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Preface

Research on formal engineering methods is ready to show how specific formal tech-
niques can be easily and effectively utilized to deal with practical software develop-
ment. The Structured Object-Oriented Formal Language (SOFL) has fulfilled this goal
by providing a comprehensible specification language, a functional scenario-based
modeling, verification, and validation techniques, and efficient tool support through
effective integration of formal methods with conventional software engineering tech-
niques. The Modeling, Simulation and Verification Language (MSVL) is a parallel
programming language. Its supporting toolkit MSV has been developed to enable us to
model, simulate, and verify systems formally.

Following the success of the previous SOFL+MSVL workshops, the 8th Interna-
tional Workshop on SOFL+MSVL 2018 was jointly organized, on the Gold Coast,
Australia, by Shaoying Liu’s research group at Hosei University, Japan, and Zhenhua
Duan’s research group at Xidian University, China, with the aim of bringing together
industrial, academic, and government experts and practitioners of SOFL, MSVL, or
other formal engineering methods to communicate and to exchange ideas. The work-
shop attracted 21 submissions on software construction monitoring and predicting for
human–machine pair programming, formal specification, modeling, model-checking,
testing, and formal methods application. Each submission was rigorously reviewed by
three Program Committee (PC) members on the basis of its technical quality, relevance,
significance, and clarity. In total, 11 papers were accepted for publication in the
workshop proceedings and the acceptance rate is approximately 52%.

We would like to thank the ICFEM 2018 organizers for supporting the organization
of the workshop, and all of the PC members for their great efforts and cooperation in
reviewing and selecting the papers. We would also like to thank all of the participants
for attending the presentation sessions and actively joining the discussions at the
workshop. Finally, our gratitude goes to Alfred Hofmann and Anna Kramer of Springer
for their continuous support in the publication of the workshop proceedings.

November 2018 Zhenhua Duan
Shaoying Liu
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Software Construction Monitoring
and Predicting for Human-Machine

Pair Programming

Shaoying Liu(B)

Department of Computer Science, Hosei University, Tokyo, Japan
sliu@hosei.ac.jp

Abstract. Pair programming is one of the promising techniques advo-
cated in agile development paradigm, but it tends to be more costly
than one person-based programming and to lack a rigorous principle for
governing the cooperation of the two programmers. In this paper, we
put forward a novel technique called Software Construction Monitor-
ing and Predicting to study an intelligent and automatic approach to
human-machine pair programming. Its aim is to automatically, dynami-
cally monitor the process of software construction for fault detection and
to predict the possible future contents of the software towards its error-
free completion. We describe the theoretical foundation and frameworks
for Software Construction Monitoring (SCM) and Software Construction
Predicting (SCP), respectively. We also discuss how SCMP can support
the Specification-Based programming paradigm. Finally, we use simple
examples to illustrate how SCM and SCP can be supported.

Keywords: Software Construction Monitoring ·
Software construction predicting · Agile ·
Specification-based development

1 Introduction

We have been longing for a process of software construction that can timely indi-
cate faults in the current version of software as it is being constructed and predict
the possible future contents of the software towards its error-free completion,
simply because it can significantly improve software quality, reduce construction
cost, and enhance software productivity.

Pair programming is a promising technique that is advocated in eXtreme
Programming [1], which is an agile development paradigm, but it tends to be
more costly than one person-based programming and to lack a rigorous principle
for governing the cooperation of the two programmers [2]. On the other hand,
specification-based programming is a rigorous, systematic technique suggested in
the SOFL formal engineering method [3] that has a firm theoretical foundation
in the refinement calculus [4]. Since specification-based programming is unlikely

c© Springer Nature Switzerland AG 2019
Z. Duan et al. (Eds.): SOFL+MSVL 2018, LNCS 11392, pp. 3–20, 2019.
https://doi.org/10.1007/978-3-030-13651-2_1
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to be fully automated in general, an efficient and effective support for the process
of program construction will become important and beneficial.

In this paper, we put forward a novel technique called Software Construction
Monitoring and Predicting (SCMP) to support human-machine pair program-
ming (HMPP). This technique is expected to benefit both specification-based
programming and programming in general.

By software construction monitoring (SCM), we mean that the process of
software construction is automatically and dynamically observed and verified
to detect faults in the current version of the software. In other words, as the
software is constructed by a human developer, its current version is always being
observed and checked by a software tool, and faults are reported timely if any.
The targeted faults are primarily semantic faults, not syntactical faults which
can be found by a complier. The theoretical foundation and the related topics
for research are detailed in Sect. 2.

By software construction predicting (SCP), we mean that the process of soft-
ware construction is automatically and dynamically observed and analyzed to
suggest possible future contents towards the error-free completion of the soft-
ware under construction. The application of SCP will strengthen the interaction
between the human developer and the supporting tool. The human is primarily
responsible for creating ideas and constructing software, while the tool is respon-
sible for suggesting the possible future contents necessary for dealing with poten-
tial defects based on the human’s input and for completing the software. The
suggested contents can be adopted without changes or with necessary changes
based on the developer’s judgement. The theoretical foundation and relevant
research issues are discussed in detail in Sect. 3.

Since both SCM and SCP require the syntactical analysis of the current ver-
sion of the software to extract necessary information and the result of SCM can
be the basis for SCP, SCM and SCP can be researched and supported together
in an integrated tool, but of course, they can also be studied separately. In fact,
each of them involves many technical details to be explored.

Note that this paper is unlike a usual technical paper describing some well
developed technique possibly with hard evidence to evaluate its effectiveness.
Instead, its purpose is to propose new research directions and topics in order to
encourage more researchers to work on for more efficient and effective software
engineering in the future. We believe that this kind of contribution is also impor-
tant for workshops because it can timely circulate the new ideas in the research
community.

The rest of the paper is outlined as follows. Section 2 describes SCM.
Section 3 discusses SCP. Section 4 briefly shows an integraed framework for
SCMP. Section 5 discusses the related issues. Section 6 explains how SCM and
SCP can be supported with examples. Section 8 briefly reviews related work.
Finally, in Sect. 9 we conclude the paper.
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2 Software Construction Monitoring (SCM)

We describe the theoretical foundation, main challenges to be addressed, and a
framework for realizing SCM, respectively.

2.1 Foundation and Challenges for SCM

Let S be the software under construction. Let P1, P2,. . . , Pn are properties S
must possess in order to ensure that S is correct (e.g., requirements in the spec-
ification are implemented; guard conditions can evaluate to both true and false,
respectively; loop body must include a variant to make the loop terminate) or
satisfies the required quality standards (e.g., the standard for naming variables,
style of code, readability, code structures). The technique SCM aims to automat-
ically, dynamically check whether the current version of S (incomplete in most
cases), represented by CV S, satisfies these properties. Such a check must be
performed in the background mode with a software tool, which should not affect
the human developer’s current activity of constructing the software. If one of the
properties is not satisfied, faults must be reported properly for the developer to
easily understand them.

There are following primary challenges:

• Since CV S is usually impossible to meet all of the possible properties P1,
P2,. . . , Pn defined for the completed software S, how should an appropriate
subset of the properties be chosen to ensure that the real faults in CV S are
reported?

• Given a relevant property Pi (i ∈ {1, 2, . . . , n}), how can CV S be automati-
cally and efficiently checked to find out whether it satisfies Pi or not?

• Assume that a fault report is produced, how can all of the reported faults be
ensured to be real faults for CV S and in what format should the faults be
presented to allow the developer to easily understand them?

Since CV S is dynamically changed as the construction of the software pro-
gresses, the subset of the properties to be chosen for checking will also be dynam-
ically changed. Whether such a change can be defined in advance is a question.
If there is a solution to this question, what should it be? We believe that this
problem can be addressed using the Dynamic Set Theory proposed in [5] and
the details need to be worked out in the future.

To automatically check whether a given property is satisfied, we can use the
automatic testing for theorems proposed in [6]. The essential idea is to convert
the property into a theorem and then carry out an automatic testing of the
theorem. But the challenge is how many and what kind of test data should be
produced to ensure all real faults will be revealed.

As far as the format of fault report is concerned, perhaps the most helpful
format would be the one that directly indicates the location of the faults and
gives a brief description of the nature of the faults. The editing tools in the
Eclipse environment can be a reference for developing this idea.
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Current version of
software

Property-related
knowledge base

Syntactical Analysis

Information of the
current software

Form Specific
Properties Check Properties

Specific properties

Fault report

Fig. 1. Basic framework for SCM

2.2 Framework for Realizing SCM

Figure 1 shows a basic framework for realizing SCM that includes essential activ-
ities and data. The Syntactical Analysis provides the information of the current
software CV S for determining specific properties to be checked. This would
require the knowledge about what properties can be formed. The property-related
knowledge base is a pre-prepared knowledge base to keep all of the interesting
properties of software that are defined in a manner suitable for application to
CV S. The knowledge base can be established based on the language used for
writing the software, software development conventions or standards, and the
most common faults occurred in the past. Of course, the knowledge base can be
updated over the time. We do not explain the other parts of the framework since
their roles can be easily comprehended according to their name.

3 Software Construction Predicting (SCP)

Similarly to the introduction of SCM, we also discuss the theoretical foundation,
main challenges to be addressed, and a framework for realizing SCP, respectively.

3.1 Foundation and Challenges for SCP

Suppose a completed software S is composed of n fragments f1, f2,. . . ,fn.
Abstractly, it is represented as S = {f1, f2, . . . , fn}. Each fragment can be inter-
preted into different software unit depending on the type of the software. For
example, a fragment for a specification can be a formal declaration or logical
expression, but for code, it can be one line of code, a statement, a sequence of
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statements, or a subroutine. At this point, our discussion is not affected with-
out substantiating the fragment. A current version CV S of S, which is usually
incomplete, can be regarded as a subset of S, i.e., CV S ⊂ S.

On the basis of CV S, SCP aims to automatically suggest a set of fragments,
say Pc (predicted contents), which is a subset of S. Ideally, Pc can be used
without change in the finally completed software S, but in many cases, some
fragments of Pc may need to be modified in order to make them suitable for
the final software. The predicted fragments are expected to play some of the
following roles:

• Resolve the potential faults in the current version of the software CV S. For
example, when a statement converting an input number-string into an int
type number is written in Java, the corresponding exception handling code
(try-catch fragments) would be suggested to write in the next version. Another
example is when an assignment x = y/z is written in the current version, the
fragment for ensuring that z is not zero will be predicted properly.

• Develop the content of CV S towards the completion of the final software S.
For example, in ATM software, after a method called withdraw is defined in
a class called BankAccount by the developer, another method called Deposit
will be automatically suggested to define next by the SCP tool (if it is already
built). Of course, such a suggestion obviously needs sufficient knowledge about
the ATM system. We will discuss this point further later.

To realize the goals of SCP, we must attack the following challenges:

• How should the knowlege-base be built in advance? Two essential issues need
to be addressed. One is about the contents of the knowledge on the appli-
cation domain, the development method used for software construction, and
their possible combinations. Another issue is how existing techniques for rep-
resenting domain knowledge and method-based knowledge can be utilized
and/or improved to suit for software prediction. Moreover, how to expand
the knowledge-base dynamically by accepting more knowledge on predicting
and how to effectively and efficiently apply the knowledge-base for prediction
will also be important topics to study.

• What are the effective and efficient methods for predicting? One possibility
is to make good use of specifications, in particular formal specifications, for
software prediction. The specification may define the functionality, safety,
security, or any other important properties of the software. Another possibility
is domain-specific or method-specific predicting techniques that use domain
knowledge, method knowledge or both.

• Building a software tool is essential to realize SCP in an intelligent and auto-
matic manner, but how to fulfill this goal? The focus should be put on how the
knowledge-base is supported and how communications between the developer
and the tool can be efficiently done through an appropriate human-machine
interface.
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Current version of
software

Syntactical Analysis

Information of the
current software

Predict Contents Adopt fragments

Predicted
fragments

Next version of
software

Development method
knowledgeDomain knowledge

Fig. 2. Essential framework for SCP

3.2 Framework for Realizing SCP

A framework for realizing the SCP technology is shown in Fig. 2. Given the
current version of the software under construction, a syntactical analysis will
first be carried out to collect the necessary information. Then, on the basis of
this information and the knowledge stored in the knowledge-base the future
fragments will be suggested to the developer. Finally, the suggested fragments
will be modified, if necessary, and adopted in the next version of the software
by the developer.

In order to make the prediction as useful as possible, the key part of the
framework is the knowledge-base, which should store sufficient rules indicating
what kinds of fragment should be predicted under what condition of the software.
The knowledge can be the one on application domain (e.g., banking system,
railway control system), on the development method used for constructing the
software (e.g., model-driven, agile, SOFL, MSVL), or on the way of combining
them together.

4 Framework of SCMP

In addition to being able to applying SCM and SCP individually for different
purpose, we can also combine them together to establish an integrated technology
called software construction mointoring and predicting (SCMP). The framework
of SCM and SCP can be integrated properly to form a framework for SCMP.
Such a framework is shown in Fig. 3. Since all of the interesting issues involved in
this famework have been discussed previously, we omit further discussion about
this integrated framework here.
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Current version of
software

Property-related
knowledge base

Syntactical Analysis

Information of the
current software

Form Specific
Properties Check Properties

Specific properties

Fault report

Predict Contents

Development method
knowledgeDomain knowledge

Predicted
fragments

Next version of
software

Adopt fragments

Fig. 3. Framework for SCMP

5 Discussions on Application of SCMP

For the sake of space, this section only discusses the essential ideas of how to
apply SCMP to agile and specification-based development paradigms.

We believe that SCMP has a great potential to help us realize the agile
development paradigm with much lower cost than that for pair programing in
the eXtreme Programming (XP) paradigm. We provide a special “pair program-
ming” in which one person is human developer and the other “person” is com-
puter. The major role of the human developer is to create the algorithm (or
similar, such as architecture) and data structures necessary for the software,
while the role of computer is to point out defects or violation of relevant stan-
dards in the algorithm and to act as an assistant to suggest fragments necessary
for completing the software with high quality.

In the specification-based development paradigm, building a high quality
specification (which can be informal, semi-formal, or formal) is extremely impor-
tant for the success of the specification-based programming. Our SCMP app-
roach can be applied in both processes.

For constructing the specification, it can be done in the manner that the
specification content is basically created by human developer while the defect
detection and specification fragment predicting are done by computer as the con-
struction proceeds. We have worked out a predicting method and a prototype
tool to support an scenario-based formal specification approach to defining the
functionality of a single operation in [7]. The specification is expressed using pre-
and post-conditions in SOFL. The basic idea is described briefly as follows. To
write the post-condition of a given operation, the user first enters one functional
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scenario that is represented by the conjunction of a guard condition G and a
defining condition D, i.e., G ∧ D. Such a scenario reflects a functional require-
ment: if G holds, the output of the operation must be defined based on D. Then,
the tool will analyze the structure of the scenario, focusing on the guard condi-
tion G, and then predict the other functional scenarios that will form a logically
complete specification for the operation. After the user selects and accepts some
or all of the predicted functional scenarios, the tool will automatically predict the
other scenarios again if necessary. Such a process is repeated until a consistent
and complete specification is constructed.

We can apply this principle to the process of constructing a program based
on the specification. Instead of giving a complicated discussion on the principles,
we use two examples to illustrate the ideas next.

6 Example 1

We now use a comprehensible example to illustrate how SCMP can support
human-machine pair programming in specification-based program construction.

Figure 4 shows a module written in the SOFL specification language for an
IC card known as Suica Card for using railway services. In this module, two oper-
ations (called processes in SOFL) are specified using pre- and post-conditions.
One is Charge with Cash, describing the service of charging card with cash,
and the other is Charge from Bank, describing the service of charging card
directly from the customer’s valid bank account. For brevity, we focus on the
discussion of how to use human-machine pair programming to construct a pro-
gram to implement the operation Charge with Cash.

6.1 For SCM

We require the machine to check the following properties as the program is being
constructed:

(1) All items in the specification are properly implemented.
(2) All of the guard conditions in the program can evaluate to true and false,

respectively.
(3) All of the loops in the program has an variant to ensure its termination.

To check these properties, they are stored in the knowledge base before-
hand. When the program is constructed, the formal specification, the encoun-
tered guard conditions and the body of loops in the program will be treated
as the relevant information sources that are dynamically obtained either from
the specification or from the constructed program fragment. These information
sources will be selectively used when a designated property needs to be checked
by computer.

For property (1), the data reification laws [8] and the refinement laws [4]
are properly applied. Specifically, for each type and operator defined in the
specification language, a set of checking rules is defined. Whenever a variable
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Fig. 4. A module in an IC card system written in SOFL
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declared with a type in the specification is declared with a concrete type in the
programming language, the corresponding rule will be automatically checked.
This principle can be formalized as follows:

Cr : Sitems → R

where Sitems is the set of all type names and operator names defined in the
specification language, R is a power set of rules specifying what to be checked in
the corresponding program in the format condition → action, and Cr denotes
the mapping from Sitems to R.

Let us take the type nat0 (including zero and positive integers) for example.
we can define its rule set as follows:

Cr(nat0) = {
(1) The variable in the program corresponding to the variable declared with

nat0 in the specification is declared with a concrete numeric type → Check
whether its value is not negative before it is used,

(2) The corresponding variable in the program is declared with non-numeric
type → Issue an warning message,

(3) The corresponding variable is not declared at all in the program → Issue
an warning message.

}
For instance, these rules can be applied for checking in the process of con-

structing the program for the operation Charge with Cash. Figure 5 shows a
snapshot of reporting a potential defect after the line if (card.getBuffer() +
amount1 > 50000) { is read by the SCM tool on the Eclipse platform. The
potential defect is the lack of checking whether the value of variable amount1 is
not a negative integer before this line in the program. To remind the program-
mer of the potential defect, the SCM tool automatically produces a comment
/ ∗ ... ∗ / starting with a question mark “?”, indicating the nature of the defect.

These rules are implemented in the SCM tool based on automatic program
analysis techniques [9]. For some rules in the mapping Cr, the checking may not
be fully automated. In that case, a lightweight approach will be taken to only
issue the warning message for the possibility of potential defects.

For property (2), automatic predicate-based test generation techniques [6]
can be used to check whether the guard condition of interest can evaluate to
true and false, respectively.

For property (3), program analysis techniques can be applied to check
whether a variant updating the loop variables exists or not. For brevity, we
omit the examples.

6.2 For SCP

To realize the functionality of SCP, the knowledge base needs to store a set of
knowledge expressions in advance. The knowledge base can be perceived as a
mapping from the set of program fragment patterns to another set of program
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Fig. 5. Snapshot of montoring in constructing the program of operation Charge with
Cash

fragment patterns that should be more complete towards the final program.
Formally, the knowledge base can be abstractly expressed as:

Kb : PFP → PFP

where PFP denotes the set of all possible program fragment patterns. Each
pattern shows a certain structure of program fragment. Below will show three
examples, respectively.

6.2.1 Predicting for Constructs
Suppose that the user has written the conditional statement like if (A and B)
{...}; which is treated as a program fragment pattern. Based on this pattern,
another pattern, such as if (A and B) {...}; if (A and not B) {...}; if (not A
and B) {...}; if (not A and not B) {...};, can be predicted. Thus, the program is
ensured to deal with all of the possible cases started from the initial condition A
and B. The knowledge can come from specifications, coding standards, coding
experience, and the programming language semantics. Of course, the challenge is
how to build sufficient knowledge into the knowledge base for all of the possible
varieties of program fragment patterns. An incremental approach can be taken
to gradually build up such a knowledge base for a specific SCP tool.

Let us use the same operation Charge with Cash mentioned above as an
example to illustrate what can be done by an SCP tool. Suppose the programmer
has just written the following line of code:
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Fig. 6. Snapshot of predicating in constructing the program of operation Charge with
Cash

if (card.getBuffer() + amount1 > 50000) {...},
as shown in Fig. 6, the SCP tool will automatically propose the following lines
of code as the result of code prediction:

if (card.getBuffer() + amount1 = 50000) {}
if (card.getBuffer() + amount1 < 50000) {}.

The two conditional statements can be merged to form the following line of code
if the programmer finds it appropriate:

if (card.getBuffer() + amount1 < = 50000) {}.
The similar approach can be taken to deal with construction predicating of

other aspects in programs, such as exception handling and the class structure
for enforcing the principle of information hiding in object-oriented programming
languages.

7 Example 2

We give two simple examples to show how SCMP can be used to support pro-
gramming in general.

7.1 Predicting for Exception Handling

The similar approach can be taken to deal with construction predicting for excep-
tion handling in programs. As is well known, exception handling is an important
mechanism to enhance the robustness of programs, but writing the corresponding
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program fragments, i.e., try-catch statements in programming languages such as
C++, Java, C#, can often be forgotten, especially for unexperienced program-
mers, due to the fact that it does not deal with the main functionality of the
program. Further, since writing the corresponding try-catch code fragments is
also time consuming, many programmers may deliberately avoid writing them.
If the try-catch statements can be automatically provided by the machine, the
programmer’s burden will be considerably reduced and the reliability of the
program can be significantly improved.

The key to realize this goal is whether the places to produce exceptions and
the nature of the exceptions can be automatically identified only based on the
program code, because the places are the basis for forming the try statement
and the nature of the exceptions is the basis for forming the catch statements.
According to our study of the programming languages mentioned previously,
this can be done in most possible situations.

For instance, when the following C++ code is written, the SCMP tool finds
that in the for loop, the maximum number of loops is represented by variable n
whose value is supplied by the user of the program. Also, in the body of the loop,
the reference to the vector elements is represented by x.at(i) in which the index
i may exceed the size of the vector defined in the declaration of variable x previ-
ously. According to C++, the method at(i) is possible to cause the out of rang
exception to occur. Therefore, the SCMP tool can automatically predict the code
as shown in Fig. 7 with try-catch exception handling statements. In general, such
a predicted program fragment needs to be confirmed and possibly be revised by
the programmer.

#include <vector>
#include <iostream>
#include <stdexcept>
using namespace std;
int main() {

int a[] = {1, 2, 3, 4, 5};
vector < int > x(a, a + sizeof(a) / sizeof(a[0]));
cout < < “Input a number to explore the vector:”;
int n;
cin > > n;

for(vector < int > ::size type i = 0; i < = n; i++) {
cout < < “x[“ < < i < < ”] = ” < < x.at(i) < < endl;

}
}

7.2 Predicting for Information Hiding

Defining getter and setter methods (or member functions) for accessing and
updating the member variables of a class is a desirable style in object-oriented
programming, but when the number of the member variables becomes large,
doing so may be time consuming and too tedious for programmers to work
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Fig. 7. Snapshot of predicted code for an exception handling

on. To ensure the nature of information hiding for object-oriented programs, the
SCMP tool can automatically predict program fargments for the following tasks:

• Set the access restriction of all member variables of a given class to private.
• Define a getter function for every member variable that returns its value.
• Define a setter function for every member variable that updates its value.
• Set the access restriction of every member function of the class to public.

After producing the program fragments for these tasks, the programmer
should be allowed to modify the code, since some aspects of its details, such
as error messages, may not be appropriate enough for the tool to produce.

Let us consider the following program fragment as an example. When the
writing of this program fragment is finished, the SCMP tool will automatically
predict the program fragment as shown in Fig. 8.

class BankAccount{
string id;
string password;
int balance;

BankAccount(){
id = “”;
password = “”;
balance = 0;
}
}
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Fig. 8. Snapshot for predicting information hiding code fragment

8 Related Work

To the best of our knowledge, no research has been proposed or undertaken on
SCMP proposed in this paper. There are some reported work on software project
or progress monitoring, but its focus is on the analysis of project progress, risks,
and other elements in relation to software management rather than verification
of software under construction. There are also some reported studies on soft-
ware related predicting, but they are concerned with software project budget
predicting or software bug predicting, rather than software fragment predicting
for constructing error-free software.

Having said the above, it does not mean that our idea of SCMP receives
no influence from other people’s work. In fact, the principal ideas of SCMP
have benefited from specification-based testing and agile development methods.
The contribution of our SCMP is to form a systematic approach to support
specification-based programming in the human-machine pair programming fash-
ion. Therefore, we only give a brief review of the work in relation to the above
topics.

Specification-based testing is mostly explored in test case generation from
formal specifications. Gannon et al. proposed a fundamental principle for test-
ing the implementation under test based on algebraic specifications, which is to
choose some instantiations of the axioms and to check whether an execution of
the implementation makes the terms occurring in the instantiations yield results
that satisfy the corresponding axioms [10]. The same principle was also studied
by Bouge et al. [11] and later developed by Bernot et al. [12]. Dick and Faivre
proposed an approach to generating test data based on partitioning the con-
junction of pre-condition, post-condition, and invariant for a VDM operation of
interest into disjoint sub-relations by means of Disjunctive Normal Form (DNF)
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[13]. The similar principles are applied by Legeard et al. for test data generation
from B or Z notation [14–16], and has been adapted in many test data genera-
tion tools, some of which use interactive theorem prover [17,18] and others are
fully automated with constraint-logic programming [19] or with heuristics algo-
rithms driven by the syntactical form [20]. TestEra [21] accepts representation
constraints for such data structures and generates non-isomorphic test data by
using a solution enumeration technique to use propositional constraint solver or
SAT engine [22].

Agile development methods emphasize the importance of evolutionary proto-
typing in order to demonstrate working software to the user as early as possible
to allow the user to “join” the development process for decision making and
to avoid unnecessary configuration management cost. They support the user-
centered, testing-driven, and pair-programming principles and quick releases of
software products [1,23,24]. Our studies over the last ten years find that all of
the agile methods lack a theoretical foundation and they are heavily dependent
on human skills and experiences.

The aim of SCMP is to establish a theoretical foundation to govern the pro-
cess of human-machine pair programming for specification-based programming
or programming in general, and to build efficient tool support based on tech-
niques in artificial intelligence and software engineering. There are many chal-
lenging issues to address along this line, but we believe that continuous research
and development in this direction will lead to a breakthrough in tackling software
crisis we have been experiencing so far.

9 Conclusion and Future Work

Software Construction Monitoring and Predicting (SCMP) for pair programming
we proposed in this paper offers a novel and urgently needed technology for
improving software productivity and quality. We have discussed its theoretical
foundations, challenges, and frameworks. We have also pointed out its potential
application in the specification-based programming paradigm. We believe that
with the progress of research on SCMP, today’s software development will enter a
new era that will be characterized by intelligence and automation for significant
enhancement of software productivity and quality.

Apart from developing the theoretical and technical details for SCMP, we
also believe that extending the capability of SCM to support automatic reverse-
engineering for producing documentation of programs under construction will
provide considerable benefit for communication between programmers and other
stakeholders and for software maintenance. This area is exciting because it is
extremely useful for real software development and faces many challenging prob-
lems to deal with. Further, the current SCMP technology can be extended to
support pseudocode-based programming approach. That is, before writing code,
a pseudocode reflecting the main and abstract idea of what to be done in the
algorithm should be first constructed and then it will be gradually and incre-
mentally refined into code. This is an efficient programming style and therefore
should be supported by SCMP as well.
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Abstract. Machine learning software is non-testable in that training
results are not available in advance. The metamorphic testing, using
pseudo oracle, is promising for software testing of such machine learning
programs. Machine learning software, indeed, works on a collection of
a large number of data, and thus slight changes in the input training
dataset have a large impact on training results. This paper proposes a
new metamorphic testing method applicable to neural network learn-
ing models. Key ideas are dataset diversity as well as behavioral oracle.
Dataset diversity takes into account the dataset dependency of train-
ing results, and provides a new way of generating follow-up test inputs.
Behavioral oracle monitors changes of certain statistical indicators as
training processes proceed and is a basis of metamorphic relations to
be checked. The proposed method is illustrated with a case of software
testing of neural network programs to classify handwritten numbers.

1 Introduction

Machine learning using statistical methods, such as a deep neural network (DNN)
[10], is basically searching for appropriate learning parameter values with respect
to a given set of data, a training dataset. Machine learning programs are solving
numerical optimization problems, and it is not easy to check whether resultant
parameter values are correct. Correctness, in practice usually, may be evaluated
in view of inference results or service quality.

From software engineering viewpoints, product quality of machine learning
software must be guaranteed. Learning parameter values may be incorrect if
programs are buggy. An issue here is testing whether a machine learning program
is implemented correctly with respect to its design specifications, describing
functional behavior to solve numerical optimization problems. Those programs
are, however, non-testable [22], because trained learning parameter values are not
known in advance. If those values are already known, running machine learning
computer programs, actually training programs, is not necessary. We may use
such known parameter values to implement inference programs that work on
new data.

Conventional software testing methods implicitly assumes that some cor-
rectness criteria are available as test oracles [2], and are not applicable to
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non-testable programs in a naive manner. Alternatively, we make use of pseudo
oracles [7], in which a kind of weak notion of correctness criteria plays a key role.
As such weak correctness criteria, gold-standard oracles use execution results of
programs other than the current test target.

Metamorphic testing (MET) [5] adapts an approach similar to the gold-
standard oracle in that execution results of a program are employed as correct-
ness criteria. The MET method is a framework of calculating a new follow-up
test data from a given initial data so that two execution results, one with the
initial data and another with the follow-up one, satisfy a metamorphic relation.
The method is especially effective in testing of numerical computing application
programs, and is also successful in testing machine learning classifiers [6,23].
Generating a set of corner-case test data systematically is effective [12] in par-
ticular for testing of support vector machines (SVM) (e.g. [3]). However, these
methods are not applicable to either a DNN or even a classical neural network
(NN) [11], because the optimization problem of NN is non-convex and thus ora-
cles are not apparent. Contrarily, the optimization problem of SVM is convex
and gold-standard oracles are easy to define.

This paper investigates a new MET framework applicable to NN, which
involves two key ideas of dataset diversity and behavioral oracle. The proposed
framework is explained by using a case of testing NN machine learning programs,
written in Python, to classify handwritten numbers.

In the following, the first two sections introduce background materials; Sect. 2
explains the basic MET framework, and Sect. 3 summarizes problems of neural
network machine learning. Section 4 proposes a new MET framework applica-
ble to software testing of neural networks of non-convex optimization problem.
Section 5 illustrates a case for testing NN machine learning programs. Finally,
Sect. 6 presents discussions including comparison with related work, and Sect. 7
concludes the paper.

2 Metamorphic Testing

Software testing [2] is accompanied with an implicit, often forgotten, assumption
that correctness criteria are known. Let f(x) be a test target program or system
under test (SUT)1. Usually, a correct value Ca for an input value of a is known
from functional specification documents or as a theoretical value. Then, software
testing of f(x) is checking whether the computation result f(a) is equal to the
known expected value of Ca.

If such correctness criteria are not known, f(a) may be checked against some
concrete value Ra instead of Ca. Such an Ra is a golden output, an execution
result of a certain program other than the current SUT. Because Ra is just an
execution result of program, its correctness is not guaranteed, but can still be
used as a certain criterion.

Several approaches are known for obtaining such a correct value Ra. An
N-version programming approach relies on constructing multiple programs to
1 Programs are regarded as functions for simplicity.
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satisfy a given functional specification. Different development teams work inde-
pendently, in some cases, using different programming languages, which avoids
contaminating programs with similar faults, and thus raises reliability levels of
Ra. The method is conceptually exploring a design space to result in variant
implementations, and thus relies on design diversity.

Data diversity [1] is a notion orthogonal to design diversity so as to obtain
input data for a given test target program f(x). This is especially effective
for numerical programs. For example, if f(x) refers to a program to imple-
ment a trigonometric function sin(x), then various input test data can be
systematically derived thanks to characteristics of sin(x). We consider here
sin(a + b) = sin(a)sin(π/2 − b) + sin(π/2 − a)sin(b). This re-expression of
sin(a + b) leads to four different test inputs for a certain combination of a and
b. From a viewpoint of testing sin(x), the above re-expression provides a way
to obtain various test inputs, which can basically be considered exploring input
data space. In data diversity, re-expression formulae may provide relations that
execution results must satisfy. However, the notion of test oracle is not recog-
nized explicitly; the above example involves five calls to sin(x), each with a
different test input data.

Metamorphic testing (MET) [5] is an alternative way for introducing pseudo
oracles, which is proposed initially to conduct software testing of numerical pro-
grams as well. It is a framework of calculating a new follow-up test data from
a given initial data so that two execution results, one with the initial data and
another with the follow-up one, satisfy a metamorphic relation (MR). MET
shares the notion of data diversity in that MET provides a method to explore
input data space, but has characteristics as a testing method more usable than
the data diversity proposed in [1]; the follow-up data generation takes into
account of MRs, which is related to pseudo oracle. However, both the data
diversity approach of [1] and the MET provide ways to exercise data space to
search for various test inputs systematically. We, in this paper, call extended data
diversity, or just data diversity, this characteristics of data space exploration, as
compared with design diversity.

Generally, MET can be conducted iteratively to test the SUT. A new test
data, a follow-up test data, is generated systematically from a current test
data. Given an m-th test input x(m), a translation function T generates a new
follow-up test input x(m+1) such that x(m+1) = T (x(m)). The T is derived from
functional specifications of f(x) such that an appropriate metamorphic relation
RelT (f(x(m)), f(x(m+1))) is satisfied. If the relation RelT (f(x(m)), f(x(m+1))) is
violated for two executions of the same program f(x), one with x(m) and another
with x(m+1), then the program f(x) is considered to contain some faults in it.
In simple cases, RelT can be just an equality,

RelT (f(x(m)), f(x(m+1)))
def
= (f(x(m)) = f(x(m+1))).

We consider a trigonometric function sin(x) again to explain the basic ideas
of MET. For example, sin(a) = −sin(π + a) for a certain value a. If we take
a as an initial input data x(0) and T (x) to be a function adding π to x, then
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x(1) = π+a. This translation function T is intended to satisfy RelT (y(0), y(1))
def
=

(y(0)= − y(1)) where y(m) = sin(x(m)). For a given a, two executions of sin(x),
one with a and another with π + a, are compared. If RelT (y(0), y(1)) is violated,
we conclude that the program under test f(x), sin(x), contains some faults in
it, because the program does not satisfy the formula that sin(a) = −sin(π + a).

Machine learning programs are implementing numerical optimization meth-
ods and thus are amenable to MET. MET is, indeed, successful in testing
machine learning classifiers [23], which introduces six metamorphic properties
(MPs) that translation functions satisfy. The MRs are basis of guidelines to
introduce translation functions for classification tasks.

An MP is either additive, multiplicative, permutative, invertive, inclusive, or
exclusive. A dataset, which is input to machine learning, is a set of data points,
and each data point consists of a lot of attributes. Furthermore, each data point is
assigned a supervisor tag2 of +1 or −1. Additive or multiplicative MP generates
a new dataset whose data points are modified such that a constant is added or
multiplied to certain attributes. Permutative MP interchanges chosen two data
points to create a new dataset. Invertive MP inverts all the values of supervisor
tags of either +1 or −1. Inclusive MP adds a new data point to the current
dataset, and exclusive MP deletes an existing data point.

3 Machine Learning Problems

We briefly introduce machine learning problems that this paper considers.

3.1 Neural Network Model

A neural network learning model consists of perceptrons. As shown in Fig. 1(a),
a perceptron receives a set of weighted inputs and emits an output signal. Let
xi be an input signal and wi be a weight on the i-th input. An output signal y
is calculated as σ(

∑d
i=1 wixi) where an activation function σ is sigmoid.

A classical neural network is a set of perceptrons arranged in two layers.
Figure 1(b) shows such an example which receives D input signals propagated
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Fig. 1. Neural network

2 We assume here supervised learning problems.
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into M perceptrons in a middle or hidden layer. The middle layer signals are
then fed into the R perceptrons in the output layer. If h and r are activation
functions, the k-th output yk is a non-linear function.

yk(V,W; x ) = r(
∑M

j=0
vkjh(

∑D

i=0
wjixi))

The formula can be compactly rewritten with x being a D-dimensional vector
or a D × 1 matrix.

y(V,W; x ) = r(V · h(Wx ))

W is a M ×D matrix consisting of wji, and V is a R × M matrix of vkj . All
the elements in both W and V are collectively called learning parameters.

Learning with respect to a given training dataset is basically a numerical
optimization problem. Let {〈xn, tn〉} be a training dataset of size N where xn

are D-dimensional vectors representing data points and tn are R-dimensional
vectors of supervisor tags. Optimal parameters are those minimizing an error
function E.

〈V∗,W∗〉 = arg min
V,W

E(V,W; {xn, tn})

Together with obtained parameters, y(V∗,W∗; x ) is a function to infer an
output tag for a given data point x .

In the above, E is an error function defined using another function �.

E(V,W; {xn, tn}) =
1
2

N∑

n=1

�(y(V,W; xn), tn)

The function � provides a measure to represent how much a calculated output
y(V,W; xn) differs from an expected supervisor tag value tn. � can take various
forms, and one such example � may be defined as a square of a distance between
two vectors such that �(u , v) = ||u − v ||2.

An inference function y(V∗,W∗; x ) with obtained learning parameter val-
ues may be over-fitting to the training dataset. Therefore, another dataset, a
testing dataset {〈xm, tm〉}, must be prepared, which is different from the train-
ing dataset. The inference function is applied to each data point xm to check
whether an inferred tag reproduces a given tag tm. All such results produce
an error rate, which describes how often the inference function miss-infers. The
obtained learning parameters 〈V∗,W∗〉 are appropriate if an error rate is smaller
than a certain given threshold value, such as 95%, demonstrating a criterion. This
criterion is determined in view of required service quality.

3.2 Loss and Accuracy

An NN machine learning problem in the previous section is considered as a
declarative functional specification of NN machine learning software; it is indeed
solving a problem of finding optimal values for learning parameters. In particu-
lar, an NN learning is a non-convex optimization problem of a non-linear error
function E.
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(a) Probably Correct (ProgPC)

(b) Bug-Injected (ProgBI)

Fig. 2. Loss and accuracy

Software testing works on programs, which implements algorithmic ways to
solve the declarative problem. Below briefly introduces characteristics of such
algorithmic solutions so as to understand why testing NN programs is difficult.

A standard approach to searching for a set of learning parameter values is a
gradient decent method (e.g. [11]). The method iteratively calculates new values
starting from a given initial set of parameter values, 〈V0,W0〉.

repeat {
Vnew = Vold − η∇vE;
Wnew = Wold − η∇wE

} until (converge ∨ timeout)

where η is a learning rate and is called a hyper-parameter. Furthermore, a back-
propagation method is employed to calculate ∇E(Vold,Wold). The method is
more efficient and accurate than numerical differentiations.

Because the optimization problem is non-convex, the search is not guaran-
teed to reach a global minimum, This characteristic is different from the other
machine learning classifiers such as SVM, which is a convex optimization prob-
lem and thus is guaranteed to terminate with a global minimum (e.g. [3]).

In NN training, error rates for a training dataset provide a piece of infor-
mation when to stop the iteration; namely the iteration is terminated when an
error rate becomes smaller than a certain threshold. Therefore, NN training pro-
cedures usually monitor the two metrics, loss and accuracy. The loss is a graph
of an error function. The accuracy, one minus an error rate, is a graph for rates
of reproducing correct tags for a testing dataset. Figure 2 shows such graphs as
iterations or epochs proceed.
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The graphs actually demonstrate that the search converges at a certain desir-
able point in the solution space because the loss decreases to be almost stable
below a threshold, and the accuracy reaches a satisfactory level of higher than
0.95. Figure 2 implies that loss together with accuracy may be good indicators
to decide whether NN training processes behave well or not. However, the two
metrics are not appropriate indicators in view of software testing.

Firstly, the learning rate η has much impact on graph shapes (e.g. [11]). If
η is far from its optimum value, the accuracy, for example, is not acceptable. It
implies that the graphs might take undesirable forms even if NN learning pro-
grams are correctly implemented with respect to the design specification referring
to theoretically correct algorithms.

Secondly, the graphs in Fig. 2(a) and (b) are similar. However, (a) is obtained
for probably correct implementation of an NN learning program, while (b) is a
monitored result of a bug-injected program. This experiment shows that we can
write a buggy program such that the loss and accuracy are not much different
from those of a correct implementation. Furthermore, differences in graph shapes
are often larger for programs with inappropriate η than the case for a bug-
injected one.

Indicators other than the loss and accuracy are needed in view of software
testing of NN machine learning programs.

4 Extended Metamorphic Testing

This section proposes a new MET framework applicable to software testing of
neural networks of non-convex optimization problem. The framework is based
on two key notions, dataset diversity and behavioral oracle.

4.1 Dataset Diversity

Machine learning programs work on a training dataset whose size is as large
as more than ten thousands. Training results, learning parameter values, are
sensitive to the size N . Furthermore, the results are also sensitive to distributions
of data in the training dataset. Two datasets DS1 and DS2 with the same size
N may lead to different training results if their distributions are different.

Software testing with a series of input dataset, that slightly differ from each
other, may be effective to enable corner-case testing. Note that standard code
coverages focusing on control aspects [2] are inadequate, because control flows
in machine learning programs are not complicated and thus such coverages are
readily satisfied with any non-trivial datasets (e.g. [12]).

Dataset diversity is a notion based on the observation that data distribution
in a training dataset is significant. Imagine we have M number of dataset DSj

(j = 1, · · ·,M). Their sizes are all same (N), but data distribution in DSj is
not same. It introduces an idea of conducting software testing with M different
datasets DSj . In addition, corner-case testing would be possible with carefully
chosen such a group of datasets. Although DSjs are not same with each other,
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they have to be similar in view of a given machine learning task at hand. Gen-
erating DSj randomly does not make sense, because these datasets do not refer
to the same learning tasks anymore. A question here is how we obtain such a
good dataset.

Our approach is introducing the notion of dataset diversity into MET,
because its follow-up test data generation method provides a systematic way
to obtain appropriate new test data. In particular, we assume that metamorphic
relations, which translation functions must obey, are equality.

A translation function T , in the case of dataset diversity, is extended as
below. Let D(m) be a training dataset, which is also a test input to a machine
learning program f(X) of test target; f(X) is a program to implement algorith-
mic solution of numerical optimization problem as discussed in Sect. 3.2. Under
dataset diversity, a follow-up dataset D(m+1) is such that

D(m+1) = T (D(m), f(D(m))),

where f(D(m)) refers to a training result for D(m). D(m+1) is so chosen to have
a data distribution slightly different from D(m). A series of datasets can be
calculated starting with a certain initial dataset D(0). As seen from the above
discussion, dataset diversity is a kind of data diversity, which is apparent when we
regard a dataset as a set-valued data. Dataset diversity, however, is important,
because our focus is exploring different data distributions in dataset, but not
exploring simply data values.

In our previous work on software testing of SVM [12], we adapted reduce
margin, an instance of inclusive metamorphic property [23], to introduce new
data points into D(m+1); the new data are to be located close to a separat-
ing hyper-plane for D(m). Such a hyper-plane can, indeed, be calculated from
f(D(m)), where f(D(m)) is a training result and refers to a piece of informa-
tion to define a separating hyper-plane. We can create a new data point x
located close to a hyper-plane for D(m) and obtain a follow-up dataset such
that D(m+1) = D(m)∪{x}. Namely, the distribution of data points in D(m+1)

is slightly modified with respect to D(m), and is potentially effective because
such a new x close to a separating hyper-plane can be a corner-case. Note that
we are able to know that a data point is, indeed, close enough to a separating
hyper-plane only after we conduct classifying D(m).

Because machine learning problems that NN works on are different from
those with SVM, we must find appropriate ways to calculate follow-up dataset
D(m+1) with taking into account the training results for f(D(m)). We will study
in Sect. 5 an NN learning problem of MNIST dataset.

4.2 Behavioral Oracle

SVM is a convex optimization problem, formulated as Lagrangian (e.g. [3]), and
the search is guaranteed to reach a global minimum. When an optimization
process or training terminates, resultant Lagrange multipliers are guaranteed
to provide a piece of information defining an optimized separating hyper-plane.
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Therefore, after the programs terminate, metamorphic relations can be applied
to comparing of those parameters defining the hyper-planes.

NN learning is, on the other hand, a non-convex optimization problem, and
thus a learning program is not guaranteed to terminate with a desirable mini-
mum. As explained in Sect. 3.2, monitoring program executions is practically an
effective way to know how learning proceeds.

Recall that training is actually an iterative process of finding parameter val-
ues 〈V∗,W∗〉 so as to minimize an error function E(V,W; {xn, tn}). The
multi-dimensional space to be searched is dependent on a set of {xn, tn}, par-
ticularly on the distribution of {xn} in the dataset; training dataset has much
impact on search space shapes.

The search method, SGD (e.g. [11]), is empirically known to be robust
enough; an appropriate minimum, although it may be a local minimum, can
be found in most cases if it starts with appropriate initial search points. A train-
ing program to implement the SGD correctly may also be robust even for a
distorted dataset that the techniques using dataset diversity (Sect. 4.1) gener-
ates. We further expect that buggy training programs may not be robust enough
because their behavior is faulty.

(a) Hypothetical Indicator

(b) Change Rates

Fig. 3. Shape of indicator graph

As discussed with Fig. 2, however, loss and accuracy are not good indicators.
Now, an issue is to find appropriate indicators to be monitored. Imagine that a
certain good indicator is identified. Such an indicator may qualitatively take a
form of graph in Fig. 3(a) as epochs evolve, because training programs converge
in a certain way. A differentiated graph (Fig. 3(b)) is easy to see changes.

Since the number of those learning parameters is quite large, choosing just a
few learning parameters out of them as indicators is difficult. We choose some
statistics calculated from a set of learning parameters as indicators. If α(e) refers
to such a statistic at an epoch e, then g[α](e) defined below is a graph in Fig. 3(b).
Recall that graphs show qualitative trends.

g[α](e) = α(e + 1) − α(e)
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When a number of epochs of interest is NE , a measure function F(g1, g2) is
defined as a normalized squared distance of two such graphs.

F(g1, g2) =
1

NE

∑

e
|g1(e) − g2(e)|2

It essentially shows how two graphs are similar. For example, two graphs are
mostly identical if the value is acceptably small.

We extend equality metamorphic relations in the original MET with the
above measure function. We introduce a meta-parameter ε referring to an upper-
bound reference to consider that two graphs can be considered identical. Below
shows a general case of behavioral oracle where more than one statistic α make
sense as indicators.

RelT (f(D(m)), f(D(m+1)))
def
=

∧

α
(F(g[α(m)], g[α(m+1)]) ≤ ε)

The relation refers to graphs, not computational results returned when a program
is forced to be terminated. The graphs show how indicators change their values
in course of execution, or show behavioral aspects of the indicators. The relation
is thus called behavioral oracle in this paper.

In our proposed MET framework, appropriate translation functions allowing
dataset diversity is identified such that accompanied metamorphic relations refer
to behavioral oracle based on the graph distances. When such an equality relation
within a threshold ε is violated, we conclude that the machine learning program
under test may have faults in it.

5 A Case Study

As a demonstration of the proposed MET framework, whose key aspects are
dataset diversity and behavioral oracle, this section illustrates a case of testing
NN machine learning programs.

5.1 MNIST Dataset Problem

MNIST dataset is a standard benchmark of classifying handwritten numbers.
It contains a training dataset of 60,000, and a testing dataset of 10,000. The
machine learning task is to classify an input sheet into one of ten categories,
from 0 to 9. A sheet consists of 28 × 28 pixels, each taking a value between 0 and
255 to represent a gray scale. Pixels to represent ink are black, and blurry stroke
is gray in particular. The others constitute white backgrounds. A handwritten
number appears as a specific pattern of these pixel values.

In our experiments, NN learning model is, as in Fig. 1(b), so defined that
its hidden layer is 50-dimension while the input is 784-dimension and the out-
put is 10-dimension. Thus, the total number of learning parameters is 39,700.
The matrix W consists of all the weights input to perceptrons in the hidden
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layer and V refers to the weights input to those in the output layer. A training
program returns a set of optimal parameter values W∗ and V∗ to consist of
39,700 weights. Since the number is large, checking individual parameter values
does not make sense. Some statistics to calculate from these learning parameter
values are candidates of indicators used in metamorphic relations.

5.2 Follow-Up Input Generation

Because numbers are handwritten, some part of pen strokes is blurry, which
might confuse the classification task. It implies that a new dataset D(m+1),
which is almost the same as D(m), but changes some pixel values to be blurry,
will be more difficult than D(m) to classify, and thus that such a D(m+1) may
be appropriate as an input dataset for corner-case testing of learning programs.

This needs a systematic method to choose pixels whose gray scale values
are to be changed. Those pixels are determined with an auxiliary function GK

o

in Fig. 4. Then, follow-up test input takes a form below with an appropriate
translation function T and the function GK

o .

D(m+1) = T (D(m), GK
o (V(m),W(m)))

where V(m) and W(m) refer to obtained learning parameter values against the
training dataset of D(m).

As shown in Fig. 4, the function GK
o calls another function top(K, �,M). It

receives a weight matrix M, either V or W, and returns a set of indices for the
K largest weight values in the �-th column of M.

In the current NN learning model, V refers to a matrix of weights that
are input to the output layer. When o refers to one of the ten output signals
(o = 0, . . ., 9), top(K, o,V) collects indices of matrix elements whose values are

GK
o (V,W) ∧= {

H = top(K, o,V);
return

h∈H
top(K,h,W)

}

top(K, ,M) ∧= {
X = { abs(M ) }; Idx = ∅;
repeat K times {

A = max( X );
X = X\{ A }; Idx = Idx ∪ { J }

}
return Idx

}

Fig. 4. Pixel search
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in the top K-th largest. GK
o calls top again for W, which eventually returns a set

of input signal indices that have much impacts on the final classification result o.
Figure 5 depicts a small portion of MNIST training dataset. Each number

sheet shows a pattern of pixels, representing ink strokes, but has some black dots
superimposed on the patterns. These dots are in the resultant set of G5

4(V
∗,W∗),

where V∗ and W∗ refer to weight parameter values trained against the original
MNIST training dataset.

Fig. 5. Obtained pixels

(a) D(1) (b) D(2) (c) D(3)

Fig. 6. Changes in patterns of dots

An appropriate translation function T generates the (m+1)-th follow-up
input dataset D(m+1) using both D(m) and G5

4(V
(m),W(m)). For example, the

input signal values identified by G5
4(V

(m),W(m)) are increased by some speci-
fied amount if they are on the stroke pattern (cf. Fig. 5). We selectively choose
a particular pixel or a set of pixels to change value(s). This is similar to additive
or multiplicative metamorphic properties introduced in [23].

In both the SVM [12] and NN cases, distributions in training datasets used as
test input are changed, which can be regarded as instances of dataset diversity.
Note that affected distributions are different in NN case from those in SVM. In
the SVM case, the distribution of data points in dataset is modified, and thus is
considered as an instance of inclusive MP. In the NN case, the number of data
points in dataset is not changed, but the distribution of a particular pixel value
is affected. Roughly speaking, a mean value of such an affected pixel is changed
from the one before applying the modification.
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Starting with the original MNIST training dataset as D(0), D(m+1) is cal-
culated using weight matrices of the training result for D(m). Figure 6 shows
three patterns of identified dots. The number of dots increases and the dot pat-
terns become spread widely. Pixel patterns in D(m+1), consecutively obtained,
are more blurry than those in D(m). Therefore, some D(n) are expected to be
effective for corner-case testing of the target training program of NN learning.

5.3 Metamorphic Relations

As mentioned in Sect. 5.1, some statistics to calculate from weight parameter
values (V∗ and W∗) are candidates of indicators used in metamorphic relations.
We may consider means or variances of weights. Such statistics are defined for
W as below, where wji(e) refers to a weight value at an epoch index e. W(e) is,
indeed, changed as epochs proceed3.

The number of weights is M × D because W is an M ×D matrix. The means
μw(e) and variances σ2

w(e) are below.

μw(e) =
1

M × D

∑

j,i
wji(e)

σ2
w(e) =

1
M × D − 1

∑

j,i
((wji(e))

2 − (μw(e))2)

Indicator graphs, g[μw](e) and g[σ2
w](e), are constructed using the above statis-

tics.
Specifically, after initial trial experiments, we found two indicators were use-

ful, α ∈ {μw, σ2
v}. The metamorphic relations for the behavioral oracle takes a

form below.

RT =
∧

α∈{μw, σ2
v} (F(g[α(m)], g[α(m+1)]) ≤ ε)

where ε is an externally given small value.
Figure 7 is indicator graphs4 of g[σ2

v ](e) for the program, a probably correct
program (ProgPC), for which Fig. 2(a) is graphs of its loss and accuracy. Figure 8
is those graphs for a bug-injected program (ProgBI) showing the behavior of the
program whose loss and accuracy are found in Fig. 2(b).

In both Figs. 7 and 8, the top graphs are g[σ2
v ](e) with its input data of the

original MNIST training dataset (referred to as D(0)). The middle graphs are
monitored results with the first follow-up dataset D(1) and the bottom refers to
the case with the second follow-up dataset D(2). These datasets are calculated
with the method described in Sect. 5.2 where the condition to obtain strength-
ening dots is G3

4 (see Fig. 6).
Comparing two series of graphs indicates that the top and middle graphs

take almost similar forms, but that the bottom graphs are different. Specifically,

3 Statistics for V are similar.
4 Discussions on g[µw] are similar.
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the bottom graph for ProgBI (Fig. 8) is distorted. We may say that an indicator
graph g[σ2

v ](e) discriminates between ProgPC and ProgBI executed with the
second follow-up dataset D(2).

This discussion is, however, inadequate in view of software testing. When
we conduct software testing, only one test target program, either ProgPC or
ProgBI, is available. An appropriate question is whether a series of follow-up
datasets can detect some potential faults in a test target program. We compare
below three graphs within Fig. 8. The graphs in Fig. 7 are mostly similar, not
showing any distortion.

Of the three graphs in Fig. 8, the first and second are similar in their shapes,
while the distortion in the third graph is apparent as compared with the second.
ProgBI may violate the metamorphic relation RelT (f(D(1)), f(D(2))), which
implies that the program may have some faults in it.

Fig. 7. Indicator graphs for ProgPC

Fig. 8. Indicator graphs for ProgBI
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Although the discussion is qualitative because of inspecting graphs, calculat-
ing a distance of two graphs, F(g1, g2) introduced in Sect. 4.2, allows quantitative
measures. In the discussions below, α refers to σ2

v .
For the program ProgPC, the distances between the specified indicator

graphs in Fig. 7 are here.

F(g[α(0)], g[α(1)]) = 0.000798
F(g[α(1)], g[α(2)]) = 0.001544.

The measures for the program ProgBI (Fig. 8) are shown below.

F(g[α(0)], g[α(1)]) = 0.002236
F(g[α(1)], g[α(2)]) = 0.010771.

Although the absolute values are not significant, the measures for ProgPC
(Fig. 7), when calculated, are small. It implies that the indicator graphs for
ProgPC are almost the same, which is exactly what our inspection concludes.

For ProgBI (Fig. 8), however, F(g[α(1)], g[α(2)]) is about five times larger
than F(g[α(0)], g[α(1)]). It indicates that the difference in shapes is large between
the second and third graphs of ProgBI. If we set ε to 0.002, then we can say that
ProgBI violates the metamorphic relation RelT (f(D(1)), f(D(2))), and thus that
the program may contain faults.

6 Discussions

Machine learning programs are solving certain numerical optimization problems.
They fall into a category of scientific programming, which is one of the target
areas of the original metamorphic testing (MET) method [5,6].

MET is, indeed, successful in testing machine learning classifiers. In particu-
lar, applying MET to testing of support vector machines (SVM) is well studied.
[23] introduces six general metamorphic properties that translation functions
must satisfy for machine learning classifiers. Further, [12] illustrates a system-
atic way to derive such translation functions from declarative SVM problem
definitions. These studies show that using MET needs a thorough understand-
ing of functional specifications of test targets. It is the same as cases of software
testing in general (e.g. [2]); deriving test input data concerns much with and
needs knowledge on functional specifications of programs under test.

Dataset diversity, briefly mentioned in [13], is presented clearly in Sect. 4.1.
Data points in dataset take numerical values and dataset diversity changes data
values as well, the latter of which essentially concerns with extended data diver-
sity. Dataset diversity, furthermore, takes into account those characteristics of
machine learning problems in that the input is a set of data, not a single data
value, but consisting of a large number of data. Deriving follow-up tests in Sect. 5,
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indeed, concerns with functional specifications of target programs and also takes
into account the machine learning tasks of interest, classifying handwritten num-
bers in the example.

With regard to quality of machine learning software, we may think of two
distinct notions, service quality and product quality [14]. Service quality may be
considered good when an accuracy of inference is better than expected, even if
programs may contain faults. If our interest is service quality, then we do not care
much whether training programs have faults or not. Contrarily, product quality
comes from software engineering viewpoints. We eliminate faults from programs
as much as possible. This paper put focus on product quality of training programs
of NN machine learning and discussed a new metamorphic testing framework
based on dataset diversity and behavioral oracle.

Existing work on testing machine learning software mainly concerns with ser-
vice quality. DeepTest [21] takes an approach to high service quality. It employs
a notion of neuron coverage [17] to guide generation of new training datasets.
Given a training dataset, DeepTest first identifies a set of inactive neurons in
a DNN model and then generates a new training dataset to activate such inac-
tive neurons. The method is concerned with debugging DNN models more than
implemented training programs. Identifying such metrics suitable for discussing
service quality is in general an important future issue.

The follow-up input generation method discussed in Sect. 5.2 relies on find-
ing pixels to have much impact on some specific output signals. In an extreme
case, the pixel can be single, and is similar to the one pixel fooling method.
The method [20] solves an optimization problem to find a particular pixel so
that inference programs mis-infer in such a specified manner. The method is an
instance of black-box attacks, described below, just looking at input and output
signals without using any internal information of learning models. Our method
is based on a deterministic graph search algorithm making use of the knowledge
about the NN learning model at hand, and thus is more efficient than methods
to solve optimization problems.

In machine learning research, a notion similar to dataset diversity has been
studied in regard to dataset shift [18]. [4] uses diversity in training dataset to
make active learning efficient. Research in dataset shift mainly concerns with
devising robust machine learning algorithms even if training and testing datasets
have different probabilistic distributions.

An adversarial example [19] is a well-elaborated data that fools DNN infer-
ence programs; they mis-infer when such an input data is given. Therefore, in
general, responding appropriately to adversarial data is important in view of
achieving high service quality. Existing work on adversarial attack is categorized
into two [15]. The first makes use of detailed knowledge of the neural network
characteristics (e.g. [9]). The second relies on input and output signals only, and
is called black-box attacks [16]. Black-box attacks are more general than those
using detailed knowledge, and thus are potentially applicable to a wide variety
of machine learning problems. However, computational costs are high because
they solve numerical optimization problems (e.g. [20]).
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In summary, although motivations are different, adversarial attacks may gen-
erate exotic datasets that might be effective for corner-case testing as well. Our
follow-up input generation method in Sect. 5.2 is tackling a problem similar to
the one pixel fooling method [20]. It is actually demonstrating that two research
areas, adversarial attacks and follow-up test generations, are quite related.

7 Concluding Remarks

The case in Sect. 5 was successful in that the proposed method was able to show
some anomalies in a bug-injected program. The success is not always the case
because software testing cannot guarantee that programs are free from bugs [8].

In order that software testing is a practical method for providing informal
assurance on the quality and reliability of programs, we definitely need a method
to generate a wide variety of test cases systematically. We conjecture that the
proposed approach can be effective in software testing of machine learning pro-
grams.
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Abstract. Web services composition is designed to achieve a more powerful
and large-grained services with organic synthesis of different Web services. In
order to guarantee the quality of the Web services composition, comprehensive
and adequate testing of the Web services composition is required. However, the
dynamic and distributed characteristics of Web services combination make its
testing technology and method have big difference with the traditional software
testing and bring a large of challenges. In this paper, we summarize and analyze
the definition, architecture, testing methods and testing techniques of Web
service composition. In addition, we also analyze and prospect the progress of
Web services combination testing.

Keywords: Web service � Web service combination � Testing methods �
Testing techniques

1 Introduction

Web service is a software system that is unified by URI (unified resource identifica-
tion). As a special kind of service, Web Service not only realizes the characteristics of
remote access through network, but also inherits the characteristics of autonomy,
openness and self-description of general services. Different organizations have different
understandings and definitions of Web service. However, there was no fixed definition
of Web service so far. There are descriptions and understandings of Web service by
several large enterprises and institutions in the following.

The definition of the W3C organization: Web Service was a software application
that used URI to unify the identification, and used XML to defined, described interfaces
and binding. Web service is found and used by other users by network, and finished
interacts through XML messages at last. The definition of SUN Company: Web service
should include the following five characteristics. First, it provides an external interface,
which exchange data in XML format. Second, the out Web service can be access by
Web. Third, the services among the systems support relationship are loosely coupling.
Fourth, if Web services completed registered and the services would be located. Fifth, it
supports the specification of Web service protocol and implemented message com-
munication used XML. The definition of IBM Company: Web service is the smallest
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application module that has the characteristics of self-description, self-contained and
support matched with other Web service. Web service can implement description,
search, publish and be called anywhere in the network environment. Whether service
users asked for simple application requests or complex composite business processes, it
can accomplish tasks by calling the Web Service. When a Web service deployed
successfully, any other application can be discover and invoke deployed service
through a UDDI service registry to accomplish the task. The definition of HP Com-
pany: Web service is a service that solves user’s problems through Internet, and
transacted and processed tasks on behalf of applications and users.

Web services are platform independent, low coupled, self-contained and pro-
grammable. Web applications that describe, publish, discover, coordinate, and con-
figure them using an open XML (a subset of the standard General Markup Language)
for developed distributed interoperable application. The rise of Web service has been
accompanied by the introduction of service-oriented software architecture (SOA),
which provided a new paradigm of standards-based, loosely coupled, cross-platform
distributed computing on the Internet. Individual Web service provides specific capa-
bilities, and in order to meet the needs of users, more and more real projects need to
integrate and combine multiple Web services to provide comprehensive and complex
value-added services composite Web services. Members of the service can commu-
nicate with each other and handle user operations and requests in a logical manner.
With the further development of Internet application, Web service composition is
bound to get concerned and applied widely. In order to ensure the quality of composite
Web services, model checking is used to verify the conformance and the related
properties of the model of composited Web services with its implementation [1, 2].
Comprehensive and adequate testing for the implementation of Web services compo-
sition is required. However, because of the dynamic and distributed characteristics of
the Web service composition itself, many traditional software-testing technologies have
lost their original effectiveness to the Web service composition. Therefore, we need to
study the new testing techniques and methods for the Web service composition, to
provide a powerful support for the performance, function and reliability of composite
service.

At present, Web service portfolio testing has been studied and some research results
have been obtained. The purpose of this paper is to systematically summarize and
analyze the existing methods and techniques for the testing of Web services compo-
sition. Although some researchers have made a definite analysis and discussion about
this problem, we think that this problem is still needed further investigating. Web
services testing analyzed and summarized by Hong, Bozkurt and Ebrahim [2–5],
however, the research status of Web services composition testing had not been
emphasized. Web services composition testing has discussed by categorized the test
methods completed by Rusli et al. [6] in long before. After that, there were other study
results have been published. Therefore, it is necessary to make a new and compre-
hensive survey summary.

The structure of this paper is as follows. The first section, introduces the definition
of web services in detail; The second section, analyzes and discusses Web service
architecture; The third section summarizes and describes several web service
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composition testing methods; The fourth section, introduces and summarizes testing
techniques about Web service composition; The last section summarizes and prospects
about the research on web service composition testing.

2 Analyzed and Studied the Web Service Architecture

In general, Web Service used to invoke remotely. The traditional software testing
technology could not be simply apply to measure tested work of Web service appli-
cation system; In view of this, Zhang and Zhang [7] proposed a criteria contain
J attribute indicators such as accuracy, fault tolerance and testability, which can be used
to evaluate the reliability of Web services application systems. According to this
reliability criterion, we can effectively eliminate inappropriate Web services.

Testing framework [8] based on JUnit used in unit testing of application system
widely. Therefore, Zhang et al. [9] had attempted to propose a suitable unit test
framework for BPEL, which included Composition Model, test architecture, life cycle
management and so on. In this framework, the test function divided into several test
process (TP) and control TP process (CP), with the life cycle of TP be controlled by TP
provided beginTest and endTest.

Dong et al. [10] put forward an automated testing framework based on WSDL.
Given that the message contained in WSDL didn’t fully assist the test work, so the
WSDL extension specification was referenced in this framework, it included four other
extensions such as into/output (I/O) dependency. According to these extensibility, this
test framework could deduce test data and operation flow, formed a complete test case
at last.

Akehurst et al. [11] defined constraint for each object in BPEL based on the Object
Constraint Language (OCL), and implement the Java classes of verification based on
these restrictions. At the same time, Akehurst established a Meta-model based on
specification of BPEL, and the associations in objects defined by BPEL were repre-
sented as UML diagrams.

Looker et al. [12] put forwarded a test method based on Fault-Injection. Because of
the SOAP packet format used by Web services to exchange messages was based on
XML, Looker was able to add an injector server between the service provider and the
service requester by modified the container of the Web service, to monitor all messages
exchange between the service provider and the service requester, and according to the
setting of test cases insert a message that might cause an error into a normal message,
and observed whether the Web service under tested could correctly correspond to
messages with exceptions, such as error content, missing content, and so on.

Offutt et al. [13] proposed to use data disruption to generated different SOAP
parameter data, and analyzed the messages in response to verified correctness of the
peer-to-peer Web service. Offutt et al. [13] proposed three methods of disruption
message: Data Value Perturbation (DVP), RPC Communication Perturbation (RCP),
and Data Communication Perturbation (DCP). DVP was mainly based on the param-
eter message format defined by WSDL, such as string or numeric value, through the
method of boundary value analysis to generate different parameter messages. RCP used
mutation operators to calculated parameters to generate different new parameter
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messages. DCP is a Web services testing that used XML messages to send messages.
Offutt et al. [11] modified the contents of XML messages in SOAP by some rules,
These XML messages are used to test the access to a Web service’s database whether
correct or not.

Chen, Li and Zhang [14] proposed a development and test environment that could
flexibly define the process – WSCE, which enables the combination of Web services to
carry out in a very convenient way. In this architecture, Yu proposed two mechanisms
such as virtual partner and inspector service, to help developers verify the correctness
of the process or not.

Tsai and Paul et al. [15] put forwarded a test framework of WSTF (Web Services
Testing Framework). This framework was based on agent technology and could be
applied to SOA architecture system.

3 Web Service Composition Testing Methods

Web services testing methods had many similarities to traditional software testing and
there are differences of them. Web service testing required service requesters, service
providers, and UDDI accomplished together. The comparative results between Web
service testing and traditional software testing were shown in Table 1.

Compared with the traditional software testing and the characteristics of the Web
service composition itself, the tester could not have all the test information, because of
the component service is black box test, the tester could not have the source code of the
component service, so it was unable to get all the features of a component service and
build a rich test model. Therefore, in the test of Web service composition, some
scholars have studied how to expand document parsing or build model technology to
obtain sufficient test information. Furthermore, the dynamic binding of Web service
composition makes it difficult to predict the operating environment and behavior of the
combined service, the generation of test prediction was difficult, however, traditional
software testing techniques target and software behavior were predictable, static, and
non-distributed, so it could not be applied to Web service composition testing. As with
traditional software, the compositional Web service also has a software evolution
process, but the evolution process was dynamic, the changes didn’t limited to internal
structure or variable of the program. Instead, component services are upgraded or
replaced, business processes are replaced, and interface information for component
services is changed, and these evolutionary processes exist throughout the operation of
the system, so additional information is needed to support the regression test. As we
could see from the comparison above, the difference between Web service comparison
testing and traditional software testing exists in the whole process of testing. According
to the testing process, this paper summarized and analyzed the technologies and
methods of Web composite service testing in different stages.
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4 Web Service Composition Testing Techniques

One of the major features of Web services testing is that most testers do not gain the
source code. Therefore, all white-box testing relevant techniques are not used. How to
test Web services effectively is becoming a hot issue in Web services research.

4.1 Web Service Composition Testing Based on EH-CPN

The Web composite service testing technology based on EH-CPN mainly have the
following steps: First of all, we analyzed the data flow in the extended colored Petri net
through OWL-S document transformation, and find the used pairs for all of the variable
definitions and the used chains for the definitions of corresponding input and output.
Next, the definition that all input and output used chain extended to get an executed test
sequence. The above test sequences meet the full definition of use coverage criteria.
The test data was generated by the test case generated method that combined the

Table 1. Traditional software testing and web service composition testing

Item Traditional software testing Web services composition testing

Testers Dedicated test team or software
developer

Service integrator

Regression
testing

Offline, static evolution; can
sufficient understand software
changes and regression testing
timely

Online; dynamic evolution; difficult to grasp
the evolve situation of component services,
and there will also be evolution in the process
of regression testing; additional information is
needed to support regression testing

Software
evolution

Static evolution, changed
internal structure or variables of
program

Dynamic evolution, component services
upgraded or replaced, business processes
changed, and component service interface
information changed

Test client Software itself Built component service, such as proxy, etc.
Test
coverage

White-box testing and black-box
testing for software

Black-box testing for component services;
white-box testing for BPEL documents

Test
distribution

Centralized, multi-stage testing Distribute, remote, multi-stage testing

Test
execution

Off-line test Runtime test

Test model Have software code and could
build rich test model according
to software characteristic

Do not have source code of component
services, testers could build controlled and
observable test models only

Test
prediction

The behavior of software is
predictable, and it is easier to
generate test predictions

It is difficult to predict state and behavior of
composite services and generate test
predictions difficultly

Test type Unit test, integration test, system
test, acceptance test, regression
test, etc.

Unit test, integration test, system test,
regression test
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equivalence class partition and condition constraint, then combined test data and test
sequences to generated test cases. Input the OWL-S document in the developed test
tool of TWCS, and TWCS would generated a colored Petri net that extended levels
corresponding to OWL-S, then find out used chains that all the input and output of all
variables and extend it to an executable test sequence. Input the number of test cases
corresponding to each test sequence, and completed the generated the number of test
cases was same. Using the proxy occupancy program in .NET Framework SDK to
generated proxy for each Web service; finally, the proxy service be used to completed
the call of the corresponding Web service, executed the test case and completed the test
of the Web service.

4.2 Web Service Composition Testing Based on Mutation

The idea of mutation testing was to detect the effectiveness of test cases by embedded
errors in the program and guided the generation, selection and reduction of test cases,
and to achieve the purpose of tested at last. It was a test method based error. The idea of
mutation testing was proposed based on white box testing first, and the object of
mutation testing was program code. With the development of mutation testing, the idea
of mutation testing could be using for Web services testing, and guided test cases
generation, selection and reduction of test cases [16].

There were a lot of research in Web service mutation test [17]; this section intro-
duced the mutation-based Web service composition testing, which takes following
steps to test the Web composite service workflow: Firstly, parsed OWL-S document
and extracted information such as the type, format, and etc. input format accepted by
the composite Web service to be tested and workflow. Generated the initial test data set
based on the type, format, and other information of the input format, and test data could
be generated randomly or by the usual methods of boundary value analysis or
equivalence class division. At the same time, the workflow information of Web
composite service is analyzed and found nodes that meet the variation conditions in the
workflow. According to the corresponding change rules, changed the OWL-S docu-
ment information to generate new mutant that injected the wrong to the original
composite service to be wrong version of service composition.

After completed the above work, entered the same test data should be returned
different test results executed the original service composition and the variant Web
service composition, because of the workflow of the service composition was changed.
If the output was different, the variant was killed and the test data could identify the
wrong Web service combination and it was an effective test data. The test data should
be retained and added an effective test data set for later test data selection. It indicated
that the test data is invalid if the output results were same, the new test data should be
redesigned or repeated above tests and expanded the effective test data set [18].
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4.3 Web Services Testing Based on Interactive Behavior Specifications

This section introduces test problem of service interaction from the service requester’s
point of view. A Web service tested method that leverages interaction behavior
specification. The main steps were as follows:

Firstly, the behavior specification of Web service should be described correctly.
UML is widely used in system modeling in industry and academia because its sim-
plicity and standardization, using sequence diagrams of UML and the behavior rules of
Web services described by OCL. It is provided to the service requestor in the form of
an XML file (XML metadata interchange) together with WSDL document, and XML
documents could be generated automatically by existed UML modeling tools.

Secondly, used an extended state machine model of ELTS described the behavior
rules of the service. Added semantic information based on traditional LTS generated
extended ELTS to strengthen the function of LTS described data flows. ELTS was
based on the implementation relationship in a certain formal defined, and introduced a
new implementation relationship through generated algorithm of traditional LTS.
Through this new relationship given corresponding test data generated algorithm and
test cases with test coverage. It used to test whether the interaction behavior specifi-
cation was consistent with service implementation or not [19].

4.4 Testing Techniques Based on Formal Methods

Test case generated based on formal method divided into model detector and formal
analysis technology. The test case generation method based on model detector was an
input model, which converts the service combination described of BPEL into a certain
detector, and used formal method to describe the demand model that the composite
service should satisfy, used them as input of the model detector to produces test cases.
Most of the detectors used in the study included Nu SMV, SPIN and BLAST [20–23].
Test case generated method based on formalized analysis technology, which described
by BPEL through a formal method or other formalization methods, such as Petri nets,
automata or process algebra, then use existed analytical techniques of the formalized
method to generated test cases, such as references [24–26].

Petri net was a modeling and analysis tool for distributed systems. It was a directed
graph composed of repository, change, and directed arc. It was easy to described
sequence, concurrency, conflict and synchronization of the processes and components
in the system. Compared with other system models, true concurrency was a unique
advantage of Petri network. The modeling method based on Petri net could described
all kinds of control flow in the combinatorial process, but it could not reflect overall
state of composited service directly.

Automaton was a mathematical model with clear semantics. It was suitable for
describing discrete input and output systems. The system has a limited state, different
states represent different meanings. In actual needs, the system could complete pre-
scribed tasks in different states and transfer to another state. The automaton modeling
method could described internal state of Web service composition directly, but it could
not described interaction behavior between two services. The ability to described
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concurrent activities in composite process was limited, and there was a space explosion
problem. Process algebra was a formal modeling language based on algebraic methods.
A group of operators was used as a process component in grammar. The semantics of
the operator was defined by a structured operating semantic method. In this way, a
process could be regarded as label transition system (LTS). A significant feature of
process algebra was attributed concurrency to non-deterministic, that is, considered the
behavior of concurrent processes as all possible interlace behavior of each process. The
behavior of concurrent execution was suitable for described concurrent interactive
systems. The modeling method of process algebra had strong description ability and
rigorous computational reasoning ability, but its expression was more complicated, not
intuitive and difficult to understand.

Miao and Chen et al. [27] proposed a testing approach to model-based testing for
Web applications, which designed and implemented a web application testing system
based on this model. Taking the UML state diagram of Web application as system test
model, used UML sequence diagram described test target, and the FSM test model is
constructed by transformation and combination, automate generate test case; test model
visualization and automation of test execution were come true. It mainly focused on
functional testing in article: Model-Based Testing for Web Applications. The perfor-
mance tests, load testing, usability testing, compatibility testing and security testing not
verified.

Qian and Miao et al. [28] proposed a test path generate approach, which illustrated
by SWLS (Simple Web Login System) as an example and presented an effective Web
testing model for Web software testing. One of the main advantages of this approach is
that you did not need to access back-end source code. In order to get PTT from PFD,
they proposed a transformation algorithm by this method. They obtained test path from
PTT by constructing path expression, and gave a possible way to describe test path in
XML. Qian and Miao, which were full link coverage and full-page coverage, also
proposed two important concepts. It is possible that a particular link will appear on a
page only if provided a specific input in tested. But this web test method is not
necessarily adaptable in new case, so it needs to further improve test path generation
method, and develop new prototype to re-validate this web test model proposed.

Above several kinds of formal model could described the behavior of the Web
service combination well and have relevant technical and tools support, there were
some differences only in computational complexity. However, these methods required
staff with relevant professional background knowledge and ignored data flow infor-
mation modeling in combination process. Therefore, the non-formal test case generated
method was discussed below.

4.5 Testing Techniques Based on Informal Methods

The informal method [29–51] that it converted control flow, data flow, message flow,
behavior, etc. in a composite service described by BPEL and others into a graph model
and used search technology and constraint analysis technology generated test cases.
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The steps of test case generated method as follows: Firstly, build a model based on
some features of Web service composition. Secondly, generated test paths based on
model traversal. Thirdly, generated test cases based on constraint condition in above
path. The following research work falls into this category.

On studied of test case generated problem in Web service combination, some
researchers focus on control flow characteristics of Web service composition. Yuan
et al. [29] proposed a BPEL test case generation method based on graph search, which
used to deal with concurrent semantics of BPEL. This method described the WS-BPEL
program by defined control flow graph (BPEL flow graph, BFG). BFG contained
control flow and data stream of BPEL program. Generated test paths by traversed the
BFG model, the constraints in test path as the input of constraint parser generated
abstract test data and converted it into executable test cases automatically. However,
the process of converted BPEL documents to BFG and test paths search process were
done manually.

The method proposed by Yan et al. [30] was similar to Yuan’s method [29]. They
converted the WS-BPEL program into an extended control flow graph (XCFG) and
generated test paths based on XCFG, and then used a constraint parser generated test
data from test path. However, it is different from the Yuan et al. method that Yan and
others used symbolic execution methods to obtain a series of constraints from the test
path by invoked component services, but this method produced abstract test case that it
needed to be converted to an executable test case manually.

Mei and others proposed a test method based on XPath Rewrite Graph (XRG)
[31, 32] that it combined the control flow graph (CFG) and XRG to solved possible
integration problem caused by XPath in BPEL process. With the gradual deepening
research, some scholars believed that the model based test cases produce techniques
same as the method based on path generated test case. This method represents the test
data by generated message parameters, but the generated test cases were high redun-
dancy and low error rate. Hou [33] and Ni et al. [34] applied test technology based on
message flow in Object Oriented Program (OOP) to Web service combination test first
time. Wu and Huang [35] thought that binding internal state of single service, exe-
cution sequence among services and behavior of service closely related in runtime.
Therefore, references [36–38] proposed an EDSM sequence test model (EFSM-SeTM)
for Web service composition. They studied runtime test from the point of workflow
view and proposed a scenario-based testing framework for Web service composition.

We summarized and analyzed informal testing method based on model. As shown
in Table 2. It is shown that most of above test case generation techniques are semi-
automated, even include the technology proposed in running test. Therefore, firstly,
How to achieve full automation is a problem that can be further studied. Secondly, no
test case generated technology involved Web services and the quality of Web services
determined the correctness of entire Web service composition, so it is necessary to test
the Web service.
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5 Summary and Outlook

It can be known from above analysis that some problem of Web service combination
need to be research, although some results have been achieved in this area, which were
mainly reflected in the following aspects.

Formal modeling technology of Web services combination need to be developed
and researched deeply, such as research on the correlation, fairness and applicability of
formal model, further research on the property analysis technology of Web services
formal model. It is necessary to research Web services technologies made formal
technology provide services and support better.

The quality of test cases was fundamental condition for effective Web service
combination testing, which shown that high error rate, low redundancy and high
coverage. How to obtain more constraints that can enrich test information generating
test cases is a problem needed to be solved in academia and industry today.

Table 2. Classification of informal methods

References Model Focus Quality of test case Type Automated testing

Reference [34] Message
sequence
graph

Message
flow

Test case accurate, error
detect capability low;
high redundant

Runtime
test

Semi-automatization

Runtime
test

Reference [35] State
transition
diagram;
message
exchange
sequence
diagram

Service
interchange
and
dynamic
behavior

Without considering the
constraint conditions in
the path; test case with
practical significance
can not be obtained

Runtime
test

Semi-automatization

Reference [36] BPEL model Scene-based Testing is only based on
path; test cases
inaccurate; high
redundant; error detect
capability low

Runtime
test

Automation

Reference [37] Runtime
test

Automation

Reference [38] Runtime
test

Automation

Reference [30] Extended
control flow
graph

Control
flow

Abstract test cases Static
test

Semi-automatization

Reference [31] Rewrite the
graph of
Xpath

Data flow Abstract test cases Static
test

Semi-automatization

Reference [32] Abstract test cases Static
test

Semi-automatization

Reference [33] Message
sequence
graph

Message
flow

Higher detection rate
than RAND and GS;
redundancy is higher

Static
test

Semi-automatization
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Some researchers have been concerned about the runtime binding problem of Web
service composition, Ni [34], Wu [35] and Sun et al. [38] designed test automation
prototype tools, but they did not elaborated automation level of test technology, or
did they verify the relationship between automation and runtime binding issues.
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Abstract. Security of social network is a serious issue that cannot be
ignored. In order to improve the situation that most traditional verifica-
tion methods are not real-time and too complicated, this paper proposes
a runtime verification method based on source code instrumentation for
social network systems. First, a property related to a social network sys-
tem’s characteristics is formalized as a three-valued propositional pro-
jection temporal logic (PPTL3) formula, and based on the formula a
monitor is constructed. Then, probes are instrumented into the source
code of the system, which capture events and generate the execution
trace of the system. The trace is dealt with by the monitor in real-time
to check whether the system satisfies or violates the desired property. To
illustrate the effectiveness of this method, a case study of an open-source
social network system is provided.

Keywords: Runtime verification · Monitor · PPTL3 ·
Social network · Source code instrumentation

1 Introduction

With the development of Internet technology and the growing number of Inter-
net users, people’s online social needs are increasing. Social network (SN) has
become an important part of people’s work and daily life, and SN platforms such
as Sina Weibo, WeChat, Facebook, Twitter, Instagram and LinkedIn are well
known. As a virtual style of social medium, SN provides people a convenient
way of communication and information sharing and greatly reduces the cost of
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information transfer. With the rapid development of SN, the number of SN users
also surges in recent years. According to the second quarter earnings report of
Sina Weibo in 2018, the platform’s monthly active users had increased to 431
million by the end of June 2018.

The wide use of SN brings a lot of problems concerning security. In fact, SN
has the hardest hit by various cyber attacks. As we all know, SN users are likely
to share a large amount of information through the platform, including text,
pictures, videos and addresses. In certain platforms, it is not difficult for attackers
to obtain the information and then use it to perform malicious behaviors. In
addition to intentional attacks, security problem of SN may also be caused by
the fact that users are not vigilant enough to protect their own privacy. For
example, one may set a public view access to personal profile or a too simple
password.

So, it is important to ensure security of SN systems. For this reason, we pro-
pose an online runtime verification method based on source code instrumentation
which aims at improving the correctness and security of SN systems. Runtime
verification is a kind of lightweight verification technique. It is only concerned
with the execution trace of the system at runtime [1], without the need to model
the entire system. Although the technique of runtime verification is relatively
novel, it has been applied to various fields such as Web Service [2], the vehicle
bus systems [3] and C program’s memory overflow detection [4]. For runtime
verification of an SN system, we first characterize a desired system property as a
PPTL3 [5] formula and construct a monitor according to the property formula.
Then, we adopt the technique of source code instrumentation and use probes
to capture information of the system’s runtime trace. Through monitoring the
trace, the monitor reports in real-time if the property is satisfied or violated by
the system.

The rest of the paper is organized as follows. The logic PPTL3 and the
definition of property monitor are briefly introduced in the next section. Then,
Sect. 3 illustrates the specific implementation of the runtime verification method
based on source code instrumentation. As a case study of the method, Sect. 4
presents the process of verifying properties of an open-source social network
system. Finally, Sect. 5 discusses related work and Sect. 6 suggests future work.

2 Preliminary

Let Prop be a finite set of atomic propositions, B = {true, false} the Boolean
domain and Σ = 2Prop. An element a of Σ represents a set of holding propo-
sitions, e.g. a = {p, q} represents that p and q hold while other propositions do
not hold. The sets of finite traces 〈a1, a2, . . . , an〉 and infinite traces 〈a1, a2, . . .〉
on Σ are denoted as Σ∗ and Σω, respectively. Let u, v range over finite traces
Σ∗ and w range over finite or infinite traces Σ∗ ∪ Σω. The concatenation of u
and w is simply denoted as uw.
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ε
def= true more

def= ¬ε

P ;Q def= (P, Q) prj ε ♦P
def= true;P

len(0) def= ε len(n) def= len(n − 1)(n > 0)

P
def= ¬♦¬P fin(P ) def= (ε → P )

Fig. 1. Derived formulas

Generally, we use capital letters P and Q, possibly with subscripts, to rep-
resent PPTL formulas. The syntax of PPTL is defined as followed:

P,Q ::= p | ¬P | P ∧ Q | ©P | (P1, . . . , Pm) prj Q

where p ∈ Prop, © (next) and prj (projection) are temporal operators. As the
semantics of PPTL, a formula P may hold on a trace w, denoted as w |= P ,
which is also called w satisfies P . The detail of the semantics is provided in [6].
It is worth pointing out that the express power of PPTL is the same as that of
the full regular expressions [7], which is strictly greater than that of LTL.

For convenience, some derived formulas are defined, shown in Fig. 1. The
abbreviations true, false, ∨ and → are defined as usual. The chop construct
P ;Q holds on a trace that can be divided into two sub-traces where P and Q
respectively hold.

Given a PPTL formula P and a trace w, there are only two cases: w |= P or
w 
|= P . However, this mode of two valued logic is not suitable for the runtime
verification scenario. Runtime verification verifies whether a system satisfies a
given property, which can be formalized as a logic formula P , by a single execu-
tion of the system. At each execution point of the system, obviously, we can only
obtain a finite prefix u of the system execution trace, while possible execution
traces of the system may be arbitrary extension uw of u. The information of u
itself may not be adequate to decide whether or not each possible execution uw

satisfies P . For example, a property Q
def= �p indicates that a proposition p

holds all the time. In certain case, like u = 〈{p, q}, {q}〉, it can be decided that
Q is not satisfied. But in other cases, like u = 〈{p, q}, {p}〉, it is not sufficient to
make the decision.

To enable runtime verification, we extend the domain of PPTL with an
additional truth value inconclusive. The extended three valued logic is called
PPTL3 [5] and its semantics is defined as follows.

[u |= P ]3 =

⎧
⎪⎨

⎪⎩

true, if ∀w ∈ Σ∗ ∪ Σω : uw |= P ;
false, if ∀w ∈ Σ∗ ∪ Σω : uw 
|= P ;
inconclusive, otherwise

To realize runtime verification, we use a monitor to observe finite execution
traces and decide whether a given property is satisfied, violated, or uncertain
yet. Specifically, a monitor is defined as a finite state machine (FSM).
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Fig. 2. Monitor of p ∧ �q

Definition 1. A monitor M is a 6-tuple (S,Σ, δ, s0, sTRUE , sFALSE), where

– S is the state set, which contains two special states sTRUE and sFALSE,
– Σ = 2Prop is the alphabet,
– δ : S × Σ → S is the transition function, satisfying δ(sTRUE , a) = sTRUE

and δ(sFALSE , a) = sFALSE for any a ∈ Σ,
– s0 ∈ S is the initial state, and
– sTRUE and sFALSE are the accepting states.

A monitor can accept a finite trace u ∈ Σ∗ by one of the two accepting state.
For the purpose of runtime verification, we discriminate the two accepting states
so that a monitor has two accepting languages. Specifically, the true language
Lt(M) of a monitor M is the set of traces M accepted by the state sTRUE , and
the false language Lf (M) of M is the set of traces M accepted by the state
sFALSE . A monitor M is called the property monitor of a PPTL3 property P ,
denoted as MP , if Lt(M) = {u | [u |= P ]3 = true} and Lf (M) = {u | [u |=
P ]3 = false}.

The property monitor MP of an example property P
def= p ∧ �q is depicted

in Fig. 2(a) with Prop = {p, q}. Suppose a system executes for the first two
steps and the execution trace observed is u = 〈{p, q}, {q}〉. With this trace, the
monitor moves to State 2 which is not an accepting state. This means from the
current trace u, it is inconclusive whether the system satisfies the property. Then,
if the system executes for one more step and the trace becomes v = u〈{p}〉, the
monitor moves to State sFALSE which indicates v ∈ Lf (MP ). So, it is sufficient
to conclude that the system does not satisfy P , no matter how it executes in
further steps.

The display of a monitor can be simplified for conciseness. First, the label of
each transition, i.e. one or more sets of propositions, can be represented by an
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Fig. 3. Process of online runtime verification

equivalent propositional logic formula. By equivalent, we mean the models of the
formula are exactly the sets of propositions. In addition, if a state is not reachable
from the initial state, we do not need to draw it. The concise presentation of the
monitor in Fig. 2(a) is shown in Fig. 2(b).

3 Online Runtime Verification

Generally, runtime verification has two modes: online and offline, which are dif-
ferent in the way how the system’s execution trace is constructed. The online
mode usually uses source code instrumentation to obtain the trace, while the
offline mode constructs the execution trace from offline data of the system. In
this paper, we use online runtime verification and monitor the system in real-
time. The overview of our verification process is shown in Fig. 3.

This section introduces details of the verification process, which consists of
three main steps.

(1) Formalize a desired property of the system as a PPTL3 formula and construct
its property monitor;

(2) Insert probes into appropriate positions of the system’s source files, which
capture events relevant to the property, such as values of relevant variables,
and based on these information generate the system’s execution trace;

(3) As the system executes, monitor its execution trace constantly with the prop-
erty monitor and report if the property is satisfied or violated.

3.1 Property Monitor Construction

A property monitor is constructed from a desired system property. Such a prop-
erty may reflect some rules that the system should follow when executing, or
some behavioral specifications of users. Since natural language is sometimes
ambiguous in property description, formal languages are used to characterize
properties for further verification. In this work, we characterize a system prop-
erty as a PPTL3 formula. Then, we construct a property monitor based on the
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Fig. 4. Process of property monitor construction

Fig. 5. Sketch of PMG PPTL

PPTL3 formula. Figure 4 shows the process of the construction, which consists
of the following steps. Details of the construction steps are illustrated in [5].

(1) Consider two PPTL3 formulas: the system property P and its negation ¬P .
(2) Transform the two formulas into corresponding Stuttered Büchi Automata

(SBA) [7,8] AP and A¬P , respectively, using the theory of normal form.
(3) Construct two Nondeterministic Finite Automata (NFA) ÂP and Â¬P based

on the SBA, respectively.
(4) Convert the two NFA to equivalent Deterministic Finite Automata (DFA)

ÃP and Ã¬P , respectively.
(5) Multiply the two DFA and make necessary simplification, obtaining the prop-

erty monitor MP , which is an FSM.

In order to convert a PPTL3 formula P into its property monitor MP auto-
matically and reduce errors that may occur during manual conversion, we have
developed a tool PMG PPTL (Property Monitor Generation of PPTL property)
that implements the above process. The tool is written in Java and its sketch
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Fig. 6. Interface of PMG PPTL

Fig. 7. Flow chart of source code instrumentation

is shown in Fig. 5. The tool saves all generated automaton information in cor-
responding files, where information of the result property monitor is stored in
Monitor Info.txt.

The tool uses GraphViz to draw the information in the Monitor Info.txt
into the corresponding image. The result of property monitor generation of an
example PPTL3 property �¬p; q is presented in Fig. 6.

3.2 Source Code Instrumentation

To enable runtime verification with the property monitor, we need to obtain
the execution trace of the system which contains information relevant to the
property. For this, we adopt the technique of source code instrumentation.

The source code of the system can be considered as a set of source files.
Source code instrumentation is a technique that inserts code fragments, also
called probes, into the appropriate positions of appropriate files. The probes cap-
ture information needed to verify the system property, and organize the informa-
tion into a fixed format. The flow chart of source code instrumentation is shown
in Fig. 7.

In source code instrumentation, the choice of appropriate positions for probe
insertion is very important. We must collect information accurately and min-
imize the impact of probes on the execution efficiency of the original system.
In our method, we first define events related to specific aspects of the system
property and locate the position of events in the source code. Events are used
to determine truth values of atomic propositions in the PPTL3 formula. Then,
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we insert probes into the corresponding positions of source files so as to obtain
the relevant information.

Suppose Sys = {file1, file2 . . .} is the set of source files of the system,
Probe = {probe1, probe2, . . .} is a set of probe names, and Flag is a set of binary
variables.

Definition 2. An event e is a triple (probe, file, f lag) ∈ Probe × Sys × Flag.

An event e = (probe, file, f lag) indicates that a probe named probe is
inserted into the file named file in Sys, and the value of event is captured
by a binary variable flag. The binary variable is used to determine the truth
value of atomic propositions.

When successfully capturing an event, the probe uses the socket interface
to transmit it to the property monitor. Specifically, a communication function
send rv data is encapsulated into the source code of the system. Its functionality
is to use the socket to send information of the event data, in the form of the
above string, to the monitor.

3.3 Runtime Verification

When the instrumented system executes, an execution trace is generated step by
step in the form of an event sequence. In each step, the property monitor, which
is an FSM, may changes its state according to the event it receives. Once the
accepting state sTRUE (resp., sFALSE) is arrived at, the verification terminates
and the result is reported that the system satisfies (resp., violates) the property.

As the implementation of runtime verification, we have developed a tool
named RV PPTL (Runtime Verification of PPTL property). The tool is pro-
grammed in JAVA and its sketch is shown in Fig. 8.

RV PPTL reads information of a property monitor, including states and
transitions of the FSM, from the output of PMG PPTL. On the other hand,
it receives the sequence of events generated by probes through the receiving
server, and translates it into a combination of atomic propositions. According to
the state changes of the FSM as the atomic propositions are input, RV PPTL
monitors the execution of the system in real-time. Once an accepting state is
arrived at, it terminates and outputs the corresponding verification result.

4 Case Study

In this section, we present a case study of an SN system to illustrate the practi-
cality of the runtime verification method based on source code instrumentation.
Since most popular SN platforms such as Facebook and Twitter are not open-
source, it is infeasible to insert probe codes. In this case study, we select an
open-source SN platform named Elgg, which is developed by PHP+Mysql. The
source code of Elgg can be obtained from www.elgg.org. Elgg has basic func-
tionalities as most popular SN platforms, such as tweeting, blogging and adding

www.elgg.org
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Fig. 8. Sketch of RV PPTL

Fig. 9. Relationship of users in the Elgg system

friends. It also allows plugin customization and has good extensibility. So, we
consider an Elgg system as the system to be verified.

The Elgg website is deployed in the experimental environment Wampserver
and we register 3 users on the website. The relationship between 3 users in the
system is shown in Fig. 9. User relationship in Elgg is similar to Twitter’s weak
relationship that following a user does not require the user’s consent, different
from Facebook’s strong relationship that adding a user as friend needs the user’s
consent. In Elgg, if Cindy adds Alice to her friend list, then Alice is a friend in
Cindy’s perspective, but Cindy is not a friend in Alice’s perspective. The arrow
from Cindy to Alice in Fig. 9 represents this relationship.

With the weak relationship, we can perform runtime verification on some
privacy properties of the SN system. If a user does not want to publish some
blog to public, or does not expect strangers to see information of his personal
profile, he can set the corresponding view access as Friends or Private. However,
it is possible that he sets a wrong view access (e.g. Public) because of negligence,
and thus a stranger can see the information. To verify whether a user’s privacy is
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leaked, this case study verifies two properties concerning view accesses to user’s
blog and profile, respectively.

4.1 View Access to User’s Blog

Property 1: Alice saves a blog. Then, if and only if a user is Alice’s friend, he
can view the blog.

The property is relevant to a few events, described informally as follows.

e1 : Alice saves a blog

e2 : User is a friend of Alice

e3 : User can view the blog published by Alice

To capture these events, we insert probes into the source code of the Elgg system.
Specifically, we insert probes into save.php (relative path: elgg\mod\blog\actions
\blog) and all.php (relative path: elgg\mod\blog\views\default\resources\blog).
So, the events are formalized as follows.

e1 = (probe1, save.php, flag1)
e2 = (probe2, all.php, flag2)
e3 = (probe3, all.php, flag3)

Among the probes, probe2 calls the Elgg’s function check entity relationship
($guid one, $relationship, $guid two) to check whether the relationship between
two users is $relationship (such as ‘friend’) or not, and assigns a value to flag2.
So, it is a universal probe. According to the above events, two atomic propositions
p, q are defined as follows.

p
def= flag1 = 1

q
def= flag2 = flag3

The truth of the propositions depends on the values of variables flag1, flag2
and flag3. With these propositions, Property 1 is formalized as the following
PPTL3 formula.

P1
def= p ∧ ©�q

We input the formula into the tool PMG PPTL and obtain a property mon-
itor as shown in Fig. 10.

After generating the property monitor and inserting probes into the Elgg sys-
tem, we use RV PPTL to read information of the property monitor and monitor
the execution of the system. In Elgg, we simulate user operations with registered
users: Alice posts a blog but (wrongly) sets its view access as Public, Bill tries to
view the blog, and then Cindy tries to view the blog. The event trace is expected
to be 〈e1, e2, e3, e2, e3〉. The verification result is shown in Fig. 11.
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Fig. 10. Property monitor of Property 1

Fig. 11. Verification result of Property 1

Since Bill is a friend of Alice, he can view the blog published by Alice. At
this stage, it is insufficient to determine whether the property is satisfied or
violated. As the result shows, upon reading the event trace 〈e1, e2, e3〉, RV PPTL
outputs inconclusive and continues monitoring. Then, when Cindy tries to views
the blog, she successes as its view access is Public. In this way, Alice’s privacy
is leaked. As the result shows, upon reading the event trace 〈e1, e2, e3, e2, e3〉,
RV PPTL outputs false and terminates. This result indicates Property 1 is
violated and there are problems in the view access setting of Alice’s blog.
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4.2 View Access to User’s Profile

Property 2: If a user who is logged in is not a friend of Alice, he can only view
the Email in Alice’s profile, but not other information such as phone number or
address. If a logged-in user is a friend of Alice, he can view all the information
of Alice’s profile.

The property is relevant to the following (informally described) events.

e2 : User is a friend of Alice

e4 : User logs in

e5 : Friend can view Email, phone number and address in Alice′s profile

e6 : Non-friend can view Email in Alice′s profile, but cannot view phone

number or address

To capture these events, we insert probes into the source file login.php (relative
path: elgg\vendor\elgg\elgg\actions). So, the events are formalized as follows.

e2 = (probe2, login.php, flag2)
e4 = (probe4, login.php, flag4)
e5 = (probe5, login.php, flag5)
e6 = (probe6, login.php, flag6)

Notice that we only need to insert probes into the source file login.php, but
not the viewing profile, because we invoke relevant functions in login.php to view
the profile. So, the probes express the meaning “can view profile without having
to wait until a user visits Alice’s profile page”. According to the above events,
four propositions p, q, r and s are defined as follows.

p
def= flag2 = 1 and flag4 = 1

q
def= flag5 = 1

r
def= flag2 = 0 and flag4 = 1

s
def= flag6 = 1

The truth of the propositions depends on the values of variables flag2, flag4,
flag5 and flag6. With these propositions, Property 2 is formalized as the fol-
lowing PPTL3 formula.

P2
def= �((p → ©�q)&&(r → ©�s))

The property monitor of P2 is shown in Fig. 12.
Similar to the verification process of Property 1, RV PPTL reads the prop-

erty monitor of Property 2 and monitors the system. We simulate user operations
as: Bill logs in and views Alice’s profile, then Cindy logs in and views Alice’s
profile, but Alice forgot to set the view access to her profile. Notice that in Elgg,
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Fig. 12. Property monitor of Property 2

the view access to a user’s profile is by default Public. The expected event trace
is < e2, e4, e5, e2, e4, e6 > and the monitoring result is shown in Fig. 13.

Since Bill is a friend of Alice, there is no problem that he logs in and sees
all the information of Alice’s profile. At this stage, therefore, it is insufficient
to determine whether Property 2 is satisfied or violated. As the result shows,
upon reading the event trace 〈e2, e4, e5〉, RV PPTL outputs inconclusive and
continues monitoring. Then, when Cindy logs in and views Alice’s profile, She
can also see all the information since the view access to her profile is the default
value Public. In this way, Alice’s privacy is compromised. As the result shows,
upon reading the event trace 〈e2, e4, e5, e2, e4, e6〉, RV PPTL outputs false and
terminates. This result indicates Property 2 is violated and there are problems
in the view access setting of Alice’s profile.

To sum up, this case study shows that the runtime verification method based
on source code instrumentation is effective in verifying properties and finding
potential security problems.

5 Related Work

As a lightweight verification technique, runtime verification is real-time and can
avoid the problem of state explosion. So, it has advantages over testing and
model checking in software reliability verification.

Zhou et al. propose a runtime verification method for time-critical system [9].
In their work, the runtime verification tool AnaTempura [10] is used to verify
two properties (safety and activity) of a simplified mail sorter system. First,
interval temporal logic (ITL) [11] is used to describe system properties and a
logic program corresponding to the property is loaded into AnaTempura. Then,
interceptors are deployed on the verified system to intercept messages and send
messages to the monitor for validation. In the same way, Sulaiman Al Amro et al.
use Anatempura to detect virus processes [12]. The logic ITL is used to describe
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Fig. 13. Verification result of Property 2

the API invocation behavior, and processes in the operation system with the
virus API calling behavior are identified.

JavaMOP [13] is a runtime verification framework of monitoring oriented pro-
gramming (MOP) developed by the FSL Lab of Illinois at Urbana - Champaign
University. It is enforceable for Java programs, supporting the use of formal
logic, such as ERE, FSM and LTL, to describe properties. And the formal logic
language used to describe properties can be extended by writing the correspond-
ing module. Runtime verification in JavaMop requires writing a mop file that
contains the weaved code [14], the definition of events, and a formal description
of properties. JavaMop weaves code into methods of Java, instead of manually
inserting code into systems. An overview of MOP is presented in [15] with exam-
ples to illustrate how JavaMop works.

Researches about runtime verification for the security of SN systems have also
been developed in recent years. R. Pardo et al. propose an automata-based app-
roach to evolving privacy policies in Online Social Networks [16]. In their works,
a novel formalism of policy automata is presented, and an approach based on
runtime verification techniques to defining and enforcing such policies is pro-
posed. The policy automata are used to describe privacy policies and converted
to DATEs (Dynamic Automata with Timers and Events) which are symbolic
automata aimed at representing monitors in the runtime verification tool LARVA.
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The approach and LARVA have been applied to an open source distributed social
network Diaspora.

Both of the above methods are real-time and flexible. However, the first two
methods can only monitor systems in the local machine, and JavaMop only
supports the verification of Java programs. Compared with these two methods,
the advantage of our runtime verification method is the support of information
transmission through socket interfaces, which enables remote monitoring of sys-
tems. In addition, due to the full-regular expressiveness of PPTL, we are able
to formalize and verify a larger set of system properties. The last approach also
supports socket interfaces and can dynamically change privacy policies of SN
systems by monitoring state changes of policy automata. DATEs are similar
with property monitors in our method, but they need manual conversion while
property monitors can be automatically constructed through PMG PPTL.

6 Conclusions

With the wide and increasing use of SN, security of SN information and users is
under threat and requires verification. In order to solve the problem that most
traditional verification methods are too complicated for complex systems and
not real-time, this paper proposes a runtime verification method for SN systems
based on source code instrumentation. The method is applied to an open-source
SN system Elgg and properties concerning privacy of the system are verified. The
results show that the method is effective in verifying SN systems and identifying
potential security problems. For future work, we are going to adapt the method
and apply it to more substantial SN systems.
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Abstract. During the process of utilizing Model-Based Systems Engineering
(MBSE), SysML activity diagrams are often used for designing the software
systems and its correctness is likely to significantly affect the reliability of the
implementation. However, how to effectively verify the correctness of SysML
diagrams still remains a challenge and to the best of our knowledge, there are
few tools to support the verification of SysML models. Testing-based formal
verification (TBFV) is designed for verifying the sequence code. To solve the
problem, we creatively apply the existing TBFV approach into the verification
of SysML activity diagrams and established a new approach, called TBFV-M.
TBFV-M has ability to verify a SysML activity diagrams meet the user’ need.
We also propose a method to dealing with invocation, because invocation is
very common in the model-driven development process. In this paper, we
describe the principle of TBFV-M and present a case study to demonstrate its
feasibility and usability. Finally, we conclude the paper and point out future
research directions.

Keywords: SysML activity diagrams � TBFV � Test path generation �
Formal verification of SysML diagram

1 Introduction

Model-Based Systems Engineering (MBSE) [1] is often applied to design large scale
systems, because it can make sure of their reliability and save the cost of modification
effectively. The systems modelling language SysML [2, 3] can support effective use of
MBSE, for its well-designed mechanism for creating object-oriented models, which can
be combined with software, people, material and other physical resources. In MBSE,
SysML models are often used as the design for code. It means that whether the SysML
model meets the users’ requirement in relation to the high reliability of the code.
Unfortunately, to the best of our knowledge from the literature, there are few tools to
support the verification of SysML models [4, 5] in particular rigorous ways of
verification.

Testing-Based Formal Verification (TBFV) proposed by Liu [6–8] shows a rigor-
ous, systematic, and effective technique for the verification and validation of code.
TBFV integrated the specification-based testing approach and Hoare logic to verify the
correctness of all the traversed program paths during testing. The advantage of TBFV is
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its potential and capability of achieving full automation for verification utilizing testing.
However, the current TBFV is mainly designed for sequential code in which all of the
details are formally expressed, and there is no research on applying it to verify SysML
models yet.

In this paper, we discuss how the existing TBFV can be applied to SysML models
for their verification and we use TBFV-M (testing-based formal verification for
models) to represent the newly developed approach. Since SysML Activity Diagrams
can model the systems dynamic behavior and describe complex control and parallel
activities, our discussion in this paper focuses on the activity diagrams.

The essential idea of TBFV-M is as follows. All of the functional scenarios are first
extracted from a given formal specification defining the users’ requirements. And at the
same time, test paths are generated from corresponding SysML Activity Diagrams
waiting to be verified. Then, test paths are matched with functional scenarios by a given
algorithm. After this, the pre-condition of the test path is automatically derived by
applying the assignment axiom in Hoare logic based on the functional scenario.
Finally, the implication of the pre-condition of the specification with the guard con-
dition of the functional scenario to the derived pre-condition of the path is verified
which concerns the accuracy of the activity diagram. And the processing method of
dealing with invocation is also be proposed by TBFV-M.

The remainder of the article will detail the TBFV-M method. Section 2 presents
related work we have referenced. Section 3 characterizes the definitions of basic terms
and concepts. Section 4 introduces TBFV and the derivation of the main idea of
TBFV-M. Section 5 describes the principle of TBFV-M, showing the core technology
of TBFV-M. Section 6 uses one case study to present the key point of TBFV-M.
Finally, the details of the implementation are presented in Sect. 6 and Sect. 7 concludes
the paper.

2 Related Work

2.1 Testing-Based Verification

Considering the shortcoming of formal verification based on Hoare logic being hard to
automate, Liu proposed the TBFV (Testing-Based Formal Verification) method by
combining specification-based testing with formal verification [6]. This method not
only take the advantage of full automation for testing, but also the efficiency of error
detection with formal verification. Liu also designed a group of algorithms [9] for test
cases generation from formal specification written in SOFL [10]. A supporting tool [8]
is also developed. These efforts have significantly improved the applicability of formal
verification in industrial settings.

Raimondi [11] addressed the problem of verifying planning domains written in the
Planning Domain Definition Language (PDDL). First, he translated test cases into
planning goals, then verified planning domains using the planner. A tool PDVer is also
generated. In this paper, testing is also used during verification and the effectiveness
and the usability is improved.
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2.2 Test Case Generation

Lasalle [12] utilized the existing UML/OCL Model-Based Test generation tool,
Smartesting Test DesignetTM. He designed rewriting rules to translate a SysML model
into an equivalent UML model. The advantage of this process is that we can use the
existing UML tools to handle the SysML model.

Nayak [13] introduced an approach to transform the particular Activity Dia-
gram into a model that can be used for testing, called ITM, based on its structure
characteristics. The advantage of using ITM is that it can simplify the process of
extracting and analyzing test scenarios based on the coverage criteria. However, it also
has limitations on processing unstructured Activity Diagram because the unstructured
Activity Diagrams shape is out of structure.

Oluwagbemi [14] proposed a new concept called activity flow tree (AFT) and it can
store the information obtained by traversing the activity diagram. Then, AFT is used as
an intermediate expression to generate test cases automatically. They designed the
transformation and generation algorithm and compared their achievement with the
work done by the predecessors.

Inspired by Liu’s work, we apply and extend the TBFV approach to models and
propose the TBFV-M. A model is more intuitive than a formal specification because it
requires less relevant background knowledge and is easier to communicate with cus-
tomers. TBFV approach shows the treatment of code, while TBFV-M approach deals
with SysML Activity Diagrams. And different with Feng Liang’s work, TBFV-M
approach do not use other supporting tools, like Modelica, we merely use Hoare Logic
to do the verification. Referring to test case generation, TBFV-M approach can deal
with unstructured diagrams, which may have stronger processing power than existing
approaches.

3 Related Concept

3.1 Formal Definition of Activity Diagram

Activity Diagram Formal Definition [2] can be represented as:

AD ¼ Node; Edgeð Þ ð1Þ

Node is a set of nodes of which definition as follow:

Node ¼ fInitialNode; FlowFinalNode; ActivityFinalNode; Action�Node; ActivityNode;

ForkNode; JoinNode; DecisionNode; MergeNode; RecieveSignaNode; SendSignalNodeg
ð2Þ

InitialNode signifies the beginning of Activity Diagram, while ActivityFinalNode
signifies the ending of Activity Diagram. Edges defines the relationship between nodes
such that:
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Edge ¼ fðx; yÞjx; y 2 Nodeg ð3Þ

There are two types of edges: control flow and object flow. Control flow edges
represent the process of executing token passing in AD and object flow edges are used
to show the flow of data between the activities in AD.

3.2 Test Case

From a global view, test case based on the SysML activity diagram consists of test path
and test data. And the definition is as followed:

TC ADð Þ ¼ Path; Datað Þ ð4Þ

For Activity Diagram, test path consists of a series of actions and edges in the
diagram. Based on the formal definition of the activity diagram given above, the test
path is defined as follow:

path ¼ a01; a
0
2; . . .; a

0
n

� � ð5Þ

a0i ¼ tn; anð Þ; i ¼ 2; . . .; nð Þ ð6Þ

tn ¼ ai�1 ! ai; i ¼ 2; . . .; nð Þ ð7Þ

In these formulas, ai means node, ti means edge. In this case, a test path is a set of
nodes, starting from node a1 and ending with node an through the transition edges t2… tn.

Test data indicates the input information corresponding to a particular test scenario
including various types of data, even user actions and so on.

3.3 Test Coverage Criteria

For software, the adequacy measurement of testing is reflected in the rate of coverage
and effectiveness of the test case. These coverage criteria ensure the sufficiency of
testing and provide implications for the test case generation algorithm. Here are four
test coverage criteria used in our design, for test case generation of SysML activity
diagram [15, 19, 20]:

• Action coverage criteria: In software testing process, testers are often required to
generate test cases to execute every action in the program at least once.

• Edge coverage criteria: In software testing process, testers are often required to
generate test cases to pass every edge in the program at least once.

• Path coverage criteria: These coverage criteria require that all the execution paths
from the programs entry to its exit are executed during testing.

• Branch coverage criteria: These coverage criteria generate test cases from each
reachable decision made true by some actions and false by others.
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3.4 Hoare Logic

Hoare Logic is a formal system developed by Hoare [21, 22], and it is designed for the
proof of partial correctness of a program. In Hoare Logic, the Hoare Triple [23] is best
known and is also referenced in our method. The Hoare triple is of this form:

Pf gC Qf g ð8Þ

P and Q are assertions and C is a command. P is named the pre-condition, which is
a predicate expression describing the initial states and Q the post-condition, which is
also a predicate expression describing the final states.

Hoare also established necessary axioms to define the semantics of each program
construct, including axiom of assignment, rules of consequence, axioms of composi-
tion, axioms of alternation, iteration and block. Axiom of assignment is used in our
work, so we will briefly introduce it:

Q Enxð Þf g x :¼ E Qf g; ð9Þ

where x is a variable identifier, E is an expression of a programming language without
side effects, but possibly containing x, Q(E\x) is a predicate resulting from Q by
substituting E for all occurrences of x in Q. This axiom means that to verify the
correctness of the assignment, the postcondition Q should be satisfied. This equals to
Q[E\x] are true because x is assigned by representing E after the execution.

3.5 Functional Scenario Form

A functional scenario is a logical expression that tells clearly what condition is used to
constrain the output when the input satisfies some condition. Spre and Spost denote the
pre- and post-conditions of operation S. Let:

Spost ¼ ðG1 ^ D1Þ _ ðG2 ^ D2Þ _ . . . _ ðGn ^ DnÞ; ð10Þ

Gi and Di (i 2 1, …, n) are two predicates, called guard condition and defining
condition, respectively. The definition of functional scenarios and FSF (functional
scenario form) are listed below:

Functional Scenario ¼ Spre ^ Gi ^ Di ð11Þ

In the definition of functional scenario, Spre ^ Gi ^ Di is treated as a scenario: when
Spre ^ Gi is satisfied by the initial state (or intuitively by the input variables), the final
state (or the output variables) is defined by the defining condition Di. The conjunction
Spre ^ Gi is known as the test condition of the scenario, which serves as the basis for
test case generation from this scenario.

FSF ¼ ðSpre ^ G1 ^ D1Þ _ ðSpre ^ G2 ^ D2Þ _ . . . _ ðSpre ^ Gn ^ DnÞ ð12Þ
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3.6 Path Triple

The path triple is similar in structure to Hoare triple, but is specialized to a single path
rather than the whole program and the definition is below:

fSpre ^ GigP Dif g; ð13Þ

P is called a program segment, which consists of decision (i.e., a predicate), an
assignment, a return statement, or a printing statement. It means that if the pre-
condition Spre and the guard condition Gi of the program are both true before path P is
executed, the post-condition Di of path P will be true on its termination.

4 TBFV and TBFV-M

4.1 TBFV

TBFV is a novel technique that makes good use of Hoare logic to strengthen testing.
The essential idea is first to use specification-based testing to discover all traversed
program paths and then to use Hoare logic to prove their correctness. During the proof
process, all errors on the paths can be detected.

Testing is a practical technique for detecting program errors. A strong point of
testing superior to formal correctness verification is that it is much easier to be per-
formed automatically if formal specifications are adopted [19], but a weak point is that
existing errors on a program path may still not be uncovered even if it has been
traversed using a test case. TBFV takes advantage of testing, realized full automation
for error detection efficiency, and also overcome its weak point by making good use of
relevant part of Hoare logic.

4.2 TBFV-M

In the last decade, the model-driven approach for software development has gained a
growing interest of both industry and research communities as it promises easy
automation and reduced time to market [17]. Because of the graphical notation for
defining system design as nodes and edge diagrams, SysML model addresses the ease
of adoption amongst engineers [18] (Fig. 1).

During the Model-Driven process, model is an important medium for the Model
based system engineering development. The TBFV-M method takes the specification
describing the users’ requirements and the SysML Activity Diagram model as input
and verifies the correctness of the SysML model according to the specification. The
TBFV-M method is mainly used to verify whether SysML Activity Diagram model
meets the user’s requirements written in SOFL (Structured-Object-oriented-Formal
Language).
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5 Principle of TBFV-M

The procedure of TBFV-M is illustrated in Fig. 2. We find that functional scenarios are
derived from the specification written in the pre-/ post-condition style, while test paths
are generated from the Activity Diagram and the data constraints can be extracted from
each test path. Then, the extracted data constraints are used to match with functional
scenarios. A matching algorithm is defined by us. We will verify the successful

Fig. 1. TBFV-M usage scenario.

Fig. 2. TBFV-M processing procedure.
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matched the test path according to the requirements represented in specification. The
verification part can be separated into three parts: first, create a path triple, and then use
the axiom of Hoare Logic to derive pre-assertion for each test path. Finally, prove the
implication of the pre-condition in the specification and pre-assertion. If we can prove
all the implication of pre-assertion of all the test paths of the model and the matching
pre-condition, then we conclude that the model is to meet the requirements.

5.1 Unified Formal Expression

Using a unified formal expression can not only reduce the ambiguity during commu-
nications, but also give a possibility to automate the entire process, making analysis
and verification more accurate and efficient.

We establish the unified formal expression, including specification guide and
modeling guide. Specification reflects complete requirements and we chose SOFL to
describe formal specification. The SOFL method intergrades formal methods, struc-
tured methods and object-oriented methodology, which not only supports requirements
analysis and specifications, but also play an import role during design and imple-
mentation stages. An example specification written in SOFL is given below. It
describes that if a non-negative integer a equals to zero, TRUE will be returned;
otherwise return FALSE.

process: equal_zero (a: int) equal: bool
pre: a > 0
post: a == 0 AND equal == TURE
OR
a != 0 AND equal == FALSE

5.2 Functional Scenarios Derivation

The overall goal of functional scenario derivation is to extract all functional scenarios
completely in “Spre ^ Gi ^ Di” form (FSF), as mentioned above in related concept
section. A systematic transformation procedure, algorithm, and software tool support
for deriving an FSF from a pre-post style specification written in SOFL have been
developed in our previous work [16].

The below segment of the process “equal_zero”, mentioned previously, shows the
FSF generated from the specification described in the last one.

1. Spre: a > 0
G1: a == 0
D1: equal == TRUE

2. Spre: a > 0
G2: a != 0
D2: equal == FALSE

3. ~Spre: a <= 0
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5.3 Test Path Generation

A test path auto-generation tool based on the SysML Activity Diagram model takes the
model as input and generates test cases as outputs automatically, according to test path
generation algorithms and coverage criteria chosen by test group members.

The SysML Activity Diagram test path generation includes three parts. First, we
use transformation algorithm to compress the input Activity Diagram, which may
contain unstructured module. The transformation is an iteration process, dealing with
loop module, concurrent module and the problem of multiple starting nodes separately.
After compressing, we transform this unstructured activity diagram into an intermediate
representation form Intermediate Black box Model (IBM). IBM consists of one basic
module and a map from black box to the corresponding original actions. The third
phase of our approach is test path generation based on IBM. In this phase, two
problems should be solved, which are basic module test path generation and black box
test path generation. Details of automated test paths generation algorithm and imple-
mentation of unstructured SysML Activity Diagram has been developed in our pre-
vious work [24].

We give a motivation case to show the above process. Figure 3 is an unstructured
SysML activity diagram model, which contains a concurrency module and a loop
module.

Figure 4 shows how to compress an unstructured activity diagram and transform
the unstructured module into a black box node. Eventually the unstructured activity
diagram converts into an intermediate representation of IBM. The first step is to
identify the loop module and compress it into a black box node while-do loop1, shown

Fig. 3. Motivation example.
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in Fig. 4(a). The compressed black box node is the intermediate representation of the
loop shown in the following Fig. 5(a).

The second step is to identify the noJoin concurrency module and compress it into a
black box node No FJ1, shown in Fig. 4(b). The compressed black box node is shown
in the following Fig. 5(b).

Figure 5(b) is a compressed and structured SysML activity diagram that can be
used to automatically generate test cases. Finally, the black box module can be
replaced.

5.4 Matching Algorithm

Matching the test path with functional scenario is very important for verification. In
order to verify the correctness of one path in Activity Diagram, we need to match it
with corresponding functional scenario. The constraints of test path can be extracted

Fig. 4. Transformation process.

Fig. 5. Motivation example.
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from edges of each path, which are used to compare with Spre^ Gi part of functional
scenario. If unmatched test paths or functional scenarios appears, it means some errors
may be exist in this model. And the model needs to be modified. The matching
algorithm is given below.

Matching algorithm takes the edge list and FS_list as input. Edge list is the col-
lection of guard conditions saved from test path and FS_list is extracted functional
scenario form from specification. First, the algorithm sets the label of the two lists
unvisited. And for each edge in edge list do data integration. Data integration is like
data intersection. For example, if we contain two guard conditions x < 6 and x < 60,
the integration of it is x < 6.

After completing the initialization step, find a matching functional scenario for each
element in edge list. The specific operation is: the edge after the integration compares
with Spre ^ Gi in the functional scenario, if exactly the same, then we mean that we find
the edge with the matched functional scenario. If there is no exact matched functional
scenario, then there is an inaccurate modeling problem and needs to be refined.
Therefore, immediately terminate the program, the problem of the edge will also be
returned. After traversing all the edge_list, we also need to check whether each in
FS_list has been visited. If there is an unvisited functional scenario, then it means that
there is a requirement that the model fails to be represented in the specification, and the
model needs to be refined.

5.5 Path Triple Establishment

Establish Path Triple and apply each node with the axiom in Hoare Logic. “(Spre ^ Gi ^
Di) (i = 2,…, n)” denote one functional scenario and P = [node1; node2;…; nodem] be
a program path in which each nodej(j = 2, …, n) is called a functional node, which is a
DecisionNode, ActionNode, or other activity diagram nodes. Assume each path P has
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its own target functional scenario, which is decided utilizing matching algorithm. To
verify the correctness of P with respect to the functional scenario, we need to construct
Path Triple: {Spre} P {Gi^ Di}.

The path triple is similar in structure to Hoare triple, but is specialized to a single
path rather than the whole program. It means that if the pre-condition Spre of the
program is true before path P is executed, the post-condition Gi ^ Di of path P will be
true on its termination. Repeatedly apply the axiom for assignment to derive a pre-
assertion, denoted by Ppre. Finally, we can form the following expression:

fSpre ^ Gig ! Ppre; ð14Þ

where Spre, Ppre and Gi ^ Di are a predicate resulting from substituting every decorated
input variable *x for the corresponding input variable x in the corresponding predi-
cate, respectively. And the correctness of the specific path is transformed into the
implication Spre ^ Gi ! Ppre. If the implication can be proved, it means that no error
exists on the path; otherwise, it indicates the existence of some error on the path.

5.6 Implication

Prove the implication. Finally, the correctness of one path whether it meets the cor-
responding requirement is changed into the proof of the implication “Spre ^ Gi !
Ppre”. If the implication can be proved, it means that the path can model one part of the
requirement; otherwise, it indicates the existence of some error on the path.

Formally proving the implication “Spre ^ Gi ! Ppre” may not be done automati-
cally, even with the help of a theorem prover such as PVS, depending on the com-
plexity of Spre and Ppre. Our strategy is as follows: if the complexity of data structure is
not high, we will transform the problem into solver, which can achieve full automation.
Otherwise, if achieving a full automation is regarded as the highest priority, as taken in
our approach, the formal proof of this implication can be “replaced” by a test. That is,
we first generate sample values for variables in Spre and Ppre, and then evaluate both of
them to see whether Ppre is false when Spre is true.

For example, if we need to judge the validity of the implication “(price > 0) !
(price < 100 AND * price-5 = *price2 - *price”, use the test case (price, 60) and
we can easily prove the implication is not correct.

5.7 Invocation

During the process of design, especially for the complex system, modularization is very
necessary when modelling, according to users’ requirements. Model driven software
development process often faces the problem of function or module invocation.

Because the TBFV-M method needs to deal with functional scenario derivation
from specification describing users’ requirement and test path generation from SysML
activity diagrams, we need to take both side into account while dealing with invocation.

For specification, if a function invocation is used as a statement, it can change the
current state of a program. So that, the traversed path containing the invoked function
should consider in deriving the pre-assertion of the invocated function. Our solution is
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utilizing the sub path of the invocated function to substitute the actual traversed path,
while deriving the functional scenario form. Also, we need to append the pre-condition
of invocated function into the Spre of particular functional scenario and during the
above process parameter substitution needs to be considered.

To express the idea, we will give a motivation example.

function FareDiscount (age:int, fare:int) FinalPrice: int
pre: age > 0 AND fare > 0
post: age <= 6 AND FinalPrice == 0

OR
age >= 70 AND FinalPrice == 0
OR
age > 6 AND age<60 AND FinalPrice == fare
OR

age >= 60 AND age<70 AND FinalPrice == HalfPrice(fare)

function HalfPrice (price: int) Half_P: int
pre: price > 0
post: Half_P = 0.5 * price

While deriving, we can get the below functional scenario. HalfPrice is the invo-
cation function.

Spre:age > 0 AND fare > 0
G4: age >= 60 AND age<70
D4: FinalPrice == HalfPrice(fare)

According to the solution we mentioned above, we will substitute the original form
with the sub path of invocation function and the actual parameter price is replaced by
fare in the invocation function. The result is shown below.

Spre:age > 0 AND fare > 0
G4: age >= 60 AND age<70
D4: FinalPrice == 0.5 * fare

For Activity Diagram, “Activity” is often used to realize the hierarchy design. Our
solution is also utilizing the sub path of the invocated activity to substitute the actual
traversed test path, while generating test path.

6 Case Study

Now we show a motivation example to detail the process of TBFV-M method. First,
we will get a requirement from the user, which consists of inform the description, may
like this: “The park will give the tourist fare discount according to their age. If he is
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younger than 6 or older than 70, he will be free; Or if he is between 60 and 70, he can
enjoy the half price, otherwise he will pay the normal price”. This specification is
formal and structured, as shown in the last section.

According to the specification, we can construct a set of SysML model and the
Activity Diagram is shown below (Fig. 6).

Fig. 6. Case study.
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First, we derive Functional Scenarios from specification and generate test paths
from Activity Diagram. The result is shown as below.

1. Spre: age > 0 AND fare > 0
G1: age <= 6
D1: FinalPrice == 0

2. Spre: age > 0 AND fare > 0
G2: age >= 70
D2: FinalPrice == 0

3. Spre: age > 0 AND fare > 0
G3: age > 6 AND age<60
D3: FinalPrice == fare

4. Spre: age > 0 AND fare > 0
G4: age >= 60 AND age<70
D4: FinalPrice == 0.5*fare

5. ~Spre: age<=0 or fare<=0

Because of the invocated activity, we should substitute the original test path, like
T4, into the update version, T4′, by substituting activity0 with its sub actions.

Test Path:
T1: start →a0 → so → m1 → end
T2: start → a0 → so → s1 → a1 → m0 → a3 → end
T3: start → a0 → so → s1 → s2 → a2 → m0 → a3 → end
T4: start → a0 → so → s1 → s2 → activity0 → m0 → a3 → end

T4´: start → a0 → so → s1 → s2 → start_0 → a00 → a01 →a02
→ end_0 → m0 → a3 → end 

At the same time, we can extract data constraints from each test scenario, which is
used for matching with functional scenario. Then, the matching process is shown
below.

Matching Result:
FSF_1 – T2
FSF_2 – T2
FSF_3 – T3
FSF_4 – T4
FSF_5 – T1

The blow segment chose the forth path and matched the first functional scenario as
an example and shows the substitution process, from bottom to up.
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Derivation Process:

{age> 0 AND fare > 0 AND age >= 60 AND age<70} 
{0.5 *fare == 0.5*fare}
input age, fare
{0.5 *fare == 0.5*fare}
input fare
{0.5 *fare == 0.5*fare}
FinalPrice =0.5 *fare
{FinalPrice == 0.5*fare}
output FinalPrice
{FinalPrice == 0.5*fare}
output FinalPrice
{FinalPrice == 0.5*fare}

Finally, we turn this verification problem into proving whether the pre-condition of
specification can imply Ppre. If it can be proved, means that the path satisfies the
requirement. As the strategy of implication mentioned before, this implication uses
simple data structure, so that we use testing to access the procedure of verification. In
this case, we prove it is correct.

7 Conclusion

We presented an approach, known as TBFV-M (Testing-Based Formal Verification for
Model), for requirement error detection in SysML Activity Diagrams by integrating test
cases generation and Hoare Logic. The principle underlying TBFV-M is first to derive
functional scenarios form specification and generate test scenarios from Activity
Diagrams. Then match them and verify each test scenario according to the corre-
sponding functional scenario. Hoare logic is used during the verification process.
TBFV-M method made up the limitation of TBFV, not concerning about models and
solved the problem of inconsistent, incomplete, and inaccurate models. We also give a
solution to deal with the invocation problem. It has advantage in reducing the proba-
bility of system error and shortening the developing time.
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Abstract. To verify the correctness of Java programs, a novel approach
for model checking Java programs with MSVL (Modeling, Simulation and
Verification Language) is advocated. To this end, the rules for decoding
the object-oriented semantics of Java Language with the process-oriented
semantics of MSVL are defined, and the technique for automatically
rewriting a Java program into its equivalent MSVL program is formal-
ized, which in turn can be verified with the model checking tool MSV.
In addition, an example is given to illustrate how the approach works.
The approach fully utilizes the powerful expressiveness of MSVL to ver-
ify Java programs in a direct way, and helps to improve the quality of
the software system.

Keywords: MSVL · Java · Program verification · Model checking

1 Introduction

Java [1], a famous object-oriented programming language, has been widely used
in various areas of software development. Facing the generous softwares written
in Java, how to ensure their correctness and reliability is of grand challenge to
computer scientists as well as software engineers. To solve the problem, software
testing has been developed for many years and a variety of tools has been devel-
oped to verify software systems with success. However, the method has its innate
limitation, i.e., it can only prove the presence of errors but never their absence.
In contrast, formal verification, which is based on the mathematical theories,
can prove the correctness of the software and become an important means to
verify software systems.

As an automatic formal verification approach, model checking [2] can exhaus-
tively search each execution path of the system model to be verified, and check
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whether the desired property holds. Once the property fails, it can provide a
counterexample path helping engineers to locate and fix the error, and hence is
welcomed by both the academia and industry. In the early days, the research
on model checking mainly focuses on verifying the analysis and designment of
hardware and software systems, The kernel process of the verification is to model
the system with a specific modeling language (e.g., Promela [3] and NuSMV [4]),
which usually need to be finished by verifiers manually. For complex system, it
is very difficult to create the model and guarantee its correctness.

In recent years, some methods for model checking C programs have been
advocated, and a number of model checking tools have been developed (e.g.,
SLAM [5], BLAST [6], MAGIC [7] and ESBMC [8]) and employed to verify
device drivers, secure communication protocols, and real-time operating system
kernels with success. These tools directly take C programs as input, and often
use techniques of predicate abstraction, static analysis or runtime analysis to
obtain the finite state model of the program as well as alleviate the state explo-
sion problem, and complete the verification with the model checking algorithm.
Within the field of object-oriented programs, Java Pathfinder (JPF) [9] is devel-
oped based on Java Virtual Machine for directly model checking Java bytecode.
The tool can alternatively examine each execution path of a Java program by
trying all nondeterministic choices, including thread scheduling order. The avail-
able program model checking tools mainly focus on verifying the process-oriented
C programs and cannot be directly employed to verify the object-oriented ones.
Besides, the current tools can only check the safety property and dead lock of
the system, but cannot verify the liveness property.

In addition to the above methods, model checking C programs with MSVL
(Modeling, Simulation and Verification Language) is an important approach [10].
MSVL [11], a process-oriented logic programming based on the Projection Tem-
poral Logic (PTL) [12], is a useful formalism for specification and verification
of concurrent and distributed systems [13–21]. It provides a rich set of data
types (e.g., char, integer, float, struct, pointer, string, semaphore), data struc-
tures (e.g., array, list), as well as powerful statements [22,23]. Besides, MSVL
supports the function mechanisms [24] to model the complex system. Further,
Propositional Projection Temporal Logic (PPTL), the propositional subset of
PTL, has the expressiveness power of the full regular expressions [25], which
enable us to model, simulate and verify the concurrent and reactive systems
within a same logical system [26].

To solve problem of formal verifying Java programs, we are motivated to
extend the MSVL-based model checking approach of C programs to Java pro-
grams. To this end, the rules for decoding the object-oriented semantics of Java
language with the process-oriented semantics of MSVL are defined, and the
techniques for automatically rewriting a Java program into its equivalent MSVL
program are formalized. Thus, the Java program can be indirectly verified by
model checking the corresponding MSVL program with the specific model check-
ing tool MSV.

The rest of this paper is organized as follows. In the next section, MSVL and
Java language are briefly presented. In Sect. 3, the rules for converting Java pro-
grams to MSVL programs are defined and the related techniques are introduced.
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In Sect. 4, an example is given to illustrate how the method works in verifying
Java programs. Finally, the conclusion is given in Sect. 5.

2 Preliminaries

2.1 Modeling, Simulation and Verification Language

Modeling, Simulation and Verification Language (MSVL) is an executable subset
of PTL with frame and used to model, simulate and verify concurrent systems.
With MSVL, expressions can be regarded as the PTL terms and statements as
treated as the PTL formulas. In the following, we briefly introduce the kernel of
MSVL. For more deals, please refer to literatures [11].

Data Type. MSVL provides a rich set of data types [22]. The fundamental
types include unsigned character (char), unsigned integer (int) and floating point
number (float). Besides, there is a hierarchy of derived data types built with the
fundamental types, including string (string), list (list), pointer (pointer), array
(array), structure (struct) and union (union).

Expression. The arithmetic expressions e and boolean expressions b of MSVL
are inductively defined as follows:

e ::= n | x | © x | -©e | e0ope1(op ::= + | − | ∗ |/|%)
b ::= true | false | e0 = e1 | e0 < e1 | ¬b | b0 ∧ b1

where n is an integer and x is a variable. The elementary statements in MSVL
are defined as follows:

(1) Immediate Assign x ⇐e
def
= x = e ∧ px

(2) Unit Assignment x :=e
def
= © x = e ∧ ©px ∧ skip

(3) Conjunction S1 and S2
def
= S1 ∧ S2

(4) Selection S1 or S2
def
= S1 ∨ S2

(5) Next next S
def
= © S

(6) Always always S
def
= �S

(7) Termination empty
def
= ¬ © true

(8) Skip skip
def
= © ε

(9) Sequential S1 ;S2
def
= (S1, S2) prj ε

(10) Local exist x : S
def
= ∃ x : S

(11) State Frame lbf(x)
def
= ¬af(x)→∃ b:( -©x = b ∧ x = b)

(12) Interval Frame frame(x)
def
= �( ε → ©(lbf(x)))

(13) Projection (S1, . . . , Sm) prj S

(14) Condition if b then S1 else S2
def
= (b → S1) ∧ (¬b → S2)

(15) While while b do S
def
= (b ∧ S)� ∧ �( ε → ¬b)

(16) Await await(b)
def
=

∧
x∈Vb

frame(x) ∧ �( ε ↔ b)

(17) Parallel S1||S2
def
= ((S1 ; true) ∧ S2) ∨ (S1 ∧ (S2 ; true))

∨(S1 ∧ S2)
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where x is a variable, e is an arbitrary expression, b is a boolean expression, and
S1, . . . , Sm, S are all MSVL statements. The immediate assignment x⇐e, unit
assignment x :=e, empty, lbf(x) and frame(x) are basic statements, and the
left composite ones.

For convenience of modeling complex software and hardware systems, MSVL
takes the divide-and-conquer strategy and employees functions as the basic com-
ponents like C programming language does. The general grammar of MSVL
function is as follows [24]:

function funcName(in type1 x1, . . . , in typem xm,
out type1 y1,. . . , out typen ym, return type RValue)

{ S } //Function body

The grammar of function call is funcName(v1, . . . , vn). Parameter passing
in MSVL is similar to that in C, i.e. all function arguments are passed by values
(call-by-value). With call-by-value, the actual argument expression is evaluated,
and the resulting value is bound to the corresponding formal parameter in the
function. Even if the function may assign new values to its formal parame-
ters, only its local copy is assigned and anything passed into a function call
is unchanged in the caller’s scope when the function returns. Furthermore, the
pointer type is also supported by MSVL, which allows both caller and callee will
be able to access and modify a same variable.

2.2 Java Programming Language

Java [1] is a popular object-oriented programming language with the feature
“write once, run anywhere”, and hence has been widely used in web and mobile
application development, big data processing, etc. It not only supports the
object-oriented mechanism, but also provides multi-thread, socket and inter-
face programming. In this paper, we only focus on the object-oriented part of
java except for the override feature. In the following, we briefly introduce the
grammar of the subset of Java language to verify.

Data Type. The data types of Java programming language are divided into
two categories, i.e., basic data types and reference data types. Basic data types
include character (char), integer (byte, short, int, long) and floating point
(float, double), boolean (boolean). Reference data types include class, inter-
face(interface), array and so on.

Expression. Let d be a constant and x be a variable respectively. The arithmetic
expressions e and boolean expressions b of Java are inductively defined as follows:

e ::= d | x | e1 op1 e2 (op1 ::= + | − | ∗ | / | % | + + | – –)
b ::= true | false | !b | e1 op2 e2 (op2 ::=> | < | == | > = | < = | ! =)
b1 op3 b2(op3 ::=&&, ||)

where op1 denotes the traditional arithmetic operators, op2 are the relational
operators and op3 the logical operators.
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Elementary Statement. Let type be a data type, x be a variable, d, d1, . . . , dn
be constants, and obj be an object. The elementary statements of Java are
inductively defined as follows:

(1) Declaration statement type x | type x = e | dcls1, dcls2
(2) Assignment statement x = e | obj.attr = e
(3) Function call statement obj.fun(e1, . . . , en)
(4) Compound statement {s}
(5) Sequential statement s1; s2
(6) If statement if(b){s} | if(b){s1}else{s2}
(7) For statement for(dcls; b; e){s}
(8) While statement while(b){s}
(9) Do-While statement do{s}while(b)
(10) Switch statement switch(x){case d1 : s1; [break]; . . . ; [default : s]}

where dcls, dcls1 and dcls2 are any declaration statements; fun is a member
function of obj with n(n ≥ 0) parameters, and attr is an attribute of obj;
e, e1, . . . , en are expressions; s, s1, . . . , sn can be any statements.

Class Definition. Java is an object-oriented programming language supporting
only single inherence, i.e., each class has at most one super class. The grammar
for defining a class is as follows:

[visibility] class className [extends superClass] {
[visibility] [static] type attrName = [e];
. . . . . .;
[visibility] [static] rtnType funcName(type1 v1, . . . , typen vn) {

S; //Function body
};
. . . . . .;

}
where visibility can only take one of the values public, protected or private;
rtnType, type1, . . . , typen are all Java types.

3 Model Checking Java Program

In this section, the method for model checking Java programs is presented. The
basic idea is to convert the Java program into an equivalent MSVL program and
then perform model checking on the MSVL program obtained.

3.1 Strategy to Convert a Java Program into MSVL

Since Java is an object-oriented programming language whereas MSVL is a
process-oriented one, we need to decode the object-oriented semantics of Java
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programs with the process-oriented semantics of MSVL. The conversion rules
from Java to MSVL are defined as follows:

R1. For each class cls in Java, we define a struct in MSVL with the same cls
to that class, Besides, for each dynamic attribute attr of cls, we define a
member attr to the struct cls, and translation rules for data types between
Java and MSVL are depicted in Table 1.

R2. For a class cls having a parent class par, we add a new member parent
with the type struct par to the corresponding MSVL struct cls.

R3. For each dynamic attribute attr with initial value e of a class, we add
the corresponding assignment statement attr = e to the beginning of each
constructors of the class, then remove the initial values from the attribute.
In case of all such dynamic attributes having been processed, then convert
the constructors of the class into MSVL functions with rule R5.

R4. For each the static attributes in the Java program, We convert them to
global variable of MSVL to keep their values, and then the variables are
named with the concatenation of the class name which belongs to, “ ” and
the original variable name.

R5. For each member function fun of a class cls, we define a MSVL function
named with the concatenation of the class name, “ ” and the original mem-
ber function name, i.e., cls fun, and parameters of fun are also kept as
the parameters in MSVL function cls fun. In order to access the dynamic
attributes in the MSVL function cls fun, add a parameter struct cls *this
to the head of the function’s parameter list. Besides, if member function
fun has a return value of type rtnType, add a new parameter Ret with
the MSVL type corresponding to rtnType to the tail of the parameter list
of cls fun.

R6. For each overload member functions fun of a class cls, we define a MSVL
function named with the concatenation of the class name, “ ”, function
name fun and the type name with the suffix “ ” of each parameters of
fun in sequence. The access of dynamic and static attributes as well as
handling return value are identical to rule R5.

R7. The translation rules for basic expressions and statements are given in
Table 2. Besides, for any statement stmt in a member function accessing
a dynamic attribute attr of class cls, replace all the occurrence of attr in
the corresponding statement of MSVL function with the expression this →
connected with the result of algorithm find attr(cls, attr). Moreover, for
any statement stmt accessing a static attribute attr of class cls, replace all
the occurrence of attr in the corresponding statement of MSVL function
with the expression allStV ars → cls attr.

R8. For any function call statement x := obj.fun(e 1, . . . , e n) (w.r.t. obj.fun
(e 1, . . . , e n)) in a member function of obj and obj is an instance of
class cls, replace the statement in the MSVL function with the result
of algorithm find func(cls, “obj”, “fun”, paramTypeList) connected
with the expression (“e 1, . . . , e n,&x”) (w.r.t. “e 1, . . . , e n”)), where
paramTypeList is the data type list of the parameters e 1, . . . , en.
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R9. For each return statement return e in a member of Java program, replace
the statement in the corresponding MSVL function with ∗Ret := e.

R10. For the object statement obj = new cls(e1, . . . , en), we replace it in the
MSVL with a variable declare statement struct cls obj together with ini-
tializing the struct variable obj by calling the MSVL function correspond-
ing to the constructor of class cls if it has.

Table 1. Translation rules of data types between Java and MSVL

Java MSVL Java MSVL

int int boolean boolean

float float array array

char char List list

String string Set list

Table 2. Translation rules of expression and statement between Java and MSVL

Type Java MSVL

Arithmetic expression x++ x :=x+1 and skip

x−− x :=x− 1 and skip

x[+| − | ∗ |/|%| ! =| == | > | <]y x[+| − | ∗ |/|%| ! =| = | > | <]y

Boolean expression b1&&b2 b1 and b2

b1||b2 b1 or b2

!x !x

Elementary statement x= e x := e

type x=d type x and x <= d and empty

s1 ; s2 s1 ; s2

Among the above transition rules, Rule R1 keeps the object data of Java with
the struct of MSVL; Rule R2 decodes the inherent attributes as a member of
child class’ MSVL struct; Rule R3 deals with the initialization of the attributes
of a Java class; Rule R4 handels the static attributes of Java classes; Rule R5
decodes the encapsulation of member functions of Java programs into MSVL
functions keeping the ability to access the dynamic and static attributes as well
as to take back the computing result; Rule R6 deals with the overload of member
functions of Java classes; Rule R7 and R8 decode the access of attributes and
calling the member functions; Rule R9 handles the return values; Rule R10 deals
with the dynamic creating objects.
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According to the semantics of Java, the algorithms find attr and find func
employed in Rules R7 and R8 to compute the appropriate attribute and function
are defined in Tables 3 and 4 respectively:

For instance, as shown in Fig. 1, the Java program in left side of the figure
consists of two classes A and B, and A is the super class of B. According
to the Rule R1, the MSVL defines two struct A and B in correspond with,
and the dynamic attributes of the Jave class is also the member of the MSVL
struct, e.g., the attributes sm and x of A and B respectively. Subsequently, the
super class A of B is represented as the member parent of struct B (Rule R2).

Table 3. Algorithm for finding the appropriate attribute

Table 4. Algorithm for finding the appropriate function
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Further, the static attribute s of B is taken from the struct of B and regarded as
the global variable of MSVL program (Rule R4). Moreover, the overload func-
tions sum of class B are named with different function names according to Rule
R5 and R6, and a new parameter this is added to the head of the functions’
parameters list. Since the two function sum have return values, a new parameter
Ret is added to the tail of the MSVL functions’ parameters list respectively. In
addition, the access of attribute x in the function sum of class B is replaced with
the access of the member of MSVL struct, i.e., this− > x (Rule R7), and the
function call sum of object obj is replace with the MSVL function call statement
B sum int(&obj, this− > x,&Ret) (Rule R8).

public class A{
    public int sm ;
              ...
  }
public class B extends A {
     public static int s ;
     public int x; 
     public int sum(int m){
            ...
      }
      public int sum(int m,int n){
             ...
            obj.sum(x);
             ...
      }
}

struct B{
     struct A _parent  and
     int x
 };

function B_sum_int(struct B *this,int m,int 
*Ret){
     ...
};

function B_sum_int_int(struct B *this,int 
m,int n,int *Ret){
     ...
   B_sum_int(&obj,this->x,&Ret)

...
};

struct A{
     int sm
};

 int B_s;

Java Program MSVL Program

Fig. 1. Class and attribute conversion

According to the transition rules above, the process for model checking a
Java program is shown in Fig. 2. For a given Java program, firstly we analyze the
source code by lexical analysis and parsing tools JavaCC and obtain the Object-
Oriented Abstract Syntax Tree (OOAST) of the program; then transform the
OOAST to the Process-Oriented Abstract Syntax Tree (POAST) and POAST
to the MSVL program in sequence; finally verify the MSVL program on MSV
platform. In the following subsections, we introduce the key techniques of each
step in the process.
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start

OOAST to POAST

Java source code To OOAST

POAST to MSVL

end

Java source program

Property verification

MSVL program

Fig. 2. The process of model checking a Java program

3.2 Java Source Code to OOAST

In order to convert Java program into MSVL, we introduce a data structure,
named Object-Oriented Abstract Syntax Tree (OOAST), to analyze the syn-
tax of Java programs. The strategy of OOAST representing the syntax of Java
program can be depicted as the figure in Fig. 3. The OOAST of Java program
is the set of classes, and each class consists of the set of attributes, the set of
member functions, and the possible inherent relation to its super class. Besides,
the technique of Hierarchical Syntax Chart (HSC) [27] is introduced to describe
the syntax of each member functions. The structure of HSC is shown in Fig. 4.
In first level, the HSC is the sequence of compound statements of functions, and
the function body, a compound statement, is the sequence of statements in the
function body. If the compound statement includes if, while or for statements,
their corresponding execution breaches are also organized as the sequence of
compound statements, e.g. the if statement in the body of function Fun1.

According to the above analysis, the formal definition of OOAST is as follows:

OOAST ::= < ClassSet >
Class ::= < name, [ParClass], AttrSet, FunSet >
Attr ::= < [static], type, varName, [value] >
Fun ::= < [static], RetType, name, ParamList, CompStmt >
Param ::= < paramType, paramName >
CompStmt ::= < name, StmtList >
Stmt ::= < StmtType, simpStmt > | < StmtType, CompStmtList >
StmtType ::= TYPE COM | TYPE IF | TYPE SWITCH

| TYPE LOOP | TYPE EXIT
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OOAST

Class ...

FuncSet

Func1

AttrSet

Attr ...
...

Class Class

AttrAttr

Fig. 3. Structure of Object-Oriented Abstract Syntax Tree

Func1

Stmt1

If(exp)

...

...

exit
...

Body of branch
YES

...
Body of branch

No

Body of Fun1

Func2

...

Body of Fun2

YES NO

Fig. 4. Structure of Hierarchical Syntax Chart

where type and RetType are Java date types; Fun is a HSC which the com-
pound statement compStmt describing the body of the function; stmtType indi-
cates the statement is a common (TYPE COM), branch (TYPE IF), switch
(TYPE SWITCH), loop (TYPE LOOP ) or Exist (TYPE EXT) statement.
Note that we suppose the Java program to be verified have no syntax errors,
so the visibility of the Java classes, attributes and member functions are omit-
ted in OOAST.

To create the OOAST for the given Java program, we first need to perform
lexical parsing of the program with the lexical and syntax analysis tool JavaCC.
With the tool, we only need to give the lexical and syntax rules of the subset
of Java language, the lexical and syntax analyzer written in pure Java code can
be automatically generated. Then we employee the analyzer to process the Java
program, and all the syntax elements of the program can be recognized, such
as classes, date types, attributes, member functions, etc. Based on the analysis
result, it is not hard to write the algorithm to create the OOAST, so the details
are omitted here.
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3.3 Conversion from OOAST to POAST

Once the OOAST of Java program is obtained, we then transform it into the
Process-oriented Abstract Syntax Tree (POAST) which precisely describes the
syntax of the MSVL program. As shown in Fig. 5, the structure of POAST is
similarly to that of OOAST except that Java class is replaced with MSVL struct
and the member functions in each java class are transformed into the MSVL
functions. Moreover, the syntax of MSVL functions are also described in HSC.
The formal definition of POAST is as follows:

POAST

Struct ...

Func1
Member ...

...

Struct FunSet

Member

staticVars

Fig. 5. Structure of Process-Oriented Abstract Syntax Tree

POAST ::= < StructSet, FunSet >
Struct ::= < name,MemberSet >
Member ::= < type, name >
Func ::= < name, ParamsList, CompStmt >
Param ::= < type, varName >
CompStmt ::= < name, StmtList >
Stmt ::= < StmtType, simpStmt > | < StmtType, CompStmtList >

where type is a MSVL data type and simpStmt is elementary statement of
MSVL.

According to the transition rules in Subsect. 3.1, the algorithm for convert-
ing OOAST into POAST consists of 10 functions whose relations are shown in
Fig. 6. Function OOASTtoPOAST is the entry of the algorithm, and it traverse
each class nodes in the OOAST. For each class node cls, function OOAST-
toPOAST first calls functions Handle Class, Handle Parent, Handle DynaAtts,
Handle StaticAtts to add a struct node cls (Rule R1), deal with the inherited
attributes (Rule R2), remove the init values of dynamic attributes (Rule R3)
and deal with static attributes (Rule R4) respectively, and then calls function
Handle HSC to process the HSC of the each member functions. For each mem-
ber function’s HSC, function Handle HSC calls functions Handle FuncName,
Replace V ars, Handle FuncCall and Change RetV alue in sequence to handle
the function header (Rule R5, R6), replace the access of class’ attributes with
members of MSVL struct (Rule R7, R10), handle the function call (Rule R8) as
well as deal with the return statement (Rule R8) respectively. The code of the
functions is trivial and hence skipped here.
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OOASTtoPOAST

Handle_
Class

Handle_
StaticAttrs

Handle_
HSC

Handle_
FuncName

Handle_
FuncCall

Replace_
Vars

Change_
RetValue

Entry of the algorithm

Handling HSC

R1

Handle_
Parent

R3

R5, R6 R7, R10 R8 R9

R4

Handle_
DynaAttrs

R2

Fig. 6. Algorithm for converting OOAST into POAST

3.4 Conversion from POAST to MSVL

Now the left work is to convert the POAST to MSVL program. The algorithm
POASTtoMSVL in pseudo C Language is formalized as follows, where the code
of function HSC2MSVL can be found in literature [27].

POASTtoMSVL(POAST ∗ as t ) {
s t r i n g msvlCode ;
// dea l wi th s t r u c t
f o r each c l s in ast−>Struc tSe t {

msvlCode += ‘ ‘\n struct ” + c l s . name + ‘ ‘{ ” ;
f o r each mem in c l s . MemberSet{

msvlCode += mem. type + ‘ ‘ ”+ mem. name + ‘ ‘ and ”
}
msvlCode += ‘ ‘ } ; ”

}
f o r each fun in ast−>FunSet{

msvlCode += HSC2MSVL( fun ) ;
}
re turn msvlCode ;

}

4 Case Study

In following, we give an example to illustrate how our method works in verifying
a Java program. The 3x + 1 conjecture is a well-known but unsolved question
in number theory, which asserts that for any given positive integer x, if x is
even, then let x = x/2, otherwise let x = x ∗ 3 + 1. If we repeat applying the
calculating rule to x, then x must eventually equals 1. The implementing of
3X + 1 conjecture can be depicted as the following Java program.

pub l i c c l a s s PosNum {
pub l i c int value ;
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pub l i c int getValue ( ) {
return value ;

}
pub l i c void setValue ( int num) {

i f (num < 1)
value = 1 ;

else
value = num;

}
pub l i c boolean isOdd ( ) {

return value % 2 == 1 ;
}
pub l i c boolean isEven ( ) {

return value % 2 == 0 ;
}

}
pub l i c c l a s s Ques3X1 extends PosNum{

pub l i c stat ic int maxValue = 2147483647;
pub l i c void run ( ) {

while (1 < value && value < maxValue ) {
i f ( isEven ( ) )

va lue = value / 2 ;
else

value = value ∗ 3 + 1 ;
}

}
pub l i c stat ic void main ( St r ing [ ] a rgs ) {

Ques3X1 demo = new Ques3X1 ( ) ;
System . out . p r i n t l n ( ‘ ‘ Input a p o s i t i v e number : ” ) ;
Scanner in = new Scanner ( System . in ) ;
i n t x = in . next Int ( ) ;
demo . setValue (x ) ;
demo . run ( ) ;
x = demo . getValue ( ) ;
System . out . p r i n t l n (x ) ;

}
}

Firstly, we analyze the lexical and syntax of the Java program to generate
OOAST as shown in Fig. 7, where we only give the HSC the member function run
of class Ques3X1. Then, we employ algorithm OOASTtoPOAST to transform
the OOAST into the POAST as shown in Fig. 8. The object-oriented semantics
of the Jave program is decoded with the MSVL semantics. Subsequently, we use
algorithm POASTtoMSVL to transform the POAST into MSVL program and
the result is as follows.

struct PosNum{
int value

} ;
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struct Ques3X1{
struct PosNum parent

} ;
frame (Ques3X1 maxValue ) and (

int Ques3X1 maxValue and
Ques3X1 maxValue <== 2147483647 and sk ip ;

f unc t i on PosNum getValue ( struct PosNum ∗ th i s , int ∗Ret ) {
∗Ret<==th i s −>value and sk ip

} ;
f unc t i on PosNum setValue ( struct PosNum ∗ th i s , int num) {

i f (num<1)then{
th i s −>value<==1 and sk ip

} else {
th i s −>value<==num and sk ip

}
} ;
f unc t i on PosNum isEven ( struct PosNum ∗ th i s , boolean ∗Ret ) {

∗Ret<==th i s −>value%2==0 and sk ip
} ;

f unc t i on Ques3X1 run ( struct Ques3X1 ∗ t h i s ) {
while ( th i s −> parent . value >1 and th i s −> parent . value<

Ques3X1 maxValue ) {
boolean Ret = f a l s e and PosNum isEven(&( th i s −>

parent ) ,&Ret ) and sk ip ;
i f (Ret ) then{

th i s −> parent . va lue := th i s −> parent . va lue /2
and sk ip

} else {
th i s −> parent . va lue := th i s −> parent . va lue∗3+1

and sk ip
}

}
} ;
f unc t i on Ques3X1 main ( ) {

frame (demo , x ) and (
struct Ques3X1 demo and sk ip ;
int x and sk ip ;
Output ( ‘ ‘ p l e a s e input a p o s i t i v e number : ” ) and sk ip ;
input (x ) and sk ip ;
PosNum setValue (&(demo−> parent ) , x ) and sk ip ;
PosNum run(&demo) and sk ip ;
PosNum getValue (&(demo−> parent ) ,&x )
output (x ) and sk ip

)
} ;
Ques3X1 main ( )

)
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OOSAT

Class
PosNum

Class
Ques3X1

FunSet<int,value>

void 
run()FunSet

TYPE_LOOP 
1 < value && value < 

maxValue

YES

main()void 
run()

TYPE_COM
value = value / 2

TYPE_IF
isEven()

NO

TYPE_COM
value = value * 3 + 1

YES

... int getValue()

TYPE_EXIT

<int,maxValue>

Fig. 7. OOAST of the Java program

FunSet

POSAT

Struct
PosNum

Struct
Ques3X1

FunSet

<int,value>
PosNum_getValue(struct 
PosNum *this, int *Ret)

...

TYPE_LOOP 
this->_parent.value>1 and this-

>_parent.value<Ques3X1_maxV
alue

YES

TYPE_COM
this->_parent.value := this-

>_parent.value/2

NO

TYPE_EXIT
this->_parent.value := this-

>_parent.value*3+1

YES

Ques3X1_run(struct 
Ques3X1 *this)Ques3X1_run(struct 

Ques3X1 *this)

<struct 
PosNum_Parent>

Ques3X1_main()

staticVars

<int 
Ques3X1_
maxValue>

TYPE_IF
boolean Ret = false and 
PosNum_isEven(&(this-

>_parent),&Ret)

TYPE_IF
Ret

Fig. 8. POAST of the Java program

We now can verify the Java program by model checking the corresponding
MSVL program with MSV tool. According to the 3x + 1 conjecture, it is easy
to figure out that the property “given a positive integer x, after calculation, the
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final result of x must be equal to 1” always hold, which can be describe with the
following PPTL formulas:

</
de f i n e p : x = 1 ;
d e f i n e q : x > 0 ;
alw (q−>s t ims p)

/>

Model checking the MSVL program on the MSV with the input integer 111,
an empty LNFG with no edge is produced as shown in Fig. 9. Thus, the property
holds.

Fig. 9. Verification result of the program

5 Conclusion

In this paper, we present a novel model checking method for verifying Java
programs by transforming the Java program into its equivalent MSVL program,
and then verifying whether the expected property holds on the MSV platform.
Compared to existing model checking method of Java, the method proposed
can check more properties expressed in PPTL such as safety and liveness, etc.
However, the method of this paper only concerns a subset of Java programs. In
the near future, we will extend the work to more Java features such as override,
multi-thread, etc.
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Abstract. Scheduling are playing a key role in many real-time systems.
The goal of this paper is to apply PAR and its transformation rules to
formal specification and verification of real-time scheduling. We formally
described three constraints for uniprocessor systems and five constraints
for multiprocessor systems. Furthermore, an EDF (Earliest Deadline
First) program, written in Apla abstract modelling language, could be
automatically transformed to an executable program. Finally, correct-
ness of the EDF program was formally verified by using new strategies
of developing loop invariant in PAR and Dijkstra’s Weakest-Precondition
theory. Formal specification of schedule constraints for real-time systems
highlights PAR’s powerful descriptive ability. Development and verifica-
tion an EDF scheduling algorithm embody the efficiency and reliability
role of PAR Method and PAR Platform.

Keywords: Scheduling · Real-time systems · Earliest Deadline First ·
Loop invariant · Formal specification · Formal verification

1 Introduction

Real-time systems are playing an important role in our society. In the last two
decades, there has been a dramatic rise in the number of real-time systems being
used in our daily lives and in industry production. Representative examples
include vehicle and flight control, chemical plant control, telecommunications,
and multimedia systems. These systems make use of real-time technologies [1].

The most important attribute that sets real-time systems apart from other
systems is that the correctness of systems depends not only on the computed
results but also on the time at which results are produced [1]. In other words,
a task in the system is required to be completed before a specific time instant
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which is called deadline. This sensitivity to timing is the central feature of system
behaviors [2]. To satisfy this requirement, tasks need to be allocated sufficient
resources (e.g., processor) so as to meet their deadlines. This field of study is
referred to as real-time scheduling. With increasing complexity of real-time sys-
tems, how to guarantee the reliability of the design of scheduling is becoming a
challenge for developers. To solve this problem, formal method is a promising
way.

Formal method has been proposed for more than 40 years [3], and its goal is
to improve the reliability, correctness and efficiency of software development [4].
Based on mathematically techniques, formal specifications is used to describe
hardware and software system’s key properties and analyze its behavior [5]. Using
formal methods of mathematics, formal verification is the act of proving or dis-
proving the correctness of intended algorithms with respect to a certain formal
specification or property [6]. There are two well-established ways of formal veri-
fication [7]. The first one is theorem proving using manual proof and automated
proof assistant including Isabelle, HOL, Coq, NUPRL, PVS. Another one is
model checking using tools including SPIN, TLA+, UPPAAL. How to apply
formal methods and techniques to real-time systems, especially in schedule con-
straints and algorithms?

PAR Method and PAR Platform, short for PAR, is a practicable formal
method and its supporting IDE (Integrated Development Environment). PAR
was firstly proposed by Prof. Jinyun Xue in 1997 [8], and its initial foundation
is Partition-And-Recur approach for developing efficient and correct algorith-
mic programs. Next it evolved into a systematic formal method and a series
of supporting tools based on MDD (Model-Driven Development) and generic
mechanism [9–11]. PAR has been successfully applied to design many complex
algorithms and programs with complicated data structure, including travel tree
algorithms [12], graph algorithms [13], Knuths famous hard problem of cyclic
permutation [14,15], an abstract Hopcroft-Tarjan planarity algorithm [16] and a
Knuth’s challenging program that converts a binary fraction to decimal frac-
tion with certain condition [17–19]. Furthermore, PAR has also frequently used
to develop several safety-critical systems, such as shuttle transportation prob-
lems [20], population classification in fire evacuation [21] and earthquakes [22],
emergency railway transportation planning [23], active services support for disas-
ter rescue [24], airline passenger profiling [25], student information management
system [26], multimedia database applications [27] etc.

The paper firstly enlarges PAR’s application to real-time systems. The main
contribution is that we ont only have formally described some schedule con-
straints for uniprocessor and multiprocessor systems using Radl Specification
Language of PAR, but also formally proved the correctness of EDF (Earliest
Deadline First) program, written in Apla abstract modelling language of PAR,
and then the EDF Apla abstract program would be automatically generated
into C++, Java executable programs with Apla2C++ and Apla2Java Gen-
erator in PAR Platform. Formal specification of scheduling constraints could
be used to verify that real-time systems completely and accurately satisfy
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properties. Meanwhile, the correctness of scheduling algorithm is guaranteed
by using formal verification techniques.

The rest of the paper is structured as follows: Sect. 2 reviews some founda-
tional knowledge about PAR and its transformation rules. Our original research
work about formal specification and verification of real-time scheduling is elab-
orated in Sects. 3 and 4. Finally, conclusion and future work are discussed in
Sect. 5.

2 Background Knowledge

A methodology of programming, called PAR (Partition-And-Recur), developed
by Professor Jinyun Xue in 1997 [8]. With more than 20 years work of our
research team, PAR evolved into a practicable formal method called PAR method
and its supporting IDE, called PAR Platform.

2.1 PAR Method and PAR Platform

PAR pays special attention on the formal specification, derivation, verification
and generation of algorithm programs, software components and database appli-
cations. PAR consists of the following three parts:

� PAR Method: a unified approach for processing quantification problem, a
approach for processing non-quantification problem, a set of quantifier trans-
formation rules.
� Modeling Languages: requirement modeling language SNL, specification
and algorithm modeling language Radl, abstract program modeling language
Apla.
� PAR Platform: a set of automatic transformation tools between require-
ment model, algorithm model, abstract program model and executable pro-
gram.

PAR embodies the main idea of Model-driven Engineering (MDE), and pre-
liminarily archives MDE’s goal of model transformation and code generation.
The architecture of PAR Platform is show in Fig. 1. There are two ways to gen-
erate codes. (1) The first way is for processing quantification problem.
PAR Platform can transform SNL requirement model to Radl specification model,
then to Radl algorithm model, and to Apla abstract program model, finally to exe-
cutable program. (2) The second way is for processing non-quantification
problem. Users can directly design Apla program manually and give its formal
proof, then transform it to executable program.

2.2 Quantifier Transformation Rules

Specification and algorithm modeling language Radl of PAR was designed for
the description of algorithm specifications, transformation rules for deriving algo-
rithms and algorithms itself.
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Fig. 1. Architecture of PAR platform

Most of transformation rules have quantifier properties [13,28]. Let small
theta θ be an binary operator, and big theta Θ be the quantifier of operator
θ, then,

(Θ i : r(i) : f(i)) (1)

Means the quantity of f(i) where i range over r(i). We write the quantifier
of binary operator +, •,∧,∨,♦ (minimum), � (maximum), ∩ (intersection), ∪
(union) and ↑ as

∑
,
∏

,∀,∃, �,�,
⋂

,
⋃

and ↑. Obviously operator +, •,∧,∨,♦,
�, ∩, ∪ are associative and commutative and their quantifier Θ have following
properties:

(a) Cartesian Product

(Θ i, j : r(i) ∧ s(i, j) : f(i, j)) = (Θ i : r(i) : (Θ j : s(i, j) : f(i, j))) (2)

(b) Range Splitting

(Θ i : r(i) : f(i)) = (Θ i : r(i) ∧ b(i) : f(i)) θ (Θ i : r(i)∧�b(i) : f(i)) (3)

(c) Singleton Splitting

(Θ i : 0 ≤ i < n + 1 : f(i)) = (Θ i : 0 ≤ i < n : f(i)) θ f(n) (4)

(d) Range Disjunction

(Θ i : r(i) ∨ s(i)θ f(i)) = (Θ i : r(i) : f(i)) θ (Θ i : s(i) : f(i)) (5)

Obviously, binary operation ∧,∨,♦(min), �(max) and ∪ are idempotent.
(e) Generalized Commutativity

(Θ i : r(i) : (Θ j : s(j) : f(i, j)) = (Θ j : s(j) : (Θ i : r(i) : f(i, j)) (6)

(f) Generalized Associativity

(Θ i : r(i) : s(i)θ f(i)) = (Θ i : r(i) : s(i)) θ (Θ i : r(i) : f(i)) (7)

(g) Generalized Distribution
If binary operation θ and 
 satisfy the following laws,
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(I) a 
 b = b 
 a
(II) (a θ b) 
 c = (a 
 c)θ (b 
 c)

(III) IE 
 c = IE (IE is the identity element of operation θ)

(Θ i : r(i) : g 
 f(i)) = g 
 (Θ i : r(i) : f(i)) (8)

2.3 A Unified Approach for Processing Quantification Problem

Algorithmic program is an algorithm described with an implemented or abstract
modeling programming language. According to PAR method, deriving an algo-
rithmic program can be divided into six steps, which presented as follows.

� Step 1. Describe the formal functional specification of an algorithmic
problem {PreconditionAQ : PostconditionAR} using Radl ;

� Step 2. Partition the problem into a number of subproblems each of which
has the same structure with the original problem but smaller in size;

� Step 3. Formally derive the algorithm from the formal functional speci-
fication. The algorithm is described using Radl and represented by recurrence-
relations and initialization [8];

� Step 4. Develop loop invariant directly based on new definition and our
two strategies of loop-invariant [29] for developing loop-invariant straightforward;

� Step 5. Based on the loop-invariant, transform algorithm spec-
ification {PreconditionAQ : PostconditionAR} to program specification
{PreconditionPQ : PostconditionPR}, and transform the Radl algorithm to
Apla abstract program manually or automatically;

� Step 6. Automatically transform the Apla abstract program to an exe-
cutable program, say C++, Java, Scala, etc. using Generators in PAR Platform.

Based on Dijkstra’ s weakest precondition theory, loop invariant develop-
ment strategies and the above six steps of deriving and developing algorithmic
program in PAR, we also have put forward an approach of how to mechani-
cally verify algorithmic programs using Isabelle proof assistant in our previous
paper [12,30]. Different from model checking using MSVL [31,32] with framed
temporal logic [33], our approach focuses on formal derivation and verification
with theorem proving technology and tools.

3 Formal Specification of Schedule Constraints

Real-time systems are playing an important role in our society. In the last two
decades, there has been a dramatic rise in the number of real-time systems being
used in our daily lives and in industry production. Representative examples
include vehicle and flight control, chemical plant control, telecommunications,
and multimedia systems. These systems all make use of real-time technologies [1].

The most important attribute that sets real-time systems apart from other
systems is that the correctness of systems depends not only on the computed
results but also on the time at which results are produced [1]. In other words,
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a task in the system is required to be completed before a specific time instant
which is called deadline. This sensitivity to timing is the central feature of system
behaviors [34]. To satisfy this requirement, tasks need to be allocated sufficient
resources (e.g., processor) so as to meet their deadlines. According to a SMT-
based scheduling method proposed in our previous work [2], we apply the PAR
platform to schedule real-time systems.

3.1 Schedule for Uniprocessor System

Assumption n tasks {T1, T2, . . . , Tn} would run on a processor, there are four
arrays defined as follows.

� a array r[1 . . . n] store the request time r[i] for each task Ti(1 ≤ i ≤ n);
� a array e[1 . . . n] store the execute time e[i] for each task Ti(1 ≤ i ≤ n);
� a array d[1 . . . n] store the deadline d[i] for each task Ti(1 ≤ i ≤ n);
� a array s[1 . . . n] record the start time s[i] for each task Ti(1 ≤ i ≤ n);

3.1.1 Constraint on Start Execution Time of Tasks
As a task can only start to run after it requests, the start time of a task should
be larger than or equal to the request time instant.

(∀i : 1 ≤ i ≤ n : s[i] ≥ r[i])

3.1.2 Constraint on Processor
A processor can execute only one task at a time. This is interpreted as: there is
no overlap of the execution time of any two different tasks.

(∀i, j : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ n ∧ i �= j : s[i] ≥ s[j] + e[j] ∨ s[j] ≥ s[i] + e[i])

3.1.3 Constraint on Deadline
A successfully completed task should be completed before its deadline.

(∀i : 1 ≤ i ≤ n : s[i] + e[i] ≤ d[i])

3.2 Schedule for Multiprocessor System

Assumption n tasks {T1, T2, . . . , Tn} would run on m processors {P1, P2, . . . ,
Pm}, besides request array, execute array and deadline array, three other Two-
dimensional arrays are defined as follows.

� a array r[1 . . . n] store the request time r[i] for each task Ti(1 ≤ i ≤ n);
� a array e[1 . . . n] store the execute time e[i] for each task Ti(1 ≤ i ≤ n);
� a array d[1 . . . n] store the deadline d[i] for each task Ti(1 ≤ i ≤ n);
� a two-dimensional array P [1 . . . n][1 . . . m] represents the relations between

tasks and processors, where if P [i][j] = 0 means that task Ti can’t be processed
by processor Pj , otherwise P [i][j] = 1 means that task Ti can be processed by
processor Pj .
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� a two-dimensional array D[1 . . . n][1 . . . n] represents precursor-relations
among tasks, where if D[i][j] = 0 means that task Tj isn’t a precursor of task
Ti, otherwise D[i][j] = 1 means that task Tj is a precursor of task Ti.

� a two-dimensional array s[1 . . . n][1 . . . m] represents a start time for a task
processed on a processor, where task Ti could be processed by processor Pj at
time of s[i][j].

3.2.1 Constraint on Heterogeneous Processors
In heterogeneous systems, processors have different architectures, some tasks can
only be executed on some specific processors. For tasks that cannot be executed
on some processors, the start execution time of the tasks in such processors
are set to +∞, which means the tasks will never start to run on these specific
processors.

(∀i : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ P [i][j] = 0 : s[i][j] = +∞)

3.2.2 Constraint on Start Execution Time of Tasks
That is, the start execution time of a task should be larger than or equal to the
triggered time of function its request time instant.

(∀i : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ P [i][j] = 1 : s[i][j] ≥ r[i])

3.2.3 Constraint on Task Dependency
For a processor, if two tasks have dependency relation, task Ti can start to run
only after Tj has been completed.

(∀i : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ n ∧ 1 ≤ u ≤ m ∧ 1 ≤ v ≤ m ∧ P [i][u] =
1 ∧ P [j][v] = 1 ∧ D[i][j] = 1 : s[i][u] ≥ s[j][v] + e[j])

3.2.4 Constraint on Single Processor
A processor can execute only one task at a time. This is interpreted as: there is
no overlap of the execution time of any two tasks.

(∀i : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ n ∧ 1 ≤ k ≤ m ∧ P [i][k] = 1 ∧ P [j][k] = 1 ∧ i �=
j : s[i][k] ≥ s[j][k] + e[j] ∨ s[j][k] ≥ s[i][k] + e[i])

3.2.5 Constraint on Deadline
A successfully completed task should be completed before its deadline. In mul-
tiprocessor systems, for a task, any single processor completes it before deadline
means the task has been completed successfully.

(∀i : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m : s[i][j] + e[i] ≤ d[i])

4 Formal Verification of a EDF Schedule Program

4.1 Design of a EDF Schedule Program

EDF is an dynamic priority scheduling algorithm on preemptive uniprocessor
systems, which was firstly proposed by Liu and Layland [35] in 1973, and then



Formal Specification and Verification for Real-Time Scheduling 115

has been proven to be an optimal scheduling algorithm on a single processor by
Dertouzos [36].

A real-time system is modeled in the following sense: a collection of indepen-
dent tasks {T1, T2, . . . , Tn}, each task Ti characterized by a request time r[i], an
execution requirement e[i] and a deadline d[i]. Tasks can be scheduled in a way
that ensures all the tasks complete by their deadline. According to the EDF’s
scheduling strategy, a requested task with the earliest absolute deadline is firstly
executed.

Based on the above scheduling strategy, we developed an EDF program by
using a unified approach for processing quantification problem of PAR described
in Sect. 2.3. In the following EDF program, a function nextnode could be used
to find the earliest deadline task Tk with three conditions, (1) the task is not
executed, which represents f [k] = false, (2) the request time is smaller than the
concurrent end-time, which represents r[k] � endt, (3) the deadline is smaller

1: program EDF;
2: var
3: — Omit Definition of Variables
4: function nextnode(r:array[1..n+1,integer];f:array[1..n+1,boolean];

endt:integer):integer;
5: var k,j,mindt:integer;
6: begin
7: mindt,k:=INF,1;
8: do (k≤n)∧(f[k]=true) → k:=k+1;
9: [ ] (k≤n)∧(f[k]=false) → if (r[k]≤endt)∧(d[k]≤mindt) → j:=k;mindt:=d[k];fi;

10: k:=k+1;
11: od;
12: nextnode:=j;
13: end;
14: begin
15: — Omit Initialization of Main Program
16: startn,i:=1,2;
17: do(i≤n) → if (r[i]<r[startn]) → startn:=i;
18: [ ] (r[i]=r[startn])∧(d[i]<d[startn]) → startn:=i; fi;
19: i:=i+1;
20: od;
21: s[startn]:=r[startn];
22: endtime := s[startn]+e[startn];
23: flag[startn],i:=true,2;
24: do(i≤n) → j:=nextnode(r,flag,endtime);
25: s[j]:=endtime;endtime:=endtime+e[j];flag[j]:=true;
26: i:=i+1;
27: od;
28: writeln(”Output-start-time-for-each-task:”);
29: foreach(i:1≤i≤n:write(s[i],”,”););
30: end.
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than min-deadline, which represents d[k] � mindt. The formal specification of
nextnode function could be easier to expressed by using the minimum quantifier.

The EDF Apla abstract program can be automatically transformed into a
C++ executable language program by using Apla2C++ Generator of PAR Plat-
form. The transformation shows in Fig. 2.

4.2 Verification of a EDF Schedule Program

The EDF’s scheduling strategy is described as that a requested task with
the earliest absolute deadline is firstly executed. So function nextnode is the
essential code in the above EDF Apla program. Function nextnode has three
parameters, a request-time array r : array[1..n + 1, integer], a flag array
f : array[1..n + 1, boolean] and end-time of the current task endt. The Do
statement from line 8 to line 11 is the core code of function nextnode. Based on
Dijkstra’ s weakest precondition theory and loop invariant development strate-
gies of PAR method [29], formal verification the correctness of Do statement is
given as follows.

Fig. 2. Automatic transformation from Apla program (left) to C++ program (right)

A variable k is defined as the range from [1, k), a variable mindt is a record
min-deadtime from a set of {Ti, i ∈ [1, k)}. A initial statement “mindt, k:=INF,
1;” given before Do statement, where INF means +∞, and the initial range [1, 1)
is ∅. A flag array f : array[1..n + 1, boolean] record the state of tasks, where
if f [i] = false means that task Ti is still not executed, otherwise f [i] = true
means that task Ti was successfully executed and its dead-time is +∞. Hence,
a function g(d[i]) is defined as follows.
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g(d[i]) =

{
d[i] (f [i] = false)
+∞ (f [i] = true)

(9)

There is a minimum quantifier � of a binary min operator ♦(a, b) defined in
PAR. In order to describe post-condition of Do statement, a function M [k] is
defined as follows.

M(k) = (� i : 1 ≤ i < k ∧ r[i] ≤ endt : g(d[i]))
Describe the formal functional specification of Do statement in function

nextnode {Q : R} using Radl specification language of PAR.
Precondition Q: {(mindt = +∞) ∧ (k = 1)}
Postcondition R: {mindt = M(n + 1)}

According to loop invariant development strategies of PAR method [29], we
derived the following loop invariant ρ and a boundary function τ .

ρ : mindt = M(k)
τ : n − k + 1

Same conditions C1, C2, C21, C22 are signed in Do statement containing a if
statement.

� Condition C1 : (k ≤ n) ∧ (f [k] = true)
� Condition C2 : (k ≤ n) ∧ (f [k] = false)
� Condition C21 : (r[k] ≤ endt) ∧ (d[k] ≤ mindt)
� Condition C22 =�C21 : (r[k] > endt) ∨ (d[k] > mindt)

There are three branches of Do statement, and three conditions C1, C2, C3

and their statements S1, S2, S3 is given.
� Condition C1 = C1 : (k ≤ n) ∧ (f [k] = true)

Statement S1 : k := k + 1;
� Condition C2 = C2 ∧ C21 :

(k ≤ n) ∧ (f [k] = false) ∧ (r[k] ≤ endt) ∧ (d[k] ≤ mindt)
Statement S2 : j := k;mindt := d[k]; k := k + 1;

� Condition C3 = C2 ∧ C22 :
(k ≤ n) ∧ (f [k] = false) ∧ ((r[k] > endt) ∨ (d[k] > mindt))

Statement S3 : k := k + 1;
The condition Guard = C1 ∨ C2 ∧ C3 is calculated as follows.

� Guard = C1 ∨ C2 ∧ C3

= C1 ∨ (C2 ∧ C21) ∧ (C2 ∧ C22)
= C1 ∨ (C2 ∧ C21) ∧ (C2∧�C21)
= C1 ∨ C2

= ((k ≤ n) ∧ (f [k] = true)) ∨ ((k ≤ n) ∧ (f [k] = false))
= k ≤ n

Based on Dijkstra’s weakest precondition theory, we formally prove the cor-
rectness of Do statement {Q} do {R}, several theorems expressions of weakest
precondition should be verified.

(1) Prove Q ⇒ ρ
Q ⇒ ρ
≡ (mindt = +∞) ∧ (k = 1) ⇒ mindt = M(k)
≡ (mindt = +∞) ∧ (k = 1) ⇒ mindt = M(1)
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[M(1) = (� i : 1 ≤ i < 1 ∧ r[i] ≤ endt : g(d[i]))
= (� i : false : g(d[i])) = +∞ ]

≡ (mindt = +∞) ∧ (k = 1) ⇒ mindt = +∞
≡ true

(2) Prove ρ ∧ Ci ⇒ WP (“Si”, ρ)
• Prove the first branch of Do Statement with C1 and S1.
ρ ∧ C1 ⇒ WP (“S1”, ρ)

≡ (mindt = M(k))∧(k ≤ n)∧(f [k] = true) ⇒ WP (“k := k+1; ”,mindt =
M(k))

≡ (mindt = M(k)) ∧ (k ≤ n) ∧ (f [k] = true) ⇒ mindt = M(k + 1)
[M(k + 1) = (� i : 1 ≤ i < k + 1 ∧ r[i] ≤ endt : g(d[i]))

= ♦(M(k), g(d[k])
–Using Rule of Singleton Splitting]

≡ (mindt = M(k)) ∧ (k ≤ n) ∧ (f [k] = true) ⇒ mindt = ♦(M(k), g(d[k])
[♦(M(k), g(d[k]) = ♦(M(k),+∞) = M(k)

–Using Definition of a Functiong(d[i])]
≡ (mindt = M(k)) ∧ (k ≤ n) ∧ (f [k] = true) ⇒ mindt = M(k)
≡ true
• Prove the second branch of Do Statement with C2 and S2.
ρ ∧ C2 ⇒ WP (“S2”, ρ)
≡ (mindt = M(k)) ∧ (k ≤ n) ∧ (f [k] = false) ∧ (r[k] ≤ endt) ∧ (d[k] ≤

mindt) ⇒ WP (“j := k;mindt := d[k]; k := k + 1; ”,mindt = M(k))
≡ (mindt = M(k)) ∧ (k ≤ n) ∧ (f [k] = false) ∧ (r[k] ≤ endt) ∧ (d[k] ≤

mindt) ⇒ WP (“j := k;mindt := d[k]; ”,mindt = M(k + 1))
≡ (mindt = M(k)) ∧ (k ≤ n) ∧ (f [k] = false) ∧ (r[k] ≤ endt) ∧ (d[k] ≤

mindt) ⇒ d[k] = M(k + 1))
≡ (mindt = M(k)) ∧ (k ≤ n) ∧ (f [k] = false) ∧ (r[k] ≤ endt) ∧ (d[k] ≤

mindt) ⇒ d[k] = M(k + 1))
[M(k + 1) = (� i : 1 ≤ i < k + 1 ∧ r[i] ≤ endt : g(d[i]))

= ♦(M(k), g(d[k])
–Using Rule of Singleton Splitting]

≡ (mindt = M(k)) ∧ (k ≤ n) ∧ (f [k] = false) ∧ (r[k] ≤ endt) ∧ (d[k] ≤
mindt) ⇒ d[k] = ♦(M(k), g(d[k])

[♦(M(k), g(d[k]) = ♦(M(k), d[i])
–Using Definition of a Function g(d[i])]

≡ (mindt = M(k)) ∧ (k ≤ n) ∧ (f [k] = false) ∧ (r[k] ≤ endt) ∧ (d[k] ≤
mindt) ⇒ d[k] = ♦(M(k), d[k])

≡ (mindt = M(k)) ∧ (k ≤ n) ∧ (f [k] = false) ∧ (r[k] ≤ endt) ∧ (d[k] ≤
mindt) ⇒ d[k] = d[k]

≡ (mindt = M(k)) ∧ (k ≤ n) ∧ (f [k] = false) ∧ (r[k] ≤ endt) ∧ (d[k] ≤
mindt) ⇒ true

≡ true
• Prove the third branch of Do Statement with C3 and S3.
ρ ∧ C3 ⇒ WP (“S3”, ρ)
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≡ (mindt = M(k)) ∧ (k ≤ n) ∧ (f [k] = false) ∧ ((r[k] > endt) ∨ (d[k] >
mindt)) ⇒ WP (“k := k + 1; ”,mindt = M(k))

≡ (mindt = M(k)) ∧ (k ≤ n) ∧ (f [k] = false) ∧ ((r[k] > endt) ∨ (d[k] >
mindt)) ⇒ mindt = M(k + 1)

[M(k + 1) = (� i : 1 ≤ i < k + 1 ∧ r[i] ≤ endt : g(d[i]))
= ♦(M(k), g(d[k])
–Using Rule of Singleton Splitting]

≡ (mindt = M(k)) ∧ (k ≤ n) ∧ (f [k] = false) ∧ ((r[k] > endt) ∨ (d[k] >
mindt)) ⇒ mindt = ♦(M(k), g(d[k])

[♦(M(k), g(d[k]) = ♦(M(k), d[i])
–Using Definition of a Functiong(d[i])]

≡ (mindt = M(k)) ∧ (k ≤ n) ∧ (f [k] = false) ∧ ((r[k] > endt) ∨ (d[k] >
mindt)) ⇒ mindt = ♦(M(k), d[k])

≡ (mindt = M(k)) ∧ (k ≤ n) ∧ (f [k] = false) ∧ ((r[k] > endt) ∨ (d[k] >
mindt)) ⇒ mindt = M(k)

≡ true
(3) Prove ρ∧�Guard ⇒ R

ρ∧�Guard ⇒ R
≡ (mindt = M(k))∧�(k ≤ n) ⇒ mindt = M(n + 1)
≡ (mindt = M(k)) ∧ (k > n) ⇒ mindt = M(n + 1)
≡ (mindt = M(k)) ∧ (k > n) ⇒ mindt = M(n + 1)
≡ true

(4) Prove ρ ∧ Guard ⇒ τ > 0
ρ ∧ Guard ⇒ τ > 0
≡ (mindt = M(k)) ∧ (k ≤ n) ⇒ n − k + 1 > 0
≡ true

(5) Prove ρ ∧ Ci ⇒ WP (“τ ′ := τ ;Si”, τ < τ ′)
ρ ∧ Ci ⇒ WP (“τ ′ := τ ;Si”, τ < τ ′)

[k := k + 1;∈ Si]
≡ ρ ∧ Ci ⇒ n − (k + 1) + 1 < n − k + 1
≡ ρ ∧ Ci ⇒ true
≡ true

The above theorems-expressions could be verified by using a generic proof
assistant Isabelle/HOL.

5 Conclusion and Future Work

The goal of this paper is to apply PAR and its transformation rules to formal
specification and verification of real-time scheduling. The work embodies three
innovation points. (1) Formal specification of schedule constraints on unipro-
cessor and multiprocessor systems highlights PAR’s powerful descriptive ability;
(2) Based on data abstraction and function abstraction of PAR, a EDF (Earliest
Deadline First) abstract program is efficiently developed using Apla modelling
language, and it could be automatically generated into C++, Java executable
programs with Apla2C++ and Apla2Java Generator in PAR Platform. The ratio
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of code-lines between EDF Apla abstract program and C++/Java executable
program is approximately 1:10; (3) After developing a loop invariant using PAR’s
loop invariant strategies, the correctness of the EDF scheduling algorithm is
guaranteed by using formal verification of Dijkstra’s Weakest-Precondition the-
ory and. In the future, we will extends PAR Method and Platform to describe,
derive and verify more complicated constraints and algorithms for real-time sys-
tems.
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Abstract. SOFL is a well-known industrially applied software design
language to be used within the framework of a formal engineering method
(FEM). Though SOFL is easy to grasp and intuitively usable by prac-
titioners, its original syntax permits the construction of ‘funny’ specifi-
cations (which cannot sensibly be implemented) and its semantics is not
precisely defined. In the project described in this paper we have defined
a restricted dialect of SOFL which can be parsed for syntactical correct-
ness, and the semantics of which is well-defined. The static semantics
of a SOFL specification can now be formally checked by means of an
SMT solver, (SMT: Satisfiability ‘modulo theory’) whereas the dynamic
semantics is provided by way of translation into a process algebra (the
semantics of which is already given). Already available process algebra
tools can then be used to formally check a well-constructed SOFL spec-
ification for interesting behavioural properties.

Keywords: SOFL · Restricted dialect · Formal semantics ·
Tool support

1 Introduction

The Structured Object Oriented Formal Language (SOFL) [14,18] is a high-level
system design language to be used in the context of Formal Engineering Meth-
ods (FEM). Although essentially textual, SOFL specifications also include data
flow diagrams to make such specifications more ‘intuitive’ and ‘user-friendly’
from the perspective of industrial software practitioners. Examples of SOFL’s
practical application can be found in [12,16,17,28]. For the sake of its ‘intu-
itive user-friendliness’, however, SOFL was never fully formalised. The language
had ‘grown organically’ out of VDM-SL during a long period of time [14, Sect.
1.5], whereby more and more new ‘features’ were included whenever such inclu-
sion appeared to be desirable at some point in time [14, Sect. 1.6]. As a result,
SOFL’s grammar gradually became ‘cluttered’ and redundant, such that there
are now many different possibilities of expressing one and the same system spec-
ification, S, in syntactically many different ways with SOFL. This is especially
true since ‘functional’, ‘modular’ and ‘object-oriented’ features became gram-
matically mingled into each other as the language evolved during its history.
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Moreover: because of this long-term ‘organic growth’ of SOFL’s grammar, it is
now even possible with SOFL to construct meaningless (i.e. semantically void)
system specifications that are not sensibly implementable. Only SOFL’s static
semantics has been reasonably well defined thus far [14, Chap. 17], whereas
SOFL’s intended behavioural semantics [8] was only informally described in [14,
Sect. 1.5, 4.2–4]. For safety-critical applications, however, a specification lan-
guage with un-ambiguous and fully formalized semantics is needed, such that
safety-critical system properties (e.g. deadlock-freeness) can be reliably checked
via suitable tool support.

In our current project, of which this paper gives a preliminary ‘status report’,
we are working on the formalisation of SOFL’s semantics—in particular its
behavioural semantics—with the aim of also providing more ‘powerful’ tool sup-
port for SOFL practitioners. By means of such tools SOFL practitioners shall
be enabled to prove with formal rigour that a specified system S is not only
satisfiable (i.e. implementable), but also possesses desirable behavioural proper-
ties (e.g. deadlock-freeness). For this purpose, the over-rich ‘organically grown’
original grammar of SOFL had to be somewhat ‘pruned’, such that we are now
actually working with a syntactically somewhat ‘smaller’ (i.e. more concise and
less ambiguous) ‘dialect’ of SOFL. This modified SOFL grammar is suitable
for parsing (i.e. to check a specification’s syntactical correctness) by means of
the usual parser tools. For all these purposes we have created (inter alia) an
‘Eclipse’ plug-in which provides support for validating the semantics of SOFL
specifications: see Fig. 1. This plug-in was developed on the basis of a suitable
domain-specific language (DSL) which enables the additional display of semantic
information to a SOFL specification that is being written with help of our editor
tool.

Figure 2 gives an overview of the tool chain via which the semantics of a
SOFL specification can be analysed. First, a SOFL specification is created in
the editor. The library ‘Xtext’ is used to parse the specification’s file and to cre-
ate a corresponding EMF model.1 This EMF representation is then parsed for
the correctness of its syntax (according to the modified grammar of our SOFL
‘dialect’). Along the lines of [14, Chap. 17], the static semantics of a syntac-
tically correct SOFL specification is then captured by means of a set of logic
formulæ amenable to SMT solving: in this way, any available SMT solver can
be used to prove (or disprove) the ‘satisfiability’ of the given SOFL specifica-
tion.2 In our case, the chosen solver is ‘Z3’ [21]. As far as a SOFL specification’s
dynamic semantics is concerned, we did not formally define one ‘from scratch’;
rather we followed a translational approach by ‘mapping’ a statically correct
(i.e. type-checked) SOFL specification onto a corresponding ACP specification.3

The Algebra of Communicating Processes (ACP) [3] is a suitable formalism with
already well-defined dynamic semantics. Thereby, our ‘mapping’ of SOFL onto

1 EMF: Eclipse Modeling Framework.
2 For the definition of ‘satisfiability’ in SOFL see [14, Definition 25, p. 304].
3 In earlier work we demonstrated the usefulness of such a ‘translational’ approach in

the context of CSP specifications of wireless sensor networks [25].
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Fig. 1. Editor for syntactic and semantic analysis of SOFL specifications

ACP was guided (as much as possible) by the informal explanations and seman-
tics descriptions found in the ‘classical’ SOFL book [14], although some minor
deviations from the originally ‘intended’ SOFL process semantics turned out to
be inevitable. The already existing tool suite of the ‘micro Common Representa-
tion Language 2’ (mCRL2) [24] can then be used to analyse the process algebraic
representation (LTS: a labelled transition system) of the initially given SOFL
specification for the presence or absence of interesting run-time properties, for
example deadlock (Fig. 3).

Translated to ACP are only those SOFL specifications the static semantics of
which is already verified. Subsequently, in our approach, the subtle relations and
‘links’ between static and dynamic semantics are ignored in the SOFL-to-ACP
translation. As an example consider SOFL’s conditional structures [14, Sect. 4.7]
in which input data will determine on which output port some flow of data will
appear. These conditional selections will be ‘abstracted away’ when we create an
ACP representation for the operational semantics of a given SOFL specification.
The resulting ACP specification is thus a ‘sufficiently correct’ approximation
of the initially given SOFL specification.4 ACP thus allows us to ‘simulate’
(with sufficient precision) the flow of data through SOFL’s Conditional Data
Flow Diagrams (CDFD). Those tools of the above-mentioned tool chain, which

4 Working with approximations is very common in the field of formal methods.
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Fig. 2. Tool chain for analysing the semantics of SOFL specifications

were developed by ourselves, are already publicly available,5 whereas a more
comprehensive explanation of the underlying theoretical concepts will follow
soon [2].

The remainder of this paper is organised as follows. In Sect. 2 we briefly dis-
cuss some of the most relevant related work. Section 3 outlines our modifications
of the original SOFL syntax.6 Static semantics will be considered in Sect. 4;
operational semantics and property verification in Sect. 5. An example is given
in Sect. 6 to illustrate the main points of our work. Section 7 concludes this paper
with additional hints to future work.

2 Related Work

SOFL was already the topic of a variety of case studies [12,28] which included
questions concerning SOFL’s usability w.r.t. the typical ‘needs’ of the software
engineering or system designing practitioner [30]. Though ours is not the first
attempt at providing SOFL with more formal and rigorous semantics, literature
on this topic is still rather scarce. As mentioned above the language’s static
semantics by Dong [7] and Liu [19, Chap. 17], which includes ‘typing’ rules for
the proper connections between the various components of a SOFL CDFD spec-
ification, already exists, whereas the language’s behavioural semantics was not

5 https://gitlab.com/JohanVdBerg/sofl-editor.git.
6 As we are addressing our paper to an audience of SOFL experts, we presume through-

out this paper that our readers are already familiar with the contents of [14].

https://gitlab.com/JohanVdBerg/sofl-editor.git
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Fig. 3. Example of SOFL CDFD with possibility of deadlock

formally provided in [7] nor in [14].7 A formal approach was taken in [8]. The
generation of test data with a set of ‘Functional Scenarios’ (FS) was described in
[11]. FS are derived from predicates by considering those predicates’ structures.
Thereby a FS captures a set of processes that ‘fire’ to produce output from
input; this technique incorporates at least some ‘dynamics’ of a CDFD (by way
of pre- and post-conditions) in the construction of a FS. The use of SMT solvers
was considered in [26] to determine if a FS can be satisfied. Strictly speaking,
however, the pre- and post-condition-based I/O relations of data in FS cannot
fully capture the run-time dynamics of a given system, such that important
properties like deadlock-freeness cannot be assessed by means of those tech-
niques. A rigorous (albeit not tool-supported) method with Review Task Tree
(RTT) diagrams was suggested to verify other logical properties (mostly static
semantics) of SOFL specifications [15,20], whereas the ‘internal consistency’ of
specifications was considered in [13]. To a limited extent also safety properties
are amenable to these kinds of checking techniques. A combination of RTT and
FS was described in [10]. Several support tools were created previously for work-
ing with SOFL specifications. Their user-support was typically restricted to a
specification’s structural syntax and (to some extent) static semantics. The tool
of [19] provided visual simulations and ‘animations’ of data flows through CDFD
by way of Message Sequence Charts (MSC). Similar simulations were shown in
[9] on the basis of the above-mentioned FS. From FS execution paths a Kripke
structure was created in [26] and model-checked with Promela/Spin. A hier-
archical meta structure of such Kripke structure is used to capture the nested
structures of CDFD (with their sub-CDFD, processes and sub-processes). In [29]

7 Personal communication (e-mail) by Shaoying Liu: “In principle, SOFL specification
inspection does not support formal proof simply because it is rather difficult for
ordinary engineers, but for some critical applications formal proof may be valuable”
(8 Nov. 2013).
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a finite state machine was created from FS. Internal consistency proof techniques
are described in [6] where proof obligations stemming from FS are formulated.
Operational semantics for SOFL were formally defined in [8] with help of the
formalism ‘Object Z’. Using a machine-checkable notation has the advantage of
proof-automation for relevant properties of interest: the tool ‘Ott’ [23] can be
used for this purpose. Noteworthy progress was also made in tool-support for
a DSL of which SOFL is an instance. Xtext allows the definition of such DSL
and provides a framework that enables semantic validation, code generation, and
integration all in Eclipse. Thereby the library ‘Xsemantics’,8 which cooperates
well Xtext, assists in defining a type checker for a DSL’s static semantics.

3 A New SOFL Dialect

Our new ‘dialect’ of SOFL has a grammar G′′ based on a simplification G′ of the
original grammar G of [14, Appendix A]: after simplification, G′ was augmented
to G′′ by the addition of a small number of new features which had not been
part of the original G. Formally: G′ = G ∩ G′′. These changes were introduced
to simplify the syntactic analysis (parsing) as well as to facilitate the formal
semantic analysis of specifications written in our SOFL ‘dialect’. The example
shown at the end of this paper sketches some of those grammatical differences; all
details will appear comprehensively in [2]. Thereby, our new grammar supports
specifically SOFL’s user-friendly graphical CDFD notation (rather than the text-
based ‘explicit’ specifications of [14, Sub-sect. 4.17.1 and Chap. 6]).

According to the ‘classical’ SOFL grammar each process consist of pre- and
post-conditions whereby each conditioning predicate P is defined of over a set
of ports. This, however, permits specifications in which the ‘firing’ rules of a
process lead to strange situations. Consider, for example, a pre-condition (x >
0) ∨ (y > 0 ∧ bound(x)) for an ‘exclusive-or process’, B [14, Fig. 4.3:B], where
data flows x, y are connected to different (separate) input ports: When y = 10
(data available) and x =⊥ (no data) then the ‘exclusive-or’ process ought to
‘fire’, because: “When either x or y is available, process B takes x or y, but not
both, as input” [14, Sect. 4.3, p. 61]. However the given pre-condition evaluates
to ‘false’, which is in our semantics not allowed for any process to start. The
dilemma in this scenario is due to the sub-condition ‘bound(x)’ which creates
a dependency between the two (allegedly ‘separate’) ports. In our ‘dialect’ of
SOFL, by contrast, a pre/post-condition will be defined individually for each
input/output port pair to avoid the problem sketched above. The ‘expressive
power’ of our new pre/post conditions is thus indeed somewhat limited,9 but
so we prevent cumbersome scenarios, like the one sketched above, which are
not desirable in software-modelling. Our modification is consistent with [8], in
which ‘pre-condition = true’ is also demanded before a process is allowed to ‘fire’,
however not necessarily with [14, Sect. 4.3, p. 57] where it is vaguely stated that
“if the precondition is not satisfied by the input data flows, no correct output

8 https://github.com/eclipse/xsemantics.
9 This had been noticed by one of our anonymous reviewers.

https://github.com/eclipse/xsemantics
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data flows are guaranteed”. In other words: [14] does not strictly prevent ‘crazy’
processes from doing ‘whatever they want’ as soon as any kind of stimulus arrives
at their input ports. By contrast: our processes (like the ones of [8]) must remain
‘silent’ when any given input violates a pre-condition.10

Demanding that a node’s pre-condition must evaluate to true before it fires
entails a notion of ‘total’ correctness, i.e.: each process must ‘terminate’ in the
sense of yielding post-condition-compatible output data (before this process may
possibly be allowed to ‘start again’). This modification removed the need to eval-
uate expressions in ternary logic (t, f,⊥) on undefined clauses. SOFL’s original
use of the Logic of Partial Functions (LPF) with a third truth-value (⊥ or ‘nil’)
[14, Sect. 3.6] is thus no longer needed in our approach. A disadvantage of this
restriction is that predicate expressions (conditions) over dynamic data struc-
tures, for example ‘�[1]/len(�) = 1’ with � = [] (hence: len(�) = 0), can no longer
be evaluated any more.11 Moreover, only active data flows will be used, whereby
‘shadow flows’ are newly introduced in cases where no data flows are connected
to any port. With help of such ‘shadow flows’ it can be indicated whether a
process actually consumes data such that its embedding CDFD can ‘terminate’.
The firing rules applicable to shadow flows are the same as the ones for active
data flows.

Hierarchical refinement of a process adds ‘details’ in a structured manner
in order to create specifications that can ultimately serve as implementations.
Problematic, however, was the way in which the additional refining data flows
were defined. In the original SOFL they are simply inserted into a CDFD with
only little additional information concerning their data flows.12 Hence it was
possible in the original SOFL framework to specify data flows the types of which
were not sufficiently constrained, i.e.: the data values that a port can expect as
inputs cannot be sufficiently restricted by logical predicates.13 In our new SOFL
‘dialect’, by contrast, these problems can no longer occur. Assignments in SOFL
are done in let statements and when stipulating the values of data stores. In
our approach, by changing all expressions to be more ‘function-like’, the use
of assignments to data stores is avoided. With a let statement a predicate is
assigned to a variable and is substituted where the variable is used. When a
value needs to be specified uniquely the corresponding predicate must be valid
on states that contain only the value that is needed in such a situation.

Last but not least, the original SOFL’s object-oriented Class concept [14,
Chap. 13] turned out to be problematic, too.14 In a SOFL Class definition the

10 This, too, had been noticed by one of our anonymous reviewers.
11 One of our anonymous reviewers has made such a remark. The list operators used

in the example of above can be found in [14, Sect. 9.3].
12 The relevant assertions on this topic can be found ‘scattered’ across [14, Rule 5.1,

Rule 5.2, Definition 14, Definition 17, Definition 27, Definition 30 in Chap. 5 and
Chap. 17].

13 For comparison see the concept of ‘Value-Space-based Sub-Typing’ [22].
14 During the historic evolution of SOFL, those object-oriented features were simply

‘plugged onto’ the already existing older functional features, thus ‘cluttering’ the
entire language with much redundancy.
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behaviour of its Methods must be specified, too: for this purpose CDFD are
typically used again. Hence it is possible in the original SOFL framework to
create semantically dubious self-references, whereby a CDFD can contain data
flow of a Class type in which the very same CDFD can be used again to define
Methods of that Class the Objects of which are sent as data through the channels
of the CDFD. Although this claim may sound strange,15 it can actually be proven
on the basis of the grammar given in [14, Appendix A]. For this reason the Class
concept has been entirely excluded from the grammar of our modified SOFL
dialect.16

4 Static Semantics

The static semantics (including type declarations and the correct ‘linking’ of
process via channels) of a SOFL specification will be checked by means of Xtext
validation and translation into SMT-LIB. The underlying correctness definitions
can be found in [14, Chap. 17], but since predicates are differently associated
with ports in our dialect, some of the checks will be somewhat more complicated
than in [14, Chap. 17]. However, since we do not longer use the trivalent LPF,
any ‘normal’ SMT solver can be used to discharge the arising proof obligations.

Xtext Validation. This validation phase is convenient for the user as it pro-
vides rapid feedback if a SOFL specification is not statically consistent. For the
sake of a ‘swift’ and ‘smooth’ user-experience, the checks in this phase may not
be computationally costly. They merely ensure that: • data flow channels are
connected correctly; • only elements ‘visible’ in their ‘scope’ are accessed; • pro-
cess refinement is correct (#ports and variables used at the ports); • types are
correctly used as declared.

When a process gets refined, a SOFL module and a CDFD are associated with
it. As in [14] a module defines access to data stores by the processes it contains,
and (possibly) additional data stores and further processes that are introduced
to add further details to the refinement. Since a CDFD can add additional data
flows, new ports can also be defined. Thus each port of the process being refined
is mapped to a set of ports in the entire CDFD, whereby the images of these
mappings are disjoint. The mapping takes a port p to a set of ports R(p) that
can only be modified by adding extra data flows to the port. When data flows
are added to a port due to refinement it must be done in such a manner that
no two ports in R(p) are connected to the same data flow. Data flows originally
connected to p are also connected to all ports in R(p) resulting in the same data
flow being connected to more than one port. This is an exception to the rule:
‘the end of a data flows can only be connected to one port’, but must be allowed
due to the separation between the process being refined and the CDFD; note

15 One of our anonymous reviewers had made a comment on this point.
16 Strictly speaking we have thus an ‘SFL’ dialect without the Object-oriented ‘O’.
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that it is not allowed for data to be consumed (nor generated) twice from one
data flow.17

A type in SOFL is defined by the set of data value instances that the type
comprises. For standard types, like numbers, these sets of values are predefined.
Nodes and data flows are regarded in our approach as instances of a new ‘con-
nection’ type. Thereby, data flows connect input/output variable of nodes, such
that the types of the variables and the data flows must ‘match’ consistently.

SMT Translation. To check the above-mentioned static semantic properties
with an SMT solver, a SOFL specification must be represented logically such
that the solver can ‘work’ with it: We do this via translation to SMT-LIB [1].
Because the verification of SMT formulæ is computationally expensive, this is
done in a separate phase of the work-flow (Fig. 2). These checks are done on the
basis of the notion of ‘types as predicates’ [27]. Thereby a (sub)type is restricted
by a predicate which is used to define a (sub)set of the original set of possible
data values. For a SOFL specification to be internally consistent none of these
set may be empty. For the translation only numeric types are currently taken
into account; the automatic verification of SOFL expressions with more complex
data types is ‘future work’. For checking such complex expressions the already
existing ‘manual’ (semi-formal) ‘review’ methods [13,14, Sect. 17.4–6] can (and
must) currently still be applied.18

Data Flows in SOFL are used to connect ports of processes in the same CDFD.
In this paragraph it will be additionally assumed that a port of a process being
refined and the related ports of its CDFD are also properly connected. Ports are
connected in [1 :1] or [m : 1] relations. A [m : 1] relation is shown in Fig. 4 where
predicate P is the conjunction of all predicates associated with the source ports
and an invariant Ip. Condition Q is the conjunction of the predicates associated
with the destination port and an invariant Iq. Invariant Ix (x ∈ {p, q}) is defined
by the invariant of the module that contains the ports. When a port is connected
to an input port of a CDFD the condition defined by that CDFD’s Init process
is also included in its invariant. The corresponding proof obligation, O, is thus
((∃x̄∈var(P )P ) ∧ (∀x̄∈var(P )P → Q)) being satisfiable, where x̄ ∈ var(P ) denotes
all free variables in P . This lengthy obligation formula is henceforth abbreviated
as: (P →O Q).

Invariants and Initialisation. Invariants are defined on SOFL modules and addi-
tionally constrain the pre- and post-conditions of all processes that belong to
each module. If a module has a parent module then the invariant of the parent
module is only applicable for data flows connected to input and output ports of
its CDFD. When a CDFD ‘fires’, its Init process is invoked first. This situation
is captured by a predicate that restricts the data flows connected to the input
port of its CDFD.
17 Shortage of page-space in this paper does not allow us to illustrate the very dense

description of above with a picture; the full explanation will appear in [2].
18 One of our anonymous reviewers had made such a remark.
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Fig. 4. Connections [m :1] between ports with conditions P,Q

Processes. In our approach we cannot test statically if a process is imple-
mentable; we only check if there is any contradiction between its pre/post-
conditions and the invariant of its containing module. If a contradiction is found
then the entire module (with all its processes) is certainly not implementable.
Refinement of a process depends on the question if a process itself is imple-
mentable: this will be assumed if the CDFD that refines the process is consistent.
Predicates are also added to pre/post-conditions for data stores with only ‘read’
access in order to ensure that the values of stores do not inconsistently change
when their accessing process ‘fires’.

Structure Nodes with conditions [14, Fig. 4.19] are the only CDFD nodes that
‘apply’ predicates. For a condition node to be consistent its pre-condition must
imply the disjunction of its output port’s conditions, whereby the pairwise con-
junction of its post conditions must be ‘false’. SOFL’s merge and un-merge
structures [14, Fig. 4.20] do not apply predicates. They create product types, or
split a product type into its components. The statically correct usage of these
structures is checked by our above-mentioned Xtext validation.

SMT Solver. The above-mentioned proof obligations are translated into SMT-
LIB format, on which the solver Z3 [21] is used. In this format our numeric
types are defined by (declare-var x Real) and (declare-var x Int). Natu-
ral numbers are Integers with an additional constraint: (assume (> x 0)). For
example, a satisfiability proof obligation ((x > 10) →O (−x < 0)) under some
invariant y > 0 is captured by the solver script:

(set-option : print-success false)

(set-logic ALL)

(declare-const y Int)

(declare-const x Int)

(push)

(assert( forall ((x Int) (global Int))(

=> (and (> y 0) (> x 10))

(and (> y 0) (< (-x) 0)))))

(check-sat)

(pop)

(push)

(assert (and (> y 0) (> x 10)))

(check-sat)

(pop)
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Fig. 5. LTS example of some CDFD with two behavioural traces

5 Dynamic Semantics and Property Verification

In our approach, the dynamic semantics of SOFL specifications are formally
defined by translation into ACP whereby the already existing tool mCRL2 is
used to create a corresponding LTS. In the following, the translation is explained
first with an ‘exact’ LTS. Thereafter we show how the exact LTS is approxi-
mated, and finally how its ACP description is generated. During this transfor-
mation an abstraction is created by using tokens that represent which data flows
actually contain data. This abstraction yields an over-approximation of a SOFL
specification by permitting data flows that would not normally occur. Thus: all
‘behaviour’ that is absent from the over-approximation must be absent from the
original system, too.

Exact Case. A state in an ‘exact’ LTS consist of: • all values ‘in’ the data flows
and data stores; • a label for each (sub)set of nodes that can fire; • information
about when a CDFD generates or consumes data. Figure 5 shows the LTS of
an example in which only two ‘traces’ are considered: the first state transition
indicates which one of the input ports consumes data. The set of nodes that fire
next is indicated by a state transition labelled with the nodes that fire. When
data is generated on an output port, a transition is created and labelled with the
port that yields the generated data. Whenever a set of nodes fire, proper access
to any connected data stores must be verified. If there is any violation, an error
state is created in the LTS (not Fig. 5). In Trace 1 the CDFD generates output
twice: such behaviour is not desirable, and a μ-Calculus formula will be used to
‘catch’ situations like these.

Approximation. The LTS used here will convert a transition to a sequence
of labels where the labels are contained in the set of labels under consid-
eration. All sequences created from the same set are considered equivalent,
and additional labels are created to separate sequences from different sets. All
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μ-Calculus formulæ use this LTS as underlying Kripke structure. All labels are
order-dependent. For example: to test if both process Pl and L fire simulta-
neously we only need to test if either the sequence Pl, L or L,Pl appear in the
formula. When these two processes need to fire at separate stages, as in the exact
case, an additional transition sep is needed to indicate a separation between sets
of nodes that fire. The sequence that needs to be tested for is now Pl, sep, L.
Both these formulæ evaluate to ‘true’ for Trace 1 in Fig. 5.

ACP Description. When a process algebra description is created the imple-
mentation of ACP in mCRL2 is used. When an action is involved in synchroni-
sation the action itself will be blocked to prevent any asynchronous behaviour. A
number of auxiliary actions are also used to ensure a correct order of events. For
example: when a set of nodes fire, all these nodes must fire first before the actions
indicating the end of the firing sequence are enabled, (e.g. sep). Any auxiliary
actions, that do not contain any information when we analyse the behaviour of a
CDFD, are treated as ‘internal’ actions. A mCRL2 description consists of a fixed
part and a part that changes depending on the underlying SOFL specification.
For each data flow, node, port, and store an identifier is created as follows:

%%%% Begin Specification-Specific Definitions:

sort FlowId = struct Child_CDFDin_v_in_vCond |

Condout1_out1ProcLoop | ... ;

sort NodeId = struct cdsa_node | NIChild_CDFD |

NICond | ... | NIProcOther;

sort PortId = struct IP0 | IP1;

sort StoreId = struct ss2 | ss3;

%%%% Begin Specification-Independent Definitions:

sort NodeType = struct ... ;

sort FlowIdAction = struct ... ;

sort Phase = struct ... ;

sort Rights = struct ... ;

sort StoreMap = StoreId -> Int;

Mappings define connection and inclusion relations between the elements by
means of rewrite rules of the form: (Predicate) -> LHS(...) = RHS, whereby
the predicate is allowed to use the parameters of the LHS. A rule is applied
only if its predicate evaluates to ‘true’. For example, the following mappings
belong to a description of a SOFL CDFD and are used by the corresponding
ACP processes to simulate how data flows through the CDFD:

(NICast == nd_id && IP0 == pid)

-> inPortDataFlowId(nd_id, pid) = {Child_CDFDii_iiCast};

(NICast == nd_id && IP0 == pid) -> outPortDataFlowId(nd_id, pid) = {};

(NIProcDirect == nd_id)

-> nodeInFlowIds(nd_id) = {Condout2_out2ProcDirect};

(NICast == nd_id) -> node_write_list(nd_id) = [];

(NIProcDirect == nd_id) -> node_read_list(nd_id) = [ss3];

(NICast == nd_id) -> nodeInPorts(nd_id) = [IP0];

(node_type == exec_control) -> getNodeOfType(node_type) = [NICast,NICond];
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Fig. 6. ACP process types onto which SOFL entities are mapped

Five types of ACP processes are used in our approach. For each SOFL node
an instance of a process Node is created which represents consumed data from
an input port, generated data on an output port, and write-access rights needed
to update data stores. An EnvironmentFlowIds process is created that keeps a
set of all data flows that actually contain data. An EnvironmentStore process,
which updates instances of a function of type StoreMap = StoreId -> Int,
determines if read/write accesses are valid. The value the mapping evaluates to
gives the number of processes that require a specific write-access. The process
CdfdIO is used to generate data for a CDFD to consume and to accept data
generated by a SOFL process. The process Environment is used to determine
the type of nodes that are allowed to fire next. Interaction between the ACP
process types, sketched in Fig. 6, is defined by

allow({flow_action, flow_consume, ...},

comm({...

env_flow |node_flow -> flow_action,

env_flow_consume |node_flow_consume -> flow_consume,

... }) ...

Whenever actions on the left hand side of ‘→’ are possible simultaneously, a
new action is created to represent that (and when) both actions occur. The new
action’s name is on the right hand side of ‘→’. Whenever actions are renamed,
the action of the left hand side of ‘→’ is blocked. For two concurrent processes,

(Σd env flow(d)) || (Σd node flow(d))

where d is a parameter variable for the actions env flow, and node flow respec-
tively, of the same type. The operator comm (of above) defines that whenever the
two actions happen at the same time, and with identical parameters, then the
action flow action is added. Hence,
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(Σd env flow(d)) || (Σd node flow(d)) || (Σd flow action(d))

is the newly created process. Since only the actions of type flow action are of inter-
est, all other actions are removed. This creates the process (Σd flow action(d)).
This technique of ‘synchronise and prevent’ is used to create the ACP process
that corresponds to the entities of a SOFL CDFD.

After such a synchronisation step, the actions that are not of further interest
are redefined as ‘internal’ actions (which makes them ‘invisible’). These internal
actions are then removed on the basis of a weak trace-equivalence relation. A
trace-based semantics was chosen in our approach because the possible sequences
of actions are of highest interest; (for comparison see [25]).

Property Verification. Access violations on data stores are verified by iden-
tifying error actions in a LTS. Similar to what we know from model-checking,
the output of such an analysis is a text file that contains a ‘witnessing’ sequence
of events (i.e. a trace of nodes that ‘fire’ until a correctness property of interest
has been violated)—for example:

File:_error_r_w.trc.txt

cdsa_input(IP1)

env_new_start

start_fire(NIProcDirect)

start_fire(NIProcOther)

store_update(ss3, write_access_begin)

store_update(ss3, write_access_begin)

error_r_w(0, 2).

Other dynamic properties are verified via μ-Calculus formulæ.19 On each label
in the LTS we can use the modal ‘possibility’ operator 
 (<labelname >) as well
as the modal ‘necessity’ operator �� ([label name]). The syntax of mCRL2 also
permits regular expressions with ‘star’ (<labelname∗ >) to indicate zero or more
repetitions. For example, to check how an input port 1 in some CDFD relates
to output on port 2 we can write:

<true*.cdsa_input(IP0).true*.cdsa_output(IP1)>true

and to determine if a process ProcDirect can execute infinitely often we write:

nu X.<true*.fire(ProcDirect)>X

where nu (ν) is the greatest infix operator. To determine if data can be generated
more than once by a CDFD where the first output is given by IP0, we write:

exists cop:PortId.<true*.cdsa_output(IP1).true*.cdsa_output(cop)>true

19 Please see Fig. 2 again for the ‘general overview’. The method of generating the
µ-Calculus formulæ cannot be explained in this paper due to shortage of page-space;
please see [2] for the details.
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6 Software Architecture and Example

As mentioned above, our new SOFL specification editor will translate SOFL
specifications into their corresponding SMT-LIB files, mCRL2 descriptions, and
script files, which are needed as auxiliary data structures to compute the desired
semantic evaluation. In the directory ‘src-gen’ a folder structure is created
which mirrors the inheritance of the SOFL modules and in which the translated
files are stored—for example:

src-gen

SYSTEM_Parent

scripts

prove_smt.sh

smt_scripts

mu_calcules_SYSTEM_Parent.sh

trans_SYSTEM_Parent.sh

SYSTEM_Child

scripts

smt_scripts

When a specification passes its static verification via Xtext, the above-mentioned
translations are carried out. The script trans SYSTEM Parent.sh will create the
needed LTS model, and mu calcules SYSTEM Parent.sh will evaluate the cor-
responding μ-Calculus formulæ. The SMT scripts are then evaluated by running
prove smt.sh. Thereby our editor also generates formulæ to check the following
properties of interest: • Can each input port of the CDFD ‘trigger’? • Can a
node only consume data from one of its input ports at any point in time? • Will
the output ports of the CDFD yield values when their corresponding input ports
can trigger? • Is there a set of nodes that can never trigger (i.e. starvation)? •
Is there a set of nodes that can trigger infinitely often (i.e. liveness)?

An example of a textual SOFL specification with modified syntax is shown
in Fig. 7 wherein the deviations from SOFL’s original syntax are highlighted.
Figure 8 shows the corresponding CDFD. Since our tool does not yet support
graphical representations of CDFDs, text must be typed (like in Fig. 7) to defined
a SOFL specification’s control structures and data flow connections.

To get an impression of the run-time performance of checking properties of
interest we sent the example specification of Fig. 7 through our tool-chain and
obtained the following results:20 • time required to compute the LTS models
≈ 18 seconds; • time to evaluate the SMT formulæ ≈ 2 seconds; • time to
evaluate the μ-Calculus formulæ ≈ 41 seconds. Thereby, • each input port
of the CDFD was found to be able to ‘fire’ to generate data (values) at the
corresponding output port; • no node was able to consume data from more than
one input port at any given time; • no node was never able to trigger (i.e. no
starvation); • two nodes of the CDFD were able to ‘fire’ infinitely often (liveness),
namly Pl and LL.

20 Intel i7-6700 CPU.
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Fig. 7. Example: textual SOFL specification (with modified syntax)
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Fig. 8. CDFD graph corresponding to the textual specification of Fig. 7

7 Conclusion and Outlook to Future Work

In our almost completed project which we described in this paper we created
a new editor that supports the formulation and correctness-checking of SOFL
specifications. To achieve this aim a new ‘dialect’ of SOFL was defined the
syntax of which differs slightly from the original syntax of [14]. Our modifications
and improvements facilitate the use of an SMT solver for the verification of
a SOFL specification’s static semantics as well as the use of already existing
ACP tools for the verification of a SOFL specification’s dynamic semantics.
Due to the sound formality of our techniques, safety-critical features of software
systems designed with SOFL can henceforth be checked with a higher level of
trustworthiness. Thereby, integration into the Eclipse environment shall make
these new possibilities convenient and user-friendly for the practical software
engineer who works with SOFL from day to day.

As mentioned above, our work in this project has not yet come to its full
completion. In particular, our editor can still be improved by: • better integra-
tion support for Z3 and mCRL2; • running the script file through the editor
(rather than off-line); • generating more ‘legible’ (user-friendly) reports of the
analysis results; and • adding a graphical representation window of CDFDs for
better ‘intuition’. Moreover, our current implementation of performing types-
checking (static semantics) requires explicit additional annotations in the syn-
tax of a SOFL specification in order to provide the type information which the
SMT solver needs. A more ‘intelligent’ type inferencing algorithm would thus be
desirable for the sake of the editor’s usability in practice.

Since the ternary LPF with its third truth-value (⊥) was removed, numeric-
boolean expressions like (lst(0)/len(lst)>0) cannot always be evaluated any
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more. One way of circumventing this problem is to replace the given expression
by (in this case):

(len(lst)�=0 =⇒ (lst(0)/len(lst))>0) ∨ (len(lst)=0 =⇒ false)
which, though not a very elegant solution, can be justified by seeing it as the
‘price’ we have to ‘pay’ in order to ‘buy’ the desired precision of formality. Better
tools support might also reduce this inconvenience to the practitioners in future.

As mentioned above, our restricted new dialect of SOFL does not contain
all the grammatical clauses of SOFL’s original syntax [14, Appendix A]. Most
notable is our omission of the original SOFL’s non-deterministic broadcast struc-
tures as well as the object-oriented Class types. Whereas those features had made
SOFL quite ‘convenient’ for nowadays users (who tend to take the OO paradigm
already for granted), the formal semantics of those features is subtle and diffi-
cult to define [5]: more research-time is thus needed to think very carefully about
these non-trivial matters. Inclusion of Class types into our new dialect of SOFL,
as well as the translation of more complex expressions to SMT-LIB, may thus
be considered as ‘future work’. A path in this direction might be to formally
define Abstract Data Types (ADT) for those types first [5], and then to consider
how to introduce user-definable data-types into the language’s grammar in such
a way that they remain compatible with the formally defined ADT.

In our example of above there was some process Pa that ‘fired’ before another
process Pi, though for both processes the ‘embedding’ invariants defined by Init
are applicable. Process Pa, however, might change the internal state of the com-
mon data store such that the invariants defined by Init might perhaps be violated
when Pi ‘fires’. Static analysis of pre- and post-conditions alone cannot ‘capture’
such a sequence of events when only the predicates of Pi are considered but the
side-effects of Pa are ignored.21 Thus, in future work, the firing sequences in
which data stores are modified must also be considered for the formal verifica-
tion of SOFL specifications: this will require a formal representation of SOFL
data stores by Algebraic Data Types (ADT).

In the current phase of our project the above-mentioned translation to ACP
does not yet consider all information contained in the pre/post-conditions of
SOFL processes. By including all information the approximation of the behaviour
of a CDFD will be closer to that of an executable ‘implementation’. In this
context we should also consider the possibility of constructing process loops in
SOFL—like in cybernetic feedback loops or in digital electronic cirquits (e.g. flip-
flops)—the formal semantics of which is not a triviality. Then, however, SOFL
will become usable not only for software specifications but also for the specifi-
cation of almost any type of hardware systems that can be characterised ‘cyber-
netically’ by some kind of ‘flow’ (of matter or energy or information) between
‘reactors’ or ‘service stations’.

Last but not least, our above-mentioned run-time experiment was only small.
Run-time tests with larger CDFD specifications did not yield any analysis results
and were aborted after many hours of run-time. Hence, our ‘academic’ tool-chain

21 ‘Processes’ in SOFL may be considered as ‘functions plus side-effects’, in contrast
to the ‘pure’ functions that SOFL also allows to be specified [14, Sect. 4.17].
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is not yet ‘scalable’—i.e.: not yet suitable for SOFL specifications of industri-
ally relevant size. Only ‘fragments’ of such large specifications can currently be
checked where the level of abstraction is reasonably high (without too many
details included). This shortcoming of the current version of our tool-chain
illustrates of the notorious ‘state space explosion problem’ in automated ver-
ification, for which our tool-chain is not yet sufficiently equipped with ‘smart’
state space reduction methods. For larger SOFL specifications the use of the
‘LTSmin’ tool-set with multi-core processing [4], in combination with ‘smarter’
model-building and abstraction techniques, might yield some noteworthy run-
time improvement. Since we cannot modify the implementation of the ‘external’
(third-party) tools ‘mCRL2’ and ‘Z3’ at the back-ends of our tool-chain (Fig. 2),
it will be very important to further ‘optimise’ the internal tools of our chain
from which ‘mCRL2’ and ‘Z3’ receive their input models.
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Abstract. Mediator is a component-based modeling language where
components and systems can be modeled separately and precisely. This
paper aims to analyze the behavior of Mediator systems from a coalge-
braic perspective, which is directly derived from the operational seman-
tics of Mediator . Such a coalgebraic approach induces suitable notions
of equivalence and refinement for Mediator .

Keywords: Mediator · Coalgebra · Operational semantics ·
Bisimulation · Refinement

1 Introduction

Mediator , a component-based modeling language proposed in [9], can be used for
different types of systems. It provides a formalism for both low-level automata-
based behavior units and high-level system layouts. An automaton can be viewed
as an entity which is implemented through encapsulations of interfaces, while a
system is implemented by gluing components or automata through operators
and can perform complex interaction and communication behavior among com-
ponents.

This paper aims to analyze the behavior of Mediator models with an eye
towards integrating it into the study of coalgebra. Coalgebras are suitable for
specifying the behavior of systems and data structures that are potentially infi-
nite. Compared to algebraic specification which deals with functional behavior
using inductive data types generated by constructors, coalgebraic specification
has a strong focus on behavior modeled by coinductive process types that are
observable by selectors, much in the spirit of component-based programming
languages. We present a coalgebraic semantics for the Mediator language, which
agrees with its operational semantics. Such a coalgebraic semantics allows uni-
form treatments of bisimulation [12], refinement [17] and operational semantics
of Mediator models.

The motivation of this work is that software systems (components, connec-
tors, etc.) can be naturally modeled as coalgebras, like UML [15] or Reo [16].
One obvious advantage of the coalgebraic view on Mediator is that it induces
c© Springer Nature Switzerland AG 2019
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a simple and intuitive notion of behavior equivalence on Mediator components
and systems, which can be characterized as bisimulation between coalgebras.
We also provide a notion of refinement for Mediator , which indicates whether
the behavior of one system is simulated by another, so that we can replace the
former by the latter.

In this paper, we focus on automaton, which is the basic behavior unit in
Mediator . We present three contributions here. First, we redefine the operational
semantics of Mediator from the perspective of observers, based on the opera-
tional semantics of Mediator in [9]. Second, we construct two types of operators
to integrate automata into systems. The coalgebraic model of Mediator can be
naturally induced by the operational semantics. There exists an algorithm that
flattens a hierarchical system into a typical automaton in [9], while we propose
a way to construct systems by combining automata and define the coalgebraic
semantics of systems through some operators. Third, we specify the notions of
bisimulation and refinement for Mediator . Following some notions of bisimula-
tion in [10,14], we discuss some equivalence relations for Mediator models. More-
over, coalgebraic methods help us to propose a general notion of refinement for
Mediator models.

The rest of the paper is structured as follows. Section 2 simply reviews the
Mediator language. Section 3 defines the operational semantics for Mediator.
Section 4 proposes the coalgebraic model for Mediator and two types of opera-
tors. Section 5 describes equivalence and refinement for Mediator . Section 6 sum-
marizes the results and discusses some directions for future work.

2 Mediator

The Mediator language provides a rich-featured type system and a two-step
modeling approach through automata and systems. In this section we present a
basic introduction for the core notations in Mediator, more details can be found
in [9]. In Mediator , models are constructed as automata and systems, both of
which are called entities. Entities communicate through ports.

2.1 Automata

As the basic behavior unit in Mediator , an automaton consists of four parts: tem-
plates, interfaces, local variables and transitions, which are interpreted respec-
tively as follows.

1. Templates. Templates of an automaton include a set of parameter declara-
tions. A parameter can be either a type (common type or parameter type)
or a value. Concrete values or types are supposed to be provided when the
automaton is instantiated (i.e. declared in systems).

2. Interfaces. Interfaces consist of directed ports and describe how automata
interact with their contexts. An port P can be regarded as a structure with
three fields: a data value field P.value indicating the current value of P , two
corresponding Boolean fields reqRead and reqWrite indicating whether there
is any pending read or write requests on P .
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3. Local Variables. Each automaton contains a set of local variables. Types of
these variables are supposed to be initialized.

4. Transitions. Behavior of an automaton is defined by guarded transitions. Each
transition consists of a boolean term guard and a sequence of statements.
Transitions are ordered by their priority. For example, if multiple transitions
are activated at the same time, the one that has highest priority will be fired.
On the other hand, non-deterministic firing is also supported by encapsulating
part of the transitions through group.

Currently, Mediator supports two types of statements:

1. Assignment statements, each including an expression and an optional assign-
ment target, evaluate the expressions and assign the results to their targets
if possible.

2. Synchronizing statements, labeled with sync, are the flags requiring synchro-
nized communication with other entities.

According to the existence of synchronizing statement (i.e. external communi-
cation through ports), transitions are classified as either internal transitions or
external ones.

An automaton A is denoted by 3-tuple A = 〈Ports, V ars, TransG〉 as men-
tioned in [9], where Ports is a set of ports, V ars is a set of local variables, (the
set of port variables are denoted by Adj(A), which can be obtained from Ports
directly) and TransG is a sequence of transition groups. There exists an app-
roach to generate a new group of transitions with no dependency on priority
from TransG in [9], so we assume that TransG is only a group in the following
pages.

A concrete example is included to help understand the Mediator language:

Example 1. Consider an automaton A, as shown in Fig. 1, containing a circular
linked list c formalized as an array of integers, with the head pointer defined as
an integer x ∈ {0, 1, . . . , length − 1}, an input port IN whose type is int and
an output port OUT whose type is int. Given an input value i, the head pointer
may move i position(s) bidirectionally, either to the right or left, and the value
pointed to by the head pointer is then to be output.

c[0] c[1] c[2] c[3] ... ... c[length-1]

x

A
IN OUT

Fig. 1. The model of the automaton in Example 1

The following code fragment describes the behavior of A, with two external
transitions formally specified.
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1 automaton <length:int, c:int [length]> query (IN:in int init 0,

2 OUT:out int init 0) # port variables are initialized to 0

3 {
4 variables{
5 x:(int 0...length-1) init 0;

6 }
7 transitions{
8 (IN.reqWrite && IN.reqRead && OUT.reqWrite && OUT.reqRead)->{
9 sync IN; # synchronize the port IN

10 x:=(x+IN.value) mod length; # move rightwards

11 OUT.value:=c[x];

12 sync OUT; # synchronize the port OUT

13 }
14 (IN.reqWrite && IN.reqRead && OUT.reqWrite && OUT.reqRead)->{
15 sync IN;

16 x:=(x-IN.value) mod length; # move leftwards

17 OUT.value:=c[x];

18 sync OUT;

19 }
20 }
21 }

2.2 Systems

As the textual representation of hierarchical entities to organize sub-entities
(automata and simpler systems), systems are composed of:

1. Components. Entities can be placed and instantiated in systems as compo-
nents. Each component is considered as a unique instance and executes in
parallel with other components and connections.

2. Connections. Connections are used to connect (a) the ports of the system
itself, (b) the ports of its components, and (c) the internal nodes. Inspired by
the Reo project [2,3], complex connection behavior can also be determined
by other entities.

3. Internals. Sometimes we need to combine multiple connections to perform
more complex coordination behavior. Internal nodes, declared in internals
segments, are untyped identifiers which are capable to weld two ports with
consistent data-flow direction.

Systems also have templates and interfaces which have exactly the same
forms as in automata. Actually, Components, Connections and Internals are
supposed to run as automata in parallel. They intercommunicate through syn-
chronizing ports of them.

3 Operational Semantics of Mediator

This section mainly discusses the underlying labeled transition system (LTS) of
a Mediator automaton. First, we formalize the concept of configuration, which



150 A. Liu et al.

refers to the state of a Mediator automaton. Next, we define normal guarded
transition and observable action. Then, we provide a way to transform an arbi-
trary guarded transition into a normal one. Finally, we give the operational
semantics of Mediator automata based on labeled transition systems.

3.1 Configurations

A configuration of a Mediator automaton can be viewed as a state, which is
described as a pair of variable evaluations. To start with, we introduce the notion
of evaluation on a set of variables.

Definition 1 (Evaluation [9]). An evaluation v on a set of variables V is
defined as a function v : V → D that satisfies ∀x ∈ V, v(x) ∈ Dom(type(x)),
where Dom(T ) is the valued domain of type T and

D =
⋃

x∈V

Dom(type(x)).

We denote the set of all possible evaluations on V by EV(V) and the domain of
an evaluation v by dom(v).

Here we introduce two operators on evaluations:

– Restriction Operator | : An evaluation can be restricted to a sub-evaluation
by the restriction operator. Suppose v ∈ EV (V ) and V ′ ⊆ V , the restriction
of evaluation v on V ′, denoted by v|V ′ , is defined as

v|V ′(x) = v(x), ∀x ∈ V ′.

– Composition Operator ◦: Given two evaluations v1, v2, their composition is
an evaluation

v1 ◦ v2(x) =

{
v1(x) x ∈ dom(v1)
v2(x) x ∈ dom(v2) − dom(v1)

.

Moreover, given a bijection function f : V1 → V2, for any v ∈ EV (V2), there
exists an evaluation v ∗ f ∈ EV (V1), defined as v ∗ f(x) = v(f(x)).

Definition 2 (Configuration [9]). A configuration of an automaton A =
〈Ports, V ars, TransG〉 is defined as a pair (vloc, vadj), where vloc ∈ EV (V ars)
is an evaluation on local variables and vadj ∈ EV (Adj(A)) is an evaluation
on port variables. We use CA = EV (V ars ∪ Adj(A)) to denote the set of all
configurations of A.
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3.2 Normal Automata

In Mediator , it is assumed that ports of an automaton A can be classified into
two sets: PA

in represents the set of input ports of A and PA
out represents the set of

output ports of A. Hence we divide all synchronizing statements into two sets:

SynI = {sync p1, . . . , pn|j �= k → pj �= pk and pi ∈ PA
in,∀1 ≤ i, j, k ≤ n}

and

SynO = {sync p1, . . . , pn|j �= k → pj �= pk and pi ∈ PA
out,∀1 ≤ i, j, k ≤ n}.

Here we abbreviate any permutation of sync p1, . . . , sync pn into the syn-
chronizing statement sync p1, . . . , pn ∈ SynI , like in [9]. It is analogous for
sync p1, . . . , pn ∈ SynO.

Definition 3 (Normal Guarded Transitions). A guarded transition t of the
automaton A = 〈Ports, V ars, TransG〉 is normal, if it is one of the following
shapes:

– t = g → s, where s is an assignment statement.
– t = g → [s1, s2], where s1 ∈ SynI and s2 is an assignment statement.
– t = g → [s1, s2], where s1 is an assignment statement and s2 ∈ SynO.
– t = g → [s1, s2, s3], where s1 ∈ SynI , s3 ∈ SynO and s2 is an assignment

statement.

Actually, the first shape corresponds to the internal transitions, while the
others correspond to the external transitions.

Definition 4 (Normal Automata). A = 〈Ports, V ars, TransG〉 is a normal
automaton iff all guarded transitions are normal.

From the perspective of observers, when executing sync p1, . . . , pn ∈ SynO,
the automaton A sends v ∈ EV (p1.value, . . . , pn.value) to the environment,
denoted by !v. Oppositely, when executing sync p1, . . . , pn ∈ SynI , the automa-
ton A receives v ∈ EV (p1.value, . . . , pn.value) from the environment, denoted by
?v. Especially, when a normal guarded transition with the shape g → [s1, s2, s3],
where s1 = sync p1, . . . , pn ∈ SynI and s3 = sync q1, . . . , qm ∈ SyncO, the
receiving action and the sending action come in pair, denoted by (?v1, !v2), where
v1 ∈ EV (p1.value, . . . , pn.value) and v2 ∈ EV (q1.value, . . . , qn.value).

Definition 5 (Observable Actions). Given a normal automaton A, for con-
venience, we denote the set of the data fields of the output port variables by
PV A

out = {pi.value|pi ∈ PA
out} and the set of the data fields of the input port vari-

ables by PV A
in = {pi.value|pi ∈ PA

in}. Now we can define the set of all observable
actions by

ActA = {?v|∅ �= dom(v) ⊆ PV A
in}

∪{!v|∅ �= dom(v) ⊆ PV A
out}

∪{(?v1, !v2)|∅ �= dom(v1) ⊆ PV A
in and ∅ �= dom(v2) ⊆ PV A

out}.
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Proposition 1. Suppose g → [s1, . . . , sn] is a guarded transition of the automa-
ton A, it can be equally rearranged to a guarded transition g → [s′

1, . . . , s
′
n], sat-

isfying that ∃1 ≤ i < j ≤ n, s′
1, . . . , s

′
i−1 are in SynI , s′

i, . . . , s
′
j are assignment

statements and s′
j+1, . . . , s

′
n are in SynO.

Proof. Because of the requirement that any assignment statements including ref-
erence to an input (output) port should be placed after (before) its corresponding
synchronizing statement, we can adjust sequence [s1, . . . , sn] by moving all syn-
chronizing statements in SynI (SynO) to the head (end) of the sequence in their
original order, and leaving other statements unchanged. The relative positions
of synchronizing statements are ensured to be maintained in each movement, so
the rearrangement is decidable. ��

Intuitively, an arbitary guarded transition can be normalized based on the
above conclusions. In the following context we present the main results.

Theorem 1. Suppose t = g → [s1, . . . , sn] is a guarded transition, satisfying
that ∃1 ≤ i < j ≤ n, s1, . . . , si−1 are in SynI , si, . . . , sj are assignment state-
ments and sj+1, . . . , sn are in SynO, it can be equally converted to a normal
guarded transition t′. In detail, the shape of t′ is determined by the values of i
and j:

– t′ = g → s′, if i = 1 ∧ j = n.
– t′ = g → [s′

1, s
′
2], where s′

1 ∈ SynI , if 1 < i < j = n.
– t′ = g → [s′

1, s
′
2], where s′

2 ∈ SynO, if 1 = i < j < n.
– t′ = g → [s′

1, s
′
2, s

′
3], if 1 < i < j < n.

Proof. Multiple synchronizing statements may join in one by merging
s1, . . . , si−1 to s′

1 ∈ SynI , and merging sj+1, . . . , sn to s′
3 ∈ SynO. The

rest of assignment statements si, . . . , sj can be replaced by their composition
s′
2 = sj ◦ · · · ◦ si. ��

Theorem 2. An arbitary guarded transition t = g → [s1, . . . , sn] can be
reformed to a normal guarded transition.

Proof. From Proposition 1 , we can rearrangement t = g → [s1, . . . , sn] to t′ =
g → [s′

1, . . . , s
′
n], which satisfies the conditions in Theorem1. Then the conclusion

can be drawn by Theorem 1. ��

3.3 Automaton as Labeled Transition System

With the key language elements properly formalized, now we introduce the oper-
ational semantics of automata based on labeled transition system.

Definition 6. A labeled transition system is a tuple (S,Σ,→, s0) where S is a
set of states, s0 is an initial state, Σ is a set of actions and →⊆ S × Σ × S is
a set of transitions. For simplicity, we use s

a−→ s′ to denote (s, a, s′) ∈→.
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Suppose A = 〈Ports, V ars, TransG〉 is a normal automaton, its semantics
can be captured by a LTS (CA, ΣA,→A, cA

0 ) where

– CA is the set of all configurations of A.
– cA

0 ∈ CA is the initial configuration where all reqReads and reqWrites are
initialized as false, and other variables are initialized with their default value.

– ΣA = ActA ∪ {i} ∪ {τ} is the set of actions, where i denotes the internal
transition and τ denotes the silent action performed by the environment.

– →A⊆ CA × ΣA × CA is the set of transitions obtained by the following rules:

Rule 1 (Silent action)

p ∈ PA
in

(vloc, vadj)
τ−→ (vloc, vadj [p.reqWrite �→ ¬p.reqWrite])

p ∈ PA
out

(vloc, vadj)
τ−→ (vloc, vadj [p.reqRead �→ ¬p.reqRead])

The above two rules indicate the property that, in Mediator automata, the
reading status of an output port and the writing status of an input port may
be changed by the environment at any moment. For a Boolean variable y , note
that

(vloc, vadj [y �→ ¬y])(x) =

{
¬(vloc, vadj)(x) x = y

(vloc, vadj)(x) otherwise
.

Rule 2 (Internal action)

t = g → s ∧ (vloc, vadj) |= g

(vloc, vadj)
i−→ s ◦ (vloc, vadj)

In this rule, an internal transition may be triggered if the guard condition is
satisfied by the configuration, denote by (vloc, vadj) |= g. The new configuration
is obtained by applying s to the original one, which is denoted by s(vloc, vadj).

Rule 3 (External action)

t = g → [s1, s2] ∧ (vloc, vadj) |= g

s1 = sync p1, . . . , pn ∧ v ∈ EV ({p1.value, . . . , pn.value})

(vloc, vadj)
?v−→ s2 ◦ (vloc, v ◦ vadj)

Triggering an external transition, where only some input ports are synchro-
nized with the environment, the automaton should receive an evaluation on these
input port values and then update the configuration.

t = g → [s1, s2] ∧ (vloc, vadj) |= g

s3 = sync p1, . . . , pn ∧ v ∈ EV ({p1.value, . . . , pn.value})

(vloc, vadj)
!v−→ s1 ◦ (vloc, vadj)

s1 ◦ (vloc, vadj)|{p1.value,...,pn.value} = v
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Triggering an external transition, where only some output ports are synchro-
nized with the environment, the automaton should firstly update the configura-
tion and then send an evaluation on these output port values to the environment
it interacts with.

t = g → [s1, s2, s3] ∧ (vloc, vadj) |= g

s1 = sync p1, . . . , pn ∧ v1 ∈ EV ({p1.value, . . . , pn.value})
s3 = sync p′

1, . . . , p
′
m ∧ v2 ∈ EV ({p′

1.value, . . . , p′
m.value})

(vloc, vadj)
(?v1,!v2)−−−−−→ s2 ◦ (vloc, v1 ◦ vadj)

s2 ◦ (vloc, v1 ◦ vadj)|{p′
1.value,...,p′

m.value} = v2

Triggering an external transition, where some input ports and some output
ports are synchronized with the environment, the automaton should receive an
evaluation on these input port values, update the configuration and send an
evaluation on these output port values.

4 The Coalgebraic View

A coalgebraic semantics of Mediator can be naturally induced by its operational
semantics. This leads to a definition of automata as coalgebras (C,α : C →
Pf (C)Σ , c0), where the state space C represents the set of configurations of
the corresponding automaton, Σ represents the set of actions, Pf is the finite
powerset functor and the dynamics α is determined by the operational semantics.

4.1 Mediator Automata as Coalgebras

Given a normal automaton A, one configuration can satisfy one or more guard
conditions so that multiple transitions may be triggered. Besides, different tran-
sitions may have the same observable action. These lead to non-determinism.
We wish to consider an automaton with bounded non-determinism, in which
from an arbitrary configuration, only a finite number of transitions are possible.
Such behavioral pattern can be modeled using finite powerset functor Pf , which
specifies bounded non-determinism intuitively.

We define a functor
TΣ(X) = Pf (X)Σ

where the parameter Σ refers to an alphabet. The model of automaton A is a
TΣA

-coalgebra (CA, α : CA → TΣA
(CA), cA

0 ) with CA as the state space, ΣA as
the set of actions and cA

0 as the initial configuration. Note that α is the curried
version of α, that is, for α : CA × ΣA → Pf (CA), α : CA → Pf (CA)ΣA is
the unique mapping such that α(c, a) = α(c)(a). The dynamics α is defined
according to different execution branches:
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– Silent action τ ,

α(c, τ) = {c[p.reqRead �→ ¬p.reqRead]| p ∈ PA
out}

∪ {c[p.reqWrite �→ ¬p.reqWrite]| p ∈ PA
in}.

– Internal action i,
α(c, i) = {c′| (c, i, c′) ∈→A}.

– External action a ∈ ActA,

α(c, a) = {c′|(c, a, c′) ∈→A}.

In particular, when the automaton A is in configuration c ∈ CA but can not
perform an action a ∈ ΣA, we use α(c, a) = ∅ to depict this case.

Given two TΣ-coalgebras (U,α : U → TΣU, u0) and (V, β : V → TΣV, v0),
a function: h : U → V is a homomorphism of TΣ-coalgebras, if TΣh · α = β · h
and h(u0) = v0. Especially, TΣh · α = β · h if and only if Pfh · α = β · (h × id),
which means below diagram commutes.

U × Σ V × Σ

PfU PfV

h × id

α β

Pfh

4.2 Composition

We will provide some basic operators and an approach to build up Mediator
systems by joining one or more entities in this part. Each operator contains a
pair of port names (port1, port2) as parameters, indicating the data-flow is from
port1 to port2 and satisfying the types of their port values are the same. To
avoid data-conflict, it is assumed that a port occurs in at most one operator.

There are two kinds of operators: selfing operators and crossing operators.
A selfing operator links an output port of an automaton with one of its input
ports, while a crossing operator links an output port of an automaton with an
input port of the other automaton.

Selfing Operator. Given a Mediator automaton A with the coalgebraic seman-
tics (CA, α : CA → Pf (CA)ΣA , cA

0 ), the selfing operator linking p1 ∈ PA
out and

p2 ∈ PA
in is denoted by slink(p1, p2) and the semantics of the updated automaton

slink(p1, p2)(A) is

�slink(p1, p2)(A)� = (CA, α′ : CA → Pf (CA)ΣA , cA
0 ),

where the dynamics α′ is defined according to the following cases (We assume
that f is a bijection from {p2.value} to {p1.value} below.):
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Case 1 (Silent action)

α′(c, τ) =α(c, τ) − {c[p1.reqRead �→ ¬p1.reqRead]}
− {c[p2.reqWrite �→ ¬p2.reqWrite]}

Once two ports p1 and p2 are linked, we cannot observe any information. The
reading status of p1 and the writing status of p2 can no longer be changed by
the environment.
Case 2 (Internal action)

α′(c, i) = α(c, i) ∪
⋃

v∈EV (p1.value)

⋃

c′∈α(c,!v)

α(c′, ?v ∗ f),

The original internal transitions remain unchanged. A transition involving a
sending action through p1 and a transition involving a receiving action through
p2 could be integrated into an internal transition.

Case 3 (External action)
The following expressions specify the observable behavior according to the types
of external actions:

α′(c, ?v) = α(c, ?v) ∪
⋃

V ⊆dom(v)

⋃

v1∈EV (p1.value)

⋃

c1∈C1

α(c1, ?(v1 ∗ f) ◦ v|dom(v)−V )

α′(c, !v′) = α(c, !v′) ∪
⋃

V ⊆dom(v′)

⋃

v1∈EV (p1,value)

⋃

c2∈C2

α(c2, (?v1 ∗ f, !v′|dom(v)−V ))

α′(c, (?v, !v′)) = α(c, (?v, !v′)) ∪
⋃

V ⊆dom(v)

⋃

V ′⊆dom(v′)

⋃

v1∈EV (p1.value)

⋃

c3∈C3

α(c3, a)

where C1 = α(c, (?v|V , !v1)), C2 = α(c, (!v1 ◦ v′|V )), C3 = α(c, (?v|V , !v1 ◦ v′|V ′))
and a = (?(v1 ∗ f) ◦ v|dom(v)−V , !v′|dom(v′)−V ′).

In order to avoid deadlock, we assume p1.value /∈ dom(v′) and p2.value /∈
dom(v). Note that (?v, !ε) corresponds to ?v and (?ε, !v′) corresponds to !v′,
where ε is the empty evaluation. These describe all situations where two external
transitions could be integrated into one external transition.

Proposition 2. Given a Mediator automaton A with p1, p3 ∈ PA
out and p2, p4 ∈

PA
in, the order of the selfing operators slink(p1, p2) and slink(p3, p4) to be applied

does not matter, i.e.,

slink(p1, p2)(slink(p3, p4)(A)) = slink(p3, p4)(slink(p1, p2)(A)).

Crossing Operator. Two Mediator automata A1 and A2, whose semantics are
�A1� = (C1, α1 : C1 → Pf (C1)Σ1 , c10) and �A2� = (C2, α2 : C2 → Pf (C2)Σ2 , c20),
can be composed into a Mediator automaton by a crossing operator. The crossing
operator linking p1 ∈ PA1

out and p2 ∈ PA2
in , is denoted by clink(p1, p2) and the

semantics of the composed automaton clink(p1, p2)(A1, A2) is

�clink(p1, p2)(A1, A2)� = (C1 × C2, α′, c10 × c20),
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where the dynamics α′ is defined according to the following cases (We assume
that f is a bijection from {p2.value} to {p1.value} below.):
Case 1 (Silent action)

α′((c1, c2), τ) =((α1(c1, τ) − {c1[p1.reqRead �→ ¬p1.reqRead]}) × {c2})
∪ ({c1} × (α2(c2, τ) − {c2[p2.reqWrite �→ ¬p2.reqWrite]}))

Case 2 (Internal action)

α′((c1, c2), i) = (α1(c1, i)×{c2})∪({c1}×α2(c2, i))∪
⋃

v∈U

(α1(c1, !v)×α2(c2, ?v∗f)),

where U = EV (p1.value). An external transition of A1 where only p1 is to be
synchronized and an external transition of A2 where only p2 is to be synchronized
should be integrated into an internal transition in the composed automaton.

Case 3 (External action)
For convenience, we denote V1 = dom(v) ∩ PV 1

in, V ′
1 = dom(v′) ∩ PV 1

out, V2 =
dom(v) − V1 and V ′

2 = dom(v′) − V ′
1 . In order to avoid deadlock, we require

p1.value /∈ dom(v′) and p2.value /∈ dom(v). There are three situations where an
external transition of A1 and an external transition of A2 should be integrated
into an external transition of the composed automaton.

α′((c1, c2), ?v) =

⎧
⎪⎨

⎪⎩

(α1(c1, ?v) × {c2}) ∪ S1 dom(v) ⊆ PV 1
in

({c1} × α2(c2, ?v)) ∪ S2 dom(v) ⊆ PV 2
in

S otherwise

where

S1 =
⋃

v1∈EV (p1.value)

α1(c1, (?v, !v1)) × α2(c2, ?v1 ∗ f),

S2 =
⋃

v1∈EV (p1.value)

α1(c1, !v1) × α(c2, ?(v1 ∗ f) ◦ v),

S =
⋃

v1∈EV (p1.value)

α1(c1, (?v|V1 , !v1)) × α2(c2, ?(v1 ∗ f) ◦ v|V2).

α′((c1, c2), !v′) =

⎧
⎪⎨

⎪⎩

(α1(c1, !v′) × {c2}) ∪ S′
1 dom(v′) ⊆ PV 1

out

({c1} × α2(c2, !v′)) ∪ S′
2 dom(v′) ⊆ PV 2

out

S′ otherwise

where

S′
1 =

⋃

v1∈EV (p1.value)

α1(c1, !v1 ◦ v′) × α2(c2, ?v1 ∗ f),

S′
2 =

⋃

v1∈EV (p1.value)

α1(c1, !v1) × α2(c2, (?v1 ∗ f, !v′)),

S′ =
⋃

v1∈EV (p1.value)

α1(c1, !v1 ◦ v′|V ′
1
) × α2(c2, (?v1 ∗ f, !v′|V ′

2
)).
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α′((c1, c2), (?v, !v′))

=

⎧
⎪⎨

⎪⎩

(α1(c1, (?v, !v′)) × {c2}) ∪ S′′
1 dom(v) ⊆ PV 1

in ∧ dom(v′) ⊆ PV 1
out

({c1} × α2(c2, (?v, !v′))) ∪ S′′
2 dom(v) ⊆ PV 2

in ∧ dom(v′) ⊆ PV 2
out

S′′ otherwise

where

S′′
1 =

⋃

v1∈EV (p1.value)

α1(c1, (?v, !v′ ◦ v1)) × α2(c2, ?v1 ∗ f),

S′′
2 =

⋃

v1∈EV (p1.value)

α1(c1, !v1) × α2(?(v1 ∗ f) ◦ v, !v′),

S′′ =
⋃

v1∈EV (p1,value)

α1(c1, (?v|V1 , !v1 ◦ v′|V ′
1
)) × α2(c2, (?(v1 ∗ f) ◦ v|V2 , !v

′|V ′
2
)).

Given two automata and some links in Mediator , the order of connecting
those links does not matter. In the coalgebraic view, operators correspond to
links. The first link to be connected corresponds to a crossing operator, while
the remained links correspond to selfing operators. No matter which link is firstly
connected, the results will be the same.

Proposition 3. Given two Mediator automata A and A′, with p1, p2 ∈ PA
out and

p′
1, p

′
2 ∈ PA′

in ,

slink(p1, p′
1)(clink(p2, p

′
2)(A,A′)) = slink(p2, p′

2)(clink(p1, p
′
1)(A,A′)).

5 Equivalence and Refinement for Mediator

With the development in [4,6,11], we can define the notions of equivalence
and coalgebraic refinement for Mediator . Actually, they both involve a ques-
tion whether a configuration is simulated by the other one. If the simulation is
reversible, these two configurations are equivalent on some level. Otherwise, one
may be regarded as a refinement of the other.

5.1 Bisimulation

This subsection is organized with a further study of bisimulations toward
automata. The notion of bisimulation aims to characterize an equivalence on
system manners from observers’ perspective. In Mediator automata, a bisimu-
lation is represented by pairs of configurations as a binary relation. We say two
states s, t are strong bisimilar (in symbol, s ∼ t) if they are related by a strong
bisimulation.

Definition 7 (Strong Bisimulation). Given two LTSs induced by Mediator
automata (CA, ΣA,→A, cA

0 ) and (CB , ΣB ,→B , cB
0 ), a relation R ⊆ CA×CB is a

strong bisimulation if (i) (cA
0 , cB

0 ) ∈ R; (ii) there exists a port renaming bijection
ψ : Adj(B) → Adj(A) such that:



A Coalgebraic Semantics for Mediator 159

– For (s, t) ∈ R, if s
a−→ s′, there exists t′ ∈ CB such that t

a′
−→ t′ ∧ (s′, t′) ∈ R,

where a, a′ satisfy: if a ∈ {τ, i}, then a′ = a, otherwise

a′ =

⎧
⎪⎨

⎪⎩

?v ∗ ψ a =?v
!v ∗ ψ a =!v
〈?v ∗ ψ, !v′ ∗ ψ〉 a = 〈?v, !v′〉

(5.1)

– For (s, t) ∈ R, if t
b−→ t′, there exists s′ ∈ CA such that s

b′
−→ s′ ∧ (s′, t′) ∈ R,

where b, b′ satisfy: if b ∈ {τ, i}, then b′ = b, otherwise

b′ =

⎧
⎪⎨

⎪⎩

?v ∗ ψ−1 b =?v
!v ∗ ψ−1 b =!v
〈?v ∗ ψ−1, !v′ ∗ ψ−1〉 b = 〈?v, !v′〉

(5.2)

In some cases, we only consider whether the observable transitions are equiv-
alent, which means we ignore the effects of the silent action τ and the internal
action i. For this purpose, the strong bisimulation can be relaxed to the weak
bisimulation, where the internal action τ and the silent action i are hidden from
the environment. The concrete definition of weak bisimulation is as follows:

Definition 8 (Weak Bisimulation). Given two LTSs induced by Mediator
automata (CA, ΣA,→A, cA

0 ) and (CB , ΣB →B , cB
0 ), a relation R ⊆ CA ×CB is a

weak bisimulation if (i) (cA
0 , cB

0 ) ∈ R; (ii) there exists a port renaming bijection
ψ : Adj(A) → Adj(B) such that:

– For (s, t) ∈ R and an observable action a ∈ ActA, if s
{τ,i}∗
−−−−→ • a−→ • {τ,i}∗

−−−−→ s′,

there exists t′ ∈ CB such that t
{τ,i}∗
−−−−→ • a′

−→ • {τ,i}∗
−−−−→ t′ ∧ (s′, t′) ∈ R where

a and a′ satisfy the Eq. (5.1);

– For (s, t) ∈ R and an observable action b ∈ ActB, if t
{τ,i}∗
−−−−→ • b−→ • {τ,i}∗

−−−−→ t′,

there exists s′ ∈ CA such that s
{τ,i}∗
−−−−→ • b′

−→ • {τ,i}∗
−−−−→ s′ ∧ (s′, t′) ∈ R where

b and b′ satisfy the Eq. (5.2).

Before we introduce the coalgebraic bisimulation for Mediator automata,
we consider the functor FΣ(−) = Pf (Σ × −), which can be reversibly and
naturally transformed to the functor TΣ(−) = Pf (−)Σ . In order to clarify their
equivalence, we need to prove that there exists a natural isomorphism between
FΣ and TΣ . Define a natural transformation η : FΣ ⇒ TΣ . Given a state space
C, ηC : Pf (C)Σ → Pf (Σ × C) is a function such that for f ∈ Pf (C)Σ ,

ηC(f) = {(a, c′)|a ∈ Σ, c′ ∈ f(a)}.

Actually, the natural transformation η has an inverse μ : TΣ ⇒ FΣ , making
FΣTΣ = TΣFΣ = Id. The formal definition of μC : Pf (Σ × C) → Pf (C)Σ is

μC(S)(a) = {ca,1, ..., ca,m},



160 A. Liu et al.

where
S =

⋃

a∈Σ′⊆Σ

{(a, ca,1), (a, ca,2), ..., (a, ca,m)} ∈ Pf (Σ × C).

Therefore a natural isomorphism between FΣ and TΣ has been found.
Hence a coalgebraic TΣ-bisimulation can be reversibly and naturally trans-

formed to a coalgebraic FΣ-bisimulation, which is in correspondence with the
strong bisimulation. First we recall the abstract definition of FΣ-bisimulation in
coalgebraic terms.

Given two FΣ-coalgebras (U,α : U → FΣU, u0) and (V, β : V → FΣV, v0).
A coalgebraic FΣ-bisimulation between them is a relation R ⊆ U × V , if there
exists a coalgebra (R, γ : R → FΣR, (u0, v0)) making the following diagram
commute.

U R

FΣU FΣR

V

FΣV

π1

α γ

FΣπ1

π2

β

FΣπ2

Next we show the relationship between the strong bisimulation and the coal-
gebraic FΣ-bisimulation.

Theorem 3. Given a FΣA
-coalgebra (CA, α : CA → FΣA

(CA), cA
0 ) and a coal-

gebraic bisimulation relation R ⊆ CA×CA, for any two configurations s, t ∈ CA,

(s, t) ∈ R if and only if s ∼ t.

Proof. Suppose R is a coalgebraic bisimulation relation. An equivalence class of
a configuration c is denoted by [c]R = {c′|(c, c′) ∈ R}, which contains all the
configurations that are related to c. The quotient space of CA under R by CA/R
is the set

CA/R = {[c]R|c ∈ CA}
comprising all the equivalence classes of configurations.

Intuitively, the following diagram on the left side commutes according to the
definition of equivalence, where q : CA → CA/R represents the quotient mapping
that maps a configuration to its equivalence class under R.

R

CA

CA/R

CA

π1 π2

q q

FΣA
R

FΣA
CA

FΣA
(CA/R)

FΣA
CA

FΣA
π1 FΣA

π2

FΣA
q FΣA

q
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The right diagram is obtained by applying FΣA
to the left one. Since FΣA

preserves weak pullbacks, the right diagram is therefore a weak pullback dia-
gram. Now we combine the right diagram above with the one mentioned in the
coalgrbraic bisimulation (setting the state space to CA and the functor to FΣA

),
and we obtain the following commutative diagram.

R

CA CA

FΣA
R

FΣA
CA

FΣA
(CA/R)

FΣA
CA

π1 π2

α β

ω

FΣA
π1 FΣA

π2

FΣA
q FΣA

q

Two configurations s, t are related by a coalgebraic R-bisimulation, i.e., (s, t) ∈
R if and only if

FΣA
q · α(s) = FΣA

q · β(t)

≡ { unfold the expressions }
FΣA

q({(a, s′)|(a, s′) ∈ α(s)}) = FΣA
q({(a, t′)|(a, t′) ∈ β(t)})

≡ { definition of FΣA
on homomorphisms }

Pf (id × q)({(a, s′)|(a, s′) ∈ α(s)}) = Pf (id × q)({(a, t′)|(a, t′) ∈ β(t)})

≡ { definition of Pf }
{(a, q(s′))|(a, s′) ∈ α(s)} = {(a, q(t′))|(a, t′) ∈ β(t)}

≡ { definition of q }
{(a, [s′]R)|(a, s′) ∈ α(s)} = {(a, [t′]R)|(a, t′) ∈ β(t)}

≡ { definition of set }
∀(a, [s′]R) = (a, [t′]R) where (a, s′) ∈ α(s) and (a, t′) ∈ β(t)

≡ { definition of equivalence class }
∀s

a−→ s′ ∃t′ s.t. t
a−→ t′ ∧ (s′, t′) ∈ R and vise versa.

≡ { definition of strong bisimulation }
s ∼ t

��
Theorem 4. Given a TΣA

-coalgebra (CA, α : CA → TΣA
(CA), cA

0 ) and a coalge-
braic bisimulation relation R ⊆ CA × CA, for any two configurations s, t ∈ CA,

(s, t) ∈ R if and only if s ∼ t.
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Proof. The conclusion follows by Theorem 3 and the property that natural iso-
morphisms preserve coalgebraic bisimulations. ��

Example 2 (continued). Example 1 gives the pseudocode of elements detection
in a circular linked list. Now we take further steps to discuss one possible bisim-
ulation R for a concrete list c = [0, 1, 0, 1]. Intuitively, we define R according to
the parity of position variable x that occurs in configurations, i.e., we let

R ={((x := i, v1adj), (x := i + 2, v2
adj))|v1

adj = v2
adj , i = 0, 1}

∪{((x := i + 2, v1
adj), (x := i, v2adj))|v1

adj = v2
adj , i = 0, 1}.

Here we show two possible transition schemes, with the corresponding con-
figurations R-bisimilar. Note that IN.reqRead, IN.reqWrite, OUT.reqRead and
OUT.reqWrite are always maintained true in each transition so that we omit
their evaluations by *.

(x := 0, IN.value := Null,

OUT.value := Null, ∗)

(x := 2, IN.value := Null,

OUT.value := Null, ∗)

(x := 1, IN.value := 1,

OUT.value := 0, ∗)
or

(x := 3, IN.value := 1,

OUT.value := 0, ∗)

(x := 3, IN.value := 1,

OUT.value := 0, ∗)
or

(x := 1, IN.value := 1,

OUT.value := 0, ∗)

R

R

(?IN.value := 1,

!OUT.value := 0)

(?IN.value := 1,

!OUT.value := 0)

5.2 Refinement

Similarly, we can define refinement based on coalgebraic morphisms. Given two
coalgebraic models, besides the function between their state spaces, we need a
preorder to define the notion of refinement. Then we can use the refinement
relation to detect whether a configuration is simulated by the other one on some
level, decided by the preorder.

Definition 9 (Forward Morphism). Given an extended polynominal functor
G on Set and two G-coalgebras (U,α : U → GU, u0) and (V, β : V → GV, v0). A
forward morphism h : α → β w.r.t. refinement preorder ≤ is a homomorphism
from U to V such that Gh · α ≤ β · h. Diagrammatically,

U V

GU GVGh(GU) ≤

h

α β

Gh
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For two Mediator components (systems) p, q, we say p is a behavior refine-
ment of q (denoted by q � p) if there exist two components r and s such that
p ∼ r, q ∼ s, and there exists a forward morphism h : r → s.

Now we discuss about a concrete refinement preorder � for TΣA
-coalgebras.

Given a TΣA
-coalgebra (CA, α : CA → TΣA

(CA), cA
0 ), TΣA

(CA) can be regarded
as the set of functions from ΣA to P(CA). Given two elements f, g ∈ TΣA

(CA),

f � g if ∀a ∈ ΣA, f(a) ⊆ g(a).

It can be easily proved that � is a preorder. With �, we can get the following
lemmas.

Lemma 1. Removing a port which is not involved in any transition from an
automaton is a refinement:

(C ′
A, α′ : CA → TΣA

(CA), cA
0 ) � (CA, α : CA → TΣA

(CA), cA
0 ),

if p is a port of A, such that C ′
A = EV (V ), where

V = V ars ∪ Adj(A) − {p.value, p.reqRead, p.reqWrite},

and ∀a ∈ ΣA, α′(c|V , a) = α(c, a)|V .

Lemma 2. Removing any transition from an automaton is a refinement:

(CA, α′ : CA → TΣA
(CA), cA

0 ) � (CA, α : CA → TΣA
(CA), cA

0 ),

if ∃t ∈ TransG, for ∀c ∈ CA, a ∈ ΣA,

α′(c, a) =

{
α(c, a) − t(c, a) if ∀t′ �= t, t′(c, a) �= t(c, a)
α(c, a) otherwise

,

where t(c, a) = {c′} if from the configuration c the automaton does the action a
in the transition t and results in the configuration c′, otherwise t(c, a) = ∅.

Now we continue our example of the circular linked list to make better sense
of refinement.

Example 3 (continued). Reconsider the circular linked list [0, 1, 0, 1]. In Example
2, we detect its elements in a bidirectional manner. Intuitively, elements detec-
tion in a specific direction is a refinement of it. This can be implemented by
deleting an external transition from the group of transitions. Suppose the for-
ward morphism is identity, and the following schemes depict some part of the
refinement relation. The left one is a refinement process of the right one.
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(x := 0, IN.value := Null,

OUT.value := Null, ∗)

(x := 0, IN.value := Null,

OUT.value := Null, ∗)

{(x := 1, IN.value := 1,

OUT.value := 0, ∗)}

{(x := 3, In.value := 1,
OUT.value := 0, ∗),

(x := 1, In.value := 1,

OUT.value := 0, ∗)}
⊆

(?IN.value := 1,

!OUT.value := 0)

(?IN.value := 1,

!OUT.value := 0)

6 Conclusion and Future Work

A coalgebraic approach to abstract Mediator automata is proposed in this paper
to help us discuss equivalence and refinement for Mediator models. We defined
the coalgebraic semantics for Mediator automata, which is induced by the oper-
ational semantics we redefined. We showed how to integrate several automata
into one automaton. We discussed the strong bisimulation and the weak bisim-
ulation for Mediator automata based on labeled transition systems. We proved
the strong bisimulation is equivalent to the coalgebraic bisimulation. Last but
not least, we discussed the refinement relation.

With the improvement of Mediator language, we will modify our coalgebraic
model to abstract it more precisely. An interesting direction for future work is
to define coalgebraic trace semantics for Mediator automata, like probabilistic
systems in [7,8]. Bisimulation is sometimes considered too strict, while trace
equivalence is coarser. Moreover, a coalgebraic perspective on minimization and
determinization of Mediator automata is worth considering, like in [1,5,13].

Acknowledgement. The work was partially supported by the National Natural
Science Foundation of China under grant nos. 61772038, 61532019, 61202069 and
61272160.
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Abstract. An attendance management system (AMS) is a useful system
for personal management in organizations. The existing AMSs include
traditional manual method, smart-card identification, fingerprint recog-
nition, face recognition and so on. An awkward problem with these
systems is that the recorded data could be forged by malicious users.
Fortunately, the blockchain is emerging which can be used to decentral-
ize management and protect sensitive data. In this paper, we present a
blockchain architecture for the AMS and its implementation in detail.

Keywords: Attendance management system · Blockchain ·
Unforgeable · Decentralization · Authentication

1 Introduction

Attendance management is one of the important activities in the personnel man-
agement of large organizations. The existing mainstream AMSs include tradi-
tional method, rifd identification [18], fingerprint recognition [8], face recognition
[1], iris identification [9] and so on. However, these systems suffer from a threaten
that the recorded data could be forged by malicious users, hence resulting in seri-
ous data security problem.

The emerging blockchain technology was originated with “Bitcoin: a peer-to-
peer electronic cash system” in 2008 [11]. In fact, the blockchain is an unforge-
able, distributed digital ledger system supported by peer-to-peer (P2P) network,
consensus algorithm, encryption algorithm and other related technologies. The
blockchain technology has excellent unforgeable and fully traceable security char-
acteristics as well as decentralization features [16]. It is regarded as a supporting
technology to build a valuable and trusted network in the future [19]. In addition,
the blockchain is also an effective solution to solve problems such as unsecure
data storage in untrusted network [17], which meets the needs of AMSs.

This paper presents a blockchain architecture for the AMS. We improve the
classical blockchain architecture and design our AMS as a four-layer structure
including data layer, network layer, consensus layer and application layer. The
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data layer uses digital signature cryptographic algorithms and hash function
SHA-256 to save block data and some other information. The network layer
implements a P2P network to make nodes communicate with each other for
handling block and record data. In the consensus layer, we implement a con-
sensus algorithm POW to make nodes achieve a consensus on the update of
the blockchain. Finally, the application layer mainly provides functions for users
such as check-in, check-out and query operations. In particular, we also provide
a supervisory module to manage the permission of nodes. As a small-scaled AMS
application, we have developed a blockchain system and implemented our design.

The contributions of the paper are two-fold: (1) we design a blockchain archi-
tecture to implement an AMS system; (2) we apply our AMS in a small-scaled
scenario with about 100 students in 4 labs.

The paper is organized as follows. The next section briefly introduces
blockchain and its related technologies. The Sect. 3 presents the blockchain archi-
tecture of a four-layer design. Section 4 indicates the implementation of main
modules in the system. Section 5 shows testing results of the AMS. Finally, Sect. 6
summarizes the paper and discusses the future research.

2 Introduction to Blockchain

2.1 Blockchain Related Technologies

Hash Function. Hash function is a one-way function that means one cannot
derive the input from the output. It can be used to map data with arbitrary size
to data with a fixed size. The result is randomness and unpredictable. It is hard
to map two different data to the same result.

The popular hash function is SHA series algorithms. Among them, the com-
monly used ones are SHA-1, SHA-224, SHA-256, etc. Except SHA-1, the suffix
numbers represent the number of bits in output. The hash algorithm used in
this paper is SHA-256 [6].

Asymmetric Key. The asymmetric key uses a public key and a private key
for data storage and transmission. The public key can be released publicly while
the private key is only known to the user and kept by the user himself.

Asymmetric key has two functions. When the public key encrypts data and
the corresponding private key decrypts data, this process is called asymmetric
encryption. Whereas the private key encrypts a hashed data and the correspond-
ing public key decrypts data, this process is called digital signature. The latter
is used to certify if data is tempered or forged and if data is sent by a specific
user.

In the existing asymmetric cipher systems, RSA and elliptic curve algorithms
are widely used. Because the elliptic curve algorithm can achieve the same secu-
rity by using fewer bits comparing with RSA [10], our system adopts the elliptic
curve algorithm.
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Merkle Tree. A merkle tree is a hash binary tree [13]. It can be used to induce
and check the integrity of large-scale data quickly. Generating a complete Merkle
tree requires hashing the node recursively and inserting the newly generated hash
node into the Merkle tree until only one hash node is left. The left hash node is
the digital fingerprint of the entire nodes collection, also known as Merkle tree
root. We use the binary merkle tree as show in Fig. 1.

Fig. 1. Merkle tree Fig. 2. P2P structure

Peer-to-Peer Network. A P2P network is a distributed computer network.
The “peers” are computer systems which are connected each other. In a P2P
network, there is no central server. Peers are equally privileged and equipollently
participated in a network. Actually, peers are both servers and clients [12]. A
P2P network structure is shown in Fig. 2.

Proof-of-Work. Satoshi Nakamoto proposes proof-of-work (POW) algorithm
in [11]. In POW, nodes in a P2P network hold their own candidate blocks which
have the same order. In these candidate blocks, each node should find a suitable
hash value less than the difficulty goal (see Sect. 3) for its own candidate block
to make it legal. However, it is not guaranteed that the effort a node pained
can get success since a hash value is randomness, unpredictable and the finding
process is competed with other nodes. As a result, the fastest generated legal
block is broadcasted to other nodes. Once the new block is verified by other
nodes, it is connected to their local blockchains. Meanwhile node who generates
the new block is awarded with the bitcoin (BTC) and other candidate blocks
become invalid.

2.2 Blockchain Structure

A blockchain is composed of lots of blocks connected in chronological order.
Each block contains a certain number of items and a block header. In BTC,
items mean transactions between two BTC users. Each block header includes
a hash value of its previous block header. Thus one can trace from the newest
block to the first block. Meanwhile, each header has a merkle tree root which
contains all records in the block. A blockchian structure is indicated in Fig. 3.
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Fig. 3. Blockchain structure

2.3 Blockchain Security

In a blockchain, a block connects to its previous block by the recorded hash
value of the previous block header. Once there is any modification in a block,
it can easily be detected since its hash value is changed and unmatched with
recorded one in its next block. If one wants to forge a block, he has to modify
all the blocks upto the newest one. However, even so one can modify a complete
local blockchain, he is still not able to modify all local blockchains distributed
over the network. Therefore, the records stored in a blockchain are unforgeable
and secure [7].

3 The Design of the AMS

3.1 Requirements Analysis

There are administers and ordinary users in the AMS. Except for managing
registration of users and querying attendance data, administers are treated as
ordinary users. Accordingly, all operations from administers are also recorded
in the blockchain. After registration, ordinary users can check-in, check-out and
query data.

3.2 System Design

Architecture Design. The system architecture is designed as a four-layer
structure: data layer, network layer, consensus layer and application layer. The
application layer mainly provides a user-oriented interactive interface. The con-
sensus layer implements the POW algorithm. Records and blocks are broad-
casted and verified in the Network layer. The data layer adopts cryptographic
algorithms to save block data. The architecture is shown in Fig. 4.

Types of Nodes. There are two types of nodes in the AMS for two kinds of
users: full nodes for ordinary users and supervisory nodes for administers. A full
node not only generates, broadcasts and verifies attendance records and blocks
but also saves a whole copy of a blockchain. A supervisory node is used for
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Fig. 4. Architecture design

system supervision. A user need register into the blockchain network under the
supervision of an administer at the first time. Very often a user can do his own
business such as check-in, check-out and query. Whereas, a supervisory node
saves a whole local blockchain if any. The functional modules of each node are
designed as shown in Fig. 5.

Fig. 5. Functional modules

P2P Network. The network used in our AMS is a typical P2P network. This
P2P network has two types of nodes: full nodes and supervisory nodes. A full
node can join or exit the P2P network dynamically but should connect to at least
one node, usually a supervisory node while a supervisory node should online all
the time. The P2P structure is shown in Fig. 6. In practice, we can set the number
of supervisory nodes according to specific scenarios.

3.3 Data Structure

Block Data Structure. A block is a basic unit of blockchain. Its data structure
is indicated in Table 1.

LastHash represents the hash value of the previous block header of a block.
It is the unique identification of a block. Merkle saves the merkle tree root
which contains all records in a block. It is the fingerprint of records in a block;
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Fig. 6. A P2P structure

Table 1. Block data structure

Variable field Length Type

lastHash 32 Byte array

Merkle 32 Byte array

time 4 10 Byte array

difficulty 1 Byte

nonce 4 Byte array

cumulativeDifficulty 4 Byte array

blockNumber 3 Byte array

recordCount 2 Byte array

data Uncertain length Byte array

time represents the time when a block generates; difficulty denotes a difficulty
goal to create a block; nonce is a random number which is initialized to 0.
When a node creates a block, the node tries various nonce to make hash value
of its block so that a hash value less than the difficulty can be found. The
cumulativeDifficuly is an accumulative difficulty value from the first block to
the current block. The blockNumber is the order of the block in a blockchain.
It is useful to determine the location of a block. The recordCount indicates the
the number of records in a block. The first eight fields in the table are called
block header. The data is the body of a block which contains all records of the
block.

A block header is a significant basis to verify records and blocks. In a block,
the block header binds with the block body by merkle while in adjacent blocks,
they connect to each other by lastHash.

Record Data Structure. A record is a basic unit of data storage. Its data
structure is shown in Table 2.

The address is a location ID. We use MAC address of the computer for each
ordinary user as his attendance location. The state represents an attendance
state value which is 1, 2, 3 and 4 respectively denoting check-in, check-out, user’s
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Table 2. Record data structure

Variable Length Type

address 6 Byte array

state 1 Byte

orderStamp 3 Byte array

time 4 Byte array

lockScript 32 Byte array

unlockScript 80–160 (Uncertain) Byte array

register and the query of administers. The orderStamp indicates the order of a
record in one’s all history records; time shows the time of a generated record;
lockScript is the unique identification of an ordinary user; it is the hash value
of one’s public key. The unlockScript contains the digital signature of a record
and public key of the user. These fields are useful to verify a record.

3.4 Main Work Flow

The process of an AMS running on a full node is shown in Fig. 7. The full node
initializes the system including parameter settings, network connection, user’s
register and so on. Subsequently, the full node synchronizes its local blockchain
with other nodes. Further, this full node tries to generate blocks and listens to
the network. Once the full node receives and verifies a new block, it saves and
broadcasts this new block to the network. Finally, the full node updates its local
blockchain and starts to generate a new block.

4 Implementation of Core Functions

4.1 Supervisory Module

The AMS creates a pair of secret keys (a public key and a corresponding private
key) for each user when the user logs on the AMS at the first time. Afterwards,
a user should hand his public key to an administer to be identified. Then the
administer certifies the user’s identification and generates a register record for
the user. The registered record is broadcasted to the network since it is the
first record of the user. Since then other nodes receive and verify the registered
record so that the user is accepted by the blockchain network. In addition, the
administer hash the user’s public key to get the unique identification lockScript
of the user. Finally, the administer saves the mapping relationship between the
user and his lockScript. No other users except for administers know these map-
ping relationships. This grantees the anonymity of users and the supervision of
administers.
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Fig. 7. Main work flow

4.2 Record Module

Record Generation. To generate a new record, the AMS gets one’s MAC
address to fill the field of address and generates a value for lockScript by
means of hashing the user’s public key. Further, the system writes a value for
orderStamp according to the order of the user’s last record and records the cur-
rent time to time. Finally, the system utilizes the user’s private key to generate
a digital signature for other fields, leading to a new record.

Record Pool. Each full node has a record pool to save records not only gener-
ated by itself but also received from the network. A record pool includes three
lists: an unidentified list, an identified list and an ending list. The three lists
respectively record related information: unverified attendance records, verified
attendance records and the last record of each user.

When receiving or generating a new record, a node writes the new record into
its unidentified list. Then the node verifies this new record. If the new record is
legal, it is moved from the unidentified list into the identified list otherwise it is
abandoned by the record pool. Finally, the node replaces the user’s last record
by the new record to update the ending list.

Record Verification. A full node verifies a new record according to the follow-
ing steps. At first, it verifies the lockScript and unlockScript fields. To do so, the
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values of lockScript and unlockScript are checked to see whether the following
hold: (1) lockScript is equal to the hash value of the public key in unlockScript;
(2) the decrypted digital signature in unlockScript equals to the concatenation
of the record’s address, time and orderStamp. Secondly, the system checks the
orderStamp as follows: if it is the next index of the user’s latest record’s index,
the orderStamp is legal otherwise it is illegal. Thirdly, the time is verified by two
steps: (1) checking if time is greater than the time of latest record; (2) verifying
if time is within the range of the allowable error of the system. Usually, we set
the allowable error during system initialization. As a result, a legal record is put
into the identified list and the ending list updates otherwise an illegal record is
denied.

4.3 Block Module

We use blocki and blocki+1 to respectively denote a blockchain’s lastest block
and a new block.

Fig. 8. Block generation

Block Generation. To generate a new blocki+1, we do the following: at first
the AMS fills the field of lastHash according to the blocki’s hash value; sec-
ondly, the value of blocki+1’s blockNumber is set to the value of blocki+1’s
blockNumber plus 1; thirdly, the system takes records from its identified list
to fill the data field and counts these records to write recordCount; fourthly, the
system constructs a merkle tree using these records to generate a merkle root
for merkle; fifthly, the system executes a function for computing difficulty so as
to write difficulty; sixthly, cumulativeDifficulty is assigned the total value
of blocki’s cumulativeDifficulty and blocki+1’s difficulty; finally, the system
finds a nonce by means of POW algorithm to make blocki+1 legal and records
the current time to time. A block generating process is shown in Fig. 8.
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POW. The POW algorithm is used to find out a nonce for a block header so
as to make the hash value of a block header less than the value of difficulty.
The nonce is initialized to 0 and increased by 1 after each unsuccessful effort.
Further, a new current time for time is required with each attempt. If a nonce
is beyond 232, it is reset to 0 again.

Block Verification. Each node verifies a new block independently and applies
the same check standards. When receiving a new block(blocki+1), a node usually
verifies all its fields in the block to see if the following conditions are satisfied.

(1) The hash value of the block head is less than the difficulty. (2) The
difficulty is less than its cumulativeDifficulty. (3) The time of the new
block is behind the time of the latest and within the allowable error. (4) The
new blockNumber equals the latest block’s blockNumber plus one. (5) The
cumulativeDifficulty is greater than cumulativeDifficulty of the latest block.
(6) The lastHash is equal to the hash value of the latest block header. (7) All
records in the new block are verified by record verification. (8) The node regen-
erates a merkle tree using all its records and the merkle tree root is equal to
merkle.

As a result, if a new block satisfies all the above conditions, it is legal and
connected to the local blockchain of a node. It is worthy pointing out that any
errors in the verification steps could lead the new block to be rejected.

4.4 Synchronized Module

A node needs to synchronize its local blockchain in one of the following scenarios:
(1) it has joined the blockchain network for the first time; (2) the node was offline
before and joins the network again; (3) the AMS fails because of some unexpected
errors; or (4) its local blockchain gets error. To synchronize the local blockchain,
the node broadcasts a synchronized request to the blockchain network and other
nodes send the specific requested blocks to the node. Once the node receives the
blocks received from the network, it verifies these blocks and saves the verified
blocks to its local blockchain.

5 System Demonstration

5.1 Demonstration Overview

The demonstration is mainly to show some new features of the blockchain AMS.
It includes three parts: (1) users query attendance records independently; (2)
administers query all attendance records; (3) one hacker forges an attendance
record and attempts to hand it to the AMS.

5.2 Environment and Parameter Settings

The running environment and parameter settings of nodes are shown in Tables 3
and 4 below.
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Table 3. Environment settings

Nodes CPU RAM Bandwidth System Java

No. 1 and no. 2 full nodes Intel i7-4790 4G 40 Mbps Windows10 Jdk1.8.181

No. 3 full node intel i7-8550 8G 40 Mbps Windows10 Jdk1.8.181

Supervisory node intel i7-8550 4G 40 Mbps Windows7 Jdk1.8.066

Table 4. Parameter settings

Parameters Values

The average time of block generation 600 s

The error time when generated blocks 50 s

Cache size of block 1000 blocks

Difficulty adjustment interval 10 blocks

Unit of difficulty adjustment 1 bit

Elliptic curve parameter secp160r

5.3 Demonstrations

User Query. Users query their own records independently in the blockchain
AMS. They can also see attendance records of others though they do not know
who these attendance records belong to. Since users in the blockchain AMS are
identified by their public keys and only administers know the mapping relation-
ships between public keys and users. A user query case is shown in Fig. 9.

Fig. 9. User query. One can query his own history data in his home page, also he can
see other’s history records. However, he doesn’t know whose records they are.
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Fig. 10. Admin query: administers can query all the history records and know whose
records they are.

Fig. 11. Admin query2: administer query the history blocks.

Administers Query. Administers can only query all attendance data but they
are not permitted to modify any data. Meanwhile their activities such as queries
and signs are recorded. Two administer query cases are shown in Figs. 10 and 11.

Forging an Attendance Record. In the blockchain AMS, each attendance
record is encrypted by users’ own private key. Then if others forge an attendance
record, it is going to be checked and refused by other nodes. A forged case is
shown in Fig. 12 and a checking test is shown in Fig. 13.

Fig. 12. A forged record: the time field of an legal record is forged and broadcasted to
the blockchain network.
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Fig. 13. Verifying the forged record: other nodes receive the forged record and verify
it.

6 Conclusion

This paper presents a blcokchain AMS. It implements the basic functions of AMS
and takes advantages of blockchain to prevent attendance data from modifying.
Further, We design a supervisory module to help supervise the AMS.

The system satisfies a small-scale application. However, it remains to be
verified in complex application scenarios. The system can be improved in the
following aspects: (1) developing a more strict way of attendance; (2) improving
the existing POW; and (3) proposing simplified nodes and extending the P2P
network.

At present, the system uses a MAC address as an attendance location. This
can cause a risk since one could check-in instead of other individuals. So it is
better to take more strict ways such as fingerprint recognition or face identi-
fication to reduce this risk. Further, the POW algorithm we use in the AMS
is energy-consuming and slow. In the future, we will improve the POW algo-
rithm so that a fast energy-saving algorithm could be adopted. Moreover, we
will propose simplified nodes to provide a light AMS which does not need save
a whole blockchain. Finally, we will construct an effective P2P network [4] so as
to improve the performance of the network.

As a software system, the blockchain AMS also needs to be tested or verified
since bugs can be hidden in the system. Therefore, we plan to apply MSVL based
technique to verify the system [2,3,15]. Further, we will also protect the security
and privacy of the blockchian AMS by means of MSVL techniques [5,14] so that
the data cannot be forged by hackers.
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Abstract. Blockchain is a decentralized storage technology rose rapidly recent
years, it has the advantages of decentralization, untamperability and unforge-
ability, high safety and reliability, and has attracted vast attentions from gov-
ernments, financial institutions, technology enterprises and capital markets.
Blockchain has numerous application scenarios and huge development potential,
Bitcoin is the most representative one of it. Primarily, the first generation
blockchain and the second generation blockchain and their respective repre-
sentative crypto-currencies: Bitcoin and Ether are introduced briefly. Next, a
new type of blockchain based on DAG (Directed Acyclic Graph) structure is
illustrated, it is considered to be the possible evolution route of the next gen-
eration blockchain. Furthermore, two influential applications of DAG block-
chain systems: IOTA and Byteball are introduced. Finally, Conclusion and
forecast of blockchain are discussed.

Keywords: Blockchain � DAG � IOTA � Byteball

1 Introduction

In recent years, as the market value of Bitcoin increasing continually, blockchain,
which Bitcoin is based on, is gradually known. As a distributed network architecture
and storage technology, blockchain has the advantages of decentralization, unforge-
ability and high reliability. Current crypto-currencies are based on blockchain archi-
tecture practically. Since the birth of crypto-currencies, blockchain has gone through
two generations of development. The representative application of the first generation
blockchain is Bitcoin, which created a decentralized crypto-currency worldwide firstly.
The second generation blockchain [1], known as “Ethereum”, added the concept of
“Smart Contract”, started the era of crypto-currencies combined with smart contract.
Over the past two years, a new blockchain based on DAG structure was proposed.
Compared with the preceding two generations of blockchain, the DAG blockchain
adopts asynchronous communication mechanism and concurrent processing algorithm,
improves system scalability greatly, and sets off a revolution of development of the
next generation blockchain.

The remainder of this paper is organized as follows. Section 2 reviews the first
generation blockchain and Bitcoin. Section 3 presents the second generation
blockchain-Ethereum and Ether as its token. Section 4 illustrates the DAG blockchain
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and its two typical applications: IOTA and Byteball. Section 5 concludes the paper and
foresees the future trend of blockchain.

2 The First Generation Blockchain

2.1 Overview of the First Generation Blockchain

Blockchain originated from a paper: “Bitcoin: A peer-to-peer electronic cash system”
[2] proposed by Satoshi Nakamoto in 2008, in this paper the concept of blockchain was
proposed firstly, and specific implementation scheme was given. Blockchain is con-
sidered as a specific data structure that blocks were arranged in time order and con-
structed in chains; data in blocks cannot be tampered with and cannot be forged. It can
store simple, sequential data that can be validated easily in system [3].

2.2 Bitcoin

Bitcoin is a crypto-currency based on the first generation blockchain, it is also the most
successful blockchain application so far. According to the real-time statistical data of
Bitcoin transactions globally, by July 23rd, 2018, at 10:36 a.m. the number of Bitcoin
transactions in the last 24 h were 236813, with a total market value more than 133
billion US dollars [4]. Referring to the GDP ranking of countries in the world in 2017,
Bitcoin is ranking fifty-fifth [5], higher than Hungary’s GDP nationwide. The real-time
exchange rate of Bitcoin to US dollars was 1 to 7731.27; the price of Bitcoin has soared
more than 3 million times, compared with the value in May 2010, when a Florida
programmer bought a 25 US dollars pizza coupon with 10,000 BTC. The real-time
transaction data of Bitcoin were shown in Fig. 1 below.

Bitcoin is a crypto-currency essentially, its generation does not depend on any
central authority, but a process called “Mining” figuratively, nodes of the Bitcoin
network engaged in mining are called miners. Miners compete with each other to
calculate a mathematical problem that the index of difficulty can be adjusted, miner

Fig. 1. Bitcoin real-time transaction data
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who solved the mathematical problem in the shortest time broadcast the result and
related information to Bitcoin network. After the other miners receive the broadcast,
they verify the validity of the information, check whether the information do not exist
in previous blocks, if all the check pass, the miner who solved the mathematical
problem in the shortest time gains the right to update blockchain in current cycle, which
is ten minutes in average. During this cycle, this miner packs all the unconfirmed
transactions into a new block, and links it to the main chain of blockchain chrono-
logically, and gains a certain number of Bitcoin as reward. If the verification result is
invalid, the calculate result and information will be discarded and all miners will
compete again to mining.

Bitcoin uses PoW (Proof of Work) consensus algorithm to ensure the generation of
new blocks, maintain the stable growth of blockchain. The block structure of Bitcoin is
shown in Fig. 2 below [6].

Blocks are connected each other in chronological order, each block consists of
block body and block header. Block body contains all the unconfirmed transactions
collected by miners. The hash function calculates the message of each transaction
respectively (T1 represents transaction 1). Afterwards, every two hash value of the
transaction combined to generate a new hash value. This process is repeated again to
form the “Merkle tree” structure until only one hash value is left, which is called
“Merkle root”, and it will be written into the corresponding block header.

Block header contains six parameters: Version, HashprevBlock, Timestamp, Bits
(mining difficulty), Merkle root and Nonce (random value), a target value will be
calculated (Target) through Bits for mining [7].

Version

Hashprev
Block Timestamp BitsNonce

Merkle root

Block Header

Block BodyHash 1-8

Hash 1234 Hash 5678

Hash 12 Hash 34 Hash 56 Hash 78

Hash 1 Hash 2 Hash 3 Hash 4 Hash 5 Hash 6 Hash 7 Hash 8

T1 T2 T3 T4 T5 T6 T7 T8

Previous
Block

Next Block

...

...

Fig. 2. The block structure of Bitcoin
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The process of mining essentially is executing double hash operations for data of
block header, which is equal to solve the following inequation (1):

SHA256 SHA256 VersionþHashprevBlockþTimestampþMerklerootþBitsþNonceð Þð Þ\Target

ð1Þ

On the left side of the inequation, the first five parameters have constant values, the
value of Target on the right side is also a constant which can be calculated through the
value of Bits. The value of Nonce need to be solved to satisfied the inequation. The
initial value of Nonce is set to zero, and the double hash value is calculated, if the
calculate result bigger than the value of the Target, value of Nonce add one and
continue calculate, if the result still bigger than Target, Nonce value add one and
calculate again, this process repeat until the calculate result smaller than the value of
Target, this indicates the success of mining.

The parameter of Bits can be adjusted dynamically in order to stabilize the gen-
eration period of each block in ten minutes averagely. With the production of Bitcoin
reduce to half every four years, accompany with more powerful computational power
the miners own, they both lead to the increasing of mining cost and decreasing of
reward for miners, consequently, the price of Bitcoin continues to rise eventually.

Although Bitcoin has achieved great success as a crypto-currency, its deficiencies
are clear and should be paid enough attention to.

1. Bitcoin uses PoW consensus algorithm to generate revenue for miners, assure
transactions and achieve mutual trust in decentralized system. In order to get more
powerful computational power to defeat opponents for Bitcoin reward, miners use
more professional mining equipments, some of the miners even united to mining
pools to maximize the computational power advantage, mining in large scale cause
huge power consumption. As the circulation of Bitcoin halves every four years,
mining become more and more difficult, which in turn lead to more mining
equipments investment and more power consumptions. Authoritative statistical data
show that power consumptions of Bitcoin industry in 2018 is estimated up to
731.2 TWh [8], which is even bigger than the power generation amount of Kuwait
in 2017 (711 TWh) [9], the average power consumption of each Bitcoin transaction
are 900 KWh. Huge amount of power was wasted do nothing but calculate hash
value and random number search.

2. The PoW consensus algorithm used in Bitcoin will face “51% attack” problem
inevitably, it means that miners in Bitcoin network may carry out malicious attacks,
forge data if they manage to get more than half computational power of the whole
network. Although it’s nearly impossible to obtain such huge computational power
and the cost of attack are much more than the reward after the attack is
implemented.

3. The transaction speed of Bitcoin network is too slow, with only 7 transactions per
second [10], while Alipay’s peak trading volume is up to 256 000 per second during
the “Double Eleven Shopping Festival” in 2017 [11], the gap between Bitcoin and
mainstream payment platform is considerable large in this respect, extensions of the
application of Bitcoin were limited due to its low transaction speed.
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4. The hash algorithm Bitcoin used is susceptible to meet hash collision, although the
probability is very low. With the promotion of hardware performance and the
development of new computing technologies such as the birth of quantum com-
puter, the probability of hash collision increasing continuously, and the hash
algorithm facing the risk of being cracked.

The first generation blockchain is used mainly in field of crypto-currencies, it
adopts decentralized architecture, without any central authorities, transactions were
conducted and confirmed through all the nodes of the network, Bitcoin can be gen-
erated and circulated globally, this brand-new crypto-currency is entirely different from
the conventional currencies. Although drawbacks still exist in technical aspects and the
performance needs improvement, the prosperity of crypto-currencies is irreversible,
increasingly important role crypto-currencies will act under the tide of globalization.

3 The Second Generation Blockchain

3.1 Overview of the Second Generation Blockchain

The first generation blockchain made a decentralized crypto-currency come true for the
first time and depicted a grand blueprint for a unified global currency, brought us
endless imaginations that crypto-currencies would trigger the “Dominoes effect” and
lead to a revolution in monetary field as a pioneer, and then the evolvements of social
formation and operation mode, change our life drastically.

However, the first generation blockchain is only focused on crypto-currencies. The
need to extend it to the fields beside crypto-currencies and construct decentralized
applications across fields has led to the birth of the second generation blockchain.

The second generation blockchain, also known as “Ethereum”, was first put for-
ward by Vitalik in 2014 [12].

Compared with the first generation blockchain, the most prominent characteristic of
Ethereum is “Smart Contract”, which is also the core content of Ethereum. The concept
of smart contract was first proposed by Nick early in 1994 [13], in which the main
principles smart contract operate were given, but there was no suitable operating
platform until the birth of Ethereum.

Smart Contract is a code fragment built in blockchain application, a variety of rules
and operations are set in advance and trigger mechanisms are contained in the code.
Once the conditions are met, the code executed automatically and implemented
according to the agreed rules.

Transactions on Ethereum are information transferred during different accounts,
information can be crypto-currencies or content valuable. There are two kinds of
accounts on Ethereum: ordinary accounts and contract accounts, ordinary accounts
contain Ether (the token used in Ethereum), transactions of Ether can be executed
during ordinary accounts. Unlike ordinary accounts, contract accounts contain not only
Ether, but also smart contracts, specific addresses (where Ethereum launch smart
contracts) are reserved for storing contract accounts. Contract accounts cannot be
executed on their own unless called by ordinary accounts, which is the only way smart
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contracts can be executed. A series of functions can be realized after being called,
include transferring of Ether, mining for new Ether, even creation of new smart
contracts.

All nodes in the Ethereum network run their Ethereum Virtual Machine
(EVM) respectively and execute PoW algorithm to validate and generate blocks. The
PoW algorithm used on Ethereum is called “Ethash”, which is different from the PoW
algorithm of Bitcoin, some modifications were made and can be regarded as a variant
of the standard hash algorithm.

Ethereum is an open source platform on which anyone can launch their own smart
contracts and conduct transactions. Congestions and chaos may occur in the network,
even more, malicious attacks may be launched if the situations are not regulated
properly. Given to this consideration, users must to pay to run their procedures on
Ethereum, the payment are described as “gas”, the gas amount offered by users are
defined as Eq. (2):

Gas ¼ gasprice � gaslimit ð2Þ

Gasprice denotes the price per unit gas, while gaslimit shows the amount of gas
users offered, gasprice and gaslimit are defined by users, they both determine the
maximum transaction fees available. Each transaction need a certain gas amount to
operate, if the gas amount offered exceeds the required gas amount, the transaction will
be executed normally and the extra gas will be returned to user’s account after the
transaction is completed. Otherwise, the transaction will be terminated and reverted to
its pre-transaction state. Due to effort was done by miners even if the transaction is
cancelled, the gas been used to execute transaction will not be returned, but the Ether
(Token circulated on Ethereum) will be returned normally if there has Ether transfer-
ring in the transaction.

Practically, miners are prone to choose the transactions with higher transaction fees,
in order to ensure the success of transactions, and make sure transactions can be
confirmed more quickly, users often offer excessive gas than required gas amount.

The emergence of gas ensures transactions to be conducted orderly in one hand, it
is also in accordance with the Turing completeness of the programming language of
Ethereum in another hand, the programming language operated on Ethereum supports a
variety of complex logic operations, and dead loop is prohibited for it. Gas makes this
goal come true to prevent abnormality of procedures or malicious attacks, finite gas
supplies bound to make the procedures run out in a finite time.

Several remarkable application platforms were founded based on Ethereum these
years. In August 2014, the first smart contract client in the world called “Bithalo” [14]
was launched officially, users can carry out services such as deposit, crypto-currencies
exchange, goods exchange and email services by the client; besides, Amir Kafshdar
Goharshady proposed a decentralized storage and query system about credit report in
May 2018, in which the smart contract was built, it can store and report credit data
safely and credibly [15], it’s the first approach that can be able to perform real-world
credit reporting tasks without a central authority.
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3.2 Ether

Ether is the crypto-currency circulated in Ethereum to pay transaction fees and service
charges, it is the second largest crypto-currency in the world. By July 23th, 2018, at
10:36 a.m. the total market value of Ether has reached 47.9 billion US dollars [16],
which is equivalent to one third of the total market value of Bitcoin at the same time.
With the establishment of Enterprise Ethereum Alliance (EEA) in 2017 [17], there will
be more applications based on Ethereum published in future, and the market value of
Ether will continue to rise. Trading data of Ether are shown in Fig. 3 below:

The differences between Ether and Bitcoin are listed below:

1. Unlike the fact that the circulation of Bitcoin halves every four years, the circulation
of Ether remains invariable, with annual circulation is 0.26 times the total amount of
the pre-sale Ether.

2. The generation period of each Bitcoin block is ten minutes in average, while the
generation time of Ethereum block is much faster, up to fifteen seconds in average,
this notable difference result in different performance in transaction speed.

3. Bitcoin and Ether have different roles as crypto-currencies. Bitcoin has the same
value preservation and property hedging function as gold since its birth, especially
in the Cyprus Debt Crisis in 2013 [18], in which Bitcoin played a great role in
preventing property from shrinking. While Ether is the “fuel” required to conducted
smart contracts on Ethereum platform, ensure the execution of smart contracts. The
value of Bitcoin lies in result, while the value of the Ether rests in process.

The first generation blockchain focused on the field of crypto-currencies, gave birth
to the subversive application like Bitcoin. The second generation blockchain added the
concept of smart contract, expanded the scope of blockchain from the field of crypto-
currencies to more application scenes, led to profound changes in financial, economic,
science-technology and even political fields, guiding whole society moving forward to
industry 4.0 era [19, 20].

Fig. 3. Real-time trading data of Ether
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4 DAG Blockchain

4.1 DAG Introduction

DAG (Directed Acyclic Graph) is an important concept of data structure theory in
computer science subject, due to its unique topological structure, DAG is usually used
to deal with dynamic programming problems, such as the shortest path tracing, data
compression and other fields.

DAG was proposed in blockchain as part of consensus algorithm in 2013, when a
scholar in Hebrew University of Israel proposed a GHOST (Greedy Heaviest-Observed
Sub-Tree) protocol, which aimed to improve transaction performance of Bitcoin,
consequently, lifted the transaction speed of Bitcoin from 7 transactions per second to
200 transactions per second [21].

In 2015, Sergio Demian Lerner published a paper “Dag Coin: a cryptocurrency
without blocks”, in which the concept of DAG-chain [22] was first proposed.

DAG is a way of storing data along with one direction, no circular structure was
founded in it. Start from one node of DAG, proceeding along a directed arrow, it is
impossible to return to the starting node. Structure of DAG is shown in Fig. 4 below.

In Fig. 4, the order of time flows from left to right, each box represents a trans-
action, this is different from traditional blockchain structure. The arrows between boxes
represent a certain validation relationship between them, when a new transaction wants
to join the network, it is necessary for it to validate previous two transactions firstly.

In the DAG network, each new transaction validates its parent transaction directly,
and validates the parent transaction of the parent transaction indirectly. After multiple
direct and indirect validations, genesis unit leftmost can be reached. Each transaction
contains the hash value from the genesis unit to its father unit. As time goes by, all
nodes are interconnected, forming a tangle structure. As long as the data of any node in
the whole network is altered, the hash value of the whole network will be changed, so it
is very difficult to tamper with the network.

Gossip algorithm [23] is used in DAG network to ensure the final consistency of
states between different transactions. Although it cannot guarantee the consistency of
the states of the network all the time, the final data consistency of them will be obtained
in a certain moment at last. All nodes of the network will be agreed after a period of
time even some of them offline or new nodes join in.

Genesis
unit

Fig. 4. DAG structure diagram
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DAG network adopts asynchronous communication mechanism, which can
improve the scalability of blockchain (throughput and transaction speed) greatly. The
more transactions involved in the network, the faster the transaction will be confirmed.
However, the excellent performances are at the cost of period consistency, asyn-
chronous communication and gossip algorithm obtain data synchronization of the DAG
network at some certain time points. Before these points, attackers can use data
inconsistency to initiate Double Spend attack. Furthermore, attackers can take
advantage of the characteristics of parallel transactions of DAG network to forge a
shadow chain to replace the main chain and implement attack.

Two influential blockchain applications based on DAG structure: IOTA and
Byteball are introduced below.

4.2 IOTA

IOTA is a distributed ledger system designed for Internet of Things (IoT), which is
used to meet the micro-payment demands between a large number of machines, it
expands the P2P (Peer-to-Peer) trading mode of Bitcoin to M2M (Machine-to-
Machine) mode, built the blueprint of machine economy through the way exempting
transaction fees between objects. IOTA is also the crypto-currency circulated in IOTA
system. By July 28th, 2018, IOTA was the ninth largest crypto-currency in the world,
with a total market capitalization of 27.7 billion US dollars [24], and is still growing
rapidly.

In IOTA network, if a node wants to initiate a new transaction, it is necessary for it
to validate other two transactions in the network firstly, and point to the two transac-
tions. New transactions are validated continually and added to the network, cause the
network expanding. The IOTA network is shown in Fig. 5 below [25].

Figure 5 comes from the IOTA white paper. Transactions on the right side validate
the transactions on the left side, the whole network expands from left to right. For the
rightmost transactions, such as A and C, they have not been validated yet and called tips.

13
              1

11
              1

10
              1

9
              3

6
              1 1

              1

4
              3

1
              1

2
              1

A

B

C

D

E

F

Fig. 5. Tangle structure of IOTA diagram
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In IOTA network, two important concepts are defined, they are the own weight and
the accumulative weight of a transaction. If a node in the network wants to initiate a
new transaction, it should validate two transactions in the network firstly and imple-
ment PoW. The PoW algorithm used in DAG network is a ternary algorithm, which is
designed by the author of the SHA-3 algorithm, it is also the first ternary hash algo-
rithm in the world [26]. PoW workload the node implemented are proportional to the
own weight of the transaction. The value of own weight of a transaction can be defined
as 3^N (N is a non-negative integer), own weight is marked in the lower right of each
box in Fig. 5.

In addition to own weight, each transaction has accumulated weight, which is
defined as the sum of the own weight of a transaction itself and the own weight of all
the other transactions validate the transaction directly and indirectly. Accumulated
weight is indicated in black bold number in the upper part of each box in Fig. 5. For
example, the transaction F is validated by transaction B and transaction E directly, and
validated by transaction A and transaction C indirectly, the accumulative weight of
transaction F is the sum of the own weight of the four transactions and the own weight
itself, that is 3 + 1 + 3 + 1 + 1 = 9.

The new transaction (assume T0) validates two transactions in the network and
implement PoW, then T0 is joined to the network. Subsequent transaction T1 validates
T0 directly in same way, the accumulative weight of T0 will increase. Afterwards, the
new transaction T2 and T3 continue validates T0 indirectly, the accumulative weight of
T0 increases gradually. The more times T0 were validated (no matter directly or
indirectly), the bigger the accumulative weight will be. When accumulative weight
exceeds a certain threshold value, the transaction T0 will be finally confirmed.

In the early days of IOTA, in order to ensure the reliability of the accumulative
weight value, IOTA founded a role called “Coordinator”, which is essentially a closed
source network node maintained by IOTA authority. The coordinator releases a
transaction every minute, as an auxiliary way to validate new transactions. Lots of
controversy existed for the centralized characteristics of coordinator in the industry.
IOTA declared that the coordinator will be removed at a proper time in future officially,
but there is no exact time scheme yet.

Although IOTA has significant advantages in the field of IoT, it is not perfect. As a
crypto-currency, security is always the first essential users concern, IOTA’s perfor-
mance is not satisfactory in this aspect.

1. Serious flaws the hash algorithm adopted by IOTA was discovered in July 2017 by
an academic organization of Massachusetts Institute of Technology, these flaws
threatened the security of digital signature and PoW algorithm of IOTA. It urged
IOTA upgraded the hash function finally [27].

2. IOTA has no transaction fees, unlike Bitcoin has mining incentive, so it facing the
possibility of denial of service attacks and spam attacks.

3. The existence of the coordinator mechanism makes IOTA highly controversial
about centralization, and there is a risk of regression to the centralized system.
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4.3 Byteball

Byteball is also a distributed ledger system based on DAG structure. Byte is the token
circulated in Byteball network. It aims at popularizing Bitcoin, eliminating defects
which hamper the widespread use of Bitcoin, and even replacing banknotes such as US
dollar and Euro, becoming the crypto-currency worldwide [28].

In Byteball system, new transactions contain hash value of earlier transactions, the
hash value is used to validate the previous transactions in the network and establish its
own partial order [29]. By including hash value of parent transactions, new transactions
confirm all parent transactions directly and its parent transactions of parent transactions
indirectly. With more transactions join in, transaction number will increase rapidly like
snowballs, this is the reason the system is named Byteball.

In the system, “witnesses” and “main chain” are introduced innovatively. Witnesses
are the individuals or organizations who have high reputation, participate actively in
maintaining the development of the Byteball network. The total number of witnesses is
twelve, witnesses validate new transactions continually, add them into the network and
increase the network volume. There are many paths from a certain transaction to
genesis transaction, during those paths an optimal path can be found, this path is main
chain, which is stable and credible as long as there are no more than a certain per-
centage of witnesses who have collaborated with attackers to launch attacks.

The witnesses are not unalterable, system will weed out the witnesses whose
reputation is lower and replace them with the more prestige candidates regularly by
specific screening mechanism, so as to maintain the stability and reliability of the
witnesses. There is a similarity between the witness mechanism and the DPOS (Del-
egated Proof of Stake) [30] consensus algorithm.

The witnesses and the main chain are actually a consensus mechanism, which play
the role of consensus algorithm. Byteball can avoid occurrence of “double spending”
and “shadow chain attack” via this consensus mechanism.

In Byteball system, transactions fees are the same to the storage capacity of
transactions themselves, part of the transactions fees is obtained by validaters who
validate the transactions, and the other part is obtained by the witnesses.

The main functions of Byteball are integrated into its App, which is called Byteball
wallet. On which services available include payment, P2P chatting, market forecast,
insurance and betting business [31].

5 Summary and Prospect

Using DAG structure in bockchain can solve the deficiencies of low throughput and
slow transaction speed of traditional blockchain. Characterized by the inherent
advantages of parallel processing and multi-thread operation, DAG structure is very
suitable for large-scale transaction scenes. However, it still has some drawbacks, such
as do not support strong consistency and security performance has not been validated
massively, and need to be corrected and improved gradually. Improvements about
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security of DAG blockchain are urgent and significant. The latest researches about
security are as follows:

1. Researchers of Tsinghua University proposed a paper: “Scaling Nakamoto Con-
sensus to Thousands of Transactions per Second” [32], in which a DAG blockchain
system called “Conflux” was introduced. The core of Conflux is its consensus
protocol that allows multiple participants to contribute to the Conflux blockchain
concurrently while still being provably safe. The consensus algorithm divides the
Conflux network into several “epochs” according to the time sequence, sub-main
chain of each epoch is determined respectively afterward, all the sub-main chains
make up the main chain finally. As long as the main chain keeps clear and stable,
majority of conventional security problems will be eliminated in the network.

2. Blockchain start-ups “DAG Labs” developed a DAG blockchain system called
SPECTRE [33], in order to avoid transaction conflicts brought by parallel processing
and ensure the consistency of information contained in the new generated blocks, all
users voting to determine the architecture of the whole network. The order of
transactions is determined by users. Including order of the parent transactions and the
order the parent transactions of the parent transactions. The network expands fol-
lowing this order, new transactions are also joined to the network in the prescribed
order, and the growth logic of the transactions is determined by majority of users in
the network. This method ensures that the amount of honest blocks is more than the
amount of malicious blocks, eliminates the possibility of 51% attacks. On the pre-
mise of high availability of network, the vote mechanism ensures stable transaction
sequence in the network and avoids security problems caused by system conflicts.

The DAG blockchain has broken through the limitation of linear processing ability
of traditional blockchain, and has made qualitative improvement in system throughput
and transaction speed. Great interests have been shown both at home and abroad, and a
number of influential DAG blockchain systems have been developed, in addition to
those mentioned above, a general blockchain programming platform “Nerthus” [34]
was published in 2017, it combined smart contract with DAG, constructed the
“DAG + Ethereum” model of blockchain system. The system released beta version in
the first quarter of 2018, and plans to hold the first Nerthus Application Developer
Conference in the first quarter of 2019. The future of the system is worth looking
forward to.

Besides, many DAG blockchain systems are emerging, such as Nano [35], Hash-
Graph [36] and Hycon [37]. ITC [38] from China is also a matter of great concern.

With the rise of DAG blockchain, it is often compared with traditional blockchain.
In fact, the relationship between them are neither simply advanced or not, nor replaced
or be replaced. After nearly a decade of development, the traditional blockchain has
already had a stable ecosystem, the security performance has been fully validated and
formalized verification methods are available for safety of the traditional blockchain
[39–43]. So far, the traditional blockchain and the DAG blockchain still are focusing
on their respective specialties. The traditional blockchain concentrates on the crypto-
currencies industry, while DAG blockchain flourishes in the field like IoT. However,
the possibility of integration between them and the development of hybrid mode of
“Blockchain + DAG” will not be ruled out. There are already some DAG systems
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exploring in this area. Within the foreseeable years, with the maturity of 5G tech-
nologies and the popularization of neural network and artificial intelligence, the tra-
ditional blockchain and the DAG blockchain will learn and merge with each other. The
integration of them will be accelerated and the completion of blockchain ecosystem
will be promoted, to embrace the age of parallel society driven by blockchain [44].
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