Chapter 8)
Parallel Shortest Path Big Data Graph e
Computations of US Road Network Using
Apache Spark: Survey, Architecture,

and Evaluation

Yasir Arfat, Sugimiyanto Suma, Rashid Mehmood, and Aiiad Albeshri

8.1 Introduction

Smart applications and infrastructures are increasingly relying on graph computa-
tions. We are witnessing a continuous increase in the use of graphs to model real-
world problems [1]. The emergence of many graph-based software, programming
languages, graph databases, and benchmarks—such as ArangoDB, Neo4j, Sparksee,
Gremlin, and Graph 500—provide the evidence for the increasing popularity of
graph-based computing. Graph analytics plays an important role in information
discovery and problem solving. A graph can be any real-life application that can
be used to find a relation, route, or a path. Graphs have many applications such as
image analysis [2], social network analysis [3, 4], smart cities [5—7], communication
networks [8—14], scientific and high performance computing [15-20], transportation
systems [21], Web analyses [22], healthcare [23-25], and biological analyses [26].
In these applications, a large amount of data is being generated every second,
commonly referred to as big data.

Big Data refers to the “emerging technologies that are designed to extract value
from data having four V’s characteristics; volume, variety, velocity and veracity”
[27, 28]. Volume defines the generation and collection of the vast amount of data.

Y. Arfat - A. Albeshri
Department of Computer Science, FCIT, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: yqasim@stu.kau.edu.sa; aaalbeshri@kau.edu.sa

S. Suma
Division of Data, Department of Engineering, Kumparan, Jakarta Selatan, Indonesia
e-mail: sugimiyanto.sugimiyanto @kumparan.com

R. Mehmood (X))
High Performance Computing Center, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: RMehmood @kau.edu.sa

© Springer Nature Switzerland AG 2020 185
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,

EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_8&domain=pdf
mailto:yqasim@stu.kau.edu.sa
mailto:aaalbeshri@kau.edu.sa
mailto:sugimiyanto.sugimiyanto@kumparan.com
mailto:RMehmood@kau.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_8

186 Y. Arfat et al.

Variety defines the type of the data stored or generated. Types include structured,
semi-structured, and unstructured data. Velocity describes the timeline related to
the generation and processing of big data. Veracity refers to the challenges related
to the uncertainty in data. Big Data V’s and Graphs have a close relationship. For
example, volume could represent the number of edges and nodes, and velocity could
be considered as the graph’s streaming edges. A graph could be uncertain (veracity)
and has the variety characteristics because data sources could vary.

The processing of graphs in a distributed environment is a great challenge due to
the size of the graph. Typically, a large graph is partitioned for processing. A graph
can be partitioned to balance the load on the various machines in a cluster. These
partitions are processed in a parallel distributed environment. For the computation
of the graph data on the distributed platform, there is a need for scalability and
efficiency. These are the two key elements to achieve good performance. We also
need to move our data closer to computation to minimize the overhead of data
transfer among the nodes in the cluster. Load balancing and data locality plays a
major role in achieving this purpose. It can utilize the whole resource of the system
during processing. Moreover, as mentioned earlier, big data cannot be processed by
traditional tools and technologies. There are many platforms for graph processing,
but these platforms have performance issues. Parallel computation of large graphs
is a common problem. Therefore, in this scenario parallel distributed platforms are
suitable for processing large graphs. In this work, we have used the GraphX [29-
31] for parallel distributed graph processing which is a widely used framework for
the graph processing. The big data platform that we have used for distributed graph
computing of shortest paths is Apache Spark [32].

This chapter extends our earlier work on single source shortest path computations
of big data road network graphs using Apache Spark. In our earlier work [33], we
had used the US road network data, modelled as graphs, and calculated shortest
paths between two vertices over a varying number of up to 368 compute cores. The
experiments were performed on the Aziz supercomputer (a former Top500 machine
[34]). We had analyzed Spark’s parallelization behavior by solving problems of
varying graph sizes, i.e., various states of the USA with up to over 23 million
vertices and 58 million edges.

We focus in this chapter on computing a set of large varying number of shortest
path queries on a (source, destination) vertex pair. The number of queries used
are 10, 100, 1 K, 10 K, 100 K, and 1 M queries executed over up to 230 CPU
cores. We achieve good performance, and as expected, the speedup is dependent
on both the size of the data and the number of parallel nodes. In addition to the
extended results, this chapter provides a detailed literature on shortest path graph
computations. The system architecture for graph computing in Spark is explained
with additional details using the architecture depiction and elaborated algorithms.
We call our system, the Big Data Shortest Path Graph Computing (BDSPG) system.

The rest of the chapter is organized as follows. Section 8.2 gives background
and literature review. Section 8.3 describes the design and methodology of the
BDSPG system. Section 8.4 presents the analysis of result. The conclusions and
future directions are given in Sect. 8.5.

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . . 187

8.2 Literature Review

Smart urban infrastructure greatly replies on smart mobility designs. Many
approaches have been proposed to address smart mobility-related challenges
[35]. These include, among many others, modelling and simulation-based
approaches [36, 37], location-based services [38], telematics [39], social media-
based approaches [40-42], approaches based on vehicular networks (VANETS)
and systems [43-45], autonomic mobility management [46, 47], autonomous
driving [48], mobility in emergency situations [49-54], approaches to improve
urban logistics [40, 55], and big data-based approaches [40—42, 56]. A recent
book discusses several smart society proposals on infrastructure and applications
including smart mobility [7]. Many mobility problems naturally map to graph-
based computations; shortest path computations are one of them and are of great
significance in smart mobility infrastructure designs. In this section, we discuss
state-of-the-art work from the literature on graph-based road network shortest path
computations.

Quddus and Washington developed an algorithm to find the shortest path between
two points called weight-based shortest path and vehicle trajectory aided map-
matching (stMM) [57]. It improves the map-matching of low-frequency positioning
data on a roadmap. They exploit a well-known A* search algorithm. They tested the
performance of proposed approach with collected data from rural, suburban, and
urban areas in Nottingham and Birmingham, UK. Szucs designed and implemented
a model and an algorithm for route planning in road network [58]. They proposed
a solution that also aims to find the equilibrium in the path optimization problem.
The proposed approach takes the uncertainty of state information of roads, their
uncertainty and influencing factors into account. The system is based on the
Dempster-Shafer theory, which helps to model the uncertainty and Dijkstra’s
algorithm which allows finding the best route. Feng et al. proposed an improvement
of alternative route calculation, based on alternatives figures [59]. They exploit a
bidirectional Dijkstra algorithm to explore the route. They introduced three quotas
to measure the quality of an Alternative Figures (AG). They introduce the concept
of pheromones into the Plateau method and enhance the ability of Plateau method
to find a meaningful alternative road.

Zeng and Church demonstrated the relative value of A* algorithm to solve simple
point-to-point shortest path problems on real road networks [60]. It is applied to road
networks from two counties of California, USA. They state that Dijkstra algorithm
can be improved by taking advantage of network properties associated with GIS-
source data. Whereupon, Dijkstra does not take advantage of the spatial attributes
which are available in a GIS setting, while A* can take the advantage of spatial
coordinates in trimming the search to find the shortest path. Malewicz et al. proposed
Pregel, a framework for large-scale graph processing [61]. The framework is similar
in concept to MapReduce. It provides users with a natural API for programming
graph algorithms while managing the details of distribution invisibly, including
messaging and fault tolerance. It contributes providing a suitable system for large-

188 Y. Arfat et al.

scale graph computing. They deployed dozens of Pregel applications. The users
report that the API is intuitive, easy to use, and flexible. The experiment shows
that the performance, scalability, and fault tolerance of proposed framework are
satisfactory for computing graph jobs with billions of vertices.

Yan et al. proposed a framework called Graphine for graph-parallel computation
in multicore clusters [62]. It addresses the problem of existing distributed graph-
parallel frameworks which cannot scale well with the increasing number of cores per
node. They implemented the proposed framework and evaluated it. The experiment
result shows that their proposed framework achieves sublinear scalability with the
number of nodes, a number of cores per node, and graph size up to one billion
vertices, as well as achieves 2~15 times faster than the state-of-the-art Power Graph
on a cluster with 16 multicore nodes. Selim and Zhan proposed an algorithm and
data reduction technique based on data nodes in large networks dataset [63]. It is
done by computing similarity computation, maximum similarity clique (MSC), and
then finding the shortest path due to the data reduction in the graph. The technique
aims to reduce the network that will have a significant impact regarding performance
(shortest time and faster analysis) on calculating the shortest path. The proposed
technique takes into account shortest path problem between two nodes in a large
undirected network graph. The result shows that their proposed technique beats up
Dijkstra’s shortest path algorithm with large datasets with respect to execution time.
Zhou et al. presented a new graph processing framework based on Google’s Pregel
called P4+ [64]. The proposed framework aims to reduce the system overhead for
algorithms that require many iterations in Pregel. It extends Pregel by some new
terms such as introducing a new data structure, internal compute, super-vertex, and
new API. Their proposed approach has been evaluated by using real datasets with
cases Shortest Path and PageRank. The result shows that their proposed technique
demonstrate its superior performance.

Cao et al. proposed an approach for solving the stochastic shortest path problem
in vehicle routing [65]. It aims to find the optimal path that maximizes the
probability of arriving at specified destination before the given deadline. Their
approach is data-driven which explores big data generated in traffic. They evaluated
the performance using a real traffic data extracted from real GPS trajectories of
vehicles in road network of Munich city, which consists of 170 nodes and 277 edges.
The experiment result shows that the proposed approach outperforms traditional
methods. Hou U et al. developed a framework to solve online shortest path problem
called live traffic index (LTI) [66]. The proposed framework aims for computing the
shortest path according to live traffic conditions. It enables drivers to effectively
and quickly get the live traffic information on the broadcasting channel. There
is no existing efficient solution that can offer affordable costs for online shortest
path computation at both client and server sides. The conventional architecture
scales poorly with the number of clients. Their approach is that the server collects
live traffic information and distributes it over radio or wireless network. They
evaluated their approach with four different road maps, including New York City,
San Francisco bay area road map, San Joaquin road map, and Oldenburg road map.

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . . 189

The result shows that their proposed method reach optimal solution in terms of four
performance factors for online path computation.

Strehler et al. developed a model called fully polynomial-time approximation
scheme (FPTAS) for finding shortest energy-efficient routes for electric and hybrid
vehicles [67]. It aims to resolve the problem of electric and hybrid vehicles regarding
the shortest path problem and planning of the trip, whereupon recharging an electric
car takes longer than refilling fossil fuels car. Their contribution is introducing a
general model for the routing of hybrid and electric vehicles with intermediate stops
at charging station and convertible resources. They are using Matlab to represent
and test their model. The used dataset are engine model, topographical information,
and road data of German. They are in improvement phase that the running time
of the proposed algorithms may not be suitable for practical purposes, particularly,
when it is running on a mobile phone or on an in-car device. Hong et al. developed
a multicore computing approach to find shortest route from single source and single
destination while avoiding obstacles [68]. Whereupon, the existing approaches
have limited ability in dealing with real-time analysis in big data environments.
They use multicore computing to speed up the computation and analysis using
Python’s official Multiprocessing library. Thus, the parallelization is core based.
The approach itself exploits the notion of a convex hull for evaluating obstacles
and constructing pathways iteratively. The experiment result shows their proposed
approach for parallel processing has significant improvements over sequential
computing for wayfinding and navigation tasks with a large number of obstacles
in complex urban area. Mozes et al. developed an algorithm by combining two
techniques for computing shortest paths in directed planar graphs [69]. The two
combined techniques are STOC’94 and FOCS’01. It aims to remove the log n
dependency of the shortest path algorithm in the running time, in order to have
better and optimal performance. The theoretical proving shows that their proposed
technique obtains a speedup over previous algorithms for solving shortest-path
problem.

In this work, Abraham et al. [70] have worked on the point to point the shortest
path computations on the road network data. They modelled the road network as
a graph having highways with low dimension. The algorithm they named Hub
labels for computation of shortest path. The authors claim that it works faster for
all types of queries. However, they have not used the parallel implementation of an
algorithm. The performance this might suffer from significant data computation of
this algorithm. In this chapter, they have not used the US road network dataset. It
uses a general algorithm for the computation of road network graph data. Sanders
et al. [71] have presented the real-world road network processing algorithms. They
claim that algorithm takes less as compared to the Dijkstra. In this work, they
have not used the parallel implementation of the algorithm. They also did not
use the big data computation. Peng et al. [72] has presented a framework for
the computation of the road network distance using a single source-target pair. In
presented algorithms, they mapped the distance into a distributed structure of hash.
For the implementation, they used the Apache Spark and in memory computation
for the distance of road network computation. They experimented their algorithm

190 Y. Arfat et al.

using US and NYC road network dataset. Zhu et al. [73] have proposed an index
structure called Arterial Hierarchy (AH) for the shortest and distance queries in
a road network. They argue that existing work concentrates on the practical or
asymptotic performance. The problem with state of the art was worst regarding
space and time. The primary objective of this chapter was to minimize the gap
between theory and practice for shortest path queries on road network. For the
evaluation, they have used the 20 million nodes. The proposed technique performs
better than existing approaches for road network dataset. Moreover, in this work,
they have not used the weighted road network graph data.

Zheng et al. [74] have presented all pair shortest path algorithm. The proposed
algorithm was an alternative to the Floyd-Warshall. They implemented their algo-
rithm using Apache Spark and analyzed the performance of their algorithm. They
argue that the performance of Floyd-Warshall algorithm suffered using Apache
Spark due to a large number of global updates. To solve this issue, they have used
the fewer global update steps based on computation that has been done on each
iteration. As a result, they showed that their algorithm performs better than Floyd-
Warshall algorithm. However, their work is different as compared to our work. We
are parallelizing the shortest path between two vertices source and target. Djidjev
et al. [75] have presented all pair shortest path algorithm using GPU cluster. They
have used both centralized and decentralized computation for the all pair shortest
path algorithm. They have presented the two algorithms that use the Floyd-Warshall
method. For implementation, they have used the multi-GPU cluster. They have also
used the California state road network dataset that consists of 1.9 million vertices
and five million edges. Aridhi et al. [76] have presented the shortest path algorithm
on the base of MapReduce. To solve the shortest path problem in an efficient
way, they have partitioned the graph into subgraphs then they process it parallel.
The algorithm they have proposed is an iterative whose performance will suffer
when these are large of input data due to its iterative nature. For an experiment,
they have used the French road network dataset from the OpenStreetMap. For the
computation, they have used the Hadoop and MapReduce. Faro et al. [77] have
presented a shortest path all pair algorithm with and without traffic congestions on
the road network. The main objective of this chapter was to find the fastest shortest
path on road network. They implemented the proposed all pair shortest algorithm
parallel. First, they tried to find the shortest path then tried to find the alternate
shortest path in case of traffic congestion. They implemented their algorithm using
the GPU. They have not used any road network dataset, neither Spark nor Hadoop.

Kajdanowicz et al. [78] used the Bulk Synchronous Parallel (BSP), map-side
join, and MapReduce for the graph computation. They applied these approaches
for the single source shortest path (SSSP) and relational influence propagation
(RIP) for collective classification of graph vertices. They stated that using BSP
iterative graph processing perform better as compared to MapReduce. Liu et al.
[79] have proposed a framework for parallel processing of large graph to solve the
issue of communication between partitions, unbalanced partition, and replication of
vertices. This framework uses three different greedy graph partitioning algorithms.
They run these algorithms using the various dataset and observed that whether

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . . 191

these algorithms can solve the issues of graph partitioning based on the specific
needs. The major objective of this framework was to balance the load and reduce
the bandwidth. Wang et al. [80] proposed a technique for k-plex enumeration and
maximal clique approach. Using the binary graph partitioning approach, find the
dense subgraph from the graph. It parallel process each partition of the graph by
dividing the graph. MapReduce was used for implementation. Braun et al. [81]
presented a new approach for social network analysis for knowledge-based systems.
The major objective of this technique is to mine the interests of social network
and represent as graph. The directed graph has been used for relationship analysis
and undirected graph has been used to capture mutual friends. They have used the
Facebook and Twitter dataset to analyze the performance of the proposed approach.

Laboshin et al. [82] proposed a new framework based on MapReduce to analyze
the web traffic. The major objective of proposed framework was to scale the storage
and computing resources for the extensive network. Liu et al. [83] proposed a
clustering algorithm for the distributed density. This algorithm solves the issues in
distance-based algorithms. This algorithm calculates the distance among all pairs
of vertices. The authors claim that using this algorithm computational cost will
be reduced. They implemented their algorithm using Apache GraphX [29, 30].
Aridhi et al. [84] investigated different frameworks for mining of big graph. The
major focus was to use the mining algorithm for pattern mining that consists of
the discovering useful information from the huge graph dataset. They analyzed
comprehensively different mining techniques for the large graphs. Drosou et al. [85]
proposed an enhanced Graph Analytical Platform (GAP) framework for processing
of large graph dataset. This framework uses the top-down approach for mining of
huge graph dataset. It provides the strength to features like HR clustering. It is an
effective framework for the big data getting useful insights.

Zhao et al. [86] evaluated various graph computation platforms. They did
comparison between graph- and data-parallel platform for processing of large
dataset. They found out that graph-parallel platforms perform better for resource
utilization and graph computation as compared to data-parallel platforms. However,
data-parallel platform for graph processing is superior in performance regarding
size. Mohan [87] et al. compared the graph computation platforms for large data
processing using the key features and performance. Miller et al. [88] investigated
the graph analytics from perspective of query processing. There are issues in finding
the interesting information from the graph whether it’s a shortest path or pattern
matching from the graph. They also introduced algorithms which show that vertex
centric and graph centric algorithms are easily parallelizable. They stated that
MapReduce is not an ideal platform for the iterative algorithm.

Chakaravarthy et al. [89] proposed an algorithm that is derived from the Delta-
stepping and Bellman-Ford algorithms. The primary objective was to categorize
the edges, minimize the traffic of inner vertices, and optimize the directions. They
applied the single source shortest path (SSSP) to get the shortest path between
the vertices. Yinglong et al. [90] stated that big data analytics are essential for
the entities that can be represented as graph. It is the main challenge for the
computation of graph bases patterns. They presented a new architecture that allow

192 Y. Arfat et al.

users to organize the data for parallel computation. This architecture has three
components: graph storage, analytics, and visualization. They evaluated the data
locality for the processing and effects on the performance of cache memory on
a processor. Zhang et al. [91] presented an algorithm for the fast graph search.
This algorithm converts the completed graphs into vectorial representations on
the basis of prototype in the database. So, it accelerates the query efficiency in a
Euclidean space by using locality-sensitive hashing. They examined their proposed
approach using real dataset that gets higher performance regarding accuracy and
efficiency. Pollard et al. [92] proposed a new technique for the parallel graph
processing platforms analysis based on the performance and scalability. They used
the breadth first search, page rank, and single source shortest for the analysis
of power consumption and performance with packages of graph processing with
various datasets.

Table 8.1 provides a comparison of various shortest path graph computation
approaches. The table includes information for each work regarding aim and
objectives, the approach used, the dataset sources, the type of datasets, the platforms
used, research gap, and comments. We would have preferred to include the names
of authors of the respective works in a separate column in the table but these were
omitted to save space and fit the table in as few pages as possible.

8.3 Methodology and Design

This section details the methodology and design of our Big Data Shortest Path Graph
Computing (BDSPG) System.

Figure 8.1 shows the architecture for shortest path computations. First, it will
take the graph data as input for the computation of shortest path. This data can
be directed or undirected graph data but in our work, we are using undirected graph
dataset. Once we have data we have uploaded any distributed file system, so nodes in
the cluster can easily access this data. There can be any distributed file system such
as FEFS, NEFS, and HDFS. But in our work, we are using HDFS. After keeping
input graph data, we build the graph and perform the one pair shortest path (OPSP)
using GraphX [31]. After computation of OPSP, we shall get the shortest path having
total distance and vertices in the source and target vertex.

® @
ap
J GraphBuilder OPSP
“ ®
Graph Data Distributed File System Shortest Path

Fig. 8.1 The Big Data Shortest Path Graph Computing (BDSPG) System Architecture

193

(panunuod)
A[qrstaut
uonnqrusip jo
s[rejop 9y JurSeuewr
J[yMm swypLIoSe
ydei3 Surwwresdord
I0J [dV [einjeu
SYI0M]QU PeoI
[ea1 uo swarqoid
yred isa110ys

eyep SOOIIOA pUR SIFPA JO suol[[Iq

++D ydei3 jo odAy Auy 10J YIOMQWERIJ B 3sn 0) SWIL[)
8LITES :S98P2 ‘CETSHT SPOMIA

:s9[a3uy SO ‘8L :S93p2

‘PLOEE SIONIDA eIeqieq vluBS

[19] Surssaooxd
ydeid gsss a81eT

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . .

pasn
jou st yjreds oyoedy

pasn opou Juo
AJuo ‘paInNqLusIp JON

pasn jou yredg

pasn jou
yreds oyoede <30
‘urojred ejep 3rg
juowrwod/ded
de3 yoreasoy

oIpnys [ensia
s Surwwersoxd D

eAR[

a3en3ue|
Surwrwesgord O

T899 JON
suLoje[d

SI0MIQU PROY

SI0MIQU PROY

SI0MIQU PROY

YI0MIU prOYy
adAy jesereq

“BIUIOJI[ED) UT SANUNOD

0M]} WOIJ BIEp YI0M)U Peoy

61LEEY $98pH
GLTEST 1SIOMIA

eurg) Surltog
€S sa8pg

[1Tt :S90IIA

yromiou Jrodsuery,

3N ‘weysururg pue Wey3unjoN
ur SeaIe UeQIN pue ‘ueqIngns
‘[eanl woij eyep pajod[[o)

1aseIR(

jutod-o3-jutod
ordwirs 9A[os
0) WYILIOS[E. 4V

JInoi ay) a1o[dxa
0] wpuose ensyliq
[BUONOAIIPIY

SI0M)dU peol
ur Suruuerd 9ynox
10J w0 uy

yred 1sa110ys
paseq-1ySrom pafes
syutod om) ueamIaq
yyed 3sa110ys Yy purg
yoeoiddy

[09] yed 1sa310ys
jutod-o3-jutod

[6S] peol aAneUId) B
[njSurueow e puy

01 poylow nedjerd jo
Apiqe oy aoueyuy

[8¢] worqoxd
uoneziundo

yed oy ur
wnriqrmbs oy pury

[L6]

sjurod om) ueamIaq
yied 1sa110yg
[921n0g]

saAT)02[qo pue wry

sayoeoidde uonendwos ydeis yyed 3seyroys snorea jo uosuedwo) [°§ IqeL,

Y. Arfat et al.

19sBIRp YI0OMIOU

joseiep

ydei3 oy

ur uoronpal eyep Yy
03 onp yred jso110ys
ay) Surpuy uay)

pue ‘(QSIA) enbrpo
AJLIe[IuIS wnwrxeuw
‘uoneindwod

[£9] yred 1s9310ys
oy Sunenores

uo (SISA[eue 19)sej
pue oW Js10YS)
Qoueuriograd

uo joedwr JueoyIugIs
® 9ARY 1M JBY)

194

peOI 3sn Jou o ydei3 yromioN ydea3 yromiou paseq-TNX | Aequurs Supndwo) | I0MIDU Y} 20NpAY
SaTP2 8H9°CEL]ELE
PUE ‘SOMIAA CCC968°COT N
'$98Pa 109°TIH676°T
puE ‘S301IA $G1°9¢9°0S
IS '$98P2 T8T°GOE 89
PUE ‘SOONIOA 0ETTSO 1) “TONIM],
[z9] apou
(s93p2 8SH°666°659 10d $2100 Jo TOqUINU
PUR ‘SQ01I0A ()80 b L TT):01qRIY Sursearour ay Yym
[[oM 9[dSs Jouued
(s98pa Z£9°686°]7T pPue SI9ISN[O I0dH[NW [OIyM SHIOMOWIBI)
SOTIAA 6G/°081°C) POOMATIOH ur uonjendwod [orreed-ydea3
jaserep yIomiou D IdINuedo reunol (s93pa ZH1°€T0°6L Pue errered-ydeas paInqrnsip Sumnsrxo
pero1 asn Jou o] “Yreds oyoedy ‘qom ‘eIpaull [RI00S ‘SQO1MIAA ()97 €€ G): [BUINO[IAT] Joj ourydern | jo wepqoad aajos o,
juowrwod/ded suLiopeldq ad £y jesereq josere(yoeoxddy [901mog]
de3 yoreasay S9AT}O2[qO pue Wy

(ponupuod) [°g AqeL

195

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . .

(panunuod)

A[uo apou
o[13urs ‘panqsIp
jou ‘joseyep [[ews

[e1Tered
jou ‘opou J[3uls uo
K[uo “1ose1ep [EWS

joserep
ydeisd payySromun
Q) pasn aAey AY],

BAR[JIomidu peoy

JosBIRp YI0MIOU

SuruIes] suIyoOrRIA peol pue d1AYIUAS

Jaserep yIomiou

SHoMaWey ++q [e100S 1esere

(s93pa Y 7 ‘sopou

Y 9) (g0) dew peox Siquapi0Q
pue ‘(seSpe ¥ 8§ ‘sopou

Y 81) (rS) dew peox umnbeor

ueg “($98pa Y € ‘SOPOU Y pLT)
(4S) dew peox vore Aeq 09SIOURI]
ueg ‘(s33pa y €€/ ‘sapou

N +97) (DAN) AID JI0X MON

So[oIPA MINE
Jo som030alen} S0 [eal WOy

PoIoenX? ‘Qwin [oAeT jo ydeid
paIyStom os[e puy ‘sa3pa /.7
PUB SOpOU ()L] JO SISISUOD YIIyM
)10 YOTUNJA] JO JIOMIoU POy

Ylomowrerj pasodoid 1oy jo
K)1[Iqereds 9y) 2)en[eAd 0) sa3po
II3Y) pue SAONISA Y 381y Sursn

£q jaserep onoYIuAs pue ‘(sa3pa
UOHIQ T < ‘SIOMISA UOH[I

0F) 1oN1IM) 19SeIep JIOMIU [B100S

ary

XOpul oyjer) Al
parred wapqoad yred
1S9}IOUS QUIJUO JA[OS
01 YIomouwerj Y

3unnolr 9[oIyaA

ur wapqoxd yed
1S9)I0S J1SBYD0IS
ay) Surajos

1dV mau

pue ‘xo)1aA-1adns
‘aindwos TeuIuI
2IN)oNIs ejep

MaU € Suronponur se
ons SWLID) MU SUIOS
£q 198014 Spuaixo

I “++d paf[ed
198214 s,918000

UO paseq JIOMIWEIJ
Surssaooxd

ydei3 mou y

[99]

SUOT)IPUOD JYJBI) 9AT]
) 03 Jurprodoe yred
3s9110Ys ay) Andwo))
[<9]

QUI[Peap UAIS A}
9I0J0q UOTIEUISIP
pay1oads e je SuiALLe
Jo Aiqeqoxd

Q) SOZIWIXEW Jey)
yed reumdo oy purg

[+9]

[9521d Ut suoneINI
Auew axmnbax

Jjey) swyjLIos[e

IO PBAYIQAO WAISAS
) 90NpaI 0) SWIY

Y. Arfat et al.

196

9pou duo
A[uo ‘paInqLisIp J0N

pasn jou yreds
oyoede “Joserep [[ews
‘pasn jou Jasejep
JIomlau peoy

A[uo apou 9[3urs
‘uoneuaworduur
paInqLusip ON
juowrod/ded
de3 yoreasoy

VIN

uoyAg
ur ssao01d orrered
pue [enuanbog

[opow J1ay)

159) pue Juesaidar

0) qe[IeJAl pasn Ay,
swIoje[d

V/N joseyep ou ‘Jooid [eoneIoay],
uoneunsap-uISto

Jo sared 889 €10}

UIA\ "UOTIBUTISOP pUE UISLIO ue

UQ9M)9q [9ALI) JOIIP 0} SI[IBISQO
juasardar jeyy sSurpring /1 sey

sndwres oy], ‘euozury ‘odway, ur

snduwed A)ISIOATU() 9)B)S BUOZIIY

1890 JON Q) ST SNO0J JO BAIE [RI)IUI AY L,

Ie9[o J0U AZIS Bl

"‘AuewIon

w0l BJEP PeOI PUB ‘UOTBULIOJUL
[eoydeisodo) j1oserep [eoy
‘uonenyeAd o[dwis J0j oNAYIUAS

1oseIe(

"Jasejep yIomiou
peOI pue d1QYIUAS
ad K1 1eserRQ

sydei3 reuerd
paoarp ur syped
jsauoys Sunndwod
10§ senbruyoay

om) JuruIquiod

Aq wpriodre uy
S910BISqO

Surproae o[Iym
uoneunsap or3urs
pue 201nos [3uls
WOIJ 9JNOT JSALI0YS
puy o3 yoeoidde
Sunndwos axoonnuw
& padojeadg
S9[OIY2A pLIqAY pue
J11)09[9 10J SAINOI
JUSIOYJI-AT 10U
jsey10ys Surpuy

10J (SVId) awayds
uonewrxoidde
Qwin-Terwoukjod
A1y paqres

[opouwt & padojoaag
yoeorddy

[69] @ouewIo)rad
rewmndo pue

191199 9ARY] 0] JOPIO
ur ‘owr) Juruunt
Ay ur wyjro3e
yed-1sajioys

) jo Aouapuadaop
u 301 oY) dAoWY
[89] syuswruoITAUS
ejep 51q

ur SISATeuR own-[eal
im Surfeap

ur Kyiqe payruy
pue sayoeoidde
3umnsixa jo
SUOIL)TWI] SAOWY

[L9]

din oy jo Suruuerd
pue woapqoid

yyed 1so110ySs Ay
Surpre3ar so[o1YoA
PLIQAY pue J1199[2 JO
wopqoid oy 2[0SOy
[921n0g]

soA1O9[qo pue wry

(ponunuoo) g AqEL

197

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . .

(panunuod)

uoneuawo[dur
elep
31q Jo [o[[ered oN

[orrered JoN

++0

yreds oyoedy

++0

+-+D Tensia
JJOSOIOIAl PUB ++D)

SI0MIQU PROY

SI0MIQU PROY

SI0MIQU PROY

SI0MIQU PROY

(d8S ‘W £€2) sarels payuf)

(H96¥T6THEA 918 1801 1)

SN renud) (94 18+¢S1
‘A ¥01°79T°9) SN UIASOM
(APTTSLLY ‘A £T9865€ SN

utseq (HThLLSOY ‘A S18°068°T)

EPBAQN pUE BIUIOJI[ED)
("S6LTILTA 9LEOLO'T)
BpHOL (H990LS01

‘A 999°S¢t) opeIo[oD (d 866TTh
‘A STE°L81) Sureln (A81¢+9C

‘A §S0°ST1) darysdwey MaN
(368+°0CT A TI8°81) dreme[oq

jaserep yIomiou
peol (9¥8°c¢L | ‘OvEH9T

:A) DAN Pue (N [:HV01°8SL :A)
vary Aegd ‘(N 8S:d ‘I €T°A) SN

(Auewiran

‘adoang ‘yS() JIomiau peoy

SOVINIA
[GA2INE
peox adoing pue jIomjou

proI YS) 19SeIep YI0M)au peoy

SOVINIA

JIom)au peol e ur souanb
QOUBISIP PUE }SLIOYS

oy 10§ (HV) Aydrerary
[eLIa)IE PI[Ed 2IMONIS
xopur ue pasodoig

aIred jo31e)-901n0S

9[Surs e Sursn QouL)SIP
JJomlau peol ay)

Jo uoneindwoon ay) 103
JIOMAWRI] B PAIUASAI]
SY10M)QU PEOI P[IOM-[ed]
Ur JURISYUT AYorerary

) syordxa jeyy Suruuerd
9no1 10§ anbruyos}
dnpaads mau e pajuasalg

yred 1s9110ys 9ndwod
0} wiyroSTe Surjeqe]
© ‘(‘TH) SI9q®[QnH

[€L] J10MI5U peOIX

uo saurenb yyed jsaroys
10§ 2onoe1d pue 1091
uaamyaq ded oy ozrwrury
[z,] sared 193181-901N08

N Sururejuod 398

931e[® se pasod are yorym
sorronb doue)IsIp JI0MIOU
Jo Joquunu 93Ie[B 9jeneAd
pue satxanb [eonAreue
reneds xodwoos dn peadg

[1.] yred 1san0ys purg

[0L] syIomIdU
peo1 ut syjed)say10ys
jutod-o3-jurod joexyq

Y. Arfat et al.

198

Qonpaydey

pasn aonpaydeN

doopeH

Jo yreds jou ‘Joserep
JI0M]oU PO ON
JUSWUOIIAUQ JATIRI]
JIopun doueuiofrad
poo3 9AI13

jouued aonpaydey

Jasejep [ea1 ON

juowwod,ded
de3 yoreasay

onpaydey

onpaydey

Nndo

onpaydeny
pue doopey

191800 NdD

yreds oyoedy
swIoje[d

joseyep

dVNS U}
pasn jasejep
OTOYUAS
9oseiep [eoy

BIPAW [BIO0S

VIN

SI0MIU PROY

SIoMIdU proy
jasejep
JIRYIUAS
adAy jesereq

(BIpaW QAT ‘INIM)
[00g298.) 'H 681189t€
‘A T96L66€ ‘Teunol

OAIT *H 86TSTLET ‘A 1000001
1J00Qa0B,] SI QUO Jsa5Ie]
INq $J9SBILP [BIOADS OB AIAY],

S93pa JO SUOI[[TW YIIMm
979) puE ‘aqNINOX ‘TONIM],

VIN

dejyeanguadQ oy woly
JosBIRp YI0M]QU PEOI YOUSL]

SaSpa N S
‘SO0IIAA Al 6' Josejep ydein

SOOLIJBWI QOUR)SIP ONAYIUAS

jesele

sydei3

a81e[Jo Surssaooid [orered
10} yIomawrelj e pasodoig
uonendwod ydeis ayy

10J Qonpaydey pue urtof
opis-dewr ‘(dSq) [o[[ered
SNOUOIYOUAS Y[nq 9Y],
JI0M]oU PeOI JY} U0
SuoNsa3u0d dyJen oYM
pue yym wyriose ared e
yred 1591I0US & POIUISAI]

onpaydey
Sursn wypuo3e
yred 159110US 9U) PIIUISAI

JI9Isn[o

NdDO Sursn wpioe
yred ysanoys Jred [y
(dSdv)
syyed-jsajroys-sired-1y

yoeoiddy

[6L] seonIoa Jo uoneoridar pue
‘uonmnaed pasuerequn ‘suonnied
U99MIS(Q UONBITUNTIWOD

JO SanssI 3y} 9A[0S

[8L]
Qouewiofrod 19)39q 1oy Surssaoord

ydeid oaneran Jsg asn

[LL] J10MmIoU peOIX

uo yyed 159110ys 159)SB] 9y} pul]
[9L] 1orrered 1

ssaoo1d uayy syder3qns oyur ydeid
ay) pauonnied ‘Aem juaroyje ue
ur wopqoid yyed 1s9110ys 9y} 9A[0S
[sL]

wiyjos[e yred 3seyioys Jred (e
a3 103 uoneIndwod pazIenuIIAP
PUE PAZI[BIIUID 10 SN O,

[y,] yreds ayoedy Suisn

dSdV 2ouewograd ay) aaoxdwy

[o0anog]
$2AT}02[qo pue wry

(ponunuod) 1§ dqeL,

199

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . .

(panunuod)

SyJomawely Surunu
ydeis juaragyip
JO ma1AdI B ST)]

jasejep

SI0MIQU PEOT ON

jasejep a3re[sseooxd
01 YIomaurelj y

ydei3 pajySrom

pasn jou aAey Ay],

joserep
JI0MIoU PO ON

VIN VIN

[¢6] xXydein

pue yredg oyoedy JaseIep SMIN
V/N VIN
00C0
doopey ayoedy BIPUI [BIO0S
(" 196°10£°CT
‘A €08°CE9°T) 9Mod
:SI pasn 9ARY Koy}
Qonpaydey jasejep)sadre[ayJ,

VIN

SIX9) 9G6' Ly pue

*s01d0) ()] SUTBIUOD JSBIEP SMIN

VIN

(H6¥V1°89L°1

‘A 90¢°18) JONIM-03Y (A¥ET 88
pue ‘A 6£0t) Y00q30e{-037

Tonpys 7102d1ap ‘Ivnd

‘YddoH ‘SyI0Mm)aU ‘SNOAUB[[ISTW
‘600geIpedIm ‘UuoDYIM
‘9[800DqaM ‘URISHIOG ‘FOOTN!
S0073IN ‘syders qom LM
09304 2qmINoA ‘sa3pae[[emon)

206010pyse[S ‘suorurdo

‘AI0ADYIM ‘SHIOMIU [BIO0S

ydei3 31q jo Jururw
I0J SYIOMWIETJ
JUQIQYJIP PaIeTIISIAU]
Aysuop pamqLsip
I0J wpLoge
Sunysn(o & pasodoig
oygen

gom a3 9zATeue 0)
QonpaydeN uo paseq
SIOMOUWIEI] MU Y
SWwAISAS
Pposeq-a3pajmouy

I0J SISATeue JI0M)oUu
[e100s 10J yoroidde
MU € PAUISAIJ

yoeoidde

anbrpo TewTXRW

pue uoneIOWINUD
x91d-y 10§

anbruyo9) © pasodoig

[+8] 10serep ydea3

oSny e woij uoneULIOUT
[nJosn SULIA0DSIP

10§ Sururw uroped 103
wyjo3[e Jurutw s
L8] swpriog|e
Paseq-eoue)SIp

ur SINSSI AY) 9A[0S

[cs]

YI0MIQU QATSUIXA A}
10J s921n0sa1 Sunndwod
pue a5eI10]s A} 9[LOS

[18] yde13 se juasaidar
pUE JIOMIU [B100S
JO SISQIAUI Y SUTA

[08] @oueurrojrad
[o[rered jusroyje pue
Suroue[eq peo[9ANPH

Y. Arfat et al.

200

sonAreue

ydei3 jo uonoaIp
pue Spuan 2Inyng o3
PaIe[aI SI YIoMm SIY,
jaseIep

ydei3 pajySromun
peoa1 pasn Ay,
‘dS g Sursn sydei3
a3re[ssaoo1d 0) moy
SMOUS JI “TOAOMOY
oM INO 0)

parea1 A[30211p 10N

jaseIep
J10M)3U PBOI ON

surrojyerd Surssoooxd
ydei3 jnoqe
SurpAue Jo uonuow
Ieg[o ou ‘pasn jou
stsATeue ydei3 yreq
juowwod,ded

de3 yoreasay

SuoIEN[eAd
[BONRI0AY L,

dsd
pue ‘oonpaydey
‘ydenn ‘doopey

1'0°0-SdD
00T ydenn
7 z-ydeiniomod

0'6°0-reds

Ie3[d0 JON

swIoj1e[d

VIN

SOTJOYJUAS pue
josejep ydeid [eoy

jasejep
SunjIomiau [e100S

onoYJuAs
pue BIpaW [RIO0S

ad£y jesereqQ

VIN

(3 L09°99LT ‘A 90T'S96°T)
JI0MIQU PO VD)

(3 1€8¢81
‘A T69°9€) UOTBOTUNWITIOD)

(3 998°610°T
‘A 080°LI€) UONEIOQE[[0D

(3998°6t0°1

‘A 080°L1¢€) 41dd pue
(FELL'E6689 ‘A TLS LY8Y)
[eUINOLIAIT (H69T ILL OEE
‘A ST9°9L8°T9) J00qade]

UQAI3

jou ST Jose)ep Sy} Jo 9IS
"JOse)Jep paseq-a[Iqoul ejep
OTOYJUAS pue Joselep JOPIM],

jeseled

Surssaooxd

K1onb jo aanoadsiad
oy} woj sonAeue
ydei3 pajednsoauy

Surssaooid eyep o31e] 10]
sutrojjerd uoneindwod
ydei3 oy paredwo)

surojjerd
uoneyndwos ydeid
SNOLIBA JO SUOTJEN[BAT
joseyep ydea3d

a31e[jo Sursseooxd
10J yIomawrely

(dvD) uroperd
[eonAreue ydeid
pooueyuo ue pasodoig

yoeoxddy

[88] ydei3

9y woty Suryoyewr
uroned 1o yjed 1se110ys
® s)1 1oyjoym ydeid
dU) WOIJ UOTRULIOJUT
Sunsoxour Jurpur

[£8] @ouewiofrod
pue saInjeaj Koy
9y} Sursn uostredwo))

[98] 1oseIEp 93I1E] JO
Surssaooid 10y wioperd
[o1rexed eyep pue ydei3d
udam1aq uostredwo))

[cg] Suroysno
MH 91 sIjed) 0}
qSuans oy sepraoid iy

[e01nog]
S9AT}O3[qO pue wry

(ponunuoo) '8 AqEL

201

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . .

suonjeindwod yyed
1S9MI0YS Pasn dAeY
9aseIRp YIoMmIou
ydei3 pajy3rom oN

dSSS sos]

ypred 4SS§S sosn

D pue ydeiniomod

pue ‘Drgudern
‘9)Ins YIBWYOUq
utojjed wyLioge
ydeis o ‘gosydein
oy yewr-ydein

suonen[eAd
eorndwryg

(1338010
+L99M0d) HOY¥Ad

se100n[NW
VINNN Pue NdO

an3egr-e10g

sjosejep (so3pa

PHHOM-[BI 8176°81G°9] PUB SAMIIA

pue onoyiukg 89L'FLL E) Syudred-11)
STRITWAYD

pUE J2OUED 0}
pajerar papraoid
joserep oy,

joseiep \EoﬁsmﬁsE
‘601IDN PUe 1IDN

sa3pa uor[iq

00C pue S301I9A UOI[Iq O]
S3pe gf'| pue SeonIoA

N T# MM, $o5po g §'[
PUB SOOTIOA A €9 JAISPUSLL]

1B 10N

'Sa8pa JAl §°9 pUB SO1IOA
TN L'T (1A YIOMISU Peol VS

sydes3
Pliom-Tea1 pue
LVIN-Y d1ouig

'sapou ()/ouas an|q 89L‘TE
UO SA3Pa .7 PUB SEONIOA

eC WM ydess TvIN-d

surrojjerd

Surssoooid ydei3d
[o1Tered 103 anbruyo)
mou e pasodoig

yoreas ydei3d

jse} Joj wiyjrioSe

ue pJuasalg
uonendwod [orrered
I0J eyep ay) ozruesIio
0} SIoSn SMO[[e

Jey)) 2IMJONIYIIR
MU B PAUISAIJ

swyjose
ploj-uew[[eq

pue Surddajs-eyjop
JU) WOIJ PIALIIP
SI Jey) WyjLIose
ue pasodoid

[c6] Aniqeess pue
Qouewioyrad jo SIsA[euy
[16]

Surysey aAnIsuas AJeoo|
3ursn Aq ooeds ueaprong

' ur Aouaroyge Axanb oy
9JRIS[OJ. 0] SBM UITE UIRIA

[06] suroned paseq-ydeid
Jjo uoneindwo)

[68] uonoaip

oy ozrundo pue SedTIA
JIQUUI JO OYJel) QY SZIWIUIW
‘so3pe oy serI03918D)

202 Y. Arfat et al.

We propose an approach for the parallel shortest path computation with multiple
queries of a pair of vertices using Apache Spark. In this approach, we have two
functions: The One Pair Shortest Path (OPSP) algorithm to find the best route
between a pair of vertices, and the main driver program which builds the graph,
constructs and parallelizes the queries, and invokes OPSP function. Algorithm 1
(Fig. 8.2) shows the OPSP algorithm. In this algorithm, we employ the concept
of the well-known Dijkstra algorithm to find the optimal route between source
and destination in a graph problem. This algorithm first explores the neighbor
vertices of the current vertex from distPaths[0] (the path of minimum distance
from src to dest), inserts the neighbor’s vertex id to a set of explored vertices
exp[], if the neighbor vertices have not been explored in advance, keeps track
of explored paths from source to the neighbors (the list of vertices to reach the
neighbors) and its distance (neboursPath.concat(distPathRest)), picks the path with
minimum distance to be explored further (sortByDist() ascending), and calls the
OPSP function itself (recursive) until the path with minimum distance meets the
destination, then will return the minimum distance and the paths to reach the
destination (dist, paths.reverse()).

Algorithm 2 (Fig. 8.3) shows the main driver program. It builds the graph, the
queries, and executes the queries with OPSP algorithm. First, the program builds a
graph from the given input of vertices and edges G(V,E). Then, constructs queries
q from the given input of list of queries(src,dst), which contains multiple pairs of
src and dest. Furthermore, ¢ is partitioned with np size and becomes Q(src,dst).
Afterwards, Q(src,dst), G(V,E), and initialization variable exp/] as a set of explored
vertices, and distPaths(list(k,v[])) as an initial step of 0 distance and source vertex
are passed to OPSP function in Algorithm 1. Multiple queries of Q(src,dst) are
executed in parallel by multiple executors in cluster nodes of Spark. Thus, each
executor computes different multiple queries at the same time 7.

8.3.1 Dataset

We have used the DIMACS [94] dataset. The DIMACS is a collection of various
datasets. It also has road network dataset containing more than 50 states of the USA
and various districts. It is an undirected weighted graph that consists of millions of
edges and nodes. We considered in our experiments the entire US dataset. We have
also investigated in this chapter results for five different states of the USA. These
are District of Columbia (DC), Rhode Island (RI), Colorado (CO), Florida (FL),
and California (CA). Each node has node id, latitude, and longitude. Every edge
also has source node id, target node id, travel time, distance, and category of road.
Table 8.2 shows the number of edges and vertices in different states as well as for
the complete US road network. Figure 8.4 graphically displays degree of vertices
for selected states and whole US road network.

We also have visualized road network dataset using Gephi [95]. We have only
visualized the DC and RI state data set as shown in Figs. 8.5 and 8.6, respectively.

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . . 203

Algorithm 1: One Pair Shortest Path (OPSP)
Input : G(V, E) < graph data
Q(sre, dest) « list of queries
exp| | ¢ init of explored vertices
distPaths(list(k,v[])) < init of explored paths with distance
Output: shortest path of Q(sre, dst)

1 if distPaths == null then
2 | return (0, 0)
3 else
4 foreach i < dist Paths.iterate() do
5 minDistPath((k,v[])) + dist Paths[0];
6 disPathRest < distPaths[l, dist Paths.length()];
7 dist « minDistPath.k;
8 paths| | < minDist Path.v;
9 head < paths|0];
10 rest < paths[l, paths.length()];
11 if head == @);.dst then
12 | return (dist, paths.reverse())
13 else
14 neboursPath « list((0,[])):
15 nb < G(head);
16 de < nb.distance;
17 ve + nb.vertice;
18 foreach nb.iterate() do
19 if exp|].contains(ve) then
20 | continue
21 else
22 | neboursPath « (dist + de, ve.concat(paths))
23 end
24 end
25 combDist Path + neboursPath.concat(dist PathRest);
26 sortDist Path < combDist Path.sortByDist();
27 OPSP(G, Q, exp.concat(head), sort Dist Path);
28 end
29 end
30 end

Fig. 8.2 The One Pair Shortest Path (OPSP) Algorithm

We could not visualize the other states data due to the large size which cannot be
handled on a single PC. We have only visualized two states to perceive the structure
of road network datasets. We will look into visualizing larger datasets using Spark
in the future.

204 Y. Arfat et al.

Algorithm 2: Main Function

Input : E « list of edges
V'« list of vertices
Q(sre, dest) « list of queries
np <— number of partition
Output: file of shortest path list
1 G(V,E) + RDD(V,E);
2 g + queries(sre, dst) ;
3 Q(sre,dst) + RDD(qg).repartition(np):
4 SPL + OPSP((G(V,E), Q(sre,dst)), exp| |, distPaths(list(k,v[]));
5 SPL.saveAsFile;

Fig. 8.3 The Master Algorithm

Table 8.2 USA road network dataset

Name of Road Network Vertices Edges Type

District of Columbia (DC) 9559 14,909 Undirected
Rhode Island (RI) 53,658 69,213 Undirected
Colorado (CO) 435,666 1,057,066 Undirected
Florida (FL) 1,070,376 2,712,798 Undirected
California (CA) 1,890,815 4,657,742 Undirected
USA (whole country) 23,947,347 58,333,344 Undirected

8.4 Results and Discussion

For experimental setup, we have built a Spark cluster setup on the Aziz supercom-
puter [34]. In this configuration, we have used different number of nodes, varying
from one to sixteen. We have used Apache Hadoop HDFS to store input and output
data. Apache Spark has been used for the data processing. The Master and Salve
Spark nodes used on the Aziz supercomputer have the following configuration.

e Linux CentOS, JDK 1.7, Dual Socket Intel Xeon E5-2695v2 12-core processor,
2.4 GHz, Total 24 cores, 96GB RAM, Apache Spark 2.0.1, GraphX Apache
Hadoop HDFS.

8.4.1 Single Shortest Path Query Results

In our earlier work [33], we had presented results for a single shortest path query
on up to 16 nodes (368 cores) for the USA states DC, RI, CO, FL, CA, and the
whole US road network with up to over 23 million vertices and 58 million edges
(see Table 8.2). See [33] for the detailed results and analysis.

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . . 205

a b
iy 4150 e
% 4 g 5001
=1 (=1
Z Z
2 3800 2 4001
= =
S B
o e
- § 3004
5 2- £
= >
i . 2001
s 1100 e
21 2
£ 700 Emo.
=1 =
z. 0 L Z
0- 0
1 2 3 4 5 6 12345678 910111213141516
Degree of Vertices Degree of Vertices
c d
2 1751 > 10
= =
7 150+ £
2 = ad
£ 1251 =
7 4
] 3 64
2 100+ =
‘E g
2 1% 2 o
2 =) £
= 5 21
254
z z §
1 o4 LR
12345678 910111213141516 012345678910111213141516
Degree of Vertices Degree of Vertices

Fig. 8.4 Visualization of (a) District of Columbia road network (b) Florida road network (c)
Colorado road network (d) Whole US road network

Fig. 8.5 District of
Columbia road network

206 Y. Arfat et al.

Fig. 8.6 Rhode Island road

network
Parallel Execution Times vs Cores (10,100,1000)
Hl0 ®[00 ®™]1000
50
40
g
£
pi= 30
=
-
& 20
=
5 10
Ay
o mml HES wmEN w6N wSN «B8 BN «08 «EE =B
23 46 69 92 115 138 161 184 207 230
Number of Cores

Fig. 8.7 Parallel execution time of varying number of cores

8.4.2 Multiple Shortest Path Query Results

The aim here is to investigate and achieve high performance in finding the shortest
path of multiple queries with our proposed parallel-shortest path algorithm between
the source and the target. Using Spark, we run in parallel a varying number of
queries, each computing shortest path between a (source, destination) pair; see Sect.
8.3 for details. In these experiments, we use Rhode Island (RI) road network, USA,
which consists of 53,658 vertices and 69,213 edges.

The results in Fig. 8.7 show that parallelization does not have a significant impact
when executing a small number of queries. This is because the job is too small
compared to the number of cores. It has an ineffective job distribution and takes a
long time for I/O overhead among the cores which are distributed among up to 10

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . . 207

nodes (with 24 cores each). Three different queries are used in the figure: 10, 100,
and 1000 queries. The horizontal axis shows results for varying number of cores:
23, 46, up to 230. Each Aziz node contains 24 cores. However, we keep one core
for the operating system to perform its job. Thus, we utilize 23 cores for each node.
The vertical axis gives the total runtime to compute the whole sets of queries.

A larger number of queries (10 K, 100 K, and 1 M) show a clear reduction and
advantage in execution time while parallelizing the whole sets of queries as shown
in Figs. 8.8 and 8.9. As usual the letter K denotes a thousand and M indicates a
million.

Parallel Execution Times vs Cores (10K)

2000
1800
1600
1400
1200
1000

800

600

400

200 I I
0

92 115 138 161 184 207
Number of Cores

Parallel Run Times

Fig. 8.8 Parallel execution time of varying number of nodes

Parallel Execution Times vs Cores (100K, 1M)

160000 = 100000 = 1000000
. 140000
£ 120000
< 100000
£ 80000
= 60000
£ 40000 I I
>l |Il|||
23 69 115 161 184 207
Numbcr och)rc.s

Fig. 8.9 Parallel execution time of varying number of nodes

208 Y. Arfat et al.

8.4.3 Speedup

According to the experimental results in Sect. 8.4.2, we have calculated the achieved
speedup. Figure 8.10 depicts that the achieved speedup is increasing with the
increasing number of cores: 46 to 230. The figure depicts the speedups for six
different query set sizes: 10, 100, 1 K, 10 K, 100 K, and 1 M. Note that the speedups
for smaller computations get saturated for a smaller number of nodes compared to,
for example, for larger query set of 1 M. The speedup is measured by using the
following well-known formula.

N _ L
p_T,,

Sp denotes the achieved speedup, while Ts denotes the execution time of the
sequential computation, and 7p denotes the execution time of parallel computation.

8.4.4 Relative Speedup

To further elaborate the speedup saturation for increasing query set sizes and the
number of cores, we now investigate relative speedup, the core-based speedup. The
gained relative speedup is quite stable for large number of queries (1 M), and it is
fluctuating for 100 K queries, as shown in Fig. 8.11. Whereas, for small queries
less than 10 K, the relative speedup is decreasing. The following formula is used to
calculate the relative speedup.

S
Relative speedup = 2P

NC

Sp and NC indicate the achieved speedup and the number of used cores, respectively.

Achieved Speedup vs Cores

10 =10 =100 =]1000 =]10000 = 100000 = 1000000
8

26

=]

3

o |
2 |||||||“|||“
o ol nanll purl urbl sl wnlll sl panll g

46 69 92 115 138 161 184 207 230

Number of Cores

Fig. 8.10 Achieved speedup with different number of cores

8 Parallel Shortest Path Big Data Graph Computations of US Road Network. . . 209

Relative Speedup vs Cores
=10 =100 = 1000 = 10000 = 100000 = 1000000

0.04

0.035

o 003

3 0025

& 002

=

Z 0015 |

=

oo AR AUAF Af sl sl sl sl
- I | ! I D N Gl

46 69 92 115 138 161 184 207 230

Number of cores

Fig. 8.11 Achieved relative speedup with different number of Aziz nodes

8.5 Conclusion

Smart applications and infrastructures are increasingly relying on graph computa-
tions to model real-life problems and process big data. The emergence of many
graph-based software, programming languages, graph databases, and benchmarks,
and their use in application domains provide the evidence for the increasing
popularity of graph-based computing. In this chapter, we have our earlier work
on single source shortest path computations of big data road network graphs using
Apache Spark. In our earlier work [33], we had used the US road network data
modelled as graphs and calculated shortest paths between two vertices over a
varying number of up to 368 compute cores. The experiments were performed on
the Aziz supercomputer (a former Top500 machine [34]). We had analyzed Spark’s
parallelization behavior by solving problems of varying graph sizes, i.e., various
states of the USA with up to over 23 million vertices and 58 million edges. We call
our system the Big Data Shortest Path Graph Computing (BDSPG) system.

In this chapter, we have focused on computing a set of large varying number of
shortest path queries on a (source, destination) vertex pair. The number of queries
used were 10, 100, 1 K, 10 K, 100 K, and 1 M, executed over up to 230 CPU cores.
We achieved good performance, and as expected, the speedup is dependent on both
the size of the data and the number of parallel nodes. In addition to the extended
results, we have provided a detailed literature on shortest path graph computations.
The system architecture for graph computing in Spark was explained with additional
details using the architecture depiction and elaborated algorithms.

Future work will look into improving algorithms for sequential shortest path
algorithm and its parallelization including data locality. There is a need for further
performance analysis of our proposed system. We wish to apply the BDSPG system
to the smart city case studies developed in [5, 6, 55].

210 Y. Arfat et al.

Acknowledgments The authors acknowledge with thanks the technical and financial support from
the Deanship of Scientific Research (DSR) at the King Abdulaziz University (KAU), Jeddah, Saudi
Arabia, under the grant number G-651-611-38. The experiments reported in this chapter were
performed on the Aziz supercomputer at King Abdulaziz University.

References

1. Lu, Y., Cheng, J., Yan, D., Wu, H.: Large-scale distributed graph computing systems. Proc.
VLDB Endow. 8, 281-292 (2014)

2. Sanfeliu, A., Alquézar, R., Andrade, J., Climent, J., Serratosa, F., Vergés, J.: Graph-based
representations and techniques for image processing and image analysis. Pattern Recogn. 35,
639-650 (2002)

3. Ding, Y., Yan, S., Zhang, Y., Dai, W., Dong, L.: Predicting the attributes of social network users
using a graph-based machine learning method. Comput. Commun. 73, 3-11 (2016)

4. Khan, A., Uddin, S., Srinivasan, U.: Adapting graph theory and social network measures on
healthcare data. In: Proceedings of the Australasian Computer Science Week Multiconference
on - ACSW ‘16. pp. 1-7. ACM Press, New York, New York, USA (2016)

5. Mehmood, R., Meriton, R., Graham, G., Hennelly, P., Kumar, M.: Exploring the influence of
big data on city transport operations: a Markovian approach. Int. J. Oper. Prod. Manag. 37,
75-104 (2017)

6. Mehmood, R., Graham, G.: Big Data Logistics: A health-care Transport Capacity Sharing
Model. In: Procedia Computer Science. pp. 1107-1114 (2015)

7. Mehmood, R., Bhaduri, B., Katib, 1., Chlamtac, I. (eds.): Smart Societies, Infrastructure,
Technologies and Applications, Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering (LNICST), Volume 224. Springer Interna-
tional Publishing, Cham (2018)

8. El-Gorashi, T.E.H., Pranggono, B., Mehmood, R., Elmirghani, JM.H.: A data mirroring
technique for SANs in a metro WDM sectioned ring. In: ONDM 2008 - 12th Conference on
Optical Network Design and Modelling (2008)

9. Ayres, G., Mehmood, R., Mitchell, K., Race, N.J.P.: Localization to enhance security and
services in Wi-Fi networks under privacy constraints. In: Lecture Notes of the Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST,
Volume 16. pp. 175-188. Springer (2009)

10. El-Gorashi, T.E.H., Pranggono, B., Mehmood, R., Elmirghani, J.M.H.: A mirroring strategy
for SANs in a metro WDM sectioned ring architecture under different traffic scenarios. J. Opt.
Commun. 29, 89-97 (2008)

11. Mehmood, R., Pranggono, B., El-Gorashi, T., Elmirghani, J.: Performance evaluation of a
metro WDM slotted ring network with san extension. In: Proceedings of the 7th IASTED
International Conferences on Wireless and Optical Communications, WOC 2007. pp. 231-236
(2007)

12. Mehmood, R., Alturki, R., Faisal, M.: A Scalable Provisioning and Routing Scheme for
Multimedia QoS over Ad Hoc Networks. (2009)

13. Mehmood, R., Alturki, R.: Video QoS analysis over wi-fi networks. Adv. Video Commun. over
Wirel. Networks. 439-480 (2013)

14. Alturki, R., Mehmood, R.: Cross-Layer Multimedia QoS Provisioning over Ad Hoc Networks.
Using Cross-Layer Tech. Commun. Syst. Tech. Appl. IGI Glob. Hershey, PA. 460—499 (2012)

15. Hendrickson, B., Kolda, T.G.: Graph partitioning models for parallel computing. Parallel
Comput. 26, 1519-1534 (2000)

16. Mehmood, R., Crowcroft, J.: Parallel iterative solution method for large sparse linear equation
systems. Technical Report Number UCAM-CL-TR-650, Computer Laboratory, University of
Cambridge, Cambridge, UK (2005)

17.

18.

19.

20.

2

—_

22.

23.

24.

25.

26.

27.

28.

29.
30.
31.

32.
33.

34.
35.

Parallel Shortest Path Big Data Graph Computations of US Road Network. . . 211

Kwiatkowska, M., Parker, D., Zhang, Y., Mehmood, R.: Dual-processor parallelisation of
symbolic probabilistic model checking. In: DeGroot, D., Harrison, P. (eds.) Proceedings - IEEE
Computer Society’s Annual International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunications Systems, MASCOTS, pp. 123-130. IEEE, Volendam,
The Netherlands (2004)

Mehmood, R.: Disk-based Techniques for Efficient Solution of Large Markov Chains, PhD
Thesis, School of Computer Science, University of Birmingham, (2004)

Mehmood, R., Parker, D., Kwiatkowska, M.: An efficient BDD-based implementation of
Gauss-Seidel for CTMC analysis. Technical report CSR-03-13, School of Computer Science,
University of Birmingham, Birmingham, UK (2013)

Eleliemy, A., Fayze, M., Mehmood, R., Katib, 1., Aljohani, N.: Loadbalancing on Parallel
Heterogeneous Architectures: Spin-image Algorithm on CPU and MIC. In: EUROSIM 2016,
The 9th Eurosim Congress on Modelling and Simulation. p. 6. Oulu, Finland (2016)

. Schlingensiepen, J., Mehmood, R., Nemtanu, F.C., Niculescu, M.: Increasing sustainability

of road transport in European cities and metropolitan areas by facilitating autonomic road
transport systems (ARTS). In: Wellnitz, J., Subic, A., Trufin, R. (eds.) Sustainable Automotive
Technologies 2013 Proceedings of the 5th International Conference ICSAT 2013, pp. 201-210.
Springer International Publishing, Ingolstadt, Germany (2014)

Junghanns, M., Petermann, A., Neumann, M., Rahm, E.: Management and analysis of big
graph data: current systems and open challenges. In: handbook of big data technologies. Pp.
457-505. Springer international publishing, Champions (2017)

Altowaijri, S., Mehmood, R., Williams, J.: A quantitative model of grid systems performance
in healthcare organisations. In: ISMS 2010 - UKSim/AMSS 1st International Conference on
Intelligent Systems, Modelling and Simulation. pp. 431-436 (2010)

Tawalbeh, L.A., Bakhader, W., Mehmood, R., Song, H.: Cloudlet-based mobile cloud
computing for healthcare applications. In: 2016 IEEE Global Communications Conference,
GLOBECOM 2016 - Proceedings (2016)

Muhammed, T., Mehmood, R., Albeshri, A., Katib, I.: UbeHealth: a personalized ubiquitous
cloud and edge-enabled networked healthcare system for smart cities. IEEE Access. 6, 32258—
32285 (2018)

Oh, S., Ha, J., Lee, K., Oh, S.: DegoViz: an interactive visualization tool for a differentially
expressed genes Heatmap and gene ontology graph. Appl. Sci. 7, 543 (2017)

Mehmood, R., Faisal, M.A., Altowaijri, S.: Future networked healthcare systems: a review and
case study. In: Boucadair, M., Jacquenet, C. (eds.) Handbook of Research on Redesigning the
Future of Internet Architectures, pp. 531-558. IGI Global, Hershey, PA (2015)

Arfat, Y., Aqgib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.:
Enabling smarter societies through Mobile big data fogs and clouds. Procedia Comput. Sci.
109, 1128-1133 (2017)

Xin, R.S., Gonzalez, J.E., Franklin, M.J.: GraphX: A Resilient Distributed Graph System on
Spark

Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.: GraphX: Graph
Processing in a Distributed Dataflow Framework

Apache Spark GraphX, https://spark.apache.org/graphx/

Apache Spark, https://spark.apache.org/

Arfat, Y., Mehmood, R., Albeshri, A.: Parallel shortest path graph computations of United
States road network data on apache spark. In: Lecture Notes of the Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering, LNICST, Volume 224. pp.
323-336. Springer, Cham (2018)

Aziz Supercomputer, Top500, https://www.top500.org/site/50585

Biischer, M., Coulton, P., Efstratiou, C., Gellersen, H., Hemment, D., Mehmood, R., Sangiorgi,
D.: Intelligent mobility systems: Some socio-technical challenges and opportunities. In:
Communications Infrastructure. Systems and Applications in Europe, Lecture Notes of the
Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering,
LNICST 16. pp. 140-152 (2009)

https://spark.apache.org/graphx/
https://spark.apache.org/
https://www.top500.org/site/50585

212

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Y. Arfat et al.

Ayres, G., Mehmood, R.: On discovering road traffic information using virtual reality simula-
tions. In: 11th International Conference on Computer Modelling and Simulation, UKSim 2009.
pp. 411-416 (2009)

Mehmood, R.: Towards understanding intercity traffic interdependencies. In: 14th World
Congress on Intelligent Transport Systems, ITS 2007. pp. 1793-1799. ITS America, Beijing
(2007)

Ayres, G., Mehmood, R.: LocPriS: A security and privacy preserving location based services
development framework. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNAI, Volume 6279, Part
4. pp. 566-575. Springer (2010)

Elmirghani, J.M.H., Badic, B., Li, Y., Liu, R., Mehmood, R., Wang, C., Xing, W., Garcia
Zuazola, 1.J., Jones, S.: IRIS: An inteligent radio-fibre telematics system. In: Proceedings of
the 13th ITS World Congress, London, 8—12 October (2006)

Suma, S., Mehmood, R., Albugami, N., Katib, I., Albeshri, A.: Enabling next generation
logistics and planning for smarter societies. Procedia Comput. Sci. 109, 1122-1127 (2017)
Suma, S., Mehmood, R., Albeshri, A.: Automatic event detection in smart cities using big
data analytics. In: International Conference on Smart Cities, Infrastructure, Technologies
and Applications (SCITA 2017): Lecture Notes of the Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering, LNICST, Volume 224. pp. 111-122.
Springer, Cham (2018)

Alomari, E., Mehmood, R.: Analysis of tweets in Arabic language for detection of road traffic
conditions. In: Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, LNICST, Volume 224. pp. 98—110. Springer, Cham (2018)
Mehmood, R., Nekovee, M.: Vehicular Ad hoc and grid networks: Discussion, design and
evaluation. In: 14th World Congress on Intelligent Transport Systems, ITS 2007. pp. 1555—
1562. ITS America, Beijing (2007)

Gillani, S., Shahzad, F., Qayyum, A., Mehmood, R.: A survey on security in vehicular ad
hoc networks. In: Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 59-74 (2013)

Alvi, A., Greaves, D., Mehmood, R.: Intra-vehicular verification and control: A two-pronged
approach. In: 7th IEEE International Symposium on Communication Systems, Networks and
Digital Signal Processing, CSNDSP 2010. pp. 401-405 (2010)

Schlingensiepen, J., Nemtanu, F., Mehmood, R., McCluskey, L.: Autonomic Transport
Management Systems—Enabler for Smart Cities, Personalized Medicine, Participation and
Industry Grid/Industry 4.0. In: Intelligent Transportation Systems — Problems and Perspectives,
Volume 32 of the series Studies in Systems, Decision and Control. pp. 3-35. Springer
International Publishing (2016)

Schlingensiepen, J., Mehmood, R., Nemtanu, F.C.: Framework for an autonomic transport
system in smart cities. Cybern. Inf. Technol. 15, 50-62 (2015)

Alam, F., Mehmood, R., Katib, I.: D2TFRS: An object recognition method for autonomous
vehicles based on RGB and spatial values of pixels. In: Lecture Notes of the Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST,
Volume 224. pp. 155-168. Springer, Cham (2018)

Alazawi, Z., Altowaijri, S., Mehmood, R., Abdljabar, M.B.: Intelligent disaster management
system based on cloud-enabled vehicular networks. In: 2011 11th International Conference on
ITS Telecommunications, ITST 2011. pp. 361-368. IEEE (2011)

Alazawi, Z., Abdljabar, M.B., Altowaijri, S., Vegni, A.M., Mehmood, R.: ICDMS: An
intelligent cloud based disaster management system for vehicular networks. In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), LNCS, Volume 7266. pp. 40-56. Springer, Vilnius, Lithuania (2012)
Alazawi, Z., Alani, O., Abdljabar, M.B., Altowaijri, S., Mehmood, R.: A smart disaster
management system for future cities. In: Proceedings of the 2014 ACM international workshop
on Wireless and mobile technologies for smart cities - WiMobCity ‘14. pp. 1-10. ACM Press,
New York, New York, USA (2014)

52.

53.

54.

55.

56.

57.

58.

59.

60.

6

—

62.

63.

64.

65.

66.

67.

68.

69.

70.

7

—_

72.

73.

74.

Parallel Shortest Path Big Data Graph Computations of US Road Network. . . 213

Alazawi, Z., Alani, O., Abdljabar, M.B., Mehmood, R.: An intelligent disaster management
system based evacuation strategies. In: 2014 9th International Symposium on Communication
Systems, Networks and Digital Signal Processing, CSNDSP 2014. pp. 673-678 (2014)
Alazawi, Z., Alani, O., Abdljabar, M.B., Mehmood, R.: Transportation evacuation strategies
based on VANET disaster management system. Procedia Econ. Financ. 18, 352-360 (2014)
Aqib, M., Mehmood, R., Albeshri, A., Alzahrani, A.: Disaster management in smart cities
by forecasting traffic plan using deep learning and GPUs. In: Lecture Notes of the Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST,
Volume 224. pp. 139-154 (2018)

Mehmood, R., Lu, J.A.: Computational Markovian analysis of large systems. J. Manuf.
Technol. Manag. 22, 804-817 (2011)

Arfat, Y., Agib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.:
Enabling Smarter Societies through Mobile Big Data Fogs and Clouds. In: Procedia Computer
Science (2017), 109, 1128

Quddus, M., Washington, S.: Shortest path and vehicle trajectory aided map-matching for low
frequency GPS data. Transp. Res. Part C Emerg. Technol. 55, 328-339 (2015)

Szucs, G.: Decision support for route search and optimum finding in transport networks under
uncertainty. J. Appl. Res. Technol. 13, 125-134 (2015)

Feng, L., Lv, Z., Guo, G., Song, H.: Pheromone based alternative route planning. Digit.
Commun. Networks. 2, 151-158 (2016)

Zeng, W., Church, R.L.: Finding shortest paths on real road networks: the case for a *. Int. J.
Geogr. Inf. Sci. 8816, (2017)

. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, 1., Leiser, N., Czajkowski, G.:

Pregel: A System for Large-Scale Graph Processing. Proc. 2010 ACM SIGMOD Int. Conf.
Manag. data. 135-145 (2010)

Yan, J., Tan, G., Mo, Z., Sun, N.: Graphine: programming graph-parallel computation of large
natural graphs for multicore clusters. IEEE Trans. Parallel Distrib. Syst. 27, 1647-1659 (2016)
Selim, H., Zhan, J.: Towards shortest path identification on large networks. J. Big Data. 3,
(2016)

Zhou, X., Chang, P., Chen, G.: An Efficient Graph Processing System. Asia-Pacific Web Conf.
LNCS. 401-412 (2014)

Cao, Z., Guo, H., Zhang, J., Niyato, D., Fastenrath, U.: Finding the shortest path in stochastic
vehicle routing: a cardinality minimization approach. IEEE Trans. Intell. Transp. Syst. 17,
1688-1702 (2016)

Hou U, L., Zhao, H.J., Yiu, M.L., Li, Y., Gong, Z.: Towards online shortest path computation.
IEEE Trans. Knowl. Data Eng. 26, 1012-1025 (2014)

Strehler, M., Merting, S., Schwan, C.: Energy-efficient shortest routes for electric and hybrid
vehicles. Transp. Res. Part B Methodol. 103, 111-135 (2017)

Hong, 1., Murray, A.T., Rey, S.: Obstacle-avoiding shortest path derivation in a multicore
computing environment. Comput. Environ. Urban. Syst. 55, 1-10 (2016)

Mozes, S., Nussbaum, Y., Weimann, O.: Faster shortest paths in dense distance graphs, with
applications. Theor. Comput. Sci. 1, 1-25 (2014)

Abraham, I., Goldberg, A. V, Werneck, R.F.: A Hub-Based Labeling Algorithm for Shortest
Paths in Road Networks. Springer-Verlag Berlin Heidelb. 2011. 230-241 (2011)

. Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries. Algorithms—

Esa 2005. 568-579 (2005)

Peng, S., Sankaranarayanan, J., Samet, H.: SPDO: High-throughput road distance computa-
tions on Spark using Distance Oracles. 2016 IEEE 32nd Int. Conf. Data Eng. ICDE 2016.
1239-1250 (2016)

Zhu, A.D., Ma, H., Xiao, X., Luo, S., Tang, Y., Zhou, S.: Shortest Path and Distance Queries
on Road Networks: Towards Bridging Theory and Practice. 857-868 (2013)

Zheng, C.Y., Wang, J.: All-Pairs Shortest Paths in Spark

214

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.
93.
94.
95.

Y. Arfat et al.

Djidjev, H., Chapuis, G., Andonov, R., Thulasidasan, S., Lavenier, D.: All-pairs shortest path
algorithms for planar graph for GPU-accelerated clusters. J. Parallel Distrib. Comput. 85, 91—
103 (2015)

Aridhi, S., Lacomme, P., Ren, L., Vincent, B.: A MapReduce-based approach for shortest path
problem in large-scale networks. Eng. Appl. Artif. Intell. 41, 151-165 (2015)

Faro, A., Giordano, D.: Algorithms to find shortest and alternative paths in free flow and
congested traffic regimes. Transp. Res. Part C Emerg. Technol. 73, 24-28 (2016)
Kajdanowicz, T., Kazienko, P., Indyk, W.: Parallel processing of large graphs. Futur. Gener.
Comput. Syst. 32, 324-337 (2014)

Liu, X., Zhou, Y., Guan, X., Sun, X.: A feasible graph partition framework for random walks
implemented by parallel computing in big graph. Chinese Control Conf. CCC. 2015-Septe,
49864991 (2015)

Wang, Z., Chen, Q., Hou, B., Suo, B., Li, Z., Pan, W., Ives, Z.G.: Parallelizing maximal clique
and k-plex enumeration over graph data. J. Parallel Distrib. Comput. 106, 79-91 (2017)
Braun, P., Cuzzocrea, A., Leung, C.K., Pazdor, A.G.M., Tran, K.: Knowledge discovery from
social graph data. Procedia Comput. Sci. 96, 682-691 (2016)

Laboshin, L.U., Lukashin, A.A., Zaborovsky, V.S.: The big data approach to collecting and
analyzing traffic data in large scale networks. Procedia Comput. Sci. 103, 536-542 (2017)
Liu, R., Li, X., Du, L., Zhi, S., Wei, M.: Parallel implementation of density peaks clustering
algorithm based on spark. Procedia Comput. Sci. 107, 442-447 (2017)

Aridhi, S., Mephu Nguifo, E.: Big graph mining: frameworks and techniques. Big Data Res. 6,
1-10 (2016)

Drosou, A., Kalamaras, 1., Papadopoulos, S., Tzovaras, D.: An enhanced graph analytics
platform (GAP) providing insight in big network data. J. Innov. Digit. Ecosyst. 3, 83-97 (2016)
Zhao, Y., Yoshigoe, K., Xie, M., Zhou, S., Seker, R., Bian, J.: Evaluation and analysis of
distributed graph-parallel processing frameworks. J. Cyber Secur. Mobil. 3, 289-316 (2014)
Mohan, A., G, R.: A Review on Large Scale Graph Processing Using Big Data Based Parallel
Programming Models. Int. J. Intell. Syst. Appl. 9, 49-57 (2017)

Miller, J.A., Ramaswamy, L., Kochut, K.J., Fard, A.: Research Directions for Big Data Graph
Analytics. Proc. - 2015 IEEE Int. Congr. Big Data, BigData Congr. 2015. 785-794 (2015)
Chakaravarthy, V.T., Checconi, F., Petrini, F., Sabharwal, Y.: Scalable single source shortest
path algorithms for massively parallel systems. Proc. Int. Parallel Distrib. Process. Symp.
IPDPS. 28, 889-901 (2014)

Xia, Y., Tanase, I.G., Nai, L., Tan, W., Liu, Y., Crawford, J., Lin, C.: Explore Efficient Data
Organization for Large Scale Graph Analytics and Storage. Proc. 2014 IEEE BigData Conf.
942-951 (2014)

Zhang, M., Shen, F.,, Zhang, H., Xie, N., Yang, W.: Fast Graph Similarity Search via Locality
Sensitive Hashing. Adv. Multimed. Inf. Process. PCM 2015. 9315, 447-455 (2015)

Pollard, S., Norris, B.: A Comparison of Parallel Graph Processing Benchmarks. (2017)
GraphX | Apache Spark

DIMACS Implementation Challenge, http://www.dis.uniromal.it/challenge9/download.shtml
Gephi - The Open Graph Viz Platform, https://gephi.org/

http://www.dis.uniroma1.it/challenge9/download.shtml
https://gephi.org/

	8 Parallel Shortest Path Big Data Graph Computations of US Road Network Using Apache Spark: Survey, Architecture, and Evaluation
	8.1 Introduction
	8.2 Literature Review
	8.3 Methodology and Design
	8.3.1 Dataset

	8.4 Results and Discussion
	8.4.1 Single Shortest Path Query Results
	8.4.2 Multiple Shortest Path Query Results
	8.4.3 Speedup
	8.4.4 Relative Speedup

	8.5 Conclusion
	References

