
Verification of SysML Activity Diagrams Using
Hoare Logic and SOFL

Yufei Yin1(&), Shaoying Liu2, and Yixiang Chen1

1 East China Normal University, Shanghai, China
2571603738@qq.com

2 Hosei University, Tokyo, Japan

Abstract. During the process of utilizing Model-Based Systems Engineering
(MBSE), SysML activity diagrams are often used for designing the software
systems and its correctness is likely to significantly affect the reliability of the
implementation. However, how to effectively verify the correctness of SysML
diagrams still remains a challenge and to the best of our knowledge, there are
few tools to support the verification of SysML models. Testing-based formal
verification (TBFV) is designed for verifying the sequence code. To solve the
problem, we creatively apply the existing TBFV approach into the verification
of SysML activity diagrams and established a new approach, called TBFV-M.
TBFV-M has ability to verify a SysML activity diagrams meet the user’ need.
We also propose a method to dealing with invocation, because invocation is
very common in the model-driven development process. In this paper, we
describe the principle of TBFV-M and present a case study to demonstrate its
feasibility and usability. Finally, we conclude the paper and point out future
research directions.

Keywords: SysML activity diagrams � TBFV � Test path generation �
Formal verification of SysML diagram

1 Introduction

Model-Based Systems Engineering (MBSE) [1] is often applied to design large scale
systems, because it can make sure of their reliability and save the cost of modification
effectively. The systems modelling language SysML [2, 3] can support effective use of
MBSE, for its well-designed mechanism for creating object-oriented models, which can
be combined with software, people, material and other physical resources. In MBSE,
SysML models are often used as the design for code. It means that whether the SysML
model meets the users’ requirement in relation to the high reliability of the code.
Unfortunately, to the best of our knowledge from the literature, there are few tools to
support the verification of SysML models [4, 5] in particular rigorous ways of
verification.

Testing-Based Formal Verification (TBFV) proposed by Liu [6–8] shows a rigor-
ous, systematic, and effective technique for the verification and validation of code.
TBFV integrated the specification-based testing approach and Hoare logic to verify the
correctness of all the traversed program paths during testing. The advantage of TBFV is

© Springer Nature Switzerland AG 2019
Z. Duan et al. (Eds.): SOFL+MSVL 2018, LNCS 11392, pp. 71–88, 2019.
https://doi.org/10.1007/978-3-030-13651-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13651-2_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13651-2_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13651-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-13651-2_5

its potential and capability of achieving full automation for verification utilizing testing.
However, the current TBFV is mainly designed for sequential code in which all of the
details are formally expressed, and there is no research on applying it to verify SysML
models yet.

In this paper, we discuss how the existing TBFV can be applied to SysML models
for their verification and we use TBFV-M (testing-based formal verification for
models) to represent the newly developed approach. Since SysML Activity Diagrams
can model the systems dynamic behavior and describe complex control and parallel
activities, our discussion in this paper focuses on the activity diagrams.

The essential idea of TBFV-M is as follows. All of the functional scenarios are first
extracted from a given formal specification defining the users’ requirements. And at the
same time, test paths are generated from corresponding SysML Activity Diagrams
waiting to be verified. Then, test paths are matched with functional scenarios by a given
algorithm. After this, the pre-condition of the test path is automatically derived by
applying the assignment axiom in Hoare logic based on the functional scenario.
Finally, the implication of the pre-condition of the specification with the guard con-
dition of the functional scenario to the derived pre-condition of the path is verified
which concerns the accuracy of the activity diagram. And the processing method of
dealing with invocation is also be proposed by TBFV-M.

The remainder of the article will detail the TBFV-M method. Section 2 presents
related work we have referenced. Section 3 characterizes the definitions of basic terms
and concepts. Section 4 introduces TBFV and the derivation of the main idea of
TBFV-M. Section 5 describes the principle of TBFV-M, showing the core technology
of TBFV-M. Section 6 uses one case study to present the key point of TBFV-M.
Finally, the details of the implementation are presented in Sect. 6 and Sect. 7 concludes
the paper.

2 Related Work

2.1 Testing-Based Verification

Considering the shortcoming of formal verification based on Hoare logic being hard to
automate, Liu proposed the TBFV (Testing-Based Formal Verification) method by
combining specification-based testing with formal verification [6]. This method not
only take the advantage of full automation for testing, but also the efficiency of error
detection with formal verification. Liu also designed a group of algorithms [9] for test
cases generation from formal specification written in SOFL [10]. A supporting tool [8]
is also developed. These efforts have significantly improved the applicability of formal
verification in industrial settings.

Raimondi [11] addressed the problem of verifying planning domains written in the
Planning Domain Definition Language (PDDL). First, he translated test cases into
planning goals, then verified planning domains using the planner. A tool PDVer is also
generated. In this paper, testing is also used during verification and the effectiveness
and the usability is improved.

72 Y. Yin et al.

2.2 Test Case Generation

Lasalle [12] utilized the existing UML/OCL Model-Based Test generation tool,
Smartesting Test DesignetTM. He designed rewriting rules to translate a SysML model
into an equivalent UML model. The advantage of this process is that we can use the
existing UML tools to handle the SysML model.

Nayak [13] introduced an approach to transform the particular Activity Dia-
gram into a model that can be used for testing, called ITM, based on its structure
characteristics. The advantage of using ITM is that it can simplify the process of
extracting and analyzing test scenarios based on the coverage criteria. However, it also
has limitations on processing unstructured Activity Diagram because the unstructured
Activity Diagrams shape is out of structure.

Oluwagbemi [14] proposed a new concept called activity flow tree (AFT) and it can
store the information obtained by traversing the activity diagram. Then, AFT is used as
an intermediate expression to generate test cases automatically. They designed the
transformation and generation algorithm and compared their achievement with the
work done by the predecessors.

Inspired by Liu’s work, we apply and extend the TBFV approach to models and
propose the TBFV-M. A model is more intuitive than a formal specification because it
requires less relevant background knowledge and is easier to communicate with cus-
tomers. TBFV approach shows the treatment of code, while TBFV-M approach deals
with SysML Activity Diagrams. And different with Feng Liang’s work, TBFV-M
approach do not use other supporting tools, like Modelica, we merely use Hoare Logic
to do the verification. Referring to test case generation, TBFV-M approach can deal
with unstructured diagrams, which may have stronger processing power than existing
approaches.

3 Related Concept

3.1 Formal Definition of Activity Diagram

Activity Diagram Formal Definition [2] can be represented as:

AD ¼ Node; Edgeð Þ ð1Þ

Node is a set of nodes of which definition as follow:

Node ¼ fInitialNode; FlowFinalNode; ActivityFinalNode; Action�Node; ActivityNode;

ForkNode; JoinNode; DecisionNode; MergeNode; RecieveSignaNode; SendSignalNodeg
ð2Þ

InitialNode signifies the beginning of Activity Diagram, while ActivityFinalNode
signifies the ending of Activity Diagram. Edges defines the relationship between nodes
such that:

Verification of SysML Activity Diagrams Using Hoare Logic and SOFL 73

Edge ¼ fðx; yÞjx; y 2 Nodeg ð3Þ

There are two types of edges: control flow and object flow. Control flow edges
represent the process of executing token passing in AD and object flow edges are used
to show the flow of data between the activities in AD.

3.2 Test Case

From a global view, test case based on the SysML activity diagram consists of test path
and test data. And the definition is as followed:

TC ADð Þ ¼ Path; Datað Þ ð4Þ

For Activity Diagram, test path consists of a series of actions and edges in the
diagram. Based on the formal definition of the activity diagram given above, the test
path is defined as follow:

path ¼ a01; a
0
2; . . .; a

0
n

� � ð5Þ

a0i ¼ tn; anð Þ; i ¼ 2; . . .; nð Þ ð6Þ

tn ¼ ai�1 ! ai; i ¼ 2; . . .; nð Þ ð7Þ

In these formulas, ai means node, ti means edge. In this case, a test path is a set of
nodes, starting from node a1 and ending with node an through the transition edges t2… tn.

Test data indicates the input information corresponding to a particular test scenario
including various types of data, even user actions and so on.

3.3 Test Coverage Criteria

For software, the adequacy measurement of testing is reflected in the rate of coverage
and effectiveness of the test case. These coverage criteria ensure the sufficiency of
testing and provide implications for the test case generation algorithm. Here are four
test coverage criteria used in our design, for test case generation of SysML activity
diagram [15, 19, 20]:

• Action coverage criteria: In software testing process, testers are often required to
generate test cases to execute every action in the program at least once.

• Edge coverage criteria: In software testing process, testers are often required to
generate test cases to pass every edge in the program at least once.

• Path coverage criteria: These coverage criteria require that all the execution paths
from the programs entry to its exit are executed during testing.

• Branch coverage criteria: These coverage criteria generate test cases from each
reachable decision made true by some actions and false by others.

74 Y. Yin et al.

3.4 Hoare Logic

Hoare Logic is a formal system developed by Hoare [21, 22], and it is designed for the
proof of partial correctness of a program. In Hoare Logic, the Hoare Triple [23] is best
known and is also referenced in our method. The Hoare triple is of this form:

Pf gC Qf g ð8Þ

P and Q are assertions and C is a command. P is named the pre-condition, which is
a predicate expression describing the initial states and Q the post-condition, which is
also a predicate expression describing the final states.

Hoare also established necessary axioms to define the semantics of each program
construct, including axiom of assignment, rules of consequence, axioms of composi-
tion, axioms of alternation, iteration and block. Axiom of assignment is used in our
work, so we will briefly introduce it:

Q Enxð Þf g x :¼ E Qf g; ð9Þ

where x is a variable identifier, E is an expression of a programming language without
side effects, but possibly containing x, Q(E\x) is a predicate resulting from Q by
substituting E for all occurrences of x in Q. This axiom means that to verify the
correctness of the assignment, the postcondition Q should be satisfied. This equals to
Q[E\x] are true because x is assigned by representing E after the execution.

3.5 Functional Scenario Form

A functional scenario is a logical expression that tells clearly what condition is used to
constrain the output when the input satisfies some condition. Spre and Spost denote the
pre- and post-conditions of operation S. Let:

Spost ¼ ðG1 ^ D1Þ _ ðG2 ^ D2Þ _ . . . _ ðGn ^ DnÞ; ð10Þ

Gi and Di (i 2 1, …, n) are two predicates, called guard condition and defining
condition, respectively. The definition of functional scenarios and FSF (functional
scenario form) are listed below:

Functional Scenario ¼ Spre ^ Gi ^ Di ð11Þ

In the definition of functional scenario, Spre ^ Gi ^ Di is treated as a scenario: when
Spre ^ Gi is satisfied by the initial state (or intuitively by the input variables), the final
state (or the output variables) is defined by the defining condition Di. The conjunction
Spre ^ Gi is known as the test condition of the scenario, which serves as the basis for
test case generation from this scenario.

FSF ¼ ðSpre ^ G1 ^ D1Þ _ ðSpre ^ G2 ^ D2Þ _ . . . _ ðSpre ^ Gn ^ DnÞ ð12Þ

Verification of SysML Activity Diagrams Using Hoare Logic and SOFL 75

3.6 Path Triple

The path triple is similar in structure to Hoare triple, but is specialized to a single path
rather than the whole program and the definition is below:

fSpre ^ GigP Dif g; ð13Þ

P is called a program segment, which consists of decision (i.e., a predicate), an
assignment, a return statement, or a printing statement. It means that if the pre-
condition Spre and the guard condition Gi of the program are both true before path P is
executed, the post-condition Di of path P will be true on its termination.

4 TBFV and TBFV-M

4.1 TBFV

TBFV is a novel technique that makes good use of Hoare logic to strengthen testing.
The essential idea is first to use specification-based testing to discover all traversed
program paths and then to use Hoare logic to prove their correctness. During the proof
process, all errors on the paths can be detected.

Testing is a practical technique for detecting program errors. A strong point of
testing superior to formal correctness verification is that it is much easier to be per-
formed automatically if formal specifications are adopted [19], but a weak point is that
existing errors on a program path may still not be uncovered even if it has been
traversed using a test case. TBFV takes advantage of testing, realized full automation
for error detection efficiency, and also overcome its weak point by making good use of
relevant part of Hoare logic.

4.2 TBFV-M

In the last decade, the model-driven approach for software development has gained a
growing interest of both industry and research communities as it promises easy
automation and reduced time to market [17]. Because of the graphical notation for
defining system design as nodes and edge diagrams, SysML model addresses the ease
of adoption amongst engineers [18] (Fig. 1).

During the Model-Driven process, model is an important medium for the Model
based system engineering development. The TBFV-M method takes the specification
describing the users’ requirements and the SysML Activity Diagram model as input
and verifies the correctness of the SysML model according to the specification. The
TBFV-M method is mainly used to verify whether SysML Activity Diagram model
meets the user’s requirements written in SOFL (Structured-Object-oriented-Formal
Language).

76 Y. Yin et al.

5 Principle of TBFV-M

The procedure of TBFV-M is illustrated in Fig. 2. We find that functional scenarios are
derived from the specification written in the pre-/ post-condition style, while test paths
are generated from the Activity Diagram and the data constraints can be extracted from
each test path. Then, the extracted data constraints are used to match with functional
scenarios. A matching algorithm is defined by us. We will verify the successful

Fig. 1. TBFV-M usage scenario.

Fig. 2. TBFV-M processing procedure.

Verification of SysML Activity Diagrams Using Hoare Logic and SOFL 77

matched the test path according to the requirements represented in specification. The
verification part can be separated into three parts: first, create a path triple, and then use
the axiom of Hoare Logic to derive pre-assertion for each test path. Finally, prove the
implication of the pre-condition in the specification and pre-assertion. If we can prove
all the implication of pre-assertion of all the test paths of the model and the matching
pre-condition, then we conclude that the model is to meet the requirements.

5.1 Unified Formal Expression

Using a unified formal expression can not only reduce the ambiguity during commu-
nications, but also give a possibility to automate the entire process, making analysis
and verification more accurate and efficient.

We establish the unified formal expression, including specification guide and
modeling guide. Specification reflects complete requirements and we chose SOFL to
describe formal specification. The SOFL method intergrades formal methods, struc-
tured methods and object-oriented methodology, which not only supports requirements
analysis and specifications, but also play an import role during design and imple-
mentation stages. An example specification written in SOFL is given below. It
describes that if a non-negative integer a equals to zero, TRUE will be returned;
otherwise return FALSE.

process: equal_zero (a: int) equal: bool
pre: a > 0
post: a == 0 AND equal == TURE
OR
a != 0 AND equal == FALSE

5.2 Functional Scenarios Derivation

The overall goal of functional scenario derivation is to extract all functional scenarios
completely in “Spre ^ Gi ^ Di” form (FSF), as mentioned above in related concept
section. A systematic transformation procedure, algorithm, and software tool support
for deriving an FSF from a pre-post style specification written in SOFL have been
developed in our previous work [16].

The below segment of the process “equal_zero”, mentioned previously, shows the
FSF generated from the specification described in the last one.

1. Spre: a > 0
G1: a == 0
D1: equal == TRUE

2. Spre: a > 0
G2: a != 0
D2: equal == FALSE

3. ~Spre: a <= 0

78 Y. Yin et al.

5.3 Test Path Generation

A test path auto-generation tool based on the SysML Activity Diagram model takes the
model as input and generates test cases as outputs automatically, according to test path
generation algorithms and coverage criteria chosen by test group members.

The SysML Activity Diagram test path generation includes three parts. First, we
use transformation algorithm to compress the input Activity Diagram, which may
contain unstructured module. The transformation is an iteration process, dealing with
loop module, concurrent module and the problem of multiple starting nodes separately.
After compressing, we transform this unstructured activity diagram into an intermediate
representation form Intermediate Black box Model (IBM). IBM consists of one basic
module and a map from black box to the corresponding original actions. The third
phase of our approach is test path generation based on IBM. In this phase, two
problems should be solved, which are basic module test path generation and black box
test path generation. Details of automated test paths generation algorithm and imple-
mentation of unstructured SysML Activity Diagram has been developed in our pre-
vious work [24].

We give a motivation case to show the above process. Figure 3 is an unstructured
SysML activity diagram model, which contains a concurrency module and a loop
module.

Figure 4 shows how to compress an unstructured activity diagram and transform
the unstructured module into a black box node. Eventually the unstructured activity
diagram converts into an intermediate representation of IBM. The first step is to
identify the loop module and compress it into a black box node while-do loop1, shown

Fig. 3. Motivation example.

Verification of SysML Activity Diagrams Using Hoare Logic and SOFL 79

in Fig. 4(a). The compressed black box node is the intermediate representation of the
loop shown in the following Fig. 5(a).

The second step is to identify the noJoin concurrency module and compress it into a
black box node No FJ1, shown in Fig. 4(b). The compressed black box node is shown
in the following Fig. 5(b).

Figure 5(b) is a compressed and structured SysML activity diagram that can be
used to automatically generate test cases. Finally, the black box module can be
replaced.

5.4 Matching Algorithm

Matching the test path with functional scenario is very important for verification. In
order to verify the correctness of one path in Activity Diagram, we need to match it
with corresponding functional scenario. The constraints of test path can be extracted

Fig. 4. Transformation process.

Fig. 5. Motivation example.

80 Y. Yin et al.

from edges of each path, which are used to compare with Spre^ Gi part of functional
scenario. If unmatched test paths or functional scenarios appears, it means some errors
may be exist in this model. And the model needs to be modified. The matching
algorithm is given below.

Matching algorithm takes the edge list and FS_list as input. Edge list is the col-
lection of guard conditions saved from test path and FS_list is extracted functional
scenario form from specification. First, the algorithm sets the label of the two lists
unvisited. And for each edge in edge list do data integration. Data integration is like
data intersection. For example, if we contain two guard conditions x < 6 and x < 60,
the integration of it is x < 6.

After completing the initialization step, find a matching functional scenario for each
element in edge list. The specific operation is: the edge after the integration compares
with Spre ^ Gi in the functional scenario, if exactly the same, then we mean that we find
the edge with the matched functional scenario. If there is no exact matched functional
scenario, then there is an inaccurate modeling problem and needs to be refined.
Therefore, immediately terminate the program, the problem of the edge will also be
returned. After traversing all the edge_list, we also need to check whether each in
FS_list has been visited. If there is an unvisited functional scenario, then it means that
there is a requirement that the model fails to be represented in the specification, and the
model needs to be refined.

5.5 Path Triple Establishment

Establish Path Triple and apply each node with the axiom in Hoare Logic. “(Spre ^ Gi ^
Di) (i = 2,…, n)” denote one functional scenario and P = [node1; node2;…; nodem] be
a program path in which each nodej(j = 2, …, n) is called a functional node, which is a
DecisionNode, ActionNode, or other activity diagram nodes. Assume each path P has

Verification of SysML Activity Diagrams Using Hoare Logic and SOFL 81

its own target functional scenario, which is decided utilizing matching algorithm. To
verify the correctness of P with respect to the functional scenario, we need to construct
Path Triple: {Spre} P {Gi^ Di}.

The path triple is similar in structure to Hoare triple, but is specialized to a single
path rather than the whole program. It means that if the pre-condition Spre of the
program is true before path P is executed, the post-condition Gi ^ Di of path P will be
true on its termination. Repeatedly apply the axiom for assignment to derive a pre-
assertion, denoted by Ppre. Finally, we can form the following expression:

fSpre ^ Gig ! Ppre; ð14Þ

where Spre, Ppre and Gi ^ Di are a predicate resulting from substituting every decorated
input variable *x for the corresponding input variable x in the corresponding predi-
cate, respectively. And the correctness of the specific path is transformed into the
implication Spre ^ Gi ! Ppre. If the implication can be proved, it means that no error
exists on the path; otherwise, it indicates the existence of some error on the path.

5.6 Implication

Prove the implication. Finally, the correctness of one path whether it meets the cor-
responding requirement is changed into the proof of the implication “Spre ^ Gi !
Ppre”. If the implication can be proved, it means that the path can model one part of the
requirement; otherwise, it indicates the existence of some error on the path.

Formally proving the implication “Spre ^ Gi ! Ppre” may not be done automati-
cally, even with the help of a theorem prover such as PVS, depending on the com-
plexity of Spre and Ppre. Our strategy is as follows: if the complexity of data structure is
not high, we will transform the problem into solver, which can achieve full automation.
Otherwise, if achieving a full automation is regarded as the highest priority, as taken in
our approach, the formal proof of this implication can be “replaced” by a test. That is,
we first generate sample values for variables in Spre and Ppre, and then evaluate both of
them to see whether Ppre is false when Spre is true.

For example, if we need to judge the validity of the implication “(price > 0) !
(price < 100 AND * price-5 = *price2 - *price”, use the test case (price, 60) and
we can easily prove the implication is not correct.

5.7 Invocation

During the process of design, especially for the complex system, modularization is very
necessary when modelling, according to users’ requirements. Model driven software
development process often faces the problem of function or module invocation.

Because the TBFV-M method needs to deal with functional scenario derivation
from specification describing users’ requirement and test path generation from SysML
activity diagrams, we need to take both side into account while dealing with invocation.

For specification, if a function invocation is used as a statement, it can change the
current state of a program. So that, the traversed path containing the invoked function
should consider in deriving the pre-assertion of the invocated function. Our solution is

82 Y. Yin et al.

utilizing the sub path of the invocated function to substitute the actual traversed path,
while deriving the functional scenario form. Also, we need to append the pre-condition
of invocated function into the Spre of particular functional scenario and during the
above process parameter substitution needs to be considered.

To express the idea, we will give a motivation example.

function FareDiscount (age:int, fare:int) FinalPrice: int
pre: age > 0 AND fare > 0
post: age <= 6 AND FinalPrice == 0

OR
age >= 70 AND FinalPrice == 0
OR
age > 6 AND age<60 AND FinalPrice == fare
OR

age >= 60 AND age<70 AND FinalPrice == HalfPrice(fare)

function HalfPrice (price: int) Half_P: int
pre: price > 0
post: Half_P = 0.5 * price

While deriving, we can get the below functional scenario. HalfPrice is the invo-
cation function.

Spre:age > 0 AND fare > 0
G4: age >= 60 AND age<70
D4: FinalPrice == HalfPrice(fare)

According to the solution we mentioned above, we will substitute the original form
with the sub path of invocation function and the actual parameter price is replaced by
fare in the invocation function. The result is shown below.

Spre:age > 0 AND fare > 0
G4: age >= 60 AND age<70
D4: FinalPrice == 0.5 * fare

For Activity Diagram, “Activity” is often used to realize the hierarchy design. Our
solution is also utilizing the sub path of the invocated activity to substitute the actual
traversed test path, while generating test path.

6 Case Study

Now we show a motivation example to detail the process of TBFV-M method. First,
we will get a requirement from the user, which consists of inform the description, may
like this: “The park will give the tourist fare discount according to their age. If he is

Verification of SysML Activity Diagrams Using Hoare Logic and SOFL 83

younger than 6 or older than 70, he will be free; Or if he is between 60 and 70, he can
enjoy the half price, otherwise he will pay the normal price”. This specification is
formal and structured, as shown in the last section.

According to the specification, we can construct a set of SysML model and the
Activity Diagram is shown below (Fig. 6).

Fig. 6. Case study.

84 Y. Yin et al.

First, we derive Functional Scenarios from specification and generate test paths
from Activity Diagram. The result is shown as below.

1. Spre: age > 0 AND fare > 0
G1: age <= 6
D1: FinalPrice == 0

2. Spre: age > 0 AND fare > 0
G2: age >= 70
D2: FinalPrice == 0

3. Spre: age > 0 AND fare > 0
G3: age > 6 AND age<60
D3: FinalPrice == fare

4. Spre: age > 0 AND fare > 0
G4: age >= 60 AND age<70
D4: FinalPrice == 0.5*fare

5. ~Spre: age<=0 or fare<=0

Because of the invocated activity, we should substitute the original test path, like
T4, into the update version, T4′, by substituting activity0 with its sub actions.

Test Path:
T1: start →a0 → so → m1 → end
T2: start → a0 → so → s1 → a1 → m0 → a3 → end
T3: start → a0 → so → s1 → s2 → a2 → m0 → a3 → end
T4: start → a0 → so → s1 → s2 → activity0 → m0 → a3 → end

T4´: start → a0 → so → s1 → s2 → start_0 → a00 → a01 →a02
→ end_0 → m0 → a3 → end

At the same time, we can extract data constraints from each test scenario, which is
used for matching with functional scenario. Then, the matching process is shown
below.

Matching Result:
FSF_1 – T2
FSF_2 – T2
FSF_3 – T3
FSF_4 – T4
FSF_5 – T1

The blow segment chose the forth path and matched the first functional scenario as
an example and shows the substitution process, from bottom to up.

Verification of SysML Activity Diagrams Using Hoare Logic and SOFL 85

Derivation Process:

{age> 0 AND fare > 0 AND age >= 60 AND age<70}
{0.5 *fare == 0.5*fare}
input age, fare
{0.5 *fare == 0.5*fare}
input fare
{0.5 *fare == 0.5*fare}
FinalPrice =0.5 *fare
{FinalPrice == 0.5*fare}
output FinalPrice
{FinalPrice == 0.5*fare}
output FinalPrice
{FinalPrice == 0.5*fare}

Finally, we turn this verification problem into proving whether the pre-condition of
specification can imply Ppre. If it can be proved, means that the path satisfies the
requirement. As the strategy of implication mentioned before, this implication uses
simple data structure, so that we use testing to access the procedure of verification. In
this case, we prove it is correct.

7 Conclusion

We presented an approach, known as TBFV-M (Testing-Based Formal Verification for
Model), for requirement error detection in SysML Activity Diagrams by integrating test
cases generation and Hoare Logic. The principle underlying TBFV-M is first to derive
functional scenarios form specification and generate test scenarios from Activity
Diagrams. Then match them and verify each test scenario according to the corre-
sponding functional scenario. Hoare logic is used during the verification process.
TBFV-M method made up the limitation of TBFV, not concerning about models and
solved the problem of inconsistent, incomplete, and inaccurate models. We also give a
solution to deal with the invocation problem. It has advantage in reducing the proba-
bility of system error and shortening the developing time.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Number 26240008,
and Defense Industrial Technology Development Program JCKY 2016212B004-2. The authors
would like to thank the anonymous referees for their valuable comments and suggestions.

86 Y. Yin et al.

References

1. Wymore, A.W.: Model-Based Systems Engineering: An Introduction to the Mathematical
Theory of Discrete Systems and to the Tricotyledon Theory of System Design. CRC Press,
Boca Raton (1993)

2. Friedenthal, S., Moore, A., Steiner, R.: A practical guide to sysml. San Francisco Jung Inst.
Libr. J. 17(1), 41–46 (2012)

3. Weilkiens, T.: Systems engineering with SysML/UML. Computer (6), 83 (2006)
4. Shah, M., et al.: Knowledge engineering tools in planning: state-of-the-art and future

challenges. Computer (2013)
5. Vaquero, T.S., Silva, J.R., Beck, C.J.: A brief review of tools and methods for knowledge

engineering for planning scheduling. Computer 7–14 (2011)
6. Liu, S.: Utilizing hoare logic to strengthen testing for error detection in programs. Computer

50(6), 1–5 (2014)
7. Liu, S., Nakajima, S.: Combining specification-based testing, correctness proof, and

inspection for program verification in practice. In: Liu, S., Duan, Z. (eds.) SOFL+MSVL
2013. LNCS, vol. 8332, pp. 3–16. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-04915-1_1

8. Liu, S.: A tool supported testing method for reducing cost and improving quality. In: IEEE
International Conference on Software Quality, Reliability and Security, pp. 448–455 (2016)

9. Liu, S.: Testing-based formal verification for theorems and its application in software
specification verification. In: Aichernig, B.K.K., Furia, C.A.A. (eds.) TAP 2016. LNCS, vol.
9762, pp. 112–129. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41135-4_7

10. Liu, S., Ofiutt, A.J., Hostuart, C., Sun, Y., Ohba, M.: So: a formal engineering methodology
for industrial applications. IEEE Trans. Softw. Eng. 24(1), 24–45 (1998)

11. Raimondi, F., Pecheur, C., Brat, G.: PDVer, a tool to verify PDDL planning domains.
Computer (2009)

12. Lasalle, J., Bouquet, F., Legeard, B., Peureux, F.: SysML to UML model transformation for
test generation purpose. ACM SIGSOFT Softw. Eng. Notes 36(1), 1–8 (2011)

13. Nayak, A., Samanta, D.: Synthesis of test scenarios using UML activity diagrams. Softw.
Syst. Model. 10(1), 63–89 (2011)

14. Oluwagbemi, O., Asmuni, H.: Automatic generation of test cases from activity diagrams for
UML based testing (UBT). Computer 77(13) 2015

15. Khurshid, S., Marinov, D.: TestEra: specification-based testing of Java programs using SAT.
Autom. Softw. Eng. 11(4), 403–434 (2004)

16. Liu, S., Nakajima, S.: A decompositional approach to automatic test case generation based
on formal specifications. In: International Conference on Secure Software Integration
Reliability Improvement, pp. 147–155 (2010)

17. Liu, S., Hayashi, T., Takahashi, K., Kimura, K., Nakayama, T., Nakajima, S.: Automatic
transformation from formal specifications to functional scenario forms for automatic test case
generation. In: New Trends in Software Methodologies, TOOLS and Techniques
Proceedings of the SoMeT 2010, Yokohama City, Japan, 29 September–1 October 2010,
pp. 383–397 (2010)

18. Kent, S.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002.
LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
47884-1_16

19. Broy, M., Havelund, K., Kumar, R., Steffen, B.: Towards a unified view of modeling and
programming (track summary). In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol.
9953, pp. 3–10. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3_1

Verification of SysML Activity Diagrams Using Hoare Logic and SOFL 87

http://dx.doi.org/10.1007/978-3-319-04915-1_1
http://dx.doi.org/10.1007/978-3-319-04915-1_1
http://dx.doi.org/10.1007/978-3-319-41135-4_7
http://dx.doi.org/10.1007/3-540-47884-1_16
http://dx.doi.org/10.1007/3-540-47884-1_16
http://dx.doi.org/10.1007/978-3-319-47169-3_1

20. Joseph, A.K., Radhamani, G., Kallimani, V.: Improving test efficiency through multiple
criteria coverage-based test case prioritization using modified heuristic algorithm. In:
International Conference on Computer and Information Sciences, pp. 430–435 (2016)

21. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(1),
53–56 (1969)

22. Floyd, R.W.: Assigning meanings to programs. In: Colburn, T.R., Fetzer, J.H., Rankin, T.L.
(eds.) Program Verification, pp. 65–81. Springer, Dordrecht (1993). https://doi.org/10.1007/
978-94-011-1793-7_4

23. Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: Symposium on Foundations
of Computer Science, pp. 109–121 (1976)

24. Yin, Y., Xu, Y., Miao, W., Chen, Y.: An automated test case generation approach based on
activity diagrams of SysML. Int. J. Perform. Eng. 13(6), 922–936 (2017)

88 Y. Yin et al.

http://dx.doi.org/10.1007/978-94-011-1793-7_4
http://dx.doi.org/10.1007/978-94-011-1793-7_4

	Verification of SysML Activity Diagrams Using Hoare Logic and SOFL
	Abstract
	1 Introduction
	2 Related Work
	2.1 Testing-Based Verification
	2.2 Test Case Generation

	3 Related Concept
	3.1 Formal Definition of Activity Diagram
	3.2 Test Case
	3.3 Test Coverage Criteria
	3.4 Hoare Logic
	3.5 Functional Scenario Form
	3.6 Path Triple

	4 TBFV and TBFV-M
	4.1 TBFV
	4.2 TBFV-M

	5 Principle of TBFV-M
	5.1 Unified Formal Expression
	5.2 Functional Scenarios Derivation
	5.3 Test Path Generation
	5.4 Matching Algorithm
	5.5 Path Triple Establishment
	5.6 Implication
	5.7 Invocation

	6 Case Study
	7 Conclusion
	Acknowledgements
	References

