
Chapter 26
Security Testing of Internet of Things for
Smart City Applications: A Formal
Approach

Moez Krichen, Mariam Lahami, Omar Cheikhrouhou, Roobaea Alroobaea,
and Afef Jmal Maâlej

26.1 Introduction

Internet of Things (IoT) is a promising technology that permits to connect everyday
things or objects to the Internet by giving them the capabilities to sense the
environment and interact with other objects and/or human beings through the
Internet. This evolving technology has promoted a new generation of innovative and
valuable services. Today cities are getting smarter by deploying intelligent systems
for traffic control, water management, energy management, public transport, street
lighting, etc., thanks to these services. Nevertheless, these services can easily be
compromised and attacked by malicious parties in the absence of proper mechanism
for providing adequate security.

Recent studies have shown that the attackers are using smart home appliances to
launch serious attacks such as infiltrating to the network or sending malicious email
or launching malicious actions such as distributed denial of service (DDoS) attack.
Therefore, security solutions need to be proposed, set up, and tested to mitigate
these identified attacks.

M. Krichen (�)
Faculty of CSIT, Al-Baha University, Al Baha, Saudi Arabia

ReDCAD Laboratory, University of Sfax, Sfax, Tunisia
e-mail: moez.krichen@redcad.org

M. Lahami · A. J. Maâlej
ReDCAD Laboratory, University of Sfax, Sfax, Tunisia
e-mail: mariam.lahami@redcad.org; afef.jmal@redcad.org

O. Cheikhrouhou · R. Alroobaea
Taif University, Taif, Saudi Arabia
e-mail: o.cheikhrouhou@tu.edu.sa; r.robai@tu.edu.sa

© Springer Nature Switzerland AG 2020
R. Mehmood et al. (eds.), Smart Infrastructure and Applications,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-13705-2_26

629

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13705-2_26&domain=pdf
mailto:moez.krichen@redcad.org
mailto:mariam.lahami@redcad.org
mailto:afef.jmal@redcad.org
mailto:o.cheikhrouhou@tu.edu.sa
mailto:r.robai@tu.edu.sa
https://doi.org/10.1007/978-3-030-13705-2_26


630 M. Krichen et al.

In this work, we aim to adopt a model-based security testing (MBST) approach
to check the security of IoT applications in the context of smart cities. The MBST
approach consists in specifying the desired IoT application in an abstract manner
using an adequate formal specification language and then deriving test suites from
this specification to find security vulnerabilities in the application under test in a
systematic manner.

The work introduced here is an extension of a previous work [19] and it is a piece
of a broader approach dealing with the security of IoT applications for smart cities
and consisting of the following steps:

– Identify and assess the threats and the attacks in smart cities IoT applications.
– Design and develop security mechanisms for standard protocols at the applica-

tion and the network layer.
– Evaluate the performance and the correctness of the proposed security protocols

using simulation and implementation on real devices.

The rest of this paper is organized as follows. Section 26.2 introduces some
preliminaries about IoT and smart cities. Section 26.3 defines the model of extended
timed automata. Section 26.4 presents our conformance testing framework. Sec-
tion 26.5 presents an overview about our proposed approach. Section 26.6 reports
on related research efforts dealing with IoT security testing. Finally Sect. 26.7
concludes the paper.

26.2 Preliminaries

26.2.1 Internet of Objects

Recent advances in communication and sensing devices make our everyday objects
smarter. This smartness is resulted from the capability of objects to sense the
environment, to process the captured (sensed) data, and to communicate it to users
either directly or through the Internet. Taking an example of the object “lamp,” a
classical lamp needs to be wired, linked to the electricity in order to produce light
and it does not handle more than the on and off states. This lamp becomes smarter
if it is equipped with sensors that can detect environment luminosity and adjust
its brightness automatically based on the sensed value. Moreover, this lamp can be
equipped with a communication system and therefore can be remotely controlled
and supervised (e.g., energy consumption). This example can be generalized to any
other thing (object) and therefore leading to the Internet of Things (IoT) concept.
The IoT refers to the ability of everyday objects to connect to the Internet and to send
and receive data. The integration of these smart objects to the Internet infrastructure
is promoting a new generation of innovative and valuable services for people. These
services include home automation, traffic control, public transportation, smart water



26 Security Testing of Internet of Things for Smart City Applications 631

metering, waste and energy management, etc. When integrated in a city context, they
make citizens live better and so form the modern smart city.

26.2.2 Smart Cities

In the recent years, several research works are shaping the smart cities concept
[4, 34]. In October 2015, ITU-T’s Focus Group on Smart Sustainable Cities (FG-
SSC)1 agreed on the following definition of a smart sustainable city: A smart
sustainable city (SSC) is an innovative city that uses information and communi-
cation technologies (ICTs) and other means to improve quality of life, efficiency
of urban operation and services, and competitiveness, while ensuring that it meets
the needs of present and future generations with respect to economic, social,
and environmental aspects. Based on this definition, the main goal for SSC is to
enhance the quality of life of its citizens across multiple, interrelated dimensions,
including (but not limited to) the provision and access to water resources, energy,
transportation and mobility, education, environment, waste management, housing,
and livelihoods (e.g., jobs), utilizing ICTs as the key medium. Therefore, the IoT as
a promising ICT technology will play a major role in the development of these new
smart cities. With IoT, objects like phones, cars, household appliances, or clothes
become wirelessly connected and can sense and share data.

26.2.3 Threats

Indeed, connecting our everyday things to the public Internet opens these objects
to several kinds of attacks. Take the example of a traffic control system. If the
hackers could insert fake messages to these traffic control system devices, they
can make traffic perturbations and bottlenecks. Another example related to home
automation, if attackers gain access to smart devices such as lamps and doors, it
could manipulate doors and steal the house properties. The main security threats in
the IoT are summarized in [8] as follows:

– Cloning of smart things by untrusted manufacturers;
– Malicious substitution of smart things during installation;
– Firmware replacement attack;
– Extraction of security parameters since smart things may be physically unpro-

tected;
– Eavesdropping attack if the communication channel is not adequately protected;
– Man-in-the-middle attack during key exchange;

1https://www.itu.int/en/ITU-T/focusgroups/ssc.

https://www.itu.int/en/ITU-T/focusgroups/ssc


632 M. Krichen et al.

– Routing attacks;
– Denial-of-service attacks; and
– Privacy threats.

Therefore, a key challenge for IoT towards smart city applications is ensuring
its reliability, security, and privacy, which represent the main scope of this work.
Without guarantees that smart city IoT objects are: (1) sensing correctly the
environment, (2) exchanging the information securely, (3) safeguarding private
information, and (4) providing correct and not manipulated information, users are
reluctant to adopt this new technology that will be a part of their everyday lives.

26.2.4 Challenges

Due to its specific characteristic, new issues are raised in the area of IoT. Trust
management, which plays an important role in the IoT for reliable data fusion,
qualified services, and enhanced user privacy and information security, is one of
these main issues. Indeed, data collection trust is a crucial issue in the IoT. If the
huge collected data is not trusted (e.g., due to the damage or malicious input of
some sensors), the IoT service quality will be greatly influenced and hard to be
accepted by users even though the network layer trust and the application layer
trust can be fully provided [36]. On the other hand, in order to have intelligent
context-aware services, users should disclose or have to share their personal data
or privacy such as location, preferences, and contacts. Providing intelligent context-
aware and personalized services and at the same time preserving user privacy are
two conflicting objectives that induce a big challenges in the IoT. Another challenge
faced when designing security solutions to the IoT is the limited resources of the IoT
devices. Indeed, most of IoT devices are limited in terms of CPU, memory capacity,
and battery supply. They often operate on lossy and low bandwidth communication
channels. This renders the application of the conventional Internet security solutions
not appropriate. As an example, the use of small packets (i.e., IEEE 802.15.4
supports only 127-bytes packets) may result in fragmentation of larger packets when
using the standard protocols. This will quickly exhaust the lifetime of IoT devices
and open new possibilities for DoS attacks [25]. Moreover, the limited resources of
IoT devices render the use of complex cryptographic protocols inadequate. Finally,
the inherent complexity of the IoT, where multiple heterogeneous entities located in
different contexts can exchange information with each other, further complicates
the design and the deployment of efficient, interoperable, and scalable security
mechanisms [28]. The proposed security solutions should fulfill the following
security requirements [26].

– Data confidentiality: make information inaccessible to unauthorized users. For
example, a 6LoWPAN node should not leak some of its collected data to
neighboring networks.



26 Security Testing of Internet of Things for Smart City Applications 633

– Data authentication: since an adversary can easily inject messages, the receiver
needs to ensure that data are originated from trusted sources.

– Data integrity: ensures that an adversary does not alter the received data in transit.
– Availability: ensures the survivability of network services to (only) authorized

parties when needed, despite a DoS attack(s).
– Energy efficiency: a security scheme must be energy efficient so as to maximize

the network lifetime.

26.3 Extended Timed Automata

We extend the framework presented in [18].

26.3.1 Timed Labeled Transition Systems

Let R be the set of non-negative reals, Q the set of non-negative rationals, and N the
set of non-negative integers. Given a finite set of actions Ac, the set (Ac ∪ R)∗ of
all finite-length real-time sequences over Ac will be denoted RT(Ac). ε ∈ RT(Ac)

is the empty sequence. Given Ac′ ⊆ Ac and ρ ∈ RT(Ac), PAc′(ρ) denotes the
projection of ρ to Ac′ ∪ R, obtained by “erasing” from ρ all actions not in Ac′ ∪ R.
Similarly, DPAc′(ρ) denotes the (discrete) projection of ρ to Ac′. For example, if
Ac = {a, b}, Ac′ = {a} and ρ = a 1 b 2 a 3, then PAc′(ρ) = a 3 a 3 and DPAc′(ρ) =
a a. The time spent in a sequence ρ, denoted duration(ρ), is the sum of all delays
in ρ, for example, duration(ε) = 0 and duration(a 1 b 0.5) = 1.5. In the rest of the
document, we assume given a set of actions Ac, partitioned in two disjoint sets: a set
of input actions Acin and a set of output actions Acout. Actions in Acin ∪ Acout are
called observable actions. We also assume there is an unobservable action τ �∈ Ac.
Let Acτ = Ac ∪ {τ }. A timed labeled transition system (TLTS) over Ac is a tuple
(S, s0, Ac, Td, Tt ), where:

– S is a set of states;
– s0 is the initial state; Td is a set of discrete transitions of the form (s, a, s′) where

s, s′ ∈ S and a ∈ Ac;
– Tt is a set of timed transitions of the form (s, t, s′) where s, s′ ∈ S and t ∈ R.

Timed transitions must be deterministic, that is, (s, t, s′) ∈ Tt and (s, t, s′′) ∈ Tt

implies s′ = s′′. Tt must also satisfy the following conditions: (s, t, s′) ∈ Tt and
(s′, t ′, s′′) ∈ Tt implies (s, t + t ′, s′′) ∈ Tt ; (s, t, s′) ∈ Tt implies that for all t ′ < t ,
there is some (s, t ′, s′′) ∈ Tt .

We use standard notation concerning TLTS. For s, s′, si ∈ S, μ,μi ∈ Acτ ∪ R,
a, ai ∈ Ac ∪ R, ρ ∈ RT(Acτ ) and σ ∈ RT(Ac), we have



634 M. Krichen et al.

• General transitions:

– s
μ→ s′ Def= (s, μ, s′) ∈ Td ∪ Tt ; s

μ→ Def= ∃s′ : s
μ→ s′;

– s � μ→ Def= � ∃s′ : s
μ→ s′;

– s
μ1···μn−→ s′ Def= ∃s1, · · · , sn : s = s1

μ1→ s2
μ2→ · · · μn→ sn = s′;

– s
ρ→ Def= ∃s′ : s

ρ→ s′;
– s � ρ→ Def= � ∃s′ : s

ρ→ s′.

• Observable transitions:

– s
ε⇒ s′ Def= s = s′ or s

τ ···τ−→ s′;
– s

a⇒ s′ Def= ∃s1, s2 : s
ε⇒ s1

a→ s2
ε⇒ s′;

– s � a⇒ Def= � ∃s′ : s
a⇒ s′; s

a1···an=⇒ s′ Def= ∃s1, · · · , sn : s = s1
a1⇒ s2

a2⇒ · · · an⇒
sn = s′;

– s
σ⇒ Def= ∃s′ : s

σ⇒ s′;
– s � σ⇒ Def= � ∃s′ : s

σ⇒ s′.

A sequence of the form s0
μ1→ s

μ2→ · · · μn→ s′ is called a run and a sequence of
the form s0

a1⇒ s
a2⇒ · · · an⇒ s′ an observable run.

26.3.2 Extended Timed Automata

We use timed automata [2] with deadlines to model urgency [18]. An extended timed
automaton over Ac is a tuple A = (Q, q0, X, I, Ac, E), where:

– Q is a finite set of locations;
– q0 ∈ Q is the initial location;
– X is a finite set of clocks;
– I is a finite set of integer variables;
– E is a finite set of edges.

Each edge is a tuple (q, q ′, ψ, r, inc, dec, d, a), where:

– q, q ′ ∈ Q are the source and destination locations;
– ψ is the guard, a conjunction of constraints of the form x#c, where x ∈ X ∪ I, c

is an integer constant and # ∈ {<,≤,=,≥,>};
– r ⊆ X ∪ I is a set of clocks and integer variables to reset to zero;
– inc ⊆ I is a set of integer variables (disjoint from r) to increment by one;
– dec ⊆ I is a set of integer variables (disjoint from r and inc) to decrement by one;
– d ∈ {lazy, delayable, eager} is the deadline;
– a ∈ Ac is the action.



26 Security Testing of Internet of Things for Smart City Applications 635

Fig. 26.1 An example of an
extended timed automaton

An example of an extended timed automaton A = (Q, q0, X, I, Ac, E) over the
set of actions Ac = {a, b, c, d} is given in Fig. 26.1 where:

– Q = {q0, q1, q2, q3} is the set of locations;
– q0 is the initial location;
– X = {x} is the finite set of clocks;
– I = {i} is the finite set of integer variables;
– E is the set of edges drawn in the figure.

The figure uses the following notation:

– “x := 0” means resetting the clock x to 0;
– “i := 0” means resetting the integer variable i to 0;
– “i + +” means incrementing i by 1;
– “i − −” means decrementing i by 1.

26.3.3 Semantics of Extended Timed Automata

An extended timed automaton A = (Q, q0, X, I, Ac, E) defines an infinite TLTS
which is denoted LA = (SA, sA

0 , Ac, T A
d , T A

t ).

• Its states SA are tuples s = (q, vX, vI), where:

– q ∈ Q;
– vX : X → R is a clock valuation;
– and vI : I → N is a integer variable valuation.



636 M. Krichen et al.

• sA
0 = (q0, 0X, 0I) is the initial state, where:

– 0X is the valuation assigning 0 to every clock of A;
– 0I is the valuation assigning 0 to every integer variable of A.

• Discrete transitions are of the form (q, vX, vI)
a→ (q ′, v′

X, v′
I) where a ∈ Ac

and there is an edge (q, q ′, ψ, r, inc, dec, d, a) such that (vX, vI) satisfies ψ and
(v′

X, v′
I) is obtained by:

– resetting to zero all clocks and integer variables in r;
– incrementing integer variables in inc by one;
– decrementing variables in dec by one;
– leaving all other variables unchanged.

• Timed transitions are of the form (q, vX, vI)
t→ (q, vX+t, vI) where t ∈ R, t > 0

and there is no edge (q, q ′′, ψ, r, inc, dec, d, a) such that:

– either d = delayable and there exist 0 ≤ t1 < t2 ≤ t such that (vX +t1, vI) |=
ψ and (vX + t2, vI) �|= ψ ;

– or d = eager and (vX, vI) |= ψ .

Lazy edges do not impact the semantics. They denote that an edge is neither
delayable nor eager. More precisely, lazy edges cannot block time progress, whereas
delayable and eager edges can. We do not allow delayable edges with guards of the
form x < c since there is no latest time when the guard is still true. Similarly, we
do not allow eager edges with guards of the form x > c since there is no earliest
time when the guard becomes true.

A state s ∈ SA is reachable if there exists ρ ∈ RT(Ac) such that sA
0

ρ→ s. The
set of reachable states of A is denoted Reach(A).

For instance, for the TA presented in Fig. 26.1, the initial state is (q0, 0, 0).

A possible timed transition of the system is (q0, 0, 0)
5→ (q0, 5, 0) which

corresponds to the fact that the system spends 5 time units at node q0. A possible

discrete transition is (q0, 5, 0)
a→ (q1, 0, 0) which corresponds to the execution of

action a and results in the reset of clock x to 0. Another possible discrete transition

is (q1, 0, 0)
b→ (q0, 0, 1) by which the integer variable i is incremented for the

first time. The time constraint x ≤ 1 means that the execution of b must happen
at most 1 time unit after the execution of a. The deadline delayable associated
with this constraint means that time is blocked after one time unit and that it is
compulsory to execute action b before that limit. It is not difficult to see that action
b needs to be executed at least 5 times (resp., 10 times) in order to execute action c

(resp., d).



26 Security Testing of Internet of Things for Smart City Applications 637

26.3.4 Extended Timed Automata with Inputs and Outputs

An extended timed automaton with inputs and outputs (ETAIO) is an extended timed
automaton over the partitioned set of actions Acτ = Acin ∪ Acout ∪ {τ }. For clarity,
we will explicitly include inputs and outputs in the definition of an ETAIO A and
write (Q, q0, X, I, Acin, Acout, E) instead of (Q, q0, X, I, Acτ , E).

– An ETAIO is called observable if none of its edges is labeled by τ .
– Given a set of inputs Ac′ ⊆ Acin, an ETAIO A is called input-enabled with

respect to Ac′ if it can accept any input in Ac′ at any state:

∀s ∈ Reach(A) .∀a ∈ Ac′ : s
a→ .

It is simply said to be input-enabled when Ac′ = Acin.
– A is called lazy-input with respect to Ac′ if the deadlines on all the transitions

labeled with input actions in Ac′ are lazy. It is called lazy-input if it is lazy-
input with respect to Acin. Note that input-enabled does not imply lazy-input in
general.

– A is called deterministic if:

∀s, s′, s′′ ∈ Reach(A) .∀a ∈ Acτ : s
a→ s′ ∧ s

a→ s′′ ⇒ s′ = s′′.

– A is called non-blocking if:

∀s ∈ Reach(A) .∀t ∈ R . ∃ρ ∈ RT(Acout ∪ {τ }) : duration(ρ) = t ∧ s
ρ→ .

This condition guarantees that A will not block time in any environment.

The set of timed traces of an ETAIO A is defined to be

TTr(A) = {ρ | ρ ∈ RT(Acτ ) ∧ sA
0

ρ→}.

The set of observable timed traces of A is defined to be

OTTr(A) = {PAc(ρ) | ρ ∈ RT(Acτ ) ∧ sA
0

ρ→}.

The TLTS defined by an ETAIO is called a timed input–output LTS (TIOLTS).
From now on, unless otherwise stated, all the considered ETAIO are defined
with respect to the same sets Acin and Acout and unobservable action τ . As
for ETAIO, a given TIOLTS L is denoted (S, s0, Acin, Acout, Td, Tt ) instead of
(S, s0, Acτ , Td, Tt ). The two operators TTr(·) and OTTr(·) are extended in a natural
way to the case of TIOLTS.



638 M. Krichen et al.

26.3.5 Parallel Composition of ETAIO with Shared Integer
Variables

The parallel composition we propose here is similar to the parallel composition for
classical timed automata. The new thing here is that we consider shared variables
between the different elements to compose. The shared variables can be incremented
and decremented by any participant in the composition. These variables are used to
formulate the constraints of the different automata. In this way the behaviors of the
different components of the system are related to each other and depend on each
other. For instance, the shared variables may represent the shared resources of the
system.

Let n be a non-negative integer such that n ≥ 2. We consider n ETAIO (Ai)1≤i≤n

where Ai = (Qi, qi
0, X

i, I, Aci
in, Aci

out, Ei ). That is the set of integer variables I is
shared between all the considered ETAIO (Ai)1≤i≤n while no other element from
Qi , Xi , Aci

in, and Aci
out is shared with the other ETAIO (Aj )j �=i .

The TIOLTS LP = (SP , sP
0 , AcP

in, AcP
out, T

P
d , T P

t ) generated by the parallel
product of the ETAIO (Ai)1≤i≤n is defined as follows:

– sP
0 = ((q1

0 , · · · , qn
0 ), (0X0 , · · · , 0Xn), 0I);

– AcP
in = ⋃

1≤i≤n Aci
in, AcP

out = ⋃
1≤i≤n Aci

out;
– and SP , T P

d , and T P
t are the smallest sets such that

– sP
0 ∈ SP ;

– For sP =((q1, · · ·, qn), (vX0 , · · ·, vXn), vI) ∈ SP and δ ∈ R:

∀1 ≤ i ≤ n : (qi, vXi , vI )
δ→ (qi, vXi + δ, vI ) ∈ T i

t

⇒ s′P = ((q1, · · · , qn), (vX0+δ, · · · , vXn+δ), vI) ∈ SP and sP δ→ s′P ∈ Tt .

– For sP = ((q1, · · · , qn), (vX0 , · · · , vXn), vI) ∈ SP , 1 ≤ i ≤ n and ai ∈
Acτ

i = Aci
in ∪ Aci

out ∪ {τ }):

(qi, vXi , vI )
ai→ (q ′

i , v
′
Xi , v

′
I ) ∈ T i

d

⇒ s′P = (q ′p, v
′p
X , v′

I) ∈ SP ∧ sP ai→ s′P ∈ Td

where

q ′p = (q1, · · · , qi−1, q ′i , qi+1, · · · , qn)

and

v
′p
X = (vX0 , · · · , vXi−1 , v

′
Xi , vXi+1 · · · , vXn).



26 Security Testing of Internet of Things for Smart City Applications 639

It is worth noticing here that it is possible to define the parallel composition of
n copies (Ai)1≤i≤n of the same ETAIO A. In this case we assume it is possible to
distinguish the sets of inputs and outputs of the different instances by a particular
identifier corresponding to each instance. Obviously, the n instances share the set of
integer variables of the ETAIO A. The obtained TIOLTS is denoted LP

n .

26.4 Conformance Testing Framework

In this section, we are going to define a new extended timed input–output confor-
mance relation, etioco. Then, we propose a new approach for deriving analog-clock
tests from the SUT specification. Finally, we discuss both test execution and
correctness requirements.

26.4.1 Conformance Relation

In order to formally define the conformance relation, we define a number of
operators. Given a TIOLTS L = (SL, sL

0 , AcL
in, AcL

out, T
L
d , T L

t ) and a timed trace
σ ∈ RT(AcL) L after σ is the set of all states of L that can be reached by
some timed sequence ρ whose projection to observable actions is σ . Formally:

L after σ = {s ∈ SL | ∃ρ ∈ RT(Acτ
L) : sL

0
ρ→ s ∧ PAc(ρ) = σ }.

Given state s ∈ SL, elapse(s) is the set of all delays which can elapse from s

without L making any observable action. Formally: elapse(s) = {t > 0 | ∃ρ ∈
RT({τ }) : duration(ρ) = t ∧ s

ρ→}. Given state s ∈ SL, out(s) is the set of
all observable “events” (outputs or the passage of time) that can occur when the
system is at state s. The definition naturally extends to a set of states S. Formally:

out(s) = {a ∈ AcL
out | s

a→} ∪ elapse(s) and

out(S) =
⋃

s∈S

out(s).

The specification of the system to be tested is given as a non-blocking ETAIO AS

while the implementation can be modeled as a non-blocking, input-enabled ETAIO
AI . For n ≥ 1, let LP

S,n (resp., LP
I,n) be the parallel composition of n copies of

AS (resp., AI ). Input-enabledness is required so that the implementation can accept
inputs from the tester at any state. The extended timed input–output conformance
relation, denoted etioco, is an extension of our previous conformance relation
tioco [17, 18]. The new relation etioco is defined as AI etioco AS iff ∀n ≥
1 ∧ σ ∈ OTTr(LP

S,n) : out(LP
I,n after σ) ⊆ out(LP

S,n after σ). The relation states
that an implementation AI conforms to a specification AS iff for any number of
copies n of AS and any observable behavior σ of LP

S,n, the set of observable outputs



640 M. Krichen et al.

of LP
I,n after any behavior “matching” σ must be a subset of the set of possible

observable outputs of LP
S,n. Notice that observable outputs are not only observable

output actions but also time delays. Also notice that in case we consider only n = 1,
the definitions of etioco and tioco become the same.

26.4.2 Analog-Clock Tests

A test (or test case) is an experiment performed on the implementation by an agent
(the tester). There are different types of tests, depending on the capabilities of the
tester to observe and react to events. In general, one may consider either analog-
clock or digital-clock tests [11]. In this work, we consider only analog-clock tests.
The latter can measure precisely the delay between two observed actions and can
emit an input at any point in time.

It should be noted that we consider adaptive tests (following the terminology
of [21]), where the action the tester takes depends on the observation history. For
n ≥ 1, let Acn (resp., Acn

in) denote the union of all observable actions (resp., all input
actions) of n copies of the specification AS . An analog-clock test for n parallel exe-
cutions of AS is a total function Tn : RT(Acn) → Acn

in ∪ {Wait, Pass, Fail}. Tn(ρ)

specifies the action the tester must take once it observes ρ:

– If Tn(ρ) = a ∈ Acn
in, then the tester emits input a.

– If Tn(ρ) = Wait, then the tester waits (lets time elapse).
– If Tn(ρ) ∈ {Pass, Fail}, then the tester produces a verdict (and stops).

26.4.3 Test Execution and Correctness Requirements

The execution of the test Tn on the implementation AI can be defined as the parallel
composition of the TIOLTS defined by Tn and LP

I,n the TIOLTS corresponding to n

copies of AI , with the usual synchronization rules for transitions carrying the same
label. We will denote the product TIOLTS by LP

I,n‖Tn. The execution of the test
reaches a pass/fail verdict after bounded time. Formally, we say that AI passes the
test, denoted AI passes Tn, if state Fail is not reachable in the product LP

I,n‖Tn.
We say that an implementation passes (resp. fails) a set of tests (or test suite) T if
it passes all tests (resp. fails at least one test) in T . We say that an analog-clock test
suite T is sound with respect to AS if

∀AI : AI etioco AS ⇒ AI passes T .

We say that T is complete with respect to AS if

∀AI : AI passes T ⇒ AI etioco AS.



26 Security Testing of Internet of Things for Smart City Applications 641

26.5 Proposed Approach

In this section, we define a workflow that covers the different steps of a classical
model-based testing process, namely: model Specification, test generation, test
selection, test execution, and evaluation activities as depicted in Fig. 26.2.

26.5.1 Test Generation and Selection

Test Generation We adapt the untimed test generation algorithm of [30]. Roughly
speaking, the algorithm builds a test in the form of a tree. A node in the tree is a set
of states S of the specification and represents the “knowledge” of the tester at the
current test state. The algorithm extends the test by adding successors to a leaf node,
as illustrated in Fig. 26.3. For all illegal outputs ai (outputs which cannot occur from
any state in S) the test leads to Fail. For each legal output bi , the test proceeds to
node Si , which is the set of states the specification can be in after emitting bi (and
possibly performing unobservable actions). If there exists an input c which can be
accepted by the specification at some state in S, then the test may decide to emit this
input (dashed arrow from S to S′). At any node, the algorithm may decide to stop
the test and label this node as Pass.

Analog-clock tests cannot be directly represented as a finite tree, because there is
an a-priori infinite set of possible observable delays at a given node. To remedy this,
we use the idea of [31]. We represent an analog-clock test as an algorithm. The latter
essentially performs subset construction on the specification automaton, during the

Fig. 26.2 Model-based security testing process



642 M. Krichen et al.

Fig. 26.3 Test generation
principle [18]

Algorithm 1 On-the-fly analog-clock test generation

1 S ← tsucc({sP
n,0}, 0);

2 while(not Fail)
3 x ← 0; /* x is a clock measuring elapsing time */
4 await(output b is received at x < T or x = T )
5 if (b received at x)
6 S ← dsucc(tsucc(S, x), b);
7 else
8 S ← tsucc(S, T );
9 endif ;

10 if (S = ∅)
11 announce Fail;
12 exit ;
13 endif ;
14 if (validinputs(S) �= ∅)
15 i ← pick({0, 1}); /* 0 to send an input and 1 to continue observation */
16 endif ;
17 if (i = 0)
18 a ← pick(validinputs(S));
19 S ← dsucc(S, a);
20 endif ;
21 endwhile;

execution of the test. Thus, our analog-clock testing method can be classified as on-
the-fly or on-line, meaning that the test is generated at the same time it is executed.
More precisely, the tester will maintain a set of states S of the TIOLTS LP

S,n.
S will be updated every time an action is observed or some time delay elapses.

Since the time delay is not known a-priori, it must be an input to the update function.
We define the following operators:

dsucc(S, a) = {s′ | ∃s ∈ S : s
a→ s′}

and

tsucc(S, t) = {s′ | ∃s ∈ S . ∃ρ ∈ RT({τ }) : duration(ρ) = t ∧ s
ρ→ s′}



26 Security Testing of Internet of Things for Smart City Applications 643

where a ∈ Acn and t ∈ R. dsucc(S, a) contains all states which can be reached
by some state in S performing action a. tsucc(S, t) contains all states which can be
reached by some state in S via a sequence ρ which contains no observable actions
and takes exactly t time units. The test operates as follows. It starts at state S0 =
tsucc({sP

n,0}, 0) where sP
n,0 is the initial state of LP

S,n. Given current state S:

– if output a is received t time units after entering S, then S is updated to
dsucc(tsucc(S, t), a).

– If ever the set S becomes empty, the test announces Fail.
– At any point, for an input b, if dsucc(S, b) �= ∅, the test may decide to emit b

and update its state accordingly.

On-line analog-clock test generation is performed by Algorithm 1. The algorithm
keeps running as long as no non-conformance is detected. At any time the tester can
stop testing and declare Pass. The algorithm uses the following notation. Given a
nonempty set X, pick(X) chooses randomly an element in X.

Given a set of states S, validinputs(S) is defined as the set of valid inputs at
S, that is: validinputs(S) = {a ∈ Acn

in|dsucc(tsucc(S, 0), a) �= ∅}. Following
the same methodology as in [18] we can prove that the proposed test generation
algorithm is both sound and complete. Indeed both frameworks and both approaches
are based on IOLTS and at this level the algorithms are the same and the
conformance relations are equivalent. The difference between the two frameworks is
only at syntactic and structural levels. In [18] the authors consider only one instance
of the system whereas in our case we consider many instances which interact with
each other and the behaviors of which are influenced by the total number of active
components and the state of the shared resources.

The used test generation technique is based on model checking. The main idea
is to formulate the test generation problem as a reachability problem that can be
solved with the model checker tool UPPAAL [3]. However, instead of using model
annotations and reachability properties to express coverage criteria, the observer
language is used.

In this direction, we reuse the finding of Hessel et al. [14] by exploiting its exten-
sion of UPPAAL, namely UPPAAL CO

√
ER.2 This tool takes as inputs a model,

an observer, and a configuration file. The model is specified as a network of timed
automata (.xml) that comprises a SUT part and an environment part. The observer
(.obs) expresses the coverage criterion that guides the model exploration during
test case generation. The configuration file (.cfg) describes mainly the interactions
between the system part and the environment part in terms of input/output signals. It
may also specify the variables that should be passed as parameters in these signals.
As output, it produces a test suite containing a set of timed traces (.xml).

2http://user.it.uu.se/~hessel/CoVer/index.php.

http://user.it.uu.se/~hessel/CoVer/index.php


644 M. Krichen et al.

Our test generation module is built upon these well-elaborated tools. The key idea
here is to use UPPAAL CO

√
ER and its generic and formal specification language

for coverage criteria to generate tests for security purposes.

Test Selection Different coverage criteria have been proposed for software, such
as statement coverage and branch coverage [24]. In the TA case existing methods
attempt to cover either finite abstractions of the state space (e.g., the region
graph [29]) or structural elements of the specification such as edges or loca-
tions [14]. Here, we propose a technique for covering states, locations, edges,
actions, or shared variables of the specification:

– State coverage: As already mentioned each node of a given test case corresponds
to a set of states S of ATick

S . We say that the node covers S. We say that such a
test covers the union of all sets of states covered by its nodes. We say that a set
of tests (or test suite) achieves state coverage if every reachable state of LP

S,n is
covered by some test in the suite.

– Location coverage: A test suite achieves location coverage if every reachable
location of AS is covered by some test in the suite.

– Edge coverage: Every edge of a test case can be associated with an edge of LP
S,n.

In particular, an edge S
a→ S′ will be associated with all edges which are visited

during the reachability algorithm which computes S′ from S. We say that a test
suite achieves edge coverage if every reachable edge of LP

S,n is covered by some
test in the suite.

– Action coverage: We also define action coverage as follows. If a given edge

S
a→ S′ is reachable, then the corresponding observable action a is said to be

reachable as well. Action coverage is achieved if all the reachable observable
actions are covered by the considered test suite.

– Shared integer variable coverage: Finally we define shared integer variable
coverage which consists in generating tests which cover the different possible
values of the system variables.

26.5.2 Test Execution and Verdict Analysis

For the execution of the obtained security tests, we aim to use a standard-based
test execution platform, called TTCN-3 test system for runtime testing (TT4RT),
developed in a previous work [20]. To do so, security tests should be mapped to
the TTCN-3 notation since our platform supports only this test language. Then,
test components are dynamically created and assigned to execution nodes in a
distributed manner.

Each test component is responsible for (1) stimulating the SUT with input values,
(2) comparing the obtained output data with the expected results (also called oracle),
and (3) generating the final verdict. The latter can be pass, fail, or inconclusive.
A pass verdict is obtained when the observed results are valid with respect to



26 Security Testing of Internet of Things for Smart City Applications 645

the expected ones. A fail verdict is obtained when at least one of the observed
results is invalid with respect to the expected one. Finally, an inconclusive verdict
is obtained when neither a pass nor a fail verdict can be given. After computing for
each executed test case its single verdict, the proposed platform deduces the global
verdict.

26.5.3 Cloud Testing

The emergent paradigm, cloud computing, is formally defined by U.S.NIST
(National Institute of Standards and Technology) [23] as follows. Cloud computing
is a model for enabling ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.

This cloud model is characterized with three service models: software as-a-
service (SaaS), platform as-a-service (PaaS), and infrastructure as-a-service (IaaS).
The SaaS refers to the capability provided to the consumer to use the provider’s
applications running on a cloud infrastructure. With PaaS, the consumer is able to
deploy his own applications without installing any platform or tools since he uses
provided platform layer resources, including operating system support and software
development frameworks. Regarding IaaS, it provides a collection of resources
such as servers, storage, networks, and other computing resources in the form of
virtualized systems, which are accessed through the Internet.

It is worthy to note that public cloud providers like Amazon Web Services3

and Google Cloud Platform4 offer a cloud infrastructure made up essentially
of availability zones and regions. As shown in Fig. 26.4, a region is a specific
geographical location in which public cloud service providers’ data centers reside.
Each region is further subdivided into availability zones. Several resources can live
in a zone, such as instances or persistent disks. In the context of Google Cloud
Platform, the us-central1 region, for example, denotes a region in the Central United
States that has four zones, namely us-central1-a, us-central1-b, us-central1-c, and
us-central1-f.

Cloud computing has been used in the context of software testing to encounter the
lack of resources and the expensiveness of building a distributed test environment
during the testing process. As a result, the concept of cloud testing is newly
emerging in order to provide cost-effective testing services. According to [7],
it refers to testing activities, essentially test generation, test execution, and test
evaluation on a cloud-based environment. The latter supports on-demand resource
allocation to large-scale testers whenever and wherever they need by following the

3https://aws.amazon.com/fr/.
4https://cloud.google.com/.

https://aws.amazon.com/fr/
https://cloud.google.com/


646 M. Krichen et al.

Fig. 26.4 Illustration of cloud partitioning in regions and zones

pay-per-use business model. Such virtualized and shared resources may reduce
effectively the cost of building a distributed test environment for the runtime
validation of dynamically adaptive systems.

Testing as-a-service (TaaS) is an innovative concept that provides end users
with testing services such as test case generation, test execution, and test result
evaluation. It has been proposed to improve the efficiency of software quality
assurance. Notably, it is used for software systems that are remotely deployed
in a virtualized runtime environment using shared hardware/software resources,
and hosted in a third-party infrastructure (i.e., a cloud). One of the primary
objectives is to reduce the cost of software testing tasks by providing on-demand
testing services and also on-demand test environment services (i.e., establishing the
required virtual (or physical) cloud-based computing resources and infrastructures
for testing purposes).

26.5.4 Test Execution Platform as-a-Service

The proposed approach is built based on TaaS concepts. Figure 26.5 outlines an
overview of its different constituents.

– Test management GUI: This component offers a graphical user interface (GUI)
charged with managing the overall testing process: the automatic creation/dele-
tion of VM instances, the dynamic allocation of test components to the appro-
priate VMs, the start-up of test component execution, and the computation of
the final verdict. Moreover, it is responsible for querying the runtime monitoring
component for information about the usage of resources in running VMs.



26 Security Testing of Internet of Things for Smart City Applications 647

Fig. 26.5 Test execution platform overview

– Resource management: This component enables flexibility and elasticity during
the testing process. If there is no adequate VM to handle the execution of a test
component, a new VM can be created and started automatically. Moreover, it
is possible to scale up or scale down an existing VM. The unused one can be
released as well.

– Test component management: This component offers services for creating/delet-
ing test components and starting/stopping their execution. A test component is
an entity that interacts with the SUT to execute the available test cases (i.e., a set
of input values and expected results) and to observe its response related to this
excitation. Its main role consists of stimulating the SUT with the input values,
comparing the obtained output values to the expected results and generating the
final verdict that can be pass, fail, or inconclusive.

– Runtime monitoring: This component monitors VM instances during or even
before the test execution and gives the status of each VM in terms of computing
resources (such as CPU, memory, and storage).

As already discussed, several VM instances are created and started in the pro-
posed cloud infrastructure in which several components under test are running too
and can be evolved at runtime. To perform runtime tests in a cost-effective manner,
several test components should be deployed in the final execution environment. The
major question to be tackled here is how to assign efficiently test components to the
existing VM instances?

Before answering to this question, we should mention that the components under
test are distributed in several VM instances that can be located in the same region



648 M. Krichen et al.

and in the same zone as well as in different zones and even in different regions
of the cloud infrastructure. Such information is provided via a SUT deployment
descriptor. In this file, the SUT manager defines, for each component under test,
the VM instance hosting its execution and also its main characteristics (i.e., its IP
address, its corresponding zone, and region). Hereafter, we denote the VM hosting
a component under test by VM under test (VMUT) and the VM hosting the test
component by test VM (T_VM).

26.6 Related Work

In this section we give an overview of contributions from the literature and from our
previous work related to the security of IoT applications in smart cities.

Although the security protocols are well elaborated in the Internet domain, it is
still not fully clear how these existing IP security protocols and architectures can be
adapted and deployed in the context of distributed and heterogeneous environment
like the Internet of Things (IoT). From its appearance as a promiscuous technology,
several works are addressing the security problems of the IoT [4, 8, 12, 13, 26, 28, 32,
36], but until now there is no sufficient solutions that meet the users’ requirements
and performance needs. In the following, we will provide an overview of the most
important related works and clarify the contributions of our proposal in comparison
to the state of the art.

The authors in [4] presented the security contributions of the SMARTIE work,
which aims to provide secure IoT data management for smart cities. The authors
first classified attacks to internal and external. Internal attacks are caused by devices
and/or users of the smart city environment. Internal attackers are more dangerous
than external ones as they have detailed knowledge about the infrastructure, they
have access to part of the systems and they hold some keys. Internal attackers can
be users or administrators of the smart city systems or any hackers that succeed to
compromise a component of the system. Note that, due to the diversity of the IoT
devices and their spread in different locations, device compromise attack is easier
in IoT than in classical networks. On the other hand, external attackers may try to
access private data from users, components, or subsystems of the IoT environment.
Moreover, as in IoT some components are controlled remotely, attackers can exploit
these features to gain control and manipulate victims devices. Two main security
mechanisms are defined in [4] to address the above issues. First, DCapBAC [13]
is an authorization scheme that takes access control decisions before the actual
service is accessed. It does this by giving a signed authorization token to a user
who is asking for any particular service or functionality offered by a thing. The
authorization token is sent along with a request to the thing that verifies the
validity of the request and the authorization token, delivering the requested data, if
successful. Second, PrivLoc [33] offers secure location-based services, in particular
a secure geo-fencing service that alerts users if objects enter or leave a defined
area. Location-based services are increasingly gaining importance. Not only end



26 Security Testing of Internet of Things for Smart City Applications 649

users but also companies can make use of location data to track assets (e.g., public
transport services, users looking for transportation, or logistics companies). PrivLoc
scrambles location information in a way that allows computation on intersections
of scrambled geometric objects, which is the main operation behind a geo-fencing
service.

In paper [32], the authors proposed OSCAR (object security architecture for the
Internet of Things), an architecture for end-to-end security in the Internet of Things.
It is based on the concept of object security that relates security with the application
payload. The architecture includes authorization servers that provide clients with
access secrets that enable them to request resources from constrained nodes. The
nodes reply with the requested resources that are signed and encrypted. Although
this architecture solves some of disadvantages of Datagram Transport Layer
Security (DTLS) since it supports multicast, asynchronous traffic, and caching, it
has certain limitations. Indeed, OSCAR is vulnerable to the replay attack and its
performance is affected with the eventual usage of larger elliptic curve cryptography
(ECC) curves. In [12], an architectural reference model-compliant framework was
proposed. This framework emphasizes on security and privacy aspects to be used
on smart buildings scenarios. Additionally, authors proposed an extension of the
security functional components of the reference architecture in order to enable more
flexible sharing models, in which the physical context information is considered
as a first-class component in order to realize the so-called context-aware security
on IoT scenarios. As an instantiation of this framework, a platform for services
management on smart buildings has been deployed and extended to offer both
user-centric services, like comfort and energy saving, and discovery and security
functionality for such services. The feasibility of the proposed mechanisms has been
demonstrated through the instantiation of the platform and its evaluation in a smart
building used as reference [4].

From a standardization perspective, the recently standardized constrained appli-
cation protocol (CoAP) was proposed as a lightweight alternative to the HTTP
protocol for web-based IoT applications, but security does not keep up. For this
purpose, the IETF has thus taken a position to reuse the datagram transport layer
security (DTLS), the all-round point-to-point security protocol, to secure the com-
munication channel between a constrained device running CoAP and a client [32].
However, apart from its current incompatibility with caching and multicast traffic,
the DTLS approach has an important impact on scalability: Memory limitations of
constrained nodes restrict the number of DTLS sessions. In IoT scenarios such as
smart cities in which a large number of clients may communicate with constrained
CoAP nodes, the limitations lead to a considerable load that translates to an
increased energy consumption and a shortened lifetime [32]. Several works have
thus been proposed to overcome these limitations of DTLS.

The DTLS in constrained environments (DICE), an IETF working group, was
formed to add multicast security to DTLS [15]. In [15], the authors present a
method for securing IPv6 multicast communication based on the DTLS which is
already supported for unicast communication for CoAP devices. They deal with the
adaptation of the DTLS record layer to protect multicast group communication,



650 M. Krichen et al.

assuming that all group members already have the group security association
parameters in their possession. The adapted DTLS record layer provides message
confidentiality, integrity, and replay protection to group messages using the group
keying material before sending the message via IPv6 multicast to the group [15].
However, the authors did not present how group members can agree on the group
security association.

In [33], the authors presented Lithe—an integration of DTLS and CoAP for the
IoT. Lithe proposes a novel DTLS header compression scheme that aims to reduce
the energy consumption by leveraging the 6LoWPAN standard based on reducing
the number of transmitted bytes while maintaining DTLS standard compliance.

Granjal et al. [9], described mechanisms to enable security at the network
layer, based on the IPSec protocol, and at the application layer, based on the
DTLS protocol, and performed an extensive experimental evaluation study with
the goal of identifying the most appropriate secure communication mechanisms
and the limitations of current sensing platforms for supporting end-to-end secure
communications in the context of Internet-integrated sensing applications [9]. These
results showed a similar performance of the two approaches, except in the case when
DTLS is additionally used to exchange keys with the elliptic curve Diffie-Hellman
exchange.

Heer et al. [10] discussed the applicability and limitations of existing Internet
protocols and security architectures in the context of IoT. They presented challenges
and requirements for IP-based security solutions and highlighted specific technical
limitations of standard IP security protocols. It was indicated that for supporting
secure IoT, its security architecture should fit the life cycle of a thing and its
capabilities, and scale from small-scale ad-hoc security domains of things to
large-scale deployments, potentially spanning several security domains. Security
protocols should further take into account the resource-constrained nature of things
and heterogeneous communication models. Lightweight security mechanisms and
group security that are feasible to be run on small things and in IoT context should be
developed, with particular focus on possible DoS/DDoS attacks. In addition, cross
layer concepts should be considered for an IoT-driven redesign of Internet security
protocols.

The authors in [35] addressed the routing protocol for low-power and lossy
networks (RPL) attacks and they provided a comprehensive analysis of IoT
technologies and their new security capabilities that can be exploited by attackers
or IDSs. One of the major contributions in [35] is the implementation and
demonstration of well-known routing attacks against 6LoWPAN networks running
RPL as a routing protocol. The implemented attacks are selective-forwarding attacks
(where malicious nodes selectively forward packets and therefore can achieve a DoS
attack), sinkhole attacks (where a malicious node advertises an artificial beneficial
routing path and attracts many nearby nodes to route traffic through it), HELLO
flood attacks (where the attackers by broadcasting a HELLO message with strong
signal power and a favorable routing metric can introduce himself as a neighbor
to many nodes, possibly the entire network), wormhole attacks, clone ID, and



26 Security Testing of Internet of Things for Smart City Applications 651

Sybil attacks. In order to mitigate these attacks, the authors proposed an intrusion
detection system (IDS), called SVELTE [27].

SVELTE [27], an intrusion detection system for the IoT was designed, imple-
mented, and evaluated against routing attacks such as spoofed or altered infor-
mation, sinkhole, and selective-forwarding. SVELTE’s overhead is small enough
to deploy it on constrained IoT nodes with limited energy and memory capacity.
However, SVELTE assumes that it has access to the border router of the network to
place heavyweight IDS parts there. This assumption is not always possible. For
example in a smart city application, the messages can be routed over a cellular
station that belongs to the network of another owner and therefore we did not have
access to the border router.

The previously cited proposed solutions can be classified to three categories
which are application layer security solutions [15, 33], network layer security
solutions [27, 35], and context-aware security solutions [4, 12, 32]. Context-
aware security solutions are very dependent to the specific characteristics of the
applications use case and so suffer from the lack of inter-operability. Moreover, the
existing solutions have a high computation and communication cost that make them
inadequate to resource-constrained things. Network security solutions are limited
to attacks related to network layer and so cannot mitigate attacks that target the
application layer and cannot provide some security services such as authentication
and access control.

Contrary to [27, 35] that proposed an IDS that is limited to routing attacks. In
this work we aim to extend the functionality of the IDS and to address also the
application layer attacks that target the CoAP protocol. This kind of IDS will present
a first line of defense and will mitigate several attacks such as the DoS attack. In
addition, this work will focus on providing security based on the DTLS protocol
as there are several attempts to make this protocol as the standard for security in
the IoT. Therefore, we will propose enhancements to the DTLS protocol to fit the
IoT objects. Moreover, we will focus on not resolved aspects such as group key
management and multicast communication.

The authors of [6] propose a good survey on more than one hundred publications
on model-based security testing extracted from the most relevant digital libraries and
classified according to specific criteria. Even though this survey reports on a large
number of articles about MBST it does not contain any reference to IoT applications
or smart cities. Contrary to that the authors of [1] propose a model-based approach
to test IoT platforms (with tests provided as services) but they do not deal with
security aspects at all.

26.7 Conclusion

In this work we aimed to combine these two directions, namely: model-based testing
and security testing for IoT applications in smart cities. For that purpose we took
advantage of our previous findings [5, 16, 20, 22] related to these fields. Moreover,



652 M. Krichen et al.

we extended the notions proposed in the survey [5] to the case of IoT applications.
We also exploited our previous results about test techniques of dynamic distributed
systems [16, 20].

Our work is at its beginning and a lot of efforts are needed at all levels on both
theoretical and experimental aspects. First we need to deal with modeling issues. In
this respect we need to extend our modeling formalism and to identify the particular
elements of IoT applications to model (using extended timed automata). Models
must not be big in order to avoid test number explosion. For that purpose we need to
keep an acceptable level of abstraction. As a second step we have to adapt our test
generation and selection algorithms to take into account security requirements of
the applications under test. The new algorithms must be validated theoretically and
proved to be correct. In the same manner we need to upgrade our tools to implement
new obtained algorithms. We also need to validate our approach with concrete
examples with realistic size. Finally we propose to adopt the same methodology
as in [22] to combine security and load tests for IoT applications.

References

1. Ahmad, A., Bouquet, F., Fourneret, E., Le Gall, F., Legeard, B.: Model-based testing as a
service for IOT platforms. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of
Formal Methods, Verification and Validation: Discussion, Dissemination, Applications, pp.
727–742. Springer, Cham (2016)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235 (1994)
3. Behrmann, G., David, A. and Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M., Corradini,

F. (eds.)International School on Formal Methods for the Design of Computer, Communication,
and Software Systems, SFM-RT 2004. Revised Lectures, vol. 3185, LNCS, pp. 200–237.
Springer, Berlin (2004)

4. Bohli, J.-M., Skarmeta, A., Moreno, M.V., García, D., Langendörfer, P.: Smartie project: secure
IoT data management for smart cities. In: 2015 International Conference on Recent Advances
in Internet of Things (RIoT), vol. 00, pp. 1–6 (2015)

5. Cheikhrouhou, O.: Secure group communication in wireless sensor networks: a survey. J. Netw.
Comput. Appl. 61, 115–132 (2016)

6. Felderer, M., Zech, P., Breu, R., Büchler, M., Pretschner, A.: Model-based security testing: a
taxonomy and systematic classification. Softw. Test. Verif. Reliab. 26(2), 119–148 (2016)

7. Gao, J., Bai, X., Tsai, W.-T.: Cloud testing- issues, challenges, needs and practice. Softw. Eng.
Int. J. 1(1), 9–23 (2011)

8. Garcia-Morchon, O., Kumar, S., Keoh, S.L., Hummen, R., Struik, R.: Security Considerations
in the IP-Based Internet of Things, Internet-Draft draft-garcia-core-security-06, Internet
Engineering Task Force, Fremont (2013). Work in Progress

9. Granjal, J., Monteiro, E., Sá Silva, J.: On the effectiveness of end-to-end security for internet-
integrated sensing applications. In: 2012 IEEE International Conference on Green Computing
and Communications, pp. 87–93 (2012)

10. Heer, T., Garcia-Morchon, O., Hummen, R., Keoh, S.L., Kumar, S.S., Wehrle, K.: Security
challenges in the ip-based internet of things. Wirel. Pers. Commun. 61(3), 527–542 (2011)

11. Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich, W. (ed.)
Automata, Languages and Programming, pp. 545–558. Springer, Berlin (1992)

12. Hernández-Ramos, J.L., Moreno, M.V., Bernabé, J.B., Carrillo, D.G., Skarmeta, A.F.: SAFIR:
secure access framework for IoT-enabled services on smart buildings. J. Comput. Syst. Sci.
81(8), 1452–1463 (2015)



26 Security Testing of Internet of Things for Smart City Applications 653

13. Hernández-Ramos, J.L., Jara, A.J., Marin, L., Gómez, A.F.S.: Dcapbac: embedding authoriza-
tion logic into smart things through ECC optimizations. Int. J. Comput. Math. 93(2), 345–366
(2016)

14. Hessel, A., Larsen, K.G., Nielsen, B., Pettersson, P., Skou, A.: Time-optimal real-time test case
generation using uppaal. In: Petrenko A., Ulrich, A. (eds.) Formal Approaches to Software
Testing, pp. 114–130. Springer, Berlin (2004)

15. Keoh, S., Kumar, S., Garcia-Morchon, O., Dijk, E., Rahman, A.: DTLS-Based Multicast Secu-
rity for Low-Power and Lossy Networks (LLNs). Internet-Draft Draft-keoh-dice-multicast-
security-08, Internet Engineering Task Force, Fremont (2014). Work in Progress.

16. Krichen, M.: A formal framework for black-box conformance testing of distributed real-time
systems. IJCCBS 3(1/2), 26–43 (2012)

17. Krichen, M., Tripakis, S.: Black-box conformance testing for real-time systems. In: Graf, S.,
Mounier, L. (eds.) Model Checking Software, pp. 109–126. Springer, Berlin (2004)

18. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Form. Methods Syst.
Des. 34(3), 238–304 (2009)

19. Krichen, M., Cheikhrouhou, O., Lahami, M., Alroobaea, R., Jmal Maâlej, A.: Towards a
model-based testing framework for the security of internet of things for smart city applications.
In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure,
Technologies and Applications, pp. 360–365. Springer, Cham (2018)

20. Lahami, M, Krichen, M., Jmaïel, M.: Safe and efficient runtime testing framework applied in
dynamic and distributed systems. Sci. Comput. Program. 122(C), 1–28 (2016)

21. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines-a survey.
Proceedings of the IEEE 84(8), 1090–1123 (1996)

22. Maâlej, A.J., Krichen, M.: A model based approach to combine load and functional tests
for service oriented architectures. In: Proceedings of the 10th Workshop on Verification and
Evaluation of Computer and Communication System, VECoS 2016, Tunis, October 6–7, 2016,
pp. 123–140 (2016)

23. Mell, P., Grance, T.: The Nist Definition of Cloud Computing (2011)
24. Myers, G.J., Sandler, C.: The Art of Software Testing, Wiley, Hoboken (2004)
25. Nguyen, K.T., Laurent, M., Oualha, N.: Survey on secure communication protocols for the

internet of things. Ad Hoc Netw. 32, 17–31 (2015)
26. Park, S.D., Kim, K.-H., Haddad, W., Chakrabarti, S., Laganier, J.: IPv6 over Low Power

WPAN Security Analysis. Internet-Draft draft-daniel-6lowpan-security-analysis-05, Internet
Engineering Task Force, Fremont (2011). Work in Progress

27. Raza, S., Wallgren, L., Voigt, T.: Svelte: real-time intrusion detection in the internet of things.
Ad Hoc Netw. 11(8), 2661–2674 (2013)

28. Roman, R., Zhou, J., Lopez, J.: On the features and challenges of security and privacy in
distributed internet of things. Comput. Netw. 57(10), 2266–2279 (2013)

29. Springintveld, J., Vaandrager, F., D’Argenio, P.R.: Testing timed automata. Theor. Comput.
Sci. 254(1), 225–257 (2001)

30. Tretmans, J.: Testing concurrent systems: a formal approach. In: Baeten, J.C.M., Mauw, S.
(eds.) CONCUR’99 Concurrency Theory, pp. 46–65. Springer, Berlin (1999)

31. Tripakis, S.: Fault diagnosis for timed automata. In: Damm, W., Olderog, E.R. (eds.) Formal
Techniques in Real-Time and Fault-Tolerant Systems, pp. 205–221. Springer, Berlin (2002)

32. Vucinic, M., Tourancheau, B., Rousseau, F., Duda, A., Damon, L., Guizzetti, R.: OSCAR:
object security architecture for the internet of things. CoRR, abs/1404.7799 (2014)

33. Vučinić, M., Tourancheau, B., Rousseau, F., Duda, A., Damon, L., Guizzetti, R.: Oscar. Ad
Hoc Netw. 32(C), 3–16 (2015)

34. Walewski, J.: Internet-of-Things Architecture IOTA Project Deliverable d1.2 - Initial Architec-
tural Reference Model for IOT (2018)

35. Wallgren, L., Raza, S., Voigt, R.: Routing attacks and countermeasures in the RPL-based
internet of things. Int. J. Distrib. Sens. Netw. 9(8), 794326 (2013)

36. Yan, Z., Zhang, P., Vasilakos, A.V.: A survey on trust management for internet of things. J.
Netw. Comput. Appl. 42, 120–134 (2014)


	26 Security Testing of Internet of Things for Smart City Applications: A Formal Approach
	26.1 Introduction
	26.2 Preliminaries
	26.2.1 Internet of Objects
	26.2.2 Smart Cities
	26.2.3 Threats
	26.2.4 Challenges

	26.3 Extended Timed Automata
	26.3.1 Timed Labeled Transition Systems
	26.3.2 Extended Timed Automata
	26.3.3 Semantics of Extended Timed Automata
	26.3.4 Extended Timed Automata with Inputs and Outputs
	26.3.5 Parallel Composition of ETAIO with Shared Integer Variables

	26.4 Conformance Testing Framework
	26.4.1 Conformance Relation
	26.4.2 Analog-Clock Tests
	26.4.3 Test Execution and Correctness Requirements

	26.5 Proposed Approach
	26.5.1 Test Generation and Selection
	26.5.2 Test Execution and Verdict Analysis
	26.5.3 Cloud Testing
	26.5.4 Test Execution Platform as-a-Service

	26.6 Related Work
	26.7 Conclusion
	References


