kind of generation is new, and we can conclude that :
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– Different data sets require different formulas. This means that having a good
generic formula is really hard to find.

– Within a corpus, it is even better to use a different formula for each category.
The hard task is to find out the best for each one.

– Genetic programming is able to find very good formulas which outperform
standard formulas given by experts in the literature.

– Eventually, even if the generated formula is specific to a given category, results
show that the best formula for one category is generic enough to be good (but
not best) for other categories.
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Abstract. In this paper, a clustering based surrogate is proposed to
be used in offline data-driven multiobjective optimization to reduce the
size of the optimization problem in the decision space. The surrogate is
combined with an interactive multiobjective optimization approach and
it is applied to forest management planning with promising results.

Keywords: Data-driven optimization · Surrogates · Clustering ·
Preference information · Decision maker · Boreal forest management

1 Introduction

Recently, emphasis on optimization has been shifting from model-based to data-
driven optimization where the optimization problem is formulated based on avail-
able data. The size of the data can sometimes be large which means that the
optimization problem(s) to be solved become large as well increasing their solu-
tion times. This is especially challenging in multiobjective optimization having a
large number of objective functions. In more details, this is because interaction
with a human decision maker (DM) is required to find satisfactory solutions to
such problems and long solution times can make the interaction less efficient.

Surrogate-assisted optimization approaches are often used to solve compu-
tationally expensive optimization problems both for single and multiobjective
problems (see, e.g., [2,4]). Typically, computational expensiveness is considered
as the time taken to evaluate objective and/or constraint functions since that
can take a long time for e.g. simulation or experiment-based models. In data-
driven optimization, the expensiveness is typically not in evaluating the objective
function values, but in the size of the problems solved (in the decision and/or
objective space). The main idea in surrogate-assisted optimization is to use a
relatively small sample of expensive function evaluations to train surrogate func-
tions that approximate the expensive functions but are faster to evaluate [2,4].
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In this paper, we introduce a surrogate-assisted approach for data-driven
multiobjective optimization problems that are based on large data sets motivated
by a case study in forest management described later. We assume that all data
is available at the beginning of optimization and no new data can be obtained
(often referred to as offline data-driven optimization [15]). Further, we consider
linear problems with discrete decision space. The method uses clustering in the
decision space as a surrogate to decrease the size of the optimization problem by
reducing the number of similar variables. The resulting optimization problems
are not as accurate as the original problem but are faster to solve. The proposed
surrogate is combined with an interactive multiobjective optimization approach
that iteratively utilizes preferences of a DM in finding a most preferred solution
for the multiobjective problem considered.

In the literature, one approach has been presented that is somewhat similar
to what we present, in [15] where the design of a trauma system was optimized.
Due to the large amount of data available, the data was first clustered and the
cluster centers were then used as data in evolutionary optimization of finding
non-dominated solutions for a bi-objective problem. In our approach, we use
mathematical programming together with interaction with a DM to find the
most preferred PO solution. Furthermore, hierarchical clustering was used in
[15] to represent the real hierarchy of the data which is not necessary in our case
study. Further, functional analysis of variance decomposition was used in [12] to
decompose a multiobjective optimization problem both in objective and decision
spaces. Then, solution of the original problem was constructed by solutions of
the decomposed problems. A different approach from ours was presented in [1]
where clustering was used to find versatile solutions after finding a set of non-
dominated solutions by multiobjective optimization. To summarize, there does
not exist similar approach in the literature as far as we know.

As a case study to demonstrate the developed approach, we consider a boreal
forest management problem where both the economical and biodiversity related
objectives are considered. The underlying data gathered from around 30 000
forest stands simulated 50 years into future (with seven management options)
was used to formulate a four objective combinatorial optimization problem which
was then solved by interacting with an expert DM. Previous considerations of
similar problems have included directly using the combinatorial optimization
problem together with the epsilon constraint method which optimizes only one
of the objectives while considering others as constraints [9,13,14]. When using
our proposed approach, it is possible to (1) consider larger problems (i.e., more
stands and/or management options) with comparable results in fewer time, and
(2) more conveniently handle the conflicting objectives and inherent trade-offs
while interacting with an expert DM.

The rest of the paper is organized as follows. First some background infor-
mation is given in Sect. 2, while the proposed clustering based optimization
approach is described in Sect. 3. Our case study and the obtained results are
described in Sects. 4 and 5, respectively. Finally, conclusions and future research
ideas are given in Sect. 6.
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2 Background

2.1 Multiobjective Optimization

When multiple conflicting objectives are concerned, the optimal solutions are
often called Pareto optimal (PO) which means none of the objective values can
be improved without impairing some other ones [6]. In this paper, we consider
multiobjective integer linear programming problems of the form

maximize

{
f1(x) =

n∑
i=1

m∑
j=1

c1ijxij , . . . , fk(x) =
n∑

i=1

m∑
j=1

ckijxij

}

s.t.
m∑
j=1

xij = 1, ∀i = 1, . . . , n,

xij ∈ {0, 1}.

(1)

The problem includes k objective functions to be maximized. Further, i ∈
{1, 2, . . . , n} denotes index for the ith decision variable while j ∈ {1, 2, . . . ,m}
denotes index for different values for the decision variables. Note that categor-
ical variables having several possible values in the original problem have been
converted into binary variables, i.e., xij ∈ {0, 1}. Coefficients clij denote the
objective values for the decision variable values xij for the lth objective function
and they are attained from data.

A feasible solution x∗ for problem (1) is called PO if there does not exist
another feasible solution x such that fi(x) ≥ fi(x∗) for all i = 1, . . . , k and
fj(x) > fj(x∗) for at least one j. Note that there can exist infinitely many PO
solutions that are mathematically equally good, i.e., none of them is better than
others without any additional preference information.

Many different approaches have been developed over the years for solving
multiobjective optimization problems (see, e.g. [3,6]). In this paper, we will con-
centrate on interactive approaches [7], where a DM provides preference informa-
tion in order to find the most preferred solution for the problem considered. The
general idea of interactive approaches is that first some PO solution is computed
and shown to the DM for evaluation. The DM indicates how that solution should
be improved if she is not satisfied with it by providing preference information.
The type of preference information depends on the interactive method used.
Then, the preference information is taken into account and new PO solution(s)
is computed and again shown to the DM for evaluation. This iterative process
continues until the DM is satisfied.

To solve problem (1) with the help of a DM, we will use a surrogate approach
based on clustering (described in more details in Sect. 3) combined with the syn-
chronous NIMBUS method. Synchronous NIMBUS [8] is an interactive method
based on classification where preference information is indicated by classifying
objective functions into different classes at the current PO solution. More pre-
cisely, an objective function can be classified either (1) to be improved as much
as possible, (2) to be improved until a given aspiration level zasp, (3) to retain
its current value, (4) to be allowed to impair until a given bound zbnd, or (5) to
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change freely (i.e., not interesting at this iteration). A feasible classification is
such that there should be at least one objective function in the first two classes
and in the last two classes since if any improvements are required, some impair-
ments have to be allowed. Then, the original multiobjective problem together
with the preference information are used to formulate up to four different single
objective scalarized subproblems that are then solved by using a suitable single
objective optimizer. The resulting solutions are proven to be PO [8].

2.2 Forest Management

In Fennoscandia, much of the countries are dominated by Boreal forests, which
provide a wide range of ecological, economic, and social values. Most of these
forests can be considered to be semi-natural, where limited silvicultural and
management actions are done infrequently throughout the development of each
forest stand (a relatively homogeneous parcel of forest). A forested stand in
Fennoscandia follows rather similar development following a clear felling (the
removal of the trees in a specific area). Depending on the site, trees are either
planted, seeded, or allowed to grow through natural regeneration (where seeds
provided from the forests surrounding the stand, and specific trees left within the
stand for this specific purpose). Following this, within 5 to 10 years, tending of
the stand may be required to remove grasses and shrubs. Once the forest stand
is established it is left to grow. Throughout the forest stands development the
forest stand can be thinned (the selected removal of specific trees) several times
prior to clear felling, where the process is repeated.

From a forest management perspective, the specific actions conducted in a
forest stand can vary according to intensity and timing. For instance, thinnings
may or may not be performed, and final felling can be delayed, done years prior
to the expected maturity or delayed indefinitely. Each management decision will
impact the quantity of timber provided, and ecosystem services provided from
the forest stand. At a landscape (500–5000 ha) or regional scale (500–20000 km2)
managing forests becomes a combinatorial optimization problem where the deci-
sion variables describe the number of stands and the number of options allowed
to for managing each forest stand. Managing the use of forests involves significant
conflicts between different objectives. Economic objectives conflict with ecologi-
cal objectives, and conflicts can arise between different ecological objectives. The
quantification of the economic and ecological objectives is done through forecast-
ing future forest growth through forest simulators. In Fennoscandia, there are
multiple varieties of forest simulators available, and each software package utilize
over four hundred empirically based models to predict forest development and
growth.

3 Clustering Based Interactive Multiobjective
Optimization Approach

The main idea of the developed surrogate is to cluster the decision variables in
such a way that similar variables are represented in the optimization problem
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through a representative one within the cluster, thus, reducing the size of the
optimization problem. In this paper, we consider only discrete decision variables,
but our approach can also be extended to mixed variables. To solve the resulting
multiobjective optimization problem, we utilize here the synchronous NIMBUS
method as already mentioned, which leads us to solve a series of single objective
subproblems. By reducing the number of decision variables, the resulting sub-
problems are easier/faster to solve which reduces the time that the DM needs
to wait between interactions.

3.1 Clustering as a Surrogate

The core of forming the surrogate is clustering the discrete decision variables
using some hard clustering method: original n variables are assigned to K ≤ n
clusters according to their similarity in values. To guide how the clustering is
performed, it is important to define a similarity measure, i.e., how the similarity
of variables is defined. Even though clustering using expert knowledge is possible,
the numerical similarities of the variables in each cluster are more important.
As the method is used to reduce the computational burden, manual clustering
would require extreme human effort due to large number of decision variables.

The clustering based surrogate is built on a large number of round clusters
used to approximate the decision space. In the traditional clustering, the number
of clusters K is supposed to match the real number of different classes in the
data, and it is one of the most important elements of clustering. However, in
the clustering based surrogate this aspect is not as important but the focus
of designing clusters should be the ability to compress and represent the data
accurately and to be sufficient for its purpose. On occasions, it could be profitable
to use more clusters than compared to what would be otherwise optimal to
improve accuracy.

In traditional clustering, the shapes of the clusters are supposed to capture
and separate different classes from the data. In the clustering based surrogate,
this does not need to be the case as the focus could be on appropriately approx-
imating and compressing the data. Especially when the number of clusters is
“too large”, the most suitable shape for clusters is rounded. This enables that
all the clusters can be handled similarly as local approximations.

When the n variables have been assigned into K clusters, the most “repre-
sentative” variable xi is selected from each cluster i ∈ {1, 2, ...,K} as a proxy
variable. As the clusters are rounded, the most representative should be the
center of each cluster. If the chosen clustering method is not using existing vari-
ables as centers, then the variable closest to the center can be used as proxy. The
proxy variables that are representing all the variables of individual clusters are
then already existing variables. Note that if variables in the same cluster have
different numbers of discrete value alternatives, the proxy variable’s ability to
represent all the variables in the cluster is greatly impaired.

The chosen proxy variable xi is denoted by yi and it is assigned a weight wi

according to the proportion of the variables in the given cluster i. For example, if
there are 356 variables in a single cluster i, its corresponding weight is wi = 356

n .
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In addition, the coefficients clij are renamed to dlij , and the previously presented
multiobjective integer linear programming problem (1) is transformed to

maximize

{
n

K∑
i=1

m∑
j=1

wid
1
ijyij , . . . , n

K∑
i=1

m∑
j=1

wid
k
ijyij

}

s.t.
m∑
j=1

yij = 1, ∀i = 1, . . . , n,

yij ∈ {0, 1},

(2)

where i ∈ {1, 2, ...,K}, denotes index for proxy variable, j ∈ {1, 2, ...,m} index
for discrete value alternatives for each proxy variable i, and wi the weighting
coefficient for the proxy variable. Value dlij denotes the lth objective value of the
proxy i when the jth discrete value alternative is chosen. For ith proxy variable,
yij has value 1 if jth value is chosen for proxy variable i, and otherwise 0. The
parameter n is the number of original variables. As can be seen, if K = n, then
wi = 1

n for all i ∈ {1, 2, ...,K} and this formulation is identical with problem (1).
Thus, this guarantees the validity of this approach of combining the described
surrogate and optimization.

Building the cluster-based surrogate is summarized as follows:

1. Cluster n decision variables into K clusters by using some clustering method.
2. For each K clusters, choose the center of the cluster as the proxy variable if

the center is an existing variable. Otherwise, choose the variable closest to
the center as the proxy variable.

3. Solve multiobjective optimization problem (2) by using the values of the ith
proxy variable for all the variables in the ith cluster.

The proposed surrogate is based only on local approximations of the decision
space, so the results of the clustering based multiobjective optimization prob-
lem naturally include some approximation error. Due to the structure of the
surrogate, the larger the number of the clusters used the more accurate is the
surrogate and, thus, the result of optimization. On the other hand, since the
idea of clustering is to reduce the number of decision variables, the amount of
reduction is dependent on the number of clusters, so that the less clusters there
are, the lighter the computational burden. It is thus evident, that the accuracy
and the ability to compress the decision space are contradicting features.

In multiobjective optimization, the different objectives are typically contra-
dicting with each other and this is likely to show in the clustering also. In prac-
tice, this means that depending on the chosen clustering paradigm, approxima-
tion errors for different objectives may be different. When using the clustering
based surrogate in multiobjective optimization, this problem becomes more evi-
dent as different objectives may reach their real optima to different degrees.

As the scalarized subproblems of problem (1) used here are linear [8] with
integer variables, the resulting values in the objective space may be discontinuous
in its original state. When using the clustering based surrogate and combining
several decision variables, this trait will be emphasized and there will be “bigger
holes” in the PO front (i.e. the set of all PO solutions in the objective space).
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Finding the most preferred PO solution from this kind of PO front can be quite
challenging depending on the multiobjective method used. Therefore, we have
decided to use the synchronous NIMBUS method, which uses up to four scalariz-
ing functions [8] that can be used for any kind of PO fronts, even discontinuous,
to find different PO solutions using the same preference information. To sum-
marize, we are much more likely to find an acceptable solution even from such
a challenging PO front.

For the scalarizing functions used in the synchronous NIMBUS method it
is important to attain ranges for all the objectives within the PO front, i.e.,
to calculate ideal and nadir vectors. This is usually done by computing the
optimal solutions for all the single objective optimization problems (forming the
ideal objective vector) and then estimating the nadir values by using a so-called
pay-off table [6]. When using the clustering based surrogate, these values can
be calculated with optimization using the surrogate, but if possible, the optima
based on the original variables and problem should be used instead. Even though
the scalarizing functions in synchronous NIMBUS were used with the clustering
based surrogate, it would still be better to use the original ideal and nadir values
in their formulations. The reason is that the surrogate based ideal and nadir
values are more averaged because of the approximations used in the surrogate.

The interactive solution process itself remains the same even when using the
clustering based surrogate in optimizations. The DM gives her/his preferences,
explores different PO solutions, and finally chooses the most preferred PO solu-
tion as usual with interactive approaches. The main effect of using the surrogate
is that it reduces the computational burden significantly and so enables more
seamless and less delayed interaction during the iterative solution process.

When the preferred PO solution is found using the clustering based surro-
gate, it would be good to know how far it is from the real PO front, i.e., what
is the approximation error introduced by using the proposed surrogate. This
is required as the usage of any surrogate always introduces some error, which
may misguide optimization and, thus, also the selection of the most preferred
solution. To overcome this problem, the values of the chosen surrogate based
optimal solution can be used as a reference point for the achievement scalarizing
function (see, e.g., [8]) and optimize it with the original objective functions. As
this would require using the original uncompressed decision space and be poten-
tially computationally very expensive, it may not always be possible to solve the
optimization problem in a reasonable time.

3.2 Implementation

The clustering based surrogate approach is not dependent on a specific clustering
algorithm, a similarity metric, or a way of choosing the most representative
variable, as these are always case specific. As an example, in the following case
study the clustering based surrogate is constructed using commonly known K-
means algorithm with cosine distance and the variable closest to the Euclidean
center of each cluster is chosen as the representative one.
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The actual clustering was implemented and verified using Python libraries
and Jupyter Notebooks1. To solve the resulting multiobjective problem, IND-
NIMBUS [10], an implementation of the synchronous NIMBUS method, was
used. The single objective subproblems produced were solved with the CPLEX
optimizer. Note that all solutions produced by synchronous NIMBUS are PO if
the single optimal subproblems are solved to optimality [8].

A screenshot of the graphical user interface of IND-NIMBUS is shown in
Fig. 1. On the left hand side, the current PO solution is shown in the Classifica-
tion panel as a bar chart. Each horizontal bar represents an objective function
and the end points denote the nadir and ideal values, respectively. For maxi-
mized objective functions the colored part starts from right and, thus, the less
color the better the value. In this case, all objectives are to be maximized. The
DM can indicate preferences by clicking different parts of the bars. If one clicks
on the colored part, it means that the objective needs to be improved. On the
other hand, if one clicks on the non-colored part, it means that the objective is
allowed to impair. All the PO solutions computed during the solution process
are shown in the top right panel called Alternatives while the most interesting
ones found so far can be dragged to the Best candidates panel in bottom right.

Fig. 1. A screenshot of IND-NIMBUS showing interaction with the DM.

4 Case Study: Multiobjective Forest Management

A forest landscape from Central Finland is used as a demonstrative example
of the clustering approach. Information on the current state of the forest was
collected by the Finnish Forest Center through field measurements. The forest

1 Code available in https://github.com/josejuhani/gradu-code.

https://github.com/josejuhani/gradu-code
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information represents 68700 ha, organized as 29666 stands. To predict the future
forest resources, a forest simulator (MOTTI [11]) was used. The forest simulator
predicted forest growth for a 50-year period, according to a pre-determined set of
management alternatives. Depending on the initial stand characteristics, a range
of seven management alternatives were generated. These alternatives ranged
from setting the forest aside (doing nothing), conducting the typical management
(business as usual), with a variety of extending/shortening the final harvest and
including or excluding the option to thin the forest prior to final harvesting. The
simulated data is openly available at https://dvn.jyu.fi/dvn/dv/Boreal forest,
and more detailed descriptions of the data and simulations can be found in
[9,13,14].

Following the simulation of the set of different management alternatives, indi-
cators representing a range of values were extracted. This set of indicators rep-
resented economic and ecological interests, and the set was selected to represent
potential interests of specific stakeholders. The set of indicators (i.e., objective
functions) was: timber revenue, carbon storage, deadwood volume, and a species
habitat availability. The timber revenue was measured as the net present value
revenue using a 3% discount rate. Carbon storage was measured as the tonnes
of carbon contained within the forest (including the carbon in the soil, in the
deadwood and in the standing trees). The deadwood volume was evaluated as
a diversity weighted index: this is ecologically justifiable proxy for deadwood-
inhabiting biodiversity [5]. The species habitat availability is evaluated as done
in [9] which aggregates high quality habitat for six indicator species.

The multiobjective optimization problem was formulated as follows:

maximize

{
n∑

i=1

7∑
j=1

Tijxij ,
n∑

i=1

7∑
j=1

Cijxij ,
n∑

i=1

7∑
j=1

Dijxij ,
n∑

i=1

7∑
j=1

Sijxij

}

s.t.
7∑

j=1

xij = 1, ∀i = 1, . . . , n,

xij ∈ {0, 1},

(3)

where Tij is the timber revenue, Cij is the amount of carbon in storage, Dij is
the volume of deadwood, Sij is the habitat availability, each provided by stand i
from management alternative j. Note that all the objective values are presented
as per hectare. The decision variable values xij denote the jth management
alternative selected for stand i. The total number of stands n = 29666.

This forest management problem has been solved earlier, focusing on various
conservation related issues. In [9] the focus was on understanding the impacts
conservation has on the profitability of forest management. The range of com-
promise solutions and the conflicts between various solutions has been explored
in [13] and [14]. The common feature between these earlier solutions is the lack
of integration with the DM.

For solving this forest management problem, the implementation of the clus-
tering based surrogate presented in Sect. 3.2 was used. When empirically tested,
the accuracy of the surrogate increased linearly with the increase of the number

https://dvn.jyu.fi/dvn/dv/Boreal_forest
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of clusters. Based on this, it was decided to choose 600 clusters for the surro-
gate as that amount kept the time between interactions in about 10 s. For the
case study, the ideal and nadir values were obtained by using the original func-
tions as previously suggested. These were verified with the previous research
in [14]. For the chosen clustering, the optimal solutions for the four individ-
ual objective functions differed from the known real optima by 0.15%, 0.47%,
2.67% and 1.38%. Further, the usefulness of clustering was verified by comparing
the approach against random clustering. The accuracy with random clustering
in optimizing each objective individually varied between 3.2%–17.8% indicating
poor performance of random clustering (results based on 10 independent runs).

5 Results and Discussion

The interactive solution process was performed by using the implementation
described in Sect. 3.2. The DM involved has significant experience in both
research and implementation of forest management solutions. To start the solu-
tion process, a neutral compromise solution with values (2710, 58.3, 2.76, 0.26)
(obtained by using the midpoint between ideal and nadir values as a reference
point), i.e., a solution where all the objectives were balanced, was shown to
the DM. Starting from that solution, the DM wanted in the second iteration
to improve carbon storage and habitat suitability while allowing timber revenue
and deadwood volume impair. Based on those preferences, four fairly similar new
alternative solutions were produced as shown in Table 1. From the new solutions
obtained, the DM deduced that he would like to improve timber revenue.

As the current solution for the third iteration, the DM chose the first solution
(2070, 60.4, 3.02, 0.28). He wanted to see how solution changes if timber revenue
is desired to improve until 2500 and the others left to reach for the values set
already in the previous iteration except for small increase for carbon storage.
Now, the DM wanted to see two new solutions (i.e. use only two scalarizations)
and optimization produced two new alternative solutions shown in Table 1.

The DM was quite happy with both the solutions, slightly preferring the
second one which had higher timber revenue (2420) when compared to the first
one (2280). He also realized that deadwood volume was not changing much.
However, he wanted to see how would a solution in between these too look like
and, thus, gave preferences as (2400, 59.5, 2.81, 0.28). After optimization, the
solution (2380, 59.4, 2.87, 0.28) was obtained which the DM was happy with. It
had a moderate amount of timber revenue and quite high carbon storage and
overall it was focusing more on the ecological aspects of forest management.

Finally, the DM wanted to still see what happens to ecological objectives
if the timber revenue is maximized while letting the other values change freely.
That should produce an alternative solution focusing on the monetary aspect and
enable comparison with the preferred solution already found. As expected, the
two solutions found maximizing the timber revenue had poor values for all the
ecological objectives and, thus, supports the selection of the balanced solution
having objective values (2400, 59.5, 2.81, 0.28). The DM was now satisfied and
the solution process was finished.
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Table 1. Results of iterations in solving the multiobjective problem.

Iter Issue Timber Carbon Deadwood Habitat

revenue [e] storage [mgC] volume [m3] suitability

Ideal 3640.0 64.8 3.18 0.29

Nadir 450.0 41.2 1.16 0.17

1 Init. Sol. 2710.0 58.3 2.76 0.26

2 Cur. Sol. 2710.0 58.3 2.76 0.26

Classif zbnd
1 = 2070.0 zasp2 = 59.2 zbnd

3 = 2.19 zasp4 = 0.28

2070.0 60.4 3.02 0.28

2180.0 60.0 2.92 0.28

2250.0 59.9 2.92 0.28

2150.0 60.1 2.91 0.28

3 Cur. Sol. 2070.0 60.4 3.02 0.28

Classif zasp1 = 2500.0 zbnd
2 = 59.9 zbnd

3 = 2.19 zbnd
4 = 0.28

2280.0 59.9 2.99 0.28

2420.0 59.3 2.83 0.27

4 Cur. Sol. 2420.0 59.3 2.83 0.27

Classif zbnd
1 = 2400.0 zasp2 = 59.5 zbnd

3 = 2.81 zasp4 = 0.28

2380.0 59.4 2.87 0.28

5 Cur. Sol. 2380.0 59.4 2.87 0.28

Classif zasp1 = 3640.0 zbnd
2 = 41.2 zbnd

3 = 1.16 zbnd
4 = 0.17

3630.0 41.2 1.16 0.17

3630.0 41.8 1.53 0.19

Final Sol. 2380.0 59.4 2.87 0.28

6 Conclusions

Using the developed cluster-based surrogate approach to find nearly optimal
solutions, a quick interactive decision process was enabled. Although the DM
only went through a small number of iterations, the process was quick enough to
maintain interest in the decision making process until a final acceptable solution
was found. By using the implemented decision support tool, the DM was able
to conveniently steer the solution process towards a final solution emphasizing
ecological values while still having moderate amount of timber revenue. In addi-
tion, the nature of the conflicts between different objectives considered became
more clear to him.

While this forest management problem has been solved in the extensive form
earlier, it can be made more realistic. In this case, only a limited number of
predefined management alternatives were used, which prevented the problem
from being too large. Additionally, we did not explore the temporal sequence of
planning outcomes, nor were spatial relationships maintained. As future research
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is concerned, the proposed cluster-based approach will be extended to mixed
variables. In addition, it will be tested with larger and more realistic data sets
in forest management as well as applied to different types of applications.
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Abstract. Data science is an interdisciplinary field of methods, processes,
algorithms and systems to extract knowledge or insights from data. University of
Winchester Business School, UK is developing an undergraduate degree pro-
gramme in Data Science which brings together student-centred and business-
driven approaches: positioning the course for the interests of students and
requirements of employers. The new programme follows the expectations of
relevant subject benchmark statements and is built on activities which focus on
different aspects of data science, drawing on some existing modules as a base. It
integrates key themes in information management, data mining, machine
learning and business intelligence. This paper presents the ongoing development
of the Data Science programme through the key aspects in its conception and
design. Understanding the employment market while defining specific skills sets
associated with potential graduates is always important for courses in higher
education. The Skills Framework for the Information Age (SFIA) has been
adopted and a novel mapping proposed for the interpretation of employability
skills related to data science. These are then linked to an adapted process model
as well as the specialist modules across academic levels.

Keywords: Subject benchmarks � Skills frameworks � Business analytics �
Data mining � Machine learning � Business intelligence � Analytical tools �
SFIA

1 Introduction

Data Science is an emerging field that requires multi-disciplinary principles to guide the
extraction of knowledge from data. In the Business context, the ultimate goal of data
science is improving decision making and its links to Big Data and other data-driven
technologies. Within the University of Winchester (UoW) Business School in the UK,
a new BSc (Hons) Data Science programme is under development which recognises
the increasing importance to organisations of knowledge as a commodity. The cur-
riculum is adopting a distinctive structure and pedagogy, building on the well-
established Digital & Technology Solutions Degree Apprenticeship as well as the
newly-validated Computer Science suite of courses. This is articulated particularly
through some specialist modules where technology and business-oriented activities are
designed to focus on different aspects of data science, namely: information manage-
ment, data mining, machine learning and business intelligence.
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This paper describes the ongoing development of the Data Science programme and
starts with the expectations of relevant QAA subject benchmark statements in the UK,
including Business and Management; Computing; and Mathematics, Statistics and
Operational Research. Understanding the employment market while defining specific
skills sets associated with data science is important for corresponding courses in higher
education. Within the same Sect. 2, the national Skills Framework for the Information
Age (SFIA) has been adopted to provide the necessary underpinning for the pro-
gramme, which allows a novel interpretation of data science skills.

Section 3 extends the theme of data science in practice by adapting a cross-industry
standard process model as a methodology to guide relevant activities and tasks, which
are linked to SFIA-related skills from a business-driven perspective. Analytical tools
and publicly available data sources have been recommended here in order to facilitate
student projects in terms of data pre-processing, visualisation and analytics.

The Data Science curriculum design has been illustrated in Sect. 4 through a
graphical representation across the three academic levels, which gives an indication of
the specialist modules versus the more diverse. All of the specialist modules are then
linked with relevant SFIA skills through a visual mapping. The paper draws to a close
with some concluding remarks and a pointer to future work in relation to the EDISON
Data Science Framework.

2 Academic and Professional Frameworks

2.1 Subject Benchmark Statements

Considering Part A of the UK Quality Code for Higher Education, which covers setting
and maintaining academic standards, there is a range of Subject Benchmark State-
ments which UK universities are required to meet across their undergraduate provision
[9]. There is no particular statement for Data Science as yet, but it is relevant to
consider three current subject benchmarks in the context of this paper.

The Business and Management benchmark statement from 2015 [10] generally
applies to the various honours degree courses in business studies and management
studies, including (e.g.) organisational development and strategic management. How-
ever, it can also be used to inform a wider provision, including those courses focused
on business functions or sectors. A broad, analytical and highly integrated study of
business and management is expected within a framework encompassing organisations,
business environment and management. Environment here comprises a range of fac-
tors, notably the digital and technological, while management includes rational analysis
and other processes of decision making within organisations.

Graduates from Business Schools should be able to demonstrate knowledge and
understanding in several areas: one of these is information systems and business
intelligence. Skills of particular relevance include problem solving and critical analysis;
research – ability to analyse and evaluate a range of business data, sources of infor-
mation and appropriate methodologies … for evidence-based decision making; and
numeracy – use of quantitative skills to manipulate data, evaluate, estimate and model
business problems [10].
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The next subject benchmark considered here is that for Mathematics, Statistics and
Operational Research from 2015 [12]. It applies to cognate programmes of study in
MSOR including (e.g.) computational mathematics, numerical analysis and statistical
modelling. There are so many real-world applications of mathematics, which has its
roots in the systematic development of methods to solve practical problems in areas
such as construction and commerce. Understanding of the world is facilitated by
identifying and codifying patterns, enabling deeper relationships to be found than could
otherwise have been possible from observation or unaided reasoning.

Statistics has been characterised in the MSOR statement as the science of drawing
conclusions from data. It includes methods for describing and visualising data to reveal
patterns within it as well as the underlying processes producing such data, to extract
information and predict future outcomes. The subject area of analytics has become
increasingly associated with operational research in recent years. While the name OR is
generally well understood, some provision has adopted other titles across the sector,
notably: management science, business analytics, business decision methods and
business systems modelling [12].

It is worth noting that the MSOR subject benchmark advises that its statement is
unlikely to apply to teaching outside cognate departments, although it is important that
such programmes pay due attention to the place of MSOR within them.

Moving on finally to the Computing benchmark statement from 2016 [11], a range
of provision across computer science and information systems is addressed. For the
purposes of this paper, courses in data management, information modelling, machine
learning and knowledge representation are especially relevant. Computing overlaps
with a number of adjacent subjects, including (e.g.) mathematics and business. Infor-
mation systems in particular is concerned with the modelling, codification and storage
of data for subsequent analysis – specific areas of interest again relate to databases and
information modelling as well as the interactions between information systems and the
more socio-technical systems. Those courses focused on Computing in society fall
under this subject benchmark if their content is informed by computer engineering,
software engineering, information technology or information systems.

Computing-related cognitive skills include an understanding of scientific method
and its application to problem solving; knowledge and understanding of modelling for
the purpose of (e.g.) prediction; as well as the deployment of methods and tools for
implementation of systems. On the other hand, Computing-related practical skills
comprise a range of abilities, notably deploying tools effectively in the solution of real-
world applications; and critically evaluating and analysing complex problems,
including those with incomplete information. Universities are also required to provide
every student the opportunity to acquire more generic skills to enhance employability.
They include intellectual skills, self-management, team working and significantly
contextual awareness here, to understand and meet the needs of (e.g.) business and the
community [11].

It can be seen that there are elements of all three benchmarks which are relevant to
some extent to Data Science and these are developed further in the following sections.
In particular it is clear that, if only one subject benchmark statement was selected, it
would be that for Computing.
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2.2 Professional Skills Frameworks

The Skills Framework for the Information Age (SFIA) describes the skills expected of
professionals in roles involving information and communications technology. It has
become the globally accepted common language for skills and competencies required
in the digital world [13]. SFIA gives employers a framework which they can use to
measure the skills they have against the skills they need, and tells education and
training providers what the job market wants. It is supported by key organisations such
as: BCS (British Computer Society), Tech Partnership (formerly e-skills UK), IET
(Institution of Engineering and Technology), IMIS (Institute for the Management of
Information Systems) and the IT Service Management Forum (itSMF).

BCS in conjunction with SFIA offer a skills matrix, called SFIAplus [14], which
contains the framework of IT skills plus detailed training and development resources. It
provides the most established and widely adopted skills, training and development
model reflecting current industry needs. SFIAplus can be viewed as a three-
dimensional model which comprises Categories of Work – Strategy and Architec-
ture; Change and Transformation; Development and Implementation; Delivery and
Operation; Skills and Quality; Relationships and Engagement – as well as Levels of
Responsibility and Task Components.
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Fig. 1. An interpretation of data science skills using SFIA. (Colour figure online)
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The Data Science programme proposed at UoW aims to develop how to use data to
provide key business insights, helping companies improve their performance and make
key decisions. Moreover, the programme is designed to meet employers’ needs for
innovative expertise as well as students’ needs for an engaging and developmental
course of study leading ultimately to rewarding employment. While the UK Govern-
ment has published the essential capabilities it needs from Data Scientists [3],
describing in some detail the knowledge and experience required, the corresponding
essential competencies comprise those used in the Civil Service and are more generic.

For the Business environment, SFIA has been chosen as the reference against
which employability skills are mapped here. A novel presentation of this framework is
given in Fig. 1 – individual skills are displayed across six categories of work and
associated subcategories – however, the ones which are considered most relevant to
data science are shown in bold. It is interesting to note that a key category in this
interpretation is Strategy, although Business Change is relatively significant too.

In terms of wider frameworks for data science, the EU-funded EDISON project [2]
has focused on activities to establish the new profession of Data Scientist. This has
included development of a Data Science Competence Framework (CF-DS) which
provides the basis for other components. CF-DS defines five competence groups as
Data Analytics; Data Science Engineering; Data Management; Research Methods and
Project Management; and Domain-based Business Analytics. Related skills are labelled
in blue in Fig. 1 in order to cross reference with SFIA.

3 Methodology and Practice

3.1 Cross-Industry Standard Process Model

There is not an established process model for data science although the most widely
used approach for analytics is CRISP-DM, the Cross-Industry Standard Process for
Data Mining [15]. Since the data mining process breaks up the overall task of finding
patterns from data into a set of well-defined subtasks, it is also useful for structuring
discussions about data science. Figure 2 shows the process model adapted for data
science based on activities and tasks linked to SFIA-related skills. At the centre of the
model is data management, which may include the internal data environment within an
organisation and the external data sources as necessary.

Business Knowledge and Understanding. Prior to the start of a data science project it is
crucial to incorporate as much insight as possible into the business goals – then specify
business questions and determine any other business requirements. It is also important
to define the nature of business success for the project.

Data Understanding. This phase involves accessing the data and exploring it in more
detail – this will help to determine its quality prior to the data pre-processing phase.
Historical data is often collected for reasons unrelated to the creation of a model, so will
need to be considered appropriate to the project.

Data Pre-processing. The data chosen to be included in the analysis may be based on
the objectives set at the business understanding stage, the quality of the data determined
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at the data understanding stage or other practical aspects. Data may be constrained by
the analytical technologies used to create the model, e.g. it may be required to be in a
different format. Preparation will involve all activities required to construct the final
dataset including selecting attributes, cleaning the data to address any data quality
issues and transforming data to create derived variables.

Data Modelling. Various modelling approaches will be deployed based on the busi-
ness objectives and the dataset which is used [5]. Statistical analysis, data mining and
machine learning are fundamentally involved with extracting information from a
dataset. Common analytical techniques are classification, clustering, regression and
dimension reduction while visual analytics technology combines data analysis with
data visualisation and human interaction.

Business Intelligence. The primary goal of data science for business is to support
decision making – business intelligence focuses on supporting and improving the
decision-making process. The modelling results will need to be evaluated carefully as
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Fig. 2. A process model for data science based on CRISP-DM.
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“various stakeholders have interests in the business decision-making that will be
accomplished or supported by the resultant models” [8].

Insight Management. The results from the modelling and subsequent evaluation will
determine how the model will be deployed to make improvements in organisations.
This could include implementing a predictive model into pre-existing information
systems [1]. This stage will also involve planning of the maintenance strategy.

While CRISP-DM has been the industry standard for data mining over the last two
decades, Stirrup argues that the model has not been updated to work with new tech-
nologies – such as big data – and recommends use of the “Team Data Science Process”
cyclical model to address these issues [16].

3.2 Analytical Tools and Data Sources

Data scientists need to be proficient in understanding, searching, extracting and pre-
senting information from structured and unstructured data sources. Keeping up-to-date
with the latest trends in technological development is key for effective analytics.
Table 1 provides an illustration of some analytical tools associated with the SFIA
“Analytics” skill from a technical perspective.

As a spreadsheet, Excel can be used for data entry, manipulation and presentation,
but it also offers a suite of statistical analysis functions and other tools that can be used
to run descriptive statistics and perform inferential statistical tests. In addition,
XLMiner is the comprehensive data mining plug-in for Excel, now known as Analytic
Solver.

Alteryx is a tool especially made to extract, transform and load data into a data
warehouse. Its key capabilities for data preparation include: connect to and cleanse data
from data warehouses, spreadsheets and other sources; improve quality of data with
profiling, advanced data cleansing and data manipulation tools; repeatable workflow
design to assist with data integrity during data preparation process.

Table 1. Analytical tools and techniques.

SFIA “Analytics” –

typical tools and
techniques

Excel XLMiner Alteryx SPSS R iNZight Weka Tableau Python

Statistical analysis and
forecasting

p p p p p p p p

Machine learning and
data mining

p p p p p

Graphical visualisation
of data

p p p p p p p p

Data and information
modelling

p p p p

Decision support
systems

p p p p
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SPSS is a software package which has been widely used for statistical analysis by
social scientists, education researchers, health researchers, market researchers, survey
companies, government and other organisations for many years. IBM SPSS Modeler is
a data mining and text analytics software application used to build predictive models
and conduct other analytical tasks.

R is a language and environment for statistical computing and graphics, with
RStudio providing a user-friendly interface to analyse and manipulate data. R is
commonly used for big data management and analysis – it is widely accepted in the
data science field and has a very active support community. Developed using R,
iNZight can also generate insights into real-world data by producing graphs and
summaries through statistical analysis.

Weka (Waikato Environment for Knowledge and Analysis) is open source software
written in Java [4] which offers a wide range of statistical inference and machine
learning algorithms. It contains tools for data pre-processing, classification, regression,
clustering, association rules, sequential patterns mining and visualisation. It provides a
way to easily test the performance of a comprehensive suite of data mining and
machine learning algorithms on real-world problems.

Tableau Software provides a collection of interactive data visualisation products
designed for business intelligence. Its advanced analytics functionalities include: cohort
analysis through drag-and-drop segmentation; what-if analysis by modifying calcula-
tions and testing different scenarios; and predictive analysis using trending and fore-
casting models. In addition, an R plug-in allows integration with other platforms.

Python has become an even more popular and powerful programming language in
the era of data science. Data analysis, machine learning, information visualisation and
text analysis techniques can be applied through Python software libraries and toolkits
such as pandas, scikit-learn, matplotlib and nltk to gain further insight into data.

Table 2 is a list of some useful resources for data science projects in the areas of
data cleansing, visualisation, data mining and machine learning – the data sources
column contains hyperlinks to the individual repositories.

Table 2. Data sources for data science projects.

Data sources Description

Data
cleansing

data.world A social-based data source that allows users to
share/clean/improve data collectively. Can write SQL
within the interface to explore data and join multiple
datasets

The world bank The platform provides several tools like Open Data
Catalog, world development indices, education indices
etc.

Reddit A community discussion site which has a section devoted
to sharing interesting datasets

(continued)
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4 Education and Training

4.1 UG Programme Development

Within the UoW Business School, the BSc Digital & Technology Solutions degree
apprenticeship and BSc Computer Science suite both inform the BSc Data Science
prototype. One way to express the significance of current modules to the new under-
graduate programme is to display the relationships graphically. Figure 3 shows the
extent to which relevant modules may contribute to Data Science – each of the indi-
vidual boxes represents a module with the colour-coding across Level 4 to 6. The boxes
within the triangle are the specialist modules proposed for data science while the oval
shapes outside indicate diverse modules from other programmes, with dotted ovals for
optional modules. There is also a Group Project module for Level 5 and a double-credit
Data Science Project for Level 6.

A brief description for each specialist taught module is given below – these are
linked with Data Science Body of Knowledge areas from the EDISON project [2],
which are associated with their CF-DS competence groups.

Database Analysis and Design. Introduces analysis and design concepts (using SQL
and UML) that are essential for developing and implementing relational database
solutions in given business scenarios [DSDM/DMS: Data management systems].

Quantitative Data Analysis. Introduces quantitative analytics concepts, procedures and
software tools (Excel and SPSS) for specific data analysis tasks [DSDA/SMDA: Sta-
tistical methods for data analysis].

Table 2. (continued)

Data sources Description

Data
visualisation

FiveThirtyEight Interactive news and sports site with data-driven articles.
Each dataset includes the data, a dictionary and the link to
the story

FlowingData Catalogue of data sources, described in detail and shown
with examples. It explores how statisticians, data scientists
and others use analysis and visualisation

Tableau public Sample data for visual analytics in the categories of
Education, Public, Government, Science, Technology,
Health, Business, Sports and Entertainment etc.

Machine
learning

UCI machine
learning repository

One of the oldest and most famous sources of datasets
online. Vast majority are clean and ready for machine
learning

Kaggle A data science community which hosts machine learning
competitions – contains externally-contributed datasets

Quandl For financial and economic datasets – useful for building
models to predict economic indicators or stock prices
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Information Management and Data Analytics. Organised around three themes: Data-
base Management and SQL; Data Warehousing and Information Modelling; Data
Mining and Knowledge Discovery [DSDA/DM: Data mining].

Predictive Data Analytics. Provides experience of predictive modelling and analytics
across a range of domains, acquiring relevant practical skills (using R and Weka) in
data science to create data visualisations and carry out analyses [DSDA/PA: Predictive
analytics].

Visualisation of Business Intelligence. Focuses on techniques for data extraction and
preparation while analysing data in visual ways (using Alteryx and Tableau) to gen-
erate insight for business intelligence and decision making [DSENG/IS: Information
systems].

Insight Management. Provides knowledge and skills to identify and evaluate a busi-
ness issue and/or research problem, effectively analyse data and interpret insights
(using iNZight and Tableau) so that they can have an impact at managerial levels of
organisations [DSBPM/BA: Business analytics].

Strategic Forecasting and Simulation. Covers the data-driven business prediction
topics of forecasting and simulation (using R and XLMiner) to develop advanced
models and solutions to real-world problems [DSDA/MODSIM: Computational
modelling, simulation and optimisation].
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Strategic Analytics. Provides students with a deeper understanding of how data is used
by strategic decision makers, covering the analysis of big data (using Python and
Weka) as well as data analytics case studies [DSDA/ML: Machine learning].

4.2 SFIA-Related Skills Mapping

There are relationships between the proposed Data Science modules and the key SFIA
skills too, which are demonstrated in Fig. 4. First dotted lines are used to connect
related SFIA skills to each other. For example, relevant SFIA skills for “Analytics”
comprise Information Management, Data Analysis, Business Analysis and Business
Modelling. Similarly, relevant skills for “Information Management” include (e.g.)
Database Design, Data Management, Innovation and Business Process Improvement
among others.

The specialist modules for the Data Science programme can then be mapped onto
corresponding SFIA skills, where the same colour-coding applies as in Fig. 3. For
example, modules linked with the SFIA Analytics skill are Predictive Data Analytics,
Strategic Analytics and Strategic Forecasting & Simulation. As another example, the
Visualisation of Business Intelligence and Insight Management modules are closely
connected with the SFIA Business Analysis and Business Modelling skills. Finally, the
Group Project and Data Science Project are linked primarily to the Research skill,
although the taught specialist modules will all apply to some degree. Figure 4 repre-
sents a novel aspect of skills analytics in the Data Science context.
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5 Conclusion

The digital economy has facilitated an explosion in the data available to the world
which has affected businesses, jobs and education. The term “Big Data” refers to
datasets so large and complex that it would be impossible to analyse them using
traditional methods. Big data was originally defined in terms of the three Vs, namely:
“high-volume, high-velocity and high-variety”. A 4th V for veracity ensued, referring to
the trustworthiness of the data. However all this enormous quantity of fast-moving data
of different types and confidence levels has to be turned into value, which leads to the
5th V for big data [6]. Data Science will help organisations to turn data into valuable
insights in order to better understand their customers and optimise their internal pro-
cesses while identifying cost savings and growth opportunities [7]. Some representative
business analytics approaches include for example financial analytics, market analytics,
customer analytics, employee analytics and operational analytics alongside the core
analytical tools and techniques.

This paper has discussed an overall curriculum design and the skills required for
Data Science in the business environment. The new BSc Data Science development is
already having a positive impact on other programmes within the University of
Winchester Business School, for example: BA Accounting & Finance/Management
and their Level 5 Research and Analysis module; MSc Digital Marketing & Analytics
and its Analytical Tools for Digital Data module; and the Executive MBA module
delivering Insight Management for business professionals.

In terms of the next stage for programme development at Winchester, the EDISON
Data Science Framework [2] will be considered further – in particular the detailed Data
Science Model Curriculum. An evaluation of the extent to which their recommended
learning outcomes and topics would apply in UK higher education will be significant
here, especially within a Business School context. The real evidence of what can be
achieved by the programme will begin to materialise following its first year of delivery
in 2019/20.
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Abstract. The paper is devoted to consideration of multicriterial opti-
mization (MCO) problems subject to multiextremality of criteria. Appli-
cation of convolution techniques for finding partial Pareto-optimal solu-
tions generates under this assumption the multiextremal problems of
scalar optimization. For solving these problems it is necessary to use
efficient global optimization algorithms. As such the methods the nested
schemes of dimensionality reduction in combination with univariate char-
acteristical optimization algorithms are considered. A general description
of the scheme is given and its modification accelerating the search is pre-
sented. Efficiency of the proposed approach is demonstrated on the base
of representative computational experiment on a test class of bi-criterial
MCO problems with essentially multiextremal criteria.

Keywords: Multicriterial optimization · Multiextremal criteria ·
Dimensionality reduction · Global search algorithms

1 Introduction

Mathematical models formulated as multiobjective, or multicriterial optimiza-
tion (MCO) problems describe complicated decision making processes in which
the main factors of complexity are contradictoriness of partial criteria and dimen-
sionality of the problem. The contradictoriness leads to the necessity of consid-
eration a set of compromise solutions (Pareto set) as a general solution of the
multicriterial problem investigated. For finding the compromise solutions the
initial MCO problem is often reduced to a family of scalar optimization prob-
lems in the form of mathematical programming ones, for example, by means of
convolution techniques.

Various approaches to investigation of the MCO problems have been
described in many fundamental publications (see, for example, the monographs
[1–4]). Some theoretical and practical aspects of MCO investigation can be found
in [5–12].

The variety of MCO models is the source of different classes of MCO prob-
lems determined by the properties of criteria and constraints describing the
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model. Among these models the class of multidimensional MCO problems with
multiextremal criteria is one of the most difficult ones for the research because
reducing to a single-criterion problem that determines a compromise solution
generates a global optimization problem. For this class of problems the expo-
nential growth of computational complexity when increasing the dimension (so
called “the dimensionality curse” of multiextremal problems) [15] takes place. In
order to solve arising problems of multiextremal optimization it is necessary to
use efficient global search algorithms. There are many approaches to constructing
such the methods oriented at different classes of multiextremal problems (see, for
example, the monographs [15–21]). In this paper the methods based on ideas of
dimensionality reduction are considered and applied to solving the MCO prob-
lems. In the framework of given approach the initial multidimensional problem
is reduced to a family of univariate subproblems solved in general theoretical
description by the characteristical methods [22] and by the core information
global search algorithm [15] in computational experiment. This approach has
demonstrated [23] its efficiency in comparison with other global optimization
methods, in particular, with the popular method DIRECT [24].

The rest of the paper is organized as follows. Section 2 contains the statement
of MCO problems to be investigated, and the general description of dimension-
ality reduction scheme on the base of recursive nested optimization. Section 3
is devoted to consideration of two modifications of the nested scheme (classi-
cal and adaptive) in combination with characteristical algorithms of univariate
optimization. Section 4 presents the results of computational experiments and
Sect. 5 concludes the paper.

2 Problem Statement and Reduction Schemes

The considered decision making model described as the multicriterial (or mul-
tiobjective) optimization (MCO) problem contains functions wi(y) : RN → R

1,
1 ≤ i ≤ p, p > 1, called partial criteria of the problem, depending on the vector
of arguments y = (y1, . . . , yN ) ∈ R

N and defined over the domain

H = {y ∈ R
N : ai ≤ yi ≤ bi, 1 ≤ i ≤ N} (1)

being a hyperparallelepiped in N -dimensional Euclidean space R
N .

The statement of the MCO problem is to minimize in the domain (1) the
vector function (vector criterion)

W (y) =
(
w1(y), . . . , wp(y)

)
. (2)

Hereinafter this problem will be written in the form

W (y) → min, y ∈ H. (3)

Each partial criterion wi(y), 1 ≤ i ≤ p, is supposed to satisfy in H the Lipschitz
condition ∣

∣wi(y′) − wi(y′′)
∣
∣ ≤ Li

∥
∥y′ − y′′∥∥, y′, y′′ ∈ H, (4)
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with corresponding Lipschitz constant Li > 0 where ‖ · ‖ denotes the Euclidean
norm. The assumption (4) is required for the purpose of further applying the
Lipschitz global optimization methods as tools of analyzing the problem (3).

Moreover, all the partial criteria are considered to possess positive values in
the domain H. This requirement is necessary in the framework of the convolution
scheme (5)–(7).

If the partial criteria are contradictory, it is impossible to find a point y∗

such that it is the global minimum point for all of them. In this situation a
compromise solution is considered as a partial solution of the problem and all
the compromise solutions are the full solution of the MCO problem. We will
deal with efficient (Pareto-optimal) points that form the Pareto set as the full
solution of the problem (3).

There are many approaches to finding the partial solutions. For example,
it is possible to build the Pareto set by means of reducing the initial MCO
problem (3) to solving a parametrized family of mathematical programming
(scalar optimization) problems

Φλ(y) → min, y ∈ H, (5)

with the objective function (convolution)

Φλ(y) = max
1≤i≤p

(
λiwi(y)

)
+ α

p∑

i=1

λiwi(y), (6)

where parameters λ belong to the set

Λ =
{

λ ∈ R
p : λi ≥ 0, 1 ≤ i ≤ p,

p∑

i=0

λi = 1
}

(7)

and α is a small positive number [13,14].
Under the Lipschitz condition (4) for partial criteria, the function (6) is Lip-

schitzian as well and, in general case, multiextremal. This circumstance neces-
sitates applying efficient algorithms of global optimization for solving the prob-
lems (5). One of the known approaches to creating the qualitative global search
methods is based on ideas of dimensionality reduction. This approach has been
developing for many years and it is the source of many efficient global optimiza-
tion algorithms [15,19,25–33]. Application of dimensionality reduction methods
to the MCO problems and investigation of their efficiency for this goal is a novel
research described in the present paper.

The main dimensionality reduction scheme considered hereinafter is the
scheme of recursive nested optimization (another reduction approach based on
Peano-type space filling curves can be found in the works [15,19]). The nested
optimization scheme reduces the multidimensional problem (5) to a family of
univariate subproblems in the following way.

Let us introduce a family of reduced functions as

ΦN
λ (y) ≡ Φλ(y), (8)
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Φq
λ(y1, . . . , yq) = min

{
Φq+1

λ (y1, . . . , yq+1) : aq+1 ≤ yq+1 ≤ bq+1

}
, 1 ≤ q < N.

(9)
Then, following the relation [15,25,26]

miny∈H(y) = min
a1≤y1≤b1

min
a2≤y2≤b2

. . . min
aN≤yN≤bN

Φλ(y), (10)

instead of the multidimensional problem (5) one can solve the univariate problem

Φ1
λ(y1) → min, y1 ∈ [a1, b1]. (11)

However, when solving this problem it is necessary to evaluate the function
Φ1

λ(y1) at points of the interval [a1, b1] but any evaluation at a given point ỹ1
leads to solving the problem

Φ2
λ(ỹ1, y2) → min, y2 ∈ [a2, b2] (12)

being one-dimensional as well, and so on up to solving the univariate problem

ΦN
λ (y) ≡ Φλ(y) → min, yN ∈ [aN , bN ], (13)

where the coordinates y1, . . . , yN−1 are fixed (obtained from preceding levels of
one-dimensional optimization).

Thus, the described scheme allows one to substitute solving the multidimen-
sional problem (5) for solving the family of nested univariate subproblems

Φq
λ(y1, . . . , yq−1, yq) → min, yq ∈ [aq, bq], 1 ≤ q ≤ N. (14)

If the objective function Φλ(y) from (5) satisfies the Lipschitz condition (in
our case this property is provided by the assumptions (4) the one-dimensional
objective functions Φq

λ(y) in (14) also meet the Lipschitz condition (see [33]) and
for solving subproblems (14) the methods of Lipschitz global optimization can
be used.

3 Characteristical Algorithms and Adaptive Nested
Optimization

Combining the nested scheme (14) with different one-dimensional optimization
methods enables to design a wide spectrum of multidimensional algorithms. In
particular, for solving the subproblems (14) the methods belonging to the wide
class of characteristical algorithms [22] can be taken which many well-known
global optimization algorithms [15,19,26,33–35] belong to. The use of these algo-
rithms inside the nested scheme allows one to modify the classical nested scheme
for getting improvements of its functioning. Before returning to this modification
and its further explanation, the general computational structure of characteris-
tical algorithms should be described.
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To simplify the description let us present the subproblems (14) in the follow-
ing unified form

ϕ(x) → min, x ∈ [a, b]. (15)

Then a numerical method for solving the optimization problem is characteristical
one if its computational scheme consists in the following.

First n ≥ 1 trials (evaluations of the objective function ϕ(x)) are executed
at arbitrary trial points x1, . . . , xn of the interval [a, b] and the function values
z1, . . . , zn are evaluated at these points, i.e., zj = ϕ(xj), 1 ≤ j ≤ n. For obtaining
a point xs+1 of any subsequent (s + 1)-th trial for s ≥ n it is required to realize
the following steps:

1. The points x1, . . . , xs of preceding trials and the points a and b (if they were
not the trial points earlier) are ordered in increasing order and renumbered
by subscripts, i.e.,

x0 = a ≤ x1 < · · · < xν−1 < xν = b. (16)

The values zj = ϕ(xj) are juxtaposed to the points xj from (16) belonging
to the sequence x1, . . . , xs.

2. The ordering (16) splits the search region [a, b] into ν subintervals (xj−1, xj),
1 ≤ j ≤ ν, for each of those a numerical value R(j) (called characteristic of
this interval) is assigned.

3. The subinterval (xk−1, xk), 1 ≤ k ≤ ν, such that

R(k) = max
1≤j≤ν

R(j), (17)

is chosen among all the subintervals formed by the ordering (16).
4. The new (s + 1)-th trial is carried out at a point xs+1 ∈ (xk−1, xk), the value

zs+1 = ϕ(xs+1) is computed and the iteration number s is increased by 1.

General conditions of convergence for characteristical algorithms (including con-
vergence to global minima) are presented in the paper [22]. These general results
substantiate the stopping rule in the form

xk − xk−1 ≤ ε, (18)

where ε > 0 is a given coordinate accuracy, i.e., the search is completed if the
length of the subinterval with maximal characteristic from (17) is less than the
accuracy ε.

As an example of characteristical method let us describe the core information
global search algorithm [15,33] using for it hereafter the short denotation GSA.

When solving the problem (15) two first trials GSA are executed at the end
points of the search region, namely, x1 = a, x2 = b and, consequently, s = 2 and
ν = s − 1 for s ≥ n. Next trials are carried out in accordance with Steps 1–4,
where the characteristics of the subintervals (xj−1, xj), 1 ≤ j ≤ ν, are calculated
as

R(j) = mδj + ζ2j /(mδj) − 4(zj−1 + zj) (19)
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and the point of new trial

xs+1 = (xk−1 + xk)/2 − ζk/(2m). (20)

Here δj = xj − xj−1; ζi = zi − zi−1, i = j, k; index k from (17), the factor m is
evaluated as

m =

{
rM, M > 0,

1, M = 0,
(21)

where
M = max

{|ζj |/δj : 1 ≤ j ≤ ν
}

(22)

and r > 1 is the parameter of GSA.
Applying characteristical algorithms in the nested optimization scheme

makes possible to accelerate the search. A brief explanation of this effect consists
in the following (more detailed information can be found in the papers [23,31]).
In classical implementation of the nested scheme at any moment only one uni-
variate subproblem of the level can be active; the others either have been solved
already or will be solved after completing the current subproblem. Moreover, the
information obtained in the course of optimization in the completed subprob-
lems is not used during solving the current one. This loss of information slows
up the multidimensional optimization.

In the paper [31] a new version of the nested scheme called adaptive dimen-
sionality reduction has been proposed and theoretically substantiated. The core
of the adaptive scheme consists in simultaneous consideration of all the subprob-
lems (14) arising in the course of multidimensional optimization and in the choice
for realization of a certain subproblem with some “best” features. It means that
it is necessary to introduce a quality criterion for the subproblems. If a charac-
teristical algorithm is used for solving the problems (14), for each subproblem
its current maximal characteristic (17) is taken as the quality criterion of the
whole subproblem.

The results of large-scale experimental comparison on complicated test
classes of essentially multiextremal functions for several global optimization
methods presented in [23] demonstrate significant advantage of the adaptive
nested optimization over its classical prototype and the other methods com-
pared.

Taking into account the results mentioned above and the confirmation of
efficiency of GSA obtained earlier in other researches [15,22,31], in this paper the
classical and adaptive optimization schemes combined with GSA are considered
for the study of efficiency of the dimensionality reduction approach for solving
the MCO problems.

4 Numerical Experiments

For efficiency assessment of the nested optimization schemes in classical and
adaptive variants a class of bi-criterial MCO problems is constructed in the
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following way. 100 functions of dimension 2 (see [22,31])

ϕl(y) =

{( 7∑

i=1

7∑

j=1

[
Al

ijaij(y) + Bl
ijbij(y)

])2

+

+
( 7∑

i=1

7∑

j=1

[
Cl

ijaij(y) + Dl
ijbij(y)

])2
} 1

2

, (23)

where aij(y) = sin(πiy1) sin(πjy2), bij(y) = cos(πiy1) cos(πjy2), 1 ≤ l ≤ 100, are
taken with the coefficients Al

ij , Bl
ij , Cl

ij , Dl
ij , which are independent random

numbers, distributed uniformly over the interval [−1, 1]. The functions of this
class are essentially multiextremal and they are widely used for experimental
testing in global optimization (see [22,27,29,31,33,35]).

Each function was converted to the criterion

wk(y) = 15 − ϕk(y) (24)

being positive in the square

H =
{
y ∈ R

2 : 0 ≤ y1, y2 ≤ 1
}
. (25)

There was considered 100 bi-criterial problems according to the following rule.
In the l-th MCO problem (1 ≤ l ≤ 99) the function wl(y) was taken as the
first criterion and the function wl+1(y) as the second one. For the last problem
the function w100(y) was chosen as the first criterion and the function w1(y) as
the second. The square (25) was used as the admissible domain (1) in all the
problems.

For numerical building the Pareto set each bi-criterial problem was reduced
to a family of scalar subproblems (5) corresponding to 160 values of the param-
eter λ1 taken as nodes of the uniform grid in the interval [0, 1] (the coefficient
λ2 = 1 − λ1 because of conditions (7)).

An example of convolution (6) (level curves and surface) is presented in
Fig. 1. The image of the domain (25) mapped onto the plane of criteria is shown
in Fig. 2, where the Pareto boundary is marked with red colour.

The global optimization subproblems (5) were solved by the algorithms on the
base of classical and adaptive nested schemes combined with the method GSA.
For comparison of the described algorithms with a method of other nature, the
subproblems (5) were solved by the known and very popular global optimization
method DIRECT [24] as well. For assessment of efficiency of the nested schemes
and the method DIRECT the methodology of operational characteristics [15,23,
31] has been used. Briefly, this methodology consists in the following.

After solving a collection of optimization problems by a method with some
fixed parameters we can evaluate the average number K of trials spent by the
method and the number Q of problems solved successfully. Repeating this exper-
iment with different method’s parameters we get a set of pairs (K,Q) which is
called the operational characteristic of the method. Operational characteristics
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Fig. 1. Level curves and surface of convolution

of several methods presented in graphical form on the plane (K,Q) enable visual
comparing the methods’ efficiency. Namely, if for given value K the operational
characteristic of one method is placed above the characteristic of the other, the
first method is better because it has solved more problems.

Fig. 2. Criterial plane and Pareto set (Color figure online)

The compared nested schemes optimized the convolutions (6) for different
values of accuracies ε from (18) and used the GSA parameter r = 3.2 from (21)
that provided the sufficient conditions of global convergence. The operational
characteristics of the dimensionality reduction schemes are presented in Fig. 3.

In the figure the number K of trials is considered as the average number of
evaluations spent for solving one subproblem (5) and this indicator is plotted on
the abscissa axis in the logarithmic scale.
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Fig. 3. Operational characteristics of the compared methods

The indicator corresponding to the vertical axis reflects the number of mul-
ticriterial problems solved successfully with a given tolerance. A problem (3) is
considered to have been solved, if an approximation P of the Pareto set eval-
uated by the method via solving partial subproblems (5) corresponding to all
the chosen parameters λ is sufficiently close to the “ideal” Pareto set P ∗. As the
measure of closeness the criterion ω(P ) = 1 − hv(P )/hv(P ∗) was used, where
hv(P ) is the hypervolume index [10,11] introduced for evaluating the quality of
approximation. In the experiment the multicriterial problem was supposed to
have been solved if ω(P ) < 0.02.

Another experiment has been carried out for 5-dimensional MCO problem
with two multiextremal criteria taken from the test class GKLS [36] (subclass
of hard complexity). GKLS is widely used for testing the global optimization
methods. For building the Pareto set 100 scalar convolutions (6) corresponding
to the different coefficients λ1 uniformly distributed in the interval [0, 1] have
been minimized.

In the nested schemes the parameter r from (21) was equal to 4.5 and ε = 0.02
in the stopping rule (18). Both the nested schemes and DIRECT have built the
Pareto set with accuracy ω(P ) < 0.02, but the classical nested scheme has
spent on average 248 745 trials (evaluations of convolution Φλ(y)) per one scalar
problem (5), DIRECT 100 258 trials and the adaptive scheme 45 155 evaluations.

The results of the experiment demonstrate the successful applicability of the
global optimization methods based on the dimensionality reduction schemes to
solving the MCO problems in the case of multiextremal criteria. As it follows
from Fig. 3 both the nested optimization schemes are more efficient for high
levels of reliability Q than DIRECT and the use of the adaptive nested scheme
is more preferable than the classical one, while in 5-dimensional case the best
efficiency demonstrates the adaptive reduction of dimensionality and DIRECT
is better than the classical nested scheme.
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5 Conclusion

In the paper the multicriterial optimization (MCO) problems with multiextremal
criteria have been considered. As a tool of analyzing these problems the approach
connected with ideas of reducing the initial MCO problem to families of sim-
pler optimization problems has been taken. At the beginning, the MCO problem
is reduced in a traditional way via convolutions to a set of scalar subproblems,
solutions of which are Pareto-optimal points. Further, solving the scalar subprob-
lems is based on global optimization algorithms reducing the multidimensional
problem to a family of univariate subproblems by means of the dimensional-
ity reduction schemes of nested optimization. These schemes are theoretically
substantiated and their efficiency has been confirmed in experiments. Two ver-
sions of the nested optimization (classical and adaptive) and the known method
DIRECT have been considered for comparison.

The general description of the mentioned approach has been done and the
results of numerical testing on a test set of bi-criterial MCO problems with essen-
tially multiextremal criteria have been presented. The results of the experiment
have demonstrated that the adaptive dimensionality reduction can be used as
an effective tool for solving the multiextremal MCO problems.

It is worth to note that the algorithms considered in the paper can be devel-
oped in directions of search acceleration connected with the use of additional
information about the studied problems and with designing their parallel ver-
sions.
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Abstract. Network representation learning has recently attracted con-
siderable interest, because of its effectiveness in performing important
network analysis tasks such as link prediction and node classification.
However, most of the existing studies rely on the knowledge of the com-
plete network structure. Very often this is not the case, unfortunately:
the network is either partially or completely hidden. For example, due
to privacy and competitive market advantage, the friendship and fol-
lower networks of Facebook and Twitter are hardly accessible. User
activity logs (also known as cascades), instead, are usually available.
In this study we propose Refine, a representation learning algorithm
that does not require information about the network and simply utilizes
cascades. Nodes embeddings learned through Refine are optimized for
network reconstruction. Towards this end, it utilizes the global interac-
tion patterns exposed by reaction times and co-occurrences. We present
an extensive experimentation using two OSN datasets and show that
our approach outperforms existing baselines. In addition, we empirically
show that Refine can be used to predict cascades as well.

Keywords: Network inference · Representation learning ·
Cascade prediction

1 Introduction

Network representation learning (NRL) has recently attracted considerable
research attention. In particular, the ubiquitous success of deep learning has
inspired social network scientists to exploit neural networks to automatically
learn representation of nodes, that could later be used for several social analysis
tasks. A number of existing studies have assumed that the network structure is
completely known. Very often, however, this is not the case; instead, information
about the network is either partial or completely absent. For instance, companies
seeking a marketing campaign through Facebook or Twitter desire access to the
structural properties of the social graph; such information, however, is usually
not accessible due to privacy and competitive market advantage [1].

Some information is available, though. For example, extensive logs of events
occurring on the social graph can be easily obtained, e.g. through public APIs.
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G. Nicosia et al. (Eds.): LOD 2018, LNCS 11331, pp. 141–153, 2019.
https://doi.org/10.1007/978-3-030-13709-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13709-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-13709-0_12


142 Z. T. Kefato et al.

These logs represent the propagation of information over the latent network, for
example by recording the instant in which a user shares a meme or a piece of fake
news. The process of propagation is known as a cascade; it is usually triggered
by a few sources (seeds) and spreads over the graph through its edges [2–4].

In other words, we can observe who shares a meme and when this happens,
but not the edge through which the meme has been transported. The goal of
this study is to learn a representation of nodes optimized for reconstructing the
latent network by simply using the cascades.

Related Work. Several studies [2–7] have been proposed towards the network
reconstruction task. In general, we can divide them into two broad categories,
which are (i) delay-aware and (ii) delay-agnostic. Some of the existing delay-
aware models, such as NetInf [2], NetRate [6], InfoPath [5], and Kernel-
Cascade [3], exploit infection rates based on delay patterns between infection
timestamps. The main assumption is that if a pair of nodes tend to get infected
right after each other, then there is a diffusion pattern that is a likely indi-
cator of connections. Some of them [5,6] assume a fixed parametric form (e.g.
exponential) of influence model or transmission rate on the edges of the network.
Nonetheless, a particular study [3] has argued and empirically demonstrated that
such an assumption is too strong for capturing the complex diffusion patterns
and user infection dynamics in real networks.

On the other hand, some studies [4,7] follow a delay-agnostic approach sim-
ply based on the order and/or context of infection events. Furthermore, they
have argued that delay-aware models are likely to miss out several diffusion pat-
terns, even in the presence of recurring ones, because of the delay intervals of
such models that could potentially be too large or too small. This problem is
normally caused by explicitly pre-defined infection rates (delay patterns) and
fixed parametric forms of influence models, as argued by [3].

In the area of network representation learning, there are also quite a number
of studies [8–15]. The algorithms vary from classical techniques that rely on
matrix factorization to recent techniques using deep neural networks. Their goal
is usually to embed nodes of the network in a low-dimensional latent space in
such a way that the embedding preserves different properties of the network, for
example local neighborhoods. Our work is essentially different from the above
techniques, because we lack the knowledge of the network structure.

Current Work. In this study, we propose Refine, an delay-aware algorithm for
network reconstruction based on representation learning. Contrary to [4,7], we
argue that delay-aware models can also perform as well as delay-agnostic models
if they are properly designed. Therefore, Refine utilizes the delays between
infection events; unlike some of the existing methods [2,5,6], however, it avoids
any assumption regarding the influence model and infections rates. Instead, it
directly embeds users according to the inherent interaction patterns exposed by
them.

Refine is established on the premise that closely connected users, for exam-
ple members of a community, expose interaction patterns that are expressed by
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reaction time and frequency. In terms of reaction time, given a post by a certain
member of a community, it is very likely for another member to share the post
faster than non-members. In terms of frequency, it is more likely for a member
of a community to co-occur with another member in cascades more frequently
than with other non-members. Refine learns a low-dimensional embedding of
nodes that capture such interaction patterns and use the learned embedding to
estimate pairwise edge probabilities towards reconstructing the network.

We have performed extended evaluations of our approach and compared
it against strong baselines. Besides utilizing the embedding to reconstruct the
latent network, we have also evaluated the capability of our representation learn-
ing approach to predict the cascades themselves.

The rest of the paper is organized as follows. Section 2 introduces the notation
which is used in the rest of the paper. Section 3 describes the Refine algorithm.
Section 4 presents the results of our experiments and we conclude the paper in
Sect. 5.

2 Model and Problem Definition

We assume that cascades occur over a hidden graph H = (U,E), where U is a
set containing n vertexes, each vertex corresponding to a user, and E is a set
containing m edges (connections) between users. We will use the term vertex
and user as synonyms, preferring the former when referring to human being,
and the latter when referring to graph-theoretic concepts. Interactions between
users occur over the network; while the set of users is normally well-defined, the
set of connections among them can be partially or completely unknown.

The spread of multiple contagions across the network H generates a collection
C of cascades. A contagion can be considered as any piece of online content, such
as, a tweet, meme, video, that spread through online networks as a result of re-
sharing activities. A cascade C ∈ C is a sequence that captures both the order
and the time instant in which users have been infected by a given contagion.
More formally, it is defined as: C = [(u1, t1), (u2, t2), . . . , (uc, tc)] where ti is the
timestamp associated to user ui. We assume that i < j ⇒ ti ≤ tj .

We use C(i) to denote the i-th user of C; and Ct(i) to denote the correspond-
ing timestamp. We also use Cu ⊆ C to denote the subset of all cascades that user
u is involved in Cu = {C : ∃i ∧ 1 ≤ i ≤ |C| ∧ C(i) = u} with Cu �= ∅, meaning
that all users in U have been involved in at least one cascade.

Given a cascade C, we define a function rC : U × U → R
+ measuring the

reaction time between the infection events of u and v, if both have been infected
in C, or ∞ otherwise:

rC(u, v) =

{
|Ct(i) − Ct(j)| ∃i, j : u = C(i) ∧ v = C(j)
+∞ otherwise

In addition, we define the co-infection frequency function f(u, v) = |Cu ∩ Cv|
that computes the number of cascades that involve both u and v.
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The problem we want to solve is the following: given a set of observed cascades
C over a hidden network H = (U,E), we want to infer a network G = (U,E′)
such that E′ approximates E as much as possible.

To evaluate the performance of our algorithms, similar to [8] we use the
precision-at-K (P@K) metric. Our approach will produce an edge probability
for every pair of vertexes; we can thus rank pairs of vertexes according to such
probability. We cut this rank at different thresholds K and we compute the
precision on the top-K pairs, i.e. the fraction of those pairs that are true edges
on the ground-truth network.

3 The REFINE Algorithm

Refine considers global interaction patterns expressed through users reaction
time and co-occurrences in cascades. For a given user u ∈ U , Refine computes
(i) a reaction time summary between the infection time of u and all other users
and (ii) the relative co-occurrence frequency between u and all other users, both
measured over the entire collection C. Our assumption is that if two users u and
v exhibit a strong interaction pattern, then they are likely to be connected.

A straightforward approach towards reconstruction is to compute similarity
between users according to their global interaction representation. However, this
leads to poor performances as this representation is very sparse. Rather, we first
learn an embedding of users in such a way that their interaction patterns in the
input representation space is preserved. Finally, we estimate the pairwise edge
probabilities between every pair of nodes to reconstruct the latent network.

3.1 Interaction Pattern Summarization

Refine is a delay-aware model based on the global interaction delays (reaction-
time) and frequency (co-occurrence) in cascades. We start by computing a reac-
tion time distribution for each user. Given a cascade C ∈ C and a user u appear-
ing in C (e.g., ∃i : u = C(i)), we compute, for the sake of numerical convenience,
an inverted reaction time function r−1

C (u, v) defined as follows:

r−1
C (u, v) =

⎧⎪⎨
⎪⎩

0 rC(u, v) = ∞
1 rC(u, v) = 0
e−rC(u,v) otherwise

(1)

r−1
C (u, v) is a well-defined function from pairs of nodes to [0, 1], given that

r−1
C (u, v) approaches 0 when rC(u, v) grows to infinity, and r−1

C (u, v) approaches
1 when rC(u, v) tends to 0.

Refine utilizes the function r−1
C to compute an (inverted) reaction time

summary vector R′(u) for each user u ∈ U , aggregated over all cascades C,
where each entry R′(u)[v], v ∈ U , is defined as follows:

R′(u)[v] =

∑
C∈Cu∩Cv

r−1
C (u, v)∑

C∈Cu

∑|C|
i=1 r−1

C (u,C(i))
(2)
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Equation 2 computes the (inverted) average reaction time between u and v, nor-
malized over all the cascades pertinent to u, Cu.

One can easily notice that the reaction time summary vector R′(u) captures a
reaction time distribution for each user u. Nonetheless, it fails to account for the
co-infection frequency between u and every other node v, which we consider to be
another strong signal for the existence of an edge between u and v. For example,
let v and w be two nodes with equal values in their respective entries in the
reaction time summary vector of u, i.e. R′(u)[v] = R′(u)[w]. If f(u, v) 
 f(u,w),
it is obvious that u and v have a stronger interaction tendency than u and w,
which is not modeled by R′.

To compensate for that, we first compute the relative co-infection frequency
vector F (u), where each F (u)[v], v ∈ U , is defined as follows:

F (u)[v] =
f(u, v)∑

w∈U f(u,w)
(3)

Finally, we combine R′ and F to obtain the interaction pattern summary I(u) =
F (u) × R′(u) for each user u. The vectors I(u) can be summarized in a matrix
I = [I(u1), . . . , I(un)] ∈ [0, 1]n×n that contains a row for each user.

Now, even though two users v and w have a tie for u in terms of R′(u), i.e,
R′(u)[v] = R′(u)[w], F (u) breaks such tie by putting more weight on the user
with a stronger co-infection frequency with u.

A näıve approach towards reconstructing the hidden network could be to
compute the similarity between each pair of users u, v based on I(u) and I(v),
for example by computing their distance over [0, 1]n. This approach, however,
leads to a poor performance as I is very sparse. We apply instead a learning
phase to embed I in a low and dense latent embedding space, in such a way that
the patterns encoded in I are preserved. In other words, we intend to identify a
mapping function Φ : [0, 1]n×n → R

n×d, with d � n.
Finally, we utilize Φ to effectively learn the probability for an edge between

a pair of nodes to exist, in order to reconstruct the hidden network.

3.2 User Embedding

Fig. 1. The Refine frame-
work (Color figure online)

The hidden network structure that we seek to
reconstruct lives in a highly non-linear space [8].
Therefore, one has to identify a mapping Φ ∈ R

n×d

that enables her to recover the non-linear net-
work structure. Towards this goal, Refine uses a
deep autoencoder, an unsupervised neural network
model.

An autoencoder enables us to embed I in a low-
dimensional latent space by composing several non-
linear functions (layers), as shown in Fig. 1. The
input is given by the matrix I. The user embedding
module of Fig. 1 has two components, the encoder
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(blue layers) and the decoder (black layers). The former transforms the input
into an embedding (white layer), while the latter tries to regenerate and output
the original input from the embedding.

Formally, the encoder E : [0, 1]n×n → R
n×d and the decoder D : Rn×d →

[0, 1]n×n are a composition of non-linear functions defined as follows:

E(I) = el(. . . e�(. . . (e1(I · W1) · W2) . . .) . . .) = Φ (4)

D(Φ) = dl(. . . d�(. . . (d1(Φ · Ŵ1) · Ŵ2) . . .) . . .) = Ĩ (5)

where e� and d� are the non-linear functions (e.g., relu, tanh) of the �−th encoder
and decoder layers, respectively. Each layer of an autoencoder is fully connected,
meaning that it is a linear transformation of the output of the previous layer
� − 1, i.e. f�−1(·) · W�, and f� is either e� or d�.

Optimization. The weights are the main parameters of the model that needs to
be trained. Normally this is achieved by minimizing the cost function of Eq. 6.

L = arg min
W

‖ I − Ĩ ‖2F (6)

where I is the input matrix and Ĩ is the regenerated output matrix. The mere
optimization of Eq. 6 leads to a poor performance due to I’s sparsity. To deal
with this, we adopt Wang’s strategy [8] and reformulate Eq. 6 as

L = arg min
W,̂W

‖ (I − Ĩ) ⊕ S ‖2F +λξ (7)

where ⊕ is the Hadamard product and S ∈ R
n×n
+ a term to avoid the sparsity

problem, is associated with I, i.e if I(u, v) = 0, then S(u, v) = 1 otherwise
S(u, v) = μ > 1 and μ is an alias for S(u, v). The second term in Eq. 7, ξ =∑l

�=1 ‖ W� ‖2F + ‖ Ŵ� ‖2F , is a regularization term to avoid over-fitting and
λ ∈ (0, 1) is the regularization constant. Finally, Eq. 7 can be optimized using
classical algorithms such as gradient descent. Then, once the optimization is
solved, we obtain an embedding Φ(u) of each user u ∈ U .

Speeding-Up the User Embedding. For a very large value of n, training an autoen-
coder using I could be very expensive. Thus, we propose an intermediate step
of dimensionality reduction using truncated (partial) singular value decomposi-
tion (T-SVD) for very large matrices [16]. T-SVD utilizes a few of the highest
or smallest eigenvalues of a large matrix. As a result, we can efficiently reduce
I’s dimension and feed the reduced Ir to the autoencoder. Moreover, this can
be considered as an alternative solution to tackle the sparsity problem with I.
Note that when employing this component there is no need for the sparsity term
in the loss function of Eq. 7. We have observed that including this optimization
provides similar or better results, with a significant reduction in memory and
computational time.
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3.3 Reconstruction

Once Φ is computed as in Sect. 3.2, we exploit it to predict the probability that
an edge exists between a pair of users. We assume that if a pair of users never
co-occur in any cascade, they have a very small chance of being connected.
Therefore, we discard such pairs and analyze the remaining ones.

Let p(u, v) = 1/(1+e−(Φ(u)T ·Φ(v))) be a function that predicts the probability
that an edge exists between u and v. We build a network G = (U,E′), E′ ≈ E
by adding an edge (u, v) to E′ with probability p(u, v). E′ can be refined by
pruning edges (u, v) where p(u, v) < τ for some threshold τ .

4 Experiments and Results

Dataset Description. Our experiments are performed on the following datasets,
whose characteristics are summarized in Table 1.

Twitter [17] contains a set of Twitter users with a reciprocal follower rela-
tionships, collected from March 24th to April 25th, 2012. The follower network
is considered as a ground truth. Two kinds of cascades are present: (1) Hashtag
(HT): Cascades collected from user activity when using/adopting hashtags; (2)
Retweet (RT): Cascades collected from user retweeting tweets.

MemeTracker (MT) [5], contains users represented by a collection of news
media and blog sites. Cascades are formed based on the spread of memes. A
contagion occurs when a particular meme is used by a site for the first time. The
sequence of all the infected sites form a cascade. The ground truth network is
built based on hyper-links found in each site.

Settings. In order to tune the hyper-parameters of Refine, we use the random
grid search strategy; its weights are initialized according to [18] for uniform
distribution. To implement our models, we adopted the TensorFlow1 and
SciPy2 Python-based libraries. In all the experiments, both the encoder and
decoder of Refine use the tanh activation function.

Table 1. Dataset summary. Number of users, number of edges, number of cascades,
number of users after removing large cascades.

Dataset |U | |E| |C| |U ′|
HT 595,460 14,273,311 1,345,913 34,371

RT 595,460 14,273,311 226,488 11,700

MT 3,836,314 15,540,787 71,568 52,088

1 https://www.tensorflow.org/.
2 https://www.scipy.org/.

https://www.tensorflow.org/
https://www.scipy.org/
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Results. In the first set of experiments, we have compared Refine with
two strong baselines InfoPath [5] (delay-aware) and DeepInfer [7] (delay-
oblivious). To perform a fair comparison, we have selected four topics of the
Memetracker dataset that have been evaluated in the InfoPath original paper.
The cascades derived from these topics are associated with 5000 users.

NBA Occupy Strauss−Kahn Syria

100 500 1000 1500 2000 100 500 1000 1500 2000 100 500 1000 1500 2000 100 500 1000 1500 2000
0

10

20

30

K

P@
K

Algorithm DEEPINFER INFOPATH REFINE

Fig. 2. Comparison of Refine with the baselines over four topics from the Meme-
tracker dataset for different value of K for the P@K metric. For all datasets, Refine
applies T-SVD and Ir ∈ R

n×1024. Cascade length: for Syria and Occupy, between 3
and 100; for NBA and Strauss Kahn, between 3 and 1000. (1) Syria n = 1, 207, and
|C| = 615, 176; Refine: layer sizes = [1024, 700, 300, 200], learning rate α = 0.005,
regularization constant λ = 0.0005. (2) Occupy : n = 1, 875, |C| = 655, 183; Refine:
layer sizes = [1024, 900, 400, 200], α = 0.001, λ = 0.009. (3) NBA: n = 2, 087, and
|C| = 1, 543, 630; Refine: layer sizes = [1024, 700, 300, 200], α = 0.003, λ = 0.0005; (4)
Strauss-Kahn: n = 1, 263, and |C| = 204, 238; Refine: layer sizes = [1024, 800, 500, 200],
α = 0.005, λ = 0.01. For DeepInfer: s = 15, and d = 200. For InfoPath, we have
adopted the exponential influence model, as it performs slightly better than the others.

The results are reported in Fig. 2. Refine performs better than the baselines
in almost all of the cases, by up to an order of magnitude. Apart from this, it
is worthwhile to note that a single-threaded version of InfoPath would require
several days to complete. In fact, the original paper reports 4 h of computation
to infer 38 different time-varying networks for 38 different topics, in a cluster
equipped with 1000 CPU cores and 6 TB total RAM [5]. Refine has been exe-
cuted on a 48-core, 128 GB machine and takes at most 10 min to reconstruct the
topic-associated networks for each of the four topics.

In the same figure, it is possible to observe the poor performance of DeepIn-
fer; this is due to the fact that we only consider 5000 users. To detect patterns,
DeepInfer relies on frequent co-occurrence of users in close contexts; however,
we do not have any guarantee that the 5000 users will occur in such man-
ner, hence the poor performance. This would not be an issue for Refine and
InfoPath, as they rely on reaction time and/or mere co-occurrence patterns
rather than context proximity.
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Fig. 3. Refine vs DeepInfer. Refine applies T-SVD, Ir ∈ R
n×1024. Refine: HT –

layer sizes [1024, 700, 500, 300, 100], learning rate α = 0.0001, regularization constant
λ = 0.0002; RT & MT – layer sizes [1024, 900, 700, 500, 200], α = 0.001. RT – λ = 0.004,
and MT – λ = 0.001. DeepInfer configuration: window size s = 10 and d = 200
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Fig. 4. Parameter sensitivity analysis with respect to (A) Embedding size (#dimen-
sions - d), (B) Regularization constant (λ), and (C) Sparsity penalizer (μ) using Strauss-
Kahn.

In all of the above experiments, the T-SVD step of Refine has been executed.
As shown in Fig. 5, handling the sparsity issue through T-SVD gives better result
than the formulation in Eq. 7. Refine with T-SVD is more robust than Refine
when K increases. However, one could ask if simply using the T-SVD method as
an embedding technique could be sufficient. In the following experiment we show
that a variant of Refine, referred to as Refine-Basic which simply considers
the T-SVD output as node embedding, is not sufficient. For this experiment,
we have chosen cascades of minimum length 5 and maximum length 200. In
fact, it has been argued that users belonging to large cascades are usually not
similar, as such cascades tend to be viral and include almost all users [17]. By
discarding cascades which are too large in order to reduce noise, the number of
users decreases, as shown in column |U ′| of Table 1.

Figure 3 shows how poorly Refine-Basic performs when it is compared
against Refine and DeepInfer. Recall that the network structure is highly
non-linear and our main goal for designing the complete Refine solution is to
capture such non-linearity. Refine-Basic is a linear model, and hence it fails
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to effectively predict the edges of the latent network. One particular observation
is that Refine tends to perform well when there is a large number of training
examples (i.e. the first two plots). Note that a training example in Refine cor-
responds to a user. In Fig. 3 we have not included the performance of InfoPath
as it fails to complete the inference on large datasets after several days.

Parameter Analysis. To complete the analysis, we investigate now how the differ-
ent parameters of our models affect the performance. We start by analyzing the
effect of embedding dimensionality in the network reconstruction task. As we are
interested in understanding the effect of the parameters, in the following experi-
ments we only set the minimum size of cascades to be 3, i.e. {C : |C| ≥ 3, C ∈ C}.
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Fig. 5. The effect of using the T-SVD
step in Refine using two topics, NBA
and Strauss-Kahn, from the Memetracker
dataset
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The first plot of Fig. 4 shows the effect of increasing the embedding dimen-
sionality in the network reconstruction task. As one might expect, increasing
this parameter up to a given threshold improves the results, because we can
encode more information. However, beyond a certain point the performance
either reaches a plateau or decreases. Our experiments show that in most of the
cases, the best results occur when the embeddings size is in the range 150–200. In
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the second plot of Fig. 4, the effect of the regularization constant λ (introduced
in Eq. 7) is analyzed. In line with previous findings [8], our experiments show
that in most of the cases, the best results are obtained when λ is between 0.0
and 0.4; after that point, the performance usually decreases. Finally, in the third
plot of Fig. 4 we analyze the effect of the sparsity factor μ, introduced in Eq. 7.
Our experiments show that in most of the cases, the best results are obtained
when μ is between 0 and 10.

Earlier we have shown the advantage of using T-SVD in terms of the quality of
the result; here, we analyze the effect from the convergence of the loss function L,
Eq. 7. Figure 6 shows that the loss function converges much faster (after a couple
of iterations) for Refine with T-SVD rather than Refine without T-SVD.

Cascade Prediction. Besides its effectiveness in network reconstruction, our app-
roach can be extended to perform other tasks, such as cascade prediction: given
the state of a cascade C up to a certain time t, we want to predict whether the
cascade will go viral by time t + Δt. This is a practically relevant problem and
a crucial challenge in social networks analysis [17,19,20].

In this study, we formulate the virality prediction problem similarly to Weng
et al. [17]. Let St(C) = {u : u = Ct(i) ∧ i ≤ t} be the number of users who
participated in a cascade up to a discrete time t. Let ϑ be a virality threshold ;
we seek to predict whether the cascade will affect a number of users which is
larger than ϑ% of the recorded cascades. We utilize the embeddings proposed
in Sect. 3.2. We compute a feature vector f ∈ R

d that encodes the current state
of the cascade based on St(C) as follows. Let p = |St(C)|, and let E ∈ R

p×d

be an embedding matrix constructed from the set of p starting users at time t,
u ∈ St(C). We then compute f by aggregating E , i.e. the j − th component fj
for j = 1, . . . , d is computed as fj = 1

p

∑p
i=1 Eij .

Once we automatically build the feature vectors, we assign binary labels for
each cascade according to their state at t + Δt and ϑ. That is, a cascade C is
labeled as viral if its size at t+Δt is greater than the size of ϑ% of the cascades;
otherwise, it is labeled non-viral. Finally, we follow a standard machine learning
approach by splitting the data into training (60%) and test (40%). To make a
fair comparison with community-based features (CBF) [17], we follow the same
techniques and settings. As we have a rare-class classification task, we use F-
Measure with β = 3 [19].

We use the same dataset as [17] (Twitter-HT). We compare Refine with
CBF and DeepInfer; for CBF only, features are manually extracted from the
underlying network.

Figure 7 shows that Refine is no better than the baselines for ϑ = {70, 80}.
However it is much better for ϑ = 90 (Refine = 69.7%, DeepInfer = 65.5%,
CBF = 43%), and in virality prediction it is crucial to have an effective prediction
at higher values of ϑ [19].

A vital task in this problem is to predict virality as early as possible. There-
fore, in the following experiments we seek to predict virality of a cascade C at
different t+Δt based on the observation of C at different values of t with a fixed
ϑ. In this experiment, we compare the two strong algorithms Refine and Deep-
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Infer, and for both algorithms d is equal to 200. As shown in Fig. 8, Refine
is a clear winner for this task. In particular, note that the prediction quality
for Refine improves as we increase t, and this provides a strong case for the
delay-aware approach. As it is difficult to predict far in the future, performance
decreases as we increase Δt.

5 Conclusions

This study addresses the problem of network reconstruction from diffusion events
through node embedding, and proposes a novel algorithm called Refine.

One of our objectives is to argue against some existing studies [4] and show
that, if carefully designed, delay-aware models are as good as or even better than
delay-oblivious models in reconstructing the hidden network.

Refine is based on user embeddings learned from cascade logs, that are
leveraged to predict edge probabilities between pairs of users. Unlike some exist-
ing techniques that assume a parametric form of influence model, we make
no assumption regarding the transmission rates over edges. Instead, we sim-
ply embed the interaction patterns between users in a low-dimensional space
and utilize that for reconstructing the edges. We show the effectiveness of this
technique by comparing it against existing delay-aware and delay-agnostic meth-
ods.

Moreover, we have also demonstrated the technique presented in this study
can be used for cascade prediction. Compared to existing manual or automatic
feature extraction techniques, our algorithm shows a significant performance
gain. Our study is limited to inferring the existence of edges between a pair of
users, and in a future work we seek to infer the direction of edges as well.
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Abstract. The paper presents the application of nonlinear dimensional-
ity reduction methods to shape and physical data in the context of hull-
form design. These methods provide a reduced-dimensionality represen-
tation of the shape modification vector and associated physical parame-
ters, allowing for an efficient and effective augmented design-space explo-
ration. The data set is formed by shape coordinates and hydrodynamic
performance (based on potential flow simulations) obtained by Monte
Carlo sampling of a 27-dimensional design space. Nonlinear extensions
of the principal component analysis (PCA) are applied, namely kernel
PCA, local PCA and a deep autoencoder. The application presented is a
naval destroyer sailing in calm water. The reduced-dimensionality repre-
sentation of shape and physical parameters is set to provide a normalized
mean square error smaller than 5%. Nonlinear methods outperform the
standard PCA, indicating significant nonlinear interactions in the data
structure. The present work is an extension of the authors’ research [1]
where only shape data were considered.

Keywords: Shape optimization · Hull-form design ·
Nonlinear dimensionality reduction · Kernel methods ·
Deep autoencoder

1 Introduction

The simulation-based design (SBD) analysis and optimization paradigm has
demonstrated the capability of supporting the design decision process, not only
providing large sets of design options but also exploring operational spaces by
assessing design performance for a large number of operating and environmen-
tal conditions. The recent development of high-performance computing systems
has driven the SBD towards integration with global optimization (GO) algo-
rithms and uncertainty quantification (UQ) methods, moving the SBD paradigm
to automatic deterministic and stochastic SBD optimization (SBDO) possibly
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Fig. 1. SBDO scheme, including pre-optimization strategy.

aiming at global solutions to the design problem. In shape design, SBDO con-
sists of three main elements: (i) a deterministic and/or stochastic simulation tool
(integrating physics-based solvers, such as computational fluid dynamics, CFD,
with UQ), (ii) an optimization algorithm, and (iii) a shape modification tool (see
Fig. 1, right box). In this context, both GO and UQ are affected by the curse
of dimensionality as the algorithms’ complexity and computational cost rapidly
increase with the problem dimension. This is generally also true if metamod-
els are applied. Therefore, the assessment and breakdown of the design-space
dimensionality are key elements for the efficiency and affordability of SBDO [2].

On-line linear design-space dimensionality reduction techniques have been
developed, requiring the evaluation of the objective function or its gradient.
Specifically, principal component analysis (PCA) or proper orthogonal decom-
position (POD) methods have been applied for local reduced-dimensionality rep-
resentations of feasible design regions [3]. A PCA/POD-based approach is used
in the active subspace method [4] to discover and exploit low-dimensional mono-
tonic trends in the objective function, based on the evaluation of its gradient.

Off-line linear methods have been developed with focus on design-space vari-
ability and dimensionality reduction for efficient optimization procedures. A
method based on the Karhunen-Loève expansion (KLE, equivalent to POD) has
been formulated in [2] for the assessment of the shape modification variability
and the definition of a reduced-dimensionality global model of the shape mod-
ification vector and applied to a fast catamaran. The method has been applied
to a naval destroyer [5], a small waterplane area twin hull [6], and a hydrofoil
[7], showing significant reduction of the design space dimensionality with great
benefit to the efficiency of the shape SBDO. Nevertheless, significant physical
phenomena induced by small shape modifications may be overlooked, since no
physical information is processed by the method. Furthermore, linear methods
such as KLE/POD/PCA may not be efficient when complex nonlinear relation-
ship between design variables are involved.

An extension to augmented design-space dimensionality reduction methods
by combining shape and physics based data was introduced in earlier research
[8–10]. This extension improved the effectiveness of the dimensionality reduction,
bringing physics based information (provided by low-fidelity hydrodynamic com-
putations) into the variability breakdown analysis (see Fig. 1 left box).

In order to address data with nonlinear structures, nonlinear dimensionality
reduction methods have been developed and investigated. Among others, local
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PCA (LPCA) divides the initial design space in k clusters and the PCA is applied
to each of them, assuming each cluster having approximately a linear structure
[11]. Kernel PCA (KPCA) solves the PCA in a new space (called feature space)
using kernel methods [12]. Autoencoders or autoassociative neural networks have
been studied and proposed as nonlinear extension of PCA by several researchers
[13,14]. Earlier research by the authors includes the application of nonlinear
methods to the design-space dimensionality reduction of a naval destroyer based
on shape data only [1,15,16].

The objective of the present work is to solve the dimensionality reduction of
combined shape and physical data using nonlinear methods and assessing their
efficiency and effectiveness.

Nonlinear methods include LPCA, KPCA, and DAE and are demonstrated
for the DTMB 5415 model (an early and open-to-public version of an USS
Arleigh Burk-class destroyer) in calm water at 18 kn. The data set is formed
by the results of 9,000 potential flow simulations obtained by the Monte Carlo
sampling of a 27-dimensional design space. Data include three heterogeneous
distributed and suitably discretized parameters (geometry modification vector,
pressure distribution on the hull, and wave elevation) and one lumped param-
eter (wave resistance coefficient). The reduced-dimensionality representation of
shape and physical parameters is set to provide a mean square error smaller
than 5%, normalized with the overall data variance. The efficiency and effective-
ness of nonlinear methods are assessed considering their compression capability
and associated reconstruction error compared to PCA. Current formulations and
methods go beyond design-space dimensionality reduction for shape optimization
and can be extended to large sets of heterogeneous physical data from simula-
tions, experiments, and real operation measurements. An extended version of
the current paper has been presented in [17].

2 Dimensionality-Reduction Formulation and Methods

Global optimization tries to find the best design exploring the entire design
space. This solution is obviously unknown a priori and therefore the problem
can be considered as affected by an epistemic type of uncertainty. Consequently,

shape modification
vector

distributed physical
parameter vector

lumped physical
parameter vector

disjoint Hilbert space

Fig. 2. Domains for shape modification, distributed physical parameter, and lumped
(or global) physical parameter vectors in a disjoint Hilbert space.
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the design-variable vector can be associated to a probability density function
and studied as a random variable [2].

General definitions and assumptions are presented in the following, along
with the solution of data reduction by PCA, LPCA, KPCA and DAE.

2.1 Combined Shape- and Physics-Based Formulation

Assume that u ∈ U ⊂ R
M is the design-variable vector, defining the shape

modification vector δ ∈ R
q1 , q1 = 1, ..., 3, along with a distributed physical

parameter vector π ∈ R
q2 , q2 = 1, ...,∞ (representing, e.g., velocity, pressure

distribution, wave elevation, etc.), and a lumped (or global) physical parameter
vector θ ∈ R

q3 , q3 = 1, ...,∞ (representing, e.g., resistance, motion RMS, etc.).
For the sake of simplicity, consider one set of coordinates x ∈ R

n, and assume
G, P, and Q as the domain of δ, π, and θ respectively, as schematized in Fig. 2.
Note that Q has a null measure and corresponds to an arbitrary point xθ where
the lumped physical parameter vector is virtually defined. Also note that, in
general, H ≡ G ∪P ∪Q is not simply connected. Finally, consider u as a random
variable with associated probability density function p(u). Consider a combined
geometry and physics based vector γ ∈ R

q with q = max{q1, q2, q3}

γ(x,u) =

⎧
⎨

⎩

δ′(x,u)/
〈‖δ′‖2〉 if x ∈ G

π′(x,u)/
〈‖π′‖2〉 if x ∈ P

θ′(x,u)/
〈‖θ′‖2〉 if x ∈ Q

(1)

as belonging to a disjoint Hilbert space H, where each component (generically
called ψ′ = ψ − 〈ψ〉) is centered and normalized by the associated variance

σ2 =
〈‖ψ′‖2〉 =

∫

U

∫

H
ψ′(x,u) · ψ′(x,u)p(u)dxdu (2)

with 〈·〉 the ensemble average over u.

Fig. 3. Scheme and notation for the current for-
mulation, example for shape modification only
with n = 1 and q = 2.

The aim of the dimension-
ality reduction is to identify
a reduced dimensionality rep-
resentation γ̂(x,α) of the vec-
tor γ, for which its modifica-
tion depends on a new reduced
order design variable α ∈ A ⊂
R

N with N < M . γ̂(x,α)
is estimated during a process
of encoding/decoding by the
dimensionality reduction meth-
ods. Figure 3 shows an example
for shape modification (δ) only,
with n = 1 and q = 2.

A convenient metric to evaluate the goodness of γ̂(x,α) to fit γ(x,u) is
the mean square error (MSE) normalized to the design-space original variance
(σ2) as
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NMSE =
MSE
σ2

=

∫∫

U×A,H
‖γ̂(x,α) − γ(x,u)‖2p(u,α)dxdudα

∫∫

U,H
‖γ(x,u)‖2p(u)dxdu

(3)

where p(u,α) is an unknown joint probability distribution over the product
space U ×A. Discretizing H by elements of equal measure ΔH = 1 and sampling
U by a statistically convergent number of Monte Carlo realizations S, so that
{uk}S

k=1 ∼ p(u), the discretization g(uk) of γ(x,uk) are organized in a [L × S]
data matrix as

D =
[
g(u1) . . . g(uS)

]
with g(uk) = {dT,pT, tT}Tk , (4)

where L is the dimensionality of g and with d, p, and t the discrete form of the
vectors δ(x,u), π(x,u), and θ(x,u), respectively. Equation 3 can be approxi-
mated as

NMSE =
MSE
σ2

=
∑S

k=1 ‖ĝ(αk) − g(uk)‖2
∑S

k=1 ‖g(uk)‖2
(5)

Details of formulation and numerical discretization can be found in [8].

2.2 Principal Component Analysis

PCA allows to reduce the dimensionality of the data matrix by representation
in a linear subspace defined by the eigenvectors of the [L×L] sample covariance
matrix C = DDT/S. Thus, PCA reduces to the solution of the eigenproblem

CZ = ZΛ (6)

where Z and Λ collect the L eigenvectors and eigenvalues of C, respectively. The
eigenvalues represent the variance resolved along the corresponding eigenvectors.
The linear subspace formed by the N eigenvectors (collected in Ẑ) associated to
the largest N eigenvalues resolves the largest variance, compared to any other
linear subspace of dimension N [18]. The cumulative sum of the eigenvalues is
used to assess the variance resolved by the linear subspace of dimension N . The
associated reconstruction of D is given by

D̂ = ẐẐTD (7)

2.3 Local Principal Component Analysis

LPCA performs a PCA for each disjoint region of the input space H. If local
regions are small enough the associated data manifold will not curve much
over the extent of the region and the linear model is assumed to be a good
fit [11]. The first step in LPCA is clustering the data in k sets, such that
D = {D1, . . . ,Di}k

i=1. Here, the k-means algorithm [19] is used. After k clusters
are defined, k PCA eigenproblems are solved

Cizi = λizi ∀i = 1, . . . , k (8)
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LPCA results are highly dependent on the clustering method and the num-
ber of clusters. The number of clusters needs to be defined carefully to avoid
increasing the computational cost and data overfitting.

2.4 Kernel Principal Component Analysis

KPCA [12] finds directions of maximum variance in a higher (possibly infinite)
dimensional feature space F , mapping data points from the input space H by a
(possibly) nonlinear function Φ : H → F

g(uk) → Φ(gk), ∀k = 1, . . . , S (9)

The PCA is computed in the feature space F . Assuming
∑

k Φ(gk) = 0, the
kernel principal component {zp}P

p=1 can be found solving the eigenproblem

ΣΦzp = λpzp (10)

where ΣΦ is the [P × P ] covariance matrix in the feature space F , defined as

ΣΦ =
1
S

S∑

k=1

Φ(gk)Φ(gk)T (11)

Defining K(gi,gk) = Φ(gi)TΦ(gk) and zp =
∑S

k=1 cpkΦ(gk) Eq. 10 can be
rewritten as

Kcp = λpScp (12)

where K is the symmetric and positive-semidefinite [S × S] kernel matrix, with
Kik = K(gi,gk). The length of the S-component vector cp is chosen such that
zTpzp = λpScTpcp = 1. Once the eigenproblem of Eq. 12 is solved, the new
parametrization can be found projecting Φ(g) on zp as

α = Φ(g)zp =
S∑

k=1

cpkΦ(g)TΦ(gk) =
S∑

k=1

cpkK(g,gk) (13)

The reconstruction of the original data from the feature space F in KPCA
is more problematic than PCA. Here, the approximate pre-images technique
proposed in [20] is used.

2.5 Deep Autoencoders

An autoencoder is a feedforward ANN that performs two main tasks: (i) an
encoder function E maps the input data g(uk) into compressed data αk; (ii)
a decoder function D maps from the compressed data αk back to ĝ(αk). The
overall operation is performed setting the same number of neurons (L) in the
input and output layer. The hidden layer is set to have N < M neurons and is
responsible for the data compression.
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Consider a single hidden layer autoencoder and assume no bias vector. New
design variables can be expressed as αk = E(H(1)g(uk)) where H is a weight
matrix and subscript “(1)” indicates the encoding operation. The reconstruction
vector can be expressed as ĝ(αk) = D(H(2)αk) where subscript “(2)” indicates
the decoding operation. Finally, the network parameters N = {H(1),H(2)}, are
evaluated by the (non trivial) minimization of the MSE in the form:

MSE(N ) =
1
S

S∑

k=1

‖ĝ(αk) − g(uk)‖2 =
1
S

S∑

k=1

‖D(H(2)E(H(1)g(uk))) − g(uk)‖2

(14)
Using nonlinear activation functions and multiple hidden layers, DAE pro-

vides a nonlinear generalization of the PCA. The DAE compression capability is
represented by the number of neurons N in the central hidden layer and defined
based on parametric minimization of the MSE, varying N .

3 Application

Figure 4 shows a schematic representation of the heterogeneous data set. Hull
and performance details of the orginal geometry can be found in [21]. The shape
parameter vector used for design-space dimensionality reduction collects the
y−component (δy) of the shape modification vector (δ). The shape modification
is defined using a combination of M = 27 basis functions over a hyper-rectangle
embedding the demi hull. Details of equations and setting parameters may be
found in [22]. The distributed (heterogeneous) physical parameter vector col-
lects values of the pressure distribution (p) and wave elevation (η), whereas the
lumped physical parameter vector includes the wave resistance coefficient (Cw).
Physical parameters are based on calm-water potential flow solution at Fr = 0.25.
Hydrodynamic simulations are conducted using the code WARP (Wave Resis-
tance Program), developed at CNR-INSEAN. Wave resistance computations are

Fig. 4. Distributed shape and physical parameters for current application.
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based on linear potential flow theory using Dawson (double-model) lineariza-
tion [23]. The frictional resistance is estimated using a flat-plate approximation,
based on the local Reynolds number [24]. Details of equations, numerical imple-
mentations, and validation of the numerical solver are given in [25]. Simulations
are performed for the right demi-hull, taking advantage of symmetry about the
xz-plane. The computational domain for the free-surface is defined by a 75 × 20
grid nodes. The associated hull grid is defined by 90 × 25 nodes. The design-
space dimensionality reduction is performed combining together all geometric
and physical parameters.

3.1 Numerical Results

The original design space is sampled using a uniform random distribution of
S = 9, 000 hull-form designs. The reduced-dimensionality models are validated
using 10-fold cross-validation repeated 6 times to compute the hypothesis test (t-
test). The reduced-dimension N is set so as to achieve a maximum NMSE equal
to 5%. A number of cluster k = 45 is used for LPCA. A quadratic polynomial
kernel is used for the KPCA. Three hidden layers are used for DAE (composed
by 600-N -600 neurons) with an exponential linear units [26] activation function
for each hidden layer. A linear activation function is used for the output layer.
The DAE training is performed by the Adam optimization algorithm [27], using
a minibatch size of 512 data point for gradient evaluation by the backpropaga-
tion algorithm [28]. For the implementation of the DAE the open-source python
library [29] is used.

Table 1 shows the dimensionality-reduction results in terms of number of com-
ponents N required by the methods to reconstruct successfully the data set along
with the associated NMSE (averaged on the training and test datasets). The
number of components N also indicates the reduced-dimensionality parametriza-
tion of the shape modification vector for future SBDO. The non-linear methods
outperform linear PCA. Specifically, LPCA and KPCA are found the most effec-
tive methods for the current problem in terms of dimensionality reduction capa-
bility (N = 14). DAE (N = 17) also shows a sufficient compression capability,
whereas PCA is found the least effective method requiring N = 19 principal
components. This suggests the presence of significant nonlinear structures into
the data set.

Table 1. Methods’ compression capability (N), dimensionality reduction (DR), and
training and test NMSE (p-value ≤ 0.05).

Method N DR% NMSE% (training) NMSE% (test)

PCA 19 29.6 4.5 4.6

LPCA 14 48.2 3.6 4.6

KPCA 14 48.2 4.1 4.6

DAE 17 37.0 4.3 4.5
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Fig. 5. Reconstruction of hull shape (δy), pressure distribution (p), wave elevation (η),
and corresponding errors Δ(·) for a target design (results are shown versus I− and
J−nodes of the computational grid); reconstruction of the wave resistance coeffiecient
(Cw) for the whole test set.
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Figure 5 shows the reconstruction of the hull shape (δy) and the distributed
physical (p and η) parameters vector for an example design in the test set. A
good agreement between the target and reconstructed data is achieved by all
methods. Furthermore, Fig. 5 shows the reconstruction of the wave resistance
coefficient (Cw) for the whole test set, showing a remarkable agreement.

4 Conclusions and Future Work

Nonlinear dimensionality reduction methods have been applied to the design
space assessment of the DTMB 5415 hull form in calm water at Fr = 0.25. Nonlin-
ear extensions of principal component analysis (PCA) have been applied, namely
local PCA (LPCA), kernel PCA (KPCA), and a deep autoencoder (DAE). The
data matrix under investigation was formed by the results of potential flow sim-
ulations coming from the MC sampling of a 27-dimensional design space asso-
ciated to a shape-optimization problem. The dataset includes the geometry as
well as two heterogeneous physical distributed parameters (pressure and wave
elevation) and one lumped parameter (wave resistance coefficient). The reduced-
dimensionality representation of shape and physical variables was sets to achieve
an NMSE smaller than 5% of the data variance.

The standard (linear) PCA meets the requirement using 19 principal compo-
nents/parameters. DAE shows here the least promising compression capability
among the nonlinear methods with 17 components required by the reduced-
dimensionality parametrization. Finally, LPCA and KPCA provides the most
promising compression capability with 14 components. Reconstructed data for
shape, pressure, wave elevation, and wave resistance coefficients were presented,
showing a remarkable agreement to target values.

The current results are promising, representing a first step towards data
compression and reduced-order model prediction of complex physical phenom-
ena. Current formulation goes beyond shape optimization and can be applied
to large sets of heterogeneous physical data from simulations, experiments, and
real operation measurements.

Future work includes extensions to multi-physics heterogeneous data from
multiple design conditions [10]. The possibility of using higher-fidelity analy-
sis solver with metamodels will be addressed. In parallel, a similar approach is
being applied to particle image velocimetry data of complex flows to assess the
compression capability of nonlinear extensions of the proper orthogonal decom-
position (POD) technique [30].
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Abstract. We present a novel framework for developing a risk model for
class prediction from high-dimensional gene expression data; we define a
new model that relies on several already known classification methods.
We make use of the model for a survival analysis of tumor and immune
subtype from Diffuse Large B-cell Lymphoma patients. Experimental
analyses show good level of accuracy in the detection of Cell-of-Origin
of diseases.

Keywords: Classification · Gene expression · Lymphoma

1 Introduction

The univocal identification of cancer and the understanding of its composition
are crucial in medicine; however, they represent non-trivial challenges. In order
to extrapolate features of single cells from complex tumor admixtures, non-trivial
approaches and accurate statistics analyses are required.

Among the different kinds of cancer, the treatment of Lymphoma requires
some of the most difficult tasks; indeed, a proper understanding conditions in
which it arises is still an open problem, as well as the definition of the specific
kind of genetic mutation causing its growth [1]. Furthermore, we know that DNA
changes related to Lymphoma are usually acquired after birth, rather than being
inherited [2]; nevertheless, even if they may result from several causes, such as
exposure to radiation, cancer-causing chemicals or infections, changes occur for
no apparent reason, in general.

In order to effectively tackle these challenges, new techniques have been
recently developed that enhance already existing immune profiling technol-
ogy [3]. In this context, statistical analysis of gene expression [4] plays a crucial
role, and it can be of help for immune profiling, therapeutic design, treatment
strategies and also for studying and understanding the unusual growth and/or
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the migration of cells into organs or tissues from their sources of origin. For
instance, in malignant tumors, levels of cellular infiltration are associated with
tumor growth, cancer progression and patient outcome.

Several methods for prognosis prediction of Diffuse Large B-cell Lymphoma
and analysis of gene expression profiling have been proposed, based on Fuzzy
Neural Networks [5], statistical techniques [6], survival analysis [7] or microar-
ray manipulation [8], among others. In recent years, a new research trend has
been arising, mostly based on discovering Cell-of-Origin (COO) into two distinct
molecular subtypes, identified by gene expression profiling: the activated B-cell-
like (ABC) and the germinal center B-cell-like (GCB)[9]. Indeed, the assignment
of Diffuse Large B-cell Lymphoma into COO groups has become increasingly
important with the emergence of novel therapies that have selective biological
activity in GBC or ABC groups [10]. Many studies take advantage of differ-
ent feature extraction methods to discover independent components from gene
expression profile, such as Principal Component Analysis (PCA) [11], Linear
Discriminant Analysis (LDA) [12] and Locally Linear Discriminant Embedding
(LLDE) [13], and Prediction Analysis for Microarrays (PAM) [14]. Although
such methods have solid biomedical support, there are a great number of gene
subsets with the same predictive performance which could lead to the arbitrari-
ness selection of candidate gene subsets. In fact, each method suffers from some
drawbacks, and many factors such as normalization, small sample size, noisy
data, improper evaluation methods, and too many model parameters can lead
to the overfitting of the resulting models, the bias of results and even false discov-
ery [15]. Among these methods, promising results has been attained by the work
of Dabney et al. [6], that showed Classification to Nearest Centroids (ClaNC)
outperforming other methods in terms of accuracy and overall error.

In this work we propose a novel approach for class prediction from gene
expression data and survival analysis of tumor and immune subtype; we are
interested in finding a subset of genes which have a significant impact on survival
probability. In particular, our approach relies on the definition of two groups
based on the amount of certain member cell types composing the genes, and
on a Kaplan-Meier survival analysis that aims at understanding which group
has more chances to survive. Genes can be identified by taking into account
the fact that, if the presence of some set of genes changes, the composition
of the groups changes accordingly, and hence the survival probability. In our
approach, we make use of machine-learning techniques in order to identify gene
candidates and of cibersort [16] in order to adaptively identify the induced
groups. The framework is available at https://github.com/DeMaCS-UNICAL/
DLBCL-prediction.

The remainder of the paper is structured as follows: Sect. 2 reports the main
methods used, including frameworks used to set up the experiments; Sect. 3
defines the experimental activities we carried out, while Sect. 4 discusses the
results. Section 5 presents our conclusions and perspectives.

https://github.com/DeMaCS-UNICAL/DLBCL-prediction
https://github.com/DeMaCS-UNICAL/DLBCL-prediction
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2 Proposed Approach

In the context of DNA microarrays, classifying and predicting the diagnostic
category of a sample based on its gene expression profile constitute a challenge,
as there is a large number of inputs (genes) from which to predict classes along
with a relatively small number of samples. Hence, the identification of which
genes contribute towards the classification is an important task.

The goal of this study is to provide a new approach for identifying a subset
of genes that influence survival rate of patients having Diffuse Large B-cell Lym-
phoma. The proposed approach consists of three steps: (i) use cibersort [16] to
estimate the excess of certain member cell types in a mixed-cell population and
subdivide the patients in different groups w.r.t. their own cell types value; (ii)
apply Kaplan-Meier analysis to the groups, in order to estimate the survival func-
tion from lifetime data and measure the fraction of patients living for a certain
amount of time after treatment; (iii) identify the best separating genes from the
mixture that influence the survival rate of each subgroup. In particular, in order
to perform an accurate prognosis prediction, we evaluate performance of three
different classification algorithms: PAM, ClaNC and Proportional Overlapping
Score (POS).

2.1 Subgroup Definition Using CIBERSORT

cibersort [16] is a method for characterizing cell heterogeneity from nearly
any tissue by using their gene expression profiles. It uses a machine learning
approach called ν-Support Vector Regression (V-SVR) and performs a decon-
volution of mixtures, useful to analyze the composition of each sample in term
of percentage of tumor and noise. The output of cibersort is a new estimated
mixtures that is expressed in the percentage relationship between genes and
cell lines and, then, the composition of each gene. By using cibersort, we
divided the patients into two groups w.r.t. the median value computed on the
B-cell proportions among all patients. In particular, let Pi be a patient, X(Pi)
the B-cell proportion value of that patient and M the median value, we define
the “High” group s.t. Pi ∈ High ↔ X(Pi) >= M and the “Low” group s.t.
Pi ∈ Low ↔ X(Pi) < M . Basically, the High group contains patients, which
B-cell proportion is greater or equal than the median, while the Low group con-
tains patients which B-cell proportion is lower than the median. The resulting
groups represent a starting point of our analysis. Indeed, for each group the
Kaplan-Meier analysis is computed to obtain the overall survival of the patients.

2.2 Survival Analysis

Kaplan-Meier [17] is a method used to measure the fraction of subjects living for
a certain amount of time after treatment. The Kaplan-Meier survival function is
defined as the probability of surviving in a given period of time while considering
time in many small intervals. Let di be the number of death patients at time ti,
and let ni be the number of patients “at risk”, i.e. alive patients or not censored
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just before ti (a patient is censored when information is missing); at a given time
t, the value of the survival function is computed as follows:

S(t) =
∑

ti≤t

[1 − di
ni

]

For instance, the probability of a patient surviving two days after a
chemotherapy treatment for non-Hodgkin lymphoma is computed by conditional
probability [18] as follows:

P (t) = P (s1s2|s1)
where s1 is the probability of surviving after the first day and s2 is the

probability of surviving after the second day.

2.3 Gene Classification

In order to identify subsets of probe sets that best characterize each class with
a reasonably small cross-validation error, we consider the PAM, ClaNC and
POS classification techniques, widely used in problems related to cancer-gene
expression studies [19]. These probe sets were removed in order to analyze the
variation of survival rate by comparing the survival curves. – PAM is a statistical
technique for class prediction from gene expression data using Nearest Shrunken
Centroids (NSC) [20]. It is a simple, accurate and fast classifier often used to
select genes directly linked with breast cancer [14]. – ClaNC is a classification
algorithm based on NSC. It can be represented by the centroid components and
pooled by the standard deviation of the active genes, that are most frequent genes
for each class, demonstrated to be successful in selecting genes that discriminate
between multiple clinical or biological classes [6]. – POS is a method based on
the analysis of the overlapping regions, for each gene, yielded by the intersection
between gene expression intervals of different classes with the aim to denote gene
with higher discriminating power for the considered classification problem. It is
able to achieve interesting results in gene selection to increase the diagnostic
value of gene expression data for colorectal cancer [19].

PAM and ClaNC are based on NSC, which, in turn, is one of the most fre-
quently used classification methods for high-dimensional data, such as microar-
ray data [21]. NSC selects “good” genes according to two factors: within class
distance and between classes distance. When expression levels of a gene for all
samples in the same class are fairly consistent with a small variance, but are
largely different among samples of different classes, the gene is considered a
good candidate for classification because it has discriminant information for dif-
ferent classes. Genes whose expression levels do not significantly differ between
the classes will have their centroids reduced to the overall centroids, effectively
removing them from the classification procedure [20].
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3 Experimental Setting

In the following we illustrate our experimental activities; in particular, we
describe the dataset of use and the evaluation criteria adopted.

3.1 Dataset Description

We conduct our experiments on the publicly available dataset taken from the
Gene Expression Omnibus (GEO)1, a database consisting of microarray, next
generation sequencing (NGS) and other high-throughput data. In particular, we
tested our method on GSE23501 dataset composed of DNA methylation signa-
tures define molecular subtypes of Diffuse Large B-cell Lymphoma (DLBCL),
characterized by probe sets represented on GeneChip Human Genome U133 Plus
2.0 Array. The screening population consisted of 69 DLBCL cases in the 16–92
age range, subjected to the same treatment (R-CHOP); for each patient, age,
overall survival, molecular subtype, gender and treatment are known. We used
the LM22, signature matrix designed by Newman et al. [16]. LM22 contains 547
genes that distinguish 22 human hematopoietic cell phenotypes including seven
T-cell types naive and memory B-cells. These cells are highly relevant since they
can kill tumor cells, or in some cases promote their growth. Precisely, we focus
on B-cells memory (a type of lymphocytes) that are part of the adaptive immune
system, a specific defense [22]. In order to perform a foreign comparison accord-
ing to [16], we converted probes of references matrix (LM22) to HUGO gene
symbols [23].

3.2 Evaluation

We used log-rank test and F-test for comparing the survival distributions of
two samples. The log-rank test is based on the null hypothesis that there is
no difference regarding survival among two distributions. In log-rank test we
calculated the expected number of events in each group, i.e. E1 and E2 while
O1 and O2 are the total number of observed events in each group, respectively.
The statistic test is:

p =
(O1 − E1)2

E1
+

(O2 − E2)2

E2

Log-rank tests were computed within a level of significance of 5% [24].
Log-rank test may be invalid or less significant if the survival curves cross

because of an increased probability of type II error [24]. For this reason, especially
to determine whether two curves belong to different distribution, we included
F-test [25] in our analysis, a statistical tool for data analysis programmed to
determine whether two independent estimates of variance can be assumed to be
estimates of the same variance; this allows us to perform a comparison between
two treatments. Let Ȳi the sample mean in the ith group, ni the number of
1 https://www.ncbi.nlm.nih.gov/geo/.

https://www.ncbi.nlm.nih.gov/geo/
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observations in the ith group, Ȳ the overall mean of the data, K the number of
groups, N the overall sample size; then, the formula for the F-test statistic value
is:

F =
K∑

i=1

ni(Ȳi − Ȳ )2

K − 1 /

K∑

i=1

n∑

j=1

(Ȳi − ¯Yi)2

N − K

F-test is performed with a significance level of 5%. It is the probability of
making the wrong decision when the null hypothesis is true and it is also called
α level. According to this test, the null hypothesis is rejected when both critical f
value is smaller than F-test value and a p-value is smaller than α level. Critical f
value is a cutoff value on the test distribution where the F-test value is unlikely
to be wrong.

4 Experimental Analysis and Discussion

The goal of this study is to find a subset of genes that influence the survival
rate and the disease. Patients are divided into two groups, and for each group
the Kaplan-Meier analysis is computed in order to obtain the overall survival.
Comparing performances of three classification algorithms, subsets of probe sets
that best characterize each class are identified and removed in order to analyze
the variation of survival rate. The first classification algorithm used is PAM. A
grid search is used to estimate best score value, called threshold, that minimizes
classification errors. The results reported in the tables are relative to the test
set obtained by splitting the original dataset in training (80%) e test set (20%).
In particular, the results are related to the average performance on the test
set among 10-fold cross-validation. Precision, Recall, Accuracy and F-measure,
derived from confusion matrix, and the overall MSE (i.e., the average of the
squares of the difference between the estimated centroid and observed value)
were used to assess the quality of the algorithm. In order to select the genes that
best characterize each group, we tested each method by selecting sets of genes of
different size (10, 50, 100, 150 and 200). For each size we performed the Kaplan-
Meier analysis and we compared the overall results in order to find the best
size. By increasing the size, there were no relevant changes in the survival curve.
Hence, we selected only 10 genes with the additional purpose of minimizing the
modifications on the genome. Table 1 reports a subset of 10 probe sets founded
by PAM with an overall cross validation error of 45.5% [25 out of 38 High samples
were correctly predicted (63%), while 18 out of 33 Low were misclassified (54%)].

These probe sets are removed from the original dataset and we performed
the analysis over all remaining genes. Thus, Kaplan-Meier analysis is performed
on the resulting new subgroups with the aim of discovering relevant correlations
between genes and survival rate. After pruning (i.e. removing genes) according
to the classifier, we computed the survival analysis and we noticed that some
patients are automatically moved from High group to Low group or vice-versa
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Table 1. Genes distinguishing best between High and Low classes, according to PAM
analysis

Id High-score Low-score

207928 s at 0.0995 −0.1056

1554141 s at 0.0774 −0.0821

230877 at −0.0764 0.081

1560997 at −0.0651 0.0691

211821 x at −0.0605 0.0642

234458 at −0.0581 0.0616

210607 at −0.0569 0.0604

240791 at 0.0542 −0.0574

236582 at 0.0516 −0.0547

215290 at −0.0473 0.0501

due to classification results. Indeed, due to removing of genes, the genome of
patients and, consequently, the percentage of B-cell are changed.

Figure 1 shows a survival graph before and after removing these probe sets
according to the PAM analysis, on the left and on the right, respectively. On the
Y and X axes the estimated survival probability and the time of observation [26]
are reported, respectively. The survival curve is drawn as a step function: the
proportion surviving remains unchanged between the events, even if there are
some intermediate censored observations.

Fig. 1. Plots of Kaplan-Meier product limit estimates of survival of a group of patients
(on the left), and after removing genes according the PAM analysis (on the right).

Table 2 reports the survival time for each group in which the dataset was sub-
divided before (on the left) and after removing probe sets according to the PAM
analysis (on the right). The rows represent the number of patients belonging
to the two groups, while columns represent the number of patients observed in
each group, survival time and survival probability, respectively. The number of
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patients in the High class decreases as well as the average survival rate and aver-
age survival probability (i.e. 60% of survival probability), w.r.t. values obtained
from original dataset (on the left) (i.e. 70% of survival probability).

Table 2. Kaplan-Meier analysis’ results before (on the left) and after removing probe
sets according to PAM (on the right) in terms of average survival probability and
survival time for each group (±standard deviation)

Observed Time Survival

35 3.87 (±0.36) 70%
33 4.89 (±0.40) 90%

Observed Time Survival

High 24 3.55 (±0.47) 60%
Low 44 5.12 (±0.33) 90%

Table 3. Log-rank test computed before (I) and after the PAM analysis (II)

Log-rank Observed Critical value P-value

I 1.93 3.84 0.17

II 4.28 3.84 0.04

In order to compare the distribution of the two obtained curves (Fig. 1), we
calculated and compared the p-value according to the log-rank. Table 3 shows
the comparison between log-rank test results obtained from original dataset (I)
and the dataset after probe sets removed according to the PAM analysis (II). In
particular, analysis (II) indicates a significant difference between the population
survival curves (p-value 0.0391); analysis (I), instead, does not show a significant
difference between the two curves (p-value 0.1650).

Table 4. Average and standard deviation computed before (I) and after PAM analysis
(II) on survival probability (i.e Y axis) (right) and on survival time (i.e. X axis) (left)

Average (±stdev)

(I) 2.28 (±1.66)
(II) 2.21 (±1.83)

Average (±stdev)

(I) 0.78 (±0.08)
(II) 0.73 (±0.13)

For completeness and to support our previous claims (i.e. statistical tests),
we insert average comparison. As reported in Table 4, the average of survival
probability and survival time decrease from analysis (I) to analysis (II).

We performed the same procedure with the other two classification algo-
rithms. Performance of PAM, ClaNC and POS are compared to each other, as
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Table 5. Comparison the PAM, the ClaNC and the POS error rate (MSE) for each
class

Class high Class low

PAM 0.37 0.54

ClaNC 0.10 0.14

POS 0.30 0.44

illustrated in Table 5. In particular, we can observe that the overall MSE, when
classifying according to ClaNC, tends to be substantially lower than the PAM
error rate, in contrast to POS error.

According to each method, 10 more relevant probe sets for each class are
found (see Table 6). Note that the algorithms do not find the same probe sets.
Indeed, although the first two techniques are both based on NSC, they use a
different approach resulting in an outcome are very different. This difference in
strategy impacts on the results and the selection of the genes that best charac-
terize each class, also taking into account that the difference between the genes
is small.

Table 6. Comparison the PAM, the ClaNC and the POS top probe sets

ClaNC PAM POS

231192 at 207928 s at 213524 s at

243188 at 1554141 s at 201904 s at

227573 s at 230877 at 1563203 at

207928 s at 1560997 at 241355 at

219833 s at 211821 x at 1555801 s at

1554141 s at 234458 at 236347 at

221558 s at 210607 at 230352 at

215000 s at 240791 at 239435 x at

1563127 at 236582 at 240529 at

234458 at 215290 at 1552569 a at

Each subset of probe sets was removed from original dataset in order to
perform Kaplan-Meier analysis and search for a correlation between these probe
sets and survival rate of patients. Results of Kaplan-Meier analysis do not show
a relevant change after removing each probe set selected by ClaNC and POS,
as indicated in Table 7. Indeed, the survival probability is similar to the value
obtained after removing probe sets according to the PAM analysis (Table 2).

Our analysis is focussed only on High curve, that has shown a relevant change
according to the PAM analysis. Table 8 reports the comparison between log-rank
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Table 7. Kaplan-Meier analysis’ results after removing probe sets according to ClaNC
in terms of average survival time (± standard deviation) on the left and according to
POS in terms of average survival time (± standard deviation) on the right

Observed Time Survival

High 21 3.80 (±0.47) 65%
Low 47 4.78 (±0.32) 88%

Observed Time Survival

37 3.87 (±0.36) 75%
31 4.89 (±0.40) 90%

test results among original dataset (I) and resulting dataset according to the
PAM analysis (II), to the ClaNC analysis (III) and to the POS analysis (IV).

Table 8. Log-rank test computed among original dataset (I), analysis (II), (III) and
(IV)

Log-rank Observed Critical value P-value

I 1.93 3.84 0.17

II 4.28 3.84 0.04

III 1.18 3.84 0.28

IV 2.05 3.84 0.12

In particular, analysis (I), (III) and (IV) do not show a significant difference
between the two curves (p-value 0.170, 0.2810 and 0.1201, respectively).

Table 9. Average and standard deviation computed before (I) and after the PAM
analysis (II), after the ClaNC analysis (III), after the POS analysis (IV) on survival
probability (i.e. Y axis) (right) and on survival time (i.e. X axis) (left)

Average (±stdev)

(I) 2.28 (±1.66)
(II) 2.21 (±1.83)
(III) 2.43 (±1.80)
(IV) 2.26 (±1.65)

Average (±stdev)

(I) 0.78 (±0.08)
(II) 0.73 (±0.13)
(III) 0.76 (±0.12)
(IV) 0.79 (±0.09)

As shown in Table 9, the average value of survival probability and survival
time increases from analysis (II) to analysis (III) and analysis (IV). Although the
differences are small, taking into account the p-value results, we can say that the
analysis (III) and (IV) do not find relevant differences between the population
survival curves.
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Table 10. F-test results in terms of F value, critical f value and p-value according X
(Survival time) and Y (Survival probability) axes

PAM

X Y

F-value 1.20 2.35
Critical f 1.86 1.55
p-value 0.30 0.01

ClaNC

X Y

F-value 2.12 1.97
Critical f 1.80 1.56
p-value 0.06 0.05

POS

X Y

F-value 1.40 2.20
Critical f 1.70 1.80
p-value 0.40 0.06

Such result is also evident from Table 10, which reports the result of F-test
computed by comparing the High curve between original dataset and the result-
ing dataset, according to each classification method used.

The F-test shows that PAM achieves good results according to survival prob-
ability (Y axis). In fact, F value is greater than critical f value and p-value is
lesser that the α level (i.e. 0.05) (see Sect. 3.2).

Our findings suggest that PAM achieves the best result, implying that the
distributions of the two curves (before and after the PAM analysis) are not equal.

5 Conclusion

In this work we investigated how a particular set of genes could influence the
survival of two prognostic groups. In particular, we first used cibersort to
estimate the excess of certain member cell types in a mixed-cell population,
and subdivided the patients in different groups with respect to their own cell
type value. In a second phase, we performed Kaplan-Meier survival analysis in
order to understand which group has more chances to survive after the same
treatment. We employed different statistical techniques for class prediction from
gene expression data in order to detect a set of Cells-of-Origin of disease for
each prognostic subgroup. The results obtained are affected by the different
probe set proportion between signature matrix and mixture. Indeed, only four
probe sets over ten found according the PAM analysis is present in LM22, only
one according the ClaNC analysis and no probe set according the POS analysis.

As far as future works are concerned, a new signature matrix that includes
more probe sets could improve our results, and better define the correlation
between genes and survival rate of patients.
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Abstract. Dynamic Bayesian networks (DBNs) offer an approach that
allows for causal and temporal dependencies between random variables
repeatedly measured over time. For this reason, they have been used in
several domains such as medical prognostic predictions, meteorology and
econometrics. Learning the intra-slice dependencies is, however, most of
the times neglected. This is due to the inherent difficulty in dealing with
cyclic dependencies. We propose an algorithm for learning optimal DBNs
consistent with the tree-augmented network (tDBN). This algorithm uses
the topological order induced by the tDBN to increase its search space
exponentially while keeping the time complexity polynomial.

1 Introduction

Bayesian networks (BN) are a powerful probabilistic representation [20] that pro-
vide interpretable models of the domain. This is achieved through the definition
of a network – a directed acyclic graph (DAG) – that unravels direct condi-
tional dependencies between random variables. This network provides nothing
more than a factorization of the joint probability distribution of those variables.
Learning a BN from data consists in learning this structure. Having so, it is easy
to learn its parameters and make inferences over this probabilistic framework.

Dynamic Bayesian networks (DBN), on the other hand, model stochastic
processes [19]. In this case, variables are measured not only once, as for the
case of BNs, but repeatedly over time. The networks to be learned consist in
a prior network and several transition networks. The prior network is a BN
eliciting the dependencies between the random variables at their initial state.
The transition network unravels the dynamic dependencies of the variables over
time: from past states to current states (inter-slice dependencies); and between
current states (intra-slice dependencies).

The inter-slice dependencies are easy to learn as they flow forward in time and
do not create cycles [12]. On the other hand, learning the intra-slice dependencies
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suffers from the hardness of finding an acyclic graph [7,9,11]. A polynomial-time
algorithm for learning optimal DBNs was proposed using the Mutual Information
Tests (MIT) [22]. However, learning the inter and intra-slice networks all together
is not considered. This step has been done for tree-like networks, resulting in the
so-called tree-augmented DBN (tDBN) [17]. We propose to further extend this
algorithm by increasing exponentially its search space to networks consistent
with the topological order induced by an optimal tDBN. At the same time, we
are able to maintain its time complexity polynomial in the size of the input.

The emerging availability of electronic medical records (EMR) is trigger-
ing this line of research, bringing large, feature-rich, heterogeneous, noisy, and
incomplete time series. The proposed algorithm is currently being used to pre-
dict evolution of amyotrophic lateral sclerosis and treatment outcome of arthritis
rheumatoid from EMR.

We start by reviewing the basic concepts of both BNs and DBNs. Then, we
present the proposed learning algorithm and the experimental results. The paper
concludes with a brief discussion and directions for future work.

2 Bayesian Networks

Let X denote a discrete random variable that takes values over a finite set X
and X = (X1, . . . , Xn) represent an n-dimensional random vector, where each
Xi takes values in Xi = {xi1, . . . , xiri

}. Furthermore, let P (x) denotes the
probability that X takes the value x. A Bayesian network (BN) encodes the
joint probability distribution of a set of n random variables {X1, . . . , Xn} [20]
and it is given by a triple B = (X, G,Θ), where:

– X = (X1, . . . , Xn), each random variable Xi taking values in {xi1, . . . , xiri
},

where xik denotes the k-th value Xi can take.
– G = (X, E) is a directed acyclic graph (DAG) with nodes in X and edges E

representing direct dependencies between the nodes.
– The set Θ encodes the parameters of the network G. Each random variable

Xi has an associated conditional probability distribution (CPD) a.k.a. local
parameters: Θijk = PB(Xi = xik|ΠXi

= wij), where ΠXi
denotes the set of

parents of Xi in the network G and wij is the j-th parent configuration of
ΠXi

, which ranges over {wi1, . . . , wiqi
}, with qi =

∏
Xj∈ΠXi

rj .

We note that the random vector X coincide exactly with the set of nodes in G,
and we abuse notation considering that set to be denoted by X.

A BN B induces a unique joint probability distribution over X given by:

PB(X1, . . . , Xn) =
n∏

i=1

PB(Xi|ΠXi
). (1)

Intuitively, the graph G of a BN can be viewed as a network structure that
provides the skeleton for representing the joint probability, compactly, in a fac-
torized way. This reduces highly the number of parameters needed to describe
the full joint probability distribution over the random variables [6,16].
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Learning a Bayesian network is done in two steps: first the structure is
learned; having the structure fixed, the parameters are learned. This is called
structure learning and parameter learning, respectively. In what follows, we
assume data D is complete, i.e, each instance is fully observed, there are no
missing values or hidden variables. Moreover, D = {x1, . . . ,xN} is given by a
set of N i.i.d. instances. In that case, Nijk is the number of instances where Xi

takes the value xik and its parents ΠXi
takes the configuration wij . In addition,

the number of instances where ΠXi
takes the configuration wij is denoted by

Nij .
In order to learn the parameters we assume the underlying graph G is given;

in this case, the goal is to estimate the parameters Θ of the network. Using gen-
eral results of the maximum likelihood estimate we get the following parameters
for a BN B:

θ̂ijk =
Nijk

Nij
, (2)

that is denoted by observed frequency estimates (OFE). When learning the struc-
ture, the aim is to find a DAG G, given D. This can be accomplished through
the use of a scoring function φ : S × X → R, where S denotes the search space,
that measures how well the BN B fits the data D; therefore, it is called score-
based learning [2,3,5]. The main scoring criteria are Bayesian and information-
theoretical [1]. We will focus only on information-theoretical ones, in particular,
log-likelihood (LL) and minimum description length (MDL). The LL of a BN B
is given by:

LL(B|D) =
n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk log(θijk). (3)

This criterion does not generalize well as it favors complete network structures,
leading to the overfitting of the model to the data. The MDL criterion, pro-
posed by Rissanen [21], imposes that the parameters of the model must also be
accounted, providing a penalty factor that balances between fitness and model
complexity. The MDL is defined by:

MDL(B|D) = LL(B|D) − 1
2

ln(N)|B|, with |B| =
n∑

i=1

(ri − 1)qi, (4)

where |B| corresponds to the number of parameters Θ of the network. These
scoring functions have a very important property, they are decomposable. This
means that the overall score φ of B can be expressed as sums of local contri-
butions φi of each node Xi and its parents (c.f. summations in Eq. (3)). This
decomposability property allows for efficient learning procedures based on local-
search methods.

In light of the previous discussion, structure learning reduces to an optimiza-
tion problem: given a scoring function φ and a data D, find the BN B that
maximizes φ(B,D).

Learning general BNs is a NP-hard problem [7,9,11]. However, if we restrict
the search space S to branchings (a.k.a. tree-like structures) [8,15] or networks
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Fig. 1. Given the branching R represented in Fig. 1a, b represents a C2G w.r.t. R;
Fig. 1c represents a non-consistent 2-graph w.r.t. R due to the edge from X2 to X4.

with bounded in-degree with a known ordering over the variables [10], it is pos-
sible to obtain global optimal solutions for this problem. A polynomial-time
algorithm for learning BNs with underlying consistent κ-graphs (CκG) was pro-
posed combining these ideas [4]. Therein, the authors showed that the set of
networks consistent with the optimal branching is exponentially larger, in the
number of variables, when comparing with branchings themselves [4]. In addi-
tion, the time-complexity of the learning procedure remained polynomial. The
method we propose in this paper is an extension of the CκGs to DBNs, so in the
following we further introduce notation and detail the CκG learning procedure.

A κ-graph is a graph where each node has in-degree at most κ. Given a
branching R over a set of nodes V , a graph G = (V,E) is said to be a consistent
κ-graph (CκG) w.r.t. R if it is a κ-graph and for any edge in E from Xi to Xj

the node Xi is in the path from the root of R to Xj . Intuitively, this branching
R provides a topological order of the nodes from which the set of parents of each
node in the network can be refined without creating cycles, avoiding the hardness
of checking for cycles in the DAG. In this way, it is possible to add relevant edges,
not considered previously due to the branching restriction (that allows only for
one parent), and remove irrelevant ones (as branchings also requires exactly one
parent per node, except from the root). For an example see Fig. 1.

The algorithm for learning CκG network structures, presented in Algo-
rithm 1, starts by determining an optimal branching R (Step 1); for this it
uses the Chow-Liu [8] or Edmond’s [13] algorithm (see details in [4]). It then
computes the set of candidate ancestors αi, for each node Xi, compatible with
the topological order induced by the optimal branching R (Steps 2–3). The par-
ents of each node Xi in the network are then refined considering those in αi

(Steps 4–9). The algorithm returns a BN of in-degree κ consistent with R, aug-
menting the search space exponentially, in the number of variables, relatively to
branchings, yet keeping a polynomial-time bound in the number of variables n.

3 Dynamic Bayesian Networks

Dynamic Bayesian networks (DBN) model the stochastic evolution of a set of
random variables over time [19]. Consider the discretization of time in time slices
T = {0, . . . , T}. Let X[t] = (X1[t], . . . , Xn[t]) be a random vector denoting the
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Algorithm 1. Learning CκG networks
1: Run a deterministic algorithm Aφ that outputs an optimal branching R.
2: for each node Xi in R do
3: Compute the set αi of candidate ancestors for Xi.
4: for each subset S of αi with at most κ nodes do
5: Compute φi(S, D).
6: if φi(S, D) is the maximal score for Xi then
7: Set ΠXi = S.
8: end if
9: end for

10: end for

value of the set of attributes at time t. Furthermore, let X[t1 : t2] denote the set
of random variables X for the interval t1 ≤ t ≤ t2. Consider a set of individuals
H measured over T sequential instants of time. The set of observations is repre-
sented as {xh[t]}h∈H,t∈T , where xh[t] = (xh

1 , . . . , xh
n) is a single observation of n

attributes, measured at time t and referring to individual h.
In DBNs we aim at defining a probability joint distribution over all possible

trajectories, i.e., possible values for each attribute Xi and instant t, Xi[t]. Let
P (X[t1 : t2]) denote the joint probability distribution over the trajectory of
the process from X[t1] to X[t2]. The space of possible trajectories is enormous,
therefore, it is necessary to simplify the problem and make it tractable.

In what follows, observations are viewed as i.i.d. samples of a sequence of
probability distributions {Pθ[t]}t∈T . For all individuals h ∈ H, and a fixed time
t, the probability distribution is considered constant, i.e., xh[t] ∼ Pθ[t], h ∈ H.
Using the chain rule, the joint probability over X is given by:

P
(
X[0 : T ]

)
= P

(
X[0]

) T−1∏

t=0

P
(
X[t + 1]|X[0 : t]

)
.

In this case the attributes in time slice t + 1 depend on all previous time slices
t, for t ∈ {0, . . . , T − 1}. Usually, not all previous time slices are considered but
only a few. In that case, we say that m is the Markov lag of the process, also
known as mth-order Markov process, and so

P
(
X[t + 1]|X[0 : t]

)
= P

(
X[t + 1]|X[t − m + 1 : t]

)
.

A further simpification approach is to consider that the process is stationary,
also called time invariant or homogeneous, that is, P

(
X[t + 1]|X[t]

)
is the same

for all time slices t ∈ {0, . . . , T − 1}. Sometimes, instead of considering the full
process as stationary, we consider it piece-wise stationary.

In what follows we consider the stochastic process to be a first-order Markov
stationary process. This eases the exposition, but its extension to a non-
stationary or a mth-order Markov is straightforward. In this case, a first-order
Markov stationary dynamic Bayesian network (DBN) consists of:
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Time slice t

X1
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Fig. 2. An example of a DBN. In the left, the prior network B0 is depicted and in
the right, the transition network Bt+1

t is represented. The edges X1[t] → X1[t + 1]
and X2[t] → X2[t + 1] are the inter-slice connections and edge X2[t + 1] → X3[t + 1]
represents the intra-slice connection.

– A prior network B0, which specifies a distribution over the initial states X[0].
– A transition network Bt+1

t over the variables X[t : t + 1], representing the
state transition probabilities, for 0 ≤ t ≤ T − 1.

The transition network has the additional constraint that edges between slices
must flow forward in time.

We denote by Gt+1 the subgraph of Bt+1
t with nodes X[t + 1] that contains

only the intra-slice dependencies. Observe that a transition network encodes
the inter-slice dependencies, from time transitions t to t + 1, and intra-slice
dependencies, in time slice t + 1 only. Figure 2 depicts an example of a DBN.

Learning dynamic Bayesian networks, considering no hidden variables or
missing values, i.e., considering a fully observable process, reduces simply to
learning two BNs: the initial network B0 and the transition network Bt+1

t , tak-
ing into account that in Bt+1

t edges between slices must flow forward in time
[14]. Not considering the acyclicity constraints, it was proved that learning a
BN does not have to be NP-hard [12]. This result can be applied to DBNs, as
the resulting unrolled graph, that contains a copy of each attribute in each time
step, is acyclic. For this reason, several methods that consider only inter-slice
dependencies appeared, as therein no cycles can arise [18,22].

More recently, a polynomial-time algorithm was proposed that learns both
the inter and intra-slice connections in a transition network; the resultant net-
work was denoted by tree-augmented DBN (tDBN) [17]. Therein, the search
space for the intra-slice networks was restricted to have a tree-like structure;
each attribute in time slice t + 1 was allowed to have at most one parent from
the same time slice, and up to p parents were allowed from previous time slices;
p is a user-input parameter.

We now describe the first-order Markov stationary tDBN algorithm. Let
P≤p(X[t]) be the set of subsets of X[t] with cardinality less or equal to p. For
each Xi[t + 1] ∈ X[t + 1], the optimal set of parents ΠXi[t+1] ∈ P≤p(X[t]) yields
the following score:
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si = max
ΠXi[t+1]∈P≤p(X[t])

φi(ΠXi[t+1],D
t+1
t ),

where φi is the local score of attribute Xi[t + 1] and Dt+1
t is the subset of

observations for time transition t → t + 1. Then, allowing at most one parent
Xj [t + 1] from the current time slice, the maximal score is defined as:

sij = max
ΠXi[t+1]∈P≤p(X[t])

φi(ΠXi[t+1] ∪ {Xj [t + 1]},Dt+1
t ). (5)

A complete directed graph is built such that each edge Xj [t + 1] → Xi[t + 1]
has the following weight,

eij = sij − si, (6)

that is, the gain in the network score of adding Xj [t+1] as a parent of Xi[t+1].
Herein, the tDBN algorithm is able to determine the optimal set of inter and
intra-slice parents of Xi[t + 1] in a one-step procedure.

Generally eij �= eji, as the edge Xi[t + 1] → Xj [t + 1] may account for the
contribution from the inter-slice parents and, in general, inter-slice parents of
Xi[t + 1] and Xj [t + 1] are not the same. Therefore, Edmond’s algorithm [13] is
applied to obtain a maximum branching for the intra-slice network.

The pseudo-code of the procedure is given in Algorithm 2. A complete
directed graph in X[t + 1] is built (Step 1). Afterwards, in Step 2, the weight of
all edges and the optimal set of parents for all nodes are determined according
to Eq. (6) for a given scoring criterion φ. An optimal branching is obtained using
Edmonds’ algorithm [13] in Step 3. Step 4 retrieves the tree-like intra-slice tran-
sition network elicited in Step 3 with the optimal inter-slice parents determined
in Step 2.

Algorithm 2. Optimal first-order Markov stationary tDBN
1: Build a complete directed graph in X[t + 1].
2: Calculate the weight of all edges and the optimal set of parents of all nodes.
3: Apply Edmonds’ algorithm to retrieve an optimal branching.
4: Extract transition network t → t + 1.

The tDBN algorithm has a worst-case time complexity that is linear in N
(size of the input data), polynomial in n (number of variables) and r (number
of values a variable can take), and exponential in p (number of parents from the
previous time slice).

4 Proposed Method

Profiting from the CκG learning algorithm for BN, we propose an algorithm to
learn DBN structures consistent with the tDBN. In what follows, as for tDBN,
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the proposed method is explained only for first-order Markov stationary DBNs;
the extension to non-stationary mth-order Markov, however, is straightforward.

Rigorously, a DBN is said to be a CκG, denoted by cDBN, if the intra-slice
transition network Gt+1 is a κ-graph where each edge from Xi[t+1] to Xj [t+1]
is consistent with the intra-slice tree-network of a given tDBN. Moreover, each
node Xi[t + 1] has at most p parents from the previous time slice. Therefore,
in order to be well-defined, a cDBN needs two positive integers: κ and p. In
addition, the given tDBN is an optimal tDBN computed with exactly the same
number of p parents from the previous time slice.

We now describe briefly the proposed algorithm. It starts by computing an
optimal tDBN. The intra-slice branching Gt+1 is then used to refine the set
of parents of each node in the network at time-slice t + 1 so that they are
consistent with the topological order induced by such branching. This is done
by computing the candidate ancestors of each node Xi[t+1], denoted by αi,t+1;
these are exactly the set of nodes in t + 1 connecting the root of the optimal
branching given by Gt+1 and Xi[t + 1]. For node Xi[t + 1], the optimal set of
past parents Xps[t] and intra-slice parents, denoted by Xps[t + 1], are obtained
in a one-step procedure by finding

max
Xps[t]∈P≤p(X[t])

max
Xps[t+1]∈P≤κ(αi,t+1)

φi(Xps[t] ∪ Xps[t + 1],Dt+1
t ), (7)

where P≤κ(αi,t+1) is the set of all subsets of αi,t+1 of cardinality less than or
equal to κ. Note that, if Xi[t + 1] is the root, P≤κ(αi,t+1) = {∅}, so the set of
intra-slice parents Xps[t + 1] of Xi[t + 1] is always empty.

Algorithm 3 finds an optimal first-order Markov stationary cDBN, given
a decomposable scoring criterion φ, a set of n random variables, a maximum
number of parents from the previous time slice of p, and a bounded in-degree in
the intra-slice network of κ.

Algorithm 3. Learning optimal first-order Markov stationary cDBN
1: Compute an optimal tDBN with p parents with intra-slice graph given by Gt+1.
2: for each node Xi[t + 1] ∈ Gt+1 do
3: Compute the set αi,t+1 of ancestors of Xi[t + 1].
4: for each subset P in P≤p(X[t]) do
5: for each subset S in P≤κ(αi,t+1) do
6: Compute φi(P ∪ S, Dt+1

t ).
7: if φi(P ∪ S, Dt+1

t ) is the maximal score for Xi[t + 1] then
8: Set ΠXi[t+1] = P ∪ S.
9: end if

10: end for
11: end for
12: end for

The proposed algorithm increases exponentially the search space of the intra-
slice transition network. Indeed, in the context of BNs, it was proved that the
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class of CκGs is exponentially larger, in the number of variables, when com-
pared to tree-network structures [4], result which is straightforwardly extended
to cDBNs. In Fig. 3 the search-space classes relating DBNs, namely tDBNs and
cDBNs, are presented.

inter-slice DBN tDBN

cDBN

κ–in-degree DBN

general DBN

Fig. 3. Search-space classes of first-order Markov DBNs discussed in this paper. The
class of inter-slice DBN contains all DBNs with no intra-slice dependencies. The class
tDBN contains tree-augmented DBNs for all p parents from the previous time slice.
The cDBN class contains all (κ + p)–in-degree cDBNs for all p and κ. The class of κ–
in-degree DBN contains DBNs with in-degree at most κ < 2n, where n is the number
of variables per time slice. This class does not include the tDBN as κ may be smaller
than p. The general DBN class coincides with the (2n − 1)–in-degree DBNs.

In terms of worst-time complexity, when comparing with the tDBN algo-
rithm, Algorithm 3 is linear in N (size of the input data) and T (number of time
slices), polynomial in n (number of variables) and r (number of values a variable
can take), and exponential in p (number of parents from the previous time slice
t) and κ (number of parents in current time slice t + 1).

5 Experimental Results

We evaluate the proposed algorithm comparing it with the tDBN learning algo-
rithm [17]. Our algorithm was implemented in Java and was released under a
free software license.1 The experiments were run on an Intel Core i5-3320M CPU
@ 2.60GHz×4 machine.

We analyze the performance of the proposed algorithm for synthetic data
generated from first-order Markov stationary cDBNs. Four cDBN structures
and parameters were determined, and observations were sampled from the gen-
erated networks, for a given number of observations N . The parameters p and
κ were taken to be the maximum in-degree of the inter and intra-slice network,
respectively, of the transition network considered. The four transition networks

1 https://margaridanarsousa.github.io/learn cDBN/.

https://margaridanarsousa.github.io/learn_cDBN/
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considered included: (i) one incomplete cDBN with n = 5, κ = 2 and at most
p = 1 parents from the previous time slice; (ii) one complete cDBN with n = 5,
κ = 4 and at most p = 1 parents from the previous time slice; (iii) one incomplete
cDBN with with n = 10, κ = 6 and at most p = 1 parents from the previous time
slice; (iv) one incomplete cDBN with n = 10, κ = 4 and at most p = 1 parents
from the previous time slice. The tDBN and cDBN algorithms were applied to
the resultant data sets, and the ability to learn and recover the original network
structure was measured using the precision, recall and F1-measure metrics.Two
scoring functions were used: LL in Eq. (3) and MDL in Eq. (4).

The results are depicted in Table 1 and the presented values are annotated
with a 95% confidence interval, over 5 trials. Considering LL, the cDBN algo-
rithm consistently outperforms tDBN, for all number of instances N considered.
As for MDL, the cDBN networks have a greater number of parameters, therefore
the model complexity penalization factor of MDL leads to the selection of sim-
ple networks when considering a low number of instances. Hence, in these cases,
the tDBN+MDL gives raise to better results. Generally, considering N ≥ 1000
instances for the networks considered, cDBN+MDL outperforms tDBN+MDL.
Comparing the results for networks 1 and 2, we observe that LL gives raise
to better results when considering complete networks, whereas considering less
complex structures, the MDL has better results. On the other hand, when com-
paring the results for networks 2:4 and 3:4, we conclude that considering a higher
number of nodes and intra-slice in-degree κ, respectively, a higher number of
instances is necessary to achieve similar recalls.

In Fig. 4, an example of the cDBN+MDL learning algorithm’s ability to
recover a known network is shown. The original cDBN network has n = 5
attributes, each taking r = 2 different values, having up to one parent from
the previous time slice and two from the current time slice. Varying the number
of input observations N , five recovered networks are shown. As N increases, the
recovered network structures become more similar to the original, converging to
the original for N = 1800.
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(a) N = 100.
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(b) N = 500.
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(c) N = 1000.
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(d) N = 1500.
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(e) N = 1800.

Fig. 4. Reconstructed networks for cDBN algorithm, where N is the number of
instances used to learn. The true network was recovered when N = 1800.
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Table 1. Comparative structure recovery results for tDBN and cDBN on simulated
data. The tDBN+LL and tDBN+MDL denote, respectively, the tDBN learning algo-
rithm with LL and MDL criteria. Similarly, for cDBN+LL and cDBN+MDL. For each
network, n is the number of variables, p is the maximum inter-slice in-degree, κ is the
maximum intra-slice in-degree, and r is the number of values of all attributes. On the
left, N is the number of observations. Precision (Pre), recall (Rec) and F1-measure
(F1) values are presented as percentages, running time is in seconds.

N tDBN+LL tDBN+MDL cDBN+LL cDBN+MDL
Pre Rec F1 Time Pre Rec F1 Time Pre Rec F1 Time Pre Rec F1 Time

Network 1 (n = 5, p = 1, κ = 2, r = 3)
100 60 ± 5 60 ± 5 60 ± 5 0 92 ± 14 51 ± 8 66 ± 10 0 58 ± 5 76 ± 7 65 ± 6 0 100 ± 0 20 ± 4 33 ± 6 0
500 78 ± 0 78 ± 0 78 ± 0 0 86 ± 8 64 ± 4 74 ± 5 0 73 ± 3 98 ± 4 84 ± 3 0 98 ± 4 84 ± 5 90 ± 4 0
1000 78 ± 0 78 ± 0 78 ± 0 0 88 ± 0 78 ± 0 82 ± 0 0 75 ± 0 100 ± 0 86 ± 0 0 100 ± 0 100 ± 0 100 ± 0 0
2000 78 ± 0 78 ± 0 78 ± 0 0 88 ± 0 78 ± 0 82 ± 0 0 75 ± 0 100 ± 0 86 ± 0 0 100 ± 0 100 ± 0 100 ± 0 0

Network 2 (n = 5, p = 1, κ = 4, r = 3)
100 71 ± 10 43 ± 6 53 ± 7 0 62 ± 13 19 ± 6 29 ± 8 0 71 ± 3 56 ± 3 63 ± 3 0 0 ± 0 4 ± 3 0 ± 0 0
500 96 ± 5 57 ± 3 72 ± 4 0 96 ± 7 41 ± 7 58 ± 8 0 98 ± 3 77 ± 3 87 ± 3 0 90 ± 18 28 ± 9 42 ± 13 0
1000 98 ± 4 59 ± 2 73 ± 3 0 100 ± 0 47 ± 0 64 ± 0 0 100 ± 0 80 ± 0 89 ± 0 0 100 ± 0 44 ± 3 61 ± 3 0
2000 100 ± 0 60 ± 0 75 ± 0 0 100 ± 0 52 ± 2 68 ± 2 0 100 ± 0 80 ± 0 89 ± 0 0 100 ± 0 64 ± 5 78 ± 3 0

Network 3 (n = 10, p = 1, κ = 6, r = 3)
100 53 ± 5 33 ± 3 41 ± 4 0 66 ± 8 23 ± 4 34 ± 5 0 36 ± 9 38 ± 7 37 ± 8 2 83 ± 18 7 ± 2 13 ± 4 4
500 72 ± 5 45 ± 3 56 ± 4 0 88 ± 5 40 ± 2 55 ± 3 0 53 ± 2 68 ± 7 60 ± 4 1 100 ± 0 33 ± 2 50 ± 2 1
1000 77 ± 2 49 ± 1 60 ± 2 0 92 ± 2 46 ± 1 61 ± 2 0 59 ± 2 75 ± 4 66 ± 2 2 100 ± 0 47 ± 0 64 ± 0 7
2000 78 ± 2 49 ± 1 60 ± 1 0 92 ± 2 48 ± 1 63 ± 2 0 60 ± 1 78 ± 2 68 ± 2 10 100 ± 0 58 ± 3 73 ± 2 8

Network 4 (n = 10, p = 1, κ = 4, r = 3)
100 29 ± 9 23 ± 7 26 ± 8 0 36 ± 17 13 ± 6 19 ± 9 0 24 ± 5 33 ± 7 28 ± 6 0 40 ± 33 3 ± 2 0 ± 0 0
500 58 ± 3 46 ± 2 51 ± 3 0 80 ± 10 33 ± 4 47 ± 6 0 43 ± 7 61 ± 12 50 ± 8 0 73 ± 14 31 ± 8 43 ± 10 3
1000 60 ± 5 48 ± 4 53 ± 4 0 80 ± 8 38 ± 3 51 ± 5 0 41 ± 6 69 ± 9 51 ± 7 4 86 ± 6 48 ± 4 62 ± 5 24
2000 65 ± 2 52 ± 2 58 ± 2 0 86 ± 9 48 ± 4 62 ± 5 0 50 ± 3 74 ± 7 59 ± 1 17 85 ± 10 68 ± 9 76 ± 9 17

6 Conclusions

We conclude that the proposed algorithm allows to learn efficiently DBNs consis-
tent with the topological order induced by the transition network of an optimal
tDBN as far as the in-degree bounds p and κ are kept low. Notwithstanding,
it is well known that in most practical scenarios BNs behave well with small
in-degree network structures.

The resulting method is scalable (in the number of instances N , number of
time slices T and number of variables n) and therefore suitable for the increasing
amount of temporal data arising from medicine (and also other fields). We are
currently using cDBN to predict the class of evolution of Amyotrophic Lateral
Sclerosis (ALS) patients and the treatment outcome of rheumatoid arthritis
(RA). These ALS and RA data is collected as a multivariate time series with
heterogeneous values, which can be addressed effectively by cDBN. DBNs play
the unique role of not only being able to model evolution in time of several
autocorrelated variables but also provide models that are human interpretable.

Further improvements of the algorithm may include using a total order,
instead of a partial one (as the topological order), and extend the learning pro-
cedure to allow hidden variables.
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Abstract. A modern ship design process is subject to a wide variety
of constraints such as safety constraints, regulations, and physical con-
straints. Traditionally, ship designs are optimized in an iterative design
process. However, this approach is very time consuming and is likely to
get stuck in local optima. Not only does this optimization problem have
complex constraints, it also consists of multiple objectives like resistance,
stability and cost.

This constrained multi-objective optimization problem can be dealt
with much more efficiently than through the traditional approach. In this
paper, we propose a novel global optimization algorithm that explores
the design space with the help of integrated software tools that are capa-
ble of simultaneous evaluation of the ship objectives and constraints. The
optimization algorithm proposed uses the S-Metric-Selection-based Effi-
cient Global Optimization (SMS-EGO) in combination with constraint
handling techniques from an algorithm called Self-Adjusting Constrained
Optimization by Radial Basis Function Approximation (SACOBRA).
Since the evaluation of these ship designs is expensive in terms of compu-
tational effort, it is crucial for the algorithm to find feasible near-optimal
solutions in as few evaluations as possible.

In this paper, it is shown that the proposed Constrained Efficient
Global Optimization (CEGO) algorithm can significantly improve ship
designs by automatic optimization using a small evaluation budget.

Keywords: Efficient Global Optimization ·
Multi-objective optimization · Constrained Optimization ·
Real-world applications

1 Introduction

The International Maritime Organization (IMO) responsible for regulating the
shipping industry announced that by 2050 the greenhouse gas emissions should
c© Springer Nature Switzerland AG 2019
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be reduced by 50% compared to 2008 [18]. To achieve this goal, the new ships
that are currently being engineered will have to be optimized for minimum envi-
ronmental impact. Of course, the environmental impact is not the only objective
to consider while optimizing a ship. The ship owners also want their ship to be
operationally efficient and to have the lowest building cost as possible. Addi-
tionally, safety and comfort of crew and/or passengers should meet the criteria
given by the regulating authorities.

To achieve an optimal solution where all stakeholders are satisfied, typically
different experts work together to optimize the ship. These experts, traditionally,
optimize using the classical design spiral [9] and heuristics learned over the course
of years, derived from knowledge and gained through a process of trial and error.
For a single naval architect or a group of experts, it is impossible to consider
the whole design space and all the relationships and dependencies between the
variables, constraints and objectives [19]. Furthermore and most importantly,
the traditional, expert driven, iterative approach used to design a ship can cause
the design process to get stuck in local optima.

To make better design decisions in the future, the ship optimization processes
such as proposed by Papanikolau [19] could be used. This integrated design
approach brings together all key design aspects at the same time. In this paper it
is shown that the combination of an integrated design approach and our proposed
optimization algorithm results in significantly improved ship designs.

This paper is organized as follows: First, related research and algorithms
are described and discussed in Sect. 2. The problem is described by giving an
example ship design optimization problem in Sect. 3. The proposed algorithm is
discussed into detail in Sect. 4. Next, it is shown empirically that the proposed
algorithm is efficient and is able to find a good approximation of the Pareto front
using a limited evaluation budget in Sect. 5. Finally, the results are discussed and
conclusions are drawn in Sect. 6.

2 Related Work

Quite some work has been done in the domain of multi-objective optimization
and constraint handling. The state of the art algorithms in constraint handling
and multi-objective optimization together with the most relevant algorithms are
listed below. Other algorithms without constraint handling (e.g. [13,17,21]) are
not further considered in this research.

SACOBRA [1] In efficient constraint handling a recent model assisted opti-
mization algorithm offers a promising efficiency in terms of the evaluation
budget. This single objective optimization technique, SACOBRA, uses a Self
Adjusting parameter control in Constrained Optimization by use of Radial
Basis function Approximation. Because of self adjusting parameters and the
Radial Basis function approximation of the constrained and objective space,
SACOBRA is able to find high-quality results using only few function evalu-
ations without having to spend evaluations on tuning the parameters [1].
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SMS-EGO [22] SMS-EGO is an efficient multi-objective optimization algorithm
that uses a Design and Analysis of Computer Experiments (DACE) to train
Kriging [12] surrogate models in order to efficiently optimize the objective
functions. Furthermore, SMS-EGO uses the S-metric or (hyper)volume con-
tribution [2] to optimize the (hyper)volume between the current Pareto front
and a reference point. This optimization algorithm, however, does not offer a
constraint handling technique.

NSGA-II [6] NSGA-II Non-dominated Sorting Genetic Algorithm, version II
is a classic multi-objective optimization algorithm. NSGA-II uses a non-
dominated sorting-based selection operator. This operator creates a mating
pool by combining the parent and child population to select the best N feasi-
ble solutions for the next generation. This selection operator makes sure that
the mating pool is well spread and that the solutions in the pool have a high
fitness.

NSGA-III [11] The adaptive NSGA-III algorithm is a many-objective opti-
mization algorithm based on NSGA-II [6] and the original NSGA-III algo-
rithm [7]. It emphasizes certain individuals in the population which are both
non-dominant and close to a set of reference points which are generated on the
fly. The algorithm can both be used for constrained and unconstrained prob-
lems since in every iteration the non-useful reference points are re-allocated
around the useful reference points [11].

SPEA2 [29] The second Strength Pareto Evolutionary Algorithm (SPEA2) is
an evolutionary algorithm that uses a fine-grained fitness assignment strat-
egy that is based on how many feasible individuals each feasible individual
dominates and is dominated by. Furthermore a nearest neighbor density esti-
mation technique is incorporated which takes care of a more precise guidance
of the search process. The algorithm also makes sure that the boundaries are
guaranteed by truncation of the solutions that fall outside of the boundary.

MOGA This algorithm is currently a component of the widely used ship design
software NAPA1. It is a so-called Multi-objective Genetic Algorithm (MOGA),
which is based on the first version of the SPEA algorithm [30], where the
fitness value is again based on the number of dominated feasible individuals.
The selection of the parents is done by tournament selection and the children
are generated by single-point crossover. Furthermore, the children have a
chance to get mutated by the creep mutation operator.

3 Ship Design Optimization Example

Every ship design process starts with an initial idea from a client. After the
objectives and physical constraints are known, the concept design process can
begin. In the concept design phase, the naval architects translate the initial
idea into the concept design of the ship. In the resulting concept design, the
following components get defined and parameterized: the general arrangement,
first estimations regarding stability, strength, and the main cross section.
1 NAPA Oy, Release 2017.3-3 (2018), NAPA software, http://www.NAPA.fi/.

http://www.NAPA.fi/


194 R. de Winter et al.

These components will define the ship’s future performance, safety and cost.
In this stage of the design process, all different components need to be optimized
and designed in such a manner that they meet all regulations and safety criteria.
This is not trivial for the following three reasons: (1) The objectives are typically
conflicting. (2) Computing the constraints and objectives is very time consuming
due to the required simulation time. (3) Only little parallelism is possible due
to a typical limited number of commercial licences available to the ship design
company. After the concept design phase, a ship yard can make an estimation
of how long it will take, and how expensive it will be to build the ship.

As a real world application a dredger from C-Job Naval Architects2 is opti-
mized. The details about the decision variables, constraints, and objectives are
given in the following subsections.

3.1 Decision Variables

The decision variables of a ship design problem are the numerical quantities for
which values can be varied in the optimization process [3]. These quantities are
denoted as x = [x1, . . . , xn], where xj represents one decision variable.

The dredger (Fig. 1) has the following decision variables: Δbreadth, Δlength,
foreship length, hopper length extension, hopper breadth, hopper height. Here
Δ means a change opposed to the original design. All the possible combinations
in between a defined lower and upper bound of x together is called the design
space Ω.

Fig. 1. Trailer suction Hopper Dredger designed by C-Job Naval Architects, with the
design variables annotated.

The overall length and breadth of the hull can be transformed with the help
of Free Form Deformation (FFD) [25]. For this transformation a box is drawn
around the hull. Any point on the box can be moved in all directions and the
2 C-Job Naval Architects, Ship Design and Engineering (2018), https://c-job.com/.

https://c-job.com/
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parent surface that is inside this box will be transformed accordingly. This FFD
can be achieved by changing the Δbreadth and Δlength parameter which then
applies the FFD on the original concept design.

The part of the ship from the most forward bulkhead to the front is called
the foreship. The location of this last bulkhead can be changed by varying the
foreship length decision variable.

The cargo space, where the dredged material is dumped in, is called the
hopper. Changes can be made to the height, the breadth, and to the length
extension of the hopper.

3.2 Constraints

The constraints can be expressed in terms of function inequalities; gi(x ) ≤ 0
where one function inequality gi(x ) represents one of the m constraints. When
equality constraints are present, we can simply rewrite them to two inequality
constraints without loss of generality g(x ) ≤ c + ε and g(x ) ≥ c − ε. In practice,
ε can be neglected because it is chosen very small: ε = 0.000001.

In the dredger case, the design has two categories of constraints: practi-
cal constraints and domain constraints. The constraints mainly make sure that
everything fits in the hull and that the safety constraints are taken into account.

The practical constraints mainly consider the space reservation for: payload,
fuel tank, engine, pump, and the accommodation. Every design variation is
checked to see if it at least meets the minimum space required.

The domain constraints: steel arrangement, hull formation, double bottom
check, location of foremost bulkhead, intact stability, draft when fully loaded,
trim, and heel are checked to see if the ship meets the recommended stability
criteria, and to see if it at least meets the other prescribed safety regulations.

In total, the dredger case has sixteen constraints, which are computed by
subtracting the obtained constraint value from the required minimum value.
When all values are negative the ship design variation is feasible.

3.3 Objectives

The objective functions are typically conflicting, as a consequence there is usu-
ally not one perfect solution but a set of alternative, so called non-dominated
solutions. This non-dominated solution set contains good compromises between
the objective functions: fj(x ), j = 1, . . . , k. The feasible Pareto optimal set of
solutions together form the Pareto front where Pareto optimality is defined in
Coello et al. [3].

The dredger case has two objectives: maximizing the performance and mini-
mizing the building cost. This can be achieved by minimizing the resistance and
the steel weight. This sounds trivial, but the objectives are a classical example
of conflicting ones. A long and slender ship will lead to less hull resistance and
a higher steel weight while a wide shorter ship will have a higher hull resistance
and a lower steel weight.
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The resistance of the design variation can be estimated with a Computational
Fluid Dynamics (CFD) simulation. There are different types of CFD simulation
methods. In the concept phase of the dredger, a relatively simple potential flow
solver [26] is used. This approach does not take everything into account but it
is very suitable for comparing the resistance between different design variations.

In the concept phase, an indication of the steel weight is calculated by first
creating the main frame scantlings. This main frame is made strong enough so
it does not exceed the maximum stress limit. This way the maximum bending
moments can never be exceeded. The surface of the scantlings multiplied by the
length can then be used to give an indication of the steel weight of the ship.

4 CEGO: Constrained Efficient Global Optimization

Here we propose the Constrained Efficient Global Optimization (CEGO) algo-
rithm, combining the strengths of both the S-metric multi-objective optimization
techniques from SMS-EGO and the constraint handling techniques from SACO-
BRA. These two techniques are chosen because they showed to be very efficient in
constraint handling [1] and finding a good approximation of the Pareto front [22].
The implementation of the proposed algorithm can be found on Github [4].

The proposed algorithm needs little to no parameter tuning and starts with
an initial sampling of the decision variables using Latin Hypercube Sampling
(LHS) [15]. The LSH samples then get evaluated by the evaluation function.
The corresponding objective values are used to train the objective surrogate
models. The objective surrogate models used are Kriging [14] (often also called
Gaussian Process Regression models). For every objective dimension a separate
Kriging model is fitted. Kriging treats every unknown objective function f as the
combination of a centered Gaussian Process ε(x) of zero mean with an unknown
constant trend μ. The advantage of using Kriging is that in addition to the
predicted mean y(x), the predicted uncertainty, called the Kriging variance σ(x),
is provided. The Kriging variance can be exploited in the optimization procedure.

The corresponding constraint values are used to train the constraint surrogate
models. For the constraint surrogate models, Cubic Radial Basis Functions [1]
(CRBF) are used. For every constraint function a CRBF model is fitted. The
steps taken to model the constraint functions are the same as the ones in SACO-
BRA [1]:

1. Rescale the decision space to an interval of [−1, 1],
2. Normalize the constraint functions so that they are equally important,
3. Define the distance requirement factor (DRC) that defines how close the

solutions are allowed to be to each other, and alter it at every iteration,
4. Adjust the margin (ε) of allowed violation of the CRBF model at every iter-

ation.

In the first few iterations, the CRBF model might not fit the constraint function
very well. Therefore, a violation of the constraints is allowed. The magnitude
of the allowed violation decreases as more feasible solutions are found. In the



Designing Ships Using Constrained Multi-objective EGO 197

experiments reported in this paper, the ε-value used starts at 0.01. When three
feasible solutions are found, ε decreases by 50%. Alternatively, ε increases by
100% when three infeasible solutions are found.

After training the surrogate models, the feasible Pareto front approximation
is determined (denoted as Λ). To improve the Pareto front approximation, CEGO
uses the idea of Emmerich et al. to use S-metric or (hyper)volume contribution [2]
extended as an infill criterion [22]. The infill criterion function computes for
a given input vector x , the predicted objective scores ŷ and their estimated
uncertainties ŝ. If the 95% lower confidence bound of the potential solution
ŷpot = ŷ − α · ŝ is still ε-dominant we compute the additional (hyper)volume it
adds to the Pareto front. ε-dominance as described in [2] is applied to support a
good distribution over the Pareto front. The size of ε is set every iteration:

ε =
max(Λ) − min(Λ)

1+ | Λ | − 1
2k

· (maxEval − eval)
. (1)

Here max(Λ)/min(Λ) is the maximum/minimum value per objective on the
Pareto front, k is the number of objectives, maxEval the maximum number
of allowed iterations, and eval the number of evaluations executed so far. The
final (hyper)volume that ŷpot adds to the Pareto front is the score the S-metric
criterion will return. If ŷpot does not contribute anything, the infill criterion
will return zero. The S-metric infill criterion therefore gives the highest score to
solutions that potentially contributes the most to the Pareto front while it gives
a low score to solutions that does not contribute to the potential Pareto front.

This infill criterion is optimized using the Constrained Optimization by Lin-
ear Approximation (COBYLA) algorithm [23]. COBYLA optimizes the infill
criterion under the condition that the constraints, which are modeled with the
CRBF functions, are satisfied. The vector x that is predicted feasible and is
expected to contribute the most to the Pareto front approximation is proposed
as new solution. If no feasible solution can be found, the vector x with the
smallest expected constraint violation according to the CRBF models is chosen.

The proposed solution x then gets evaluated by the actual evaluation func-
tions that are being optimized. This evaluation of x gives a new individual that
can be added to the population. In the next iteration, the surrogate models are
re-trained so that a new solution x can found and evaluated. This optimization
process goes on until the evaluation budget is exhausted.

5 Experiments and Results

To evaluate the performance of the proposed algorithm, three different experi-
mental setups are used. In the first setup, seven artificially designed functions
are optimized. In the second setup, seven Real World Like Problems (RWLP)
are optimized. Finally, in the third setup, the dredger ship design is optimized.
All experiments are conducted with CEGO, NSGA-II, NSGA-III, SPEA2, and
MOGA with the default parameters, and a limited function evaluation budget
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of 200 evaluations per run. In the experiments we used the two most cited per-
formance metrics [24] to compare the diversity and the accuracy of the solutions
obtained by the different multi-objective optimization algorithms. The first met-
ric is the (hyper)volume (HV) metric that represents the HV between a fixed
reference point and the Pareto front [2]. The second metric is the Generational
Distance (GD), which represents how “far” the normalized obtained Pareto front
is from the true normalized Pareto front [28]. Each algorithm is executed between
5 and 100 times per test function, depending on the time-complexity of the algo-
rithm and the evaluation function.

5.1 Artificially Designed Functions

Inspired by previous studies on multi-objective optimization algorithms, seven
widely used artificially designed functions are selected to experiment with:
BNH [3], C3-DTLZ4 [27], OSY [3,8], SRN [8], TNK [8], CEXP1 [5], and
CTP1 [5]. In Table 1 the number of objectives (k), number of variables (n), num-
ber of constraints (m), Lower Bound (LB), Upper Bound (UB) of the variables
and the reference point (ref) are given for each function. To get some insight
into the severity of the constraints, the percentage of feasible solutions (F(%))
is approximated by the evaluation of 1 million random samples.

Table 1. Artificially designed test problems and the corresponding dimensions.

Problem k n m LB UB ref F (%)

BNH 2 2 2 [0, 0] [5, 3] [140, 50] 96.92

CEXP 2 2 2 [0.1, 0] [1, 5] [1, 9] 57.14

C3-DTLZ4 2 6 2 [0, 0, 0, 0, 0 ,0] [1, 1, 1, 1, 1, 1] [3, 3] 22.22

SRN 2 2 2 [−20, −20] [20, 20] [301, 72] 16.18

TNK 2 2 2 [1e−5, 1e−5] [π, π] [2, 2] 5.05

OSY 2 6 6 [0, 0, 1, 0, 1, 0] [10, 10, 5, 6, 5, 10] [0, 386] 2.78

CTP1 2 2 2 [0, 0] [1, 1] [1, 2] 92.67

5.2 Real World Like Problems

The RWLP are real world like problems which are believed to be very dif-
ficult because they have many complex constraints [11]. The following seven
RWLP have been used in the experiments: Two-Bar Truss Design problem
(TBTD) [10], Welded Beam problem (WB) [10], Disc Brake Design problem
(DBD) [10], Speed Reducer Design problem (SRD) [16], Ship Parametric Design
problem (SPD) [20], Car Side Impact problem (CSI) [11], and the Water Problem
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(WP) [11]. Details about the RWLP are given in Table 2. Note that if a function
was to be maximized it is transformed into a minimization problem.

5.3 Dredger Ship Design

Finally, the dredger case as described in the problem definition (Sect. 3) is opti-
mized. The limits used for the dredger parameters are: Δbreadth ∈ [−1.6, 3.4],
Δlength ∈ [−2.8, 9.8], foreship length ∈ [16, 22], hopper length extension ∈ [5, 9],
hopper breadth ∈ [5, 9], and hopper height ∈ [12, 16]. The reference point is set
to [5000, 2]. This is the case because we are not interested in design variations
with a larger resistance coefficient than 2, or design variations with a larger steel
weight than 5000 tonnes. Furthermore, based on 200 random samples, approx-
imately 24% of the design space is feasible. The original dredger designed by
human experts has an approximated steel weight of 2039 tonnes and an esti-
mated resistance coefficient of 1.08.

Table 2. Real world like problems and the corresponding dimensions.

Problem k n m LB UB ref F(%)

TBTD 2 3 2 [1, 0.0005, 0.0005] [3, 0.05, 0.05] [0.1, 100 000] 19.46

WB 2 4 5 [0.125, 0.1, 0.1, 0.125] [5, 10, 10, 5] [350, 0.1] 35.28

DBD 2 4 5 [55, 75, 1 000, 2] [80, 110, 3 000, 20] [5, 50] 28.55

SRD 2 7 11 [2.6, 0.7, 17, 7.3, 7.3, 2.9,
5]

[3.6, 0.8, 28, 8.3,
8.3, 3.9, 5.5]

[7 000, 1 700] 96.92

SPD 3 6 9 [150, 25, 12, 8, 14, 0.63] [274.32, 32.31, 22,
11.71, 18, 0.75]

[16, 19 000,
−260 000]

3.27

CSI 3 7 10 [0.5, 0.45, 0.5, 0.5, 0.875,
0.4, 0.4]

[1.5, 1.35, 1.5, 1.5,
2.625, 1.2, 1.2]

[42, 4.5, 13] 18.17

WP 5 3 7 [0.01, 0.01, 0.01] [0.45, 0.1, 0.1] [83 000, 1 350,
2.85, 15 989
825, 25 000]

92.06

5.4 Results

In Table 3 it is shown that CEGO outperforms NSGA-II, NSGA-III, SPEA2 and
MOGA in terms of the HV and the GD measure for all problems experimented
with, except for the C3-DTLZ4 artificially designed test problem. Additionally,
In the Figs. 2, 3, 4 and 5 the non-dominated solutions of a few typical test
functions and the dredger case are visualized. From these figures it can clearly
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be seen that the approximation of the Pareto front and the spread of the CEGO
algorithm is better, compared to the other algorithms.

Table 3. Mean HV and mean GD score for the obtained Pareto front by the different
algorithms. Bold face denotes the method that outperforms the other methods accord-
ing to a paired Welchs t-test (Welchs t-test is used because of unequal variances and
unequal sample sizes, a significance level of 5% is used.).

Problem NSGA-II NSGA-III SPEA2 MOGA CEGO

Criterion GD HV GD HV GD HV GD HV GD HV

BNH 0.005 5 187 0.015 4 965 0.007 5 137 0.007 4 993 0.003 5 254

CEXP 0.025 3.414 0.018 3.162 0.083 3.141 0.032 2.950 0.002 3.788

C3-DTLZ4 0.010 5.198 0.005 4.605 0.016 5.058 0.004 4.662 0.014 6.098

SRN 0.021 5.82·104 0.035 5.71·104 0.078 4.88·104 0.056 5.19·104 0.005 6.26·104
TNK 0.025 7.247 0.007 6.763 0.045 6.449 0.011 6.074 0.001 8.058

OSY 0.136 3.66·104 0.108 3.92·104 0.157 2.17·104 0.098 4.71·104 0.014 1.00·105
CTP1 0.037 1.248 0.022 1.218 0.055 1.221 0.042 0.661 0.002 1.303

TBTD 0.026 7 868 0.026 7 736 0.031 7 060 0.868 608.8 0.003 8 805

WB 0.028 34.07 0.058 33.74 0.054 33.67 0.019 33.93 0.015 34.52

DBD 0.041 219.4 0.031 214.8 0.050 214.6 0.016 221.4 0.006 227.9

SRD 0.118 1.99·106 0.090 1,81·106 0.156 1.50·106 0.321 1.66·106 0.002 4.16·106
SPD 0.055 2.45·1010 0.047 1.93·1010 0.057 2.09·1010 0.041 1.94·1010 0.026 3.24·1010
CSI 0.032 15.34 0.034 12.77 0.032 13.95 0.026 17.13 0.017 23.21

WP 0.094 1.28·1019 0.100 1.22·1019 0.118 1.13·1019 0.071 1.27·1019 0.053 1.57·1019
Dredger - 3529 - 3507 - 3579 - 3602 - 3819

Fig. 2. Pareto front obtained by the
five algorithms on CEXP problem.

Fig. 3. Pareto front obtained by the
five algorithms on OSY problem.
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Fig. 4. Pareto front obtained by the
five algorithms on SPD sproblem.

Fig. 5. Original design and Pareto
front obtained by the five algorithms
on dredger case.

6 Conclusions

An algorithm, Constrained Efficient Global Optimization (CEGO), is proposed
and it is shown that CEGO is efficient in finding a Pareto front approximation
using limited evaluation budgets for both Real-World Like Problems and artifi-
cially designed test functions. In case of the dredger design optimization task, ten
unique non-dominated solutions are found within 200 function evaluations. The
most interesting solution (marked in Fig. 5) has a resistance factor of 0.87 and
a steel weight of 1748 tonnes. This means that compared to the original design,
the improved design has a 19% smaller resistance coefficient and 14% less steel
weight. As a post processing step, a naval architect inspected the design. After
a few, very small, practical changes the ship was good to go to the next phase
in the design process.

CEGO also outperforms state-of-the-art alternatives on all of the fourteen
test problems used in the experimental setup. The novel proposed CEGO algo-
rithm shows great potential and can be used to optimize ships that are more
energy efficient while maintaining or even improving all other objectives. Of
course the CEGO algorithm could also be used for any other application with
expensive function evaluations with or without constraints.

For future work, the proposed algorithm could be improved by taking the
CRBF constraint surrogate models into account when defining a new infill-
criterion instead of using them as a constraint when minimizing the S-metric
infill-criterion. It would also be beneficial to parallelize the CEGO algorithm
such that multiple evaluations can be run at the same time. For practical ship
design purposes, it would also be interesting to extend the algorithm in such a
manner that constrained multi-objective mixed integer problems can be solved.
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Abstract. The problem of computing distances and shortest paths
between vertices in graphs is one of the fundamental issues in graph the-
ory. It is of great importance in many different applications, for example,
transportation, and social network analysis. However, efficient shortest
distance algorithms are still desired in many disciplines. Basically, the
majority of dense graphs have ties between the shortest distances. There-
fore, we consider a different approach and introduce a new measure to
solve all-pairs shortest paths for undirected and unweighted graphs. This
measures the shortest distance between any two vertices by considering
the length and the number of all possible paths between them. The main
aim of this new approach is to break the ties between equal shortest paths
SP, which can be obtained by the Breadth-first search algorithm (BFS),
and distinguish meaningfully between these equal distances. Moreover,
using the new measure in clustering produces higher quality results com-
pared with SP. In our study, we apply two different clustering techniques:
hierarchical clustering and K-means clustering, with four different graph
models, and for a various number of clusters. We compare the results
using a modularity function to check the quality of our clustering results.

Keywords: Network · Adjacency matrix · K-means clustering ·
Hierarchical clustering · Modularity function

1 Introduction

The problem of computing distances and shortest paths between vertices in
graphs is one of the most fundamental and well-studied problems in graph the-
ory. The shortest path means the minimum path length between any pair of
vertices in a graph, and in the case of directed graphs, there are source and
destination vertices which determine the direction of the path. The shortest
path is of great importance in many different applications, which has induced
researchers to produce different measures to match their applications’ purposes
and graph types, for example, social network analysis, transportation, and com-
puter science. And due to this variety of applications, there are many studies on
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graph types. For example, the graph can be either static with a fixed number of
vertices and edges or dynamic which updates in the graph’s structure by adding
or deleting vertices and edges or changing the position of edges. The edges of a
graph can be directed or undirected and can have either a positive or negative
weight. There is no one universal approach to solve the shortest path that could
be suitable for all different graph models.

The survey by [9] classifies the shortest-path algorithms into two groups: (1)
single source shortest-path (SSSP) algorithms, which calculate the shortest path
from a source vertex to other vertices in the graph based on the adjacency list
representation, and (2) all-pair shortest path (APSP) algorithms, which calculate
the shortest path between all pairs of vertices in the graph based on the adjacency
matrix representation. In their survey, they presented a taxonomy of multiple
levels of shortest path algorithms as a useful tool for the researcher to understand
the shortest path categories, and to guide them to suitable techniques, which
depend on the application. They also mention some challenges and solutions in
each group of algorithms.

The survey by [12] reviews the shortest path algorithms on static graphs that
produce exact results for the APSP problems for both weighted and unweighted
graphs as well as dense and sparse graphs. He also represented some studies on
APSP for restricted families of graphs, such as interval graphs that determine
an interval for each vertex with its neighbours.

[13] presented a survey of APSP and SSSP for weighted and unweighted
graphs as well as directed and undirected graphs.

The different studies in the literature present different methods to capture
the SP in graphs. Although SP results are consistent, the difference is in the
methods or in the time taken. However, an efficient shortest distance algorithm
is still desired in many disciplines, we think about it differently, and introduce
a new measure to solve APSP for undirected and unweighted graphs. The new
algorithm has a unique feature: the ability to distinguish between equal SP dis-
tances. More precisely, whereas SP is a positive integer, the new measure breaks
up the equal integers into rational number. This idea and its framework is pre-
sented in Sect. 2. In Sect. 3, we have a short discussion about graph clustering.
In particular, we explain the hierarchical clustering method (HC) and K-means
clustering algorithm. We also describe the modularity function as a useful mea-
sure of clusters quality. A simulation study with four different graph models
is described in Sect. 4 to compare the clustering results between the proposed
distance and SP. In Sect. 5, we consider a real data example from the Facebook
network and we conclude in Sect. 6 with a discussion of our approach.

2 A New Distance in Graphs (Breaking Ties Distance -
BTD)

Most of the straightforward and essential approaches that solve the shortest
path problem use the tree search idea. They start from the source vertex (root)
and pass along the branches to reach the destination. In the case of undirected,
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unweighted graphs, this may be done by following the Breadth-First Search
(BFS) algorithm from each vertex to the rest of vertices by counting the number
of edges of the shortest path. In recent years, there have been many improve-
ments in shortest paths algorithms, which usually focus on decreasing the time
complexity of the essential algorithms [9].

In this study, we focus on undirected, unweighted dense graph models. As the
majority of dense graphs have ties between the shortest distances, these distances
appear as equal shortest distances. However, these ties are real obstacles in
several applications, for example, in clustering of vertices; when we allocate
a vertex to the nearest cluster’s centroid and then find a tie in the shortest
distances between the vertex and a couple of centroids. Therefore, due to this
issue, we consider a new way of measuring distances in graphs, which allows
for breaking of ties. Whereas the majority of shortest path measures produce
integer SP lengths, our distance metric produces real values for the distances.
The proposed distance measure is not a transient thought; rather, it is a result
of cumulative work and trials of various updated distance metrics until the aim
is achieved.

During several experiments with these measures, we determined the impor-
tant and effective parameters that cause these ties in graphs: the vertex degree,
graph diameter and the plurality of shortest paths between a pair of nodes. Our
concept is inspired by the general principle: ‘more relations, more strength’. We
believe that a pair of nodes joined together by multiple equal shortest paths
should be thought of as closer than a pair of nodes joined by a single path of
the same length. As a simple example from social networks, any two vertices
(two persons) connected by three relations (such as gender, neighbourhood, and
school) appear to be more strongly linked (closer) than two vertices connected by
one relation. Based on this assumption, we have carried out a lot of experiments
to find a distance metric formula that combines all available paths between
any pair of vertices. However, the resulting distances do not refer to existing
routes in the graph, in contrast, the new distance measure produces distances
between vertices which often distinguish between equal shortest paths. Our mea-
sure starts with a simple version of distance and then undergoes several updates
until reaching its final version. The breaking-ties distance by BTD satisfies some
conditions which make it suitable to measure distances in all graph models in
this study:

Let G(V,E) be an undirected, unweighted graph with vertices V (nodes) and
edges E , then:

– BTD is symmetric, i.e. dBTD(vi, vj) = dBTD(vj , vi) for vi, vj ∈ V .
– BTD preserves the shortest paths order, i.e. if dSP(vi, vj) < dSP(vk, vs), then

BTD satisfies dBTD(vi, vj) < dBTD(vk, vs). This is evident from the examples
in Fig. 1.

– BTD satisfies the triangle inequality dBTD(vi, vj) ≤ dBTD(vi, vs) +
dBTD(vs, vj) as does SP.
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We define a similarity matrix Sij :

Sij =
diam∑

r=1

(Ar)ij
(2max(Ar))r

, (1)

where:

– A(n×n) is the adjacency matrix, which has entries 0, 1 with 0 in the diagonal,
and n is the number of nodes.

– diam is the diameter, the longest SP in the graph.
– max(Ar) is the largest element in Ar.
– Ar is the usual matrix multiplication.

Since (Ar)ij ≤ max(Ar)rij , with equality when r = 1 and in the case of r > 1,
Sij is always less that < 1.

Now define the dissimilarity matrix by:

Dij = − log(Sij), i �= j and Dii = 0, (2)

We carry out many experiments which compare BTD and SP on different random
graphs according to four different graph models from [4]. Model ER is the Erdős-
Rényi graph model, model WS is Watts-Strogatz graph model, model BA is
Barabási-Albert graph model, and model FF is Forest-fire graph model. The
experiments show that BTD produces distances which follows the SP order
without any overlap between distances.

In Fig. 1 (first row), all graph models show a spreading in the BTD in each
SP group. In the BA model, the spreading is limited compared with other models
due to the tree graph structure which has a lack of ties between nodes (the range
of the distances which correspond to SP= 2 is equal 10−3 ).

From this experiment, we believe that BTD succeeds in breaking ties between
equal SP especially in dense graphs. In the next section, we compare the perfor-
mance of BTD with SP in graph clustering and show that BTD produces higher
quality results compared with SP.

3 Graph Clustering

In graph theory, the clustering idea is to divide the nodes V into different groups,
each group’s nodes share similar features. These groups are called clusters, and
in some cases, there are some constraints on the number or size of the clusters.

In real networks, these groups are sometimes called communities and appear
naturally due to the real network’s structure. This is because, first, the general
feature of a real graph structure is the inhomogeneities in the edges distribu-
tions, and second, the nodes degree distribution (node degree is the number of
edges which connect the node with the other nodes in a graph) often follows the
power law distribution. This gives the majority of the low degree nodes a higher
tendency to connect with large degree nodes which lead to the creation of some
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Fig. 1. Examples of graph models with n = 30, and the corresponding plots illustrate
the breaking of ties SP distance.

communities in real networks. These communities may be visible in some small
real networks.

In graph theory, there are different methods designed to cluster graphs, called
graph partitioning methods. The main idea of these methods is to divide the
graph’s nodes into K clusters of predefined equal size and keep the number
of edges between clusters minimal. These methods grew in pure mathematics
among researchers who were interested in graph clustering [6]. Although these
methods are simple and fast, they are still not a preferred tool to detect commu-
nities in graphs because of the preliminary assumption: equal groups size, which
is considered as a drawback of this tool. Therefore, most of the traditional clus-
tering methods which relax this condition are accepted in graph theory, such as
hierarchical clustering, partitional clustering, and spectral clustering [5]. In the
next sections, we apply BTD in hierarchical clustering and K-means algorithm.

3.1 Hierarchical Clustering- HC

The Hierarchical clustering (HC) method is one of the most popular methods
in graph theory, it represents the clusters usually as a dendrogram. The leaves
correspond to the graph nodes, and the root joins all nodes. It can be done by
the agglomerative technique, which assigns each node in a separate cluster, and
merges clusters to end with all nodes in one cluster. Alternatively, by the divisive
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technique, which initially puts all the nodes into one cluster, then divides it into
sub-clusters. It continues division until finding a desirable structure.

The HC method has a special feature distinguishing it from the rest of clus-
tering methods in that it produces multi-level clustering. Each level produces
different clusters and each higher level cut produces of a subset of clusters from
the lower level structure. This feature makes HC common in graph clustering of
real networks as they have a hierarchical structure of communities, for example,
social, biology, marketing networks, etc [1].

We use one of the HC techniques in association with our BTD metric, and as
most of the work in literature is based on the agglomerative strategy, we choose
it in our study. However, as the clusters merge from the lower level, there are
different criteria to merge the clusters, each one estimates the similarity between
clusters in a different way, for example, single, complete, and average linkage.

In this study, we apply agglomerative hierarchical clustering with complete
linkage on four different graph models and show a comparison between both
distances: SP and BTD. The results are discussed in Sect. 4.

3.2 K-means Clustering

An alternative clustering method is K-means clustering algorithm, which is one
of the oldest methods in cluster analysis. Although its first appearance was in
the 1950’s, it is still one of the most commonly used methods. Also, it has a
rich history in the literature as it is applied in various scientific areas. Three
essential ingredients are required in K-means algorithm: the number of clusters
K, initial centroids {c1, c2, . . . , cK} and a distance metric [7]. Given a graph
G(V,E), Algorithm 1 below summarizes the steps:

Algorithm 1. K-means clustering G(V,E)
1: Compute the (n× n) distance matrix based on BTD.
2: Select K nodes randomly as initial centroids v∗

1 , . . . , v
∗
K .

3: Allocate each node vi to cluster Ck, where k = argmin
j

d(vi, v
∗
j )

4: repeat

5: Allocate each node vi to Ck if k = argmin
l

∑
vj∈Cl

d(vi,vj)

|Cl|
6: until convergence criterion is met no change in clusters members.

Starting the algorithm by computing the distance matrix BTD, then choose
K initial centroids randomly. To form the clusters, we assign each node vi to
cluster k which satisfies the condition in 3. After the first allocation, we repeat
step 5 until allocating all nodes to their fitted clusters. This differs from the
original K-means algorithm where the points have coordinates and it is possible
to calculate centroids in each iteration. In graphs, the nodes do not have coor-
dinates, and in this case, we can not recompute the centroids in each iteration.
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The most crucial point in K-means algorithm that can affect its performance
is the selection of the initial centroids. It is noticeable that the random selection
of initial starts often leads to very different clustering solutions. Therefore, K-
means can only converge to a local minima, and this problem increases if the
dataset structure does not have natural clusters. At most, we can repeat the
algorithm for different sets of initial centroids, and either evaluate the results by
subjective choice (in small data sets it may be possible to choose the solution
which has obvious clusters by eye) or choose the cluster’s solution which has
a minimum squared error between the nodes. Given a graph of size n, V =
{v1, v2, . . . , vn}, and K-means clustering result C = {C1, C2, . . . , CK}, the sum
of squared errors (SSE) is given by:

SSE(C) =
1
2

K∑

k=1

∑

vi,vj∈Ck

d(vi, vj)2, (3)

where K is the number of clusters.
In our study, we did a simulation study of clustering four different graph

models using the K-means clustering algorithm, the goal of this simulation was
to compare the performance of both distances BTD and SP in graphs. The
results are presented in Sect. 4.

3.3 Modularity Function

The evaluation of the quality of a cluster is one of the most critical tasks in
cluster analysis. As one of the clustering goals is exploring the latent structure
of a graph, high-quality clustering result could describe the communities in the
underlying graph. However, [2] argued that there is no single unique measure-
ment to check the clusters quality, and in case of graphs which can be easily
visualized by the researcher, the evaluation could be subjective.

One of the most popular quality functions for measuring the goodness of
network partitions is the modularity function, introduced by [10]. The idea of
this approach is that most random networks do not have clear communities in
the graph structure. So, It assesses the partitions quality based on the difference
between the arrangement of the edges within clusters in graphs, and the random
distribution of these edges between nodes in case of no community structure.
It can be either positive or negative, and we are looking for divisions with high
modularity as a sign of proper partitions. It can be written as

Q =
1

4m

∑

i,j

(
Aij − kikj

2m

)
δ(ci, cj),

where ki is the degree of the vertex vi, m = |E| is the total number of edges
in the graph, kikj

2m is the expected number of edges between vertices i and j if
edges are placed at random (null model), and the function δ(ci, cj) is equal to 1
if i and j are in the same group and 0 otherwise.
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In our study, we use the modularity measure as an optimization function
given K of the quality of our clustering results. The reasons behind our choice are
that the modularity function is widely used by most of the academic researchers
in cluster analysis as the best measure of the goodness of partitions [3,6,14].
Also, the modularity is quite a simple tool and is faster than most of the available
quality measures even for large and sparse networks [11].

4 Simulation Study

The first simulation study is HC of four different graph models, the goal of this
simulation is to compare the clustering results between the SP and BTD. For
each model, we simulate 1000 graphs; each graph has size 100. Then, apply HC
(complete link) with the number of clusters K = 2, 3, . . . , 10. The Q results in
Fig. 2 show that BTD always exceeds SP results in all graph models, and this is
an evidence of the efficiency of BTD in hierarchical graph clustering.

The second simulation study is K-means clustering with the same graph
models to compare the performance of BTD and SP by the modularity function
Q. For each model, we simulate 50 graphs of size 200. For each graph, we choose
100 different sets of random initial centroids in each of cases k = 5, 7. Table 1
shows the simulation results for the four models. In each simulation, we calculate
the modularity measure for each of the clustering results for all 100 random initial
centroids and choose the maximum modularity over these 100 modularities. So,
over 50 simulations, we obtain 50 modularity measures. In Table 1, max, min,
and avg correspond to maximum, minimum and average values over the 50
modularity measures. Avg Itr is the average iteration number of the K-means
algorithm over 50 simulations. The avg time is the average time taken over all
50 simulations. All these measures are calculated for both cases of distances:
BTD and SP. Length 1 is the average number of BTD clustering results which
have modularity measures bigger than the maximum modularity measure of
SP clustering results for all 50 simulations. Length 2 is the average number of
SP clustering results which have modularity measures less than the minimum
modularity measure of BTD results over all 50 simulations. Table 1 shows that
for the ER model, WS model, and FF model, the BTD produces slightly higher
quality results when compared with SP using the modularity function. In the
ER model, length 1 and length 2 are higher than the other models due to lots of
ties in the graph structures. In the BA model, the results look similar between
BTD and SP because the graph model has a tree structure which has a lack of
the ties between nodes.

Also, we apply a paired t-test on the simulation results to check if the mean
difference between BTD and SP results is zero:

H0 : max(QBTD) = max(QSP)

H1 : max(QBTD) �= max(QSP),

where the max is taken over the 100 random starts. The p-values of the paired
test are less than 0.05 for ER, WS, and FF models, which is a significant sign
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Fig. 2. Scatter plot of the mean of the modularity Q (vertical axes) of HC (complete
linkage) using BTD (black line) and SP (red line) over 1000 simulations of each graph
model, with different number of clusters K = 2, 3, . . . , 10 (horizontal axes). (Color
figure online)

of the difference between both distances results. Figure 3 illustrates the box
plots of the differences between maximum/minimum modularity values between
BTD and SP over 50 simulations; each figure corresponds to one model and one
number of clusters. We can see that for all graph models except the BA model,
most of the differences appeared higher than zero in most simulations. This is
evidence that BTD generally produces higher cluster quality than SP.

From Table 1 and Fig. 3, we conclude that for dense graphs, the BTD pro-
duces higher quality clusters than the SP when assessed by the modularity func-
tion Q. This makes the BTD a more preferable distance measure in dense graphs
than the SP. Note that because the difficulties in covering all parameter settings
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Table 1. Table of statistics measurements to compare between the efficiency of BTD
and SP over four different graph models with K-means algorithm for K = 5, 7.

ER model WS model

k = 5 k = 7 k = 5 k = 7

Distance BTD SP BTD SP BTD SP BTD SP

Max 0.35 0.33 0.35 0.33 0.70 0.70 0.75 0.73

Min 0.31 0.29 0.31 0.30 0.64 0.63 0.68 0.66

Avg 0.33 0.32 0.33 0.31 0.67 0.66 0.70 0.69

Avg Itr 13.6 12 13.06 13 12.24 13.24 13.24 12.74

Avg time 13.3 12 13.11 11.91 13.81 13.14 14.39 13.28

Length 1 13.4 21.46 3.24 6.24

Length 2 19.16 35.02 4.46 6.76

BA model FF model

K = 5 K = 7 K = 5 K = 7

Distance BTD SP BTD SP BTD SP BTD SP

Max 0.78 0.78 0.82 0.82 0.57 0.55 0.58 0.56

Min 0.67 0.68 0.77 0.77 0.32 0.32 0.26 0.27

Avg 0.75 0.75 0.80 0.80 0.46 0.44 0.45 0.43

Avg Itr 6.5 6.4 6.7 6.6 10.44 8.72 12.04 8.74

Avg time 7.6 7.3 8.7 8.3 1.35 1.39 1.57 1.38

Length 1 0.42 0.38 3.34 3.38

Length 2 0.54 0.48 2.96 3.38

and all simulation parameters: number of simulations, graph size, the number of
clusters and the models parameters are subjective choices.

5 Facebook Example [8]

Our Facebook Network dataset is a combination of 10 ego-networks which consist
of 4,039 users (nodes) and 88,234 edges. Each ego user has connections with all
nodes in his/her network. In this example, we compare the performance of BTD
with SP in hierarchical and K-means clustering algorithms on one connected
component consisting of both the first and second ego networks excluding the
ego nodes. It has 547 nodes and 5706 edges.

In Fig. 4, we show the proposed Facebook network with K = 3 clusters pro-
duced by K-means algorithm and BTD. As well as the HC results for BTD
and SP for K = 2, . . . , 10. The results show that BTD produces higher mod-
ularity than SP for the more important K values: in this network it appears
that there are three natural communities, and for K = 3, 4, 5, HC produces a
higher modularity score for BTD compared with SP. For K > 8, both distance
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Fig. 3. Box plots of the differences of maximum/minimum modularity values between
BTD and SP over 50 simulations of all proposed graph models of size n = 200, K = 5, 7
and 100 initial starts group in each simulation. The horizontal line crosses at zero to
show the positive differences.

measures produce equal results, but the structural features have by this point
disappeared. Even though Q reaches higher scores for large K, this is not a sign
for a better number of clusters or communities, as the Q function is constructed
to assess the cluster quality but not to choose the number of clusters [6]. We
apply K-means algorithm with a different number of clusters K = 3, . . . , 10,
in each K we choose 10 different random initial centroids sets and check the
maximum and minimum over these 10 sets for each K. We compare the perfor-
mance of BTD with SP in this experiment by running the same 10 sets with
each distance. Figure 4 illustrates the differences between BTD and SP by the
minimum modularity scores over K. The results show a significant difference in
favour of the BTD; this means the arbitrary choice of initial centroids always
has a lower modularity score limit by SP than BTD. In the maximum compar-
ison, both clustering methods behave similarly and produce similar modularity
score. From HC and K-means algorithms experiments, we conclude that BTD
produces higher quality results compared with SP in the Facebook network.
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Fig. 4. Facebook graph with 3 clusters, comparison between BTD and SP in HC, and
K-means clustering results.

6 Discussion

This paper presents a novel approach to measure distances in undirected,
unweighted graphs. Its main idea is to break the ties between similar distances
in dense graphs. In the experimental study, we examined the proposed distance
BTD with four different graph models and concluded that BTD breaks the ties
in SP and keeps the same SP order. Also, BTD has effective results compared
with SP in graph clustering. In all simulation experiments, the results give evi-
dence for the superiority of BTD compared with SP. This result is a significant
finding in graph theory especially for graph clustering as most of the literature
depends on SP.

Moreover, we have introduced a new way of assigning the nodes to the clusters
in K-means algorithm based on the dissimilarity matrix, which differs from the
standard K-means algorithm which is co-ordinate based.

Finally, we reaffirm our results by considering real data from the Facebook
network.

Currently, we think over further study to reduce the time taken in repeating
K-means algorithm for different initial centroids sets by considering deterministic
choices. We intend to look for other real data which has a different structure from
Facebook and compare the results. Moreover, we will check the validity of BTD
in different statistical learning topics, for example, classification and regression.

Acknowledgments. The first author of this manuscript is grateful to the Saudi Ara-
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Abstract. In this work, we address feature subset selection in the case
when the variables exert a null or weak marginal effect on the target vari-
able, a situation called “pure” epistasis hereafter. We explore the Markov
blanket approach, to tackle epistasis detection, and we introduce SMMB-
ACO. This method combines Markov blanket learning with stochastic
and ensemble features and guides the stochastic sampling process by
incorporating ant colony optimization. We first analyze the impact of
parameter adjustment on SMMB-ACO complexity. Then using simu-
lated and real data, we compare SMMB-ACO with four other methods,
including its former version SMMB. We show that SMMB-ACO com-
pares well with three state-of-the-art methods and that SMMB-ACO
is more stable than SMMB. On the real dataset, the detection ability
of SMMB-ACO is close to that of the best approach, which is a slow
method, and SMMB-ACO is the fastest algorithm behind a much less
performing method.

Keywords: Feature subset selection · Epistasis pattern ·
Bayesian network · Markov blanket · Metaheuristic ·
High dimensionality

1 Introduction

The intensive use of high-throughput genotyping technologies has opened the era
for precision medicine, whose paradigm relies on targeted prevention and drug
treatment, depending on the genetic profiles of patients. In this context, the
aim of genetic association studies is to generate cutting-edge knowledge on the
relationships between genotypes and some complex pathologies. Epistasis char-
acterizes the situation in which a combination of variables (i.e., genetic mark-
ers in interaction) is influential on a target variable (affected/unaffected status),
whereas each of these variables shows a null or small individual effect. All studies
involving univariate statistical tests are prone to miss the situations of epistasis.
Exhaustive strategies cannot cope with high dimensionality, a characteristic of
genotype data, and are limited to the exploration of two-way interactions (e.g.,
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GWIS [1]) or the examination of combinations within a user-specified size upper
bound [2]. On the other hand, by definition, parametric statistical approaches
suffer from limitations. A recent review has highlighted the contribution of arti-
ficial intelligence to the field of epistasis detection [3]. The proposals embrace
ensemble learning strategies based on random forests (e.g., Random Jungle [4]),
metaheuristics designed for combinatorial optimization (e.g., AntEpiSeeker [5]),
and Bayesian network-based methods (e.g., BEAM [6]). Other approaches com-
bine several methods. For instance, HiSeeker incorporates a two-way interaction
filtering stage prior ant colony optimization [7], KNN-MDR combines K-Nearest
Neighbors and MDR methods [8]. A common drawback of all above mentioned
approaches is the lack of detection power, especially in the case of pure epistasis
(no marginal effect or weak marginal effect). Besides, reducing the search space
is inescapable to handle a wealth of data. However, filtering strategies rely more
or less on biased or incomplete knowledge. In contrast, artificial intelligence is
poised to have a big impact in this regard, notably by combining novel methods
with stochastic search algorithms designed to explore the combinatorial search
space. In the remainder of this paper, we deal with discrete variables and a
binary categorical target variable.

In this article, we state the problem of epistasis detection as a feature subset
selection problem, and explore the Markov blanket (MB) approach to solve it.
To this aim, we introduce SMMB-ACO (Stochastic Multiple Markov Blankets
with Ant Colony Optimization), an innovative hybrid approach which combines
Markov blanket construction with stochastic and ensemble features and incor-
porates an ant colony optimization (ACO) strategy.

Section 2 first puts forth a central property related to the Markov blanket con-
cept. Then it briefly mentions the weaknesses of existing MB-based algorithms
when addressing the epistasis detection issue. Section 3 introduces SMMB-ACO.
Experimental results and discussion are presented in Sect. 4.

2 Markov Blanket Learning

In a Bayesian network built over the variables of set V , the Markov Blanket
of a target variable T , MB(T ), is defined as a minimal set of variables that
makes any variable outside MB(T ) statistically independent of T , conditional
on MB(T ): ∀ X ∈ V \ MB(T ), X⊥⊥T | MB(T ).

The reference algorithm IAMB (Incremental Association Markov Blanket)
chains two phases to grow an optimal MB from the empty set [9]. The for-
ward phase successively incorporates variables into the MB under construction;
the backward phase is meant to dismiss false positives. Several proposals were
developed following this scheme, with variations in design, including variations
in interleaving the forward and backward phases. The conditional test afore-
mentioned is one of the essential ingredients used in the two phases. Various
drawbacks are identified in these methods: (i) intractability in high-dimensional
settings, (ii) requirement to verify strong assumptions, such as the faithfulness
property [10] and absence of noise in the data, (iii) lack of power. The stochastic
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and ensemble features of SMMB-ACO were designed to alleviate issue (i) through
an efficient exploration of the search space. The MB concept and optimal, princi-
pled feature subset selection are strongly connected under the faithfulness prop-
erty, which ensures the unicity of the MB [10]. However, finding a best MB as the
solution to feature selection from real life data is still more challenging. Again,
SMMB-ACO addresses issue (ii) through an ensemble-based technique, to find
multiple suboptimal MBs and enhance the construction of a consensus MB. Point
(iii) is a recurring issue in feature subset selection and is highly challenging under
the hypothesis of epistasis. In MB learning approaches, incorporating variables
one at a time impedes the detection of pure epistasis: since the independence test
achieved at first iteration is conditioned on the empty MB, a variable marginally
dependent with the target variable is incorporated from the outset, which skews
the whole construction. SMMB-ACO addresses this issue by including groups of
variables instead. Importantly, SMMB-ACO is the enhanced version of a former
method, SMMB [11], to be briefly described in Sect. 4.1. In SMMB-ACO, the
stochastic sampling process is guided by incorporating ant colony optimization,
for a more efficient resolution of issues (ii) and (iii).

3 The SMMB-ACO Algorithm

The input data for the SMMB-ACO algorithm consists of a matrix D (p obser-
vations × n variables), and a vector T (dimension p) to describe the target
variable. The set of n variables is denoted V . For a didactical presentation, we
introduce SMMB-ACO in a top-down fashion.

3.1 Top-Level Procedure

SMMB-ACO is structured into two procedures. The top-level procedure (Algo-
rithm1) successively runs nitt iterations (Algorithm 1, line 4). Each iteration
supervises nants ants (Algorithm 1, line 7) that operate in parallel to build nants

suboptimal MBs. Each ant a is first assigned a submatrix Da of dimension p×K,
sampled from matrix D (Algorithm 1, line 8). The sampling is performed follow-
ing a probability distribution P (Algorithm 1, line 5), to be further described.
The learning of a suboptimal MB is carried out by function learnMB (Algo-
rithm1, line 10). Notably, this function implements conditional independence
tests, whose statistics are collected in memory mema (Algorithm 1, lines 9 and
11). The test used is the conditional G-test. Once all ants have achieved their
tasks, global memory mem collects all statistics output in the scope of ith ACO
iteration (Algorithm 1, lines 13 and 16). Second, if an ant returns a non-empty
suboptimal MB, then this set of variables is added to MBs (Algorithm1, line
17).

We have adapted the standard ACO framework [12] to cope with MB learn-
ing. To further update the probability distribution over the n variables in V ,
we update the pheromone rates τ using global memory mem (Algorithm 1,
line 19). Knowing how function learnMB proceeds is crucial to understand
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Algorithm 1. SMMB-ACO
INPUT:

• D , matrix of p observations × n variables

• T , vector of dimension p, representing the target variable

• ni t t , number of ACO iterations

• na n t s , number of ants

• K , size of the subset of variables sampled from D by each ant

• k, size of a combination of variables sampled amongst the K above variables (k < K)

• ni t n , maximal number of iterations to coerce the exploration of the search space, in nested

function learnMB, in case the MB under construction remains empty

• α′, global type I error threshold

• Parameters for ACO optimization:

- τ0, constant to initialize the pheromone rates

- ρ and λ, two constants used in pheromone rate updates

- η , vector of weights (of dimension p), to account for prior knowledge on the variables in D

- α and β , two constants used to adjust the relative importance between pheromone rate

and a priori knowledge on the variables

OUTPUT:

• M B ∗, a Markov blanket, built as the consensus of at most nitt × nants suboptimal Markov

blankets

1: M Bs ← ∅
2: /* τ , vector of dimension n, records the pheromone rates for the variables of D */

3: τ ← init(τ0)

4: for i = 1 to ni t t

5: /* P is a probability distribution over the variables of D */

6: P ← computeDistribution(τ , η , α , β)

7: for a = 1 to na n t s

8: Da ← sample(D , K , P)

9: mem a ← ∅
10: M Ba ← learnMB(Da , T , k, ni t n , α′, mem a , P)

11: /* mema now records the statistics for all conditional tests performed by ant a */

12: end for

13: mem ← ∅ /* mem will record the statistics for all conditional tests performed */

14: /* during iteration i */

15: for a = 1 to na n t s

16: add(mem, mema)

17: if not empty(MBa) then MBs ← MBs ∪ MBa end if

18: end for

19: τ ← updatePheromoneRates(τ , mem , ρ, λ)

20: end for

21: U ← ⋃
M∈M B s M /* consensus precursor */

22: M B ∗ ← backwardPhase(U , T , α′) /* refined consensus */

how pheromone rates are updated. Therefore we postpone this explanation to
Sect. 3.3, after function learnMB has been described. Once the pheromone rates
have been updated, the next iteration starts by computing probability distribu-
tion P as:

∀ X ∈ V , P(X) =
τ(X)α · η(X)β

∑
X′∈V τ(X ′)α · η(X ′)β

, (Algorithm 1, line 6),
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where τ(X) is the pheromone rate for variable X. In the feature selection prob-
lem, the pheromone rate τ(X) deposited by the ants indicates the significance
of X to contribute to interactions with other variables, to determine the target
variable. η(X) is designed to integrate prior knowledge on variable X. Parame-
ters α and β allow to adjust the relative weights between pheromome rate and
prior knowledge.

When the last ACO iteration is completed in the top-level procedure, a MB
consensus is built (Algorithm 1, lines 21 and 22). To this aim, the current version
of SMMB-ACO first performs an union operation over all suboptimal MBs, fol-
lowed by a backward phase. The resulting set is the output of SMMB-ACO. The
backward phase used to refine the consensus is the same as in learnMB, with the
exception that p-values are computed using permutations. This common process
will be described in Sect. 3.2.

3.2 Learning a Suboptimal Markov Blanket

The nested procedure learnMB (Algorithm2) driven by each ant starts with the
initialization of the suboptimal MB to the empty set (Algorithm2, line 1). Func-
tion learnMB iterates a series of forward steps each followed by a full backward
phase. This process is iterated as long as the suboptimal MB can be modified, or
as long as the MB remains empty and a maximal number of iterations, nitn , is
not reached (Algorithm 2, line 3). Each forward step starts with the sampling of
a submatrix S of dimension p×k, sampled from the submatrix Da of dimension
p × K that is handled by the ant (Algorithm2, line 6). Again, the probability
distribution P is used for this purpose. One can construct 2k − 1 non-empty
subsets from the variables in S. The subset s of S which maximizes a quality
score is identified among all these combinations (Algorithm 2, line 7). Example 1
illustrates the computation of this score on a toy example. Once the best candi-
date s is identified, the p-value made available by the quality score computation
(see Example 1) is examined. If the conditional dependence between s and T
is statistically significant (Algorithm2, line 8), the combination s is added to
the suboptimal MB under construction (Algorithm2, line 9) and a full back-
ward phase is triggered (Algorithm 2, line 11). It is important to note that when
we compute association scores (Algorithm 2, line 7), all the statistics generated
by this calculus are stored in mema, the ant’s memory (see Example 2 for an
illustration).

The backward phase in the consensus construction (Algorithm1, line 22) fol-
lows the same scheme as the backward phase in function learnMB (Algorithm2,
line 11). In the backward phase of the reference algorithm IAMB, the condition-
ing set used in all independence tests is the MB in its current state. SMMB-ACO
implements a more refined strategy (Algorithm 3, line 2): to discard a false posi-
tive variable X, the independence between X and target T is tested conditional
on each subset S of the current MB. Indeed, one of these subsets is necessarily
the final MB to be discovered.
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3.3 Back to Top-Level Procedure

Now we know that the statistics from conditional tests are stored in global
memory mem (Algorithm 1, lines 11 and 16), we can explain how the current
version of SMMB-ACO updates the vector τ (Algorithm 1, line 19). In standard
ACO, the pheromone rate of a variable is updated as soon as the variable is
selected by an ant. SMMB-ACO departs from this scheme: τ is updated at
the end of an ACO iteration, when all the statistics provided by the ants are
available. This choice is motivated by the parallelization of the ants’ tasks. To
update τ(X), SMMB-ACO takes into account the statistics output from all the
conditional independence tests that involved X (across all ants). The update
involves ρ (0 ≤ ρ ≤ 1), the pheromone evaporation rate, and a constant λ
(0 ≤ λ ≤ 1). For instance, if mem(X) = {t1, t2, t3, t4}, the principle is to iterate
operation τ(X) ← (1 − ρ) τ(X) + λ ti, through the elements ti of mem(X).

Algorithm 2. learnMB
INPUT: see Algorithm 1 for input parameter description

OUTPUT:

• M Ba , a Markov blanket of T (possibly empty), learnt by current ant a.

1: MBa ← ∅
2: MBa modified ← true; j ← 0

3: while (MBa modified or (empty(MBa) and j < ni t n ))

4: MBa modified ← false

5: /* forward step */

6: S ← sample(Da , k, P)

7: s ← argmaxs′⊆S{assocScore(s′, T , M Ba , mem a )}
8: if (p-value(s) < α′) then

9: MBa ← MBa ∪ s; MBa modified ← true

10: /* interleaved backward phase */

11: backwardPhase(MBa,T, α′)
12: end if

13: incr(j)

14: end while

15: return MBa

Example 1 (Computation of assocScore). We wish to identify the subset s of
S = {X1, X2, X3}, eligible to inclusion in the current MB (Algorithm2, line 7).
For this purpose, we rely on the conditional independence G-test ind(X;T | Z),
with X a variable, T the target variable, and Z a set of variables. This test
outputs the statistic of the G-test of independence between variables X and T ,
conditional on set Z.
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We successively compute:

subset: assocScore subset: assocScore

1 {X1}: t1 = ind(X1;T | MB) 2 {X1, X2}: max(t4, t5)
{X2}: t2 = ind(X2;T | MB) t4 = ind(X1;T | MB ∪ {X2})
{X3}: t3 = ind(X3;T | MB) t5 = ind(X2;T | MB ∪ {X1})

3 {X1, X3}: max(t6, t7) 4 {X2, X3}: max(t8, t9)
t6 = ind(X1; T | MB ∪ {X3}) t8 = ind(X2;T | MB ∪ {X3})
t7 = ind(X3; T | MB ∪ {X1}) t9 = ind(X3;T | MB ∪ {X2})

5 {X1, X2, X3}: max(t10, t11, t12)
t10 = ind(X1;T | MB ∪ {X2, X3})
t11 = ind(X2;T | MB ∪ {X1, X3})
t12 = ind(X3;T | MB ∪ {X1, X2})

If assocScore is the highest for {X1,X2}, thanks to, say, t5, then {X1,X2} is
the candidate identified for inclusion in the current MB, and the p-value relative
to statistic t5 is memorized to be further used in Algorithm 2, line 8.

Example 2 (Update of ant memory). In the computation shown in Example 1,
mema would be updated as follows:

mema(X1) = mema(X1) ∪ {t1, t4, t6, t10},
mema(X2) = mema(X2) ∪ {t2, t5, t8, t11},
mema(X3) = mema(X3) ∪ {t3, t7, t9, t12}.

Algorithm 3. backwardPhase
INPUT:

• M, a Markov blanket whose false positive variables must be discarded from

• T, the target variable, T /∈ M

• α′, global type I error threshold

OUTPUT:

• M, possibly modified

1: for each X ∈ M /* Is X a false positive? */

2: for each S ⊆ M \ {X},S 	= ∅ /* We try any S because the ”true” MB is some S ⊆ M */

3: if(significant conditional independence(X,T,S, α′)) then

4: M ← M \ {X}; break /* X is a false positive and is therefore discarded from M */

5: end if

6: end for

7: end for

4 Experiments

SMMB-ACO was implemented in C++, using OpenMP to parallelize the iter-
ation on the ants [13]. SMMB-ACO and four other methods were run using
six cores composed of biprocessors XEON 5462 2.66 GHz. This section first



224 C. Sinoquet and C. Niel

describes the experimental protocol. Then we present a study relative to the
impact of parameter adjustment on SMMB-ACO complexity, and its former
version, SMMB. Finally, we compare SMMB-ACO with SMMB and three state-
of-the-art methods of the domain, both on simulated and real data.

4.1 Experimental Road Map

Datasets. Our proof-of-concept framework considers epistasis detection in
genetic association studies. Therein, we handle n genetic markers, taking their
values in {0, 1, 2}, and a binary target variable (0:unaffected/1:affected), to
describe p/2 unaffected subjects and p/2 patients, respectively. We simulated
data following three interaction models described in the literature. The 2-way
epistatic models 1 and 2 [14] each describe the interaction of two influential
genetic markers. The 3-way epistatic model 3 was also used in previous works [6].
First, for each model, we generated 100 datasets (4, 000 observations × 100 vari-
ables), using GAMETES software simulator (version 2.1) [15]. For each genetic
marker simulated via GAMETES, a characteristic called “minor allele frequency”
(MAF) must be specified. For each non-causal genetic marker, the MAF was uni-
formly drawn from [0.05, 0.5]. In our protocol, the simulated influential variables
were specified to share the same MAF. Across our experiments, we varied this
parameter in {0.05, 0.1, 0.2, 0.5}. Therefore, we simulated 12 conditions in total
[16]. Second, to study the impact of parameter adjustment, we also simulated
100 datasets (4, 000 observations × 5, 000 variables) using model 2 (MAF 0.10).
Third, we simulated data under the null hypothesis (no epistasis).

Finally, we used the genome-wide Rheumatoid Arthritis (RA) dataset pro-
vided by the Wellcome Trust Case Control Consortium [17]. This dataset
describes 23 human chromosomes showing between 5,754 and 38,867 variables
(20,236 variables on average; 469,616 in total). The numbers of unaffected and
affected subjects are 2,938 and 1,860, respectively.

Methods Compared. SMMB-ACO was compared to BEAM [6], DASSO-MB
[18] and AntEpiSeeker [5], all three dedicated to epistasis detection. We also
compared SMMB-ACO to SMMB [11], our former brute-force proposal. The
parameter corresponding to nitt × nants is nMBs in SMMB. SMMB successively
runs function learnMB (nMBs times). SMMB and SMMB-ACO share K and k,
the parameters involved in variable sampling. The naive approach SMMB sam-
ples variables using a uniform distribution, whereas ant colony optimization is
used to explore the search space more efficiently in SMMB-ACO. Each of the
first three methods shares a feature with SMMB-ACO. DASSO-MB implements
the deterministic IAMB algorithm modified with interleaved forward and back-
ward phases. AntEpiSeeker relies on ant colony optimization. As SMMB-ACO,
BEAM relies on a Bayesian framework, this time using Monte-Carlo Markov
Chains. For reasons of computational burden in the simulations, we limited the
number of methods compared with SMMB-ACO.

Besides, to ensure scalability at the genome scale, we adapted our imple-
mentation of SMMB and SMMB-ACO. Since the bottleneck was the size of the
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consensus precursor U (see Algorithm 1, line 21), we modified SMMB et SMMB-
ACO as follows: a first pass builds MBs and stops after it has produced U ; in a
second pass, SMMB (respectively SMMB-ACO) is run on the dataset consisting
in U .

Criteria Used for Method Comparisons. For each of the 100 datasets sim-
ulated under the same condition, we ran each method 100 times and computed
its F-Measure as 2/(1/recall +1/precision), with recall = TP/(TP +FN) and
precision = TP/(TP + FP ).

We ran each stochastic method 10 times, and deterministic DASSO-MB one
time, on each of the 23 human chromosome datasets and on the genome-wide
dataset as well. At this scale, the consensus MB∗ (Algorithm 1, line 22) output
by SMMB or SMMB-ACO is still large. We decided to define the output of
SMMB or SMMB-ACO as the set of the suboptimal MBs generated throughout
a whole run (see Algorithm 1, line 17), whose variables belong to the refined
consensus MB∗. For instance, if MB∗ = {X6,X43,X51,X77}, the suboptimal
MB {X6,X51} is reported as a solution, whereas the suboptimal MB {X33,X51}
is not.

4.2 Results and Discussion

Impact of Parameter Adjustment. Most machine learning methods require
the adjustment of a number of parameters. In all experiments presented in this
paper, we easily adjusted 9 of the 12 parameters of SMMB-ACO (τ0, ρ, λ, η,
α, β, α′, k, nitn ; see Table 1). The three remaining parameters, nitt , nants and
K, are crucial to control SMMB-ACO’s complexity. Figure 1 provides insights
on the impact of these parameters. Figure 1 (A) shows a plateau for consensus
precursor size (≈ 9) when the total number of MBs (nitt × nants) is increased
beyond 100 MBs. This suggests that learning a number of MBs greater than
this threshold is unuseful. Besides, the consensus precursor size corresponding
to the plateau is larger for SMMB (≈ 14), which suggests a lower number of
false positives for SMMB-ACO. Moreover, Fig. 1 (B) shows that learning more
MBs than necessary is detrimental to time complexity. Figure 1 (B) also shows
that SMMB-ACO is faster than SMMB. Interestingly, Fig. 1 (C) highlights the
existence of a plateau for consensus precursor size (≈ 9 for K = 100) when K is
increased. The plateau value is around 14 for SMMB. In a more thorough study,
we inspected the consensus precursors obtained for K larger than the threshold
evidenced. As from this threshold, the rate of consensus precursors containing
the variables in interaction was constant (results not shown). Finally, Fig. 1 (D)
shows how increasing the number of ACO iterations (nitt) impacts the running
time.

Performances on Simulated Data. Figure 2 shows the comparison across
5 methods, 3 models and 4 MAFs. SMMB-ACO, SMMB, AntEpiSeeker and
BEAM respectively require 12, 6, 12 and 11 parameters. To identify correct
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Table 1. Parameter adjustment common to all experiments run on simulated data.

SMMB-ACO Adjustment of the 6 parameters related to the ACO feature, following [5]:

τ0 = 100, ρ = 0.05, λ = 0.1, η = α = β = 1

SMMB-ACO & SMMB Standard statistical significance threshold of independence tests: α′ = 0.05

nitn = 30 (SMMB-ACO); nMBs = 100 (SMMB); k = 3 (both) (empirical

feedback)

Fig. 1. Impact of parameter adjustment on SMMB-ACO and SMMB complexities.
Continuous line: SMMB-ACO; dotted line: SMMB. Precursor size denotes the size
of the consensus Markov blanket U , prior refinement (see Algorithm 1, line 21). One
hundred datasets were generated using model 2 (MAF 0.10) (see Sect. 4.1/Datasets),
with various n values. Total number of MBs: nitt × nants (SMMB-ACO) or nMBs

(SMMB). (A) and (B): p = 4, 000; n = 100 (see Algorithm 1, INPUT); nitt = 34;
K = 10. (C) and (D): p = 4, 000; n = 5, 000. (C): nitt = 34; nants = 3; nMBs = 100.
(D): nants = 3; K = 100.

orders of magnitude for nitt , nants and K, we ran tests as in Fig. 1. In [5],
minimal thresholds are given for the parameters corresponding to nitt and nants,
depending on the dataset size processed by AntEpiSeeker. Default values are
indicated for the other parameters. The unique parameter of DASSO-MB was
set to the default value. Orders of magnitude for the number of MCMC iterations
in BEAM are provided in [6].

We report a significant discrepancy of SMMB or SMMB-ACO with another
method if the two standard deviations are lower than the difference between
the performance averages. A salient feature is the relatively large variability of
AntEpiseeker and SMMB. In contrast, SMMB-ACO and BEAM show the low-
est magnitudes of variation. SMMB-ACO apart, SMMB performs slightly better
than the other methods under 3 conditions. SMMB ranks second behind BEAM
for model 3 and MAF equal to 0.50. In the 8 remaining conditions, two or three
methods, including SMMB, cannot be distinguished. No case arises for which
SMMB is the worst method. In sharp contrast explained by its low variability,
SMMB-ACO ranks first under 6 conditions and it shares the first rank with a sin-
gle method under 5 other conditions (SMMB apart). We conclude that SMMB-
ACO ranks first in half of the 12 simulated conditions studied, with regards
to (i) the high number of datasets simulated under the same condition (100),
(ii) the high number of runs operated on the same dataset (100) to compute
the dataset’s F-measure, and (iii) the identical processings of the four stochas-
tic methods compared. Besides, fastest to slowest, on simulations, we always
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find DASSO-MB, SMMB-ACO/SMMB, BEAM and AntEpiSeeker (results not
shown).

For datasets of dimension p = 4, 000 × n = 100 simulated under the null
hypothesis, we observed that SMMB-ACO ranks second with a false positive rate
of 12.2%, in comparison of BEAM (0%), SMMB (16%), DASSO-MB (20.5%),
and AntEpiSeeker (100%).

Fig. 2. Comparison of performances for the five methods, on simulated data. p = 4, 000;
n = 100 (see Algorithm 1, INPUT). Parameters for SMMB-ACO: nitt = 34, nants = 3;
parameter for SMMB: nMBs = 100; common parameter: K = 10; for other parameters,
see Table 1; for other methods, see Sect. 4.2/Performances on simulated data.

Performances on Real Data. Except for DASSO-MB, all methods discovered
7 2-way patterns through their 10 runs. For instance, SMMB-ACO discovered
7 epistasis patterns in 5 runs, 6 patterns in 4 runs and 4 patterns in 1 run.
DASSO-MB identified only 5 of the 7 former patterns in its single run. None of
the methods yielded results outside this set of 7 patterns. The target variable
was regressed against the set of variables corresponding to each 2-way pattern.
The p-values for these 7 logistic regressions are all smaller than 10−16. We also
computed the odds ratio relative to the logistic regression of the target variable
(i) against each variable identified in a pattern, and (ii) against each pattern.
In all seven cases, the marginal effect of each variable on the target variable is
smaller than the effect of the variables in interaction (results not shown).

For any stochastic method, each of the 10 runs output between 4 and 7
interactions. For insights on the stability of each stochastic method, we computed
the percentage of runs which output at least 6 of the 7 interactions. We set 6
as an arbitrary threshold. Table 2 highlights the discrepancies between the five
methods. On the whole genome set, 90% of the runs of SMMB-ACO output at
least 6 of the 7 interactions (versus 80% for AntEpiSeeker which is 5.3 times as
slow as SMMB-ACO). Given this performance of 90%, and since SMMB-ACO
is also 4.5 times as fast as BEAM, it is affordable to launch several runs of
SMMB-ACO.
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Table 2. Comparison of the five methods on the real RA dataset. Separate chromo-
somes (SC) versus whole genome (WG). Each stochastic method discovered 7 two-way
interactions through its 10 runs and all stochastic methods discovered the same 7 inter-
actions. The P6 rate measures the percentage of runs over 10 runs (1 run for determin-
istic DASSO-MB) which identified at least 6 of the 7 interactions. RT measures the
average running time. Parameters for runs on separate chromosomes: SMMB-ACO:
nitt = 104, nants = 4; SMMB: nMBs = 4× 104; common parameter: K = 180. Param-
eters for runs on the whole genome: SMMB-ACO: nitt = 8, 333, nants = 6; SMMB:
nMBs = 5 × 104; common parameter: K = 600. For other parameters see Table 1. For
other methods, parameters were adjusted following authors’ indications: DASSO-MB:
α = 0.05; AntEpiSeeker: 3 × 104 iterations, 5 × 104 ants, α = 0.01; BEAM: number of
iterations for burn-in phase: 106, number of iterations for stationary phase: 107.

Data Method

DASSO-MB AntEpiSeeker BEAM SMMB SMMB-ACO

SC P6 0% 80% 100% 70% 90%

RT 12 h 69 h 59 h 34 h 13 h

WG P6 0% 80% 100% 70% 90%

RT 17 h 47 h 53 h 23 h 19 h

4.3 Discussion

Comparison with SMMB. When SMMB ranked first on simulated data, it
could not be demarcated from 2 or 3 other methods; and it was never the worst
method. Its performance is mitigated for the RA dataset. The SMMB sampling
strategy enhanced with ACO allowed to improve SMMB’s performances, both
on simulated and real datasets. Meanwhile, the time complexity was improved.
The comparison of SMMB and SMMB-ACO’s behaviors under the same param-
eter adjustment allowed to shade light on the improvement brought by the ACO
technique. A consensus precursor obtained from SMMB-ACO is likely to contain
less false positives than a consensus precursor obtained from SMMB. This fact
translates into the decrease of the running time in SMMB-ACO, as verified in
Table 2. The explanation lies in the fact that a lower number of false positives
allows to decrease the complexity of the backward phase that is applied to the
consensus precursor. The above explanation allows to emphasize that the effec-
tiveness brought by memory management (mema and mem, see Algorithm 1),
together with updating procedures (pheromone rates, probability distribution)
does not come at the cost of higher running times.

Comparison with BEAM. BEAM is more successful than the other methods
on the RA dataset. However, on simulations, BEAM does not outperform the
other methods. Besides, it is not advisable to rely on the single run of a stochastic
method, BEAM included, a fortiori on large datasets. BEAM is not parallelized,
whereas the iteration on the ants is, in SMMB-ACO. However, the backward
phase used to refine the consensus precursor is intrinsincally not parallelisable.
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Moreover, in this backward phase, type I error is controled with computation-
ally expensive permutations. The construction of the MB consensus consumes
between 50% and 60% of the total running time. In spite of this additional
computational burden, SMMB-ACO runs faster than BEAM. The complexity of
SMMB-ACO is an advantage over BEAM, to launch several runs.

Complexities. Because of its stochastic feature, it is impossible to assess the
theoretical overall time complexity of SMMB-ACO. The complexity of the back-
ward phase is at worst O(q 2q), q being the size of the set processed by procedure
backwardPhase. Experimental feedback indicates that q is lower than 4–5 for the
simulated datasets and the real datasets as well. Besides, we also observed that
the size of the conditioning set (i.e., the MB) rapidly decreases: generally, the
first conditional test performed for a variable indicates that this variable must
be discarded from the MB (Algorithm 3, lines 2 to 4). The complexity of the
backward phase is therefore not an issue in function learnMB and is expected to
be close to O(q). In contrast, the final backward phase handles the union of all
Markov blankets that have been generated (Algorithm1, lines 21 and 22). In this
case, q may rise to a few hundreds for a chromosome. Only a few variables will
require that all conditional tests are performed (3 if there is a 3-way epistatic
pattern in the data). However, the computational burden is increased by the
use of permutations at this stage. Thus the complexity of the backward phase
is expected to be close to O(q e), where e denotes the number of permutations
(e.g., 1000).

5 Conclusions and Future Work

In this work, we have tackled the problem of feature selection under the epistasis
assumption. The performances obtained by SMMB-ACO are very promising but
there is still room for improvement. First, on large datasets, the bottleneck
is the computational burden entailed by the size of the MB consensus, prior
refinement. Our future directions of research will explore various strategies to
either diminish the size of this set or discard this stage. Second, a brute-force
method is currently used to update the pheromone rates in SMMB-ACO. Further
work will examine various leads to update these rates. Third, we are currently
investigating alternatives to the ACO optimization technique. In particular, the
“less is more approach” (LIMA) represents a recent line of inquiry to increase the
effectiveness and efficiency of a heuristic customized to solve a given optimization
problem [19]. Finally, beyond this present proof-of-concept in the challenging
domain of precision medicine, the further optimized version of SMMB will be
developed and tested as a tool for feature selection under epistasis assumption,
but in a more general framework (e.g., with no constraint on the cardinalities of
the variables, with a continuous target variable ...).
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Abstract. This paper studies the complexity of the stochastic gradient
algorithm for PCA when the data are observed in a streaming setting.
We also propose an online approach for selecting the learning rate. Simu-
lation experiments confirm the practical relevance of the plain stochastic
gradient approach and that drastic improvements can be achieved by
learning the learning rate.

Keywords: Stochastic gradient · Online PCA ·
Non-convex optimisation · Average case analysis

1 Introduction

1.1 Background

Principal Component Analysis (PCA) is a paramount tool in an amazingly wide
scope of applications. PCA belongs to the small list of algorithms which are
extensively used in data science, medicine, finance, machine learning, etc. and the
list is almost infinite. PCA is one of the basic blocks in Data Analytics. Comput-
ing singular/eigenvectors also appears key to discovering nonlinear embeddings
of the data such as Laplacian eigenmaps [2].

In the era of Big Data, computing a set of singular vectors might turn to
be a computationally difficult task to achieve. In practice the data matrix itself
cannot be imported into the RAM and the data can only be accessed in small
samples. In face of such hard memory management problems, Online Convex
Optimisation often provides efficient alternatives to standard computations in
machine learning [6,10,13]. On the other hand, computing eigen/singular vectors
is not a convex optimisation problem. Instead, PCA can be seen as an optimisa-
tion problem over the sphere and as such, requires a different type of analysis.
c© Springer Nature Switzerland AG 2019
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Online or stochastic versions of PCA have been extensively studied lately; see
in particular the review [3]. On the theoretical side, [11] proposed a very clear
analysis of the stochastic gradient algorithm for PCA which does not require
information about the gap between successive eigenvalues. Better convergence
rates were subsequently obtained in [1,7,12] using more advanced algorithms.
All these previous works rely on the assumption that the data arrive sequentially
and are i.i.d., and their objective is to compute their common covariance matrix.

Our contribution explores a different set up. In the present work, we assume
that the entrees of the covariance matrix are revealed one at a time in a sequential
fashion. In such a set up, only some correlations between certain components of
the data vectors, supposed to be chosen uniformly at random, are assumed to
be available at each round, and not the data themselves. Therefore, our set up
pertains to the activity around the important problem of Positive Semi-Definite
matrix completion [5,8,9].

Our first main contribution is a mathematical proof that the method of [11]
extends to the online matrix completion problem. Our theoretical findings also
include a formula for the learning rate which can be optimised depending on
the problem at hand. Practical optimisation of the learning rate is our second
contribution. Our tuning algorithm is an adaptation of Freund and Shapire’s
online Hedge algorithm and is shown to provide substantial improvement of the
practical convergence speed of the online gradient scheme for PCA.

1.2 Organisation of the Paper

Our main results are presented in Sect. 2 where the algorithm is described and
our main theorem is given. The proof of our main theorem is exposed in Sect. 3.
Implementation and numerical experiments are given in Sect. 4. In particular,
a simple method for choosing the learning rate is described in Sect. 4.1. The
technical lemmæ which are used in the proof of Sect. 3 are gathered in Sect. A
at the end of the paper.

2 Main Results

2.1 Presentation of the Problem and Prior Result

We use bold-faced letters to denote vectors, and capital letters to denote matrices
unless specified otherwise. Given a matrix A, we denote by A� its transpose
matrix, ‖A‖ its spectral norm and ‖A‖1→2 = max ‖Aj‖2 the maximum �2 norm
of its column. For a vector v, we denote by v� its transpose. Moreover (ei)i

denote the canonical basis of Rd. The optimisation problem can be written

min
w:‖w‖=1

−w�Aw, (1)

where d > 1 and A is a symmetric positive semi-definite matrix supposed
unknown. We suppose that we have access to a stream of i.i.d. matrices At

defined as

At = d2 Ait,jt eite
�
jt (2)
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and (it, jt) is drawn uniformly at random from {1, . . . , n}2. It is easily seen that
E[At] = A, therefore each matrix At can be seen as a properly rescaled noiseless
random component of A. It can be readily seen that any leading eigenvector of
A is a solution of the optimisation problem.

2.2 The Stochastic Projected Gradient Algorithm

Given a symmetric matrix A ∈ R
d×d, the projected gradient algorithm writes

wt+1 = (I + ηA)wt/‖(I + ηA)wt‖2 (3)

where η is a step-size parameter and w0 is the initial estimate for a leading
eigenvector of A. This algorithm correspond to initialising at w0 then make a
gradient step at each iteration followed by a projection into the unit sphere.
However, since A is unknown, the stochastic gradient we will study in this paper
is simply defined as

wt+1 = (I + ηAt)wt/‖(I + ηAt)wt‖2 (4)

obtained by replacing A with the random matrix At. Since the projection on
the unit sphere is a rescaling operation which is commutative with respect to
the matrix product, we can leave the projection operation to the end. That is,
for our analysis, it is enough to consider the equivalent algorithm which only
performs projection at the end:

– Initialise w0 on a unit sphere,
– Perform T > 0 stochastic gradient step: wt+1 = (I + ηAt)wt

– Return wT /‖wT ‖2.
In [12], the stream of i.i.d. matrices At are also assumed positive semidefinite.
The main result in [12] is the following theorem.

Theorem 1. Suppose that the matrices (At)t∈N are positive semi-definite, real
i.i.d for some leading eigenvector v of A, 1

p < 〈w0,v〉2 for some p > 0 and that
for some b ≥ 1, both ‖At‖/‖A‖ and ‖At −A‖/‖A‖ are at most b with probability
1. Then, after T iterations of (4) with η = 1

b
√

pT
, then with probability at least

1
cp , the return wT satisfies

1 − w�
T AwT

‖A‖ ≤ c′ log(T )b
√

p√
T

, (5)

where c and c′ are positive constants.

Note that our online positive semidefinite matrix completion framework is not
compatible with the assumptions required for Theorem1 to apply. In our prob-
lem, the matrices At are not themself positive semidefinite.
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2.3 Main Theorem

Without loss of generality, we will throughout assume that ‖A‖ = 1. Our goal
is to show that, for ε > 0, the vector wT obtained after T iterations of the
stochastic gradient method, satisfies

1 − wT AwT ≤ ε (6)

in expectation for T a sufficiently large integer and η tuned accordingly. Since
‖wT ‖2 = 1, this is equivalent to showing that

w�
T ((1 − ε)I − A)wT ≤ 0. (7)

The next theorem summarizes our main findings.

Theorem 2. Let ε > 0 and assume that 0 < 1
p < 〈w0,v〉2 for a leading eigen-

vector v of A. Define

VT = w�
0

1∏

i=T

(I + ηAi)�((1 − ε)I − A)
T∏

i=1

(I + ηAi)w0. (8)

Then for T satisfying

T > max

⎛

⎝4p2d2

ε
,

log 4pε−1

log
(
1 + ε

pd2

)

⎞

⎠ , (9)

and η = ε
4pd2 , it holds that

E[VT ] ≤ − ε

4p
(1 + 2η)T . (10)

Since VT = ‖wT ‖22w�
T ((1 − ε)I − A)wT , the theorem implies the desired result.

3 Proof of the Theorem2

In this section, we prove our main result, namely Theorem2. Define

BT =
1∏

i=T

(I + ηAi)�((1 − ε)I − A)
T∏

i=1

(I + ηAi) (11)

so that VT = w�
0 BTw0.

Lemma 1. We have that

E[BT ] = E[BT−1] + η
(
A�

E[BT−1] + E[BT−1]A
)

(12)

+ η2d2diag
(
A�diag(E[BT−1])A

)
.
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Proof. Expand the recurrence relationship and take the expectation. Finally use
Lemma 2 to obtain the last term of the inequality.

Expanding the recurrence in Lemma1, we have

E[VT ] ≤ w�
0 (I + 2ηA)�((1 − ε)I − A)w0

+ η2d2
T∑

i=1

(1 + 2η)T−i‖diag(E[Bi−1])‖‖w0‖22. (13)

where the last term was obtained by using inequality (28) and ‖A‖1→2 ≤ 1.
Using an eigendecomposition of A and ‖w0‖22 = 1 gives

E[VT ] ≤
d∑

j=1

(1 + 2ηsj)T (1 − ε − sj)w2
0,j + η2d2

T∑

i=1

(1 + 2η)T−i‖diag(E[Bi−1])‖.

(14)

where s1 > · · · > sd denote the eigenvalues of A and w0,j = 〈w0,vj〉 denotes the
j-th component of w0 in the basis of the eigenvectors of A. Since s1 = 1, this
inequality rewrites

E[VT ] ≤ −ε(1 + 2η)T w2
0,1 +

d∑

j=2

(1 + 2ηsj)T (1 − ε − sj)w2
0,j

+ η2d2
T∑

i=1

(1 + 2η)T−i‖diag(E[Bi−1])‖. (15)

In the remainder of the proof, we prove that the negative term −ε(1 + 2η)T w2
0,1

dominates the positive terms. The terms w2
0,j sum to 1 − w2

0,1. Therefore the
sum

∑d
j=2(1+2ηsj)T (1−ε−sj)w2

0,j is less than maxs∈[0,1](1+2ηs)T (1−ε−s),
which can be bounded from above using Lemma 7. Therefore, we get the following
inequality

E[VT ] ≤ −ε(1 + 2η)T w2
0,1 + (1 +

(1 + 2η(1 − ε))T

η(T + 1)
)

+ η2d2
T∑

i=1

(1 + 2η)T−i‖diag(E[Bi−1])‖. (16)

Factoring out (1 + 2η)T , the inequality now writes

E[VT ] ≤ (1 + 2η)T
(

− εw2
0,1 +

1
(1 + 2η)T

+
(1 + 2η(1 − ε))T

(1 + 2η)T η(T + 1)

+ η2d2
T∑

i=1

(1 + 2η)−i‖diag(E[Bi−1])‖
)

(17)
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For the sake of simplifying the analysis, we will use a uniform bound on the
spectral norm of diag(E[Bk]). More precisely, Lemma 6 implies that

‖diag(E[Bk])‖ ≤ 2
η

ηd2 + 1

(
1

1 − η(ηd2 + 2)
− 1

1 − η

)
(1 − ε)

+ 2
η

ηd2 + 1

(
ηd2

1
1 − η(ηd2 + 2)

(18)

+
1

1 − η

)
(2 − ε) +

(
1 +

η2d2

1 − η(ηd2 + 2)

)
(1 − ε)

≤ 2
η

ηd2 + 1

(
1 − ε + (2 − ε)ηd2

1 − η(ηd2 + 2)
+

1
1 − η

)
+

(
1 +

η2d2

1 − η(ηd2 + 2)

)
(1 − ε)

≤ 2
η

ηd2 + 1
2 − ε + (2 − ε)ηd2

1 − η(ηd2 + 2)
+ 1 +

η2d2

1 − η(ηd2 + 2)
(19)

for all k. This simplifies into

‖diag(E[Bk])‖ ≤ 1 +
η2d2 + 4η

1 − η(ηd2 + 2)
. (20)

Thus we obtain

E[VT ] ≤ (1 + 2η)T
(

− εw2
0,1 +

1
(1 + 2η)T

+
(1 + 2η(1 − ε))T

(1 + 2η)T η(T + 1)

+ η2d2
(

1 +
η2d2 + 4η

1 − η(ηd2 + 2)

) T∑

i=1

(1 + 2η)−i
)

(21)

Bounding
∑T

i=1(1 + 2η)−i by its infinite series
∑∞

i=1(1 + 2η)−i = (2η)−1 yields

E[VT ] ≤ (1 + 2η)T

(
− εw2

0,1 +
1

(1 + 2η)T
+

(1 + 2η(1 − ε))T

(1 + 2η)T η(T + 1)
(22)

+ η/2d2
(

1 +
η2d2 + 4η

1 − η(ηd2 + 2)

) )
. (23)

We can show that, for well chosen values of η and T , the term between
parenthesis can be made to be less that −ε/4p. Taking for example η =

ε
4Cpd2 for some constant C such that

(
1 + η2d2+4η

1−η(ηd2+2)

)
≤ 2 and T >

max(4p2d2C/ε, log(4pε−1)/ log(1+ε/(Cpd2))) is consistent with the constraints.
Notice further that for ε sufficiently small, this can be simplified further by tak-
ing C = 1. One of the benefits of using this approach over standard methods
from the literature, is that it is all at the same time elementary, intuitive and
it can easily be checked to enjoy the same theoretical guarantees as the original
method devised in [4]. Full details will be provided in a longer version of the
paper.
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4 Implementation

4.1 Choosing the Learning Rate

In this section, we address the question of choosing the learning rate, i.e. the
step-size η in iterations (4). Tuning the learning rate is essential in practice as
it is well known to have a huge impact on the convergence speed of the method.
Our idea to tune the learning rate is as follows:

– Choose the tolerance ε ∈ (0, 1), and the algorithm’s parameters R, K ∈ N∗,
ρ ∈ (0, 1) and β > 0.

– Burn-in period:
– For η ∈ {ρk}k=1:K , run R gradient iterations in parallel whose iterates

are denoted by w(k,r)
t , t = 1, . . . , B.

– Define π
(k)
0 = 1/K, k = 1, . . . , K. For t = 1, . . . , B, let

L
(k)
t =

2
R(R − 2)

∑

r<r′=2,...,R

〈w(k,r)
t ,w(k,r′)

t 〉, (24)

and for k = 1, . . . , K, define π
(k)
t+1 = π

(k)
t exp

(
β L

(k)
t

)
.

– Stop when maxk=1,...,K L
(k)
t ≥ 1 − 10 ε.

– After burn-in:
– Reset R to 1 and K to 1.
• Normalise π.
– At each step t = B + 1, . . ., choose the stepsize with probability πB .
– Stop when L

(1)
t ≥ 1 − ε.

Choosing the parameter β is more robust than choosing the learning rate.
Moreover, a reasonably effective value for β is given by (see [4]):

β =

√
log(K)

B
. (25)

4.2 Numerical Experiment

In this section, we present a simple numerical experiment which shows that

– The stochastic gradient method actually works in practice
– The adaptive selection of the learning rate/step-size described in the previous

subsection actually accelerates the method’s convergence drastically.

We run a simple experiment on a random i.i.d. Gaussian matrix of size 10000 ×
10000. The convergence of (L(1)

t )t∈N to 1 of the plain stochastic gradient method
is shown in Fig. 1a below. The accelerated version’s convergence for the same
experiment is shown in Fig. 1b below. These results show that the method of
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the previous Section actually provides a substantial acceleration. We carefully
checked that the selected learning rate is not equal to the smallest nor the largest
value on the proposed grid of values between 2−3, 2−2, . . . 217. The observed gain
in convergence speed was by a factor of 8.75. Extensive numerical experiment
demonstrating this behaviour at larger scales will be included in an expanded
version of this work.

K = 1 K = 20

Fig. 1. Convergence of (L
(1)
t )t∈N as a function of the iteration index: (a) is for the case

of the arbitrary choice of learning rate equal to 2−4 and (b) shows the behaviour of the
method using the learning procedure of Sect. 4.1 for values of the learning rate equal
to 2−3, 2−2, 2−1, 1, 2, . . . , 217.

5 Conclusion

In the present paper, we have studied the average behaviour of the stochastic gra-
dient for the computation of the principal eigen-vector of positive semi-definite
matrices, in the setting where the entrees are revealed one at a time. The anal-
ysis provides the first complexity analysis in this online setting. A preliminary
computer experiment integrating a novel learning rate optimisation procedure is
included.

A Technical lemmæ

Recall that

BT =
1∏

t=T

(I + ηAt)�((1 − ε)I − A)
�∏

t=1

(I + ηAt). (26)

Lemma 2. In the case of matrix completion, given a matrix X, we have

E[A�
t XAt] = d2 diag(A diag(X)A).
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Proof. The resulting matrix writes

A�
t XAt = d4AijAjiejte

�
itXeite

�
jt

= d4AijAjiXiiejte
�
jt .

Therefore the expected matrix writes

E[A�
t XAt] = d2

d∑

i,j

AijAjiXiieje�
j

Using the symmetry of A gives the result.

Now our next goal is to see how diag
(
A�diag(E[BT−1])A

)
evolves with the

iterations. For this purpose, take the diagonal of (12), multiply from the left by
A� and from the right by A and take the diagonal of the resulting expression.

Lemma 3. We have that

‖diag (E[BT ]) ‖ ≤ 2η ‖E[BT−1]‖1→2 + (1 + η2d2) ‖diag(E[BT−1])‖ (27)

Proof. Expanding the recurrence relationship (12) gives

diag(E[BT ]) = diag(E[BT−1]) + η
(
diag

(
A�

E[BT−1] + E[BT−1]A
))

+ η2d2diag
(
A�diag(E[BT−1])A

)
.

For any diagonal matrix Δ and symmetric matrix A, we have

‖diag(A�ΔA)‖ ≤ ‖A‖21→2‖Δ‖. (28)

Therefore, by taking the operator norm on both sides of the equality, we have

‖diag(E[BT ])‖ ≤ (1 + η2d2‖A‖21→2)‖diag(E[BT−1])‖ + 2η‖diag(A�
E[BT−1])‖

(29)

We conclude using ‖diag(A�E[BT−1])‖ ≤ ‖A‖1→2‖E[BT−1]‖1→2 and ‖A‖1→2

≤ 1.

We also have to understand how the �1→2 norm evolves.

Lemma 4. We have

‖E[BT ]‖1→2 ≤ η ‖E[BT−1]‖ + (1 + η) ‖E[BT−1]‖1→2 + η2d2 ‖diag(E[BT−1])‖.
(30)

Proof. Expanding the recurrence relationship gives

‖E[BT ]‖1→2 = ‖E[BT−1]‖1→2 + η
(‖A�

E[BT−1]‖1→2 + ‖E[BT−1]�A‖1→2

)

+ η2d2‖diag(A�diag(E[BT−1])A)‖1→2.

For a diagonal matrix Δ, we have ‖Δ‖1→2 = ‖Δ‖. This leads to

‖E[BT ]‖1→2 = ‖E[BT−1]‖1→2 + η (‖A‖‖E[BT−1]‖1→2 + ‖E[BT−1]‖‖A‖1→2)

+ η2d2‖A‖21→2‖diag(E[BT−1])‖.

Finally, using ‖A‖1→2 ≤ 1 concludes the proof.
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We then have to understand how the operator norm of E[BT ] evolves

Lemma 5. We have

‖E[BT ]‖ ≤ (1 + 2η)‖E[BT−1]‖ + η2d2 ‖diag(E[BT−1])‖. (31)

Proof. Expanding the recurrence relationship (12) return

‖E[BT ]‖ = E[BT−1] + η(‖A�
E[BT−1]‖ + ‖E[BT−1]A‖)

+η2d2‖diag(A�diag(E[BT−1])A)‖.

Then using similar inequalities as in the proof of the lemmas above, we have the
result.

Lemma 6. Let ‖A‖ = 1, then we have

‖diag(E[BT ])‖ ≤ α max
j

(1 − ε − sj)+β‖(1 − ε)I − A‖1→2 + γ max
j

(1 − ε − Ajj)

(32)

where

α = 2
η

ηd2 + 1

(
1 − ηT−2(ηd2 + 2)T−2

1 − η(ηd2 + 2)
− 1 − ηT−2

1 − η

)

β = 2
η

ηd2 + 1

(
ηd2

1 − ηT−2(ηd2 + 2)T−2

1 − η(ηd2 + 2)
+

1 − ηT−2

1 − η

)

γ = 1 + η2d2
1 − ηT−2(ηd2 + 2)T−2

1 − η(ηd2 + 2)

Proof. Expanding the recurrence and using Eqs. (27), (30), and (31) yields the
following system

⎡

⎣
‖E[BT ]‖

‖E[BT ]‖1→2

‖diag(E[BT ])‖

⎤

⎦ ≤
⎛

⎝I + η

⎡

⎣
2 0 ηd2

1 1 ηd2

0 2 ηd2

⎤

⎦

⎞

⎠

⎡

⎣
‖E[BT−1]‖

‖E[BT−1]‖1→2

‖diag(E[BT−1])‖

⎤

⎦ (33)

To obtain the result, we expand the inequality by recurrence. Therefore, we are
interested in computing the T -th power of the matrix in inequality (33). We have

⎛

⎝I + η

⎡

⎣
2 0 ηd2

1 1 ηd2

0 2 ηd2

⎤

⎦

⎞

⎠
T

= I +
T∑

i=1

ηi

⎡

⎣
2 0 ηd2

1 1 ηd2

0 2 ηd2

⎤

⎦
i

. (34)

After computing the power matrices, it result that

‖diag(E[BT ])‖ ≤
T∑

i=1

(
ηi 2(ηd2 + 2)i−1 − 1

ηd2 + 1

)
‖E[B0]‖

+
T∑

i=1

(
ηi 2ηd2(ηd2 + 2)i−1 + 1

ηd2 + 1

)
‖E[B0]‖1→2

+

(
1 + η2d2

T∑

i=1

(η2d2 + 2η)i−1

)
‖diag(E[B0])‖. (35)
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We conclude after computing the sums and bounding from above ‖E[B0]‖ by
maxj(1 − ε − sj).

Lemma 7. For η < 1 and ε > 0, we have

max
s∈[0,1]

(1 + 2η s)T (1 − ε − s) ≤ 1 +
(1 + 2η(1 − ε))T

η(T + 1)
(36)

Proof. Denote f(s) = (1 + 2η s)T (1 − ε − s). Differentiating f and setting to
zero, we obtain

2ηT (1 + 2η s)T−1(1 − ε − s) − (1 + 2η s)T = 0
⇐⇒ 2ηT (1 − ε − s) − (1 + 2η s) = 0

⇐⇒ T (1 − ε) − 1/2η

T + 1
= s

Let sc = T−ε−1/2η
T+1 denote this critical point. Consider the two following cases:

– if sc /∈ [0, 1], then f has no critical point in the domain and therefore is
maximised at either domain endpoint, i.e.

max
s∈[0,1]

f(s) = max{f(0) = 1 − ε, f(1) = −ε(1 + 2η)T } ≤ 1

– if sc ∈ [0, 1], then f is maximised at sc and the value of f at sc is

(
1 + 2η

T (1 − ε) − 1/2η

T + 1

)T (
1 − ε − T (1 − ε) − 1/2η

T + 1

)

=

(
1 +

2ηT (1 − ε) − 1
T + 1

)T (
1 − ε + 1/2η

T + 1

)

≤ (1 + 2η(1 − ε))T

(
1 + 1/2η

T + 1

)
≤ (1 + 2η(1 − ε))T

η(T + 1)
.

This analysis proves that the maximum value f can achieve is less than
max{1, (1+2η(1−ε))T

η(T+1) } ≤ 1 + (1+2η(1−ε))T

η(T+1) }. Hence the result.

References

1. Allen-Zhu, Z., Li, Y.: LazySVD: even faster SVD decomposition yet without ago-
nizing pain. In: Advances in Neural Information Processing Systems, pp. 974–982
(2016)

2. Bandeira, A.S.: Ten lectures and forty-two open problems in the mathematics of
data science (2015)

3. Cardot, H., Degras, D.: Online principal component analysis in high dimension:
which algorithm to choose? arXiv preprint arXiv:1511.03688 (2015)

http://arxiv.org/abs/1511.03688


242 S. Chrétien et al.

4. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)
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Abstract. Hub Location Problems are complex combinatorial optimization
problems that raised a lot of interest in the literature and have a huge number of
practical applications, going from the telecommunications, airline transportation
among others. In this paper we propose a primal-dual algorithm to solve the
Uncapacitated Multiple Allocation Hub Location Problem (UMAHLP). RAMP
algorithm combines information of traditional Dual Ascent procedure on the
dual side with an improvement method on the primal side, together with
adaptive memory structures. The overall performance of the proposed algorithm
was tested on standard Australian Post (AP) and Civil Aeronautics Boarding
(CAB) instances, comprising 192 test instances. The effectiveness of our
approach has been proven by comparing with other state-of-the-art algorithms.

Keywords: Hub Location Problem � Primal-dual algorithm �
Dual ascent procedure � RAMP algorithm

1 Introduction

The Hub Location Problem (HLP) is one of the most studied problem by the scientific
community, and in recent years has assumed a great focus giving rise to many algo-
rithms for different variants (some surveys on HLP can be found in [1, 11, 12]). We
tackle the Uncapacitated Multiple Allocation Hub Location Problem (UMAHLP) in
which the objective is to choose the nodes that will act as hubs and the optimal
assignment of other nodes to the selected hubs.

Campbell [6] proposed the first linear programming formulation for the HLP, with
and without capacity constraints, and addressed the single and multiple allocation.
Klincewicz [16] presented an algorithm that applies the dual ascent and dual adjust-
ment procedure together with a branch-and-bound method for UMAHLP. Dual ascent
procedure was based on the work of Erlenkotter [9] to solve the Uncapacitated Facility
Location Problem. Later, Mayer and Wagner [19] implemented some improvements to
the dual ascent procedure, considering the aggregated (considering the combination of
i� j� k � m) model formulation despite the disaggregated one (replacing the com-
bination of node pair ði; jÞ and hub pair ðk;mÞ by single variables h and l, respectively)
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leading to the reduce number of constraints in the constraint set and reducing the
computation time of branch-and-bound procedure. Boland et al. [4] presented some
formulations and solution approaches for three variants of the HLP, implementing
preprocessing techniques in order to decreased the constraints of the problem.
A computational study is presented with different formulations using two different
commercial solvers. Kratica et al. [17] developed a genetic based algorithm using the
cache technique. The main goal of this technique is to store the “genetic code” of the
visited solutions in order to avoid returning to the same solution.

Later in 2007, Cánovas et al. [7] proposed a new heuristic based on dual ascent,
also using a branch-and-bound technique. The dual ascent procedure is initiated with
initial preprocessing to improve the solution, following the feasibility of each solution.
Next, the dual adjustment takes place and the algorithm continues in primal side with
an exact method. The algorithm’s performance was tested over the standard benchmark
providing results to instances up to 120 nodes. In the next year, de Camargo et al. [5]
presented an algorithm based on benders decomposition [3] to solve the problem. This
approach divides the problem into two simple problems: a higher-level problem (or
master problem), which determines the chosen hubs and a lower-level problem, (known
as subproblem) that defines the allocation of nodes to the chosen hubs. Contreras et al.
[8] proposed an exact algorithm to solve large instances for this problem, performing
tests with instances up to 500 nodes. The algorithm is based on benders decomposition
with the inclusion of several features such as reduction tests, and a heuristic procedure
incorporating two distinct phases (namely the estimation and intensification phase),
which aims to construct an initial solution and to generates feasible solutions covering
the sets of open hubs obtained in the previous phase, respectively.

More recently, Mokhtar et al. [20] also used benders procedure for the
UMAHLP. A modified version of benders procedure is presented with different
parameters tuning and with subproblems reformulation. These subproblems are then
solved using a minimum cost network flow algorithm resulting in a more effective
benders algorithm with less number of benders iterations and therefore better running
times. The performance of the algorithm is compared only with other benders algo-
rithms [3, 8] and for AP and CAB instances, obtaining in average around two thirds
less computational time with same solutions quality then the other algorithms with the
same technique.

2 Problem Description

UMAHLP is a well-known combinatorial optimization problem belonging to the class
of the NP-Hard problems [21]. This problem can be described as follows. Consider the
complete graph G ¼ N;Að Þ, where N is the set of nodes N ¼ 1; 2; . . .; nf g, that cor-
respond to origins/destinations as well as potential hub locations. Let wij be the flow
between i and j. For each node i 2 N, let fi the fixed set-up cost of hub i. The distance
between nodes i and j is assumed to satisfy the triangle inequality and is denoted by dij.
We will use these distances as a measure of the per unit flow transportation costs along
the links of the graph. These distances are weighted by some discount factors, denoted
v, a and d, to represent the collection, transfer and distribution costs per unit of flow,
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respectively. The objective consists in choosing the set of nodes to be established as
hubs, while minimizing the total cost of assigning all the non-hubs to the chosen hubs.
The total cost of routing the flow along the path i� j� k � m (these are the paths
between origin destination pairs, where i and j represents the origin and destination,
respectively, and k and m are the hubs to which i and j are allocated, respectively) is
given by:

Fijkm ¼ wij vdik þ adkm þ ddmj
� � ð1Þ

and for each pair i, k 2 N the following sets of binary decision variables are defined by:

Zik ¼ 1 if node i is assigned to hub k;
0 otherwise:

�
ð2Þ

Variable Zkk denotes the establishment or not of a hub at node k, when i ¼ k. An
additional set of binary variables will be defined. These variables indicate if there is
flow through each link of the graph. For each i; j; k;m 2 N the fraction of flow is
defined by Xijkm.

The mathematical formulation for UMAHLP is:

UMAHLP ¼ min
X

k2N fkZkk þ
X

i2N
X

j2N
X

k2N
X

m2N FijkmXijkm ð3Þ

s:t:
X

k2N
X

m2N Xijkm ¼ 1 8 i; j 2 N ð4Þ
X

m2N Xijkm � Zik 8 i; j; k 2 N ð5Þ
X

k2N Xijkm � Zjm 8 i; j;m 2 N ð6Þ

Zik 2 0; 1f g 8 i; k 2 N ð7Þ

Xijkm � 0 8 i; j; k;m 2 N ð8Þ

Constraints (4) assure that every single node is assigned to one hub. Constraints (5)
insure that if node i is assigned to hub k then all the flow from this node to any other
(fixed) node j must go through some other hub m. Constraints (6) state a similar
interpretation regarding to the flow sent to a node j, assigned to hub m, from some node
i. Constraints (7) and (8) are integrality and non-negativity constraints. The objective
function (3) represents the total cost of hub establishments plus total cost of routing the
flow along the path i� j� k � m. Being uncapacitated and multiple allocation, means
that the hubs do not have capacity limits and each node can be assigned to more than
one hub, respectively. Unlike the single allocation, where a node is assigned to only a
hub, this version is more difficult to solve, involving much more variables in its
formulation. Below (Fig. 1), an image is presented showing the difference between the
two versions.
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A special feature of the uncapacitated multiple allocation hub location problems, is
that once the hubs are defined, the allocations of nodes to hubs are immediately
assigned, that is, each pair of nodes i; jð Þ is immediately allocated to the pair of hubs
k;mð Þ, where the cost along the path is minimum.

3 RAMP Algorithm for the UMAHLP

The Relaxation Adaptive Memory Programming (RAMP) emerged in 2005 by Rego
[22], combining fundamental principles of mathematical relaxation with concepts of
adaptive memory programming techniques, with the objective of incorporating infor-
mation obtained by primal and dual solutions spaces. RAMP comprises two levels of
sophistication, namely Dual-RAMP and Primal-Dual RAMP. At the first level of
sophistication (Dual-RAMP or simply RAMP), this framework explores more inten-
sively the dual side, restricting the primal side interaction to the projection of dual
solutions to the primal solutions space and to the improvement of these solutions.
Higher levels of sophistication (Primal-Dual RAMP or simply PD-RAMP) allow a
more intensive exploration of the primal side, incorporating the simple level, the Dual-
RAMP, with more complex memory structures. Several combinatorial optimization
problems have already been solved by RAMP applications, producing excellent results,
in some cases with new best-known solutions. Some examples of RAMP approaches
with different levels of sophistication are the capacitated minimum spanning tree [23],
the linear ordering problem [13], the resource constrained project scheduling problem
[24], or the capacitated single allocation hub location problem [18], among others.

The proposed algorithm embraces the simplest level of RAMP framework, the
Dual-RAMP and explores the dual side of the problem through a dual ascent

Fig. 1. Difference between single and multiple allocation, where switches (a) represents hubs
and workstations (b) the nodes.
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procedure. The primal side is explored by a simple method based on tabu search
procedure. Below, (Fig. 2) the RAMP model for UMAHLP is presented.

The algorithm employs a local search procedure to construct a feasible solution to
get a good starting solution to dual ascent (DA) procedure. Then, for each iteration of
DA, it increases the dual variables till no more improvement can be made. When DA
procedure ends, the dual solution is projected to the primal solution space by the
projection method and the remaining solution is improved by an improvement method.
After the solution is improved, the algorithm alternates to dual solution space, com-
pleting one iteration of the DA. The algorithm stops when it reaches the maximum
number of predefined iterations.

3.1 The Dual Method

The algorithm relies on DA to explore the dual side of the problem. Following the
dualization approach proposed by Wagner and Mayer [19], the condensed formulation
of dual problem (UMAHLP Dð Þ) is presented as follows:

Let vh and wkhl be the associating dual variables, we obtain the following formu-
lation of the dual problem. Variable Pk contains all pairs of hubs l, where the hub k
appears. The dual objective function only depends on the variable vh. Thus, if these

Fig. 2. Dual-RAMP model for UMAHLP.
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variables are known, the variable wkhl can be assigned to any value, since it respects the
constraints (10) and (11). The objective is to maximize the value vh, respecting all the
constraints, as it can be seen below.

UMAHLP Dð Þ ¼ max
X

h
vh ð9Þ

s:t: vh �
X

k2Hl
wkhl �C0

hl 8 h; l 2 N ð10Þ
X

l

X
l2Pk

wkhl � fk 8 k 2 N ð11Þ

wkhl � 0 8 k; h; l 2 N ð12Þ

The algorithm proposed in [19] uses the DA procedure in dual side of the problem
and a branch-and-bound in primal side. The proposed algorithm enhances the DA
algorithm, using an improvement method in primal side, obtaining excellent results as
will be demonstrated in the computational results section.

Initially, the costs matrix is constructed based on combined solutions of all pair of
hubs l, with pairs of nodes h. This cost matrix includes all possible routes between the
chosen pairs of nodes and hubs. Next, DA procedure starts by building the matrix costs
C0q
h , that is, the values of C0

hl for all h sorted in ascending order to q ¼ 1; . . .; n2 and

setting C0q
h ¼ þ1 when q ¼ n2 þ 1. The variable vh is initialized with min C01

h
T . Next,

the procedure tries to increase the value of vh (for all pairs of nodes h) to the next
highest value of C01

hl . Note that, only pairs of nodes h for which vh can be increased are
covered. The procedure ends when vh cannot be increased any more. For more detailed
information about this procedure, please refer to Wagner and Mayer [19].

3.2 The Projection Method

The DA procedure provides a dual solution from which it’s possible build a primal
feasible solution, through a projection method. This method is very simple and takes in
consideration constraint (11) and specifically, the variable zk:

zk fk �
X

l

X
l2Pk

wkhl

� �
¼ 0 8 k 2 N ð13Þ

If the sum of allocations (wkhl, where it represents the quantity of each hub k in the
pairs h and l) of the assigned nodes is greater or equal to the opening cost (fk, the
opening cost of hub k), then node k is chosen to be a hub.

3.3 The Primal Method

Before the RAMP algorithm begins the primal-dual procedure, a solution (upper
bound) is obtained to start the DA procedure. This procedure needs a good starting
solution to start maximizing the dual function (formulation from 9 to 12). To achieve a
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good solution a greedy heuristic was used. This heuristic is known to be very robust by
finding good solutions in reduced computational time. Basically, this procedure starts
with an initial primal solution S ¼ ;, and the value of its objective function vs is a very
large number (þ1). For each iteration of the greedy algorithm, a search in the
neighborhood is made to accomplish if any move improves the current solution. If so,
then the move is made, and the solution is improved. The algorithm ends when there
are no more moves that improves the current solution.

In each iteration of DA procedure, the projection method projects dual solution
onto primal solution space, and the resulting solution is improved through an
improvement method (IM) based on Tabu Search [14, 15]. The IM starts with an
admissible initial solution S0, with the objective function value vs0. The initial size of
the tabu list ts ¼ p=2, and p is the number of hubs in the solution returned by the
greedy method. The maximum number of iterations without improve the best solution
found so far depends on the number of nodes of the problem. After several tests
performed and taking in consideration the computational time,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
numNodes

p
was used

as the maximum number of iterations.
For each iteration, this improvement method checks if there is any movement

which improves the current solution. If so, the movement is made, and the current
solution is updated. If there are no movements that improves the current solution, a hub
is randomly chosen to be closed. The size of tabu list is dynamic, that is, will be
changed according to whether find a current better solution or the best so far. Its size
can be between 1 and pþ 2. The tabu list influences the choice of the next possible
move, since only movements outside the tabu list are permitted. If the movement is
tabu, it only be considered if improves the best solution found so far (the common
aspiration criterion). As said, the algorithm stops at

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
numNodes

p
consecutive iterations

without improving the best solution found. In both improvement methods (the greedy
and the IM) described above, the same neighborhood structure is used, that is, defining
a node as hub or defining a hub as node.

4 Computational Results

The performance of the RAMP algorithm was evaluated on a standard AP (Australia
Post) dataset introduced by Ernst and Krishnamoorthy [10] and obtained in Beasley’s
OR-Library [2] and CAB (Civil Aeronautics Boarding) data benchmark proposed by
O’Kelly [21]. The AP benchmark includes 184 instances, of which 28 are standard
instances available by Beasley [2], 84 were proposed by Cánovas et al. [7] (where the
author has 3 sets of 28 asymmetric instances) and 72 were proposed by Contreras et al.
[8]. The CAB benchmark consists of 8 instances, being two instances proposed by
O’Kelly [21] and the remaining six are variants of standard instances, proposed by
Cánovas et al. [7].

The algorithm was coded in C programming language and run on an Intel Pentium
I7 2.40 GHz (only one processor was used) with 8 GB RAM under Ubuntu operating
system. The Dual-RAMP algorithm was compared with the state of the art algorithms
for the solution of the UMAHLP. The best-known approaches are the dual ascent
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combined with the branch and bound method proposed by Cánovas et al. [7] (DA-BB),
genetic algorithm proposed by Katrica et al. [17] (GA) and benders decomposition
heuristic proposed by Contreras et al. [8] (BD).

For all results tables, “instances” stands for the designation of the dataset and “OF”
is the number of optimal/best-known solutions found. The value of the column “gap”
was computed as (UB – Z�)/UB�100 (Z� is the optimal/best-known solution and UB is
the value of the upper bound obtained). The “cpubs” and “cputot” columns are the
computational time (in seconds) needed to achieve the best value found and the total
running time, respectively. The “b-k” is the best-known solution present in literature
and “Nb-k” is the new best-known solution found by RAMP algorithm.

Table 1 shows the results for AP benchmark proposed by Beasley [2] and Cánovas
et al. [7]. Analyzing the table, the RAMP algorithm achieved the optimal solutions for all
instances, while the GA algorithm cannot reach the optimal solution for four instances.
Although computational time is not comparable, we choose to present this result.

The results presented in Table 2 concern the AP dataset proposed by Contreras
et al. [8], namely the 72 instances. The RAMP algorithm achieved 70 out of 72
optimal/best-known solutions in a short computational. Comparing with BD algorithm,

Table 1. Aggregated results for the AP data instances (Beasley and Cánovas) and comparing
RAMP vs GA algorithm.

Instances GA RAMP
of gap cpubs cputot of gap cpubs cputot

Beasley 27/28 0.030 2.470 11.610 28/28 0.000 3.100 5.480
Cánovas-1 28/28 0.000 1.310 9.370 28/28 0.000 7.700 10.540
Cánovas-2 26/28 0.010 0.930 8.860 28/28 0.000 0.540 10.250
Cánovas-3 27/28 0.000 1.080 9.090 28/28 0.000 0.040 8.600
Average 108/112 0.010 1.448 9.733 112/112 0.000 2.845 8.718

Table 2. Aggregated results for the AP data instances (Contreras) and comparing the RAMP vs
BD algorithm.

Instances BD RAMP
of gap cputot of gap cputot

25 9/9 0.000 0.060 9/9 0.000 0.044
50 9/9 0.000 0.443 9/9 0.000 0.392
75 9/9 0.000 1.478 9/9 0.000 1.210
100 9/9 0.000 3.566 8/9 0.004 3.208
125 7/9 0.017 6.113 8/9 0.002 6.525
150 8/9 0.019 14.477 9/9 0.000 12.812
175 9/9 0.000 16.404 9/9 0.000 20.102
200 8/9 0.031 33.441 9/9 0.000 30.507
Average 68/72 0.008 9.498 70/72 0.001 9.350
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RAMP obtained best quality results (BD got 68 out of 72 optimal/best-known). As well
as the previous table, we choose to show the computational time for this group of
instances. We can say that the proposed algorithm achieved excellent result in low
computational time.

For the last table, Table 3, we can see that once again that RAMP algorithm found
the best results in the literature for the CAB instances. Our algorithm was able to find
all optimal/best-known solutions. Comparing with DA-BB algorithm, that uses the
same dualization as the proposed algorithm, RAMP achieved higher quality results due
to its exploration on primal solutions space.

For the CAB instances, RAMP algorithm managed to improve the best-known
solutions for two instances, the 25T1 and the 25T5. For these two instances, 25T1 and
25T5 found new solutions with values 258557 and 279141, respectively, as indicated
in the table below in column “Nb-k”.

5 Conclusions

The Hub Location Problem (HLP) have been extremely studied by the scientific
community due to its complexity and the vastly real-world applications, motivating
many authors to present state of the art algorithms. A Dual-RAMP algorithm to solve
the UMAHLP is proposed, combining dual ascent procedure in the dual side with an
improvement method on the primal side. The proposed algorithm managed to improve
the traditional dual ascent algorithm, where a dual solution projected to the primal
space is improved and subjected to an improvement method based on tabu search
metaheuristic.

Numerous tests were performed to access to effectiveness of our algorithm. For the
192 standard instances used, the RAMP algorithm successful achieved excellent results
in very reduced time outperforming all other best approaches in literature. In fact, for
all instances shown, only two of them the proposed algorithm could not reach the

Table 3. Results for the CAB data instances and comparing RAMP vs DA-BB algorithm.

Instances b-k DA-BB RAMP Nb-k
gap cputot gap cputot

25La 390369 2.020 0.000 0.000 0.056 -
25L1 196903 0.000 0.000 0.000 0.041 -
25L5 234523 2.600 0.000 0.000 0.034 -
25L9 256691 0.380 0.000 0.000 0.034 -
25Ta 484591 1.950 0.000 0.000 0.041 -
25T1 258577 0.420 1.000 −0.008 0.042 258557
25T5 279144 0.000 0.000 −0.001 0.034 279141
25T9 284852 0.000 0.000 0.000 0.033 -
Average 0.921 0.125 −0.001 0.039 -
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best-known solution but could get new best-known solutions for two instances of the
AP dataset.

Once again, the RAMP approach was able to solve efficiently a complex opti-
mization problem. The use of primal-dual exploration techniques with the use of
adaptive memory in metaheuristics such as tabu search are extremely efficient in such
problems. It is estimated that the application of this technique to other complex
problems of difficult resolution obtain results of the same quality as we obtained for the
UMAHLP.

References

1. Alumur, S., Kara, B.Y.: Network hub location problems: the state of the art. Eur. J. Oper.
Res. 190(1), 1–21 (2008)

2. Beasley, J.: OR-Library: distributing test problems by electronic mail. J. Oper. Res. Soc. 65,
1069–1072 (1990)

3. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems.
Numer. Math. 4(1), 238–252 (1962)

4. Boland, N., et al.: Preprocessing and cutting for multiple allocation hub location problems.
Eur. J. Oper. Res. 155(3), 638–653 (2004)

5. de Camargo, R.S., et al.: Benders decomposition for the uncapacitated multiple allocation
hub location problem. Comput. Oper. Res. 35(4), 1047–1064 (2008)

6. Campbell, J.F.: Integer programming formulations of discrete hub location problems. Eur.
J. Oper. Res. 72(2), 387–405 (1994)

7. Cánovas, L., et al.: Solving the uncapacitated multiple allocation hub location problem by
means of a dual-ascent technique. Eur. J. Oper. Res. 179(3), 990–1007 (2007)

8. Contreras, I., et al.: Benders decomposition for large-scale uncapacitated hub location. Oper.
Res. 59(6), 1477–1490 (2011)

9. Erlenkotter, D.: A dual-based procedure for uncapacitated facility location. Oper. Res. 26(6),
992–1009 (1978)

10. Ernst, A.T., Krishnamoorthy, M.: Solution algorithms for the capacitated single allocation
hub location problem. Ann. Oper. Res. 86, 141–159 (1999)

11. Farahani, R.Z., et al.: Hub location problems: a review of models, classification, solution
techniques, and applications. Comput. Ind. Eng. 64(4), 1096–1109 (2013)

12. Fernandez, E.: Locating hubs: an overview of models and potential applications (2013)
13. Gamboa, D.: Adaptive memory algorithms for the solution of large scale combinatorial

optimization problems. Ph.D. thesis (in Portuguese), Instituto Superior Técnico, Universi-
dade Técnica de Lisboa (2008)

14. Glover, F.: Tabu search—part I. ORSA J. Comput. 1(3), 190–206 (1989)
15. Glover, F.: Tabu search—part II. ORSA J. Comput. 2(1), 4–32 (1990)
16. Klincewicz, J.G.: A dual algorithm for the uncapacitated hub location problem. Locat. Sci. 4

(3), 173–184 (1996)
17. Kratica, J., et al.: Genetic algorithm for solving uncapacitated multiple allocation hub

location problem. Comput. Inform. 24(4), 415–426 (2005)
18. Matos, T., Gamboa, D.: Dual-RAMP for the capacitated single allocation hub location

problem. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10405, pp. 696–708.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62395-5_48

19. Mayer, G., Wagner, B.: HubLocator: an exact solution method for the multiple allocation
hub location problem. Comput. Oper. Res. 29(6), 715–739 (2002)

252 T. Matos et al.

http://dx.doi.org/10.1007/978-3-319-62395-5_48


20. Mokhtar, H., et al.: A new Benders decomposition acceleration procedure for large scale
multiple allocation hub location problems. In: International Congress on Modelling and
Simulation, pp. 340–346 (2017)

21. O’Kelly, M.E.: A quadratic integer program for the location of interacting hub facilities. Eur.
J. Oper. Res. 32(3), 393–404 (1987)

22. Rego, C.: RAMP: a new metaheuristic framework for combinatorial optimization. In: Rego,
C., Alidaee, B. (eds.) Metaheuristic Optimization via Memory and Evolution: Tabu Search
and Scatter Search, pp. 441–460. Kluwer Academic Publishers, Boston (2005)

23. Rego, C., et al.: RAMP for the capacitated minimum spanning tree problem. Ann. Oper. Res.
181(1), 661–681 (2010)

24. Riley, C., et al.: A simple dual-RAMP algorithm for resource constraint project scheduling.
In: Proceedings of the 48th Annual Southeast Regional Conference on - ACM SE 2010, p. 1
ACM Press, New York (2010)

Improving Traditional Dual Ascent Algorithm for the UMAHLP: A RAMP Approach 253



Supervised Learning Approach
for Surface-Mount Device Production

Eva Jabbar1,2(B), Philippe Besse1, Jean-Michel Loubes1,
Nathalie Barbosa Roa2, Christophe Merle2, and Rémi Dettai2
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Abstract. In this paper, we propose a decision-making tool based on
supervised learning techniques that detects defects and proposes to the
Surface-Mount Technology (SMT) operator a probability of being a false
call. In this work, we compare four tree-based learning methods. The
result of our experiments shows that a XGBoost model trained with
our real-world dataset can accurately classify most real defects and false
calls with an accuracy score of about 99.4% and a recall of about 98.6%.
Moreover, we investigated the computing time of our prediction model
and concluded that integration of our classification tool based on the
XGBoost algorithm is realistic and feasible in the SMT production line.
We believe that our tool will significantly improve the daily work of the
SMT verify operator.

Keywords: Supervised learning · Industry 4.0 ·
Decision-making tool · Big data analytics · Surface-Mount Technology

1 Introduction

Nowadays, the manufacturing of Printed Circuit Board (PCB) uses mostly Sur-
face Mount Technology (SMT). A Surface-Mount Device (SMD) assembly line of
PBCs consists of several operations among which solder paste printing, compo-
nent placing and reflow soldering are critical processes. There are various inspec-
tion and test methods used in the SMT line; the optical inspection system is the
most common, which includes Solder Paste Inspection (SPI) and Automated
Optical inspection (AOI). In the first process, a solder paste layer is printed on
the surface of the board: this process is known as Solder Paste Printing (SPP).
In the second, components are picked from the equipment feeders and placed
on the board. In the third process, the solder joints take shape by the reflowing
of the solder paste. A schematic view of a SMT line is presented in Fig. 1. Het-
erogeneous data are generated within these steps, in terms of size, format and
frequency. These data are processed in real time and pushed to the cloud.

Each inspection process consists of two stages: an AOI and its verify station.
In the first step the AOI machine assigns a tag to the PCB. This tag is either
c© Springer Nature Switzerland AG 2019
G. Nicosia et al. (Eds.): LOD 2018, LNCS 11331, pp. 254–263, 2019.
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Fig. 1. This figure presents a schematic view of a SMT line.

good or fail. In case the PCB is considered as a fail, a manual inspection is
then performed by an operator to double check and judge whether the defect
is real or not (false call). Since the production is operating continuously 24/7,
the verify operator plays a crucial role in a AOI system. It is clear that the
inspection process becomes rapidly laborious regarding the capacity of human
operators [1].

Soukup [1] proposed a preventive methodology for optimizing the false call
rate in AOI based on experience of AOI experts and performed analysis. Regard-
ing the machine learning application in production line, the studies focused on
automatically detecting defects using inspection images and training deep learn-
ing.

Richter et al. [2] propose to integrate deep learning in the AOI system by
using convolutional networks in order to automatically detect defects without
manual user interactions. Acciani et al. [3] focused on detecting solder joint
defects by applying feature extraction techniques to extract regions of inter-
ests from images and then used neural networks to classify defects achieving an
accuracy of 98%.

These techniques frequently related to training images are used offline and
are unlikely to be successful in case new products are introduced into production.
In fact, most defects occur due to physical deviations in SMD [1]. Tavakolizadeh
et al. [4] used simulated production data of multiple SMT stations to build a
binary classification model based on random forests to detect defective products
with a Matthews correlation coefficient (MCC) score of 0.96. In our use case,
we use real mass production datasets with 3 classes: good, real defect and false
call which positions this study as multiclass and in a big data configuration.
Considering false calls as a separated class came after some exploratory analyses
and particularly after discussions with experts who insisted that false calls were
a population with its proper characteristics (can be due to values approaching
thresholds, dimensions of components...).

To the best of our knowledge, there is no application of data-driven supervised
learning methods in a real-world production line focused on reducing the time-
consuming task of checking false calls. In this work, we are specially concerned
by the SMT assembly line problems with a focus on defects caused by paste
printing and reflow. Predictive models studied under this work have been trained
by combining available data. The tree-based model will provide the operator a
tag (good, false call or real defect) with the corresponding confidence score. The
operator can then make his or her decision. As calculated in [5] the cost of a
single false call is estimated at around 0.65 eurocents. Beside the convenience
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that the approach provides to the operator, the fact of reducing one false call
per product may result in an annual saving of more than e 6500.

The paper is organized as follows: Sect. 2 describes briefly the studied
approaches and the performance metrics. Then, Sect. 3 exposes the evaluation
procedure. Finally, conclusions and an outlook of future work are provided.

2 Methodology

The aim of this work is to propose a new approach based on supervised learning
techniques in order to reduce the time-consuming task of detecting AOI false
calls.

In this case study, we focus on six types of PCB P1, · · · , P6. Each product Pi

is associated to a ni × f matrix Xi of ni pad measurements and f =187 features
presented as follows:

Xi =

⎛
⎜⎜⎜⎜⎝

m
(i)
11 m

(i)
12 · · · m

(i)
1f

m
(i)
21 m

(i)
22 · · · m

(i)
2f

...
...

. . .
...

m
(i)
ni1

m
(i)
ni2

· · · m(i)
nif

⎞
⎟⎟⎟⎟⎠

, (1)

where the number of pads ni varies depending on the PCB type. Each feature
vector m(i)

k. is made of SPI and reflow measurements. It is associated with a label
Y set by AOI verify which belongs to the discrete set:

{good, false call, real defect}.

As previously mentioned, among existing algorithms, we focus on a tree-
based learning method CART [6], and several improvements of this method
using aggregation: Random Forest [7], using boosting methodology AdaBoost [8]
and finally one of the latest learning algorithm in statistical learning XGBoost
[9]. These algorithms are described in Sect. 2.1, then Sect. 2.2 introduces the
selected performance metrics. We used the scikit-learn implementation of studied
algorithms.

2.1 Tree-Based Learning Techniques

On the one hand, by extracting the set of rules depicting normal zones in CART
algorithm, we can easily detect which variables play an important role in anomaly
detection and thus may lead to process improvements. On the other hand, ensem-
ble learning methods such as RF, Adaboost and XGboost extract only the most
important features.

CART. [6] is a decision tree (DT) method that stands for Classification And
Regression Tree. The principle of DT is based on a series of if-then rules that
form the tree branches. DT uses nodes and leaves to split the instance space
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into classification or regression case. The affiliation of a point to a branch and
therefore to a class is assigned according to the rule followed by this point.
Detailed descriptions are available in [6].

Random Forest (RF). [7] classifies data points by aggregating the predictions
given by multiple DT during the training phase. Random Forest generates a
fixed number k of decision tree classifiers. For the classification, classes are given
to each tree in RF, which then returns its prediction about the given classes.
The decision of each tree is considered as a vote for obtaining the final decision
which is based on the majority rule. Actually, RF is expected to perform better
in terms of prediction accuracy than single base learners. Indeed, using multiple
DTs reduces the variance by aggregating classifiers. This makes random forests
less prone to overfitting and more robust on imbalanced datasets.

AdaBoost. [8] stands for Adaptive Boosting and is used to boost the perfor-
mance of any machine learning algorithm for two-class classification problems.
The boosting approach is based on the idea of creating a highly accurate pre-
diction rule by combining relatively weak rules.

The AdaBoost algorithm proceeds by applying, in the first step, the chosen
weak classifier to the training samples and then produces class labels. In our case
the weak learner is DT. Then, a higher weight is attributed to all the misclassified
points (boosted). A second classifier is built based on these new weights and the
procedure is repeated. The final classifier is defined as the linear combination of
classifiers from previous stages.

The multi-class classification version of the Adaboost algorithm, which is
used in this paper, is the one proposed by Zhu et al. [10].

XGBoost. [9] stands for eXtreme Gradient Boosting and is a scalable machine
learning method for tree boosting. It is called gradient boosting because it uses a
gradient descent algorithm to minimize the loss when adding these new models.
By adding models on top of each other iteratively, the errors of the previous
model are corrected by the next predictor, until the training data is accurately
predicted or reproduced by the model.

Instead of assigning different weights to the misclassified points after every
iteration (as AdaBoost), this method fits the new model to new residuals of the
previous prediction and then minimizes the loss when adding the latest predic-
tion. XGBoost is specifically developed with an additional custom regularisation
term in objective function and a penalization term at every iteration over the
DTs.

2.2 Performance Metrics

Machine learning algorithm evaluation has been achieved by comparing:

– the quality prediction measured according to different metrics (accuracy,
Hamming loss, precision, recall and f1-score),

– the computation time Ct: need to satisfy the condition Ct < 180(s)
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In order to have a better overview of what the model is correctly predicting
and what types of errors it is making, a confusion matrix can be calculated
to give the full picture. We define below in Table 1 the confusion matrix of a
predictive model results in the case of three class problem with the classes A, B
and C.

Table 1. Three-class confusion matrix

A B C

A TPA EAB EAC

B EBA TPB EBC

C ECA ECB TPC

The confusion matrix shows how the predictions are made by the model and
gives the full picture through each class performance. The rows correspond to
the known class of the data and the columns correspond to the predictions made
by the model. The diagonal elements show the number of correct classifications
made for each class, and the off-diagonal elements show the errors made [11].

We use the accuracy score rather than the Matthews correlation coefficient
(MCC) [12] because we have decided to balance our datasets by down-sampling
good records, while MCC considers the weight of classes.

Hamming loss [13] computes the average loss between two sets of samples.
Considering ŷj as the predicted value for the j-th label of a given sample, yj
as the corresponding true value, and nlabels as the number of classes, then the
Hamming loss LHamming between two samples is defined as:

LHamming(y, ŷ) =
1

nlabels

nlabels−1∑
j=0

1(ŷj �= yj). (2)

The generalization of multi-class problems is to sum over rows/columns of
the confusion matrix. Given that the matrix is oriented as explained before, i.e.
rows of the matrix correspond with the “truth” value, we have:

Precisioni =
TPi

TPi +
∑

j �=i Eji
, (3)

Recalli =
TPi

TPi +
∑

j �=i Ejij
, (4)

Fi =
2

1
Recalli

+ 1
Precisioni

= 2 · Precisioni.Recalli
Precisioni + Recalli

(5)

with i, j ∈ {A,B,C}.
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3 Evaluation and Analysis

This work analyses a strongly imbalanced dataset that includes some hundreds
of observed features in which defects are very rare. In this section the evaluation
procedure is exposed by first, describing the multiclass datasets, and then show-
ing our choice of the optimal algorithm configurations and finally comparing the
performance metrics defined above for the studied algorithms.

3.1 Dataset Description

In this paper, we propose a decision-aiding tool to discern between real defects
and false calls in a SMT production line. With that objective in mind, we assem-
bled and analysed a multi-source dataset composed of data from three different
stations in the line. This dataset (X = (X1, ..Xi.,XN )) is composed of more
than N = 150, 000 products of multiple surface-mount device types, where Xi is
the matrix of the product Pi as introduced before. Each product contains mul-
tiple components having a number of pads going from 2 to 100, which results in
a dataset of more than 378 million records.

A cloud cluster was used to combine the data sources. For each pad k, we
extracted a feature vector M

(i)
k ∈ R

187. The features contain measurements
from SPI such as pads position and size, area, height, volume and offset of
the solder paste and measurements from reflow soldering of multiple individual
temperature-controlled zones. After filtering the constant features, a final feature
vector M (i)

k ∈ R
117 with three labels {good, false call, real defect} was obtained.

As the 117 features have different scales, we standardize them by removing
the mean and scaling to unit variance.

Table 2. Frequency of classes

Frequency Percent

Good 378,544, 970 99.930

False call 240,000 0.063

Real defect 15,030 0.007

TOTAL 378, 800,000 100.0

Performance of the classifier is seriously affected by the highly imbalanced
dataset Table 2, which impacts the performance of the classifier during the train-
ing phase. To handle this problem, external techniques are required during the
pre-processing phase. Two strategies are mainly used in the literature: data level
strategy and algorithm level strategy [14]. Data level methods adjust data sets
by adding or deleting records to minimize class differences, whereas algorithm
level strategy focuses on adjusting classifier algorithms to improve the learning
process relative to the minority class. Batista et al. [15] show that Some of the
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most commonly used classification algorithm currently, for example, decision tree
are not adaptive to dealing with unbalanced data. Given that our approach is
using tree-based methods, we therefore opted for data level strategy. We created
a balanced learning dataset by down-sampling the original dataset taking ran-
domly an ratio of good and false calls records Table 3. We use an 75-15-10 ratio
to retain more of the good class and reduce any loss of information. Specifically,
we retain all real defect records and randomly sample without replacement from
false call and good records. This configuration has provided the best results.

Table 3. Frequency of classes after down-sampling

Frequency Percent

Good 112,725 75

False call 22,545 15

Real defect 15,030 10

TOTAL 150,300 100

Four supervised learning algorithms were evaluated on Standardized real-
world data and their performance is presented in Sect. 3.2. Further details about
features and exploratory analysis are not reported in this work due to Continen-
tal AG confidentiality restrictions.

3.2 Performance Comparison

We used the scikit-learn machine learning library for python. To avoid overly
complex trees, the implementation of decision trees in this library imposes to
takes into account the maximum depth of the tree and the minimum number
of samples as hyper-parameters rather than mechanisms such as pruning (rpart
package in R).

For each algorithm we tried various combinations of hyper-parameters using
the grid search method (as shown below) to finally choose the optimal config-
uration that gives a high accuracy and minimises the training computing cost.
The accuracy score is measured using a 10-fold cross-score unbiased estimate.

– CART
• max depth (the maximum depth of the tree)

{1,10,20,30,40,50}
– Random Forest

• max depth (the maximum depth of the tree)
{1,10,20,30,40,50}

• max features (features to consider for the split
{1,10,20,30,40,50,60,70,80,90,100}

• n estimators (number of trees in the forest)
{10,20,30,40,50,60}
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– AdaBoost
• base estimator

(default=DecisionTreeClassifier)
• n estimators

{10,20,30,40,50,60}
– XGBoost

• base estimator
(default=DecisionTreeClassifier)

• n estimators
{10,20,30,40,50,60}

• max depth (Maximum tree depth for base learners)
{1,10,20,30,40,50}

• learning rate (Boosting learning rate (xgb’s “eta”))
{0,10,0,20}

For CART, we found that the optimal max depth (maximum tree depth) is
30. For RF, we noticed that with n estimators equal to 60 (number of trees in
the forest) and max features equal to 65 (features to consider for the split), we
got a higher accuracy score.

For AdaBoost, we used a decision tree classifier as the base estimator with
a max depth of 30, while for XGBoost, we used a max depth of 30 with learn-
ing rate of 0.20.

To evaluate the efficiency of the ensemble with the different settings, we
trained a model with 80% of the dataset selected and 20% for test. The result
for each algorithm is represented in Table 4. As we can see, all algorithms give
a high accuracy score at around 98%. The difference is seen rather in the test
time which remains more important for XGBoost without being too constrained
for our environment. The validation step with a product gives especially good
results for XGboost with Computation time (Ct) of 840 ms and an accuracy
score of 98.3%.

Table 4. Performance of algorithms on SMT datasets

Acc HLoss Ttime (s) Ct Recall

CART 97.4% 0.026 2.84 0.015 97%

Random forest 98.5% 0.014 12.20 0.046 97%

AdaBoost 98.0% 0.019 3.85 0.015 97%

XGBoost 98.6% 0.005 211.58 0.840 98.3%

As our focus is to propose a classification prediction to the operator, we have
also evaluated the efficiency of the selected algorithms regarding each class as
show in Table 5.

It can be seen from Table 5 that XGBoost outperforms the other tree-based
algorithms.
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Table 5. Performance of algorithms regarding each class

CART Random forest AdaBoost XGBoost

Preci. Re. F1 Preci. Re. F1 Preci. Re. F1 Preci. Re. F1

False call 0.92 0.96 0.94 0.96 0.97 0.97 0.95 0.95 0.95 0.98 0.99 0.99

Good 0.99 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.98 0.99

Real defect 0.94 0.97 0.95 1.00 0.95 0.98 1.0 0.97 0.98 0.99 0.99 0.99

3.3 Results Interpretation

We showed that a XGBoost model trained with a large dataset can accurately
classify most real defects and false calls. The fraction of wrongly classified items
(Hamming Loss) goes below 0.005 with more than 366,590 observations. It is
worth noting that, in this use case, the model prediction will have an actual
added value, if and only if the product classification tag is generated before the
visual diagnostic stage. In this case, the process operator could use the provided
class information as an aid in its diagnosis. Note that today false calls represent
about 95% of AOI fails. We tested our final algorithm using a new dataset con-
sisting of one product observation of about 2000 pads, and obtained an accuracy
of about 98.3% in less than 840 ms. The goal was to verify the correctness of
decision made in case the algorithm is implemented in the production. The big
data architecture defined by Continental Automotive Midi-Pyrénées allows a real
time transfer of data in the cloud. According to the process experts, the product
reaches AOI verify about 3 min after leaving the reflow soldering process. As the
computing time of our prediction method is much lower than these 3 min, it is
therefore concluded that the integration of our classification tool based on the
XGBoost algorithm is realistic and feasible in the SMT production line.

3.4 Conclusions and Future Work

In this paper, the performance of several tree-based machine learning methods
was evaluated through an experimental application on real-world production
data. Our aim is to implement the best chosen algorithm in production, which
is why we also considered the computing cost and the scalability/complexity of
the algorithm to be implemented. The best result is achieved when applying
XGBoost, which results in a prediction accuracy of 99.4% with a recall of 98.6%
and a validation time Ct near to 840 ms when considering as a dataset one
product with about 2000 pads.

Further investigations are necessary for the implementation of this decision-
making tool in production. Going further with this approach, we assume to be
able to facilitate the hard task of the verify operators and to reduce human
classification errors. Furthermore, we want to analyse feature importance as
computed by XGBoost to improve the production process.
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Abstract. Rogue is a famous dungeon-crawling video-game of the 80ies,
the ancestor of its gender. Rogue-like games are known for the necessity
to explore partially observable and always different randomly-generated
labyrinths, preventing any form of level replay. As such, they serve as
a very natural and challenging task for reinforcement learning, requir-
ing the acquisition of complex, non-reactive behaviors involving memory
and planning. In this article we show how, exploiting a version of Asyn-
chronous Advantage Actor-Critic (A3C) partitioned on different situa-
tions, the agent is able to reach the stairs and descend to the next level
in 98% of cases.

Keywords: Deep reinforcement learning ·
Asynchronous actor-critic advantage ·
Partially observable Markov decision process · Multi-task learning

1 Introduction

In recent years, there has been a huge amount of work on the application of
deep learning techniques in combination with reinforcement learning (the so
called deep reinforcement learning) for the development of automatic agents for
different kind of games. Game-like environments provide realistic abstractions of
real-life situations, creating new and innovative dimensions in the kind of prob-
lems that can be addressed by means of neural networks. Since the seminal work
by Mnih et al. [16] exploiting a combination of Qlearning and neural networks
(Deep Q-Networks, DQN) in application to Atari games [5], the field has rapidly
evolved, offering several improvements such as Double Qlearning [8] (correcting
overestimations in the action value of the original version) to the recent breack-
through provided by the introduction of asynchronous methods, the so called
A3C model [15].

In this work, we apply a version of A3C to automatically move a player
in the dungeons of the famous Rogue video game. Rogue was the ancestor of
this gender of games, and the first application exploiting a procedural, random
creation of its levels; we use it precisely in this way: as a generator of different
kind of labyrinths, with a reasonable level of complexity. Of course, the full game
c© Springer Nature Switzerland AG 2019
G. Nicosia et al. (Eds.): LOD 2018, LNCS 11331, pp. 264–275, 2019.
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offers many other challenges, comprising collecting objects, evolving the rogue,
and fighting with monsters of increasing power, but, at least for the moment,
we are not addressing these aspects (although they may provide interesting cues
for future developments).

We largely based this work on the learning environment that was previously
created to this aim in [3,4], and that allows a simple interaction with Rogue. At
the same time, the extension to A3C forced a major revision of the environment,
that will be discussed in Sect. 6.

The reasons for addressing Rogue, apart from the fascination of this vintage
game, have been extensively discussed in [3,4] (see also [6]), and we just recall
here the main motivations. In particular, Rogue’s dungeons are a classical exam-
ple of Partially Observable Markov Decision Problem (POMDP), since each level
is initially unknown and not entirely visible. Solving this kind of task is noto-
riously difficult and challenging [20], since it requires an important amount of
exploration.

The other important characteristic that differentiates it from other, more
modern, 3D dungeons-based games such as ViZDoom [11] or the Labyrinth in
[15] is precisely the graphical interface, that in the case of Rogue is ASCII-based.
Our claim is that, at the current state of knowledge, decoupling vision from more
intelligent activities such as planning can only be beneficial, allowing to focus
the attention on the really challenging aspects of the player behavior.

1.1 Achievements Overview

Rogue is a complex game, where the player (the “rogue”) is supposed to roam
through many different levels of a dungeon trying to retrieve the amulet of
Yendor. In his quest, the player must be able to: 1. explore the dungeon (partially
visible, when you enter a new level); 2. defend himself from enemies, using the
items scattered through the dungeon; 3. avoid traps; 4. avoid starvation, looking
for and eating food inside the dungeon.

Currently, we are merely focusing on exploring the maze: as explained in
Sect. 6 monsters and traps may be easily disabled in the game (Fig. 1).

Fig. 1. The two dimensional ASCII-
based interface of Rogue.

The dungeon consists of 26 floors (con-
figurable) and each floor consists of up to
9 rooms of varying size and location, ran-
domly connected through non linear corri-
dors, and small mazes. To reach a new floor
the agent needs to find and to go down the
stairs, whose position is likely hidden from
sight, located in a yet unexplored room and
in a different spot at each new level. Finding
and taking the stairs are the main ingre-
dients governing the agent movement: the
only differences between the first floors and the subsequent ones are related to
the frequency of meeting enemies, dark rooms, mazes or hidden doors. As a
consequence, we organized the training process on the base of a single level,
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terminating the episode as soon as the rogue takes the stairs. In the rest of the
work, when we talk about the performance of an agent, we refer to the prob-
ability that it correctly completes a single level, finding and taking the stairs
within a maximum of 500 moves1. The performance is measured on a set of 200
consecutive (i.e. random) games and we show a comparison with previous work
in Table 1. The results are not conclusive, partly because the approaches rely on
vastly different models.

Table 1.

Agent Random DQN [4] This work

Performance 7%a 23% 98%
aThe mobility resulting from brownian motion
is always impressive.

There are essentially three ingredients behind this achievement:

1. the adoption of A3C as a base learning algorithm, in substitution of DQN;
we shall diffusely talk about A3C in Sect. 3.2

2. an agent-centered, cropped representation of the state
3. a supervised partition of the problem in a predefined set of situations, each

one delegated to a different A3C agent, sharing nevertheless a common value
function (i.e. a common evaluation of the state).2 We shall talk about situa-
tions in Sect. 4.1.

While the adoption of A3C and the idea of experimenting with situations was a
planned activity [3], the shift to an agent-centered view, as well as the choice of
the agent situations have been mostly the result of trial-and-error, through an
extremely long and painful experimentation process.

2 Related Work

As we mentioned in the introduction, there is a huge amount of research around
the application of deep reinforcement learning to video games. In this section
we shall merely mention some recent works that, in addition to those already
mentioned, have been a source of inspiration for our work, or the subject of
different experimentations we performed. A few more works that seems to offer
promising developments [18,22] will be discussed in the conclusions.

Our current bot is essentially a partitioned multi-task agent in the sense of
[19]. Its tree-like structure may be reminiscent of Hierarchical models [7,13,21],
but they are in fact distinct notions. In Hierarchical models a Master cooperates
with one or more Workers, by dictating them macro actions (e.g. “reach the next

1 For a good agent, in average, little more than one hundred move are typically enough.
2 Source code and weights are publicly available at [2].
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room”), that are taken by Workers as their objectives. The Master typically gets
rewards from the environment and gives ad hoc, possibly intrinsic bonuses to
Workers. The hope is to let top-level agents focus on planning while sub-parts
of the hierarchy manage simple atomic actions, improving the learning process.

In our case, we simply split the task according to different situations the rogue
may be faced with: a room, a corridor, the proximity to stairs/walls, etc. (see
Sect. 4.1 for details). We did several experiments with hierarchical structures,
but so far none of them gave satisfactory result.

We also experimented with several forms of intrinsic rewards [17], especially
after passing to a rogue-centered view. Intrinsic motivations are stimuli received
form the surrounding environment different from explicit, extrinsic rewards, and
that could be used by the agent for alternative form of training, learning to do a
particular action because inherently enjoyable. Examples are empowerment [12]
or auxiliary tasks [9]. In this case too, we have not been able to obtain interesting
results.

3 Reinforcement Learning Background

A Reinforcement Learning problem is usually formalized as a Markov Decision
Process (MDP). In this setting, an agent interacts at discrete timesteps with
an external environment. At each time step t, the agent observes a state st and
choose an action at according to some policy π, that is a mapping (or more
generally a probability distribution) from states to actions. As a result of its
action, the environment change to a new state s′ = st+1; moreover the agent
obtains a reward rt (see Fig. 2). The process is then iterated until a terminal
state is reached.

state s t+1

state s
reward r

action a tt
t

Environment

Agent

Fig. 2. Basic operations of a Markov Decision
Process

The future cumulative reward
Rt =

∑∞
k=0 γkrt+k is the total

accumulated reward from time
starting at t. γ ∈ [0, 1] is the
so called discount factor: it rep-
resents the difference in impor-
tance between present and future
rewards.

The goal of the agent is to maximize the expected return starting from an
initial state s = st.

The action value Qπ(s, a) = E
π[Rt|s = st, a = at] is the expected return for

selecting action a in state st and prosecuting with strategy π.
Given a state s and an action a, the optimal action value function Q∗(s, a) =

maxπ Qπ(s, a) is the best possible action value achievable by any policy.
Similarly, the value of state s given a policy π is V π(s) = E

π[Rt|s = st] and
the optimal value function is V ∗(s) = maxπ V π(s).



268 A. Asperti et al.

3.1 Q-learning and DQN

The Q-function, similarly to the V-function can be represented by suitable func-
tion approximators, e.g. neural networks. We shall use the notation Q(s, a; θ) to
denote an approximate action-value function with parameters θ.

In (one-step) Q-learning, we try to approximate the optimal action value
function: Q(s, a) ≈ Q(s, a; θ) by learning the parameters via backpropagation
according to a sequence of loss function functions defined as follows:

Li(θi) = E(s,a,r,s′)∼U(D)

[
(r + γ max

a′
Q(s′, a′, θi−1) − Q(s, a, θi))2

]

where s′ is the new state reached from s taking action a and U(D) is the uniform
distribution on stored transitions for experience replay.

The previous loss function is motivated by the well know Bellman equation,
that must be satisfied by the optimal Q∗ function:

Q∗(s, a) = Es′ [r0 + γmaxa′Q∗(s′, a′)]

Indeed, if we know the optimal state-action values Q∗(s′, a′) for next states, the
optimal strategy is to take the action that maximizes r0 + γmaxa′Q∗(s′, a′).

Q-learning is an off-policy reinforcement learning algorithm. The main draw-
back of this method is that a reward only directly affects the value of the state
action pair s,a that led to the reward. The values of other state action pairs
are affected only indirectly through the updated value Q(s, a). The back prop-
agation to relevant preceding states and actions may require several updates,
slowing down the learning process.

3.2 Actor-Critic and A3C

In contrast to value-based methods, policy-based methods directly parameterize
the policy π(a|s; θ) and update the parameters θ by gradient ascent on E[Rt].

The standard REINFORCE [20] algorithm updates the policy parameters θ
in the direction ∇θE[logπ(at|st; θ)Rt], which is an unbiased estimate of ∇θE[Rt].

It is possible to reduce the variance of this estimate while keeping it unbiased
by subtracting a learned function of the state bt(st) known as a baseline. The
gradient is then ∇θE[logπ(at|st; θ)(Rt − bt)].

A learned estimate of the value function is commonly used as the baseline
bt(st) ≈ V π(st). In this case, the quantity Rt − bt can be seen as an estimate
of the advantage of action at in state st for policy π, defined as Aπ(at|st) =
Qπ(st, at) − V π(st), just because Rt is an estimate of Qπ(st, at) and bt is an
estimate of V π(st).

This approach can be viewed as an actor-critic architecture where the policy
π is the actor and the baseline bt is the critic.

A3C [15] is a particular implementation of this technique based on the asyn-
chronous interaction of several parallel couples of Actor and Critic. The experi-
ence of each agent is independent from that of the other agents, which stabilizes
learning without the need for experience replay as in DQN.
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4 Neural Network Architecture

Our implementation is essentially based on A3C. In this section we describe a
novel technique that partitions the sample space into a predefined set of situa-
tions, each one addressed by a different A3C agent. All of these agents contributes
to build a common cumulative reward without sharing any other information,
and for this reason they are said to be highly independent. Each agent employs
the same architecture, state representation and reward function. In this section
we discuss: the situations (Sect. 4.1), the state representation (Sect. 4.2), how
we shaped the reward function (Sect. 4.3), the neural network (Sect. 4.4), hyper-
parameters tuning (Sect. 4.5).

4.1 Situations

In our work, with the term situation we mean the environment state used to
discriminate which situational agent should perform the next action. We exper-
imented the four situations listed below, from higher to lower priority:

1. The rogue (the agent) stands on a corridor
2. The stairs are visible
3. The rogue is next to a wall
4. Any other case

The situations are determined programmatically and are not learned. This is a
simplistic choice, mostly dictated by frustration: in future work we plan to learn
them in an end-to-end way. When multiple conditions in the above list are met,
the one with higher priority will be selected. For example, if the stairs are visible
but the rogue is walking on a corridor, the situation is determined to be 1 rather
than 2, because the former has higher priority.
We define:

– s4 as the configuration made of all the aforementioned situations
– s2 as the configuration made of situations 2 and 4
– s1 as the configuration with no situations at all.

We believe that situations may be seen as a way to simplify the overall problem,
breaking it down into easier sub-problems.

4.2 State Representation

The state is a 17 × 17 matrix corresponding to a cropped view of the map cen-
tered on the rogue (i.e. the rogue position is always on the center of the matrix).
This representation has the advantage to be sufficiently small to be fed to dense
layers (possibly after convolutions); moreover, it does not require to represent
the rogue into the map. In our experiments we adopted two variations of the
above matrix. The first (called c1 ) has a single channel, resulting in a 17×17×1
shape, and it is filled with the following values:
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4 for stairs
8 for walls
16 for doors and corridors
0 everywhere else

The second (called c2 ) is made of two channels (the stairs channel and the
environment channel) and thus has shape 17 × 17 × 2. The values used for c2
are the same of c1.

4.3 Reward Shaping

We designed the following reward function:

1. a positive reward (+1) is given when using a door never used before
2. a positive reward (+1) is given when, after an action, one or more new doors

are found
3. a huge positive reward (+10) is given when descending the stairs
4. a small negative reward (−0.01) is given when taking an action that does not

change the state (eg.: try to cross a wall).

The chosen reward values are not random. In fact each floor contains at most 9
rooms and each room has maximum 4 doors, thus on each floor the cumulative
reward of the rewards of type 1 and 2 can not exceed 9 · (4 + 2) = 54. But what
normally happens, in the episodes with the best return, is that only about 2

3 of
the cumulative reward is given by finding new rooms. This is true because nega-
tive rewards are enough to teach the agent not to take useless actions and, in the
meantime, they do not significantly affect the balance between room exploration
and stair descent.

The result is that the agent is encouraged both to descend the stairs and to
explore the floor, and this impacts positively and significantly on its performance.
In future work we plan to employ sparser reward functions that are not as
problem specific.

4.4 Neural Network

The neural network architecture we used is shown in Fig. 3. This network consists
of two convolutional layers followed by a dense layer to process spatial dependen-
cies and a LSTM layer to process temporal dependencies, and finally, value and
policy output layers. The convolutions have a ReLU activation, a 3 × 3 kernel
with unitary stride and respectively 16 and 32 filters. Their output is flattened
and fed to a FC with ReLU and 256 units. We call this structure: tower.

The tower input is the state representation described in Sect. 4.2 and its
output is concatenated with a numerical “one hot” representation of the action
taken in the previous state and the obtained reward. This concatenation is fed
into an LSTM composed of 256 units. The idea of concatenating previous actions
and rewards to the LSTM input comes from [9].

The output of the LSTM is then the input for the value and policy layers.



Crawling in Rogue’s Dungeons with (partitioned) A3C 271

Fig. 3. The neural networks architecture

A network with the aforementioned structure implements an agent for each
situation described in Sect. 4.1. The loss is computed separately for each network,
and corresponds to the A3C loss computed in [9].

4.5 Hyper-parameters Tuning

Each episode lasts at most 500 steps/actions, and it may end either achieving
success (i.e. descending the stairs), or reaching the steps limit. Thus, the death
state is impossible for the agent, since in our experiments monsters and traps
have been disabled and 500 steps are not enough to die for starvation.

Most of the remaining hyper-parameters values we adopted (for example
the entropy β = 0.001) came from [14], an Open-Source implementation of [9],
except the following:

discount factor γ 0.95
batch size tmax 60

We employed the same Tensorflow’s RMSprop optimizer [1] available in [14],
with parameters:

decay 0.99
momentum 0
epsilon 0.1
clip norm 40

The learning rate is annealed over time according to the following equation:
α = η · Tmax−T

Tmax
, where Tmax is the maximum global step, and T is the current

global step.
The initial learning rate is approximatively η = 0.0007.

5 Evaluation

For evaluation purposes we want to measure how often the agent is able to
descend the stairs and to explore the floor. In our experiments, the final state
is reached when the agent descend the stairs. For this reason, a good evaluation
metric for a Rogue-like exploration-only system should be based at least on:
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– the success rate: the percentage of episodes in which the final state is reached
(an equivalent of the accuracy)

– the number of new tiles found during the exploration process
– the number of steps taken to win an episode

We evaluated our systems using an average of the aforementioned metrics over
200 episodes. The results we achieved are summarized in Fig. 4 and Table 2.3

(a) Success rate (b) Avg. return per episode

(c) Avg. no. of steps per won episode

Fig. 4. Results comparison. In the legend the labels sX denote the use of X situations,
while cY a state representation with Y channels. Please see Sects. 4.1 and 4.2 for details.

Our best agent4 shows remarkable skills in exploring the dungeon, searching
for the stairs.

Using four situations instead of just two did not prove to be beneficial, how-
ever adopting a separate situation (and hence a separate neural network) for
the case when the stairs are visible was fundamental. In fact, as can be seen in
Fig. 4, the policy learned by s1-c2 completely ignored the stairs, thus achieving
a very low success rate.

The experiment with 4 situations resulted in the development of the peculiar
inclination for the agent of walking alongside walls.
3 Source code and weights are publicly available at [2].
4 A video of our agent playing is available at https://youtu.be/1j6 165Q46w.

https://youtu.be/1j6_165Q46w
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Table 2. Learned policies evaluation. With sX we denote the use of X situations and
with cY a state representation with Y channels. Please see Sects. 4.1 and 4.2 for details.

Agent s1-c2 s2-c2 s4-c1 s4-c2

Success rate 0.03% 98% 96.5% 97.6%

Avg return 16.16 17.97 17.66 17.99

Avg number of seen tiles 655.02 386.46 365.88 389.27

Avg number of steps to succeed 2.11 111.48 108.22 110.26

Finally, state representation c2 induced faster learning, but only a slight
increase in the resulting success rate.

6 Refactoring the Rogue in a Box library

With this article, we release a new version [2] of the Rogue In A Box library [3,4]
that improves modularity, efficiency and usability with respect to the previous
version. In particular, the old library was mainly centered around DQN-agents,
that at the time looked as the most promising approach for the application of
deep reinforcement learning to this kind of games. With the advent of A3C and
other techniques, we restructured the learning environment, neatly decoupling
the interface with the game, supported by a suitable API, from the design of the
agents.
Other innovative features comprise:

1. Screen parser and frames memory
2. Communication between Rogue and the library
3. Enabling or disabling monsters and traps
4. Evaluation module

Of particular note is the evaluation module, which provides statistics on the
history of environment interactions, allowing to properly compare the policies of
different agents.

7 Conclusions

In this article, we have shown how we can address the Partially Observable
Markov Decision Problem behind the exploration of Rogue’s dungeons, achiev-
ing a success rate of 98%, with a simple technique that partitions the sample
space into situations. Each situation is handled by a different A3C agent, all of
them sharing a common value function. The interest of Rogue is that the pla-
nar, ASCII-based, bi-dimensional interface permits to decouple vision from more
intelligent activities such as planning: in this way we may better investigate and
understand the most challenging aspects of the player’s behavior.
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The current version of the agent works very well, but still has some problems
in cul-de-sac situations, where the agent should trace-back his path. Moreover, to
completely solve the Rogue’s exploration problem, dark rooms and hidden doors
are also required to be handled. We predict that the main challenge is going to
be provided by hidden doors, since they are almost completely unpredictable and
hard to detect even for a human. Different aspects of the game, such as collecting
objects and fighting could also be taken into account, possibly delegating them
to ad-hoc situations.

In spite of the fact that the overall performance of our agent is really good,
its design is not yet entirely satisfactory. In fact, too much intelligence about the
game is built in, both in the design of situations, and especially in their identi-
fication and attribution to specific networks. Also the rogue-centered, cropped
view introduces a major simplification of the problem, completely by-passing
the attention problem (see e.g. [10]) that, as discussed in [3], was one of the
interesting aspects of Rogue.

Currently, our efforts are going in the direction of designing an unsuper-
vised version of the work described in this paper, where the agent is able to
autonomously detect interesting situations, delegating them to specific subnets.
As additional research topics, we are

– exploring the role of sample-efficiency in our context, along the lines of [22].
– looking Multi-Task Adaptive Networks, following the ideas in [18].

References

1. RMSPropOptimizer. https://www.tensorflow.org/api docs/python/tf/train/RMS
PropOptimizer

2. Asperti, A., Cortesi, D., Sovrano, F.: Partitioned A3C for rogueinabox. https://
github.com/Francesco-Sovrano/Partitioned-A3C-for-RogueInABox

3. Asperti, A., Pieri, C.D., Maldini, M., Pedrini, G., Sovrano, F.: A modular deep-
learning environment for rogue. WSEAS Trans. Syst. Control 12, 362–373 (2017).
http://www.wseas.org/multimedia/journals/control/2017/a785903-070.php

4. Asperti, A., Pieri, C.D., Pedrini, G.: Rogueinabox: an environ-
ment for rogue like learning. Int. J. Comput. 2, 146–154 (2017).
http://www.iaras.org/iaras/filedownloads/ijc/2017/006-0022(2017).pdf

5. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning envi-
ronment: an evaluation platform for general agents. J. Artif. Intell. Res. (JAIR)
47, 253–279 (2013). https://doi.org/10.1613/jair.3912

6. Cerny, V., Dechterenko, F.: Rogue-like games as a playground for artificial intelli-
gence – evolutionary approach. In: Chorianopoulos, K., Divitini, M., Hauge, J.B.,
Jaccheri, L., Malaka, R. (eds.) ICEC 2015. LNCS, vol. 9353, pp. 261–271. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24589-8 20

7. Dilokthanakul, N., Kaplanis, C., Pawlowski, N., Shanahan, M.: Feature control as
intrinsic motivation for hierarchical reinforcement learning. CoRR abs/1705.06769
(2017). http://arxiv.org/abs/1705.06769

8. van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
Q-learning. CoRR abs/1509.06461 (2015). http://arxiv.org/abs/1509.06461

https://www.tensorflow.org/api_docs/python/tf/train/RMSPropOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/RMSPropOptimizer
https://github.com/Francesco-Sovrano/Partitioned-A3C-for-RogueInABox
https://github.com/Francesco-Sovrano/Partitioned-A3C-for-RogueInABox
http://www.wseas.org/multimedia/journals/control/2017/a785903-070.php
http://www.iaras.org/iaras/filedownloads/ijc/2017/006-0022(2017).pdf
https://doi.org/10.1613/jair.3912
https://doi.org/10.1007/978-3-319-24589-8_20
http://arxiv.org/abs/1705.06769
http://arxiv.org/abs/1509.06461


Crawling in Rogue’s Dungeons with (partitioned) A3C 275

9. Jaderberg, M., et al.: Reinforcement learning with unsupervised auxiliary tasks.
CoRR abs/1611.05397 (2016). http://arxiv.org/abs/1611.05397

10. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer
networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R.
(eds.) Advances in Neural Information Processing Systems: Annual Conference
on Neural Information Processing Systems 2015, Montreal, Quebec, Canada, 7–12
December 2015, vol. 28, pp. 2017–2025 (2015). http://papers.nips.cc/paper/5854-
spatial-transformer-networks

11. Kempka, M., Wydmuch, M., Runc, G., Toczek, J., Jaskowski, W.: ViZDoom:
a doom-based AI research platform for visual reinforcement learning. CoRR
abs/1605.02097 (2016). http://arxiv.org/abs/1605.02097

12. Klyubin, A.S., Polani, D., Nehaniv, C.L.: Empowerment: a universal agent-centric
measure of control. In: Proceedings of the IEEE Congress on Evolutionary Com-
putation, CEC 2005, Edinburgh, UK, 2–4 September 2005, pp. 128–135 (2005).
https://doi.org/10.1109/CEC.2005.1554676

13. Kulkarni, T.D., Narasimhan, K., Saeedi, A., Tenenbaum, J.B.: Hierarchical deep
reinforcement learning: integrating temporal abstraction and intrinsic motivation.
CoRR abs/1604.06057 (2016). http://arxiv.org/abs/1604.06057

14. Miyoshi, K.: Unreal implementation. https://github.com/miyosuda/unreal
15. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. CoRR

abs/1602.01783 (2016). http://arxiv.org/abs/1602.01783
16. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature

518(7540), 529–533 (2015). https://doi.org/10.1038/nature14236
17. Singh, S.P., Barto, A.G., Chentanez, N.: Intrinsically motivated reinforcement

learning. In: Advances in Neural Information Processing Systems: Neural Informa-
tion Processing Systems, NIPS 2004, Vancouver, British Columbia, Canada, 13–18
December 2004, vol. 17, pp. 1281–1288 (2004). http://papers.nips.cc/paper/2552-
intrinsically-motivated-reinforcement-learning

18. Song, Y., Xu, M., Zhang, S., Huo, L.: Generalization tower network: a novel deep
neural network architecture for multi-task learning. CoRR abs/1710.10036 (2017).
http://arxiv.org/abs/1710.10036

19. Sun, R., Peterson, T.: Multi-agent reinforcement learning: weighting and parti-
tioning. Neural Netw. 12(4–5), 727–753 (1999). https://doi.org/10.1016/S0893-
6080(99)00024-6

20. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. MIT
Press, Cambridge (1998)

21. Vezhnevets, A.S., et al.: Feudal networks for hierarchical reinforcement learning.
CoRR abs/1703.01161 (2017). http://arxiv.org/abs/1703.01161

22. Wang, Z.: Sample efficient actor-critic with experience replay (2016)

http://arxiv.org/abs/1611.05397
http://papers.nips.cc/paper/5854-spatial-transformer-networks
http://papers.nips.cc/paper/5854-spatial-transformer-networks
http://arxiv.org/abs/1605.02097
https://doi.org/10.1109/CEC.2005.1554676
http://arxiv.org/abs/1604.06057
https://github.com/miyosuda/unreal
http://arxiv.org/abs/1602.01783
https://doi.org/10.1038/nature14236
http://papers.nips.cc/paper/2552-intrinsically-motivated-reinforcement-learning
http://papers.nips.cc/paper/2552-intrinsically-motivated-reinforcement-learning
http://arxiv.org/abs/1710.10036
https://doi.org/10.1016/S0893-6080(99)00024-6
https://doi.org/10.1016/S0893-6080(99)00024-6
http://arxiv.org/abs/1703.01161


Decision of Neural Networks Hyperparameters
with a Population-Based Algorithm

Yağız Nalçakan1(&) and Tolga Ensari2

1 Altınbaş University, Istanbul, Turkey
yagiz.nalcakan@altinbas.edu.tr

2 Istanbul University, Istanbul, Turkey
ensari@istanbul.edu.tr

Abstract. This paper proposes a method named Population-based Algorithm
(PBA) to decide the best hyperparameters for a neural network (NN). The study
focuses on which type of hyperparameters achieve better results in neural net-
work problems. Population-based algorithm inspired from evolutionary algo-
rithms and uses basic steps of genetic algorithms. The distinctive feature of our
algorithm from genetic algorithms is fitness evaluation of individuals. To test
our approach, we implemented our algorithm to a handwritten digits recognition
problem to find the best hyperparameters for a simple neural network and we
reached 98.66 accuracy score. Finally, we conclude, how PBA used in neural
networks for the best way.

Keywords: Neural networks � Population-based Algorithm �
Hyperparameter optimization � Character recognition

1 Introduction

Since the beginning of humankind, nature has always been a source of inspiration for
people to solve their problems. In computer science, we call that problem-solving
algorithms Nature-inspired Algorithms. Population-based algorithm (PBA) is one of
these algorithms and PBA is very similar to genetic algorithm (GA). To understand
how PBA works, understanding of GA will be needed [1]. GAs are optimization
methods that inspired by the genetic processes of biological organisms. Simulating this
natural process on computers result in genetic algorithms that can often out-perform
classical optimization methods when applied to difficult real-world problems in engi-
neering. Their evolutionary process can be applied to problems where heuristic solu-
tions generally lead to unsatisfactory results. In addition, neural networks (NN), which
are the most popular artificial intelligence algorithms of recent times, are methods that
are based on working principle of neurons in brain. Simple neural networks consist of
input, output and hidden layers. Although more complex neural networks can solve
more complex problems, simple neural networks are also very successful in solving
many of today’s problems.

The variation of the methods in the different layers of neural networks depends on
the problem, and the success rate of NN directly affected by selection of these methods.
In our work, we applied a PBA to decide the best hyperparameters for a NN.
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This paper consists of 6 sections: Sect. 2 explains neural networks and their
parameters and hyperparameters, Sect. 3 brief description of other hyperparameter
selection methods, Sect. 4 about an explanation of Population-based Algorithm (PBA),
Sect. 5 has experimental results of PBA in a character recognition problem, and Sect. 6
concludes the paper and references for this paper.

2 Neural Networks and Hyperparameters’

Neural Networks (NN) are an attempt to mimic the way biological brain works. NN can
work on complex non-linear problems without understanding the underlying relation
completely, this is possible due to the large number of neurons connected with indi-
vidual reconfigurable weights. It is analogous to the parallel computing system com-
prising of huge number simple processors. NN is being used in almost every aspect of
computer science problems with complexity where input data is fed to the input nodes
of network and output is taken after numerous hidden layers. Due to self-learning
ability of neural networks the optimum weight assignment, selection of the correct
number of hidden layers and the correct activation function leads to satisfactory results
in problem and that’s why it is important to decide useful and effective parameters and
hyperparameters for that NN.

Neural networks have many types of parameters and hyperparameters. Parameters
are weights(W) and bias(b); and learning rate, number of hidden layers, number of
neurons in hidden layers, activation function, optimizer, iteration count, etc. are
hyperparameters. Every parameter and hyperparameter will affect the result of NN [2–4].

Different kind of activation functions and optimizers using for different problem
types. ReLu, eLu, tanh, sigmoid, etc. are kinds of activation functions and the optimizer
can be select as RMSProp, AdaDelta, AdaGrad, etc. These number of selections gives
us many possibilities that we can’t decide which one is the best for the problem. With
no explicit formula for choosing a correct set of hyperparameters, their selection often
depends on a combination of previous experience and trial-and-error. Therefore, we
create a population-based algorithm (PBA) to adjust four of that hyperparameters to
accomplish better results.

3 Hyperparameter Selection Methods and Related Work

There are many different types of hyperparameter selection methods in the literature.
Some of the most widely used methods for hyperparameter selection in neural networks
are manual search, grid search and random search [5]. Manual search refers to the
process of a researcher manually selecting hyperparameter sets. This is often chosen for
its ease and can reach a reasonable solution quickly. However, it is difficult to reuse
these sets in a new dataset and find an expert on that specific data. Grid search allows
for reproducible results, but it is not efficient in searching a high dimensional hyper-
parameter space. However, it is widely used because of its easy to implement archi-
tecture but, grid search wastes resources exploring what could be unimportant
dimensions of the hyperparameter space while holding other values constant, some of
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which could be more important. Thus, random search is much more effective at
searching the hyperparameter space since it avoids this problem of under-sampling
important dimensions, all while being just as easy to implement and just easy as to
parallelize as grid search [5]. Random search suffers from being non-adaptive and can
be outperformed with combination of manual and grid search.

On the other hand, Evolutionary algorithms provide opportunity to both search
hyperparameter space randomly also utilize previous results to direct the search [5].
They are frequently used in the hyperparameter optimization field currently. Especially
in neural networks.

After the rise of deep learning (DL), neural networks started to be more complex.
As the complexity of neural networks increases, the hyperparameters that need to be
determined increase also. To deal with this optimization problem, Evolutionary
Algorithms like Genetic Algorithm (GA) widely used in the literature [10, 11]. In [10],
Suganuma et al., attempted to automatically construct Convolutional Neural Networks
(CNN) architectures for an image classification task with Cartesian genetic program-
ming (CGP). The CNN architecture is trained on a learning task and assigned the
validation accuracy of the trained model as the fitness. The evolutionary algorithm that
they created, searches for the better CNN architectures. To test their approach, they
applied their approach to ResNet and VGG, and their CGP-ResNet achieved 23.47
error rate and CGP-VGG 23.48. Also, in [11], they used an evolutionary approach to
decide which hyperparameters of the architecture are getting the better result. Their
algorithm, EDEN, creates an initial population with different simple neural networks
with random hyperparameters then classic GA steps applied to the population. But in
mutation step, to create diversity, randomly selected hidden layers randomly changed
or deleted. They achieved 98.4 accuracy score in MNIST dataset.

4 Population-Based Algorithm

The effort to find fittest individuals in a population always led that population to create
more powerful, more healthy individuals. This process of evolution has also inspired
the computer science community. Evolutionary algorithms come from this inspiration.
Also, our Population-based Algorithm approach uses this evolution principle.

In our approach, we created a population of individuals that have hyperparameters
as their genes. Every individual has four hyperparameter types in their allele. Number
of hidden layers, number of neurons in hidden layers, activation function and optimizer
selected as hyperparameters for PBA. Selected hyperparameter types and their possible
contents are given in Table 1.

Since the Population-based Algorithm is inspired by evolutionary algorithms, we
used the selection, crossover, mutation steps of genetic algorithm (GA). Each indi-
vidual was defined to include four hyperparameters in Table 1. To create diversity, all
hyperparameters of all individuals in the population were randomly selected. This
randomization process done by brute force algorithm. Brute force algorithm creates
every possible individual from these hyperparameter types. After all possible indi-
viduals created twenty individuals selected as initial population.
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Main difference of PBA from genetic algorithms [7–9] calculation of the fittest.
Fitness calculation done for all hyperparameters separately. Every individuals’ accu-
racy score assigned as each hyperparameter type’s fitness score and then two indi-
viduals selected from the hyperparameters having the best average fitness score. The
crossover and mutation steps in GA work the same in the PBA. We used single point
crossover and bit-flip mutation.

Bit-flip mutation done slightly different from normal one. One of the hyperpa-
rameter selected randomly and randomly changed to another type of that hyperpa-
rameter. Block diagram of PBA can be seen on Fig. 1.

Table 1. Selected hyperparameter types for individuals.

Number of
hidden layers

Number of neurons
in hidden layers

Activation function Optimizer

1 64 ReLu RMSProp
2 128 eLu Adam
3 256 Sigmoid SGD
4 512 Tanh AdaGrad

768 AdaDelta
1024 AdaMax

NAdam

Selection

Crossover

20 Individuals

HP1 |   HP2 |    HP3 |   HP4

Replace with less 
fit ones

Mutation

Calculate the 
fitness

HP1 |   HP2 |    HP3 |   HP4

HP1 |   HP2 |    HP3 |   HP4

HP1 |   HP2 |    HP3 |   HP4

HP1 | HP2 |    HP3 |   HP4

New Population

Fig. 1. The block diagram of population-based algorithm. HPa represent the hyperparameter
types as genes of the individual.
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These types of algorithms need a stop criterion. In PBA, to reach the tenth popu-
lation selected as stopping criterion due to long computation time. It can be thought that
this can prevent the achievement of the desired success rate, but also a neural network
that has been optimized with PBA has very good results in the handwritten digits
recognition problem which is selected as our testing problem.

5 Experimental Results of PBA Optimized NN

We simulated these ideas in a project. In this project, we used our PBA to find the best
hyperparameters for a simple neural network that build for recognition of handwritten
digits with MNIST handwritten digits database [6]. MNIST dataset has 50000 train and
10000 test images in 28 � 28 pixels format. PBA used for optimizing four hyperpa-
rameter types and every optimized NN individual gets better and better in every
population. In this NN, output layer defined with Softmax activation function and
applied 0.2 dropout to the hidden layers. To avoid looping over same hyperparameters
and to tune our epochs we used a callback called early stopping.

Early stopping is basically stopping the training when your loss starts to increase, or
in other words validation accuracy starts to decrease. This approach is one of the best
stop criterions when optimization of NN done by a genetic algorithm like optimization.

Each PBA optimized NN trained an average of 22.8 min. Best NN reached 98.66%
accuracy with 512 neurons per layers, 2 hidden layers, with ReLu activation function
and AdaDelta optimizer. Other generations of the PBA can be seen in Table 2.

6 Conclusion

The goal of this paper is to propose a method to decide hyperparameters of a neural
network. This method named Population-based Algorithm which inspired by evolu-
tionary algorithms. We implemented basic genetic algorithm steps to an algorithm with

Table 2. Best generations of population-based algorithm.

Neurons
per layers

Number of
hidden
layers

Activation
function

Optimizer Accuracy
%

512 2 ReLu AdaDelta 98.66
512 2 ReLu AdaDelta 98.59
768 2 ReLu AdaDelta 98.55
1024 1 eLu AdaDelta 98.45
512 2 ReLu AdaDelta 98.44
512 2 ReLu AdaDelta 97.98
1024 1 ReLu SGD 97.90
512 1 Sigmoid RMSProp 97.10
768 1 ReLu AdaDelta 96.81
1024 1 ReLu AdaDelta 96.77
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a different fitness evaluation. Each hyperparameter type evaluated separately and the
best ones selected.

To test our approach MNIST handwritten digits database used. PBA used to
optimize, activation functions (Sigmoid, tanh, Softmax, ReLU), optimizers (RMSProp,
Adam, SGD, AdaGrad, AdaDelta, AdaMax), hidden layer count and neuron count in
hidden layers. The best optimized NN’s hyperparameters are ReLu activation function,
AdaDelta optimizer with two hidden layers and 512 neurons per layer which reached
the accuracy score of 98.66.

PBA can be used in many types of NN like deep neural networks. As a future work,
we intend to use our PBA for some Deep Learning problems.
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Abstract. This paper studies the Kantorovich-Rubinstein mass trans-
shipment (KR) problem on metric spaces and with an unbounded cost
function. Some assumptions are given under which the strong duality
condition holds; that is, the KR problem and its dual are both solvable
and their optimal values coincide.
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1 Introduction

The mass transshipment problem or Kantorovich-Rubinstein (KR) problem (see
[11,14,17,18]) is an optimization problem in spaces of measures. It is well known
that the KR problem has relation with the mass transfer problem ([17, Chaps. 4
and 6]). In both problems it is required to transfer an initial mass ν1 to a
final mass ν2 with minimal cost, However, while the mass transfer problem is a
generalization of the transportation problem, the KR problem is a generalization
of the network flow problem, this is, in the first one the movement is made in
“one trip” and in the second one this movement can be made in several“shorter
trips” ([17, Chap. 5]). If the cost function c is a metric or with similar properties
to a metric, the equivalency of both problems has been proved in [12] and [17,
Chap. 4], but if the cost function c is not a metric, as in this paper, then the
problems can be quite different.

Regarding duality, relevant works on this topic are as following: Rachev stud-
ied the duality of a class of mass transshipment problems on R

n, with the Euclid-
ian distance as the cost function, and he worked with differential distributions
[14]. Hanin and Rachev also studied the KR problem on R

n; they found a dual
representation for it and defined a class of ideal metrics, the cost function being
quite similar to a distance [6]. Moreover, they worked with a generalization of
c© Springer Nature Switzerland AG 2019
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this problem, where the feasible measures satisfied a condition of moments [5].
Dedecker, Prieur and De Fitte worked with a completely regular pre-Radon
space and gave an hypothesis for getting that the absence of duality gap condi-
tion holds, that is, the primal and dual values of the mass transshipment problem
coincide, this condition is also known as the Kantorovich-Rubinstein’s Theorem
or the duality condition. However, the optimal measure only can be found if
we already know the optimal solution of the dual problem [2]. An extension to
previous work is given in [3]. Also Rachev and Shortt proved a duality theorem
for a cost function similar to a metric in one separable metric space [18].

Among the applications of the KR problem we can mention: applications
of Fortet-Mourier metrics for studying the quantitative stability of two-stage
models [8], probability metrics [15], control of cancer radiotherapy [7], image
registration and warping [4], limit theorems and recursive stochastic equations
[17].

In this paper we shall study the KR problem by using infinite linear program-
ming under standard conditions. The main contributions are: the solvability of
primal and dual problems and we prove the no duality gap condition.

The strong duality is proved in cases when X is a general metric space and
c is a moment or inf-compact function and when X is a σ-compact space and c
is a lower semicontinuous cost function.

Unlike this article, most of the KR problem literature assumes that the cost
function is a metric (or similar to a metric); therefore the solvability and no
duality gap follows from mass transfer problem, which is already known, e.g.,
for Polish spaces [9,17].

When c is not metric, the strong duality is very important since it includes
Kantorovich-Rubinstein’s Theorem. Moreover there are some researches on the
mass transfer problem with quadratic costs; therefore it is quite natural to study
the KR problem for quadratic costs or even for more general cost functions (see
[13]).

There are just a few works on the KR problem, because when the cost func-
tion is a metric (or quite similar to) then the KR problem and MT problem are
equivalent, in the sense that their optimal values and solutions are the same.
However, when the cost function is not a metric the results for the KR problem
are not consequences of results for the MT problem. Even more, the demonstra-
tions are quite different, as we show in this paper.

The remainder of the paper is organized as follows. In Sect. 2, we present the
KR problem. In Sect. 3, we prove the theorem of solvability of the KR problem.
In Sect. 4, we prove that the strong duality condition holds for the KR problem.
Section 5 are conclusions and future work and finally, Sect. 6 is an appendix.

Throughout this article we use following notation: If Z is a metric space,
then B(Z) is its Borel σ-algebra, M(Z) is the set of all signed finite measures
on the measurable space (Z,B(Z)), M+(Z) is the set of all nonnegative finite
measures and P (Z) is the set of all probability measures.
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2 The KR Problem

In the Kantorovich-Rubinstein mass transshipment problem that we are con-
cerned with we are given the following data:

(i) A metric space X, endowed with the corresponding Borel σ-algebra.
(ii) A nonnegative measurable function c : X × X → R.
(iii) Two probability measures (p.m.) ν1, ν2 in P (X).

For any measure μ in M(X × X), we denote by Π1μ and Π2μ the marginals
(or projections) of μ on X, that is, for all A,B ∈ B(X)

Π1μ(A) := μ(A × X), and Π2μ(B) := μ(X × B).

Then, with 〈μ, c〉 :=
∫

cdμ, the KR problem can be stated as follows:

KR minimize: 〈μ, c〉
subject to: Π1μ − Π2μ = ν1 − ν2, μ ∈ M+(X × X). (1)

A measure μ on M+(X × X) is a feasible solution for the KR problem if it
satisfies (1) and

∫
cdμ is finite. The KR problem is called consistent if the set of

feasible solutions is nonempty, in which case its optimum value is defined as

inf(KR) := inf{〈μ, c〉 | μ ∈ F}, (2)

where F denotes the class of all feasible solutions for the KR problem. It is said
that the KR problem is solvable if there is a feasibe solution μ∗ that attains its
optimum value. In this case, μ∗ is called an optimal solution for the KR problem,
and the value inf(KR) is written as min(KR) = 〈μ∗, c〉.

3 Solvability of the KR Problem

In this article we work on the space M+
r (X × X) that denotes the family of

nonnegative measures such that μ(X × X) ≤ r for some r > 0. To prove the
solvability of the KR problem, we need either one of the following assumptions.

Assumption 1

(a) The KR problem is consistent.
(b) The cost function c(x, y) is inf-compact or is a moment.

Assumption 2

(a) The KR problem is consistent.
(b) X is a metric σ-compact space.
(c) The “cost” function c(x, y) is lower semi-continuous (l.s.c.).

Theorem 3. If either Assumption 1 or Assumption 2 holds, then KR is solvable.
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Proof. By Assumption 1 (a) or 2 (a), we have that there exists μ0 in F such
that 0 ≤ inf(KR) ≤ 〈μ0, c〉 < ∞; therefore there exists {μn} in F , a minimizing
sequence, such that 〈μn, c〉 ↓ inf(KR).

Given ε > 0, there exists a positive integer N such that

inf(KR) ≤ 〈μn, c〉 ≤ inf(KR) + ε ∀n ≥ N.

Finally, by Assumption 1 (b) or Assumption 2 (b)–(c) and by taking b :=
inf(KR) + ε in Proposition 1 (see Appendix), we have that the measure set

Γ := {μn}n≥N

is tight; then by extended Prohorov Theorem, Γ is relatively compact and so
there are a subsequence {μm} in Γ and a measure μ∗ in M+

r (X × X), such that
{μm} weakly converges to μ∗.

By Lemma in [9] we have that

〈μ∗, c〉 = inf(KR).

Finally to prove that μ∗ is an optimal solution for the KR problem, it suffices
to show that μ∗ is a feasible solution, that is, μ∗ satisfies the equality (1). To do
this, we shall prove that the marginals Πiμm, for i = 1, 2, converge weakly to
the marginals Πiμ

∗. Take i = 1, by Portmanteau’s Theorem it suffices to show
that

lim inf
m→∞ Π1μm(G) ≥ Π1μ(G),

for any open G ⊂ X. Let G be an open subset of X, then G × X is open in
X × X and so, by weak convergence,

lim inf
m→∞ Π1μm(G) = lim inf

m→∞ μm(G × X) ≥ μ(G × X) = Π1μ(G).

Finally we have that ν1 − ν2 = Π1μn − Π2μn, for all n in N then

ν1 − ν2 = lim
n→∞(Π1μn − Π2μn) = Π1μ

∗ − Π2μ
∗.

This shows that μ∗ is in F and, therefore, μ∗ is an optimal solution for the
KR problem. �


4 Strong Duality of KR Problem

In this section we reformulate the KR problem as an infinite dimensional linear
program. We use a similar approach to that of Anderson and Nash [1], but for
cost functions c possibly unbounded and general metric spaces. With this in
mind, we introduce suitable linear spaces with weighted norms.
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Definition 1. Let w(x, y) := 1 + c(x, y). For each μ in M(X × X) and f a
function on X × X, we define

‖μ‖w :=
∫

X×X

wd|μ| and ‖f‖w := sup
(x,y)

|f(x, y)|
w(x, y)

, (3)

where |μ| denotes the total variation of μ, Mw(X × X) denotes the (normed)
linear space of finite signed measures μ on X × X such that ‖μ‖w < ∞ and
Fw(X × X) stands for the (normed) linear space of measurable function f on
X × X such that ‖f‖w < ∞.

Observe that the cost function c belongs to Fw(X × X). Furthermore, the
pair (Mw(X × X), Fw(X × X)) is a dual pair of vector spaces with respect to
the bilinear form

〈μ, f〉 :=
∫

X×X

fdμ, for μ ∈ Mw(X × X) and f ∈ Fw(X × X). (4)

Let Mw+(X × X) := {μ ∈ Mw(X × X) | μ ≥ 0} the cone of nonnegative
measures in Mw(X × X). We observe that as w(x, y) ≥ 1, then μ(X × X) < ∞
for all μ in Mw+(X × X). Now let us consider the weight functions

w1(x) := inf
y∈X

w(x, y) and w2(y) := inf
x∈X

w(x, y).

Assumption 4. The functions w1 and w2 are measurable.

We define w(x) := min {w1(x), w2(x)}, then w is a measurable function
on X.

We define the dual pair (Mw(X), Fw(X)), where Mw(X) is the linear space
of finite signed measures η on X such that

‖η‖w :=
∫

X

wd|η| < ∞,

and Fw(X) is the linear space of measurable functions f : X → R, such that

‖f‖w := sup
x

|f(x)|
w(x)

< ∞,

the corresponding bilinear form is 〈η, f〉 :=
∫

X
fdη.

Assumption 5. The measure μ̂ := ν1 × ν2 is in Mw(X × X).

Hence, we have.

Remark 1. The marginal measures ν1, ν2 are in Mw(X).
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Remark 2. (See [10]) For any μ in Mw+(X ×X) there exists a stochastic kernel
φ, such that
∫

X×X

f(x)μ(d(x, y)) =
∫

X

∫

X

f(x)φ(dy|x)(Π1μ)(d(x)) =
∫

X

f(x)(Π1μ)(d(x))

and similarly ∫

X×X

f(y)μ(d(x, y)) =
∫

X

f(y)(Π2μ)(d(y)).

Hence,
∫

X×X

(f(x) − f(y))μ(d(x, y)) =
∫

X

f(x)(Π1μ)(d(x)) −
∫

X

f(y)(Π2μ)(d(y)).

By the last remark and under Assumptions 4 and 5, we can now rewrite the
KR problem as a linear program in the following way

KR minimize 〈μ, c〉 (5)
subject to: Aμ = ν1 − ν2, μ ∈ Mw+(X × X), (6)

where A : Mw(X × X) → Mw(X) is the linear map given by

Aμ := Π1μ − Π2μ (7)

and the adjoint is given by

A∗(f)(x, y) = f(x) − f(y). (8)

Moreover A∗(Fw(X)) ⊂ Fw(X × X), in fact, let f ∈ Fw(X), by definition
of w, we have that

‖ A∗(f) ‖w = sup
(x,y)

| f(x) − f(y) |
w(x, y)

≤ sup
(x,y)

| f(x) |
w(x, y)

+ sup
(x,y)

| f(y) |
w(x, y)

≤ sup
x

| f(x) |
w(x)

+ sup
y

| f(y) |
w(y)

= 2 ‖ f ‖w < ∞.

This implies, in particular, that the linear map A is weakly continu-
ous with respect to the weak topologies σ(Mw(X × X), Fw(X × X)) and
σ(Mw(X), Fw(X)) on Mw(X × X) and Mw(X) respectively (see [1], Propo-
sition 4 p. 37).

Then, we have that the dual of KR problem is

KR∗ maximize 〈ν1 − ν2, f〉 (9)

subject to: A∗(f) ≤ c, f ∈ Fw(X). (10)
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As c is nonnegative, the dual KR∗ is consistent because f = 0 satisfies (10).
Therefore, we can define the value of the dual problem as

sup(KR∗) = sup{〈ν1 − ν2, f〉 | f satisfies (10)}
and it fulfills the weak duality condition

sup(KR∗) ≤ inf(KR).

We now wish to show that KR∗ is solvable, in which case we write max(KR∗)
in lieu of sup(KR∗). Moreover we wish to prove

sup(KR∗) = inf(KR). (11)

We need the following Assumption.

Assumption 6. There exists a maximizing sequence {fn} for KR∗, which is
bounded in Fw(X).

Theorem 7. Under Assumption 1 (a) or (b) of Sect. 3 and Assumptions 4, 5
and 6.

(a) The KR∗ problem is solvable, and
(b) there is no duality gap for the KR problem.

Proof.(a) Let {fn} be as in Assumption 6, that is, the functions fn are in Fw(X)
for all n in N, and

fn(x) − fn(y) ≤ c(x, y) ∀n ∈ N, (12)

〈ν1 − ν2, fn〉 ↑ sup KR∗ (13)

and there is a constant m, such that

‖fn‖w ≤ m, for all n ∈ N. (14)

We take
f∗ := lim sup fn. (15)

By Eq. (15) we have

| fn(x) |≤ mw(x) ∀x ∈ X and ∀n ∈ N,

−mw(x) ≤ fn(x) ≤ mw(x) ∀x ∈ X and ∀n ∈ N,

hence

−mw(x) ≤ lim sup fn(x) ≤ mw(x) ∀x ∈ X and ∀n ∈ N.

Therefore

| f∗(x) |= | lim sup fn(x) | ≤ mw(x) ∀x ∈ X,
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this implies that f∗(x) is in Fw(X). On the other hand, by Exercise 16, page
39 in [19], we have

f∗(x) − f∗(y) = lim sup fn(x) − lim sup fn(y) = lim sup fn(x) + lim inf(−fn(y))

≤ lim sup(fn(x) − fn(y)) ≤ c(x, y) ∀x, y ∈ X,

that is, f∗ is a feasible solution to KR∗. Finally, by Fatou’s Lemma (see, for
instance, [19] p. 264) we get that

〈ν1 − ν2, f
∗〉 = sup(KR∗),

that is, f∗ is an optimal solution to KR∗.
(b) To prove this, consider the subset H of Mw(X) × R defined as

H := {(Aμ, 〈μ, c〉 + r) | μ ∈ M+
w (X × X), r ∈ R+}.

Then, according to Theorem 3.9 from [1], we have that, Eq. (11) will follow
if we can show that

H is weakly closed, (16)

that is, closed in the weak topology σ(M(X)×R, F (X)×R). To see this, let
(N,≤) be a directed set and let {(μα, rα), α ∈ N} be a net in M+(X ×X)×
R+ such that (Aμα, 〈μα, c〉 + rα) converges weakly to (λ, ρ) in Mw(X) ×R,
i.e.,

〈Aμα, f〉 → 〈λ, f〉 ∀f ∈ F (X) (17)

and
〈μα, c〉 + rα → ρ. (18)

We wish to show that (λ, ρ) is in H, that is, there exist μ̂ ∈ M+(X × X)
and r̂ ∈ R+, with

(i) Aμ̂ = λ and (ii) 〈μ̂, c〉 + r̂ = ρ. (19)

To prove (19), first note that all the terms in (18) are nonnegative, and so
we may consider two cases, ρ = 0 and ρ > 0. Observe that if Aμα → λ, then
A(min{μα0 , μα}) → λ. Let us first consider the case of ρ > 0. If ρ > 0, then
for any given ε > 0, Eq. (19) implies the existence of α0 ∈ N , such that

〈μα, c〉 ≤ ρ + ε ∀α ≥ α0

Thus by Prohorov extended Theorem, the net Γ := {μα, α ≥ α0} is relatively
compact, and, therefore, there exists a subnet {μα(i)} of Γ and a measure μ̂
in M+(X×X) such that μα(i) converges to μ̂ in the weak topology σ(M(X×
X), Cb(X × X)), i.e.,

〈μα(i), v〉 → 〈μ̂, v〉 ∀v ∈ Cb(X × X). (20)

On the other hand, the adjoint A∗ maps Cb(X) into Cb(X × X), which
together with expression (20) yields
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lim〈Aμα(i), f〉 = lim〈μα(i), A
∗f〉

= 〈μ̂, A∗f〉
= 〈Aμ̂, f〉 ∀f ∈ Cb(X).

From this fact and expression (17), we conclude that

〈Aμ̂, f〉 = 〈λ, f〉 ∀f ∈ Cb(X)

and it follows that μ̂ satisfies (19)(i).
Furthermore, by expression (20), (18) and Lemma 2.6 in [9] we have

ρ ≥ lim inf〈μα(i), c〉 ≥ 〈μ̂, c〉.
Hence, by taking r̂ := ρ−〈μ̂, c〉 we obtain (19)(ii). This completes the proof
of (19) in the case ρ > 0.
Finally, if ρ = 0, the same arguments used in the previous paragraph show
that there exists a measure μ̂ in M+(X × X) such that μ̂ satisfies (19)(i)
and 〈μ̂, c〉 = 0. Therefore, (19)(ii) holds with r̂ = 0. �


5 Conclusions and Future Work

Firstly, we emphasize the differences between mass transfer problem and KR
problem. That is to say, the feasible solutions of the mass transfer problem are
measures of probability and it does not happen in the KR problem, its feasible
solutions belong to a set of more general measures: non-negative measures, which
leads us to deal with a not bounded set of feasible solutions. In this work, the
solvability of primal and dual problems of the KR problem are studied and we
proved the no duality gap condition. Moreover, the strong duality is proved when
X is a metric space and c is a moment or inf-compact function and when X is
a σ-compact space and c is a lower semicontinuous cost function.

The applications of the KR problem are the Fortet-Mourier metrics to study
the quantitative stability of two-stage models (see [8]), probability metrics (see
[15] and [16]), control of cancer radiotherapy (see [7]), image registration and
warping (see [4]), limit theorems and recursive stochastic equations (see [17]),
among others. For all of them, it is important to have an efficient approximation
scheme, in which we are working.

6 Appendix

Proposition 1. Let f be a nonnegative function on Z. Then, if one of the
following assumptions holds

(a) f is an inf-compact.
(b) f is a moment.
(c) f is a lower semicontinuous function and unbounded above and Z is a σ-

compact space,

then Γ = {μ ∈ M+(Z) | 〈μ, f〉 ≤ b} (where b is a fixed constant) is tight.
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Proof.(a) As f is an inf-compact function, then Kn := {x ∈ Z | f(x) ≤ n} is a
compact set. Hence, for any measure μ ∈ Γ

b ≥ 〈μ, f〉 ≥
∫

Kc
n

f dμ ≥ nμ(Kc
n),

that is, μ(Kc
n) ≤ b

n for all n. Therefore Γ is tight.
(b) As f is a moment, there exists a sequence {Fn} of compact sets Fn ↑ X,

such that lim
n→∞ inf

x∈F c
n

f(x) = +∞.

Let ε > 0 then there exists M > 0, such that b
M < ε. Moreover, there is N

in N such that
M ≤ inf

x∈F c
n

f(x) ∀n ≥ N.

Hence, for all n ≥ N we have that MχF c
n

≤ f(x)χF c
n
, where χA is the

characteristic function of the set A, and

Mμ(F c
n) ≤

∫

F c
n

f dμ ≤
∫

f dμ ≤ b,

therefore
μ(F c

N ) ≤ b

M
< ε

and Γ is tight.
(c) Let f be a lower semicontinuous function and unbounded above and let Z

be a σ-compact set, then, there exists a sequence {Fn} of compact sets with
Fn ↑ Z. Let

Zk := {x ∈ Z | f(x) ≤ k},

then, Zk is a closed set. Let Gk := Fk ∩Zk, Gk is a compact set and Gk ↑ Z.
Let

h(x) :=
{

0 if x ∈ G1;
k if x ∈ Gk+1\Gk;

hence, h is an inf-compact function. Moreover h(x) ≤ f(x) and for any
μ ∈ Γ , we find that

∫
h dμ ≤ ∫

f dμ ≤ b. By (a) we conclude that Γ is
tight. �
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Abstract. Neuro-Evolution is a field of study that has recently gained
significantly increased traction in the deep learning community. It com-
bines deep neural networks and evolutionary algorithms to improve
and/or automate the construction of neural networks. Recent Neuro-
Evolution approaches have shown promising results, rivaling hand-
crafted neural networks in terms of accuracy.

A two-step approach is introduced where a convolutional autoencoder
is created that efficiently compresses the input data in the first step, and
a convolutional neural network is created to classify the compressed data
in the second step. The creation of networks in both steps is guided by an
evolutionary process, where new networks are constantly being generated
by mutating members of a collection of existing networks. Additionally,
a method is introduced that considers the trade-off between compres-
sion and information loss of different convolutional autoencoders. This is
used to select the optimal convolutional autoencoder from among those
evolved to compress the data for the second step.

The complete framework is implemented, tested on the popular
CIFAR-10 data set, and the results are discussed. Finally, a number
of possible directions for future work with this particular framework in
mind are considered, including opportunities to improve its efficiency
and its application in particular areas.

Keywords: Neuro-evolution · Genetic algorithms ·
Convolutional autoencoders · Convolutional neural networks

1 Introduction

Neural networks have become a popular data analysis tool in both academia
and industry, especially when tasks like image classification, natural language
processing, and speech recognition need to be addressed. They have shown to
be very adept at these tasks, which are classic problems in which we like the
computer to show “human-like” behavior. One of the challenges surrounding
neural networks which has kept researchers around the world occupied is the
matter of their design, and the possible automation of this task. Constructing
c© Springer Nature Switzerland AG 2019
G. Nicosia et al. (Eds.): LOD 2018, LNCS 11331, pp. 293–304, 2019.
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a neural network is still often seen as a somewhat “magic” skill by many: a
combination of knowledge, past experience, and intuition. Network performance
is greatly affected by its size and structure, the type and order of layers, the
choice of loss function and the way data is presented to the network. These are
all decisions that a designer has to make in what is often a lengthy continuous
cycle of re-design, re-training, and re-evaluation. This makes it an attractive
target for automation [7].

In this paper we introduce a neuro-evolution approach to the above challenge
that is more efficient than current solutions in terms of computational resource
consumption [7]. This will hopefully make this type of approach more viable in
real-life settings. It takes inspiration from a specific, recently published study,
which establishes a kind of baseline for the application of evolutionary algo-
rithms in this setting [10]. Implementation of the approach also requires a look
at solution efficiency and multi-criteria decision making (MCDM), which helps
reasoning about the relation between the performance metrics of different types
of neural networks [9,14].

Both the baseline and the proposed approach are implemented and tested
in order to confirm their behavior and to draw comparisons. The results are
then inspected to establish whether the new framework has significant impact in
terms of final accuracy and consumed computational resources. These two will
form a trade-off that is controlled by the MCDM process. Finally, a number of
alternatives and future study topics are presented and considered.

2 Related Work

Neuro-evolution is the field of study that combines neural networks with evolu-
tionary algorithms in the search for innovative training methods [16]. The field
has recently gained increased interest with the sharp increase of popularity of
deep neural networks. Likely the most well-known algorithm in the field of neuro-
evolution is the neuro-evolution of augmented topologies algorithm (NEAT) [13].
Recent studies have applied evolutionary strategies to deep neural networks in a
variety of manners, such as evolving network weights via genetic programming
[9,15], differential evolution [11], pitting networks against each other in a tourna-
ment selection environment [10], more recent extensions of NEAT [3,7], and by
evolving a network’s activation functions [4]. The general “mood” of the inter-
section of these two fields is very much an exploratory one. There is no clear
precedent on how to apply techniques from the meta-heuristics field to deep
learning [4]. Another interesting direction in neuro-evolution that has recently
been taken under the growing complexity of deep neural networks is that of net-
work reduction. Evolutionary strategies can be used to simplify networks, in the
hope of reducing future training and operating cost [12].

This work is based in large parts on a recent Neuro-Evolution study [10]. The
goal of this study was to establish the viability of genetic programming in replac-
ing human input during the design phase of neural networks. In the remainder
of this paper, their approach will be referred to as the “baseline framework”.



Evolutionary Construction of Convolutional Neural Networks 295

The approach is based on multiple worker processes operating in parallel, each
applying a genetic programming algorithm that continually evolves a population
of neural networks. In genetic programming, a collection of candidate solutions,
called the population, is updated in steps in the hopes of finding better candidate
solutions. A candidate solution is also known as an individual. An individual is
considered to have “DNA”; some simplified representation from which the solu-
tion can be reconstructed. By mutating this DNA in different ways, an individual
can be evolved into new individual, one which hopefully has better fitness, which
is some measure of the quality of the solution. In this case, each candidate solu-
tion is a convolutional neural network, and the DNA is simply the structure
of the network. In order to apply genetic programming, a selection method is
required. This is the method that is used to determine which individuals in the
population are chosen for mutation. The approach is based on the basic process
of tournament selection [8]. It is a simple and direct selection method that is
based on “rounds”. Each round, k individuals are selected from the population
according to some probability distribution, and their fitness is compared. The
individual with the best fitness is copied and its copy is mutated before inserting
it into the population, while the one with the worst fitness is removed from the
population. This method of selecting individuals is intuitive, easy to implement,
and easy to adjust. An added benefit is that it is quite easy to parallelize. In the
case of the study, k = 2 individuals are selected uniformly at random. In order to
establish a population to select from, each worker process generates some initial
individuals. In this case, the initial individuals are very simple networks with
very low fitness scores.

The major issue of this approach is the computational resource required. To
arrive at a competitive result, many networks have to be generated, trained, and
evaluated. The authors’ main goal was to establish viability in terms of accuracy,
so their approach is fairly basic and direct. This leaves many opportunities for
improvements and further study, which is the point where this work steps in.

3 Method

3.1 Evolving Autoencoders

The attempt of this work to reduce computation time is based on reducing
the size of the input samples that are used for training classification networks.
Reducing the input sample size has a double positive effect on the evolutionary
process: training each individual network takes less effort, since there are less
values to process for each sample, and networks can be expected to be shallower
since the input is smaller, reducing the average training time per network in the
overall evolutionary process.

Autoencoders are well-suited tools for reducing sample sizes, and in the case
of image data, a convolutional autoencoder can be used to maintain the spatial
relations of the input data in the encoded data. Since convolutional autoencoders
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are simply convolutional neural networks with some extra restraints and a differ-
ent error metric, the baseline framework can also be applied to obtain the most
suitable autoencoder. The overall process is then as follows:

1. Perform an evolutionary process on a population of convolutional autoen-
coders. Training is based on the original input and the reconstruction error
of the decoder.

2. Pick the best autoencoder and encode the entire original input data set.
3. Perform an evolutionary process on a population of convolutional neural net-

works that classify input samples. Training is based on the encoded input and
classification error.

4. Pick the classifier with the highest validation accuracy and append it to the
encoder used to encode the data in order to obtain the best overall network.

In order to apply the baseline framework to convolutional autoencoders, a
new selection process needs to be refined. In the baseline framework, selection
was purely based on accuracy. In the case of autoencoders, there are now two
selection criteria: reconstruction accuracy and compression ratio. We like both
of these to be as high as possible, but it is important to consider the case where
one autoencoder has a higher compression ratio, while another one has a higher
accuracy. Taking inspiration from the Non-dominated Sorting Genetic Algorithm
(NSGA)[2], autoencoders are grouped into Pareto fronts based on dominance.
If two sampled individuals are members of different fronts, the one that is a
member of the dominating front “wins”. If both individuals are part of the same
front, neither is strictly better than the other in terms of Pareto efficiency. In this
case, the individual that is furthest away the other individuals in that front is
chosen as winner. In other words, a higher probability of innovation is rewarded if
both individuals come from the same front. The final adjustment to make to the
evolutionary process is to define a new set of mutations so actual convolutional
autoencoders are evolved.

Below are listed the mutations that are made available to the evolutionary
framework for the purpose of evolving convolutional autoencoders. These are
based on the baseline framework, with some small changes, such as the inclusion
of pooling-related mutations. Note that only the encoder is mutated, since the
decoder is directly derived from it by mirroring it and replacing each pooling
layer with an up-sampling layer (see Fig. 1).

– Identity: The network structure is not changed in any way. In practice this
means the same network trained longer, since weights are maintained when
copying networks.

– Insert convolution: This mutation inserts a convolutional layer at a ran-
dom location in the network in the encoder.

– Remove convolution: This mutation removes a random convolutional
layer from the encoder.

– Alter Stride: The stride length of a random convolutional layer is incre-
mented or decremented by 1 at random.
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– Insert pool: This mutation inserts a max-pooling layer at a random location
in the encoder. The initial pool size is 2× 2.

– Remove pool: In this case a random max-pooling layer from the encoder is
removed.

– Alter filter number: The number of filters of a random convolutional
layer is adjusted.

– Alter filter size: One of the dimensions of the filters of a random convo-
lutional layer is incremented or decremented at random

– Alter pool size: The pool size of a random max-pooling layer is incre-
mented or decremented at random.

Fig. 1. Convolutional autoencoder structure. For some input x, the encoder produces
an encoding z, and the decoder produces a reconstruction x′. The decoder mirrors the
encoder, replacing pooling layers with up-sampling layers.

On top of the mutations themselves, there is an additional constraint on
each mutation. For a mutation to be applied successfully, the output size of
the encoder must be smaller than input size of the encoder. This forces the
evolutionary process to evolve the encoder that actually compresses the data,
and helps preventing the autoencoder from learning a dictionary of the input.

At the end of the evolutionary process, one of the autoencoders has to be cho-
sen from the Pareto front to process the original data set to obtain a compressed
data set that is used in the second evolutionary process. A method is needed
that considers the trade-off between the compression ratio and the accuracy of
the autoencoders. This relies on MCDM, since the best autoencoder choice is
based on multiple, possibly conflicting, criteria (accuracy and compression) to
be optimized. There are many different existing algorithms that help in picking
a best solution based on multiple criteria. In this study, the preferred method
should be able to process any collection of solutions, as it is not known before-
hand what kind of autoencoders will be involved. TOPSIS is a straight-forward
and intuitive algorithm that can do this [5].
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User-provided weights are applied to each of the criteria of each solution,
allowing users to place emphasis on certain criteria. Then, the best and worst
possible solutions, called the positive ideal alternative and the negative ideal
alternative, are determined. In the context of convolutional autoencoders, the
positive ideal has an accuracy and compression ratio of 1.0, while the negative
ideal has an accuracy and compression ratio of 0.0. Finally, the ratio of L2

distance between solutions and the ideal alternatives determines which solution
is chosen.

The matter left open by this algorithm is that of the weights of criteria. Since
there are no previous results to draw conclusion from, the weights will initially
be set to equal values. The weights will depend on the relation between the
autoencoder compression ratio and the accuracy of the classification networks.

4 Experiments and Results

Experiments are performed on the popular CIFAR-10 data set [6]. It is one of the
most popular data sets for the evaluation of CNNs, meaning that its use makes
for easier comparisons with other approaches. It consists of 60000 images, split
into a training set of 50000 images, and a test set of 10000 images. 5000 of the
training set images are held out in a validation set, with the remaining 45000
images constituting the actual training set. These data splits are randomized
between experiments. Each image is a 32 × 32 RGB image, and is associated
with one of 10 labels, which indicate the object in the image. The classes are
evenly distributed over the training, validation, and test sets. In all experiments,
stochastic gradient descent with a momentum of 0.9 is used to train networks.
Training data is divided into batches of 50 samples, making for 1000 batches per
epoch. Each network is trained for 25 epochs. This setup is copied from the base-
line framework [10] in order to help facilitate comparisons. Each worker process
has access to an Nvidia Tesla K80 GPU. Concurrent access to the population
of networks is facilitated purely by a shared file system; worker processes to
not directly communicate with each other. By taking advantage of POSIX stan-
dards1, minimal parallel programming has been required [1]. The source code
and accompanying documentation is available online.2

4.1 Baseline Framework

Initially, the baseline framework is run to confirm its performance, and to inspect
its behavior in a more resource-restricted setting. The results of this experiment
are listed in Table 1. Perhaps the most surprising result here is that after 12 h,
5 worker processes have reached a much higher best classification accuracy than
250 worker processes. This may be partly because of the more limited available
mutations, which “focuses” the evolutionary process better in the early stages

1 http://standards.ieee.org/develop/wg/POSIX.html.
2 https://github.com/marijnvk/LargeScaleEvolution.

http://standards.ieee.org/develop/wg/POSIX.html
https://github.com/marijnvk/LargeScaleEvolution
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in the case of five worker processes. At the 24 h point, the baseline has best
accuracy. Nonetheless, this shows that even a very small number of workers
can be very effective at finding good neural networks. Figure 2 illustrates the
evolutionary process.

Fig. 2. Results of the reproduction of the baseline framework, run with five worker pro-
cesses. Each point indicates a completely trained CNN, color-coded by worker process.
(Color figure online)

4.2 Evolving Convolutional Autoencoders

The second experimental setting is the evolution of convolutional autoencoders.
After evolving over 900 autoencoders in a span of two days on a single worker
process, the status of the Pareto front is as in Fig. 3. The most telling structure
in the population is the appearance of vertical groups of autoencoders. These
groups share the same compression ratio. Generally those low in reconstruction
accuracy tend to have fewer convolutional layers compared to those with a higher
reconstruction accuracy. Their compression instead comes mostly from pooling
layers. Evolution quickly pushes networks towards very high compression ratios,
mostly due to the insertion of multiple pooling layers. Intuitively, however, it is
the autoencoders that have a more even trade-off between compression ratio and
reconstruction accuracy that are of most interest. These all have a fairly simple
structure, usually being not more than five layers in depth. This is due to the
nature of the training data. Images in the CIFAR-10 data set are already in com-
pressed form when they are presented to the autoencoders. This undoubtedly
reduces the effectiveness of the process step of evolving convolutional autoen-
coders.

At generation 507, an autoencoder is generated that clearly deviates from
the otherwise quite linear shape of the final Pareto front. This individual attains
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Table 1. Performance results for the baseline setup of the framework. Accuracy values
from the baseline study for the 12 and 24 h interval are derived from a figure and thus
are not precise. The baseline study did not report the number of generated networks.

Study # Workers Time elapsed (h) Best accuracy (%) # Networks

Baseline 250 12.0 ∼56.6 ?

Baseline 250 24.0 ∼86.9 ?

Baseline 250 256.2 94.6 ?

This study 10 12.0 72.32 848

This study 10 24.0 75.68 1197

This study 1 12.0 58.7 190

This study 1 24.0 59.7 299

a reconstruction accuracy of 70.3% while reducing the input size by two-thirds.
This autoencoder is expected to give the best results when we move to the last
step of evolving image classifiers.

(a) Pareto front (b) Full population

Fig. 3. Results of the evolutionary process after generation 915. Each point illustrates
a convolutional autoencoder, plotted by encoder compression and decoder accuracy.
Fronts are marked by color. A compression of 1 means that samples are reduced to a
single value. The individual chosen by TOPSIS is indicated by the dashed line. In the
left plot, the number indicates the generation of that individual (i.e. the number of
individuals that were generated before it). (Color figure online)

4.3 Complete Framework

The final setting combines both versions of the framework into a full approach
that is supposed to outperform the baseline framework in terms of computation
time at the cost of some accuracy. A number of representative autoencoders are
picked from the Pareto font of evolved autoencoders and used to encode the
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CIFAR-10 data set. Table 2 shows the chosen autoencoders and their character-
istics. As expected, the original data set results in the eventual highest classi-
fication accuracy. It is the data coming from autoencoder 507, the one which
shows most promise and that progresses most similarly to the baseline. While
the results are quite similar in terms of accuracy, the smaller, encoded data from
autoencoder 507 means that approximately 20% more networks are generated,
trained, and evaluated. For more heavily compressed data sets, this increased
number of generated networks is even higher, up to nearly 50%. As the number
of generated and evaluated networks in the same time frame has increased, we
have been able to increase the efficiency of the method. But on the other hand,
in all other cases the encoding of data causes a significant loss of accuracy and
early plateauing of evolutionary progress. It is clear that in the encoded setting,
the evolutionary process has a significantly faster turn-over of networks. Note
that this effect can be magnified if mutations are chosen in a more efficient way,
which gives each new network a higher probability of being an improvement in
terms of accuracy.

While the gains in this setting appear rather small, if applied to the baseline
study, they would likely result in time savings on the scale of days. As the
evolutionary process on classifiers is run longer, gains increase. After all, smaller
sample sizes means that each batch is processed faster, and reduces the need for
larger networks, which pushes down the average network size. Importantly, these
results also show that the initial fair weighing of compression ratio and accuracy
of the autoencoders for constructing the Pareto front is successful in determining

Table 2. Convolutional autoencoders (CAEs) sampled from the Pareto front. For each
CAE, its generation ID, compression ratio, and mean classification accuracy over 5
runs are listed (variance in parentheses). Also listed is the average number of networks
generated when evolving classifiers with training data encoded by this CAE. The last
two CAEs do not come from the Pareto front, but share the same compression rate
with the best CAE.

CAE generation Compression rate Accuracy (Var) #Generated

0 1.0 0.0 (0.0) 105.8

507 0.66 0.7028 (0.0004) 121.6

574 0.75 0.4289 (0.0004) 130.4

266 0.83 0.3710 (0.0003) 136.9

67 0.91 0.3054 (0.0003) 141.2

611 0.92 0.2255 (0.0003) 140.9

355 0.95 0.2123 (0.0003) 145.0

882 0.97 0.1885 (0.0003) 144.2

841 0.98 0.1493 (0.0002) 146.1

130 0.66 0.5650 (0.0004) 122.1

725 0.66 0.4271 (0.0003) 118.4
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the best autoencoder. Based on the results though, it may be advisable to weigh
the autoencoder accuracy somewhat heavier since high compression rates seem
to cause heavy plateauing. Note that TOPSIS can easily be run again on the
results of the evolution of autoencoders to obtain a differently-weighed result
quickly.

5 Conclusion

A framework for evolving the structure of convolutional neural networks is intro-
duced. Its main weakness is clearly the large amount of computational resources
that are required to obtain networks with competitive accuracy. A method to
remedy this weakness is proposed in this paper in the form of a two-step process.
It consists of applying the baseline framework to the evolution of convolutional
autoencoders in the hope of reducing the sample size of the input data. This
makes any subsequent training of networks cheaper and helps in limiting their
size.

A significant result is the viability of much smaller number of worker pro-
cesses than previous studies demonstrated. This gives confidence in the other
results of this study, and in future work with this framework. Experiments
that investigate the impact of the new framework show the trade-off between
compressing the input data and maintaining classification accuracy. The initial
weighing of autoencoder accuracy and compression rate is deemed successful,
while some tuning may help if the framework has to be used for other data sets.
Although the experiments were necessarily limited in scope due to the available
computational resources, the results indicate that this extended approach would
result in significant running time reductions when applied at larger scales, both
in terms of input size and computational time spent.

5.1 Future Work

The fundamental nature of the proposed work means that there are many more
directions to explore. Mentioned here are some the more interesting ones.

More Complex Data Sets: As already mentioned before, the CIFAR-10 data
set used in this study consists of images that are already compressed significantly.
This naturally decreases the effectiveness of any convolutional autoencoder that
attempts to reduce the image size further. Running the extended framework on
a data set of larger images can realistically be expected to result in a much larger
impact of the step that evolves the autoencoders.

Beating Humans at Their Own Game: The initial population for the evo-
lutionary process does not necessarily have to consist of very simple networks.
An interesting application is to take state-of-the-art, human-designed networks
as the individuals for the initial population.

Adaptive Mutations: The availability of mutations affects the efficiency of the
overall evolutionary process. Different kinds of mutations will be more or less
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likely to improve performance at different points in that process. The process
would benefit from some sort of adaptive mutation choosing process, whereby
mutations are sampled in a weighed fashion, perhaps even completely excluding
some mutations at certain points in the process.

Learning How to Evolve: Given similar tasks, image classification for exam-
ple, the evolutionary process can be expected to behave somewhat similarly in
terms of which mutations are most effective at what points in the process. By
adding a layer of abstraction on top of the evolutionary process which keeps
track of this, it may be possible to learn how to best evolve networks given a
task.

Constrained Evolution for Constrained Networks: There are various sit-
uations, most notably in embedded systems, where compact networks are very
desirable. The framework can easily be adapted to only consider a smaller solu-
tion space that can be limited in a variety of ways by placing additional con-
straints on the success of a mutation.

Acknowledgements. Research leading to these results has received funding from
the EU ECSEL Joint Undertaking under grant agreement no. 737459 (project Produc-
tive4.0) and from Philips Research.
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Abstract. Data analytics methods in the clinical domain are challeng-
ing to put into practice. Unsupervised learning provides opportunity for
giving the level of personalization in evidence based decision-making that
can otherwise only be achieved through the use of prediction models, by
helping doctors gaining insights from data. In this context, grouping of
clinical subjects, in terms of biomedical information of patients, is an
important task for patient cohort identification for comparative effec-
tiveness studies and clinical decision-support applications. It allows the
decision-making process to leverage not only on data but also on doctors’
domain knowledge. However, one of the issues that needs to be addressed
for a focused and realist unsupervised clustering of clinical subjects, is
the fact that in the majority of the cases patients datasets are heteroge-
neous, i.e. their data features belong to several different feature spaces,
e.g. nominal, ordinal, interval or rational, with completely different varia-
tion ranges and statistical distributions, affecting clustering quality and
performance. In order to use these data measurements properly in an
unsupervised manner, their corresponding weights need to be modeled.
In this paper, we present a method for learning feature weights on clini-
cal data. We show that learning feature weights is necessary in order to
generate meaningful separation of data in high dimensional space. The
method is based on silhouette score and principal component analysis,
demonstrating its performance on a clinical test dataset.

Keywords: Patients data clustering · Features engineering ·
Principal component analysis · Optimization · Local search ·
Parameters tuning

1 Introduction

With the widespread adoption of electronic health records (EHRs), patient data
storage is becoming digital and standardized, paving the way for data analytics.
Data analytics is a broad concept encompassing methods for gathering, storing,
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and cleaning data, as well as describing, modeling and interpreting informa-
tion, which is needed for exploring possible interrelations, and for confirming, or
disproving, a hypothesis.

As data collection in clinical practice is also becoming digital and standard-
ized, it becomes possible to extract additional knowledge by performing data
analysis techniques. This allows for types of explorative analysis where it is not
necessary to define a hypothesis and/or the type of data that needs to be col-
lected to test the hypothesis beforehand, as is the case with clinical trials. In
this way it is possible get an earlier insight generation from new data arising,
e.g. from new treatments, improvements on devices for imaging, better image
analysis techniques, or new diagnostic tests.

In this context, clustering of clinical subjects (e.g. biomedical information of
patients) has been shown to be a useful data analysis technique. It is indeed a
regular activity in clinical practice to define the best treatment options for a
given patient [8]. Although this is widely an empirical process using the physi-
cian’s experience, automatic systems can enhance the doctor ability to choose
a treatment by analysing a much larger amount of patients even outside of the
doctors network, which is of high importance in the context of modern clinical
decision support systems.

Clustering of similar patients is therefore an important task, e.g., in the con-
text of patient cohort identification for comparative effectiveness studies and
clinical decision-support applications. In this context it is not given a-priori an
output to tune the patients grouping or to make predictions and classification,
but it is necessary to rely only on unsupervised clustering. The goal is to derive
clinically meaningful distance metrics to measure the similarity among a given
patients dataset. Unsupervised patients clustering still remains a complex and
daunting task. As proven in [15,16], popular clustering metrics, like the average
Silhouette width [11], do not usually reach high levels on unsupervised clustering
tasks related to patients data, since it is always very hard to derive an appro-
priate and consistent measure of similarity, or dissimilarity, among individuals.
This is due to the excessive requirements of domain knowledge and the multi-
ple variables involved: the question whether two patients are similar or not is
always very hard to answer, even for experienced medical experts [15,16]. In the
real-world how to come up with consistent patients similarity measures and the
related classifications remain critical open issues.

The fundamental starting point for any clustering approach is the assump-
tion that a data object can be represented as a high-dimensional feature vector.
In many traditional applications, all the features (i.e. variables or characteris-
tics) are essentially of the same “type”, and determination of appropriate fea-
ture spaces is often clear. If two features can be treated as homogeneous, we
should only reluctantly treat them otherwise. However, many emerging real-life
datasets often consist of several different feature spaces, like it is in the case in the
biomedical domain for patients clustering. Here, indeed, it is needed to deal with
both clinical and pathology features, with quantitative measurements belonging
to completely different domains, and with completely different variation ranges
and statistical distributions.
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A necessary condition for a set of scalar features to be homogeneous is
whether an intuitively meaningful symmetric distortion can be defined on them.
A distortion between two data objects is defined as a weighted sum of suit-
able distortion measures on individual component feature vectors, where the
distortions on individual components are allowed to be different [12]. Instead,
a sufficient condition for two sets of features to be considered heterogeneous
is whether, after clustering the dataset, it is possible to interpret the obtained
clusters along one set of features independently of the clusters along the other
set of features or, conversely, whether it is possible to study “association” or
“causality” between clusters along different feature spaces.

When tackling the problem of clustering of a heterogeneous clinical subjects
dataset, there is then the need of a measure of distortion between each of the
features of the patients data. Since different types of features may have radically
different statistical distributions, in general, it is unnatural to disregard funda-
mental differences between various different types of features and to impose a
uniform, unweighted distortion measure across disparate feature spaces. There-
fore, a practical issue when clustering heterogeneous patient datasets is how to
determine the various feature spaces. In general, optimal feature weightings can-
not be empirically computed using classic existing clustering approaches since it
is a form of gradient-descent heuristic, susceptible to local minima. It is common
therefore to end on a resulting clustering with a very low number of clusters, mis-
classifying patients that are radically different as belonging to the same group.
Figure 1 shows an extreme example of such a situation, where a single cluster
containing all the patients data is produced.

In this paper we propose a method for grouping similar patients which is
able to learn patient feature weights so that they can be used on top of classic
existing clustering algorithms, like, e.g., k-means [18] or hierarchical clustering
[2], to derive a calculated weighted distortion measure among the input patients
dataset. The method tackles the issue of weighting appropriately features of
clinical subjects data coming from a multidimensional space, allowing to better
separate those clinical subjects data and to improve the overall performance of
clustering algorithms applied on the given patients data.

The rest of the paper is organized as follows. In the following section we
provide some background material related to the influence of biases on clinical
data modelling, and on the use of unsupervised machine learning as a potential
solution (Sect. 2). Section 3 presents the proposed method of clustering or group-
ing subjects that are similar to one another. The method is based on silhouette
score and principal component analysis, and its performance is demonstrated on
a clinical test dataset (Sect. 4). The paper ends with conclusions and directions
of future research in Sect. 5.

2 Background on the Influence of Biases on Clinical Data
Modelling

While there is a great focus in the domain of statistical analysis on identification
and prevention of bias, the risk of introducing bias into a clinical model remains
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Fig. 1. Example of a single cluster containing all the patients.

high, especially in the domain of clinical data analysis, where there are often
many features which may influence outcome and features are sparsely collected.
For example, in oncology, survival is one of the main outcomes that is measured
in order to determine successfulness of a treatment. However, as cancer patients
are often older, survival is also influenced largely by comorbidities which can
have a wide range. As comorbidities can also influence eligibility for certain
treatment types, not taking into account comorbdities may therefore confound
the results of a model towards suggesting that one treatment is better than the
other, while the first treatment was given to healthier patients than the second.

This bias can take extreme forms, where trends found in the data may be
reversed when the confounding variable is included in the model. Consider for
example two hospitals A and B performing surgery. Looking at the outcome in
terms of survival, hospital A may seem to be outperforming hospital B. However,
if we include the type of surgery, heavy or light surgery, in the model, we may
find that hospital B is performing more heavy surgeries and given the proportion
of heavy surgeries, hospital B may be outperforming hospital A.

On the other hand, the inclusion of more features is not without problems.
For example, in oncology, new developments in immunotherapy require assess-
ment of genetic mutations in the tumor. Genetic data is highly dimensional and
not measured for all patients, leading to sparse data. Highly dimensional data
is subject to the curse of dimensionality. The curse of dimensionality means
that predictive power of models decreases rapidly as the number of dimensions
increases, due to the fact that it becomes easier to find coincidental relations.

Sparseness of data requires thorough thought on how to deal with missing
values. Simply removing incomplete cases will lead to an extreme reduction of
the data set and in many cases there might not even be a single complete case. So
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some form of imputation is necessary, taking into account the fact that missing
values are most probably not missing at random but due to the fact that a
certain measurement is not done for a patient for a reason (e.g. genetic testing is
not done for early stage cancers). Dimensionality might even cause problems in
outcome data, as treatment efficacy measures are moving more towards quality
of life as a combination of outcomes such as survival, side effects and patient
reported outcomes through questionnaires.

Another risk of bias in clinical data modeling is that conventional methods
assume that all variables or characteristics are statistically similar, for example,
having a similar range or having similar variation ranges and statistical dis-
tributions. However, subject data is usually heterogeneous, and different data
therefore tends to belong in different domains with a high degree of statisti-
cally dissimilarity. This leads to poor performance on conventional clinical data
modeling methods. Clinicians have therefore started to employ automated or
unsupervised “machine learning” methods for classical data modeling tasks, like,
e.g., for grouping clinical subjects. Indeed, due to the typically large number of
variables or possibly influential characteristics of a subject, it is difficult for even
the experienced clinician to determine whether two subjects are similar or not.

Unsupervised machine learning is the machine learning task of inferring a
function to describe hidden structure from “unlabeled” data (a classification or
categorization is not included in the observations). Since the examples given to
the learner are unlabeled, there is no evaluation of the accuracy of the structure
that is output by the relevant algorithm, which is one way of distinguishing
unsupervised learning from supervised learning and reinforcement learning. A
central case of unsupervised learning is the problem of density estimation in
statistics [7], though unsupervised learning encompasses many other problems
(and solutions) involving summarizing and explaining key features of the data.
As stated in [4], we need to solve the unsupervised learning problem before we
can even think of getting to true Artificial Intelligence.

3 Optimization Approach for Unsupervised Features
Engineering of Clinical Subjects

In this section we describe the technical features of the proposed method for
similar patients clustering, which is able to learn patient feature weights so that
they can be used on top of classic existing clustering algorithms to derive a
calculated weighted distortion measure among the input patients dataset. The
proposed method consists of the following main components (see also Fig. 2):

1. A clustering algorithm;
2. An optimization strategy, able to adjust iteratively the weights of the patients

features so that the clustering quality of the patients is improved;
3. An evaluation mechanism of the quality of the patients clustering by means

of appropriate quantitative clustering metrics;
4. A procedure able to learn the feature weights at each iteration in order to

guide the optimization strategy towards improved patients grouping.
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These components, which are described in the following, represent new under-
standings on the features engineering task for improved patients clustering and
similar patients concept.

Fig. 2. Diagram of the main components of the proposed method for similar patients
grouping.

We are given in input a dataset of patients data, including clinical and pathol-
ogy features belonging to completely different domains, and with completely
different variation ranges and statistical distributions. Each such feature, j, is
referred to as Fj .

Consider now a generic patient i, referred to as:

Pi = [Fi1;Fi2; ...;Fij ; ...Fin].

The whole matrix of patients is therefore:

P = [F1;F2; ...;Fj ; ...Fn].

The aim of the system is to find the set of feature weights, w, that provide
an improved clustering, i.e.

P = [w1F1;w2F2; ...;wjFj ; ...wnFn] = w · F
so that to have a better representation of the data.

Although the proposed method supports any kind of clustering approach sen-
sitive to perturbation [12], we consider the classic k-means [18] as an example.
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Fig. 3. Flow-chart of the clustering system for similar patients grouping.

The optimization strategy in (2) can be any approximate optimization approach
producing high-quality results, ranging from basic routines to more advanced
metaheuristics [3], like, e.g. Genetic Algorithms [5], Particle Swarm Optimiza-
tion [14], or Simulated Annealing [1]. In our case it is enough to use a classic
local search heuristic [10,13] as the optimization routine to achieve already good
performance.

In Fig. 3 it is provided a flowchart of the algorithm. At the initial step, all the
weights are set equal to one, i.e. w = [1; 1; ...1]. Then we iteratively perform a
perturbation [12] of these weights (procedure PERTURBATION(w′)), obtaining
a new set of weights, w′′. If the new set of weights leads to a distortion, F ′′, which
improves the separability of the dataset with respect to the objective function
value, then the perturbation is accepted and the new solution F ′′ becomes the
new incumbent one, otherwise the move is rejected.

At each iteration, we evaluate the quality of the patients clustering (i.e.,
Component (3) of the system) using, for example, but not limited to, the average
Silhouette width and the Dunn Index [11]. The iterations of the optimization
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routine proceed until the user-defined stopping conditions, such as, classically,
maximum allowed CPU time, maximum number of iterations, maximum number
of iterations between two improvements, or Silhouette width of at least 0.5, are
satisfied. In this way, the integration of the multiple feature spaces into the
k-means clustering algorithm is obtained [9].

The last component of the system, i.e. Component (4), is the procedure
used to guide the optimization strategy towards an overall improvement of the
patients data clustering. This is the crucial routine behind the procedure PER-
TURBATION( ·) in the local search and, in our case, we guide it by means of
principal component analysis (PCA) [6]. The results of a PCA are usually dis-
cussed in terms of component scores, sometimes called factor scores (the trans-
formed variable values corresponding to a particular data point), and loadings
(the weight by which each standardized original variable should be multiplied
to get the component score) [6]. This is the main motivation why we propose to
employ PCA to learn feature weights as an alternative simply to a random walk.
In particular, we set the perturbation of the feature weights at each iteration
as a random proportion of the loadings of the first two principal components,
i.e. the two components that explain most of the variance in the dataset at that
iteration. Randomness in the heuristic search, a basic features of any heuristic
optimization approach in order to allow a fair diversification capability in the
whole search procedure, is still guaranteed by the non-deterministic selection
between the most influential two principal components at each step, and also by
the random proportion of the loadings of the selected component. More formally:
ci,j/r, where i = 1, 2 indicates the principal component selected (among the first
two most influential components), j = 1, .., n indicates the related loading, and
r ∈ [0, 1] is a random double number selected between 0 and 1.

4 An Experiment Showing the Potential of the Method

In the following we report the results of an experiment concerning the application
of the described procedure on an artificial dataset of patients with risk of prostate
cancer tumors who underwent radical prostatectomy [17]. This dataset includes
the following clinical and pathology features: age at surgery, prostate specific
antigen (PSA) density, percentage of positive biopsy cores, primary and second
biopsy Gleason scores, and clinical stage, among others.

When we apply the k-means clustering at the first iteration, we have not a
clear separation of data, as shown by the Bivariate Clusters plot, also known
as Clusplot, and Clusters Silhouette plot shown in Figs. 4 and 5, respectively.
Clusplot is a graphical display method in which the objects are represented as
points in a bivariate plot and the clusters as ellipses of various sizes and shapes.
All observation are represented by points in the plot, using principal components.

Quantitatively a clustering is commonly accepted as a satisfying one if the
obtained Silhouette score is above 0.5. As shown in the figure, the Silhouette
score is much below this threshold (i.e. 0.2 on average), which suggests a poor
separation of data for the produced three clusters.
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Fig. 4. Bivariate Clusters plot (Clus-
plot) at iteration = 1

Fig. 5. Clusters Silhouette plot at iter-
ation = 1

Iterating our procedure, the clustering is improved. Figures 6 and 7 show the
Clusplot and Clusters Silhouette plot at twelfth iteration. Now we obtain twelve
different clusters with a better average Silhouette width, which is equal to 0.4;
data are gaining a better separation. Continuing the iterations, the algorithm
stops after few minutes at iteration 21, giving finally the Clusplot and Clusters
Silhouette plot showed in Figs. 8 and 9.

We may see how clustering is evidently improved, producing now twelve well-
separated clusters with an average Silhouette width equal to 0.51. The reported
experiment shows a quantitative evaluation of the proposed features weighting k-
means clustering. The method is able to obtain clusters of data with similar mean
features, e.g. clinical stage, PSA density, prostate volume, etc., that are then
representative of data with similar characteristics and more easily interpretable
too.

Fig. 6. Bivariate Clusters plot (Clus-
plot) at iteration = 12

Fig. 7. Clusters Silhouette plot at iter-
ation = 12
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Fig. 8. Bivariate Clusters plot (Clus-
plot) at Iteration = 21

Fig. 9. Clusters Silhouette plot at iter-
ation = 21

The obtained results demonstrates the feasibility of the method and its capa-
bility of producing meaningful groups of similar patients. These resulting groups
of patients are well-separated each other instead of being misclassified in large
agglomerations. The patients in each group are spreading within pairwise sim-
ilarity boundaries, guarantying to place patients that are radically different in
other, well-separated groups.

5 Conclusions

When tackling the problem of grouping heterogeneous clinical subjects contain-
ing biomedical information of patients, there is the need to measure the distortion
between each of the features of the patients data. Popular clustering metrics, like
the average Silhouette width, do not usually reach high levels on unsupervised
clustering tasks related to patients data, since it is always very hard to derive an
appropriate and consistent measure of similarity, or dissimilarity, among indi-
viduals. This is due to the excessive requirements of domain knowledge and the
multitude of the involved variables: the question whether two patients are similar
or not is always very hard to answer, even for experienced medical experts.

In this paper we described the details of an optimization algorithm which
generalizes the classical k-means algorithm to derive a calculated weighted dis-
tortion measure for clustering clinical subjects. This optimization routine is a
classic local search that, by using principal component analysis at each itera-
tive step, determines the optimal feature weighting, within computational and
heuristic constraints, to be the one that yields the “best” clustering according
to both average Silhouette width and Dunn index. In this way, the gathered
clustering simultaneously minimizes the average within-cluster dispersion and
maximizes the average between-cluster dispersion along all the feature spaces.
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The proposed method can be used in the context of any unsupervised clini-
cal decision support system where physicians analyse similar patient groups to
make a more precise and accurate diagnosis or treatment selection. The proto-
type presented in this paper has demonstrated its high potential for improving
prostate cancer patient clustering.
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Abstract. Many would argue that the currency of research is citations;
however, researchers and funding organizations alike are lacking tools
with which they can explore how this currency translates to funding
opportunities. Motivated by this need, in this paper we address one of
the fundamental problems facing the development of such a tool, namely
the problem of automatically extracting funding information from scien-
tific articles. For this purpose, we experiment with a two-stage framework
which ingests text, filters paragraphs which contain funding information,
and then combines sequential learning methods to detect named enti-
ties in a novel ensemble approach. We present a comparative analysis of
each independent component of this pipeline, named FundingFinder, the
results of which indicate that the said pipeline can extract the funding
organizations and the associated grants, from scientific articles, accu-
rately and efficiently.

1 Introduction

The US Government’s policy says that all federal funding agencies must ensure
public access to all articles and data which result from federally-funded research,
as a result of which, institutions and researchers are required to report on funded
research outcomes, and acknowledge the funding source and grants. This infor-
mation, if captured effectively from scientific text, will enable funding organi-
zations to be in a position to trace back these acknowledgements and justify
the impact of their allocated research funds to their stakeholders and tax-payers
alike. At the same time, this information will also help researchers discover appro-
priate funding opportunities for their scientific interests.

In this paper we address the problem of automating the extraction of funding
information from text, using natural language processing and machine learning
techniques. We present FundingFinder, a pipeline that is engineered to accept
a scientific article as input, and provide the detected funding organizations and
associated grants as output annotations. All of the experiments done for the
purposes of evaluation were performed on a benchmark dataset that was created
exclusively for this purpose, a part of which we release publicly1.
1 https://drive.google.com/file/d/0B2RjZ7vHfzMldDVZUzQ4eUNkbkU/view?

usp=sharing.
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2 Background

2.1 Problem Definition

Given a scientific article as raw text input, the automated extraction of funding
information from text performs two separate tasks: (1) identify all text segments
which contain funding information, and (2) process all the funding text segments
in order to detect the set of the funding bodies, denoted as FB, and the set of
grants, denoted as GR that appear in the text. Provided that there is train-
ing data available, the former task can be seen as a binary text classification
problem, whereas, the latter task can be seen as a named entity recognition
(NER) problem. In the following section we give a small overview on existing
state-of-the-art NER methods, which form the background for the current work.

2.2 Named Entity Recognition

Named entity recognition (NER) extracts information, known as named entities,
from unstructured text; for example, the names of persons, locations and organi-
zations. In this work, entities fall into the category of either Funding Bodies (FB)
or Grants (GR). As an example, given a text of the form: “The authors would
like to thank the National Funding Foundation for grant number FF-1234”, we
wish to label “National Funding Foundation” as a FB and “FF-1234” as GR.
In literature, NER systems have been found to employ rule-based, gazetteer
and machine learning approaches, a detailed survey of which can be found in
the work of Nadeau et al. [8]. In this work, we near-exhaustively utilize several
sequential learning approaches for NER, as discussed next.

Sequential Learning Approaches. Sequential learning approaches model the
relationships between nearby data points and their class labels, and can be clas-
sified into generative or discriminative. In the context of NER, Hidden Markov
Models (HMMs) are popular generative models that learn the joint distribution
between words and their labels [11]. A HMM is a Markov chain with hidden
states, and in NER the observed states are words while the hidden states are
their labels. Given labelled sentences as training examples, NER HMMs find
the maximum likelihood estimate of the parameters of the joint distribution, a
problem for which many algorithmic solutions are known. Conditional Random
Fields (CRFs) are discriminative, in contrast to HMMs, and find the most likely
sequence of labels or entities given a sequence of words. The relationship between
the labels is modelled by a Markov Random Field. Linear chain CRFs are well
suited to sequence analysis and have been applied successfully in the past in NER
[6]. Finally, another way of modelling data for NER, although not sequential, are
Maximum Entropy (MaxEnt) models, which select the probability distribution
that maximizes entropy, thereby making as little assumptions about the data
as possible. Maximum entropy estimation has also been successfully applied to
NER in works such as [1].
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State-of-the-Art Toolkits for Information Extraction. Several open-
source toolkits implement one or more of the learning approaches mentioned
in the previous paragraph. The Stanford CoreNLP toolkit2, for example, has a
CRF implementation, enhanced with long-distance features to capture more of
the structure in text. An important feature of the toolkit is the ability to use
distributional similarity measures, which assume that similar words appear in
similar contexts [3]. Additionally, the toolkit also has pre-trained models for rec-
ognizing persons, locations and organizations. LingPipe3 is another NLP toolkit,
whose efficient HMM implementation includes n-gram features. Finally, in this
work we also use the Apache OpenNLP4 toolkit, which has a MaxEnt imple-
mentation for NER.

Apart from the aforementioned open-source tools, this work makes use of
Elsevier’s Fingerprint Engine (FPE )5, which is an industrial solution for anno-
tating text with ontological concepts, given a vocabulary.

2.3 Related Work

Not much literature exists that is aimed at systematically exploring the concept
of extracting funding information from the full text of scientific articles. A close
category of related published research aims at extracting names of organizations
from affiliation strings, e.g., the works of Jonnalagadda et al. [5], and Yu et al.
[10], both of which aim at extracting names of organizations from the metadata
of published scientific articles. The work by Giles et al. [4] is also noteworthy, as
it aims at automatically tagging acknowledgment sections from text, in order to
combine acknowledgment analysis with citation indexing. All of these works use
regular expressions to extract the relevant entities from text.

Apart from the aforementioned published works, there are also several ini-
tiatives that started recently and are aiming at a similar direction to the current
work, such as the ERC project “Extracting funding statements from full text
research articles in the life sciences”6.

3 Methodology

3.1 Overview

Our approach receives the raw full text of a scientific article as an input, and
annotates the text with entities corresponding to Funding Bodies (FBs) and
Grants (GRs), where present. A two-stage search strategy for finding FB and GR
entities in text has been devised: (1) The first step starts by splitting the input
text into paragraphs and feeding them sequentially to a binary text classifier that

2 http://stanfordnlp.github.io/CoreNLP/.
3 http://alias-i.com/lingpipe/demos/tutorial/read-me.html.
4 https://opennlp.apache.org/.
5 https://www.elsevier.com/solutions/elsevier-fingerprint-engine.
6 http://cordis.europa.eu/result/rcn/186297 en.html.

http://stanfordnlp.github.io/CoreNLP/
http://alias-i.com/lingpipe/demos/tutorial/read-me.html
https://opennlp.apache.org/
https://www.elsevier.com/solutions/elsevier-fingerprint-engine
http://cordis.europa.eu/result/rcn/186297_en.html
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detects paragraphs that may contain any funding information. (2) The second
step involves performing NER only on the filtered text paragraphs, to annotate
them with FB and GR labels.

This two-step design has the following benefits: (1) It minimizes the execu-
tion time of the approach as the costliest component, namely NER, can now be
executed on only a small selection of paragraphs, in which the binary text clas-
sifier has detected evidence of funding information. (2) It reduces the number
of false positives, as there are many text segments in a scientific full text article
that contain strings which a NER component could potentially annotate falsely
as FB, e.g., the organisation names in the affiliation information of the authors,
or GR, e.g., scientific formulae in text.

3.2 Data Collection

In this work, supervised NER algorithms are used for entity extraction. Since
they are supervised, labeled data is needed to train the algorithms. The process
of gathering data is described next.

The “Silver” Set. NER requires manually annotated training data, which is
expensive and time-consuming to collect. Though we have created such a “gold”
dataset, as explained next, we have also explored the creation of a “silver”
dataset by collecting unannotated data for training, in order to examine whether
for this application the costs for collecting additional training data could be
minimized. The process is as follows:

1. 100, 000 full text articles were randomly selected, from various journals pub-
lished in the last 10 years, from ScienceDirect7, a large scientific article
database.

2. The articles were analyzed for the presence of an acknowledgement section.
If present, such a section was extracted under the assumption that often the
information about the funding of the research work is mentioned here. A total
of 60, 271 acknowledgement sections were extracted.

3. Elsevier ’s Fingerprint Engine (FPE ) was used on these sections to annotate
FBs using the CrossRef’s Open Funder Registry8 as the vocabulary, which
contains 12, 928 funding organizations, both active and defunct.

4. As it contains abbreviations to several funding organizations, many false pos-
itives can be found in the results of this process, e.g., funding organisations
that carry person’s names were often mixed with real persons mentioned
in the acknowledgements. To clean the dataset, a pre-trained 4-class NER
model, provided with the Stanford CoreNLP toolkit, was used to detect per-
son names from the same sections, and the overlapping annotations between
the two aforementioned detections were removed as noise.

5. At the end of this step, the number of retained sections with at least one
annotated FB resulted in 44, 660, which constitute the “silver” dataset.

7 http://www.sciencedirect.com/.
8 http://www.crossref.org/fundingdata/registry.html.

http://www.sciencedirect.com/
http://www.crossref.org/fundingdata/registry.html
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The set was used for two purposes: firstly, learning the word clusters for
the distributional similarity measure that can be employed within the Stanford
CoreNLP toolkit; this was done by using the popular Word2Vec algorithm by
Mikolov et al. [7], followed by k-means clustering to create the clusters, based
on cosine-similarity. Secondly, it was used to train NER models for detecting FB
labelled entities.

The “Gold” Set. A “Gold” set was also created for benchmarking, i.e., a
manually curated and annotated set of scientific articles with FB and GR labels,
the details of which were as follows:

1. 1, 950 journal articles were picked randomly from a large number of scientific
publishers, and sent to be annotated by three different professional annota-
tors.

2. The annotators were provided with comprehensive guidelines, explaining the
process and the entities, and examples.

3. A harmonization process took place, merging the annotations of the three
experts; when all three agreed, annotations were automatically harmonized,
whilst the disagreements between the annotators were resolved manually by a
subject matter expert. From the 1, 950 articles, 1, 682 contained at least one
funding-related annotation. As for the individual entities, a total of 4, 537 FB
and 3, 156 GR annotations exist in the set.

4. In order to check the quality of the prepared dataset, pair-wise averaged
Cohen’s kappa [2] was used to calculate the inter-annotators agreement, which
for this set was measured at 0.89, suggesting a high-quality dataset.

The “gold” set was used for two purposes: (1) to train the binary text classifier
that detects the paragraphs of text which contain funding information, and (2)
to train the NER components that detect FB and GR entities.

A summary of the “gold” set is provided in Table 1.

Table 1. A summary of the “gold” set.

Property Numeric value

Documents 1950

Documents with funding annotation 1682

Paragraphs with funding information 1682

Paragraphs without funding annotation 47565

Funding bodies (FB) 4537

Grant IDs (GR) 3156

3.3 Detecting Text with Funding Information

As the first step of the proposed annotation framework, the text segments which
contain funding information are to be separated from the rest. As explained in
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Sect. 2.1, this problem can be formulated as a binary text classification prob-
lem. To address this problem, we have adopted in this work the usage of Sup-
port Vector Machines (SVMs), which are known to perform favourably on text
classification problems. More precisely, an L2-regularized linear SVM has been
used, operating on TF-IDF vectors extracted from the segments of each input
text, based on a bigram bag-of-words text. As text segments, the input text
paragraphs were used. The SVM was trained on the examples of positive and
negative segments, i.e., paragraphs with and without funding information, which
could be found in the “gold” set described in the previous section.

Data: Trained annotators A, Set of annotated training text sections S
Result: Trained logistic regression R
Let us initialize an empty set of features F and labels L;
do

do
Use annotator Aj to annotate Si, producing a set of annotations Nj ;
Let the unique pool of all such annotations be Ui;

while Aj ∈ A;
do

Initialize a vector V of length |A| filled with 0s;
If Uk ∈ Nj , then Vj = 1. Do this for all j;
Append V to F;
If Uk is a true annotation for Si, append “positive” to L, else “negative”;

while Uk ∈ Ui;

while Si ∈ S;
Train R using F and L;

Algorithm 1. FundingFinder: Ensemble learning of base approaches for text
annotation

3.4 Extracting Funding Information

Base Models. In order to annotate a piece of text with FB and GR labels,
a variety of models were used: trained on the “gold” set, the “silver” set, or
pre-trained models available in the toolkits. For FB labels the following models
were used as base models: (1) pre-trained models packaged as part of the Stan-
ford CoreNLP and LingPipe suites; in this work they were used to identify the
“Organization” labels in the text, which were then stored as FB, (2) Stanford
CRF, LingPipe HMM and OpenNLP MaxEnt models trained on the “silver set,
and on folds of the “gold set, as a part of the 10-fold cross validation process we
adopted for the experimental analysis, and, (3) Stanford CRF classifiers using
distributional similarity features based on the word clusters created from exter-
nal data, as described in Sect. 3.2, trained on the “gold” set, using the same folds
as described in the previous point. For the GR labels the following base models
were used: (1) a rule-based approach, considering every word inside the funding
section with at least a digit, as a grant ID, and (2) Stanford CRF, LingPipe
HMM and OpenNLP MaxEnt models trained on the “silver” set and on folds
of the “gold” set, as was the case with the FB labels.
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Fig. 1. An example of the ensemble approach for extracting funding information from
text.

Ensembling. The base annotators described in the previous section are all
examples of supervised learning algorithms or rule-based approaches. Ensemble
learning combines the hypotheses from the different base approaches, in order
to learn how to formulate a better hypothesis which takes the best of all (under-
lying) worlds, improving performance [9]. In this work we use a novel supervised
ensembling mechanism for text annotation, using stacked generalization, such
that the final classifier is a logistic regression model. In this approach, all of the
annotated entities that are returned by the base annotators are first put in a
pool, constructed by keeping all the unique entities across the annotators. Next,
for each of the entities in the pool, a binary feature vector is constructed, based
on whether it was positively identified by the respective annotators. The class
label for the feature vector is positive if it is found to be a true positive from the
training data, and negative if it’s a false negative. The exact steps followed to
train the ensemble mechanism are described in Algorithm 1. To give an example,
let us consider the following piece of text:

The research on which this paper is based has been financially supported by the
National Natural Science Foundation of China, and the China Scholarship Council.

We would like to thank Tongji University for its resources.

In this example, the manually labelled terms are National Natural Science
Foundation of China and China Scholarship Council as FB, but not the term
Tongji University which is also an organization name, but in this case it is not
acting explicitly as a FB according to the text. The ensemble’s training process
begins by annotating this piece of text using the base annotators. In this real
example, the Stanford CRF base model annotates both entities correctly, the
HMM model annotates the China Scholarship Council but misses the National
Natural Science Foundation of China by wrongly annotating National Natural
Science Foundation as FB, the OpenNLP implementation of the MaxEnt model
also annotates the China Scholarship Council but confuses Tongji University
as FB, and finally, the Fingerprint Engine misses China Scholarship Council,
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Fig. 2. Schematic showing the overall pipeline.

possibly because it is not part of the vocabulary used by the engine. Thus,
we have four unique labels from all the annotators: National Natural Science
Foundation of China and China Scholarship Council, which are both correct, and
National Natural Science Foundation and Tongji University, which are wrong.

For each of the unique annotation, a vector with binary values is produced.
In this example case, such a vector, for a single annotation, would have four
components. Each component corresponds to a base annotator has a value of 1,
if this annotation has been performed correctly by the respective base annota-
tor, and 0 otherwise. In this specific example, the vector corresponding to the
label National Natural Science Foundation of China will be: [1, 0, 0, 1], since the
Stanford CRF model and the FPE correctly identified it, but the HMM and
the MaxEnt models did not. The class label of this data point is positive, as it
has been manually labelled so. On repeating this process for all of the labels in
the pool, we get a matrix of values where each row corresponds to the vector of
values for an annotation label in the pool, and the features are binary values and
correspond to whether a particular base annotator correctly identified that spe-
cific annotation label in the text. This data matrix is used for training a logistic
regression model, which acts as the ensemble model. The process is illustrated
in Fig. 1, while Fig. 2 shows the end-to-end pipeline.

4 Experiments and Results

In the following we present the experimental results on evaluating the different
components of the pipeline. For the comparison of the alternative approaches,
the micro-averaged measures of Precision (P), Recall (R), and F1-score (F1 )
were used.

4.1 Detecting Text with Funding Information

The results shown in Table 2 are obtained using a 10-fold cross-validation scheme,
on the “gold” set data, described in Sect. 3.2. The results of two SVM setups
are presented on the positive class: a linear SVM, and an L2 -regularized SVM
with the regularization (C) parameter set to 2, which makes the SVM robust
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Table 2. Results for the identification of text with funding information using SVM.

Section P R F1

SVM 99 5 9

L2-SVM (C = 2) 95 85 90

against overfitting. The difference in the F1 score is very big, indicating the
problems faced in this case in the application of SVM in highly imbalanced
sets. The “gold” set is highly skewed towards the negative examples of text
containing funding information, leading the baseline linear SVM to very low
recall levels. When switching to the L2-SVM, the model is now not affected by
this skewness, which is also depicted by the much higher recall, at a very small
precision cost. Therefore, these results indicate that the detection of text with
funding information is possible, with an F1 score at 90%, using an L2-SVM as
a trained model.

4.2 Extracting Funding Information

Tables 3 and 4 present the results of the annotation of FB and GR respec-
tively, on the text segments which contain funding information, and which were
identified by the previous step of the process. The tables present the results
from all approaches discussed in this paper, and compare them against the sug-
gested FundingFinder approach, which ensembles the base annotators in a novel
manner. Besides two approaches listed as FPE and Rule-based, the tables list
the compared approaches by using the naming convention: <approach name>-
{Pre,S,G}, where Pre indicates that the approach is used with one of the pre-
trained models in the original toolkit, S indicates that the approach was trained
on the “silver” set, and “G” indicates that the approach was trained on the
“gold” set. For example, CRF-S refers to the Stanford Core NLP CRF app-
roach, as discussed in Sect. 2.2, and, more precisely, that in this case it was
tested with a model trained on the “silver” set. The FPE and the Rule-based
approaches do not require such a clarification, as they do not use any of these
sets as training. All of the presented approaches were tested on the “gold” set,
using 10–fold cross validation.

From Table 3 one can make the following observations:

– Amongst the pretrained models, the Fingerprint Engine performs most effec-
tively, which can be attributed to it having a task-specific vocabulary. This
may be regarded as the baseline and is a measure of what is possible in the
absence of any training data.

– When trained with even a noisy (“silver”) dataset, all of the models perform
at par and reasonably.

– The CRF models consistently perform more favourably than the other mod-
els in this task, which is not surprising, with an observed increased overall
performance when the distributional similarity features are used.
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Table 3. NER Results for Funding Body (FB) annotation label. Best performing model
is highlighted in bold while the second best is in italics.

Method P R F1

HMM-Pre 18(±0) 31(±0) 23(±0)

CRF-Pre 35(±0) 54(±0) 42(±0)

FPE 48(±0) 46(±0) 47(±0)

CRF-S 49(±0) 43(±0) 46(±0)

HMM-S 36(±0) 48(±0) 41(±0)

MaxEnt-S 50(±0) 39(±0) 44(±0)

CRF-G 64(±.2) 58(±.2) 61(±.2)

CRF-dsim-G 66(±.2) 61(±.3) 63(±.2)

HMM-G 49(±.3) 54(±.2) 52(±.2)

MaxEnt-G 64(±.4) 54(±.2) 59(±.3)

FundingFinder 72(±.3) 63(±.2) 68(±.3)

Table 4. NER Results for Grant (GR) annotation label. Best performing model is
highlighted in bold while the second best is in italics.

Method P R F1

Rule-based 78(±0) 89(±0) 83(±0)

CRF-G 91( ± .1 ) 91( ± .08 ) 91( ± .1 )

HMM-G 76(±.2) 77(±.2) 76(±.2)

MaxEnt-G 87(±.2) 89(±.1) 88(±.2)

FundingFinder 92(±.1) 91(±.1) 92(±.1)

– FundingFinder, which ensembles the base annotators, outperforms the next
best model, namely the CRF with distributional similarity features, by 6
percentage points (p.p.) in precision, 2 p.p. in recall and 5 in F1 score, all
of them being statistically significant with a p-value of less than 0.01%. This
signifies that all of the base models perform differently on the task to finally
form a positive symbiosis.

Similar findings can be drawn from Table 4 on the annotation of GR, with the
main difference being that the absolute scores reported in this table are signifi-
cantly higher from the ones reported in Table 3, for all approaches. This suggests
that the annotation of FB is much harder than the annotation of GR, and also
implies that the room for improvement by applying ensemble (FundingFinder)
is smaller.
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5 Conclusions

In this paper we have formally tackled the problem of funding information extrac-
tion from scientific articles. A benchmark dataset was created for comparative
evaluation, a part of which is released in public. The results on this benchmark
set indicate that the annotation of funding bodies (FB) is a significantly more
difficult problem than the annotation of grants (GR). Additionally, by creating
an ensemble of a number of base annotators, FundingFinder could perform the
two tasks with F1 scores of 68% and 92% respectively, which is significantly
more than the best-performing base annotator.

To conclude, the main contributions of the paper can be listed as follows:

1. We have discussed on the practically important problem of extracting funding
information from text, and have experimentally provided a comprehensive
overview of the state-of-the-art methods that could be used for the same.
This may prove to be a significant head-start for researchers delving into the
same problem for further research.

2. Empirically, we have shown that a small and high quality dataset is more
suitable for this NER task than a larger, but noisier, dataset.

3. We have suggested an efficient two-stage pipeline for the task of funding
information extraction.

4. A learning mechanism, based on an ensemble of state-of-the-art base anno-
tators, was suggested, which should be easily extensible to any NER task.
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Abstract. Limiting the model size of a kernel support vector machine
to a pre-defined budget is a well-established technique that allows to
scale SVM learning and prediction to large-scale data. Its core addition
to simple stochastic gradient training is budget maintenance through
merging of support vectors. This requires solving an inner optimization
problem with an iterative method many times per gradient step. In this
paper we replace the iterative procedure with a fast lookup. We manage
to reduce the merging time by up to 65% and the total training time by
44% without any loss of accuracy.

1 Introduction

The Support Vector Machine (SVM; [5]) is a widespread standard machine
learning method, in particular for binary classification problems. Being a kernel
method, it employs a linear algorithm in an implicitly defined kernel-induced
feature space [24]. SVMs yield high predictive accuracy in many applications
[6,15,16,19,28]. They are supported by strong learning theoretical guarantees
[1,9,12,17].

When facing large-scale learning, the applicability of support vector machines
(and many other learning machines) is limited by their computational demands.
Given n training points, training an SVM with standard dual solvers takes
quadratic to cubic time in n [1]. Steinwart [23] established that the number
of support vectors is linear in n, and so is the storage complexity of the model
as well as the time complexity of each of its predictions. This quickly becomes
prohibitive for large n, e.g., when learning from millions of data points.

Due to the prominence of the problem, a large number of solutions was devel-
oped. Parallelization can help [29,33], but it does not reduce the complexity of
the training problem. One promising route is to solve the SVM problem only
locally, usually involving some type of clustering [14,30] or with a hierarchical
divide-and-conquer strategy [8,11]. An alternative approach is to leverage the
progress in the domain of linear SVM solvers [10,13,32], which scale well to large
data sets. To this end, kernel-induced feature representations are approximated
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by low-rank approaches [7,20,27,31], either a-priory using random Fourier fea-
tures, or in a data-dependent way using Nyström sampling.

Budget methods, introducing an a-priori limit B � n on the number of
support vectors [18,25], go one step further by letting the optimizer adapt the
feature space approximation during operation to its needs, which promises a
comparatively low approximation error. The usual strategy is to merge support
vectors at need, which effectively enables the solver to move support vectors
around in input space. Merging decisions greedily minimize the approximation
error.

In this paper we propose an effective computational improvement of this
scheme. Finding the best merge partners, i.e., support vectors that induce the
lowest approximation error when merged, is a rather costly operation. Usually,
O(B) candidate pairs of vectors are considered, and for each pair an optimization
problem is solved with an iterative strategy. By modelling the low-dimensional
space of (solutions of the) optimization problems explicitly, we can remove the
iterative process entirely, and replace it with a simple and fast lookup.

Our results show that merging-based budget maintenance can account for
more than half of the total training time. Therefore reducing the merging time
is a promising approach to speeding up training. The speed-up can be significant;
on our largest data set we reduce the merging time by 65%, which corresponds
to a reduction of the total training time by 44%. At the same time, our lookup
method is at least as accurate as the original iterative procedure, resulting in
nearly identical merging decisions and no loss of prediction accuracy.

The remainder of this paper is organized as follows. In the next section we
introduce SVMs and stochastic gradient training on a budget. Then we ana-
lyze the computational bottleneck of the solver and develop a lookup smoothed
with bilinear interpolation as a remedy. In Sect. 4 we benchmark the new algo-
rithm against “standard” BSGD, and we investigate the influence of the algorith-
mic simplification on different budget sizes. Our results demonstrate systematic
improvements in training time at no cost in terms of solution quality.

2 Support Vector Machine Training

In this section we introduce the necessary background: SVMs for binary classi-
fication, and training with stochastic gradient descent (SGD) on a budget, i.e.,
with a-priori limited number of support vectors.

Support Vector Machines. An SVM classifier is a supervised machine learning
algorithm. In its simplest form it linearly separates two classes with a large
margin. When applying a kernel function k : X × X → R over the input space
X, the separation happens in a reproducing kernel Hilbert space (RKHS). For
labeled data

(
(x1, y1), . . . , (xn, yn)

) ∈ (X ×{−1,+1})n, the prediction on x ∈ X
is computed as
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sign
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w, φ(x)
〉

+ b
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= sign

⎛
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⎞
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with w =
∑n

j=1 αjφ(xj), where φ(x) is an only implicitly defined feature map
(due to Mercer’s theorem, see also [24]) corresponding to the kernel function
fulfilling k(x, x′) = 〈φ(x), φ(x′)〉. Training points xj with non-zero coefficients
αj �= 0 are called support vectors; the summation in the predictor can obviously
be restricted to this subset. The SVM model is obtained by minimizing the
following (primal) objective function:

P (w, b) =
λ

2
‖w‖2 +

1
n

n∑

i=1

L
(
yi,

〈
w, φ(xi)

〉
+ b

)
. (1)

Here, λ > 0 is a user-defined regularization parameter and L(y, μ) = max{0, 1−
y · μ} denotes the hinge loss, which is a prototypical large margin loss, aiming
to separate the classes with a functional margin y · μ of at least one. The incor-
poration of other loss functions allows to generalize SVMs to other tasks like
multi-class classification, regression, and ranking.

Primal Training. Problem (1) is a convex optimization problem without con-
straints. It has an equivalent dual representation as a quadratic program (QP),
which is solved by several state-of-the-art “exact” solvers like LIBSVM [4] and
thunder-SVM [26]. The main challenge is the high dimensionality of the prob-
lem, which coincides with the training set size n and can hence easily grow into
the millions.

A simple method is to solve problem (1) directly with stochastic gradient
descent (SGD), similar to neural network training. When presenting one train-
ing point at a time, as done in Pegasos [22], the objective function P (w, b) is
approximated by the unbiased estimate

Pi(w, b) =
λ

2
‖w‖2 + L

(
yi,

〈
w, φ(xi)

〉
+ b

)
,

where the index i ∈ {1, . . . , n} follows a uniform distribution. The stochastic
gradient ∇Pi(w, b) is an unbiased estimate of the “batch” gradient ∇P (w, b)
but faster to compute by a factor of n, since it involves only a single training
point. Starting from (w, b) = (0, 0), SGD updates the weights according to

(w, b) ← (w, b) − ηt · ∇Pit(w, b),

where t is the iteration counter. With a learning rate ηt ∈ Θ(1/t) it is guaranteed
to converge to the optimum of the convex training problem [2].

With a sparse representation w =
∑

(α,x̃)∈M α ·φ(x̃) the SGD update decom-
poses into the following algorithmic steps. We scale down all coefficients α uni-
formly by the factor 1 − λ · ηt. If the margin yi(〈w, φ(xi)〉 + b) happens to be
less than one, then we add a new point x̃ = xi with coefficient α = ηt · yi to the
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model M . With a dense representation holding one coefficient αi per data point
(xi, yi) we would add the above value to αi. The most costly step is the compu-
tation of 〈w, φ(xi)〉, which is linear in the number of support vectors (SVs), and
hence generally linear in n [23].

SVM Training on a Budget. Budgeted Stochastic Gradient Descent (BSGD)
breaks the unlimited growth in model size and update time for large data streams
by bounding the number of support vectors during training. The upper bound
B � n is the budget size. Per SGD step the algorithm can add at most one new
support vector; this happens exactly if (xi, yi) does not meet the target margin
of one (and αi changes from zero to a non-zero value). After B + 1 such steps,
the budget constraint is violated and a dedicated budget maintenance algorithm
is triggered to reduce the number of support vectors to at most B. The goal of
budget maintenance is to fulfill the budget constraint with the smallest possible
change of the model, measured by ‖Δ‖2 = ‖w′ − w‖2, where w is the weight
vector before and w′ is the weight vector after budget maintenance. Δ = w′ −w
is referred to as the weight degradation.

Budget maintenance strategies are investigated in detail in [25]. It turns out
that merging of two support vectors into a single new point is superior to alter-
natives like removal of a point and projection of the solution onto the remaining
support vectors. Merging was first proposed in [18] as a way to efficiently reduce
the complexity of an already trained SVM. With merging, the complexity of bud-
get maintenance is governed by the search for suitable merge partners, which is
O(B2) for all pairs, while it is common to apply the O(B) heuristic resulting
from fixing the point with smallest coefficient αi as a first partner.

When merging two support vectors xi and xj , we aim to approximate αi ·
φ(xi) + αj · φ(xj) with a new term αz · φ(z) involving only a single point z.
Since the kernel-induced feature map is usually not surjective, the pre-image
of αiφ(xi) + αjφ(xj) under φ is empty [3,21] and no exact match z exists.
Therefore the weight degradation Δ = αiφ(xi) + αjφ(xj) − αzφ(z) is non-zero.
For the Gaussian kernel k(x, x′) = exp(−γ‖x − x′‖2), due to its symmetries,
the point z minimizing ‖Δ‖2 lies on the line connecting xi and xj and is hence
of the form z = hxi + (1 − h)xj . For yi = yj we obtain a convex combination
0 < h < 1, otherwise we have h < 0 or h > 1. In this paper we merge only
vectors of equal label. For each choice of z, the optimal value of αz is obtained
in closed form: αz = αik(xi, z) + αjk(xj , z). This turns minimization of ‖Δ‖2 =
α2

i +α2
j −α2

z +2k(xi, xj) into a one-dimensional non-linear optimization problem,
which is solved in [25] with golden section line search. The calculations are further
simplified by the relations k(xi, z) = k(xi, xj)(1−h)2 and k(xj , z) = k(xi, xj)h2

,
which save costly kernel functions evaluations.

Budget maintenance in BSGD usually works in the following sequence of
steps, see Algorithm 1: First, xi is fixed to the support vector with minimal coef-
ficient |αi|. Then the best merge partner xj is determined by testing B pairs
(xi, xj), j ∈ {1, . . . , B + 1} \ {i}. Golden section search is run for each of these
steps to determine h to fixed precision ε = 0.01. The weight degradation is com-
puted using the shortcuts mentioned above. Finally, the candidate with minimal
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weight degradation is selected and the vectors are merged. Hence, although a sin-
gle golden search search is fast, the need to run it many times per SGD iteration
turns it into a rather costly operation.

Algorithm 1. Procedure Budget Maintenance for a sparse model M

1 Input/Output: model M
2 (αmin, x̃min) ← arg min

{|α| ∣∣ (α, x̃) ∈ M
}

3 WD∗ ← ∞
4 for (α, x̃) ∈ M \ {(αmin, x̃min)} do
5 m ← α/(α + αmin)
6 κ ← k(x̃, x̃min)

7 h ← arg max
{
mκ(1−h′)2 + (1 − m)κh′2 ∣

∣h′ ∈ [0, 1]
}

8 αz ← αmin · κ(1−h)2 + α · κh2

9 WD ← α2
min + α2 − α2

z + 2 · αmin · α · κ
10 if (WD < WD∗) then
11 WD∗ ← WD
12 (α∗, x̃∗, h∗, κ∗) ← (α, x̃, h, κ)

13 z ← h∗ · x̃min + (1 − h∗) · x̃∗

14 αz ← αmin · (κ∗)(1−h∗)2 + α∗ · (κ∗)(h
∗)2

15 M ← M \ {(αmin, x̃min), (α
∗, x̃∗)} ∪ {(αz, z)}

A theoretical analysis of BSGD is provided by [25]. Their Theorem 1 estab-
lishes a bound on the error induced by the budget, ensuring that asymptotically
the error is governed only by the (unavoidable) weight degradation.

3 Precomputing the Merging Problem

αi φ(xi)

αj φ(xj)

αz φ(z)

Δ

Fig. 1. The merging problem.

The merging problem for given support
vectors xi and xj with coefficients αi

and αj is illustrated in Fig. 1. Our cen-
tral observation is that the geometry
depends only on the (cosine of the) angle
between αiφ(xi) and αjφ(xj), and on
the relative lengths of the two vectors.
These two quantities are captured by the
parameters

– relative length m = αi/(αi + αj)
– cosine of the angle κ = k(xi, xj),

both of which take values in the unit interval. The optimal merging coefficient h
is a function of m and κ, and so is the resulting weight degradation WD = ‖Δ‖2.
Therefore we can express h and WD as functions of m and κ, denoted as h(m,κ)
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and WD(m,κ) in the following. The functions can be evaluated to any given
target precision by running the golden section search. Their graphs are plotted
in Figs. 2a and b.

If the functions h or WD can be approximated efficiently then there is no
need to run a potentially costly iterative procedure like golden section search.
This is our core technique for speeding up the BSGD method.

The functions blend between different budget maintenance strategies. While
for κ � 0 and for m ≈ 1/2 it is beneficial to merge the two support vectors,
resulting in h ∈ (0, 1), this is not the case for κ � 1 and m ≈ 0 or m ≈ 1,
resulting in h ≈ 0 or h ≈ 1, which is equivalent to removal of the support vector
with smaller coefficient. This means that in order to obtain a close fit that works
well in both regimes we may need a quite flexible function class like a kernel
method or a neural network, while a simple polynomial function can give poor
fits, with large errors close to the boundaries.

A much simpler and computationally very cheap approach is to pre-compute
the function on a grid covering the domain [0, 1] × [0, 1]. The values need to be
pre-computed only once, and here we can afford to apply golden section search
with high precision; we use ε = 10−10. Then, given two merge candidates, we
can look up an approximate solution by rounding m and κ to the nearest grid
point. The approximation quality can be improved significantly through bilinear
interpolation. On modern PC hardware we can easily afford a large grid with
millions of points, however, this is not even necessary to obtain excellent results.
In our experiments we use a grid of size 400 × 400.

Bilinear interpolation is fast, and moreover it is easy to implement. When
looking up h(m,κ) this way, we obtain a plug-in replacement for golden section
search in BSGD. However, we can equally well look up WD(m,κ) instead to
save additional computation steps. Another benefit of WD over h is regularity,
see Figs. 2a and b and the following lemma.
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Fig. 2. Graphs of the functions h(m, κ) (a) and WD(m, κ) (b). The latter uses a log
scale on the value axis.
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Lemma 1. The functions h and WD are smooth for κ > e−2. The function h
is continuous outside the set Z = {1/2} × [0, e−2] ⊂ [0, 1]2 and discontinuous on
Z. The function WD is everywhere continuous.

Proof. The function sm,κ(h′) = mκ(1−h′)2 + (1 − m)κh′2
used in line 7 of

Algorithm 1 inside the arg max expression is a weighted sum of two Gaus-
sian kernels. Depending on the parameters m and κ, it can have one or two
modes. It has two modes for parameters in Z, as can be seen from an ele-
mentary calculation yielding s′′

1/2,κ(1/2) > 0 ⇔ κ < e−2. Due to symme-
try, the dominant mode switches at m = 1/2. The inverse function theorem
applied to branches of sm,κ implies that h(m,κ) = arg maxh′{sm,κ(h′)} and
WD(m,κ) = (αi + αj) · (m2 + (1 − m)2 − [sm,κ(h(m,κ))]2 + 2m(1 − m)κ

)
vary

smoothly with their parameters as long as the same mode is active. The maxi-
mum operation is continuous, and so is WD. For each m there is a critical value
of κ ≤ e−2 where sm,κ switches from one to two modes. We collect these param-
eter configurations in the set N . On N (in contrast to Z), h is continuous. With
the same argument as above, h and WD are smooth outside N ∪ Z. ��

Bilinear interpolation is well justified if the function is continuous, and dif-
ferentiable within each grid cell. The above lemma ensures this property for
κ > e−2, and it furthermore indicates that for its continuity, interpolating WD
is preferable over interpolating h. The regime κ < e−2 corresponds to merging
two points in a distance of more than two “standard deviations” of the Gaussian
kernel. This is anyway undesirable, since it can result in a large weight degra-
dation. In fact, if sm,κ has two modes, then the optimal merge is close to the
removal of one of the points, which is known to give poor results [25].

4 Experimental Evaluation

In this section we evaluate our method empirically, with the aim to investigate
its properties more closely, and to demonstrate its practical value. To this end,
we’d like to answer the following questions:

1. Which speed-up is achievable?
2. Do we pay for speed-ups with reduced test accuracy?
3. How do results depend on the budget size?
4. How much do merging decision differ from the original method?

To answer these questions we compare our algorithm to “standard” BSGD
with merging based on golden section search. We have implemented both algo-
rithms in C++; the implementation is available from the first author’s home-
page.1 We train SVM models on the binary classification problems SUSY, SKIN,
IJCNN, ADULT, WEB, and PHISHING, covering a range of different sizes. The
regularization parameter C = 1

n·λ and the kernel parameter γ were tuned on a
grid of the form log2(C), log2(γ) ∈ Z using 10-fold cross-validation. The data
sets are summarized in Table 1. SVMs were trained with 20 passes through the
data, except for the huge SUSY data, where we used a single pass.
1 https://www.ini.rub.de/the institute/people/tobias-glasmachers/#software .
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Table 1. Data sets used in this study, hyperparameter settings, and test accuracy of
the exact SVM model found by LIBSVM.

data set size features C γ accuracy
SUSY 4,500,000 18 25 2−7 79.79%
SKIN 183,793 3 25 2−7 99.96%
IJCNN 49,990 22 25 21 98.77%

data set size features C γ accuracy
ADULT 32,561 123 25 2−7 84.82%
WEB 17,188 300 23 2−5 98.81%
PHISHING 8,315 68 23 23 97.55%

To answer the first question, we trained SVM models with BSGD, com-
paring golden section search (GSS) with our new algorithms looking up h(m,κ)
(Lookup-h) or WD(m,κ) (Lookup-WD). For reference, we also ran golden section
search with precision ε = 10−10 (GSS-precise). We used two different budget sizes
for each problem.

All methods found SVM models with comparable accuracy as shown in
Table 2; in fact, in most cases the systematic differences are below one stan-
dard deviation of the variability between different runs.2 In contrast, the time
spent on budget maintenance differs significantly between the methods. In Fig. 3
we provide a detailed breakdown of the merging time, obtained with a profiler.

Lookup-WD and Lookup-h are faster than GSS, which is (unsurprisingly)
faster than GSS-precise. The results are very systematic, see Table 3 and Fig. 3.
The greatest savings of about 44% of the total training time are observed for the
rather large SUSY data set. Although the speed-up can also be insignificant, like
for the WEB data, lookup is never slower than GSS. The actual saving depends
on the cost of kernel computations and on the fraction of SGD iterations in
which merging occurs. The latter quantity, which we refer to as the merging
frequency, is provided in Table 3. We observe that the savings shown in Fig. 3
nicely correlate with the merging frequency.

The profiler results provide a more detailed understanding of the differ-
ences: replacing GSS with Lookup-h significantly reduces the time for comput-
ing h(m,κ). Replacing Lookup-h with Lookup-WD removes further steps in the
calculation of WD(m,κ), but practically speaking the difference is hardly notice-
able.

Overall, our method offers a systematic speed-up. The speed-up does not
come at any cost in terms of solution precision. This answers the first two ques-
tions.

If the budget size is chosen so large that merging is never needed then all
tested methods coincide, however, this defeats the purpose of using a budget in
the first place. We find that the merging frequency is nearly independent of the
budget size as long as the budget is significantly smaller than the number of
support vectors of the full kernel SVM model, and hence the fraction of runtime
saved is independent of the budget size. The results in Fig. 3 are in line with this
expectation, answering the third question.

2 Note that with increasing number of passes (or epochs) the standard deviation does
not tend to zero since the training problem is non-convex due to the budget con-
straint.



Speeding Up BSGD with Precomputed GSS 337

Table 2. Test accuracy achieved by the different methods, averaged over 5 runs at
different budget sizes.

Data set Budget size Test accuracy
GSS-precise

Test accuracy
GSS-standard

Test accuracy
Lookup-h

Test accuracy
Lookup-WD

SUSY 100 76.975± 1.372 76.628± 2.030 76.934± 1.426 76.884± 1.261

500 76.989± 3.109 75.583± 3.0558 75.581± 2.558 75.570± 3.925

SKIN 100 99.621± 0.711 99.629± 0.852 99.621± 0.201 99.617± 0.877

200 99.868± 0.033 99.877± 0.053 99.855± 0.054 99.754± 0.089

IJCNN 100 97.141± 0.317 96.807± 0.344 97.132± 0.371 97.130± 0.363

500 98.138± 0.158 98.055± 0.334 98.113± 0.448 98.070± 0.372

ADULT 100 84.234± 0, 883 84.166± 0.701 84.164± 0.988 84.200± 0.798

500 84.280± 0.800 83.739± 1.303 83.836± 1.157 83.949± 1.001

WEB 100 98.805± 0, 026 98.793± 0.027 98.783± 0.045 98.793± 0.039

500 98.809± 0, 023 98.781± 0.047 98.799± 0.029 98.807± 0.016

PHISHING 100 96.554± 0.158 96.254± 0.301 96.539± 0.242 96.389± 0.371

500 97.555± 0.187 97.517± 0.292 97.518± 0.280 97.525± 0.201

Fig. 3. Breakdown of the merging time in seconds for GSS-precise, GSS, Lookup-h and
Lookup-WD. Section A represents the time invested to compute h using either golden
section search or lookup. For the Lookup-WD method the same bar represents the
look-up of WD(m, κ). Section B summarizes all other operations like loop overheads,
the computation of αz, and the construction of the final merge vector z. The numbers
on top of the columns for the lookup methods indicate the saving over GSS.
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Table 3. Relative improvement of the total training time with respect to golden section
search averaged over 5 runs (Lookup-h vs. GSS-standard and lookup-WD vs. GSS-
standard), and fraction of merging events for budget size 100 and statistics on the
quality of merging decisions (refer to the text for details).

Data set Budget size Lookup-h
vs. GSS-
standard

Lookup-WD
vs. GSS-
standard

Merging
frequency

Equal
merging
decisions

Factor
GSS

Factor
lookup-
WD

SUSY 100 43.911% 43.396% 43% 93.64% 1.01795 1.00733

500 39.201% 39.199%

SKIN 100 20.515% 17.788% 16% 74.31% 1.00047 1.00005

200 14.173% 14.900%

IJCNN 100 28.091% 30.372% 17% 91.79% 1.02429 1.00149

500 30.569% 29.861%

ADULT 100 21.627% 18.452% 32% 92.54% 1.05064 1.00402

500 22.334% 22.339%

WEB 100 3.053% 5.649% 6% 93.77% 1.00255 1.00039

500 7.483% 0.508%

PHISHING 100 15.385% 13.946% 21% 96.96% 1.00055 1.00008

500 7.563% 10.924%

In the next experiment we have a closer look at the impact of lookup-based
merging decisions by investigating the behavior in single iterations, as follows.
During a run of BSGD we execute GSS and Lookup-WD in parallel. We count
the number of iterations in which the merging decisions differ, and if so, we
also record the difference between the weight degradation values. The results
are presented in Table 3. They show that the decisions of the two methods agree
most of the time, for some problems in more than 99% of all budget maintenance
events.

Finally, we investigate the precision with which the weight degradation is
estimated by the different methods. While GSS can solve the problem to arbi-
trary precision, the reference implementation determines h(m,κ) only to a rather
loose precision of ε = 0.01 in order to save computation time. In contrast, we ran
GSS to high precision ε = 10−10 when precomputing the lookup table, however,
we may lose some precision due to bilinear interpolation. This loss shrinks as
the grid size grows, which comes at added storage cost, but without any runtime
cost. We investigate the precision of GSS and Lookup-WD by comparing them to
GSS-precise, which is considered a reasonable approximation of the exact min-
imum of ‖Δ‖2. For both methods we record the factor by which their squared
weight degradations exceed the minimum, see Table 3. All factors are very close
to one, hence none of the algorithms is wasteful in terms of weight degradation,
and indeed Lookup-WD with a grid size of 400 × 400 is more precise on all 6
data sets. This answers our last question.
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5 Conclusion

We have proposed a fast lookup as a plug-in replacement for the iterative golden
section search procedure required when merging support vectors in large-scale
kernel SVM training. The new method compares favorably to the iterative base-
line in terms of training time: it offers a systematic speed-up, resulting in com-
putational savings of up to 65% of the merging time and up to 44% of the
total training time, while the training time is never increased. With our method,
nearly the full computation time is spent on actual SGD steps, while the frac-
tion of efforts spent on budget maintenance can be reduced significantly. We have
demonstrated that our approach results in virtually indistinguishable and even
slightly more precise merging decisions. It is for this reason that the speed-up
comes at absolutely no cost in terms of predictive accuracy.

Acknowledgments. We acknowledge support by the Deutsche Forschungsgemein-
schaft (DFG) through grant GL 839/3-1.
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Abstract. An unsupervised learning classification model is described. It
achieves classification error probability competitive with that of popular
supervised learning classifiers such as SVM or kNN. The model is based on the
incremental execution of small step shift and rotation operations upon selected
discriminative hyperplanes at the arrival of input samples. When applied, in
conjunction with a selected feature extractor, to a subset of the ImageNet dataset
benchmark, it yields 6.2% Top 3 probability of error; this exceeds by merely
about 2% the result achieved by (supervised) k-Nearest Neighbor, both using
same feature extractor. This result may also be contrasted with popular unsu-
pervised learning schemes such as k-Means which is shown to be practically
useless on same dataset.

Keywords: Unsupervised learning � Linear classifiers � Neural models

1 Introduction

Unsupervised learning methods have been explored significantly during the last dec-
ades. Part of this work has been oriented towards the solution of the so called Clas-
sification function. Most of this research resulted in schemes which are based on either
similarity (or alternatively distance) measures (such as the popular k-Means method
and its variants, e.g. MacQueen [9]) or on the estimation of density mixtures (e.g. Duda
and Hart [1], Bishop [5]); both approaches require the user to supply significant prior
information concerning the underlying model (such as number k of distinct classes for
both k-Means and parametric models, and the assumed probability distribution function
class for the later).

Our work is inspired by the ‘cluster assumption’: that real world classes are sep-
arated by low probability density regions in an appropriate feature space. This
assumption has naturally lead us and others to the so called ‘valley seeking’ methods
which have been explored since the 70’s (Lewis et al. [11]) and up to the more recent
work by Pavlidis et al. [12]. Many of these works, including this last quoted, require the
conduction of a density estimation process (parametric or non-parametric); none of
them makes implicit use of the density mixture as in our present work; and none of
them has provided, to the best of our knowledge, satisfactory experimental results on
real life challenging problems such as ImageNet dataset classification. It should be
noted that these unsupervised learning schemes, relevant to the aforementioned Clas-
sification function, should be distinguished from, and should not be confused with,
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unsupervised learning schemes relevant to the canonically associated Feature Extrac-
tion function, such as Generative Adversarial Networks (GAN, e.g. Donahue et al. [2]),
Variational Autoencoders (VAE, e.g. Pu et al. [3]), Restricted Boltzmann Machines
(RBM, e.g. Ranzato and Hinton [4]), Transfer Learning (Yosinski et al. [10]), etc.

In the sequel we present initial results on an unsupervised learning classifier
exhibiting error performance competitive to that of popular near optimal supervised
learning classifiers such as k-Nearest Neighbors (kNN) and Support Vector Machine
(SVM). The proposed model is presented in the next Section. In Sect. 3 we present
simulation results; in Sect. 4 we summarize our work and make a few concluding
remarks.

2 Proposed Model

Our model deals with the unsupervised learning Classifier function of a Pattern
Recognition machine. Measurement vectors v Є RD, where D is the dimension of the
measurement or observed space, are fed into a Feature Extractor. These vectors may
consist of image pixel values, digitized speech samples, etc. These vectors v are
mapped by the Feature Extractor into so called feature vectors x Є Rd, where d denotes
the dimension of the feature space. Such a transformation or mapping is supposedly
capable of yielding better inter-class separability properties. The feature vectors x are
then fed into a Classifier whose ultimate role is to provide an output code vector y (or
equivalently a label, or a class name) providing discrete information regarding the class
to which the input measurement vector v belongs. The classifier may be of supervised
learning type in which case pre-defined correct labels are fed into it simultaneously
with input vectors v during the so called training stage, or of unsupervised learning
type, as in our case, where no such labels are presented at any time.

It is a fundamental assumption of our model that the feature space vectors are
distributed in accordance with some unknown probability distribution mixture. This
mixture is composed of the weighted sum of conditional distribution densities. We
assume that the bulks of this mixture occupy a bounded region of feature space. We
further assume that said mixture obeys a sufficient condition, informally and loosely
herein stated, namely that the intersecting slopes of the weighted conditionals form well
defined low density regions, or ‘valleys’ (the so called ‘cluster assumption’). Condi-
tional probability densities should be normalizable by definition; since this forces their
density to eventually decay (or vanish) then this sufficient condition is reasonable and
commonly met. Note that in spite this assumption our model is not parametric, that is
no assumption is made regarding the functional form of the distributions involved, nor
about the number of presented classes. The resultant valleys can, in general, take the
form of non-linear hyper-surfaces; like any linear classifier (e.g. linear SVM) we finally
assume that, by virtue of an appropriate Feature Extraction function, these hyper-
surfaces can be reasonably approximated by simple hyperplanes.

Our proposed model is initiated by populating the relevant feature space bounded
region, with a certain number, or pool, of hyperplanes. These can be either uniformly
randomly, or orderly and uniformly grid-wise distributed within this region. Following
this initiation, input feature vectors are presented. Upon arrival of one such input
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vector, each such hyperplane generates an output signal which indicates whether this
input sample resides on one side of the hyperplane or the other. In addition, in response
to this input vector, some of the hyperplanes are shifted and/or rotated by small
increments, gradually migrating from regions characterized by high probability density
to regions of low probability density, and thus converging (in the mean) towards said
density mixture ‘valleys’, by means of a mechanism to be described in the sequel.

It is convenient to commence description of our model by means of a simpler
model; refer to Fig. 1 which depicts a 1-dimensional probability density mixture p
(x) along with some fundamental entities related to our proposed model. When con-
ditional densities p(x|Ci) of this mixture are sufficiently spaced and have appropriate
priors p(Ci) their mixture creates a minimal point (a ‘valley’) such as point a in Fig. 1.
The 2-classes mixture density of Fig. 1 can be expressed as

p xð Þ ¼ p C1ð Þp xjC1ð Þþ p C2ð Þp xjC2ð Þ ð1Þ

In our simple model of Fig. 1 there exists a single hyperplane (reduced to a single
point in our 1-dimensional model) defined by the hyperplanar semi-linear operator
(other hyperplanar operators may be considered)

ytþ 1 ¼ maxf0;wt : x� htg ð2Þ

where the hyperplane weight vector is wt Є Rd (d = 1, and wt = 1 is assumed in this
introductory model), the hyperplane threshold variable is ht Є R, the t subscript indi-
cates the hyperplane self-time, “.” denotes inner product operation, and where indi-
vidual hyperplane indexes (only one in this model) are omitted for readability.

Hyperplanes hence act in this model as linear discriminator functions. One of these
hyperplanes is indicated in Fig. 1 by means of its associated hyperplane threshold
variable ht. The present state of this variable, in between the distribution mixture two
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Fig. 1. A 1-dimensional density mixture and proposed model related entities
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peaks or modes, ensures (with high probability) the model arrival to stable equilibrium,
as will momentarily become evident.

We now propose the following simple Shift unsupervised learning rule, applied
upon arrival of each input vector x:

htþ 1 ¼
ht � e; ht þU�wt : x[ ht
ht þ e; ht � U�wt : x� ht
ht; otherwise

8<
: ð3Þ

where U and e are two small positive scalar model parameters. In accordance with this
rule a new feature vector x may either: fall in area A in which case ht will be Shifted to
the left; fall in area B which will Shift ht to the right; or fall in any of areas C which will
maintain ht unchanged. Since events of class B have greater probability than events of
class A (area of region B is greater than area of region A) there will be a net ‘pressure’
to Shift ht to the right as indicated by the arrows of different size in Fig. 1. Such Shift
operations will tend to carry ht from regions of high probability density to regions of
low probability density. Once ht arrives to the vicinity of the distribution ‘valley’ (at
about ht = a) stochastic stable equilibrium will be achieved: equal pressures will be
exerted on both directions.

We note that increasing the Shift step e may accelerate convergence, but may also
increase the probability of jumping over the ‘top of the hill’ to the left of the leftmost
mode, thereafter drifting towards a non-discriminatory and less useful direction.
Similarly, increasing U may also accelerate convergence (since it reduces probability of
inactive C events) but, again, may disrupt convergence direction. Both U and e should
be (and were) fine tuned during simulation. Proof of convergence (in the mean) of ht to
the point a is simple, under some idealized assumptions, and is omitted herein. Note
that both m1 and m2 mixture peaks are also stochastic equilibrium points, though
unstable, as can be also easily proved.

The model initial condition h0 affects, along with the values of e and U parameters,
the probability of converging to a useful discrimination point like a: the more h0 resides
away of any peak (but in between peaks) the larger the probability of such a useful
convergence; and vice versa.

As mentioned above our herein proposed model achieves competitive performance
in the sense of classification error probability. Its error performance is close to that of
an optimal supervised learning classifier in as much as the mixture density valley is
close (in some suitable measure) to the optimal hyper-surface, and in as much as the
final state of the model hyperplane deviates from this valley (due to stochastic fluc-
tuations, finite valued parameters effects, etc.). This optimal hyper-surface in turn
depends on the mixture density conditionals and priors and is the solution to the
equation p(C1) p(x|C1) − p(C2) p(x|C2) � f(x) = 0. If both classes have symmetric
identical conditionals (except of course their peaks position) and have equal priors,
then the mixture optimal discriminant classifier lies, by symmetry, at ht = a, midway
between the two peaks m1 and m2. Our proposed method on the other hand, converges
in this case (in the mean and neglecting the fore-mentioned deviations) to a minima of
p(x), and is thus the zero derivative solution of Eq. (1) (i.e. p’(x) = 0) which results, in
said symmetric case, in exactly the same point a and thus achieves (in the mean, and
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neglecting said deviations) optimality. If priors and/or conditionals differ from each
other, both solutions (of f(x) = 0 and of p’(x) = 0) will slowly drift away from each
other, and only near-optimality is achieved. The possible distance between the valley
and the optimal hyper-surface may be considered the fundamental penalty paid, in lack
of labels, for our limited ability to estimate priors and conditionals.

We now turn to revise and modify our model to adapt it to high dimensional feature
spaces. The above considerations may be directly extended to these spaces, wherein the
valley single point becomes a hyperplane. We will see that all is needed is the addition
of a Rotation operation to the fore-mentioned Shift operation, which was described
above.

To see why Shift operation alone is not enough refer to Fig. 2 which shows 2
unimodal classes, described by means of their probability iso-density contours in a 2-
dimensional space. The discriminating hyperplane initial condition is assumed to be
hp1 and the ‘valley’ near-optimal hyperplane position is hp3. It is clear that a sequence
of Shift only operations can lead discrimination to an equilibrium point hyperplane like
hp2, but is not capable of converging to the near optimal hp3. The addition of a
Rotation operation is apparently required.

Refer now to Fig. 3 which shows a 2-dimensional space containing 2 distinct
classes schematically represented by their means l1 and l2. These means reside rela-
tively close to and on both sides of a hyperplane hp1. Figure 3 presents also an
assumed near optimally placed hyperplane hp2, and an input vector x also relatively
close to hyperplane hp1. The hyperplane hp1 is defined by those vectors x which
satisfy the equation w. x = h where we have omitted time subscripts for clarity, and
where, by convention, the weight vector w is normalized (i.e. ||w|| = 1). As is well
known, w defines the hyperplane hp1 orientation relative to the feature space axes and
is orthogonal to this hyperplane, while h defines the hyperplane distance from the axes
origin. It is similarly well known that rotation in high dimensional spaces is defined by
a 2-plane of rotation, by a rotation point, and by a rotation angle, and that it keeps
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invariant the (n − 2)-subspace orthogonal to this 2-plane (this invariant subspace
reduces, when we deal with 3-dimensional spaces, to the familiar ‘axis of rotation’, a
meaningless term in high dimensional spaces).

We finally denote by C the intersection point between hp1 and the segment con-
necting l1 and l2, and by E the orthogonal projection of x upon hp1. It is proposed
that, upon arrival of some feature vector x, within U distance from hp1, we rotate hp1
by a small angle a << 1, around the point C, over a rotation 2-plane defined by the
normalized orthogonal vector u from x to hp1 (which equals, up to possible sign
inversion, to w) and by the normalized vector v connecting E and C; to gain better
intuition on this proposal the reader is encouraged to visualize the above defined
entities within a 3-dimensional space and corresponding probability density mixture.
The model contains, as mentioned above, a pool of hyperplanes. It is convenient to
assign to each hyperplane a separate self-timer t (t subscripts omitted above for
readability) which advances whenever an incoming feature vector x falls within U
distance from said hyperplane. Consolidating, we propose the following unsupervised
learning scheme, executed for each and every hyperplane, upon arrival of a feature
vector x.

Shift Operation:
Exactly as with our 1-dimensional model, repeated herein for readability:

htþ 1 ¼
ht � e; ht þU�wt : x[ ht
ht þ e; ht � U�wt : x� ht
ht; otherwise

8<
: ð4Þ

Near Classes Means Estimate:
In real applications the feature space may be populated by many distinct classes. As
described above a means estimate of the classes with means close to a hyperplane is

x

E

μ1 μ2

C

hp1wv

x1

x2

O

hp2

u

Fig. 3. Entities related to the rotation learning rule
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required for the Rotation operation of said hyperplane. Such means estimates can be
implemented as weighted averages of input vectors, calculated in separate for both
sides of each hyperplane; we allow for the weights to be a function of the distance of
x from the hyperplane, assigning in general a smaller weight to input vectors farther
away from it; this allows to disregard distant inputs, possibly belonging to other,
faraway, classes. For each and every hyperplane we update ct+1

1 and bl1
tþ 1 if wt . x � ht

and update ct+1
2 and bl2

tþ 1 otherwise:

cjtþ 1 ¼ cjt þ gðjwt : x� htj; bÞ; cj0 ¼ 0; ð5Þ

and

blj
tþ 1 ¼ ðcjtblj

t þ gðjwt : x� htj; bÞxÞ=cjtþ 1; ð6Þ

where blj
t denotemean estimates, j = 1 or 2 denote each of both hyperplane half spaceswt .

x � ht or wt . x > ht respectively, ct
j are the cumulative weights associated with this

hyperplane, and where g(| . |; b) is a distance dependent weight functionwith parameter b.
A typical and simple weight function could consist of a uniform positive weight for

vectors x satisfying ht − b � wt . x � ht + b with some b > 0, and zero weight
otherwise. We assume the use of this simple weight function in the sequel. To initiate
these mean estimates we may simply use the first incoming sample (within appropriate
distance from the hyperplane) for one side estimate and a symmetrically reflected
virtual point for the other, which results, in the case of the uniform weight function
suggested above, in

bl1
0 ¼ x; bl2

0 ¼ xþ 2jwt : x� htjwt; if ht � b�wt : x� ht ð7Þ

bl2
0 ¼ x; bl1

0 ¼ x� 2jwt : x� htjwt; if ht\wt : x� ht þ b ð8Þ

This initiation scheme allows allocating to bl2
0 (or alternatively to bl1

0) some value
even though there might exist no class in the neighborhood of the other side of this
hyperplane.

C, E, u and v Calculation:
As mentioned above C, E, u and v are also required for the implementation of the
Rotation operation. Upon arrival of a feature vector x, said calculations are executed
only for those hyperplanes for which ht + U � wt . x � ht − U. Inspection of Fig. 3
and simple vector algebra manipulations result in:

C ¼ bl1
t þðht � wt : bl1

t Þ : ðbl2
t � bl1

t Þ=ðwt : ðbl2
t � bl1

t ÞÞ ð9Þ

E ¼ xþðht � wt : xÞwt= wtj jj j ð10Þ

u ¼ E�xð Þ= E�xj jj j ¼ signðwt : x� htÞ :wt= wtj jj j ð11Þ
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where sign(.) denotes the signum function (time subscripts omitted from C, E, u and v);
note the possible sign disagreement between u and wt; and

v ¼ E�Cð Þ= E�Cj jj j ð12Þ

Rotation Operation:
Here too, this operation is executed only for those hyperplanes for which ht + U � wt

. x � ht − U. For d-dimensional Rotation formulation we follow the neat (and slightly
abusive) vector notation of Teoh [6] (the reader is referred there for details):

wtþ 1 ¼ rot wtð ÞP;a;C¼ wt þ u v½ � cos a� 1 sin a
sin a cos a� 1

� �
wt : uð Þ
wt : vð Þ

� �
ð13Þ

where P is the rotation 2-plane as defined by the vectors v and u, C is the rotation point
(see Fig. 3), and a << 1 is a small rotation angle for which we may simplify to sin
a � a and cos a � (1 − a2/2). The sense of rotation (clockwise or counter-clockwise)
is set such that the distance between the sample point x and the rotated hyperplane
increases. Similarly to the Shift operation this ensures hyperplane migration (in the
mean) toward a lower probability density region as desired.

Rotation also shifts the hyperplane (i.e. changes its distance from O) so it affects its
ht variable, and this has to be updated too (in addition to the Shift learning rule update,
Eq. (4) above); recalling that the point C is invariant under Rotation and that it belongs
to the hyperplane (rotated or not) then

htþ 1 ¼ wtþ 1 :C ð14Þ

Hyperplane Output Code:
The hyperplane output code may take the form (amongst many other options) of
Eq. (1) herein repeated for convenience:

ytþ 1 ¼ max 0; wt : x�htf g ð15Þ

The collection of all scalar outputs yt+1 make up together the model output code
vector yt+1 Є RN where N is the size of the hyperplane pool.

Self Timer Update:
As mentioned above a self-timer is conveniently assigned to each hyperplane. This
self-timer is incremented whenever an input feature vector x arrives within distance U
from said hyperplane, namely (hyperplane index omitted)

t ! tþ 1; ht þU�wt : x� ht � U
t, otherwise

�
ð16Þ

Just as in our earlier 1-dimensional example, the Shift and Rotation operations will
tend (in the mean) to migrate the hyperplanes from regions of high probability density
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to regions of low probability density. It should be noted that all learning operations
(Eqs. (4) to (14) above) executed upon a hyperplane do exclusively depend on vari-
ables of this said hyperplane, and of no other; thus, the proposed learning rules are
local, and ‘Hebbian’ in this sense. The Rotate operation related calculations (Eqs. (5) to
(14) above) for each hyperplane may be advantageously initiated only after the exe-
cution of some pre-defined quantity of executed Shift operations for this hyperplane:
this allows each hyperplane to land closer to desired (low density) regions in a first
stage, making these later calculations more relevant and the convergence process more
efficient.

Refer now to Fig. 4 which shows a 2-dimensional feature space with 4 classes C1,
C2, C3 and C4 depicted by their iso-density contours. In accordance with our proposed
model a pool of hyperplanes is initially distributed across the feature space hypercubic
domain of interest X 	 Rd with hypercube edge size o (o � 8 in this example) as
shown in Fig. 4. The initial state of this pool of hyperplanes may be uniformly random,
or ordered in e.g. orthogonal gridlines (as we opted herein). In this later case, an
approximate guideline which sets the minimal required density of hyperplanes in
feature space is that the distance between neighbor parallel hyperplanes be less than the
lower bound for the distance between any two classes’ modes peaks. The computa-
tional complexity of our proposed model is at most quadratic in the dimension d of the
feature space. To see this we note that all described operations for a single hyperplane
(Eqs. (4) to (16) above) scale up at most linearly with dimension d, and that the number
of hyperplanes itself, needed to create a uniform orthogonal grid such as that of Fig. 4,
also scales up linearly with d, overall resulting in quadratic complexity. We note that
even though each hyperplane is checked upon arrival of a new feature vector, only a
small minority is anticipated to require actual update and full calculations execution,
namely only those which are sufficiently close to the incoming vector; thus, great part
of the computations are skipped most of the time. In fact our simulations with differing
dimension feature spaces indicate a complexity scaling up at approximately O(d1.2). As
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Fig. 4. 2-dimensional example: initial hyperplanes state, uniform orthogonal grid case
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we will see later in the sequel, it is possible to exploit only a small subset of the
hyperplane pool in order to perform classification; by so doing, complexity during the
classification stage may be further greatly reduced. The memory requirement of our
proposed model does not depend on the number of input samples (in contrast with
offline unsupervised learning schemes such as parametric models or k-Means) and is
quadratic in feature space dimension d: the variables needed to be kept for each
hyperplane are all of dimension d (or scalar) and the number of hyperplanes scale up
linearly with d, resulting in O(d2). Since the proposed model operates on a sample by
sample basis as mentioned above, then continuous learning and adaptation to slowly
changing environments are made possible. Our proposed classifier could be used in
conjunction with ‘human engineered’ feature extractors (such as SIFT in the Machine
Vision domain), or ’machine learned’ representations (such as those associated with
Deep NN, with VAE or with GAN as mentioned above); this would result in an end-to-
end unsupervised learning pattern recognition machine, eliminating the need for large
sets of labeled data.

The proposed model, just as any other unsupervised learning classifier (e.g. k-
Means, etc.), generates an output code y which results in some arbitrary ‘machine
assigned’ labels set, and which has to be associated with ‘human assigned’ labels in
order to be usefully interpreted by humans. A brief description of the method we have
used for this purpose follows: we allocate, after convergence, a bunch of samples along
with their ‘human assigned’ labels for this task (say 100 labeled samples per Class). For
every Class we check each hyperplane counting the number of its consistent outputs
(say +1) for samples of this current Class and the number of opposite outputs (say −1)
for samples not belonging to this Class (a 1-vs-all scheme). We calculate a weighted
sum of these 2 numbers and select the highest score hyperplane as this Class dis-
criminator, associating to it that ‘human-assigned’ label. We have alternatively built a
hierarchy tree scheme (e.g. Genus, Species, etc. levels) and similarly picked up the best
hyperplanes at each level; both schemes yielded very similar results.

3 Simulation Results

To demonstrate the ideas and methods presented herein a Matlab based platform was
built. Please refer again to Fig. 4. The illustrated 2 pairs (C1, C2 and C3, C4) of 2-
variate normally distributed classes, all have equal r2I covariance matrix (where I is
the identity matrix), equal priors and shifted means (relative to each other). Inter-means
distance and r2 were calibrated, so that the optimal classification error probability was
approximately 2 
 10−2. Rough tuning of the parameters was carried out to ensure fast
and reliable convergence, ending up in e = 0.0033 r, U = 2 r, a = 0.04 and b = 8 r
values; the linear dependence on r of e, U and b is useful and intuitively convenient for
problem scaling. Hyperplanes pool initial state was set to uniform orthogonal grid with
appropriate distances, as already mentioned above and shown in Fig. 4.

Figure 5 shows the final hyperplanes state, after 10000 input samples (*2500
vectors for each of said 4 classes) of the 2-dimensional scenario, for which its initial
orthogonal grid state was presented in Fig. 4. We notice that many (but not all)
hyperplanes have migrated to discriminating states. We see that small groups of
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hyperplanes, like hp3 and hp4, did converge to local low probability density regions, in
between classes C3, C4 and C1, C2 respectively.

The internal world representation yt Є RN of such a model can be interpreted as a
hierarchical and multi-resolution distributed code: hyperplanes like hp1 for example
could be viewed as discriminating between carnivores and herbivores (no herbivore
classes are shown in Fig. 4), others like hp2 may distinguish between canines and
felines, still others like hp3 between cats and lions, and so on. Code redundancy is
observed: some of the discriminating valleys are occupied by small groups of neighbor,
approximately parallel hyperplanes. Similar hyperplanes final state characteristics as
noted above may be expected at higher dimensional feature spaces.

Figure 6 shows classification error probability for a similar 2 pair categories sce-
nario as described above, except that dimension now is d = 50. We note Perr conver-
gence (in the mean) from 4 
 10−1 to the optimal 2 
 10−2 after about 6000 input
samples (*1500 for each of 4 classes). Close to optimal Perr was expected in this
scenario since we chose a setup of equal priors and identical, mean shifted spherically
symmetric (normally distributed) conditionals; this symmetry results in a hyperplanar
optimal discrimination surface and a collocated hyperplanar valley. Perr in Fig. 6 shows
slight but visible fluctuation around a mean value of 2 
 10−2. In order to mitigate
these fluctuations e and a, rather than staying fixed during model convergence (as was
done in the example of Fig. 6) may be made to gradually decrease, either as function of
time (sample number) or in some adaptive scheme.

To demonstrate performance on a real life application we chose the ImageNet
dataset, a challenging popular benchmark containing over 1000 classes of images, with
around 1300 labeled samples per class (Deng et al. [7]). Each sample is a full resolution
image with average size of 400 
 350 pixels. Our proposed model is generic, and
operates in conjunction with any reasonable feature extraction method which yields
representations fulfilling our above stated assumptions. We used the (N − 1) activation
layer of a pre-trained ResNet-50, a variant of which won the ILSVRC 2015
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Classification Task (He et al. [8]), with feature space of dimension d = 2048.
Inspection and simple analysis of the feature vectors indicate that they may be enclosed
by a hypercubic domain with edge o = 4. Following this visual inspection we placed 4
hyperplanes per dimension on said initial uniform orthogonal grid reaching a total of
2048 
 4 = 8192 hyperplanes. We left the other hyper-parameters values unchanged,
as described above, setting r = 0.8. In order to allow easy visualization and com-
parative analysis of the confusion errors we picked 50 classes from the ImageNet set,
containing a mix of fine-grained and coarse-grained classes: 5 species of Sharks and
Rays, Cocks and Hens, 11 species of Song Birds, etc. We left out 100 samples per class
for testing and used the rest, approximately 1200 samples per class for training. The
training set was run during a single epoch; multi-epoch training did not improve the
results further. Model parameters e and a were kept fixed; their gradual decrease with
time did not significantly affect the results. The learning process was relatively fast:
about 60000 sample vectors (of d = 2048) in 2.5 h on an i7, 2.7 GHz PC. We tested
classification error performance by estimating, using the fore-mentioned test set, Perr
(Top-n, n = 1, 3, 5) which indicates the probability that the actual class of a given
sample is not contained in the set of n most probable classes.

We have run this same data set, using same feature representations, with k-Nearest
Neighbor, a near optimal popular supervised learning benchmark method. The
expected performance gap between kNN and its best-in-class alternative (say SVM) is
not big for our purpose. The results of this comparative test are brought in Table 1. We
note that our proposed method’s Perr (Top-3) exceeds by merely about 2% that of the
kNN near optimal supervised learning classifier. This excess Perr may be called our
unsupervised learning penalty or loss. To probe these results a step further we show in
Fig. 7 the Confusion Matrices for both our method and kNN; for better readability we
show 20 
 20 sub-matrices, but similar behavior is observed in the full matrix. Col-
umns denote ‘human assigned’ (supposedly ground truth) labels and rows denote our
‘machine assigned’ labels (numbered 1 to 20 for both).
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Fig. 6. 50-dimensional example: classification error probability convergence
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Adjacent columns (rows) represent similar classes (close animal species in our
case), for example columns 3 to 5 carry Shark species, etc. In an errorless scheme the
Confusion Matrix would of course be purely diagonal. We notice that both methods
exhibit a strikingly similar behavior; regions of greater confusion, such as Sharks
(columns 3 to 5), Rays (6, 7) and Cock/Hen (8, 9) have similar levels of confusion; this
confusion is mainly due to separability limitations of the ResNet Deep NN furnished
feature space. Regions of good error performance (10 to 20, Song Birds) are also
remarkably similar in both methods. The small performance gap between kNN and our
proposed method is probably mainly due to the fundamental factors mentioned in
Sect. 2 above, namely: non-coincidence between the optimal discriminating hyper-
surface and the ‘valley’ hyper-surface; stochastic fluctuation of our hyperplanes due to
finite parameters values, etc.

Given the high dimensionality of the ResNet-50 feature space and the relatively
small number of training samples for such a huge space region volume, it is apparent
that we have here a case of sparse distribution sampling. One may puzzle how then we

Fig. 7. Our proposed method (top) and kNN (bottom) confusion (Sub-)matrices

Table 1. Classification task performance of our proposed method vs. kNN for 50 ImageNet
coarse/fine grained classes. The Top-3 and Top-5 kNN figures are approximate calculations

50 classes mix Top 5 Perr Top 3 Perr Top 1 Perr
kNN (k = 3, Euclidean distance) 0.024 0.043 0.16
Our method 0.035 0.062 0.23
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could have got such impressive results as presented above; similar good comparative
results were also achieved with the MNIST dataset represented by a similarly high
dimensionality hand-crafted feature space (benchmarked vs. kNN and SVM, results
omitted due to lack of space). A possible explanation is that besides this sparse sam-
pling (sparse in a ‘1st sense’) the feature vectors are also sparse in the sense (‘2nd

sense’) of each containing a relatively large number of zero elements (and few non-zero
elements). They are thus confined to low dimensionality manifolds within a much
higher dimensional space. When constrained to such manifolds, the space sampling is
effectively no sparse (in the 1st sense) anymore. We indeed verified that vectors are
sparse (in the 2nd sense) by visual inspection of marginal class-conditional densities.
An alternative (or additional) reason could be that in spite the insignificant mean
number of samples per unit of feature space volume, the share of useful samples which
effectively train each hyperplane (approximately 2U/o), may typically be (as they were
for our above shown values of U and o) non-negligible. Evidently more explorative
work is required in this area. A similar question regarding learning capability may arise
when we notice that the number of model parameters (*N d * 16e6 in our ImageNet
case) is huge relative to the number of training samples (6e4, there); the resolution to
this apparent puzzle lies in our view, in the fact that each neuron of our proposed model
learns independently of each other (as N separate vectors of length d each); this results
in d (*2e3) parameters being trained by means of 6e4 samples, a reasonable size; this
also stands in contrast with ‘conventional’ multi-layer neural networks, where all
neurons are concurrently trained (as one long (N d) parameters vector) so that the
efficient training set size should be significantly larger than N d.

It is also of importance to evaluate the ImageNet Classification Task performance
of other, potentially competing, unsupervised learning models. We pick for that pur-
pose k-Means, possibly the most popular clustering scheme of all. We choose 10
coarse-grained ImageNet classes; these present a simple challenge to our method which
yields Perr (Top-1) = 0.015. The k-Means method on the other hand is practically
useless at this trivial task as can be seen in Fig. 8 which presents k-Means Confusion
Matrix. We can readily observe that ‘human assigned’ Class ‘1’ is split amongst 2 k-
Means assigned Classes (‘1’, ‘7’) and single k-Means Class ‘6’ is assigned to 3 ‘human
assigned’ Classes (‘6’, ‘7’, ‘8’). This is no surprise; in fact, following these k-Means
results we have conducted an exhaustive literature search for works reporting unsu-
pervised learning classification results in conjunction with any feature extractor for
ImageNet or other challenging, real life applications: we have found none.

Fig. 8. k-Means Confusion Matrix for a simple ImageNet Classification Task for which our
proposed method achieves Perr (Top-1) = 0.015

354 D. N. Nissani (Nissensohn)



It should be probably evident by now to the reader that this proposed model has a
natural neural architecture implementation such as that shown in Fig. 9. We note that
the resulting neural architecture is feed-forward and ‘shallow’, consisting merely of a
single neural layer.

4 Concluding Remarks

This work extends the applicability of a linear discriminant surfaces approach to the
field of unsupervised learning classifiers. Its main novelty in our view is the ex-
ploitation of the implicit underlying probability density to train a classifier. We are not
aware of any other work which exploits the implicit density for this goal (typically
density estimation is carried out). As result of this the proposed method, though
stochastic, does not require explicit estimation nor functional form assumption of the
probability densities involved. At this initial research stage we have experimentally
demonstrated that an unsupervised learning classifier exhibiting low complexity,
Hebbian-like local learning rule, online processing, and neural architecture, may
achieve competitive classification error performance on a relatively challenging Ima-
geNet Classification Task. Future areas of research may include: test extension to the
full ImageNet and other real-life datasets; performance comparison with other super-
vised learning schemes; feature space sampling sparsity and error performance anal-
ysis; convergence analysis; parameters sensitivity analysis; best hyperplane
identification analysis; and study of the possibility to extend our model to a near-

x

x

x

x

x
yNwN

w3

w2

w1

y3

y2

y1

θ1

θΝ

θ3

θ2

Fig. 9. Proposed model (shallow) neural architecture

An Unsupervised Learning Classifier with Competitive Error Performance 355



optimal supervised learning variant. Finally, significant progress has been made in
recent years in the related fields of unsupervised learning of representations (e.g. VAE
[3]) and of supervised learning feature extraction (e.g. GAN [2], DNN Transfer
Learning [10]). Integration of either of these 2 types of feature extraction solutions with
a classifier model such as ours may bring to life for the first time ever an end-to-end
unsupervised learning Pattern Recognition machine with competitive error
performance.

For the purpose of reported results replication and model research advance and
extension, a Matlab based software package will be provided upon request.

Acknowledgements. We are grateful to Meir Feder (Tel Aviv University) for his support and
comments and to Yossi Keller (Bar Ilan University) for the provision of ImageNet data.
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Abstract. In Market Basket Analysis, the goal is to understand the
human behavior in order to maximize sales. An evident behavior is to
buy correlated items. As a consequence, the determination of a set of
items with a large correlation with others is a valuable tool for Market
Basket Analysis.

In this paper we address a combinatorial optimization problem that
formalizes the previous application. Given a simple graph G = (V, E)
(where the nodes are items and links represent correlation), we want to
find the clique C ⊆ V such that the number of links shared between C
and V −C is maximized. This problem is known in the literature as Max
Cut-Clique (MCC).

The contributions of this paper are three-fold. First, the com-
putational complexity of the MCC is established. Second, a full
GRASP/VND methodology enriched with a Tabu Search is here devel-
oped, where the main ingredients are novel local searches and a
Restricted Candidate List that trades greediness for randomization in
a multi-start fashion. A Tabu Search is also included in order to avoid
locally optimum solutions. Finally, a fair comparison with respect to
recent heuristics reveals that our proposal is competitive with state-of-
the-art solutions.

Keywords: Market Basket Analysis · Combinatorial optimization ·
Max Cut-Clique · Metaheuristics

1 Motivation

There is a serious disconnection between the knowledge that academics are pro-
ducing and the knowledge that practitioners are consuming [7]. A bridge between
the science-practice division can be found in Market Basket Analysis (MBA),
sometimes known as affinity analysis [2]. In synthesis, MBA is a Data Mining
technique [1,19] originated in the field of marketing. It has recent applications
to other fields, such as bioinformatics [4,5], WWW networks [12], criminal net-
works [6] and financial networks [13]. The goal of MBA is to identify non-obvious
or counterintuitive relationships between groups of products, items, or categories.
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The information obtained from MBA can have an important impact in the
business strategy and operations. In the specific case of marketing, we can find
valuable applications such as product placement, optimal product-line offering,
personalized marketing campaigns and product promotions. The analysis is com-
monly supported by Machine Learning (pattern matching, clustering, feature
extraction, statistics), Optimization and Logical rules for association.

This work is focused on a specific combinatorial optimization methodology
to assist product placement; however, related applications could be found. The
problem under study is called Max Cut-Clique (MCC), and it was introduced
by Martins [15]. Given a simple graph G = (V,E) (where the nodes are items
and links represent correlation), we want to find the clique C ⊆ V such that
the number of links shared between C and V − C is maximized. The MCC has
an evident application to product-placement. For instance, the manager of a
supermarket must decide how to locate the different items in the different com-
partments. In a first stage, it is essential to determine the correlation between
the different pairs of items, for psychological/attractive reasons. Then, the price-
less/basic products (bread, rice, milk and others) could be hidden on the back, in
order to give the opportunity for other products in a large corridor (and candies
should be at hand by kids as well). Observe that the MCC appears in the first
stage, while marketing/psychological aspects play a key role in a second stage
for product-placement in a supermarket.

In [15], the author states that the MCC is presumably hard, since related
problems such as MAX −CUT and MAX −CLIQUE are both NP-Complete.
To the best of our knowledge, there is no formal proof available for the hardness
of the MCC in the published scientific literature. Nevertheless, the MCC is
systematically addressed by the scientific community with metaheuristics and
exact solvers that run in exponential time.

A recent work in the field develops an Iterated Local Search for the MCC [16].
As far as we know, this work belongs to the state-of-the-art techniques for the
MCC. The authors find optimal solutions for most instances under study, and
suggest a rich number of applications.

The contributions of this paper can be summarized in the following items:

1. The NP-Completeness of the MCC is established (Sect. 2).
2. A hybrid GRASP/VND heuristic enriched with Tabu Search is developed to

address the MCC (Sect. 3).
3. A fair comparison with a state-of-the-art heuristic is presented using DIMACS

benchmark (Sect. 4).

2 Computational Complexity

The cornerstone in computational complexity is Cook’s Theorem [8] and Karp
reducibility among combinatorial problems [14].

Stephen Cook formally proved that the joint satisfiability of an input set of
clauses in disjunctive form is the first NP-Complete decision problem [8]. Fur-
thermore, he provided a systematic procedure to prove that a certain problem is
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NP-Complete. Specifically, it suffices to prove that the decision problem belongs
to set NP, and that it is at least as hard as an NP-Complete problem. Richard
Karp followed this hint, and presented the first 21 combinatorial problems that
belong to this class [14]. In particular, MAX−CLIQUE belongs to this list. The
reader is invited to consult an authoritative book in Complexity Theory, which
has a larger list of NP-Complete problems and a rich number of bibliographic
references [10].

Here, we formally prove that the MCC is at least as hard as MAX −
CLIQUE. Let us denote |C| the cardinality of a clique C, and δ(C) denotes
the corresponding cutset induced by the clique (or the set) C.

Definition 1 (MAX-CLIQUE).

GIVEN: a simple graph G = (V,E) and a real number K.
QUESTION: is there a clique C ⊆ V such that |C| ≥ K?

For convenience, we describe MCC as a decision problem:

Definition 2 (MCC).

GIVEN: a simple graph G = (V,E) and a real number K.
QUESTION: is there a clique C ⊆ G such that |δ(C)| ≥ K?

Theorem 1. The MCC belongs to the class of NP-Complete problems.

Proof. We prove that the MCC is at least as hard as MAX − CLIQUE. Con-
sider a simple graph G = (V,E) with order n = |V | and size m = |E|. Let us
connect a large number of M hanging nodes, to every single node v ∈ V . The
resulting graph is called H (see Fig. 1 for an example). If we find a polynomial-
time algorithm for MCC, then we can produce the max cut-clique in H. But
observe that the Max Cut-Clique C in H cannot include hanging nodes, thus it
must belong entirely to G. If a clique C has cardinality c, then the clique-cut
has precisely c × M hanging nodes. By construction, the cut-clique must max-
imize the number of hanging nodes, if we choose M ≥ m. As a consequence, c
must be the MAX −CLIQUE. We proved that the MCC is at least as hard as
MAX − CLIQUE, as desired. Since MCC belongs to the set of NP Decision
problems, it belongs to the NP-Complete class. �

Theorem 1 promotes the development of heuristics in order to address the
MCC.

3 Methodology

GRASP and Tabu Search are well known metaheuristics that have been success-
fully used to solve many hard combinatorial optimization problems. GRASP is
an iterative multi-start process which operates in two phases [17]. In the Con-
struction Phase a feasible solution is built whose neighborhood is then explored
in the Local Search Phase. Tabu Search [3,11] is a strategy to prevent local
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Fig. 1. Construction of H with M = 21 hanging nodes.

search algorithms getting trapped in locally optimal solutions. A penalization
mechanism called Tabu List is considered to avoid returning to previously visited
solutions. For a complete description of these methods the reader is referred to
the works of Glover and Laguna [11] and Resende and Ribeiro [17]. The reader
is invited to consult the comprehensive Handbook of Metaheuristic for further
information [18].

Here, we develop a GRASP/VND methodology enriched with Tabu Search
in order to avoid getting trapped in previous visited solutions. In the following,
the pseudocode of our Hybrid Metaheuristic (HM) for the Max Cut-Clique is
presented. It follows the traditional two-phase GRASP template enriched with a
Variable Neighborhood Descent (Lines 4–5). A Tabu Search strategy is included
in order to enhance feasible solutions. The tabu list T stores tabu nodes (Line
2), discarding previous solutions. Essentially, the most frequent nodes involved
in all solutions after the second phase of Variable Neighborhood Descent (VND)
are not considered for further solutions during θ iterations, whenever we reach
θmax consecutive iterations without improvement. The most frequent nodes are
selected if they appear more than φ times since the last tabu list refresh. The
real numbers φ and θ are uniformly chosen at random in the interval [1, θmax],
being θmax a parameter of the algorithm. The specific GRASP phases for the
MCC are described in detail in the following subsections.

3.1 Construction Phase - Clique

The construction phase of the proposed algorithm is depicted in Algorithm2.
Let us denote by C the clique under construction, δ(U) and Δ(U) the minimum
and maximum degree of the node-set U . The clique C is initially empty (Line
1), and a multi-start process is considered (Line 2). A Restricted Candidate
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Algorithm 1. HM pseudocode

Input: α, θmax, maxIter, G
Output: C∗

1: C∗ ← ∅
2: T ← ∅
3: for iter = 1 to maxIter do
4: C ← Clique(α, T , G)
5: C ← VND(C, T , G)
6: T ← Update(T , θmax, C) � Tabu List
7: if |E′(C)| > |E′(C∗)| then
8: C∗ ← C
9: return C∗

List, RCL, is defined in Line 3. Observe that the RCL includes nodes with the
highest degree, and α trades greediness for randomization. During the While
loop of Lines 4–11, a singleton {i} is uniformly picked from the RCL (Line 5),
and the maximum clique C′ is built using all the nodes from the set C ∪ {i} (see
Line 6). The best solution is updated if necessary (Lines 7–8). Observe that the
process is finished only if we meet MAX ATTEMPTS without improvement
(Lines 9–11). The reader can appreciate that the output C is the best feasible
clique during the whole process (Line 12).

Algorithm 2. Clique

Input: α, T , G
Output: C

1: C ← ∅
2: improving = MAX ATTEMPTS
3: RCL ← {v ∈ V − C : |E′(v)| ≥ Δ(V − C) − α(Δ(V − C) − δ(V − C))}
4: while improving > 0 do
5: i ← selectRandom(RCL)
6: C′ ← [C ∩ N(i)] ∪ {i}
7: if |E′(C′)| > |E′(C)| then
8: C ← C′

9: improving ← MAX ATTEMPTS
10: else
11: improving ← improving − 1

12: return C

3.2 Local Search Phase - V ND

The goal is to combine a rich diversity of neighborhoods in order to obtain an
output that is locally optimum solution for every feasible neighborhood. Five
neighborhood structures are considered to build a VND [9].
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– Remove: a singleton {i} is removed from a clique C.
– Add: a singleton {i} is added from a clique C.
– Swap: if we find j /∈ C such that C − {i} ⊆ N(j), we can include j in the

clique and delete i (swap i and j).
– Cone: generalization of Swap for multiple nodes. The clique C is replaced by

C ∪ {i} − A, being A the nodes from C that are non-adjacent to i.
– Aspiration: this movement offers the opportunity of nodes belonging to the

Tabu List to be added.

The previous neighborhoods take effect whenever the resulting cut-clique is
increased. It is worth to remark that Add, Swap, and Aspiration are taken
from a previous ILS [16]. However, our VND is enriched with 2 additional neigh-
borhood structures, named Remove and Cone. Observe that the Tabu list
works during the potential additions during Add, Swap and Cone. On the
other hand, Aspiration provides diversification with an opportunistic unchok-
ing process: it picks nodes from the Tabu List instead.

For the remaining four local searches, there is an efficient way to determine
whether there is an improvement with respect to some neighbor-set. Specifically,
the Test Lemmas 1 to 4 are useful to determine the improvements for Remove,
Add, Swap and Cone movements, respectively. We call Aspiration Test to
Lemma 2 but applied in a different domain (specifically, the candidate nodes
must belong to the Tabu List).

Lemma 1 (Remove). |δ(C − {i})| > |δ(C)| iff |δ(i)| < 2(|C| − 1).

Proof.

|δ(C − {i})| = |δ(C)| + |C| − 1 − (|δ(i)| − (|C| − 1))
= |δ(C)| + |C| − 1 − |δ(i)| + |C| − 1
= |δ(C)| + 2(|C| − 1) − |δ(i)|
> |δ(C)|,

where the last inequality holds iff 2(|C| − 1) − |δ(i)| > 0. �

Lemma 2 (Add). |δ(C ∪ {i})| > |δ(C)| iff |δ(i)| > 2|C|.

Proof.

|δ(C ∪ {i})| = |δ(C)| − |C| + |δ(i)| − |C|
= |δ(C)| + |δ(i)| − 2|C|
> |δ(C)|,

where the last inequality holds iff |δ(i)| > 2|C|. �

Lemma 3 (Swap). |δ(C − {j} ∪ {i})| > |δ(C)| iff |δ(i)| > |δ(j)|.
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Proof.

|δ(C − {j} ∪ {i})| = |δ(C)| − |δ(j)| + 2(|C| − 1) + |δ(i)| − 2(|C| − 1)
= |δ(C)| − |δ(j)| + |δ(i)|
> |δ(C)|,

where the last inequality holds iff |δ(i)| > |δ(j)|. �

Lemma 4. (Cone). |δ(C−A∪{i})| > |δ(C)| iff |δ(i)| > |δ(A)|−2|C−A|(|A|−1).

Proof.

|δ(C − A ∪ {i})| = |δ(C)| + |A||C − A| − (|δ(A)| − |A||C − A|) − 2|C − A| + |δ(i)|
= |δ(C)| + 2|A||C − A| − |δ(A)| − 2|C − A| + |δ(i)|
= |δ(C)| + 2|C − A|(|A| − 1) − |δ(A)| + |δ(i)||δ(C − A ∪ {i})|
> |δ(C)|

where the last inequality holds iff |δ(i)| > |δ(A)| − 2|C − A|(|A| − 1). �

The Flow Diagram of our VND is presented in Fig. 2. The ordered sequence
of local searches are Remove, Add, Swap, Cone and Aspiration moves. Once
an improvement is obtained, the process restarts from the beginning. Observe
that, in the output, a locally optimum solution under all neighborhood structures
is met.

4 Computational Results

In order to test the performance of the algorithm, a fair comparison with respect
to an Iterated Local Search solution [16] is carried out using DIMACS bench-
mark. The test was executed on an Intel Core i7, 2.4 GHz, 8 GB RAM.

Table 1 reports the performance of our HM algorithm for each instance1. All
instances were tested using 100 runs with α = 1

2 , MAX ATTEMPTS = � |V |
10 �,

θmax = 10. The values remarked using bold letters from column |E′(C)| indicate
that the best solution known was reached according to [16].

Following the terminology, max iter represents the number of iterations con-
sidered in the algorithm, |E′(C)|, |C| and Time represent maximum cut-clique
size found, best solution and the CPU time for the Best solution found. The
same columns are reported for an averaging over 100 runs.

The reader can appreciate that our HM algorithm meets the best solution
known so far in all cases. On the one hand, HM is a more powerful strategy than
ILS, since the local search from the latter are completely included in the former.
On the other, the computational effort is increased using HM. Even though a

1 All the scripts are available at the following URL: https://www.fing.edu.uy/
∼lstabile/mcc-octave-source.zip.

https://www.fing.edu.uy/~lstabile/mcc-octave-source.zip
https://www.fing.edu.uy/~lstabile/mcc-octave-source.zip
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Fig. 2. Flow diagram for the local search phase - VND.
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Table 1. Results of the algorithm for the MCC problem

Instances Parameters Best Average

Name n Density max iter |E′(C)| |C| Time (s) |E′(C)| Time (s)

c-fat200-1 200 0.071 10 81 9 0.1 81 0.3

c-fat200-2 200 0.163 10 306 17 0.5 306 0.8

c-fat200-5 200 0.426 10 1892 43 3 1892 4.9

c-fat500-1 500 0.036 10 110 10 0.5 110 2.4

c-fat500-2 500 0.073 10 380 19 3 380 5.8

c-fat500-5 500 0.186 10 2304 48 10 2304 10.8

c-fat500-10 500 0.374 10 8930 94 38 8930 65

p hat300-1 300 0.244 100 789 8 129 787 905

p hat300-2 300 0.489 100 4637 25 8 4636 3659

p hat300-3 300 0.744 1000 7740 36 469 7556 3992

p hat500-1 500 0.253 100 1621 9 13 1621 694

p hat500-2 500 0.505 100 11539 36 16 11401 723

p hat500-3 500 0.752 1000 18859 50 679 18855 723

p hat700-1 700 0.249 100 2606 11 305 2602 439

p hat700-2 700 0.498 1000 20425 44 79 20425 839

p hat700-3 700 0.748 1000 33480 62 945 33468 1807

p hat1000-1 1000 0.245 1000 3556 10 216 3556 355

p hat1000-2 1000 0.490 10000 31174 46 2124 31174 2538

p hat1000-3 1000 0.744 10000 51259 65 2687 53256 3584

p hat1500-1 1500 0.253 1000 6018 11 399 6018 904

p hat1500-2 1500 0.506 10000 67486 65 2482 67486 2942

p hat1500-3 1500 0.754 10000 112873 94 1174 112872 23162

keller4 171 0.649 100 1140 11 9 1140 11

keller5 776 0.752 10000 15184 27 1956 15183 1167

keller6 3361 0.818 100000 159608 59 26362 158423 321731

c125 9 125 0.899 1000 2766 34 102 2766 253

c250 9 250 0.899 1000 8123 44 426 8123 831

c500 9 500 0.901 10000 22691 57 2354 22652 4469

c1000 9 1000 0.901 10000 57149 68 3924 56038 4125

c2000 5 2000 0.500 10000 16106 16 23472 16082 23472

c2000 9 2000 0.900 50000 136769 79 37472 135001 45472

c4000 5 4000 0.500 50000 36174 18 31196 35891 38119

MANN a9 45 0.927 1000 412 16 4 412 145

MANN a27 378 0.990 10000 31284 126 309 31244 548

MANN a45 1035 0.996 50000 236406 344 46881 235072 52112

MANN a81 3321 0.999 50000 2436894 1098 73213 2433624 96743
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globally optimum is not formally proved for some instances, the null gap between
ILS and our solution suggests an evidence of optimality.

The results described in this section reflect that our GRASP/VND method-
ology is competitive with state-of-the-art solutions for the MCC. We underscore
the simplicity of implementation conducted by simple building blocks (solution
construction procedures and local search methods).

5 Conclusions and Trends for Future Work

Several business models can be represented by Market Basket Analysis (MBA).
A relevant marketing approach is to find a subset of items that are strongly
correlated with the others. This intuition is formalized by means of a combina-
torial optimization problem, called Max Cut-Clique (MCC). In this paper the
NP-Completeness of MCC is established. Then, a GRASP/VND methodology
enriched with Tabu Search is developed to address the MCC. A fair comparison
confirms that our approach is competitive with state-of-the art solutions.

As future work, we want to implement our solution into a real-life product-
placement scenario. In a first stage, we need historical information to determine
the links between pairs of items. Finally, the physical location of the items must
be determined using a complementary geometrical problem with constraints. The
solution could consider multi-constrained clustering in order to include categories
for the items, or other Machine Learning techniques to determine profiles for the
customers, according to the product under study. After the real implementation,
the feedback of sales in a period is a valuable metric of success.
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temas Binarios Estocásticos Dinámicos. We would like to thank the reviewers for their
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Abstract. A system model in practice may be a black-box function. However,
most of the current research on optimal control problems is conducted under the
condition that the specific expression of the model is known, and there is a lack
of research on the optimal control problem of black-box models. Based on
Modelica language and corresponding simulation platform, this paper gets the
simulation data from a Modelica model with the serialization of parallel simu-
lation and uses level-set dynamic programming (DP) algorithm to calculate the
cost-to-go function recursively. In order to retrieve the sequence of optimal
control variables and corresponding optimal state trajectory, two methods are
proposed, namely the method based on continuous simulation and the method
that approximates state transfer equations locally with a sequence of Radial
Basis Functions (RBFs). As an example, an academic case is analyzed. The
result proves the effectiveness of the proposed method in solving the optimal
control problem of the black-box models.

Keywords: Black-box � Non-causal � Modelica-based � Level-set DP � RBF

1 Introduction

At present, numerical methods for solving optimal control problems can be divided into
three approaches: indirect method, direct method, and dynamic programming [1]. The
indirect methods use the Pontryagin’s Maximum Principle to convert the optimal
control problem to the boundary value problem [2] and then solve it using corre-
sponding approaches. The direct methods are based on discretization of the state
variables or control variables and convert the optimal control problem to a nonlinear
programming problem [3], which can be solved by some nonlinear programming
solvers. Based on the principle of optimality, dynamic programming leads to the
Hamilton-Jacobi-Bellman equation that can be approximately computed [4, 5].

Based on the Modelica language [6–8], the Jmodelica.org platform [9] uses pseudo
spectral collocation methods and local collocation methods to solve the optimal control
problem and can solve trajectory optimization and parameter optimization. All the above
methods and the platform that we discussed are only suitable for solving the optimal
control problem with specific expressions of its differential-algebraic equations (DAEs).
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However, there are many practical situations where a mathematical model is not
available. Another case refers to computer programs where commonly only
input/output information is available by simulation. The Modelica model established
by non-causal modeling on the Modelica software platform or FMU model derived
from other platforms is such an example. The advantage of non-causal models is that
there is no limit to the direction of solving the equations when declaring them. Thus the
equation has more flexibility and functionality than the assignment statement. Due to
this feature, it is convenient to reuse the model, which is conducive to constructing
more complex models and models closer to the real world. However, the models of
non-causal modeling and the FMU models derived from other platforms should be
considered as black box because it is difficult to get the clear data flow like DAEs.
Unfortunately, the representation and solution of optimal control problems are mostly
based on the DAEs. The optimal control problem of these models is called the optimal
control problem of black-box models. Moreover, the research on the optimal control
problem is rarely involved in black-box models.

This paper studies the optimal control problem of black-box models in Modelica
language and corresponding simulation platform. The contribution of this paper is to
compute the cost-to-go function using the simulation data and level-set dynamic pro-
gramming (DP) algorithm. One of the highlights of the paper is parallel simulation
serialization that greatly reduces the simulation time. In the calculation of the optimal
state trajectory, two methods are proposed. One is to calculate the next state point based
on the current state point by the sequence of model simulation. The other is to
approximate state transfer equations locally by establishing a series of Radial Basis
Functions (RBFs) [10]. Compared with the exact solution of the same white-box model
in a given example, a good effect is obtained on the optimal control problem of the
black-box models without the mathematical expression. The example also shows that
the two methods to calculate the optimal state trajectory are effective and the second
method is more efficient.

This brief is organized in the following way. Section 2 defines the optimal control
problem and Sect. 3 reviews dynamic programming algorithm and level-set DP. The
main contribution of this article is given in Sect. 4, where the modeling and simulation
of the optimal control problem and the detailed implementation using level-set DP are
explained. The two methods used in the calculation of optimal state trajectory are also
introduced here. Finally, a case study demonstrates that the methods proposed in the
article can be used to solve the optimal control problem of black-box models.

2 Optimal Control Problem

A special class of optimal control problems with a fixed final time and a partially
constrained final state may be summarized as follows: Find an admissible control
sequence uk; k ¼ 0; 1; . . .;N that solve the following problem [11].
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Minimize J ¼ /ðxNÞþ
X

N�1

0

Lk½xk; uk�

Subject to xkþ 1 ¼ fk½xk; uk�
xk 2 Xk �R

n

x0 ¼ xic
xN 2 T

uk 2 Uk �R
m

for all k ¼ 0; 1; . . .;N:

ð1Þ

We consider the dynamic programming algorithm to solve the optimal control
problem. The continuous-time model needs to be discretized since dynamic pro-
gramming algorithm is a numerical algorithm. And time is divided to N stages and the
function /ðxNÞ is the final cost. Applying the control signal uk to the practical system at
discrete time k causes the cost Lk½xk; uk� named the stage cost. The dynamic system has
n state variables and m control variables. We divide the time to N instances now, and it
is assumed that the control variables are time-invariant during every time instance
k. However, we must notice that Lk and fk can be time-variant at different time instance.
fk is called as state transfer equations, which is the evolution process from one state to
another. xk is the current state point and xkþ 1 is the next state point. The dynamic
system given by (1) is based on this assumption and its solution is obtained through the
simulation in Modelica language and its software environment. The last point we need
to discuss is the constraints about the dynamic system. Xk is the time-variant admissible
state variables set and Uk is the time-variant admissible control variables set. xIC gives
the initial condition, and the final state value is constrained to the target set T .

In terms of the discrete state variables set Xk , it can be represented by

Xk ¼ fxk1; xk2; . . .xkj ; . . .; xkqg; q ¼ Q

n�1

i
qi. n is the dimension of state variables, qi is the

number of points used to discretize state variable i. and q is the total number of state
points. The subscript j in xkj denotes the state point with time k and state index j. The
discrete representation of control space is analogous to the representation of state space.

It can be denoted as the set Uk ¼ fuk1; uk2; . . .ukj ; . . .; ukpg; p ¼ Q

m�1

i
pi.

3 Basic DP and Level-Set DP

3.1 Basic DP

On the basis of (2) derived from the Bellman equation, the optimal cost-to-go function
JkðxiÞ at point xi at time k, which represents the optimal cumulative cost from the
current state to the final state, can be evaluated by proceeding backwards in time.
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JkðxiÞ ¼ min
uk2Uk

fLkðxik; ukÞþ Jkþ 1ðfkðxik; ukÞÞg ð2Þ

However, Jkþ 1 in (2) only records the value of the optimal cost-to-go function on
discrete grid points and the state point fkðxik; ukÞ is continuous. In order to evaluate
Jkþ 1ðfkðxik; ukÞÞ, approximant treatments are necessary to be used. Classical approxi-
mation strategies are nearest neighbors and linear interpolation.

When initializing the cost-to-go function, the value of the state point that violates
the terminal constraint is set to infinity. Sundström [12] used the concept of the
backward-reachable space and linear interpolation to evaluate Jkþ 1ðfkðxik; ukÞÞ and
describes the situation where the state point fkðxik; ukÞ is in the vicinity of the boundaries
between the backward-reachable space and non-backward-reachable space. In such a
case, the grid points used for interpolation include feasible infeasible points. Since the
value of the infeasible point is infinite, the result of interpolation is also infinite, which
brings great error.

Taking into account the errors caused by the above practices, the cost value of the
state point which violates terminal constrains is changed from infinity to limited. This
algorithm is called basic dynamic programming. However, this method results in a
steep gradient in the cost-to-go function and distorts the solution as Fig. 1 shows.

3.2 Level-Set DP

In order to reduce the numerical errors mentioned above, a method of level-set DP is
proposed in [13]. The level-set DP introduces a new function I, its definition is as
follows.

I : X �Rn ! R ð3Þ

finiteJ

1( )kJ x+

Exact cost

Interpolation cost

Interpolation cost using infinite costJ∞

x
1ix − ix 1ix +

Feasible region

Infeasible region

Boundary line

Fig. 1. The interpolation error at the boundary in 1D
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The positive and negative functions represent the external and internal parts of the
backward-reachable space respectively.

S ¼ fx 2 XjIðxÞ� 0g ð4Þ

When solving the optimal control problem, the level-set DP algorithm calculates
the level-set and the cost-to-go functions parallel in each time instance. This detailed
algorithm estimates the level-set function can be seen in the literature [13].

The algorithm can tell whether the state point is in the backward-reachable space,
which is different from basic dynamic programming. Therefore, large penalty costs in
the cost-to-go function are not required and the large gradient is avoided. However, the
grid points outside the backward-reachable space still need to be used when the cost-to-
go function is being interpolating. When dealing with this problem, Elbert uses control
variables that minimize the level-set function for the points outside the backward-
reachable space. In such a case, the state point outside the backward-reachable space
can approach the backward-reachable space faster. Therefore, this delivers a smooth
cost-to-go function over the whole state space.

4 Modeling, Simulation and Solution of Optimal Control
Problems

As mentioned earlier, Modelica language supports non-causal modeling. Compared
with declarative modeling, this feature of Modelica language makes modeling more
convenient. Simultaneously, this work is based on Mworks, which is a platform based
on Modelica language to support multi-domain modeling, simulation, analysis and
optimization [14]. The method proposed in this paper is for the optimal control problem
of the black-box models. However, taking into account the verification of the cor-
rectness of the solution results, the description of the proposed method is performed
using an example of known mathematical expression. The modeling of the optimal
control problem is needed to be introduced here. In order to solve the optimal control
problem of the black-box models through the level-set DP algorithm, the simulation of
the Modelica model describing the optimal control problem in every time instance is
needed. The finer the time division, the more simulations are needed. For this reason,
time consumption will be an unacceptable cost when the model is complex. Hence, the
situation that the dynamic constraint equations don’t contain time in an explicit way is
only considered.

4.1 Modeling of Optimal Control Problems

The description of the optimal control problem is shown in Sect. 2. Here we mainly
introduce the modeling of the optimal control problem with differential algebraic
equations as an example. The Modelica model framework is established in this paper as
shown in Fig. 2. Two state variables and two control variables are in the example.
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The two red triangles on the left side of the DAE rectangle in the figure represent
the state variables. The small white triangles on the right represent the derivatives of the
state variables, which are equal to the corresponding state variables after the 1/s
integration blocks. The initial value block and terminal block of these variables are also
given. The nested DAE block is shown in Fig. 2. The black-box DAEs model is
established by drag and drop. In addition to the state variables and control variables,
there are some related parameters for use.

4.2 Implementation of Parallel Simulation Serialization

As shown in (1), the differential algebraic equations become the ordinary differential
equations when the control variables are fixed in the time instance and the initial state
values are given. Thus, a simulation can be carried out. The level-set DP algorithm is
based on grid sampling. For state variables at grid points, all discrete control variables
are traversed to obtain the values of state variables at the end of the time instance. The
current problem is the simulation of the same DAEs model under different simulation
conditions (initial state variables and control variables are different). Obviously, if the
DAEs model needs to be simulated every time the simulation conditions are changed, it
will be very cumbersome and time-consuming. A parallel simulation serialization
method is proposed to realize the series connection of different simulation conditions so
that simulation results under all simulation conditions can be obtained only through one
simulation.

The main basis for implementing this assumption is the reinit function in Modelica
language, which can reset the state variables value at the time of the event. Based on
this function, the state variable points and the control variable points obtained from the
grid sampling are strung into the input curves of these variables. These curves are
piecewise constant functions and the time interval is equal to the time instance used by
the level-set DP algorithm. Each dimension corresponds to an input curve as the Fig. 3
shows.

Fig. 2. The Modelica model framework and the nested DAE model (Color figure online)
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In the time instance tk*tk + 1, the transformed ordinary differential equations are
simulated by the Mworks platform. The values of state variables obtained by the
simulation are recorded in the time instance tk + 1. After the state variables of the
DAEs are reset to the value in the input curves of state variables in the next time
instance, the output values of state variables under the corresponding simulation
condition are obtained through the next simulation.

By serializing the parallel simulation of different simulation conditions of the same
model, a large amount of time for the simulation solver to be set up and turned on is
saved, which lays the foundation for solving the optimal control problem of black-box
models.

4.3 The Calculation of the Optimal State Trajectory

After the level-set DP is completed, the optimal cost-to-go function corresponding to
all grid points x at the discrete time point is obtained. In order to get the sequence of
optimal control variables and the corresponding optimal state trajectory that allows the
system to achieve the lowest cost or maximum benefit from the initial states, a forward
simulation from the initial states needs to be conducted. However, the trajectory cannot
be retrieved directly because the DAEs are black-box and the specific expressions of
state transfer equations are unknown. Two methods are proposed in this article. One is
to calculate the next state point based on the current state point by the sequence of
simulations. The other is to approximate state transfer equations locally by establishing
a series of local RBFs based on the simulation data of Modelica model.

Based on the Sequence of Simulations
This method is similar to the simulation in step Sect. 4.2. The difference is that the state
variables are known as the initial states of the simulation for each time instance here. In
each time instance, the simulation values of state variables corresponding to all discrete
control variables are obtained through one simulation. The specific steps are as follows:

• Initialization of state variables

xo ¼ xic if k ¼ 0
xopk else

�

ð5Þ
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Fig. 3. The input curves of initial states and control variables after serialization

374 P. Qiao et al.



• Traverse all discrete control variables to obtain the corresponding simulation value
of state variables.

xkþ 1 ¼ Sðxo; ukÞ for all uk 2 Uk ð6Þ

S represents the mapping between and the initial value of state variables and control
variables to the simulation result, i.e.:

S : Rn � Rm ! Rn ð7Þ

• Find the optimal control variables in every time instances

uopk ¼ argminfLkðxo; ukÞþ Jkþ 1ðxkþ 1Þg;
argminfIkþ 1ðxkþ 1Þg

if Ikþ 1ðxkþ 1Þ� 0
else

�

ð8Þ

• Calculate the value of state variables using the optimal control variables

xopkþ 1 ¼ Sðxo; uopk Þ ð9Þ

Repeat these steps to obtain the sequence of optimal control variables and optimal
state trajectory. The results obtained by this method are relatively accurate. However,
the next simulation can be only started after the current simulation is over. There, the
time cost is huge when the time division of the algorithm is very dense. To solve this
problem, the following local approximation method of transfer equations is proposed.

Local Approximation of Transfer Equations Based on the Sequence of RBFs
This method is essentially an approximation method. However, the establishment of a
global RBF requires a large number of sampling points to meet the model accuracy,
which results in a huge time consumption when doing a large number of valuations of
the approximate model. In general, the number of sampling points when building a
local approximation model is much smaller than the number of sampling points for
establishing a suitable global model. And in the local area, the local RBF is more
accurate than the global RBF. Simultaneously, the estimation speed is faster.

There is no need to re-simulate here and the data are all from the simulation of the
original model before level-set DP. Compared with the continuous simulation method
introduced before, the efficiency has been greatly improved, which can be reflected in
the following example. The specific steps are as follows:

• Initialization of state variables

xo ¼ xic if k ¼ 0
xopk else

�

ð10Þ

• Determine the response surface in current time instance

Find the adjacent points of state variables on the discrete grid. The total number of
these points is 2n. Then check whether the current state point is within the active area of
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the last RBF. If the current state point is not in this area, sample the discrete points of
the control variables corresponding to these state grid points. Then take these state grid
points and the corresponding sampled control grid points as inputs to obtain a locally
active response surface model (RSM) in the neighborhood of xo. The graphic display of
the image is shown in Fig. 4. The range of the response surface model is defined as a
hyper-rectangle by these 2n points adjacent to xo.

RSMk ¼ RSMk�1

RSMnewðDeðxoÞÞ
if k� 1 and xo 2 eðxk�1Þ

else

�

ð11Þ

eð	Þ indicates the neighborhood where the state point is located and DeðxoÞ repre-
sents the training data set sampled in the current local area.

• Traverse all discrete control variables to obtain the corresponding simulation value
of state variables

xkþ 1 ¼ Rðxo; ukÞ for all uk 2 Uk ð12Þ

R represents the transfer equation of the current time instance using the RSM.

• Find the optimal control variables in every time instance

uopk ¼ argminfLkðxo; ukÞþ Jkþ 1ðxkþ 1Þg;
argminfIkþ 1ðxkþ 1Þg

if Ikþ 1ðxkþ 1Þ� 0
else

�

ð13Þ

• Calculate the value of state variables using the optimal control variables

xopkþ 1 ¼ Sðxo; uopk Þ ð14Þ

Repeat steps 1–5 to obtain the sequence of optimal control variables and optimal
state trajectory.

Fig. 4. Possible sequence of the RBF response surfaces
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5 Case Study: Simple Dynamic System

To illustrate the effectiveness of the proposed method, a simple example from [13] is
used here. The simple system can be introduced as in Fig. 5. The state variables
represent the amount of water in the two reservoirs. The first control variable decides
the total amount of water flowing into the two reservoirs and the second control
variable determines the water distribution of the two reservoirs. When the terminal time
arrives, the specified terminal water level needs to be reached in the two reservoirs,
using a minimum amount of water. There is a problem that needs to be concerned in the
example, i.e. the two reservoirs have a leak, where the leak rate is proportional to the
amount of water in the reservoir.

The system with two state variables and two control variables is described by the
following dynamic equations:

_x1 ¼ � 1
2
x1ðtÞþ u1ðtÞ � u2ðtÞ

_x2 ¼ � 1
2
x2ðtÞþ u1ðtÞ � ð1� u2ðtÞÞ

ð15Þ

The path constrains are:

xðtÞ 2 ½0; 1� � ½0; 1� t 2 ½0; 2�
uðtÞ 2 ½0; 1� � ½0; 1� t 2 ½0; 2� ð16Þ

and the initial and final conditions are:

x1ð0Þ ¼ x2ð0Þ ¼ 0

x1ð2Þ ¼ x2ð2Þ� 0:5
ð17Þ

Fig. 5. The simple dynamic system
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The terminal time in this example is 2s and the cost function that needs to be minimized
is:

J ¼
Z 2

0
u1ðtÞþ 0:1 � u2ðtÞ � 0:5j jdt ð18Þ

The analytic solution of this problem is given as follows:

u1ðtÞ ¼
0; if t\0:6137

1; if t[ 0:6137

�

u2ðtÞ ¼ 0:5 t 2 ½0; 2�
ð19Þ

The value of the optimal cost functional is:

Ja ¼ �2 lnð1
2
Þ 
 1:3863 ð20Þ

We treat this dynamic system as a black box here. In other words, the concrete
expression of the system is unknown after the Modelica model is established. The data
used for level-set DP come from Modelica-based simulation. When the optimal cost-to-
go function and the level-set function are evaluated at every node at every time
instance, the two methods as introduced before are used to calculate the sequence of
optimal control variables and the optimal state trajectory.

In terms of the level-set DP used, the discretization of these variables directly
affects the accuracy of the solution. In this example, the time discretization is
Dt ¼ 0:01s. The state discretization is chosen to be Nx ¼ 51� 51 and the control
discretization is Nu ¼ 21� 21.

Figures 6 and 7 shows the sequence of optimal control variables and optimal
trajectory respectively, which can be obtained by both methods in Sect. 4.3. The
solution with the discretization introduced before is close to the analytic solution.
Although the two methods can obtain similar solutions, the efficiency of the latter is
much higher than that of the former, which can be seen from Table 1.
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Fig. 6. The sequence of optimal control variables
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6 Conclusions

This paper simulates the black-box model under different simulation conditions on the
Modelica platform by parallel simulation serialization. After obtaining the simulation
data, the level-set function and the optimal cost-to-go function are calculated according
to the level-set dynamic programming algorithm. Then using the two methods pro-
posed in the paper to calculate the optimal state trajectory and the sequence of control
variables, the latter is much more efficient than the former.

After establishing the black-box model, the proposed method does not require the
specific mathematical expression of the model in the algorithm process. Simultane-
ously, the level-set DP algorithm has better accuracy in solving the optimal control
problem with terminal constraints. The algorithm does not need global optimality
conditions and does not need to calculate the related gradient. Compared with other
optimal control algorithms, it is more suitable for black- box situations. However, due
to the inherent curse of dimensionality of dynamic programming algorithm, the method
proposed in the paper has its limitations. Both the model simulation and the level-set
DP consume a lot of time in high-dimensional problems.

Acknowledgments. Financial support from the National Natural Science Foundation of China
under Grant No. 51575205 is gratefully acknowledged.

References

1. Nikoobin, A., Moradi, M.: Indirect solution of optimal control problems with state variable
inequality constraints: finite difference approximation. Robotica 35(1), 50–72 (2017)

2. Nikoobin, A., Moradi, M.: Optimal balancing of robot manipulators in point-to-point
motion. Robotica 29(2), 233–244 (2011)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time/s

0

0.2

0.4

0.6

0.8

1

st
at
e[
-]

x1
x2

Fig. 7. The corresponding optimal state trajectory

Table 1. Time used with the two methods at similar accuracy for this example

Simulation-based RBF-based

The numbers of simulations or RBF 200 24
Time[s] 140.703 2.384

A Modelica-Based Simulation Method for Black-Box Optimal Control Problems 379



3. Sargent, R.: Optimal control. J. Comput. Appl. Math. 124(1–2), 361–371 (2000)
4. Bellman, R.: Dynamic Programming, p. 1957. Princeton University Press, Princeton (1957)
5. Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific, Belmont

(1995)
6. Mattsson, S.E., Elmqvist, H., Otter, M.: Physical system modeling with Modelica. Control

Eng. Pract. 6(4), 501–510 (1998)
7. Sahlin, P., Eriksson, L., Grozman, P., Johnsson, H., Shapovalov, A., Vuolle, M.: Whole-

building simulation with symbolic DAE equations and general purpose solvers. Build.
Environ. 39(8), 949–958 (2004)

8. Wetter, M.: Modelica-based modelling and simulation to support research and development
in building energy and control systems. J. Build. Perform. Simul. 2(2), 143–161 (2009)

9. Åkesson, J., Årzén, K.-E., Gäfvert, M., Bergdahl, T., Tummescheit, H.: Modeling and
optimization with Optimica and JModelica. org—languages and tools for solving large-scale
dynamic optimization problems. Comput. Chem. Eng. 34(11), 1737–1749 (2010)

10. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge
University Press, Cambridge (2003)

11. van Berkel, K., de Jager, B., Hofman, T., Steinbuch, M.: Implementation of dynamic
programming for optimal control problems with continuous states. IEEE Trans. Control
Syst. Technol. 23(3), 1172–1179 (2015)

12. Sundström, O., Ambühl, D., Guzzella, L.: On implementation of dynamic programming for
optimal control problems with final state constraints. Oil Gas Sci. Technol.-Revue de
l’Institut Français du Pétrole 65(1), 91–102 (2010)

13. Elbert, P., Ebbesen, S., Guzzella, L.: Implementation of dynamic programming for n
dimensional optimal control problems with final state constraints. IEEE Trans. Control Syst.
Technol. 21(3), 924–931 (2013)

14. Chen, X., Wei, Z. (eds.): A new modeling and simulation platform-MWorks for electrical
machine based on Modelica. In: International Conference on Electrical Machines and
Systems, ICEMS 2008. IEEE (2008)

380 P. Qiao et al.



A Clonal Selection Algorithm
for Multiobjective Energy Reduction
Multi-Depot Vehicle Routing Problem

Emmanouela Rapanaki1, Iraklis-Dimitrios Psychas1, Magdalene Marinaki1,
Yannis Marinakis1, and Athanasios Migdalas2(B)

1 School of Production Engineering and Management, Technical University of Crete,
Chania, Greece

emmarap@hotmail.com, ipsychas102@gmail.com, magda@dssl.tuc.gr,
marinakis@ergasya.tuc.gr

2 Industrial Logistics, Lule̊a Technical University,
97187 Lule̊a, Sweden

athmig@ltu.se

Abstract. Clonal Selection Algorithm is a very powerful Nature
Inspired Algorithm that has been applied in a number of different kind
of optimization problems since the time it was first published. Also, in
recent years a growing number of optimization models have been pro-
posed that are trying to reduce the energy consumption in vehicle rout-
ing. In this paper, a new variant of Clonal Selection Algorithm, the
Parallel Multi-Start Multiobjective Clonal Selection Algorithm (PMS-
MOCSA) is proposed for the solution of a Vehicle Routing Problem vari-
ant, the Multiobjective Energy Reduction Multi-Depot Vehicle Routing
Problem (MERMDVRP). In the formulation four different scenarios are
proposed where the distances between the customers and the depots are
either symmetric or asymmetric and the customers have either demand
or pickup. The algorithm is compared with two other multiobjective algo-
rithms, the Parallel Multi-Start Non-dominated Sorting Differential Evo-
lution (PMS-NSDE) and the Parallel Multi-Start Non-dominated Sort-
ing Genetic Algorithm II (PMS-NSGA II) for a number of benchmark
instances.

Keywords: Vehicle Routing Problem · Clonal Selection Algorithm ·
NSGA II · NSDE · VNS

1 Introduction

The Vehicle Routing Problem (VRP) is one of the most famous optimiza-
tion problems and its main goal is the design of the best routes for a selected
number of vehicles in order to serve a set of customers in the best possible way
according to some selected criteria which vary with the situation in case. As the
interest of researchers and decision makers for the solution of different variants
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of VRP continuously increases, a number of more realistic and thus more com-
plicated versions and formulations of it have been proposed and a number of
more sophisticated algorithms are used for their solutions [19].

The combination of more than one objective functions in the formulation of a
Vehicle Routing Problem variant could produce a more realistic problem. Thus,
in the recent years there is an increasing number of research works that propose
formulations with more than one criteria. The resulting VRPs are Multiobjec-
tive Vehicle Routing Problems. In the present paper, we propose a formulation
of the problem that combines the existence of several depots, the possibility of
pickups and deliveries, and the simultaneous reduction of the fuel consumption.
Both the symmetric and, essentially the more realistic asymmetric cases are
considered. Also in recent years, a number of evolutionary, swarm intelligence
and other nature inspired algorithms have been proposed for the solution of the
VRP both for the single-objective and the multi-objective case. In the present
paper, we propose a Multiobjective variant of the Clonal selection algorithm, the
Parallel Multi-Start Multiobjective Clonal Selection Algorithm (PMS-MOCSA),
is proposed for the solution of the Multiobjective Energy Multi-Depot Vehicle
Routing Problem (MEMDVRP). The algorithm is compared with two other
evolutionary algorithms, the Parallel Multi-Start Non-dominated Sorting Differ-
ential Evolution (PMS-NSDE) [15] and the Parallel Multi-Start Non-dominated
Sorting Genetic Algorithm II (PMS-NSGA II) [16].

In recent years there is a growing number of papers devoted to the solution of
multi-depot vehicle routing problems [13] or energy consumption vehicle routing
problems [10,12,17]. In the present paper, three objective functions are used in
all four Multiobjective Route-based Fuel Consumption Vehicle Routing
Problems presented. The first objective function is the same one that was
presented in Psychas et al. [16]. This function is used for the minimization of the
total travel and service time needed and is given by the following equation:

min OF1 =
n∑

i=I1

n∑

j=1

m∑

κ=1

(tκij + sκ
j )xκ

ij , (1)

where tκij is the time needed to visit customer j immediately after customer i
using vehicle κ, sκ

j is the service time of customer j using vehicle κ, n is the
number of nodes, m is the number of homogeneous vehicles and the depots
are a subset Π = {I1, I2, . . . Iπ} of the set of the n nodes where denoted by
i = j = I1, I2, . . . Iπ (π is the number of homogeneous depots). The set of nodes
is then {I1, I2, . . . Iπ, 2, 3, . . . , n}.

The second objective function is used for the minimization of the Route
based Fuel Consumption (RFC) for the case in which the vehicle performs
only deliveries. It takes into account real life route parameters such as weather
conditions or uphills and downhills or driver’s behavior. This objective function
is given by the equation below:

minOF2 =

Iπ∑

h=I1

n∑

j=2

m∑

κ=1

chjx
κ
hj(1 +

yκ
hj

Q
)rhj +

n∑

i=2

n∑

j=I1

m∑

κ=1

cijx
κ
ij(1 +

yκ
i−1,i −Di

Q
)rij , (2)
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with the maximum capacity of the vehicle denoted by Q, the i customer has
demand equal to Di and DI1 = DI2 = ... = DIπ

= 0, xκ
ij denotes that the vehicle

κ visits customer j immediately after customer i with load yκ
ij and yκ

I1j =
n∑

i=I1

Di

for all vehicles as the vehicle begins with load equal to the summation of the
demands of all customers assigned in its route and cij is the distance from node
i to node j. The parameter rij corresponds to the route parameters from the
node i to the node j and it is always a positive number. Due to the fact that it
may be rij �= rji the product cijrij leads to an asymmetric formulation of the
whole problem. A value of rij less than 1 corresponds to the case in which the
route from i to j is a downhill or the wind is back-wind or the driver drives with
smooth shifting. A value of rij larger than 1 corresponds to the case in which
the route from i to j is an uphill or the wind is a head-wind or the driver drives
with aggressive shifting. If the rij = 1∀(i, j) belonging to the route, then the
problem is a symmetric problem.

The third objective function is used for the minimization of the Route based
Fuel Consumption (RFC) for the case in which the vehicle performs only
pick-ups along its route (see Psychas et al. [15]) and is given by the following
equation:

min OF3 =
Iπ∑

h=I1

n∑

j=2

m∑

κ=1

chjx
κ
hjrhj +

n∑

i=2

n∑

j=I1

m∑

κ=1

cijx
κ
ij(1 +

yκ
i−1,i + Di

Q
)rij ,(3)

where rij is the route parameters as in the OF2, and yκ
I1j = 0 for all vehicles

as the vehicle begins with empty load. In this case the Di denotes the pick-up
amount of the customer i. The only difference from the previous functions is
that we now have more than one depots, defined by a subset Π = {I1, I2, . . . Iπ}
of the set of the n nodes, and denoted by i = j = I1, I2, . . . Iπ (π is the
number of the homogeneous depots). COnsequently, the set of nodes is then
{I1, I2, . . . Iπ, 2, 3, . . . , n}. It is assumed that each vehicle returns always to the
depot from where it starts and it does not visits any other depot during along
its route. Thus, there are no transitions between the depots (for example from
I1 to I3). The constraints of the problems are [15]:

n∑

j=I1

m∑

κ=1

xκ
ij = 1, i = I1, · · · , n (4)

n∑

i=I1

m∑

κ=1

xκ
ij = 1, j = I1, · · · , n (5)

n∑

j=I1

xκ
ij −

n∑

j=I1

xκ
ji = 0, i = I1, · · · , n, κ = 1, · · · , m (6)

n∑

j=I1,j �=i

yκ
ji −

n∑

j=I1,j �=i

yκ
ij = Di, i = I1, · · · , n, κ = 1, · · · , m, for deliveries (7)
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n∑

j=I1,j �=i

yκ
ij −

n∑

j=I1,j �=i

yκ
ji = Di, i = I1, · · · , n, κ = 1, · · · , m, for pick − ups (8)

Qxκ
ij ≥ yκ

ij , i, j = I1, · · · , n, κ = 1, · · · , m (9)

xκ
ij =

{
1, if (i, j) belongs to the route
0, otherwise

(10)

Constraints (4) and (5) require that each customer must be visited only
by exactly one vehicle; constraints (6) ensure that each vehicle that arrives at
a node must also leave from that node. Constraints (7) and (8) indicate that
the reduced (if it concerns deliveries) or increased (if it concerns pick-ups) load
(cargo) of the vehicle after it visits a node is equal to the demand of that node.
Constraints (9) are used to limit the maximum load carried by the vehicle and
to force yκ

ij to become zero when xκ
ij = 0, while constraints (10) ensure that

only one vehicle visits each customer. It should be noted that the problems
solved in this paper are symmetric (where rij = 1∀(i, j) holds) or asymmetric
(where rij �= rji∀(i, j) holds). This paper is organized into three sections. In the
next section, the proposed algorithm is described in detail, while in Sect. 3 the
computation results are presented. The last section provides concluding remarks
and future research.

2 Parallel Multi-Start Multiobjective Clonal Selection
Algorithm

Artificial Immune Systems (AIS) [5,7] are inspired by the natural immune sys-
tem. The AIS algorithms are classified into three categories [1]: (a) the Posi-
tive/Negative Selection algorithm [11], (b) the Clonal Expansion and Selection
algorithm [8,9] and (c) the Network Algorithms [18]. For analytical informations,
surveys and applications about artificial immune systems please see [1–7,14].

In the Parallel Multi-Start Multiobjective Clonal Selection Algorithm (PMS-
MOCSA), initially a population (X) of solutions (antibodies) are selected as
follows: the solutions of initial population are placed in the Antibody Best table.
Subsequently, the Pareto Front of the initial population is created from this
table. In every iteration, in order to find the best antibodies in the current
population of antibodies (Fb), the non-dominated antibodies (Pareto antibodies)
are found. Then, we sort the antibodies as follows: Initially, the average of the
cost values for each objective function is calculated. Then, the Euclidean distance
between the average and each of the non-dominated solutions of antibodies is
calculated. Finally, the solutions are classified according to their distance from
the average. After all the above, the Fb non-dominated solutions of antibodies
are classified again as follows: The closest to the average antibody is placed in the
first antibody position of the list of the Fb antibodies. The most distant from the
average is placed in the second antibody position of the list. The second closest
antibody to the average is placed in the third position of the list and the fourth
position gets occupied by the second most distant antibody from the average,
etc. Due to this ordering a sufficient number of clones will be produced from
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both extreme non-dominated solutions of Pareto front and from those which are
in the center of Pareto front.

Then, a number of clones from Fb antibodies are produced by using the
following function:

Fb∑

i=1

round
(

b1W

i

)
(11)

where b1 is equal to 1. We also add ten extra randomly generated antibodies to
the total of clones in order to increase exploration abilities.

After the creation of the clones, a random number in the interval (0, 1) is
produced for each clone. If this number is less or equal to the Mr = 0.5, then
a hypermutation phase is applied to the corresponding clone. In this process,
a number of customers (nodes) in the route represented by the clone is chosen
randomly and their positions are permuted. If the random number generated is
greater than Mr, the receptor editing process is applied to the clone solution.
This process is realized using the 2-opt method.

When the above processes have been completed for all clones, then the cost
for every objective function for each clone is calculated and the non-dominated
clone solutions (Pareto clone solutions) are selected. If the number of the non-
dominated clone solutions is less than or equal to W , then randomly selected anti-
bodies from the current population of antibodies are replaced by non-dominated
clone solutions. In every other case, all the antibodies are replaced by the non-
dominated clone solutions. For the improvement of the new antibodies, a Vari-
able Neighborhood Search algorithm (VNS) is applied to every antibody. The
resulting antibodies form the population in the next iteration.

As mentioned previously, the proposed algorithm works with a number of dif-
ferent (X) populations. In each iteration and for each population all the processes
that described earlier are applied in parallel (with the term “parallel” we mean
that the populations are processed independently from each other). Thus, each
population has its own Pareto front. However, in the final iteration all solutions
of these Pareto fronts are combined into one population and a new final Pareto
Front is produced. The proposed algorithm is compared with two other evolu-
tionary multiobjective optimization algorithms, the Parallel Multi-Start Non-
dominated Sorting Differential Evolution (PMS-NSDE1) algorithm [15] and the
Parallel Multi-Start Non-dominated Sorting Genetic Algorithm II (PMS-NSGA
II) algorithm [16]. For all the necessary information about the algorithms PMS-
NSDE1 and PMS-NSGA II, please see Psychas et al. [15,16].

3 Computational Results

The algorithms were implemented in Visual C++ and were tested on the same
set of instances. The data were created according to Psychas et al. [15]. The only
difference is that in this research we use three depots with evenly distributed
customers, which means that in an instance with 100 customers, the first cus-
tomer is the first depot, the second depot has coordinates equal to x2 = y1 and
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y2 = x1, where (x1, y1) are the coordinates of the first depot, the third depot
has coordinates between (100, 100) and (500, 500) depending on the instance
and, finally, 33 customers are allocated in each depot. The parameters we used
to Parallel Multi-Start Multiobjective CSA are selected after testing different
values. We selected those that gave the best computational results. The selected
parameters for the other two algorithms are taken from Psychas et al. [15]. The
parameters of Parallel Multi-Start Multiobjective CSA are: (1) number of indi-
viduals for each initial population equal to 100, (2) number of generations equal
to 500, (3) number of initial populations equal to 10, (4) Mr = 0.5 and (5) β = 1.
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Fig. 1. Pareto fronts of the four algorithms for the instances “A-E” and “A-C-BD”.

Then, the algorithms were tested for ten combinations of the two objective
functions (OF1-OF2 or OF1-OF3) each, five times. For the comparison of the
three algorithms, we use four different evaluation measures: Mk which is the
range that the front extends, L that measures the number of solutions of the
Pareto front, Δ measure which includes information about both spread and
distribution of the solutions and the coverage measure (C measure). For further
details about the measures, please refer to [16]. In Table 1, the results of the
proposed algorithm for the ten instances, for each problem, for five executions
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Table 1. Results of the first three measures in ten instances for five executions using
the proposed algorithm

Multiobjective asymmetric delivery route based fuel consumption VRP

Execution 1 Execution 2 Execution 3 Execution 4 Execution 5 Average Best run

L Mk Δ L Mk Δ L Mk Δ L Mk Δ L Mk Δ L Mk Δ L Mk Δ

A-B-CD62608.700.6660610.080.7363577.840.5564580.710.5358579.860.5461.40591.440.6064580.71 0.53

A-C-BD51593.140.7658602.440.6261606.480.7650579.290.5468597.100.6257.60595.690.6668 597.10 0.62

A-D-BE50607.290.6664604.520.6059613.320.6359597.160.5646615.360.6955.60607.530.6364604.520.60

A-E-BD64596.310.5259589.310.5757589.620.5961604.270.6565592.970.6261.20594.500.5964596.31 0.52

B-C-AD58609.170.6447593.330.7147600.970.7053593.420.7254598.420.7251.80599.060.7058 609.170.64

B-D-AC60603.770.7157521.720.5556571.210.5361607.760.5649531.380.5356.60567.170.5861 607.76 0.56

B-E-AD50548.290.5661606.110.5652593.800.7054591.320.7158594.460.5455.00586.790.6161606.11 0.56

C-D-AE50592.440.5371599.240.6853596.450.6265589.670.6554578.960.5258.60591.350.6071599.24 0.68

C-E-AB 46579.200.5859594.150.5558590.300.6256546.010.5762576.290.6256.20577.190.5959594.15 0.55

D-E-BC 58598.440.5355593.180.7446599.470.6264597.700.6345535.020.6553.60584.760.6458598.440.53

Multiobjective symmetric delivery route based fuel consumption VRP

A-B 73608.590.6662611.940.7260602.000.6660589.450.6071611.700.5965.20604.740.6571611.700.59

A-C 70609.970.6671597.860.5872600.560.6166615.670.6367614.840.6969.20607.780.6372600.56 0.61

A-D 78589.980.7281576.680.6667580.200.5679584.420.7171574.390.5975.20581.140.6578589.98 0.72

A-E 65596.010.5968593.600.6761581.820.6566592.680.6765601.410.6465.00593.110.6565601.41 0.64

B-C 58536.060.6673621.220.7069602.410.4763594.650.5453523.230.6563.20575.510.6073621.220.70

B-D 62608.560.7272593.970.6162578.880.6663611.850.6971595.560.6466.00597.770.6672593.97 0.61

B-E 60594.910.6857608.200.5651540.500.6164616.370.6059608.970.6158.20593.790.6164616.370.60

C-D 61595.050.5473609.020.6966580.980.6771589.660.5966594.340.5667.40593.810.6173609.020.69

C-E 78600.560.5057604.890.7564551.480.7164605.580.6864608.880.6765.40594.280.6678600.56 0.50

D-E 75619.270.6462599.920.5766601.140.6073597.190.6082612.390.5871.60605.980.6082612.39 0.58

Multiobjective asymmetric pick-up route based fuel consumption VRP

A-B-CD60608.300.6148614.710.5562574.930.6758593.830.7062575.730.5558.00593.500.6148 614.710.55

A-C-BD65593.370.6456595.900.6464608.930.6067589.860.6172614.650.6464.80600.540.6372614.650.64

A-D-BE54610.680.5452632.400.6850588.740.5557599.810.6359604.090.5854.40607.140.6054 610.68 0.54

A-E-BD57579.460.5660588.890.4860575.820.6462611.690.5767590.890.6661.20589.350.5862611.69 0.57

B-C-AD52533.470.6355580.360.6966600.060.6252533.020.5062599.760.6057.40569.330.6166600.06 0.62

B-D-AC44534.000.6172569.850.6138606.860.6751535.290.6555528.830.5752.00554.960.6272569.85 0.61

B-E-AD48594.050.7273584.760.6356611.580.6450611.350.6265587.640.5758.40597.880.6465587.64 0.57

C-D-AE62585.050.6160594.940.5557579.300.6358595.580.6963582.200.5560.00587.420.6160594.94 0.55

C-E-AB 45596.440.5762592.530.6359592.090.6160581.630.5162604.500.5457.60593.440.5762 604.50 0.54

D-E-BC 59579.130.6258512.100.6766572.100.5756582.510.6575573.380.5662.80563.840.6175573.38 0.56

Multiobjective symmetric pick-up route based fuel consumption VRP

A-B 59616.830.7062600.530.5575620.040.6558586.580.6456603.970.7062.00605.590.6575 620.04 0.65

A-C 65612.670.5967597.460.6269606.800.6360606.440.5459604.220.6864.00605.520.6165612.67 0.59

A-D 64578.510.5774600.680.6963597.290.5772572.200.6271595.770.5568.80588.890.6074600.680.69

A-E 73611.320.6572603.710.6458596.270.6463581.630.6376582.020.6268.40594.990.6376582.02 0.62

B-C 55589.650.7765592.570.6468579.040.6355531.970.5264602.470.5661.40579.140.6364602.47 0.56

B-D 89593.980.6466598.440.7660602.140.6576602.770.6457602.990.6769.60600.060.6789593.98 0.64

B-E 63614.740.6359592.940.7557539.220.6260598.210.6457614.360.6459.20591.890.6663614.74 0.63

C-D 71591.010.6570605.050.6771579.980.6964582.920.7667587.760.6368.60589.350.6871591.010.65

C-E 69598.290.6768602.780.5669598.090.6261611.810.5857592.740.6364.80600.740.6168602.78 0.56

D-E 67608.180.6070597.400.5276604.250.6662619.250.5482615.170.6271.40608.850.5970597.40 0.52

for each one of the instances, and for the three first measures are presented. In
Tables 2 and 3, the average Results and Best Runs of the proposed algorithms
and of the other two algorithms used in the comparisons are presented.
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Table 2. Average Results and Best Runs of all algorithms used in the comparisons.

Algorithms Asymmetric delivery FCVRP Asymmetric pick-up FCVRP

L Mk Δ L Mk Δ

A-B-CD PMS-MOCSA 61.40(64) 591.44(580.71) 0.60(0.53) 58.00(48) 593.50(614.71) 0.61(0.55)

PMS-NSGA II 56.40(62) 592.33(598.84) 0.61(0.54) 59.80(63) 598.92(608.39) 0.61(0.65)

PMS-NSDE 50.00(59) 598.17(604.03) 0.61(0.53) 46.00(49) 598.81(605.87) 0.61(0.62)

A-C-BD PMS-MOCSA 57.60(68) 595.69(597.10) 0.66(0.62) 64.80(72) 600.54(614.65) 0.63(0.64)

PMS-NSGA II 61.80(72) 594.92(602.67) 0.61(0.68) 58.80(56) 604.25(613.08) 0.59(0.64)

PMS-NSDE 49.40(56) 594.19(603.86) 0.63(0.64) 44.40(50) 597.25(612.67) 0.63(0.62)

A-D-BE PMS-MOCSA 55.60(64) 607.53(604.52) 0.63(0.60) 54.40(54) 607.14(610.68) 0.60(0.54)

PMS-NSGA II 54.20(54) 601.74(597.52) 0.61(0.55) 54.60(63) 602.82(610.88) 0.61(0.60)

PMS-NSDE 46.80(51) 591.33(585.05) 0.68(0.58) 46.20(53) 594.36(608.66) 0.64(0.58)

A-E-BD PMS-MOCSA 61.20(64) 594.50(596.31) 0.59(0.52) 61.20(62) 589.35(611.69) 0.58(0.57)

PMS-NSGA II 57.20(56) 595.30(604.81) 0.58(0.56) 56.40(60) 591.73(615.11) 0.58(0.53)

PMS-NSDE 53.80(58) 589.49(595.89) 0.66(0.66) 45.40(49) 598.88(578.64) 0.64(0.52)

B-C-AD PMS-MOCSA 51.80(58) 599.06(609.17) 0.70(0.64) 57.40(66) 569.33(600.06) 0.61(0.62)

PMS-NSGA II 51.20(64) 596.11(602.55) 0.61(0.60) 53.60(60) 602.63(609.71) 0.63(0.65)

PMS-NSDE 42.20(47) 593.19(586.51) 0.63(0.56) 44.00(47) 596.09(594.45) 0.69(0.61)

B-D-AC PMS-MOCSA 56.60(61) 567.17(607.76) 0.58(0.56) 52.00(72) 554.96(569.85) 0.62(0.61)

PMS-NSGA II 54.60(63) 593.43(618.00) 0.61(0.53) 51.40(46) 587.73(606.69) 0.60(0.51)

PMS-NSDE 43.20(48) 591.59(611.63) 0.71(0.72) 44.80(50) 592.20(586.71) 0.66(0.58)

B-E-AD PMS-MOCSA 55.00(61) 586.79(606.11) 0.61(0.56) 58.40(65) 597.88(587.64) 0.64(0.57)

PMS-NSGA II 50.80(57) 597.52(599.73) 0.56(0.56) 50.20(55) 594.89(600.52) 0.60(0.58)

PMS-NSDE 41.80(47) 596.38(611.30) 0.66(0.61) 41.00(46) 598.64(622.57) 0.66(0.66)

C-D-AE PMS-MOCSA 58.60(71) 591.35(599.24) 0.60(0.68) 60.00(60) 587.42(594.94) 0.61(0.55)

PMS-NSGA II 53.60(49) 597.24(589.81) 0.58(0.53) 51.80(59) 597.78(610.64) 0.63(0.59)

PMS-NSDE 42.40(42) 594.55(610.84) 0.63(0.60) 44.40(51) 594.87(591.47) 0.70(0.71)

C-E-AB PMS-MOCSA 56.20(59) 577.19(594.15) 0.59(0.55) 57.60(62) 593.44(604.50) 0.57(0.54)

PMS-NSGA II 55.00(47) 592.95(602.86) 0.61(0.57) 51.00(65) 595.58(608.99) 0.65(0.74)

PMS-NSDE 39.40(39) 592.59(597.07) 0.67(0.65) 47.20(47) 593.76(612.40) 0.63(0.57)

D-E-BC PMS-MOCSA 53.60(58) 584.76(598.44) 0.64(0.53) 62.80(75) 563.84(573.38) 0.61(0.56)

PMS-NSGA II 43.60(48) 526.74(503.05) 0.62(0.53) 50.80(56) 581.08(602.31) 0.66(0.69)

PMS-NSDE 42.00(44) 582.50(589.22) 0.68(0.64) 43.60(52) 581.38(588.35) 0.60(0.64)

In all tables, in column Average, the average of all five executions in each
measure is presented and in the column Best Run, the best computational results
of all executions in each measure are presented. In addition, the Best Runs, in
Tables 2 and 3, are in parentheses. Also, the best results of each of the three
measures in each of the ten combinations are signed with bold letters. Finally,
Fig. 1 presents the Pareto Fronts of the symmetric delivery problem using objec-
tive functions OF1-OF2 ((a) part of the figure) and of the symmetric pick-up
problem using objective functions OF1-OF3, in the (b) part of the figure, for
the instance “A-E” for all algorithms are presented, while in the (c) part of
the figure, the Pareto Fronts of the asymmetric delivery problem using objec-
tive functions OF1-OF2, and of the asymmetric pick-up problem using objective
functions OF1-OF3, ((d) part of the figure), for the instance “A-C-BD” for all
algorithms. In Tables 4 and 5 the results of the C measure in all cases are pre-
sented (bold letters means best results).
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Table 3. Average Results and Best Runs of all algorithms used in the comparisons.

Symmetric delivery FCVRP Symmetric pick-up FCVRP

A-B PMS-MOCSA 65.20(71) 604.74(611.70) 0.65(0.59) 62.00(75) 605.59(620.04) 0.65(0.65)

PMS-NSGA II 56.40(61) 602.89(603.41) 0.66(0.62) 58.60(79) 596.88(605.27) 0.66(0.60)

PMS-NSDE 44.60(45) 605.73(596.04) 0.67(0.55) 44.60(46) 602.96(622.10) 0.68(0.62)

A-C PMS-MOCSA 69.20(72) 607.78(600.56) 0.63(0.61) 64.00(65) 605.52(612.67) 0.61(0.59)

PMS-NSGA II 62.60(66) 609.36(611.80) 0.63(0.54) 56.60(63) 606.55(615.56) 0.64(0.61)

PMS-NSDE 51.40(57) 596.73(602.61) 0.65(0.69) 49.20(44) 603.51(607.51) 0.65(0.61)

A-D PMS-MOCSA 75.20(78) 581.14(589.98) 0.65(0.72) 68.80(74) 588.89(600.68) 0.60(0.69)

PMS-NSGA II 54.40(57) 592.85(587.50) 0.67(0.63) 58.60(66) 580.64(582.86) 0.66(0.60)

PMS-NSDE 46.20(40) 581.70(591.46) 0.66(0.67) 47.00(47) 579.02(577.96) 0.66(0.58)

A-E PMS-MOCSA 65.00(65) 593.11(601.41) 0.65(0.64) 68.40(76) 594.99(582.02) 0.63(0.62)

PMS-NSGA II 51.20(51) 598.85(608.34) 0.62(0.60) 61.00(74) 598.56(598.90) 0.65(0.59)

PMS-NSDE 44.60(49) 604.13(608.11) 0.68(0.63) 43.80(43) 602.41(605.73) 0.62(0.58)

B-C PMS-MOCSA 63.20(73) 575.51(621.22) 0.60(0.70) 61.40(64) 579.14(602.47) 0.63(0.56)

PMS-NSGA II 58.80(55) 591.49(602.55) 0.65(0.55) 56.20(61) 597.28(590.74) 0.65(0.61)

PMS-NSDE 49.80(60) 589.78(610.81) 0.66(0.56) 42.00(49) 589.82(613.07) 0.72(0.64)

B-D PMS-MOCSA 66.00(72) 597.77(593.97) 0.66(0.61) 69.60(89) 600.06(593.98) 0.67(0.64)

PMS-NSGA II 58.60(56) 595.91(609.20) 0.64(0.63) 55.80(54) 592.55(608.67) 0.65(0.66)

PMS-NSDE 43.20(45) 595.65(595.43) 0.69(0.60) 41.20(54) 582.58(600.87) 0.70(0.68)

B-E PMS-MOCSA 58.20(64) 593.79(616.37) 0.61(0.60) 59.20(63) 591.89(614.74) 0.66(0.63)

PMS-NSGA II 57.60(59) 603.48(607.87) 0.61(0.60) 58.60(63) 603.78(618.11) 0.63(0.55)

PMS-NSDE 47.80(45) 603.11(609.40) 0.67(0.60) 44.40(46) 580.23(573.63) 0.66(0.58)

C-D PMS-MOCSA 67.40(73) 593.81(609.02) 0.61(0.69) 68.60(71) 589.35(591.01) 0.68(0.65)

PMS-NSGA II 56.60(59) 587.97(604.68) 0.63(0.64) 51.20(57) 586.43(587.41) 0.59(0.60)

PMS-NSDE 42.80(51) 577.40(594.58) 0.65(0.61) 46.80(51) 586.32(573.07) 0.66(0.57)

C-E PMS-MOCSA 65.40(78) 594.28(600.56) 0.66(0.50) 64.80(68) 600.74(602.78) 0.61(0.56)

PMS-NSGA II 60.40(63) 599.00(592.77) 0.64(0.58) 60.40(61) 607.48(613.53) 0.65(0.60)

PMS-NSDE 49.40(53) 594.95(611.88) 0.73(0.75) 52.20(60) 601.83(615.53) 0.67(0.72)

D-E PMS-MOCSA 71.60(82) 605.98(612.39) 0.60(0.58) 71.40(70) 608.85(597.40) 0.59(0.52)

PMS-NSGA II 60.20(52) 601.63(610.06) 0.67(0.66) 59.00(53) 606.62(617.50) 0.63(0.57)

PMS-NSDE 49.80(46) 604.82(619.96) 0.66(0.55) 49.00(54) 615.41(622.74) 0.67(0.64)

In general, based on all Tables (Tables 1, 2, 3, 4 and 5), from the comparison
of the three algorithms we conclude that considering the L measure the PMS-
MOCSA algorithm performs better than the other two algorithms as it performs
better in 82.5% of the instances while the PMS-NSGA II performs better than
the other algorithms in 17.5% of the instances. Considering the Mk measure,
PMS-NSGA II algorithm performs better than the other algorithms in 37.5% of
the instances, while PMS-NSDE1 and PMS-MOCSA perform better than the
other algorithms in 35% and 27.5% of the instances, respectively. Also, consider-
ing the Δ measure, the PMS-MOCSA algorithm performs better than the other
algorithms in 40% of the instances, while algorithms PMS-NSDE1 and PMS-
NSGA II perform better than the other algorithms in 30% of the instances, each
one of them. Finally, considering the C measure the PMS-MOCSA algorithm
performs slightly better than the other two algorithms as it performs better in
100% of the instances. According to the average numbers of the results, the
PMS-MOCSA algorithm produce Pareto front with more solutions and better
distribution than the other algorithms. The PMS-NSGA II algorithm produce
more extend Pareto fronts and the Pareto fronts produced from PMS-MOCSA
algorithm dominates the Pareto fronts produced from the other two algorithms.
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Table 4. Results of the C measure for the three algorithms in ten instances in all
symmetric problems

OF1-OF2 Multiobjective asymmetric delivery route based fuel consumption VRP

A-B-CD CSA NSDE1 NSGA II B-D-AC CSA NSDE1 NSGA II

CSA - 0.81 0.90 CSA - 0.94 0.87

NSDE1 0.05 - 0.90 NSDE1 0 - 0.63

NSGA II 0.03 0.08 - NSGA II 0.05 0.17 -

A-C-BD CSA NSDE1 NSGA II B-E-AD CSA NSDE1 NSGA II

CSA - 0.95 0.90 CSA - 0.74 0.95

NSDE1 0 - 0.83 NSDE1 0.13 - 0.93

NSGA II 0 0.04 - NSGA II 0.03 0 -

A-D-BE CSA NSDE1 NSGA II C-D-AE CSA NSDE1 NSGA II

CSA - 0.82 1 CSA - 0.74 0.94

NSDE1 0.14 - 0.93 NSDE1 0.20 - 0.82

NSGA II 0 0.02 - NSGA II 0.04 0.07 -

A-E-BD CSA NSDE1 NSGA II C-E-AB CSA NSDE1 NSGA II

CSA - 0.93 0.93 CSA - 0.59 0.87

NSDE1 0.08 - 0.91 NSDE1 0.25 - 0.83

NSGA II 0.02 0 - NSGA II 0.14 0.13 -

B-C-AD CSA NSDE1 NSGA II D-E-BC CSA NSDE1 NSGA II

CSA - 0.79 0.89 CSA - 0.68 0.60

NSDE1 0.19 - 0.94 NSDE1 0.09 - 0.40

NSGA II 0.14 0 - NSGA II 0.36 0.64 -

OF1-OF2 Multiobjective symmetric delivery route based fuel consumption VRP

A-B CSA NSDE1 NSGA II B-D CSA NSDE1 NSGA II

CSA - 0.67 0.97 CSA - 0.93 0.96

NSDE1 0.20 - 0.97 NSDE1 0.01 - 0.84

NSGA II 0.03 0 - NSGA II 0 0.07 -

A-C CSA NSDE1 NSGA II B-E CSA NSDE1 NSGA II

CSA - 0.86 1 CSA - 0.76 0.83

NSDE1 0.03 - 0.98 NSDE1 0.11 - 0.90

NSGA II 0 0 - NSGA II 0.06 0.07 -

A-D CSA NSDE1 NSGA II C-D CSA NSDE1 NSGA II

CSA - 0.65 0.91 CSA - 0.90 0.98

NSDE1 0.33 - 0.82 NSDE1 0.01 - 0.90

NSGA II 0.04 0.10 - NSGA II 0 0.06 -

A-E CSA NSDE1 NSGA II C-E CSA NSDE1 NSGA II

CSA - 1 1 CSA - 0.75 0.94

NSDE1 0 - 0.86 NSDE1 0.18 - 0.86

NSGA II 0 0.06 - NSGA II 0.03 0.15 -

B-C CSA NSDE1 NSGA II D-E CSA NSDE1 NSGA II

CSA - 0.77 0.91 CSA - 0.65 0.96

NSDE1 0.18 - 0.91 NSDE1 0.26 - 0.98

NSGA II 0.05 0.10 - NSGA II 0.07 0 -
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Table 5. Results of the C measure for the three algorithms in ten instances in all
asymmetric problems

OF1-OF3 Multiobjective asymmetric pick-up route based fuel consumption VRP

A-B-CD CSA NSDE1 NSGA II B-D-AC CSA NSDE1 NSGA II

CSA - 0.78 0.76 CSA - 0.80 0.98

NSDE1 0.15 - 0.76 NSDE1 0.10 - 0.98

NSGA II 0.13 0.14 - NSGA II 0 0 -

A-C-BD CSA NSDE1 NSGA II B-E-AD CSA NSDE1 NSGA II

CSA - 0.86 0.93 CSA - 0.89 0.85

NSDE1 0.13 - 0.82 NSDE1 0.17 - 0.84

NSGA II 0 0.06 - NSGA II 0.05 0.11 -

A-D-BE CSA NSDE1 NSGA II C-D-AE CSA NSDE1 NSGA II

CSA - 0.83 0.90 CSA - 0.94 0.90

NSDE1 0.15 - 0.87 NSDE1 0.02 - 0.83

NSGA II 0 0.02 - NSGA II 0.03 0.02 -

A-E-BD CSA NSDE1 NSGA II C-E-AB CSA NSDE1 NSGA II

CSA - 0.59 0.83 CSA - 0.89 1

NSDE1 0.34 - 0.82 NSDE1 0.15 - 0.86

NSGA II 0.03 0.10 - NSGA II 0 0.04 -

B-C-AD CSA NSDE1 NSGA II D-E-BC CSA NSDE1 NSGA II

CSA - 0.91 0.90 CSA - 0.62 0.89

NSDE1 0.02 - 0.68 NSDE1 0.39 - 0.73

NSGA II 0.06 0.17 - NSGA II 0.01 0.17 -

OF1-OF3 Multiobjective symmetric pick-up route based fuel consumption VRP

A-B CSA NSDE1 NSGA II B-D CSA NSDE1 NSGA II

CSA - 0.76 0.96 CSA - 1 0.98

NSDE1 0.12 - 1 NSDE1 0 - 0.89

NSGA II 0 0 - NSGA II 0 0.02 -

A-C CSA NSDE1 NSGA II B-E CSA NSDE1 NSGA II

CSA - 0.75 0.97 CSA - 0.91 0.81

NSDE1 0.18 - 0.90 NSDE1 0.11 - 0.71

NSGA II 0.05 0 - NSGA II 0.02 0.11 -

A-D CSA NSDE1 NSGA II C-D CSA NSDE1 NSGA II

CSA - 0.62 0.94 CSA - 0.94 0.96

NSDE1 0.24 - 0.94 NSDE1 0.03 - 0.81

NSGA II 0.08 0.04 - NSGA II 0.01 0.14 -

A-E CSA NSDE1 NSGA II C-E CSA NSDE1 NSGA II

CSA - 0.98 0.97 CSA - 0.87 0.90

NSDE1 0.01 - 0.85 NSDE1 0.10 - 0.92

NSGA II 0 0.12 - NSGA II 0.04 0.03 -

B-C CSA NSDE1 NSGA II D-E CSA NSDE1 NSGA II

CSA - 0.88 1 CSA - 0.89 0.98

NSDE1 0.03 - 1 NSDE1 0.04 - 0.94

NSGA II 0 0 - NSGA II 0 0 -



392 E. Rapanaki et al.

4 Conclusions and Future Research

In this paper, we proposed an algorithm (PMS-MOCSA) for solving four newly
formulated multiobjective fuel consumption multi-depot vehicle routing prob-
lems (symmetric and asymmetric pick-up and symmetric and asymmetric deliv-
ery cases). The proposed algorithm was compared with other two algorithms the
PMS-NSDE1 and PMS-NSGA II. In general, for the four different problems, the
PMS-MOCSA algorithm performs slightly better than the other two algorithms
in the most measures, as we analyzed in the Computational Results section. As
expected, the behavior of the algorithms was slightly different when a symmet-
ric and an asymmetric problem was solved. Our future research will be, mainly,
focused on PMS-MOCSA algorithm in other multiobjective combinatorial opti-
mization problems.
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Abstract. We live in the age of Big Data, and personal user data, in
particular, is necessary for the operation and improvement of healthcare
services. Many times, the capture and use of personal data are not made
explicit to the users, but they are central to the business model of com-
panies. However, each person’s right to privacy needs to be respected.

With the goal of reconciling these two conflicting needs, we
designed and implemented a proof-of-concept platform for performing
privacy-preserving computations. In particular, we implemented privacy-
preserving versions of Machine Learning algorithms, namely Decision
Trees, k -Means, Logistic Regression, and Support Vector Machines, using
Secure Multi-party Computations with Homomorphic Encryption and
Garbled Circuits. For each combination of Machine Learning algorithms
with Secure Multi-party Computation techniques, we present the rea-
soning behind our choices and their potential consequences in terms of
performance.

The ultimate goal is to provide Privacy-Preserving Computation as
a Service. With this platform, we wish to contribute to the faster inte-
gration of solutions developed by the scientific community in enterprise
systems, thus reducing the time required for innovation to reach products
used by many people where privacy improvements are urgently needed.

Keywords: Privacy-preserving computations · Machine Learning ·
Big Data · Secure-multi-party computations ·
Privacy-preserving platform

1 Introduction

The term Big Data means that there are vast amounts of data being analysed and
processed by companies every day [7]. Through this data processing, meaningful
information can be obtained to improve existing systems or to discover new
approaches in business models. Machine Learning (ML) algorithms in the context
of Big Data processing can produce significant results, so that it is possible to
do knowledge learning from datasets in order to predict future labels (i.e. classes
of data) or clusters for new data. An example of this can be seen in the field of
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Healthcare, where it can be beneficial to analyse patient records from different
hospitals in order to identify inefficiencies and develop best practices [8]. For
example, Google Deepmind is developing ML algorithms for faster patient triage
and admission processes in hospitals1, and IBM Watson is supporting medical
personnel consider treatment options for their patients2.

There are restrictions to the processing of personal data, such as patient data.
Privacy can be defined as the ability or right of an individual to protect his/her
personal information, and extends the ability or right to prevent invasions on
the personal space of said individual [2]. If patient data can be processed with
privacy then they can enable novel applications and scientific breakthroughs in
Healthcare. By combining ML algorithms and privacy-preserving techniques, it
is possible to create Data Mining processes that, not only allow for knowledge
learning on large datasets, but also help maintain a level of privacy desired by
individuals and compliant with existing legislation [5].

Data Resources

Healthcare Mobility Finance

API

Cryptographic 
Techniques

Machine Learning 
algorithms

Fig. 1. Conceptual view of the platform.

In Fig. 1 we present the conceptual view of our platform. The data resources
represent the datasets that are used in the classification process. The data pro-
cessing itself is done using the combination of ML algorithms and cryptographic
techniques for performing privacy-preserving computations. The Application
Programming Interface (API) layer abstracts details and provides the opera-
tions of the platform itself, which allow a simplified building of applications
and data visualizations. The use-cases describe the various subjects that can be
addressed using this platform, and allow us to place it in real-world scenarios
that have high impact and demand in Big Data operations. More use-cases are
possible beyond Healthcare, Mobility and Finance, as the platform is designed
for general use.

In this work, we present a proof-of-concept platform for privacy-preserving
distributed ML computations without resorting to trusted third parties. With
it, we aim to give users a platform that provides simplified access to privacy-
preserving techniques that can be used to meet privacy requirements in data
1 https://deepmind.com/applied/deepmind-health/.
2 https://www.mskcc.org/about/innovative-collaborations/watson-oncology.

https://deepmind.com/applied/deepmind-health/
https://www.mskcc.org/about/innovative-collaborations/watson-oncology
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processing. We provide a detailed comparison of four ML algorithms, namely:
Decision Trees (DT), k -Means, Logistic Regression (LR) and Support Vec-
tor Machines (SVM); combined with two Secure Multi-party Computations
(SMPC): Garbled Circuits (GC) and Homomorphic Encryption (HE); presenting
details on how this can be performed. We performed an experimental evaluation
of the adapted ML algorithms using publicly available datasets, and compare
the results with a baseline.

The paper is further organized as follows. Section 2 describes the ML algo-
rithms and the SMPC techniques used in the platform. In Sect. 3, we present the
related work. Section 4 describes the design of the platform, detailing the adjust-
ments done to ML algorithms. In Sect. 5, we present the experimental results.
Finally, in Sect. 6 we present the conclusions and propose future work.

2 Background

In this section we present the ML algorithms for which we wish to develop
privacy-preserving implementations and the used SMPC techniques.

2.1 Machine Learning Algorithms

Decision Trees (DT): A decision support tool composed of nodes and leaves,
with each node representing the decisions to take, and each leaf representing class
labels. Classification of a sample is accomplished by traversing the tree from the
top, comparing the features selected on each node with its respective threshold,
and choosing one branch or the other accordingly, repeating the process until a
leaf is reached. At each tree node, a decision is computed using:

fDT(xi) = xi

?≥ θj (1)

where xi is the feature value of interest of the testing sample and θj is the
decision threshold of node j. If the output is 0, the left hand child is selected; if
it is 1, the right hand child is selected.

Support Vector Machines (SVM): An SVM model represents the samples
as points in space, mapped so that the margin between the two classes is as wide
as possible. The vectors that define this margin are called Support Vectors (SVs).
The classification of new samples in SVM is done using the scoring function in
Eq. 2, where each testing sample x is attributed to a prediction label.

fSVM(x) =
m∑

i=1

αiK(x(i)
SV , x) + b (2)

where αi is the coefficient associated with the support vector x
(i)
SV , K is the

kernel function chosen, and b is a scalar number.
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k-Means: An iterative algorithm, with two distinct steps. (1) Each instance is
assigned to a cluster, by calculating the Euclidean distance, dE , between that
instance and each centroid. Then, the lowest distance indicates which cluster
the instance is assigned to. (2) Each centroid is updated to be the mean of all
the instances assigned to it. The algorithm stops when the centroids no longer
change position. The classification of a new sample is done by computing the dE

of the new sample with each centroid, discovering which is closer. The predicted
label of the sample is computed as described in Eq. 3:

fk-M(x) = argmin
C

dE(x,Cj) (3)

where C are the centroids of each cluster and x is the testing sample.

Logistic Regression (LR): A statistical model that analyses a dataset in
order to determine an outcome. This binary LR model is used to estimate the
probability of a binary response based on one or more variables. The classification
of samples is done using the following equation:

fLR(x) = β0 +
m∑

i=1

βixi (4)

where β0 is the intercept from the linear regression, βi are each regression coef-
ficient that is multiplied by each feature of the sample, and x is the testing
sample.

2.2 Privacy-Preserving Techniques

Garbled Circuits (GC). [14] allow two mutually mistrusting parties to eval-
uate a function over their private inputs without resorting to a trusted third
party. GC allows two parties holding inputs x and y to evaluate an arbitrary
function f(x, y) without leaking any information about their inputs beyond what
is inferred from the function output. The idea behind GC is that one party pre-
pares an encrypted version of a circuit that computes f(x, y) and the second
party then computes the output of the circuit without learning any intermediate
values.

Homomorphic Encryption (HE). [11] is a cryptographic technique that
allows computations to be carried with the ciphertext, so that, when decrypted,
the resulting plaintext reflects the computation made. In other words, HE allows
making some computation over the ciphertext, for example, addition, without
decrypting it, and the result is the same as making that computation on the
plaintext. This is of great importance because it allows chaining multiple ser-
vices that make computations on a ciphertext, without the need to expose the
data to those services. Homomorphic cryptosystems can be classified into two
distinct groups: Partially Homomorphic Cryptosystems (PHE), where there is
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only one operation that is allowed by the homomorphic property (ex: addition,
multiplication, XOR); and Fully Homomorphic Cryptosystems (FHE), where it
is possible to perform both addition and multiplication.

3 Related Work

Although well known Big Data platforms such as Apache Hadoop3 and Mon-
goDB4 have been around for a while, most (if not all) of them were designed
without Data Privacy concerns in mind. We envision a Big Data platform follow-
ing a Privacy by Design approach, where data privacy is taken into consideration
on every development step.

In many cases there are privacy-preserving versions of ML algorithms, for
example, k -Means [12], LR [4] or SVM [13], but they are not made available in
a platform.

There are also works on designing platform architectures focused on the pro-
tection of privacy in location-based services, and describing privacy-preserving
algorithms for them [1], but these works do not actually perform any implemen-
tation or testing of such solutions.

4 Platform Design

We structured the platform design in two major parts: a non-privacy-preserving
baseline and the privacy-preserving implementation. The former allows compar-
ing the effects of the privacy-preserving techniques in terms of performance.

4.1 Non-privacy-preserving Components

While designing the first part of our platform, the focus was to build a baseline
so that meaningful observations could be achieved, while also paving the way to
build the privacy-preserving approach. The models that we implemented allowed
us to later adapt the prediction step of the ML algorithms for GC and HE, while
also giving insight on which technique to use for each algorithm.

4.2 Privacy-Preserving Components

The privacy-preserving part consisted of adjustments to the evaluation processes
of the ML algorithms in order to be compatible with two privacy-preserving tech-
niques: GC and HE. These two techniques offer different means to obtain privacy-
preserving computations. GC builds ciphered boolean circuits where most oper-
ations are possible to implement. However, arithmetic operations require a large
number of logic gates, creating an overhead that makes GC very slow for those
operations. So, for some of the ML algorithms, we used an HE system, since it
offers arithmetic operations as core operations. The following sections describe
the chosen combinations.
3 http://hadoop.apache.org/.
4 https://www.mongodb.com/.

http://hadoop.apache.org/
https://www.mongodb.com/
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Garbled Circuits and Decision Trees. The process of evaluating a DT in
a privacy-preserving context is similar to evaluating it in the usual manner, as
described in Eq. 1. The main differences are: basic operations such as compar-
isons are replaced with logic gates; and the evaluation of the DT involves evalu-
ating every single node in it, to disclose the least possible information caused by
observation of the computations. Figure 2 shows the computations done inside
each node of the DT.

MUX

sample

xn x1 x0

featureID

>

threshold

sample

MUX

f1θ1 f2θ2

next featureID next threshold

Fig. 2. Boolean circuit of each node in a DT.

Another aspect to mention is that the trees are always complete, i.e., the
number of nodes n is always the maximum possible, and can be defined as
n = 2h+1 − 1, where h is the height of the tree. Even though in most cases this
will lead to an exponential increase of the number of nodes with increasing tree
depth, we feel this is necessary to prevent information leaks due to an attacker
being able to know the different path depths. Figure 3 shows the implications of
this expansion.

Garbled Circuits and k-Means. The process of evaluating the k -Means algo-
rithm in a privacy-preserving manner is similar to evaluating in the usual man-
ner. The operations in the prediction step of the algorithm were transformed into
boolean circuits, with logic gates representing operations. In Fig. 4 we show the
circuit we have designed to represent the k -Means prediction, where dE represents
the Euclidean distance between testing sample x and each centroid Ci.

Homomorphic Encryption and Logistic Regression. In order to use a FHE
system, the prediction function for LR described in Eq. 4 must be converted to:
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Fig. 3. Expansion of binary trees.
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Fig. 4. Boolean circuit of the k -Means prediction.

fLR,FHE(x) = Dk

(
Ek(β0) +

m∑

i=0

Ek(βi) · Ek(xi)

)
(5)

where Ek represents the encryption operation and Dk represents the decryption
operation using the key k.

Converting Eq. 5 to be computed using a PHE system is straightforward,
but this can only be done under two assumptions: (1) the data to be evaluated
(x) and the model parameters (β0, β1, . . . , βm) must come from two different
parties, and (2) the owner of the model parameters must be the one processing
the data. Under these assumptions, the linear prediction function for a additive
PHE system becomes:

fLR,PHE(x) = Dk

(
Ek(β0) ·

m∏

i=1

Ek(xi)βi

)
(6)
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Homomorphic Encryption and Support Vector Machines. For the SVM
algorithm, we only considered the linear kernel, as it simplifies the scoring func-
tion. The Eq. 2 is then simplified to the following:

fSVM(x) =
m∑

i=1

αix
(i)
SV x + b =

m∑

i=1

αi

n∑

j=1

xjx
(i,j)
SV + b (7)

To compute this function using a FHE system, we must convert it to:

fSVM,FHE(x) = Dk

(
m∑

i=1

Ek(αi) ·
n∑

j=i

Ek(xj) · Ek(x(i,j)
SV ) + Ek(b)

)
(8)

where Ek represents the encryption operation and Dk represents the decryption
operation using the key k.

Like before, converting it to be computed using a PHE system is equally
straightforward, and under the same two assumptions, the scoring function for
a additive PHE system becomes:

fSVM,PHE(x) = Dk

(
m∏

i=1

( n∏

j=1

Ek(xi)x
(i,j)
SV

)αi

· Ek(b)

)
(9)

4.3 Architecture

The combination of the components above helped us create a data processing
architecture for a privacy-preserving ML platform, presented in Fig. 5.

Data

Data Collection

Pre-Processing Data Sanitization Data Ciphering

Model Training

Data Storage

use

ML Algorithms 
(toolkits)

Cryptographic
Techniques 

(toolkits)

Privacy-Preserving
ML Algorithms

Cryptographic Keys

Model Evaluation 
(in ciphertext)

Result Evaluation

design

design

generate

use

encrypt

decrypt

Client

Server

Result DecipheringData Visualisation

Fig. 5. Data processing architecture for the platform.

We assume that only two parties exist: the client and the server. The client
represents a user or an individual who owns data and wishes store them and
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to perform some processing over them, but does not have the capabilities to
do so (e.g.: real-time processing, fault tolerance systems, scalable environment).
Despite this, the client wishes to keep these data private. The server represents
a cloud or service provider who has the capabilities to perform such processing.
To achieve the privacy goals of both parties, the client pre-processes, sanitizes
and encrypts the data and models before sending them to the server. The model
training is performed in the usual manner. The model evaluation process is the
main focus of our work, and it is where the privacy-preserving techniques are
deployed. At the end of the flow, the platform produces the prediction results.

With this architecture, we aim at providing companies a way to integrate
their Big Data systems processes with privacy-preserving ML algorithms, allow-
ing them to provide additional data privacy guarantees to their clients.

5 Experimental Results

This section presents the evaluation results. The objective of the experimental
evaluation is to answer two important questions: (1) How accurate is the pre-
diction versus the baseline system? (2) How easily can the platform be adapted
to different size and context of the datasets?

The datasets were split into three sets: training (70%), validation (15%) and
testing (15%) sets. The training step of the baseline ML algorithms was per-
formed using the scikit-learn toolkit for Python5. The GC results were obtained
using the VIPP toolkit [10]. The results using FHE were obtained using the HElib
toolkit [6]. The results using PHE were obtained using our own implementation
of the Paillier cryptosystem [9].

For running the experiments, we used the datasets listed in Table 1. They
are widely used in the literature.

Table 1. The datasets used in the evaluation.

Dataset Subject Instances Features

Pima Indians diabetesa Healthcare 768 8

Breast cancer wisconsinb Healthcare 569 30

Credit approvalc Finance 690 15

Adult incomed Governance 48842 14
ahttps://www.kaggle.com/uciml/pima-indians-diabetes-
database
bhttps://archive.ics.uci.edu/ml/datasets/
Breast+Cancer+Wisconsin+(Diagnostic)
chttp://archive.ics.uci.edu/ml/datasets/credit+approval
dhttps://archive.ics.uci.edu/ml/datasets/adult

5 http://scikit-learn.org/.

https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://archive.ics.uci.edu/ml/datasets/credit+approval
https://archive.ics.uci.edu/ml/datasets/adult
http://scikit-learn.org/
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5.1 Accuracy

After analysing the results obtained with the privacy-preserving ML algorithm
implementations using GC, we verified that changing the number of bits for the
actual numeric precision of the data and model parameters affects the accuracy
of the results. The absolute error percentage values for the experiments on DT
and k -Means are presented in Tables 2 and 3, respectively. It is to be noted that
this error is computed versus the baseline prediction results, not the prediction
labels from the dataset.

Table 2. GC + DT. Average absolute label prediction error vs. the baseline.

Bits Pima Indians Breast cancer Credit approval Adult income

8 1.88% 0.55% 8.70% 0.00%

12 0.00% 0.13% 1.11% 0.00%

16 0.00% 0.13% 0.31% 0.00%

20 0.00% 0.13% 0.31% 0.00%

24 0.00% 0.13% 0.31% 0.00%

Table 3. GC + k -Means. Average absolute label prediction error vs. the baseline.

Bits Pima Indians Breast cancer Credit approval Adult income

8 2.03% 3.07% 0.05% 0.02%

12 0.39% 0.85% 0.00% 0.00%

16 0.29% 0.72% 0.00% 0.00%

20 0.29% 0.72% 0.00% 0.00%

24 0.00% 0.00% 0.00% 0.00%

Analysing the obtained results, we can conclude that the loss of prediction
performance caused by using the privacy-preserving versions of the ML algo-
rithms is not relevant, as long as at least 16 bits are used to represent the data.
Since both DT and k -Means only output an integer representing the label, and
not a real number, the visible effect of changing the number of bits is minimal.

After analysing the results obtained using the PHE and FHE systems, we
verified that all predicted labels and almost all function evaluation outputs match
the baseline. The few examples when an exact match does not happen come
mostly from the SVM scoring evaluation function implemented in HElib, and are
most likely caused by the accumulation of the intrinsic noise generated every time
an operation is performed between two ciphertexts. Therefore, we can conclude
that our privacy-preserving versions of the ML algorithms using PHE and FHE
have no relevant loss of prediction performance.
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5.2 Discussion

Although we did not compare the performance of GC and HE directly, for
instance by choosing a ML algorithm and implementing it using both privacy-
preserving techniques, it is clear that the HE approach is adequate for ML algo-
rithms that rely on arithmetic operations, and the GC approach is adequate for
ML algorithms that rely on non-arithmetic operations.

We did not perform a detailed computational times analysis because we feel
that an evaluation of execution times is less relevant, as it is extremely depen-
dent on the hardware and toolkits used (which evolve through time), while the
evaluations we performed in terms of accuracy are not. We are, however, aware of
very efficient GC implementations for evaluating DT, but many of them do not
scale adequately with the DT size [3]. We did not consider such implementation
because we experimented with fully expanded DT of considerable depth.

An important remark on our experiments with GC is related to our choice
to only analyse fully expanded DT instead of the original ones, in order to pre-
vent any information leakage regarding the shape of the original tree. However,
in most cases this causes an exponential growth of the number of nodes with
increasing tree depths, leading to proportional increases in both the execution
times and the communication costs.

Another important conclusion made possible by our experiments with HE
is when each of the techniques should be used. We verified that PHE is, in
fact, usable in practice but under some restrictions (e.g.: if there is no need for
complex composition of operations and if data is separated between client and
server), while FHE is more flexible but still too computationally expensive.

With our implementation, we were able to understand that, despite the fact
that GC and HE are very different techniques, they can be used in almost the
same manner. The main difference is that the ML algorithms must be adapted
differently for each one. The tweaks done to the algorithms presented in Sect. 4.2
allowed us to implement privacy-preserving versions of them and running them
in the same manner as the non-privacy-preserving approach.

We were also able to produce results with datasets from varied contexts,
such as Healthcare or Finance, and of very different sizes, without the need to
specifically adapt the algorithms for them. With this, we have shown that the
platform can be used for different application domains.

6 Conclusions and Future Work

This paper presented a platform to perform privacy-preserving ML computations
to be applied in Big Data applications. We discussed the existing techniques that
provide the level of privacy compliance with the laws in force and matched those
techniques with the most commonly used ML algorithms. We evaluated the solu-
tion by comparing two SMPC techniques: GC and HE. Overall, we produced a
proof-of-concept platform that provides a unified and simplified API for privacy-
compliant ML. This shortens the distance between the scientific community that
develops the techniques and the companies that employ them in products that
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impact many people. With our approach, the most recent scientific advances in
privacy-preserving technologies can be applied faster in enterprise applications.

For future work, we propose the following points to enhance the functionali-
ties of the platform and its performance: extend the platform to work with more
ML algorithms (ex: Neural Networks or Naive Bayes), so that the platform can
be used for more purposes (ex: Deep Learning); optimize the SMPC techniques
used, to improve the performance of the platform; implement and test the SMPC
techniques using other toolkits, also to improve the performance of the platform.

Acknowledgements. Work supported by Portuguese national funds through
Fundação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013
(INESC-ID).
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Abstract. Automatic facial expression recognition has recently
attracted the interest of researchers in the field of computer vision and
deep learning. Convolutional Neural Networks (CNNs) have proved to be
an effective solution for feature extraction and classification of emotions
from facial images. Further, ensembles of CNNs are typically adopted to
boost classification performance.

In this paper, we investigate two straightforward strategies adopted to
generate error-independent base classifiers in an ensemble: the first strat-
egy varies the seed of the pseudo-random number generator for determin-
ing the random components of the networks; the second one combines
the seed variation with different transformations of the input images.
The comparison between the strategies is performed under two different
scenarios, namely, training from scratch an ad-hoc architecture and fine-
tuning a state-of-the-art model. As expected, the second strategy, which
adopts a higher level of variability, yields to a more effective ensemble for
both the scenarios. Furthermore, training from scratch an ad-hoc archi-
tecture allows achieving on average a higher classification accuracy than
fine-tuning a very deep pretrained model. Finally, we observe that, in our
experimental setup, the increase of the ensemble size does not guarantee
an accuracy gain.

Keywords: Facial expression recognition ·
Convolutional Neural Network · Ensemble learning

1 Introduction

One of the most powerful communication tools is represented by human expres-
sions: out of all the information exchanged in an oral communication, facial
expressions account for 55%, whereas the plain language only for 7% [26]. More-
over, in 1971, Ekman et al. [4] showed that members of both preliterate and
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literate cultures use the same facial expression to convey any specific emotion.
Human facial expressions of emotion are universal, related to biological and evo-
lutionary factors rather than cultural or environmental ones. A set of distinctive
patterns of the facial muscles characterizes each one of the so-called basic emo-
tions: happiness, sadness, anger, fear, surprise, disgust. Thus, the Facial Expres-
sion Recognition (FER) problem has attracted the attention of the Computer
Vision and Machine Learning communities: the ability to automatically perform
FER over human facial images opens up the possibility to develop several appli-
cations in different fields, from Human Computer Interaction to Data Analytics,
emotional health and sentiment analysis [17].

The core of an automatic FER system is represented by the feature extrac-
tion functionality, aimed at extracting a representative and discriminating set of
features from the original facial images. Real-world applications ask for robust
feature extractors, able to cope with image variations typical of an “in-the-wild”
setting [3], such as occlusions, different head poses and illumination conditions.
Hand-crafted feature extractors turned out to be inadequate for this challenging
scenario, lacking the ability to generalize on incoming images: thus, the need
has arisen for new, more flexible methods. As Deep Learning methods obtained
excellent results in a wide variety of similar problems [15,16], their application
in the context of FER has been explored as well. Convolutional Neural Net-
works (CNNs) can be regarded as one of the most popular models used for this
purpose; they autonomously learn a hierarchical representation of the features
of the original images [11]. The success of recent classification systems relies on
the use of large collections of labeled data for training: 2012 ImageNet [2], for
example, is a dataset of 1.4 million images with 1000 classes. On the other hand,
annotating a large dataset of facial expression images is a difficult and time con-
suming task: FER2013 is one of the largest datasets of this kind built so far, and
contains 35,887 images of different subjects.

A general, effective solution for boosting classification performance is rep-
resented by ensemble techniques, which combine multiple, diverse base learners
(networks in our case). Several strategies have been proposed for the produc-
tion of error-independent networks and for merging their classification outputs
[5,12,24] but, to the best of our knowledge, in the FER context, their relative
effectiveness has not been adequately investigated.

The present work is aimed at shedding light on the effectiveness of two simple
techniques to generate diversity among the base classifiers of an ensemble: Seed
Strategy, i.e. varying only the seed of the random number generator in the learn-
ing procedure of each network, and Preprocessing Strategy, combining the seed
variation with different transformations of the input images. It is important to
underline that different scenarios can be considered, and we perform this anal-
ysis in two of them: (i) training from scratch an ad-hoc architecture, CNN10-S
(S stands for scratch), and (ii) fine-tuning a pre-trained state of the art model
VGG16-FT (FT stands for fine-tuning). Both architecture were chosen for their
recognized importance in the literature and availability to the research commu-
nity [18,19]. It is worth pinpointing that the paper focus is on experimentally
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comparing different ensemble strategies, instead of achieving the best absolute
accuracy on the FER-2013 dataset.

The remainder of the paper is organized as follows: in Sect. 2 we describe the
typical approaches for training CNNs. In Sect. 3 we provide a detailed description
of our experimental framework, from the used datasets to the proposed ensemble
strategies, along with the scenarios for the comparison. In Sect. 4 we discuss the
results of the experimentation, and finally Sect. 5 concludes the paper.

2 Brief Introduction to CNN Training Approaches

CNN [16] is a class of feed-forward neural networks: it is a convenient choice for
input data with known topology, such as 2D or 3D pixel matrices that represent
grayscale or RGB images, respectively.

As a Machine Learning model, the supervised learning procedure for CNNs
aims to minimize the training error by experimenting a labeled dataset. However,
the real objective is to perform well on new, unseen examples. To evaluate this
generalization capability, a validation set is used during the training: several
techniques are typically adopted to reduce the discrepancy between training
and validation errors, such as dropout [21], data augmentation [23], and weight
regularization [7]. Besides these, gathering and annotating more data is one of
the best practices to reduce the risk of overfitting, but this is often difficult and
time-consuming for many applications.

In the present work, we refer to a well-known, medium-size dataset
(FER2013, described in Sect. 3.1). Against this background, two scenarios are
taken into account: training an ad-hoc model from scratch, and using a pre-
trained model. We tackled the FER problem following both the approaches.

2.1 Training a Model from Scratch

All the weights in the model are randomly initialized: they characterize the
behaviour of every action unit. Along the training, an optimization algorithm,
typically based on stochastic gradient descent (SGD) [7], iteratively updates the
weights in order to minimize a cost function. In this scenario, the capacity of
the model is carefully tuned, considering the limited size of the dataset.

2.2 Using a Pre-trained Architecture

Training from scratch a novel architecture on datasets of limited size has recently
become unpopular [1]. Instead, a highly effective approach can be based on
exploiting the pre-training of a large network, with higher capacity, over a big
dataset, and then re-purposing such a network for the application of interest.
Indeed, modern CNNs for Computer Vision show a common behaviour [25]: the
features extracted in the first layers are quite standard and do not depend on
the specific image dataset, while the high level features are strongly related to
the considered task. Weights in the first layer typically learn filters that resemble
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fixed patterns, such as edge detectors, color blobs detectors, Gabor filters, etc. In
the last few years, this approach has gained popularity mainly for two reasons:
the availability of big labeled datasets for classification tasks, e.g. ImageNet
with 1.4M images, and the availability of pretrained state of the art models such
as VGG [20], Inception [22], and ResNet [10]. In our work, we use an already
pretrained VGG16 model.

3 Experimental Setup

In this section, we describe the dataset used in the present work and the experi-
mental approach. We recall that we want to compare two strategies for generating
variability among base classifiers in an ensemble. In order to evaluate the gen-
eral validity of the results, we perform the comparison in two typical scenarios:
training from scratch an ad-hoc architecture, and fine-tuning a state of the art
model. Experiments have been carried out over a server equipped with Nvidia
GTX 1080 Ti with 11 GB Memory.

3.1 FER-2013 Facial Expression Dataset

The Facial Expression Recognition 2013 (FER-2013) dataset [8] has been chosen
for our experiments because it is the most commonly adopted for this task, as
reviewed in [19]: it is one of the largest collections of in-the-wild facial images
consisting of 35.887 images from 7 classes: Neutral (6197), Anger (4945), Disgust
(547), Fear (5121), Happiness (8988), Sadness (6076), and Surprise (4001). The
official split of FER-2013 has been used after the removal of 11 black images,
and it consists of a training set with 28699 images, a validation set with 3588
images, and 3589 images as test set.

The classification accuracy on FER2013 represents the performance measure
of the models used in the present work. To the best of our knowledge, the best
model achieves a 75.2% accuracy on FER2013 [19], while the average human
accuracy on FER2013 is 65%.

3.2 Ensemble Design Strategies

There are two possible approaches for the design of an ensemble of neural net-
works [5,24]: the implicit (or direct) method aims to generate an ensemble of
error-independent base classifiers by introducing one or more sources of variabil-
ity. The explicit (or overproduce and choose) method involves a further optimiza-
tion step: a subset of networks is selected from an initial large set by optimizing
an error diversity measure out of selected base classifiers. In order to keep our
model as simple as possible, we consider two direct ensemble design strategies:
Seed Strategy and Preprocessing Strategy. We combine the outputs computed
by the base classifiers by using the most common aggregation schemes: average
and majority voting. For each strategy, a fixed-size ensemble of nine networks is
used.
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Seed Strategy (SE). The training procedure makes an extensive use of random
choices, namely in the following operations: (i) initial distribution of weights; (ii)
shuffle of the dataset; (iii) data augmentation; (iv) dropout.

This strategy thus exploits the simplest way to piece together an ensemble
of diverse single CNNs: it sets a different seed value for the random number
generator used in building up each base classifier, thus ensuring diversity across
the members of the ensemble.

Preprocessing Strategy (PS). As proposed in [13], it makes use of another
source of variability across the networks in the ensemble: a preprocessing layer
is added before the CNN input stage. Nine networks are obtained by combining
seed variability and preprocessing variability. Three different seeds are used in
order to generate three networks for each of the following groups (Fig. 1):

– networks fed with the original, unchanged images (default);
– networks fed with images that underwent histogram equalization (histEq),

which show an enhanced contrast with respect to the original ones [6];
– networks fed with images that underwent illumination normalization (iNor):

it results in a smoothed version of the illumination-induced variations of the
original images [9].

Fig. 1. The three versions of a sample image from FER2013 dataset adopted in the Pre-
processing Strategy. Left: default, original image. Center: image modified by histogram
equalization. Right: image modified by illumination normalization.

3.3 Two Scenarios of Interest: Adopted Models and Parametrization

The proposed strategies are evaluated on two typical scenarios: training from
scratch an ad-hoc architecture, and fine-tuning a pre-trained model. Hereafter
we describe the relative model, the preprocessing stage, the learning procedure,
and the specific data augmentation step used to obtain a wider training set.

CNN10-S: Training from Scratch an Ad-hoc Architecture

Model. We trained from scratch a classical feed-forward CNN (Fig. 2): it is a
10-layers network resulting in 1,769,447 trainable parameters. It mimics the
VGG-B architecture [20] by the Visual Geometry Group of the University of
Oxford, modified with batch normalization layers and dropout layers according
to the specification proposed by [19].
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Fig. 2. Scheme of the architecture used in CNN10-S (10 is the depth, S stands for
“scratch”). The network is entirely trained from scratch.

Preprocessing Stage. After applying one of the transformations described in
Sect. 3.2, a global mean value μ, and a global standard deviation value σ were
evaluated over the training set. The normalization step was performed by sub-
tracting μ and dividing by σ. The transformation was then applied to every
training, validation, and test image.

Learning Procedure. Following the approach proposed in [19], we used a stochas-
tic gradient descent procedure (momentum = 0.9) to minimize the loss function;
it is composed by a cross-entropy term and a L2 regularization term (λ = 0.0001).
The batch size is 200 and the minimum number of epochs is 300. Since then, val-
idation accuracy is monitored by stopping the training procedure after awaiting
20 epochs since the last improvement. The learning rate is a piecewise constant
function of the training step (boundaries: [12000, 18000, 24000, 30000, 36000],
values: [0.1, 0.05, 0.025, 0.0125, 0.00625, 0.003125]).

Data Augmentation. To artificially increase the training set size, every input
image undergoes the following transformations: zero-padding from 48 × 48 to
54 × 54, and selection of a random crop of size 48 × 48; random horizontal flip
with probability 0.5.

VGG16-FT: Fine-Tuning a Pretrained Model

Model. The reference pretrained model used in our framework is described in
[18] and has been released as Caffe model by the Visual Geometry Group:

– the architecture is the VGG16 [20]: it is a 16-layers network resulting in
134,289,223 parameters; a dropout layer is added after FC 7 layer to reduce
overfitting.

– the available weights of the model have been obtained by pretraining on
a dataset for face recognition: the authors in [18] proposed a method for
collecting and annotating 2.6M images from 2.6K different identities.

Since transfer learning is more successful when the source task and the target
task are more similar, this pretrained model perfectly fits on our case-study, i.e.
the classification of emotion from facial images.
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Fig. 3. The VGG16-FT architecture. During the first training step, only the output
layer (dotted box on the right) is updated. During the second training step, the layers
represented with filled boxes are fine-tuned.

Preprocessing Stage. The pretrained architecture, with a 224 × 224 × 3 input
layer, requires that grayscale images of FER2013 are upscaled to 224× 224 and
replicated on three channels. Images are then zero-centered by subtracting the
global mean value μ.

Learning Procedure. The following steps are performed:

– the original output layer is removed (it was designed for another classification
task). We add our custom output layer consisting of 7 units with softmax
activation. Dropout is added before the output layer to reduce overfitting.

– Step 1: Training the output layer. The whole network, except the newly added
output layer, is kept frozen, i.e. weights are not updated during training. Since
the output weights are randomly initialized, the loss function is high in the
first steps: including the convolutional layers in the learning procedure would
damage the representations previously learned by such layers, because of a
large error signal back-propagating through the network. The classifier is
trained for 5 epochs using the Adam optimizer [14] with a learning rate of
0.00005 and a categorical cross-entropy loss function. In this step, the number
of trainable parameters is 28,679. The batch size is 64.

– Step 2: Fine-Tuning. As shown in Fig. 3 all the hidden layers after conv5 3
are unfrozen. Learning rate is halved and a new training procedure jointly
fine-tunes these layers and the output added layer. In this step, the number
of trainable parameters raises to 121,934,343.

Data Augmentation. To enable a fair comparison among the two scenarios, we
perform the same data augmentation adopted for CNN10-S: images are zero-
padded to size 256 × 256. A random crop of size 224 × 224 is extracted from
either the padded image or its horizontally flipped version.

4 Experimental Results

In this section we show the experimental results: the performance of the proposed
models is evaluated in terms of accuracy on the FER2013 test set. For both the
ensemble strategies and the model architectures, three groups of nine networks
were trained and evaluated in order to assess the stability of the measures.
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Being able to rely on batches of 27 networks, we thus further investigated the
accuracy obtained increasing the ensemble size. Results are reported in Table 1
and summarized in Fig. 4.

Fig. 4. Base classifiers (white bars) and ensemble (filled bars) accuracy for both strate-
gies. In each group, the former white bar represents average of base classifiers accuracy,
the latter represents the best base learners accuracy; the former filled bar represents
ensemble accuracy using average voting, the latter represents ensemble accuracy using
majority voting. Left: trained from scratch CNN10-S. Right: fine-tuned VGG16-FT.

Comparison Between CNN10-S and VGG16-FT. A first result is that the
architecture CNN10-S (Table 1A), trained from scratch, achieves better perfor-
mance than the architecture VGG16-FT (Table 1B), used as a pretrained model
with fine-tuning (Fig. 4): the discrepancy between the accuracy values (between
1% and 2%) is confirmed both in terms of base and ensemble classifiers. Neverthe-
less, the two scenarios share common trends: they are analyzed in the following
paragraphs.

Accuracy of Base Classifiers. For each strategy we can rely on three groups of
nine networks. The low standard deviation of the average accuracy inter-groups
suggests that results are fairly stable, independently of the strategy and the
architecture. Both using CNN10-S and VGG16-FT, we observed that networks
of SE strategy achieve better performance than networks of PS strategy (Fig. 4,
white bars). Furthermore, the intra-group analysis suggests that networks of
the PS strategy have a higher standard deviation, especially for VGG16-FT.
Indeed, we noticed that the introduction of histogram equalization and illumi-
nation normalization leads to a slight performance drop compared to the use of
default images.

Ensemble Accuracy. We define the ensemble gain as the difference between
ensemble accuracy and average base classifier accuracy: combining preprocessing
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Table 1. Accuracy of base classifiers and ensembles (average and majority voting),
and the respective ensemble gains, are reported for each repeated measure. The mean
and the standard deviation values are reported for each strategy.

A. Results obtained by training CNN10-S from scratch

Network architecture CNN10-S

Base classifiers Ensemble AV. Gain AV. Ensemble MAJ. Gain MAJ.

SE 71.165 ± 0.520 73.084 1.919 72.862 1.697

71.180 ± 0.495 73.279 2.099 72.862 1.681

71.109 ± 0.275 73.057 1.947 73.224 2.114

Mean± Std 71.152 ± 0.031 73.140 ± 0.099 1.989 ± 0.079 72.982 ± 0.171 1.831 ± 0.201

PS 70.465 ± 0.585 73.140 2.675 72.973 2.508

70.496 ± 0.472 73.224 2.727 72.583 2.087

70.645 ± 0.649 73.224 2.579 73.335 2.690

Mean± Std 70.535 ± 0.078 73.196 ± 0.039 2.660 ± 0.062 72.964 ± 0.307 2.428 ± 0.253

B. Results obtained by fine-tuning VGG16-FT

Network architecture VGG16-FT

Base classifiers Ensemble AV. Gain AV. Ensemble MAJ. Gain MAJ.

SE 69.546 ± 0.320 71.942 2.396 71.580 2.034

69.462 ± 0.333 72.137 2.675 71.775 2.313

69.583 ± 0.487 72.137 2.554 72.026 2.443

Mean± Std 69.530 ± 0.050 72.072 ± 0.092 2.542 ± 0.114 71.793 ± 0.182 2.263 ± 0.170

PS 68.636 ± 1.187 72.388 3.752 72.527 3.892

68.592 ± 0.941 71.942 3.350 71.496 2.904

68.886 ± 0.403 72.416 3.529 72.527 3.641

Mean± Std 68.705 ± 0.130 72.249 ± 0.217 3.544 ± 0.165 72.184 ± 0.486 3.479 ± 0.419

and seed variability ensures a higher gain value than just varying the seed.
Nevertheless, in both the scenarios, PS strategy and SE strategy lead to very
close ensemble performances (Fig. 4, filled bars). Despite being based on a deeper
model, ensemble learning in VGG16-FT proves to be more effective than in
CNN10-S, since it shows higher ensemble gain.

Even if the adopted aggregation schemes (average and majority voting) lead
to comparable results, average voting shows slightly higher performance: in our
framework, with low intra-group accuracy variability, average voting represents
the proper choice. Indeed, majority voting is typical less sensitive to the output
of a single base classifier since it considers only the predicted labels.

It is worth noting that each ensemble achieves better performance than the
best base classifier composing it.

Increasing the Number of Base Classifiers. Let A, B, C be the three
groups of networks produced for each strategy. We could rely on 3 ensembles of
9 networks (A, B, C), 3 ensembles of 18 networks (AB, AC, BC), and 1 ensemble
of 27 networks (ABC). Figure 5 shows the results.

PS strategy shows a slight boost in performance with CNN10-S (+0.110%),
but a drop using VGG16-FT (−0.028%). On the other hand, SE strategy shows
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a promising trend with VGG16-FT (+0.316%) while decreases with CNN10-S
(−0.139%). Values in brackets are obtained by subtracting the accuracy value
of the 27-nets ensemble and the 9-nets ensemble, considering average voting.

From the above considerations and by analyzing the trend shown in the plot,
it is not possible to state that the increase of the number of base classifiers con-
siderably improves, in general, the performance of our ensembles. Further, using
the proposed model and the adopted parametrization, the training procedure is
extremely time-consuming.

Fig. 5. Ensemble accuracy values versus number of base classifiers in the ensemble.
Mean and standard deviation of three values are available for the ensembles with 9 and
18 networks, while a single value is available for the ensemble with 27 networks. For
each strategy, we considered only average voting. Left: trained from scratch CNN10-S.
Right: fine-tuned VGG16-FT.

5 Conclusion

In this paper we evaluated the performance of two design strategies for gen-
erating ensembles of CNNs used to tackle the FER problem, namely the Seed
Strategy and the Preprocessing Strategy. The former generates diversity among
base classifiers by simply varying the seed; the latter combines different val-
ues of the pseudorandom number generator with the introduction of different
transformations of the input images.

Using a well known medium-sized dataset (FER2013), we carried out our
comparison following two approaches: training an ad-hoc model from scratch
(CNN10-S) and fine-tuning a pretrained model (VGG16-FT).

Results have shown that the ad-hoc architecture is an appropriate choice for
the considered task, since it performs better than the fine-tuned model, both con-
sidering base classifiers and ensemble accuracy. Nevertheless, using a pretrained
model requires less effort.

In the presented experimental setup, Seed Strategy and Preprocessing Strat-
egy achieve comparable results using both the approaches (CNN10-S and
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VGG16-FT). However, the variability induced by the Preprocessing strategy
allows obtaining significantly higher ensemble gain than using the solely seed
variation.

To the best of our knowledge, this is the first work that analyze the effective-
ness of simple ensemble strategies using Deep Learning approaches for the FER
task. Since we did not make specific assumptions based on the facial images, it
could represent a starting point for further investigation also in other Computer
Vision classification tasks.

In future work, we will investigate if other models, which use the same or
other pretraining datasets, allow achieving comparable or better performance.
Further, we will analyze the performance of other state of the art models and
will evaluate the effect of introducing other factors of variation in the design of
ensemble strategies, considering also their computational load.

References

1. Chollet, F.: Deep Learning with Python. Manning Publications Co., Shelter Island
(2017)

2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition. CVPR 2009, pp. 248–255. IEEE (2009)

3. Dhall, A., Goecke, R., Joshi, J., Sikka, K., Gedeon, T.: Emotion recognition in the
wild challenge 2014: baseline, data and protocol. In: Proceedings of the 16th Inter-
national Conference on Multimodal Interaction, pp. 461–466. ICMI 2014. ACM
(2014). https://doi.org/10.1145/2663204.2666275

4. Ekman, P., Friesen, W.V.: Constants across cultures in the face and emotion. J.
Pers. Soc. Psychol. 17(2), 124 (1971)

5. Giacinto, G., Roli, F.: Design of effective neural network ensembles for image clas-
sification purposes. Image Vis. Comput. 19(9), 699–707 (2001)

6. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall
Inc., Upper Saddle River (2006)

7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016). http://www.deeplearningbook.org

8. Goodfellow, I.J., et al.: Challenges in representation learning: a report on three
machine learning contests. In: Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M. (eds.)
ICONIP 2013. LNCS, vol. 8228, pp. 117–124. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-42051-1 16

9. Gross, R., Brajovic, V.: An image preprocessing algorithm for illumination invari-
ant face recognition. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS,
vol. 2688, pp. 10–18. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
44887-X 2

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)
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Abstract. In online scheduling, jobs arrive over time and information
about future jobs is typically unknown. In this paper, we consider online
scheduling problems where an unknown and independent set of Satisfia-
bility (SAT) problem instances are released at different points in time for
processing. We assume an existing problem where instances can remain
unsolved and must start execution before a waiting time constraint is
met. We also extend the problem by including instance weights and used
an existing approach that combines the use of machine learning, inter-
ruption heuristics, and an extension of a Mixed Integer Programming
(MIP) model to maximize the total weighted number of solved instances
that satisfy the waiting time constraints. Experimental results over an
extensive set of SAT instances show an improvement of up to 22.3× with
respect to generic ordering policies.

1 Introduction

Typical deterministic scheduling models are usually based on the assumption
that all problem data are known in advance. However, in real world problems,
this assumption is not always adequate. For instance, job processing times may
be unknown and subject to fluctuations; job arrivals (i.e, job releases) are often
random events that can not be known in advance; jobs might have different
requirements or constraints for processing (e.g., weights, due dates, etc.) [10].

In online scheduling, jobs arrive over time and depending on the assumptions,
the decision-maker might become aware of some of the job data on its arrival.
For instance, the processing time of a job might be presented on every job arrival
or remain unknown until its completion [10]. However, we recall that many com-
putational problems, including the Satisfiability (SAT) problem, display a high
runtime variability. SAT is one of the fundamental problems in computer science
and has received a lot of attention, specially for solving large-scale computa-
tional problems and numerous solver algorithms have been proposed including
local search techniques, linear programming, methodologies based on statistical
physics [2], immune algorithms [3], connected components of a graph [9], etc.
c© Springer Nature Switzerland AG 2019
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In this paper, we use supervised machine learning to estimate SAT instance
processing times and take this information into account to make decisions. We
extend an existing scheduling approach proposed in [5] to study an online sce-
nario where released instances have weights, and must start execution before a
given maximum waiting time. In Sect. 2, we introduce a notation to represent
our online over time scheduling problem. In Sect. 3 we present the computa-
tional approach for online processing of weighted combinatorial problems under
single and multiple machine configurations. In Sect. 4 we empirically evaluate
our models and present results. Finally, Sect. 5 presents our conclusions.

2 Online Scheduling Problem

Machine scheduling refers to an allocation of jobs within a set of machines given
a series of constraints in order to optimize a specific criterion. Typical machine
scheduling approaches assume that every job j is completed at some point and
usually minimize some completion time criterion. For instance, the most common
is to minimize the makespan (i.e., the time between the start of the first activity
and the end of the last one) [10]. In online scheduling problems, the number
of jobs to be processed is unknown and no information is given about future
jobs. We recall that online clairvoyant approaches present all the relevant data
of a job once it is released. However, online non-clairvoyant approaches might
reveal some relevant data when jobs are released or remain unknown until job
completion [10].

In contrast to traditional approaches that assume job completions, in [5] the
authors assume that some jobs can be interrupted from running and remain
unsolved at the end of the schedule. The authors study a problem where com-
binatorial problem instances arrive over time and must start execution before a
maximum waiting time is met. Thus, the objective consisted in maximizing the
total number of solved instances within certain limited time (e.g., using cloud
rented resources). Cloud computing provides on-demand resources and services
over a network that are often offered with a pricing model that lets you pay
for the services that you use [7]. This kind of computation offers an interesting
opportunity to solve combinatorial problems. However, attempting to solve a
single job might consume all the rented computational time.

In general, in [5] the authors proposed a three phase approach that combines
the use of machine learning, interruption heuristics, and an algorithm to run a
MIP model over a bounded queue. The authors reported important improve-
ments that go over 12.2× more solved instances than generic ordering policies.
In this paper, we study an extension to the problem and evaluated the impact
of adding weights to the instances. In general, instances arrive over time for pro-
cessing, each with a random completion weight and must start execution before
a maximum waiting time is met. Therefore, the objective consists in maximizing
the total weighted number of solved instances (unsolved instances add no weight
to the objective function).

Machine scheduling problems are usually described using the standard α|β|γ
classification scheme proposed in [6] by Graham et al. (resp, α describes the
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machine environment; β provides details of the processing constraints; and γ
describes the objective function). As in [5], we use an extension of the Graham
notation to represent the problems. Furthermore, we also train regression and
classification models in order to use them in our scheduling approach to estimate
processing times or classify instances according to their empirical hardness:

1|online,
−→
wtj ,

≈
sj ,

≈
pj , interrupt|

∑ −→wjSj

Pm|online,
−→
wtj ,

≈
sj ,

≈
pj , interrupt|

∑ −→wjSj

(1)

The notation from the scheduling problems in (1) is then described as follows.
The top arrow denotes that certain information is presented on the arrival of a
job (e.g., −→pj if the processing time is presented at the arrival as in a clairvoyant
approach). Additionally, if a value is somehow estimated, it is denoted with an
approximation symbol (e.g.,

≈
pj for a semi-clairvoyant approach).

1 and Pm denote single and parallel identical machine environments. online
denotes that jobs arrive over time and we have no prior knowledge about the
released jobs; we assume that release dates (−→rj ) are not known in advance; (

−→
wtj)

denotes the maximum waiting time that an instance can remain in the system
waiting to be attended; (−→wj) represents the weighted cost of solving a given
instance i; (

≈
pj) is the prediction of the processing time of an algorithm A on

instance j; (
≈
sj) denotes the prediction of the machine learning model indicating

whether a given job j is solvable or not by algorithm A within time t. (See
Sect. 3.1 for further details). Finally, interrupt denotes that a running job j
may be interrupted, losing all the work done on it and becoming available to be
rescheduled.

Our objective function consists in maximizing the total weighted number of
solved jobs (−→wjSj). A job j is considered to be attended, if its waiting time in
the system is less than (

−→
wtj) and it is processed for some time greater than

0 (i.e., instances that do not satisfy the waiting time constraint are discarded).
Additionally, we assume that a given job j is solved if the system finds a solution
for j within the assigned processing time. In Eq. (2), (STj) represents the time
when job j starts being processed (resp. (ETj) represents the end time). (WTj)
denotes the time that a job waits to start being processed from the time it is
released (i.e., WTj = STj − −→rj ):

Sj =

{
1, if WTj ≤ −→

wtj ∧ solve(j, STj , ETj)
0, otherwise

(2)

3 Online Computational Approach

In this paper, we use the same approach as proposed in [5] and extend the exist-
ing MIP model to optimize the new objective function. We use a training/testing
phase to create regression and classification models; scheduling policies to tackle
the online problems presented in Sect. 2; instance interruption heuristics to mit-
igate inaccurate scheduling decisions.
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3.1 Training/Testing Phase

Supervised machine learning can be used to learn a performance criteria from
problems to algorithms using features extracted from the instances. In [8], the
authors describe a problem instance j with a list of m features dj = [z1, ..., zm].
To compute the training dataset, they run a set of n instances for a run time limit
t and compute the vector of features dj and the processing time pj . Interestingly,
the authors divide the features into four categories according to the complexity
to collect the descriptors: trivial, cheap, moderate, and expensive.

In particular, we used the vector of features and runtime data for SAT prob-
lems introduced in [8] and we limited our approach to the usage of a single
algorithm (i.e., MiniSAT). We used their datasets to train random forest models
(R : {dj} → { ≈

pj}) that estimate the runtime of algorithm A on an instance
j. We also used the data to create classification models (C : {dj} → {≈

sj}) to
estimate whether an algorithm A is able to solve an instance j within time t.
For the classification models, we replaced processing times with Boolean values
sj = (pi < t), thus timeouts can be represented with 0’s and solved instances
with 1’s (i.e., false and true respectively). Finally, in order to avoid situations
in which calculating the features adds a big overhead to the schedule, we take
advantage of the trivial and cheap features to Train-Test our models as studied
in [5].

3.2 Scheduling Approach

Online scheduling is a challenging combinatorial problem and solving the
scheduling problem might end up adding a considerably big overhead. Addition-
ally, due to the uncertainty of job arrivals and processing times, the approach
must be able to deal with continuous changes as instances arrive or get solved.
Interestingly, in [11] the authors study the integration of long-term queuing
policies with short-term scheduling, in the context of dynamic scheduling prob-
lems. They showed that combining long-term guidance from queuing theory with
short-term combinatorial decision making, outperforms individual queuing and
scheduling approaches for a dynamic flow-shop problem.

In [4], the authors proposed a MIP model to tackle an online problem that
attempts to maximize the number of solved SAT instances. In particular, the
authors used MIP every time the system needed to select a job for execution
by creating an execution schedule. Extensive experimental results indicate that
there is an important improvement w.r.t. a set of popular approaches. However,
in practice, when the number of released instances in queue becomes large, using
MIP has a negative impact on the system due to the added overhead of solving
the scheduling problem. Later in [5], the authors implemented a bounded queue
that keeps the size of the scheduling problem relatively small.

In this section we present the approach proposed in [5] that combines long-
term queuing policies with short-term scheduling. We also extend their MIP
model and study other ordering policies to tackle problems with weighted
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Algorithm 1. SJF-MIP(j, f,Qrel, Qint, Qsch, MIP-model, k)

1: Discard (i.e., Delete) all jobs that break the waiting time constraint
−→
wtj from Qrel,

Qsch, and Qint.
2: If either queue (Qrel or Qsch) have jobs, then go to Step 4. Otherwise, continue to

Step 3.
3: If Qint is not empty, return the interrupted job with the shortest estimated pro-

cessing time
≈
pj . Otherwise, wait for Qrel to get an online (released) instance from

a user and go to Step 4.
4: If the schedule queue Qsch is empty, move at most the first k instances from Qrel

to Qsch and go to Step 6. Otherwise, move to Step 5.
5: If the first job in Qrel has a smaller processing time than the last job in Qsch, move

all the jobs from Qsch to Qrel and go to Step 4. Otherwise, go to Step 7.
6: If Qsch has two or more jobs, run the MIP model with the jobs in the queue to

compute the execution ordering of the jobs in Qsch. Then go to Step 7.
7: Return the job with the highest priority in Qsch.

instances as described in Sect. 2. Below we present four long-term queuing poli-
cies and then introduce a hybrid scheduling policy that will be evaluated in our
experiments section:

1. First Come First Serve (FCFS): jobs are sequenced and processed in the
same order as they are released (i.e., −→rj ).

2. Shortest Waiting Time First (SWTF): jobs are sequenced and processed
in ascending order by using the maximum waiting time constraint (i.e.,

−→
wtj).

3. Shortest Job First (SJF): jobs are sequenced and processed in ascending
order by using regression models to estimate runtimes (i.e.,

≈
pj).

4. Shortest Weighted Processing Time (SWPT): it is a commonly used
policy in offline problems where jobs are scheduled by the lowest ratio (pj/wj).
In our approach we use runtime estimations and the weight of each instance
(i.e.,

≈
pj/

−→wj).

SJF-MIP Hybrid Scheduling Policy: Using MIP over all the released
instances in queue can be computationally expensive as shown in [4], there-
fore, this approach implements a bounded queue to reduce the time that MIP
takes to schedule instances for execution and can be used together with regres-
sion and classification models for the problems presented in Sect. 2. Namely, this
approach implements 3 priority queues and Algorithm1 describes how to select
an instance for execution when a machine becomes available:

– Qrel - (released instances queue) priority queue that stores online released
instances using a SJF policy based on runtime estimations.

– Qint - (interrupted instances queue) priority queue that stores instances that
are interrupted from running and might be scheduled for execution again.
Instances are stored using a SJF ordering policy.
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– Qsch - (scheduled instances queue) queue that has a fixed capacity k to limit
the number of instances that our MIP model will schedule for execution.

In general, Algorithm SJF-MIP runs MIP on a bounded queue Qsch of size
k only when released instances in Qrel have smaller estimated processing times
than the last instance scheduled by MIP in Qsch. Next, we propose a modifica-
tion of the former MIP model in [5] for multiple machines in order to schedule
instances for the problems presented in Sect. 2.

MIP-Model for Weighted Combinatorial Problems in Multiple
Machines: This MIP model maximizes the total weighted number of solved
instances that satisfy the waiting constraints. It can be used with either all
instances or only with instances classified as solvable with a classification model:

Indices and sets:

– J : set of instances (also jobs) in the queue;
– i, j: instances (i, j ∈ J)
– M : set of machines to process the instances;
– m: machine index (m ∈ M)

Parameters:

– −→rj : release time of instance j;
–

≈
pj : runtime of instance j (estimation using a regression model);

–
−→
wtj : maximum expected waiting time of instance j.

– −→wj : weight of instance j.
– ct: cost of solving an instance;
– time: time when the system becomes available;
– nextETm: time when machine m is expected to become available;

Decision variables:

– STj : start time of instance j;
– ETj : end time of instance j;
– WTj : waiting time in the system of instance j;
– ATj : boolean variable used to determine whether an instance j is attended

before the maximum waiting time or not;
– Xm

j : boolean variable used to determine whether an instance j is assigned to
machine m or not;

Maximize: ∑

j∈J

(ct ∗ −→wj − ≈
pj) ∗ ATj (3)
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Subject to:
STj ≥ −→rj ∧ STj ≥ time + 1 ∀j ∈ J (4)

WTj = STj − −→rj ∀j ∈ J (5)

ATj =

{
1, if WTj ≤ −→

wtj

0, otherwise
∀j ∈ J (6)

ETj = STj + (
≈
pj ∗ ATj) ∀j ∈ J (7)

∑

m∈M

Xm
j = 1 ∀j ∈ J (8)

STj ∗ Xm
j ≥ (nextETm + 1) ∗ Xm

j ∀j ∈ J,∀m ∈ M (9)

ETj ≤ (STi − 1) ∨ STj ≥ (ETi + 1)
∀i, j ∈ J,∀m ∈ M | i 
= j ∧ Xm

i = Xm
j = 1

(10)

STj , ETj ,WTj ≥ 0 ∀j ∈ J (11)

ATj ,X
m
j ∈ {0, 1} ∀j ∈ J (12)

The objective function of the MIP-model is influenced by Constraint (6)
which enforces that only instances with a valid waiting time can be marked
as attended. Thus, the objective of the model is to compute a schedule that
maximizes the total weighted number of solved instances. We added a cost value
ct to the objective function, in order to prioritize instances with higher weights
−→wj and smaller processing time estimations

≈
pj .

Constraint (4) implies that every instance has to start after its arrival time
and after the system becomes available. Constraint (5) calculates the waiting
time of each instance. It is also used to determine if an instance is attended or
not in constraint (6). Constraint (7) calculates the end time of an instance j.
Such end time, depends mainly on its start time and on the runtime estimation
to solve such instance. However, it can also assign an end time equals to the start
time (i.e., 0 time for processing) when an instance is not marked as attended
(i.e., ETj = STj , if ATj = 0).

Constraint (8) guarantees that every instance is assigned to a single machine
m. Additionally, when an instance is assigned to machine m, Constraint (9)
makes sure that the start time of such instance is greater than the estimated
time for the machine to become available. The estimation of when a machine
m becomes available can be calculated by keeping track of when each machine
started processing an instance j plus the runtime estimation. Finally, the disjunc-
tive constraints (10) ensure that every pair of instances i and j, both assigned
to machine m (i.e., Xm

i = Xm
j = 1) do not overlap.
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3.3 Instance Interruption Heuristics

As in [5], we study two heuristics to interrupt instances from running in order
to overcome the impact of inaccurate predictions:

N - The Naive Interruption: represents an execution where the selected
instance is executed to completion or until a cap time limit t is met. We will
denote this heuristic with N in the experiments.

Hn - The Heuristic Based Execution: let Q denote all un-executed and alive
jobs in (Qrel and Qsch). Also, let P denote all the currently running jobs that
could be interrupted. Then, Hn denotes that a running instance j ∈ P can be
interrupted if there are n or more instances in Q that would not be attended if j
continues its regular execution. Equation (13) depicts how we make such decision.
We estimate the end time of a running instance j by adding the time when the
instance started to be processed and the estimated runtime (ETj = STj +

≈
pj).

Additionally, a waiting instance i ∈ Q, will not be attended if (ETj > −→ri +
−→
wti).

Since processing times might be overestimated, to avoid early interruptions, the
execution of instance j is extended by adding

≈
pi to the formulation:

NotExecutedij =

{
1, if ETj > (−→ri +

−→
wti +

≈
pi)

0, otherwise
∀i ∈ Q,∀j ∈ P

∑

i∈Q

NotExecutedij ≤ n ∀j ∈ P

(13)

In general, Constraint (13) must be satisfied during execution of all jobs j ∈ P .
For instance, the usage of heuristic H4 means that any running instance j can
be interrupted if 4 or more instances in Q are detected not to be attended if
j continues to run. Notice that the heuristic requires to estimate the end time
ETj of a running instance j. Since j is already running, then its start time STj

is already known but the processing time
≈
pj is an estimation.

4 Experiments

In this paper, we use the LaScILab cluster from the Universidad del Valle in
Cali-Colombia (http://lascilab.univalle.edu.co/). This cluster features 320 Cores
and 768 Gb of RAM memory accessed through HTCondor, a distributed batch
computing system that supports High Throughput Computing (HTC) [12].

To evaluate the online approach proposed in Sect. 3, we use the same set of
instances and algorithm runtime data as those used and reported in [8]. We recall
that our study is limited to the usage of a single algorithm/solver per dataset
type. The SAT instance dataset comprises data about MiniSAT with a time
limit t of one hour. The dataset was collected from the international SAT com-
petitions and races from 2002 to 2010. It contains 7012 instances that includes
industrial (INDU), hand crafted (HAND), and random problems (RAND). We

http://lascilab.univalle.edu.co/
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also used the combination of all SAT instances into a single dataset (INDU-
HAND-RAND). Complete details of the instances and runtimes are available at
www.cs.ubc.ca/labs/beta/Projects/EPMs/.

Table 1. Configuration values for test simulations

M Interr. rj wtj Dataset/solver Scheduling policies

1 N 1 s–10 s 0 s–30 s INDU/Minisat FCFS(R) & FCFS(RC)

2 H2 1 s–30 s 0 s–90 s HAND/Minisat SWTF(R) & SWTF(RC)

4 H4 1 s–60 s 0 s–180 s RAND/Minisa SJF(R) & SJF(RC)

H8 1 s–120 s 0 s–240 s INDU HAND RAND/Minisat SWPT(R) & SWPT(RC)

240 s–480 s SJF-MIP(R) & SJF-MIP(RC)

To train our regression models we performed a log transformation of the
runtimes. To train the classification models we managed to label timeouts as not
solvable and valid runtimes as solvable (i.e., 0 or 1 for instances running for a cap
time limit t). Moreover, we randomly split the instance sets into 30% for training
and 70% for testing. We also use the authors categories (i.e., trivial and cheap
features) to present our results and use a random forest implementation from
Weka (version 3.8) with its default hyperparameters to train-test our models.

We assigned random weights from 1 to 100 to each SAT instance in the Test
set. Table 1 shows the configuration of our experimental evaluations. In partic-
ular, we tested our approach with 1, 2, and 4 machines and experimented by
combining different interruption heuristics, release dates, waiting times, datasets,
and scheduling policies. We also experimented with four interruption heuristics.
Namely, naive (N) and three configurations for (Hn) as proposed in Sect. 3.3.
We configured our evaluations by releasing instances (in the Test set) one at a
time with random inter-arrival interval times ranging 1 s to 120 s; the waiting
time for each instance is randomly distributed within five intervals ranging from
0 s to 480 s; and tested five scheduling policies (i.e, FCFS, SWTF, SJF, SWPT,
SJF-MIP) using both Regression (R) and Regression-Classification (RC) models.
We recall that we use regression to estimate the runtime of a given instance and
classification to only use instances classified as solvable within time t. Addition-
ally, we ran each simulation (i.e., each configuration combination) 5 times using
different instance orderings and calculated the average total weighted number of
solved instances for each simulation.

4.1 Interruption Heuristics Analysis

In Fig. 1 we reported the total average weighted number of solved instances
of the INDU-HAND-RAND dataset under a single machine using four inter-
ruption heuristic configurations. The results were obtained across all the sim-
ulations using Real values, Cheap, and Trivial features to Train the regres-
sion/classification models. “Real values” refers to models that are able to do

www.cs.ubc.ca/labs/beta/Projects/EPMs/
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Fig. 1. Graphic with average total weighted number of solved instances using four
interruption heuristics under a single machine configuration.

perfect classifications and runtime estimations, in order to establish a compari-
son reference.

It can be observed that the interruption heuristic with the highest total
weight average is (H2) independently from the features that we use to train
our Random Forest models. As expected, a model with perfect predictions (i.e.,
actual runtimes) lead to higher weight averages. Moreover, such results tend
to decrease as we move from models trained with Cheap features to Trivial .
We attribute this behaviour to the fact that models trained with Cheap features
reported a higher correlation coefficient (CC) and a lower root mean square error
(RMSE) than those trained using Trivial features. CC is a value between −1
and 1 where 1 is a perfect correlation, 0 is no correlation, and −1 is an inverse
correlation. On the other hand, RMSE is used to measure the discrepancies
between true values and the estimated ones (i.e., lower RMSE are better). For
instance, for the industrial dataset (INDU), the correlation of the regression
model is 0.90 (Cheap) vs. 0.78 (Trivial) (resp. 0.80 vs 1.14 for the RMSE). We
also observed the same behaviour across all the datasets studied here.

Fig. 2. Policy comparison against the SCP using cumulative weights as the number of
released instances grows.
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Interestingly, (Hn) seems to reduce its effectiveness as the number of observed
instances to perform an interruption grows. Additionally, our interruption heuris-
tic is able to improve the total weight average of Naive (N) generic policies like
SWTF-R, FCFS-R, SWPT-R, and SJF-R up to 22.3×, 21×, 4.7×, and 4.6×
respectively, for the INDU-HAND-RAND dataset using Cheap features in a sin-
gle machine.

4.2 Online Scheduling Evaluation

The performance of online algorithms is usually compared to its offline counter-
part version assuming all data in advanced [1]. However, when scheduling combi-
natorial problems, this comparison against an all-knowledgeable adversary seems
unrealistic, specially because there are unknown processing times in the testing
data. Preliminary experiments showed that our hybrid policy SJF-MIP(CR)
using classification and regression behaves better than any other policy if work-
ing with an accurate predictive model. Thus, every policy can be compared with
the Semi Clairvoyant Policy (SCP) that is a version of our SJF-MIP(RC)
that is non-anticipative and features perfect predictions.

We now move our attention to Fig. 2, where we reported the average weighted
number of solved instances as the number of released instances increases for the
INDU dataset. The results are presented across three machine configurations
with the best known interruption heuristic (i.e., H2) using regression and clas-
sification models trained with Cheap features. Interestingly, it can be observed
that our hybrid approach (i.e., SJF-MIP(RC)) is typically closer to the SCP
than other policies. It also seems that the rate of solved instances tend to grow
slower as the number of machines is incremented. We also observed that SWPT-
RC and SJF-RC reported nearly the same cumulative weights and are typically
better than SWTF-RC and FCFS-RC which present similar results.

Table 2. Experiments summary reporting the average weights of the best three policies

30%–70% partition results using Cheap features and the interruption heuristic H2

Dataset M SCP SJF (R) SJF

(RC)

SWPT

(R)

SWPT

(RC)

SJF-

MIP (R)

SJF-

MIP

(RC)

SJF-

MIP

(RC)

Diff.

SJF

(RC)

Diff.

INDU 1M 23787 16910 18143 16987 18398 19911 20350 14.4% 23.7%

2M 25397 19403 19708 20051 19865 21659 21450 15.5% 22.4%

4M 28719 19696 20409 20298 20468 21406 22304 22.3% 28.9%

HAND 1M 21294 14515 16985 14478 16757 16426 18616 12.6% 20.2%

2M 22426 18042 18231 18065 18045 19601 19664 12.3% 18.7%

4M 25202 18220 19550 18471 19620 19855 20953 16.9% 22.4%

RAND 1M 24885 15003 22055 15173 21762 18298 21795 12.4% 11.4%

2M 26657 20882 23947 20755 23490 22331 24918 6.5% 10.2%

4M 30604 21843 26590 21543 26234 22033 27165 11.2% 13.1%

INDU-HAND 1M 73231 45558 59116 46540 57702 57189 61861 15.5% 19.3%

2M 77430 60879 64227 60897 63461 66629 69743 9.9% 17.1%

4M 87802 62829 68778 63077 67823 66483 72513 17.4% 21.7%
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We recall that our MIP approach reported a few milliseconds every time we
use it since it runs over a bounded queue. Thus, the total overhead added by
MIP is not significant (e.g., less than 10s in total for the INDU-HAND-RAND
experiments that contain the greatest number of instances released overtime).

Finally, Table 2 summarizes the results of our experiments using Cheap fea-
tures. For this table, we reported the total average weights per test and machine
configuration of the best three scheduling policies. We included two columns to
compare the total weight differences of SJF(RC) and SJF-MIP(RC) with respect
to the SCP (i.e., lower percentages are desirable). It can be observed that our
hybrid approach SJF-MIP(RC) is the overall winner followed by our SJF-MIP(R)
approach and reported smaller differences with respect to the SCP. For instance,
for INDU in 1M, our hybrid approach SJF-MIP(RC) reported weights of 14.4%
below the SCP whilst SJF(RC) reported 23.7%.

5 Conclusions

In this paper, we have presented an online approach to maximize the total
weighted number of SAT combinatorial problem instances subject to waiting
time constraints. We extended an existing approach for online scheduling of
combinatorial problems that consisted of three parts. Namely, training/testing
models for processing time estimations; implementation of a hybrid scheduling
policy using SJF and a MIP model to maximize weighted combinatorial prob-
lems; usage of instance interruption heuristics to mitigate inaccurate predictions.
We tested our approach with a well-known SAT dataset and reported consider-
ably big improvements of up to 22.3× when using interruption heuristics with
long term policies. Additionally, our hybrid approach observed results that are
closer to a semi clairvoyant policy (SCP) featuring perfect estimations.
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Abstract. The importance of gene expression data analysis for onco-
logical diagnosis and treatment has become widely accepted in recent
years. One of the main associated challenges is the development of math-
ematical and statistical methods for data analysis to improve prognosis
and guide treatment decisions. One of the difficulties that researchers
face when dealing with gene expression datasets concerns their high-
dimensionality. In this context, the goal of this work is to reduce the
dimensionality of gene expression data using regularization techniques
such as Lasso and Elastic net, complemented with DegreeCox, a network-
based regularization method for survival analysis recently proposed. Also
identification of long or short-term survivors (outliers) may lead to the
detection of new prognostic factors, and the Rank Product test is used
to identify those observations. An example based on the The Cancer
Genome Atlas (TCGA) Melanoma dataset is presented, where the covari-
ates are patients’ gene expression. The application of data reduction
techniques to the Melanoma dataset enabled the selection of relevant
genes over a range of parameters evaluated, with 5 in common between
elastic net regularization and DegreeCox for one of the two models fur-
ther evaluated. Moreover, a long term survivor was detected as outlier
by the Rank Product test, being systematically highly ranked for the
martingale residuals of the models evaluated.
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1 Introduction

One of the challenges that scientists face nowadays is to deal with high-
dimensional datasets, specially when the number of covariates (p) greatly exceeds
the number of observations (n), p � n. This type of data is present in many fields
of science and is in constant outgrowth due to the technology development. A
particular case in the medical field is gene expression data of oncological diseases.
In the last years, scientists attempt to deal with high-dimensional gene expres-
sion data, in order to bring more information into the diagnosis of oncological
patients.

In this context, traditional statistical techniques for the estimation of the
parameters cannot be applied, due to the inherent ill-posed inverse problem.
When dealing with thousands of variables, dimensionality reduction is a cru-
cial initial step, leading to distinct models depending on the variable selection
method used [5]. Identifying the relevant variables or biomarkers precisely have
become a challenge for the further advancement of the medical field. A solution
to cope with this dimensionality problem is the use of additional constraints
in the cost function optimization. Regularized optimization techniques ([13–15])
are widely used in most regression models, particularly in survival analysis by
constraining the Cox’s proportional hazards model. Lasso, elastic net and other
sparsity methods have been successfully applied with such idea. Although lead-
ing to more interpretable models, these methods still do not fully profit from
the relationships between the features, specially when these can be represented
through graphs. Following these ideas, the DegreeCox [14], a method that applies
network-based regularizers to infer Cox proportional hazard models when the
features are genes and the outcome is patient survival, has been proposed.

Another important aspect of gene expression datasets, in the context of sur-
vival analysis, is the identification of patients that are long or short-term sur-
vivors, i.e., outliers. The detection of outliers can lead to the discovery of new
prognostic factors. However, different models are obtained depending on the
technique used to reduce the dimensionality of the data, and therefore different
outliers can be obtained [5]. To overcome this issue, the Rank Product test is
used, as a consensual method for the different models obtained.

The main goal of this work is first, to evaluate the predictive performance
of survival analysis in a gene expression dataset using different dimensionality
reduction techniques, namely the Lasso, elastic net and DegreeCox; second, to
detect of outlier patients using the Rank Product test based on multiple models
obtained by resampling the features. The gene expression dataset studied is the
Melanoma cancer dataset obtained from The Cancer Genome Atlas (TCGA).

2 High-Dimensional Survival Data

In this section the techniques used to reduce the dimensionality of gene expres-
sion for cancer data, elastic net [15] and DegreeCox [14], are described. Since the
gene expression data that is considered is approached from the survival point of
view, a brief introduction to this subject is also given.
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2.1 Survival Analysis and the Cox Regression Model

Survival analysis, which studies the time until an event of interest occurs, is used
in many fields of science, in particular in the medical area. The event may be
death, the relapse of a tumour, or the development of a disease. The response
variable is the time until that event, called survival or event time, which can be
censored, i.e. not observed on all individuals present in the study.

There are different ways of modelling this type of data, one of most widely
used due to its flexibility is the Cox regression model [6], which is based on a
semi-parametric likelihood, able to deal with censored data and assumes that
the hazard function h(t) at time t is:

h(t;x) = h0(t) exp(xT β), (1)

where β = (β1, ..., βp) are the unknown regression coefficients, which represent
the covariate effect in the survival, x = (x1, ..., xp) is the covariate vector asso-
ciated to an individual and h0(t) represents the baseline hazard.

The Cox regression model is called a semi-parametric regression model,
because the baseline hazard function, h0(t), is not specified. This contributes
for the flexibility of the model. The semi-parametric likelihood function is given
by

L(β) =
n∏

i=1

[
exp(xT

i β)∑
j≥i exp(xT

j β)

]δi

, (2)

where δi is the censored indicator.
The unknown regression coefficients, β, are obtained by maximizing

l(β) =
n∑

i=1

δi

⎧
⎨

⎩xT
i β − log

⎡

⎣
∑

j≥i

exp(xT
j β)

⎤

⎦

⎫
⎬

⎭ , (3)

the partial log-likelihood function.
To obtain the unknown regression coefficients, β, the baseline hazard, h0(ti)

has to be estimated. [3], proposed

ĥ0(ti) =
1∑

j≥i exp(xT
i β)

, (4)

to obtain the estimators for the baseline hazard. Therefore the total log-
likelihood function in Eq. (3) is the following

l(β, h0) =
n∑

i=1

− exp(xT
i β)H0(ti) + δi

[
log(h0(ti)) + xT

i β
]

(5)

where H0(ti) is the cumulative baseline hazard function.
When we have high-dimensional datasets (p � n) the estimation procedure,

for the Cox regression model exhibits identifiability problems, leading to multiple
possible solutions with a large number of non-zero parameters. In the literature
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there are a vast number of techniques to overcome this problem, providing a
sparse estimate of β. The two variable selection techniques chosen to reduce the
dimensionality namely Elastic-net [15] and DegreeCox [14], are presented.

2.2 Elastic Net

The elastic net, is a regularization technique proposed by [15] in order to restrict
the solution space by imposing sparsity and small coefficients to the parameters,
combining the L1 and L2 norms. It can be used in different types of regression
models, particularly in the Cox’s regression model for survival data by penalizing
the log-likelihood function.

The penalized partial log-likelihood function (3) with a weighted sum of the
L1 and L2 norms is given by

l(β) =
n∑

i=1

⎧
⎨

⎩δix
T
i · β − δi

⎡

⎣log
∑

j≥i

(
xT

i · β
)
⎤

⎦

⎫
⎬

⎭ + λΨ(β) (6)

where,

λΨ(β) = λ

(
α||β||1 +

1
2
(1 − α)||β||22

)
(7)

where the parameter that controls the penalization of the weights is given by λ,
and the balance between L1 and L2 norms is given by α, with 0 ≤ α ≤ 1. The
Ridge and Lasso, regularization techniques, are a particular case. For α = 0,
Eq. (6) leads to the Ridge regression, for α = 1 leads to the Lasso regression.

2.3 DegreeCox

The DegreeCox, proposed by [14], is a network-based regularization technique
for the Cox’s regression model. This method combines the partial log-likelihood
function of the Cox’s regression model (5) with degree regularization, which con-
veys a vertex centrality information of the network. Each vertex in the network
represents a gene and to obtain the corresponding vertex centrality informa-
tion, two networks are constructed from the data using Pearson’s correlation
and covariance. The DegreeCox adds a network degree-based constraint to the
Cox’s regression model as a weight of η in the regularization function defined in
θ with ηi = βiθi. This is an extension of DegreeCox that allows to use both the
L1 and L2 norm in the regularization function, where

λΨ(η) = λ
(
α||η||1 + (1 − α)||η||22

)
(8)

is the extended cost function, with vector θ given by

θi = max(Adj) −
P∑

j=1

Adjij , (9)
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representing the vertex weighted degree. The resulting vector was scaled between
0 and 1 and then transformed using a double exponential heuristic to scale
exponentially the coefficients of the vector that is defined by

θ′
i = γ + 10exp(θi)−1 − 1 (10)

where γ is the minimum value attributed to all vertices that avoids vertices with
0 weights in the regularization function.

The aim of this network-based regularization technique is to identify a set of
genes that correlate with survival and also have a relevant role as a hub in the
underlying network.

3 Outlier Detection

In survival analysis, outliers are defined as individuals with a survival time too
high or too short. The identification of those individuals has gain great impor-
tance in the medical field due to the fact that they potentially allow the discovery
of new prognostic factors can be found [9].

There are in the literature many attempts to detect outliers in survival data
([9] and [12]). However, the most common are based on the residuals. In this
work, the residuals chosen for outlier detection were the martingale residuals.

In the context of this work, with high-dimensional datasets (gene expres-
sion data), dimensionality reduction is a first step in the analysis, which may
lead to different models depending on the variable selection method used [5].
Depending on the methodology used to reduce the dimensionality of the data,
different models are obtained and, consequently, distinct outliers are identified.
To overcome this problem [5] proposed the Rank Product (RP) test to identify
the outliers that are consistently highly ranked in each of the different models
obtained.

3.1 Martingale Residuals

The Martingale residuals [12] are very useful to identify outlying observations in
survival analysis, and are asymmetric distributed. The martingale residual for
the ith individual is given by

rM̂i
= δi − Ĥ0(ti) exp(β̂Txi), (11)

with values between −∞ and 1. These residuals reveal the individuals that are
not well fitted to the model. i.e., individuals who lived too long or died too soon,
when compared to other individuals with the same covariate pattern.

3.2 Rank Product Test

The Rank Product (RP) test is a non-parametric statistical technique and has
been used in many types of experiments in order to combine the experiments
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([2] and [4]). The use of the RP test to detect outliers was recently proposed
by the authors in the context of survival analysis [5] and logistic regression [8]
applied to gene expression data. Given different sub-models based on the original
dataset lead to different sets of observations, the rational behind the application
of the RP test in this context is to identify the observations that are consistently
classified as outliers by each sub-model.

Formally, let the number of individuals, n, and the number of different sub-
models where the outlier detection method was performed, k. Let Zij be a mea-
sure of the outlyingness of the ith individual in the jth sub-model, with 1 ≤ i ≤ n
and 1 ≤ j ≤ k.

For each Zij , the deviance rank is defined by

Rij = rank(Zij), 1 ≤ Rij ≤ n. (12)

The ranks for each sub-model are determined and the RP is obtained,

RPi =
k∏

j=1

Rij . (13)

The lowest rank suggest that the individual is more outlier that the others.
After obtain the p-values [7], the False Discovery Rate (FDR) [11] was performed
in order to avoid type-I errors, due to the multiple testing.

4 Data Analysis

To illustrate the problem of handle high-dimensional data and consequently
identify outlying observations, the Melanoma cancer gene expression dataset
from The Cancer Genome Atlas (TCGA) (http://cancergenome.nih.gov/) was
used. Melanoma cancer is the most aggressive skin cancer, and is also one of
the fastest increasing cancers in terms of incidence worldwide [1]. Due to the
very low survival rate of this type of cancer, the study of new prognostic factors
aiming at improving the survival of a patient has gained great importance. The
Melanoma cancer dataset used is based on gene expression data, i.e., RNA-Seq
data, of oncological patients and is constituted by 84 observations measured
over 52, 746 covariates. The Melanoma dataset comprises four types of tissues:
primary solid tumor, metastatic, additional metastatic and solid tissue normal.
For the purpose of this analysis, primary solid tumor was considered.

The clinical data was cleaned, only cases for which the number of days of
follow-up and days to death matched were included in the analysis. The same
process was performed for days to death and vital status, where some cases had
as status deceased, but a missing days to death.

The Melanoma dataset was analyzed in two steps. First, different regulariza-
tion techniques were performed in order to reduce the dimensionality of the data
and identify a sub-set of relevant genes. Second, outlier detection was performed
based on the different models obtained.

http://cancergenome.nih.gov/
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Before applying the dimensionality reduction techniques, an univariate sur-
vival analysis for each of the 52, 746 gene expression was done. The log-rank test
[10] was performed, and for a 20% level of significance 52, 669 were significant,
to ensure that key genes will not be missed. Notice that to perform the log-rank
test the individuals were divided in two groups: high and low-risk, based on their
risk median value. Based on those gene expressions, two techniques, elastic net
and the DegreeCox, were used to reduce the dimensionality of the data.

By varying the regularization parameters, α and λ, and the cut-off of the
DegreeCox, several models were obtained. Due to the fact that for the Melanoma
dataset the event (death) only occurred for 10 individuals, the cross-validation,
usually used in regularization techniques, to optimize the λ, did not produce
reliable results. To overcome this problem, a sequence of λ values from 0.01 to
0.1 was considered. Regarding the α parameter, the values considered were a
sequence from 0.1 to 1 (Lasso). For the DegreeCox network-based regularization
technique, the covariance matrix was used to obtain the network, and sequence
of the cut-off from 0 to 0.08 were considered. Based on the combination of the
parameters, 900 models were obtained.

In a first exploratory phase and based on preliminary results regarding the
complexity of the solutions in terms of the number of selected genes, we present
the results for two models.

The parameters of the models chosen are:

– Model 1: α = 1, λ = 0.02 and degree cut-off = 0.02;
– Model 2: α = 0.5, λ = 0.04 and degree cut-off = 0.01;

For each model chosen, a more detailed analysis of the genes selected was
done. Also, identification of outlying observations, based on the martingale resid-
uals, will be presented based on the RP test.

All the analysis were performed in R and the Melanoma dataset is available
at http://web.ist.utl.pt/∼susanavinga/TCGA-melanoma.

4.1 Variable Selection Results

From a general point of view, the higher the α and λ parameters, the less vari-
ables are selected. For model 1, the parameters chosen for the regularization
technique (Lasso) were α = 1 and λ = 0.02. The cut-off for the DegreeCox
was 0.02, since as we increased the value, very few variables were selected. In
fact, whenever Lasso was used, for all λ and cut-off of the degree considered,
no intersection of genes was detected. The genes selected by model 1, 12 for the
DegreeCox and 13 for the Lasso, with no intersection, are the following:

– Lasso: WASHC4, FAM47DP, RGS7BP, MICB, RNU6-80P, ZNF726, RNU4-
61P, ERVFRD-1, PABPC4L, AC129507.4, ZNF415P1, AL024498.2 and
AL139351.1 ;

– DegreeCox: TOP2B, SLC25A36, RLF, GCC2, SENP7, ETAA1, SOCS5,
RAB33B, CEP83, ZDHHC17, ZNF527 and RNU6-1048P.

http://web.ist.utl.pt/~susanavinga/TCGA-melanoma
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Figure 1 shows the survival curves for each model. In both cases a difference
for high and low risk individuals was statistically significant, as assessed by the
log-rank test.

0%

25%

50%

75%

100%

0 500 1000

Time

C
um

ul
at

iv
e 

S
ur

vi
va

l

p−value = 2.026462e−05

Low risk − GLMNET

High risk − GLMNET

Classic Elastic Net model
Lasso: L1

0%

25%

50%

75%

100%

0 500 1000

Time

C
um

ul
at

iv
e 

S
ur

vi
va

l

p−value = 9.476436e−05

Low risk − Degree

High risk − Degree

DegreeCox: Hubs are promoted

DegreeCox: Promotes high degree with L1

Fig. 1. Kaplan Meier curves for model 1, using Lasso and DegreeCox.

For model 2, the parameters chosen for the regularization technique were
α = 0.5 and λ = 0.04. The cut-off for the Degree was 0.01. In this case, for the
parameters considered, 246 genes were selected for the regularization technique
(elastic net), and 35 for the network-based DegreeCox. From the gene selected,
five were common to both methodologies: ANKRD12, ZNF569, ZNF28, ZNF891
and NPM1P26.

Figure 2 shows the survival curves for each technique. In both cases a differ-
ence for high and low risk individuals was also statistically significant.
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Fig. 2. Kaplan Meier curves for model 2, using Elastic-net and DegreeCox.

Following the variable selection performed, the identification of outlying
observations was performed. The results are described next.

4.2 Outlier Detection Results

To overcome the fact that different models are obtained depending on the param-
eter value chosen, a sampling approach was applied to identify outliers. The
resampling algorithm used ([5] and [8]) randomly chooses 1000 genes (without
replacement) from the melanoma cancer dataset. A reduced set of selected genes
was obtained, based on the elastic net regularization. Different α parameters
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were considered. The Cox regression model is then performed on the reduced
gene set, and the corresponding martingale residuals determined. The observa-
tions were sorted according to their outlyingness. The process was repeated 10
times, yielding 10 models to be considered in the RP test.

Table 1. Top 10 of the outliers obtained for the resampling technique for 10 models,
selecting 1000 genes sorted by q-value, with α = 0.5.

ID Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 RP p-values q-values
26 12 2 1 2 7 1 6 6 3 1 3.63E+04 2.10E-05 0.0005
71 1 8 7 6 4 8 9 2 5 5 4.84E+06 5.56E-03 0.0639
40 3 5 2 3 17 6 3 3 17 6 8.43E+06 9.18E-03 0.0704
34 13 7 5 5 2 7 1 7 8 10 1.78E+07 1.74E-02 0.0999
62 8 12 9 9 3 2 4 11 7 4 5.75E+07 4.27E-02 0.1964
17 11 3 6 8 5 13 5 4 6 8 9.88E+07 6.23E-02 0.2046
43 6 1 17 18 8 19 2 13 1 13 9.43E+07 6.03E-02 0.2046
72 2 19 3 4 1 23 20 21 19 7 5.86E+08 1.80E-01 0.5184
11 10 6 10 10 6 9 11 8 9 12 3.08E+09 3.81E-01 0.9310
13 21 21 21 7 23 4 21 1 2 19 4.76E+09 4.45E-01 0.9310

Table 2. Top 10 of the outliers obtained for the resampling technique for 10 models,
selecting 1000 genes sorted by q-value, with α = 1.

ID Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 RP p-values q-values
26 1 4 4 7 2 1 8 4 2 4 5.73e+04 3.87e-05 0.0009
17 5 6 11 1 5 5 10 10 12 3 2.97e+07 2.61e-02 0.1978
40 2 19 20 2 1 16 3 2 6 22 1.93e+07 1.85e-02 0.1978
43 16 7 5 15 16 3 4 1 18 2 5.81e+07 4.30e-02 0.1978
77 3 5 1 5 3 21 1 23 20 23 5.00e+07 3.86e-02 0.1978
13 18 1 2 4 18 17 7 20 23 1 1.42e+08 7.90e-02 0.2596
62 4 11 10 11 4 6 5 5 5 8 1.16e+08 6.93e-02 0.2596
34 6 9 7 9 7 7 9 9 9 7 8.51e+08 2.18e-01 0.6259
71 10 10 12 16 13 4 6 6 7 6 1.51e+09 2.84e-01 0.7262
11 7 8 9 8 6 9 12 11 10 10 2.87e+09 3.71e-01 0.8525

The results displayed in Tables 1 and 2 show that the observation 26 (a long
term survivor) is considered an outlier for the 10 different models obtained.
Notice that, for other values of α considered, this observation had always a high
rank, a strong evidence of being an outlier. From the RP test, we were able
identify a consensual list of putative outliers in the dataset.

5 Conclusion

The aim of this work was to address the challenges high-dimensionality datasets
bring. In particular, we explored the application of different frameworks to model
and feature selection of RNA-seq Melanoma oncological survival data. Model and
gene selection was achieved through elastic net and also DegreeCox, a network-
based regularization method. Although the results are dependent on the specific
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parameters considered, it was nevertheless possible to identify systematically a
group of outlier observations through the rank product ensemble test. One of
the major difficulties in this study was the optimization of the regularization
parameters, since approximately 88% of the data was censored, which hampered
the cross-validation procedure. Future analysis will include the clinical evaluation
of the selected genes with respect to oncobiology knowledge and the improvement
of ensemble methods for model selection for highly censored data.
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Abstract. In this paper, we analyze a new approach for demand pre-
diction in retail. One of the significant gaps in demand prediction by
machine learning methods is the unaccounted sales data censorship.
Econometric approaches to modeling censored demand are used to obtain
consistent and unbiased estimates of parameters. These approaches can
also be transferred to different classes of machine learning models to
reduce the prediction error of sales volume. In this study we build two
ensemble models to predict demand with and without demand censor-
ship, aggregating predictions for machine learning methods such as Lin-
ear regression, Ridge regression, LASSO and Random forest. Having esti-
mated the predictive properties of both models, we test the best predic-
tive power of the models with accounting for the censored nature of
demand.

Keywords: Demand · Censorship · Machine learning · Prediction

1 Introduction

The grocery retail market has been under the close scrutiny of economists over
the past few decades. A surge of interest to this field occurred in the late 90’s
when the Nilson and IRI Marketing Research companies began to collect indi-
vidual data on purchases of retail chains visitors [6]. Advances in individual data
availability drew the researchers’ attention to the methods of machine learning.
Analysis of revealed the huge potential of machine learn-
ing methods for working with massive data sets, both in terms of the number
of observations and predictors [6]. A number of scientists, including [1,2,8] have
shown greater predictive power of machine learning methods compared to tra-
ditional econometric approach. Therefore, today, when solving the problem of
demand predicting, analysts’ preference is often given to machine learning.
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However, despite the significant breakthrough made by scientists in the
demand prediction due to the methods of machine learning, there are still a
lot of gaps, filling of which can improve the predictive quality of models. One of
such white spots is demand censorship. Economists talk about censored demand
or a corner solution in demand system when the number of product purchases
desired by consumers on a certain price is negative, leading to significant share
of zero observed sales [5]. To date, there are a number of works devoted to cen-
sored demand prediction using traditional econometric approaches (for example,
[3,7]), as well as several studies on demand forecasting (without censorship) using
machine learning methods (e.g. [9]), at the same time, there are no works that
combine censorship and machine learning methods. Therefore, in our work, we
fill this gap by constructing an ensemble model for censored demand predic-
tion using machine learning methods and empirically check its better predictive
properties on the data of the retail food chain.

In this paper we analyze the demand for one product category (pasta) on the
purchases data provided by the Russian regional retail food chain. The sample
size is 800000 daily observations for various brands of pasta. Since more than
60% of pasta daily sales are equal to zero, one needs to account for demand
censorship.

We propose an estimator for demand prediction that allows to use the poten-
tial capacity of machine learning methods as well as to account for the data cen-
sorship. The estimator is based on the idea of combining several simple predictors
into constrained linear ensemble models. Censoring accounting is carried out due
to algorithm of separate prediction of censored and uncensored parts of demand
applied for each of simple estimators. It should be noted that all censored models
separately (Linear regression, Ridge regression, LASSO regression and Random
Forest) have better predictive properties than the same models without censor-
ship consideration; and the models combination via weighted linear regression,
in turn, allows to improve the prediction accuracy even more. Thus, the predic-
tion error for an ensemble model with censoring turned out to be equal to 1.11,
while for the ensemble without censorship – 1.16. The developed algorithm can
be applied for demand prediction in retail as well as in others spheres where
the optimal inventory management and accurate prediction of sales volume are
required.

2 Data

The study is conducted on the data, provided by the Russian regional grocery
chain. Pasta product category is selected for analysis. The choice of pasta is
justified by the high frequency of purchases of this product and the breadth
of the product range. The initial data from the grocery chain sales represents
the full information on the pasta purchases from 2009 to 2014. The size of the
analyzed sample, formed on the basis of the initial data, is 800000 observations.
An observation reflects a stock keeping unit (SKU) that was available in a cer-
tain store on a specific date. It is known how many units of a each SKU were
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purchased each day and at what price it were sold. More than 60% of sales were
zero (See Fig. 1). This leads to the necessity of censorship accounting. In order
to obtain better predictive quality of a demand model, we use the product cat-
alog to recover product characteristics for each SKU. Thus, for each purchase
we collect the colour and shape of pasta, the flour type, the volume and type of
packaging, the origin country, the brand name. In addition to all of the above,
for each observation we trace the format of the store where the purchase was
made and promotion indicator.
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Fig. 1. Fraction histogram of pasta sales

3 Methodology

The general regression task is to predict sales volume of some product. In a
linear regression form a model is as follows:

yjmt = Xjmtβ + εjmt (1)

where yjmt is a volume of the j-th product sales in the store m on the day t,
Xjmt is a matrix of attributes including log of the price, product characteris-
tics, promotional indicators and time attributes (dummies for a month, a year,
an intra-week seasonality and holidays), εjmt is an idiosyncratic shock to each
product, market and time.

According to the literature ([2,8,9]), machine learning methods are better
able to cope with demand prediction due to the better out-of-sample fits without
loss of in-sample fit quality [2]. Therefore, to achieve the most accurate predic-
tion, four machine learning methods are used in the research. In this study, we
assume to partially follow the algorithm described in the [2] research, general-
izing it by adding the stages of estimating censored models similar to [4]. The
main steps of the empirical part of the study are as follow:
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1. Split the data randomly into three groups for the subsequent double cross-
validation, where 25% of the data falls into the test sample, 15% in the
validation, and 60% in the training set.

2. Construct indicator variable djmt = I{yjmt > 0} for sales censorship.
3. Train a classification model for censorship dummy d using explanatory vari-

ables X.
4. Classify observation in a training set by probability threshold α into

and ones.
5. Train a model for continuous ( ) part of train set splitted by a

threshold α;
6. Combine predictions from models of steps (3) and (5). If the predicted dummy

for censorship by classification model is 0 or prediction on a continuous part
of demand by model (5) is below 0 then the predicted demand is 0, otherwise
the prediction is equal to prediction from model (5). Calculate RMSE on test
set for a given threshold α. Choose optimal threshold α to split by based on
validation set RMSE;

7. Take prediction obtained from optimal threshold α on a validation set
obtained from various classes of prediction models (Linear regression, LASSO,
Ridge, Random Forest);

8. Train an ensemble model on predictions from various classes of models and
obtain their weights for final ensemble model;

9. Calculate RMSE on a test set for final ensemble model and particular pre-
dictive models.

In the next part we compare models with and without censorship accounting. To
train models without censorship accounting we treat all observations as uncen-
sored, skip estimation steps (2–4) and treat optimal α as 0.

4 Results

Since more than 60% of sales are zero, we should check the parameter estimates
for the need of use the censored regression model, testing for a bias in a sim-
ple linear regression framework (1) versus the censored regression model. The
parameter estimates for this two specifications are presented in Table 1.
Due to the reported results, the effect of price in the model with censorship
accounting is greater in absolute value. This supports the underestimation of
the parameters estimates in the uncensored model. Moreover, censored linear
model has better predictive properties in terms of out-of-sample RMSE. After
evaluating the parameters of the basic linear model, the sales volume variable
is fitted in the training set by four models (Linear regression, Ridge regression,
Lasso regression and Random Forest). Then, for every model the measure of the
prediction quality is calculated (Table 2).

Finally, models included in the ensemble with positive linear weights esti-
mated by constrained linear model. The results of constrained linear regressions
estimation for both ensembles, with and without censorship accounting, are pre-
sented in Table 2 as models weights. According to the estimation results, both
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Table 1. Results for linear regression with and without censorship accounting.

Variable Linear regression Censored linear regression

Log. of price −2.624∗∗∗ −3.430∗∗∗

(0.014) (0.020)

N 800000 800000

k 95 95

Test sample RMSE 1.256 1.220

Notes: Parameters estimates are presented in table cells, standard
errors in parenthesis. Significance level is p∗∗∗ < 0.01, N is the num-
ber of observations, k is the number of parameters. Brands, forms of
pasta, country of origin, package type, colour of pasta, type of flour,
time attributes (year, month, day of the week, holiday), store type
are included in the model as control variables.

ensemble models with and without censorship accounting has better performance
than any of the evaluated models individually. Moreover, the ensemble model
accounting censorship of the data, has a better predictive power, which is indi-
cated by the comparatively smaller RMSE.

Table 2. RMSE for models with and without censorship accounting.

Model RMSE Weight in ensemble

Without
censorship
accounting

With censorship
accounting

Without
censorship
accounting

With
censorship
accounting

Linear regression 1.256 1.220 1% 3%

Ridge regression 1.255 1.218 13% 11%

Lasso regression 1.244 1.203 42% 39%

Random forest 1.198 1.164 44% 47%

Ensemble model 1.163 1.114

t-stat = 3.22 p-value = 0.01

Note: t-statistics and its p-value corresponds to the significance of difference
between
RMSE in ensemble models with and without censorship accounting. Standard
error
is calculated from bootstrap distribution of RMSE difference on 1000
replications.

5 Conclusion

The demand estimation in retail is quite developed in academic literature; nev-
ertheless, there are still some gaps and contentious issues which generate debates
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among researchers. In particular, the potential of machine learning methods for
censored demand prediction has not been researched so far. This paper fills this
void by introducing new prediction algorithm dealing with censored demand.
Having based on previous demand studies reporting that machine learning meth-
ods have more predictive power [2,8], and allowing for censorship of data leads
to more consistent and less biased estimates [4,7], we propose an estimator for
demand prediction that allows us to use the potential capacity of machine learn-
ing methods as well as to consider the data censorship. The research is based
on the idea of comparing the prediction accuracy of machine learning models
with and without censorship accounting and combining various estimators into
constrained linear ensemble models.

According to the results obtain, two vital conclusions can be drawn: firstly, we
showed the better quality of machine learning methods combination for solving
the prediction problem in retail demand. Secondly, we proved better predictive
properties of models that take into account censored nature of the retail data.

Since the research is conducted on the basis of real FMCG retail chain data,
we can assert that the result obtained has practical significance for retailers.
Thus, the results of the study can be used by the seller to establish the optimal
price for goods with different characteristics and at various time periods, as well
as for optimal inventory management.
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Abstract. Despite increasing availability of Web Services (WS), their auto-
matic processing (classification, grouping or composition) slows down because
of the difficulty to read the WSDL service descriptions without related technical
knowledge. Categorizing services for automatic service discovery and compo-
sition has become a challenging problem. The paper argues that n-gram repre-
sentation of the data extracted from the different sections of the WSDL
description (types, messages and operations) along with the weighing scheme
can benefit the classification of services. Experiments are carried out with three
different classifiers over available collections of WS descriptions. It is shown
that such representations as word bigrams or letter trigrams extracted from
WSDL Operations and Types service description features with TF-IDF as
n-gram weighting scheme, can improve automatic WS classification.

Keywords: N-gram representation � Web service classification �
Term-weighting

1 Introduction

Nowadays, the use of Web Services (WS) becomes common due to their interoper-
ability and reusability, allowing considerable cost reduction during software develop-
ment phase. Some years ago, Ratnatsingam [1] warned that WS had become an
evolutionary step in designing distributed applications. Despite the time already
elapsed, many of the research problems mentioned in that paper, are still present. WS
contain encapsulated descriptions of their functionality (i.e., operations, messages, data
types and binding usually known as description features) defined as an abstract
interface by means of using standard Web Services Description Language (WSDL). In
spite of the fact that the WSDL description is a structured document, for a common
Internet user it is hard to understand its content.

In order to locate a service, users appeal for usingWS registries and repositories such
as Universal Description Discovery and Integration (UDDI), however their search
functionality still is relatively simple and fails to account for relationship betweenWS and
users’ real needs [2]. With the rapidly increasing number of services, the development of
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methods and tools helping in the process ofWS categorization and search for their further
automatic discovery and composition has become a challenge [2, 3].

In this paper, the effect of the n-gram representation of the data extracted from
different sections of the WSDL service description (types, messages and operations)
and term weighing scheme of the WS classification is explored. Three different rep-
resentations are compared (letter n-grams, word n-grams and Bag of Words) using
three different weighing schemes: Boolean, Term Frequency (TF) and Term
Frequency-Inverse Document Frequency (TF-IDF) with the purpose of analyzing
whether the representation influences classification results. For the WS classification
three different classification algorithms: Naïve Bayes (NB), Support Vector Machines
(SVM) and Decision Trees (DT) are tested. WSDL standard collections, namely
OWLS-v3 (TC3), v4 (TC4) and ASSAM, are used for experiments.

The rest of the paper is organized as follows. Section 2 presents a related work
concerning the WS classification. Section 3 describes how a WSDL document is
formed and how it can be represented. Section 4 outlines the service categorization
methodology. Section 5 describes used datasets, experimental settings and obtained
results. Finally, Sect. 6 depicts conclusions and some future work directions.

2 Related Work

The common way to classify WS is selecting and assigning a category from the
standard taxonomy called the United Nations Standard Products and Service Code
(UNSPSC). In this taxonomy, it is only possible to assign a business category to a WS
while many users also want to find information related to its functionality. To relate a
service to a specific context, Wang et al. proposed to extract a subtree from the
UNSPSC taxonomy, where the categories assigned to the WS are contained, to be
treated as domain concepts [4]. In addition to the UNSPSC taxonomy, WordNet was
used in that work to provide semantic similarity of concepts to weight the terms in the
vector space model. A set of vectors was generated using all the concepts (representing
the WS) for the training phase of the SVM algorithm. Once a model is obtained, it is
used to classify new services.

Other researchers like Liang et al. [5], have used the UNSPSC to assign a class to a
WS. For doing that, the terms contained in the metadata of the WSDL documents were
used to generate a tree structure representation of the WS. After that, the underlying
semantic relations among metadata structures, such as, terms co-occurrences of words
taken from the input, output and function descriptions of the WSDL document and the
taxonomy, were considered.

Another approach proposed by Yang and Zhou [6], is based on words extraction
from the WSDL. In that paper, the OWLS-TC4 dataset was used along with an external
resource to identify abbreviations, nouns and verbs. The pre-processing step included
splitting, eliminating stop words and tags (web, service, input, output), and stemming.
Four different classification algorithms such as Support Vector Machines (SVM),
Naive Bayes (NB), Decision Tree (DT) C4.5 and Neural Networks were used. Only
words from names of services, operations, inputs and outputs were extracted under a
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TF-IDF weighting scheme. The best results for classification were obtained using
output name words and applying the C4.5 DT algorithm.

In the paper by Nisa and Qamar [7], the authors extracted service name, service
documentation, messages, ports and schema from WSDL documents in order to
classify WS using text mining. Maximum entropy was used for WS classification, and
a comparison of the accuracy through different categories was done. The best results
were obtained with the WSDL Schemas information included. Classification results
were improved when lemmatization and word splitter were applied to the extracted data
at the preprocessing step. Unfortunately, the used dataset is not available for
comparison.

Another approach was proposed by Saha et al. [8], were a WS representation based
on a Tensor Space Model (TSM) was developed, in order to capture the internal
structure of WSDL documents. The method consisted of selecting a set of relevant tags
from a WSDL document. For each tag, a tensor was built using all words under that
particular tag. Then a classification algorithm was applied for each tensor. Finally, all
the information was combined using rough sets.

External resources to categorize WS are also frequently used to classify WS.
Sharma et al. [9], proposed a classification approach based on the OWL-S semantic
description as well as syntactic information presented within the service description by
combining machine learning techniques (SVM and K-nearest neighbors), data mining,
logical reasoning, statistical methods and measures of semantic relations. The authors
reported a 97% accuracy using the extracted semantic information and applying the
SVM classifier. Nevertheless, that approach cannot be widely used at the moment since
there are few WS that are annotated semantically.

Qamar et al. [10] proposed an approach to categorize WS by employing the
ensemble of three classifiers: NB, DT and SVM. First, the descriptions’ pre-processing
(word splitting and lemmatization) was used, followed by feature selection (stop and
function Word removal), and majority vote based ensemble. An average accuracy of
92% was obtained over 3738 WS distributed over five context fields.

It should be noticed that the majority of the described approaches used the Bag of
Words (BOW) representation and some of them use additional tools to add extra terms
for constructing a more elaborated representation. On the contrary, the proposed
approach is based on the WSDL descriptions analysis. It does not depend on any
external resources during the classification phase (only WSDL extracted data were
used) and extends the use of WSDL document representations.

3 Web Service Description Language (WSDL)
and Representation

The WSDL provides a model and an XML format for describing WS [11]. Though this
description is formed by different kinds of elements, the majority of them are included
in four main components: Types, Messages, Operations and Binding (Fig. 1).
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The main WSDL elements are [11]:

– Definition: The root element of all WSDL documents, which defines the name of
the WS.

– Data types: The types to be used in the messages.
– Message: It is an abstract definition of the data presented either as an entire doc-

ument or as arguments to be mapped to a method invocation.
– Operation: The abstract definition of the operation for a message that will accept

and process the message.
– Port type: It is an abstract set of operations mapped to one or more end-points. End-

points can be mapped to multiple transports through various bindings.
– Binding: The concrete protocol, data formats and messages defined for a particular

port type.
– Port: It is a combination of a binding and a network address.
– Service: It is a collection of related end-points that map mainly the binding to the

port.

The content inside the elements and their attributes are commonly represented as
strings. For example, the content inside the attribute name of the Operation element is
shown in Fig. 2.

As we can see, the Operation contains the string “get_PRICE”. To process the
content, e.g. for automatic classification or grouping of services, this string can be
extracted and presented in different ways. Three different ways of representing the
information contained in the elements of the WSDL, are proposed:

1. Words (Bag of Words). This representation requires dividing the string into words,
taking advantage of the fact that it is common for programmers to form names of

Fig. 1. WSDL main components.

Fig. 2. An excerpt of the content of an operation element
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methods or parameters by concatenating words with uppercase letters, underscore
or dot representing where each word starts. The words contained in the string can be
separated by string pre-processing with the help of Wordnet. The string “get_-
PRICE” gets the words “get” and “price”. The state of the art approaches mostly use
this representation.

2. Word n-grams. This representation is based on dividing the string into groups of n
contiguous words. For example, the new string “get price” is obtained from the
string “get_PRICE”.

3. Letter n-grams. This representation consists of dividing the string into groups of n
contiguous characters. For example, from the string “get_PRICE”, the following
trigrams are obtained: “get”, “et_”, “t_p”, “_pr”, “pri”, “ric”, “ice”.

The first and the second representations are language dependent and require
additional tools to identify the language and word recognition, which implies the use of
more resources for pre-processing. The advantage of the third representation is that it is
language independent because neither for extracting nor for comparing these kind of n-
grams it is necessary to identify words.

4 WS Categorization Methodology

WS classification based on WSDL descriptions uses text categorization methodology,
composed of several weighting schemes, representation methods and classification
algorithms described below.

4.1 Documents’ Classification and Weighting Schemes

Text categorization is the task of assigning a value to each pair \dj; ci [ 2 D� C,
where D is a domain of documents and C ¼ c1; . . .; cjCj

� �
is a set of predefined cate-

gories. A classification algorithm is able to extract patterns from a training set, those
patterns are useful to create a model (rule or hypothesis) to classify new documents [12].
Each document is represented usually as a vector dj of weighted terms, where each
vector component (dimension) represents a data (term) tk extracted from the documents.
The vector’s dimension T is defined by all the data extracted from all the documents.

For each document represented as a vector dj\w t1j
� �

; . . .;w t Tj jj
� �

[ , a weight w
(tij) is assigned to each vector component. There are several proposals for computing
the weight w(tij) of each term (i.e., the importance of each term/word). Among the most
successful weighting strategies are: the Boolean weight, term frequency (TF) and
relative term frequency (TF-IDF) [13]:

1. Boolean weighing:

w tkj
� � ¼ 1 if tfkj [ 0

0 otherwise
;

�
ð1Þ

where tfkj is the number of times the term tk appears within the document dj.
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2. Term Frequency Weighting:

w tkj
� � ¼ log 1þ tfkj

� � ð2Þ

3. Relative Term Frequency Weighting:

w tkj
� � ¼ TF � log Dj j

dj 2 D : tkj 2 dj
� �
 !

; ð3Þ

where |D| is the number of documents within the dataset.
For the experiments, the data extracted from WSDL documents, were configured

based on the following representations: Words (BOW), Word n-grams and Letter n-
grams. It is important to explain the reason why these representations were used. BOW
has been a traditional form for representing documents and it was the most used
representation in reviewed related works [12]. Word n-grams allow to store words that
occur together in a sequence. In the approach proposed by Flores [14], trigrams (letter
n-grams) worked well to find source code plagiarism. WSDL element content (oper-
ations, messages and types) is written similarly to the conventions used to name
methods and parameters within the analyzed source code, so the same n-gram con-
figuration was tested.

4.2 Classification Algorithms

In order to analyze the effect of the n-gram representation and weighing scheme in the
classification, three different classification algorithms were tested:

– Naïve Bayes is a classification algorithm based on the Bayes theorem, where the
independence of the predictors is assumed.

– Sequential Minimal Optimization for SVM is a simple algorithm that solves the
problem of quadratic programming. Support Vector Machines (SVM) require the
quadratic programming solution that can be solved by means of this technique,
which decomposes the problem into smaller problems that are solved analytically.

– Decision Trees is an algorithm that creates a model in the form of a tree. It works by
breaking the data set into smaller subsets, by which it evaluates the attributes
(predictors) according to the information gain to form a tree.

The following metrics are commonly used in Information Retrieval to evaluate the
classification;

– Accuracy is the ratio between the number of relevant documents and the number of
retrieved documents.

– Recall is the ratio between the number of relevant documents obtained compared to
all relevant documents.
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– F-measure (score) is the measure used to obtain a weighted single value of the
Accuracy and the Recall:

F � measure ¼ 2
Accuracy � Recall
AccuracyþRecall

� �
ð4Þ

5 Experiment Settings and Results

This paper explores different representations of the information extracted from the
WSDL elements or features (Types, Messages and PortType-Operations) individually
and in combination for the purpose of their suitability for the classification of WS. The
following sub-sections describe the datasets, experiments setup and obtained results
using the classifiers described above.

5.1 Datasets Description

The experiments were carried out on 3 different collections of WS:

1. The first collection (ASSAM), which contains WS descriptions extracted from
Xmethods and Salcentral, was taken from the work reported by Hess et al. [15]. The
collection includes 26 main classes, making a total of 814 WS descriptions. To
provide the experiments, some modifications were made to the original collection.
For example, the “unlabelled” class that contains uncategorized descriptions was
deleted, the classes were flattened, that is, the elements of the subclasses were
passed to the main class and classes that had very few elements were eliminated.
The sub-collection used for experiments, included 9 classes, which contain 386
documents, ranging from 23 to 64 documents in each.

2. The other collection was that used by Klusch et al. [16]. It is important to mention
that the second dataset has different available versions, in this paper version 3 (TC3)
and version (TC4) were used. The TC3 version is comprised of 7 classes and a total
of 1006 WSDL documents, ranging from 34 to 355 documents in each. While the
TC4 version is conformed of 9 classes and a total of 1082 WSDL documents, from
16 to 355 in each class.

5.2 Experimental Setup

At the first phase of experiments, the information of the following features was
extracted from each WSDL:

– Operations (Ops), which involved extracting data from the XML-elements: port-
Type, operation and service of its XML-attribute called Name.

– The messages (Msgs) that involved extracting data contained in: the message XML-
elements of its XML-attributes and the XML-element Part of its Name and Type
XML-attributes.
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– Data types (Types), which involved extracting data from the XML-elements con-
tained in the Complex and Simple Types, where the strings contained in its XML-
attributes (Name and Type) were extracted for each element.

The data extracted from the features were the following: letter n-grams, BOW and
word n-grams. Each of the extractions served to form the different data sets and respective
configurations described below. It is worth to mention that the following combinations of
the attributes were also tested: Operations and Messages (OpsMsgs), Operations and
Types (OpsTypes) and Operations, Messages and Types (OpsMsgsTypes).

At the second phase, a pre-processing for each type of extracted data was carried
out as described below.

– Words (BOW) preprocessing: the splitting of strings into words was done by
separation by first capital letter or by punctuation marks. Numbers and special
characters (%, #, @ and so on) were eliminated, while capital letters were trans-
formed into lowercase. Once the strings were separated, the WordNet tool [17] was
used to identify words.

– Word n-grams preprocessing: a preprocessing was performed similar to that of the
words but instead of storing the different words, bigrams of words were taken.

– Letter n-grams preprocessing: the same preprocessing of the strings was done to
later split them into trigrams. The reason for selecting trigrams was a configuration
that had given good results to detect plagiarism [14], which used names of methods
and parameters specified in a similar way to those of the WS.

The obtained sets of data are summarized in Table 1.

In Table 1, the index i represents a version for each WSDL collection, which the
information was obtained from (ASSAM, TC3 and TC4), while the index j refers to a
weighing scheme (Boolean, TF or TF-IDF). For example, if we consider the
W1TC3Boolean collection (W1ij configuration), we can say that it is the dataset that
has, for each WSDL from the TC3 collection, a vector whose attributes are the words
and the values of the each vector elements are: 1 if the word exists in the operations,
content within the WSDL, and 0 otherwise.

In total 162 different samples (6 configurations * 3 representations * 3 weighting
schemes * 3 datasets) were classified.

WEKA implementation of Naïve Bayes, SMO y Decision Tree (J48) classification
algorithms for data mining tasks with default settings were used for experiments [18].

Table 1. Attribute configurations for different representations

Ops Msgs Types OpsMsgs OpsTypes OpsTypesMsgs

Words W1ij W2ij W3ij W4ij W5ij W6ij
N-grams of letters NL1ij NL2ij NL3ij NL4ij NL5ij NL6ij
N-grams of words NW1ij NW2ij NW3ij NW4ij NW5ij NW6ij
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Ten folds cross validation was used to evaluate classification algorithms over 162
dataset samples. For each experiment consisting of a classification algorithm
(Sequential Minimal Optimization, Decision trees, and Naïve Bayes) and particular
representation (letter n-grams, word n-grams and BOW), accuracy, recall and F-
measure (reported in the following sub-sections) were obtained. It is important to
mention that BOW, as the state-of-the-art most used representation, is used in the
following subsections as a reference to compare the competitiveness of the results
obtained using n-grams representations.

5.3 WS Classification Results Using the SMO Classifier

Tables 2 and 3 resume the experimental results (F-score) of the SMO classifier
obtained for n-grams of letters and words respectively for experimental datasets.

As it can be seen from Table 2, for ASSAM dataset the highest F-measure (0.0565)
was obtained by extracting n-grams of letters from Operations and Types (Opera-
tionsTypes) contents with the TF-IDF weighing scheme. It is important to say that in
the sub-collection used, there are classes that contain elements that overlap.

Table 2. F-measure for the SMO classifier for n-grams of letters (NL) representation of
experimental datasets

ASSAM-NL TC3-NL TC4-NL
Attributes TF TF-IDF TF TF-IDF TF TF-IDF

Msgs 0.444 0.468 0.566 0.559 0.538 0.537
Operations 0.468 0.499 0.809 0.813 0.799 0.795
Types 0.467 0.48 0.959 0.959 0.955 0.957
OperationsMsgs 0.474 0.493 0.812 0.814 0.796 0.807
OperationsTypes 0.530 0.565 0.96 0.963 0.961 0.962
OperationsMsgsTypes 0.526 0.558 0.961 0.958 0.962 0.965

Table 3. F-measure for the SMO classifier for n-grams of words (NW) representation of
experimental datasets

TC3-NW TC4-NW
Attributes TF TF-IDF TF TF-IDF

Msgs 0.567 0.565 0.541 0.539
Operations 0.805 0.796 0.788 0.774
Types 0.956 0.959 0.954 0.955
OperationsMsgs 0.809 0.809 0.791 0.791
OperationsTypes 0.961 0.963 0.964 0.966
OperationsMsgsTypes 0.964 0.965 0.963 0.963
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For TC3 dataset, word n-grams extracted from Operations, Messages and Types
(OperationsMsgsTypes) with a TF-IDF weighing scheme obtained the highest F-
measure of 0.965 (Table 3). However, after applying a corrected T-Test, no signifi-
cance was found with respect to extracting only the word n-grams from Opera-
tionsTypes under the same weighing scheme. Similarly, no statistical significance was
found with the results obtained from extracting the word n-grams from Opera-
tionsMsgsTypes and OperationsTypes under a TF weighing scheme. Comparing these
results with the obtained using letter n-grams for the OperationsTypes (under TF or TF-
IDF), no statistical significance was found, and apparently word bigrams and letter
trigrams were equally useful. Something similar to the previous case, regarding word
bigrams and letter trigrams, happened for the TC4 dataset.

In other words, for the three datasets acceptable results were obtained by extracting
letter n-grams from OperationsTypes under the TF-IDF weighing scheme. One of the
advantages of this type of n-grams is that they are language independent. The drawback
is that more trigrams, than words, are obtained. For TC3 and TC4 datasets, the word n-
grams also worked under the TF-IDF weighing scheme where the information from
Operations and Types is combined. It is important to consider that this scheme requires
more resources in pre-processing, including a words identification tool. During the
classification using BOW representation with the data extracted from Opera-
tionsMsgsTypes, OperationTypes and Types, similar results were obtained (F-measure
close to 0.95). Apparently, using BOW representations, the weighting scheme didn’t
influenced the results, probably because the difference of word frequencies was not
significant. For this experiment, it can be said that using n-gram representation the
obtained F value was higher (see Table 3).

5.4 WS Classification Results Using the Decision Trees Classifier

The following results were obtained with the DT classifier (Table 4). For the ASSAM
data collection, the highest F-measure was 0.466 through the OperationsMsgsTypes
representation and the TF-IDF weighing scheme, however no statistical significance
was found with the result of only selecting OperationsTypes.

Table 4. F-measure for the DT classifier for n-grams of letters (NL) and words (NW) repre-
sentations of experimental datasets

ASSAM-NL TC3-NW TC4-NW
Attributes TF TF-IDF TF TF-IDF TF TF-IDF

Msgs 0.376 0.367 0.557 0.548 0.523 0.517
Operations 0.410 0.416 0.762 0.637 0.742 0.623
Types 0.392 0.429 0.922 0.925 0.916 0.925
OperationsMsgs 0.410 0.397 0.77 0.773 0.753 0.752
OperationsTypes 0.435 0.461 0.919 0.932 0.915 0.93
OperationsMsgsTypes 0.420 0.466 0.932 0.925 0.928 0.929
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For the TC3 collection the highest results were obtained extracting word n-grams
from OperationTypes and OperationMsgsTypes under TF-IDF and TF weighted
schemes respectively. In this case, representation of the letter n-gram closest to the
highest value of F was OperationMsgsTypes with a TF weighing scheme with an F-
measure of 0.926. Whilst, it was obtained the same value of F equal to 0.926 using
BOW OperationTypes under TF weighing.

For the TC4 collection, the highest values of F (0.93) were obtained under the
words n-gram representation with the content of OperationTypes under the TF-IDF
weighing scheme (See Table 4). For the letter n-gram representation, the highest value
was obtained with the contents of Types under the TF weighing scheme with an F-
measure of 0.914. Also a similar F-measure of 0.929 was obtained for BOW and the
word n-gram representations of OperationMsgsTypes.

5.5 WS Classification Results Using the Naïve Bayes Classifier

For the case of the Naïve Bayes classifier, the highest value of F (0.539) for ASSAM
collection was obtained under the letter n-grams representation with the contents of
Operations and Types under a Boolean weighing scheme (see Table 5).

For the TC3 collection, the highest F value was obtained using word n-gram of
OperationMsgsTypes under a TF weighing scheme. Testing letter n-gram representa-
tion (not shown in Table 5), the highest value of F (0.889) was obtained using
OperationsMsgsTypes under a TF-IDF weighing scheme. However, with the BOW
representation using the Types content with a Boolean weighing scheme, F-measure of
0.912 was obtained.

For the TC4 collection, the highest F-measure of 0.939 was obtained using
OperationMsgsTypes with a TF weighted scheme. Using BOW representation (under
Boolean weighting scheme), the F-measures of 0.912 for the contents of Types and
OperationsMsgsTypes and of 0.911 for OperationsTypes combination were obtained.

Table 5. F-measure for the Naïve Bayes classifier for n-grams of letters (NL) and words
(NW) representations of experimental datasets

ASSAM-NL TC3-NW TC4-NL
Attributes TF Boolean TF TF-IDF TF TF-IDF

Msgs 0.397 0.418 0.457 0.535 0.442 0.502
Operations 0.485 0.525 0.61 0.629 0.613 0.634
Types 0.449 0.498 0.891 0.87 0.901 0.881
OperationsMsgs 0.452 0.501 0.601 0.601 0.6 0.601
OperationsTypes 0.501 0.539 0.915 0.894 0.911 0.89
OperationsMsgsTypes 0.512 0.537 0.938 0.922 0.939 0.922
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6 Conclusions and Future Work

In this paper, n-gram representations through the use of WSDL features, their com-
binations and weighing schemes were compared in terms of their usefulness for
classification of WS descriptions. The main contribution is the analysis of how the
word and letter n-gram representations, which are not commonly used, influence
classification performance without using any information external to WSDL descrip-
tions. The studied representations include: (a) feature selection, based on WSDL
operations and types data obtained from all WSDL data, (b) data extraction from
WSDL, as word bigrams or letter trigrams format and using (c) TF-IDF as n-gram
weighting scheme. This configuration (in most of the cases) obtained competitive
results through all the experiments.

Apparently, the Types attribute turned out to be very important to classify services;
just taking the content of the Msgs attribute is not so effective. The best results were
obtained using the SMO classification algorithm for SVM. For example, using Word
Bigrams extracted from Operations and Types (over TC3 dataset) with a TF-IDF
weighting scheme, F-measure of 0.963 was achieved that is a competitive performance
against the results reported in [4] and the results obtained using BOW representation.

On the other hand, the language independent representation that obtained accept-
able results in most cases, was a letter trigram also using a combination of Operations
and Types features. The F-measure of 0.926 was obtained classifying TC3 dataset, it
also outperforms the results reported in [4].

Weighing scheme with the highest value of F varied among collections, that is why,
a selection of terms among the attributes is proposed for the future work to evaluate,
which weighing scheme improves the results. Other types of representations, e.g.
Distributional Representations like term co-occurrence representation (TCOR),
allowing working with low frequencies of terms and ambiguity, along with different
configurations of the classification algorithms should also be studied.
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Abstract. Previous research has shown that value function approxi-
mation in dynamic programming does not perform too well when tack-
ling difficult combinatorial optimisation problems such as multi-stage
nurse rostering. This is because the large action space that needs to
be explored. This paper proposes to replace the value function approx-
imation with a genetic algorithm in order to generate solutions for the
dynamic programming stages. Then, the paper proposes a hybrid app-
roach that generates sets of weekly rosters with a genetic algorithm for
consideration by the lookahead procedure that assembles a solution for
the whole planning horizon of several weeks. Results indicate that this
hybrid between a genetic algorithm and the lookahead policy mechanism
from dynamic programming exhibits a more competitive performance
than the value function approximation dynamic programming investi-
gated before. Results also show that the proposed algorithm ranks well
in respect of several other algorithms applied to the same set of prob-
lem instances. The intended contribution of this paper is towards a better
understanding of how to successfully apply dynamic programming mech-
anisms to tackle difficult combinatorial optimisation problems.

Keywords: Hybrid algorithm · Genetic algorithm ·
Lookahead policy evaluation · Dynamic programming ·
Nurse rostering problem

1 Introduction

Dynamic programming (DP) is a divide-and-conquer optimisation approach in
which a problem is solved by splitting it into a set of sub-problems. The solution
to each sub-problem is recorded in case the same sub-problem is faced later in
the search. However, as the size of the input problem increases, the split can
result in a large number of sub-problems. This means that implementations of
dynamic programming require large memory to store information about solved
sub-problems and long computation time to evaluate solutions. This is usually
called the curse of dimensionality in the dynamic programming algorithms. To
make the search more efficient, Approximate Dynamic Programming (ADP)
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considers only a small part of the search space based on the use of approximation
functions [1]. Solutions obtained by ADP are expected to be close to optimality
while using shorter computational time than DP.

Nurse rostering is a difficult combinatorial optimisation problem for which
many solution techniques have been proposed in the literature [2,3]. In our pre-
vious research, the suitability of ADP to solve the Nurse Rostering Problem
(NRP) was investigated by approaching NRP as a Markov Decision Process
[4]. The approximation function focused on selecting actions that satisfy the
principle of optimality [5] but not all were covered. That approach was evalu-
ated using a subset of problem instances from the Nurse Scheduling Problem
Library (NSPLib) [6]. Experimental results indicated that the performance of
the implemented ADP was competitive with various heuristic algorithms from
the literature. However, the performance of that ADP algorithm was not very
good when tackling the multi-stage NRP proposed as part of the Second Inter-
national Nurse Rostering Competition (INRC-II). In the single-stage NRP, all
information about the weekly staffing requirements is known in advance, and
then a schedule for the full planning horizon (several weeks) is produced. In
the multi-stage NRP, the staffing requirements for future weeks are unknown
when solving each week, and then a schedule is produced for one week at a
time, hence the schedule for each week has an effect on the scheduling of future
weeks. An ADP approach that incorporates a combined policy function for solv-
ing the multi-stage NRP was proposed later [7]. Experimental results showed an
improved performance on tackling problem instances with 4 or 8 weeks planning
horizon. However the computational time for solving each instance is longer than
the other approaches (all of them heuristics) from the competition.

It has been observed that more than 60% of the computational time spent
by our latest ADP implementation is used to produce the solutions in each
stage. This has been the motivation for developing an improved way to generate
good solutions but in considerably shorter time. Then, in the present paper a
population-based optimisation technique, namely a Genetic Algorithm (GA), is
implemented to replace the value function approximation used in our previous
work. A GA is a heuristic approach that evolves a population of solutions using
crossover and mutation operators [8]. The resulting technique is a hybrid method
that uses the GA to produce a pool of solutions in each stage (week roster) and
the lookahead policy selects the most promising candidate solution for each stage
in order to construct a schedule for the whole planning period.

The combination of dynamic programming and GAs has been investigated
before in the literature. Early works such as [9] proposed dynamic programming
to produce new solutions after the crossover operation in a GA. The rationale
for that methodology is the assumption that good solutions tend to have a lot
of common in their structure. Then, the common genes between two offspring
solutions after crossover were identified and dynamic programming was then
applied to produce a new solution based on this common structure. The solution
produced in this way was then passed to the next generation in the GA. In a
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more recent work, dynamic programming was used to evaluate the fitness value
of chromosomes when solving a bi-objective cell formation problem [10].

Most hybrid algorithms combining dynamic programming and GAs in the
literature follow the design of a GA as the driving technique and then dynamic
programming is used to evaluate part of the procedure. The design proposed in
this paper is different because the whole methodology is driven by the dynamic
programming paradigm and the GA is used to tackle the sub-problems. That
is, the GA generates solutions for the weekly problem and the lookahead policy
evaluates the effect of those solutions on the future stages of the problem. The
best schedule generated by the GA for a given week is usually not the best
to guarantee the best overall solution. The power of the proposed approach is
precisely in the GA producing a set of solutions from which the lookahead policy
can choose the most suitable to construct a full schedule of the best quality.
Details of the proposed hybrid algorithm are given in Sect. 2. Section 3 describes
the experimental settings and results. Section 4 concludes the paper and outlines
future work.

2 Overview of the Hybrid Algorithm

2.1 Proposed Hybrid Algorithm

Function (1) represents the general procedure of dynamic programming for solv-
ing a multi-stage optimisation problem M . In this function, T represents the
number of stages to solve M . The requirements of problem stage Mt, and the
pre-condition information νt, are the input for F (.) to obtain stage solutions
where νt is a representation of all solutions explored before stage t, V is a fitness
function and st is an individual stage solution. Once stage problem Mt is solved,
st will be transferred into νt+1 as a new pre-condition information for the next
stage. A solution of M is a combination of one st at each stage and the objective
is to obtain the one with minimum overall cost.

V (M) = min
T∑

t=1

V (st|st ∈ F (Mt, νt)) (1)

A similar procedure to the one described above can be implemented to tackle
the multi-stage nurse rostering problem in this paper. T is the number of weeks
or stages in the rostering problem. Stage problem Mt can be seen as a single-
stage nurse rostering problem and the aim is to produce a schedule that satisfies
weekly constraints. νt is a schedule comprising the individual solutions for all
previous stages (weeks). st is a weekly schedule and the fitness value V (st) gives
the quality (constraint violations) of st.

However, since nurse rostering problem is an NP-hard combinatorial opti-
misation problem, applying dynamic programming to solve it demands huge
computational effort. In order to address this issue, an approximation function
can be applied to obtain a solution st that is not only a good solution to the
current stage problem but it is also good considering the following stages. This
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is the basis for the proposed hybrid algorithm. Solution st is obtained by the
genetic algorithm and the future effect of this solution on the following stages of
the problem is evaluated through a lookahead procedure. The overall framework
of this hybrid algorithm is exhibited in Algorithm1. The following subsections
explain the algorithm in detail.

Algorithm 1. Hybrid of Lookahead Policy and Genetic Algorithm
1: Initialise population C
2: ∀c ∈ C, calculate CV (c)
3: while stopping criteria not reached do
4: for every selected parents (c1, c2) do
5: (ch1, ch2) = c1 ⊕ c2

6: ch
′
1 = Mutation(ch1)

7: ch
′
2 = Mutation(ch2)

8: Calculate CV (ch
′
1) and CV (ch

′
2)

9: Replace(C, c1, c2, ch
′
1, ch

′
2)

10: Initialise LK(C) = 0
11: for each c ∈ C do
12: {Sol1, · · · , Solpe} = Simulate(c)
13: LK(c) =

∑
CV (Sol1) + · · · + CV (Solpe)

14: V (c) = CV (c) + LK(c)

15: Return argminc∈CV (c)

2.2 Genetic Algorithm Component

The GA is in steps 1–9 of Algorithm 1 and its output is a population of solutions
C. A chromosome c ∈ C represents a weekly schedule using an indirect encoding.
The length of c is the number of nurses and each gene is an index indicating
the valid shift pattern assigned to the corresponding nurse. A valid shift pattern
(vsp) is a pre-constructed feasible (satisfies hard constraints) nurse’s weekly
roster. Nurses may have different individual requirements hence the number of
vsp could be different for different nurses. As part of our approach, we build a
set of vsp for each nurse (this procedure is from our previous work [7]). A full
weekly schedule is decoded from the chromosome based on this set of vsp. An
example of this encoding and decoding scheme is shown in Fig. 1 with 3 nurses
and 2 shifts. In this example, E and L is an abbreviation for early and late shift
respectively, and empty blocks indicate a day-off.

At the start of the GA in Algorithm1, the initial population C is constructed
randomly and the constraints violations value CV (c) for each individual in the
population is calculated. Note that later in step 14 of the algorithm, the fitness
value V (C) for each solution is given by the sum of the corresponding constraint
violations CV (c) from the GA phase and the future estimation LK(c) from the
lookahead phase.
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Fig. 1. Example of the indirect chromosome encoding used in the GA component.

In steps 4–9 of Algorithm 1, a number of generations are executed where
the population is evolved towards better solutions. The GA uses the three typ-
ical operators to generate new solutions or offspring: Selection, Crossover and
Mutation. The Selection operator implemented here chooses parents through an
elitist-tournament selection procedure that works as follows. All chromosomes
are sorted in a non-increasing order of their fitness value. The best chromo-
some is saved for the next generation (this is the elitist mechanism). Then, a
double-elimination tournament as illustrated in Fig. 2 is used to select two par-
ents. Tournament selection is widely used in the implementation of GAs because
it applies selection pressure to keep the best individuals while also promoting
diversity in the chromosomes for the next generation. With this selection app-
roach half of the current population is selected for the following operations in
the GA.

Once the two parents are selected as described above, two offspring ch1 and
ch2 are produced by applying the crossover operator ⊕ which combines genes
from the two parents. The widely used uniform crossover operator is implemented
here [8]. In this operator each gene for the offspring is chosen at random from
the two corresponding genes in the parents.

The mutation operator is then applied with some probability (mutation rate)
to the generated offspring. The aim of the mutation operator is to maintain the
diversity in the population. The mutation operator works on a chromosome gene
by gene. A commonly used mutation operator is a swap that exchanges the con-
tent between two genes in the chromosome. The mutation operator implemented
here is a neighbourhood-swap. The values of two consecutive genes bi and bi+1

are exchanged. For the last gene in the chromosome, the swap is made with the
first gene in the chromosome. For example, an offspring ch1 = {3, 7, 2, 11, 5, 1}
will result in offspring ch

′
1 = {7, 3, 11, 5, 2, 1} after 3 swap operations. Each gene

in a chromosome is an integer value representing a valid shift in the nurse’s vsp.
Since nurses could have different vsp size, it is possible that the mutated offspring
is infeasible. In the example above, the value in the third gene of ch1 changed
from 2 to 11 after mutation. This would be infeasible if the third nurse has only
8 valid shift patterns for example. Hence, a simple repair is implemented where



Lookahead Policy and GA for Solving Nurse Rostering Problems 465

c1

c2

c3

c4

c2

c3

c1

c4
c4

c1

c4

winner

winner

loser

loser

c2

winner

winner

winner

loser

(keep)

(keep)

Fig. 2. Selection by double-elimination tournament where each C represents an indi-
vidual chromosome.

a gene is assigned a random valid value (no larger than vsp) if the mutation
resulted in an infeasible shift assignment. The full mutation procedure is shown
in Algorithm 2.

Algorithm 2. Neighbourhood-Swap Operator
for every bi in chromosome c do

if probabilty of mutation is met then
Swap(bi, bi+1), i < length(c) or Swap(bi, b1), otherwise.
if bi < vspimax then

bi = Random(vspimax)

After the mutation process in complete, the constraint violations value CV
is calculated for each offspring. Then, a Replace procedure takes place where the
new offspring is added to the population replacing the parents.

Two stopping criteria are used here and the GA terminates once any of them
is satisfied. One stopping criterion is the maximum number of generations and
the other one is that the best chromosome so far has not changed after a number
of generations.

2.3 Lookahead Policy Evaluation

This component is in steps 10–14 of Algorithm 1. In the multi-stage NRP, the
best solution Solbest produced by the GA in a stage is not guaranteed to be
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the best weekly schedule for the complete overall roster, once the future week
staffing requirements are considered. This is because some constraints can only
be checked until the last stage. Since the GA produces a population of solutions,
some of those solutions other than Solbest might be a better choice for the full
schedule. The lookahead policy from approximate dynamic programming is used
to evaluate each solution in the population through a lookahead period in the
future.

In the initialisation, the future requirements for each stage in the lookahead
period pe are defined. Each chromosome c in the final population produced by
the GA will be evaluated through this lookahead procedure according to the
future requirements defined. The future estimation value LK(c) is initialised to
0 in step 10. The purpose of the Simulate(c) function is to build a full roster
{Sol1, · · · , Solpe} for the lookahead period pe assessing each chromosome in
respect of the constraints that were not considered when solving each weekly
problem.

A full simulation solution set {Sol1, · · · , Solpe} of individual c is built when
the procedure terminates in the last stage of the lookahead period. The constraint
violations of each single solution in this set will be calculated and updated in
LK(c). The fitness value V (c) is then the sum of LK(c) and CV (c), note that
V (c) is to be minimised. The chromosome c with the lowest V (c) is the final
output of the whole algorithm and the decoded solution is recorded for the next
solving stage.

3 Experiments and Results Analysis

In this section we present experiments to assess the performance of the proposed
hybrid approach. The selected problem instances are described in Subsect. 3.1.
Experimental settings for generating results are given in Subsect. 3.2. Subsec-
tion 3.3 compares the performance of the proposed approach to our previous
method. Full experimental results are discussed in Subsect. 3.4. The proposed
hybrid algorithm described in Sect. 2 was implemented in Java (JDK 1.7) and
all computations were performed on an Intel (R) Core (TM) i7 CPU with 3.2 GHz
and 6 GB of RAM.

3.1 Problem Instances

The problem instances used were selected from the Second International Nurse
Rostering Competition [11]. Three types of instances are available defined by a
set of files, scenario file, week data files and initial history files. The scenario file
provides scenario information and requirements for the whole planning horizon.
There are 10 week data files that define the specific requirement of each week.
There are 4 initial history files that define the constraints for the rostering of the
first week. With these files, a variety of problem instances with different planning
horizons and conditions can be produced. For the aforementioned competition,
a set of instances was provided to compare the various proposed approaches.
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Even after the competition, that set of problem instances continues to be used
by researchers as a benchmark to test algorithms for the NRP. In the set of
instances used here, the planning horizon is either 4 or 8 weeks with the number
of nurses ranging from 5 up to 100. Details about these set of problem instances
are available at [12].

3.2 Experimental Settings

The parameter settings used for the genetic algorithm (GA) are listed in Table 1.
These values were obtained through preliminary experimentation and no sophis-
ticated mechanism to set parameter values was explored given that the aim of
the GA is not to generate the best possible solution for a given stage of the
problem, but instead to generated a population of good quality solutions for the
lookahead policy evaluation. Experimental results in the rest of this section use
the same set of parameter values.

Table 1. Genetic algorithm parameter settings

Population size 250

Crossover rate 55%

Mutation rate 10%

Maximum number of generations 50000

Maximum number of idle generations with no change in best chromosome 5000

Number of runs per instance 50

As described above, solutions produced by the GA to the weekly problems
are evaluated through the lookahead procedure. In respect of the length of the
lookahead period (pe), there is a trade-off between the quality of solutions and
the computation required for the lookahead policy evaluation. Following our
previous work in [7] the length is set to pe = 3 for 4-week scenarios and pe = 7
for 8-week scenarios.

3.3 Performance Comparison on Solving the Stage Problem

First, we compare the performance of the GA against the Value Function
Approximation (VFA) from our previous paper [7] on solving the stage (weekly)
problem. Table 2 shows summarised results from solving each stage problem
instance 50 times. Column Min. presents the minimum (best) objective values
obtained by each algorithm. Average values and standard deviation values are
summarised in columns Avg. and Std. Dev. respectively. Column time presents
the average computational time in minutes.

As can be seen from column Min., the best objective values obtained by the
two approaches are relatively close to each other. The genetic algorithm obtained
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Table 2. Summary of results produced by the genetic algorithm described here and
the value function approximation from [7] when solving weekly test instances from the
Second International Nurse Rostering Competition. Time is reported in minutes.

Genetic algorithm Value function approximation

Instance Min. Avg. Std. Dev Time Min. Avg. Std. Dev Time

n005w4 1 455 458.8 19.712 0.210 450 455.5 23.573 7.46

n005w4 2 435 439.3 25.137 0.213 435 439.6 31.578 7.19

n005w4 3 530 536.6 30.861 0.220 530 537.8 33.584 7.85

n012w8 1 1230 1241.8 117.862 1.456 1235 1251.2 185.683 18.545

n012w8 2 1540 1553.6 185.407 1.471 1540 1555.0 254.673 19.643

n012w8 3 1515 1525.1 127.593 1.509 1515 1528.3 186.460 18.730

n021w4 1 1725 1739.4 187.683 0.916 1815 1833.6 235.256 11.235

n021w4 2 2150 2162.8 168.974 0.976 2150 2166.2 205.574 12.085

n021w4 3 1940 1955.0 265.053 0.954 2035 2052.7 385.678 11.586

slightly better results than the value function approximation on the instances
with larger number of nurses.

The average value Avg. obtained from multiple independent runs helps to
estimate the overall performance of both algorithms in solving the weekly prob-
lem. As can be seen from the Table, the average value for the genetic algorithm
is slight smaller than the one for the value function approximation. The standard
deviation Std. Dev indicates the spread in the range of solution quality values
obtained by each algorithm in the 50 runs. These values are much smaller for
the genetic algorithm than for the value function approximation. This gives an
indication of an overall more stable performance by the GA. Hence, replacing the
value function approximation with the genetic algorithm for solving the weekly
problems should results in an improvement in the performance of the hybrid
approach.

Moreover, as it can be seen from the Table, the computational times for the
genetic algorithm are much shorter than those for the value function approxima-
tion. Hence, the genetic algorithm achieved as good as or better solutions than
the value function approximation but in considerably shorter time. In summary,
the implemented genetic algorithm is a better approach to tackle the stage prob-
lem as part of the proposed hybrid solution method for solving the multi-stage
nurse rostering problem.

3.4 Performance Comparison on Solving the Full Problem

Table 3 presents the results of the proposed hybrid approach on tackling the full
multi-stage problem instances of the competition. The values in column Gap
correspond to the difference in objective value between the given approach (GA-
Lookahead or ADP-CP) and the Best result from the competition. A mark ‘+’
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Table 3. Quality of solutions produced by the proposed hybrid approach combining a
Genetic Algorithm with a Lookahead Policy (GA-Lookahead) and the previous method
Combined Policy Adaptive Dynamic Programming (ADP-CP). The best and worst
values from the competition results (achieved by a variety of algorithms) are also
reported for comparison. The best values produced by our approaches are indicated in
bold. The Gap value is reported as the difference in the objective value to the best from
the competition results. The Rank value indicates the position of the approach with
respect to all the results (from different algorithms) submitted for the competition.

Instance GA-Lookahead Gap Rank ADP-CP Gap Rank Best Worst

n030w4 1 2000 +255 5 1780 +235 4 1745 9850

n030w4 2 2130 +195 5 1610 +175 4 1935 10605

n030w8 1 2940 +645 5 4830 +2535 14 2295 21185

n030w8 2 2380 +480 5 4855 +2955 14 1900 21145

n040w4 1 2075 +350 7 3270 +1545 14 1765 14680

n040w4 2 2235 +325 6 3735 +1825 14 1910 14460

n040w8 1 3755 +650 4 9305 +6200 15 3105 35010

n040w8 2 3735 +760 6 8975 +6000 15 2975 33000

n050w4 1 1890 +365 6 3535 +2010 14 1525 17745

n050w4 2 1955 +475 6 3030 +1550 12 1480 15380

n050w8 1 6630 +1070 5 8965 +3405 12 5560 43040

n050w8 2 6630 +1155 5 8420 +2945 11 5475 42765

n060w4 1 3455 +625 9 12282 +9452 15 2830 19230

n060w4 2 3540 +590 6 15019 +12004 16 2950 20400

n060w8 1 4010 +1170 6 9720 +6880 15 2840 44130

n060w8 2 4505 +1305 6 10160 +6960 15 3200 44430

n080w4 1 4130 +655 6 18350 +14875 15 3474 26935

n080w4 2 4130 +595 6 16885 +13350 15 3535 27210

n080w8 1 6735 +1890 6 35975 +31130 15 4845 64915

n080w8 2 6765 +1660 6 38800 +33695 16 5105 66515

n100w4 1 2350 +905 6 16045 +14600 16 1445 33740

n100w4 2 2915 +845 6 17885 +15815 16 2070 33465

n100w8 1 5115 +2020 8 35690 +32595 16 3095 85260

n100w8 2 5505 +2370 7 35440 +32305 16 3135 87445

n120w4 1 3385 +915 7 22960 +20490 16 2470 36235

n120w4 2 3435 +905 6 22065 +19535 15 2530 36320

n120w8 1 6145 +2590 7 39170 +35615 15 3555 83590

n120w8 2 6315 +2880 7 41350 +37915 15 3435 82145

next to a Gap value indicates that the obtained solution cost value is greater
than the best known. The values in column Rank indicate the ranking achieved
by the proposed algorithm when compared to all the algorithms participating
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in the competition. Comparing the hybrid GA-Lookahead method proposed
in this paper to our previous approach ADP-CP, it is clear that the proposed
approach performs significantly better except in the first two problem instances.

There is no paper reporting fully on the results achieved by all the approaches
in the INRC-II competition. So it is difficult to have an accurate comparison
between our approaches and the several algorithms in the competitions. This is
because results in the competition website as verified by the competition commit-
tee seem to be different from the results reported by the competition participants.
Here we compare against results reported by the competition participants.

The two right-most columns of Table 3 show the Best and Worst values
for each problem instance from the various algorithms in the competition. The
gap achieved by the GA-Lookahead has decreased significantly with respect to
the gap achieved by the previous approach ADP-CP. Even though these values
of the gap to the best known solutions are still not negligible, the ranking of
the proposed hybrid algorithm when compared to the combined performance
of all the algorithms in the competition is better for about 10 positions. It is
important to emphasise that the collection of best results for the set of com-
petition instances has been obtained by several algorithms. Hence, the hybrid
GA-Lookahead algorithm achieving a good overall ranking across all instances
is a significant accomplishment.

4 Conclusion

In this paper we proposed a hybrid algorithm by combining a genetic algorithm
with lookahead policy from dynamic programming to tackle the multi-stage nurse
rostering problem. In this problem, a stage is defined as a week and the roster
of each week is constructed while assuming that the staff requirements for the
future weeks are not known. Also, when constructing the roster for a week, the
historical information from the previous weeks needs to be considered. Previ-
ous research investigated approximate dynamic programming with a combined
policy function to solve this problem. In the hybrid algorithm proposed here,
a genetic algorithm is applied to tackle the weekly problem. The genetic algo-
rithm produces a set of rosters for the week while not considering the global
constraints. The lookahead policy then evaluates each of the rosters in respect
of the future demand. That is, the lookahead procedure tries to select the roster
that performs the best considering the future weeks and the history from the pre-
vious weeks among population. The lookahead policy then assembles a roster for
the whole planning horizon. The algorithm is tested on solving a set of problem
instances from the Second International Nurse Rostering Competition. Results
produced by the proposed approach are compared to a previous method based
on approximate dynamic programming with combined policy function and to all
the results submitted to the competition. The improvement achieved with the
proposed GA-Lookahead algorithm is considerable when compared to the previ-
ous approximate dynamic programming method. The intended contribution of
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this paper is to progress the understanding of how dynamic programming mech-
anisms can be successfully used to tackle difficult combinatorial optimisation
problems.
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Abstract. We develop a two-stage deep learning framework that rec-
ommends fashion images based on other input images of similar style.
For that purpose, a neural network classifier is used as a data-driven,
visually-aware feature extractor. The latter then serves as input for
similarity-based recommendations using a ranking algorithm. Our app-
roach is tested on the publicly available Fashion dataset. Initialization
strategies using transfer learning from larger product databases are pre-
sented. Combined with more traditional content-based recommendation
systems, our framework can help to increase robustness and performance,
for example, by better matching a particular customer style.

Keywords: Recommendation · Deep learning ·
Convolutional neural networks · Similarity recommendation

1 Introduction

Identifying products a specific customer likes most can significantly increase
the earnings of a company [15]. Clearly, recommending suitable products in
E-commerce increases the probability of a customer’s purchase. Additionally,
offering too many products can reduce the probability that a potential customer
performs a purchase at all. Finally, knowing and subsequently targeting customer
preferences increases the medium- and long-term commitment of the customer
to the company, which is a key factor to profitability [3,17]. Prior studies demon-
strate that recommendation engines help consumers to make better decisions,
reduce search efforts and find the most suitable prices [5].

One possibility to infer knowledge about customer preferences is via spe-
cific questioning in customer surveys. However, this is not always possible and
customer responses may not be correct or sufficient for accurately describing
preferences. In this work, we follow a different, data-driven approach, where cus-
tomer preferences are automatically extracted from available information on the
c© Springer Nature Switzerland AG 2019
G. Nicosia et al. (Eds.): LOD 2018, LNCS 11331, pp. 472–481, 2019.
https://doi.org/10.1007/978-3-030-13709-0_40
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customer. More specifically, we focus on fashion products and develop a method
that only requires a single input image to return a ranked list of similar-style
recommendations.

1.1 Proposed Recommendation System

The proposed recommendation system operates in a two-stage mode. In the first
step, we train a convolutional neural network (CNN) to solve specific image
classification tasks. The trained CNN is then used as a problem-specific feature
extractor, where the features serve as inputs for the ranking system. While in
this paper we work with fashion products, similar recommendation systems can
be employed for other product categories as well.

Image data provides a wealth of information on a visually-aware feature level,
e.g. edges and color blobs. Plenty of image processing techniques exist to extract
such low-level features [14]. Deep learning provides a technique to extract hidden
higher-level features by composing several convolutional layers. Therefore CNNs
are a natural choice to provide fashion product recommendations based solely
on image data. Compared to classical content-based recommendation, which is
mainly based upon descriptive metadata like manually annotated product tags
or user reviews, our approach relies on visual information.

1.2 Relation to Previous Work

There are at least two main approaches for product recommendations: collabora-
tive filtering and content-based filtering. Whereas the former relies on historical
user-item interactions, the latter tries to relate user profiles and item descrip-
tors. A recent deep learning approach is the neural collaborative filtering frame-
work proposed in [7], which generalizes the matrix factorization technique used
extensively in collaborative filtering methods. Others like [6] employ a hybrid
approach, where a matrix factorization based predictor is combined with a deep
learning model that extracts visual features as well as latent non-visual user fea-
tures. A recent thorough overview on deep learning-based recommender systems
can be found in [20].

The success of CNNs for computer vision tasks like object classification,
detection and segmentation [4] gives reason to decouple classical product recom-
mendation solutions from its extensive user-item interaction data usage require-
ment. Therefore our method uses product image data, which, for example in
E-commerce, is readily available. This also allows to mitigate the cold start
problem of collaborative filtering and classical content-based recommender sys-
tems. Closely related to our approach are the works [1,16]. Due to the high
degree of subjectivity related to fashion articles, general recommender systems
usually perform poorly in fashion recommendation tasks. We show that recom-
mendation systems purely relying on visual features are reasonable as they are
able to provide highly visually appealing recommendations of similar style. This
can also be helpful in the case of new customers, where no historical user data
is yet available. It can also be integrated in existing content-based systems, for
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example, to account for a particular or desired style of a customer, or to address
the cold-start problem.

1.3 Outline

The remainder of the paper is structured as follows. Section 2 presents the pro-
posed product recommendation method. In particular, we give details on the
used network architectures, the used ranking algorithm and describe the Fash-
ion dataset. In Sect. 3 we present some numerical results. The paper concludes
with a short discussion in Sect. 4.

2 Methods

2.1 Fashion Dataset

Throughout this paper, we work with a subset of the publicly available Fashion1

dataset [12]. In order to obtain high-quality ground-truth labels for category type
and texture attributes, we design a labeling questionnaire on the crowdsourcing
platform CrowdFlower2. Every image is labeled by a total maximum of five
human operators. To be a valid label at least three human operators have to
agree. Each labeling task consists of five images to be labelled, one of which
is a simple test image. If a human operator fails a test more than twice, she
is no longer allowed to continue. Separate datasets for category and texture
classification have been created.

The used class labels for category types are blouse, dress, pants, pullover,
shirt, shorts, skirt, top, T-shirt. For the texture attributes we use the labels
graphic, plaid, plain, spotted, striped. Figure 1 shows the frequency distributions
for the two datasets. The category type dataset contains 11 851 and the texture
attributes dataset 7342 images. Further characteristics can be found in Table 1.

Table 1. Summary of the datasets created from the Fashion dataset. The third column
indicates the total amount of class labels for the respective dataset.

Dataset Classification Samples

Type No. Total Train Val

Fashion category Multinomial 9 11,851 9,480 2,371

Fashion texture Multinomial 5 7,342 5,873 1,469

1 http://imagelab.ing.unimore.it/fashion dataset.asp.
2 www.crowdflower.com.

http://imagelab.ing.unimore.it/fashion_dataset.asp
www.crowdflower.com
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Fig. 1. Frequency distributions for the category type and texture attributes datasets
created from the Fashion dataset.

2.2 Proposed Framework

Our method composes of a trained CNN classifier used as image feature extractor
and a modification of the k-nearest neighbors (k-NN) algorithm used for ranking
in feature space.

� Classification via CNNs: In the first step, we train separate CNNs to
predict the category and texture type. Each of the CNNs can be written as

Ni(Wi, · ) � Si(Vi,Fi(Ui, · )) for i = 1, 2 . (1)

Here Wi = (Ui,Vi) are weight vectors, Si(Vi, · ) are fully connected softmax
output layers that actually perform classification and Fi(Ui, · ) are the CNNs
without the last layer. The latter are used as feature extractor.
� Ranking in feature space: After training and evaluating the performance
of these classifiers, we remove the softmax output layer Si of each model. The
remaining CNNs are then concatenated and F = [F1,F2] is used to extract
the feature vector F(X) of any input image X ∈ R

N×N . We then use the
k-NN algorithm to search for the closest items to F(X) in feature space.

Details on the employed CNNs and the k-NN algorithm for ranking are pre-
sented below.

2.3 Network Architectures

A wealth of CNN architectures are available today. In this section we briefly
discuss the two architectures that we use in our work: AlexNet and batch-
normalized Inception (BN-Inception). The AlexNet and BN-Inception are both
standard architectures and well established. AlexNet has been chosen as a bench-
mark to compare against deeper, more complex networks like the BN-Inception.
AlexNet consists of 8 layers and BN-Inception of 34. Both use an image of size
224 × 224 as input.
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Two important contributions of the AlexNet [10] are popularizing usage of the
non-saturating rectified linear unit activation function, ReLU(x) � max(0, x),
and introducing a normalization layer after the ReLU activation. Empirical
results show that the normalization layer improves the generalization ability
of the network. The BN-Inception [8] is an extension of the GoogLeNet architec-
ture [18], which allows deeper and wider CNNs by mapping the output of a layer
to several layers at once. The output of these parallel layers is then again con-
catenated. The proposed batch normalization extension addresses the internal
covariate shift problem. The latter describes the problem that the latent input
distribution of every hidden layer constantly changes, because every training
iteration updates the weight vector Wi. Batch normalization also has a regular-
ization effect.

2.4 Network Training

In order to adjust Ni(Wi, · ) to the particular classification task, the weight
vector Wi is selected depending on a set of training data Ti � {(Xn,Yn)}Ni

n=1.
For this purpose, the weights are adjusted in such a way, that the overall error
of Ni(Wi, · ) made on the training set is small. This is achieved by minimizing
the error function

E(Wi) �
Ni∑

n=1

d(Ni(Wi,Xn),Yn) + λ‖Wi‖2 , (2)

where d is a distance measure that quantifies the error made by the network
function Ni(Wi, · ) for classifying the n-th training sample.

To stabilize the weight computation in (2), we add a L2-regularization term
λ‖Wi‖2 with regularization parameter λ ≥ 0. As is common for classification
with neural networks, we use the cross entropy for the loss function d. The
actual minimization of (2) is performed by stochastic gradient descent.

2.5 Ranking by k-NN

The k-NN algorithm can be used as simple ranking algorithm. For that purpose,
consider the feature space R

p and denote with d2(f ,g) = ‖f −g‖2 the Euclidean
distance of two feature vectors. Let {f1, . . . , fm} be a training set of feature
vectors. A k-NN algorithm then solves some regression or classification task
at f ∈ R

p using the k closest training features. This can be implemented by
first computing an enumeration π(f) : {1, 2, . . . ,m} → {1, 2, . . . ,m} satisfying
d2(f , fπ(f)(i)) ≤ d2(f , fπ(f)(i+1)). We use the permutation π(f) as ranking output
for the input feature f . To reduce memory requirements of the k-NN ranking,
we use an implementation that employs a balltree search [13].

3 Results

In this section we present results for the image classification and similarity rec-
ommendation with the proposed framework.
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Table 2. Summary of the datasets created from the DeepFashion Attribute Prediction
dataset used for pretraining. The third column indicates the total amount of class
labels for the respective dataset.

Dataset Classification Samples

Type No. Total Train Val

DeepFashion category Multinomial 46 289,222 231,377 57,845

DeepFashion texture Multinomial 156 111,405 89,124 22,281

3.1 Pretraining

To overcome difficulties arising from the relative small size of the Fashion dataset,
we use the concept of transfer learning [4,19]. For that purpose, we pretrain the
classification models on a larger dataset (namely, the DeepFashion Attribute
Prediction3 dataset, [11]) containing 289 222 garment images. A full summary
of the dataset can be found in Table 2.

For pretraining we use AlexNet and BN-Inception architectures. For the
AlexNet we minimize (2) with stochastic gradient descent using batch size of
64, regularization parameter λ = 0.0005, learning rate 0.01 and momentum 0.9.
For training the BN-Inception we use the ADAM [9] algorithm with batch size
of 32, λ = 0, and learning rate 0.001. Following [4], we use early stopping as
an efficient regularization technique to prevent overfitting. We therefore stop
training AlexNet/BN-Inception after 9/8 and 17/13 epochs for the category and
texture classification, respectively.

Additional to the cross entropy loss, we use the evaluation metrics accuracy,

accuracy(y, ŷ) � 1
N

N∑

n=1

1yn
(ŷn) , (3)

and top-K accuracy, which is defined as in Eq. (3) with a slightly modified indi-
cator function such that top-K predicted classes are incorporated. Table 3 shows
accuracy, top-K-accuracy and loss evaluated on the test set for both AlexNet
and BN-Inception. The BN-Inception achieves higher accuracy and better gen-
eralization ability. Therefore, we only use the BN-Inception architecture for clas-
sification on the Fashion dataset.

3.2 Classification

For the final classification models we train the BN-Inception by minimizing (2)
on the Fashion dataset with ADAM, where the weights are initialized using the
ones from the pretraining stage. Due to the small size of the Fashion dataset, we
add L2-regularization with λ = 0.0001 to the loss function and also reduce the
batch size to 16.

3 http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion/AttributePrediction.html.

http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion/AttributePrediction.html
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Table 3. Pretraining results: the left table depicts results for the category classification
and the right table for the texture classification.

Several image augmentation techniques are applied in order to effectively
increase dataset size. These include random rotations with a maximum rotation
angle of ±3 for the category type model and ±8 for the texture attributes model,
random changes of HSL color channels within a range of [−6, 6], a shear trans-
formation with random shear factor within [−0.25, 0.25], random aspect ratio
changes within a range of [0.875, 1.125] and random vertical flips. The random
augmentations are applied to the training set every epoch anew. This allows to
train longer without overfitting too fast. Following early stopping regularization,
we stop training the category type and texture attributes classification models
after 15 and 4 epochs respectively. Table 4 summarizes the final training results.
The top-K accuracy metric is however excluded due the smaller number of class
labels in the Fashion datasets.

Table 4. Final BN-Inception classification results on the Fashion datasets for category
and texture.

Category Texture

Accuracy 0.87 0.80

Loss 0.42 0.61

3.3 Similarity Recommendation

The CNN classifiers are used as feature extractors and return feature vectors
Fi(X) of size d = 1024 for any input image. The feature extractors are applied
to a set of n = 19 422 test images. These corresponding feature vectors are con-
catenated and stacked to obtain a n × 2d feature matrix. The k-NN ranking
algorithm is applied to the feature matrix. For the recommendation task, it is
now sufficient to extract the features from an input image, submit them to the
k-NN ranking algorithm and return the top-k matching style recommendations.
In Fig. 2 we present several query images and corresponding top-5 recommenda-
tions. Subjectively, the top-5 recommendations indeed look quite similar to the
query images. In the top row a query image from the dataset itself is used. This
corresponding top-5 recommendations demonstrate that if the image appears
in the dataset it is actually most similar to itself. Similar results have been



Image-Based Fashion Product Recommendation with Deep Learning 479

Fig. 2. k-NN recommendation ranking. First column displays the query images and
columns 2–6 display the predicted five nearest neighbors, where column 2 is the most
similar.

obtained in other performed tests. Other than that, an implicit objective metric
for recommendation quality can be found by means of the classification accura-
cies reported in Table 4. The definition of a precise objective evaluation criterion,
however, remains difficult due to the inherent subjectivity of recommendation
quality. This also makes comparison with other methods quite challenging. The
computationally most time-consuming part in the application of the proposed
recommendation system is the evaluation of the CNN classifiers.

In our implementation, we have implemented the CNNs in MXNet [2] using
its Python API. Running on a desktop PC with an Intel i7-6850K CPU and a
NVIDIA 1080Ti GPU, the whole image processing pipeline applied to a given
input image only takes fractions of a second. Note that the potentially time-
consuming network training is done before a new input image is provided to the
recommendation system, which therefore allows fast online product recommen-
dation.
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4 Conclusion

We presented a visually-aware, data-driven and rather simple but still effective
recommendation system for fashion product images. The proposed two-stage
approach uses a CNN classifier to extract features that are used as input for
similarity recommendations. It can be used, for example, in E-commerce by
allowing customers to upload a specific fashion image and then offering similar
items based on texture and category type features of the customer’s uploaded
image. Additional feature extractors, e.g. trained on gender or color classification
tasks, can be easily added. Furthermore, generalization to other domains makes
sense, e.g. music recommendation based on raw music data, but needs further
investigation. Several interesting extensions of our approach are possible. First, it
would be promising to integrate the two separate training stages into a single one
and provide end-to-end deep learning-based fashion product recommendations.
In particular, consideration should be given to Siamese networks. Additionally,
hybrid approaches combining image-based and content-based systems will be
implemented. Finally, it is important to evaluate the customer impact of our
image-based approach and its extensions against other recommender systems
through customer surveys.

References

1. Chen, L., Yang, F., Yang, H.: Image-based product recommendation system with
convolutional neural networks (2017)

2. Chen, T., et al.: MXNET: a flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint arXiv:1512.01274 (2015)

3. Dick, A.S., Basu, K.: Customer loyalty: toward an integrated conceptual frame-
work. J. Acad. Market. Sci. 22(2), 99–113 (1994)

4. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT, Cambridge (2016)
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Abstract. This paper addresses power line topology change detection
by using only measurement data. As Phasor Measurement Units (PMUs)
become widely deployed, power system monitoring and real-time analysis
can take advantage of the large amount of data provided by PMUs and
leverage the advances in big data analytics. In this paper, we develop
practical analytics that are not tightly coupled with the power flow anal-
ysis and state estimation, as these tasks require detailed and accurate
information about the power system. We focus on power line outage iden-
tification, and use a machine learning framework to locate the outage(s).
The same framework is used for both single line outage identification
and multiple line outage identification. We first compute the features
that are essential to capture the dynamic characteristics of the power
system when the topology change happens, transform the time-domain
data to frequency-domain, and then train the algorithms for the predic-
tion of line outage based on frequency domain features. The proposed
method uses only voltage phasor angles obtained by continuous moni-
toring of buses. The proposed method is tested by simulated PMU data
from PSAT [1], and the prediction accuracy is comparable to the previ-
ous work that involves solving power flow equations or state estimation
equations.

Keywords: Power systems · Machine learning · Logistic regression ·
Random forest

1 Introduction

According to the reports following the major blackout in August, 2003 in the
United States and Canada, the primary cause for very costly large-scale power
outage is inadequate system understanding and inadequate situational awareness
[2,3]. How to improve system understanding and situational awareness becomes
crucial and pertinent to protecting the grid from natural disasters as well as cyber
and physical attacks. To improve situational awareness, continuous monitoring
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of the power system is important, and the status of the power lines, generators
and transformers need to be updated in real-time.

The power grid generates tremendous amount of data every second from its
monitoring devices. In recent years we have witnessed an increasing application
of Phasor Management Units (PMUs) in power systems. A PMU measures the
electrical waves on an electricity grid, called phasors. A phasor is a complex num-
ber that represents both the magnitude and phase angle of the waves (voltages
and currents). When abnormal waveforms are observed, it is likely that anomaly
has occurred in the power system configuration.

Mining of power grid measurement data is hopeful to give us an insight
of what is hidden in the data. System understanding and real-time situational
awareness comes naturally as a result of data analytics. Major power outage can
be prevented if the control centers are equipped with the ability to interpret
changes in the state of the network without cognitive overload of the operator
and thus take appropriate control actions.

Among all disastrous events, power line outage hits most frequently. Accord-
ing to [4], in the five-year period from 2008–2012, weather-related outages
accounted for 66% of power disruptions and affected up to 178 million customers.
Power line outage identification becomes the first and most powerful tactic to
improve situational awareness. Being aware of the changes on the power lines is
paramount for several critical tasks, such as state estimation, power load flow
analysis, real-time contingency analysis [5]. For instance, the state matrix used
in the state estimation is based on an assumed topology and parameters. A
topological change of the grid can completely overthrow the state estimation [6].

In this paper, we propose a data-driven approach for the task of line outage
identification. Previous work on line outage detection and identification heavily
rely on other critical tasks of the power system, such as state estimation, or load-
flow analysis [5]. Some either use the residual of state-estimation [6], or carry out
a joint outage identification and state estimation [7]. However, these tasks require
a lot of global information that may not be available all the time. Measurement
data from PMUs are more accessible than the system model information. We
propose to use measurement data only to infer the status of power lines. The
advantage of this approach is that there is no interlocking with other tasks, and
therefore the line outage identification can be used independently and prior to
the implement of state estimation or power flow analysis.

The proposed approach mainly uses the voltage phasor angles measured at
buses. Three machine learning algorithms are used to estimate the prediction
models. If PMU data are partially available at some buses but not available
on all buses, the proposed approach can still be applied. For instance in the
IEEE 9-bus test system, using measurements from 6 buses instead of all 9 buses
can still do a reasonably good job on prediction with slightly reduced accuracy.
This indicates that even the accurate topology information of the power grid
is not essential. The data-driven inference approach compared to the previous
approach that relies on accurate state information of the system is a fundamental
breakthrough.
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The rest of the paper is organized as follows: in Sect. 2, we survey the most
related work in power line outage detection and identification; in Sect. 3, we
cover the preliminaries underlying the proposed method; in Sect. 4, we provide
detailed description of the line identification method and the machine learning
algorithms used in this project; in Sect. 5, we provide results for identification of
single and double line outages using IEEE standard test system; in Sect. 6, we
conclude the paper with outlook for future work.

2 Related Work

As PMUs become increasingly deployed, power line outage detection and iden-
tification based on PMU measurements have received much attention recently.
In early work [8], system topology information together with PMU phasor angle
measurements are used to detect a single line outage. To further determine the
broken line, the pre-outage flow is estimated, in which power flow equation is
used and the system admittance matrix is needed.

Tate and Overby further extended the single line outage detection method
in [8] to double line outage detection [9]. It is proved in [9] that there exists
indistinguishable outages due to incomplete PMU deployment, and a method of
recognizing these indistinguishable outages is presented. This conclusion is also
consistent with the conclusion of our own study. The indistinguishable outages
due to the limited PMU deployment is a major contributing factor of prediction
errors.

Other recent work on outage identification based on PMU data include [5,10].
In [10] trains, a linear multinomial regression model is estimated by solving maxi-
mum likelihood problem utilizing the sampled PMU data, however, the classifier
is only effective in the presence of perfect dynamic simulation. [5] focuses on
detecting multiple line outage at low complexity. [5] solved the sparse line out-
age identification problem by using the DC linear power flow model. Like [5],
the proposed logistic regression and random forest models also avoid the com-
binatorial complexity issue; but different from [5], the proposed method only
use PMU data and does not need the reactance information on the power lines.
Similar work that also uses sparse overcomplete representation also includes [11]
to address the fault estimation problem.

It is noted that most previous work are constrained to at most double line
outage detection [8,9,12]. [5] may be the first that is not limited by the number
of simultaneous line outages. Our work is a complete data driven approach,
which does not use the system model, and is also not limited to the number of
simultaneous line outages.

There are also notable work that solves outage detection, state estimation
and optimization of sensor locations as coupled problems. In [7], a joint detection
and estimation problem was studied for outage identification in power systems.
The authors employed a Bayesian framework, in which the prior distributions
on the outage events and the network states are assumed to be Gaussian, and
developed closed form joint posterior distribution of the outage and the network
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states, which can be used to determine the optimal joint outage detector and
state estimator.

3 Preliminaries

In order to find the features that can capture the signature changes in the power
system when a line outage happens, it is necessary to look at what will be
disturbed when a line is out.

The real power transfer from bus i to bus j, j �= i is given as follows:

Pij = |Vi||Vj | (Gijcos(θi − θj) + Bijsin(θi − θj))

If the transmission line has impedance of z = r + jx, then the admittance is
y = 1

z = r
r2+x2 − jx

r2+x2 = g + jb. Usually r � x, so the real part in y is close to
zero, therefore the real part of the admittance matrix elements will be close to
zero, i.e., Gij → 0, thus the power transfer equation can be simplified as:

Pij
.= |Vi||Vj | (Bijsin(θi − θj))

It is also observed that the difference in angles of the voltage phasor at two buses
i and j connected by a circuit is usually very small, so (θi − θj) is usually a very
small number (usually less than 15◦, or 0.262 in radians, and sin(0.262) = 0.259.).
Therefore we use (θi − θj) to approximate sin(θi − θj). The power transfer
equation can be further simplified as:

Pij
.= |Vi||Vj | (Bij(θi − θj))

In the per-unit system, the numerical values of voltage magnitudes |Vi| and |Vj |
are between 0.95 to 1.05, so it incurs very little error if we assume them to
be 1.0. Therefore in the normal operation when two buses are connected by a
transmission line, the power transfer amount is loosely proportional to the angle
difference between the two buses. It is a dependent relationship. When the line
between two buses is broken, the angles at two buses lose this dependent rela-
tionship and become conditionally independent given the voltage phasor angles
at other buses. Upon line outage, we expect to see a transition from a relatively
stable signal to a more dramatically changing signal. Based on this observation,
we can develop a machine learning methodology to identify which line is out.
The identified features will be used to train the machine learning algorithms, as
well as predicting line outage.

4 Proposed Methods

This paper focuses on identification of power line outage, i.e., to locate which
line is out. We use the measurement data from buses for this task. Such data are
available from Phasor Measurement Units, which are widely available nowadays.
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Throughout the implementation of the method, we assume no prior knowledge
about the admittance matrix or state matrix of the system.

Early work has proposed a method of change point detection from time series
[13], which can be used to detect changes from time series of measurements, but
does not tell exactly which line is out. To further determine whether it is a
single line outage or multiple line outages, and to identify which lines are out,
we formulate the problem as a classification problem and use different statistical
learning algorithms to solve the problem.

Based on the analysis above, the only information used in the classification
problem is the phasor angles at buses. For a fair comparison among different
methods, all methods are provided with the same data. Assume there are angle
measurements from m buses, the data contains m-dimensional time series {θt},
where θt ∈ Rm, and t = 1 . . . n.

G2
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Load C
T2
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Fig. 1. Standard IEEE 9-bus test system.

Consider the standard IEEE 9-bus test system (see Fig. 1) as an example.
Figure 2 shows the phasor angles at bus 8 and bus 9 as well as their differences.
When a line outage occurs at the branch between the two buses, we observe a
change in the difference of angles (see Fig. 2(a)). Although the change in the
magnitude is small, the change in the dynamic feature is significant and visually
detectable (see Fig. 2(b)).

It is noted that angle measurements in Fig. 2(a) are smoothed instead of
mapped to [0, 2π). This is to avoid angle oscillation, since as the angle increases
with time slowly, the drastic change from 2π − δ for a small δ to 0 is more
significant than the changes caused by the line outage, and therefore can totally
subvert the classifier.

4.1 Features Extraction

The difference of the voltage phasor angles at two buses is a low level feature
for classification. However, the raw measurements won’t make a good predictor,
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Fig. 2. The voltage phasor angles of bus 8 and bus 9 versus time. Line outage occurred
at time 50 s. (a) shows the full range of angles, (b) shows details on angle differences.

since the angles are unbounded, and the length of the time series, n, can be very
long or very short. The dimension of the predictors should not depend on the
length of the time series.

To make the features independent of the length of the time series, we use
Fourier Transform. Fast Fourier Transform (FFT) takes a discrete signal in the
time domain and transforms that signal into its discrete frequency domain rep-
resentation,

Xk =
n−1∑

j=0

xje
−i2πkj/n

where Xk is a complex number that encodes both amplitude and phase of a
complex sinusoidal component ei2πkj of function xj , and the frequency of the
component is k cycles per n samples.

FFT results in a sequence of {Xk}, with k = 1, . . . , n. FFT can also be
evaluated for a specified number of points. We sort the amplitudes and consider
the top K dominant frequencies so that the dynamic features of the time series
are fully captured in the frequency domain. In this paper, we take the union of
the dominant frequencies and use the amplitudes |Xk| as predictors.

4.2 Classification Algorithms

We use supervised machine learning for the task of line outage identification.
The data used by all classification algorithms have the following format (Fig. 3):

Y ∼
(
|X(l)

k |, . . .
)

, for k = 1 . . . K, and l = 1 . . . W,

where k is among the first K dominant frequencies, |X(l)
k | is the amplitude of

the corresponding frequency for line l. This is repeated for W times if W lines
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are observed.1 For instance, in the Fig. 1, if we have PMUs installed on buses
{4, 5, 6, 7, 8, 9}, then we have W = 6 time series formed by the differences of
angles at the two buses from the set {4–5, 5–7, 7–8, 8–9, 9–6, 6–4}.

Fig. 3. The spectrum of the angle difference in Fig. 2 after line outage.

We consider three classification algorithms for identifying a single line outage.

– Logistic Regression
– Random Forest with Binary Outcome
– Multi-Categorical Random Forest.

Logistic Regression. In logistic regression, Y is the binary outcome variable,
X = (x1, . . . , xp) is the set of predictor variables. Let q be the probability of Y
being 1. The logit model is given by:

loge

(
q

1 − q

)
= β0 + β1x1 + β2x2 + . . . βpxp = β · X

where β1, . . . , βp are the regression coefficients indicating the relative influence
of each particular predictor variable on the outcome, and β0 is the intercept.
Training data are used to estimate the coefficients β.

A separate logit model is estimated for each line outage. If there are L lines,
there are L models, i.e. L sets of β. We use β(l) to denote the coefficients for
the line l. For line outage detection, we have a vector of q(l) = Prob(y(l) = 1)
indicating the probability of line l being broken. Given the coefficient β(l) and
X from the new data point, the probability of outage on line l is computed as
follows:

q(l) =
1

1 + e−β(l)·X

The logistic regression method is used for both single line outage and multiple
line outage. The process involves first estimating β(l) and then predicting q(l) for
1 Observed means PMUs are installed on the buses at the two end points of the line.
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the new data, for l = 1, . . . , L. The computational complexity does not increase
with the number of outages.

Random Forest. Random Forest is a tree-based method. Different from regres-
sion models, Random Forest uses decision trees as building blocks to construct
prediction models [14].

Random forest involves producing multiple classification trees which are then
combined to yield a single consensus prediction by averaging all the predictions.
When building individual decision trees, each time a split of the predictor space
is considered, a random sample of m predictors are randomly chosen as split
candidates out of the full set of p predictors. The split then uses only one of the
m predictors. m is typically an integer close to

√
p.

Using random forest for the classification of line outage can be carried out
in two ways:

1. Binary outcome. For each possible line outage, we train a separate model
to decide if the line is broken, and then apply each of the models to the
new observation. If multiple models yield “Yes”, then there are multiple line
outage.

2. Multi-categorical outcome. We build one training model for all possible
classes. If there are L possible line outages, there are L + 1 classes, or L + 1
possible outcomes, with outcome = 0 indicating no line is broken, outcome = l
indicating line l is broken. This method can only be used for single line out-
age prediction or small systems. This is because in the case of multiple line
outages, the number of classes grows exponentially with the number of lines.
If all L lines are prone to break, there are a total of 2L outcomes.

Experiments on single line outage detection indicate that multi-categorical
Random Forest underperforms binary Random Forest by at least 20% in detec-
tion rate. For multiple line outage detection, the multi-categorical version cannot
even detect 50% of the line outages due to having too many categories. Having
too many categories with limited training data is detrimental to the method.
Therefore in the following we will refer to the binary version by default when-
ever Random Forest is mentioned.

5 Results

The tests are implemented on IEEE standard 39-bus test system. Time domain
simulation of the system is implemented in Power System Analysis Toolbox
(PSAT) [1]. PSAT is a free open source package equipped with modules for
solving power flow (PF), optimal power flow(OPF), continuation power flow
(CPF) and time domain simulation (TDS). In this paper, we do not use power
flow analysis, since we assume neither the admittance matrix nor the Jacobian
matrix is available. We use the time domain analysis part of PSAT, and the only
information needed for the proposed methods is the incidence matrix and the
PMU measurements from a few buses.
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The incidence matrix provides information for the link topology of the power
system, i.e., which branches are connected to which bus, but does not have
line impedance information. We use this information to estimate the models for
line outage identification. In the simulation, we consider single line outages and
double line outages. The simultaneous multiple outages for three or more lines
are not simulated for this small network as some buses will be disconnected from
the rest of the network, and bus voltages will have no variation after the outage,
thus the problem of identifying broken lines becomes too trivial. We use the
same assumption as in [9], i.e., we assume that the disconnected lines will not
cause the underlying graph to become disconnected.

We load the 39-bus system into PSAT, and run the time domain analysis for
a total of 300 s. Data are collected at the interval of 30 data points per second.
For line outage simulation, a random number t between 1 to 300 is chosen, and
line outage at time t is inserted in the simulation. The data set size is 16,215 × 22,
with 50% for the training set and 50% for the validation set.

The PSAT simulation gives measurements at PMUs. For this study, we have
used PMU measurements from all buses. Future study will address the situation
when not all buses have PMUs installed. Missing data is an issue for machine
learning algorithms, and will be addressed with modified algorithms.

Two prediction models are tested, i.e., Logistic Regression and Random For-
est, for both single line and double line outage detection. For Random Forest, we
use the algorithm with binary outcomes. The number of trees used in Random
Forest is set to 100. The results are summarized in Table 1.

In this problem, precision is the fraction of true outages that are detected
among the total detected outages, while recall (e.g., detection rate) is the fraction
of true outages that are detected among all true outages.

Table 1. Line outage detection results

Methods Precision Recall (detection rate)

Single Double Single Double

Logistic regression 0.972 0.935 0.839 0.794

Random forest 0.989 0.9996 1 0.983

Remarks:

1. The reported detection rate results from having time series aligned at the
change point when the line is disconnected. This improves the detection rate
for all models. For logistic regression, it shows 3% improvement; and for
Random Forest, it shows up to 15% improvement in detection rate, as shown
in Fig. 4(a).

2. Experiments are done with (1) using all lines in the network, and (2) using
only the power lines from one-hop distance, which significantly reduces the
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Fig. 4. (a) Having time series aligned around the change point improves detection rates
for all models, (b) Using a smaller feature set improves Random Forest, but degrades
Logistic Regression.

dimension of feature space. Using reduced feature space improves the detec-
tion rate of Random Forest, but degrades the performance of Logistic Regres-
sion, as shown in Fig. 4(b).

3. Comparing between two prediction models, Random Forest is superior
to Logistic Regression overall regardless of feature selection. This can be
explained by the fact that Logistic Regression faces the problem of collinear-
ity, which leads to unstable estimates of coefficients. Random Forest, how-
ever, by dividing the predictors into regions consist of p-dimensional hyper-
rectangle, is free from collinearity.

4. Comparing the proposed methods with the method in [5], Random Forest
with binary outcome developed in this paper has paramount advantage with
prediction accuracy up to 100%, while accuracy by the method proposed in [5]
is no greater than 96.6%. However, the method in [5] requires the knowledge
of the Laplacian matrix and reactances of lines, while the proposed methods
in this paper work like a blackbox and do not require the detailed Laplacian
matrix and also skip the state estimation process.

6 Conclusion and Outlook

We have studied the line outage identification problem in power systems by using
a machine learning framework. Under this framework, three learning algorithms
are considered: Logistic Regression, Random Forest, and multi-categorical Ran-
dom Forest. Logistic Regression and Random Forest with binary outcome can
be applied to both single line outage and multiple line outage identification with
acceptable detection rates, and multi-categorical Random Forest can only be
used for single line outage detection.
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The developed line outage identification algorithms have been tested via sim-
ulation data. The IEEE 39-bus standard test system is simulated in PSAT for
time-domain analysis. Time series data from bus voltage phasor angle measure-
ments are used to train the algorithms. Prediction on new data shows that the
prediction accuracy is satisfactory and comparable to methods that involve solv-
ing state estimation or power flow analysis.

In the current work the tuning of parameters is not considered. The tuning
of parameters in the frequency domain as well as in the machine learning models
is expected to further improve the results. Further more, when PMU data are
incomplete due to limited installation of PMUs in the power system, there is
additional challenge for the algorithms to detect line outages with missing data.
We plan to address this issue in the future work.

In addition, segmentation of time series by considering only the series after
line outage can significantly improve the prediction accuracy, which is possible
only when the timing of line outage is known. In the current work, we assumed
that a separate procedure for change point detection [13] is applied to detect
line outage without identifying the disconnected line. Future work will consider
joint detection and identification.
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Abstract. Recent advances in deep learning models have demonstrated
remarkable accuracy in object classification. However, the limitations
of Convolutional Neural Networks such as the requirement for a large
collection of labeled data for training and supervised learning process has
called for enhanced feature representation and for unsupervised models.

In this paper we propose a novel unsupervised sparsity-based model
using Independent Subspace Analysis (ISA) to implement a hierarchical
network for feature extraction. The results of our empirical evaluation
demonstrates an improved classification accuracy when max pooling is
paired with square pooling within each layer. In addition to accuracy, we
further show that it also reduces the data dimensions within the layers
outperforming known sparsity-based models.

Keywords: Deep learning · Sparse models ·
Convolutional neural networks · Biologically inspired vision models

1 Introduction

Amongst the biologically inspired models of vision, the supervised Convolutional
Neural Network models (ConvNets) have surpassed other models in terms of
recognition accuracy [9]. However for scalable machine learning, ConvNets have
some inherent limitations. They are supervised learning by design and do not
scale as they require a large number of training data. Some generality has been
achieved in recent years and issues of over-fitting and unstable gradient have also
been addressed with dropout and batch-normalization techniques, respectively
[8,23]. Such advancements have also lead to shorter training durations. How-
ever, these models are not specifically designed for robust feature representation.
For example, Convolutional models (and others) are sensitive to rotations and
thus require multiple rotated instances of the same image. Therefore, to achieve
invariant response, the number of images required increases and puts a limit
on computational complexity of the models for big data sets. Previous biologi-
cally inspired models such as HMAX have also used this technique of providing
multiple translated versions of the same image [15]. The only type of invariance
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that is encoded in these models is shift invariance which is accomplished with
max-pooling.

The feature extraction model implemented in this paper is a hierarchical
model where only the final layer is trained with a supervised method. This is
similar to self-taught models where all the layers learn features of increasing
complexity in an unsupervised manner. In place of the black-box type learning
of deep learning models, we adopt a biologically inspired approach where some
aspects of the visual cortex such as sparsity are considered to improve recognition
accuracy. We demonstrate an improvement over previous unsupervised feature
extraction methods and provide a solution for reducing data dimensions along
the layers. The key to achieving these novelties is to apply sparsity based algo-
rithms for learning features from the images. Instead of max-pooling as the only
non-linear operation, there is an additional square pooling as a non-linearity step
which further reduces the dimensions of the layer while improving the recogni-
tion accuracy. This step is inspired by the retinotopic arrangement of the cells in
the visual cortex where dependent units are grouped together [6] which resemble
a non-linear pooling operation.

2 Background: Independent Subspace Analysis

Evidence in various studies in neuroscience suggest that sparsity of response
occurs in all layers of the visual cortex [2,3,16,17]. The non-Gaussianity in nat-
ural data was first represented in terms of sparse coding by Olhausen and Field,
where an image is represented by linear combination of very small number of
non-zero features [14]. The independent component analysis (ICA) is one of the
more popular sparsity based algorithms. It generates features similar to sparse
coding but they are statistically independent [6]. In an extension to the ICA, the
independent subspace analysis (ISA) and topographical independent component
analysis (TICA) were developed in which the components are grouped accord-
ing to their energy dependencies [6]. One example of an ISA based hierarchical
model is the deep learning framework for action recognition described in [10],
where a convolution and stacking method is adopted. Another example (with
TICA) is the multi-layer model with pooling and local contrast normalization
described in [11]. This model simulates a large scale feature detection by training
with un-labelled data.

The performance of these models greatly depends on its invariant feature
representation which is generally achieved with a non-linearity function. In the
convolutional neural networks, HMAX, and its sparsity regularized extension [3],
translation invariance is achieved by a max-pooling function over neighbor loca-
tions on a feature map. Biological plausibility of max-pooling is also supported
by studies that discovered similar functions in the V4 area of primate visual
cortex and complex cells in cat visual cortex [21]. In the self-taught learning
models described in [11] and [10], L2-pooling function over the feature maps is
applied. Additionally, the original models also encode scale invariance by max-
pooling over features of same orientations and positions, but slightly different
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spatial frequency [21]. Some convolutional neural networks have also extended
scale invariance in their model [26]. There is always an aim to learn more than
one type of invariance.

Phase and position invariance are known to be closely related [6]. Changes in
phase for a spatially localized stimulus translates into small shifts in position (in
the direction of its oscillations) such that it is termed as a special case of position
invariance. Complex cell properties of the ISA and TICA therefore display phase
invariance and limited shift invariance [4]. To obtain high level features with
improved classification accuracy, both L2-pooling and max-pooling are applied
in the proposed models in this paper.

2.1 Independent Subspace Analysis

In ISA, the dependent components are grouped into subspaces of pre-defined
size. The neighborhood function in this case is defined as,

h(i, j) =

{
1 if ∃q : i, j ∈ Sq

0 otherwise.
(1)

where component S ∈ {s1, ..., sn} from Eq. (1) is divided into n-tuples such that
the si inside a tuple are dependent on each other, i, j ∈ {1, ..., q} is the index
of the n-tuple. Sq represents the set of indices of the component si that exists
within that tuple [4]. With W = (w1, ..., wn)T = A−1 and input x, the cost
function for maximum log likelihood estimation in this case is given by,

logL(W ) =
T∑

t=1

Q∑
q=1

G(
∑
i∈Sq

(wT
i x(t))2) + T log|detW | (2)

where (wT
i x)2 is the energy term, G is a function that gives the log probabil-

ity density of si, Q denotes the number of subspaces and T is the number of
realizations of input x [4].

The total response of each subspace is the squared sum of each component,
also termed as the L2-pooling.

eq =
√∑

i∈Sq

s2i (3)

Similarly, in the Topographic ICA, the arrangement of the learned units is
in a way such that it reduces the distance between correlated components and
thereby reducing the wiring length between two statistically related neurons. In
neuroanatomy, it is explained as the length of the axons that connect the neurons
[5]. This minimization of wiring length has been described in [6] as a model for
the compactness of the brain volume and speed of signal processing. Here, the
grouping of dependent components is determined by neighborhood function that
defines the topography. Proximity within the topography indicates strength of
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its second order correlation. In this paper only ISA model is investigated in
depth. While TICA can also be applied in similar manner, and achieve similar
results, some factors such as neighborhood size and overlap area affect the model
differently.

3 Feature Extraction Model with ISA

In this section, implementation of the new hierarchical feature extraction model
is presented. The first simple and complex cell layers are denoted by S1 and C1.
Here, the combination of S1 and C1 layer functions is referred to as V1 layer.
The Vi layer of this model comprises three sub layers: Si is the response of
orientation, spatial frequency and position selective linear filters, Cia represents
the non linear L2-pooling of the Si outputs within a subspace or topographic
neighborhood by Eq. (3), and Cib denotes max-pooling output over neighboring
locations for each Cib feature. Since these non-linearities correspond to phase
and position invariance respectively, they are referred to as such in the model
description.

Fig. 1. Multiple Vi layers of the ISA feature extraction model
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ISA Feature Extraction Model

In this model, the S layer filters are learned by applying ISA algorithm.
The structure of the model is in the form of hypercolumns (also illustrated in

[19]) or feature maps which comprises all the filter outputs for a spatial location.
The subspace size is denoted by Z1 and the total number of filters or bases at
S1 is R1. Figure 1, shows the full model with multiple V1 layers. The receptive
field size pi of the Vi layer of the model indicates the width of the square area
that is sampled from the C(i−1)b layer (which is the input image for S1).

S Layer. The filters generated from sampling random patches of images are
grouped into subspaces based on higher order energy correlations. The impact
of subspace size along the different layers has an effect on object classification
results. For a fixed set of Si filters, increasing subspace size Z strengthens phase
invariance but decreases the number of features.

Si layer: For the first layer V1, each S1 layer filter is of size p1 × p1, where
p1 is the width of the square receptive field of the first layer. The S1 filter is
applied on a patch of p1 × p1 of the input image X which is of size M × N .

If Wi =
{
wi1 , wi2 , ..., wiRi

}
is the set of filters, the Si response is of dimen-

sions M̃ × Ñ × Ri, where M̃ = M − pi + 1 and Ñ = N − pi + 1.

Si = 〈W,Xp〉 (4)

where Xp is a decorrelated and normalized set of patches extracted from the
input image.

Similar to the ReLU function of the deep learning models, any negative out-
put of Si layer is set to zero before the complex layers, which resulted in a better
performance in classification accuracy.

C Layer. Cia layer: With subspace size Zi, all the Si values within the subspace
are pooled such that the output of Cia has dimensions M̄ × N̄ × R̃i. Where
R̃i = Ri/Zi.

Cia =
√∑

j∈Zi

Sij
2 (5)

Equation (5) represents the output of one feature detector at the Cia stage.
Cib layer: Each of the responses of the Cia are max-pooled over non-

overlapping areas of size ri × ri similar to [3].

Final S Layer

In the final Sn layer of the model, the square root of the sum of energies (or
L2-pooling) of the values across all the location on each feature map is obtained
as the feature vector.
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Cn =
√∑

S2
n (6)

The Cia step is generally not applied when obtaining the final feature vector
(as illustrated in the V3 layer of Fig. 1). The final feature vector of size 1 × Rn

forms the input for the classifier.
The model functions in two phases: The first phase is for learning the filters in

which a limited set of images is used to learn all the filters in all the layers. During
the second phase, all the images are passed through the above mentioned layer
operations to extract features. These features are then tested for classification
accuracy.

4 Empirical Evaluations

Part 1: Model Parameters

In the hierarchical model illustrated in Fig. 1, the factors that affect its perfor-
mance are the subspace size and receptive field sizes. The experiments presented
in this section are to evaluate the parameters that optimize the performance
of the models. For convenience, a reduced dataset is used with even number
of images1. All the images were resized such that the smallest side had dimen-
sion 140. The extracted features were classified using an SVM classifier with the
average of 30 different splits of test and train data.

Subspace Size of the ISA Model. Generally, large number of feature detec-
tors are optimal for recognition models as they capture image complexity more
accurately. Reducing subspace size increases the final feature size of the Vi layer,
whereas increasing subspace size improves processing speed by reducing the size
of Cia output.

Subspace Size of Final Layer. The parameters for V1 and V2 are fixed, while
changing subspace size for the V3 layer in the ISA model from Fig. 1. The model
specifications for this experiment are described in Table 1.

Table 1. Model specifications: The subspace size Z3 of V3 is varied

Models V1, p1 = 11 V2, p2 = 12 V3, p3 = 13

S1 (R1) C1a S2 (R2) C2a S3 (R3)

Z1 R̃1 Z2 R̃2

ISA 100 4 25 150 5 30 400

1 Tested on a database of 10 different categories included: airplane, bonsai, butterfly,
car-side, chandelier, faces, ketch, leopards, motorbikes, watch of objects from the
CalTech101 dataset [1].
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Fig. 2. Classification accuracy for 10 classes when subspace size Z3 is changed with
fixed number of R3. L2-pooling at V3 is not applied so the feature vector is of the
same length for all the cases: (a) Accuracy with respect to number of training samples
(b) Accuracy with respect to subspace size, where t represents the number of training
samples

In Fig. 2, the S3 layer filters are formed with different subspace sizes, but are
not pooled with Eq. 5. So, after applying spatial pooling over all the locations
of the features, the final feature vector is of size 1× 400.

Figure 2a demonstrates when the overall performance of the features with
smaller subspace size and with a fixed feature vector size perform better than
the subspaces of largest sizes (45, 50). However, Fig. 2b indicates that Z3 = 4
and Z3 = 20 classifies with better accuracy for most of the training sample sizes.

Number of S2 Layer Filters. Here, the parameters for V1 and V3 are fixed,
while changing subspace size for the V2 layer in the ISA model from Fig. 1. The
model specifications for this experiment are described in Table 2.

Table 2. Model specifications

Models V1, p1 = 11 V2, p2 = 12 V3, p3 = 13

S1 (R1) C1a S2 (R2) C2a S3 (R3)

Z1 R̃1 Z2 R̃2

ISA 100 4 25 300 - - 200

In Fig. 3a, the classification accuracy for the different subspace sizes at the
V2 layer is depicted. The model with largest R̃ shows highest accuracy, but from
Fig. 3b, it is seen that the second largest R̃ which is 100 for Z2 = 3 does not
perform better than Z2 = {4, 5}.
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Fig. 3. Classification accuracy for 10 classes when subspace size Z2 is changed with
fixed value of R2 = 300. Pooling at C2a is applied such the feature vector size R̃2

changes for all the cases: (a) Accuracy with respect to number of training samples
(b) Accuracy with respect to subspace size, where t represents the number of training
samples

The above experiments indicate that although larger subspace sizes are pre-
ferred, simply increasing the number of filters or subspace sizes does not neces-
sarily translate to a better model. For example, the results in Fig. 3b showing
better accuracy for Z2 = 4, R̃2 = 75 than Z2 = 3, R̃2 = 100 indicate that larger
subspace sizes represent the statistical properties of the data more accurately.

This highlights the drawback of applying ISA with prior assumption of pool-
ing sizes since the probability of best data representation is not guaranteed. In
[7] it is shown that a relatively large subspace size is optimal for representation
of natural image statistics, depending on the size of the input patch. For higher
complexity data, such as the input sample to the V2 and V3 layers, the most
optimal subspace sizes are 2 and 5 for the V2 layer and 4 for the V3 layer. It
is thus more beneficial for the subspace sizes to be estimated adaptively rather
than being fixed.

Receptive Field Size. Studies have shown that the receptive field size increases
as we go from lower to higher levels of the VC [20], where the cells of the
first layer process local stimulus within a small localized area. Figure 4 shows
the performance of the architecture in Fig. 1 with different receptive field sizes.
The results in Fig. 4 indicate that increase in receptive field size also improves
performance. The number of filters are given by Table 3 and p refers to width of
the square patch.

Increasing receptive field size improved the performance only when the ratio
of increase is not too large as seen from Fig. 4. The model with decreasing RF
size (p1 = 11, p2 = 10, p3 = 9) is also more accurate than the ones with p1 =
11, p2 = 13, p3 = 14 and p1 = 11, p2 = 13, p3 = 15.
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Table 3. Model specifications

Models V1 V2 V3

S1(R1) C1a S2(R2) C2a S3(R3)

h1, Z1 R̃1 h2, Z2 R̃2

ISA 144 9 16 100 4 25 225

Fig. 4. Performance for different receptive field sizes p for ISA

Part 2: Multi-class Object Categorization on CalTech101 Dataset

To compare ISA model performance with other feature extraction models the
CalTech101 database is used for multi-class object categorization [1]. The stan-
dard method of splitting the training set of images into 15 and 30 images per
class is applied. The number of S1 and S2 layer filters are 144 and 300 respec-
tively. The corresponding subspace sizes are Z1 = 9 and Z2 = 5. Although for
better results a larger number of dictionaries in each layer is more beneficial these
parameters allowed for a faster computation time. The sample size for learning
dictionaries at each layer is 50, 000. The dictionaries (or filters) are learned from
just 10 images from each category.

Current state of the art models have achieved good results for the
CalTech101 database. The list of models here are mostly biologically motivated
hierarchical models based on the unsupervised feature extraction models. Most
of the reported accuracy of these models are a result of varying length of features.
For example, in the HMAX model in [18,22], classification using a dictionary of
4075 features had an accuracy of 54% [24]. In [24] by increasing the scale depth
of the S1 units, an accuracy of 61% with 4080 features is reported. In [3], an
accuracy of 73.67% is achieved for training size of 30 for feature length of 21, 504.
A further increase of 76.13% is reported for a feature length of 43, 008. In [27],
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Table 4. Classification accuracy of the ISA model in comparison to similar feature
extraction models for unsupervised learning.

Classification accuracy for number of 15 and 30 training images per category

Model 15 images 30 images

Serre [22] 35 42

Mutch and Lowe [13] 48 54

HMAX-S [24] 54 61

HMAX-S (extended) [25] 68.49 ± 0.75 76.32 ± 0.97

Lee et al. [12] 57.7 ± 1.5 64.5 ± 0.5

Zeiler et al. [28] - 71 ± 0.10

Yu et al. [27] - 74.0

Sparsity regularised HMAX [3] 68.98 ± 0.64 76.13 ± 0.85

ISA model (dictionary size 4000) 72.65% ± 1.08 79.70% ± 0.55

an unsupervised two layer model with sparse coding and pooling is developed
which also achieved a high classification accuracy of 74% with codebook of 4096
features. In most of the models listed here, they had dictionary sizes of at least
4000 or higher. Therefore, the last layer features of length 1000 are extracted
4 times and concatenated. The final accuracy value obtained is from averaging
the results of 10 different splits of test and train data.

The resulting accuracy is higher than the unsupervised learning models in
Table 4. Compared to the Adaptive Deconvolutional Networks [28], which uses
4 layers for feature extraction the accuracy of the ISA model with 4000 features
is much higher.

5 Conclusion

The pathway to achieving biomimetic visual capabilities is through superior
feature representation rather than having deeper hierarchies in models and from
increasing the number of parameters. Inspiration from neuroscience research
have led to breakthroughs in the computer vision field before and can deliver
further advances in self-taught models that we investigate in this paper.

The main advantage of the ISA model is its accuracy and dimension reduction
in comparison with other similar unsupervised or self-taught feature extraction
models. Due to the drawbacks of current supervised models, the ISA based
learning is a step towards sparsity oriented unsupervised learning models.
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Abstract. Given a dataset of B cell subpopulation quantities, for about
six thousand patients, that is a cross-sectional immunological dataset,
here we detect clusters representing models of immune system states in
an unsupervised way (i.e., according only to their different statistical
properties). Two time-evolving B cell networks are also generated from
data-driven hidden Markov models, with four and five hidden states,
respectively. Our interpretation from a biomedical viewpoint of the sta-
tistical parameters of the Bayesian models confirms an age related decline
of some types of B cell functions and finds out a class of old patients with
unexpected B cell values.

1 Introduction

The immune system may be assumed as a network of interacting cells, evolving
during human life in terms of presence/absence and strength of type of inter-
actions, which change through childhood, young, and mature adulthood, to the
decline of old age [21]. Emergent research interests involving systems biology
and knowledge discovery approaches, as well as biomedical data analysis, focus
on the lifetime evolution of the immune system, in terms of changes of defence
mechanisms of a human being during his/her infancy, growing/mature age and
senescence [15,25]. A problem widely investigated in computational immunology
is the role of B cell sub-populations (e.g., B cell memory, B cell activation) in
the cellular and humoral response of the immune system [10,11,22].

Aging is a complex process which negatively impacts lymphocyte (in partic-
ular B-cell) biological variability [24], and an age-related decline, referred to as
immunosenescence, seems to be characterized by a decrease in cell-mediated
immune (T- and B-cell) functions [12,16]. Elucidate mechanisms underling
immunosenescence is expected to have with a notable social and economical
impact, for example, to design new therapies and vaccines for elderly people.

Fast and efficient computational techniques have been recently introduced
in the literature of machine learning to infer new knowledge from data, in par-
ticular for multivariate clustering or time-series analysis, such as segmentation
and change-point detection [2,17]. Segmentation of multiple time-series is a com-
plex problem, since different data sequences may show different aspects of the
c© Springer Nature Switzerland AG 2019
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underlying processes. Main methodologies in this field are based on motif clus-
tering [13,23].

In this paper, we provide and discuss some models of the immune system
state based on B cell quantities and propose related time evolving networks of
cell relationships, generated from Hidden Markov Models (HMMs) with four
and five (hidden) states. Models are trained in an unsupervised way from an
immunological dataset. Data were collected over about six thousands patients
(whose age gave us a time line to sort the B cell quantities) that were given as a
cross-sectional dataset. Eight different types of B-cell subpopulations are identi-
fied according to the expression configuration of three specific receptor clusters,
and a multivariate dataset is analyzed as the system observation to define our
probabilistic models. As an initial work, here we viewed the data of patients of
different ages (given in days), as time-line data, by leaving undefined the tempo-
ral transition of distributions of eight B-cell subpopulations, and applied HMMs
to model the given dataset. Finally, dynamical relationships between different
types of B-cells has been measured by pairwise correlation, and resulted in an
actual decline of B cells mean quantities by aging.

A first model proposed for this dataset describes a possible sequence of (ex-
vivo observed) B cell maturation steps in human body [5]. It was based on
Metabolic P Systems [4,18], with linear regulation maps, generated by regression
techniques based on genetic algorithms [7–9]. These models are discrete dynam-
ical systems, introduced in the context of membrane computing and applied
to immunological systems [14], to provide a deterministic multiset evolution by
means of state functions (that give the quantities of transformed elements).

As in [26], our original goal has been to generate a segmentation of mul-
tivariate time series based on a changing correlation structure, as well as on
changing mean and variance. The problem may be graphically explained as in
Fig. 1: a univariate time series segmentation might be induced by a change in
mean (a), variance (b), or model order in autoregressive processes (c). However,
in the case of multivariate time series the correlation structure can also identify
different segments (d). These changes are typically hard to recognize but they
can contain key information about the generative process under investigation.

Fig. 1. Four measures of dissimilarity among time series segments: (a) mean, (b) stan-
dard deviation, (c) model order, (d) correlation structure.

In [6] we modeled each segment by piecewise multivariate linear regres-
sion, and generated networks of cells (for each segment) according to model
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coefficients. In [3] we computed the segments that maximize the differences in
correlation matrices among segments themselves. The first method depends on
parameters, such as the threshold of regression model errors in each segment,
which may be difficult to tune, while the second method has limitations in the
number of segments since it is a brute force algorithm. Along this research line
of investigation to analyze and deeply understand the underlying information of
our immunological dataset, here we use a more robust probabilistic framework,
namely HMMs, having strong theoretical foundations and well-grounded algo-
rithms for learning parameters from data, to infer the most likely sequence of
hidden states that provide a sequence of observations.

A more refined approach could require the application of Inertial HMMs [19],
where transition probabilities are defined to force clusters to form segments of
the patients time-line, that is leaved as future work. In this initial work, we
applied HMMs without any constraint on the transition matrix to find clusters of
patients characterized by different statistical properties, and analyze the results
also according to the patients age. Although the transition probabilities result
in a random matrix, a different dynamical behavior for B cells is emerged in
clusters corresponding to different age ranges.

In the next section we briefly describe the dataset and the probabilistic algo-
rithms employed to define our models, while in Sect. 3 some results are discussed,
also in biomedical terms, followed by a few conclusions.

2 Materials and Methods

2.1 Dataset

Data were collected at the University Hospital of Verona (Italy) from 2001 to
2012, as measures of amount of B cells exhibiting the combinations of receptor
clusters CD27, CD23 and CD5 in 5,954 patients. There were 2,910 males and
3,045 females (male/female ratio: 0.95) and the median age of the patients was
37 years (range: 0–95 years). More details on the dataset and the clinical method
used to collect it may be found in [5,24].

In other terms, B cell phenotype of 8 subpopulations (indicated by presence
and absence of the three receptor clusters), may be abstractly described by
random variables accounting for quantities of corresponding cell in each patient.
In Table 1 random variables of our model are reported, representing the cell
subpopulation size of each phenotype present in our dataset.

Table 1. Model variables.

X1 = CD5+ CD23+ CD27− X5 = CD5− CD23− CD27+

X2 = CD5− CD23+ CD27− X6 = CD5+ CD23− CD27+

X3 = CD5− CD23− CD27− X7 = CD5+ CD23+ CD27+

X4 = CD5+ CD23− CD27− X8 = CD5− CD23+ CD27+
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The cross-sectional dataset is a matrix of 5,954 rows and eight columns, in
which rows (i.e., patients) can be sorted by age (given in days), so obtaining a
multivariate time-line where patient age represents time. This artificial view of
the data was advanced with our original goal to search for an optimal segmenta-
tion [3,6] and allow us here to cluster patients in an unsupervised way by HMMs
with unconstrained transition probabilities.

This may be a particular case where it is reasonable to reduce cross-sectional
data into multivariate time-series, even if having not auto-correlated values
among patients of close age. From a different viewpoint, if we sort the data
according to the age of patients, we have a screenshot of the human immune
system (or, more specifically, of the B-cell network) along the lifetime of a meta-
patient, who may be assumed to have a basic functioning system (the number
of patients is high enough, to have a dense dataset on the time line and to be
able to neglect possible known or unknown diseases in the system).

2.2 HMM-Based Clustering Model

Following the research line started in [3,5,6] here we present novel results about
the application of dynamic Bayesian approaches, such as HMMs [20], for iden-
tifying age-related and data-driven properties of the immune system given the
dataset introduced above.

HMMs enable to represent each segment by a multivariate Gaussian dis-
tribution whose parameters are interpretable as the main statistical properties
(i.e., mean and variance of the number of cells for each cell type, and correlation
among the number of cells of different cell types) of the data in the segment itself.
Hence, we detect data segments in an unsupervised way, i.e., according only to
their different statistical properties, and then we interpret these properties from
a biomedical viewpoint.

An HMM is a probabilistic model able to describe Markovian stochastic
processes, characterized by the following elements [20]:

– a set S = {S1, . . . , SN} of hidden state values, representing the hidden fac-
tors (i.e., the states of the immune system in our application) that generate
observed data,

– a set O ⊆ R of observed data values, represented by observed B cell quantities
in our case study,

– a state transition probability distribution A = {aij}, where aij = P [qt+1 =
Sj | qt = Si], 1 ≤ i, j ≤ N , which represents the probability to switch from
value Si for an hidden state qt, at time t, to the value Sj for the hidden state
qt+1, at time t + 1;

– an observation probability distribution for each state Sj , namely the set B =
{bj(O)} of probability distribution functions bj(O) = N (O,μj , Σj), where
j = 1, . . . , N , O is the set of observations, μj the mean and Σj the covariance
matrix of the distribution bj ,

– an initial state distribution π = πi, where πi = P [q1 = Si], 1 ≤ i ≤ N .



510 A. Castellini and G. Franco

Fig. 2. Data analysis framework.

Figure 2 shows the key points of our data analysis framework based on HMMs.
It includes (i) a learning stage in which HMM parameters are tuned to fit avail-
able data, (ii) an inference stage where the learned model is used to generate
the segmentation of the dataset, (iii) the interpretation of segments given the
parameters of related observation probability distribution. In the following the
three steps are explained in more details.

HMM Model Learning. The Expectation-Maximization (EM) algorithm [1]
was used to learn the HMM parameters, namely the state transition probability
distribution A, the observation probability distributions B and the initial state
distribution π. These parameters were tuned as to maximize the likelihood of the
model to fit the dataset of patients’ B-cell quantities. No data were associated
to the hidden state, which represented the cluster learned in an unsupervised
way. We generated two models having four and five hidden states respectively.
We have chosen these small numbers of classes using a-priori knowledge because
we aimed at generating coarse-grained models with interpretable clusters, how-
ever more complex models can be generated using a larger number of hidden
states. Observation models were set to single component multivariate Gaussian
distributions (with one dimension for each observed variable). The initial state
distribution was set to uniform over the set of hidden states, the initial transi-
tion matrix was set to a uniform random stochastic matrix, initial means were
computed by k-means and initial covariance matrices set to diagonal. The Mat-
lab function mhmm em (from the HMM Toolbox) was used to estimate model
parameters. The maximum number of iterations for the EM algorithm was set to
20. The output of this stage is the HMM clustering model λ = (A,B, π), shown
in the middle of Fig. 2.

Inference. The Viterbi algorithm [1,20] (Matlab function Viterbi path) was
used to generate the most likely sequence of hidden states given the observed
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sequence of cell profiles. This sequence can be seen as an approximate segmenta-
tion of the dataset. We notice that classical HMMs, as used in this work, produce
high rates of state transitioning, depending on the cluster size and patients age,
since they do not consider any constraint on the transition probability (as some
extended model do, e.g., Inertial HMMs). We used this method in order to inves-
tigate if age intervals (i.e., segments) can be naturally inferred from statistical
properties of the data or if different structures (such as, clusters with hetero-
geneous ages) emerged. The output of this step is the clustering of the dataset
presented in Sect. 3.

Model Interpretation. HMM parameters have the important feature of being
interpretable in terms of statistical properties of the states (see Fig. 3). For each
hidden state Si, i = 1, . . . , K, we have 8 parameters μi1, . . . , μi8 related to vari-
able means, 8 parameters σi1, . . . , σi8 related to variable standard deviations,
and 28 parameters ρi12, ρi13, . . . , ρi78, where ρijk is the correlation between vari-
able Xj and variable Xk in state Si (for instance, ρi12 represents the correlation
between variable X1 and variable X2 in class Si). These values are computed
by normalizing the covariance matrices Σi. In order to provide a first statistical
and biological interpretation of these clusters, we compared their 44 parame-
ters and generated correlation networks, where nodes represent variables, and
edges are present if the correlation between two nodes (variables) is greater than
a threshold. Moreover, we sorted the correlation parameters according to their
variance among different states (see Fig. 3), since correlation parameters having
larger variance have also a higher information content.

3 Results

Here we discuss the results emerged by the model with four states S1, S2, S3, S4,
as in Fig. 3, and compare them with those obtained by the model with five states
S′
1, S

′
2, S

′
3, S

′
4, S

′
5.

3.1 Cluster Characterization by Data Means

A first characterization may be discussed by analyzing the bar charts (and the
means) reported in Fig. 4. They show that state S2 includes 3085 patients, state
S3 involves 2222 patients, segment S1 550 patients, and state S4 97 patients.
Box plots in Fig. 4c display the distribution of patient age over the states, and,
for each variable, the distribution of its values around the means (represented by
red lines). Even if a complete segmentation of patients was not obtained by our
coarse-grain clustering, the four clusters may be ordered by increasing (mean)
patients age, as S1, S3, S2, and S4, where infants mostly belong to segment S1,
S3 includes patients falling into a second age range (approximately 20–40 years
old), and S2, S4 cover more advanced age patients (respectively).

State S1 owns most of the maximal values, and is characterized by relatively
high mean values, maximal for variables X1,X2,X3,X4, whose expectation is
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Fig. 3. Interpretation of cluster models: each cluster represents a recognized state
of the immune system and it is identified by a group of patients having similar cell
configurations. Cluster parameters are the means and standard deviation of each cell
and the correlation between each couple of cells.

at least double of that in each other cluster. By looking at Table 1, we notice
that these four variables are all those which do not express receptor CD27. Then,
according to this model, we could hypothesize that all eight B cell subpopulations
in an infant stage of human being life have relatively high mean values, which
are even maximal for the subpopulations which do not express CD27.

State S3 has average values of means for all variables. In Fig. 4, in fact we
may notice that, in each box-plot, the mean value of this cluster is never maximal
nor minimal. Relevantly, state S2 (which contain more than half patients) has
minimal means, with respect to the other clusters, for all the variables. Therefore,
according to this probabilistic study, we may observe that expectations of the B
cells subpopulations under consideration decreases with age, as also suggested
by experimental observations in the medical literature [12,16].

In next section, we will analyze more in detail how correlations in B cell net-
works change during life time, beside the decrease of mean values for all variables,
along the above three clusters which cover almost all patients. To conclude this
first analysis, however, a comment should be devoted to the state S4, including
only the 97 generally old patients, that is characterized by maximally high mean
values for variables X5,X6,X7,X8. This is a strange behavior, regarding all B
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Fig. 4. Over the four clusters produced by HMMs: (a) clusters sizes; (b) variables
median values; (c) box-plots with the age and the variable values distributions around
the means. (Color figure online)

cell subpopulations having expressed the receptor clusters CD27, which identi-
fies a class of outlier patients, possibly corresponding to an anomalous state of
the immune system.

To conclude this section, we point out an aspect which confirms the analysis
of our classification, also in the way it is interpreted. When a model with five
clusters is considered, a correspondence may be found among states (although



514 A. Castellini and G. Franco

Fig. 5. Over the five clusters produced by HMMs: (a) clusters sizes; (b) variables
median values; (c) box-plots with the age and the variable values distributions around
the means.

different in number of patients), which keeps both age ranges and the expectation
based characterizations described above. Indeed, if we call S′

1, S
′
2, . . . , S

′
5 the

states in the 5-model, then in Fig. 5 we may observe that S1 corresponds to S′
5

(in terms of young age range and characterization of having relatively high mean
values, especially for variables X1,X2,X3,X4), S3 is very similar to the union
of S′

3 and S′
1 (young/mid age), S2 to S′

4 (mid/old age), and S4 to S′
2 (outliers)

having scarce characterization and light similarities with the other states.
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3.2 Correlation Based B Cell Networks, over Four and Five
Clusters

Further interesting information may be deduced by observing correlation based
connections between all eight different subpopulations of B cells, computed as
an outcome of HMM based modeling. In Fig. 6 a bar chart is reported, for each
couple of variables, to show correlation values between the two variables across
different clusters. The diagrams of bar charts are sorted by decreasing variability
of correlation among the states. Namely, the variables X5 and X6 (in both mod-
els) are those whose correlation is maximally different across the states, then the
correlation between X5 and X6 is more informative in this state classification
than that between another pairs of variables. On the other hand, couples as
{X1,X4} or {X5,X8} (almost always correlated) and {X2,X3} (almost never
correlated) have a sort of constant interconnection across our clusters. In biomed-
ical terms, these kind of observations on the model allow us to hypothesize that:
(i) the B cell subpopulations having configuration with only one between CD5
and CD27 expressed (that is, X1 and X4, or X5 and X8) are correlated during
the whole lifetime of a human being (no matter about the activation of CD23),
while (ii) B cell subpopulations with no expression of both CD5 and CD27 are
never correlated (in lifetime, and independently on the expression of CD23). Fur-
ther experimental data on patients could validate our hypotheses from a medical
viewpoint.

Let us here discuss more specifically the correlation based B-cell networks,
obtained from our HMMs and reported in Fig. 7, where nodes represent the cell
phenotypes and edges connect pair of nodes when corresponding variables have
correlation greater or equal than 0.5). States S1 (550 patients) and corresponding
S′
5 (360), including patients between 0 and about 6 years, are characterized by a

clique of correlations among variables X5,X6,X8, namely the couple {X6,X8}
has a correlation around 0.5 only for these clusters (then only for patients of
infant age). Such a connection is the only case, in lifetime, when two B cell
phenotypes having more than one (actually here it is a couple of) receptor(s)
differently expressed are correlated.

The large cluster S3 (with 2222 patients) and corresponding union of S′
3

(1205) and S′
1 (2249), including patients of approximate age range 10–45 years,

have networks characterized by three correlations which are not all together
present in other states: {X1,X7}, {X6,X7}, and unique {X4,X6} (which corre-
spond to activation of CD27, CD23, and CD27 respectively). Elder patients
of states S2 (3085 patients) and S′

4 (2077) have a simple identical correla-
tion network, with four edges, which includes a couple of pairs always present:
{X1,X2}, {X1,X4}, and the couple of edges: {X5,X6}, {X5,X8}. State S4 (with
only 97 mainly elder patients), together with state S′

2 (63 mainly elder patients)
present a mix of high correlations which allow us to hypothesize that these clus-
ters collect mostly “ill” patients (having some health disturb effecting B cell
quantities and reciprocal dynamics). Some anomalies could correspond either to
the presence of relatively high correlations for {X3,X4}, {X7,X8} (which are
never present in other states, and correspond to the activation of CD5, for the
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Fig. 6. B cell correlations by HMM based modeling, with four and five states respec-
tively. Top: pair correlations across four clusters; bottom: pair correlations across five
states. Horizontal red line denotes the 0.5 value. (Color figure online)
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Fig. 7. Correlation based B cell networks, with four (straight edges) and five (dotted
edges) states.

two cases of both either expressed or not expressed C23 and C27), or to the rel-
atively high expectation of variables X5,X6,X7,X8 (the B cell subpopulations
with CD27 expressed) yet noticed in previous section.

A final observation on the B cell networks in Fig. 7 is that the correlation
between cells X1 and X2 (corresponding to the activation of CD5, when CD23
is expressed and CD27 does not) seems to hold only for adults. A biomedical
validation of this model will be a next step for future work, in order to test, dis-
cuss, and eventually improve our hypotheses with new knowledge on the immune
system functioning.

4 Conclusion and Ongoing Work

In this work we applied HMMs to infer a data-driven Bayesian model as a
sequence of hidden states that provide given observations. The method is out-
lined and the computed model analyzed. This provides few clusters of patients
with a significantly different structure in terms of B cell networks. Such states
are described by multivariate Gaussian distributions, whose parameters are inter-
pretable as main statistical properties of different dynamics and correlation based
B cell populations interconnections. We finally advanced some hypotheses for a
biological interpretation of these properties. Our observations seem to confirm
that aging negatively impacts lymphocyte variability, in terms of an age-related
decline, or decreasing mean values. A class of relatively few outliers has been
also identified, where B cell subpopulations characterized by the expression of
receptors CD27 increase their mean quantities in advanced age.

Acknowledgments. Authors would like to thank Antonio Vella (department of
pathology and diagnostics, University Hospital of Verona) for providing the dataset
used in this work and for interesting discussions on the role of B cells in the immune
system.
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Abstract. With the advancements in smartphones and inbuilt sensors, the day-
to-day spatiotemporal activities of people can be recorded. With this available
information, the automated extraction of spatiotemporal patterns is crucial to
understand the people’s mobility. These patterns can assist in improving the
smart city environments like traffic control, urban planning, and transportation
facilities. The smartphone generated spatiotemporal data is enriched with mul-
tiple contexts and efficiently utilizing them in a Machine Learning process is still
a challenging task. In this paper, we propose a Nonnegative Coupled Matrix
Tensor Factorization (CMTF) model to integrate and analyze additional contexts
with spatiotemporal data to generate meaningful patterns. We also propose an
efficient factorization algorithm based on variable selection to solve the Non-
negative CMTF model that yields accurate spatiotemporal patterns. Our
empirical analysis highlights the efficiency of the proposed CMTF model in
terms of accuracy and factor goodness.

Keywords: Nonnegative Coupled Matrix Tensor Factorization �
Greedy coordinate descent � Variable selection � Smart city � Spatiotemporal �
Pattern mining

1 Introduction

With more than half of the world population living in cities or urban areas, there is an
increasing pressure to uplift the current status of infrastructure and resources available
[1]. Urban cities should be accommodated with improved transportation and inter-
connectivity and improve social well-being by providing the environment and eco-
nomic sustainability. The cities can be considered smart if it is instrumented,
interconnected and intelligent according to Harrison et al. [2]. They also quote that the
smart cities should use multiple devices like sensors, camera, smartphones, web,
kiosks, personal devices to facilitate improved services. In some smart cities, these
information and communication technologies (ICT) have been dominating to facilitate
the city infrastructure, transportation, and mobility [3]. The role of ICT plays a critical
role to define the smart cities. The economy and governance of a smart city are driven
by innovation, communication, and smart people.
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The mounted sensing modules in smartphones are capable to collect a vast amount
of data representing multiple contexts [4]. This sensor data generated from mobiles
must be utilized to understand and make the smart cities intelligent and future ready.
An example is the smartphones generated real-time Location-Based Social Networks
(LBSNs) data like location, time and activity when the citizens navigate within the city
[5]. Analyzing this real-world data is important to model the functionality of cities like
traffic controlling, easy transportation and many others.

Understanding the spatiotemporal pattern is important and can help in urban
planning. In the real world, any kind of incident can change the mobility pattern of
people and the change in mobility pattern should be addressed properly [6, 7]. One
such example is the Great East Japan Earthquake which triggered a change in the
mobility pattern of the local commute [8].

Tensor modeling and tensor factorization (TF) is the generalization of matrix
modeling and factorization for higher order. Tensor modeling has been successfully
applied to model a spatiotemporal data and automatically derive the spatiotemporal
patterns [6]. As shown in Fig. 1, a 3-mode (user x location x time) tensor model is
factorized into 3 latent matrices with their respective latent factors. Each latent factor
learns a pattern(s) hidden in the tensor data. However, the traditional TF struggles to
efficiently utilize all the available contexts in processing because not all the contexts are
interdependent. Some contexts are related only to one mode of the tensor.

In this paper, we propose the Nonnegative Coupled Matrix Tensor Factorization
(CMTF) model to efficiently utilize contexts in spatiotemporal pattern mining. We also
introduce a novel fast and efficient variable selection based Coordinate Descent
(CD) method to solve nonnegative CMTF. Firstly, we derive a single variable update
rule for nonnegative CMTF and calculate the variable importance of all the variables
based on the difference in the objective function. We then introduce a greedy CD
(GCD) that traverses the factor matrix row-wise to select a single important variable to
update.

Fig. 1. Example of TF for analysis of spatiotemporal patterns using latent factors.
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Using synthetic and real-world datasets we demonstrate: (1) the speed of the
proposed GCD algorithm to solve Nonnegative CMTF; and (2) the efficiency of the
proposed nonnegative CMTF model in identifying the spatiotemporal patterns hidden
in the smart city data.

To the best of our knowledge, this is the first work to model smart city data in the
CMTF model to efficiently derive the spatiotemporal patterns.

2 Related Work

There exists only a handful of tensor based smart city applications that simply model
the data available and attempt to understand the patterns. Recently, the spatial-temporal
mobility data is modeled and factorized using probabilistic tensor factorization to
understand the mobility of users to model the urban structure [6]. Tensor modeling has
been applied to understanding the noise pollution across New York City to allow
people to live in the better environment [9]. Here, the tensor is modeled as a third order
with (location x noise category x time slot) information.

Researchers have also modified the traditional decomposition algorithms to learn
the spatial and temporal context available in the data. The Orthogonal NTF method
added the orthogonal constraints on the factor matrices [11]. Graph Laplacian Regu-
larization was applied to Nonnegative Tensor Factorization (NTF) to enrich the tensor
input with neighborhood information [10]. Though these methods were able to utilize
spatial and temporal information efficiently, they ignore to model the additional
information available with the data. Thus, an efficient model to collectively factorize
multiple contexts in the real-time scenario is needed. Thus, an efficient tensor model to
utilize additional available information in the factorization process is needed.

With technological advancements, real-world datasets are getting richer and exhibit
multi-type relationships. This changing multifaceted nature of the dataset has led
researchers to fuse matrix and tensor data models to capture this data and discover
useful knowledge effectively [11–14]. This data fusion can be immensely useful in
several applications such as web analytics, chemometrics, bioinformatics, signal pro-
cessing, and metabolomics. For example, in a recommendation system where the task
is to recommend an activity to a user at a location, the primary data source can be
represented as a third order tensor (user x location x activity) with a supplementary
matrix (location x feature) [15]. Inspired by the success of coupled matrix factorization
(CMF), the Coupled Matrix Tensor Factorization (CMTF) method has been proposed
to jointly analyze matrix and tensors [16]. The joint factorization will utilize the
additional available information and hence can reveal more latent factors whereas a
simple matrix or tensor factorization failed to reveal all the factors.

CMTF is traditionally solved using Alternating Least Square (ALS) where we
update one factor matrix at a time by fixing the other factor matrices. As factorization is
a nonconvex optimization problem, this alternating update is essential. The update rule
of ALS involves time-consuming matrix products and is prone to poor convergence. To
minimize this matrix product. Acar et al. introduced all at once optimization approach
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where all the factor matrices are solved together at once until convergence. This
strategy improves the convergence speed of the factorization process [16]. However, it
fails to identify the true factors. Hsieh et al. introduced the greedy coordinate descent
(GCD) algorithm for Matrix Factorization where the matrix elements, to be updated,
are greedily selected based on the importance measured as the gradient [17]. This
results in fast convergence. In this paper, we derive a single element update rule in
GCD and make it possible for nonnegative CMTF problem.

3 Understanding the Spatiotemporal Patterns Using CMTF

3.1 Coupled Matrix Factorization: Background

The coupled analysis initially started with the factorization of multiple matrices
simultaneously. If X �RI�J and Y �RI�K are two matrices that share the first mode, the
coupled Matrix factorization [18] problem can be represented as

f V;U;Tð Þ ¼ X � VUT
�� ��2 þ Y � VTT

�� ��2 ð1Þ

Where V �RI�R is the factor matrix that is shared by both the matrices with R being
the Rank, and U �RJ�R and T �RK�R are the second mode factor matrices of X and Y
respectively. �k k denotes the Frobenius norm. Applications such as recommendation
systems that require missing value predictions, matrix factorization using the Euclidean
distance loss function is used to approximate the matrices with high accuracy.

3.2 The Proposed Coupled Matrix Tensor Factorization

Tensor Model Representation: Several senor-generated applications such as LBSNs
uses smartphone GPS information of people and record their check-in behavior [5]. In
addition to the location information, it will also track the timestamp associated with the
check-in. Using the location as spatial context and time as the temporal context, a three-
mode (user x venue x time) tensor model X can be generated with a number of check-
ins as the value for each tuple.

Venue Categories as an Auxiliary Information: The tensor model can now be
combined with a matrix model that adds another contextual information for analysis.
There are multiple ways this additional information can be represented. For example,
the social relationships between users can be added by using the user as a common
mode between tensor and matrix. As another example, the additional location (or
venue) information can be added by treating location as a common mode in the matrix
model (venue x feature). In this paper, we propose to use the venue category as an
auxiliary information.
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The foursquare dataset which is an example of LBSN applications records the
check-in behavior of restaurant customers. It also consists of restaurant/venue cate-
gories that are categorized based on multiple nature. As venue categories are dependent
on the venue and independent of other factors, LBSNs researchers avoid this infor-
mation in their analysis as the traditional NTF is not suitable to model it.

Hence, we represent the venue category (venue x venue category) matrix VC and
jointly analyse it with venue x user x time tensor.

The value for the matrix is interpreted as follows:

VC i; jð Þ ¼ 1; if venue i belongs to jth category
0; else

�

As the only venue is shared between tensor and matrix, the factor learning process
needs to be modified accordingly.

CMT Model Representation
We now have the tensor model X representing users’ activities and a matrix model VC

representing venue category information. The generated VC matrix can be jointly
processed with the primary tensor by a fusion model as shown in Fig. 2 by sharing the
common mode of venue. By adding the matrix VC in the tensor model X , we introduce
this new information of venue categories in learning the factor matrices of tensor model
afthe ter decomposition. The coupled model will not just be able to learn the rela-
tionship between venues in accordance with user and time slots, but also in accordance
with each venue’s category.

Coupled Matrix Tensor Factorization (CMTF): The CMTF optimization is for-
mulated as an extension of (1) with a given third-order tensor X �RI�J�K and matrix
Y �RI�L coupled in the first mode as:

V
en

ue

Venue CategoryTime 

Fig. 2. A third order tensor and matrix coupled in venue mode.
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f V;U;T;Cð Þ ¼ X � V;U;T½ �½ �k k2 þ Y � VCT
�� ��2 ð2Þ

Where tensor X is factorized as a CP model [19]. The factor matrix V �RI�R is
shared with matrix Y and other factor matrices U �RJ�R, T �RK�R and C �RL�R are
unshared factors.

4 Optimization Solution for Nonnegative CMTF

In this section, we derive the single element update rule to efficiently solve the non-
negative CMTF optimization function as formulated in Eq. (2). The minimization
function of CMTF as formulated in Eq. (2) can be represented as follows:

f ¼ f1 V;U;Tð Þþ f2 V;Cð Þ ð3Þ

Where f1 V;U;Tð Þ ¼ X � V;U;T½ �½ �k k2 and f2 V;Cð Þ ¼ Y � VCT
�� ��2 are the

minimization function for tensor and matrix respectively.
The goal is to solve the optimization problem Eq. (3) to find the accurate factor

matrices V;U;T and C.
We now explain the proposed algorithm for learning factor matrix V which is

applicable to other factor matrices in principle. Let G ¼ @f
@V be the gradient matrix that

needs to be determined for finding the best factor matrix V.
To solve, we need to find the gradients of f1 and f2 as follows

@f
@V

¼ @f1
@V

þ @f2
@V

ð4Þ

@f1
@V

¼ Vmin X1�V T�Uð ÞTk k2

F ð5Þ

@f2
@V

¼ Vmin Y�VCTk k2

F ð6Þ

where X1 is the metricized tensor in the first mode and � indicates the Khatri-Rao
product [20].

Equations (5) and (6) can be rewritten after computing partial derivatives in
Eq. (4) as:

@f
@V

¼ G ¼ �2X1 T � Uð Þþ 2V UTU � TTT
� �þVCTC � YC ð7Þ

Similarly, after computing second order partial derivatives as we obtain H; the
Hadamard product matrix:
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@2f
@V

¼ H ¼ UTU � TTT
� �þCTC ð8Þ

For each iteration, the values for Eqs. (7) and (8) can be calculated for entire matrix
and the variables can be updated using the one variable update rule of CD [21] as,

v̂ij ¼ max 0; vij �
�X1 T � Uð Þij þV UTU � TTT

� �
ij þ VCTC � YC
� �

ij

UTU � TTT
� �

jj þ CTC
� �

jj

 !
� uij ð9Þ

where vij indicates i; jth element of V anthe d v̂ij indicates the computed variable.

vij ¼ vij þ v̂ij ð10Þ

The calculation of X1 T � Uð Þ, UTU � TTT and VCTC for every element is
expensive and hence it should be calculated before updating the element.

For simplicity, let us represent

gij ¼ �X1 T � Vð Þij þV UTU � TTT
� �

ij þ VCTC � YC
� �

ij ð11Þ

hjj ¼ UTU � TTT
� �

jj þ CTC
� �

jj ð12Þ

The factor matrices, U and T of the tensor and the factor matrix C are learned
similarly using Eqs. 4 to 10 with the following changes. The matrix component exists
only for shared factor matrix V; hence, f2 is set to 0 when updating factor matrices,
U and T of the tensor. Likewise, when updating the factor matrix C, the partial
derivative of f2 with respect to C alone can be calculated and f1 is set to 0. To solve
nonnegative CMTF based on variable selection, we next derive the greedy CD. GCD
uses the greedy strategy in finding and updating single variable multiple times within a
single inner iteration. Each time, the important variable is selected based on its
importance calculated using gradients.

4.1 Variable Selection Using GCD – Row-Wise Update

In matrix factorization, variable selection has been proven to converge faster by
updating the important variables repeatedly, instead of considering all variables [17]. In
this paper, we propose to calculate the importance of a variable during coupled matrix
tensor factorization using gradient principles [17] as,

Oij ¼ � vij � gij
� �� 0:5 � hij � vij � vij

� � ð13Þ
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The rationale behind using Eq. (13) is that it calculates the difference in the
objective function for each variable’s update. Higher the difference value, higher is the
variable’s importance. We propose to employ the GCD algorithm for updating the
elements based on the importance calculated as in Eq. (13). In GCD, the matrix O is
computed initially that stores the variable importance of each element in factor matrix
U. Once we have importance scores for all variables, the variable with the highest score
is selected row-wise and updated repeatedly. In matrix factorization, this facilitates fast
convergence with more accurate predictions. We expect the same in coupled matrix
tensor factorization. With the calculated variable importance, the gradient of the factor
matrix and update rule as described above, the update is performed according to
algorithm 1. We suggest readers to refer [17] for theoretical analysis.

5 Empirical Analysis

In this section, we report the performance of GCD1 in coupled matrix tensor factor-
ization for generating factors for understanding spatio-temporal patterns. The non-
negative CMTF problem can also be considered as a solution to factor identification.
Traditionally, the nonnegative CMTF algorithms are evaluated for the missing data
estimation problem, it is also important to evaluate them in terms of how well they can
capture the underlying factors. All the experiments were conducted on Intel (R) Core
(TM) i7-6600U CPU @ 2.60 GHz model with 16 GB RAM.

5.1 Datasets

We used randomly generated synthetic datasets to evaluate the runtime performance of
the proposed GCD for CMTF model. We also used the New York city foursquare data
(NYC) [22] that consists of 928 users’ check-in behavior at 14831 venues during April
2013. As discussed before, the dataset was added with an auxiliary information of 368
venue categories for different venues. We represent (venue, user, time) as a tensor and
(venue, venue category) as an additional matrix. We set the time slots to 24 h to
understand the temporal pattern over hours. Table 1. shows the statistics of various
datasets used in this analysis. We set the rank of 4 for New York city foursquare dataset
as we are interested to identify 4 patterns and 10 for all the other synthetic datasets after
conducting a series of trials.

1 https://github.com/thirubs/CMTF-GCD.
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5.2 Runtime Performance

As shown in Table 2, we use synthetic data and change the size of the input tensor to
evaluate the runtime performance of GCD for CMTF with other benchmarks. ALS
updates an entire factor matrix that involves complex matrix products for each iteration
whereas TurboSMT-OPT converges slowly because of the information loss associated
with the random projection of the input tensor. It can be evident that GCD is 33 times
faster than ALS [16] and 1.5 times faster than TurboSMT-OPT [23]. This is because of
the simplified single variable update in GCD.

5.3 Approximation Performance

We evaluate the quality of factorization by the approximation error and report the
accuracy as Normalized Residual Value (NRV) [24] on real-world NYC dataset.

Approximation Error NRVð Þ ¼ X1 � V T � Uð ÞT�� ��2
F

Xk k2F
ð14Þ

We compared the proposed CMTF GCD model with the traditional tensor model
with regularization (R_NTF) [25] and Orthogonal constraints (O_NTF) [26]. R_NTF
imposes the neighborhood information as Graph Laplacian Regularization in the tensor
model. It is clear from Table 3, that the CMTF GCD model outperforms R_NTF and
O_NTF with a small margin. Also, CMTF based on OPT yields poorer performance
because of the information loss during the random projection of input tensor.
Both GCD and ALS yield 2 to 3 percentage improvement in the accuracy. While ALS
and GCD perform equally better, ALS is not scalable to large datasets as shown in
Table 2. Hence, CMTF with GCD is the best choice in mining the spatiotemporal
patterns as it is able to include additional context in the dataset.

Table 1. Dataset statistics

Dataset Tensor size Matrix size Density of tensor

Syn1 500 � 500 � 500 500 � 500 0.0001
Syn2 1000 � 1000 � 1000 1000 � 1000 0.0001
Syn3 1500 � 1500 � 1500 1500 � 1500 0.0001
NYC 14831 � 928 � 24 14831 � 368 0.0001

Table 2. Runtime (in secs) vs scalability

Methods Runtime in secs
Syn1 Syn2 Syn3

ALS 437.64 4949.4 19589
TurboSMT-OPT 62.39 334.67 904.44
GCD 37.17 297.55 581.34
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5.4 Spatiotemporal Pattern Mining

As we set the factorization rank to 4, each factor matrices have 4 latent/hidden factors.
In Fig. 3, we plot the factors of time factor matrix to understand the temporal patterns.
The red pattern indicates a peak at 12 pm and a small peak at 9 to 10 am. This clearly
refers to the lunch time and dinner time. As the dataset is about the users’ check-in at
restaurants, this pattern is meaningful. The blue pattern indicates a peak at 1 pm
showing that some set of people likely to have late lunch. On the other hand, the green
pattern shows that some people are active during the afternoon and midnight. In Fig. 4,
we plot the factors of venue factor matrix to understand the spatial patterns. The red
and pink patterns in Fig. 3 do not show much distinction. However, comparing Fig. 3
with Fig. 4, red pattern and pink pattern refer to different locations. Similarly, by
comparing Figs. 3 and 4, one can derive multiple spatiotemporal patterns. These
spatiotemporal patterns are difficult to be extracted manually and it needs expert
domain knowledge. CMTF facilitates the automated pattern elicitation.

Table 3. Approximation performance

Methods Approximation error

R_NTF 0.99
O_NTF 1.00
CMTF_ALS 0.97
CMTF_OPT 0.99
CMTF GCD 0.97

Fig. 3. Time factors. (Color figure online) Fig. 4. Venue factors. (Color figure online)
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6 Conclusion and Future Work

With the growing data generation and collection using smartphones and web appli-
cations, it is vital to utilize all the contexts in the machine learning process. Especially
when smart city applications involve, it is important to perform the joint analysis task
to facilitate the integration of contexts with the spatiotemporal dataset. In this paper, we
introduce a Nonnegative CMTF model to facilitate this joint analysis. Nonnega-
tive CMTF facilitates this through the factorization algorithm, however, existing
algorithms are prone to slow convergence and false factor assessing. To overcome
these challenges and to enhance the efficiency, we introduced a Greedy Coordinate
Descent (GCD) for Nonnegative CMTF. Extensive empirical analysis with several
state-of-the-art algorithms shows that the nonnegative CMTF algorithm is able to
provide an effective solution for factor revealing problems. In future, we will extend the
nonnegative CMTF for partially shared matrix tensor factorization. Also, we will apply
coupled tensor factorization in relation to recommendation systems.

Acknowledgements. This work is supported by SUTD-MIT International Design Center and
NSFC 61750110529.
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Abstract. In this article, we present a framework for taking into
account user preferences in multi-objective Bayesian optimization in
the case where the objectives are expensive-to-evaluate black-box func-
tions. A novel expected improvement criterion to be used within Bayesian
optimization algorithms is introduced. This criterion, which we call the
expected weighted hypervolume improvement (EWHI) criterion, is a gen-
eralization of the popular expected hypervolume improvement to the case
where the hypervolume of the dominated region is defined using a user-
defined absolutely continuous measure instead of the Lebesgue measure.
The EWHI criterion takes the form of an integral for which no closed
form expression exists in the general case. To deal with its computation,
we propose an importance sampling approximation method. A sampling
density that is optimal for the computation of the EWHI for a predefined
set of points is crafted and a sequential Monte-Carlo (SMC) approach
is used to obtain a sample approximately distributed from this density.
The ability of the criterion to produce optimization strategies oriented
by user preferences is demonstrated on a simple bi-objective test prob-
lem in the cases of a preference for one objective and of a preference for
certain regions of the Pareto front.

Keywords: Bayesian optimization · Multi-objective optimization ·
User preferences · Importance sampling · Sequential Monte-Carlo

1 Introduction

In this article, we present a Bayesian framework for taking into account user
preferences in multi-objective optimization when evaluation results for the func-
tions of the problem are obtained using a computationally intensive computer
program. Such a setting is representative of engineering problems where struc-
tural analysis or fluid dynamics are used. The number of runs of the computer
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program that can be afforded is limited and the objective is to build a sequence
of observation points that rapidly provides a “good” approximation of the set
of Pareto optimal solutions, where “good” is measured using some user-defined
loss function.

To this end, we formulate an expected improvement (EI) criterion (see, e.g.,
[20]) that uses the weighted hypervolume indicator (WHI) introduced by [29] as a
loss function. This new criterion, which we call the expected weighted hypervolume
improvement (EWHI) criterion, can be viewed as a generalization of the expected
hypervolume improvement (EHVI) criterion of [14] that enables practitioners to
tailor optimization strategies according to user preferences.

The article is structured as follows. First, we recall in Sect. 2 the framework of
Bayesian optimization. Then, we detail in Sect. 3 the construction of the EWHI
criterion and discuss computational aspects. The ability of the criterion to pro-
duce optimization strategies according to user preferences is then demonstrated
on a simple bi-objective test problem in the cases of a preference for one objec-
tive and of a preference for certain regions of the Pareto front in Sect. 4. Finally,
conclusions and perspectives are drawn in Sect. 5.

2 Bayesian Optimization

2.1 The Bayesian Approach to Optimization

Consider a continuous optimization problem P defined over a search space X ⊂
Rd and let X = (X1, X2, X3 . . .) be a sequence of observation points in X. The
problem P can be, for example, an unconstrained single-objective optimization
problem or a constrained multi-objective problem. The quality at time n > 0 of
the sequence X viewed as an approximate solution to the optimization problem P
can be measured using a positive loss function

εn : X �→ R+, (1)

such that εn(X) = 0 if and only if the set {X1, . . . , Xn} solves P and, given
two optimization strategies X1 and X2, εn(X1) < εn(X2) if and only if X1

offers a better solution to P than X2 at time n. Under this framework, one can
formulate the notion of improvement as a measure of the loss reduction yielded
by the observation of a new point Xn+1:

In+1 = εn(X) − εn+1(X) , n ≥ 0. (2)

The improvement is positive if Xn+1 improves the quality of the solution at
time n + 1 and zero otherwise.

Assume a statistical model with a vector-valued stochastic process model ξ
with probability measure P0 representing prior knowledge over the functions
involved in the optimization problem P. Under the Bayesian paradigm, opti-
mization algorithms are crafted to achieve, on average, a small value of εn(X)
when n increases; where the average is taken with respect to ξ. In this frame-
work, the choice of the observation points Xi is a sequential decision problem.
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The associated Bayesian-optimal strategy for a finite budget of N observations
is, however, not tractable in the general case for N larger than a few units. To
circumvent this difficulty, a common approach is to consider one-step look-ahead
strategies (also referred to as myopic strategies, see, e.g., [22,24] and [8,18] for
discussions about two-step look-ahead strategies) where observation points are
chosen one at a time to minimize the conditional expectation of the future loss
given past observations:

Xn+1 = argminx∈X En

(
εn+1(X) | Xn+1 = x

)

= argmaxx∈X En

(
εn(X) − εn+1(X) | Xn+1 = x

)

= argmaxx∈X En

(
In+1(X) | Xn+1 = x

)
, n ≥ 0, (3)

where En stands for the conditional expectation with respect to X1, ξ(X1), . . .,
Xn, ξ(Xn). The function

ρn : x �→ En

(
In+1(X) | Xn+1 = x

)
, n ≥ 0, (4)

is called the expected improvement (EI). It is a popular sampling criterion in
the Bayesian optimization literature for designing optimization algorithms (see,
e.g., [20,26] for applications to constrained and unconstrained global optimiza-
tion problems).

2.2 Multi-objective Bayesian Optimization

We focus in this work on unconstrained multi-objective optimization problems.
Given a set of objective functions fj : X → R, j = 1, . . . , p, to be minimized,
the objective is to build an approximation of the Pareto front and of the set of
corresponding solutions

Γ = {x ∈ X : � x′ ∈ X such that f(x′) ≺ f(x)}, (5)

where ≺ stands for the Pareto domination rule defined on Rp by

y = (y1, . . . , yp) ≺ z = (z1, . . . , zp) ⇐⇒
{∀i ≤ p, yi ≤ zi,

∃j ≤ p, yj < zj .
(6)

In this setting, it is common practice to measure the quality of optimization
strategies using the hypervolume loss function (see, e.g., [21,23,30]) defined by

εn(X) = |H \ Hn| , (7)

where | · | denotes the usual (Lebesgue) volume measure in Rp and where, given
an upper-bounded set B of the form B = {y ∈ Rp; y ≤ yupp} for some yupp ∈
Rp, the subsets

H = {y ∈ B ; ∃x ∈ X , f(x) ≺ y}, (8)

and
Hn = {y ∈ B ; ∃i ≤ n , f(Xi) ≺ y}, (9)
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denote respectively the subset of points of B dominated by the points of the
Pareto front and the subset of points of B dominated by (f(X1), . . . , f(Xn)).
The set B is introduced to ensure that the volumes of H and Hn are finite.

Using the loss function (7), the improvement function (2) takes the form

In+1 (X) = |H \ Hn| − |H \ Hn+1| = |Hn+1 \ Hn| , (10)

and an expected improvement criterion can be formulated as

ρn(x) = En

(
In+1(X) | Xn+1 = x

)

= En

(∫

B\Hn

1ξ(x)≺y dy

)

=
∫

B\Hn

Pn (ξ(x) ≺ y) dy, (11)

where Pn stands for the probability P0 conditioned on X1, ξ(X1), . . . , Xn, ξ(Xn).
The multi-objective sampling criterion (11) is called the expected hypervolume
improvement (EHVI) criterion. It has been proposed and studied by Emmerich
and coworkers [12,14,15].

3 Expected Weighted Hypervolume Improvement
(EWHI)

3.1 Formulation of the Criterion

To measure the quality of Pareto approximation sets according to user prefer-
ences, Zitzler et al. (2007) proposed to use a user-defined absolutely continuous
measure in the definition of the hypervolume indicator1 instead of the Lebesgue
measure (see [29]):

εn(X) = μ(H \ Hn), (12)

where the measure μ is defined by μ(dy) = ω(y) dy using a positive weight
function ω : Rp → R+. The value ω(y) for some y ∈ Rp can be seen as a reward
for dominating y that the user may specify. Optimization strategies crafted using
the loss function (12) have been studied by [3,4,13,29].

Observe that, as discussed by [13], assuming that μ possesses the bounded
improper integral property, (12) is well defined and upper-bounding values are
no longer required in the definition of the sets H and Hn, which can be redefined
as: {

H = {y ∈ Rp ; ∃x ∈ X , f(x) ≺ y},
Hn = {y ∈ Rp ; ∃i ≤ n , f(Xi) ≺ y}.

(13)

1 In the original definition, the authors introduce additional terms to weight the axis.
In this work, one of our objective is to get rid of the bounding set B, as proposed
by [13]. Therefore we do not consider these terms.
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Similarly to (7), the improvement function associated to the loss function (12)
takes the form

In+1 (X) = μ(H \ Hn) − μ(H \ Hn+1) = μ(Hn+1 \ Hn), (14)

and an expected improvement criterion can be formulated as:

ρn(x) = En

(
In+1(X) | Xn+1 = x

)

= En

(∫

Hc
n

1ξ(x)≺y μ(dy)

)

=
∫

Hc
n

Pn (ξ(x) ≺ y) ω(y) dy, (15)

where Hc
n denotes the complementary of Hn in Rp. By analogy with the EHVI

criterion, we call the expected improvement criterion (15) the expected weighted
hypervolume improvement (EWHI) criterion.

3.2 Computation of the Criterion

Under the assumption that the components ξi of ξ are mutually independent
Gaussian processes, which is a common modeling assumption in the Bayesian
optimization literature (see, e.g., [25]), the term Pn (ξ(x) ≺ y) in the expres-
sion (15) of the EWHI can be expressed in closed form: for all x ∈ X and y ∈ Hc

n,

Pn (ξ(x) ≺ y) =
p∏

i=1

Φ

(
yi − ξ̂i,n(x)

σi,n(x)

)

, (16)

where Φ denotes the Gaussian cumulative distribution function and ξ̂i,n(x) and
σ2

i,n(x) denote respectively the kriging mean and variance at x for the ith com-
ponent of ξ (see, e.g., [25,28]).

The integration of (16) over Hc
n on the other hand, is a non-trivial problem.

Besides, it has to be done several times to solve the optimization problem (3) and
choose Xn+1. To address this issue, we propose to choose Xn+1 among a set of
predefined candidate points obtained using sequential Monte-Carlo techniques as
in [17], and derive a method to compute approximations of (15) with arbitrary
weight functions ω for this set.

Let then Xn = (xn,k)1≤k≤mx
∈ Xmx be a set of mx points where ρn is to be

evaluated and denote

ρn,k = ρn(xn,k) =
∫

Hc
n

ω(y)Pn (ξ(xn,k) ≺ y) dy , 1 ≤ k ≤ mx. (17)

Using a sample Yn = (yn,i)1≤i≤my
of my points obtained from a density πn

on Hc
n with un-normalized density γn and with normalizing constant

Zn =
∫

Hc
n

γn(y) dy, (18)
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an importance sampling approximation of the (ρn,k)1≤k≤mx
can be written as

ρ̂n,k =
Zn

my

my∑

i=1

ω(yn,i)Pn (ξ(xn,k) ≺ yn,i)
γn(yn,i)

, 1 ≤ k ≤ mx . (19)

To obtain a good approximation for all ρ̂n,k using a single sample Yn, the
un-normalized density γn can be chosen to minimize the average sum of squared
approximation errors:

E

(
mx∑

k=1

(ρ̂n,k − ρn,k)2
)

=
1

my

mx∑

k=1

(

Zn

∫

Hc
n

ω(y)2 Pn (ξ(xn,k) ≺ y)2

γn(y)2
γn(y) dy − ρ2n,k

)

=
1

my

(

Zn

∫

Hc
n

∑mx

k=1 ω(y)2 Pn (ξ(xn,k) ≺ y)2

γn(y)2
γn(y) dy −

mx∑

k=1

ρ2n,k

)

.

(20)

This leads, using the Cauchy-Schwarz inequality (see, e.g., [7]), to the defi-
nition of the following density on Hc

n:

Lopt
2 (y) ∝ γn(y) =

√√
√
√

mx∑

k=1

ω(y)2 Pn (ξ(xn,k) ≺ y)2. (21)

To obtain a sample distributed from the Lopt
2 density and carry out the

approximate computation of the EWHI using (19), we resort to sequential Monte-
Carlo techniques as well (see, e.g., [2,11,17]). The algorithm that we use is not
detailed here for the sake of brevity. The reader is referred to Sect. 4 of [17] for a
discussion about this aspect. Details about the computation of the normalizing
constant Zn and about the variance of the proposed estimator are given in
Appendix A.

4 Numerical Experiments

In our experiments, we illustrate the operation of the EWHI criterion on the bi-
objective BNH problem as defined in [10] for the following two weight functions
adapted from [29]:

⎧
⎪⎪⎨

⎪⎪⎩

ω1(y1, y2) =
1
15

e− y1
15 · 1[0,150](y1)

150
· 1[0,60](y2)

60
,

ω2(y1, y2) =
1
2

(ϕ (y, μ1, C) + ϕ (y, μ2, C)) ,

(22)

where ϕ(y, μ, C) denotes the Gaussian probability density function with mean
μ and covariance matrix C, evaluated at y. The ω1 weight function is based
on an exponential distribution and encodes preference for the minimization of
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Fig. 1. Distributions obtained after 20 iterations of the optimization algorithm on the
BNH problem when the weight functions ω1 and ω2 are used. The results obtained
using the EHVI criterion are shown for reference. The contours of the weight functions
are represented as black lines and the non-dominated solutions as red disks. Black disks
indicate feasible dominated solutions and black circles indicate non-feasible solutions.
(Color figure online)
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the first objective. The ω2 weight function is a sum of two bivariate Gaussian
distributions and encodes preference for improving upon two reference points μ1

and μ2, chosen as μ1 = (80, 20) and μ2 = (30, 40) with C = RS(RS)T , where

R =
[

cos
(

π
4

) − sin
(

π
4

)

sin
(

π
4

)
cos

(
π
4

)
]

and S =
[

20 0
0 3

]
. (23)

To carry out the experiments, we use the BMOO algorithm of [16] with
mx = my = 1000 particles for both SMC algorithms. The functions of the
problem are modeled using stationary Gaussian processes with a constant mean
and an anisotropic Matérn covariance kernel. A log-normal prior distribution is
placed on the parameters of the kernel and these are updated at each iteration
of the algorithm using maximum a posteriori substitution (see, e.g., [5]). The
algorithm is initialized with a pseudo-maximin latin hypercube design of N = 10
experiments and is iterated over 20 iterations. To handle the constraints of the
BNH problem, the EWHI criterion is multiplied by the probability of feasibility,
as is common practice in the Bayesian optimization literature (see, e.g., [26]).

In Fig. 1, results obtained by the algorithm using the weight functions ω1

and ω2 in the EWHI definition are compared to results obtained by the same
algorithm using the EHVI criterion. Observe in Fig. 1(d) and 1(f) that observa-
tions are concentrated in regions of the Pareto front that correspond to high ω
values, whereas observations are spread along the front in Fig. 1(b) where the
EHVI is used. In practice, this means that less iterations would have been
required to satisfyingly populate the interesting regions of the Pareto front.

5 Conclusions and Perspectives

It is shown in this paper how user-defined weight functions can be leveraged by
a Bayesian framework to produce optimization strategies that focus on preferred
regions of the Pareto front of multi-objective optimization problems. Two exam-
ple weight functions from [29] which encode respectively a preference for one
objective and a preference toward specific regions of the Pareto front are used,
and the demonstration of the effectiveness of the proposed approach is carried
out on a simple bi-objective optimization problem.

On more practical problems, crafting sensible weight functions can be a dif-
ficult task, especially when one has no prior knowledge about the approximate
location of the Pareto front. The use of desirability functions (see, e.g. [13,19,27])
or utility functions (see, e.g., [1]) might provide useful insights on that issue and
shall be the object of future investigations to provide a more principled approach.

In the presented framework, optimization strategies are built sequentially
using an expected improvement sampling criterion called the expected weighted
hypervolume improvement (EWHI) criterion. The exact computation of the cri-
terion being intractable in general, an approximate computation procedure using
importance sampling is proposed. A sampling density that is optimal for the
simultaneous computation of the criterion for a set of candidate points is crafted
and a sequential Monte-Carlo algorithm is used to produce samples from this
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density. This choice triggers an immediate question: What is the sample size
my required by the algorithm? In fact, the problem is not so much to obtain a
precise approximation of ρn for all x ∈ Xn, which would require a large sample
size to distinguish very close points, but to deal with the optimization prob-
lem (3) and to identify with good confidence the points of Xn that correspond to
high values of ρn. A first step toward a solution to this problem is to compute
an approximation of the variance of ρ̂n, as carried out in AppendixA. Further
investigations on this issue are left for future work.

A Approximate Variance of the EI Estimator

We derive in this appendix the variance of the SMC estimator for ρn. In the
SMC procedure that we consider, the particles (yn,i)1≤i≤m are obtained from a
sequence of densities (πn,t)0≤t≤T , where πn,0 is an easy-to-sample initial density
and πn,T = πn is the target density. Let (γn,t)0≤t≤T and (Zn,t)0≤t≤T denote the
corresponding sequences of un-normalized densities and normalizing constants.

First, observe that, for 1 ≤ t ≤ T ,

Zn,t =
∫

Hc
n

γn,t(y) dy

= Zn,t−1

∫

Gn

γn,t(y)
γn,t−1(y)

πn,t−1(y) dy.
(24)

Thus, we can derive a sequence of approximations Ẑn,t of Zn,t, t ≥ 1, using the
following recursion formula:

{
Ẑn,0 = Zn,0 =

∫
Gn

γn,0(y) dy,

Ẑn,t = Ẑn,t−1

(
1
m

∑m
i=1

γn,t(yn,t−1,i)
γn,t−1(yn,t−1,i)

)
,

(25)

where the particles (yn,t−1,i)1≤i≤m ∼ πn,t−1 are obtained using an SMC proce-
dure (see, e.g., [6]). The estimator of ρn(x) that we actually consider is then

ρ̂n(x) =
Ẑn

m

m∑

i=1

ω(y)Pn (ξ(x) ≺ yn,i)
γn(yn,i)

= Ẑnα̂n(x) (26)

where

α̂n(x) =
1
m

m∑

i=1

ω(y)Pn (ξ(x) ≺ yn,i)
γn(yn,i)

, (27)

and

Ẑn = Ẑn,T = Zn,0

T∏

u=1

θ̂n, u, (28)

with

θ̂n,t =
1
m

m∑

i=1

γn,t(yn,t−1,i)
γn,t−1(yn,t−1,i)

. (29)

Now, assume the idealized setting, as usual in the SMC literature (see, e.g.,
[9]), where
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(i) yn,t,i
i.i.d∼ πn,t, 1 ≤ i ≤ m,

(ii) the samples Yn,t = (yn,t,i)1≤i≤m are independent, 0 ≤ t ≤ T .

Observe from (19) and (24) that under (i), α̂n(x) is an unbiased estimator
of αn(x) = ρn(x)

Zn
, and θ̂n,t is an unbiased estimator of θn,t = Zn,t

Zn,t−1
, 1 ≤ t ≤ T .

Moreover, under (ii), α̂n(x) and the (θ̂n,t)1≤t≤T are independent. Thus,

Var ρ̂n(x) = E
(
α̂2

n

)
E

(
Ẑ2

n

) − E
(
α̂n(x)

)2
E

(
Ẑn

)2

=
(
Var α̂n(x)+αn(x)2

)(
Var Ẑn + Z2

n

) − αn(x)2Z2
n

= Var α̂n(x)Var Ẑn + αn(x)2Var Ẑn + Z2
nVar α̂n(x).

We obtain the coefficient of variation of ρ̂n(x)

Var ρ̂n(x)
ρn(x)2

= Λn(x)2 +
(
1 + Λn(x)2

)
Δ2

n,T , (30)

where Λn(x)2 = Var α̂n(x)
αn(x)2

and Δ2
n,t = Var ̂Zn,t

Z2
n,t

are the coefficients of variation of

α̂n(x) and Ẑn,t respectively.
Using the same ideas as above, we have

Δ2
n,t = δ2n,t +

(
1 + δ2n,t

)
Δ2

n,t−1, (31)

where δ2n,t = Var ̂θn,t

θ2
n,t

is the coefficient of variation of θ̂n,t.

Estimators of Λn(x)2, Δ2
n,t and δ2n,t can be derived under (ii). For instance,

observe that

δ2n,t =
1
m

Var
(

γn,t(yn,t−1, 1)
γn,t−1(yn,t−1, 1)

)

E

(
γn,t(yn,t−1, 1)

γn,t−1(yn,t−1, 1)

)2 . (32)

Thus, an estimator of δ2n,t is

δ̂2n,t =

∑m
i=1

γn,t(yn,t−1,i)
2

γn,t−1(yn,t−1,i)2

(
∑m

i=1
γn,t(yn,t−1,i)

γn,t−1(yn,t−1,i)

)2 − 1
m

. (33)

Plugging (33) in (31), we obtain an estimator of Δ2
n,t:

Δ̂2
n,t = δ̂2n,t +

(
1 + δ̂2n,t

)
· Δ̂2

n,t−1. (34)

Similarly, an estimator of Λn(x)2 is

Λ̂n(x)2 =

∑m
i=1

ω(y)2 Pn(ξ(x)≺yn,i)
2

γn(yn,i)2

(∑m
i=1

ω(y)Pn(ξ(x)≺yn,i)
γn(yn,i)

)2 − 1
m

. (35)
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As a result, we obtain the following numerically tractable approximation of
the variance of ρ̂n(x):

Var (ρ̂n(x)) ≈ ρ̂n(x)2 ·
(
Λ̂n(x)2 +

(
1 + Λ̂n(x)2

)
· Δ̂2

n,t

)
, (36)

where Ẑn,t and Δ̂2
n,t are obtained recursively using (25) and (34), Λ̂n(x)2 is

computed using (35) and ρ̂n(x) is computed using (26).
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Abstract. An important goal in Manufacturing Planning and Control
systems is to achieve short and predictable flow times, especially where
high flexibility in meeting customer demand is required. Besides achiev-
ing short flow times, one should also maintain high output and due-date
performance. One approach to address this problem is the use of an order
release mechanism which collects all incoming orders in an order-pool
and thereafter determines when to release the orders to the shop-floor.
A major disadvantage of traditional order release mechanisms is their
inability to consider the nonlinear relationship between resource utiliza-
tion and flow times which is well known from practice and queuing theory.
Therefore, we propose a novel adaptive order release mechanism which
utilizes deep reinforcement learning to set release times of the orders and
provide several techniques for challenging operations research problems
with reinforcement learning. We use a simulation model of a two-stage
flow-shop and show that our approach outperforms well-known order
release mechanism.

Keywords: Operations research · Production planning ·
Order release · Machine learning · Reinforcement learning

1 Introduction

Manufacturing planning and control (MPC) systems play an important role in
managing flow of material through manufacturing organizations. An important
goal in MPC systems are short and predictable flow times, especially in envi-
ronments where high flexibility in meeting customer demand is required. Due to
complexity reduction purposes MPC systems are often hierarchically structured
into two levels [8]. The top level (goods flow control) coordinates the production
units that constitute the logistic chain by coordinated releases of production
orders and thus sets the targets for the base level (production unit control; for
these terms, see [8]). The base level performs detailed scheduling within the pro-
duction units. The interface between the top level and the base level is order
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release which is defined as the transfer of the control over the respective work
orders from the top to the base level, which are the decision making units within
the production departments.

Within the MPC task the setting of planning parameters plays a crucial role.
One of the key parameters is the planned lead time which is defined as the
planned time that elapses between the release of an order and its completion
(hereinafter denoted as lead time). In contrast, the actual time an order takes
to make it through the production system is called flow time and is used as a
performance measure. Flow times consist of processing, setup, control, transport,
and waiting times, whereas the latter is the governing factor. Waiting times are
a result from queuing (e.g. jobs queue before and after processing). Queuing in
production systems depends heavily on the amount of jobs in the system (WIP).
Thus, waiting times are relatively difficult to estimate which makes the setting
of favorable lead times so difficult (e.g., [41,47]).

A common approach to set lead times is either to use fixed (also referred
to static) lead times which is mostly used in a Material Requirements Planning
(MRP) context (e.g., [29,42,49]) or a workload limit for the resources or the
whole system under study (e.g., workload control or CONWIP; see [43] or [39]
respectively) where companies and researchers assume that the set lead times
or limits are constant and fixed over the planning horizon. Hoyt was the first
to criticize the use of fixed lead times by arguing that lead times should be
set dynamically in order to react to the dynamic operational characteristics of
the production process [14]. However, a solely reactive approach often generates
an erratic order release pattern which is generally denoted as the lead time
syndrome (LTS; see e.g., [24]). The LTS can be described as a positive feedback
loop in which the flow times increase the lead times via lead time updating [17].
As the lead times increase, more orders are released to the system which results
in higher inventory levels and thus in higher flow times again which closes the
vicious cycle.

Therefore, in order to overcome the LTS one needs an anticipation func-
tion that predicts the flow times of the work orders as a function of the order
release decisions which leads to a predictive lead time management approach [36].
Within this stream of research the problem of setting lead times is seen as a
forecasting problem. This means that one tries to find lead times that best fit
the dynamically changing production environment. Enns et al. develop methods
for setting dynamically planned lead times which are based on exponentially
smoothed feedback on the flow times of each order at each stage [10]. Similarly,
Selcuk et al. [37] apply exponentially smoothed lead times to a capacitated multi-
stage make-to-stock system. However, the latter study shows that exponentially
smoothed lead times may induce the LTS in the case of demand variations and
high utilization levels. Therefore, a suitable predictive order release model has
to forecast the future performance, identify pathological behavior and then gen-
erate necessary corrective actions to prevent the incurrence of the LTS.

Among a wide variety of prediction methods, machine learning algorithms
(e.g., artificial neural networks) are considered the most effective because of their
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flexible non-linear and interaction effects modeling capability, and consequently
have been recommended as a decision support tool for other production planning
problems (e.g., due date assignment; see e.g., [15] or [3,48] for a literature review
on this topic). To the best of our knowledge, there exist only two papers that use
machine learning for making order release decisions [19,31]. However, [19] only
decides on the sequence of the releases and [31] limit themselves to a very simple
production system. Furthermore, both use a continuous order release method
(CONWIP) although in practice order release decisions often need to be made
on a daily basis (see [11]).

Therefore, we contribute to this stream of research by developing a periodic
adaptive order release mechanism using reinforcement learning which dynami-
cally decides on whether to release orders based on a deep reinforcement learning
algorithm. The viability of the developed approach is tested on a multi prod-
uct, two-stage hypothetical flow shop and is compared to the performance of
conventional order release mechanisms. The tested production system setup is
characteristic for problems in the operations research domain in the sense of peri-
odic and discrete decisions with the aim to maximize profits and a high degree
of complexity. Therefore, the presented reinforcement learning methods can be
easily adapted and applied to various problems in operations research.

Clearly, several properties of the production system under investigation (e.g.,
the work load, utilization, etc.) are to a large extend determined by the used
order release mechanism. This means that one experiences ‘sampling issues’ since
the state of the system depends on the order release quantities and thus a train-
ing set which is based on a certain order release mechanism is distorted. This
makes supervised learning techniques unsuited, since they use the generated
data to infer its knowledge on how to release orders and will always follow the
characteristics of the chosen release technique for data generation. Therefore,
reinforcement learning is the appropriate AI technique to use, since it bases
each learning step on its current knowledge and thus is able to explore the whole
solution space. Additionally, reinforcement learning takes into account queuing
effects which influence system states over multiple periods, since it is designed to
connect the output of consecutive periods whereas standard supervised learning
techniques would not take care of these interrelations over multiple periods.

The rest of the paper is structured as follows. The next section reviews the
relevant literature and thereafter in Sect. 3 we describe the used methodology.
In Sect. 4 we present the results and conclude our findings in Sect. 5.

2 Literature Review

This section is structured into two related fields of research which are the basis
for our paper. First, there exist a large body of literature on order release mod-
els which constitutes the foundation of this paper. Secondly, studies that use
techniques based on AI in the field of operations research with a special focus
on production planning.

The literature on order release models can be divided into two main streams,
namely the conventional rule based order release mechanisms (e.g., [6,13,47])
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and multi-period optimization models. Note that a review of optimization based
order release models is out of the scope of this paper (see [30] for a review on this
topic). The literature on rule based order release mechanisms can be divided into
two groups: continuous methods, which may trigger a release at any moment in
time; and, periodic release methods, for which release decisions take place at
the start of each period. This paper focuses on the latter approach. Several
rule based order release mechanisms have been proposed over the last decades
ranging from very simple (e.g., immediate release) to more sophisticated ones
(e.g., backward infinite loading). The backward infinite loading (BIL) technique
was introduced by Ackerman in [1] and calculates the release date (RD) of an
order j by subtracting its lead time (LT) of its due date (DD):

RDj = DDj − LTj (1)

Besides the two above mentioned uncapacitated approaches also capacitated
mechanism were developed. The two most prominent methods are the proba-
bilistic and atemporal approach. The probabilistic approach was introduced by
Bechte [5], and is known as Load Oriented Manufacturing Control (LOMC) con-
cept (see also [47]). This order release mechanism estimates the input from jobs
upstream to the direct load of a work centre using a depreciation factor based
on historical data. The atemporal approach (also called LUMS method) was
introduced in [7] and [12] and simply adds direct and indirect load (so called
aggregate load).

We divide the second literature stream into three categories:

1. Application of AI techniques to scheduling problems,
2. Application of AI techniques to support order release decisions,
3. Application of AI techniques to make decisions on the order entry level (order

inquiry, due date assignment).

Within the first category, several different AI techniques are used to address
scheduling problems (for a review see [3]) ranging from expert systems (e.g., [35])
to decision trees (e.g., [26]) or methods using ANNs or ANNs in conjunction with
other methods (e.g., [20,34]; see [2] for a recent literature review on scheduling
with ANNs).

To the best of the authors knowledge there are only two studies that belong
to the second category (e.g., [19,31]). [19] combines a genetic algorithm and an
induced decision tree. They test their approach on a small and a large job shop
(with three and seven machines respectively) and use a CONWIP release rule to
determine when to release an order and use the decision tree to find the sequence
for order release and a genetic algorithm to find a sequence for dispatching at
each machine. [31] uses a reinforcement learning method for order release in
a single product, serial flow line and compares its performance (WIP costs)
with conventional order release policies (e.g., Kanban and CONWIP).Both use
a continuous order release method (CONWIP) although in practice order release
decisions often need to be made on a daily basis (see [11]).
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Table 1. Operation times (upper half) and costs setup (in monetary unit).

Work center WC1 WC2 WC3

Operation time U(70, 130) U(130, 170) U(180, 200)

Cost Wc p. Order/Period Fc p. Order/Period Bc p. Order/Period

Value 3 10 20

The third category of literature in this review uses AI techniques to make
decisions on the order entry level. Here, ANN or ANN in combination with
genetic algorithms are used to predict flow times in order to set due dates
(e.g., [15,16,20,32,33]).

As described in the literature review above, there is a lack of studies that use
AI techniques for making order release decisions. This is quite interesting since
early studies (e.g., [25]) state that dispatching becomes less important when
combined with an appropriate order release mechanism. Therefore, we develop
a periodic order release model based on deep reinforcement learning and show
its viability on a multi-product, two-stage hypothetical flow shop.

3 Methodology

This section describes the simulation model, the used conventional order release
methods, and the reinforcement learning algorithm including parameter setup
and tested variants.

3.1 Simulation Model

To ensure generalizability, we use a hypothetical flow shop make-to-order man-
ufacturing system similar to the system analyzed in [19]. The simulation model
consists of three work centres; each consists of a single machine and can process
only one order at a time. The number of orders arriving is uniformly distributed
between 3 and 15 order per period and thus with a mean of 9 order per period.
In other words, every 106.67 min one order arrives in the order pool. Incoming
orders are queued at the order pool until released. The due date slack (dds), that
is the periods until incoming orders are due, is set to 7. Once released they are
queued at each work center and wait until being processed by the machine. The
queuing priority is first-come-first-serve. No preemptions are allowed. Order rout-
ings are deterministic and embrace two production stages with diverging shape
and no return visits. This results in 2 different products. The operation times
of the work centres are uniformly distributed, cf. Table 1. These characteristics
lead to a utilization rate of 90% for the bottleneck work center (WC3) in steady
state. Planning periods were set to 960 min (16 h).

To evaluate the performance of the different order release models we define
following performance measures similar to literature (e.g., [4,44]):
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– Cost related measures: average total holding costs for WIP and finished
goods inventory, costs for backorders. There are no earnings, thus the algo-
rithms minimizes the costs. The setup for the actual values of the costs is
given in Table 1 and shows that late deliveries are especially expensive. All
costs are per order and period, and are measured and reported at the end of
each period.

– Delivery related measures: mean tardiness of late orders (TA), standard
deviation of lateness (σTA).

– Flow time related measures: mean shop floor throughput time (time dura-
tion from release until entry of finished goods inventory; SFTT).

The length of each simulation run to evaluate the performance was 1750 peri-
ods including a warm-up period of 750 periods. Welch’s procedure was applied
to approximate the length of the warm-up period (see [18]). Each order release
method was evaluated on 25 predefined demand streams.

3.2 Conventional Order Release Rules

As external benchmark for comparison we use different parameterized backward
infinite loading (BIL) techniques, cf. Eq. 1. Note that we set lead times for each
product type and not for every order as done by Ackerman [1].

3.3 Reinforcement Learning Order Release Algorithm

Q-Learning in a Nutshell. We use the ideas of the Q-Learning agent as intro-
duced in [40] to set lead times LTp for each product type p. Furthermore, inspired
by [27,28,38] the algorithm is extended and adapted, as well as lifted to an actor-
critic model. The action-value function Q(s, a) (also known as Q-function) for
a state s ∈ S and an action a ∈ A, as well as the policy π, are represented by
feed-forward artificial neural networks, where S is the set of all states and A the
set of available actions. Furthermore, we use a target network parameters θT

Q and
θT

π which are softly updated using the worker networks θQ and θπ respectively
as in [21].

In a nutshell the Q-Learning algorithms work as follows. An agent explores
the environment by consecutively taking an action a ∈ A and observing rewards
r as it traverses from one state s ∈ S to another environmental state s′ ∈ S.
According to the observed reward r and future state s′ the state-action tuple
(s, a) is assessed. This value is then stored in the Q-function before repeating
the process. Nonetheless, Q-Learning assumes an underlying Markov Decision
Processes (MDP). Informally, that is a memory-less task with states, actions,
rewards and transition probabilities. For a formal definition see for instance [40,
p. 61ff]. Under a certain policy π = P (a|s) the optimal action-value function for
an observed state s and action a is given by Q�(s, a) = Eπ[

∑∞
i=0 γi · rt+i|st =

s, at = a ] which is the expected sum of rewards rt discounted by γ for each
time-step t [40]. Q-learning approximates the optimal action-value function by
iteratively updating the state-action values while exploring the solution space.
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Convergence and Actor-Critic Model. Even though shown to converge to an opti-
mal action-value function Q�(s, a) if the Q-function is represented discretely [46]
for most applications a tabular representation is infeasible due to the exponential
growth of the memory requirement. Thus, often (deep) ANNs are used in lieu of
actual tables to approximate the Q-function, which however, results in the fact
that the algorithm is unstable or may even diverge [45]. Inspired by [22,28] we
partly overcome this issue by using experience replay, which randomly re-trains
a batch out of already visited state-action pairs. Therefore, our algorithm stores
a set of experiences et = (st, at, rt, st+1) and re-trains the Q-function of a ran-
domly picked subset of predetermined size of experiences on each time step t.
Adding to this we additionally extend the algorithm as in A3C [27] to simulta-
neously learn a policy. Thus we lift the algorithm to be actor-critic and therefore
a second neural network θπ is added.

Markov Decision Process. The underlying MDP is unichain and looks as follows.
Both, state space S and action space A are discrete. Any state s ∈ S of the state
space is composed of the following information for each product p:

– The currently set lead time LTp ∈ {1, 2, . . . , dds} (Recall: Due Date Period−
Lead Time = Release Period). Note that we bound the maximum lead time
with due date slack dds, which is 7 in our setup.

– Counters OPp,d ∈ N for the number of orders in the order pool grouped by
time buckets d ∈ {1, 2, . . . , dds}, which stands for the number of periods until
the due date.

– Counters Qi ∈ N standing for the number of orders for each queue i.
– Counters FGIp,d ∈ N of orders in the finished goods inventory grouped by

time buckets d ∈ {−5,−4,−3, . . . , dds}, which stands for the number of peri-
ods until the due date. Orders with a due date with more than 5 periods ago
are listed in the counter FGI−5.

– Counters Sp,d ∈ N of shipped orders from the last period grouped by time
buckets d ∈ {−5,−4,−3, . . . , dds}, which stands for the number of periods
until the due date. Orders with a due date with more than 5 periods ago are
listed in the counter S−5.

The algorithm implicitly learns a function which maps the current state of the
production system to a release decision. In an optimal situation it does so by
multiply exploring every action for each state and assessing its economic viability.

Recall that orders are released once the due date is within the interval [t, t+
lead time], whereas t is the current period. Clearly, this yields bulk releases
(either all or no orders with the same due date and product type are released).

The actions space is composed of two independent decisions. These are
the relative changes of the lead times to the currently set lead times LTp ∈
{1, 2, . . . , dds} for each product p. Recall that p = 2. Furthermore, we restrict
the action space for each state st+1 according to the last set lead time LTp from
state st by restricting the change of the lead time for consecutive periods to a
maximum of 1. Thus, if LTp is the current lead time for product p the action
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space for this product is given by {1, 2, . . . , dds} ∩ {LTp − 1, LTp, LTp + 1}. Put
differently the algorithm can increase or decrease the lead time by 1 or leave
it as it is, as long as it acts within the discrete action space given by the set
{1, 2, . . . , dds} for each type of product. Thus the action space over all products
is given by the full enumeration of available actions of the individual products.

Reward. In each period the agent chooses an action which generates a reward
while traversing to the next period by simulating the production system. The
rewards are the accumulated costs at the end of the period. These costs are
consist of the number of backorders, the current WIP level and the number of
orders in the inventory. The costs are divided by the normalizing parameter η
(see Table 2) and then clipped (cut off) to the interval [−0.5, 0.5].

Neural Network Setup. After manually testing various depths and layer widths
we found two three layer fully-connected networks to be the most satisfying
setup of which both have the same shape. The number of nodes and activation
functions are 41-ReLU1-89-ReLU-20-ReLU-9, with the output activations being
Softmax (normalized exponential function) for the policy networks θπ, θT

π and
Tanh (hyperbolic tangent function) for the Q-networks θQ, θT

Q. The output for
both networks consist of 32 = 9 nodes. This is due to the fact that all combi-
nations of increase, decrease and no change of the lead time for each product
type have to be represented. As expected the policy network outputs 9% for any
given state which specify action probabilities. The Q-network output is a value
representing the expected discounted (and average) reward.

Adapted Algorithm. Algorithm 1 shows the adapted Q-Learner algorithm. The
experience replay memory is filled by executing random actions before the learn-
ing process starts. Note that we do not learn state values as done by A3C but
rather state-action values like in Q-Learning, as we use the average of these val-
ues for the policy loss (Line 12). Nonetheless we also use a measure of entropy,
in particular the Gini-impurity, with parameter β = 0.03 for preventing early
convergence (see [27] for implementation details). The network θT

π represents the
target policy network, whereas the network θT

Q represents the target Q-function.
All workers operate on the worker networks θπ and θQ. The binary variable alg
is used to determine the used algorithm. In case of alg = 1 the average reward
value is subtracted for the policy loss, while in case of alg = 0 average reinforce-
ment learning techniques as presented in the algorithm R-learning [23] are used.
The idea in average reinforcement learning is that only the biases of the average
reward are used as Q-values.

Although the task of setting the lead times for the orders is done periodically
there are no episodes. Further, we observed that standard reinforcement learning
algorithms have problems when presented with rewards in every step, as it is
the case in our application as every period the occurring costs are shown to the
agent. For standard algorithms this results in ongoing increasing Q-values, until

1 ReLU stands for rectified linear unit.
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Algorithm 1. Adapted Q-Learning Algorithm.
1: Initialize θQ, θπ, θT

Q, θT
π arbitrarily, Initialize state st, Set time t = 0, Initialize

experience replay memory with size N , Set fork ← False, set ρ = 0
2: repeat (for each step and worker w1, . . . , wW )
3: Take action at according to π(at | st; θ

T
π ), observe reward rt and state st+1

4: With probability pf fork the worker which copies the current environment
and take action at,f ∈ (Ast/{at}), observe reward rt,f and state st+1,f , set
T ← t + Tf and repeat steps 3, 17, 18 until done, report experience-tuples

5: Store all arising experiences (st, at, rt, st+1) to the experience replay memory E
6: Update average reward: ρ ← (1−α)ρ+α[rt +maxa Q(st+1, a)−maxa Q(st, a)]
7: Randomly choose a subset Et ⊂ E of size n
8: Reset gradients dθQ ← 0, dθπ ← 0
9: repeat (for each experience instance (se, ae, re, se+1) ∈ Et)

10: Save target value Qtarget ← re + γ · maxa Q(se+1, a; θT
Q) − (1 − alg)ρ

11: Accumulate gradients: dθQ ← dθQ + ∂(Qtarget − Q(se, ae; θQ))2/∂θQ

12: Accumulate gradients: dθπ ← dθπ +
∂ log π(ae|se;θπ)(Qtarget−alg avga Q(se,a;θQ))

∂θπ

13: until all experiences in Et processed
14: [Synchronized] Perform update of worker networks θQ, θπ using dθQ and dθπ

15: [Only if w1] Softly update network: θT
Q(s, a) ← τ · θT

Q(s, a) + (1 − τ)θQ(s, a)
16: [Only if w1] Softly update network: θT

π (s, a) ← τ · θT
π (s, a) + (1 − τ)θπ(s, a)

17: t ← t + 1
18: until t � T

all state-actions values are close to the maximum value. We tackle this by using
the average state-value (over all actions) as base for the policy error.

Forking. We have added, so called, forks which are used to search the solution
space by copying the current environment of the agent. Thus, at each state the
agent explores another randomly chosen action with probability pf (Line 4).
That means, it copies the current state and takes actions until the Tf periods
have been observed. All experiences are then returned to the origin worker, which
saves them to the experience replay memory. This allows additionally exploring
the solution space. We observed a decrease in learning time and an increase in
stability of the algorithm with this technique.

Workers. The main worker w1, which is the one that is used to evaluate the
policy, operates on the learned policy π. The other 20 workers choose a random
action with 20% probability and otherwise select the actions according to the
learned policy π. Using additionally workers with different or even randomly
changing BIL-policies did not yield better results.

Variants. We experiment with the way we represent actual rewards to the algo-
rithm. First we use the standard way which presents the actual costs occurring
in one period to the algorithm (MLShipped). However, this results in the fact
that the algorithm has to learn two delays. On one hand the standard delay on
what actions to choose to traverse to a good state in which high rewards are
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Table 2. Variants tested.

Variant Description η

MLShipped Rewards are actual costs of the shipped
orders observed at the end of the period

2500.00

MLShippedAvg Same as MLShipped but the rewards are
averaged over the orders

2500/9= 277.78

MLShippedAvgAvgRL Same as MLShippedAvg but uses average
reinforcement learning, thus alg = 0 and
γ = 0.5

277.78

MLRelOrds The released orders are used to calculate the
costs

2500.00

MLOrdPool The orders in the order pool at period t + 1
are used to sum up the costs. Averaged over
all orders

277.78

Table 3. Parameter setup.

Parameter pf γ α τ N B Train iterations Learn. rate L2

Value 0.2 0.995a 0.95 0.001 30000 128 4 0.01 0.0001
aFor MLShippedAvgAvgRL we use γ = 0.5 to allow balancing of average and dis-
counted reinforcement learning.

expected, but on the other hand it must also learn the delay that these rewards
are not observed directly, but rather after several periods when the production
system outputs the results for the action taken in that state. Therefore, we added
the variations of keeping track of either the released orders (MLRelOrds) or the
orders in the order pool (MLOrdPool) for each action and present the resulting
tuple of action taken, orders affected and costs to the algorithm once the costs
are known. Note that as this only affects the policy this variation does not have
an effect on the Markov property.

The variants are summarized in Table 2. The mean number of orders arriving
at one period is 9. The values for the min-max normalization η is shown on the
right and were picked manually after testing multiple values. If not specified then
alg = 1.

4 Results

This section gives an overview of the performance of the algorithm compared to
the conventional static lead time setting algorithms.

Parameters. Table 3 gives the parameters used for the Q-Learning algorithm
and the ANN. The fork probability pf was set to 0.2 and the discount factor
to 0.995, except for the MLShippedAvgAvgRL variant where γ = 0.5 to let the
two methods balance out. In each period 128 experiences are retrained out of a
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set of experiences with size 30000. The gradients are trained 4 times, with an
ANN learning rate of 0.01 and no momentum. The soft update procedure allows
this high value for the learning rate, but the momentum was disabled as the
networks otherwise diverge. These values were manually optimized beforehand
by experimenting with multiple setups for all variants. We decided to stick to
the values given above as it seems to be the most appropriate setting for the
problem. At the beginning the production system is empty, thus a cold start is
performed by the agent. The algorithm learned for 150k periods. The runtime
for the evaluations was 1000 periods, with 750 periods startup phase and all
evaluations were repeated 25 times.

Table 4. Evaluation results.

Algorithm/KPI SUM BOC FGIC WIPC TARD σTARD SFTT
MLShippedAvgAvgRL 464.84 201.47 153.49 109.89 1.80 2.57 4.35
MLShippedAvg 473.46 326.41 63.24 83.81 1.87 2.79 3.13
MLOrdPool 497.83� 331.57 52.18 114.08 1.92 2.84 4.23
BIL3 535.45 400.97 28.86 105.62 2.06 2.99 4.41
BIL2 644.85 532.97 6.78 105.11 2.28 3.27 4.39
MLShipped 657.85 516.27 24.13 117.45 2.33 3.33 4.84
BIL1 803.74 698.66 0.00 105.08 2.49 3.65 4.39
MLRelOrds 896.51 677.89 113.38 105.24 2.46 3.64 4.21

�The p-value of the comparison between MLShippedAvg and MLOrdPool is 0.07364

Results. Table 4 shows the results of the evaluations. The first column denotes
the tested order release approaches, namely (i) the static lead time approaches
– that calculate the release time of the orders according to (Eq. 1) – with dif-
ferent static lead times of 1, 2 and 3 (denoted as BIL1, BIL2 and BIL3 respec-
tively) and (ii) the different tested machine learning algorithms (summarized
in Table 2) denoted as MLShipped, MLShippedAvg, MLRelOrds, MLOrdPool, and
MLShippedAvgAvgRL.

Column two to five show the cost-based performance measures (·103): the
sum over all costs (SUM), backorder costs (BOC), finished goods inventory costs
(FGIC) and the costs for held WIP (WIPC). Finally, column six to eight depict
the average tardiness of all late orders (denotes as TARD), the standard devia-
tion of tardy orders (σ TARD) and the mean shop floor throughput time (SFTT)
which is the time an order takes from order release to completion. The measures
TARD, σTARD and SFTT are all measured in number of periods.

Table 4 compares the mean of SUM values of all algorithms at a significance
level of p = 0.05 using the Friedman Test [9]. The models shown in grey cells
are not statistically distinguishable from each other.

The results in Table 4 show that the standard application of reinforcement
learning (MLShipped) is unable to learn the two delays of future rewards. The first
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one being the standard future reward for taking actions to increase the expected
return, whereas the second delay is introduced by the production system which
delays the reward according to the current load of the system. Thus the agent
would have to learn both delays of rewards, whereas the later one dynamically
adapts to the system state. Clearly additional delay of reward opposed by the
production system increases the complexity of linking chosen actions to observed
rewards. This coincides with the suggestion by Zhang to use different neural
networks for different lead times [50].

We overcome this problem twofold. On one hand we reduce the complexity
the agent has to learn by using future rewards, while on the other hand we
provide the agent with the average reward. In case of MLShippedAvg, which only
rewards on the average of the shipped orders of the specific period, a continuous
output with rather low variance is required for the agent to be able to correctly
link the action to the result. To clarify, consider one period with many orders
being finished and low average costs to a period with only one order being
finished but high costs. In case of MLShippedAvg the agent observes only the
average and thus cannot infer the actual average costs over the periods. In our
setting however, MLShippedAvg performs well as the output of the production
system has low variance.

As can be seen in Table 4, the machine learning algorithms using the average
reward (MLShippedAvgAvgRL, MLShippedAvg, MLOrdPool) yield the lowest total
costs outperforming the conventional static order release models. Furthermore, it
is noteworthy that the while the MLShippedAvgAvgRL yields the lowest lateness
measures (TARD and σTARD) the MLShippedAvg algorithm yields the lowest
SFTT. The MLShipped algorithm takes the third last position together with BIL2
and is (next to the MLRelOrds) outperformed by the static lead time approach
BIL3.

This shows that the way of representing actual rewards to the machine learn-
ing algorithm has a major influence on the performance of the approach. Further-
more, the results show that the average reinforcement learning methods work
well in periodic but non-episodic operations research problems, and should be
considered a viable research direction.

5 Conclusions

This paper adds to the growing body of evidence that machine learning
algorithms can contribute positively to a company’s performance. The paper
describes a successful application of an order release model based on reinforce-
ment learning. The performance is tested on a multi-product, two-stage hypo-
thetical flow shop and is measured by cost/profit, delivery and lead time related
measures. We show that our developed machine learning approach outperforms
all other tested order release approaches by yielding lower total costs, less mean
and standard deviation of tardiness and a shorter shop floor throughput time
(SFTT).

The study provides important insights, but we are aware of its limitations.
Firstly, the results are limited to the simulated case and the validity of the results



Reinforcement Learning Methods for Operations Research Applications 557

for other MTO production systems (e.g., job shop production systems) must be
assessed in future studies. Secondly, adding further experimental factors, like
machine failures, might contribute in improving the system. It would also be
interesting to test the performance of the algorithm to multi-stage production
systems and to include scenarios with seasonal demand where one might expect
even greater benefits from setting the lead times dynamically. Furthermore, a
comparison with other order release mechanisms or models (e.g., LUMS/LOMC
or optimization based order release models) are an interesting direction for future
research.
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