
Research Review on Web Service Composition
Testing

Zhoujie Du1,2(&) and Huaikou Miao1,2

1 School of Computer Engineering and Science, Shanghai University,
Shanghai, China

duzhoujie@163.com
2 Shanghai Key Laboratory of Computer Software Testing and Evaluating,

Shanghai, China

Abstract. Web services composition is designed to achieve a more powerful
and large-grained services with organic synthesis of different Web services. In
order to guarantee the quality of the Web services composition, comprehensive
and adequate testing of the Web services composition is required. However, the
dynamic and distributed characteristics of Web services combination make its
testing technology and method have big difference with the traditional software
testing and bring a large of challenges. In this paper, we summarize and analyze
the definition, architecture, testing methods and testing techniques of Web
service composition. In addition, we also analyze and prospect the progress of
Web services combination testing.

Keywords: Web service � Web service combination � Testing methods �
Testing techniques

1 Introduction

Web service is a software system that is unified by URI (unified resource identifica-
tion). As a special kind of service, Web Service not only realizes the characteristics of
remote access through network, but also inherits the characteristics of autonomy,
openness and self-description of general services. Different organizations have different
understandings and definitions of Web service. However, there was no fixed definition
of Web service so far. There are descriptions and understandings of Web service by
several large enterprises and institutions in the following.

The definition of the W3C organization: Web Service was a software application
that used URI to unify the identification, and used XML to defined, described interfaces
and binding. Web service is found and used by other users by network, and finished
interacts through XML messages at last. The definition of SUN Company: Web service
should include the following five characteristics. First, it provides an external interface,
which exchange data in XML format. Second, the out Web service can be access by
Web. Third, the services among the systems support relationship are loosely coupling.
Fourth, if Web services completed registered and the services would be located. Fifth, it
supports the specification of Web service protocol and implemented message com-
munication used XML. The definition of IBM Company: Web service is the smallest

© Springer Nature Switzerland AG 2019
Z. Duan et al. (Eds.): SOFL+MSVL 2018, LNCS 11392, pp. 39–51, 2019.
https://doi.org/10.1007/978-3-030-13651-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13651-2_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13651-2_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13651-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-13651-2_3

application module that has the characteristics of self-description, self-contained and
support matched with other Web service. Web service can implement description,
search, publish and be called anywhere in the network environment. Whether service
users asked for simple application requests or complex composite business processes, it
can accomplish tasks by calling the Web Service. When a Web service deployed
successfully, any other application can be discover and invoke deployed service
through a UDDI service registry to accomplish the task. The definition of HP Com-
pany: Web service is a service that solves user’s problems through Internet, and
transacted and processed tasks on behalf of applications and users.

Web services are platform independent, low coupled, self-contained and pro-
grammable. Web applications that describe, publish, discover, coordinate, and con-
figure them using an open XML (a subset of the standard General Markup Language)
for developed distributed interoperable application. The rise of Web service has been
accompanied by the introduction of service-oriented software architecture (SOA),
which provided a new paradigm of standards-based, loosely coupled, cross-platform
distributed computing on the Internet. Individual Web service provides specific capa-
bilities, and in order to meet the needs of users, more and more real projects need to
integrate and combine multiple Web services to provide comprehensive and complex
value-added services composite Web services. Members of the service can commu-
nicate with each other and handle user operations and requests in a logical manner.
With the further development of Internet application, Web service composition is
bound to get concerned and applied widely. In order to ensure the quality of composite
Web services, model checking is used to verify the conformance and the related
properties of the model of composited Web services with its implementation [1, 2].
Comprehensive and adequate testing for the implementation of Web services compo-
sition is required. However, because of the dynamic and distributed characteristics of
the Web service composition itself, many traditional software-testing technologies have
lost their original effectiveness to the Web service composition. Therefore, we need to
study the new testing techniques and methods for the Web service composition, to
provide a powerful support for the performance, function and reliability of composite
service.

At present, Web service portfolio testing has been studied and some research results
have been obtained. The purpose of this paper is to systematically summarize and
analyze the existing methods and techniques for the testing of Web services compo-
sition. Although some researchers have made a definite analysis and discussion about
this problem, we think that this problem is still needed further investigating. Web
services testing analyzed and summarized by Hong, Bozkurt and Ebrahim [2–5],
however, the research status of Web services composition testing had not been
emphasized. Web services composition testing has discussed by categorized the test
methods completed by Rusli et al. [6] in long before. After that, there were other study
results have been published. Therefore, it is necessary to make a new and compre-
hensive survey summary.

The structure of this paper is as follows. The first section, introduces the definition
of web services in detail; The second section, analyzes and discusses Web service
architecture; The third section summarizes and describes several web service

40 Z. Du and H. Miao

composition testing methods; The fourth section, introduces and summarizes testing
techniques about Web service composition; The last section summarizes and prospects
about the research on web service composition testing.

2 Analyzed and Studied the Web Service Architecture

In general, Web Service used to invoke remotely. The traditional software testing
technology could not be simply apply to measure tested work of Web service appli-
cation system; In view of this, Zhang and Zhang [7] proposed a criteria contain
J attribute indicators such as accuracy, fault tolerance and testability, which can be used
to evaluate the reliability of Web services application systems. According to this
reliability criterion, we can effectively eliminate inappropriate Web services.

Testing framework [8] based on JUnit used in unit testing of application system
widely. Therefore, Zhang et al. [9] had attempted to propose a suitable unit test
framework for BPEL, which included Composition Model, test architecture, life cycle
management and so on. In this framework, the test function divided into several test
process (TP) and control TP process (CP), with the life cycle of TP be controlled by TP
provided beginTest and endTest.

Dong et al. [10] put forward an automated testing framework based on WSDL.
Given that the message contained in WSDL didn’t fully assist the test work, so the
WSDL extension specification was referenced in this framework, it included four other
extensions such as into/output (I/O) dependency. According to these extensibility, this
test framework could deduce test data and operation flow, formed a complete test case
at last.

Akehurst et al. [11] defined constraint for each object in BPEL based on the Object
Constraint Language (OCL), and implement the Java classes of verification based on
these restrictions. At the same time, Akehurst established a Meta-model based on
specification of BPEL, and the associations in objects defined by BPEL were repre-
sented as UML diagrams.

Looker et al. [12] put forwarded a test method based on Fault-Injection. Because of
the SOAP packet format used by Web services to exchange messages was based on
XML, Looker was able to add an injector server between the service provider and the
service requester by modified the container of the Web service, to monitor all messages
exchange between the service provider and the service requester, and according to the
setting of test cases insert a message that might cause an error into a normal message,
and observed whether the Web service under tested could correctly correspond to
messages with exceptions, such as error content, missing content, and so on.

Offutt et al. [13] proposed to use data disruption to generated different SOAP
parameter data, and analyzed the messages in response to verified correctness of the
peer-to-peer Web service. Offutt et al. [13] proposed three methods of disruption
message: Data Value Perturbation (DVP), RPC Communication Perturbation (RCP),
and Data Communication Perturbation (DCP). DVP was mainly based on the param-
eter message format defined by WSDL, such as string or numeric value, through the
method of boundary value analysis to generate different parameter messages. RCP used
mutation operators to calculated parameters to generate different new parameter

Research Review on Web Service Composition Testing 41

messages. DCP is a Web services testing that used XML messages to send messages.
Offutt et al. [11] modified the contents of XML messages in SOAP by some rules,
These XML messages are used to test the access to a Web service’s database whether
correct or not.

Chen, Li and Zhang [14] proposed a development and test environment that could
flexibly define the process – WSCE, which enables the combination of Web services to
carry out in a very convenient way. In this architecture, Yu proposed two mechanisms
such as virtual partner and inspector service, to help developers verify the correctness
of the process or not.

Tsai and Paul et al. [15] put forwarded a test framework of WSTF (Web Services
Testing Framework). This framework was based on agent technology and could be
applied to SOA architecture system.

3 Web Service Composition Testing Methods

Web services testing methods had many similarities to traditional software testing and
there are differences of them. Web service testing required service requesters, service
providers, and UDDI accomplished together. The comparative results between Web
service testing and traditional software testing were shown in Table 1.

Compared with the traditional software testing and the characteristics of the Web
service composition itself, the tester could not have all the test information, because of
the component service is black box test, the tester could not have the source code of the
component service, so it was unable to get all the features of a component service and
build a rich test model. Therefore, in the test of Web service composition, some
scholars have studied how to expand document parsing or build model technology to
obtain sufficient test information. Furthermore, the dynamic binding of Web service
composition makes it difficult to predict the operating environment and behavior of the
combined service, the generation of test prediction was difficult, however, traditional
software testing techniques target and software behavior were predictable, static, and
non-distributed, so it could not be applied to Web service composition testing. As with
traditional software, the compositional Web service also has a software evolution
process, but the evolution process was dynamic, the changes didn’t limited to internal
structure or variable of the program. Instead, component services are upgraded or
replaced, business processes are replaced, and interface information for component
services is changed, and these evolutionary processes exist throughout the operation of
the system, so additional information is needed to support the regression test. As we
could see from the comparison above, the difference between Web service comparison
testing and traditional software testing exists in the whole process of testing. According
to the testing process, this paper summarized and analyzed the technologies and
methods of Web composite service testing in different stages.

42 Z. Du and H. Miao

4 Web Service Composition Testing Techniques

One of the major features of Web services testing is that most testers do not gain the
source code. Therefore, all white-box testing relevant techniques are not used. How to
test Web services effectively is becoming a hot issue in Web services research.

4.1 Web Service Composition Testing Based on EH-CPN

The Web composite service testing technology based on EH-CPN mainly have the
following steps: First of all, we analyzed the data flow in the extended colored Petri net
through OWL-S document transformation, and find the used pairs for all of the variable
definitions and the used chains for the definitions of corresponding input and output.
Next, the definition that all input and output used chain extended to get an executed test
sequence. The above test sequences meet the full definition of use coverage criteria.
The test data was generated by the test case generated method that combined the

Table 1. Traditional software testing and web service composition testing

Item Traditional software testing Web services composition testing

Testers Dedicated test team or software
developer

Service integrator

Regression
testing

Offline, static evolution; can
sufficient understand software
changes and regression testing
timely

Online; dynamic evolution; difficult to grasp
the evolve situation of component services,
and there will also be evolution in the process
of regression testing; additional information is
needed to support regression testing

Software
evolution

Static evolution, changed
internal structure or variables of
program

Dynamic evolution, component services
upgraded or replaced, business processes
changed, and component service interface
information changed

Test client Software itself Built component service, such as proxy, etc.
Test
coverage

White-box testing and black-box
testing for software

Black-box testing for component services;
white-box testing for BPEL documents

Test
distribution

Centralized, multi-stage testing Distribute, remote, multi-stage testing

Test
execution

Off-line test Runtime test

Test model Have software code and could
build rich test model according
to software characteristic

Do not have source code of component
services, testers could build controlled and
observable test models only

Test
prediction

The behavior of software is
predictable, and it is easier to
generate test predictions

It is difficult to predict state and behavior of
composite services and generate test
predictions difficultly

Test type Unit test, integration test, system
test, acceptance test, regression
test, etc.

Unit test, integration test, system test,
regression test

Research Review on Web Service Composition Testing 43

equivalence class partition and condition constraint, then combined test data and test
sequences to generated test cases. Input the OWL-S document in the developed test
tool of TWCS, and TWCS would generated a colored Petri net that extended levels
corresponding to OWL-S, then find out used chains that all the input and output of all
variables and extend it to an executable test sequence. Input the number of test cases
corresponding to each test sequence, and completed the generated the number of test
cases was same. Using the proxy occupancy program in .NET Framework SDK to
generated proxy for each Web service; finally, the proxy service be used to completed
the call of the corresponding Web service, executed the test case and completed the test
of the Web service.

4.2 Web Service Composition Testing Based on Mutation

The idea of mutation testing was to detect the effectiveness of test cases by embedded
errors in the program and guided the generation, selection and reduction of test cases,
and to achieve the purpose of tested at last. It was a test method based error. The idea of
mutation testing was proposed based on white box testing first, and the object of
mutation testing was program code. With the development of mutation testing, the idea
of mutation testing could be using for Web services testing, and guided test cases
generation, selection and reduction of test cases [16].

There were a lot of research in Web service mutation test [17]; this section intro-
duced the mutation-based Web service composition testing, which takes following
steps to test the Web composite service workflow: Firstly, parsed OWL-S document
and extracted information such as the type, format, and etc. input format accepted by
the composite Web service to be tested and workflow. Generated the initial test data set
based on the type, format, and other information of the input format, and test data could
be generated randomly or by the usual methods of boundary value analysis or
equivalence class division. At the same time, the workflow information of Web
composite service is analyzed and found nodes that meet the variation conditions in the
workflow. According to the corresponding change rules, changed the OWL-S docu-
ment information to generate new mutant that injected the wrong to the original
composite service to be wrong version of service composition.

After completed the above work, entered the same test data should be returned
different test results executed the original service composition and the variant Web
service composition, because of the workflow of the service composition was changed.
If the output was different, the variant was killed and the test data could identify the
wrong Web service combination and it was an effective test data. The test data should
be retained and added an effective test data set for later test data selection. It indicated
that the test data is invalid if the output results were same, the new test data should be
redesigned or repeated above tests and expanded the effective test data set [18].

44 Z. Du and H. Miao

4.3 Web Services Testing Based on Interactive Behavior Specifications

This section introduces test problem of service interaction from the service requester’s
point of view. A Web service tested method that leverages interaction behavior
specification. The main steps were as follows:

Firstly, the behavior specification of Web service should be described correctly.
UML is widely used in system modeling in industry and academia because its sim-
plicity and standardization, using sequence diagrams of UML and the behavior rules of
Web services described by OCL. It is provided to the service requestor in the form of
an XML file (XML metadata interchange) together with WSDL document, and XML
documents could be generated automatically by existed UML modeling tools.

Secondly, used an extended state machine model of ELTS described the behavior
rules of the service. Added semantic information based on traditional LTS generated
extended ELTS to strengthen the function of LTS described data flows. ELTS was
based on the implementation relationship in a certain formal defined, and introduced a
new implementation relationship through generated algorithm of traditional LTS.
Through this new relationship given corresponding test data generated algorithm and
test cases with test coverage. It used to test whether the interaction behavior specifi-
cation was consistent with service implementation or not [19].

4.4 Testing Techniques Based on Formal Methods

Test case generated based on formal method divided into model detector and formal
analysis technology. The test case generation method based on model detector was an
input model, which converts the service combination described of BPEL into a certain
detector, and used formal method to describe the demand model that the composite
service should satisfy, used them as input of the model detector to produces test cases.
Most of the detectors used in the study included Nu SMV, SPIN and BLAST [20–23].
Test case generated method based on formalized analysis technology, which described
by BPEL through a formal method or other formalization methods, such as Petri nets,
automata or process algebra, then use existed analytical techniques of the formalized
method to generated test cases, such as references [24–26].

Petri net was a modeling and analysis tool for distributed systems. It was a directed
graph composed of repository, change, and directed arc. It was easy to described
sequence, concurrency, conflict and synchronization of the processes and components
in the system. Compared with other system models, true concurrency was a unique
advantage of Petri network. The modeling method based on Petri net could described
all kinds of control flow in the combinatorial process, but it could not reflect overall
state of composited service directly.

Automaton was a mathematical model with clear semantics. It was suitable for
describing discrete input and output systems. The system has a limited state, different
states represent different meanings. In actual needs, the system could complete pre-
scribed tasks in different states and transfer to another state. The automaton modeling
method could described internal state of Web service composition directly, but it could
not described interaction behavior between two services. The ability to described

Research Review on Web Service Composition Testing 45

concurrent activities in composite process was limited, and there was a space explosion
problem. Process algebra was a formal modeling language based on algebraic methods.
A group of operators was used as a process component in grammar. The semantics of
the operator was defined by a structured operating semantic method. In this way, a
process could be regarded as label transition system (LTS). A significant feature of
process algebra was attributed concurrency to non-deterministic, that is, considered the
behavior of concurrent processes as all possible interlace behavior of each process. The
behavior of concurrent execution was suitable for described concurrent interactive
systems. The modeling method of process algebra had strong description ability and
rigorous computational reasoning ability, but its expression was more complicated, not
intuitive and difficult to understand.

Miao and Chen et al. [27] proposed a testing approach to model-based testing for
Web applications, which designed and implemented a web application testing system
based on this model. Taking the UML state diagram of Web application as system test
model, used UML sequence diagram described test target, and the FSM test model is
constructed by transformation and combination, automate generate test case; test model
visualization and automation of test execution were come true. It mainly focused on
functional testing in article: Model-Based Testing for Web Applications. The perfor-
mance tests, load testing, usability testing, compatibility testing and security testing not
verified.

Qian and Miao et al. [28] proposed a test path generate approach, which illustrated
by SWLS (Simple Web Login System) as an example and presented an effective Web
testing model for Web software testing. One of the main advantages of this approach is
that you did not need to access back-end source code. In order to get PTT from PFD,
they proposed a transformation algorithm by this method. They obtained test path from
PTT by constructing path expression, and gave a possible way to describe test path in
XML. Qian and Miao, which were full link coverage and full-page coverage, also
proposed two important concepts. It is possible that a particular link will appear on a
page only if provided a specific input in tested. But this web test method is not
necessarily adaptable in new case, so it needs to further improve test path generation
method, and develop new prototype to re-validate this web test model proposed.

Above several kinds of formal model could described the behavior of the Web
service combination well and have relevant technical and tools support, there were
some differences only in computational complexity. However, these methods required
staff with relevant professional background knowledge and ignored data flow infor-
mation modeling in combination process. Therefore, the non-formal test case generated
method was discussed below.

4.5 Testing Techniques Based on Informal Methods

The informal method [29–51] that it converted control flow, data flow, message flow,
behavior, etc. in a composite service described by BPEL and others into a graph model
and used search technology and constraint analysis technology generated test cases.

46 Z. Du and H. Miao

The steps of test case generated method as follows: Firstly, build a model based on
some features of Web service composition. Secondly, generated test paths based on
model traversal. Thirdly, generated test cases based on constraint condition in above
path. The following research work falls into this category.

On studied of test case generated problem in Web service combination, some
researchers focus on control flow characteristics of Web service composition. Yuan
et al. [29] proposed a BPEL test case generation method based on graph search, which
used to deal with concurrent semantics of BPEL. This method described the WS-BPEL
program by defined control flow graph (BPEL flow graph, BFG). BFG contained
control flow and data stream of BPEL program. Generated test paths by traversed the
BFG model, the constraints in test path as the input of constraint parser generated
abstract test data and converted it into executable test cases automatically. However,
the process of converted BPEL documents to BFG and test paths search process were
done manually.

The method proposed by Yan et al. [30] was similar to Yuan’s method [29]. They
converted the WS-BPEL program into an extended control flow graph (XCFG) and
generated test paths based on XCFG, and then used a constraint parser generated test
data from test path. However, it is different from the Yuan et al. method that Yan and
others used symbolic execution methods to obtain a series of constraints from the test
path by invoked component services, but this method produced abstract test case that it
needed to be converted to an executable test case manually.

Mei and others proposed a test method based on XPath Rewrite Graph (XRG)
[31, 32] that it combined the control flow graph (CFG) and XRG to solved possible
integration problem caused by XPath in BPEL process. With the gradual deepening
research, some scholars believed that the model based test cases produce techniques
same as the method based on path generated test case. This method represents the test
data by generated message parameters, but the generated test cases were high redun-
dancy and low error rate. Hou [33] and Ni et al. [34] applied test technology based on
message flow in Object Oriented Program (OOP) to Web service combination test first
time. Wu and Huang [35] thought that binding internal state of single service, exe-
cution sequence among services and behavior of service closely related in runtime.
Therefore, references [36–38] proposed an EDSM sequence test model (EFSM-SeTM)
for Web service composition. They studied runtime test from the point of workflow
view and proposed a scenario-based testing framework for Web service composition.

We summarized and analyzed informal testing method based on model. As shown
in Table 2. It is shown that most of above test case generation techniques are semi-
automated, even include the technology proposed in running test. Therefore, firstly,
How to achieve full automation is a problem that can be further studied. Secondly, no
test case generated technology involved Web services and the quality of Web services
determined the correctness of entire Web service composition, so it is necessary to test
the Web service.

Research Review on Web Service Composition Testing 47

5 Summary and Outlook

It can be known from above analysis that some problem of Web service combination
need to be research, although some results have been achieved in this area, which were
mainly reflected in the following aspects.

Formal modeling technology of Web services combination need to be developed
and researched deeply, such as research on the correlation, fairness and applicability of
formal model, further research on the property analysis technology of Web services
formal model. It is necessary to research Web services technologies made formal
technology provide services and support better.

The quality of test cases was fundamental condition for effective Web service
combination testing, which shown that high error rate, low redundancy and high
coverage. How to obtain more constraints that can enrich test information generating
test cases is a problem needed to be solved in academia and industry today.

Table 2. Classification of informal methods

References Model Focus Quality of test case Type Automated testing

Reference [34] Message
sequence
graph

Message
flow

Test case accurate, error
detect capability low;
high redundant

Runtime
test

Semi-automatization

Runtime
test

Reference [35] State
transition
diagram;
message
exchange
sequence
diagram

Service
interchange
and
dynamic
behavior

Without considering the
constraint conditions in
the path; test case with
practical significance
can not be obtained

Runtime
test

Semi-automatization

Reference [36] BPEL model Scene-based Testing is only based on
path; test cases
inaccurate; high
redundant; error detect
capability low

Runtime
test

Automation

Reference [37] Runtime
test

Automation

Reference [38] Runtime
test

Automation

Reference [30] Extended
control flow
graph

Control
flow

Abstract test cases Static
test

Semi-automatization

Reference [31] Rewrite the
graph of
Xpath

Data flow Abstract test cases Static
test

Semi-automatization

Reference [32] Abstract test cases Static
test

Semi-automatization

Reference [33] Message
sequence
graph

Message
flow

Higher detection rate
than RAND and GS;
redundancy is higher

Static
test

Semi-automatization

48 Z. Du and H. Miao

Some researchers have been concerned about the runtime binding problem of Web
service composition, Ni [34], Wu [35] and Sun et al. [38] designed test automation
prototype tools, but they did not elaborated automation level of test technology, or
did they verify the relationship between automation and runtime binding issues.

Acknowledgement. This paper is supported by National Natural Science Foundation of China
(NSFC) under Grant No. 61572306.

References

1. Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. Sci. Comput.
Program. 70(1), 31–61 (2008)

2. Tian, C., Duan, Z., Duan, Z.: Making CEGAR more efficient in software model checking.
IEEE Trans. Softw. Eng. 40(12), 1206–1223 (2014)

3. Hong, Z., Feng, Z.Y.: Collaborative testing of web services. IEEE Trans. Serv. Comput.
5(1), 116–130 (2012)

4. Bozkurt, M., Harman, M., Hassoun, Y.: Testing and verification in service-oriented
architecture: a survey. Softw. Test. Verif. Reliab. 23(4), 261–313 (2013)

5. Ebrahim, S.M.: A survey of service-oriented architecture systems testing. J. Softw. Eng.
Appl. (IJSEA) 3(6), 19–27 (2012)

6. Rusli, H.M., Puteg, M., Ibrahim, S., Tabatabaei, S.: A comparative evaluation of state-of-
the-art web service composition testing approaches. In: Proceedings of the 6th International
Workshop on Automation of Software Test (AST), pp. 29–35 (2011)

7. Zhang, J., Zhang, L.-J.: Criteria analysis and validation of the reliability of web services-
oriented systems. In: Proceedings of the IEEE International Conference on Web Services,
pp. 11–15 (2005)

8. Toure, F., Badri, M., Lamontagne, L.: A metrics suite for JUnit test code: a multiple case
study on open source software. J. Softw. Eng. Res. Dev. 2(1), 1–32 (2014)

9. Zhang, X., Sun, W., Jiang, Z.B.: BPEIAWS unit testing: framework and implementation. In:
Proceedings of the IEEE International Conference on Web Services, pp. 103–110 (2005)

10. Dong, W., Tasi, W.T., Chen, Y.: WSDL-based automatic test case generation for web
services testing. In: IEEE International Workshop, pp. 2l5–220 (2005)

11. Akehurst, D.H.: Validating BPEL specifications using OCL. Technical report, University of
Kent at Canterbury (2004)

12. Looker, N., Xu, J.: Assessing the dependability of SOAP RPC-based web services by fault
injection. In: The Ninth IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems, pp. 165–172 (2003)

13. Offutt, J., Xu, W.: Generating test cases for web services using data perturbation. In:
ACM SIGSOFT Software Engineering Notes, vol. 29, pp. 1–10 (2004)

14. Chen, Y., Li, Y., Zhang, L.: WSCE: a flexible web service composition environment. In:
Proceedings of the IEEE International Conference on Web Services, pp. 428–435 (2004)

15. Tsai, W.T., Paul, R., Yu, L., Saimi, A.: Scenario-based web service testing with distributed
agents. IEICE Trans. Inf. Syst. 86, 2130–2144 (2003)

16. Jiang, Y.: Research on web service workflow variation test technology. Southeast University
(2011)

17. Wang, R., Huang, N.: Requirement model-based mutation testing for web service. In:
Proceedings of the 4th International Conference on Next Generation Web Services Practices,
pp. 71–76 (2008)

Research Review on Web Service Composition Testing 49

18. Bruno, M., Canfora, G., Di Penta, M., Esosito, G., Mazza, V.: Using test cases as contract to
ensure service compliance across releases. In: The 3rd IEEE International Conference on
Service-Oriented Computing, Amsterdam, Netherlands (2005)

19. Li, B., Zhang, P.: Modeling. Testing and Verification of Combined Services. Science Press,
Henderson (2013)

20. Huang, H., Tsai, W.T., Paul, R.: Automated model checking and testing for composite web
services. In: Proceedings of the IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing, pp. 300–307 (2005)

21. Garcia-Fanjul, J., de La Riva, C., Tuya, J.: Generating test cases specifications for BPEL
compositions of web services using SPIN. In: Proceedings of WS-MaTe 2006, pp. 83–94
(2006)

22. Garcia-Fanjul, J., de La Riva, C., Tuya, J.: Generation of conformance test suites for
compositions of web services using model checking. In: Testing: Academic and Industrial
Conference - Practice and Research Techniques, pp. 127–130 (2006)

23. Zheng, Y.Y., Zhou, J., Krause, P.: A model checking based test case generation framework
for web services. In: Proceedings of the International Conference on Information
Technology, pp. 715–722 (2007)

24. Li, B., Zhang, W.S., Zhang, X.G.: Describing and verifying web service using CCS. In:
Proceedings of the International Conference on Parallel and Distributed Computing,
pp. 1571–1576 (2006)

25. Long, H.Y., Ma, D.: Checking compatibility of BPEL4WS based on CCS. In: Proceedings
of the International Conference on System Science, Engineering Design and Manufacturing
Informatization, pp. 255–258 (2011)

26. Du, Y.H., Tan, W., Zhou, M.C.: Timed compatibility analysis of web service composition a
modular approach based on Petri nets. IEEE Trans. Autom. Sci. Eng. 11(2), 594–606 (2014)

27. Miao, H.-K., Chen, S.-B., Zeng, H.-W.: Model-based testing for web applications. Chin.
J. Comput. 34(06), 1012–1028 (2011)

28. Qian, Z., Miao, H.: Efficient web software testing method. Comput. Sci. 38(02),
152–155+159 (2011)

29. Yuan, Y., Li, Z., Sun, W.: A graph-search based approach to BPEL4WS test generation. In:
Proceedings of the International Conference on Software Engineering Advances (ICSEA),
pp. 1–14 (2006)

30. Yan, J., Li, Z., Yuan, Y., Sun, W., Zhang, J.: BPEL4WS unit testing: test case generation
using a concurrent path analysis approach. In: Proceedings of the 17th International
Symposium on Software Reliability Engineering (ISSRE), pp. 75–84 (2006)

31. Mei, L., Chan, W.K., Tse, T.H.: Data flow testing of service choreography. In: Proceedings
of the 7th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT International Symposium on Foundations of Software Engineering (ESEC),
pp. 151–160 (2009)

32. Mei, L., Chan, W.K., Tse, T.H.: Data flow testing of service oriented workflow applications.
In: Proceedings of the 30th International Conference on Software Engineering (ICSE),
pp. 371–380 (2008)

33. Hou, S.S., Zhang, L., Lan, Q., Mei, H.J., Sun, S.: Generating effective test sequences for
BPEL testing. In: Proceedings of the 5th International Conference on Quality Software,
pp. 331–340 (2009)

34. Ni, Y., Hou, S.S., Zhang, L., Zhu, J., Li, Z.J., Lan, Q.: Effective message-sequence
generation or testing BPEL programs. IEEE Trans. Serv. Comput. 6(1), 7–19 (2013). https://
doi.org/10.1109/TSC.2011.22

50 Z. Du and H. Miao

http://dx.doi.org/10.1109/TSC.2011.22
http://dx.doi.org/10.1109/TSC.2011.22

35. Wu, C.S., Huang, C.H.: The web services composition testing based on extended finite state
machine and UML model. In: Proceedings of the IEEE International Conference on Service
Science and Innovation, pp. 215–222 (2013)

36. Sun, C.A., Shang, Y., Zhao, Y., Chen, T.Y.: Scenario-oriented testing for web service
compositions using BPEL. In: Proceedings of the 12th International Conference on Quality
Software (QSIC), pp. 171–174 (2012)

37. Zhang, P.C., Leung, H., Li, W.R., Li, X.D.: Web services property sequence chart monitor: a
tool chain for monitoring BPEL-based web service composition with scenario-based
specifications. IET Softw. 7(4), 222–248 (2013)

38. Sun, C., Zhao, Y., Pan, L., Liu, H., Chen, T.Y.: Automated testing of WS-BPEL service
compositions: a scenario-oriented approach. IEEE Trans. Serv. Comput. 11, 616–629 (2015)

39. Li, Q., et al.: Service composition and interaction in a SOC middleware supporting
separation of concerns with flows and views. J. Database Manag. (JDM) 22(2), 32–63 (2011)

40. Belli, F., Endo, A.T., Linschulte, M., Simao, A.: A holistic approach to model-based testing
of web service compositions. Softw.: Pract. Exp. 44(2), 201–234 (2014)

41. Herbold, S., Harms, P., Grabowski, J.: Combining usage-based and model-based testing for
service-oriented architectures in the industrial practice. Int. J. Softw. Tools Technol. Transfer
19(3), 309–324 (2017)

42. Chen, C., Zaidman, A., Gross, H.G.: A framework-based runtime monitoring approach for
service-oriented software systems. In: Proceedings of the International Workshop on Quality
Assurance for Service-Based Applications, QASBA 2011, pp. 17–20. ACM, New York
(2011)

43. Gao, H., Li, Y.: Generating quantitative test cases for probabilistic timed web service
composition. In: Proceedings of the APSCC, pp. 275–283 (2011)

44. Hallé, S., La Chance, E., Gaboury, S.: Graph methods for generating test cases with
universal and existential constraints. In: El-Fakih, K., Barlas, G., Yevtushenko, N. (eds.)
ICTSS 2015. LNCS, vol. 9447, pp. 55–70. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-25945-1_4

45. Elqortobi, M., Bentahar, J., Dssouli, R.: Framework for dynamic web services composition
guided by live testing. In: Belqasmi, F., Harroud, H., Agueh, M., Dssouli, R., Kamoun, F.
(eds.) AFRICATEK 2017. LNICST, vol. 206, pp. 129–139. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-67837-5_13

46. Mei, L., Cai, Y., Jia, C., Jiang, B., Chan, W.K.: Test pair selection for test case prioritization
in regression testing for WS-BPEL programs (Report). Int. J. Web Serv. Res. 10(1), 73(30)
(2013)

47. Petrova-Antonova, D., Ilieva, S., Manova, D.: TASSA: testing framework for web service
orchestrations. In: 2015 IEEE/ACM 10th International Workshop on Automation of
Software Test, pp. 8–12, May 2015

48. Cao, D., Félix, P., Castanet, R.: WSOFT: an automatic testing tool for web services
composition. In: 5th International Conference on Internet and Web Applications and
Services (2014)

49. Xu, C., Qu, W., Wang, H., Wang, Z., Ban, X.: A Petri Net-based method for data validation
of web services composition. In: 2010 IEEE 34th Annual Computer Software and
Applications Conference (COMPSAC), pp. 468–476, July 2010

50. Zhang, J., Yang, R., Chen, Z., Zhao, Z., Xu, B.: Automated EFSM-based test case
generation with scatter search. In: Proceedings of the 7th International Workshop on
Automation of Software Test, 02 June 2012, pp. 76–82 (2012)

51. Shan, N.: Applications research in ultrasonic testing of carbon fiber composite based on an
optical fiber F-p sensor. In: Proceedings of SPIE - The International Society for Optical
Engineering, 25 October 2016, vol. 9685, pp. 968511–968511-6 (2016)

Research Review on Web Service Composition Testing 51

http://dx.doi.org/10.1007/978-3-319-25945-1_4
http://dx.doi.org/10.1007/978-3-319-25945-1_4
http://dx.doi.org/10.1007/978-3-319-67837-5_13
http://dx.doi.org/10.1007/978-3-319-67837-5_13

	Research Review on Web Service Composition Testing
	Abstract
	1 Introduction
	2 Analyzed and Studied the Web Service Architecture
	3 Web Service Composition Testing Methods
	4 Web Service Composition Testing Techniques
	4.1 Web Service Composition Testing Based on EH-CPN
	4.2 Web Service Composition Testing Based on Mutation
	4.3 Web Services Testing Based on Interactive Behavior Specifications
	4.4 Testing Techniques Based on Formal Methods
	4.5 Testing Techniques Based on Informal Methods

	5 Summary and Outlook
	Acknowledgement
	References

