
Chapter 5
On the Concept of Curve: Geometry
and Algebra, from Mathematical
Modernity to Mathematical Modernism

Arkady Plotnitsky

Abstract We consider the concept of curve in the context of the transition from
mathematical “modernity” to mathematical “modernism,” the transition defined, the
article argues, by the movement from the primacy of geometrical to the primacy of
algebraic thinking. The article also explores the ontological and epistemological
aspects of this transition and the connections between modernist mathematics and
modernist physics, especially quantum theory, in this set of contexts.
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5.1 Prologue

The frescoes of the Chauvet-Pont-d’Arc Cave in southern France, painted roughly
32,000 years ago, and the subject of Werner Herzog’s 3-D documentary, The Cave
of Forgotten Dreams (2010), are remarkable not only because of the extraordinary
richness and quality of their paintings, or how well they are preserved, or, closer to
my subject here, their prehistorical images of curves, which are found in other, some
earlier, cave paintings, but also and especially because these curves, delineating
animal figures (there is only one human figure), are drawn on the intricately curved
surfaces of the cave. This unfolding curved-surface imagery compelled Herzog to
use 3-D technology for his film. The resulting cinematography, the temporal image
of curves and curved surfaces, the curved image of time (Herzog’s theme as well) is
remarkable phenomenologically, aesthetically, and, for a geometer, mathematically.
The access to the cave, discovered in 1994, is severely limited, and Herzog was
lucky to get permission to enter and film in it. But one could imagine what the likes
of Gauss, Lobachevsky, Riemann and Poincaré (who spent a lifetime thinking about
curves on surfaces) would have thought if they had had a chance to see the cave,
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which seems, by its very existence, to challenge Euclid, nearly our contemporary on
this 30,000-year-old time scale. Almost, but not quite! One needs to know and, first,
to invent a great deal of mathematics to think of this challenge, and the mathematics
as developed, along with science, philosophy, and art, by the ancient Greeks brings
them and us together as contemporaries.

There is an immense intervening history between these paintings and us, a
history that has erased beyond recovery most of the thinking that created them,
and whatever comments one can make concerning this thinking are bound to be
conjectural. It is unlikely that mathematics existed at the time, although this may
depend on how one understands what mathematics is. What may be said with more
confidence is that human thinking, thanks to the neurological structure of the human
brain, had by then (50,000–100,000years ago is a current rough estimate for when
this structure emerged) a component that led to the rise of mathematical thinking
and eventually to mathematics itself. Concerning the longer prehistory one can
only invent evolutionary fables, akin to those concerning the origins of thinking,
consciousness, language, logic, music, or art, which may be plausible and useful
but are unlikely to ever be confirmed.1 Art is one endeavor where we might be
close to the cave painters in the Chauvet Cave and elsewhere. But then, is art
possible without some mathematical thinking, or mathematics without some artistic
thinking, or thinking in general without either, or without philosophical thinking?
This is doubtful, as my argument in this article will suggest, without, however,
making a definitive claim to that effect, which may not be possible given where
our understanding (neurological, psychological, or philosophical) of the nature of
thinking stands now.

5.2 From Mathematical Modernity to Mathematical
Modernism

While, inevitably, invoking earlier developments, in particular ancient Greek math-
ematics, the history I address here begins with mathematics at the rise of modernity,
especially the work of Fermat and Descartes, crucial to our concept of curve as
well, but having a much greater significance for all subsequent mathematics. One
can assess the character of mathematical thinking then more reliably because this
character is close to and has decisively shaped the character of our mathematical
thinking now. I then move to Riemann and, finally, to mathematical modernism,
which emerged sometime around 1900, shaped by the preceding development of
nineteenth-century mathematics, roughly, from K. F. Gauss on, with Riemann as
the most crucial figure of this development and, in the present view, conceptually,
already of modernism. Thus, even this shorter trajectory, curve, of the idea of curve

1G. Tomlinson’s book on the prehistory of music, with the revealing title “A Million Years of
Music,” confirms this view, even if sometimes against its own grain [64].
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will be sketched by way of a discrete set of points, which would hopefully allow the
reader to envision or surmise the curve or curves (for there are, again, more than one
of them) connecting the dots. This uncircumventable circumstance notwithstanding
(the metaphor of a curve invades this sentence, too), I do aim to offer a thesis
concerning the idea of curve in mathematics and a thesis concerning mathematics
itself, as defined by mathematical modernism as fundamentally algebraic, and to
offer a historical and conceptual argument supporting this thesis.

I shall more properly outline my key concepts in the next section, merely sketch-
ing them in preliminary terms here, beginning with modernity and modernism.
Modernity is a well-established broad cultural category, defined by a set of cultural
transformations, “revolutions,” that extends, roughly, from the sixteenth century to
our own time. The rise of modernity has been commonly associated with the concept
of Renaissance, especially in dealing with its cultural aspects, such as philosophy,
mathematics and science, and literature and art. We are more cautious in using the
rubric of Renaissance now, and prefer to speak of the early modern period, implying
a greater continuity with the preceding as well as subsequent history. This caution
is justified. On the other hand, in the present context, invoking the Renaissance is
not out of place either, as referring to the rebirth of the ways of thinking, not the
least the mathematical thinking, of ancient Greece. The rise of modernity was in
part shaped by new mathematics, such as analytic geometry, algebra, and calculus,
and new, experimental-mathematical sciences of nature, beginning with the physics
of Kepler, Descartes, Galileo and Newton, a set of developments often referred to
as the Scientific Revolution.

By contrast, modernism is a well-established, even if not uniquely defined,
denomination only when applied to literature and art, while a recent and infrequent
denomination when applied to mathematics or science, a denomination, moreover,
commonly borrowed from its use in literature and art, as by H. Mehrtens and
J. Gray, my main references here [26, 44]. Historically, both phenomena, modernist
literature or art and modernist mathematics or science, are commonly understood as
belonging to the same period, roughly from the 1890s to the 1940s, but as in various
ways extending to and, certainly, continuing to impact our own time. Both forms of
modernism are considered to be defined by major transformations in their respective
domains, and there is a consensus that significant changes in both domains did
take place during that time. However, the complex and multifaceted nature of these
transformations makes it difficult to conclusively ascertain their nature and causality.
Some of these transformational effects had multiple causes, and conversely, some
of these causes combine to produce single effects. It is hardly surprising, then, that,
conceptually, the thinking concerning modernism in any field is diverse and, in
each case, only partially reflects the nature of modernism in a given field or the
relationships, on modernist lines, between different fields, even between modernist
mathematics and modernist physics.

This is an unavoidable limitation, and it cannot be circumvented by the con-
ception of mathematical modernism to be offered in this article, which intersects
with other such conceptions, but, to the best of my knowledge, does not coincide
with any of them. I can only argue that this type of mathematical thinking emerged
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during the historical period in question, but not that it exhausts what can be termed
mathematical modernism, let alone capture the development of mathematics during
that period. Not all of this mathematics was modernist by any definition I am
familiar with. Indeed, it cannot be captured by any single definition, any more
than mathematics in general. While I find the term mathematical modernism useful
and historically justified, more important are key conceptual formations that, I
argue, decisively, even if not uniquely, characterize the mathematics or science that
emerged during that period. I am, however, ready to admit that these formations
could be given other denominations. One cannot hope for a unique name here
(any more than in general), which is a good thing, because new names open new
trajectories of thought.

Mathematical modernism will be primarily understood here as mathematical
thinking that gives mathematics a fundamentally algebraic character. By way of
broad preliminary definitions, I understand algebra as the mathematical formaliza-
tion of the relationships between symbols, arithmetic as the mathematical practice
dealing specifically with numbers, geometry as the mathematical formalization
of spatiality, especially (although not exclusively) in terms of measurement, and
topology as the mathematization of the structure of spatial or spatial-like objects
apart from measurements, specifically in terms of continuity and discreteness.
The corresponding mathematical fields are algebra, number theory, geometry,
and topology. Analysis deals with the questions of limit, and related concepts
such as continuity (where it intersects with topology), differentiation, integration,
measurement, and so forth. There are multiple intersections between these fields,
and there are numerous subfields and fields, like arithmetic algebraic geometry, that
branched off these basic fields.

Defining algebra as the mathematical formalization of the relationships between
symbols makes it part of all mathematics, at least all modern mathematics. Ancient
Greek geometry was grounded, at least expressly, in arithmetic, although one
might detect elements of symbolism there as well, especially at later stages of its
development, certainly by the time of Diaphantus, sometimes called “the father of
algebra.” Geometrical and topological mathematical objects always have algebraic
components as part of their structure, while algebraic objects may, but need not
have geometrical or topological components. Two other, narrower or field-specific,
considerations of algebra are important for my argument as well. The first, standing
at the origins of algebra as a mathematical discipline, is that of algebra as the study
of algebraic (polynomial) equations, is important also because all equations are
in effect forms of algebra, which includes equations associated with calculus and
then differential equations, crucial to the history of mathematics from mathematical
modernity to mathematical modernism. The second is that defined by algebraic
structures, such as groups or associative algebras (groups, especially symmetry
groups, are also crucial to geometry and topology). These two senses of algebra
bring into the landscape of mathematical modernity and then modernism, and the
transition from one to the other, the figure of Galois who was the first to connect
these two senses of algebra, which he did in a radically revolutionary way (also by
introducing the concept of group). Galois is, arguably, the most notable figure, next



5 On the Concept of Curve 157

to Riemann, in this history and is an even earlier (proto)modernist than Riemann
was, although the limits of this article will allow me to comment on Galois only
in passing. All these aspects of algebra are part of the algebraization defining
mathematical modernism and the concepts of curve that come with it.

What gives the present conception of mathematical modernism its bite is that it
applies fundamentally, rather than merely operationally, across modernist mathe-
matics: It defines not only fields, such as analysis or mathematical logic that, while
not disciplinarily classified as algebra, are governed by structures that are algebraic,
but also fields like geometry and topology, that, while having technical algebraic
aspects, are conceptually and disciplinarily juxtaposed to algebra. According to
the present view, it is not only a matter of having an algebraic component as part
of the mathematical structure of their objects but also and primarily a matter of
defining these objects algebraically. Without aiming thus to contain the nature of
mathematics (which is impossible in any event), one might say that the following
three elements are always found in mathematics: concepts, structures, and logic,
each generally more rigorously formalized than when they are found elsewhere,
especially when mathematics is not used, the way it is used in physics, for example.
While, however, structures and logic always entail one or another form of algebra,
this is not necessarily so in the case of concepts, which may be strictly geometrical
or topological. My argument here is that mathematical modernism brings algebra
into the architecture of mathematical concepts, including those found in geometry
or topology, even though algebra in turn accommodates the disciplinary demands of
these fields.

An emblematic case is algebraic topology (a revealing denomination in itself),
a field important for my argument here on several accounts, especially given its
significance for algebraic geometry and Grothendieck’s work.2 Algebraic topology
does have an earlier history (extending from Leibniz and, more expressly, Euler)
preceding the rise of the discipline as such with Riemann, Poincaré, and others. This
history, however, is not comparable to that of geometry from the ancient Greeks
on, until modernism. By contrast, from modernism on, geometry and topology
developed equally and in interaction with each other, and with differential topology,
a field that emerged along with algebraic topology. What makes algebraic topology a
mathematical discipline is that one can associate algebraic structures (initially num-
bers, eventually groups and other abstract algebraic structures, such as rings) to the
architecture of spatial objects that are invariant under continuous transformations,
independently of their geometrical properties, such as those associated, directly or
implicitly, with measurements. This makes topology topo-logy vs. geo-metry. By
the same token, in retrospect, topology is almost inherently categorical. It relates,
functorially, the objects of topological and algebraic categories, a form of algebraic

2I will be less concerned with general or point-set topology, which has a different and much longer
history, extending, arguably, to the ancient Greek thinking, although my claim concerning the
modernist algebraization of mathematics could still be made in this case. See A. Papadopoulos’
contribution to this volume for an illuminating discussion of the topological aspects of Aristotle’s
philosophy, via Thom’s engagement with Aristotle [48].
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thinking that is one of the culminating conceptions of mathematical modernism, for
example and in particular, in Grothendieck’s algebraic geometry.

This is not to say that the spatial (geometrical or topological) character of
mathematical objects defined in modernist geometry and topology in terms of
algebra disappears. It remains important at least on two counts, both of which are,
however, consistent with my argument. First, the algebra defining these objects has
a special form that may be called “spatial algebra.”3 Spatial algebra arises from
algebraic structures that mathematically define geometrical or topological objects
and reflects their proximity to R

3 and mathematical spatial objects there, that are
close to our phenomenal intuition and the geometry and topology associated with
this intuition. This proximity may be, and commonly is, left behind in rigorous
mathematical definitions and treatments of such objects, beginning with R

3 itself.
The same type of algebra may also be used to define mathematical objects that
are no longer available to our phenomenal intuition, apart from using the latter to
create heuristic metaphorical images of such space. Among characteristic examples
of such objects are a projective space (a set of lines through the origin of a vector
space, such as R2 in the case of the projective plane, with projective curves defined
algebraically, as algebraic varieties) and an infinite-dimensional Hilbert space (the
points of which are typically square-integrable functions or infinite series, although
a Euclidean space of any dimension is a Hilbert space, too). In sum, spatial algebra is
an algebraization of spatiality that makes it rigorously mathematical, topologically
or geometrically, as opposed to something that is phenomenally intuitive or is
defined philosophically, even in the case of spatial objects in R

3. As such, it also
allows us to define spatial-algebraic objects across a broad mathematical spectrum,
and by doing so to extend the fields of topology and geometry.

At the same time, and this is the second count on which mathematical objects
defined by spatial algebra retain their connections to geometrical and topological
thinking, analogies with R

3 continue to remain useful and even indispensable. Such
analogies may be rigorous (and specifically algebraic) or metaphorical, with both
types sometimes used jointly. Thus, the analogues of the Pythagorean theorem
or parallelogram law in Euclidean geometry, which holds in infinite-dimensional
Hilbert spaces over eitherR or C, are important, including in applications to physics,
especially quantum theory, the mathematical formalism of which is based in Hilbert
spaces (of both finite and infinite dimensions) over C. More generally, our thinking
concerning geometrical and topological objects is not entirely translatable into
algebra. This was well understood by D. Hilbert in his axiomatization of Euclidean
geometry, even though this axiomatization had a spatial-algebraic character, in the

3Finding a good term poses difficulties because such, perhaps more suitable, terms as “geometric
algebra” and “algebraic geometry,” are already in use for designating, respectively, the Clifford
algebra over a vector space with a quadratic form and the study of algebraic varieties, defined
as the solutions of systems of polynomial equations. This object and this field, however, equally
exemplify the modernist algebraization of mathematics.
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present sense, including in establishing an algebraic model (the field C) of his
system of axioms in order to prove its consistency [34]. According to D. Reed:

[A]fter a chapter in which [Hilbert] provides himself with more tools like geometry and
algebra [in this following Descartes], he goes on to demonstrate in a truly spectacular way:

(*) a “theory of plane area can be derived from the axioms” (but not a theory of volume);
(*) Desargues’ theorem, which states that if two triangles are situated in a plane so that

pairs of corresponding sides are parallel then the lines joining the corresponding sides pass
through one and the same point or are parallel, expresses a criterion for a “plane” geometry
to form part of “space” geometry; and

(*) Pascal’s theorem, which states that if A,B,C, and A1, B1, C1 are two sets of points
on two intersecting lines and if AB1 is parallel to BC1 and AA1 is parallel to CC1 then
BA1 is parallel to CB1, is dependent in a very specific way on the so-called Axiom of
Archimedes.

None of these statements can be given a simple unequivocal expression in the realm of
algebra even though models from “analytic geometry” are used in the demonstrations. In
other words, while algebra is useful as a tool in the demonstration of geometrical statements
it is not useful in formulating the statements themselves. [59, pp. 33–34]

Reed is right in arguing for the significance of geometrical thinking and
expression in mathematics. On the other hand, his claim concerning algebra as
not being useful in formulating geometrical statements is an over-simplification,
whether as a general claim or as reflecting Hilbert’s thinking, even in Euclidean
geometry, where our geometrical intuition is more applicable and where certain
proofs, such as many of those supplied by the Elements could be geometrical
[22].4 Thus, as Hilbert was well aware, a more natural setting for Desargues’ and
Pascal’s theorems is projective geometry, which these theorems helped to usher
in, in a setting, however, that we cannot visualize and that is spatial-algebraic. In
other words, making a symmetrical assessment, while (Euclidean) geometrical and
topological intuitions are helpful and even irreducible, spatial algebra and, thus,
algebra itself, at least since Fermat and Descartes, or Diaphantus, if not Euclid, is
irreducible in turn even in topology and geometry.

One can get further insight into this situation by considering a related principle
due to J. Tate, whose thinking bridged number theory and algebraic geometry in
highly original and profound ways: “Think geometrically, prove algebraically.”
It was introduced in the book (co-authored with J. Silverman) on “the rational

4This may remain true in low-dimensional geometry or topology. I would argue, however, that
spatial algebra is still irreducible there because one commonly converts topological operations into
algebraic ones. This conversion in low dimensions was essential to the origin of algebraic topology.
On the other hand, the recent development of low-dimensional topology, following, among others,
W. Thurston’s work, from the 1970s on, is a more geometrically oriented trend that, to some
degree, counters the twentieth-century modernist algebraic trends and returns to Riemann’s and
Poincaré’s topological thinking, but only to a degree, because the algebraic structures associated
with these objects remain crucial. Some of the most powerful (modernist) algebraic tools of
algebraic topology and algebraic geometry have been used and sometimes developed during this
more geometrical stage of the field. These areas have important connections to quantum field
theory and then string theory, as in E. Witten’s work, which, especially in quantum field theory, are
fundamentally algebraic, in part by virtue of their probabilistic nature.
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points of elliptic curves,” a context that is more expressly modernist as far as the
algebraization of the geometrical is concerned and as such is more illuminating
in the present context. The title-phrase combines algebra (“rational points”) and
geometry (“curves”), and implies that geometry, at least beyond that of R3 and even
there, requires algebra to be mathematically rigorous. According to Silverman and
Tate:

It is also possible to look at polynomial equations and their solutions in rings and fields
other than Z or Q or R or C. For example, one might look at polynomials with coefficients
in the finite field Fp with p elements and ask for solutions whose coordinates are also in the
field Fp . You may worry about your geometric intuition in situations like this. How can one
visualize points and curves and directions in A2 when the points of A2 are pairs (x, y) with
x, y ∈ Fp? There are two answers to this question. The first and most reassuring one is that
you can continue to think of the usual Euclidean plane, i.e., R2, and most of your geometric
intuition concerning points and curves will still be true when you switch to coordinates
in Fp . The second and more practical answer is that the affine and projective planes and
affine and projective curves are defined algebraically in terms of ordered pairs (r, s) or
homogeneous triples [a, b, c] without any reference to geometry. So, in proving things
one can work algebraically using coordinates, without worrying at all about geometrical
intuitions. We might summarize this general philosophy as: Think geometrically, prove
algebraically. [62, p. 277]

Affine and projective planes and curves, no longer available to our phenomenal
intuition, can in principle be defined without any reference to ordinary language
and concepts. The latter are more difficult and perhaps impossible to avoid in
geometry, at least in the kind of intuitive geometry Silverman and Tate refer
to, rather than what I call spatial algebra, which, I argue, ultimately defines
(nearly) all geometry rigorously. Even in these more intuitively accessible cases,
we still think algebraically, too, by using spatial algebra, if with the help of
geometrical intuitions, except, as noted, possibly in dealing with low-dimensional
topological and geometrical objects, where more immediately spatial (topological
and geometrical) arguments could be used more rigorously. It is also true that a
mathematician can develop and use intuition in dealing with discrete geometries
as such, say, that of the Fano plane of order 2, which has the smallest number of
points and lines (seven each). However, beyond the fact that they occur in the two-
dimensional regular plane, the diagrammatic representations of even the Fano plane
are still difficult to think of as other than spatial algebra, in this case, combinatorial
in character. While useful and even indispensable, our Euclidean intuitions are
limited even when we deal with algebraic curves in the Euclidean plane, let alone in
considering something like a Riemann surface as a curve overC, or curves and other
objects of finite or projective geometries, abstract algebraic varieties, Hilbert spaces,
the spaces of noncommutative geometry, or geometric groups, a great example of
the extension of spatial algebra to conventionally algebraic objects.

Paul Dirac, recognized as the greatest algebraic virtuoso among the founding
figures of quantum theory, was, nevertheless, reportedly fond of referring to geomet-
rical thinking in quantum mechanics and quantum field theory, both mathematically
based in Hilbert spaces, of both finite and infinite dimensions over C, and the
algebras of Hermitian operators there (e.g., [23]). It is difficult to surmise, especially
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just from reported statements, what Dirac, famous for his laconic style, exactly had
in mind. If, however, one is to judge by his writings, they appear to suggest that
at stake are the algebraic properties and relations, and methods of investigations
they suggest, modeled on those found in geometrical objects, defined by algebraic
structures, in short, spatial algebra, as just explained, working with which was
part of Dirac’s algebraic virtuosity. Indicatively, notwithstanding his insistence
on the role of geometry in Dirac’s quantum-theoretical thinking, O. Darigold’s
analysis of this thinking shows the significance of algebra there [16]. Thus, as
he says, “roughly, Dirac’s quantum mechanics could be said to be to ordinary
mechanics what noncommutative geometry is to intuitive geometry” [16, p. 307].
Noncommutative geometry, however, the invention of which was in part inspired by
quantum mechanics, is a form of spatial algebra ([13, p. 38]; [53, pp. 112–113]).
One encounters similar appeals to geometrical thinking in referring to transfers of
geometrical methods and techniques to spatially algebraic or just algebraic objects
(thus making them spatially algebraic), such as in dealing with groups and group
representations in quantum mechanics, initially developed in a more geometrical
context beginning with S. Lie and F. Klein or in using the idea of metrics in
geometric group theory.

In what sense, then, apart from being defined by spatial algebra, may such
spaces be seen as spaces, in particular, as relates to our phenomenal intuition,
including visualization? The subject is complex and it is far from sufficiently
explored in cognitive psychology and related fields, an extensive research during
recent decades notwithstanding, including as concerns cultural or technological
(digital technology in particular) factors affecting our spatial thinking. It would
be difficult to make any definitive claims here. It does appear, however, that,
these factors notwithstanding, our three-dimensional phenomenal intuition is shared
by us cognitively and even neurologically in shaping our sense of spatiality.
Part of this sense appears to be Euclidean, insofar as it corresponds to what is
embodied in R

3 (again, a mathematical concept), keeping in mind that the idea
of empty space, apart from bodies of one kind or another defining or framing
it, is an extrapolation, because we cannot have such a conception phenomenally
or, as Leibniz argued against Newton, physically. We can have a mathematical
conception of space itself. To what degree our phenomenal spatiality is Euclidean
remains an open question, for example, in dealing with the visual perception
of extent and perspective (e.g., [21, 25, 63]). It is nearly certain, however, that,
when we visualize spatial-algebraically defined objects or even more conventional
geometrical spaces or geometries once the number of dimensions is more than three,
we visualize only three- (or even two-) dimensional configurations and supplement
them by algebraic structures and intuitions. R. Feynman instructively explained
this process in describing visual intuition in thinking in quantum theory, as cited
in S. Schweber [61, pp. 465–466]. Obviously, such anecdotal evidence is not
sufficient for any definitive claim. It appears, however, to be in accord with the
current neurological and cognitive-psychological research, as just mentioned, which
suggests the dependence of our spatial intuition, including visualization, on two-
and three-dimensional phenomenal intuition. This was arguably why Kant thought
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of this intuition, which he saw as that of Euclidean three-dimensional spatiality, as
given to us a priori. That this intuition is entirely Euclidean or that it is given to us
a priori, rather than developed by experience (we would now say, neurologically),
may be and has been challenged. On the other hand, its three-dimensional character
appears to be reasonably certain.

As Tate must have been aware, mathematical thinking concerning geometrical
and topological objects cannot be reduced to our naïve Euclidean intuitions, even
though it may not be possible or desirable to exclude them. Silverman and Tate’s
example from differential calculus (given to further illustrate their philosophy of
thinking geometrically but proving algebraically), that of finding a tangent line
to a curve, confirms this point [62, pp. 377–378]. The invention of calculus,
an essentially algebraic form of mathematics, was not so much about proving
algebraically, as the standard of proof then was geometry. Newton, was compelled
to present his mechanics in terms of geometry rather than calculus in his 1687
Principia, in part, as he explained, to assure a geometrical demonstration of his
findings, also in the direct sense of showing something by means of phenomenal
visualization, rather than in terms of the algebra of calculus [45]. Calculus was about
thinking algebraically, as was especially manifested in Leibniz’s version, rather than
about rigorous proofs.

Calculus was a decisive development in understanding the geometry of curves
as continuous objects, a major rethinking of the nature of curve and curvature,
with, artistically and culturally, deep connections to the Baroque, the style, or
more accurately, the mode of thought, defined by the ideas of curve and inflection,
with Leibniz being the defining philosopher of the Baroque as well as, in his case
correlatively, the coinventor of calculus [17, 51]. “Inflection is the ideal genetic
element of the variable curve,” G. Deleuze says in The Fold: Leibniz and the
Baroque [17, p. 15]. Baroque thinking was also thinking in terms of infinite
variations of curves, reminding one of moduli spaces of curves, yet another of
Riemann’s major discoveries. For the moment, one might argue that it is not in fact
possible to understand the concept of continuous curve mathematically apart from
calculus or some form of proto-calculus (as in Archimedes, for example), and the
subject, accordingly, should have been given more consideration here. However,
even in enabling this understanding, calculus was a new form of algebra, as is,
again, especially manifested in Leibniz’s version of it, but found in Newton as well.
Fermat, the founding father of the study of elliptic curves (which led him to his
famous “last” theorem), played a key role in this history, too, even if he fell short
of inventing calculus. Mathematical modernism, I argue, is ultimately defined by
thinking in terms of algebra rather than in terms of continuity, even in thinking
of continuity itself, for example, and in particular, in considering differentiable
objects, differentiable manifolds, as we define them, following Riemann. The field
known as “differential algebra” (introduced in the 1950s) is another confirmation
of this modernist view in one of its later incarnations, and, as it may be argued
to have a Leibnizian genealogy, the connection, via algebra, between modern
and modernist mathematics. An earlier modernist example of this connection
was “symbolic differentiation” for Hilbert space operators (infinite-dimensional
matrices) in quantum mechanics by M. Born and P. Jordan [9, 52, p. 121].
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My conception of modernist mathematics as an algebraization of mathematics,
even in the case of topology and geometry, is an extension of Tate’s principle.
This extension retains its second part but modifies the first: “Think both Intuitively
Geometrically and Spatially-Geometrically: Prove Algebraically.” In this form the
principle could sometimes apply in algebra as well, which has benefited from the
introduction of spatial-algebraic objects from Fermat and Descartes to Grothendieck
and beyond, for example, in the case of geometric group theory, the study of which
was founded by M. Gromov, one of the more intuitive contemporary geometers, on
this type of principle. But then proving something is thinking, too, as Tate would
surely admit.

The history of mathematical thinking concerning curves or straight lines
(a special class of curves) is part of the origin, if not a unique origin, of this
philosophy “Think both Intuitively Geometrically and Spatially-Geometrically:
Prove Algebraically,” which, in modernity, begins with Fermat and Descartes.
Their thinking and work, which overshadow Silverman and Tate’s passage just
cited, bridge modern and modernist mathematics and physics, from the birth of
modern mathematics. Silverman and Tate’s statement that “in proving things one
can work algebraically using coordinates, without worrying at all about geometrical
intuitions” could have been made by Descartes, and it was one of his main points in
his analytic geometry. The concept of an elliptic curve, especially when considered
in its overall conceptual architecture, presented in their book, is strictly modernist,
as is in fact is all algebraic geometry. This concept has other modernist dimensions,
for example, by virtue of its Riemannian genealogy as (a) belonging to the theory
of functions of a complex variable; (b) as, for each such a curve, both a two-
dimensional topological (real) manifold and a one-dimensional complex manifold,
to Riemann’s theory of manifolds, central to the history of modernist geometry, and
(c) as, topologically, a torus, a figure at the origin of topology, as a mathematical
discipline. Both (b) and (c) manifest the modernist algebraization of geometry and
topology, via spatial algebra, expressly, but it is found in (a), too, even if in a more
oblique and subtler way. It might be added that a major part of Grothendieck’s
work in algebraic geometry, his theory of étale cohomology, discussed below,
originates in Riemann’s ideas of a covering space over a Riemann surface, one of
Riemann’s several great inventions. Algebraic curves, beginning with elliptic curves
(the simplest abelian varieties) were the objects for which étale cohomology groups
were established first, by an elegant calculation, exemplary of the mathematical
technologies to which modernism gave rise [4, 5]).

Although their manifestation in Silverman and Tate’s passage cited here is
particularly notable because of echoing Descartes, these historical connections to
the rise of modern algebra and analytic geometry (which algebraic geometry brings
to its, for now, ultimate form) are not surprising. As all conceptions or undertakings,
no matter how innovative, the modernist algebraization of mathematics has a history.
While more prominent in the nineteenth century, the history of algebraization, at the
very least, again, by way of practice, although it has, especially with Descartes, deep
philosophical roots as well, begins with the mathematics at the outset of modernity,
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such as that of Fermat and Descartes.5 Geometry was then still more dominant
than algebra, and it had continued to be dominant for quite a while, even though
this dominance diminished with the shift, often noted, of interest from geometry
to algebra and number theory from around the time of Gauss, a key figure in this
shift. Gauss’ work was also central to the development of geometry during the same
period and a major influence on Riemann’s thinking concerning geometry, which,
however, only testify to the rising significance of the relationships between algebra
and geometry during the period leading to modernism. In any event, the possibility
of making geometry algebraic (in either sense, that of algebraic geometry and the
present one) entered mathematical thinking with Fermat and Descartes.

In some respects, the view of mathematics as fundamentally algebraic returns to a
Pythagorean view of mathematics, which is not the same as the Pythagoreans’ view,
which was more arithmetical, although arithmetic is a form of algebra in its broad
modern sense (the mathematical field-specificity of arithmetic or number theory,
say, from Gauss on, is a separate issue). Geometry was of course a key part of
Pythagorean mathematics. For one thing, it appears that these were the Pythagoreans
(who exactly, is conjectural) who discovered the existence of incommensurable
magnitudes by considering the diagonal of the square and thus in geometry, in effect
by means of what I call spatial algebra, or proto-spatial algebra. (The “irrationals”
in our algebraic language and, with it, our sense, are borrowed from Latin, and not
Greek.) This discovery led to the crisis of ancient Greek mathematics. According to
Heath’s commentary: The “discovery of incommensurability must have necessitated
a great recasting of the whole fabric of elementary geometry, pending the discovery
of the general theory of proportion applicable to incommensurable as well as to
commensurable magnitudes” (“Introductory Note,” [22, v. 3, p. 1]; [53, pp. 416–
417]). Thus, the history of mathematical modernism defined by algebra is very old,
possibly as old as mathematics itself. On the other hand, thus combining, as history
often does, the continuous and the discontinuous along different lines, the specific
form this definition takes in modernism is a break with the past.

At stake, thus, is the rethinking of the very nature and practice of mathematics by
making algebra a fundamental part of it, including topology and geometry, even in
the cases of mathematicians whose thinking has a strong geometrical or topological
orientation, such as Riemann, who figures centrally in this history. Riemann is,
arguably, a unique case of a modernist combination of geometrical, topological,
and algebraic thinking, further combined with real and complex analysis, and with
number theory (the ζ -function and the distribution of primes) added to the mix,
even though, as might be expected, various aspects of this Riemannian synthesis are
found in the work on his predecessors, such as Gauss, Cauchy, Abel, and Dirichlet.
I am referring not only to the multifaceted character of Riemann’s work and his
contributions to the interrelationships of these diverse fields in his work, but also and
primarily to the significance of these interrelationships for modernism, which could,

5Descartes’ La Géométrie was originally published as an appendix to his Discourse on Method,
and it was part of a vast philosophical agenda that encompassed mathematics [18].
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nevertheless, still be defined, in these relationships, in terms of the algebraization of
mathematics. This situation makes Riemann’s position in the history of modernism
more complex, especially because of strong geometrical and topological dimensions
of his thinking that resist algebraization, without, as I shall argue, diminishing his
importance in this history but instead reflecting the complexity of this history and
of modernism itself.

I shall further argue that this algebraization was often accompanied or even
codefined by three additional, often interrelated, features, which are, along with
the algebraization of the mathematics used, equally found in modernist physics. It is
possible to define modernism in mathematics and physics by the presence of all four
features. Doing so, however, would narrow modernism too much, as against seeing
it in terms of modernist algebraization of mathematics, possibly accompanied by
some or all of these additional features. These features are as follows.

The first feature, which gradually emerged throughout the nineteenth century,
with Gauss, Abel, and Galois, as notable early examples, was a movement toward
the independence and self-determination of mathematics as a field, especially its
independence from physics and, with it, from the representation of natural objects.
This feature has been seen as central to mathematical modernism by commentators
who used the rubric and even defined it accordingly by Merthens and, following
him, Gray [26, 44]. As will be seen presently, however, modernist mathematics,
either in this or the present (algebraically oriented) definition, acquired a new,
nonrepresentational, role in physics with quantum theory. This feature was closely
related to the development of algebra, beginning with Gauss, Abel, and Galois; new,
sometimes related, areas of analysis, such as the theory of elliptic functions; and
then projective and finite geometries, in part following Riemann’s work. Riemann’s
own thinking, as that of his teacher Gauss, retained close connections to physics,
testifying to the complex nature of this history. As I explain below, this indepen-
dence is also related to the independence of mathematics’ from ordinary language
and concepts, with which algebra could dispense more easily than geometry. This
independence becomes crucial for modernist physics as well, especially quantum
theory, which is essentially algebraic in character, in contrast to more geometrically
oriented classical physics and relativity.

The second feature, discussed most explicitly in the final section of this article,
is the role of technological thinking, in this case in considering mathematical
technology in mathematics itself and in physics (where the use of mathematics
is technological), in contrast to the dominance of ontological or realist thinking,
defined by claims concerning how what exists or is claimed to exist actually exists.
The “ontological” and “realist” are not always seen as the same, but their shared
aspects allow these terms to be used interchangeably in the present context. On the
other hand, the nouns “ontology” and “reality” will be used differently, because, as I
shall explain presently, “reality” may be defined as disallowing ontology or realism.

The third feature, the emphasis on which, arguably, distinguishes most the
present understanding of mathematical modernism from other concepts of math-
ematical modernism, is a radical form of epistemology linked to and in part enabled
by the combination of other modernist trends: the modernist algebraization of
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mathematics, a movement toward the independence of mathematics from physics,
and, especially, a shift from more ontological to more technological thinking, in the
case of quantum theory (in the present interpretation) to the point of abandoning
or even precluding ontological thinking altogether. As will be seen, ontological
thinking (in this case concerning the ontology of thought rather than matter) retains
a greater role in mathematics itself. In physics this epistemology, again, extends
to the point of placing the ultimate constitution of reality (referring, roughly, to
what exists) beyond a representation or even beyond conception, and thus beyond
ontology, referring, as just noted, to such a representation or at least conception of
the constitution of reality or existence, rather than merely to the fact that something
exists. In this view, quantum objects or something in nature that compels us to think
of quantum objects is assumed to exist, while no representation or even conception
of what they ultimately are or how they exist is possible. That does not preclude
thinking and knowledge in quantum theory or elsewhere, along with and in part
enabled by surface-level ontologies (physical, mathematical, conceptual, and so
forth) which enable this thinking and knowledge. On the other hand, any knowledge
or even conception concerning and thus any ontology of the ultimate nature of
reality is precluded. Thinking and knowledge would concern certain surface levels
of reality, surface ontologies. Indeed, the unknowable or even unthinkable ultimate
nature of reality is inferred from the effects it has at these surface levels. Importantly,
however, this conception of reality as that which is beyond thought is still the
product of thought. This conception is, moreover, interpretive in nature and the
justification for assuming it is practical, and applicable only insofar as things stand
now rather than is theoretically guaranteed to be true.

This epistemology, too, can be traced to Riemann’s Habilitation lecture of 1854,
“The Hypotheses That Lie at the Foundations of Geometry” [60], one of the
founding works of mathematical modernism, as Riemann’s view of the foundations
of geometry is a radical reconceptualization of mathematics, pursued, correlatively,
in his other works as well, such as that on the concept of a Riemann surface. In his
Habilitation lecture, Riemann uses a remarkable phrase “a reality underlying space”
[60, p. 33]. This phrase implies, on Kantian lines, that this reality may not be spatial
in the sense of our usual phenomenal sense of spatiality: it could be discrete, for
example. I am not contending that Riemann saw this reality as beyond representation
(discrete or continuous, flat or curved, or three- or more-dimensional, all of which
possibilities he entertained), let alone conception, any more than did Kant, a key
figure in this history. While, in defining his epistemology by distinguishing noumena
or things-in-themselves, as objects, and phenomena or representations appearing in
our thought, Kant places things-in-themselves beyond representation or knowledge,
he allows that a conception of them could be formed and, if logical, accepted
for practical reasons, and even in principle be true, although this truth cannot be
guaranteed [35, p. 115]. In its most radical form, the modernist epistemology, as
defined in this article, in principle excludes that such as a conception can be formed,
keeping in mind the qualifications just noted to the effect that this conception of
reality as that which is beyond conception is still human and is only practically
justified.
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Both Riemann and then Einstein appear to have thought that an adequate
mathematical representation of the ultimate nature of physical reality, a conception
ideally close to the truth of nature, is, in principle, possible, as deduced from our
experience and knowledge. This, for example, would allow one to conclude, against
Kant’s view, the geometry of the space is not Euclidean and its physics is not
Newtonian, although of all people Kant might have been more open to this view
than others, given new mathematics and science. A similar, more mathematically
grounded, view was found in Heisenberg’s later works. Heisenberg argued there
that “the ‘thing-in-itself’ is for the atomic physicist, if he uses this concept at all,
finally a mathematical structure; but this structure is—contrary to Kant—indirectly
deduced from experience” [33, p. 91]. Kant’s view was more complex and more
open. It is impossible to know what Kant would have thought if he’d had been
confronted with quantum physics, or, again, non-Euclidean geometry or relativity.
If anything, his epistemology is closer to the one advocated here than just about any
modern philosopher, apart from Nietzsche.

In any event, neither Riemann nor Einstein thought that the ultimate constitution
of physical reality could be beyond conception altogether. This is the position
adopted here in view of quantum mechanics and following Heisenberg (in his
early work, as opposed to his later thinking) and N. Bohr, although neither might
have assumed that quantum objects and behavior are beyond conception rather
than only beyond representation and knowledge.6 As I explain below, however,
Heisenberg’s and Bohr’s positions are still different from that of Kant concerning
phenomena vs. things-in-themselves, in this case, defining phenomena as what is
observed in measuring instruments and objects as quantum objects, which cannot
be observed, as effects they have on measuring instruments by interacting with
the latter. Bohr, it could be noted in passing, was influenced in his interpretation
of quantum mechanics in terms of what he called complementarity (a mutually
exclusive nature of certain experiments we can perform and, correlatively, certain
concepts we can use) by the concept of a Riemann surface as a way of dealing with
multivalued functions of a complex variable [50, pp. 235–238].

Heisenberg’s and Bohr’s epistemology arises in part in view of the algebraic
rather than, as in classical physics or relativity, geometrical, relationship between
the mathematics of a physical theory and physical reality in its ultimate constitution,
assumed by theory. This algebraic relationship between a (mathematical) physical
theory and physical reality was no longer representational, because, in Bohr’s words,
“In contrast to ordinary mechanics, the new quantum mechanics does not deal with
a [geometrical] space-time description of the motion of atomic particles,” while,
nevertheless, providing probabilistic or statistical predictions that are fully in accord
with the available experimental evidence [8, v. 1, p. 48]. Eventually, Bohr argued,
more radically, that “in quantum mechanics, we are not dealing with an arbitrary
renunciation of a more detailed analysis of atomic [quantum] phenomena, but with
a recognition that such an analysis is in principle excluded” [8, v. 2, p. 62]. The

6For a detail discussion of the subject, see the companion article by the present author [56].
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true meaning of this statement is brought out by Bohr’s view of the (irreducible)
difference, following but ultimately reaching beyond Kant, between quantum
phenomena, defined by what is observed in measuring instruments, and quantum
objects, responsible for these phenomena, as effects of the interactions between
quantum objects and measuring instruments, effects manifested in the measuring
instruments. Bohr’s statement, then, means that there could be no analysis that
would allow us to represent, physically or mathematically, quantum objects and
behavior, although Bohr might not have thought that they are beyond conception,
which is an interpretation adopted here. It is, again, important that at stake here are
interpretations, those of the type, indeed two types, just defined, amidst still other
interpretations (some of which are realist) of quantum theory, and not the ultimate
truth of nature, which we do not know and may never know or even conceive of,
concerning which this article makes no claims.

It is worth noting that probability theory is fundamentally algebraic, as is,
accordingly, its use in physics or elsewhere. Indeed, that probability theory is
defined by the role of events, either in the real world or some model world,
makes it akin to physics and its use of mathematics, in the case of quantum
theory, in nonrealist interpretations, in effect making the latter a form of probability
theory. The origin of probability theory, in the work of G. Cardano, B. Pascal
and Fermat (who thus makes yet another appearance in the history of algebra)
coincides with the emergence of algebra, as part of the rise of modernity. As
I. Hacking persuasively argued in explaining why the theory emerged in the
seventeenth century rather than earlier, some form of algebra was necessary for
probability theory [28]. Quantum mechanics, however, at least, again, in nonrealist
interpretations, reshaped, the relationships between the algebra of probability and
the algebra of theoretical physics, as against previous uses of probability, for
example, in classical statistical physics. There the relationships between them is
underlain by a geometrical picture of the behavior of the individual constituents of
the systems considered, assumed to follow the (causal) laws of classical mechanics.
By contrast, as became apparent beginning with M. Planck’s discovery of quantum
phenomena in 1900, even elementary individual quantum objects and the events
they give rise to had to be treated probabilistically. One needed to find a new theory
to make correct probabilistic or statistical predictions concerning them. Heisenberg
was able to accomplish this task with quantum mechanics, which only predicted
the probabilities of what was observed in measuring instruments, considered as
quantum phenomena, without representing the behavior of quantum objects, even
the elementary ones, an imperative that had previously defined fundamental physics,
including relativity.7 This mathematics, never previously used in physics, was

7That, again, does not exclude either realist or causal interpretations of quantum mechanics or
alternative theories of this behavior that are realist or causal. The so-called Bohmian mechanics
is one example of such an alternative theory. Unlike quantum mechanics, however, Bohmian
mechanics expressly violates the requirement of locality, which entered physics with relativity
theory and which dictates that the instantaneous transmission of physical influences between
spatially separated systems is forbidden.



5 On the Concept of Curve 169

essentially (Heisenberg did not initially use these terms) that of infinite-dimensional
Hilbert spaces over C, a modernist concept.

As I shall discuss later in this article, related epistemological considerations are
relevant in considering modernist mathematics itself, as became apparent beginning
at least with G. Cantor’s set theory and became more pronounced in subsequent
developments, such as those leading to K. Gödel’s incompleteness theorems and
P. Cohen’s proof of the undecidability of Cantor’s continuum hypothesis. In
mathematics, moreover, it may not be possible to speak of the ultimate nature of
reality, however inconceivable, as existing independently of thought, in the way
one is able to do in quantum physics. There one might more readily assume the
ultimate reality of matter that exists independently of us, say, as something that
has existed before we were here and will continue to exist when we are no longer
here, even if any conception concerning this reality or the impossibility of forming
such a conception is a product of our thought and thus can only exist insofar as
we exist.8 On the other hand, while one might easily accept what we think of as
real in our thought, assuming the existence of a single nonmaterial reality existing
independently of our individual thinking is a more complicated matter. This is not
to say that this type of assumption has not been made in mathematics, philosophy,
or art, from Parmenides and Plato to the mathematical Platonism of the twentieth
century (which was important to the project of the independence of mathematics
and to mathematical modernism), with numerous Platonisms, whether so named or
not, between them or after mathematical Platonism. Not many of them, certainly not
twentieth-century mathematical Platonism, are the same as Plato’s own Platonism.

The concept of curve, as it emerged in modernist mathematics, is, I argue here,
exemplary, in some respects even uniquely exemplary, of the modernist situation
outlined here, beginning with the modernist extension of the view of Riemann
surfaces as curves over C, which is only possible if one thinks of them spatial-
algebraically. The mathematics of complex numbers was, especially, again, in and
following Gauss’ work, itself a crucial part of the history that eventually brought
modern mathematics to modernist mathematics. This mathematics, too, is traceable
to the origin of modern algebra, in considering the roots of polynomial equations,
essentially related to the algebra of curves. However, the view that something
(topologically) two-dimensional is a curve is essentially modernist. But then, as
noted, in modernist mathematics, even something topologically zero-dimensional
may be a curve, a situation anticipated by Riemann as well in considering discrete
manifolds in his Habilitation lecture.

Between his work on Riemann surfaces, which are both (differentiable) mani-
folds and, while topologically two-dimensional, curves, and his ideas concerning
the foundations of geometry, which properly grounded non-Euclidean, curved,

8The so-called many-worlds interpretation of quantum mechanics, which aimed to resolve some
of the paradoxes of the theory in a realist and causal way, does not affect this point, because this
kind of material reality is still retained within each world involved, and there are no connections
between these worlds.
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geometries, Riemann becomes a key figure for our understanding of the idea
of curve, as he is for many developments of modernist mathematics. Riemann’s
thinking figures in quantum theory, too, by virtue of his introduction of the idea of
an infinite-dimensional manifold, of which Hilbert spaces are examples. Riemann
is the highest point of the arc, a curve, from Fermat and Descartes to our own time,
via A. Weil, Grothendieck, and their followers, making the work of each of these
figures, in Nietzsche’s phrase, the mathematical “philosophy of the future,” a subtitle
of his 1888 Beyond Good and Evil: A Prelude to a Philosophy of the Future [46].
As most of Nietzsche’s works, it belongs to the time around the rise of modernism,
which it influenced in philosophy, and literature and art, or even in mathematics, as
in the case of F. Hausdorff [26, p. 222], and physics, as, likely, in the case of Bohr
[54, p. 116].

5.3 Fundamentals of Mathematical Modernism

I would like now to establish more firmly the key concepts that ground my view of
mathematical modernism, as sketched in the Introduction, beginning with modernity
and modernism. “Modernity” is customarily seen, and will be seen here, as a broad
cultural category. It refers to the period of Western culture extending from about the
sixteenth century to our own time: we are still modern, although during the last 50
years or so, modernity entered a new stage, sometimes known as postmodernity,
defined by the rise of digital information technology.9 Modernity is defined by
several interrelated transformations, sometimes known as revolutions, although each
took a while. Among them are scientific (defined by the new cosmological thinking,
beginning with the Copernican heliocentric view of the Solar system, and the
introduction by Descartes, Galileo, and others, of the mathematical-experimental
science of nature); industrial or, more broadly, technological (defined by the
transition to the primary role of machines in industrial production and beyond);
philosophical-psychological (defined by the rise of the concept of the individual
human self, beginning with Descartes’ concept of the Cogito); economic (defined
by the rise of capitalism); and political (defined by the rise of Western democracies).

One might add to this standard list, in which Descartes figures prominently
already, the mathematical revolution, which is rarely expressly discussed as such,
although it figures in discussions of the rise of modernity as part of the scien-
tific revolution and, occasionally, because of the invention of calculus and then
probability theory, both seen as defined by a modern way of thinking. The rise
of algebra was, however, equally important in this revolution and conceptually
fundamental because algebra was also crucial to the discoveries and developments
of calculus and probability theory, in which calculus came to play a major role as

9Thus, postmodernity was also epistemologically shaped by certain developments in mathematics
and science, most of which are modernist in the present sense (e.g., [37]).
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well. Algebra was the defining aspect of modern mathematics and physics, although
geometry remained dominant for a quite while in both and has never, including in
modernism, entirely lost its independence and importance. Thus, while the laws of
classical mechanics, embodied in its equations, are algebraic (all equations are),
they are grounded in a geometrical picture of the world, including the curved
motion of classical bodies, such as, paradigmatically, planets moving around the
Sun, although analytic geometry or algebraic laws of classical mechanics added
algebra to this geometry. This type of modern geometrical thinking will continue
to define physics, including Einstein’s relativity (although it does have modernist
aspects as well), until quantum mechanics and its modernist algebraic approach,
introduced by Heisenberg.

As I noted at the outset, in contrast to modernity, “modernism” has been primarily
used as an aesthetic category, referring to certain developments in literature and art
in the first half of the twentieth century, from roughly the 1900s on, represented
by such figures as Stéphane Mallarmé, W. B. Yeats, Ezra Pound, James Joyce,
Franz Kafka, Reiner M. Rilke, Virginia Woolf, and Jorge Luis Borges in literature;
Pablo Picasso, Wassily Kandinsky, and Paul Klee, in art; and Arnold Schoenberg
and Igor Stravinsky in music. On occasion, it has been applied to the philosophy
of, roughly, the same period, such as that of Nietzsche, Bergson, Husserl, and
Heidegger. Gray considers Husserl in the context of the foundations of mathematics
and mentions Nietzsche because of Hausdorff’s interest in him [26, p. 222], but
he does not discuss modernism in philosophy. The denomination has rarely been
used in considering mathematics and physics, or science, as opposed to “modern,”
used frequently, but with different periodizations. In mathematics, “modern” tends
to refer to the mathematics that had emerged in the nineteenth century, with the likes
of Gauss, Abel, Cauchy, and Galois, and then developed into the twentieth century,
thus overlapping with modernist mathematics in the present definition. In fact, the
term “modern algebra” was introduced, referring essentially to abstract algebra
(presented axiomatically), as late as 1930 by van der Waerden in his influential
book under this title, based on the lectures given by Emil Artin and E. Noether
[65]. In physics it refers to all mathematical-experimental physics, from Galileo
and Descartes on, which is fitting because this physics emerged along with and
shaped the rise of modernity as a cultural formation, as just explained, making
it fundamentally scientific. After the discovery of relativity and quantum theory,
the term “classical physics” was adopted for the preceding physics, still considered
modern, by virtue of its mathematical-experimental character. The present article,
by contrast, uses the designation modern for the mathematics emerging at the same
time. If modernity is scientific, it is also because it is mathematical. As Heidegger
argued in commenting on Galileo and Descartes, “modern science is experimental
because of its mathematical project” [29, p. 93]. Thus, it was the concept of
the second-degree curve that supported and even defined the experimental basis
of physics and astronomy, in Kepler, Galileo, and Descartes, who gave these
mathematics “coordinates,” the concept central to all modern and then modernist
physics.
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Using of the term “modernism” in considering, historically and conceptually,
mathematics and science is, as noted, still quite infrequent. Two most prominent
examples, mentioned from the outset of this article, are H. Mehrtens’ 1990 Moderne
Sprache, Mathematik: Eine Geschichte des Streits um die Grundlagen der Disziplin
und des Subjekts formaler Systeme [44] and, in part following Mehrtens’ book (but
also departing from it in several key respects), Gray’s 2007 Plato’s Ghost: The
Modernist Transformation of Mathematics [26]. Gray’s conception of modernism
covers developments in topology, set theory, abstract algebra, mathematical logic,
and foundations of geometry that had reached their modernist stage around 1900,
focusing most on geometry, with Hilbert’s Foundations of Geometry as his con-
ceptual center in this regard, and on logical, especially set-theoretical, foundations
of mathematics, where Hilbert again, figures centrally. In sum, for Gray, the most
representative figure of mathematical modernism is Hilbert. By contrast, in the
present view of modernism (defined differently), it is Riemann, while still by and
large respecting the chronology of modernism adopted by Gray, a chronology
contemporaneous with the rise of literary or artistic modernism.10

Gray briefly comments on literary and artistic modernism, and his title comes,
not coincidentally, from that of a poem by Yeats, one of the major modernist poets.
Gray only minimally considers these connections (e.g., [26, p. 185]). He prefers
to focus on mathematics and the philosophy of mathematics. He could in my view

10The modernist aspects of Riemann’s work, equally in Gray’s definition of modernism, pose
difficulties for Gray, because Riemann preceded modernism by several decades [26, p. 5]. It is
not a problem for the present argument, firstly, because the present view of modernism is different,
and, secondly, because modernism is seen here as more continuous with modern mathematics
from Fermat and Descartes on, a longer history in which Riemann’s work is a decisive juncture.
This continuity is recognized by Gray, but it seems to worry him because it disturbs the stricter
chronology he considers. The present view emphasizes, in part following G. W. F. Hegel, the
conceptual over the chronological, even in historical considerations. Gray, in addition, appears
to see the axiomatic, not central for Riemann (in contrast to Hilbert), rather than the conceptual,
as more characteristic of modernism. In the present view, modernism is more about concepts and
their history than about the chronology of events or developments, such as those associated with the
spreading of modernist thinking or practices. This chronology cannot of course be disregarded, but
a concept or a form of practice in a given field can precede a chronologically defined state of this
field, with which this concept or practice would be in accord. This accord is not an “anticipation”
but a determinate quality of a concept or a form of practice. Riemann’s concepts and practice
are modernist, in the present (or, with some differences, Gray’s) definition, and a similar claim
could be made, helped by his revolutionary algebraic thinking, concerning Galois. The degree or
even the existence of such an accord, or to what degree this accord reflects the understanding of
this concept by its inventor, is a matter of interpretation, which could be contested. Riemann’s
thinking has complexities when it comes to the role of algebra there because of the topological and
geometrical aspects of his thinking, which often take the center stage, while algebra, when still
present, appears in a supporting role. This is, however, only so in a more narrow or technical sense,
as opposed to the broader sense assumed here as defining modernism. Riemann’s work, as noted,
is defined by the joint workings of geometry, topology, algebra, and analysis in his mathematics,
added by philosophical and physical, aspects of his thinking. Hilbert made major contributions in
all these areas as well (apart from topology), but one does find the same type of fusion of different
fields dealing with a given subject that one finds in Riemann, as in the case of Riemann surfaces.
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have given more attention to physics, especially quantum theory, which he by and
large bypasses. (Gray does comment on relativity.) Unfortunately, especially given
the role of the image of the curve in modernist art, such as that of Klee (e.g., [17,
pp. 14–15]), I cannot address the connections between modernist mathematics or
sciences and modernist literature and art in detail either. I would, however, argue,
more strongly than Gray, for the validity of these connections in sharing some of the
key conceptual features. This view follows Bohr, who said, in speaking of quantum
theory: “We are not dealing here with more or less vague analogies, but with an
investigation of the conditions for the proper use of our conceptual means shared
by different fields” [8, v. 2, p. 2]. It is not merely a matter of traffic, for example,
metaphorical, between fields, but of parallel situations in each that justifies the use
of the term modernism in considering them. Indeed, this article explores this type
of parallel between modernist mathematics and quantum theory, mathematically
equally defined by the role of algebra in them.11 That does not of course mean
that the specificity of each field, such as that of mathematics vs. physics, or that of
either vs. that of literature and art (or that of literature vs. that of art) is dissolved
even in considering such parallel situations, let alone in general. Such parallels
often give new dimensions to this specificity, for example, as I argue, in the case
of modernist mathematics and modernist physics in bringing out the fundamentally
algebraic character of both.

Although Gray’s concept of mathematical modernism is different from the
one adopted here, there are relationships between them. These relationships are
complex and considering them in detail would be difficult. While Gray offers a
discussion of modernist algebra (which would of course be impossible to avoid),
he does not address, except occasionally and mostly by implication, the modernist
algebraization of mathematics, including geometry and topology. In fact, some key
developments in modernist algebra, too, are not given by Gray the attention they
deserve, such as Noether’s work in algebra, one of the great examples of mathe-
matical modernism, central to more abstract developments of algebraic topology
(as in H. Hopf’s work) and a bridge between R. Dedekind and Grothendieck,
helpfully discussed by C. McLarty [42]. Gray also largely bypasses epistemological
considerations central to the present analysis. Gray acknowledges the connections in
mathematical modernism in the case of relativity [26, p. 324, n. 28]. But he misses
nonrealist thinking found in quantum theory, which connects physical reality in
its ultimate constitution with mathematics without recourse to realism. In fairness,
related epistemological aspects of modernism are suggested by Gray in the context

11The nature of these connections and, in part correlatively, the effectiveness of using the term
modernism, specifically by Mehrtens and Gray, have been questioned, for example, by S. Feferman
[24] and L. Corry [15]. While both articles (that of Feferman is a review of Gray’s book)
make valid points, I don’t find them especially convincing on either count, in part because
their engagement with modernist art is extremely limited and because neither considers the
epistemological dimensions of modernism, which are, in my view, important in addressing these
connections. For an instructive counter argument to Mehrtens, challenging his historical claims,
specifically those concerning F. Klein, see [6].
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of Cantor’s set theory and logical foundations of mathematics, especially Cantor’s
continuum hypothesis and Gödel’s theorems. There is no discussion of quantum
theory either.

On the other hand, the project of the independence and self-determination of
mathematics is central to Gray, as it was to Mehrtens (whose views I shall put
aside). This trend had, as I said, been gradually emerging throughout the nineteenth
century. This independence is especially manifested as an independence from
physics or, more generally, from considering mathematical objects as idealizations
from natural objects, the type of idealization that was central to physics and its
use of mathematics from Descartes and Galileo on. As I argue here, however,
quantum theory, by its algebraic nature, also established new, nonrepresentational,
relationships between mathematics and physics, and thus mathematics and nature,
by using modernist mathematics. It was, echoing the literary parallel, the end of
realism and the beginning of modernism, and not only echoing because similar
relationships between representation and reality emerged in literary or artistic
modernism. Quantum mechanics did not diminish faith in the classical ideal.
Einstein or E. Schrödinger, the coinventor of quantum mechanics (and Einstein,
too, made momentous contributions to quantum theory), never relinquished the
hope that this ideal would be eventually restored to fundamental physics. Their
uncompromising positions have served as inspirations for many others who share
this hope, in fact a majority among physicists and philosophers alike. Einstein won
this philosophical part of his debate with Bohr. Physics is a different matter. The
question, which was the main question in the Bohr-Einstein debate, is whether
nature would allow us a return to realism. While Einstein thought that it should,
Bohr thought that it might not, which is not the same as it never will. As our
fundamental theories are manifestly incomplete, especially given that of quantum
field theory, our best theory of the fundamental forces of nature (electromagnetism,
the weak force, and the strong forces) apart from gravity, and general relativity, our
best theory of gravity, are inconsistent with each other, the question remains open,
and the debate concerning it continues with undiminished intensity.

By contrast, mathematical realism and, especially, mathematical Platonism (a
modernist development, which is, as I said, only superficially related to Plato’s
thought) has been important for the project of the independence of mathematics.
This project had been developing as part of modern mathematics, but by 1900,
with the rise of mathematical modernism, it reached the stage of breaking with
connections representing or idealizing natural objects in all areas of mathematics,
notably in geometry, making it “profoundly counterintuitive.” “This realization,”
Gray contends, “marks a break with all philosophy of mathematics that present
mathematical objects as idealizations from natural ones: it is characteristic of
modernism” [26, p. 20].

The history of realization is much longer and, to some degree or in some of
its aspects, it began even with the emergence of mathematics itself, including
geometry, but it was certainly quite advanced by 1800 or thereabout, with non-
Euclidean geometry as part of it (e.g., [27]). Indeed, this history may also be
seen as that of divorcing mathematical concepts from our general phenomenal
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intuition as well, culminating in modernism and more characteristic of it (than
a break with the view of mathematical objects as idealization from natural ones,
although there are connections between these two breaks). In this divorce, algebra,
including spatial algebra, has, I argue, played a major role. This divorce was stressed
by H. Weyl, himself a major figure of mathematical modernism. Weyl made his
point in his 1918 book, The Continuum [69], following closely his 1913 book
on Riemann surfaces [73], and followed even more closely by his 1918 classic
on the mathematics of relativity, Space Time Matter [68].12 All three books were
linked by their shared modernist problematic, as defined here, keeping in mind that
Weyl’s own position was realist, which was, however, common among mathematical
modernists. The idea of curve, too, was equally crucial in all three contexts—
Riemann surfaces, the continuum, and, again, via Riemann, Einstein’s general
relativity. According to Weyl: “the conceptual world of mathematics is so foreign
to what the intuitive continuum presents to us that the demand for coincidence
between the two must be dismissed as absurd” [69, p. 108]. “Coincidence” is not
the same as “relations,” which, as noted above, are unavoidable, at least insofar as
it is difficult to think of continuity, spatially, apart from one or another phenomenal
intuition of it. Even algebra involves general phenomenal intuition, even a spatial
one, for example, in considering matrices as arrangements of symbols, which was
crucial to Heisenberg’s discovery of quantum mechanics, in the course of which
he reinvented matrix algebra through so arranging certain mathematical elements
involved [52, pp. 30–31]. On the other hand, it is entirely possible to define a given
continuum, such as that of a line or curve, algebraically. This situation emerged
with Cantor’s introduction of set theory, and the multiplicity of infinities, the
infinity of infinities, there, and his continuum hypothesis, and then the discovery of
esoteric objects, such as Peano’s curve, and related developments leading to Gödel’s
incompleteness theorem, and finally Cohen’s proof of the undecidability of the
continuum hypothesis, which brought new, ultimately irresolvable, complexity to
the idea of continuum.13 In sum, we do not, and even cannot, know how a continuous
line, straight or curved (which does not matter topologically), is spatially constituted
by its points, but we have algebra to address this question, and have a proof
that the answer is rigorously undecidable. I shall further address the philosophical
underpinning of this situation in the final section of this article. This history and
related modernist developments, such as the concept of dimension (which Cantor’s
rethinking of the concepts of continuum required) is extensively considered by Gray,
confirming Weyl’s point, made as part of his own important contribution to this
history in The Continuum.

Weyl’s point concerning the conceptual world of mathematics as unavailable to
our general phenomenal intuition or, by implication, ordinary language, exceeds
the question of the continuum, and pertains to most of modernist mathematics

12Weyl’s classic book had undergone several editions, some of them with significant revisions. I
cite here the last edition.
13Intriguingly, Cohen ultimately thought that the hypothesis was likely to be false [12, p. 151].
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or physics, such as relativity and quantum theory, which was even able to take
advantage of this divorce between mathematics and our general phenomenal
intuition, or a representation of natural objects. Weyl added to his statement cited
above: “Nevertheless, those abstract schemata supplied us by mathematics must
underlie the exact sciences of domains of objects in which continua play a role” [69,
p. 108]. This comment was undoubtedly made with Einstein’s relativity in mind,
as Weyl’s next book, Space Time Matter, was already in the works [68]. While
his careful formulation implies the representational role of such schemata, it has
a modernist twist given that those abstract schemata are, mathematically, divorced
to one degree or another from our common phenomenal intuition, which entails
the use of algebra, in the case of Einstein’s general relativity, based in Riemannian
geometry of differentiable manifolds as a form of spatial algebra.

This type of divorce, I argue, has been equally at work in modernist mathematics
and modernist physics, and, while prepared by previous developments, such as
analytical mechanics and Maxwell’s electromagnetism, it reaches its modernist
stage with relativity, beginning with special relativity, and especially quantum
mechanics. Both used modernist mathematics, respectively, that of Riemannian
geometry (Minkowski’s spacetime of special relativity is a pseudo-Riemannian
manifold) and that of infinite-dimensional Hilbert spaces, equally mathematically
divorced, as abstract continuous schemata, from our general phenomenal intuition.
Relativity still did this in a realist way, as the break from our phenomenal intuition
does not entail a divorce from realism or ontology, because the latter could be
mathematical. In fact, this ontology has been mathematical in all modern physics
from Descartes and Galileo on, even when it is supplemented by or, in classical
mechanics, originates in our phenomenal intuition. In addition, as noted above, one
could still use one’s phenomenal, including geometrical, intuition heuristically, to
help our thinking, or, to return to Tate’s principle, one could still think geometrically,
as well as spatial-algebraically, while proving things or (which is not the same)
making more rigorous arguments and calculations in physics, algebraically. Still,
relativity entailed a radical departure from classical physics. For one thing, as
Weyl was of course aware, the relativistic law of addition of velocities (defined
by the Lorentz transformation) in special relativity, s = (v + u)/(1 + 1

c2 vu), for
collinear motion (c is the speed of light in a vacuum), runs contrary to any intuitive
(geometrical) representation of motion that we can have. This concept of motion
is, thus, no longer a mathematical refinement of a daily concept of motion in the
way the classical concept of motion is. Relativity was the first physical theory that
defeated our ability to form a phenomenal conception of an elementary physical
process. But it still allowed for a mathematical and conceptual representation of
physical reality.

Quantum mechanics, by contrast, only used mathematics for providing prob-
abilistic predictions concerning the outcomes of quantum experiments, quantum
events, without providing a representation or even conception of the processes
responsible for these events, in which case geometrical intuitions are of no help to us
at all. At most we can have spatial algebra. This gives an entirely new role to abstract
continuous schemata, such as those of Hilbert spaces, in physics, that of predicting,
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probabilistically, the outcome of irreducibly discrete events. These predictions are,
moreover, made possible by rules added to the formalism rather than being part
of it, such as Born’s rule, which relates, essentially by using complex conjugation,
complex quantities of formalism to real numbers corresponding to the probabilities
of quantum events. Basically, one takes the square moduli of the eigenvalues of
the operators associated with quantum variables, such as position, momentum, or
energy (or equivalently, multiply these eigenvalues by their complex conjugates),
which gives one real numbers, corresponding, once suitably normalized, to the
probabilities of observed events, associated with the corresponding measurements.
The standard rule for adding the probabilities of alternative outcomes is changed to
adding the corresponding amplitudes and deriving the final probability by squaring
the modulus of the sum. The algebra of probabilities changes!

The modernist situation just outlined bears significantly on the question of
language in quantum theory and in mathematics itself. It is helpful to briefly
consider first this role in mathematics, beginning with geometry, where ordinary
language or ordinary concepts have always played a greater role than in algebra,
beginning with Euclid’s Elements and its very first definition: “A point is that which
has no part” [22, v. 1, p. 15]. At the same time, there is a movement, enabled by and
enabling mathematics, away from ordinary language and concepts, because what
makes “points,” or “lines,” part of geometry as mathematics are not their definition
but the relationships between and among them in Euclidean geometry, a fact on
which Hilbert capitalized two millenia later. Descartes’ “geometry,” as presented
in La Géométrie, offers an important contrast to both Euclid and Hilbert alike. It
is not axiomatic but “problematic,” as well as, correlatively, algebraic. It primarily
deals with problems (some of which may be theorems in the usual sense), thus
nearly erasing Euclid’s distinction, which is difficult to sustain, between problems
and theorems. There is an affinity with Riemann in this regard. But there is also
a major difference. Riemann thinks in terms of concepts [55]. Descartes thinks
in terms of equations, and points and lines are understood accordingly. Modern
algebraic geometry will eventually bring Descartes and Riemann together, with
Grothendieck’s work as the culmination of this history.

While not axiomatic, Descartes’ thinking suggests the possibility of a different,
more algebraic, axiomatization, which was part of the project of mathematical
modernism (both in the present and in Gray’s definition), as manifested in Hilbert’s
Foundations of Geometry, first published in 1899. Hilbert’s often cited earlier
remark, apparently made in 1891, offers an intriguing angle: “One must be able
to say at all times—instead of points, straight lines, and planes—tables, chairs,
and beer mugs” [71, p. 635]. What Hilbert exactly had in mind is not entirely
certain and has been interpreted in a variety of ways. Without attempting to give
it a definitive interpretation, my reading would be as follows, in accordance with
Weyl’s point concerning the conceptual world of mathematics as foreign to that
of our general phenomenal intuition. Hilbert uses his example only to indicate
that both sets are that of connected entities, and that one should properly speak
of neither “points, straight lines, and planes,” as geometry did from Euclid on,
nor “tables, chairs, and beer mugs,” nor anything else referred to by means of
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ordinary language, but instead use algebraic symbols and algebraic relationships
between them, without referring to any objects in the world represented by ordinary
language.14 Ordinary language, however, still plays an important role and, arguably,
cannot be entirely dispensed with. While we can replace points, straight lines,
and planes, and relationships between them with symbols, it may be difficult for
our thought, at least our unconscious thought, but perhaps even our conscious
thought, to replace them with tables, chairs, and beer mugs. As explained earlier,
a decade later, Hilbert’s Foundations of Geometry tells us as much. Still, with
modernism, mathematics and physics break with ordinary language or thinking
more deliberately and radically, as expressed in Weyl’s 1918 remark just considered.
In physics, this break, although gradually emerging earlier as well, becomes
pronounced with quantum mechanics, where it became complete in considering
quantum objects and behavior, in nonrealist interpretations.

According to Heisenberg, “it is not surprising that our language [or concepts]
should be incapable of describing the processes occurring within atoms, for . . .
it was invented to describe the experiences of daily life, and these consist only
of processes involving exceedingly large numbers of atoms. It is very difficult to
modify our language so that it will be able to describe these atomic processes,
for words can only describe things of which we can form mental pictures, and
this ability, too, is a result of daily experience” [32, p. 11]. Words can do more,
including make the statement that tells us that words cannot describe the processes
occurring within atoms, which, however, does not undermine Heisenberg’s main
point. It follows that, while classical physics, at least classical mechanics, may
rely on, and was born from, a mathematical refinement of our daily phenomenal
intuition, concepts, and language, atomic physics can no longer do so. However,
as Heisenberg realized in his discovery of quantum mechanics, it can still use
mathematics. As just discussed in considering Weyl’s argument, relativity and the
preceding quantum theory, or even some developments of classical physics have,
with the help of mathematics, already broken, at least in part, with our daily
intuition and concepts. Heisenberg clearly realized this. As he said, following
the passage just cited: “Fortunately, mathematics is not subject to this limitation,
and it has been possible to invent a mathematical scheme—the quantum theory
[e.g., quantum mechanics]—which seems entirely adequate for the treatment of
atomic processes” [32, p. 11]. Mathematics allows one to circumvent the limits of
our phenomenal representational intuition, also involving visualization, sometimes
used, including by Bohr, to translate the German word for intuition, Anschaulichkeit.
“Visualization” and its avatars are often invoked by Bohr, by way of this translation,
in considering quantum objects and behavior, as being beyond our capacity to
phenomenally represent them (e.g., [8, v. 1, pp. 51, 98–100, 108, v. 2, p. 59]).
Ultimately, Bohr came to see quantum objects and behavior as being beyond any
representation, if not conception (a view adopted here), including a mathematical

14I borrow the juxtaposition between Hilbert’s remark and Euclid’s definition of a point from G.
E. Martin [40, p. 140], who, however, only states this juxtaposition without interpreting it.
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one, a view adopted by Heisenberg at the time of the comments just cited. By
contrast, as I noted, in his later thinking Heisenberg appears to be more open to
the possibility of a mathematical representation of the ultimate structure of matter,
still, however, in the absence of a physical representation of it, a form of strictly
mathematical realism or Platonism. (e.g., [33, pp. 91, 147–166]).

That Heisenberg found a mathematical scheme that could predict the data in
question was as fortunate as that mathematics is free of this limitation, for, as
just noted and as Heisenberg must have realized, this freedom is also at work
in relativity or even classical physics, beginning at least with Lagrange’s and
Hamilton’s analytical mechanics. It is true that matrix algebra was introduced in
mathematics before Heisenberg, who was, again, unaware of it and reinvented it,
although the unbounded infinite matrices that he used were not previously studied
in mathematics and were given a proper mathematical treatment by M. Born and
P. Jordan later [9]. But, even if Heisenberg had been familiar with it, his scheme
would still have needed to be invented as a mathematical model dealing with
quantum phenomena. Heisenberg discovered that this was possible to do in terms
of probabilistic or statistical predictions in the absence of any representation or
even conception of quantum objects and their behavior. Indeed, mathematics now
becomes primary in an even more fundamental sense than in its previous use
in physics. This is because, given that we have no help from physical concepts,
mathematics is our only means to develop the formalism we need. Quantum physics
does contain an irreducible nonmathematical remainder because no mathematics
can apply to quantum objects and behavior. But then, nothing else, physics or
philosophy, for example, could apply either. Heisenberg’s key physical intuition
was that there could be no physical intuition that could apply to quantum objects and
processes, while one could use mathematics to predict the outcomes of experiments,
thus redefining the relationships between mathematics and physics.

This redefinition was grounded in the primacy of algebra, moreover, not only as
against classical physics and relativity but also as against the preceding quantum
theory, specifically, Bohr’s 1913 atomic theory, initially, as that of the hydrogen
atom. The theory retained a geometrical, orbital, representation of electrons’ motion
in so-called stationary states, even though it renounced any mechanical conception
of transitions between such states. It had its Keplerian, “Harmonia-Mundi,” appeal
(Bohr’s orbits were elliptical, too) in defining the ultimate microscopic constitution
of nature. Developed by Bohr and others to apply to more complex atoms, the theory
had major successes over the next decade. However, it ran into formidable problems
and proved to be inadequate as a fundamental theory of atomic constitution. To
rectify the situation Heisenberg made an extraordinary move, unanticipated at the
time, because nearly everyone was expecting a return to a more geometrical picture
partially abandoned by Bohr’s theory. Against these expectations, in Heisenberg’s
scheme there were no orbits anymore but only states of quantum objects, states,
moreover, never accessible as such and hence not available to a theoretical rep-
resentation, but only manifested in their effects on measuring instruments. This,
however, still allowed his theory to predict the probabilities of what can be
observed in quantum experiments, which became the core of Heisenberg’s approach.
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Even before his paper announcing his discovery was published [31], Heisenberg
explained this “more suitable” concept as follows: “What I really like in this
scheme is that one can really reduce all interactions between atoms and the external
world . . . to transition probabilities” between quantum measurements (Heisenberg,
Letter to Kronig, 5 June 1925; cited in [43, v. 2, p. 242]; emphasis added). It was
Heisenberg’s renunciation of any geometrical representation of quantum objects and
behavior, thus replacing the geometry of curves with the algebra of probabilities,
that led him to the discovery of quantum mechanics.

As he says at the outset of his paper: “in quantum theory it has not been possible
to associate the electron with a point in space, considered as a function of time,
by means of observable quantities. However, even in quantum theory it is possible
to ascribe to an electron the emission of radiation” [31, p. 263; emphasis added].
The effect of such an emission could be observed in a measuring instrument and
its occurrence can be assigned probability or (if the experiment is repeated many
time) statistics. My emphasis reflects the fact that, in principle, a measurement could
associate an electron with a point in space, but not by linking this association to a
function of time representing the continuous motion of this electron, in the way
it is possible in classical mechanics. If one adopts a nonrealist interpretation, one
cannot assign any properties to quantum objects themselves, not even single out
such properties, such as that of having a position, rather than only certain joint ones,
which are precluded by the uncertainty relations. One could only assign physical
properties to the measuring instruments involved. On the other hand, Heisenberg’s
approach put into question the privileged position that the position variable had
previously occupied in physics. Heisenberg described his next task as follows, which
shows the genealogy of his derivation in Bohr’s atomic theory:

In order to characterize this radiation we first need the frequencies which appear as functions
of two variables. In quantum theory these functions are in the form:

ν(n, n − α) = 1/h{W(n) − W(n − α)}

and in classical theory in the form

ν(n, α) = αν(n) = α/h(dW/dn)

[31, p. 263]

This difference leads to a difference between classical and quantum theories
as regards the combination relations for frequencies, which, in the quantum case,
correspond to the Rydberg-Ritz combination rules, again, reflecting, in Heisenberg’s
words, “the discrepancy between the calculated orbital frequency of the electrons
and the frequency of the emitted radiation.” However, “in order to complete the
description of radiation [in correspondence, by the mathematical correspondence
principle, with the classical Fourier representation of motion] it is necessary to
have not only frequencies but also the amplitudes” [31, p. 263]. On the one hand,
then, by the correspondence principle, the new, quantum-mechanical equations
must formally contain amplitudes, as well as frequencies. On the other hand, these
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amplitudes could no longer serve their classical physical function (as part of a
continuous representation of motion) and are instead related to discrete transitions
between stationary states. (Nor ultimately do frequencies because of the non-
classical character of the Rydberg-Ritz combination rules.) In Heisenberg’s theory
and in quantum theory since then, these “amplitudes” are no longer amplitudes of
physical motions, which makes the name “amplitude” itself an artificial, symbolic
term. Linear superposition in quantum mechanics is of a fundamentally different
nature from any superposition found in the classical wave theory. In nonrealist
interpretations, this superposition is not even physical: it is only mathematical. In
classical physics this mathematics represents physical processes; in quantum me-
chanics it does not. Amplitudes are instead linked to the probabilities of transitions
between stationary states: they are what we now call probability amplitudes. The
corresponding probabilities are derived, from Heisenberg’s matrices, by a form of
Born’s rule for this limited case. (Technically, one needs to use the probability
density functions, but this does not affect the main point in question.) One can
literally see here a conversion of the classical continuous geometrical picture of
oscillation or wave propagation, as defined by frequencies and amplitudes, into the
algebra of probabilities of transitions between discrete quantum events.

Algebra, in part as the spatial algebra of Hilbert spaces, was the mathematical
technology of predictions concerning the outcomes of quantum experiments, even-
tually, with quantum field theory, in high energy (relativistic) quantum regimes,
in the absence of mathematical ontology of the ultimate reality, defined by the
quantum constitution of nature, an ontology found in relativity or classical physics
before it. Quantum electrodynamics is the best experimentally confirmed physical
theory ever. It was the triumph of “the Heisenberg [algebraic] method,” as Einstein
characterized it in 1936, while still skeptical about its future, a decade of major
successes of quantum mechanics notwithstanding. Even apart from the fact that
Einstein’s unwavering discontent with quantum mechanics and his debate with
Bohr concerning it were a decade long by then as well, Einstein’s assessment of
Heisenberg’s algebraic method was hardly unexpected given Einstein’s preference
for realism and geometry. As he said: “[P]erhaps the success of the Heisenberg
method points to a purely algebraic method of description of nature, that is, to the
elimination of continuous functions from physics. Then, however, we must give up,
in principle, the space-time continuum [at the ultimate level of reality]. It is not
unimaginable that human ingenuity will some day find methods which will make it
possible to proceed along such a path. At present however, such a program looks
like an attempt to breathe in empty space” [20, p. 378]. For some, by contrast,
beginning with Bohr, Heisenberg’s method was more like breathing fresh mountain
air. The theory has been extraordinarily successful and remains our standard theory
of quantum phenomena in both low and high-energy quantum regimes, governed by
quantum mechanics and quantum field theory respectively.

A few qualifications are in order, however. First of all, one must keep in mind
the complexity of this algebra, which involves objects that are not, in general,
discontinuous, although certain key elements involved are no longer continuous
functions, such as those used in classical physics, and are replaced by Hilbert-space
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operators (over C). Some continuous functions are retained, because the Hilbert
spaces involved are those of such functions, considered as infinite-dimensional
vectors in dealing with continuous variables such as position and momentum,
keeping in mind that these variables themselves are represented by operators. These
functions, vectors, are those of complex (rather than, as in classical physics, real)
variables and the vector spaces that they comprise, or associated objects such as
operator algebras, have special properties, such as, most crucially, noncommuta-
tivity. These vectors, of which Schrödinger’s wave function is the most famous
example, play an essential role in calculating (via Born’s rule) the probabilities of
the outcomes of quantum experiments. In fact, given that they deal with Hilbert
spaces, quantum mechanics and quantum field theory involve mathematical objects
whose continuity is denser than that of regular continua such as the (real number)
spacetime continuum of classical physics or relativity. In contrast to these theories,
however, the continuous and differential mathematics used in quantum theory, along
with the discontinuous algebraic one, relates, in terms of probabilistic predictions,
to the physical discontinuity defining quantum phenomena, which are discrete in
relation to each other, while, at least in nonrealist interpretations, quantum objects
and their behavior are not given any physical or mathematical representation or even
conceptions—continuous or discontinuous.

Thus, as Bohr was the first to fully realize, Heisenberg’s algebraic method brings
about a radical change of our understanding of the nature of physical reality, an
understanding ultimately depriving us not of reality but of realism, which was, for
Einstein, the most unpalatable implication of Heisenberg’s method. In saying that
“we must give up, in principle, the space-time continuum,” Einstein must have had
in mind the spacetime continuum in representing, by means of the corresponding
theory, the ultimate reality considered, and possibly in attributing the spacetime
continuum to this reality, something, defining his geometrical philosophy of physics
(embodied in general relativity), that Einstein was extremely reluctant to give up.
The idea that this reality may ultimately be discrete had been around for quite a
while by then. In particular, it was, as noted, proposed by Riemann as early as
1854, speaking of “the reality underlying space” [60, p. 33]. It was Riemann’s
concept of continuous (actually, differentiable) manifolds and Riemannian geometry
this concept defined that grounded Einstein’s general relativity and his view of
the ultimate nature of physical reality as the spacetime continuum, threatened by
quantum theory. The idea of the discrete nature of ultimate reality has acquired new
currency in view of quantum mechanics and quantum field theory, as advocated
by, among others, Heisenberg in the 1930s, and is still around. In the present view,
the ultimate nature of physical reality is beyond representation and even conception
(neither Bohr nor Heisenberg might, again, have been ready to go that far) and,
as such, may not be seen as either continuous or discontinuous. Discreteness
only pertains to quantum phenomena, observed in measuring instruments, while
continuity has no physical significance at all. It is only a feature of the formalism
of quantum mechanics, which at the same time relates to discrete phenomena by
predicting the probabilities or statistics of their occurrence.
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While Kant’s philosophy may be seen as an important precursor to this episte-
mology, beginning with the difference between objects and phenomena as its basis,
in its stronger form, which places the ultimate nature of reality beyond concep-
tion (rather than only beyond representation or knowledge), this epistemology is
manifestly more radical than that of Kant. This because, as I explained, in Kant’s
epistemology, noumena or objects as things-in-themselves are, while unknowable,
still in principle conceivable and that conception might even be true, even though
there is no guarantee that it is true [35, p. 115]. Even if Bohr adopted a weaker
view, which only precludes a representation of quantum objects and behavior, it
is still more radical than that of Kant, because, while a conception of quantum
objects and behavior is in principle possible, it cannot be unambiguously used in
considering quantum phenomena, at least as things stand now. I am not saying that
the stronger view is physically necessary, but only that it is interpretively possible.
There does not appear to be experimental data that would compel one to prefer
either view. These views are, however, different philosophically because they reflect
different limits that nature allows our thought in reaching its ultimate constitution.
“As things stand now” is an important qualification, equally applicable to the strong
view adopted here, even though it might appear otherwise, given that this view
precludes any conception of the ultimate reality not only now but also ever, by
placing it beyond thought altogether. This qualification still applies because a return
to realism is possible, either on experimental or theoretical grounds even for those
who hold this view. This return may take place because quantum theory, as currently
constituted, may be replaced by an alternative theory that allows for or requires a
realist interpretation, or because either the weak or the strong nonrealist view in
question may become obsolete, even for those who hold this view, with quantum
theory in place in its present form. It is also possible, however, that this view,
in either the weak or strong version, will remain part of our future fundamental
theories.

It is reasonable to assume that something “happens” or “changes,” for example,
that an electron changes its quantum state in an atom, say, from one energy level to
another, between observations that then register this change. But, if one adopted the
present interpretation, one could do so only if one keeps in mind the provisional
nature of such words as “happen,” “change,” or “atom,” which are ultimately
inapplicable in this case, as are any other words or concepts. Quantum objects are
defined by their capacity to create certain specific effects observed in measuring
instruments and changes in what is so observed from one measurement to the other,
changes described in language with the help of mathematics, without allowing one
to represent or even conceive of what they are or how they change. According to
Heisenberg:

There is no description of what happens to the system between the initial observation and the
next measurement. . . . The demand to “describe what happens” in the quantum-theoretical
process between two successive observations is a contradiction in adjecto, since the word
“describe” [or “represent”] refers to the use of classical concepts, while these concepts
cannot be applied in the space between the observations; they can only be applied at the
points of observation. [33, pp. 47, 145]
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The same, it follows, must apply to the word “happen” or any word we use, and
we must use words and concepts associated with them, even when we try to restrict
ourselves to mathematics as much as possible. There can be no physics without
language, but quantum physics imposes new limitations on using it. Heisenberg
adds later in the book: “But the problem of language is really serious. We wish to
speak in some way about the structure of the atoms and not only about ‘facts’—
the latter being, for instance, the black spots on a photographic plate or the water
droplets in a cloud chamber. But we cannot speak about the atoms in ordinary
language” [33, pp. 178–179]. Nor, by the same token, can we use, in referring
to the atoms, ordinary concepts, from which our language is not dissociable, or
for that matter philosophical or physical concepts. Heisenberg’s statements still
leave space for the possibility of representing “the structure of atoms” and thus
the ultimate constitution of matter mathematically, without providing a physical
description of this constitution. Indeed, as I said, this was the position adopted by
Heisenberg by the time of these statements [33, pp. 91, 147–166]. At the time of
his discovery of quantum mechanics, he saw the quantum-mechanical formalism
strictly as the means of providing probabilistic predictions of the outcomes of
quantum experiments. Physically, it was only assumed that “it [was] possible to
ascribe to an electron the emission of radiation [a photon] [the effect of which
could be observed in a measuring instrument],” without providing any physical
mechanism for this emission [31, p. 263].

Language remains unavoidable and helpful in mathematics and physics alike. In
physics, this significance of language is more immediate, as Bohr, again, observed
on many occasions. Thus, he said: “[W]e must recognize above all that, even when
the phenomena transcend the scope of classical physical theories, the account of
the experimental arrangement and the recording of observations must be given
in plain language, suitably supplemented by technical physical terminology. This
is a clear logical demand, since the very word ‘experiment’ refers to a situation
where we can tell others what we have done and what we have learned” [8,
v. 2, p. 72; emphasis added]. This also ensures the objective and (objectively)
verifiable nature of our measurements or predictions, just as in classical physics.
The fundamental difference in this regard between classical and quantum physics
is that in quantum physics, we deal with objects, quantum objects, which cannot
be observed or represented, in contradistinction to quantum phenomena, defined by
what is observed in measuring instruments as the impact of unobservable quantum
objects. This difference in principle exists in classical mechanics as well, just as it
does in our observations of the world, as was realized by Kant, who introduced his
epistemology in the wake of Newton, whose mechanics was crucial to Kant, along
with and correlatively to Euclidean geometry. There, however, as Bohr noted on
the same occasion, the interference of observation “may be neglected,” which is no
longer the case in quantum physics [8, v. 2, p. 72].15 Thus, paradigmatically, we can

15Classical statistical physics introduces certain complications here, which are, however not
essential because the behavior of individual constituents of the systems considered there is
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observe how planets move along the curves of their orbits, without our observational
process having any effect. Not so in quantum mechanics. Nobody has ever observed,
at least thus far, an electron or photon as such, in motion or at rest, to the degree that
either concept ultimately applies to them, or any quantum objects, qua quantum
objects, no matter how large (and some could be quite large). It is only possible to
observe traces, such as spots on photographic plates, left by their interactions with
measuring instruments. Hence, Bohr invokes “the essential ambiguity involved in a
reference to physical attributes of [quantum] objects when dealing with phenomena
where no sharp distinction can be made between the behavior of the objects
themselves and their interaction with the measuring instruments” [8, v. 2, p. 61].
It follows that any meaningful (“unambiguous”) representations or even conception
of quantum objects and their independent behavior is “in principle excluded” [8,
v. 2, p. 62]. On the other hand, each such trace in measuring instruments or a specific
configuration of such traces can be treated as a permanent record, which can be
discussed, communicated, and so forth. In this sense, such traces or our predictions
concerning them are, again, as objective as they are in classical physics or relativity,
except that quantum records are only verifiable as probabilistic or statistical records
in all quantum physics, which is only the case in classical statistical physics.
Classical mechanics or relativity give ideally exact predictions, which are not
possible in quantum mechanics, because identically prepared quantum experiments
in general lead to different outcomes. Only the statistics of multiple identically
prepared experiments are repeatable. It would be difficult, if not impossible, to do
science without being able to reproduce at least the statistical data and thus to verify
the prediction of a given theory, which is possible in quantum physics.

Bohr’s qualification, “plain language, suitably supplemented by technical physi-
cal terminology,” introduces an additional subtlety, which extends to the mathemat-
ics of quantum theory and to mathematics itself. In the latter case, however, Bohr’s
formulation may be reversed to “technical terminology, suitably supplemented
by plain language,” although it may be a matter of balance, especially when
philosophical considerations are involved. Thus, Riemann’s Habilitation lecture
famously contains only one real formula, which did not prevent it from decisively
shaping the subsequent history of geometry, dominated, especially from modernism
on, by technical, sometimes nearly impenetrably technical, algebraic treatments.

Consider his defining concept, that of manifold—Mannigfaltigkeit. Riemann’s
German is important. Although the term “Mannigfaltigkeit” was not uncommon
in German philosophical literature, including in Leibniz and Kant, it is worth
noting that the German word for the Trinity is “Dreifaltigkeit,” thus, etymologically,
suggesting a kind of “three-folded-ness,” which could not have been missed by
Riemann, or, for that matter, Leibniz and Kant. It is the “folded-ness” that is of
the main significance here in shaping Riemann’s concept philosophically. English

governed by the deterministic laws of classical mechanics. In quantum mechanics, even elementary
individual objects (the so-called elementary particles) can only be handled probabilistically, and in
the present view, their behavior is beyond representation or even conception.
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“manifold” picks it up, as does French “multiplicité” [pli] which was initially
used to translate Riemann’s term, but is no longer, being replaced by variété
(English “variety” is used for algebraic varieties), perhaps because, unlike German
Mannigfaltigkeit and English manifold, it also refers to multiplicity in general.16

Different general (or philosophical) concepts implied by terminological fluctuations
of these terms do shape their mathematical choices and uses. These concepts add
important dimensions to our understanding of these choices or their intellectual
and cultural significance in a given case, such as that of Riemann’s concept of
Mannigfaltigkeit [55]. On the other hand, a mathematical definition of a manifold
allows us to dispense with these connections or, again, from its connection to
intuitive geometrical thinking, and also extend this concept in mathematics or in
physics. This is something Riemann’s lecture gives us as well, even though some of
this mathematics is still expressed verbally, which would be quite uncommon now
and has been uncommon for quite a while, uncommon but not entirely absent.

Thus, one finds this type of approach in Poincaré’s work, as in parts of his series
of papers on the curves defined by differentials published in the 1880s and related
work [57], which also led him to the so-called qualitative theory of differential
equations.17 Poincaré’s strategy in these papers was also novel (and exhibited a
contrast to or even a reversal of algebraic modernist trends emerging at the time) in
that, in Gray’s words, it was to consider “the solutions as curves, not as functions,
and to consider the global behavior of these curves” [26, p. 254]. Gray adds: “Two
kinds of topological thinking entered this early work: the algebraic topological ideas
of the genus of a surface and the recognition that many surfaces are characterized
by their genus alone; and the point-set topological idea of everywhere dense and
perfect sets, which though not original with Poincaré, are put to novel uses” [26,
p. 254]. Among many remarkable outcomes of this thinking was Poincaré’s analysis
of curves and flows on a torus, an elliptic curve, if considered over C. Poincaré’s
work is a chapter in its own right in the modernist history of the concept of curve.
His “conventionalism” in physics is also important for the history of modernist

16See [3, pp. 523–524] on Grothendieck’s use of the term “multiplicity,” which is, on the one
hand, specific (close to what is now called “orbifold”), and on the other hand, is clearly chosen
to convey the multiple, plural nature of the objects considered. This is also true concerning
Riemann’s concept of manifold. I would argue that Riemann and Grothendieck share thinking
in terms of multiplicities as their primary mathematical philosophy, a modernist trend that is
especially pronounced in their thinking. As will be seen, this philosophy, manifested already in
Grothendieck’s early work in functional analysis, drives his use of sheaves and category theory
(both concepts of the multiple), and then his concept of topos. Nothing is ever single. Everything
is always positioned in relation to a multiplicity, is “sociological,” and is defined and studied as
such, which is itself a trend characteristic of modernism.
17While, the concept of “qualitative” is of much interest in the context of this article, it would
require a separate treatment. I might note, however, that, while the qualitative could be juxtaposed
to the quantitative, it has more complex relationships with the algebraic, which is not the same as
the quantitative, just as the geometrical is not the same the qualitative. Still the genus of a surface,
which is a number and thus is quantitative, is important in a qualitative approach to its topology or
geometry. See note 4 above.
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epistemology, from relativity to quantum mechanics, even though his position was
ultimately realist. I cannot unfortunately address either subject within my scope.

Poincaré, however, joins Fermat, Descartes, Gauss, Riemann, and Hilbert in
reminding us that curves are still curves, and while they may and even must be
replaced by or rather translated into algebra, their geometry never quite leaves
our thought and our work and exposition of mathematics. Riemann makes an
extraordinary use of this situation in his work, again, nearly unique, even next
to other great figures just mentioned, in mixing geometry, topology, analysis,
and algebra with each other and all of them with philosophical concepts, general
phenomenal intuition, and the power of language, in turn intermixed as well. It
is, I might add, not a matter of inventing evocative metaphors, but rather of using
these multiple, manifold, means for creating new mathematical and physical (and
sometimes philosophical) concepts, such as that of Mannigfaltigkeit [55, pp. 341–
342].

I close this section with a more general point central for my argument concerning
the modernist transformation of mathematics and, in part via this mathematics,
modernist physics, into essential algebraic mathematical theories, keeping in mind
other components of this transformation to which this qualification equally pertains.
As discussed from the outset, we still depend on and are helped by a more conven-
tional geometrical or topological thinking in modernist, fundamentally algebraic,
thinking; general phenomenal intuition; ordinary language and concepts, or other
general aspects of human thinking or cognition, such as narrative, for example.18

On the other hand, these aspects of our thinking may also become limitations in
mathematics and physics alike, and, as Heisenberg argued, in quantum mechanics,
modernist mathematics frees us from these limitations, or at least gives us more
freedom from them. Technically, so does all mathematics, geometry and topology
included, vis-à-vis other components just listed, but algebra and, with it, modernist
mathematics extends this freedom. Making a curve an algebraic equation, as in
Fermat and Descartes; extending the concept of curve in mathematics to include
(topologically speaking) surfaces by making them curves over C, as (at least in

18On narrative in mathematics, see [19]. Of particular interest in the present context, as part of the
history leading to the modernist algebraization of mathematics, is B. Mazur’s contribution there,
which offers a discussion of L. Kronecker’s “dream, vision, and mathematics” in “Visions, Dreams,
and Mathematics” [41]. It might be added that Kronecker’s “dream, vision, and mathematics,”
also decisively shaped those full-fledged modernist ideas of Weil. It may also be connected to
Grothendieck’s work. See the article by A’Campo et al for a suggestion concerning this possibility,
as part of a much broader network, opened by Grothendieck’s work on Galois theory (“the
absolute Galois group”), which confirms Galois’ work as a key juncture of the trajectory leading
from modernity to modernism in mathematics [2, p. 405, also n. 12]. These themes could be
conceptually linked to quantum field theory, via M. Kontsevitch’s work on the “Cosmic Galois
Group” (Cartier 2001), noted below (note 19). The article by A’Campo et al is also notable for a
remarkable narrative trajectory of Grothendieck’s work it traces. This confirms the role of narrative
as part of mathematics itself and the philosophy of mathematics rather than only of the history of
mathematics, a key theme of Mazur’s and other articles in [19]. The present author’s contribution
to this volume deals with the epistemology of narrative, along the lines of this article [53].
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effect) in Riemann, or even more so making a curve, or even just a point, a topos
in Grothendieck; and using infinite-dimensional Hilbert spaces as the predictive
mathematical technology of quantum mechanics (in the absence of a representation
of quantum objects and behavior, which would depend on physical concepts) in
Heisenberg, are all examples of taking advantage of this freedom. This freedom
may not be complete, but it makes possible pursuits of previously insurmountable
tasks.

5.4 Curves from Modernity to Modernism: Three Cases

5.4.1 Curves as Algebra: Descartes/Fermat/Diophantus

I shall now discuss three cases shaping the idea of curve, and geometry and
mathematics in general from modernity to modernism. For the reasons explained
in the Introduction, I leave aside most of the relevant earlier history and begin
with Fermat and Descartes. Then I move to Riemann, and finally, to Weil and
Grothendieck, with Riemann still as a key background figure.

Fermat’s work is both remarkable and seminal historically, also in influencing
Descartes’ work and the development of calculus, and, of course, especially
in view of his famous, “last,” theorem, the study of algebraic and specifically
elliptic curves. The deeper mathematical nature of elliptic curves was ultimately
revealed by unexpected connections, via the Taniyama-Shimura conjecture (now
the “modularity theorem”) and related developments, to Fermat’s last theorem,
which enabled Wiles’ proof of the theorem, as a consequence of the modularity
theorem for semistable elliptic curves, which he proved as well. These connections
could not of course have been anticipated by Fermat. On the other hand, his ideas
concerning elliptic curves remain relevant, and are a powerful manifestation of
the algebraization and number-theorization of the geometrical ideas then emerging.
Thus, according to Weil, first commenting on Fermat’s last theorem and Fermat’s
famous remark “that he discovered a truly remarkable proof for [it] ‘which this
margin is too narrow to hold,’ ” and then on Fermat’s study of elliptic curves:

How could he have guessed that he was writing for eternity? We know his proof for
biquadrates . . . ; he may well have constructed a proof for cubes, similar to the one which
Euler discovered in 1753 . . . ; he frequently repeated those two statements . . . , but never
the more general one. For a brief moment perhaps, and perhaps in his younger days . . . , he
must have deluded himself into thinking that he had the principle of a general proof; what
he had in mind on that day can never be known.

On the other hand, what we possess of his methods for dealing with curves of genus
1 is remarkably coherent; it is still the foundation for the modern theory of such curves.
It naturally falls into two parts; the first one, directly inspired by Diophantus, may
conveniently be termed a method of ascent, in contrast with the descent which is rightly
regarded as Fermat’s own. Our information about the latter, while leaving no doubt about its
general features, is quite scanty in comparison with Fermat’s testimony about the former . . . .
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and the abundant (and indeed superabundant) material collected by Billy in the Inventum
Novum.

In modern terms, the “ascent” is nothing else than a method of deriving new solutions
for the equations of a curve of genus 1. What was new here was of course not the principle of
the method: it has been applied quite systematically by Diophantus. . . and, as such, referred
to, by Fermat as well as by Billy, as “methodus vulgaris.” The novelty consisted in the vastly
extended use which Fermat made of it, giving him at least a partial equivalent of what we
would obtain by the systematic use of the group theoretical properties of the rational points
on a standard cubic. Obviously Fermat was quite proud of it; writing for himself on the
margins of his Diophantus, he calls it “nostro invention,” and again, writing to Billy: “it has
astonished the greatest experts.” [67, pp. 104–105]

It still does, which was Weil’s point as well. The epoch of algebraization and
spatial algebraization of elliptic curves and of mathematical curves in general had
commenced, with the arc from Fermat to Wiles through many points of modern and
then modernist algebraic geometry. Weil’s own work was one these points, even a
trajectory of its own, leading him to his rethinking of algebraic geometry, which had
a momentous impact on Grothendieck, who, however, also radically transformed it
in turn. It would, again, be more accurate to speak of a network of trajectories,
manifested in Wiles’ proof, which brings together so many of them. It is hard,
however, to abandon the metaphor of a curve when dealing with the history of the
idea of curve itself.

Descartes took full advantage of this algebraization and gave it its modern
coordinate form, still very much in use, thus, as I said, making his project of analytic
geometry an intimation of modernist thinking in mathematics and physics at the
heart of modernity. This project has its history, too, as part of the history of algebra,
especially the concept of equation that, as we just saw, emerged in ancient Greek
mathematics, especially with Diophantus (around the third century CE), whose ideas
were, again, central to Fermat. Analytic geometry, however, by expressly making
geometry algebra, gave mathematics its, in effect, independence of physics and
of material nature, thus, along with the work of Descartes’ contemporary fellow
algebraists, again, in particular Fermat, initiating mathematical modernism within
modernity.

In the simplest possible terms, analytic geometry did so because the equation
corresponding to a curve, say, X2 − 1 = 0 for the corresponding parabola, could be
studied as an algebraic object, independently of its geometrical representation or its
connection to physics, which eventually enabled us to define curves even over finite
fields and thus as discrete objects, as considered above. A curve becomes, in its
composition, defined by its equation, divested from its representational geometrical
counterpart. It no longer geometrically idealizes the reality exterior to it. It only
represents itself, is its own ontology, akin to a line of poetry. The equation, algebra,
is the poetry of the curve, confirming and amplifying a separation of a mathematical
curve from any curve found in the world, which defines all mathematics. When we
say in mathematics, “consider a curve X,” we separate it from every curved object
in the world, in the way poetry separates its words and ideas from those denoted by
ordinary language and the world they represent, as A. Badiou noted in commenting
on Mallarmé’s theory of poetry, based in this separation [7, p. 47]. This poetry of
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algebra can define a discrete curve, or can make a curve a surface, or a surface a
curve, give it an even more complex spatial algebraic architecture, or, to continue
with my artistic metaphor, an ever-more complex composition, such as that of a
moduli space, the Teichmüller space (also the Teichmüller curve), Grothendieck’s
or Hilbert’s scheme and representable-functors, . . . we are as yet far from exhausting
the limits of this “poetry” of Riemann surfaces/curves (e.g., [1]).

5.4.2 Curves as Surfaces, Surfaces as Curves:
Riemann/Riemann/Riemann

The idea of a Riemann surface is one of Riemann’s (many) great contributions to
modern and eventually modernist mathematics. In Papadopoulos’ cogent account:

In his doctoral dissertation, Riemann introduced Riemann surfaces as ramified coverings of
the complex plane or of the Riemann sphere. He further developed his ideas on this topic in
his paper on Abelian functions. This work was motivated in particular by problems posed
by multi-valued functions w(z) of a complex variable z defined by algebraic equations of
the form

f (w, z) = 0,

where f is a two-variable polynomial in w and z.
Cauchy, long before Riemann, dealt with such functions by performing what he called

“cuts” in the complex plane, in order to obtain surfaces (the complement of the cuts)
on which the various determinations of the multi-valued functions are defined. Instead,
Riemann assigned to a multi-valued function a surface which is a ramified covering of the
plane and which becomes a domain of definition of the function such that this function,
defined on this new domain, becomes single-valued (or “uniform”). Riemann’s theory also
applies to transcendental functions. He also considered ramified coverings of surfaces that
are not the plane. [47, p. 240]

The idea of a Riemann surface gains much additional depth and richness when
considered along with, and in terms of, Riemann’s concept of manifold, his other
great invention, introduced, around the same time, in his Habilitation lecture [60].
Riemann did not do so himself, although he undoubtedly realized that Riemann
surfaces were manifolds, and they have likely been part of the genealogy of the
concept of manifold. Riemann’s surfaces were first expressly defined as manifolds
by Weyl in The Concept of a Riemann Surface [73]. Understanding the concept
of a Riemann surface as a complex curve is helped by this perspective. It is an
intriguing question whether Riemann himself thought of them as curves, but it
would not be surprising if he had. Weyl undoubtedly did, although the point does
not figure significantly in his book, focused on the “surface” nature of Riemann
surfaces, defined, however, in spatial-algebraic terms. This may be surprising. But
then, Weyl was not an algebraic geometer. The work of É. Picard, a key figure in the
history of algebraic geometry would be more exemplary in considering this aspect of
Riemann’s concept [47, 49]. However, that a Riemann surface (with which a family
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of algebraic curves could be associated) is a manifold is crucial for “making it” both
a surface and a curve.

Weyl’s argumentation leading him to his definition is an application of a
principle very much akin to Tate’s “Think geometrically, prove algebraically” or its
extension here, “Think both Intuitively Geometrically and Spatially-Geometrically:
Prove Algebraically.” It is also a manifestation of the spirit of Riemann’s thinking
in which, as noted earlier, geometry and algebra, indeed geometry, topology,
algebra, and analysis, come together in a complex mixture of the rigorous and the
intuitive, algebraic and spatial-algebraic, mathematical and physical, mathematical
and philosophical, and so forth. His work on his ζ -function and number theory could
be brought into this mix as well. According to Weyl:

It was pointed out . . . that one’s intuitive grasp of an analytic form [an analytic function to
which a countable number of irregular elements have been added] is greatly enhanced if
one represents each element of the form by a point on a surface F in space in such a way
that the representative points cover F simply and so that every analytic chain of elements
of the form becomes a continuous curve on F . To be sure, from a purely objective point of
view, the problem of finding a surface to represent the analytic form in this visual way may
be rejected as nonpertinent; for in essence, three-dimensional space has nothing to do with
analytic forms, and one appeals to it not on logical-mathematical grounds, but because it is
closely associated with our sense perception. To satisfy our desire for pictures and analogies
in this fashion by forcing inessential representation of objects instead of taking them as they
are could be called an anthropomorphism contrary to scientific principles. [73, p. 16]

I note in passing a criticism, apparent here, of the logicist philosophy of math-
ematics, which theorized mathematics as an extension of logic and, championed
by, among others, Bertrand Russell, was in vogue at the time. This is, however,
a separate subject. Weyl will now proceed, again, in the spirit of Riemann, to
his definition of a two-dimensional manifold and eventually Riemann’s surface,
intrinsically, rather than in relation to its ambient three-dimensional space. Riemann
was building on Gauss’ ideas concerning the curvature of a surface and his, as
he called it, “theorema egregium,” which states that the curvature of a surface,
which he defined as well, was intrinsic to the surface. It is also this concept and
the corresponding spatial algebra that enables one to define a Riemann surface as
a curve over C. This intrinsic and abstract, spatial-algebraic, view of a Riemann
surface was often forgotten by Riemann’s followers, especially at earlier stages of
the history of using Riemann’s concept. According to Papadopoulos, who in part
follows Klein’s assessment:

Riemann not only considered Riemann surfaces as associated with individual multi-valued
functions or with meromorphic functions in general, but he also considered them as objects
in themselves, on which function theory can be developed in the same way as the classical
theory of functions is developed on the complex plane. Riemann’s existence theorem
for meromorphic functions with specified singularities on a Riemann surface is also an
important factor in this setting of abstract Riemann surfaces. Riemann conceived the idea of
an abstract Riemann surface, but his immediate followers did not. During several decades
after Riemann, mathematicians (analysts and geometers) perceived Riemann surfaces as
objects embedded in three-space, with self-intersections, instead of thinking of them
abstractly. They tried to build branched covers by gluing together pieces of the complex
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plane cut along some families of curves, to obtain surfaces with self-intersections embedded
in three-space. [47, p. 242]

According to Weyl (whom Papadopoulos cites): “Thus, the concept ‘two-
dimensional manifold’ or ‘surface’ will not be associated with points in three-
dimensional space; rather it will be a much more general abstract idea,” in effect a
spatial-algebraic one in the present definition, and thus is modernist. Weyl’s position
concerning the nature of mathematical reality is a different matter. As is clear from
his philosophical writings (e.g., [72]), Weyl was ultimately a realist (albeit not
a Platonist) in mathematics and physics alike, his major contribution to quantum
mechanics notwithstanding, contributions also dealing with the role of group theory
there, yet another modernist trend in mathematics and physics alike [70]. This aspect
of the situation is, however, secondary for the moment, although one might still ask
whether if considering a given Riemann surface as either a (topologically) real two-
dimensional surface or a curve over C, deal with the same mathematical object.
Weyl continued as follows:

If any set of objects (which will play the role of points) is given and a continuous coherence
between them, similar to that in the plane, is defined we shall speak of a two-dimensional
manifold. Since all ideas of continuity may be reduced to the concept of neighborhood, two
things are necessary to specify a two-dimensional manifold:

(1) to state what entities are the “points” of the manifold;
(2) to define the concept of “neighborhood.” [73, pp. 16–17]

One hears here an echo, deliberate or not, of Hilbert’s “tables, chairs, and beer
mugs,” for “points, straight lines, and planes,” mentioned above. In the present view,
this means one should define entities, such as points, lines, neighborhoods, by using
algebraic symbols and algebraic relationships between them, without referring to
any objects in the world represented by ordinary language, even if still using this
language, as the concept of a Riemann surface as a curve and then its avatars
such as Gromov’s concept of a pseudoholomorphic curve (a smooth map from a
Riemann surface into an almost complex manifold) exemplify. Its connections to
our phenomenal sense of surface are primarily, if not entirely, intuitive, when it
comes to the idea of continuity, for example, as defined by Weyl here, in terms of the
concept of neighborhood. In any event, a Riemann surface is certainly not a curve
in any phenomenal sense. As defined by Weyl, in a pretty much standard way, the
concept of manifold is a spatial-algebraic one in the present definition. Weyl’s more
technical definition, again, pretty much standard, given next, and then his analysis
of Riemann surfaces only amplified this point.

This multifaceted nature of Riemann surfaces equally and often jointly defined
the history of complex analysis, the main initial motivation for Riemann’s intro-
duction of the concept of a Riemann surface, and the history of algebraic curves,
both building on this concept, and other developments, for example, in abstract
algebra and number theory, including Riemann’s work on the ζ -function and the
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distribution of primes.19 All these developments were unfolding towards modernism
during the period between Riemann and Weyl, whose book initiated the (modernist)
treatment of the concept of a Riemann surface that defines our understanding of the
concept. This history explains my triple subtitle, “Riemann/Riemann/Riemann”—
the Riemann of the concept of manifold, the Riemann of the concept of Riemann
surfaces, the Riemann of complex analysis. A few more Riemanns could be added.
This multiple and entangled history shaped algebraic geometry, eventually leading
to the work of A. Weil, Grothendieck, M. Artin, J. Tate, and others, ultimately
extending mathematical modernism to our own time.

5.4.3 Curves as Discrete Manifolds:
Grothendieck/Weil/Riemann

One of the great examples of this extension is the concept of algebraic curve or
algebraic variety in general over a finite field and the study of such objects by
the standard tools of algebraic topology, in particular homotopy and cohomology
theories, which have previously proven to be effective tools, technologies, for the
study of complex algebraic varieties.

The origin of this project goes back to Weil, a key figure of the later stage of
mathematical modernism, especially in bringing together algebra, geometry, and
number theory, in which he was a true heir of Fermat (and he probably saw himself
as one), as well as of Kronecker (in this case, Weil certainly saw himself as one).
Riemann is still a key figure in the history leading to Weil’s work in algebraic
geometry, first of all, again, in view of his concepts of a Riemann surface and a
covering space, but also the least by virtue of introducing the concept of a discrete
manifold in his Habilitation lecture. (Riemann, thus, was instrumental in the history
of both discrete and infinite-dimensional spaces of modernism.) G. Fano, one of
the founders of finite geometry, belonged to the Italian school of geometry (1880s–
1930s), contemporary with and an important part of the history of mathematical

19For an extensive historical account of the history of complex function theory, only mentioned in
passing here, see [10], which considers at length most key developments conjoining geometry and
complex analysis, from Cauchy to Riemann and then of Riemann’s work [10, pp. 189–213, 259–
342]. Intriguingly, the algebra of quantum field theory found the way to use Riemann’s algebraic
work, his work and his hypothesis concerning the ζ -function (one of the greatest, if not the greatest,
of yet unsolved problems of mathematics). The ζ -function plays an important role in certain
versions of higher-level quantum field theory. See P. Cartier’s discussion, which introduces an
intriguing idea of the “Cosmic Galois group” [11] and A. Connes and M. Marcoli’s book [14],
which explores the role of Riemann’s differential geometry in this context. The latter is a long
and technical work in noncommutative geometry, which uses Grothendieck’s motive cohomology
theory, but see p. 10 for an important definition of “the Riemann-Hilbert correspondence.” This is
yet another testimony to the fact that much of modernism in mathematics and even in physics takes
place along the trajectory or again, a network of trajectories between Riemann and Grothendieck.
See note 16.
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modernism (Fano was a student of F. Enriques), strongly influenced by Riemann’s
thought. Representatives of the Italian school (quite a few of them, even counting
only major figures) made major contributions to many areas of geometry, especially
algebraic geometry, which formed an important part of the very rich and complex
(modernist) history, leading to Weil’s work under discussion. Weil suggested
that a cohomology theory for algebraic varieties over finite fields, now known
as Weil cohomologies, could be developed, by analogy with the corresponding
theories for complex algebraic varieties or topological manifolds in general. Weil’s
motivation was a set of conjectures (these go back to Gauss), known as the Weil
conjectures, concerning the so-called local ζ -functions, which are the generating
functions derived from counting numbers of points on algebraic varieties over finite
fields. These conjectures, Weil thought, could be attacked by means of a proper
cohomology theory, although he did not propose such a theory himself.

In order to be able to do so, one needed, first, a proper topology, which was
nontrivial because the objects in question are topologically discrete. A more “native”
topology that could be algebraically defined by them, known as Zariski’s topology,
did not work, because it had too few open sets. The decisive ideas came from
Grothendieck, helped by the sheaf-cohomology theory and category theory, known
as “cohomological algebra,” by then the standard technology of algebraic topology.
Using these tools, a hallmark of Grothendieck’s thinking throughout his career, and
his previous concepts, such as that of “scheme,” eventually led him to topos theory,
arguably the culminating example of spatial algebra, and étale cohomology, as a
viable candidate for Weil’s cohomology, which it had quickly proven to be. By
using it, Grothendieck (with Artin and J.-L. Verdier) and P. Deligne (his student)
were able to prove Weil’s conjectures, and then Deligne, who previously proved
the Riemann hypothesis conjecture (considered the most difficult one), found and
proved a generalization of Weil’s conjectures. Grothendieck’s key, extraordinary,
insight, also extending what I call here spatial algebra in a radically new direction,
was to generalize, in terms of category theory, the concept of “open set,” beyond
a subset of the algebraic variety, which was possible because the concept of sheaf
and of the cohomology of sheaves could be defined by any category, rather than
only that of open sets of a given space. Étale cohomology is defined by this type
of replacement, specifically by using the category of étale mappings of an algebraic
variety, which become “open subsets” of the finite unbranched covering spaces of
the variety, a vast and radical generalization of Riemann’s concept of a covering
space. Grothendieck was also building on some ideas of J.-P. Serre. Part of the
origin of this generalization was the fact that the fundamental group of a topological
space, say, again, a Riemann surface, could be defined in two ways: it can either
be defined more geometrically, as a group of the sets of equivalence classes of the
sets of all loops at a given point, with the equivalence relation given by homotopy
(itself an example of the history of the idea of curve); or it can be defined even
more algebraically, as a group of transpositions of covering spaces. In this second,
algebraic, definition, the fundamental group is analogous to the Galois group of
the algebraic closure of a field. Serre was the first to consider for finite fields,
importantly for Grothendieck’s work on étale cohomology, a concept that, thus, has
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its genealogy in both Galois’ and Riemann’s thought. (The connection has been
established in the case of Riemann surfaces long before then [e.g., [73, p. 58]].)
Grothendieck’s concept of étale mappings gives a sufficient number of additional
open sets to define adequate cohomology groups for some coefficients, for algebraic
varieties over finite fields. In the case of complex varieties, one recovers the standard
cohomology groups (with coefficients in any constructible sheaf).

Some of the most elegant calculations concern algebraic curves over alge-
braically closed fields, beginning with elliptic ones [4, 5]. These calculations are also
important because they are the initial step in calculating étale cohomology groups
for other algebraic varieties by using the standard means of algebraic topology,
such as spectral sequences of a fibration. My main point at the moment is that
(spatial) algebra makes algebraic curves over such finite fields fully mathematically
analogous to standard algebraic curves, beginning, again, with elliptic curves, as
studied by Fermat, again, a major inspiration for Weil.

Now, the category of étale mapping is a topos, a concept that is, for now, the most
abstract form of what I call here spatial algebra. Although, as became apparent later,
étale cohomologies could be defined for most practical uses in simpler settings, the
concept of topos remains crucial, especially in the present context, because it can be
seen as the concept of a covering space over a Riemann surface converted into the
(spatial-algebraic) concept of topology of the surface itself, and then generalized
to any algebraic variety. The concept of topos also came to play a major role
in mathematical logic, a major development of mathematical modernism, thus
bringing it together with the modernist problematic considered here. The subject
cannot, however, be addressed here, except by noting that mathematical logic
is already an example of modernist algebraization of mathematics, with radical
epistemological implications concerning the nature of mathematical reality, or the
impossibility of such a concept. On the other hand, Grothendieck’s use of his
topoi in algebraic geometry is essentially ontological rather than logical, although
his overall philosophical position concerning the nature of mathematical reality
remains somewhat unclear, for example, whether it conforms or not to mathematical
Platonism, and the subject will be put aside here as well. In any event, it does not
appear that Grothendieck was ever thinking of his topoi or in general in terms of
breaking with the ontological view of mathematics. My main focus here is the
mathematical technologies that the concept of topos, whatever its ontological status,
enables, such as étale cohomology. Such technologies may suggest a possible break
with the possibility of the ultimate ontological description of mathematical reality,
again, assuming that any ultimate reality, say, again, of the type considered in
physics, is even possible in mathematics.

It would not be possible here to present topos theory in its proper abstractness
and rigor, prohibitive even for those trained in the field of algebraic geometry.
The essential philosophical nature of the concept, briefly indicated above, may,
however, be sketched in somewhat greater detail, as an example of both a rich
mathematical concept in its own terms and of the modernist problematic in question
here. First, very informally, consider the following way of endowing a space with a
structure, generalizing the definition of topological space in terms of open subsets,
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as mentioned above. One begins with an arbitrarily chosen space, X, potentially any
given space, which may initially be left unspecified in terms of its properties and
structure. What would be specified are the relationships between spaces applicable
to X, such as mapping or covering one or a portion of one, by another. This structure
is the arrow structure Y → X of category theory, where X is the space under
consideration and the arrow designates the relationship(s) in question. One can also
generalize the notion of neighborhood or of an open subspace of (the topology of)
a topological space in this way, by defining it as a relation between a given point
and space (a generalized neighborhood or open subspace) associated with it. This
procedure enables one to specify a given space not in terms of its intrinsic structure
(e.g., a set of points with relations among them) but “sociologically,” throughout its
relationships with other spaces of the same category, say, that of algebraic varieties
over a finite field of characteristic p [38, p. 7]. Some among such spaces may
play a special role in defining the initial space, X, and algebraic structures, such
as homotopy and cohomology, as Riemann in effect realized in the case of covering
spaces over Riemann surfaces, which, as I explained, was one of the inspirations for
Grothendieck’s concept of topos and more specifically of an étale topos.

To make this a bit more rigorous (albeit still quite informal), I shall briefly sketch
the key ideas of category theory. It was introduced as part of cohomology theory in
algebraic topology in 1940 and, as I said, later extensively used by Grothendieck in
his approach to cohomological algebra and algebraic geometry, eventually leading
him to the concept of topos.20 Category theory considers multiplicities (which need
not be sets) of mathematical objects conforming to a given concept, such as the
category of differential manifolds or that of algebraic varieties, and the arrows
or morphisms, the mappings between these objects that preserve this structure.
Studying morphisms allows one to learn about the individual objects involved, often
to learn more than we would by considering them only or primarily individually. In
a certain sense, in his Habilitation lecture, Riemann already thinks categorically.
He does not start with a Euclidean space. Instead, the latter is just one specifiable
object of a large categorical multiplicity, here that of the category of differential or,
more narrowly, Riemannian manifolds, an object marked by a particularly simple
way we can measure the distance between any two points. Categories themselves
may be viewed as such objects, and in this case one speaks of “functors” rather
than “morphisms.” Topology relates topological or geometrical objects, such as
manifolds, to algebraic ones, especially, as in the case of homotopy and cohomology
groups, introduced by Poincaré. Thus, in contrast to geometry (which relates its
spaces to algebraic aspects of measurement), topology, almost by its nature, deals

20One of his important, but rarely considered, contributions is his work on Teichmüller space, the
genealogy of which originates in Riemann’s moduli problem, powerfully recast by Grothendieck
in his framework. Especially pertinent in the present context is the idea of a “Teichmüller curve”
and then Grothendieck’s recasting of it, another manifestly modernist incarnation of the idea of
curve, via Riemann. Conversely, the theory provided an important case for Grothendieck to use his
new technology. Étale cohomology came next. This is yet another modernist trajectory extending
from Riemann and Grothendieck. For an excellent account, see A’Campo et al. [1].
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with functors between categories of topological objects, such as manifolds, and
categories of algebraic objects, such as groups.

A topos in Grothendieck’s sense is a category of spaces and arrows over a given
space, used especially for the purpose of allowing one to define richer algebraic
structures associated with this space, as explained above. There are additional
conditions such categories must satisfy, but this is not essential at the moment.
To give one of the simplest examples, for any topological space S, the category
of sheaves on S is a topos. The concept of topos is, however, very general and
extends far beyond spatial mathematical objects (thus, the category of finite sets is
a topos); indeed, it replaces the latter with a more algebraic structure of categorical
and topos-theoretical relationships between objects. On the other hand, it derives
from the properties of and (arrow-like) categorical relationships between properly
topological objects. The conditions, mentioned above, that categories that form
topoi must satisfy have to do with these connections.

Beyond enabling the establishing of a new cohomology theory for algebraic
varieties, as considered above, topos theory allows for such esoteric constructions
as nontrivial or nonpunctual single-point “spaces” or, conversely, spaces (topoi)
without points (first constructed by Deligne), sometimes slyly referred to by
mathematicians as “pointless topology.” Philosophically, this notion is far from
pointless, especially if considered within the overall topos-theoretical framework. In
particular, it amplifies a Riemannian idea that “space,” defined by its relation to other
spaces, is a more primary object than a “point” or, again, a “set of points.” Space
becomes a Leibnizean, “monadological” concept, insofar as points in such a space
(when it has points) may themselves be seen as a kind of monad, thus also giving a
nontrivial structure to single-point spaces. These monads are certain elemental but
structured entities, spaces, rather than structureless entities (classical points), or at
least as entities defined by (spatial) structures associated with and defining them [1].
Naturally, my appeal to monads is qualified and metaphorical. Leibniz’s monads are
elemental souls, the atoms of soul-ness, as it were. One might, however, also say,
getting a bit more mileage from the metaphor, that the space thus associated with
a given point is the soul of this point, which defines its nature. In other words,
not all points are alike insofar as the mathematical (and possibly philosophical)
nature of a given point may depend on the nature or structure of the space or topos
to which it belongs or with which it is associated in the way just described. This
approach gives a much richer architecture to spaces with multiple points, and one
might see (with caution) such spaces as analogous to Leibniz’s universe composed
by monads. It also allows for different (mathematical) universes associated with
a given space, possibly a single-point one, in which case a monad and a universe
would coincide. Grothendieck’s topoi are possible universes, possible worlds, or
com-possible worlds in Leibniz’s sense, without assuming, like Leibniz (in dealing
with the physical world), the existence of only one of them, the best possible.

One might also think of this ontology as an assembly of surface ontologies
(Grothendieck’s concept of topos is, again, ontological, rather than logical, as in
his logical followers), in the absence of any ultimate ontology, or even, as against
physics, any ultimate mathematical or otherwise mental reality, thus connecting
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on modernist lines the multiple and the unthinkable. Topoi are multiple universes,
defined ontologically, in the absence of a single ultimate reality underlying them;
they are investigated by means of technologies such as cohomologies or homotopies
(which can be defined for them as well). I shall not consider Grothendieck’s topos
as such from this perspective, which, again, does not appear to be Grothendieck’s
own. Instead, I shall discuss next the ontological and epistemological architecture
of modernism mathematics more generally in relation to the concept of technology,
conceived broadly so as to include the means by which mathematics studied itself;
and I shall briefly comment on topos theory in this context. Quantum theory will, yet
again, serve as a convenient bridge, in this case as much because of the differences
as the similarities between physics and mathematics.21

5.5 Mathematical Modernism Between Ontologies
and Technologies

While, roughly speaking, technology is a means of doing something, enabling us
to get “from here to there,” as it were, the concept of mathematical technology
that I adopt extends more specifically the concept of “experimental technology”
in modern, post-Galilean, physics, defined, as explained, by its jointly experimental
and mathematical character. I note, first, that experimental technology is a broader
concept than that of measuring instruments, with which it is most commonly
associated in physics. It would, for example, involve devices that make it possible to
use the measuring instruments, a point that, as will be seen, bears on the concept of
technology in mathematics. Thus, the experimental technology of quantum physics,
from Geissler tubes and Ruhmkorrf coils of the nineteenth century to the Large
Hadron Collider of our time, enables us to understand how nature works at the
ultimate level of its constitution. In the present interpretation, this technology
allows us to know the effects this constitution produces on measuring devices
(described, along with these effects themselves, by classical physics), without
allowing us to represent or even conceive of the character of this constitution. The
character of these effects is, however, sufficient for creating theories, defined by
their mathematical technologies, such as quantum mechanics and quantum field
theory, that can predict these effects. Thus, quantum physics is only about the
relationships between mathematical and experimental technologies used, vis-à-
vis classical physics or relativity, or mathematics itself. All mathematics used in
quantum physics is technology; in mathematics, or in classical physics or relativity,
some mathematics is also used ontologically. Quantum objects themselves are
not technology; they are a form of reality that technology helps us to discover,
understand, work with, and so forth, but in this case, at least in the present

21The discussion to follow is partly adopted from [54, pp. 265–274]. My argument here is
essentially different, however.
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interpretation, without assuming or even precluding any ontological representation
of this reality. Quantum objects can of course become part of technology, beginning
with the quantum parts of measuring instruments through which the latter interact
with quantum objects, or as parts of devices we use elsewhere, such as lasers,
electronic equipment, MRI machines, and so forth.

In the wake of Heisenberg’s discovery and Born and Jordan’s work in 1925 [9,
31], Bohr commented as follows:

In contrast to ordinary mechanics, the new quantum mechanics does not deal with a space-
time description of the motion of atomic particles. It operates with manifolds of quantities
which replace the harmonic oscillating components of the motion and symbolize the
possibilities of transitions between stationary states [manifested in measuring instruments].
These quantities satisfy certain relations which take the place of the mechanical equations
of motion and the quantization rules [of the preceding quantum theory]. . . .

It will interest mathematical circles that the mathematical instruments created by the
higher algebra play an essential part in the rational formulation of the new quantum
mechanics. Thus, the general proofs of the conservation theorems in Heisenberg’s theory
carried out by Born and Jordan are based on the use of the theory of matrices, which go
back to Cayley and were developed especially by Hermite. It is to be hoped that a new era
of mutual stimulation of mechanics and mathematics has commenced. To the physicists it
will at first seem deplorable that in atomic problems we have apparently met with such a
limitation of our usual means of visualization. This regret will, however, have to give way
to thankfulness that mathematics in this field, too, presents us with the tools to prepare the
way for further progress. [8, v. 1, pp. 48, 51; emphasis added]

Bohr’s appeal to “the rational formulation of the new quantum mechanics”
merits a brief digression, especially in conjunction with his several invocations of
the “irrationality” inherent in quantum mechanics, a point often misunderstood.
The “irrationality” invoked here and elsewhere in Bohr’s writings is not any
“irrationality” of quantum mechanics, which Bohr, again, sees as a “rational” theory
[8, v. 1, p. 48]. Bohr’s invocation of “irrationality” is based on an analogy with
irrational numbers, reinforced perhaps by the apparently irreducible role of complex
numbers and specifically the square root of −1, i (an irrational magnitude in the
literal sense because it cannot be presented as a ratio of two integers) in quantum
mechanics, or quantum field theory. It is part of the history of the relationships
between algebra (initially arithmetic) and geometry, from the ancient Greeks
on. As noted earlier, the ancient Greeks, who discovered the (real) irrationals,
could not find an arithmetical, as opposed to geometrical, form of representing
them. The Greek terms were “alogon” and “areton,” which may be translated as
“incommensurable” and “incomprehensible,” the latter especially fitting in referring
to quantum objects and processes. The problem was only resolved, by essentially
modernist mathematical means (algebra played a major role), in the nineteenth
century, after more than 2000 years of effort, with Dedekind and others, albeit, in
view of the undecidability of Cantor’s continuum hypothesis, perhaps only resolved
as ultimately unresolvable. It remains to be seen whether quantum mechanical
“irrationality” will ever be resolved by discovering a way to mathematically or
otherwise represent quantum objects and processes. As thing stand now, quantum
mechanics is a rational theory of something that is irrational in the sense of being
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inaccessible to a rational representation or even to thinking itself. In other words,
at stake is a replacement of a rational representational theory, classical mechanics,
with a rational probabilistically or statistically predictive theory. This replacement
is the rational quantum mechanics introduced by Heisenberg, a reversal of what
happened in the crisis of the incommensurable in ancient Greek mathematics, which
compelled it to move from arithmetic to geometry.

Heisenberg’s thinking revolutionized the practice of theoretical physics and
redefined experimental physics or reflected what the practice of experimental
physics had in effect become in dealing with quantum phenomena. The practice
of experimental physics no longer consists of tracking what happens or what would
have happened independently of our experimental technology, but in creating new
configurations of this technology, which allows us to observe effects of quantum
objects and behavior manifested in this technology.22 This practice reflects the
fact that what happens is unavoidably defined by what kinds of experiments
we perform, and how we affect quantum objects, rather than by tracking their
independent behavior, although their independent behavior does contribute to what
happens. The practice of theoretical physics no longer consists in offering an
idealized mathematical representation of quantum objects and their behavior, but
in developing mathematical technology that is able to predict, in general (in
accordance with what obtains in experiments) probabilistically, the outcomes of
always discrete quantum events, observed in the corresponding configurations of
experimental technology.

Taking advantage of and bringing together two meanings of the word “experi-
ment” (as a test and as an attempt at an innovative creation), one might say that
the practice of quantum physics is the first practice of physics that is both, jointly,
fundamentally experimental and fundamentally mathematical. That need not mean
that this practice has no history; quite the contrary, creative experimentation has
always been crucial to mathematics and science, as the work of all key figures
discussed in this article demonstrates. Galileo and Newton, are two great examples
in classical physics: they were experimentalists, both in the conventional sense (also
inventors of new experimental technologies, new telescopes in particular) and, in
their experimental and theoretical thinking alike, in the sense under discussion at
the moment. Nevertheless, this experimentation acquires a new form with quantum
mechanics and then extends to higher level quantum theories, and, as just explained,
a new understanding of the nature of experimental physics. The practice of quantum
physics is fundamentally experimental because, as just explained, we no longer
track, as we do in classical physics or relativity, the independent behavior of the
systems considered, and thus track what happens in any event, by however ingenious

22I qualify by “unavoidably” because we can sometimes define by an experiment what will happen
in classical physics, say, by rolling a ball on a smooth surface, as Galileo did in considering inertia.
In this case, however, we can then observe the ensuing process without affecting it. This is not so in
quantum physics, because any new observation essentially interferes with the quantum object under
investigation and defines a new experiment and a new course of events. Only some observations
do in classical physics.



5 On the Concept of Curve 201

experiments. We define what will happen in the experiments we perform, by how
we experiment with nature by means of our experimental technology.

By the same token, quantum physics is fundamentally mathematical, because
its mathematical formalism is equally not in the service of tracking, by way
of a mathematical representation, what would have happened anyhow, which
tracking would shape the formalism accordingly, but is in the service of predictions
required by experiments. Indeed, quantum theory experiments with mathematics
itself, more so and more fundamentally than does classical physics or relativity.
This is because quantum theorists invent, in the way Heisenberg did, effective
mathematical schemes of whatever kind and however far they may be from our
general phenomenal intuition, rather than proceeding by refining mathematically
our phenomenal representations of nature, which limits us in classical physics or
even (to some degree) in relativity. One’s choice of a mathematical scheme becomes
relatively arbitrary insofar as one need not provide any representational physical
justification for it, but only need to justify this scheme by its capacity to make correct
predictions for the data in question. It is true that in Heisenberg’s original work the
formalism of quantum mechanics extended (via the correspondence principle) from
the representationally justified formalism of classical mechanics. Heisenberg and
then other founders of the theory (such as Born and Jordan, or Dirac) borrowed
the equations of classical mechanics. However, they replaced the variables used in
these equations with Hilbert-space operators, thus using modernist mathematics,
which was no longer justified by their representational capacity but, in Heisenberg’s
words, by “the agreement of their predictions with the experiment” [32, p. 108].
One’s mathematical experimentation may, thus, be physically motivated, but it is
not determined by representational considerations, the freedom from which also
liberates one’s mathematical creativity. Rather than with the equations of classical
mechanics, one could have started directly with Hilbert-spaces and derived the
necessary formalism by certain postulates, as was done by von Neumann in his
classical book, admittedly, with quantum mechanics already in place [66]. Other
versions of the formalism, such as the C*-algebra version and, more recently, the
category-theory version are products of this type of mathematical experimentation.
It is true that all these versions have thus far been essentially mathematically
equivalent, and in particular, the role of complex numbers appears to be unavoidable.
It is difficult, however, to be entirely certain that this will remain the case in the
future, even if no change is necessary because of new experimental data. The
invention of quantum theory was essentially modernist in its epistemology and its
spirit of creative experimentation (which it shared with contemporary modernist
literature and art) alike, as well as in its use of modernist mathematics. Heisenberg
was the Kandinsky of physics.

One could indeed think of the technological functioning of mathematics even in
mathematics itself: certain mathematical instruments, such as homotopy or coho-
mology groups, are technologies akin to measuring instruments in physics, with the
role of reality taken in each case by the corresponding topological space. According
to J.-P. Marquis, who borrows his conception of mathematical technology from
quantum physics “they provide information about the corresponding topological
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space. . . . [T]hey are epistemologically radically from . . . transformation [symmetry]
groups of a space. They do not act on anything. The purpose of these geometric
devices is to classify spaces by their different homotopy [or cohomology] types.”
By contrast, fibrations, for example, important for using homotopy and cohomology
groups, including, as noted, in étale cohomologies, are not “measuring instruments,”
but rather “devices that make it possible to apply measuring instruments [such
as cohomology and homotopy groups] and other devices” [39, p. 259]. The key
point here is that the invention and use of mathematical technologies is crucial for
mathematics, in modernism from Riemann’s concept of the genus of a Riemann
surface to Grothendieck’s invention of étale cohomology, with the whole history of
algebraic topology between them, keeping in mind that any technology can and is
eventually likely to become obsolete, as Marquis notes [39, p. 259]. In quantum
theory, all mathematics used is technology (vs. classical physics or relativity where
it can also be used ontologically) and it can become obsolete, too, as that of classical
physics became in quantum physics. Ontologies can become obsolete, too, such as,
at least for some, that of set theory, replaced by category theory, which redefines,
for example, the concept of topological space. On the other hand, the concept of
physical reality is unlikely to go away any time soon. (The name may change, and
“matter” has sometimes been used instead.) Could the same be said about some
form of mathematical reality? I would like to offer a view that suggests that it is
possible to answer this question in the negative, thus fundamentally differentiating
mathematical and physical reality.

First, I note that, in parallel with the experimental and mathematical technology
used in quantum physics, the mathematical technology in mathematics may not
only be used to help us to represent mathematical reality (although it may be used
in this way, too) but also to enable us to experiment with this reality, without
representing it. In mathematics, moreover, where all our ontologies and technologies
are mental (although they can be embodied and communicated materially), one
need not assume the independent reality, shared or not, of the type assumed,
as material reality, in physics, beyond representation or even conception as the
ultimate character of this reality may be assumed to be, as it is in quantum
theory in nonrealist interpretations. Technically, it follows that, if this reality is
beyond representation or even conception, it is not possible to rigorously claim
that this reality as such is single any more than multiple. The “sameness” of
this reality is itself an effect ascertainable by our measuring instruments, which,
however, compel us to assume that we deal with the same types of quantum
objects (electrons, photons, and so forth) and their composites, regardless where
and when we perform our experiments. In any event, mathematical realities are
always multiple, a circumstance of which, as we have seen, Grothendieck’s topos
theory takes advantage, as it also experiments with and even creates them. In fact,
as I shall now suggest, mathematical realities always belong to individual human
thinking, although they may be related to each other. Indeed, they always are so
related, to one degree or another, which prevents them from being purely subjective.
On the other hand, they can acquire a great degree of objectivity because they can
be (re)constructed, for example in checking mathematical proofs. This situation is
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parallel to that of quantum physics, too, where, as explained earlier, this objectivity
is provided by quantum phenomena, observed in measuring instrument, while,
however, the ultimate material reality is still assumed.

The nature of mathematical reality, representable or not, has been debated since
Plato, whose ghost still overshadows this debate in modernist mathematics, as Gray
rightly suggests, and the differences between his and the present view of modernism
do not affect this point [26]. Mathematical Platonism assumes the existence of math-
ematical reality, whether representable by our mathematical concept or not (there are
different views on this point within mathematical Platonism), as independent of our
thinking. I shall not enter these debates, including those concerning mathematical
Platonism, apart from noting that the questions of the domain, “location,” of this
reality have, in my view, never been adequately answered. It is difficult to think of
that which is not material and yet is outside human thought, unless it is divine,
which, however, is not a common assumption among those who subscribe to
mathematical Platonism. In any event, I only assume here the reality of human
thought, thus, generally, different for each of us, as the only domain in relation
to which one can speak of the reality of mathematical objects and concepts, in
juxtaposition to the material reality of nature in physics. It is possible to assume
that the Platonist mathematical reality is a potentiality—the same, even if multiply
branched, potentiality—in principle realizable by human thought. I shall comment
on this possibility presently.

What could be claimed to exist, ontologically, in our thought without much
controversy are mathematical specifications, from strict definitions to partial and
indirect characterizations (implying more complete or direct future specifications).
Such specifications would involve concepts, structures, logical propositions, or still
others elements, which could be geometrical or topological, as well as algebraic.
In this respect, there is no difference between geometrical (or topological) and
algebraic specifications. All such specifications can, at least in principle, be
expressed and presented in language, verbally or in writing, visually, digitally for
example, in other words technologically. While algebra helps our mathematical
writing (to paraphrase Tate, “think geometrically, write algebraically!”), digital
technology helps our geometrical specifications and expression. The computer-
generated images of chaos theory are most famous, but low-dimensional topology
and geometry have been similarly helped by digital technology.

The question, then, is whether anything else exists in our thought beyond
such specifications and the local ontologies they define, at least in our conscious
thought, because we can unconsciously think of other properties of a given object
or field, which either may eventually be made conscious or possibly never become
conscious and thus known. This qualification does not, however, change the nature
of the question, because one could either claim that the unconscious could still
only contain such specifications or that the object or broader reality in question,
as different or exceeding such specifications, somehow exists there. In other
words, essentially the same alternative remains in place. On the other hand, some
unconscious specifications may never become conscious. It is quite possible that
some mathematics, even very great mathematics, or for that matter poetry, never left
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the unconscious, and there are accounts by mathematicians or poets of dreaming
of mathematics or poetry which could not be remembered as what it actually was,
although sometimes it can. Only our memory of dreams is conscious, but never
dreams themselves. By the same token, whatever is in our unconscious can at
some point enter our consciousness: if the Chauvet Cave is the cave of dreams,
it is because the consciousness of those who painted them realized their previously
unconscious thinking, even though some parts of these painting were, undoubtedly,
still manifestations of the unconscious. It is beyond doubt also that our unconscious
does a great deal of mathematical thinking, as it does most of our thinking in general,
and some of it may never be realized by our conscious thought. Sometimes, not
uncommonly in the logical foundations of mathematics (Hilbert held this view),
the consistency of a given definition of a mathematical entity is identified with
the existence of the corresponding object, a form of mathematical Platonism, if
this existence is assumed to be possible outside human thought. Either way, this
view poses difficulties given Gödel’s incompleteness theorems or even Cantor’s
set theory and its paradoxes. Our mathematical specifications must of course be
logically consistent.

My assumption here is that nothing mathematical actually exists in thought
beyond what can be thus specified, perhaps, again, in one’s unconscious. This dif-
ferentiates the situation from that of quantum physics. While quantum phenomena
or quantum theories are specified in the same sense (and quantum theories are
mathematical in the first place), one assumes, by a decision of thought concerning
one’s interpretation of quantum phenomena, the existence of the ultimate physical
reality, which is beyond representation or even conception and thus specification. I
leave aside for the moment whether something nonmathematical can exist in thought
apart from any specification, although the position I take here compels me to answer
in the negative in this case as well. In the present view, only physical matter in its
ultimate constitution exists in this way. This assumption has been challenged as
well, with Plato as the most famous ancient case and Bishop Berkeley as the most
famous modern case, and is occasionally revived, as a possibility, in the context
of quantum theory, but it is still a common assumption. As just noted, it is quite
possible that there are (mentally) real things that exist in our unconscious that
will never become conscious. It is equally possible, however, that they will enter
our consciousness at one point or another. The ultimate constitution of nature, in
this interpretation of quantum physics, is not assumed to ever become available,
as things stand now. This does not of course preclude that such specifications
cannot be made more complete or modified by new concepts, structures, and logical
propositions, which would change the objects or concept in question, as say, a
Riemann surface, as it developed during over, by now, a long period. However, in
the present view, it is no longer possible to see such changes as referring to the same
mathematical object (which can, again, be a broad and multiple entity), approached
by our evolving concepts. Instead, they create new objects or concepts. Thus, new
classes of Riemann surfaces are created by each modification of the concept. There
are no Riemann surfaces as such, existing by themselves and in themselves, at any
given point of time; there is only what we can think or say about them at a given
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point of time. By contrast, as things stand now, nothing can be in principle improved
in our understanding of the ultimate constitution of matter. We can only improve our
understanding and, by using mathematics and new experimental technology, our
predictions of the effects on this constitution manifested in measuring instruments.

The present view of mathematical reality has thus a constructivist flavor, in part
following Kant’s view of mathematics as the synthetic construction of mathematical
proposition and concepts by thought [35].23 According to Badiou, “mathematics
is a thought,” part of the ontology of thought, and for Badiou this ontology is
mathematical, an argument he makes via modernist mathematics, from Cantor’s
set theory to Grothendieck’s topos theory [7, p. 45]. Without addressing Badiou’s
argument itself (different from the one offered here), I take his thesis literally in the
sense that mathematics is only what can be thought, created by thought and then
expressed, communicated, and so forth, thus also in accord with the Greek meaning
of máthẽma as that which can be known and learned, or taught.

It is of course not uncommon to encounter a situation in which a mathematical
entity (again, possibly a large and multiple one) that cannot be given, now or
possibly ever, an adequate mathematical specification, and is only specified partially
mathematically or more fully otherwise. It may, for example, be specified as a
phenomenal object or set of objects by means of philosophical concepts, but that
can nevertheless be consistently related to, indirectly, and by means of a more
properly specified mathematical concept or set of concepts. The latter concepts
may, then, function as mathematical technologies which enable one to work with
and, to the degree possible, understand this entity, as fibrations or homotopy
and cohomology group allow us to understand better and more properly specify
the corresponding topological spaces. These technologies are crucial and, while
found in all mathematics, their persistent use, in part, against, relying on ontology,
is characteristic of mathematical modernism, because of the persistence of the
situations of the type just described. In the present view, however, any such entity
can only be seen as existing or real if it is sufficiently specified in some way: in terms
of phenomenal intuition or philosophical concepts, perhaps partially supplemented
by mathematical concepts or structures. It cannot be assigned reality beyond such a
specification.

In fact, as we know, in view of Gödel’s incompleteness theorems, mathematics,
at least if it is rich enough to contain arithmetic, cannot completely represent itself:
it cannot mathematically formalize all of its concepts, propositions, or structures,
and ultimately itself so as to guarantee its consistency. But it does not necessarily
follow that the corresponding unspecifiable reality exists, although one can make
this assumption, as Gödel ultimately did on Platonist lines, claiming that there is,
at least for now, no human means, mathematical or other, to specify this reality. It
only follows that it is impossible to prove that all possible specifications, within

23I do not refer by this statement to the trend known as “constructivism” in the foundational
philosophy of mathematics, from intuitionism on, relevant as it may be, in part given Kant’s
influence. I use the term “constructivist” more generally.
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any such system, are consistent. (Gödel’s theorems do allow that the system can in
fact be proven to be inconsistent.) What may be inconceivable is why this is the
case, the reality that is responsible for it, which is, however, not a mathematical or
even meta-mathematical question, any more than the question why our interaction
with nature by means of quantum physics enables us to make correct probabilistic
predictions. These questions belong to the biological and specifically neurological
nature of our thought, although they may not ultimately be answerable by biology
or neuroscience either.

One could speak in considering such as yet unspecified mathematical objects
or concepts in terms of a hypothetical potentiality, defined by the assumption that
a mathematical object or concept of a certain type could or should exist. Such
potentialities are, moreover, only partially, probabilistically, determined by what is
sometimes called plausible reasoning, very important in mathematical thinking, as
rightly argued by Polya [58]. There are different and possibly incompatible way in
which this potentially may be become reality. Consider, paradigmatically, thinking
of the equation X2 + 1 = 0 and complex numbers. While this equation (which
may be safely assumed to exist in our thought as a mathematical entity) had no real
solution, one could have and some had envisioned that it should have a solution
and that a mathematical entity or a multiple of such entities, a new type of number,
should exist. This hypothesis came to be realized, also literally, insofar, as complex
numbers eventually became a mathematical reality. In the present view, however,
they were not a mathematical reality before they were correspondingly specified in
somebody’s thought, say, by the time of Gauss, who was crucial in allowing complex
numbers to become a mathematical reality, each time one thinks of them, but in the
present view, not otherwise.

The present view, thus, precludes the assumption of an independent mathematical
reality. This assumption, again, commonly defines reality in physics, even if this
reality is assumed to be beyond representation or conception, as in quantum
theory, thus, consistently with the present view of physical reality, as opposed to
mathematical Platonism or other positions that claim the existence of mathematical
reality independent of human thought, which is in conflict with the present view
of mathematical reality. In sum, in the present view, in mathematics all reality is
constructed, and this construction may, ontologically, involve multiple “mathemat-
ics,” as Grothendieck’s topos-theoretical ontology shows. This multiplicity is also
a consequence of Gödel’s undecidability, as exemplified by Cantor’s continuum
hypothesis, mentioned above. This hypothesis was crucial not only for the question
of continuity but also for the question of Cantor’s hierarchical order of infinities
(the infinity of which was one of his discoveries) and thus for the whole edifice of
Cantor’s set theory. The hypothesis was proven undecidable by Cohen. It follows,
however, that one can extend classical arithmetic in two ways by considering
Cantor’s hypothesis as either true or false, that is, by assuming either that there is no
such intermediate infinity or that there is. This allows one, by decisions of thought,
to extend arithmetic into mutually incompatible systems that one can construct,
ultimately infinitely many such systems, because each on them will contain at least
one undecidable proposition. It is, as noted, in principle possible to assume that
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all such possible constructions form a single, if multiply branching, potentiality,
ultimately realizable in principle. I shall not assess this view except by noting
that even if one adopted it strictly in this form, one would still only allow for a
vast constructible mathematical potentiality rather than independent mathematical
reality. Would this view be in practice equivalent to mathematical Platonism? While
it may be in practice, the difference in principle would remain important, both
in general and because that it would be impossible to assume that, being infinite,
this potentiality could ever be realized. In practice, mathematics, again, creates
new mathematical realities and, with them, new mathematical potentialities all the
time, quite apart from any undecidable propositions. This process will only end
when mathematics is no longer with us, and one day it might not be, although
curves are likely to remain with us as long as we are around. By contrast, in
quantum physics in nonrealist interpretations, the ultimate reality is assumed to
exist as unconstructible or (as this view is still constructivist), constructed as
unconstructible. But this unconstructible physical reality may be related to by means
of constructed mathematical realities, such as that of Hilbert-spaces mathematics,
again, meaning by a Hilbert space what we can think about or use and objectively
share, rather than an independently existent mathematical object.

Thus, along with all realism in physics, the present view radically breaks with
all Platonism in mathematics, especially with mathematical Platonism, but arguably
with any form of Platonism hitherto. As I said, not all Platonism in mathematics
is mathematical Platonism: that of Plato is not. Some forms of realism in physics
are, again, forms of Platonism, too, as are, for example, some versions (known as
ontological) of the so-called structural realism, according to which mathematical
structures are the only reality [36]. As I indicated, Heisenberg, in his later thinking
was inclined to this type of view, as against the time of his creation of quantum
mechanics [33, pp. 91, 147–166].

While, however, breaking with Platonism, even Plato’s own, the modernist
thinking considered here in mathematics and physics does retain something, perhaps
the most important thing, from Plato—from the spirit of Plato—rather than the ghost
of Plato, intimately linked as these two words, spirit and ghost, are. This thinking
retains the essential role of the movement of thought, something as crucial to
Plato as to mathematical modernism, however anti-Platonist the latter may become.
Heisenberg (whose father was a classicist) was reading Plato’s Timaeus in the course
of his discovery of quantum mechanics, in which he in effect reinvented Hilbert
spaces over C, a double, physical and mathematical, modernism [43, v. 2, pp. 11–
14]. Some of Plato’s thinking, led Heisenberg to his invention of a new mathematical
technology in physics, under radically non-Platonist, epistemological assumptions.
(Heisenberg, again, adopted a more Platonist view in his later thinking.) That this
technology already existed in mathematics does not diminish the significance of this
mathematical invention, especially given that Heisenberg used infinite unbounded
matrices, never considered previously. The work of the mathematical figures
considered here, from Fermat and Descartes to Riemann and from Riemann to
Grothendieck and beyond, to split for a moment (but only for a moment) modernity
and modernism, was shaped by the spirit of the movement of thought, the spirit
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that connects modernity and modernism, in mathematics and science, as it does in
philosophy and art.

5.6 Conclusion

I close on a philosophical and artistic note by citing Heidegger’s conclusion in “The
Question Concerning Technology”:

There was a time when it was not technology alone that bore the name techne. Once that
revealing that brings forth truth into the splendor of radiant appearing also was called
techne.

Once there was a time when the bringing forth of the true into the beautiful was called
techne. And the poiesis of the fine arts also was called techne.

In Greece, at the outset of the destining of the West, the arts soared to the supreme height
of the revealing granted them. . . . And art was simply called techne. It was a single, manifold
revealing. It was . . . , promos, i.e., yielding to the holding-sway and the safekeeping of truth.

The arts were not derived from the artistic. Art works were not enjoyed aesthetically.
Art was not a sector of cultural activity.

What, then, was art—perhaps only for that brief but magnificent time? Why did art
bear the modest name techne? Because it was a revealing that brought forth and hither, and
therefore belonged within poiesis. It was finally that revealing which holds complete sway
in all the fine arts, in poetry, and in everything poetical that obtained poiesis as its proper
name. . . .

Whether art may be granted this highest possibility of its essence in the midst of
the extreme danger [of modern technology], no one can tell. Yet we can be astounded.
Before what? Before this other possibility: that the frenziedness of technology may entrench
itself everywhere to such an extent that someday, throughout everything technological, the
essence of technology may come to presence in the coming-to-pass of truth.

Because the essence of technology is nothing technological, essential reflection upon
technology and decisive confrontation with it must happen in a realm that is, on the one
hand, akin to the essence of technology and, on the other, fundamentally different from it.

Such a realm is art. But certainly only if reflection on art, for its part, does not shut its
eyes to the constellation of truth after which we are questioning.

Thus questioning, we bear witness to the crisis that in our sheer preoccupation with
technology we do not yet experience the coming to presence of technology, that in our
sheer aesthetic-mindedness we no longer guard and preserve the coming to presence of art.
Yet the more questioningly we ponder the essence of technology, the more mysterious the
essence of art becomes. [30, pp. 34–35]

I would argue that modernist mathematics, in its more expressly technological
aspects and in general, and physics, where in quantum theory all mathematics
used is a technology, are techne in a sense close to that Heidegger wants to give
this term here. The reason that I see them as close rather than the same is that
Heidegger would allow that the ultimate reality could be accessed by what he saw
as the true thought, which he saw as artistic or poetic thought in the sense of this
passage. In contrast to some (including some modernist) poetry and art, he sees
modernist technology (in its conventional sense) and modernist mathematics and
science, including, one might plausibly surmise, as it is understood here, as a form
of forgetting rather than approaching techne as art found in ancient Greek thinking.
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It is not even clear that he would grant this to the ancient Greek mathematics, much
as he admired ancient Greek, especially pre-Socratic, thought, in philosophy and
poetry, and he sees the forgetting of the thought in question as beginning with
Socrates and Plato. Admittedly, Heidegger’s position is complex, especially insofar
as how artistic thought can do this remains “mysterious,” the mystery that appears
to be deepened by our attempts to understand the essence of our, modern and
modernist, technology. Nevertheless, Heidegger allows at least the possibility of
thinking [Denken] (his preferred term) this truth, even if not representing it. I would
contend, however, that modernist epistemology, even when, in its most radical form,
it places the ultimate nature of reality beyond thought itself in physics or rejects
the existence of such a (single) ultimate reality in mathematics altogether, does not
preclude thought from reaching “the supreme height of the revealing granted them,”
albeit “creation” might be a better word than “revealing,” if there is no ultimate
reality that can be revealed. Even if it exists, as in physics, it still cannot be revealed,
and in mathematics, again, everything is created, constructed. Coming together of
techne and truth is still possible under these conditions and is perhaps not possible
otherwise, regardless of one’s aspirations for how far our thought can reach. We
cannot dispense with truth. What changes are the relationships between truth and
reality, and both concepts themselves, while realism and the corresponding concepts
of truth still apply and are indispensable at surface levels. Techne and truth do come
together under these conditions.

This, I have argued here, is precisely what happens in the thought of Riemann,
Hilbert, Weyl, Weil, and Grothendieck, and those who followed them in mathemat-
ics, or their predecessors, from Fermat and Descartes, or the thought of those who
used mathematics in physics, from Kepler and Galileo to Einstein and Heisenberg,
and beyond, the Platonist or realist aspirations of many, even most, of these figures
notwithstanding. Their thought continues, in mathematics or physics, not the least
when it comes to the idea of curve, even when a curve is a surface, the project of
the painters of curves of the Chauvet Cave, the cave of dreams, no longer forgotten.
The discovery of the cave gave these dreams back to us, and these dreams are about
much more than curves, just as modernist art, such as that of Klee, or the modernist
mathematics of curves are so much more.

Perhaps, however, our history has kept these dreams alive all along by keeping
alive the creative nature of our thought, dreams that we began dreaming well
before the frescoes of the Chauvet Cave were painted. Some form of mathematical
thinking, just as some form of artistic or philosophical thinking, must have always
been part of our history as thinking beings and our dreams, in either sense. The
history that at some point gave (we may never know how!) our brain the capacity to
have these dreams is immeasurably longer, ultimately as long as the history of life
or even the Universe itself, in which, at some point, life has emerged.
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