Chapter 15

On Performance of Commodity Single e
Board Computer-Based Clusters: A Big

Data Perspective

Basit Qureshi and Anis Koubaa

15.1 Introduction

Big data technologies are becoming ever more popular and are currently a focus
of both science and industry. The amount of data generated by scientific as well
as business applications has increased manifolds in the last few years. A key
framework for processing large datasets is the MapReduce framework which allows
data to be divided into fixed-size chunks that are processed in parallel on the cloud
infrastructure. Several open source MapReduce frameworks have been developed in
the last years with the most popular one being Hadoop. Hadoop has been deployed
on physical servers across data centers around the globe and continues to provide
the realization of on-demand resource availability, scalability with reliability for big
data analyses. Figure 15.1 shows the coupling of various technologies for big data
analysis in cloud computing infrastructure.

A leading motivation for cloud computing is the reduction of installation and
operational cost for small businesses and enterprises. On the other hand, it is
immensely important for students in universities to be exposed to real cloud
computing infrastructure. Indeed, universities and academic institutions need to
provide hands-on experience in this area, which means that universities need
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to provide access to a suitable cloud computing infrastructure that can be used
for experimentation, research, and teaching. Setting up cloud infrastructure in
universities could be a very costly endeavor [24]. Although most universities do
not reveal the actual costs of setting up and running the infrastructure, the cost of
Ukko Cloud Computing Cluster with 240 Dell PowerEdge M610 nodes, each with
32 GB of RAM and 2 Intel Xeon E5540 2.53 GHz quad-core CPUs at University of
Helsinki Finland was reported to be over 1 million Euros [13]. Expedient, a private
cloud data center construction organization for small businesses, estimates the cost
of installation of a tier III data center with ten racks to be upwards of 1 million US
Dollars [12].

In order to build a low-cost effective cloud computing cluster with low energy
consumption requirements resulting in near-zero carbon footprint, researchers have
investigated the use of SBCs. Indeed, an SBC is a complete computer built on
a single circuit board that incorporates a microprocessor(s), memory, I/O as well
as multitude of other features required by a functional computer [3]. Typically, an
SBC is ideally priced at (35-80 US$), with power requirements set to be as low as
2.5 W and designed in small form factors comparable to a credit card or pocket
size. These computers are portable and are capable of running a wide range of
platforms including Linux distributions, Unix, Microsoft Windows, Android, etc.
A cluster of single board computers has very limited resources and cannot compete
with the performance of higher value systems. But despite these drawbacks, useful
application scenarios exist, where clusters of single board computers are a promising
option. This applies in particular to small- and medium-sized enterprises as well
as for academic purposes like student projects or research projects with limited
financial resources.

The Beowulf cluster created at Boise State University [7] was perhaps the earliest
attempt at creating a cluster consisting of multiple nodes of SBCs. This cluster
is composed of 32 Raspberry Pi Model B computers and offers an alternative in
case if the main cluster is unavailable. The Bolzano Raspberry Pi cloud cluster
experiment implemented a 300 node Pi cluster [8]. The main goal of this project was
to study the process and challenges of building a Pi cluster on such a large scale.
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The Iridis-Pi project implemented a 64 node Raspberry Pi cluster [9]. Tso et al. [10]
built a small-scale data center consisting of 56 RPi Model B boards. The Glasgow
Raspberry Pi Cloud offers a cloud computing testbed including virtualization
management tools. Whitehorn [11] presented the first ever implementation of a
Hadoop cluster using five Raspberry Pi Model B nodes. In 2016, C. Baun in [14]
presented the design of a cluster geared towards academic research and student
scientific projects building an eight-node Raspberry Pi Model 2B cluster. All
of these works demonstrate constructing a cluster using SBCs at an affordable
cost to researchers and students. However, none of these works provide detailed
performance analysis of computing tasks, memory, storage utilization, and network
throughput. Indeed effective Hadoop deployment depends on efficient utilization of
resources available onboard cluster nodes as well as network traffic management.
The lack of performance evaluation of SBC-based cloud computing clusters as well
as energy efficiency provides motivation for this work.

In this chapter, we present a detailed study on design and deployment of two
SBC-based clusters using Raspberry Pi Model 2 B and HardKernel Odroid Model
Xu-4. The objectives of this study are in three folds: (1) To provide a detailed
analysis of the performance of Raspberry Pi and Odroid XU-4 SBCs in terms of
power consumption, processing/execution time for various tasks, storage read/write
as well as network throughput; (2) To study the viability and cost-effectiveness
of the deployment of SBC-based Hadoop clusters against virtual machine-based
Hadoop clusters deployed on personal computers and (3) To contrast the power
consumption and performance aspects of SBC-based Hadoop clusters for Big Data
Applications in academic research. To this end, three clusters were constructed and
deployed for extensively studying the performance of individual SBCs as well as
a cluster deployment to provide a detailed comparison. Furthermore, Hadoop was
deployed on these clusters to study the performance aspects of the environment
using popular and widely used performance benchmarks. Power consumption, task
execution time, I/O read/write latencies as well as network throughput were studied.
In addition to the above, we provide analysis of energy consumption in the clusters,
the energy efficiency, and cost of operating these clusters. Results from this study
show that it is possible to deploy a cost-effective Hadoop cluster with reasonable
performance for low yield workloads; however for larger workloads, the operation
cost would significantly increase.

The contribution of this chapter is as follows:

* Design and compact layout for two clusters using SBCs are presented in addition
to a PC-based cluster running in the virtual environment. Performance evaluation
of task execution time, storage utilization, network throughput as well as power
consumption are detailed.

e Popular Hadoop benchmark programs such as Pi Computation, Wordcount,
TestDFSIO, TeraGen, and TeraSort are executed on these clusters and results
are compared against a virtual machine-based cluster using workloads of various
sizes.
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The remainder of this chapter is organized as follows. Section 15.2 presents
related works with details on the ARM-based computing platforms used in this
study as well as a review of recent applications of SBCs in high-performance
computing and Hadoop-based environments. Section 15.3 presents the design and
architecture of the RPi, Xu20, and HDM Clusters used in this study. Section 15.4
deals with a comprehensive performance evaluation study of these clusters based
on popular benchmarks. Section 15.5 provides details on the deployment of Hadoop
environment on these clusters with a detailed presentation of performance aspects of
Hadoop benchmarks for the clusters. Section 15.6 provides summary and discussion
followed by conclusions in Sect. 15.7.

15.2 The Single Board Computers

Advanced RISC Machine (ARM) is a family of Reduced Instruction Set Computing
(RISC) architectures for computer processors that are commonly used nowadays
in tablets, phones, game consoles, etc. [4]. The ARM is the most widely used
instruction set architecture in terms of quantity produced [6]. Since October 2011,
the ARM has started to support 64-bit address space and instruction set in the ARM
v8 architecture. Currently, ARM Cortex cores architecture is popular and widely
used in smartphones, single board computers, etc. An SBC is a complete computer
built on a single circuit board. An SBC incorporates a microprocessor(s), memory,
I/O as well as host of other features required by a functional computer. While
keeping the manufacturing costs to the lowest (25-80 USS$), various companies have
developed SBCs in small form factors comparable to a credit card or pocket size.
These computers are capable of running a wide range of platforms including Linux
distributions, Unix, Microsoft Windows, Android, etc. In what follows, we briefly
describe the two popular SBCs using ARM-based CPUs and their features.

The Raspberry Pi Model 2B The Raspberry Pi Foundation [1] developed a
credit card-sized SBC called Raspberry Pi (RPi). This development was aimed at
creating a platform for teaching computer science and relevant technologies at the
school level. Raspberry Pi 2B version was released in February 2015 improving
the previous development platform by increased processor speed, larger onboard
memory size as well as newly added features. Figure 15.2 shows RPi Model 2B.
Table 15.1 summarizes the hardware specifications of RPi Model 2B. Although
the market price, as well as the cost of energy consumption of an RPi, is low,
the computer itself has many limitations in terms of shared compute and memory
resources. Raspberry Pi uses a 32-bit quad-core ARM Cortex A7 processor clocked
at 0.7 GHz with 256 KB L2 cache memory, which is shared with the GPU. While
it is possible to overclock the processor and tune the performance, the results may
reduce the overall lifespan of the computer. For data storage, RPi relies on solid
state flash memory. The SD memory reads and writes in 128 KB blocks of data, i.e.,
even for reading/writing one byte, the entire block of memory needs to be read from
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Fig. 15.2 Raspberry Pi2 B

Table 15.1 Features of Raspberry Pi Model 2B and HardKernel Odroid Xu-4

RPi Model 2B Odroid XU-4
Processor (CPU) | 0.9 GHz quad core ARM | Samsung Exynos5 Octa ARM Cortex-A15
Cortex-A7 (@ 2.0 GHz) and Cortex-A7 (@1.3 GHz)
CPUs
GPU Broadcom Video Core IV | Mali T628 Open GL 3.0
Multimedia Graphics
CO-processor
Onboard RAM 256 KB L2 cache 2 GB LPDDR3 at 933 MHz
1 GB SDRAM at
400 MHz
Ethernet/Network | 10/100 MB Ethernet 10/100/1000 MB Ethernet RJ45 Jack
RJ45 Jack
Storage Micro SD Card Micro SD Card and eMMC 5.0 flash storage
Audio/Video 3.5 mm jack and HDMI HDMI (standard) supports 1080p video
Power 3.2 W (idle) 2.5 W (idle)
Consumption 3.8 W (under load) 4.5 W (under load)
USB Ports 4USB 2.0 1x USB 2.0, 2x USB 3.0
Released February 2015 2015
Price (US$) 35% 79 %

or written to. Furthermore, the lifespan of the SD card is reduced significantly with
very frequent write operations. In summary, the RPi is a very affordable platform
with low cost and low energy consumption [3, 4]. The major drawback is the
compute performance. Recent experiments in distributed computing have shown
that this can be rectified by building a cluster of many RPi computers. Further details
about configuration in the cluster would be provided in the next section.

The Hardkernel Odroid platform ODROID-XU-4 [5] is a newer generation of
single board computers offered by HardKernel. Offering open source support, the
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Fig. 15.3 Hardkernel Odroid
XU-4

board can run various flavors of Linux, including Ubuntu 15.04, Ubuntu MATE,
Android 4.4 Kit Kat, and 5.0 Lollipop. XU-4 uses Samsung Exynos5 Quad-core
ARM Cortex™-A15 Quad 2 GHz and Cortex™-A7 Quad 1.3 GHz CPUs with
2 Gbyte LPDDR3 RAM at 933 MHz. The Mali-T628 MP6 GPU supports OpenGL
3.0 with 1080p resolution via standard HDMI connector. Two USB 3.0 ports, as well
as a USB 2.0 port, allows faster communication with attached devices. The power-
hungry processor demands 4.0 A power supply with power consumption of 2.5 W
(idle) and 4.5 W (under load). By implementing the eMMC 5.0, the ODROID C1
and XU-4 boast improved I/O transfer speeds over Class 10 SD card flash memories.
XU-4 comes with an onboard heat sink as well as a fan. With heavy computation
loads, the temperature can increase resulting in increased power consumption due
to cooling. We noticed that the temperature doubled under increased computation
stress resulting in the constant running of the fan creating excessive noise. Odroid
XU-4 priced at $79 is slightly expensive compared to Raspberry Pi 3B; nevertheless,
the improved processing power although demanding more power provides tradeoff
with improved performance, task execution time as well as better I/O read and write
operations. Table 15.1 shows a summary of Odroid XU-4 SBC (Fig. 15.3).

The low-cost aspect of an SBC makes it attractive for students as well as
researchers in academic environments. As pointed out in the literature, it is possible
to deploy a Hadoop cluster using SBCs such as Raspberry Pi computers. Although
the Raspberry Pi computers are cheap and widely available, the limitations in
terms of processing power, available onboard memory and reliance on SD cards
for external storage with slow I/O operations, yield performance with much to be
desired. Thanks to increased interest in SBCs, newer single board computers with
better design and faster operations speeds are becoming available. It remains to be
seen how the improved SBCs perform when deployed in Hadoop clusters. In this
chapter, we present a detailed study on design and deployment of Hadoop on two
SBC-based clusters using Raspberry Pi Model 2 B as well as HardKernel Odroid
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Fig. 15.4 Network topology diagram for RPi, Xu20, and HDM clusters

Model Xu-4. The Odroid XU-4 is an SBC with the faster processor, larger onboard
memory, and faster I/O storage.

15.3 Design and Architecture of the DM-Clusters

This section presents the architecture and configuration of the clusters deployed in
this experimental study. For the purpose of benchmarking cluster performance as
well as comparatively analyzing their performance, we built three clusters.

The first cluster, called RPi Cluster, is composed of 20 Raspberry Pi Model 2B
Computers connected to a network. The second cluster, called Xu-20, is composed
of 20 Odroid XU-4 devices in the same network topology. The third cluster HDM
is composed of four regular PCs running Ubuntu in the virtual environment using
VMware Workstation [28]. To maintain similarity in network configuration, all the
clusters follow the same star topology with a 24-port Giga-bits-per-second smart
managed switch acting as the core of the network as can be seen in Fig. 15.4. Each
node (RPi, XU-4, or PC) connects a 16-port Ethernet switch that connects to the core
switch. Currently, five nodes connect to each switch allowing further scalability of
the cluster. The master node, as well as the uplink connection to the Internet through
a router, is connected to the core switch. The current design allows easy scalability
with up to 60 nodes connected in the cluster that can be extended up to 300 nodes.
Table 15.2 presents a summary of the cluster characteristics.
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Table 15.2 Configuration of the DM-Clusters

Master Node

Number of Data
Nodes

Slave Node Device

Data Node Clock
Speed

oS

Storage (GB)
Storage Medium

RPi Cluster

Intel i7 at 3.00 GHZ
64Bit Win 10

20

Raspberry Pi Model 2
B

1000 MHz

Raspbian OS
16 GB
Class 10 SD Card

B. Qureshi and A. Koubaa

Xu20 Cluster

Intel i7 at 3.00 GHZ
64Bit Win 10

20

HardKernel Odroid
Xu-4
2000 MHz

Ubuntu MATE 15 OS
32 GB
eMMC 5.0 module

HDM Cluster

Intel i7 at 3.00 GHZ
64Bit Win 10

4

Intel i7 at 3.00 GHZ
64Bit Win 10

3000 MHz

Ubuntu 14.4 LTE
40 GB

Kingston Solid State
Disk (SSD)

RAM 856 MB (available) 1024 MB (available) 3 GB (available)
Virtual Machine Only Master Node runs All nodes on VM
OS in VM

15.3.1 Components and the Design of the DM-Clusters

Each cluster is composed of a set of components including SBCs, power supplies,
network cables, storage modules, connectors, and cases. Each SBC is carefully
mounted with storage components. All the Raspberry Pi computers are equipped
with 16 GB Class-10 SD cards for primary bootable storage. The Odroid XU-4
devices are equipped with 32 GB eMMCv5.0 modules and can be seen in Fig. 15.3.
All the SBCs are housed in a compact layout racks using M2/M3 spacers, nuts,
and screws. The racks are designed to house 5 SBCs per rack for easy access and
management. Figure 15.5a shows the Raspberry Pi computers organized in racks
with 5 computers per rack, Fig. 15.5b shows the Odroid XU-4 computers organized
in racks with 5 computers per rack.

Currently, each Raspberry Pi computer is individually supplied by the 2.5 A
power supply; each Odroid XU-4 computer is supplied by a 4.0 A power supply that
provides ample power for running each node. All the power supplies are connected
to the Wattsup Pro .net power supply meter for measuring power consumption.
These power meters are then connected to a voltage regulator connected to the main
supply. The Wattsup Pro .net power meter can be seen in Fig. 15.6a.

Each SBC’s network interface is connected to a Cat6e Ethernet cable through the
RJ-45 Ethernet connector. All Ethernet cables connect to the 16-port Cisco switches
which connect to a Gigabit Core switch. An Internet router, as well as the Master
PC running Hadoop namenode, is connected to the network. Figure 15.6b shows the
network connectivity. The HDM Cluster is composed of four PCs all connected in
the same network topology as of the other clusters. Each PC is equipped with an
Intel i7 4th Gen Processor with 3.0 GHz Clock speed, 8 GB RAM, and 120 GB
Solid State Disk Drive for storage. Each PC is equipped with a 400 W power supply
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Fig. 15.5 Hardware installation; (a) The RPi Cluster composed of 20 RPi Model 2B computers;
(b) The Xu20 Cluster composed of 20 Odroid XU-4 computers; (¢) The HDM Cluster composed
of 4 Intel 7, 3.0 GHz PCs

Fig. 15.6 (a) Wattsup Pro .net power meter (b) Cisco Core switch, Cisco Internet Router, and
4 x 16 port switches

and connects to the Ethernet Switch. Figure 15.5¢ shows the HDM Cluster. The
purchase cost of all components of the RPi, Xu20, and HDM Clusters was $1300,
$2700, and $4200, respectively. The Network and Power reading equipment cost is
approximately $450.
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15.3.2 Raspbian and Ubuntu MATE Image Installation

For the RPi Cluster, we built the RPi Image. The Raspbian OS image is based on
Debian that is specifically designed for ARM processors [29]. Using Raspbian OS
for RPi is easy with minimal configuration settings requirements. Each individual
RPi is equipped with a SanDisk Class 10, 16 GB SD card capable of up to 45 MB/s
read as well as up to 10 MB/s write speeds available at a cost of US$15. We created
our own image of the OS which was copied on the SD cards. Additionally, Hadoop
2.6.2 is installed on the Image with Java JDK 7 for ARM platform. When ready,
these SD cards are plugged into the RPi systems and mounted. The Master node is
installed on a regular PC running an Ubuntu 14.4 virtual machine on Windows 10
as the host operating system.

For the Xu20 Cluster, we built another image based on Ubuntu MATE 15.10.
Ubuntu MATE is an open source derivate of the Ubuntu Linux distribution with
MATE desktop. HardKernel provides Ubuntu MATE 15.10 pre-installed on the
Toshiba eMMCv5.0 memory module which is preconfigured for Odroid XU-4
single board computers at a price of US$43. The eMMCV5.0 is capable of reading
and write speeds of 140 MB/s and 40 MB/s, respectively. Apache Hadoop 2.6.2
along with Java JDK 7 for ARM platform was installed on the image. These modules
were inserted into eMMC socket on the Odroid XU-4 boards and connected to the
network. Similar to the RPi Cluster, the Hadoop master node was installed on a
regular PC running Ubuntu 14.4 VM.

The final cluster HDM is composed of four PCs all connected in the same
network topology as of the other clusters. A virtual machine in the VMware
workstation was built to run Hadoop 2.6.2 with Java JDK 7 for 64-bit architecture.
One of the VMs serves as the master node and runs Hadoop namenode only. The
rest of the VM run the data nodes of the cluster.

15.4 Performance Evaluation of DM-Clusters

In this section, we present a performance evaluation study of DM-Clusters in terms
of energy consumption, processing speed, storage read/write, and networking.

15.4.1 Energy Consumption Approximation

Energy consumption in data centers is a major concern for green cloud computing
research. The Greenpeace [26] in 2012 estimated the global energy consumption for
data centers to be over 31 GW. Recently, the NRDA [27] estimated in 2013, in the
USA alone, the data centers consumed 91 billion kiloWatts hours (kWh) of energy,
which is estimated to increase by 141 billion kWh every year until 2020, costing
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Table 15.3 Power consumption of clusters in idle and stress modes with power cost per year

Idle mode Stress mode
Power Power cost Power Power cost
consumption (E) in USD consumption in USD
W) (E) (W)
RPi CLUSTER 34.1 $14.94 46.4 $20.33
(20 NODES)
XU20 CLUSTER 56.2 $24.63 78.7 $34.49
(20 NODES)
HDM CLUSTER 108.4 $47.51 197.7 $ 86.66
(4 NODES)

Table 15.4 CPU execution time (s) for individual nodes with n threads

CPU execution time with n threads

CPU cores | Clock rate GHz | 1 2 4 8 16
Raspberry Pi2B | 4 1.0 4482 |225.1 |113.8 |113.7 |113.7
Odroid Xu-4 8 2.0 83.3 41.68 | 25.33 | 17.66 | 18.02
Intel i7 4th Gen | 4 3.0 8.51 4272 222 2.27 2.23

businesses $13 billion annually in electricity bills and emitting nearly 100 million
metric tons of carbon pollution per year. Resource over-provisioning and energy
non-proportional behavior of today’s servers [25] are two of the most important
reasons for high energy consumption of data centers. On the other hand, use of low-
end computers is increasingly becoming popular due to low cost and low energy
consumption. In this section, we analyze the power consumption of SBCs used in
this study.

The energy consumption for the DM-Clusters was measured using the Wattsup
Pro .net power meters. These meters provide consumption in terms of Watts for
24 h a day and log these values in local memory for accessibility. To estimate the
approximate power consumption over a year, we measured the power consumption
in two modes, Idle mode and stress mode for each DM-Cluster. In idle mode, the
clusters were deployed without any application/task running for a period of 24 h.
In stress mode, the clusters ran a host of computation intensive applications for a
period of 24 h. Observing the logs, the upper-bound wattage usage within a period
of 23 h was taken as power consumption in the idle mode as well as the stress mode.
Table 15.3 shows the power consumption for DM-Clusters in idle and stress modes.

The cost of energy for the cluster is a function of power consumption per year and
the cost of energy per kiloWatts hour [23]. An approximation of energy consumption
cost per year (Cy) can be given by Eq. (15.1) where E is the specific power
consumption for an event for 24 h a day and 365.25 days per year. The approximate
cost for all the clusters computed based on values given in Table 15.4, whereas the
cost per kilowatt-hour (P) is assumed to be 0.05 USS$.
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h d P
Cy= E x 24 % 365252 x —— (15.1)
day year kWh

The Bolzano Experiment [8] reports Raspberry Pi cluster built using Raspberry
Pi Model B (first generation) where each node is consuming 3 W in stress mode. In
RPi Cluster, the Raspberry Pi Model 2B consumes slightly less power with 2.4 W
in stress mode. We observe that this slight difference in power consumption is due
to the improved design of the second-generation Raspberry Pi. The Cardiff Cloud
testbed reported in [30] compared two Intel Xeon-based servers deployed in the data
center with each server consisting of 2 Xeon 5462 CPU (4 cores per processor),
32 GB of main memory, and 1 SATA disk of 2 TB of storage each. The researchers
in this study used similar equipment to measure power consumption as presented
in this study. Their work reports that each server on average consumes 115 W and
268 W power in idle and stress modes, respectively. The power consumption for the
RPi Cluster with 20 nodes is 5 times better compared to a typical server in a cluster.

In a scenario where the RPi Cluster runs an application in stress mode (i.e.,
46.4 W) for the whole year, the cost for power usage is approximately $20.33. For
Xu20 and HDM Clusters, the yearly cost would be $34.49 and $86.66, respectively.
It is clear that using low-cost low-power devices enable a greener computing
environment in terms of energy consumption.

15.4.2 CPU Performance

In this section, we analyze the performance of the DM-Clusters using various
benchmark. The objective of this study is to investigate and compare the processing
speed of the three platforms under consideration to understand their intrinsic
performance.

The benchmark suite Sysbench! was used to measure the CPU performance.
Sysbench provides benchmarking capabilities for Linux and supports testing CPU,
memory, File I/O, mutex performance in clusters. We execute the Sysbench
benchmark? testing each number up to value 10,000 if it is a prime number for
n number of threads [22]. Since each computer has a quad-core processor, we run
the sysbench CPU test for 1, 2, 4, 8, and 16 threads. We measure the performance
of this benchmark test for Raspberry Pi Model 2B, Odroid XU-4 as well as Intel i7
fourth-generation computers used in the three DM-Clusters. Table 15.4 shows the
average CPU execution time for nodes with n threads.

As can be seen from Fig. 15.7, all the tested devices had four cores, the CPU
execution times scale well with the increased number of threads. Sysbench test runs

Uhttps://wiki.gentoo.org/wiki/Sysbench
2Using sysbench --test=cpu --cpu-max-prime=10000 --num-threads=n
run
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Fig. 15.7 Sysbench CPU execution times for SBCs (logarithmic scale)

with n = 2 and n = 4 threads significantly improve the execution times performance
for all processors by 50%. With n = 8 and n = 16 threads, the test results yield
almost similar execution times with little improvement in performance. It can also
be noted from Fig. 15.7 that the execution times for Odroid XU-4 are 10 times better
as compared to Raspberry Pi Model 2B. The increased number of threads does not
provide gain in performance of Odroid XU-4 over Raspberry Pi; furthermore, the
execution time for Raspberry Pi is further extended with larger n. The HDM Cluster
nodes run 4.42 times faster compared to Odroid Xu-4. These results clearly illustrate
the handicap of SBC onboard processors when compared to a typical PC.

The Raspberry Pi Model 2B allows the user to overclock the CPU rate to
1200 MHz, in our experiments with the over-clocked CPU we did not observe
significant improvement using the sysbench benchmark.

15.4.3 Storage Performance

Poor storage read/write performance can be a bottleneck in clusters. Compared to
server machines, an SBC is handicapped in terms of availability of limited storage
options. SBCs are typically restricted to external storage connected through the USB
interface with bootable flash disks or SD cards are primary storage devices. In this
section, we compare the storage performance of the DM-Clusters nodes and analyze
the performance of three different mediums for storage.

The small scale of the SBCs of Odroid Xu-4, as well as Raspberry Pi Model
2B, provides few options for external storage. Both SBC is equipped with SD Card
Memory slots that come with bootable versions of Linux distributions. In addition
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Table 15.5 Read and write throughput (KB/s) for individual devices in the clusters using FIO?

Read throughput (KB/s) | Write throughput (KB/s)
Buffered | Non-buffered | Buffered | Non-buffered

Raspberry Pi 2B with 16 GB Class 10 | 7135 4518 2701 2537
SanDisk SDCard

QOdroid Xu-4 with 32 GB eMMCv5.0 14,318 13,577 6421 5118
Module

Intel i7 4th Gen with 120 GB SanDisk | 164,521 | 93,608 96,987 62,039
Solid State Disk

dMeasured using fio -name = randread —ioengine = libaio —iodepth = 1 -bs =4 k —size =512 M -
runtime = 240

to the SD Card Memory slot, the Odroid XU-4 is also equipped with eMMCv5.0
connector. Apart from these, both devices are equipped with USB 2.0 interfaces
with Raspberry Pi having 4, XU-4 having only one. The XU-4 is also equipped
with two USB 3.0 ports for faster data transfer. Additional storage devices can be
mounted using these USB ports. The Raspberry Pi’s were equipped with 16 GB
SanDisk Class 10 SD cards, whereas the XU-4 devices were equipped with 32 GB
eMMC memory cards. Both of these memory cards were loaded with bootable
Linux distributions. For comparison purposes, we used 128 GB SanDisk Solid State
Disks on the HDM Cluster machines and used flexible IO (FIO) which is commonly
used to benchmark IO performance of storage in various Linux distributions.

FIO? allows benchmarking of sequential read and write as well as random read
and write with various block sizes. NAND memory is typically organized in pages
and groups with sizes 4, 8, or 16 Kilobytes. Although it is possible for a controller to
overwrite pages, the data cannot be overwritten without having to erase it first. The
typical erase block on SD cards is typically 64 or 128 KB. In newer SD cards, the
small number of erase blocks are combined into larger allocation units or segments
with a size 4 MB. The controllers of the SD cards implement a translation layer
maintaining the mapping and translation of virtual and physical memory addresses.
As a result of these design features, the random read and write performance of
SD cards depends on the erase block, segment size, the number of segments, and
controller cache for address translations.

Table 15.5 shows the comparison of buffered and non-buffered random read and
write from all the three devices with block size 4 KB. FIO was used to measure the
random read and write throughput with eight threads each working with a file of
size 512 MB with a total 4 GB of data. These parameters were set specifically to
avoid buffering and caching in RAM issues which are managed by the underlying
operating systems that can distort the results, i.e., the data size (4 GB) selected
is larger than the onboard RAM available on these devices. As can be seen from
Table 15.5, the read throughput (buffered) of Odroid with eMMC memory is at least
twice as fast as the Class 10 SD card on the Raspberry Pi whereas the non-buffered

3https://www.openhub.net/p/fio
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read is more than three times better. Similarly, for buffered write operations, Odroid
XU-4 with eMMC module throughput is more than twice better when compared
to the Class 10 SD card in Raspberry Pi. Table 15.5 also shows the comparison
of the throughput of the SSD Storage on the PC in the HDM Cluster against the
throughput of these devices. The buffered read throughput for SSD storage is at least
10 times better compared to eMMC module in Odroid XU-4 computers whereas the
buffered write throughput of SSD storage is 15 times better. These experimental
observations clearly imply the benefit of using SSDs with higher throughput when
compared to Class 10 SD cards as well as eMMC v5.0 memory modules. When
deployed in a distributed environment such as Hadoop that requires frequent read
and write operations, the SD cards with slower read/write throughput can increase
the task completion rate. On the other hand, faster memories such as eMMC or SSD
Drives can have a pivotal role in improving performance for the applications.

15.4.4 Network Performance

When data are being processed in a cluster, servers need to transfer data with
a certain amount of network bandwidth for the data to be delivered quickly and
processed efficiently. If the network cannot allocate bandwidth properly, the speed
of delivering and processing data will suffer because of unnecessary network
congestion among many other reasons. Major factors that can have an impact on
data processing and task execution time includes not only the speed of CPU, size of
main memory, the speed of storage I/O, but also the allocation of network resources.
Figure 15.4 shows the network topology for various networking components in
the three clusters. In this section, we provide the comparative analysis of network
performance using network throughput and latency using various payload sizes of
data over the TCP protocol using Linux-based benchmark tools.

The network performance was measured using the popular Linux-based com-
mand line tool iperf v3.13 with the NetPIPE benchmark version 3.7.2. Through
various sets of runs, iperf states the network throughput to be 82—-88 Mbits per sec-
ond for the RPi and XU20 Clusters. NetPIPE [15, 16], on the other hand, provides
more details considering performance aspects for network latency, throughput, etc.
over a range of messages with various payload size in bytes. For this study, we
executed the benchmark within the clusters for various payload sizes over the TCP
end-to-end protocol. The NPtcp, NetPIPE benchmark using TCP protocol, involves
running transmitter and receiver on two nodes in the cluster. In our experimentation,
we executed the receiver on the cluster namenode with 1000 KB as maximum
transmission buffer size for a period of 240 ms. The transmitter was executed on
the individual SBCs one by one.

As can be seen from Fig. 15.8, the network latency for all clusters with small
payload is almost similar. As the payload increases, we observe a slight increase in
network latency between the three clusters. On the other hand, we observe a spike
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in throughput at message size 1000 bytes; this indicates that the smaller a message
is, the more is the transfer time dominated by the communication layer overhead.

For larger messages, the communication rate becomes bandwidth limited by a
component in the communication subsystem that may include the data rate at the
network link, utilization of the communication medium at the time, or the traffic
on the network switch. In the context of Hadoop installation in the cluster, the
namenode frequently communicates with data nodes using heartbeat messages with
smaller payloads, whereas the data blocks typically larger than the 128 MB need to
be copied from one data node to another. We present detailed network performance
using Hadoop benchmarks in the next section.

We also note that the throughput at the HDM Cluster is lowest compared to
the other clusters, this is mainly due to the proximity of the HDM Cluster. This
cluster is physically located in a farther area and requires an extra switch to connect
to the namenode of the clusters. The physical proximity and the longer distance
yields degradation in throughput performance for the HDM Cluster. Contrasting the
performance of XU-4 and RPi SBCs, we note the visible difference in throughput
between the two, this is due to the poor overall Ethernet performance of the
Raspberry Pi probably caused by design. On the Raspberry Pi, 10/100 Mbps
Ethernet controller is a component of the LAN9512 controller which contains the
USB 2.0 hub as well as the 10/100 Mbit Ethernet controller. On the other hand, the
Odroid XU-4 is equipped with an onboard Gigabit Ethernet controller which is part
of the RTL8153 controller. The coupling of faster Ethernet port with high-speed
USB 3.0 provides better network performance. Figure 15.8 shows comparatively
the throughput on the Xu20 Cluster is 1.52 times better when compared to the RPi
Cluster.

15.5 Performance of Hadoop Benchmark Tests on Clusters

Apache Hadoop is an open source framework that provides distributed processing
of large amounts of data in a data center. The Hadoop framework scales well for
thousands of machines allowing processing of petabytes of data. It offers high
availability options for detection and recovery from failures in software as well
as hardware thus making it a very reliable distributed ecosystem. Hadoop uses
the map/reduce programming model for big data processing over multiple nodes.
The map/reduce model is composed of two steps, the map step performs filtering
and sorting of data, the reduce step provides further processing of data from
map step usually summarizing the outcomes. Depending on the application, the
map/reduce tasks can be parallelized. Hadoop 2 introduced Yet Another Resource
Negotiator (YARN) as a new resource management layer allowing for better
resource management and monitoring.

On all three clusters, Hadoop version 2.6.2 was installed due to the availability
of YARN daemon which improves the performance of the map/reduce jobs in the
cluster. To optimize the performance of these clusters, yarn-site.xml and Mapred-
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Table 15.6 Properties in

: Property Value
mapred-site.xml
yarn.app.mapreduce.am.resource.mb 852
mapreduce.map.cpu.vcores 1
mapreduce.reduce.cpu.vcores 1
mapreduce.map.memory.mb 852
mapreduce.reduce.memory.mb 852

mapreduce.input.fileinputformat.split.minsize | 8 MB

Table 15.7 Properties in

> Property Value
YARN-site.xml

yarn.nodemanager.resource.memory-mb 1024

yarn.nodemanager.resource.cpu-vcores 1

yarn.scheduler.minimum-allocation-mb 256

yarn.scheduler.maximum-allocation-mb 852

yarn.scheduler.minimum-allocation-vcores 1

yarn.scheduler.maximum-allocation-vcores 1

yarn.nodemanager.vmem-pmem-ratio 2

Table 15.8 Properties in Property Value

hdfs-site.xml
s-site.xm dfs.replication |2

site.xml were configured with 852 MB of resource size allocation. The primary
reason for this is the limitation in the RPi Model 2B which has 1 GB of onboard
RAM out of which 852 MB is available; the rest is used by the Operating System as
well as the CPU Memory Bus. The default container size on the Hadoop Distributed
File System (HDFS) is 128 MB. Each SBC node was assigned a static IPv4
address based on the configuration and all slave nodes were registered in the Master
node. YARN and HDFS containers and interfaces could be monitored using the
web interface provided by Hadoop. Tables 15.6, 15.7, and 15.8 provide details of
important configuration properties for the Hadoop environment. It must be noted
that maximum memory allocation per container is 852 MB; this is set on purpose so
that the performance of all clusters could be measured and contrasted. Additionally,
the replication factor for HDFS is 2 which means only two copies of each block
would be kept on the file system.

These clusters were tested extensively for performance using Hadoop bench-
marks for Quasi-Random Pi generation and word count applications.

15.5.1 The Pi Computation Benchmark

Hadoop provides its own benchmarks for performance evaluation over multiple
nodes. One of the simplest benchmarks is the computation of the value of 7 using
Quasi-Monte Carlo Method and map/reduce. We execute the compute Pi program
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Table 15.9 CPU execution times for Pi computation benchmark on clusters

Average CPU execution times (s)

Map tasks Samples RPi Cluster Xu20 Cluster HDM Cluster
10 103 98.469 37.37 22.86

10 104 99.13 37.69 20.5

10 10° 97.902 36.97 18.92

10 106 100.629 37.87 25.35

100 103 465.675 49.62 17.84

100 104 461.4 49.7 19.35

100 10° 470.264 49.43 20.12

100 100 486.48 49.89 21.24

that computes exact m binary digits of the mathematical constant 7 using a quasi-
Monte Carlo method and MapReduce. The precision value m is provided at the
command prompt with values ranging from 1 x 10 to 1 x 10 increased at an
interval of 1 x 10!. Each of these is run against a number of map tasks set at 10 and
100. We study the impact of the value of m versus the number of map tasks assigned
and compute the difference in time consumption (execution time) for completion
of these tasks. Each experiment is repeated at least 10 times for significance of
statistical analysis. In this experimentation, the Pi computation benchmark’s goal
is to observe the CPU bound workload of all the three clusters. Table 15.9 shows
average CPU execution times for various runs of the Pi computation program with
10 and 100 map tasks. Figure 15.9a, b show the box-whisker plot with upper and
lower quartiles for each sample set with 10 and 100 map tasks. With 10 maps,
the average execution time for RPi Cluster with 10 + E06 number of samples is
100.8 s, whereas for XU20 and HDM Cluster the average execution time is 38.2 and
25.1 s, respectively. As the number of maps increases to 100, we observe significant
degradation in performance of RPi Cluster with average execution time at 483.7 s
for 10 + EO6 number of samples. Comparatively, the execution times for Xu20 and
HDM Clusters are 50.1 and 21.8 s, respectively. This clearly shows the significant
difference in the computation performance between the RPi Cluster and the Xu20
Cluster. Figure 15.9¢ shows the ratio of performance degradation of RPi and XU20
Clusters compared to HDM Cluster for Pi program CPU execution times with 10
and 100 maps.

15.5.2 The Wordcount Benchmark

The Wordcount program contained in the Hadoop distribution is a popular micro-
benchmark widely used in the community [15]. The Wordcount program is repre-
sentative of a large subset of real-world MapReduce jobs extracting a small amount
of interesting data from a large dataset. The Wordcount program reads text files and
counts how often words occur within the selected text files. Each mapper takes a line
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from a text file as input and breaks it into words. It then emits a key/value pair of the
word and a count value. Each reducer sums the count values for each word and emits
a single key/value pair containing the word itself and the sum that word appears in
the input files. For optimization, the reducer also imitates as a combiner on the map
outputs to reduce the amount of data sent across the network by combining each
word into a single record. In our experimentation, the Wordcount benchmark’s goal
is to observe the CPU bound workload of the three clusters.
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In our experimentation, we generated three large files of sizes 3, 30, and 300
Megabytes, respectively. The Wordcount program was executed in the Hadoop
environment for all the three clusters. Depending on the initial dataset size,
Wordcount generates mappers for every HDFS container associated with the input
files. For the datasets provided Wordcount generated a single mapper, four mappers,
and 36 mappers, respectively. Each experiment was run on the clusters separately at
least 10 times for statistical accuracy. Figure 15.10a shows the performance of CPU
execution time, for the Wordcount benchmark for all clusters against input files sizes
3, 30, and 300 MB, in seconds on a logarithmic scale. Again, RPi Cluster performs
four times worse (Fig. 15.10c) compared to Xu20 Cluster and 12.5 times worse
compared to HDM Cluster due to the relatively slower processor clock speeds,
slower memory read/write, and network latency. The effect of the slower clock speed
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of the processor in the RPi nodes is clearly evident with smaller input file sizes of
3 MB. The average execution times of RPi and XU20 should be comparable since
Wordcount generates only one mapper for each run resulting in a single container
read by the mapper; however, the slower storage throughput with SD cards adds to
the overall latency. With input file size 30 MB, Wordcount generates four mappers
reading four containers from different nodes in the cluster, increasing the degree of
parallelization thus reducing the overall CPU execution time.

Finally, with 300 MB as input file size, we observe execution time performance
correlating with smaller datasets although the increased numbers of mappers should
have improved the overall execution time. This is due to the fact that Wordcount
generated 36 mappers for the job since there are only 19 nodes available (1 reserved
for reducing job) in the Xu20 and RPi Clusters, the rest of the mappers would queue
for the completion of previous mapper jobs resulting in increased overhead and
reduced performance. Figure 15.10b shows the average CPU execution times for
all three clusters with different input file sizes. Furthermore, we observe that the
Wordcount program executing on Xu20 is 2.8 times slower compared to HDM
Cluster for file size 3 MB. For larger file sizes, Xu20 is over five times slower
compared to HDM Cluster. RPi Cluster, on the other hand, performs worse from
12 to 30 times slower compared to the HDM Cluster.

15.6 Discussion

In this chapter, we conducted an extensive study with varying parameters on the
Hadoop cluster deployed using ARM-based single board computers. An overview
of popular ARM-based SBCs Raspberry Pi, as well as HardKernel Odroid XU-
4 SBCs, was presented. The work also detailed the capabilities of these devices
and tested them using popular benchmarking approaches. Details on requirements,
design, and architecture of clusters built using these SBCs were provided. Two SBC
clusters based on RPi and XU-4 devices were constructed in addition to a PC-based
cluster running in the virtual environment. Popular Hadoop benchmark programs
such as Wordcount, TestDFSIO, and TeraSort were tested on these clusters and their
performance results from the benchmarks were presented. This section presents a
discussion of our findings and main lessons learned.

* Deployment of Clusters: Using low-cost SBCs is an amicable way of deploying
a Hadoop cluster at a very affordable cost. The low-cost factor would encourage
students to build their own clusters and to learn about installation, configuration,
and operation of a cloud computing testbeds. The cluster also provides a platform
for developers to build applications, test, and deploy in public/private cloud
environments. The small size of the SBCs allows installation of up to 32 nodes in
a single module for a 1 U rack mounting form factor. Further to this, these small
clusters can be packaged for mobility and can be deployed in various emergency
and disaster recovery scenarios.
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* Hadoop configuration optimization: Section 15.4(a) comparison of CPU execu-
tion times using sysbench for both SBCs considered in this chapter. XU-4 devices
in Xu20 Cluster perform better due to higher clock speeds and larger onboard
RAM. Using sysbench we observed that increasing the number of cores in the
CPU intensive benchmark, the execution time decreased. In Hadoop deployment
configuration, we noticed that increasing the number of cores resulted in RPi
Cluster to be irresponsive for heavier workloads. On the other hand, XU-4
boards performed well with an increased number of cores (up to 4). A possible
explanation for this behavior is the Hadoop deployment setting where each core
is assigned 852 MB of memory, additional cores running Hadoop tasks would
have to request virtual memory from the slower SD cards resulting in poor
performance leading to responsiveness. Although RPi devices are equipped with
quad-core processors, due to the poor performing SD cards, it is inadvisable to
use multiple cores for Hadoop deployment.

In Hadoop deployment, not all of the available RAM onboard SBCs was
utilized since we only allow one container to execute in YARN Daemon. The
size of the container was set to 852 MB which is the maximum available onboard
memory in a Raspberry Pi node. This was intentionally done in order to study
the performance correlation with the similar amount of resources in both kinds
of SBCs. In further experimentation, we notice that XU-4 devices are capable
of handling up to four containers in each core at a time, resulting in better
performance. We will further investigate the performance of all cores on the
SBCs using Hadoop deployment of larger replication factors and a large number
of YARN containers executing per node. On the HDM Cluster running Hadoop
environment in a virtual machine, we note that higher replication factors resulted
in a large number of errors due to replication overheads resulting in Hadoop
stuck in an unrecoverable state. The SD cards are slow and the storage provided
per node in the cluster is distributed over the network degrading the overall
performance of the cluster. Raspberry Pi with slower network port at speeds
10/100 Mbps also poses a considerable degradation in network performance.

On the other hand, Xu20 Cluster performed well comparatively with faster
eMMC memory modules onboard the XU-4 devices. The SSD storage used in
the HDM Cluster on the PCs provide the best performance in terms of storage
IO although the network configuration of this cluster was a hindrance. We will
consider using Network Attached Storage (NAS) attached to the master node
where every rack would have a dedicated volume managed by Logical Volume
Manager (LVM) that would be shared by all SBCs in the clusters.

* Power efficiency: A motivation for this study was to analyze the power con-
sumption of SBC-based clusters. Due to their small form factor, SBC devices
are inherently energy efficient, it is worth investigating if a cluster comprising of
SBCs as nodes provides a better performance ratio in terms of power consump-
tion and dollar cost. Although we did not measure the FLOPs per watt efficiency
of either of our clusters, we notice wide inconsistencies in energy consumption
results reported in the literature [17-22] for similar devices. This is due to the
power measurement instruments varying results and inconsistencies in the design



372 B. Qureshi and A. Koubaa

of power supplies. RPi, as well as XU-4 devices, has no standard power supply
and micro-USB-based power supply with unknown efficiency can be used. Since
the total power consumed in the cluster is small, the efficiency of power supplies
can make a big difference in overall power consumption. Nonetheless, WattsUp
meters were effectively used to observe and analyze the power utilization for
each task over the period of its execution in all experimentation.

It is difficult to monitor and normalize the energy consumption for every
test run over a period of time. It was observed that the MapReduce jobs, in
particular, tend to consume more energy initially while map tasks are created
and distributed across the cluster, while a reduction in power consumption is
observed towards the end of the job. For the computation of power consumption,
we assumed max power utilization (stress mode) for each job, during a test run
in the clusters. Based on the power consumption of each cluster and the dollar
cost of maintaining the clusters (given in Table 15.4), a summary of average
execution times, energy consumption, and cost of running various benchmark
tasks is presented in Table 15.10.

15.7 Conclusions and Future Work

In this chapter, we investigated the Hadoop deployment on low-cost low-power
ARM-based single board computers. We consider two kinds of popular platforms
Raspberry Pi 2B and Odroid XU-4 using ARM Cortex Processors connected in
a tree network topology. We perform various performance benchmarking tests on
these two platforms testing performance metrics for CPU task execution times,
removable memory modules, energy consumption, and network performance. We
present the power consumption and estimate cost of power per year. Further to
this, we configure and deploy Hadoop 2.6.2 on these clusters considering the
limited capabilities of the SBCs. Various CPU-intensive and IO-intensive Hadoop
benchmarks including computation of Pi using Monte Carlo method, Wordcount,
TestDFSIO, and TeraSort were executed and performance results obtained. We
carried out an in-depth analysis of energy consumption of these clusters and
correlate performance with low-cost low-energy capabilities of these clusters.
Results from these studies show that while SBC-based clusters are energy
efficient overall, the operation cost to performance ratio can vary based on the
workload. In terms of power efficiency, for smaller workloads, the Xu20 Cluster
outperforms the other clusters; however, with larger workloads, the Xu20 Cluster
performance is comparable to HDM with the exception of TeraGen and TeraSort
benchmarks. Similarly, in terms of dollar cost of operation for these clusters, the
results heavily depend on execution time. For low-intensity workloads, the Xu20
Cluster outperforms the HDM Cluster; however, the TeraGen and TeraSort heavy
workloads yield poor performance for Xu20 Cluster when compared to HDM
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Cluster. The RPi Cluster consistently was outperformed by the other two clusters
regardless of the variation in workloads.

For heavier workload application, such as big data applications, due to the
inefficient performance of these devices, the SBC-based clusters may not be an
appropriate choice. The overall cost of operation can be expensive mainly due to
the inefficient onboard SBC resources resulting in larger execution times for job
completion effectively ensuing increased operation costs. It is, however, possible to
tweak Hadoop configuration parameters to adjust with given resources to improve
the overall performance. At the moment, we intend to use these clusters for
academic research and teaching. In the future, we will consider the use of NAS for
RPi Cluster to improve the storage performance since the currently installed SD card
storage provides a bottleneck. We will also study the effect of replication factor and
containers per node in the Xu20 Cluster to tweak the performance on that cluster.
Further, we intend to study newer SBC boards deployed in similar configurations
with reliable power measurement and energy consumption analysis.
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