Chapter 9 ®
A Survey of Methods and Tools for e
Large-Scale DNA Mixture Profiling

Emad Alamoudi, Rashid Mehmood, Aiiad Albeshri, and Takashi Gojobori

9.1 Introduction

According to The American Heritage Medical Dictionary, DNA profiling is “the
identification and documentation of the structure of certain regions of a given DNA
molecule, used to determine the source of a DNA sample, to determine a child’s
paternity, to diagnose genetic disorders, or to incriminate or exonerate suspects of a
crime [1].” DNA profiling (also named DNA typing, DNA fingerprinting, or DNA
testing) which was first introduced in 1985 by Alec Jeffreys has changed the area
of forensic science significantly [2]. Dr. Jeffreys has found that there are several
regions in the human DNA that contain repeated DNA sequence. He found that these
DNA sequence areas may differ from one person to another. Dr. Jeffreys was able
to measure the variation in these DNA sequences by developing a unique identity
test called Restriction Fragment Length Polymorphism (RFLP). The repeated DNA
areas are called Variable Number of Tandem Repeats (VNTRs).
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Fig. 9.1 DNA profile interpretation can have multiple usages, such as determine child’s father and
find a criminal among suspects

Today, DNA profiling is helping in many cases to identify an innocent from
guilty. Human Identity test can also be used in contexts such as missing people
investigation, parentage test, ancestry test, and disaster victim identification (see
Fig. 9.1).

The DNA typing is considered today to be the most useful tool in the hand of
law enforcement. Moreover, computer databases which contain DNA information
of criminals which was taken from crime scenes had helped to associate a crime to
an offender. Due to having a specific set of Short Tandem Repeat (STR) loci in these
massive databases, it is unlikely to see a new set of DNA markers to be introduced
shortly [2].

In order for a DNA sample to be processed, several steps should be consid-
ered [2]. First, obtaining the DNA from a biological source. Second, assessing
the amount of DNA recovered. Third, isolate the DNA from its cells by using
Polymerase Chain Reaction (PCR), which is a technique for copying specific DNA
areas. Finally, the STR alleles which have been generated from the previous step
will be examined. Figure 9.2 shows the steps used in DNA sample processing.

However, many difficulties may occur during the procedure of producing a
DNA profile that affects the analysis of the sample. One of these problems is
the stochastic effects, which arise during DNA extraction. Other challenges are
allele drop-out, PCR process, allele sharing, and PCR amplification artifacts. Such
difficulties hardened the accurate interpretation of the DNA profile [3].

The result of the DNA sample processing will be compared to other sample or
databases to check the similarity. If there is a match or “inclusion,” this indicates
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Fig. 9.2 The needed steps for DNA sample processing

that both samples were taken from the same source. On the other hand, if there is no
match, the result would consider as “exclusion,” which means there is no biological
relation between the two samples [2]. A case report will be made by a forensic
specialist explaining the result and containing random match probability answering
the similarity question.

The Scientific Working Group on DNA Analysis Methods (SWGDAM) advise
forensic report to contain a prediction of the number of contributors to the mixture
that is under examination [3]. Usually, the number of contributors of a sample that
taken from a crime scene is unknown. Therefore, an analyst should estimate it

according to the electropherogram obtained. This assumption affects the final weight
of DNA evidence [3].
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In this chapter, we provide an extended review of DNA profiling methods and
tools with a particular focus on their computational performance and accuracy. This
is an extended version of our earlier work [4]. We have added further elaborations on
the DNA profiling methods including DNA biology and genetics. Also, we discuss
different HPC systems, namely, cloud, clusters, GPUs, and FPGAs. A background
on parallel computing, MPI, OpenMP, and Java multithreading has been added.
Additional DNA profiling tools have been reviewed and further explanation on the
existing tools is provided. To the best of our knowledge, this is the first review work
on DNA profiling tools.

Faster interpretations of DNA mixtures with a large number of unknowns and
higher accuracies are expected to open up new frontiers for DNA profiling in
the smart societies era. In the coming years, the complete genome sequencing
technologies in a single or only a few cells will be easily available. These
technologies may change the situation of DNA profiling completely. In this case,
it is obvious to prepare appropriate statistical methods for that. It will be, therefore,
important to prepare the mathematical and statistical algorithms for complete-
genome-sequencing-based DNA profile. Emerging computational and big data
developments [5], along with Internet of Things (IoT) [6] and smart society
environments [7], will provide opportunities for new services related to DNA
profiling.

The rest of the chapter is organized as follows. Section 9.2 describes background
concepts related to this chapter including a background on DNA concepts, DNA
profiling, parallel and High-Performance Computing (HPC). Section 9.3 discusses
several methods for evaluating the DNA mixture statistically. Section 9.4 describes
a number of approaches that rely upon the calculation of likelihood ratio to interpret
DNA profile. We further discuss the importance of the Number of Contributors
(NoC) in profiling a DNA mixture in Sect. 9.5. Some implementations that estimate
the NoC was mentioned in the same section. Section 9.6 then illustrates notable
DNA profiling tools. We conclude and give an outlook for the future of DNA
profiling in Sect. 9.7.

9.2 Background Material

We now give a brief background of the various concepts and methods related to
DNA profiling. The list of topics covered are DNA biology and genetics, forensic
science, DNA mixture and its technologies, genetic markers, factors that increase the
complexity of DNA profiling, likelihood estimator, the use of HPC in bioinformatics
field, and HPC system and parallel frameworks.
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9.2.1 DNA Biology and Genetics

The basic unit of living species is the cell, which produces energy and raw materials.
To keep a cell operating, thousands of proteins are required. An individual body
usually contains 100 trillion cells [2]. All these cells come from a single cell called
zygote, which is formed from the merging of the mother’s egg and the father’s
sperm. All cells share the same genetic sequences. Inside the nucleus of the cell is
a chemical substance called DNA, which encodes protein construction data and cell
replication information.

DNA, or Deoxyribonucleic Acid, is acting like a blueprint for our bodies since
it contains all the required information for passing down genetic attributes to next
generations. The entire DNA of a cell is called a genome.

DNA serves two essential purposes: first, makes replication of itself; second,
handles information about protein producing instructions. Its alphabet contains only
four letters: Adenine (A), Thymine (T), Cytosine (C), and Guanine (G) [2]. These
letters are known as nucleotides or bases. Different combination of these bases can
make the difference between humans and other species. The human body contains
around three billion nucleotides. Each nucleotide is linked to its complementary
base through hydrogen bonds that link the bases. The complementary base for
adenine is thymine, and it cannot pair up with either cytosine or guanine. On
the other hand, cytosine can only pair up with guanine. Moreover, there are three
hydrogen bonds that connect cytosine and guanine, and two bonds linking thymine
and adenine. Therefore, the C-G base pair is a bit stronger than the A-T ones [2].

DNA is composed of two twisted strands, or double helix, each of which comes
from both parent. The DNA is divided into chromosomes; each chromosome acts
like a container for the DNA molecule in a thread-like structure. A human genome
is made up of 46 chromosomes or 23 pairs of chromosomes. Out of these 23
pairs, 22 pairs are autosomal chromosomes and one pair of the chromosome is for
sex determination. Males will have X and Y chromosomes, whereas females will
have two X chromosomes. Autosomal chromosomes are frequently used in human
identity test [2], while the sex determination chromosome is usually used for sex
determination tests.

A cell is called haploid if it contains only one set of chromosomes, like gamete
cell (sperm and egg) However, if two sets of chromosomes do exist, a cell then
is called diploid [2]. Triploid and tetraploid refer to having three or four sets of
chromosomes, respectively.

A chromosome will have coding and noncoding areas: coding areas, or gene, are
the regions that have the essential information for protein construction for cells. A
gene size range between a few thousand and tens of thousands of base pairs [2]. A
one-to-one comparison between biological and printed terms is presented in Fig. 9.3.
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9.2.2 Forensic Science

Forensic DNA tests had a major influence on the evolution of the criminal justice
system. Yet, the advancement of new technologies is enabling forensic labs to
expand its capabilities and improved the sensitivity of the DNA interpretation.

Butler [8] thinks that this area would develop in the future in three main
areas; DNA technologies will become faster, the sensitivity of extracting relative
information will increase, and higher volume of data will be expected due to that
sensitive nature. He argued that STR will remain the dominant genetic marker.

According to Butler [8], key challenges in the forensic science field are the
subjectivity, inconsistency of the complex DNA mixture interpretations between
different laboratories and analysts, and the need for training forensic analyst to
enhance interpretation of DNA profiles.

9.2.3 DNA Mixture

A sample is called a DNA mixture when two or more individuals contribute
to it. Under some circumstances, the interpretation of a mixture could be more
challenging. Allele sharing is one of the factors that increase the difficulty of
interpreting a profile [2]. If we have a two-person mixture, then we expected to
observe only four alleles per locus. However, this rule may change if we have
alleles overlapping or if we have heterozygous individuals. If we have more than
four alleles per locus, then we might deal more than two people mixture [9].

DNA mixtures interpretation is a very demanding task [10]. Perez et al. define
the DNA mixtures as when two or more people contribute to the same sample.
They added that contributors include victims, perpetrators, or other people who
interact with the crime scene. Yet, the mixture can be complex when it became a
subject of allele drop-in or/and allele drop-out [11]. A detailed introduction to the
DNA analysis on the forensic science domain was given by [2, 12]. Butler gives
a historical overview explaining the evolution of the area. He also explains the
structure of the DNA and its fundamental component.

9.2.4 Technologies for DNA Profiling

The topic of DNA profiling was improved by the new advances in the technology.
Weedn and Foran [12] gave a general overview of the latest updates and challenges
in the forensic science domain related to DNA profiling. STR followed by PCR
amplification is one of the most used methods that regularly used in forensic
labs [12]. Other markers such as Single Nucleotide Polymorphisms (SNP), Y
chromosome STRs, and mitochondrial DNA are also considered. Weedn and Foran
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argued that the forensic DNA typing is the most dominant method in the forensic
science laboratory. They mentioned that the forensic test usually performed with
taking into consideration the court challenges. Therefore, the forensic science
only uses a well-validated procedure, and all the laboratory processes should be
documented. The protocols should be ready to be defended against legal attacks.

New technologies had not only increased the quality of profiling the DNA
mixture, but also amplified artifacts such as stutter, variabilities, and baseline noise.
Monich et al. [13] had introduced a quantitative signal model which forms the
variability in a stutter, baseline noise, and allele peak height. They had also applied
the chi-squared and Kolmogorov-Smirnov (KS) tests on the true peak heights and
noise to test the fitness of various probability distribution classes. They argued that
the interpretation of signal measured from a DNA sample used to be accomplished
by using thresholding. Nonetheless, using thresholds during DNA analysis might
lead to losing valuable information. For that reason, new methods that don’t rely on
threshold were developed.

9.2.5 Genetic Markers

Many genetic markers are used for mixture analysis such as restriction fragment
length polymorphism (RFLP), STR, SNP, Y chromosomes, and mitochondrial DNA
(mtDNA). The number of contributors in a mixture can be identified by counting
the number of Y-STR alleles [14]. mtDNA can be used to determine the number of
contributors and also it can be used with degraded specimens.

RFLP The restriction fragment length polymorphism (RFLP) was a popular DNA
analysis during the 1980s [12]. RFLP was introduced by Dr. Edwin Southern in
1975. It involves too much work, yet it reveals only a little. Therefore, it was
replaced by other techniques which were more robust, sensitive, and affordable.

STR STR marker has been used for DNA mixture analysis for many years.
Available commercial tools offer limited STR markers, which give limited statistical
support for the inclusion of mixtures. Therefore, Y chromosome STR analysis has
been introduced to give extra means for the analysis of mixtures in forensic cases.

SNP SNP is a genetic variation among individuals. It appears throughout a person’s
DNA. In a diploid human genome, which consists of around six billion base
pairs, there are almost 15 million SNP sites [12]. However, this method has many
problems. For example, it cannot be used when the suspect is unknown. Moreover,
SNP is not compatible with STR databases, and establishing SNP database would
require extra work [14].

mtDNA Mitochondrial DNA analysis is used in cases when tissues are lacking a
nucleus. Since it is present at a high copy number in each cell, it has been used with
highly degraded specimens. In forensic labs, mtDNA is wildly used to analyze shed
hair that lack roots [12]. In addition, it can be used with fingernails and keratotic
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Table 9.1 A comparison between DNA typing methods in forensic labs
DNA interpretation method | PCR-based | Date of introducing | Usefulness

RFLP X 1980s Regular caseworks

STR v 1980s Regular caseworks

SNP v 2000s Extremely degraded sample
Y-chromosome v 2000s Vaginal swabs in rape cases
mtDNA v 1990s Degraded sample and hairs

It was inspired by [12]

skin. However, forensic labs do not highly adopt mtDNA because it depends on
DNA sequencing, which is labor-intensive, slow, and expensive process [12].

The Spanish and Portuguese Working Group of the International Society for
Forensic Genetics (GEP-ISFG) made a considerable effort toward standardizing and
improving the accuracy of the mtDNA analysis.

Table 9.1 shows a comparison between some DAN profiling methods. The first
column describes the genetic marker. Column 2 specifies whether or not the genetic
maker is PCR-based. Column 3 states when the genetic marker starts to be active.
The last column shows how the genetic marker can be used.

9.2.6 Factors Increasing the Complexity of DNA Profiles

Different phenomena affect the complexity of interpreting a DNA profile. These
factors include: the number of contributors, peak heights, stutter, a major peak
masking, a stutter peak masking, population, drop-out probability, drop-in probabil-
ity, and analytical threshold. No software had yet considered all these factors in its
calculation [15]. Therefore, it is part of the challenges that face people who develop
DNA mixture analysis tools to select which factor to model in their implementation.

9.2.7 Likelihood Estimator

Likelihood ratio (LR) is the probability comparison between evidence under two
propositions [2]. One is called the prosecution hypothesis, which assumes that the
DNA collected from a crime scene goes to the suspect, whereas the other is the
defendant hypothesis, which assumes that the matches between the suspect and the
questioned sample happened coincidentally. The two considered propositions are
mutually exclusive.

The likelihood ratio is calculated by putting the prosecution hypothesis as a
numerator while putting the defendant hypothesis as a denominator [2]. The LR
equation is:
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Table 9.2 The strength of

' > Likelihood ratio | Corresponding evidence
evidence according to LR

result [2] 1to 10 Limited support
10 to 100 Moderate support
100 to 1000 Moderate strong support

1000 to 10,000 Strong support
10,000 or greater | Very strong support

LR = Hp/Hd ©.1)

If we assume that the suspect commits the crime (100% probability), which is
the prosecution hypothesis, then Hp = 1. Additionally, if the STR typing result
is heterozygous, the probability of the defendant hypothesis would be Hd = 2pq,
where p and q are the occurrences of the allele one and two for a locus in a relevant
population [2]. If we have a homozygous STR typing, then the probability of the
defendant hypothesis would be Hd = p?. Therefore, the equation would become:

LR =Hp/Hd =1/2pq 9.2)

Butler [2] said that if the final result was greater than one, then this result would
support the prosecution side. While if it is less than one, then the defendant theory
would be in favor.

Typically, the LR will have a higher ratio if the STR genotype is rear because of
the reciprocal relationship. LR is the inverse of the locus estimated frequency [2].
Note that the likelihood ratio can be more complex depending on the mixture of the
evidence.

The strength of the result of the likelihood ratio in terms of the prosecution’s case
can be interpreted numerically as presented in Table 9.2. Column 1 represents the
LR value, while Column 2 is showing the corresponding strength of evidence.

9.2.8 HPC Systems

In this section, we will explain four different types of HPC systems: FPGAs, clouds,
GPUs, and clusters. Generally, FPGAs and GPU give better performance when
algorithms are well designed, but they are extremely resource-constrained.

Cloud Usually, cloud NGS tools are built on the basis of the MapReduce frame-
work [16]. Hadoop framework typically comes with MapReduce, and it distributes
the work among compute cloud. MapReduce approach guarantees fault tolerance,
load balancing, and redundancy. An example of a genome assembler that uses
MapReduce framework is [17]. Nevertheless, privacy is still an issue when talking
about cloud solutions.
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Clusters Cluster HPC implementation usually combines Message Passing Inter-
face (MPI) with another paradigm. MPI is used to distribute the task to other nodes
(inter-node). On the other hand, the other paradigm usually takes care of the shared
memory parallelism (intra-node). MPI 4+ OpenMP is a common hybrid solution to
perform fine- and coarse-grained optimization.

Optimize HPC implementation are much better than Hadoop solutions because
fine-grained optimization is harder to achieve on Hadoop [16]. Consequently,
Apache Spark was introduced to avoid Hadoop drawbacks. Still, well-tuned HPC
implementation typically one order of magnitude faster than Apache Spark [16].
Apache Spark has the advantage of well-handling node failure and data replication.

A good future solution would combine HPC approaches and big data for
processing NGS data. Such an approach has been successfully applied in domains
such as machine learning [16].

GPU At its best performance, GPUs can give one order of magnitude better per-
formance than CPUs [16]. CUDA is a programming language for general purpose
applications runs at GPUs. Several NGS applications were successfully developed
such as genome assembly [18], error correction [19], and k-mer counting [20].

However, developing an application to run on GPUs using CUDA requires a steep
learning curve. It needs a deep understanding of GPUs architecture. As a result,
very few tools have been targeting GPUs. Nevertheless, the new effort to develop
highly optimized libraries such as NVBIO (https://developer.nvidia.com/nvbio) and
the availability of languages like OpenACC might boost the GPUs effort in life
science domain [16].

FPGAs FPGAs are chips that are able to be programmed that includes memory
blocks and logic gates that can be configured manually. The configuration process
usually is done through Verilog or VHDL programming languages [16]. FPGAs
offer a highly scalable solution for NGS data. Example of FPGA-based tools
includes FAssem assembler [21] and FADE tool for error correction [22]. Major
drawbacks of using FPGAs-based are the long development cycle, and they are
often not compatible to run on different FPGA generations. Yet, the new progress
on higher level programming languages like OpenCL has smooth the way for the
development of FPGAs-based solutions.

9.2.9 Parallel Frameworks

Parallel technologies are interesting on how to get the maximum benefit of the
multicore/many-core processors and networked computing resources.

Many architectures have been proposed to enhance the resource utilization,
namely, symmetric multiprocessor architecture (SMP), non-uniform memory access
architecture (NUMA), simultaneous multithreading architecture (SMT), single
instruction multiple data architecture (SIMD), and graphics processing unit (GPU).
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In addition, multiple parallel programming frameworks have been suggested such
as OpenMP, MPI, and MapReduce.

Various memory architectures exist, namely, shared memory, distributed mem-
ory, and hybrid memory architecture [23]. Shared memory systems enable all
processes within the system to share memory as global memory space. In distributed
memory systems, each processor has its own memory that cannot be reached by
others, and no global address is available. They communicate, and send and receive
data, through the network. Finally, hybrid memory systems combine both shared and
distributed memory architectures. In clusters of multi-core or many-core processors,
all processors within the machine shared their memory within each other; however,
different machines can communicate over the network.

MPI Message Passing Interface (MPI) is a library specification for message
passing model for distributed memory systems. It has multiple implementations
such as OpenMPI, MPICH, and GridMPI [23]. Each processor, when using MPI,
will have its own memory; moreover, it still can access other processors’ memory
using network communication. MPI offers point-to-point, from one processor to
another, and collective communication, from one or many processors to one or
many processors. MPI can send and receive message between processes in different
modes, such as block and non-block communication. The message size can be in
gigabytes [23]. MPI can run on many platforms like Windows, OS X, Linux, and
Solaris. Programs written with the help of MPI can run on a single machine or a
cluster of machines.

OpenMP OpenMP is an interface (API) for shared memory parallelism. It facili-
tates the programming process since it provides a set of directives for synchroniza-
tion, parallelization, and managing the shared memory among threads.

When compiling a software written using OpenMP, multithreaded programs will
be generated. Then, threads will share the memory address which will smooth the
communication among threads.

OpenMP helps software developers to build parallel programs without in-
depth knowledge of multithreading mechanism. Fine-Grained parallelism can be
maintained over the OpenMP directives. Multiple languages support OpenMP such
as C, C++, Fortran, Java, and it can run on multiple platforms like UNIX, LINUX,
and Windows.

Java Multithreading Java supports multithreading shared memory parallel pro-
gram language, which enables developing parallel software [24]. Multithreading
feature in Java allows the execution of more than one part of a program concurrently
to achieve better utilization of the computer resources. This can be achieved in Java
through two ways: (1) extend the thread class, (2) by using the runnable interface
[24]. One process can have multiple threads that share the same address space.
Thus, a synchronization mechanism is vital to ensure data protection. Java implicitly
maintains synchronization by using a lock for each object [24].



9 A Survey of Methods and Tools for Large-Scale DNA Mixture Profiling 229

Java also provides a parallelization through distributed memory system by using
API called MPJ, MPI equivalent for Java. MPJ allows developing a parallel software
to run on a cluster system [25].

9.2.10 High-Performance Computing in Bioinformatics

Bioinformatics is a field that deals with massive data. Such data may require an
extended time frame to be processed. Therefore, high-performance computing can
help in shortening the time needed to finish the data processing. Perez et al. [10]
discuss how HPC can help in solving bioinformatics problems. Authors had agreed
that using advanced technologies had enabled remarkable discoveries in the medical
field. They discussed different HPC systems which are used in bioinformatics area
such as GPU computing. Graphics Processing Units (GPUs) are used to increase
the computational capabilities of a group of PCs at a lower price. Moreover,
they mentioned some HPC implementations in the bioinformatics field. These
applications include Virtual Screening, Parallel Processing of Microarray Data,
and Big Data Analytics and Network Models. In the end, authors had mentioned
some drawbacks in the current HPC domain such as the energy consumption which
can be overcome by using the virtualization concept, which enable sharing system
hardware among different users. Other problems are the total cost of ownership
and the high learning curve in upcoming programming models to influence their
computational power.

Memeti et al. [26] had analyzed a DNA sequence on a heterogeneous platform
that works with the Intel Xeon Phi coprocessor. These heterogeneous platforms
usually come with one or more Xeon Phi devices and one or two general purpose
CPUs. Researchers had introduced a parallel algorithm which can assign the
workload of DNA sequence analysis to the different Xeon devices and host general
purpose CPUs. This parallel implementation was aiming to reduce the overall
analysis time. They also introduced a machine learning method that can predict
the performance of the proposed algorithm on both the host and device. Finally,
they evaluated the performance of their proposed method using human and animals’
DNA on a platform that consists of an Intel Xeon Phi 7120p device with 61 core and
two 12-core Intel Xeon ES CPUs.

Bell and Gray [27] had given an overview of the history of supercomputer
since the 1960s. Moreover, they tried to predict the future and how the next
trend would be. They illustrated 50 years of evaluation in the high-performance
computing domain. Authors argued that in 2001, there existed two major types of
architectures: clusters of scalar multiprocessors and clusters of Cray-style vector
supercomputers. They said that in the 1960s, Seymour Cray had proposed a parallel
instruction implementation using parallel and pipelined function units. In 1982,
Cray’s research had reached to the multiprocessor (XMP) structure which helped
to introduce the current supercomputer architecture. This architecture was sharing
10% of the market in 2001. However, a single node had reached its limit. So, to



230 E. Alamoudi et al.

go beyond that, a cluster architecture was proposed. In the 1980s, a cluster by
CMOS-based killer micros had overcome the single node by better performance,
scalability, and lower price. In 1993, NASA was looking for a supercomputer that
satisfies its need which was 1 Gflops workstation. To achieve that, a Beowulf project
was established which cost $40,000. In 2001, 28 Beowulfs were among the Top500
fastest supercomputers. In the end, authors had expected that there would be two
possible paths for supercomputers to evolve in the future. One is an application-
centric vector supercomputer. While the other concentrate on peta-scale datasets
where users can get access to data.

Diegoli et al. [28] had estimated the recombination rate among 15 X STR markers
by using data of genotype from 158 families and following earlier suggested a
likelihood-based method which allows for single-step mutation. The computational
challenges from the previous study were overcome by introducing a multi-core
parallelization on the HPC system. Authors had argued that X STR is useful in
forensic science due to a number of features such as their ease of haplotype inference
because of the male hemizygosity and their particular mode of inheritance. They
also added that few studies had systematically estimated the recombination rate
among X STRs. Nonetheless, none of these studies had been comprehensive as their
study.

To write an algorithm that can utilize an HPC system, a person should be
able to deal with parallel programming languages. However, when writing an
algorithm, different bugs may occur. Laguna et al. [29] had described the latest
updates in designing a saleable debugging tool. They argue that debugging a parallel
program is more difficult than debugging a serial one. Authors had focused on
three dynamic debugging methods in both parallel programs and MPI instructions.
The first dynamic approach is discovering scaling bugs, which helps to find bugs
that are latent at a small scale while manifesting themselves at a larger scale.
Vrisha is an example of this technique. Second, behavior-based debugging, this
technique is based on observing the behavior of the processor. This helps to reduce
the huge number of parallel processors into a small number of behavioral groups.
AutomaDeD framework is a simple model of task behavior that saves information
related to patterns and timing in each task’s control flow. The information allows the
developer to detect performance problems. Finally, software defects in MPI, MPI
library implementations have suffered from software bugs, especially when ported
to new machines. Many of these bugs are hard to find by average programmers.
FlowChecker is an example of software that can detect MPI bugs. In the end, authors
had focused their attention on three main problems that are still open in the domain
which are programmability challenges, performance bugs, and detecting silent data
corruptions.

In DNA profiling, the use of HPC has been limited. MPI has not been used. Most
of the parallel tools have been developed using Java threads (e.g., LRmix Studio,
Ceeslt, and NOCIt), OpenMP (e.g., LikeLTD), and Snow parallel package in R (e.g.,
Kongoh and Euroformix). A distributed memory implementations of DNA profiling
methods have not been reported to date.
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9.3 DNA Profiling: General Methods

Several methods had been proposed to evaluate a DNA mixture statistically.
Likelihood ratio, the combined probability of inclusion/exclusion (CPI/CPE), and
a modified random match probability (mRMP) are some examples of these methods
[30]. In February 2000, the FBI’s DNA Advisory Board had strongly recommended
the first two methods to be used [2]. Moreover, in 2006, the International Society
of Forensic Genetics (ISFG) had emphasis on the value of likelihood ratio [30].
There are six steps to interpreting a DNA mixture which was first described by
Tim Clayton in 1998 [2]. First, we need to identify the existence of a mixture.
Second, the allele peaks should be selected. Third, we need to determine the possible
number of contributors. Fourth, compute an approximation of the ratio of the people
who contribute to the sample. Fifth, we need to calculate all potential genotype
combinations. Finally, a reference sample comparison should be made.

In the CPI approach, an equal weight is given to all possible genotype combina-
tions. Therefore, a lot of information is being wasted when using this approach
which makes it inefficient when working with distinct genotypes [30]. This
approach does not require prior knowledge of the number of contributors because it
is evaluating all genotypes’ combination based on the evidence profile [30].

The Random Match Probability (RMP), on the other hand, is usually used with
single-source samples; therefore, a modified random match probability (mRMP)
was proposed to deal with more single-source samples [30]. Unlike CPI, this
approach requires prior knowledge of the number of contributors in the mixture and
will not work well with low-level profiles. An example of two- and three-person
mixtures calculations using mRMP was described in [31].

According to Bille et al., LR is the most dominant method of evaluating a DNA
mixture. However, both mRMP and LR make use of the available information in the
sample where CPI does not tend to do so.

More detailed analysis of the three methods and their advantages and weaknesses
can be seen in Butler’s book “Advanced Topics in Forensic DNA Typing: Interpre-
tation” [30].

9.4 DNA Profiling Using Likelihood Ratio

LR is considered as the most appropriate and powerful approach for calculating
the weight of DNA evidence. There are three methods using LR that are widely
described in the literature. The first method is the binary model, which is the sim-
plest yet it cannot handle complex mixture [32]. Second, the semi-continuous, which
is the most used by scientists since it is easy to understand and explain, but it still
neglects relevant information [33]. Finally, the continuous which overcomes most
of the previous models’ shortcomings. It utilizes most of the available information
provided by the sample, yet it is harder to be accepted and explained in a courtroom
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[32]. These models may involve a human or computerized process depending on the
complexity of the approach. Kelly et al. [33] had made a comparison between these
three approaches which are suggested by the DNA Commission of the ISFG.

Many frameworks that interpret complex DNA profiles rely on the likelihood
ratios approach such as [11]. Gill et al. had mentioned a set of guidelines which
can help to evaluate any complex mixture. In addition, they provide some features
for any model that might deal with complex interpretation such as the ability to
incorporate several contributors. They emphasize the fact that the calculation must
be provided in a fast manner.

Most of the likelihood ratio-based analysis require the number of contributors
to be given before the analysis start. For instance, [34-39] rely on the number of
contributors on their analysis.

However, others had tried to avoid using it in their interpretation, such as [40,
41]. Russell et al. had developed a semi-continuous method that can calculate
the likelihood ratios without previous knowledge about the contributor’s number.
Their simple model has the abilities to calculate the statistical weight to inclusions.
They had also provided a limit test which will guarantee the absence of any false
inclusion by chance. To test the proposed unconstructed likelihood ratio (UCLR)
model, researchers had collected a set of DNA mixtures with known contributors
in different ratios. The result shows good performance on three people mixture.
However, the performance becomes worse as the number of contributors increased.

9.5 Estimating Number of Contributors for DNA Profiling

Today, most applications that interpreted the DNA profile do require the number of
contributors to be available as input [40]. Different methods have been developed
to conclude the number of contributors in a DNA mixture. One of these methods
is called Maximum Allele Count (MAC). This approach calculates the minimum
number of contributors who might contribute to a sample by counting the observed
alleles at each locus. Nevertheless, this method may not be valid to work in a
complex mixture because of the complexity of allele sharing [42]. New methods
that were proposed do not only rely on the number of observed alleles, but also on
the frequencies of observing the allele in the population. Biedermann et al. [43] had
developed a probabilistic method that performs a Bayesian network to conclude the
number of contributors in DNA mixture. The new approach performs better than
MAC with a degraded DNA sample and a higher number of contributors. Maximum
Likelihood Estimator (MLE) is another method used to estimate the number of
contributors. It tries to maximize the likelihood value of the DNA profile [44].
Haned et al. [45] had compared MAC and MLE. The efficiency of both methods
had been analyzed and compared for identifying two to five-person mixtures. Three
different situations were used to test both methods. First, when all contributors
belong to the same population and when allele occurrences are known. Second,
when allele occurrences are not known, which may occur in population subdivision.
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Finally, a condition of partial profiles and how it could affect the estimation
accuracy. MAC method is used to set the lower bound that can clarify the number
of alleles in a mixture. Haned et al. believe that MAC is unreliable since there is
a chance for allele sharing between people which called the masking effect. The
result of the comparison supports the use of MLE when a mixture contains more
than three contributors. However, when three or two people contribute to a mixture,
MAC would perform better.

However, as the number of contributors increased the risk would increase. Haned
et al. [46] had analyzed the risk of dealing with three-, four-, and five-person
mixture. They have done that by comparing the gold standard LR to the casework
LR. The gold standard LR is when the number of contributors and genotypes are
known which means the availability of all required information to compute LR per
contributor. Authors showed the result and the implied thoughts of analyzing high
order mixture in the forensic domain. Haned et al. argued that the low template DNA
mixture of three-, four-, and five-person are common in forensic casework, yet it is
hard to interpret.

Many methods are used today to evaluate the number of contributors in a sample
such as [3, 9, 10, 47]. Perez et al. had created a strategy that could find out the
number of contributors from two to four-person mixtures for both low template
and high template DNA amounts. The proposed strategy helped to provide a useful
tool to differentiate between high and low template two-, three-, and four-person
mixtures. The four-person mixtures show some difficulties due to the allele sharing
phenomena.

Egeland et al. focus on calculating the number of contributors in a mixture by
maximizing the likelihood. The proposed approach is based on single SNP. The
method tried to answer two questions: Is it a mixture? And if yes, then how many
markers are required and how they should be selected. One of the recommendations
that was driven from the result was regarding the number of markers needed to
calculate the number of contributors which is 100 markers.

A typical algorithm for finding the best allele pair in a locus to interpret a
mixture is presented in Algorithm 9.1. Such a process is essential when calculating
the number of contributors in a DNA profile. Moreover, it is considered as a
performance bottleneck.

On the other hand, Marciano and Adelman [48] proposed a machine learning
approach that can estimate the number of contributors in a mixture. Their approach
can handle mixtures with up to four contributors. The testing phase of this method
shows a good result. The model first will be trained on a set of data, then it will
be able to guess the number of contributors in DNA sample correctly. According
to Marciano and Adelman, such a problem perfectly fits the domain of machine
learning. The abundance of human mixture data can help to train the model well.

Yet, the machine learning approach suffers from several drawbacks. First, the
quality of the result depends on the trained data. Uncorrected data may harm the
system and lead to faulty results. Second, a training phase is always required before
using the system. Such a phase is time-consuming and it might need to be redone
many times. Third, the accuracy of the system starts to shape up after working
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Algorithm 9.1. calculate locus’s best allele pair that give best interpretation of the sample

1: procedure GeneProbCalc(stepSize, noc, lname, revLoci, forLoci, DN Amass, Allele At Loci, LDO)
//noc=number of contributors, Iname=locus name, LDO= Locus Drop Out

2 locAlleles = Allele AtLoci|locusname]

3 MeanAndStd = Meanstd(locusname) //find mean and stddev

4 for i=0 to stepSize do

5: g=random array between 0 and 1 with size noc

6: for j=0 to noc do

7 for k=0 to 2 do

8 r=Generate random number that does not exceed the interval of the locus

9: allele = AlleleRange[r] //get the allele in the selected interval for a specific locus
10: Add allele to Peakscumulative

11: contMass=g[i-1]*DNAmass

12: if Rand() < ExpVal(locusName, LDO, contMass) then

13: ValidAlleles.add(allele)

14: weightlallele] = weightallele] + contMass

15: end if

16: end for

17: end for

18: for aName=ValidAlleles.start to ValidAlleles.end do //aName=Allele Name
19: if locAlleles contains allele then

20: (mean,variance) =Meanstd(weight[allele]) //find the mean and stddev
21: if revLoci[lName] && Rand()<ExpVal(lname, RevStut DropO, weight) then
22: rMu=ExpVal2(IName, mean, weight[allele]) * allele.height

23: rSigma=ExpVal2(IName, Stddev, weight[allele]) * allele.height

24: revAlleleStut = aName - 10 // get the reverse

25: fowStutPeak = Peakscumulative|allele]

26: end if

27: means[revAlleleStut] = means[revAlleleStut] + rMu

28: variances[revAlleleStut] = variances[revAlleleStut] + rSigma % r

29: if forLoci[lName] && Rand()>ExpVal(IName, forStutDropO,weight) then
30: fMu=ExpVal2(IName, Mean, allele.weight) x allele.height

31: fSigma=ExpVal2(IName, Stddev, allele.weight) * allele.height

32: fowAlleleStut = aName + 10 // get forward

33: fowStutPeak = Peakscumulative|allele]

34: end if

35: means|fowAlleleStut] = means|fowAlleleStut] + rMu

36: variances|fowAlleleStut] = variances|fowAlleleStut] + rSigma x rSigma
37: end if

38: end for

39: for temp=Peakscumulative.start to Peakscumulative.end do

40: mean.add(temp.allele, M eanAndStd|0])

41: variances.add(temp.allele, Mean AndStd[1] * MeanAndStd[1])

42: end for

43: locus Prob=calcLocusPeakHeightsProb(Peakscumulative, means, variances)
44: Summation+ = locusProb

45: if locusProb > currMax then

46: currMax = locusProb

47: for alleleName=selectedValidAlleles.start to selectedValidAlleles.end do
48: currMazAlls.add(alleleName)

49: end for

50: end if

51: end for

52: result.add(Summation, currMax, currMaxAlls)

53: Return result

54: end procedure

Algorithm 9.1 A typical algorithm for calculating locus’s best allele pair that gives the best
interpretation which helps in finding the number of unknowns in a DNA mixture (algorithm
inspired by NOCIT tool [3])
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large data of human DNA mixtures. Such data may not be easily available. Finally,
as the maximum number of contributors increase, the accuracy of the prediction
will be declined. Authors said that they didn’t go up to five contributors because
misclassification of five contributors may occur on four contributors mixture [48].

9.6 Software Tools for DNA Profiling

A number of tools are available that implement various DNA profiling methods.
These include DNA MIX [49], Euroformix [34], LRmix [36], LRmix Studio [32,
50], TrueAllele [35], LikeLTD [38], Lab Retriever [15], CeeslIt [37], NOCIt [3],
DNAMiixture [51], Forensim [52], MixtureCalc, Mixture Analysis [53], FamLink
kinship [54], DNA Mixture Separator [55], and STRmix [56]. We will review the
most notable tools in this section. At the end of this section, we will provide a
comparison between the selected tools.

9.6.1 DNA Mix

There are three versions of this software, and all of them are open sources. The third
version is the most notable and powerful one among the three, and is based on [49].
This version is written in Java and is appropriate for complex mixtures as well as
single-contributor stains. The software will ask for the database, stains, genotype,
and hypothesis to be inputted.

On the latest version, dependency of all alleles was carried by contributors to the
DNA mixture. All contributors will be assumed to belong to the same population,
which will increase the effect that is being considered. Authors of DNA MIX did
ignore the probability of null alleles. Thus, only homozygous contributors contribute
a single allele to a profile. A simple GUI has been developed in this version
(Fig. 9.4).

9.6.2 LRmix Studio

LRmix Studio is a software designed to interpret complex DNA profiles. It was built
on its previous version, which called LRmix; however, LRmix Studio is much faster
and more flexible. It can measure the probative value of any (autosomal STR-based)
DNA profile [50]. It can handle uncertainty in the DNA mixture from the allelic
drop-out and drop-in. Moreover, it is written in Java, and it is open source under the
GPLV3 license (Fig. 9.5).
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Fig. 9.4 The user interface for DNAMIX v3.2
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Fig. 9.5 The user interface for LRmix Studio v2.1.3

This software is following the semi-continuous model of interpreting DNA
profiles. Both the prosecution and the defense hypotheses assume that contributors
are unrelated. Yet, under the defense hypothesis, contributors can be related to an
unknown contributor.

If there are missing data in the reference profiles, LRmix Studio tool will be
unable to work properly. Moreover, it cannot deconvolute DNA profile because it
does not explicitly include the information of the peak height.
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9.6.3 TrueAllele

TrueAllele is a software that computes DNA interpretation automatically. It can
infer genetic profiles from all sorts of DNA samples. The software applies the
continuous model; however, no open source version of the code is available. It was
written in Matlab. Analysis followed by a comparison of TrueAllele is presented on
[35] using real information that has been taken from actual cases.

TrueAllele can separate complex DNA profiles into its component genotypes. For
each locus for a given contributor, the genotype and the uncertainty of that genotype
are labeled using the probability distribution over the potentials of the allele pair.

TrueAllele applies the MCMC (Markov Chain Monte Carlo) statistical search to
sample from the joint posterior probability distribution. For each locus in every
contributor, the posterior probability for the genotype is going to be calculated.
Thus, to remove the examination bias, the genotype will be inferred exclusively
from the evidence data [57].

9.6.4 Lab Retriever

Lab Retriever [15] is a free software developed to estimate the likelihood ratios
that combine a probability of drop-out. It was built on the top of another software
called LikeLTD which was written in R language. The front end of the software was
developed using CSS, JavaScript, Python, and HTML. On the back end, authors
rewrote the code using C++ to acquire more speed. The software uses the semi-
continuous model. It computes likelihood ratios for up to four unknown contributors
to a DNA sample.

Lab Retriever uses dynamic programming to speed up the computation, which
will avoid iterating over all genotypes. This tool estimates the likelihood ratio and
compares the evidence under various hypotheses, while still allow for drop-out of
alleles.

In order for the system to work, the user must specify as an input the following:
The detected alleles in the evidence profile, the suspect genotype, the genotype of
other contributors, the considered hypotheses, and the database of allele frequency.

Moreover, several parameters should be specified such as the probability of drop-
in and drop-out and the co-ancestry adjustment value (Figs. 9.6 and 9.7).

9.6.5 Ceeslt

Ceeslt (CEES: computational evaluation of evidentiary signal) [37] is a method
that integrates two features of the continuous approach to calculate the LR and
its distribution which are conditioned on the defense hypothesis and the linked
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Table 9.3 The running time

. Number of contributors | Average time (minutes)
of Ceeslt under different

number of contributors 1 7
2 50
3 140

p-value. It combines stutter, drop-out, and noise in its calculation. For calibration
information, it uses a single-source sample with known genotypes. It calculates the
LR for a selected Person of Interest (POI) on a questioned sample, together with the
p-value and LR distribution.

To assess the performance of Ceeslt, it was tested using 303 sample files ranging
between one and three contributors, and the mass of the sample was ranging
between 0.016 and 1 ng. The analysis results show a dependency on the number of
contributors. Therefore, a good estimation for the number is critical for an accurate
result.

The running time of the tool depends on the number of contributors. As the
number increased, the time complexity will increase too. See Table 9.3 for more
details on Ceeslt running time.

Multithreaded is already implemented on Ceeslt to increase resource utilization
to acquire more speedup.

The software was written in Java and is available as a (jar) file. An in-depth
analysis of the software was presented on [37].

9.6.6 LikeLTD

LikeLTD is a software that is used for computing the likelihood of DNA profile
evidence, including complex mixtures. It has been written in R. However, since the
fifth version, the computation-intensive areas in code have been rewritten in C to be
executed in parallel. This software applies the continuous model of calculating the
Likelihood ratio. These areas include the computation of genotype combinations for
unknown contributors, computing allele doses for each genotype combination, dose
adjustments for relatedness, heterozygosity, drop-out, and power.

The runtime of the peak height model is much slower than the runtime of
the discrete model, yet it yields a higher evidence weight (see Table 9.4). The
time complexity of the peak height model scales up with the number of unknown
contributors, the number of observed peaks, and the number of replicates in the
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Table 9.4 The runtime of

h ; Hypothesis Model WOE | Runtime (Minutes)
calculating the Weight of ;
Evidence (WoE) using the Q/X + K1 + Ul | Discrete 2.3 14
two different models for the Peak height | 8.2 23
laboratory case [38] Q/X + Ul + U2 | Discrete 0.5 38

Peak height | 7.8 200

profile. Other parameters that increase the runtime are the modeling double-stutter
or over-stutter. Parallelism was achieved on the C++ code by using a shared
memory parallelism (OpenMP).

The runtime of the algorithms was recorded using a node with eight Intel Core 17
processors (3.1 Hgz per core) and with 15 Gb of RAM. The result is presented
in Table 9.4. The first column describes the hypothesis that was applied. Two
hypotheses were used. Q is a contributor to the crime scene profile under the Hp
while X is the unknown individual under Hd that assumes to contribute to the profile
instead of Q. The hypotheses may specify the number of K which represent the
known contributors whereas U is the unknown contributors. The second column
indicates the used model whether it uses discrete or peak height. The last two
columns are showing the weight of evidence and the corresponding running time.

9.6.7 DNAMixture

DNAMixture is a statistical model that calculates and analyzes DNA sample for
one or more contributors [51]. It uses Bayesian network representation to speed
up the computation and allow analysis of mixtures which contain several unknown
contributors. Alleles observing process is objective, and it does not depend on a
subjective preprocessing of the DNA profile [58]. Such a preprocessing can lead
to more errors. The model has been tested on some real case and the results were
sensible and robust [58].

This software has been written in R and follows the “fully continuous” statistical
model. Its authors claim to develop all methodology within a framework for
consistent analysis and transparency. The application does not have a graphical
user interface, which requires a basic experience in R. DNAMixture relies on
an R package called “Hugin.” Hugin is used to compute the Bayesian network.
DNAMiixture is not parallelized, yet the Hugin package is.

The computational complexity of the model depends on several factors. The
running time of DNAMixture when there are five unknown contributors took 3 h
on a regular desktop machine [58]. Authors claim that they perform analysis on
several cases which takes 35 min; when they analyze the same cases using another
tool called TrueAllele [57], the runtime goes to 36 h [58].
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9.6.8 Kongoh

Kongoh [59] is an open-source application based on the continuous model for
interpreting DNA sample. This model deals with artifacts and allelic drop-out ratio
on its calculation, but it doesn’t consider allele drop-in probability. It performs
a Monte Carlo simulation based on the probability distributions of the given
parameters. Next, gamma distributions will be used to approximate the peak heights
that were generated by the simulation.

The number of contributors is not required to be given as an input. Kongoh can
determine the number of contributors when it ranges from one to four. However, the
accuracy will be affected when the number of contributors increases to reach 33%
when the number of contributors becomes four. Kongoh can handle sample with a
small amount of DNA, and also with degraded DNA samples. The software has a
graphical user interface. R language was used to write Kongoh and its source code
is available online.

On a standard desktop computer, one mixture might take around 10 h when
hypothesizing 1-4 contributors. However, when hypothesizing 1-3 contributors,
the runtime will decrease remarkably to a few minutes [59]. Its performance was
compared to EuroForMix (version 1.7) and LRmix Studio (version 2.1.3) in [59]. In
the future, authors of Kongoh are looking to use newer STR typing kits with higher
sensitivity.

9.6.9 EuroForMix

EuroForMix is a software based on the fully continuous approach to estimate STR
DNA profiles from a complex DNA sample of contributors with artifacts. It is
available as an open source. EuroForMix was written in R language. Nonetheless,
the likelihood function was written in C4+4 to speed up the computation. The
software introduces a parallel implementation, since the v0.5.0, using snow R
package. The parallel implementation will only be considered when a number of
unknowns are at least 3 (not performed yet for database searching or non-contributor
simulation). A number of processes will be similar to the number of random start
points required in the optimization.

Euroformix requires a significant amount of computational time when the
number of unknown contributors is four or more. Table 9.5 gives an approximation
time complexity for each number of unknown contributors. From the table, it is
clear that the time consumed when we have four unknown contributors was too
much. Column 1 describes the number of contributors while Column 2 gives the
corresponding time taken.
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Table 9.5 An approximate
overview of the time taken to

Number of unknown contributors | Runtime

calculate the LR depend on 1 ls

the number of unknown 2 1 min

contributors [60] 3 30 min
4 24 h

Table 9.6 The runtime using
a different maximum number
of contributors [3]

Number of contributors | Time range (Mode)
1 <1 min (0.2 min)

2 15-30 min (17 min)
3 30 min—1.5 h (1 h)
4 1-5h (4 h)

5 5-20h (14 h)

9.6.10 NOCIt

NOCIt [3] analyzes the DNA sample to calculate the number of contributors in a
mixture. Java programming language was used to write the software. It determines
the number of contributors (from 1 to 5). NOCIt can only interpret an autosomal
STRs data which are independent of each other. Moreover, the software is not
developed to deal with a stutter.

The execution time of [3] depends on the maximum number of contributors, the
number of loci/alleles considered and the processing speed of the computer. It is also
dependent on whether multiple runs of NOCIt are occurring at the same time, i.e.,
two NOCIt interfaces are open at once and running two separate samples. Table 9.6
provides the runtime of NOCIt. The first column gives the number of contributors,
whereas the second column describes the range of time taken to analyze that number.
The result was collected from a dual-core laptop with Intel” CoreTM i5-3380 CPU
@ 2.9 GHz (Fig. 9.8).

9.6.11 STRmix

STRmix is a probabilistic genotyping application which performs the continuous
model of interpreting the DNA profile. The DNA profile interpretation is based
on a Markov Chain Monte Carlo (MCMC) sampling model [39]. It calculates the
likelihood ratio which is the probability of the DNA evidence under two hypotheses,
defense and prosecution hypotheses.

It was built to interpret single and mixed DNA profiles. Moreover, it follows
the SWGDAM recommendations. It utilizes information that extracts from a DNA
sample, such as peak height, to calculate the probability of a DNA profile for all
possible genotype combinations. The software considers aspects such as allele drop-
in, allele drop-out, and stutter. The software has been written in Java, and it’s only
available for purchase.
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Fig. 9.8 The user interface
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Moretti et al. [39] had tested STRmix and they argued that it can be used to
interpret single-source profiles and mixtures of two, three, four, and five persons.

9.6.12 A Comparison of the DNA Profiling Tools

A general comparison between the selected tools is presented in Table 9.7. The
first column gives the names of the software. Columns 2—-8 provide information
about various features of the software. Column 2 gives information on whether
the software has a GUI or not. Column 3 and 4 are illustrating if the selected
software considers the phenomena of drop-in and stutter on its interpretation.
Column 5 describes the model that used to calculate LR. The sixth column describes
the programming language that used to build the selected software. Column 7
indicates the availability of source code. The last column describes the used parallel
framework. Note that the table is missing some information due to either the lack
of resource for some software or because of the inability to access the software’s
source code.

A timeline that shows the history of introduction of the compared tools is
presented in Fig. 9.9.

9.7 Conclusion

Interpreting DNA mixture is a common practice in forensic science domain. It is a
complicated process that requires an extended period of time. We gave an overview
of the DNA profiling field. A historical background, along with its application
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Table 9.7 A general comparison between the review softwares
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Calculation Source
GUI | Drop-in | Stutter | model Language | Code | Parallelism
LRmix studio [15, | Yes | Yes - Semi- Java Yes Java
32, 50] continuous multithreading
TrueAllele [34, 35] | Yes | Yes Yes Continuous | Matlab No -
DNAMIX V.3 [49] | Yes |- — - Java Yes No
Euroformix [34] Yes | Yes Yes Continuous | R, C++ | Yes Snow package
Ceeslt [37] Yes | Yes Yes Continuous | Java No Java
multithreading
NOCIt [3] Yes | Yes Yes Continuous | Java No Java
multithreading
DNAMixtures [51] | No | Yes Yes Continuous | R Yes No
Kongoh [59, 61] Yes |No Yes Continuous | R Yes Snow package
LikeLTD [38] No Yes Yes Continuous | R, C Yes OpenMP
Lab Retriever [15] | Yes | Yes - Semi- C++ Yes No
continuous
STRmix [39, 56] Yes | Yes Yes Continuous | Java No -
NOCIt
LabRetriever
TrueAllele LRmixstudio Euroformix Kongoh

1999 2013 2015 2017

7\ i~

&/ N

DNAMIX STRmix DNAMixtures  Ceesilt
2004 LikeLTD 2014 2016
2012

Fig. 9.9 DNA mixture analysis tools introduced over the time. This timeline describes the year of
introduction of each tool

was mentioned. We, then, discuss the needed steps to sample a DNA mixture and
what are the required technologies. After that, we reviewed the literature based
on their classification into describing DNA profiling in general. We focus later on
approaches that follow the Likelihood Ratio model. We also reviewed the various
tools and compared their performance and accuracy. This is an extended version of
our earlier work [4].
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In the end, we would suggest the use of Euroformix and LikeLTD for DNA
profiling since they are already performing parallelism. They both utilize most of the
available information in the DNA sample because they follow the continuous model
for calculating the LR value. The source code for the two software is available for
assessment and modification. However, Euroformix provides a GUI which gives it
a slight advantage over LikeLTD for users who have no technological expertise.

A frequent necessity to apply these tests might raise the need to speed up
the runtime of such analysis. The computational complexity has been the major
deterring factor holding the area advancements and applications. An improvement
would give a chance to interpret mixtures with a larger number of unknowns and
within a shorter time frame. The investigation of the relevant literature reveals
that the current approaches for parallelization of DNA profiling rely on shared
memory parallelization. A distributed implementation is needed to speed up the
computations allowing for the use of a large number of cores and processors.
This is our ongoing research, which will be reported in the near future. Faster
interpretations of DNA mixtures with a large number of unknowns and higher
accuracies are expected to open up new frontiers for DNA profiling in the smart
societies era.

In the coming years, the complete genome sequencing technologies in a single
or only a few cells will be easily available. These technologies may change
the situation of DNA profiling completely. In this case, it is obvious to prepare
appropriate statistical methods for that. It will be, therefore, important to prepare
the mathematical and statistical algorithms for complete-genome-sequencing-based
DNA profile. High-performance computing will play a key role in speeding up DNA
profiling methods, particularly those HPC techniques which exploit domain-specific
data and algorithmic patterns [62], system heterogeneity (e.g., disks for space,
and accelerators for speed) for its advantage [63], and virtual organization models
(similar to grids [64]) for information sharing across organizational boundaries.
Hierarchical system structures will be needed to localize and optimize data and
computations [65]. Internet of Things (IoT) would be integrated in smart city
systems to create innovative services [7] and deal with big data-related challenges
[6]. Mobile, fog, and cloud computing [5, 66—68] will enable dynamic system
environments, seamlessly connecting users and systems.
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